Sample records for four-point correlation function

  1. The correlation function for density perturbations in an expanding universe. III The three-point and predictions of the four-point and higher order correlation functions

    NASA Technical Reports Server (NTRS)

    Mcclelland, J.; Silk, J.

    1978-01-01

    Higher-order correlation functions for the large-scale distribution of galaxies in space are investigated. It is demonstrated that the three-point correlation function observed by Peebles and Groth (1975) is not consistent with a distribution of perturbations that at present are randomly distributed in space. The two-point correlation function is shown to be independent of how the perturbations are distributed spatially, and a model of clustered perturbations is developed which incorporates a nonuniform perturbation distribution and which explains the three-point correlation function. A model with hierarchical perturbations incorporating the same nonuniform distribution is also constructed; it is found that this model also explains the three-point correlation function, but predicts different results for the four-point and higher-order correlation functions than does the model with clustered perturbations. It is suggested that the model of hierarchical perturbations might be explained by the single assumption of having density fluctuations or discrete objects all of the same mass randomly placed at some initial epoch.

  2. Higher order correlations of IRAS galaxies

    NASA Technical Reports Server (NTRS)

    Meiksin, Avery; Szapudi, Istvan; Szalay, Alexander

    1992-01-01

    The higher order irreducible angular correlation functions are derived up to the eight-point function, for a sample of 4654 IRAS galaxies, flux-limited at 1.2 Jy in the 60 microns band. The correlations are generally found to be somewhat weaker than those for the optically selected galaxies, consistent with the visual impression of looser clusters in the IRAS sample. It is found that the N-point correlation functions can be expressed as the symmetric sum of products of N - 1 two-point functions, although the correlations above the four-point function are consistent with zero. The coefficients are consistent with the hierarchical clustering scenario as modeled by Hamilton and by Schaeffer.

  3. The cluster-cluster correlation function. [of galaxies

    NASA Technical Reports Server (NTRS)

    Postman, M.; Geller, M. J.; Huchra, J. P.

    1986-01-01

    The clustering properties of the Abell and Zwicky cluster catalogs are studied using the two-point angular and spatial correlation functions. The catalogs are divided into eight subsamples to determine the dependence of the correlation function on distance, richness, and the method of cluster identification. It is found that the Corona Borealis supercluster contributes significant power to the spatial correlation function to the Abell cluster sample with distance class of four or less. The distance-limited catalog of 152 Abell clusters, which is not greatly affected by a single system, has a spatial correlation function consistent with the power law Xi(r) = 300r exp -1.8. In both the distance class four or less and distance-limited samples the signal in the spatial correlation function is a power law detectable out to 60/h Mpc. The amplitude of Xi(r) for clusters of richness class two is about three times that for richness class one clusters. The two-point spatial correlation function is sensitive to the use of estimated redshifts.

  4. Hexagonalization of correlation functions II: two-particle contributions

    NASA Astrophysics Data System (ADS)

    Fleury, Thiago; Komatsu, Shota

    2018-02-01

    In this work, we compute one-loop planar five-point functions in N=4 super-Yang-Mills using integrability. As in the previous work, we decompose the correlation functions into hexagon form factors and glue them using the weight factors which depend on the cross-ratios. The main new ingredient in the computation, as compared to the four-point functions studied in the previous paper, is the two-particle mirror contribution. We develop techniques to evaluate it and find agreement with the perturbative results in all the cases we analyzed. In addition, we consider next-to-extremal four-point functions, which are known to be protected, and show that the sum of one-particle and two-particle contributions at one loop adds up to zero as expected. The tools developed in this work would be useful for computing higher-particle contributions which would be relevant for more complicated quantities such as higher-loop corrections and non-planar correlators.

  5. Advances in QCD sum-rule calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melikhov, Dmitri

    2016-01-22

    We review the recent progress in the applications of QCD sum rules to hadron properties with the emphasis on the following selected problems: (i) development of new algorithms for the extraction of ground-state parameters from two-point correlators; (ii) form factors at large momentum transfers from three-point vacuum correlation functions: (iii) properties of exotic tetraquark hadrons from correlation functions of four-quark currents.

  6. Gluon amplitudes as 2 d conformal correlators

    NASA Astrophysics Data System (ADS)

    Pasterski, Sabrina; Shao, Shu-Heng; Strominger, Andrew

    2017-10-01

    Recently, spin-one wave functions in four dimensions that are conformal primaries of the Lorentz group S L (2 ,C ) were constructed. We compute low-point, tree-level gluon scattering amplitudes in the space of these conformal primary wave functions. The answers have the same conformal covariance as correlators of spin-one primaries in a 2 d CFT. The Britto-Cachazo-Feng-Witten (BCFW) recursion relation between three- and four-point gluon amplitudes is recast into this conformal basis.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, L.F.

    Calculations for the two-point correlation functions in the scaling limit for two statistical models are presented. In Part I, the Ising model with a linear defect is studied for T < T/sub c/ and T > T/sub c/. The transfer matrix method of Onsager and Kaufman is used. The energy-density correlation is given by functions related to the modified Bessel functions. The dispersion expansion for the spin-spin correlation functions are derived. The dominant behavior for large separations at T not equal to T/sub c/ is extracted. It is shown that these expansions lead to systems of Fredholm integral equations. Inmore » Part II, the electric correlation function of the eight-vertex model for T < T/sub c/ is studied. The eight vertex model decouples to two independent Ising models when the four spin coupling vanishes. To first order in the four-spin coupling, the electric correlation function is related to a three-point function of the Ising model. This relation is systematically investigated and the full dispersion expansion (to first order in four-spin coupling) is obtained. The results is a new kind of structure which, unlike those of many solvable models, is apparently not expressible in terms of linear integral equations.« less

  8. Correlation functions of warped CFT

    NASA Astrophysics Data System (ADS)

    Song, Wei; Xu, Jianfei

    2018-04-01

    Warped conformal field theory (WCFT) is a two dimensional quantum field theory whose local symmetry algebra consists of a Virasoro algebra and a U(1) Kac-Moody algebra. In this paper, we study correlation functions for primary operators in WCFT. Similar to conformal symmetry, warped conformal symmetry is very constraining. The form of the two and three point functions are determined by the global warped conformal symmetry while the four point functions can be determined up to an arbitrary function of the cross ratio. The warped conformal bootstrap equation are constructed by formulating the notion of crossing symmetry. In the large central charge limit, four point functions can be decomposed into global warped conformal blocks, which can be solved exactly. Furthermore, we revisit the scattering problem in warped AdS spacetime (WAdS), and give a prescription on how to match the bulk result to a WCFT retarded Green's function. Our result is consistent with the conjectured holographic dualities between WCFT and WAdS.

  9. On non-primitively divergent vertices of Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Huber, Markus Q.

    2017-11-01

    Two correlation functions of Yang-Mills beyond the primitively divergent ones, the two-ghost-two-gluon and the four-ghost vertices, are calculated and their influence on lower vertices is examined. Their full (transverse) tensor structure is taken into account. As input, a solution of the full two-point equations - including two-loop terms - is used that respects the resummed perturbative ultraviolet behavior. A clear hierarchy is found with regard to the color structure that reduces the number of relevant dressing functions. The impact of the two-ghost-two-gluon vertex on the three-gluon vertex is negligible, which is explained by the fact that all non-small dressing functions drop out due to their color factors. Only in the ghost-gluon vertex a small net effect below 2% is seen. The four-ghost vertex is found to be extremely small in general. Since these two four-point functions do not enter into the propagator equations, these findings establish their small overall effect on lower correlation functions.

  10. Four-body correlation embedded in antisymmetrized geminal power wave function.

    PubMed

    Kawasaki, Airi; Sugino, Osamu

    2016-12-28

    We extend the Coleman's antisymmetrized geminal power (AGP) to develop a wave function theory that can incorporate up to four-body correlation in a region of strong correlation. To facilitate the variational determination of the wave function, the total energy is rewritten in terms of the traces of geminals. This novel trace formula is applied to a simple model system consisting of one dimensional Hubbard ring with a site of strong correlation. Our scheme significantly improves the result obtained by the AGP-configuration interaction scheme of Uemura et al. and also achieves more efficient compression of the degrees of freedom of the wave function. We regard the result as a step toward a first-principles wave function theory for a strongly correlated point defect or adsorbate embedded in an AGP-based mean-field medium.

  11. Recursive Techniques for Computing Gluon Scattering in Anti-de-Sitter Space

    NASA Astrophysics Data System (ADS)

    Shyaka, Claude; Kharel, Savan

    2016-03-01

    The anti-de Sitter/conformal field theory correspondence is a relationship between two kinds of physical theories. On one side of the duality are special type of quantum (conformal) field theories known as the Yang-Mills theory. These quantum field theories are known to be equivalent to theories of gravity in Anti-de Sitter (AdS) space. The physical observables in the theory are the correlation functions that live in the boundary of AdS space. In general correlation functions are computed using configuration space and the expressions are extremely complicated. Using momentum basis and recursive techniques developed by Raju, we extend tree level correlation functions for four and five-point correlation functions in Yang-Mills theory in Anti-de Sitter space. In addition, we show that for certain external helicity, the correlation functions have simple analytic structure. Finally, we discuss how one can generalize these results to n-point functions. Hendrix college odyssey Grant.

  12. Heterogeneous dynamics of ionic liquids: A four-point time correlation function approach

    NASA Astrophysics Data System (ADS)

    Liu, Jiannan; Willcox, Jon A. L.; Kim, Hyung J.

    2018-05-01

    Many ionic liquids show behavior similar to that of glassy systems, e.g., large and long-lasted deviations from Gaussian dynamics and clustering of "mobile" and "immobile" groups of ions. Herein a time-dependent four-point density correlation function—typically used to characterize glassy systems—is implemented for the ionic liquids, choline acetate, and 1-butyl-3-methylimidazolium acetate. Dynamic correlation beyond the first ionic solvation shell on the time scale of nanoseconds is found in the ionic liquids, revealing the cooperative nature of ion motions. The traditional solvent, acetonitrile, on the other hand, shows a much shorter length-scale that decays after a few picoseconds.

  13. Universal RCFT correlators from the holomorphic bootstrap

    NASA Astrophysics Data System (ADS)

    Mukhi, Sunil; Muralidhara, Girish

    2018-02-01

    We elaborate and extend the method of Wronskian differential equations for conformal blocks to compute four-point correlation functions on the plane for classes of primary fields in rational (and possibly more general) conformal field theories. This approach leads to universal differential equations for families of CFT's and provides a very simple re-derivation of the BPZ results for the degenerate fields ϕ 1,2 and ϕ 2,1 in the c < 1 minimal models. We apply this technique to compute correlators for the WZW models corresponding to the Deligne-Cvitanović exceptional series of Lie algebras. The application turns out to be subtle in certain cases where there are multiple decoupled primaries. The power of this approach is demonstrated by applying it to compute four-point functions for the Baby Monster CFT, which does not belong to any minimal series.

  14. Bootstrapping the O(N) archipelago

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kos, Filip; Poland, David; Simmons-Duffin, David

    2015-11-17

    We study 3d CFTs with an O(N) global symmetry using the conformal bootstrap for a system of mixed correlators. Specifically, we consider all nonvanishing scalar four-point functions containing the lowest dimension O(N) vector Φ i and the lowest dimension O(N) singlet s, assumed to be the only relevant operators in their symmetry representations. The constraints of crossing symmetry and unitarity for these four-point functions force the scaling dimensions (Δ Φ , Δ s ) to lie inside small islands. Here, we also make rigorous determinations of current two-point functions in the O(2) and O(3) models, with applications to transport inmore » condensed matter systems.« less

  15. Improvement of correlation-based centroiding methods for point source Shack-Hartmann wavefront sensor

    NASA Astrophysics Data System (ADS)

    Li, Xuxu; Li, Xinyang; wang, Caixia

    2018-03-01

    This paper proposes an efficient approach to decrease the computational costs of correlation-based centroiding methods used for point source Shack-Hartmann wavefront sensors. Four typical similarity functions have been compared, i.e. the absolute difference function (ADF), ADF square (ADF2), square difference function (SDF), and cross-correlation function (CCF) using the Gaussian spot model. By combining them with fast search algorithms, such as three-step search (TSS), two-dimensional logarithmic search (TDL), cross search (CS), and orthogonal search (OS), computational costs can be reduced drastically without affecting the accuracy of centroid detection. Specifically, OS reduces calculation consumption by 90%. A comprehensive simulation indicates that CCF exhibits a better performance than other functions under various light-level conditions. Besides, the effectiveness of fast search algorithms has been verified.

  16. Bootstrapping N=2 chiral correlators

    NASA Astrophysics Data System (ADS)

    Lemos, Madalena; Liendo, Pedro

    2016-01-01

    We apply the numerical bootstrap program to chiral operators in four-dimensional N=2 SCFTs. In the first part of this work we study four-point functions in which all fields have the same conformal dimension. We give special emphasis to bootstrapping a specific theory: the simplest Argyres-Douglas fixed point with no flavor symmetry. In the second part we generalize our setup and consider correlators of fields with unequal dimension. This is an example of a mixed correlator and allows us to probe new regions in the parameter space of N=2 SCFTs. In particular, our results put constraints on relations in the Coulomb branch chiral ring and on the curvature of the Zamolodchikov metric.

  17. COSMOS-e'-soft Higgsotic attractors

    NASA Astrophysics Data System (ADS)

    Choudhury, Sayantan

    2017-07-01

    In this work, we have developed an elegant algorithm to study the cosmological consequences from a huge class of quantum field theories (i.e. superstring theory, supergravity, extra dimensional theory, modified gravity, etc.), which are equivalently described by soft attractors in the effective field theory framework. In this description we have restricted our analysis for two scalar fields - dilaton and Higgsotic fields minimally coupled with Einstein gravity, which can be generalized for any arbitrary number of scalar field contents with generalized non-canonical and non-minimal interactions. We have explicitly used R^2 gravity, from which we have studied the attractor and non-attractor phases by exactly computing two point, three point and four point correlation functions from scalar fluctuations using the In-In (Schwinger-Keldysh) and the δ N formalisms. We have also presented theoretical bounds on the amplitude, tilt and running of the primordial power spectrum, various shapes (equilateral, squeezed, folded kite or counter-collinear) of the amplitude as obtained from three and four point scalar functions, which are consistent with observed data. Also the results from two point tensor fluctuations and the field excursion formula are explicitly presented for the attractor and non-attractor phase. Further, reheating constraints, scale dependent behavior of the couplings and the dynamical solution for the dilaton and Higgsotic fields are also presented. New sets of consistency relations between two, three and four point observables are also presented, which shows significant deviation from canonical slow-roll models. Additionally, three possible theoretical proposals have presented to overcome the tachyonic instability at the time of late time acceleration. Finally, we have also provided the bulk interpretation from the three and four point scalar correlation functions for completeness.

  18. Cumulants and correlation functions versus the QCD phase diagram

    DOE PAGES

    Bzdak, Adam; Koch, Volker; Strodthoff, Nils

    2017-05-12

    Here, we discuss the relation of particle number cumulants and correlation functions. It is argued that measuring couplings of the genuine multiparticle correlation functions could provide cleaner information on possible nontrivial dynamics in heavy-ion collisions. We also extract integrated multiproton correlation functions from the presently available experimental data on proton cumulants. We find that the STAR data contain significant four-proton correlations, at least at the lower energies, with indication of changing dynamics in central collisions. We also find that these correlations are rather long ranged in rapidity. Finally, using the Ising model, we demonstrate how the signs of the multiprotonmore » correlation functions may be used to exclude certain regions of the phase diagram close to the critical point.« less

  19. Cumulants and correlation functions versus the QCD phase diagram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bzdak, Adam; Koch, Volker; Strodthoff, Nils

    Here, we discuss the relation of particle number cumulants and correlation functions. It is argued that measuring couplings of the genuine multiparticle correlation functions could provide cleaner information on possible nontrivial dynamics in heavy-ion collisions. We also extract integrated multiproton correlation functions from the presently available experimental data on proton cumulants. We find that the STAR data contain significant four-proton correlations, at least at the lower energies, with indication of changing dynamics in central collisions. We also find that these correlations are rather long ranged in rapidity. Finally, using the Ising model, we demonstrate how the signs of the multiprotonmore » correlation functions may be used to exclude certain regions of the phase diagram close to the critical point.« less

  20. Colour-dressed hexagon tessellations for correlation functions and non-planar corrections

    NASA Astrophysics Data System (ADS)

    Eden, Burkhard; Jiang, Yunfeng; le Plat, Dennis; Sfondrini, Alessandro

    2018-02-01

    We continue the study of four-point correlation functions by the hexagon tessellation approach initiated in [38] and [39]. We consider planar tree-level correlation functions in N=4 supersymmetric Yang-Mills theory involving two non-protected operators. We find that, in order to reproduce the field theory result, it is necessary to include SU( N) colour factors in the hexagon formalism; moreover, we find that the hexagon approach as it stands is naturally tailored to the single-trace part of correlation functions, and does not account for multi-trace admixtures. We discuss how to compute correlators involving double-trace operators, as well as more general 1 /N effects; in particular we compute the whole next-to-leading order in the large- N expansion of tree-level BMN two-point functions by tessellating a torus with punctures. Finally, we turn to the issue of "wrapping", Lüscher-like corrections. We show that SU( N) colour-dressing reproduces an earlier empirical rule for incorporating single-magnon wrapping, and we provide a direct interpretation of such wrapping processes in terms of N=2 supersymmetric Feynman diagrams.

  1. Mineral element correlation with adenohypophyseal-adrenal cortex function and stress.

    PubMed

    Flynn, A; Pories, W J; Strain, W H; Hill, O A

    1971-09-10

    A statistical correlationl was made between adrenocorticotropin (ACTH) and four elements in rats under control, stress, and stress-recovery conditions. Blood serum zinc showed a strong positive correlation with the rise in ACTH during stress and its decline in stress recovery. Serum calcium, copper, and magnesium demonstrated little correlation with ACTH changes. The strong ACTH-zinc correlation points to an as yet undefined interaction between ACTH and zinc

  2. Exact Correlation Functions in S U (2 ) N =2 Superconformal QCD

    NASA Astrophysics Data System (ADS)

    Baggio, Marco; Niarchos, Vasilis; Papadodimas, Kyriakos

    2014-12-01

    We report an exact solution of 2- and 3-point functions of chiral primary fields in S U (2 ) N =2 super-Yang-Mills theory coupled to four hypermultiplets. It is shown that these correlation functions are nontrivial functions of the gauge coupling, obeying differential equations which take the form of the semi-infinite Toda chain. We solve these equations recursively in terms of the Zamolodchikov metric that can be determined exactly from supersymmetric localization on the four-sphere. Our results are verified independently in perturbation theory with a Feynman diagram computation up to 2 loops. This is a short version of a companion paper that contains detailed technical remarks, additional material, and aspects of an extension to the S U (N ) gauge group.

  3. Contrasting brain patterns of writing-related DTI parameters, fMRI connectivity, and DTI-fMRI connectivity correlations in children with and without dysgraphia or dyslexia.

    PubMed

    Richards, T L; Grabowski, T J; Boord, P; Yagle, K; Askren, M; Mestre, Z; Robinson, P; Welker, O; Gulliford, D; Nagy, W; Berninger, V

    2015-01-01

    Based on comprehensive testing and educational history, children in grades 4-9 (on average 12 years) were diagnosed with dysgraphia (persisting handwriting impairment) or dyslexia (persisting word spelling/reading impairment) or as typical writers and readers (controls). The dysgraphia group (n = 14) and dyslexia group (n = 17) were each compared to the control group (n = 9) and to each other in separate analyses. Four brain region seed points (left occipital temporal gyrus, supramarginal gyrus, precuneus, and inferior frontal gyrus) were used in these analyses which were shown in a metaanalysis to be related to written word production on four indicators of white matter integrity and fMRI functional connectivity for four tasks (self-guided mind wandering during resting state, writing letter that follows a visually displayed letter in alphabet, writing missing letter to create a correctly spelled real word, and planning for composing after scanning on topic specified by researcher). For those DTI indicators on which the dysgraphic group or dyslexic group differed from the control group (fractional anisotropy, relative anisotropy, axial diffusivity but not radial diffusivity), correlations were computed between the DTI parameter and fMRI functional connectivity for the two writing tasks (alphabet and spelling) by seed points. Analyses, controlled for multiple comparisons, showed that (a) the control group exhibited more white matter integrity than either the dysgraphic or dyslexic group; (b) the dysgraphic and dyslexic groups showed more functional connectivity than the control group but differed in patterns of functional connectivity for task and seed point; and (c) the dysgraphic and dyslexic groups showed different patterns of significant DTI-fMRI connectivity correlations for specific seed points and written language tasks. Thus, dysgraphia and dyslexia differ in white matter integrity, fMRI functional connectivity, and white matter-gray matter correlations. Of clinical relevance, brain differences were observed in dysgraphia and dyslexia on written language tasks yoked to their defining behavioral impairments in handwriting and/or in word spelling and on the cognitive mind wandering rest condition and composition planning.

  4. Contrasting brain patterns of writing-related DTI parameters, fMRI connectivity, and DTI–fMRI connectivity correlations in children with and without dysgraphia or dyslexia

    PubMed Central

    Richards, T.L.; Grabowski, T.J.; Boord, P.; Yagle, K.; Askren, M.; Mestre, Z.; Robinson, P.; Welker, O.; Gulliford, D.; Nagy, W.; Berninger, V.

    2015-01-01

    Based on comprehensive testing and educational history, children in grades 4–9 (on average 12 years) were diagnosed with dysgraphia (persisting handwriting impairment) or dyslexia (persisting word spelling/reading impairment) or as typical writers and readers (controls). The dysgraphia group (n = 14) and dyslexia group (n = 17) were each compared to the control group (n = 9) and to each other in separate analyses. Four brain region seed points (left occipital temporal gyrus, supramarginal gyrus, precuneus, and inferior frontal gyrus) were used in these analyses which were shown in a metaanalysis to be related to written word production on four indicators of white matter integrity and fMRI functional connectivity for four tasks (self-guided mind wandering during resting state, writing letter that follows a visually displayed letter in alphabet, writing missing letter to create a correctly spelled real word, and planning for composing after scanning on topic specified by researcher). For those DTI indicators on which the dysgraphic group or dyslexic group differed from the control group (fractional anisotropy, relative anisotropy, axial diffusivity but not radial diffusivity), correlations were computed between the DTI parameter and fMRI functional connectivity for the two writing tasks (alphabet and spelling) by seed points. Analyses, controlled for multiple comparisons, showed that (a) the control group exhibited more white matter integrity than either the dysgraphic or dyslexic group; (b) the dysgraphic and dyslexic groups showed more functional connectivity than the control group but differed in patterns of functional connectivity for task and seed point; and (c) the dysgraphic and dyslexic groups showed different patterns of significant DTI–fMRI connectivity correlations for specific seed points and written language tasks. Thus, dysgraphia and dyslexia differ in white matter integrity, fMRI functional connectivity, and white matter–gray matter correlations. Of clinical relevance, brain differences were observed in dysgraphia and dyslexia on written language tasks yoked to their defining behavioral impairments in handwriting and/or in word spelling and on the cognitive mind wandering rest condition and composition planning. PMID:26106566

  5. Does Preoperative Platelet Function Predict Bleeding in Patients Undergoing Off Pump Coronary Artery Bypass Surgery?

    PubMed

    Berger, Peter B; Kirchner, H Lester; Wagner, Eric S; Ismail-Sayed, Ibrahim; Yahya, Salma; Benoit, Charles; Blankenship, James C; Carter, Russell; Casale, Alfred S; Green, Sandy M; Scott, Thomas D; Skelding, Kimberly A; Woods, Edward; Henry, Yvette M

    2015-06-01

    We sought to examine the relationship between preoperative platelet function and perioperative bleeding in patients undergoing CABG. There are many ways to measure platelet aggregability. Little is known about their correlations with one another, or with bleeding. We prospectively studied 50 patients undergoing a first isolated off-pump CABG. Thirty-four were exposed to a thienopyridine prior to surgery; 16 were not. Preoperative platelet function was measured by VerifyNow®, TEG®, AggreGuide™, Plateletworks®, vasodilator-stimulated phosphoprotein (VASP) phosphorylation, and light transmission aggregometry. Bleeding was assessed 2 ways: drop from pre- to nadir postoperative hematocrit, and chest tube drainage. Correlation coefficients were calculated using Spearman's rank-order correlation. Mean age was 62 years. Patient characteristics and surgical details were similar between the thienopyridine-exposed and non-exposed patients. The correlation coefficients between the 4 point-of-care platelet function measurements and hematocrit change ranged from -0.2274 to 0.2882. Only Plateletworks® correlated with drop in hematocrit (r = 0.2882, P = 0.0470). The correlation coefficients between each of the 4 point-of-care platelet function tests and the chest tube drainage were also poor, ranging from -0.3073 to 0.2272. Both AggreGuide™ (r = -0.3073, P = 0.0317) and VASP (r = -0.3187, P = 0.0272) were weakly but significantly correlated with chest tube drainage. The correlation among the 4 point-of-care platelet function measurements was poor, with coefficients ranging from -0.2504 to 0.1968. We observed little correlation among 4 platelet function tests, and between those assays and perioperative bleeding defined 2 different ways. Whether any of these assays should be used to guide decision making in individual patients is unclear. © 2015, Wiley Periodicals, Inc.

  6. Spectral determinants for twist field correlators

    NASA Astrophysics Data System (ADS)

    Belitsky, A. V.

    2018-04-01

    Twist fields were introduced a few decades ago as a quantum counterpart to classical kink configurations and disorder variables in low dimensional field theories. In recent years they received a new incarnation within the framework of geometric entropy and strong coupling limit of four-dimensional scattering amplitudes. In this paper, we study their two-point correlation functions in a free massless scalar theory, namely, twist-twist and twist-antitwist correlators. In spite of the simplicity of the model in question, the properties of the latter are far from being trivial. The problem is reduced, within the formalism of the path integral, to the study of spectral determinants on surfaces with conical points, which are then computed exactly making use of the zeta function regularization. We also provide an insight into twist correlators for a massive complex scalar by means of the Lifshitz-Krein trace formula.

  7. Quantum Critical Point revisited by the Dynamical Mean Field Theory

    NASA Astrophysics Data System (ADS)

    Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei

    Dynamical mean field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the self energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low energy kink and the high energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high energy antiferromagnetic paramagnons. We use the frequency dependent four-point correlation function of spin operators to calculate the momentum dependent correction to the electron self energy. Our results reveal a substantial difference with the calculations based on the Spin-Fermion model which indicates that the frequency dependence of the the quasiparitcle-paramagnon vertices is an important factor. The authors are supported by Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy under DOE Grant DE-FOA-0001276.

  8. Redshift distortions of galaxy correlation functions

    NASA Technical Reports Server (NTRS)

    Fry, J. N.; Gaztanaga, Enrique

    1994-01-01

    To examine how peculiar velocities can affect the two-, three-, and four-point redshift correlation functions, we evaluate volume-average correlations for configurations that emphasize and minimize redshift distortions for four different volume-limited samples from each of the CfA, SSRS, and IRAS redshift catalogs. We present the results as the correlation length r(sub 0) and power index gamma of the two-point correlations, bar-xi(sub 0) = (r(sub 0)/r)(exp gamma), and as the hierarchical amplitudes of the three- and four-point functions, S(sub 3) = bar-xi(sub 3)/bar-xi(exp 2)(sub 2) and S(sub 4) = bar-xi(sub 4)/bar-xi(exp 3)(sub 2). We find a characteristic distortion for bar-xi(sub 2), the slope gamma is flatter and the correlation length is larger in redshift space than in real space; that is, redshift distortions 'move' correlations from small to large scales. At the largest scales (up to 12 Mpc), the extra power in the redshift distribution is compatible with Omega(exp 4/7)/b approximately equal to 1. We estimate Omega(exp 4/7)/b to be 0.53 +/- 0.15, 1.10 +/- 0.16, and 0.84 +/- 0.45 for the CfA, SSRS, and IRAS catalogs. Higher order correlations bar-xi(sub 3) and bar-xi(sub 4) suffer similar redshift distortions but in such a way that, within the accuracy of our ananlysis, the normalized amplitudes S(sub 3) and S(sub 4) are insensitive to this effect. The hierarchical amplitudes S(sub 3) and S(sub 4) are constant as a function of scale between 1 and 12 Mpc and have similar values in all samples and catalogs, S(sub 3) approximately equal to 2 and S(sub 4) approximately equal to 6, despite the fact that bar-xi(sub 2), bar-xi(sub 3), and bar-xi(sub 4) differ from one sample to another by large factors (up to a factor of 4 in bar-xi(sub 2), 8 for bar-xi(sub 3), and 12 for bar-xi(sub 4)). The agreement between the independent estimations of S(sub 3) and S(sub 4) is remarkable given the different criteria in the selection of galaxies and also the difference in the resulting range of densities, luminosities, and locations between samples.

  9. Isovector charges of the nucleon from 2 + 1 -flavor QCD with clover fermions

    DOE PAGES

    Yoon, Boram; Jang, Yong -Chull; Gupta, Rajan; ...

    2017-04-13

    We present high-statistics estimates of the isovector charges of the nucleon from four 2+1-flavor ensembles generated using Wilson-clover fermions with stout smearing and tree-level tadpole improved Symanzik gauge action at lattice spacingsmore » $a=0.114$ and $0.080$ fm and with $$M_\\pi \\approx 315$$ and 200 MeV. The truncated solver method with bias correction and the coherent source sequential propagator construction are used to cost-effectively achieve $O(10^5)$ measurements on each ensemble. Using these data, the analysis of two-point correlation functions is extended to include four states in the fits and of three-point functions to three states. Control over excited-state contamination in the calculation of the nucleon mass, the mass gaps between excited states, and in the matrix elements is demonstrated by the consistency of estimates using this multistate analysis of the spectral decomposition of the correlation functions and from simulations of the three-point functions at multiple values of the source-sink separation. Lastly, the results for all three charges, $$g_A$$, $$g_S$$ and $$g_T$$, are in good agreement with calculations done using the clover-on-HISQ lattice formulation with similar values of the lattice parameters.« less

  10. Normalized Movement Quality Measures for Therapeutic Robots Strongly Correlate With Clinical Motor Impairment Measures

    PubMed Central

    Celik, Ozkan; O’Malley, Marcia K.; Boake, Corwin; Levin, Harvey S.; Yozbatiran, Nuray; Reistetter, Timothy A.

    2016-01-01

    In this paper, we analyze the correlations between four clinical measures (Fugl–Meyer upper extremity scale, Motor Activity Log, Action Research Arm Test, and Jebsen-Taylor Hand Function Test) and four robotic measures (smoothness of movement, trajectory error, average number of target hits per minute, and mean tangential speed), used to assess motor recovery. Data were gathered as part of a hybrid robotic and traditional upper extremity rehabilitation program for nine stroke patients. Smoothness of movement and trajectory error, temporally and spatially normalized measures of movement quality defined for point-to-point movements, were found to have significant moderate to strong correlations with all four of the clinical measures. The strong correlations suggest that smoothness of movement and trajectory error may be used to compare outcomes of different rehabilitation protocols and devices effectively, provide improved resolution for tracking patient progress compared to only pre-and post-treatment measurements, enable accurate adaptation of therapy based on patient progress, and deliver immediate and useful feedback to the patient and therapist. PMID:20388607

  11. Towards spinning Mellin amplitudes

    NASA Astrophysics Data System (ADS)

    Chen, Heng-Yu; Kuo, En-Jui; Kyono, Hideki

    2018-06-01

    We construct the Mellin representation of four point conformal correlation function with external primary operators with arbitrary integer spacetime spins, and obtain a natural proposal for spinning Mellin amplitudes. By restricting to the exchange of symmetric traceless primaries, we generalize the Mellin transform for scalar case to introduce discrete Mellin variables for incorporating spin degrees of freedom. Based on the structures about spinning three and four point Witten diagrams, we also obtain a generalization of the Mack polynomial which can be regarded as a natural kinematical polynomial basis for computing spinning Mellin amplitudes using different choices of interaction vertices.

  12. Unitary subsector of generalized minimal models

    NASA Astrophysics Data System (ADS)

    Behan, Connor

    2018-05-01

    We revisit the line of nonunitary theories that interpolate between the Virasoro minimal models. Numerical bootstrap applications have brought about interest in the four-point function involving the scalar primary of lowest dimension. Using recent progress in harmonic analysis on the conformal group, we prove the conjecture that global conformal blocks in this correlator appear with positive coefficients. We also compute many such coefficients in the simplest mixed correlator system. Finally, we comment on the status of using global conformal blocks to isolate the truly unitary points on this line.

  13. Einstein gravity 3-point functions from conformal field theory

    NASA Astrophysics Data System (ADS)

    Afkhami-Jeddi, Nima; Hartman, Thomas; Kundu, Sandipan; Tajdini, Amirhossein

    2017-12-01

    We study stress tensor correlation functions in four-dimensional conformal field theories with large N and a sparse spectrum. Theories in this class are expected to have local holographic duals, so effective field theory in anti-de Sitter suggests that the stress tensor sector should exhibit universal, gravity-like behavior. At the linearized level, the hallmark of locality in the emergent geometry is that stress tensor three-point functions 〈 T T T 〉, normally specified by three constants, should approach a universal structure controlled by a single parameter as the gap to higher spin operators is increased. We demonstrate this phenomenon by a direct CFT calculation. Stress tensor exchange, by itself, violates causality and unitarity unless the three-point functions are carefully tuned, and the unique consistent choice exactly matches the prediction of Einstein gravity. Under some assumptions about the other potential contributions, we conclude that this structure is universal, and in particular, that the anomaly coefficients satisfy a ≈ c as conjectured by Camanho et al. The argument is based on causality of a four-point function, with kinematics designed to probe bulk locality, and invokes the chaos bound of Maldacena, Shenker, and Stanford.

  14. [Dental arch form reverting by four-point method].

    PubMed

    Pan, Xiao-Gang; Qian, Yu-Fen; Weng, Si-En; Feng, Qi-Ping; Yu, Quan

    2008-04-01

    To explore a simple method of reverting individual dental arch form template for wire bending. Individual dental arch form was reverted by four-point method. By defining central point of bracket on bilateral lower second premolar and first molar, certain individual dental arch form could be generated. The arch form generating procedure was then be developed to computer software for printing arch form. Four-point method arch form was evaluated by comparing with direct model measurement on linear and angular parameters. The accuracy and reproducibility were assessed by paired t test and concordance correlation coefficient with Medcalc 9.3 software package. The arch form by four-point method was of good accuracy and reproducibility (linear concordance correlation coefficient was 0.9909 and angular concordance correlation coefficient was 0.8419). The dental arch form reverted by four-point method could reproduce the individual dental arch form.

  15. Leading singularities and off-shell conformal integrals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drummond, James; Duhr, Claude; Eden, Burkhard

    2013-08-29

    The three-loop four-point function of stress-tensor multiplets in N=4 super Yang-Mills theory contains two so far unknown, off-shell, conformal integrals, in addition to the known, ladder-type integrals. In our paper we evaluate the unknown integrals, thus obtaining the three-loop correlation function analytically. The integrals have the generic structure of rational functions multiplied by (multiple) polylogarithms. We use the idea of leading singularities to obtain the rational coefficients, the symbol — with an appropriate ansatz for its structure — as a means of characterising multiple polylogarithms, and the technique of asymptotic expansion of Feynman integrals to obtain the integrals in certainmore » limits. The limiting behaviour uniquely fixes the symbols of the integrals, which we then lift to find the corresponding polylogarithmic functions. The final formulae are numerically confirmed. Furthermore, we develop techniques that can be applied more generally, and we illustrate this by analytically evaluating one of the integrals contributing to the same four-point function at four loops. This example shows a connection between the leading singularities and the entries of the symbol.« less

  16. Spin Hartree-Fock approach to studying quantum Heisenberg antiferromagnets in low dimensions

    NASA Astrophysics Data System (ADS)

    Werth, A.; Kopietz, P.; Tsyplyatyev, O.

    2018-05-01

    We construct a new mean-field theory for a quantum (spin-1/2) Heisenberg antiferromagnet in one (1D) and two (2D) dimensions using a Hartree-Fock decoupling of the four-point correlation functions. We show that the solution to the self-consistency equations based on two-point correlation functions does not produce any unphysical finite-temperature phase transition, in accord with the Mermin-Wagner theorem, unlike the common approach based on the mean-field equation for the order parameter. The next-neighbor spin-spin correlation functions, calculated within this approach, reproduce closely the strong renormalization by quantum fluctuations obtained via a Bethe ansatz in 1D and a small renormalization of the classical antiferromagnetic state in 2D. The heat capacity approximates with reasonable accuracy the full Bethe ansatz result at all temperatures in 1D. In 2D, we obtain a reduction of the peak height in the heat capacity at a finite temperature that is accessible by high-order 1 /T expansions.

  17. Theoretical Calculation of the Power Spectra of the Rolling and Yawing Moments on a Wing in Random Turbulence

    NASA Technical Reports Server (NTRS)

    Eggleston, John M; Diederich, Franklin W

    1957-01-01

    The correlation functions and power spectra of the rolling and yawing moments on an airplane wing due to the three components of continuous random turbulence are calculated. The rolling moments to the longitudinal (horizontal) and normal (vertical) components depend on the spanwise distributions of instantaneous gust intensity, which are taken into account by using the inherent properties of symmetry of isotropic turbulence. The results consist of expressions for correlation functions or spectra of the rolling moment in terms of the point correlation functions of the two components of turbulence. Specific numerical calculations are made for a pair of correlation functions given by simple analytic expressions which fit available experimental data quite well. Calculations are made for four lift distributions. Comparison is made with the results of previous analyses which assumed random turbulence along the flight path and linear variations of gust velocity across the span.

  18. Peculiar velocity effect on galaxy correlation functions in nonlinear clustering regime

    NASA Astrophysics Data System (ADS)

    Matsubara, Takahiko

    1994-03-01

    We studied the distortion of the apparent distribution of galaxies in redshift space contaminated by the peculiar velocity effect. Specifically we obtained the expressions for N-point correlation functions in redshift space with given functional form for velocity distribution f(v) and evaluated two- and three-point correlation functions quantitatively. The effect of velocity correlations is also discussed. When the two-point correlation function in real space has a power-law form, Xir(r) is proportional to r(-gamma), the redshift-space counterpart on small scales also has a power-law form but with an increased power-law index: Xis(s) is proportional to s(1-gamma). When the three-point correlation function has the hierarchical form and the two-point correlation function has the power-law form in real space, the hierarchical form of the three-point correlation function is almost preserved in redshift space. The above analytic results are compared with the direct analysis based on N-body simulation data for cold dark matter models. Implications on the hierarchical clustering ansatz are discussed in detail.

  19. Connecting Archimedean and Non-Archimedean AdS/CFT

    NASA Astrophysics Data System (ADS)

    Parikh, Sarthak

    This thesis develops a non-Archimedean analog of the usual Archimedean anti-de Sitter (AdS)/conformal field theory (CFT) correspondence. AdS space gets replaced by a Bruhat-Tits tree, which is a regular graph with no cycles. The boundary of the Bruhat-Tits tree is described by an unramified extension of the p-adic numbers, which replaces the real valued Euclidean vector space on which the CFT lives. Conformal transformations on the boundary act as linear fractional transformations. In the first part of the thesis, correlation functions are computed in the simple case of massive, interacting scalars in the bulk. They are found to be surprisingly similar to standard holographic correlation functions down to precise numerical coefficients, when expressed in terms of local zeta functions. Along the way, we show that like in the Archimedean case, CFT conformal blocks are dual to geodesic bulk diagrams, which are bulk exchange diagrams with the bulk points of integration restricted to certain geodesics. Other than these intriguing similarities, significant simplifications also arise. Notably, all derivatives disappear from the operator product expansion, and the conformal block decomposition of the four-point function. Finally, a minimal bulk action is constructed on the Bruhat-Tits tree for a single scalar field with nearest neighbor interactions, which reproduces the two-, three-, and four-point functions of the free O(N) model. In the second part, the p-adic O(N) model is studied at the interacting fixed point. Leading order results for the anomalous dimensions of low dimension operators are obtained in two separate regimes: the epsilon-expansion and the large N limit. Remarkably, formulae for anomalous dimensions in the large N limit are valid equally for Archimedean and non-Archimedean field theories, when expressed in terms of local zeta functions. Finally, higher derivative versions of the O(N) model in the Archimedean case are considered, where the general formula for anomalous dimensions obtained earlier is still valid. Analogies with two-derivative theories hint at the existence of some interesting new field theories in four real Euclidean dimensions.

  20. Chaos and complexity by design

    DOE PAGES

    Roberts, Daniel A.; Yoshida, Beni

    2017-04-20

    We study the relationship between quantum chaos and pseudorandomness by developing probes of unitary design. A natural probe of randomness is the “frame poten-tial,” which is minimized by unitary k-designs and measures the 2-norm distance between the Haar random unitary ensemble and another ensemble. A natural probe of quantum chaos is out-of-time-order (OTO) four-point correlation functions. We also show that the norm squared of a generalization of out-of-time-order 2k-point correlators is proportional to the kth frame potential, providing a quantitative connection between chaos and pseudorandomness. In addition, we prove that these 2k-point correlators for Pauli operators completely determine the k-foldmore » channel of an ensemble of unitary operators. Finally, we use a counting argument to obtain a lower bound on the quantum circuit complexity in terms of the frame potential. This provides a direct link between chaos, complexity, and randomness.« less

  1. Unitarity violation in noninteger dimensional Gross-Neveu-Yukawa model

    NASA Astrophysics Data System (ADS)

    Ji, Yao; Kelly, Michael

    2018-05-01

    We construct an explicit example of unitarity violation in fermionic quantum field theories in noninteger dimensions. We study the two-point correlation function of four-fermion operators. We compute the one-loop anomalous dimensions of these operators in the Gross-Neveu-Yukawa model. We find that at one-loop order, the four-fermion operators split into three classes with one class having negative norms. This implies that the theory violates unitarity, following the definition in Ref. [1].

  2. A Kinematically Consistent Two-Point Correlation Function

    NASA Technical Reports Server (NTRS)

    Ristorcelli, J. R.

    1998-01-01

    A simple kinematically consistent expression for the longitudinal two-point correlation function related to both the integral length scale and the Taylor microscale is obtained. On the inner scale, in a region of width inversely proportional to the turbulent Reynolds number, the function has the appropriate curvature at the origin. The expression for two-point correlation is related to the nonlinear cascade rate, or dissipation epsilon, a quantity that is carried as part of a typical single-point turbulence closure simulation. Constructing an expression for the two-point correlation whose curvature at the origin is the Taylor microscale incorporates one of the fundamental quantities characterizing turbulence, epsilon, into a model for the two-point correlation function. The integral of the function also gives, as is required, an outer integral length scale of the turbulence independent of viscosity. The proposed expression is obtained by kinematic arguments; the intention is to produce a practically applicable expression in terms of simple elementary functions that allow an analytical evaluation, by asymptotic methods, of diverse functionals relevant to single-point turbulence closures. Using the expression devised an example of the asymptotic method by which functionals of the two-point correlation can be evaluated is given.

  3. Fine Grained Chaos in AdS2 Gravity

    NASA Astrophysics Data System (ADS)

    Haehl, Felix M.; Rozali, Moshe

    2018-03-01

    Quantum chaos can be characterized by an exponential growth of the thermal out-of-time-order four-point function up to a scrambling time u^*. We discuss generalizations of this statement for certain higher-point correlation functions. For concreteness, we study the Schwarzian theory of a one-dimensional time reparametrization mode, which describes two-dimensional anti-de Sitter space (AdS2 ) gravity and the low-energy dynamics of the Sachdev-Ye-Kitaev model. We identify a particular set of 2 k -point functions, characterized as being both "maximally braided" and "k -out of time order," which exhibit exponential growth until progressively longer time scales u^*(k)˜(k -1 )u^*. We suggest an interpretation as scrambling of increasingly fine grained measures of quantum information, which correspondingly take progressively longer time to reach their thermal values.

  4. Fine Grained Chaos in AdS_{2} Gravity.

    PubMed

    Haehl, Felix M; Rozali, Moshe

    2018-03-23

    Quantum chaos can be characterized by an exponential growth of the thermal out-of-time-order four-point function up to a scrambling time u[over ^]_{*}. We discuss generalizations of this statement for certain higher-point correlation functions. For concreteness, we study the Schwarzian theory of a one-dimensional time reparametrization mode, which describes two-dimensional anti-de Sitter space (AdS_{2}) gravity and the low-energy dynamics of the Sachdev-Ye-Kitaev model. We identify a particular set of 2k-point functions, characterized as being both "maximally braided" and "k-out of time order," which exhibit exponential growth until progressively longer time scales u[over ^]_{*}^{(k)}∼(k-1)u[over ^]_{*}. We suggest an interpretation as scrambling of increasingly fine grained measures of quantum information, which correspondingly take progressively longer time to reach their thermal values.

  5. Avalanche of entanglement and correlations at quantum phase transitions.

    PubMed

    Krutitsky, Konstantin V; Osterloh, Andreas; Schützhold, Ralf

    2017-06-16

    We study the ground-state entanglement in the quantum Ising model with nearest neighbor ferromagnetic coupling J and find a sequential increase of entanglement depth d with growing J. This entanglement avalanche starts with two-point entanglement, as measured by the concurrence, and continues via the three-tangle and four-tangle, until finally, deep in the ferromagnetic phase for J = ∞, arriving at a pure L-partite (GHZ type) entanglement of all L spins. Comparison with the two, three, and four-point correlations reveals a similar sequence and shows strong ties to the above entanglement measures for small J. However, we also find a partial inversion of the hierarchy, where the four-point correlation exceeds the three- and two-point correlations, well before the critical point is reached. Qualitatively similar behavior is also found for the Bose-Hubbard model, suggesting that this is a general feature of a quantum phase transition. This should be taken into account in the approximations starting from a mean-field limit.

  6. Diagnosing Chaos Using Four-Point Functions in Two-Dimensional Conformal Field Theory.

    PubMed

    Roberts, Daniel A; Stanford, Douglas

    2015-09-25

    We study chaotic dynamics in two-dimensional conformal field theory through out-of-time-order thermal correlators of the form ⟨W(t)VW(t)V⟩. We reproduce holographic calculations similar to those of Shenker and Stanford, by studying the large c Virasoro identity conformal block. The contribution of this block to the above correlation function begins to decrease exponentially after a delay of ~t_{*}-(β/2π)logβ^{2}E_{w}E_{v}, where t_{*} is the fast scrambling time (β/2π)logc and E_{w},E_{v} are the energy scales of the W,V operators.

  7. Two-point correlation functions in inhomogeneous and anisotropic cosmologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcori, Oton H.; Pereira, Thiago S., E-mail: otonhm@hotmail.com, E-mail: tspereira@uel.br

    Two-point correlation functions are ubiquitous tools of modern cosmology, appearing in disparate topics ranging from cosmological inflation to late-time astrophysics. When the background spacetime is maximally symmetric, invariance arguments can be used to fix the functional dependence of this function as the invariant distance between any two points. In this paper we introduce a novel formalism which fixes this functional dependence directly from the isometries of the background metric, thus allowing one to quickly assess the overall features of Gaussian correlators without resorting to the full machinery of perturbation theory. As an application we construct the CMB temperature correlation functionmore » in one inhomogeneous (namely, an off-center LTB model) and two spatially flat and anisotropic (Bianchi) universes, and derive their covariance matrices in the limit of almost Friedmannian symmetry. We show how the method can be extended to arbitrary N -point correlation functions and illustrate its use by constructing three-point correlation functions in some simple geometries.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basso, Benjamin; Dixon, Lance J.

    We use integrability at weak coupling to compute fishnet diagrams for four-point correlation functions in planar Φ 4 theory. Our results are always multilinear combinations of ladder integrals, which are in turn built out of classical polylogarithms. The Steinmann relations provide a powerful constraint on such linear combinations, which leads to a natural conjecture for any fishnet diagram as the determinant of a matrix of ladder integrals.

  9. Calculating the n-point correlation function with general and efficient python code

    NASA Astrophysics Data System (ADS)

    Genier, Fred; Bellis, Matthew

    2018-01-01

    There are multiple approaches to understanding the evolution of large-scale structure in our universe and with it the role of baryonic matter, dark matter, and dark energy at different points in history. One approach is to calculate the n-point correlation function estimator for galaxy distributions, sometimes choosing a particular type of galaxy, such as luminous red galaxies. The standard way to calculate these estimators is with pair counts (for the 2-point correlation function) and with triplet counts (for the 3-point correlation function). These are O(n2) and O(n3) problems, respectively and with the number of galaxies that will be characterized in future surveys, having efficient and general code will be of increasing importance. Here we show a proof-of-principle approach to the 2-point correlation function that relies on pre-calculating galaxy locations in coarse “voxels”, thereby reducing the total number of necessary calculations. The code is written in python, making it easily accessible and extensible and is open-sourced to the community. Basic results and performance tests using SDSS/BOSS data will be shown and we discuss the application of this approach to the 3-point correlation function.

  10. Einstein-Podolsky-Rosen steering and coherence in the family of entangled three-qubit states

    NASA Astrophysics Data System (ADS)

    Kalaga, J. K.; Leoński, W.; Peřina, J.

    2018-04-01

    Considering the system of three interacting qubits, we analyze four families of states from the point of view of bipartite correlations appearing in two-qubit subsystems of a three-qubit model, such as Einstein-Podolsky-Rosen steering, entanglement, and coherence. We reveal mutual relations among the steering parameter, concurrence, and three measures of coherence (degree of coherence, first-, and second-order correlation functions). Analyzing in parallel the steerable and unsteerable states, we derive analytical formulas giving the maximal and minimal values of coherence measures as concurrence varies.

  11. Gluing Ladder Feynman Diagrams into Fishnets

    DOE PAGES

    Basso, Benjamin; Dixon, Lance J.

    2017-08-14

    We use integrability at weak coupling to compute fishnet diagrams for four-point correlation functions in planar Φ 4 theory. Our results are always multilinear combinations of ladder integrals, which are in turn built out of classical polylogarithms. The Steinmann relations provide a powerful constraint on such linear combinations, which leads to a natural conjecture for any fishnet diagram as the determinant of a matrix of ladder integrals.

  12. Wilson loops and chiral correlators on squashed spheres

    NASA Astrophysics Data System (ADS)

    Fucito, F.; Morales, J. F.; Poghossian, R.

    2015-11-01

    We study chiral deformations of N=2 and N=4 supersymmetric gauge theories obtained by turning on τ J tr Φ J interactions with Φ the N=2 superfield. Using localization, we compute the deformed gauge theory partition function Z(overrightarrow{τ}|q) and the expectation value of circular Wilson loops W on a squashed four-sphere. In the case of the deformed {N}=4 theory, exact formulas for Z and W are derived in terms of an underlying U( N) interacting matrix model replacing the free Gaussian model describing the {N}=4 theory. Using the AGT correspondence, the τ J -deformations are related to the insertions of commuting integrals of motion in the four-point CFT correlator and chiral correlators are expressed as τ-derivatives of the gauge theory partition function on a finite Ω-background. In the so called Nekrasov-Shatashvili limit, the entire ring of chiral relations is extracted from the ɛ-deformed Seiberg-Witten curve. As a byproduct of our analysis we show that SU(2) gauge theories on rational Ω-backgrounds are dual to CFT minimal models.

  13. Reliability and agreement in the use of four- and six-point ordinal scales for the assessment of erythema in digital images of canine skin.

    PubMed

    Hill, Peter B

    2015-06-01

    Grading of erythema in clinical practice is a subjective assessment that cannot be confirmed using a definitive test; nevertheless, erythema scores are typically measured in clinical trials assessing the response to treatment interventions. Most commonly, ordinal scales are used for this purpose, but the optimal number of categories in such scales has not been determined. This study aimed to compare the reliability and agreement of a four-point and a six-point ordinal scale for the assessment of erythema in digital images of canine skin. Fifteen digital images showing varying degrees of erythema were assessed by specialist dermatologists and laypeople, using either the four-point or the six-point scale. Reliability between the raters was assessed using intraclass correlation coefficients and Cronbach's α. Agreement was assessed using the variation ratio (the percentage of respondents who chose the mode, the most common answer). Intraobserver variability was assessed by comparing the results of two grading sessions, at least 6 weeks apart. Both scales demonstrated high reliability, with intraclass correlation coefficient values and Cronbach's α above 0.99. However, the four-point scale demonstrated significantly superior agreement, with variation ratios for the four-point scale averaging 74.8%, compared with 56.2% for the six-point scale. Intraobserver consistency for the four-point scale was very high. Although both scales demonstrated high reliability, the four-point scale was superior in terms of agreement. For the assessment of erythema in clinical trials, a four-point ordinal scale is recommended. © 2014 ESVD and ACVD.

  14. Quantum critical point revisited by dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei M.

    2017-03-01

    Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. We use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. By comparing with the calculations based on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.

  15. Quantum critical point revisited by dynamical mean-field theory

    DOE PAGES

    Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei M.

    2017-03-31

    Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. We characterize the QCP by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. Here, we use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. Furthermore, by comparing with the calculations basedmore » on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.« less

  16. Determination of mechanical stiffness of bone by pQCT measurements: correlation with non-destructive mechanical four-point bending test data.

    PubMed

    Martin, Daniel E; Severns, Anne E; Kabo, J M J Michael

    2004-08-01

    Mechanical tests of bone provide valuable information about material and structural properties important for understanding bone pathology in both clinical and research settings, but no previous studies have produced applicable non-invasive, quantitative estimates of bending stiffness. The goal of this study was to evaluate the effectiveness of using peripheral quantitative computed tomography (pQCT) data to accurately compute the bending stiffness of bone. Normal rabbit humeri (N=8) were scanned at their mid-diaphyses using pQCT. The average bone mineral densities and the cross-sectional moments of inertia were computed from the pQCT cross-sections. Bending stiffness was determined as a function of the elastic modulus of compact bone (based on the local bone mineral density), cross-sectional moment of inertia, and simulated quasistatic strain rate. The actual bending stiffness of the bones was determined using four-point bending tests. Comparison of the bending stiffness estimated from the pQCT data and the mechanical bending stiffness revealed excellent correlation (R2=0.96). The bending stiffness from the pQCT data was on average 103% of that obtained from the four-point bending tests. The results indicate that pQCT data can be used to accurately determine the bending stiffness of normal bone. Possible applications include temporal quantification of fracture healing and risk management of osteoporosis or other bone pathologies.

  17. Half-BPS Wilson loop and AdS 2/CFT 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giombi, Simone; Roiban, Radu; Tseytlin, Arkady A.

    Here, we study correlation functions of local operator insertions on the 1/2-BPS Wilson line in N=4 super Yang–Mills theory. These correlation functions are constrained by the 1d superconformal symmetry pre-served by the 1/2-BPS Wilson line and define a defect CFT 1 living on the line. At strong coupling, a set of elementary operator insertions with protected scaling dimensions correspond to fluctuations of the dual fundamental string in AdS 5×S 5 ending on the line at the boundary and can be thought of as light fields propagating on the AdS 2 worldsheet. We use AdS/CFT techniques to compute the tree-level AdSmore » 2 Witten diagrams describing the strong coupling limit of the four-point functions of the dual operator insertions. Using the OPE, we also extract the leading strong coupling corrections to the anomalous dimensions of the “two-particle” operators built out of elementary excitations. In the case of the circular Wilson loop, we match our results for the 4-point functions of a special type of scalar insertions to the prediction of localization to 2d Yang–Mills theory.« less

  18. Half-BPS Wilson loop and AdS 2/CFT 1

    DOE PAGES

    Giombi, Simone; Roiban, Radu; Tseytlin, Arkady A.

    2017-09-01

    Here, we study correlation functions of local operator insertions on the 1/2-BPS Wilson line in N=4 super Yang–Mills theory. These correlation functions are constrained by the 1d superconformal symmetry pre-served by the 1/2-BPS Wilson line and define a defect CFT 1 living on the line. At strong coupling, a set of elementary operator insertions with protected scaling dimensions correspond to fluctuations of the dual fundamental string in AdS 5×S 5 ending on the line at the boundary and can be thought of as light fields propagating on the AdS 2 worldsheet. We use AdS/CFT techniques to compute the tree-level AdSmore » 2 Witten diagrams describing the strong coupling limit of the four-point functions of the dual operator insertions. Using the OPE, we also extract the leading strong coupling corrections to the anomalous dimensions of the “two-particle” operators built out of elementary excitations. In the case of the circular Wilson loop, we match our results for the 4-point functions of a special type of scalar insertions to the prediction of localization to 2d Yang–Mills theory.« less

  19. Four-Photon Imaging with Thermal Light

    NASA Astrophysics Data System (ADS)

    Wen, Feng; Xue, Xinxin; Zhang, Xun; Yuan, Chenzhi; Sun, Jia; Song, Jianping; Zhang, Yanpeng

    2014-10-01

    In a near-field four-photon correlation measurement, ghost imaging with classical incoherent light is investigated. By applying the Klyshko advanced-wave picture, we consider the properties of four-photon spatial correlation and find that the fourth-order spatial correlation function can be decomposed into multiple lower-order correlation functions. On the basis of the spatial correlation properties, a proof-of-principle four-photon ghost imaging is proposed, and the effect of each part in a fourth-order correlation function on imaging is also analyzed. In addition, the similarities and differences among ghost imaging by fourth-, second-, and third-order correlations are also discussed. It is shown that the contrast and visibility of fourth-order correlated imaging are improved significantly, while the resolution is unchanged. Such studies can be very useful in better understanding multi photon interference and multi-channel correlation imaging.

  20. Report on 3 and 4-point correlation statistics in the COBE DMR anisotrophy maps

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary (Principal Investigator); Gorski, Krzystof M.; Banday, Anthony J.; Bennett, Charles L.

    1996-01-01

    As part of the work performed under NASA contract # NAS5-32648, we have computed the 3-point and 4-point correlation functions of the COBE-DNIR 2-year and 4-year anisotropy maps. The motivation for this study was to search for evidence of non-Gaussian statistical fluctuations in the temperature maps: skewness or asymmetry in the case of the 3-point function, kurtosis in the case of the 4-point function. Such behavior would have very significant implications for our understanding of the processes of galaxy formation, because our current models of galaxy formation predict that non-Gaussian features should not be present in the DMR maps. The results of our work showed that the 3-point correlation function is consistent with zero and that the 4-point function is not a very sensitive probe of non-Gaussian behavior in the COBE-DMR data. Our computation and analysis of 3-point correlations in the 2-year DMR maps was published in the Astrophysical Journal Letters, volume 446, page L67, 1995. Our computation and analysis of 3-point correlations in the 4-year DMR maps will be published, together with some additional tests, in the June 10, 1996 issue of the Astrophysical Journal Letters. Copies of both of these papers are attached as an appendix to this report.

  1. The mean density and two-point correlation function for the CfA redshift survey slices

    NASA Technical Reports Server (NTRS)

    De Lapparent, Valerie; Geller, Margaret J.; Huchra, John P.

    1988-01-01

    The effect of large-scale inhomogeneities on the determination of the mean number density and the two-point spatial correlation function were investigated for two complete slices of the extension of the Center for Astrophysics (CfA) redshift survey (de Lapparent et al., 1986). It was found that the mean galaxy number density for the two strips is uncertain by 25 percent, more so than previously estimated. The large uncertainty in the mean density introduces substantial uncertainty in the determination of the two-point correlation function, particularly at large scale; thus, for the 12-deg slice of the CfA redshift survey, the amplitude of the correlation function at intermediate scales is uncertain by a factor of 2. The large uncertainties in the correlation functions might reflect the lack of a fair sample.

  2. The correlation function for density perturbations in an expanding universe. II - Nonlinear theory

    NASA Technical Reports Server (NTRS)

    Mcclelland, J.; Silk, J.

    1977-01-01

    A formalism is developed to find the two-point and higher-order correlation functions for a given distribution of sizes and shapes of perturbations which are randomly placed in three-dimensional space. The perturbations are described by two parameters such as central density and size, and the two-point correlation function is explicitly related to the luminosity function of groups and clusters of galaxies

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei M.

    Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. We characterize the QCP by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. Here, we use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. Furthermore, by comparing with the calculations basedmore » on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.« less

  4. Discriminating topology in galaxy distributions using network analysis

    NASA Astrophysics Data System (ADS)

    Hong, Sungryong; Coutinho, Bruno C.; Dey, Arjun; Barabási, Albert-L.; Vogelsberger, Mark; Hernquist, Lars; Gebhardt, Karl

    2016-07-01

    The large-scale distribution of galaxies is generally analysed using the two-point correlation function. However, this statistic does not capture the topology of the distribution, and it is necessary to resort to higher order correlations to break degeneracies. We demonstrate that an alternate approach using network analysis can discriminate between topologically different distributions that have similar two-point correlations. We investigate two galaxy point distributions, one produced by a cosmological simulation and the other by a Lévy walk. For the cosmological simulation, we adopt the redshift z = 0.58 slice from Illustris and select galaxies with stellar masses greater than 108 M⊙. The two-point correlation function of these simulated galaxies follows a single power law, ξ(r) ˜ r-1.5. Then, we generate Lévy walks matching the correlation function and abundance with the simulated galaxies. We find that, while the two simulated galaxy point distributions have the same abundance and two-point correlation function, their spatial distributions are very different; most prominently, filamentary structures, absent in Lévy fractals. To quantify these missing topologies, we adopt network analysis tools and measure diameter, giant component, and transitivity from networks built by a conventional friends-of-friends recipe with various linking lengths. Unlike the abundance and two-point correlation function, these network quantities reveal a clear separation between the two simulated distributions; therefore, the galaxy distribution simulated by Illustris is not a Lévy fractal quantitatively. We find that the described network quantities offer an efficient tool for discriminating topologies and for comparing observed and theoretical distributions.

  5. Interactions in higher-spin gravity: a holographic perspective

    NASA Astrophysics Data System (ADS)

    Sleight, Charlotte

    2017-09-01

    This review is an elaboration of recent results on the holographic re-construction of metric-like interactions in higher-spin gauge theories on anti-de Sitter space (AdS), employing their conjectured duality with free conformal field theories (CFTs). After reviewing the general approach and establishing the necessary intermediate results, we extract explicit expressions for the complete cubic action on AdSd+1 and the quartic self-interaction of the scalar on AdS4 for the type A minimal bosonic higher-spin theory from the three- and four- point correlation functions of single-trace operators in the free scalar O(N) vector model. For this purpose tools were developed to evaluate tree-level three-point Witten diagrams involving totally symmetric fields of arbitrary integer spin and mass, and the conformal partial wave expansions of their tree-level four-point Witten diagrams. We also discuss the implications of the holographic duality on the locality properties of interactions in higher-spin gauge theories.

  6. Comparison among Reconstruction Algorithms for Quantitative Analysis of 11C-Acetate Cardiac PET Imaging.

    PubMed

    Shi, Ximin; Li, Nan; Ding, Haiyan; Dang, Yonghong; Hu, Guilan; Liu, Shuai; Cui, Jie; Zhang, Yue; Li, Fang; Zhang, Hui; Huo, Li

    2018-01-01

    Kinetic modeling of dynamic 11 C-acetate PET imaging provides quantitative information for myocardium assessment. The quality and quantitation of PET images are known to be dependent on PET reconstruction methods. This study aims to investigate the impacts of reconstruction algorithms on the quantitative analysis of dynamic 11 C-acetate cardiac PET imaging. Suspected alcoholic cardiomyopathy patients ( N = 24) underwent 11 C-acetate dynamic PET imaging after low dose CT scan. PET images were reconstructed using four algorithms: filtered backprojection (FBP), ordered subsets expectation maximization (OSEM), OSEM with time-of-flight (TOF), and OSEM with both time-of-flight and point-spread-function (TPSF). Standardized uptake values (SUVs) at different time points were compared among images reconstructed using the four algorithms. Time-activity curves (TACs) in myocardium and blood pools of ventricles were generated from the dynamic image series. Kinetic parameters K 1 and k 2 were derived using a 1-tissue-compartment model for kinetic modeling of cardiac flow from 11 C-acetate PET images. Significant image quality improvement was found in the images reconstructed using iterative OSEM-type algorithms (OSME, TOF, and TPSF) compared with FBP. However, no statistical differences in SUVs were observed among the four reconstruction methods at the selected time points. Kinetic parameters K 1 and k 2 also exhibited no statistical difference among the four reconstruction algorithms in terms of mean value and standard deviation. However, for the correlation analysis, OSEM reconstruction presented relatively higher residual in correlation with FBP reconstruction compared with TOF and TPSF reconstruction, and TOF and TPSF reconstruction were highly correlated with each other. All the tested reconstruction algorithms performed similarly for quantitative analysis of 11 C-acetate cardiac PET imaging. TOF and TPSF yielded highly consistent kinetic parameter results with superior image quality compared with FBP. OSEM was relatively less reliable. Both TOF and TPSF were recommended for cardiac 11 C-acetate kinetic analysis.

  7. Thermal form factor approach to the ground-state correlation functions of the XXZ chain in the antiferromagnetic massive regime

    NASA Astrophysics Data System (ADS)

    Dugave, Maxime; Göhmann, Frank; Kozlowski, Karol K.; Suzuki, Junji

    2016-09-01

    We use the form factors of the quantum transfer matrix in the zero-temperature limit in order to study the two-point ground-state correlation functions of the XXZ chain in the antiferromagnetic massive regime. We obtain novel form factor series representations of the correlation functions which differ from those derived either from the q-vertex-operator approach or from the algebraic Bethe Ansatz approach to the usual transfer matrix. We advocate that our novel representations are numerically more efficient and allow for a straightforward calculation of the large-distance asymptotic behaviour of the two-point functions. Keeping control over the temperature corrections to the two-point functions we see that these are of order {T}∞ in the whole antiferromagnetic massive regime. The isotropic limit of our result yields a novel form factor series representation for the two-point correlation functions of the XXX chain at zero magnetic field. Dedicated to the memory of Petr Petrovich Kulish.

  8. Measurement of the dipole in the cross-correlation function of galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaztanaga, Enrique; Bonvin, Camille; Hui, Lam, E-mail: gazta@ice.cat, E-mail: camille.bonvin@unige.ch, E-mail: lhui@astro.columbia.edu

    It is usually assumed that in the linear regime the two-point correlation function of galaxies contains only a monopole, quadrupole and hexadecapole. Looking at cross-correlations between different populations of galaxies, this turns out not to be the case. In particular, the cross-correlations between a bright and a faint population of galaxies contain also a dipole. In this paper we present the first attempt to measure this dipole. We discuss the four types of effects that contribute to the dipole: relativistic distortions, evolution effect, wide-angle effect and large-angle effect. We show that the first three contributions are intrinsic anti-symmetric contributions thatmore » do not depend on the choice of angle used to measure the dipole. On the other hand the large-angle effect appears only if the angle chosen to extract the dipole breaks the symmetry of the problem. We show that the relativistic distortions, the evolution effect and the wide-angle effect are too small to be detected in the LOWz and CMASS sample of the BOSS survey. On the other hand with a specific combination of angles we are able to measure the large-angle effect with high significance. We emphasise that this large-angle dipole does not contain new physical information, since it is just a geometrical combination of the monopole and the quadrupole. However this measurement, which is in excellent agreement with theoretical predictions, validates our method for extracting the dipole from the two-point correlation function and it opens the way to the detection of relativistic effects in future surveys like e.g. DESI.« less

  9. Holographic CBK relation

    NASA Astrophysics Data System (ADS)

    Gabadadze, Gregory; Tukhashvili, Giorgi

    2018-07-01

    The Crewther-Broadhurst-Kataev (CBK) relation connects the Bjorken function for deep-inelastic sum rules (or the Gross-Llewellyn Smith function) with the Adler function for electron-positron annihilation in QCD; it has been checked to hold up to four loops in perturbation theory. Here we study non-perturbative terms in the CBK relation using a holographic dual theory that is believed to capture properties of QCD. We show that for the large invariant momenta the perturbative CBK relation is exactly satisfied. For the small momenta non-perturbative corrections enter the relation and we calculate their significant effects. We also give an exact holographic expression for the Bjorken function, as well as for the entire three-point axial-vector-vector correlation function, and check their consistency in the conformal limit.

  10. Second feature of the matter two-point function

    NASA Astrophysics Data System (ADS)

    Tansella, Vittorio

    2018-05-01

    We point out the existence of a second feature in the matter two-point function, besides the acoustic peak, due to the baryon-baryon correlation in the early Universe and positioned at twice the distance of the peak. We discuss how the existence of this feature is implied by the well-known heuristic argument that explains the baryon bump in the correlation function. A standard χ2 analysis to estimate the detection significance of the second feature is mimicked. We conclude that, for realistic values of the baryon density, a SKA-like galaxy survey will not be able to detect this feature with standard correlation function analysis.

  11. Active Flexion in Weight Bearing Better Correlates with Functional Outcomes of Total Knee Arthroplasty than Passive Flexion.

    PubMed

    Song, Young Dong; Jain, Nimash; Kang, Yeon Gwi; Kim, Tae Yune; Kim, Tae Kyun

    2016-06-01

    Correlations between maximum flexion and functional outcomes in total knee arthroplasty (TKA) patients are reportedly weak. We investigated whether there are differences between passive maximum flexion in nonweight bearing and other types of maximum flexion and whether the type of maximum flexion correlates with functional outcomes. A total of 210 patients (359 knees) underwent preoperative evaluation and postoperative follow-up evaluations (6, 12, and 24 months) for the assessment of clinical outcomes including maximum knee flexion. Maximum flexion was measured under five conditions: passive nonweight bearing, passive weight bearing, active nonweight bearing, and active weight bearing with or without arm support. Data were analyzed for relationships between passive maximum flexion in nonweight bearing by Pearson correlation analyses, and a variance comparison between measurement techniques via paired t test. We observed substantial differences between passive maximum flexion in nonweight bearing and the other four maximum flexion types. At all time points, passive maximum flexion in nonweight bearing correlated poorly with active maximum flexion in weight bearing with or without arm support. Active maximum flexion in weight bearing better correlated with functional outcomes than the other maximum flexion types. Our study suggests active maximum flexion in weight bearing should be reported together with passive maximum flexion in nonweight bearing in research on the knee motion arc after TKA.

  12. Active Flexion in Weight Bearing Better Correlates with Functional Outcomes of Total Knee Arthroplasty than Passive Flexion

    PubMed Central

    Song, Young Dong; Jain, Nimash; Kang, Yeon Gwi; Kim, Tae Yune

    2016-01-01

    Purpose Correlations between maximum flexion and functional outcomes in total knee arthroplasty (TKA) patients are reportedly weak. We investigated whether there are differences between passive maximum flexion in nonweight bearing and other types of maximum flexion and whether the type of maximum flexion correlates with functional outcomes. Materials and Methods A total of 210 patients (359 knees) underwent preoperative evaluation and postoperative follow-up evaluations (6, 12, and 24 months) for the assessment of clinical outcomes including maximum knee flexion. Maximum flexion was measured under five conditions: passive nonweight bearing, passive weight bearing, active nonweight bearing, and active weight bearing with or without arm support. Data were analyzed for relationships between passive maximum flexion in nonweight bearing by Pearson correlation analyses, and a variance comparison between measurement techniques via paired t test. Results We observed substantial differences between passive maximum flexion in nonweight bearing and the other four maximum flexion types. At all time points, passive maximum flexion in nonweight bearing correlated poorly with active maximum flexion in weight bearing with or without arm support. Active maximum flexion in weight bearing better correlated with functional outcomes than the other maximum flexion types. Conclusions Our study suggests active maximum flexion in weight bearing should be reported together with passive maximum flexion in nonweight bearing in research on the knee motion arc after TKA. PMID:27274468

  13. Development of Design Analysis Methods for C/SiC Composite Structures

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.; Mital, Subodh K.; Murthy, Pappu L. N.; Palko, Joseph L.; Cueno, Jacques C.; Koenig, John R.

    2006-01-01

    The stress-strain behavior at room temperature and at 1100 C (2000 F) was measured for two carbon-fiber-reinforced silicon carbide (C/SiC) composite materials: a two-dimensional plain-weave quasi-isotropic laminate and a three-dimensional angle-interlock woven composite. Micromechanics-based material models were developed for predicting the response properties of these two materials. The micromechanics based material models were calibrated by correlating the predicted material property values with the measured values. Four-point beam bending sub-element specimens were fabricated with these two fiber architectures and four-point bending tests were performed at room temperature and at 1100 C. Displacements and strains were measured at various locations along the beam and recorded as a function of load magnitude. The calibrated material models were used in concert with a nonlinear finite element solution to simulate the structural response of these two materials in the four-point beam bending tests. The structural response predicted by the nonlinear analysis method compares favorably with the measured response for both materials and for both test temperatures. Results show that the material models scale up fairly well from coupon to subcomponent level.

  14. Approaches to flame resistant polymeric materials

    NASA Technical Reports Server (NTRS)

    Liepins, R.

    1975-01-01

    Four research and development areas are considered for further exploration in the quest of more flame-resistant polymeric materials. It is suggested that improvements in phenolphthalein polycarbonate processability may be gained through linear free energy relationship correlations. Looped functionality in the backbone of a polymer leads to both improved thermal resistance and increased solubility. The guidelines used in the pyrolytic carbon production constitute a good starting point for the development of improved flame-resistant materials. Numerous organic reactions requiring high temperatures and the techniques of protected functionality and latent functionality constitute the third area for exploration. Finally, some well-known organic reactions are suggested for the formation of polymers that were not made before.

  15. Atmospheric Teleconnections From Cumulants

    NASA Astrophysics Data System (ADS)

    Sabou, F.; Kaspi, Y.; Marston, B.; Schneider, T.

    2011-12-01

    Multi-point cumulants of fields such as vorticity provide a way to visualize atmospheric teleconnections, complementing other approaches such as the method of empirical orthogonal functions (EOFs). We calculate equal-time two-point cumulants of the vorticity from NCEP reanalysis data during the period 1980 -- 2010 and from direct numerical simulation (DNS) using an idealized dry general circulation model (GCM) (Schneider and Walker, 2006). Extratropical correlations seen in the NCEP data are qualitatively reproduced by the model. Three- and four-point cumulants accumulated from DNS quantify departures of the probability distribution function from a normal distribution, shedding light on the efficacy of direct statistical simulation (DSS) of atmosphere dynamics by cumulant expansions (Marston, Conover, and Schneider, 2008; Marston 2011). Lagged-time two-point cumulants between temperature gradients and eddy kinetic energy (EKE), accumulated by DNS of an idealized moist aquaplanet GCM (O'Gorman and Schneider, 2008), reveal dynamics of storm tracks. Regions of enhanced baroclinicity (as found along the eastern boundary of continents) lead to a local enhancement of EKE and a suppression of EKE further downstream as the storm track self-destructs (Kaspi and Schneider, 2011).

  16. Mapping the current–current correlation function near a quantum critical point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodan, Emil, E-mail: prodan@yu.edu; Bellissard, Jean

    2016-05-15

    The current–current correlation function is a useful concept in the theory of electron transport in homogeneous solids. The finite-temperature conductivity tensor as well as Anderson’s localization length can be computed entirely from this correlation function. Based on the critical behavior of these two physical quantities near the plateau–insulator or plateau–plateau transitions in the integer quantum Hall effect, we derive an asymptotic formula for the current–current correlation function, which enables us to make several theoretical predictions about its generic behavior. For the disordered Hofstadter model, we employ numerical simulations to map the current–current correlation function, obtain its asymptotic form near amore » critical point and confirm the theoretical predictions.« less

  17. Fourth-Order Spatial Correlation of Thermal Light

    NASA Astrophysics Data System (ADS)

    Wen, Feng; Zhang, Xun; Xue, Xin-Xin; Sun, Jia; Song, Jian-Ping; Zhang, Yan-Peng

    2014-11-01

    We investigate the fourth-order spatial correlation properties of pseudo-thermal light in the photon counting regime, and apply the Klyshko advanced-wave picture to describe the process of four-photon coincidence counting measurement. We deduce the theory of a proof-of-principle four-photon coincidence counting configuration, and find that if the four randomly radiated photons come from the same radiation area and are indistinguishable in principle, the fourth-order correlation of them is 24 times larger than that when four photons come from different radiation areas. In addition, we also show that the higher-order spatial correlation function can be decomposed into multiple lower-order correlation functions, and the contrast and visibility of low-order correlation peaks are less than those of higher orders, while the resolutions all are identical. This study may be useful for better understanding the four-photon interference and multi-channel correlation imaging.

  18. Effective correlator for RadioAstron project

    NASA Astrophysics Data System (ADS)

    Sergeev, Sergey

    This paper presents the implementation of programme FX-correlator for Very Long Baseline Interferometry, adapted for the project "RadioAstron". Software correlator implemented for heterogeneous computing systems using graphics accelerators. It is shown that for the task interferometry implementation of the graphics hardware has a high efficiency. The host processor of heterogeneous computing system, performs the function of forming the data flow for graphics accelerators, the number of which corresponds to the number of frequency channels. So, for the Radioastron project, such channels is seven. Each accelerator is perform correlation matrix for all bases for a single frequency channel. Initial data is converted to the floating-point format, is correction for the corresponding delay function and computes the entire correlation matrix simultaneously. Calculation of the correlation matrix is performed using the sliding Fourier transform. Thus, thanks to the compliance of a solved problem for architecture graphics accelerators, managed to get a performance for one processor platform Kepler, which corresponds to the performance of this task, the computing cluster platforms Intel on four nodes. This task successfully scaled not only on a large number of graphics accelerators, but also on a large number of nodes with multiple accelerators.

  19. Physique and Performance of Young Wheelchair Basketball Players in Relation with Classification

    PubMed Central

    Zancanaro, Carlo

    2015-01-01

    The relationships among physical characteristics, performance, and functional ability classification of younger wheelchair basketball players have been barely investigated to date. The purpose of this work was to assess anthropometry, body composition, and performance in sport-specific field tests in a national sample of Italian younger wheelchair basketball players as well as to evaluate the association of these variables with the players’ functional ability classification and game-related statistics. Several anthropometric measurements were obtained for 52 out of 91 eligible players nationwide. Performance was assessed in seven sport-specific field tests (5m sprint, 20m sprint with ball, suicide, maximal pass, pass for accuracy, spot shot and lay-ups) and game-related statistics (free-throw points scored per match, two- and three-point field-goals scored per match, and their sum). Association between variables, and predictivity was assessed by correlation and regression analysis, respectively. Players were grouped into four Classes of increasing functional ability (A-D). One-way ANOVA with Bonferroni’s correction for multiple comparisons was used to assess differences between Classes. Sitting height and functional ability Class especially correlated with performance outcomes, but wheelchair basketball experience and skinfolds did not. Game-related statistics and sport-specific field-test scores all showed significant correlation with each other. Upper arm circumference and/or maximal pass and lay-ups test scores were able to explain 42 to 59% of variance in game-related statistics (P<0.001). A clear difference in performance was only found for functional ability Class A and D. Conclusion: In younger wheelchair basketball players, sitting height positively contributes to performance. The maximal pass and lay-ups test should be carefully considered in younger wheelchair basketball training plans. Functional ability Class reflects to a limited extent the actual differences in performance. PMID:26606681

  20. Percolation analysis for cosmic web with discrete points

    NASA Astrophysics Data System (ADS)

    Zhang, Jiajun; Cheng, Dalong; Chu, Ming-Chung

    2016-03-01

    Percolation analysis has long been used to quantify the connectivity of the cosmic web. Unlike most of the previous works using density field on grids, we have studied percolation analysis based on discrete points. Using a Friends-of-Friends (FoF) algorithm, we generate the S-bb relation, between the fractional mass of the largest connected group (S) and the FoF linking length (bb). We propose a new model, the Probability Cloud Cluster Expansion Theory (PCCET) to relate the S-bb relation with correlation functions. We show that the S-bb relation reflects a combination of all orders of correlation functions. We have studied the S-bb relation with simulation and find that the S-bb relation is robust against redshift distortion and incompleteness in observation. From the Bolshoi simulation, with Halo Abundance Matching (HAM), we have generated a mock galaxy catalogue. Good matching of the projected two-point correlation function with observation is confirmed. However, comparing the mock catalogue with the latest galaxy catalogue from SDSS DR12, we have found significant differences in their S-bb relations. This indicates that the mock catalogue cannot accurately recover higher order correlation functions than the two-point correlation function, which reveals the limit of HAM method.

  1. von Kármán-Howarth equation for three-dimensional two-fluid plasmas.

    PubMed

    Andrés, N; Mininni, P D; Dmitruk, P; Gómez, D O

    2016-06-01

    We derive the von Kármán-Howarth equation for a full three-dimensional incompressible two-fluid plasma. In the long-time limit and for very large Reynolds numbers we obtain the equivalent of the hydrodynamic "four-fifths" law. This exact law predicts the scaling of the third-order two-point correlation functions, and puts a strong constraint on the plasma turbulent dynamics. Finally, we derive a simple expression for the 4/5 law in terms of third-order structure functions, which is appropriate for comparison with in situ measurements in the solar wind at different spatial ranges.

  2. Analysis of the two-point velocity correlations in turbulent boundary layer flows

    NASA Technical Reports Server (NTRS)

    Oberlack, M.

    1995-01-01

    The general objective of the present work is to explore the use of Rapid Distortion Theory (RDT) in analysis of the two-point statistics of the log-layer. RDT is applicable only to unsteady flows where the non-linear turbulence-turbulence interaction can be neglected in comparison to linear turbulence-mean interactions. Here we propose to use RDT to examine the structure of the large energy-containing scales and their interaction with the mean flow in the log-region. The contents of the work are twofold: First, two-point analysis methods will be used to derive the law-of-the-wall for the special case of zero mean pressure gradient. The basic assumptions needed are one-dimensionality in the mean flow and homogeneity of the fluctuations. It will be shown that a formal solution of the two-point correlation equation can be obtained as a power series in the von Karman constant, known to be on the order of 0.4. In the second part, a detailed analysis of the two-point correlation function in the log-layer will be given. The fundamental set of equations and a functional relation for the two-point correlation function will be derived. An asymptotic expansion procedure will be used in the log-layer to match Kolmogorov's universal range and the one-point correlations to the inviscid outer region valid for large correlation distances.

  3. Breaking of scale invariance in the time dependence of correlation functions in isotropic and homogeneous turbulence

    NASA Astrophysics Data System (ADS)

    Tarpin, Malo; Canet, Léonie; Wschebor, Nicolás

    2018-05-01

    In this paper, we present theoretical results on the statistical properties of stationary, homogeneous, and isotropic turbulence in incompressible flows in three dimensions. Within the framework of the non-perturbative renormalization group, we derive a closed renormalization flow equation for a generic n-point correlation (and response) function for large wave-numbers with respect to the inverse integral scale. The closure is obtained from a controlled expansion and relies on extended symmetries of the Navier-Stokes field theory. It yields the exact leading behavior of the flow equation at large wave-numbers |p→ i| and for arbitrary time differences ti in the stationary state. Furthermore, we obtain the form of the general solution of the corresponding fixed point equation, which yields the analytical form of the leading wave-number and time dependence of n-point correlation functions, for large wave-numbers and both for small ti and in the limit ti → ∞. At small ti, the leading contribution at large wave-numbers is logarithmically equivalent to -α (ɛL ) 2 /3|∑tip→ i|2, where α is a non-universal constant, L is the integral scale, and ɛ is the mean energy injection rate. For the 2-point function, the (tp)2 dependence is known to originate from the sweeping effect. The derived formula embodies the generalization of the effect of sweeping to n-point correlation functions. At large wave-numbers and large ti, we show that the ti2 dependence in the leading order contribution crosses over to a |ti| dependence. The expression of the correlation functions in this regime was not derived before, even for the 2-point function. Both predictions can be tested in direct numerical simulations and in experiments.

  4. Developing Multidimensional Likert Scales Using Item Factor Analysis: The Case of Four-Point Items

    ERIC Educational Resources Information Center

    Asún, Rodrigo A.; Rdz-Navarro, Karina; Alvarado, Jesús M.

    2016-01-01

    This study compares the performance of two approaches in analysing four-point Likert rating scales with a factorial model: the classical factor analysis (FA) and the item factor analysis (IFA). For FA, maximum likelihood and weighted least squares estimations using Pearson correlation matrices among items are compared. For IFA, diagonally weighted…

  5. Uniform electron gases. III. Low-density gases on three-dimensional spheres.

    PubMed

    Agboola, Davids; Knol, Anneke L; Gill, Peter M W; Loos, Pierre-François

    2015-08-28

    By combining variational Monte Carlo (VMC) and complete-basis-set limit Hartree-Fock (HF) calculations, we have obtained near-exact correlation energies for low-density same-spin electrons on a three-dimensional sphere (3-sphere), i.e., the surface of a four-dimensional ball. In the VMC calculations, we compare the efficacies of two types of one-electron basis functions for these strongly correlated systems and analyze the energy convergence with respect to the quality of the Jastrow factor. The HF calculations employ spherical Gaussian functions (SGFs) which are the curved-space analogs of Cartesian Gaussian functions. At low densities, the electrons become relatively localized into Wigner crystals, and the natural SGF centers are found by solving the Thomson problem (i.e., the minimum-energy arrangement of n point charges) on the 3-sphere for various values of n. We have found 11 special values of n whose Thomson sites are equivalent. Three of these are the vertices of four-dimensional Platonic solids - the hyper-tetrahedron (n = 5), the hyper-octahedron (n = 8), and the 24-cell (n = 24) - and a fourth is a highly symmetric structure (n = 13) which has not previously been reported. By calculating the harmonic frequencies of the electrons around their equilibrium positions, we also find the first-order vibrational corrections to the Thomson energy.

  6. Remarks on worldsheet theories dual to free large N gauge theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aharony, Ofer; SITP, Department of Physics and SLAC, Stanford University, Stanford, California 94305; David, Justin R.

    2007-05-15

    We continue to investigate properties of the worldsheet conformal field theories (CFTs) which are conjectured to be dual to free large N gauge theories, using the mapping of Feynman diagrams to the worldsheet suggested in [R. Gopakumar, Phys. Rev. D 70, 025009 (2004); ibid.70, 025010 (2004); C. R. Physique 5, 1111 (2004); Phys. Rev. D 72, 066008 (2005)]. The modular invariance of these CFTs is shown to be built into the formalism. We show that correlation functions in these CFTs which are localized on subspaces of the moduli space may be interpreted as delta-function distributions, and that this can bemore » consistent with a local worldsheet description given some constraints on the operator product expansion coefficients. We illustrate these features by a detailed analysis of a specific four-point function diagram. To reliably compute this correlator, we use a novel perturbation scheme which involves an expansion in the large dimension of some operators.« less

  7. Effective model with strong Kitaev interactions for α -RuCl3

    NASA Astrophysics Data System (ADS)

    Suzuki, Takafumi; Suga, Sei-ichiro

    2018-04-01

    We use an exact numerical diagonalization method to calculate the dynamical spin structure factors of three ab initio models and one ab initio guided model for a honeycomb-lattice magnet α -RuCl3 . We also use thermal pure quantum states to calculate the temperature dependence of the heat capacity, the nearest-neighbor spin-spin correlation function, and the static spin structure factor. From the results obtained from these four effective models, we find that, even when the magnetic order is stabilized at low temperature, the intensity at the Γ point in the dynamical spin structure factors increases with increasing nearest-neighbor spin correlation. In addition, we find that the four models fail to explain heat-capacity measurements whereas two of the four models succeed in explaining inelastic-neutron-scattering experiments. In the four models, when temperature decreases, the heat capacity shows a prominent peak at a high temperature where the nearest-neighbor spin-spin correlation function increases. However, the peak temperature in heat capacity is too low in comparison with that observed experimentally. To address these discrepancies, we propose an effective model that includes strong ferromagnetic Kitaev coupling, and we show that this model quantitatively reproduces both inelastic-neutron-scattering experiments and heat-capacity measurements. To further examine the adequacy of the proposed model, we calculate the field dependence of the polarized terahertz spectra, which reproduces the experimental results: the spin-gapped excitation survives up to an onset field where the magnetic order disappears and the response in the high-field region is almost linear. Based on these numerical results, we argue that the low-energy magnetic excitation in α -RuCl3 is mainly characterized by interactions such as off-diagonal interactions and weak Heisenberg interactions between nearest-neighbor pairs, rather than by the strong Kitaev interactions.

  8. Reflections on conformal spectra

    DOE PAGES

    Kim, Hyungrok; Kravchuk, Petr; Ooguri, Hirosi

    2016-04-29

    Here, we use modular invariance and crossing symmetry of conformal field theory to reveal approximate reflection symmetries in the spectral decompositions of the partition function in two dimensions in the limit of large central charge and of the four-point function in any dimension in the limit of large scaling dimensions Δ 0 of external operators. We use these symmetries to motivate universal upper bounds on the spectrum and the operator product expansion coefficients, which we then derive by independent techniques. Some of the bounds for four-point functions are valid for finite Δ 0 as well as for large Δ 0.more » We discuss a similar symmetry in a large spacetime dimension limit. Finally, we comment on the analogue of the Cardy formula and sparse light spectrum condition for the four-point function.« less

  9. Estimation of correlation functions by stochastic approximation.

    NASA Technical Reports Server (NTRS)

    Habibi, A.; Wintz, P. A.

    1972-01-01

    Consideration of the autocorrelation function of a zero-mean stationary random process. The techniques are applicable to processes with nonzero mean provided the mean is estimated first and subtracted. Two recursive techniques are proposed, both of which are based on the method of stochastic approximation and assume a functional form for the correlation function that depends on a number of parameters that are recursively estimated from successive records. One technique uses a standard point estimator of the correlation function to provide estimates of the parameters that minimize the mean-square error between the point estimates and the parametric function. The other technique provides estimates of the parameters that maximize a likelihood function relating the parameters of the function to the random process. Examples are presented.

  10. Crossing symmetry in alpha space

    NASA Astrophysics Data System (ADS)

    Hogervorst, Matthijs; van Rees, Balt C.

    2017-11-01

    We initiate the study of the conformal bootstrap using Sturm-Liouville theory, specializing to four-point functions in one-dimensional CFTs. We do so by decomposing conformal correlators using a basis of eigenfunctions of the Casimir which are labeled by a complex number α. This leads to a systematic method for computing conformal block decompositions. Analyzing bootstrap equations in alpha space turns crossing symmetry into an eigenvalue problem for an integral operator K. The operator K is closely related to the Wilson transform, and some of its eigenfunctions can be found in closed form.

  11. Heat Coma Temperature and Supercooling Point in Oceanic Sea Skaters (Heteroptera, Gerridae)

    PubMed Central

    Harada, Tetsuo

    2018-01-01

    Heat coma temperatures (HCTs) and super cooling points (SCPs) were examined for nearly 1000 oceanic sea skaters collected from in the Pacific and Indian Oceans representing four Halobates species; H. germanus, H. micans, H. sericeus, and H. sp. Analysis was conducted using the entire dataset because a negative correlation was seen between the HCTs and SCPs in all four species. A weak negative correlation was seen between HCTs and SCPs with a cross tolerance between warmer HCTs and colder SCPs. The weakness of the correlation may be due to the large size of the dataset and to the variability in ocean surface temperature. The negative correlation does however suggest that oceanic sea skaters may have some form of cross tolerance with a common physiological mechanism for their high and low temperature tolerances. PMID:29401693

  12. Invariant functionals in higher-spin theory

    NASA Astrophysics Data System (ADS)

    Vasiliev, M. A.

    2017-03-01

    A new construction for gauge invariant functionals in the nonlinear higher-spin theory is proposed. Being supported by differential forms closed by virtue of the higher-spin equations, invariant functionals are associated with central elements of the higher-spin algebra. In the on-shell AdS4 higher-spin theory we identify a four-form conjectured to represent the generating functional for 3d boundary correlators and a two-form argued to support charges for black hole solutions. Two actions for 3d boundary conformal higher-spin theory are associated with the two parity-invariant higher-spin models in AdS4. The peculiarity of the spinorial formulation of the on-shell AdS3 higher-spin theory, where the invariant functional is supported by a two-form, is conjectured to be related to the holomorphic factorization at the boundary. The nonlinear part of the star-product function F* (B (x)) in the higher-spin equations is argued to lead to divergencies in the boundary limit representing singularities at coinciding boundary space-time points of the factors of B (x), which can be regularized by the point splitting. An interpretation of the RG flow in terms of proposed construction is briefly discussed.

  13. Comparisons of chewing rhythm, craniomandibular morphology, body mass and height between mothers and their biological daughters.

    PubMed

    Cho, Catherine; Louie, Ke'ale; Maawadh, Ahmed; Gerstner, Geoffrey E

    2015-11-01

    To study and compare the relationships between mean chewing cycle duration, selected cephalometric variables representing mandibular length, face height, etc., measured in women and in their teenage or young-adult biological daughters. Daughters were recruited from local high schools and the University of Michigan School of Dentistry. Selection criteria included healthy females with full dentition, 1st molar occlusion, no active orthodontics, no medical conditions nor medication use that could interfere with normal masticatory motor function. Mothers had to be biologically related to their daughters. All data were obtained in the School of Dentistry. Measurements obtained from lateral cephalograms included: two "jaw length" measures, condylion-gnathion and gonion-gnathion, and four measures of facial profile including lower anterior face height, and angles sella-nasion-A point (SNA), sella-nasion-B point (SNB) and A point-nasion-B point (ANB). Mean cycle duration was calculated from 60 continuous chewing cycles, where a cycle was defined as the time between two successive maximum jaw openings in the vertical dimension. Other variables included subject height and weight. Linear and logistic regression analyses were used to evaluate the mother-daughter relationships and to study the relationships between cephalometric variables and chewing cycle duration. Height, weight, Co-Gn and Go-Gn were significantly correlated between mother-daughter pairs; however, mean cycle duration was not (r(2)=0.015). Mean cycle duration was positively correlated with ANB and height in mothers, but negatively correlated with Co-Gn in daughters. Chewing rate is not correlated between mothers and daughters in humans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Correlation Function Approach for Estimating Thermal Conductivity in Highly Porous Fibrous Materials

    NASA Technical Reports Server (NTRS)

    Martinez-Garcia, Jorge; Braginsky, Leonid; Shklover, Valery; Lawson, John W.

    2011-01-01

    Heat transport in highly porous fiber networks is analyzed via two-point correlation functions. Fibers are assumed to be long and thin to allow a large number of crossing points per fiber. The network is characterized by three parameters: the fiber aspect ratio, the porosity and the anisotropy of the structure. We show that the effective thermal conductivity of the system can be estimated from knowledge of the porosity and the correlation lengths of the correlation functions obtained from a fiber structure image. As an application, the effects of the fiber aspect ratio and the network anisotropy on the thermal conductivity is studied.

  15. Improving the assessment of everyday cognitive functioning in patients with epilepsy by means of proxy reports.

    PubMed

    Karkoska, Anne; Hallmeyer-Elgner, Susanne; Berth, Hendrik; Reichmann, Heinz; Schmitz-Peiffer, Henning

    2015-03-01

    The self-report of cognitive deficits by of patients with epilepsy is often poorly correlated with objective test performances but highly related to mood and personality. The aim of this study was to evaluate whether information obtained by close relatives of the patient shows higher correlations with the patients' objective test scores and thereby can be a complementary measure for ensuring a reliable basis for diagnostic decision-making. Thirty-four patients and 29 relatives were asked to fill in a questionnaire about everyday cognitive deficits of the patient. All patients completed a neuropsychological test battery comprising measures of memory, attention, and executive functioning and questionnaires on anxiety, depression, and the personality trait neuroticism. Correlations between relatives' reports and patients' test performances were highly significant across all examined domains. By contrast, self-reports of the patients significantly correlated with none of the neuropsychological measures of memory and with only a subset of the objective measures of attention and executive functioning. Regression analyses additionally revealed a strong dependency of the patients' self-assessment on depression, anxiety, and neuroticism (R(2)=0.42). These results point out the risk of self-reports distorting reality and additionally recommend consulting a close relative of the patient to ensure reliable information about the patient's everyday cognitive functioning. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Correlated scattering states of N-body Coulomb systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berakdar, J.

    1997-03-01

    For N charged particles of equal masses moving in the field of a heavy residual charge, an approximate analytical solution of the many-body time-independent Schr{umlt o}dinger equation is derived at a total energy above the complete fragmentation threshold. All continuum particles are treated on equal footing. The proposed correlated wave function represents, to leading order, an exact solution of the many-body Schr{umlt o}dinger equation in the asymptotic region defined by large interparticle separations. Thus, in this asymptotic region the N-body Coulomb modifications to the plane-wave motion of free particles are rigorously estimated. It is shown that the Kato cusp conditionsmore » are satisfied by the derived wave function at all two-body coalescence points. An expression of the normalization of this wave function is also given. To render possible the calculations of scattering amplitudes for transitions leading to a four-body scattering state, an effective-charge method is suggested in which the correlations between the continuum particles are completely subsumed into effective interactions with the residual charge. Analytical expressions for these effective interactions are derived and discussed for physical situations. {copyright} {ital 1997} {ital The American Physical Society}« less

  17. Voronoi Tessellation for reducing the processing time of correlation functions

    NASA Astrophysics Data System (ADS)

    Cárdenas-Montes, Miguel; Sevilla-Noarbe, Ignacio

    2018-01-01

    The increase of data volume in Cosmology is motivating the search of new solutions for solving the difficulties associated with the large processing time and precision of calculations. This is specially true in the case of several relevant statistics of the galaxy distribution of the Large Scale Structure of the Universe, namely the two and three point angular correlation functions. For these, the processing time has critically grown with the increase of the size of the data sample. Beyond parallel implementations to overcome the barrier of processing time, space partitioning algorithms are necessary to reduce the computational load. These can delimit the elements involved in the correlation function estimation to those that can potentially contribute to the final result. In this work, Voronoi Tessellation is used to reduce the processing time of the two-point and three-point angular correlation functions. The results of this proof-of-concept show a significant reduction of the processing time when preprocessing the galaxy positions with Voronoi Tessellation.

  18. The FOUR score and GCS as predictors of outcome after traumatic brain injury.

    PubMed

    McNett, Molly; Amato, Shelly; Gianakis, Anastasia; Grimm, Dawn; Philippbar, Sue Ann; Belle, Josie; Moran, Cristina

    2014-08-01

    The Glasgow Coma Scale (GCS) is a routine component of a neurological exam for critically ill traumatic brain injury (TBI) patients, yet has been criticized for not accurately depicting verbal status among intubated patients or including brain stem reflexes. Preliminary research on the Full Outline of UnResponsiveness (FOUR) Scale suggests it overcomes these limitations. Research is needed to determine correlations with patient outcomes. The aims of this study were to: (1) examine correlations between 24 and 72 h FOUR and GCS scores and functional/cognitive outcomes; (2) determine relationship between 24 and 72 h FOUR scores and mortality. Prospective cohort study. Data gathered on adult TBI patients at a Level I trauma center. FOUR scores assigned at 24, 72 h. Functional outcome measured by functional independence measure scores at rehabilitation discharge; cognitive status measured by Weschler Memory Scale scores 3 months post-injury. n = 136. Mean age 53.1. 72 h FOUR and GCS scores correlated with functional outcome (r s = 0.34, p = 0.05; r s = 0.39, p = 0.02), but not cognitive status. Receiver operating characteristic curves were comparable for FOUR and GCS at 24 and 72 h for functional status (24 h FOUR, GCS = 0.625, 0.602, respectively; 72 h FOUR, GCS = 0.640, 0.688), cognitive status (24 h FOUR, GCS = 0.703, 0.731; 72 h FOUR, GCS = 0.837, 0.674), and mortality (24 h FOUR, GCS = 0.913, 0.935; 72 h FOUR, GCS = 0.837, 0.884). FOUR is comparable to GCS in terms of predictive ability for functional status, cognitive outcome 3 months post-injury, and in-hospital mortality.

  19. Universal Spatial Correlation Functions for Describing and Reconstructing Soil Microstructure

    PubMed Central

    Skvortsova, Elena B.; Mallants, Dirk

    2015-01-01

    Structural features of porous materials such as soil define the majority of its physical properties, including water infiltration and redistribution, multi-phase flow (e.g. simultaneous water/air flow, or gas exchange between biologically active soil root zone and atmosphere) and solute transport. To characterize soil microstructure, conventional soil science uses such metrics as pore size and pore-size distributions and thin section-derived morphological indicators. However, these descriptors provide only limited amount of information about the complex arrangement of soil structure and have limited capability to reconstruct structural features or predict physical properties. We introduce three different spatial correlation functions as a comprehensive tool to characterize soil microstructure: 1) two-point probability functions, 2) linear functions, and 3) two-point cluster functions. This novel approach was tested on thin-sections (2.21×2.21 cm2) representing eight soils with different pore space configurations. The two-point probability and linear correlation functions were subsequently used as a part of simulated annealing optimization procedures to reconstruct soil structure. Comparison of original and reconstructed images was based on morphological characteristics, cluster correlation functions, total number of pores and pore-size distribution. Results showed excellent agreement for soils with isolated pores, but relatively poor correspondence for soils exhibiting dual-porosity features (i.e. superposition of pores and micro-cracks). Insufficient information content in the correlation function sets used for reconstruction may have contributed to the observed discrepancies. Improved reconstructions may be obtained by adding cluster and other correlation functions into reconstruction sets. Correlation functions and the associated stochastic reconstruction algorithms introduced here are universally applicable in soil science, such as for soil classification, pore-scale modelling of soil properties, soil degradation monitoring, and description of spatial dynamics of soil microbial activity. PMID:26010779

  20. Universal spatial correlation functions for describing and reconstructing soil microstructure.

    PubMed

    Karsanina, Marina V; Gerke, Kirill M; Skvortsova, Elena B; Mallants, Dirk

    2015-01-01

    Structural features of porous materials such as soil define the majority of its physical properties, including water infiltration and redistribution, multi-phase flow (e.g. simultaneous water/air flow, or gas exchange between biologically active soil root zone and atmosphere) and solute transport. To characterize soil microstructure, conventional soil science uses such metrics as pore size and pore-size distributions and thin section-derived morphological indicators. However, these descriptors provide only limited amount of information about the complex arrangement of soil structure and have limited capability to reconstruct structural features or predict physical properties. We introduce three different spatial correlation functions as a comprehensive tool to characterize soil microstructure: 1) two-point probability functions, 2) linear functions, and 3) two-point cluster functions. This novel approach was tested on thin-sections (2.21×2.21 cm2) representing eight soils with different pore space configurations. The two-point probability and linear correlation functions were subsequently used as a part of simulated annealing optimization procedures to reconstruct soil structure. Comparison of original and reconstructed images was based on morphological characteristics, cluster correlation functions, total number of pores and pore-size distribution. Results showed excellent agreement for soils with isolated pores, but relatively poor correspondence for soils exhibiting dual-porosity features (i.e. superposition of pores and micro-cracks). Insufficient information content in the correlation function sets used for reconstruction may have contributed to the observed discrepancies. Improved reconstructions may be obtained by adding cluster and other correlation functions into reconstruction sets. Correlation functions and the associated stochastic reconstruction algorithms introduced here are universally applicable in soil science, such as for soil classification, pore-scale modelling of soil properties, soil degradation monitoring, and description of spatial dynamics of soil microbial activity.

  1. Communication: importance sampling including path correlation in semiclassical initial value representation calculations for time correlation functions.

    PubMed

    Pan, Feng; Tao, Guohua

    2013-03-07

    Full semiclassical (SC) initial value representation (IVR) for time correlation functions involves a double phase space average over a set of two phase points, each of which evolves along a classical path. Conventionally, the two initial phase points are sampled independently for all degrees of freedom (DOF) in the Monte Carlo procedure. Here, we present an efficient importance sampling scheme by including the path correlation between the two initial phase points for the bath DOF, which greatly improves the performance of the SC-IVR calculations for large molecular systems. Satisfactory convergence in the study of quantum coherence in vibrational relaxation has been achieved for a benchmark system-bath model with up to 21 DOF.

  2. Detecting Near-Earth Objects Using Cross-Correlation with a Point Spread Function

    DTIC Science & Technology

    2009-03-01

    greater than .001 seconds [Goodman, 2000]. Cross-Correlation Cross-Correlation measures the strength and direction of the linear relationship between...real(ifft2(fftshift(otf_long)))); %normalize point spread funtion 55 if (Corner == 1) psf_source = makeshift(psf*source_img(ccd_x/2,ccd_y/2

  3. The large-scale correlations of multicell densities and profiles: implications for cosmic variance estimates

    NASA Astrophysics Data System (ADS)

    Codis, Sandrine; Bernardeau, Francis; Pichon, Christophe

    2016-08-01

    In order to quantify the error budget in the measured probability distribution functions of cell densities, the two-point statistics of cosmic densities in concentric spheres is investigated. Bias functions are introduced as the ratio of their two-point correlation function to the two-point correlation of the underlying dark matter distribution. They describe how cell densities are spatially correlated. They are computed here via the so-called large deviation principle in the quasi-linear regime. Their large-separation limit is presented and successfully compared to simulations for density and density slopes: this regime is shown to be rapidly reached allowing to get sub-percent precision for a wide range of densities and variances. The corresponding asymptotic limit provides an estimate of the cosmic variance of standard concentric cell statistics applied to finite surveys. More generally, no assumption on the separation is required for some specific moments of the two-point statistics, for instance when predicting the generating function of cumulants containing any powers of concentric densities in one location and one power of density at some arbitrary distance from the rest. This exact `one external leg' cumulant generating function is used in particular to probe the rate of convergence of the large-separation approximation.

  4. Uniform electron gases. III. Low-density gases on three-dimensional spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agboola, Davids; Knol, Anneke L.; Gill, Peter M. W., E-mail: peter.gill@anu.edu.au

    2015-08-28

    By combining variational Monte Carlo (VMC) and complete-basis-set limit Hartree-Fock (HF) calculations, we have obtained near-exact correlation energies for low-density same-spin electrons on a three-dimensional sphere (3-sphere), i.e., the surface of a four-dimensional ball. In the VMC calculations, we compare the efficacies of two types of one-electron basis functions for these strongly correlated systems and analyze the energy convergence with respect to the quality of the Jastrow factor. The HF calculations employ spherical Gaussian functions (SGFs) which are the curved-space analogs of Cartesian Gaussian functions. At low densities, the electrons become relatively localized into Wigner crystals, and the natural SGFmore » centers are found by solving the Thomson problem (i.e., the minimum-energy arrangement of n point charges) on the 3-sphere for various values of n. We have found 11 special values of n whose Thomson sites are equivalent. Three of these are the vertices of four-dimensional Platonic solids — the hyper-tetrahedron (n = 5), the hyper-octahedron (n = 8), and the 24-cell (n = 24) — and a fourth is a highly symmetric structure (n = 13) which has not previously been reported. By calculating the harmonic frequencies of the electrons around their equilibrium positions, we also find the first-order vibrational corrections to the Thomson energy.« less

  5. (Small) Resonant non-Gaussianities: Signatures of a Discrete Shift Symmetry in the Effective Field Theory of Inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behbahani, Siavosh R.; /SLAC /Stanford U., Phys. Dept. /Boston U.; Dymarsky, Anatoly

    2012-06-06

    We apply the Effective Field Theory of Inflation to study the case where the continuous shift symmetry of the Goldstone boson {pi} is softly broken to a discrete subgroup. This case includes and generalizes recently proposed String Theory inspired models of Inflation based on Axion Monodromy. The models we study have the property that the 2-point function oscillates as a function of the wavenumber, leading to oscillations in the CMB power spectrum. The non-linear realization of time diffeomorphisms induces some self-interactions for the Goldstone boson that lead to a peculiar non-Gaussianity whose shape oscillates as a function of the wavenumber.more » We find that in the regime of validity of the effective theory, the oscillatory signal contained in the n-point correlation functions, with n > 2, is smaller than the one contained in the 2-point function, implying that the signature of oscillations, if ever detected, will be easier to find first in the 2-point function, and only then in the higher order correlation functions. Still the signal contained in higher-order correlation functions, that we study here in generality, could be detected at a subleading level, providing a very compelling consistency check for an approximate discrete shift symmetry being realized during inflation.« less

  6. Interpolation and Polynomial Curve Fitting

    ERIC Educational Resources Information Center

    Yang, Yajun; Gordon, Sheldon P.

    2014-01-01

    Two points determine a line. Three noncollinear points determine a quadratic function. Four points that do not lie on a lower-degree polynomial curve determine a cubic function. In general, n + 1 points uniquely determine a polynomial of degree n, presuming that they do not fall onto a polynomial of lower degree. The process of finding such a…

  7. Percolation analysis for cosmic web with discrete points

    NASA Astrophysics Data System (ADS)

    Zhang, Jiajun; Cheng, Dalong; Chu, Ming-Chung

    2018-01-01

    Percolation analysis has long been used to quantify the connectivity of the cosmic web. Most of the previous work is based on density fields on grids. By smoothing into fields, we lose information about galaxy properties like shape or luminosity. The lack of mathematical modeling also limits our understanding for the percolation analysis. To overcome these difficulties, we have studied percolation analysis based on discrete points. Using a friends-of-friends (FoF) algorithm, we generate the S -b b relation, between the fractional mass of the largest connected group (S ) and the FoF linking length (b b ). We propose a new model, the probability cloud cluster expansion theory to relate the S -b b relation with correlation functions. We show that the S -b b relation reflects a combination of all orders of correlation functions. Using N-body simulation, we find that the S -b b relation is robust against redshift distortion and incompleteness in observation. From the Bolshoi simulation, with halo abundance matching (HAM), we have generated a mock galaxy catalog. Good matching of the projected two-point correlation function with observation is confirmed. However, comparing the mock catalog with the latest galaxy catalog from Sloan Digital Sky Survey (SDSS) Data Release (DR)12, we have found significant differences in their S -b b relations. This indicates that the mock galaxy catalog cannot accurately retain higher-order correlation functions than the two-point correlation function, which reveals the limit of the HAM method. As a new measurement, the S -b b relation is applicable to a wide range of data types, fast to compute, and robust against redshift distortion and incompleteness and contains information of all orders of correlation functions.

  8. Studying Electrical Conductivity Using a 3D Printed Four-Point Probe Station

    ERIC Educational Resources Information Center

    Lu, Yang; Santino, Luciano M.; Acharya, Shinjita; Anandarajah, Hari; D'Arcy, Julio M.

    2017-01-01

    The design and fabrication of functional scientific instrumentation allows students to forge a link between commonly reported numbers and physical material properties. Here, a two-point and four-point probe station for measuring electrical properties of solid materials is fabricated via 3D printing utilizing an inexpensive benchtop…

  9. On the universality of the two-point galaxy correlation function

    NASA Technical Reports Server (NTRS)

    Davis, Marc; Meiksin, Avery; Strauss, Michael A.; Da Costa, L. Nicolaci; Yahil, Amos

    1988-01-01

    The behavior of the two-point galaxy correlation function in volume-limited subsamples of three complete redshift surveys is investigated. The correlation length is shown to scale approximately as the square root of the distance limit in both the CfA and Southern Sky catalogs, but to be independent of the distance limit in the IRAS sample. This effect is found to be due to factors such as the large positive density fluctuations in the foreground of the optically selected catalogs biasing the correlation length estimate downward, and the brightest galaxies appearing to be more strongly clustered than the mean.

  10. Analyses of multi-pion Hanbury Brown–Twiss correlations for the pion-emitting sources with Bose–Einstein condensation

    NASA Astrophysics Data System (ADS)

    Bary, Ghulam; Ru, Peng; Zhang, Wei-Ning

    2018-06-01

    We calculate the three- and four-particle correlations of identical pions in an evolving pion gas (EPG) model with Bose–Einstein condensation. The multi-pion correlation functions in the EPG model are analyzed in different momentum intervals and compared with the experimental data for Pb–Pb collisions at \\sqrt{{s}{NN}}=2.76 {TeV}. It is found that the multi-pion correlation functions and cumulant correlation functions are sensitive to the condensation fraction of the EPG sources in the low average transverse-momentum intervals of the three and four pions. The model results of the multi-pion correlations are consistent with the experimental data in a considerable degree, which gives a source condensation fraction between 16% and 47%.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bordin, Lorenzo; Creminelli, Paolo; Mirbabayi, Mehrdad

    We point out that tensor consistency relations—i.e. the behavior of primordial correlation functions in the limit a tensor mode has a small momentum—are more universal than scalar consistency relations. They hold in the presence of multiple scalar fields and as long as anisotropies are diluted exponentially fast. When de Sitter isometries are approximately respected during inflation this is guaranteed by the Higuchi bound, which forbids the existence of light particles with spin: de Sitter space can support scalar hair but no curly hair. We discuss two indirect ways to look for the violation of tensor consistency relations in observations, asmore » a signature of models in which inflation is not a strong isotropic attractor, such as solid inflation: (a) graviton exchange contribution to the scalar four-point function; (b) quadrupolar anisotropy of the scalar power spectrum due to super-horizon tensor modes. This anisotropy has a well-defined statistics which can be distinguished from cases in which the background has a privileged direction.« less

  12. Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble gas dimers.

    PubMed

    Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek; Faber, Rasmus; Lacerda, Evanildo G; Sauer, Stephan P A

    2016-02-05

    Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the four-component Dirac-Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles with noniterative triple excitations [CCSD(T)] calculations using the very large polarization-consistent basis sets aug-pcSseg-4 for He, Ne and Ar, aug-pcSseg-3 for Kr, and the AQZP basis set for Xe. For the dimers also, zero-point vibrational (ZPV) corrections are obtained at the CCSD(T) level with the same basis sets were added. Best estimates of the dimer chemical shifts are generated from these nuclear magnetic shieldings and the relative importance of electron correlation, ZPV, and relativistic corrections for the shieldings and chemical shifts is analyzed. © 2015 Wiley Periodicals, Inc.

  13. Two-point correlation function for Dirichlet L-functions

    NASA Astrophysics Data System (ADS)

    Bogomolny, E.; Keating, J. P.

    2013-03-01

    The two-point correlation function for the zeros of Dirichlet L-functions at a height E on the critical line is calculated heuristically using a generalization of the Hardy-Littlewood conjecture for pairs of primes in arithmetic progression. The result matches the conjectured random-matrix form in the limit as E → ∞ and, importantly, includes finite-E corrections. These finite-E corrections differ from those in the case of the Riemann zeta-function, obtained in Bogomolny and Keating (1996 Phys. Rev. Lett. 77 1472), by certain finite products of primes which divide the modulus of the primitive character used to construct the L-function in question.

  14. Analysis of correlation functions in Toda theory and the Alday-Gaiotto-Tachikawa-Wyllard relation for SU(3) quiver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanno, Shoichi; Matsuo, Yutaka; Shiba, Shotaro

    We give some evidences of the Alday-Gaiotto-Tachikawa-Wyllard relation between SU(3) quiver gauge theories and A{sub 2} Toda theory. In particular, we derive the explicit form of 5-point correlation functions in the lower orders and confirm the agreement with Nekrasov's partition function for SU(3)xSU(3) quiver gauge theory. The algorithm to derive the correlation functions can be applied to a general n-point function in A{sub 2} Toda theory, which will be useful to establish the relation for more generic quivers. Partial analysis is also given for the SU(3)xSU(2) case, and we comment on some technical issues that need clarification before establishing themore » relation.« less

  15. Brain perfusion correlates of cognitive and nigrostriatal functions in de novo Parkinson's disease.

    PubMed

    Nobili, Flavio; Arnaldi, Dario; Campus, Claudio; Ferrara, Michela; De Carli, Fabrizio; Brugnolo, Andrea; Dessi, Barbara; Girtler, Nicola; Morbelli, Silvia; Abruzzese, Giovanni; Sambuceti, Gianmario; Rodriguez, Guido

    2011-12-01

    Subtle cognitive impairment is recognized in the first stages of Parkinson's disease (PD), including executive, memory and visuospatial dysfunction, but its pathophysiological basis is still debated. Twenty-six consecutive, drug-naïve, de novo PD patients underwent an extended neuropsychological battery, dopamine transporter (DAT) and brain perfusion single photon emission computed tomography (SPECT). We previously reported that nigrocaudate impairment correlates with executive functions, and nigroputaminal impairment with visuospatial abilities. Here perfusion SPECT was first compared between the PD group and age-matched controls (CTR). Then, perfusion SPECT was correlated with both DAT SPECT and four neuropsychological factors by means of voxel-based analysis (SPM8) with a height threshold of p < 0.005 at peak level and p < 0.05 false discovery rate-corrected at cluster level. Both perfusion and DAT SPECT images were flipped in order to have the more affected hemisphere (MAH), defined clinically, on the same side. Significant hypoperfusion was found in an occipital area of the MAH in PD patients as compared to CTR. Executive functions directly correlated with brain perfusion in bilateral posterior cingulate cortex and precuneus in the less affected hemisphere (LAH), while verbal memory directly correlated with perfusion in the precuneus, inferior parietal lobule and superior temporal gyrus in the LAH. Furthermore, positive correlation was highlighted between nigrocaudate and nigroputaminal impairment and brain perfusion in the precuneus, posterior cingulate and parahippocampal gyri of the LAH. These data support the evidence showing an early involvement of the cholinergic system in the early cognitive dysfunction and point to a more relevant role of parietal lobes and posterior cingulate in executive functions in PD.

  16. Four-point functions and the permutation group S4

    NASA Astrophysics Data System (ADS)

    Eichmann, Gernot; Fischer, Christian S.; Heupel, Walter

    2015-09-01

    Four-point functions are at the heart of many interesting physical processes. A prime example is the light-by-light scattering amplitude, which plays an important role in the calculation of hadronic contributions to the anomalous magnetic moment of the muon. In the calculation of such quantities one faces the challenge of finding a suitable and well-behaved basis of tensor structures in coordinate and/or momentum space. Provided all (or many) of the external legs represent similar particle content, a powerful tool to construct and organize such bases is the permutation group S4. We introduce an efficient notation for dealing with the irreducible multiplets of S4, and we highlight the merits of this treatment by exemplifying four-point functions with gauge-boson legs such as the four-gluon vertex and the light-by-light scattering amplitude. The multiplet analysis is also useful for isolating the important kinematic regions and the dynamical singularity content of such amplitudes. Our analysis serves as a basis for future efficient calculations of these and similar objects.

  17. Holographic calculation for large interval Rényi entropy at high temperature

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Wu, Jie-qiang

    2015-11-01

    In this paper, we study the holographic Rényi entropy of a large interval on a circle at high temperature for the two-dimensional conformal field theory (CFT) dual to pure AdS3 gravity. In the field theory, the Rényi entropy is encoded in the CFT partition function on n -sheeted torus connected with each other by a large branch cut. As proposed by Chen and Wu [Large interval limit of Rényi entropy at high temperature, arXiv:1412.0763], the effective way to read the entropy in the large interval limit is to insert a complete set of state bases of the twist sector at the branch cut. Then the calculation transforms into an expansion of four-point functions in the twist sector with respect to e-2/π T R n . By using the operator product expansion of the twist operators at the branch points, we read the first few terms of the Rényi entropy, including the leading and next-to-leading contributions in the large central charge limit. Moreover, we show that the leading contribution is actually captured by the twist vacuum module. In this case by the Ward identity the four-point functions can be derived from the correlation function of four twist operators, which is related to double interval entanglement entropy. Holographically, we apply the recipe in [T. Faulkner, The entanglement Rényi entropies of disjoint intervals in AdS/CFT, arXiv:1303.7221] and [T. Barrella et al., Holographic entanglement beyond classical gravity, J. High Energy Phys. 09 (2013) 109] to compute the classical Rényi entropy and its one-loop quantum correction, after imposing a new set of monodromy conditions. The holographic classical result matches exactly with the leading contribution in the field theory up to e-4 π T R and l6, while the holographical one-loop contribution is in exact agreement with next-to-leading results in field theory up to e-6/π T R n and l4 as well.

  18. Asymptotic correlation functions and FFLO signature for the one-dimensional attractive Hubbard model

    NASA Astrophysics Data System (ADS)

    Cheng, Song; Jiang, Yuzhu; Yu, Yi-Cong; Batchelor, Murray T.; Guan, Xi-Wen

    2018-04-01

    We study the long-distance asymptotic behavior of various correlation functions for the one-dimensional (1D) attractive Hubbard model in a partially polarized phase through the Bethe ansatz and conformal field theory approaches. We particularly find the oscillating behavior of these correlation functions with spatial power-law decay, of which the pair (spin) correlation function oscillates with a frequency ΔkF (2 ΔkF). Here ΔkF = π (n↑ -n↓) is the mismatch in the Fermi surfaces of spin-up and spin-down particles. Consequently, the pair correlation function in momentum space has peaks at the mismatch k = ΔkF, which has been observed in recent numerical work on this model. These singular peaks in momentum space together with the spatial oscillation suggest an analog of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in the 1D Hubbard model. The parameter β representing the lattice effect becomes prominent in critical exponents which determine the power-law decay of all correlation functions. We point out that the backscattering of unpaired fermions and bound pairs within their own Fermi points gives a microscopic origin of the FFLO pairing in 1D.

  19. Isolating long-wavelength fluctuation from structural relaxation in two-dimensional glass: cage-relative displacement

    NASA Astrophysics Data System (ADS)

    Shiba, Hayato; Keim, Peter; Kawasaki, Takeshi

    2018-03-01

    It has recently been revealed that long-wavelength fluctuation exists in two-dimensional (2D) glassy systems, having the same origin as that given by the Mermin-Wagner theorem for 2D crystalline solids. In this paper, we discuss how to characterise quantitatively the long-wavelength fluctuation in a molecular dynamics simulation of a lightly supercooled liquid. We employ the cage-relative mean-square displacement (MSD), defined on relative displacement to its cage, to quantitatively separate the long-wavelength fluctuation from the original MSD. For increasing system size the amplitude of acoustic long wavelength fluctuations not only increases but shifts to later times causing a crossover with structural relaxation of caging particles. We further analyse the dynamic correlation length using the cage-relative quantities. It grows as the structural relaxation becomes slower with decreasing temperature, uncovering an overestimation by the four-point correlation function due to the long-wavelength fluctuation. These findings motivate the usage of cage-relative MSD as a starting point for analysis of 2D glassy dynamics.

  20. Baryonic and mesonic 3-point functions with open spin indices

    NASA Astrophysics Data System (ADS)

    Bali, Gunnar S.; Collins, Sara; Gläßle, Benjamin; Heybrock, Simon; Korcyl, Piotr; Löffler, Marius; Rödl, Rudolf; Schäfer, Andreas

    2018-03-01

    We have implemented a new way of computing three-point correlation functions. It is based on a factorization of the entire correlation function into two parts which are evaluated with open spin-(and to some extent flavor-) indices. This allows us to estimate the two contributions simultaneously for many different initial and final states and momenta, with little computational overhead. We explain this factorization as well as its efficient implementation in a new library which has been written to provide the necessary functionality on modern parallel architectures and on CPUs, including Intel's Xeon Phi series.

  1. Fast Computation of the Two-Point Correlation Function in the Age of Big Data

    NASA Astrophysics Data System (ADS)

    Pellegrino, Andrew; Timlin, John

    2018-01-01

    We present a new code which quickly computes the two-point correlation function for large sets of astronomical data. This code combines the ease of use of Python with the speed of parallel shared libraries written in C. We include the capability to compute the auto- and cross-correlation statistics, and allow the user to calculate the three-dimensional and angular correlation functions. Additionally, the code automatically divides the user-provided sky masks into contiguous subsamples of similar size, using the HEALPix pixelization scheme, for the purpose of resampling. Errors are computed using jackknife and bootstrap resampling in a way that adds negligible extra runtime, even with many subsamples. We demonstrate comparable speed with other clustering codes, and code accuracy compared to known and analytic results.

  2. A short note on the maximal point-biserial correlation under non-normality.

    PubMed

    Cheng, Ying; Liu, Haiyan

    2016-11-01

    The aim of this paper is to derive the maximal point-biserial correlation under non-normality. Several widely used non-normal distributions are considered, namely the uniform distribution, t-distribution, exponential distribution, and a mixture of two normal distributions. Results show that the maximal point-biserial correlation, depending on the non-normal continuous variable underlying the binary manifest variable, may not be a function of p (the probability that the dichotomous variable takes the value 1), can be symmetric or non-symmetric around p = .5, and may still lie in the range from -1.0 to 1.0. Therefore researchers should exercise caution when they interpret their sample point-biserial correlation coefficients based on popular beliefs that the maximal point-biserial correlation is always smaller than 1, and that the size of the correlation is always further restricted as p deviates from .5. © 2016 The British Psychological Society.

  3. Long multiplet bootstrap

    NASA Astrophysics Data System (ADS)

    Cornagliotto, Martina; Lemos, Madalena; Schomerus, Volker

    2017-10-01

    Applications of the bootstrap program to superconformal field theories promise unique new insights into their landscape and could even lead to the discovery of new models. Most existing results of the superconformal bootstrap were obtained form correlation functions of very special fields in short (BPS) representations of the superconformal algebra. Our main goal is to initiate a superconformal bootstrap for long multiplets, one that exploits all constraints from superprimaries and their descendants. To this end, we work out the Casimir equations for four-point correlators of long multiplets of the two-dimensional global N=2 superconformal algebra. After constructing the full set of conformal blocks we discuss two different applications. The first one concerns two-dimensional (2,0) theories. The numerical bootstrap analysis we perform serves a twofold purpose, as a feasibility study of our long multiplet bootstrap and also as an exploration of (2,0) theories. A second line of applications is directed towards four-dimensional N=3 SCFTs. In this context, our results imply a new bound c≥ 13/24 for the central charge of such models, which we argue cannot be saturated by an interacting SCFT.

  4. Accelerating the two-point and three-point galaxy correlation functions using Fourier transforms

    NASA Astrophysics Data System (ADS)

    Slepian, Zachary; Eisenstein, Daniel J.

    2016-01-01

    Though Fourier transforms (FTs) are a common technique for finding correlation functions, they are not typically used in computations of the anisotropy of the two-point correlation function (2PCF) about the line of sight in wide-angle surveys because the line-of-sight direction is not constant on the Cartesian grid. Here we show how FTs can be used to compute the multipole moments of the anisotropic 2PCF. We also show how FTs can be used to accelerate the 3PCF algorithm of Slepian & Eisenstein. In both cases, these FT methods allow one to avoid the computational cost of pair counting, which scales as the square of the number density of objects in the survey. With the upcoming large data sets of Dark Energy Spectroscopic Instrument, Euclid, and Large Synoptic Survey Telescope, FT techniques will therefore offer an important complement to simple pair or triplet counts.

  5. The reliability of Little's Irregularity Index for the upper dental arch using three dimensional (3D) digital models.

    PubMed

    Burns, Angus; Dowling, Adam H; Garvey, Thérèse M; Fleming, Garry J P

    2014-10-01

    To investigate the inter-examiner variability of contact point displacement measurements (used to calculate the overall Little's Irregularity Index (LII) score) from digital models of the maxillary arch by four independent examiners. Maxillary orthodontic pre-treatment study models of ten patients were scanned using the Lava(tm) Chairside Oral Scanner (LCOS) and 3D digital models were created using Creo(®) computer aided design (CAD) software. Four independent examiners measured the contact point displacements of the anterior maxillary teeth using the software. Measurements were recorded randomly on three separate occasions by the examiners and the measurements (n=600) obtained were analysed using correlation analyses and analyses of variance (ANOVA). LII contact point displacement measurements for the maxillary arch were reproducible for inter-examiner assessment when using the digital method and were highly correlated between examiner pairs for contact point displacement measurements >2mm. The digital measurement technique showed poor correlation for smaller contact point displacement measurements (<2mm) for repeated measurements. The coefficient of variation (CoV) of the digital contact point displacement measurements highlighted 348 of the 600 measurements differed by more than 20% of the mean compared with 516 of 600 for the same measurements performed using the conventional LII measurement technique. Although the inter-examiner variability of LII contact point displacement measurements on the maxillary arch was reduced using the digital compared with the conventional LII measurement methodology, neither method was considered appropriate for orthodontic research purposes particularly when measuring small contact point displacements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. The use of regression analysis in determining reference intervals for low hematocrit and thrombocyte count in multiple electrode aggregometry and platelet function analyzer 100 testing of platelet function.

    PubMed

    Kuiper, Gerhardus J A J M; Houben, Rik; Wetzels, Rick J H; Verhezen, Paul W M; Oerle, Rene van; Ten Cate, Hugo; Henskens, Yvonne M C; Lancé, Marcus D

    2017-11-01

    Low platelet counts and hematocrit levels hinder whole blood point-of-care testing of platelet function. Thus far, no reference ranges for MEA (multiple electrode aggregometry) and PFA-100 (platelet function analyzer 100) devices exist for low ranges. Through dilution methods of volunteer whole blood, platelet function at low ranges of platelet count and hematocrit levels was assessed on MEA for four agonists and for PFA-100 in two cartridges. Using (multiple) regression analysis, 95% reference intervals were computed for these low ranges. Low platelet counts affected MEA in a positive correlation (all agonists showed r 2 ≥ 0.75) and PFA-100 in an inverse correlation (closure times were prolonged with lower platelet counts). Lowered hematocrit did not affect MEA testing, except for arachidonic acid activation (ASPI), which showed a weak positive correlation (r 2 = 0.14). Closure time on PFA-100 testing was inversely correlated with hematocrit for both cartridges. Regression analysis revealed different 95% reference intervals in comparison with originally established intervals for both MEA and PFA-100 in low platelet or hematocrit conditions. Multiple regression analysis of ASPI and both tests on the PFA-100 for combined low platelet and hematocrit conditions revealed that only PFA-100 testing should be adjusted for both thrombocytopenia and anemia. 95% reference intervals were calculated using multiple regression analysis. However, coefficients of determination of PFA-100 were poor, and some variance remained unexplained. Thus, in this pilot study using (multiple) regression analysis, we could establish reference intervals of platelet function in anemia and thrombocytopenia conditions on PFA-100 and in thrombocytopenia conditions on MEA.

  7. POLARBEAR constraints on cosmic birefringence and primordial magnetic fields

    DOE PAGES

    Ade, Peter A. R.; Arnold, Kam; Atlas, Matt; ...

    2015-12-08

    Here, we constrain anisotropic cosmic birefringence using four-point correlations of even-parity E-mode and odd-parity B-mode polarization in the cosmic microwave background measurements made by the POLARization of the Background Radiation (POLARBEAR) experiment in its first season of observations. We find that the anisotropic cosmic birefringence signal from any parity-violating processes is consistent with zero. The Faraday rotation from anisotropic cosmic birefringence can be compared with the equivalent quantity generated by primordial magnetic fields if they existed. The POLARBEAR nondetection translates into a 95% confidence level (C.L.) upper limit of 93 nanogauss (nG) on the amplitude of an equivalent primordial magneticmore » field inclusive of systematic uncertainties. This four-point correlation constraint on Faraday rotation is about 15 times tighter than the upper limit of 1380 nG inferred from constraining the contribution of Faraday rotation to two-point correlations of B-modes measured by Planck in 2015. Metric perturbations sourced by primordial magnetic fields would also contribute to the B-mode power spectrum. Using the POLARBEAR measurements of the B-mode power spectrum (two-point correlation), we set a 95% C.L. upper limit of 3.9 nG on primordial magnetic fields assuming a flat prior on the field amplitude. This limit is comparable to what was found in the Planck 2015 two-point correlation analysis with both temperature and polarization. Finally, we perform a set of systematic error tests and find no evidence for contamination. This work marks the first time that anisotropic cosmic birefringence or primordial magnetic fields have been constrained from the ground at subdegree scales.« less

  8. Correlation of four potential biomarkers of liver fibrosis with liver function and grade of hepatic fibrosis in a neonatal cholestatic rat model.

    PubMed

    Tang, Ning; Zhang, Yaping; Liu, Zeyu; Ai, Xuemei; Liang, Qinghong

    2017-07-01

    The present study investigated the correlation between four serum biomarkers of liver fibrosis, liver function and pathological hepatic fibrosis grade in neonatal cholestatic rats. A total of 38 Sprague‑Dawley rats, aged 3 weeks, were randomly assigned to the experimental group (EG), control group (CG) and the blank control group (BCG). EG received intragastric administration of 1% α‑naphthylisothiocyanate, 75 mg/kg, to induce acute cholestasis liver injury, CG and BCG were set as control groups. Blood samples from all groups were collected 48 h following the procedure. The levels of liver function markers, and four biomarkers of liver fibrosis in serum, were measured and sections of liver tissue were stained for pathological analysis. The results of the present study demonstrated that the degree of hepatic fibrosis in EG, in the serum levels or by pathological analysis, was markedly more evident compared with the CG. Several indices of four biomarkers for liver fibrosis in serum were identified and correlated with the levels of liver function markers. The pathological hepatic fibrosis grade was correlated with γ‑glutamyl transferase (γ‑GT) and Hyaluronic acid (HA). Therefore, HA and γ‑GT were positively correlated with the grade of hepatic fibrosis, indicating their efficacy as biomarkers of infantile cholestatic hepatic fibrosis.

  9. Neural correlates of motor recovery after stroke: a longitudinal fMRI study

    PubMed Central

    Ward, N. S.; Brown, M. M.; Thompson, A. J.; Frackowiak, R. S. J.

    2013-01-01

    Summary Recovery of motor function after stroke may occur over weeks or months and is often attributed to cerebral reorganization. We have investigated the longitudinal relationship between recovery after stroke and task-related brain activation during a motor task as measured using functional MRI (fMRI). Eight first-ever stroke patients presenting with hemiparesis resulting from cerebral infarction sparing the primary motor cortex, and four control subjects were recruited. Subjects were scanned on a number of occasions whilst performing an isometric dynamic visually paced hand grip task. Recovery in the patient group was assessed using a battery of outcome measures at each time point. Task-related brain activations decreased over sessions as a function of recovery in a number of primary and non-primary motor regions in all patients, but no session effects were seen in the controls. Furthermore, consistent decreases across sessions correlating with recovery were seen across the whole patient group independent of rate of recovery or initial severity, in primary motor cortex, premotor and prefrontal cortex, supplementary motor areas, cingulate sulcus, temporal lobe, striate cortex, cerebellum, thalamus and basal ganglia. Although recovery-related increases were seen in different brain regions in four patients, there were no consistent effects across the group. These results further our understanding of the recovery process by demonstrating for the first time a clear temporal relationship between recovery and task-related activation of the motor system after stroke. PMID:12937084

  10. Boundary terms and three-point functions: an AdS/CFT puzzle resolved

    DOE PAGES

    Freedman, Daniel Z.; Pilch, Krzysztof; Pufu, Silviu S.; ...

    2017-06-12

    N=8 superconformal field theories, such as the ABJM theory at Chern-Simons level k = 1 or 2, contain 35 scalar operators O IJ with Δ = 1 in the 35 v representation of SO(8). The 3-point correlation function of these operators is non-vanishing, and indeed can be calculated non-perturbatively in the field theory. But its AdS 4 gravity dual, obtained from gauged N=8 supergravity, has no cubic A 3 couplings in its Lagrangian, where A IJ is the bulk dual of OIJ. So conventional Witten diagrams cannot furnish the field theory result. We show that the extension of bulk supersymmetrymore » to the AdS 4 boundary requires the introduction of a finite A 3 counterterm that does provide a perfect match to the 3-point correlator. Boundary supersymmetry also requires infinite counterterms which agree with the method of holographic renormalization. The generating functional of correlation functions of the Δ = 1 operators is the Legendre transform of the on-shell action, and the supersymmetry properties of this functional play a significant role in our treatment.« less

  11. Boundary terms and three-point functions: an AdS/CFT puzzle resolved

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freedman, Daniel Z.; Pilch, Krzysztof; Pufu, Silviu S.

    N=8 superconformal field theories, such as the ABJM theory at Chern-Simons level k = 1 or 2, contain 35 scalar operators O IJ with Δ = 1 in the 35 v representation of SO(8). The 3-point correlation function of these operators is non-vanishing, and indeed can be calculated non-perturbatively in the field theory. But its AdS 4 gravity dual, obtained from gauged N=8 supergravity, has no cubic A 3 couplings in its Lagrangian, where A IJ is the bulk dual of OIJ. So conventional Witten diagrams cannot furnish the field theory result. We show that the extension of bulk supersymmetrymore » to the AdS 4 boundary requires the introduction of a finite A 3 counterterm that does provide a perfect match to the 3-point correlator. Boundary supersymmetry also requires infinite counterterms which agree with the method of holographic renormalization. The generating functional of correlation functions of the Δ = 1 operators is the Legendre transform of the on-shell action, and the supersymmetry properties of this functional play a significant role in our treatment.« less

  12. Estimating Function Approaches for Spatial Point Processes

    NASA Astrophysics Data System (ADS)

    Deng, Chong

    Spatial point pattern data consist of locations of events that are often of interest in biological and ecological studies. Such data are commonly viewed as a realization from a stochastic process called spatial point process. To fit a parametric spatial point process model to such data, likelihood-based methods have been widely studied. However, while maximum likelihood estimation is often too computationally intensive for Cox and cluster processes, pairwise likelihood methods such as composite likelihood, Palm likelihood usually suffer from the loss of information due to the ignorance of correlation among pairs. For many types of correlated data other than spatial point processes, when likelihood-based approaches are not desirable, estimating functions have been widely used for model fitting. In this dissertation, we explore the estimating function approaches for fitting spatial point process models. These approaches, which are based on the asymptotic optimal estimating function theories, can be used to incorporate the correlation among data and yield more efficient estimators. We conducted a series of studies to demonstrate that these estmating function approaches are good alternatives to balance the trade-off between computation complexity and estimating efficiency. First, we propose a new estimating procedure that improves the efficiency of pairwise composite likelihood method in estimating clustering parameters. Our approach combines estimating functions derived from pairwise composite likeli-hood estimation and estimating functions that account for correlations among the pairwise contributions. Our method can be used to fit a variety of parametric spatial point process models and can yield more efficient estimators for the clustering parameters than pairwise composite likelihood estimation. We demonstrate its efficacy through a simulation study and an application to the longleaf pine data. Second, we further explore the quasi-likelihood approach on fitting second-order intensity function of spatial point processes. However, the original second-order quasi-likelihood is barely feasible due to the intense computation and high memory requirement needed to solve a large linear system. Motivated by the existence of geometric regular patterns in the stationary point processes, we find a lower dimension representation of the optimal weight function and propose a reduced second-order quasi-likelihood approach. Through a simulation study, we show that the proposed method not only demonstrates superior performance in fitting the clustering parameter but also merits in the relaxation of the constraint of the tuning parameter, H. Third, we studied the quasi-likelihood type estimating funciton that is optimal in a certain class of first-order estimating functions for estimating the regression parameter in spatial point process models. Then, by using a novel spectral representation, we construct an implementation that is computationally much more efficient and can be applied to more general setup than the original quasi-likelihood method.

  13. Three-Point Correlations in the COBE DMR 2 Year Anisotropy Maps

    NASA Technical Reports Server (NTRS)

    Hinshaw, G.; Banday, A. J.; Bennett, C. L.; Gorski, K. M.; Kogut, A.

    1995-01-01

    We compute the three-point temperature correlation function of the COBE Differential Microwave Radiometer (DMR) 2 year sky maps to search for evidence of non-Gaussian temperature fluctuations. We detect three-point correlations in our sky with a substantially higher signal-to-noise ratio than from the first-year data. However, the magnitude of the signal is consistent with the level of cosmic variance expected from Gaussian fluctuations, even when the low-order multipole moments, up to l = 9, are filtered from the data. These results do not strongly constrain most existing models of structure formation, but the absence of intrinsic three-point correlations on large angular scales is an important consistency test for such models.

  14. On two-point boundary correlations in the six-vertex model with domain wall boundary conditions

    NASA Astrophysics Data System (ADS)

    Colomo, F.; Pronko, A. G.

    2005-05-01

    The six-vertex model with domain wall boundary conditions on an N × N square lattice is considered. The two-point correlation function describing the probability of having two vertices in a given state at opposite (top and bottom) boundaries of the lattice is calculated. It is shown that this two-point boundary correlator is expressible in a very simple way in terms of the one-point boundary correlators of the model on N × N and (N - 1) × (N - 1) lattices. In alternating sign matrix (ASM) language this result implies that the doubly refined x-enumerations of ASMs are just appropriate combinations of the singly refined ones.

  15. Simulations of four-dimensional simplicial quantum gravity as dynamical triangulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agishtein, M.E.; Migdal, A.A.

    1992-04-20

    In this paper, Four-Dimensional Simplicial Quantum Gravity is simulated using the dynamical triangulation approach. The authors studied simplicial manifolds of spherical topology and found the critical line for the cosmological constant as a function of the gravitational one, separating the phases of opened and closed Universe. When the bare cosmological constant approaches this line from above, the four-volume grows: the authors reached about 5 {times} 10{sup 4} simplexes, which proved to be sufficient for the statistical limit of infinite volume. However, for the genuine continuum theory of gravity, the parameters of the lattice model should be further adjusted to reachmore » the second order phase transition point, where the correlation length grows to infinity. The authors varied the gravitational constant, and they found the first order phase transition, similar to the one found in three-dimensional model, except in 4D the fluctuations are rather large at the transition point, so that this is close to the second order phase transition. The average curvature in cutoff units is large and positive in one phase (gravity), and small negative in another (antigravity). The authors studied the fractal geometry of both phases, using the heavy particle propagator to define the geodesic map, as well as with the old approach using the shortest lattice paths.« less

  16. [Effects on the regional homogeneity of resting-state brain function in the healthy subjects of gastric distention treated with acupuncture at the front-mu and back-shu points of the stomach, Weishu (BL 21) and Zhongwan (CV 12)].

    PubMed

    Cai, Ronglin; Guan, Yuanyuan; Wu, Hongli; Xu, Chunsheng; Li, Chuanfu; Hu, Ling; Shen, Guoming

    2018-04-12

    To observe the regional homogeneity (ReHo) of resting-state brain function in the healthy subjects of gastric distention treated with acupuncture at the back- shu and front- mu points of the stomach, Weishu (BL 21) and Zhongwan (CV 12) and the correlation with gastric motility so as to explore the mechanism on the central integration of the front- mu and back- shu points of the stomach. The crossover test design was adopted. Twenty-four healthy subjects were assigned to a Weishu group, a Zhongwan group and a combined-point group separately, 8 cases in each one in each of the three times. Totally, 24 subjects were included in each group. Under the water load condition, the subjects received acupuncture at Weishu (BL 21), Zhongwan (CV 12) and the combined Weishu (BL 21) and Zhongwan (CV 12). Before and after each acupuncture, the resting-state brain functional magnetic resonance imaging (fMRI) scan and electrogastrogram (EGG) test were applied. The ReHo value was calculated in the collected fMRI imaging data. The changes in ReHo values were analyzed and compared before and after acupuncture in each group, as well as among the groups. The gastric motility was analyzed before and after acupuncture. Additionally, the correlative analysis was conducted between the gastric motility and ReHo changes before and after acupuncture. (1) After acupuncture, EGG amplitudes in the subjects of each group were lower remarkably as compared with those before acupuncture (all P <0.01). The EGG frequencies were not different significantly as compared with those before acupuncture (all P >0.05). The EGG amplitudes in the Weishu group and the Zhongwan group were higher than those in the combined-point group (both P <0.05). (2) As compared with the conditions before acupuncture, acupuncture at the combined front- mu and the back- shu points as well as Weishu (BL 21) and Zhongwan (CV 12) separately all induced the changes in the brain ReHo. Acupuncture at the combined front- mu and the back- shu points significantly increased Reho values in the right inferior temporal gyrus, the left thalamus, the precuneus and the posterior cingulate gyrus (all P <0.05) and remarkably reduced the ReHo values in the the middle temporal gyrus of the right temporal pole, sulcus calcarinus and precuneus (all P <0.05). Compared with the single point groups, acupuncture at the combined front- mu and the back- shu points induced the increase of ReHo value in the posterior cingulate gyrus and the decrease of ReHo in the temporal pole (all P <0.05). (3) The correlative analysis showed that the changes in the ReHo values in the posterior cingulate gyrus, the thalamus and the precuneus were positively correlated to the changes of the gastric motility amplitudes. The changes in the ReHo values in the temporal pole was negatively correlated to the changes of the gastric motility amplitudes. Acupuncture at the combined back- shu and front- mu points of the stomach, as well as acupuncture at single Weishu (BL 21) and Zhongwan (CV 12) induce the ReHo changes in the different brain regions. Acupuncture at the combined back- shu and front- mu points of the stomach may induce the ReHo changes in some new brain regions as compared with the acupuncture at the single point. The thalamus, the posterior cingulate gyrus and the precuneus may be the the important integrated brain regions for acupuncture at the back- shu and the front- mu points in regulating the gastric motility. The effects of acupuncture at the back- shu and the front- mu points for the regulation of the gastric motility are closely related to the thalamus, the limbic system and the default network of the brain regions.

  17. Electronic Zero-Point Oscillations in the Strong-Interaction Limit of Density Functional Theory.

    PubMed

    Gori-Giorgi, Paola; Vignale, Giovanni; Seidl, Michael

    2009-04-14

    The exchange-correlation energy in Kohn-Sham density functional theory can be expressed exactly in terms of the change in the expectation of the electron-electron repulsion operator when, in the many-electron Hamiltonian, this same operator is multiplied by a real parameter λ varying between 0 (Kohn-Sham system) and 1 (physical system). In this process, usually called adiabatic connection, the one-electron density is kept fixed by a suitable local one-body potential. The strong-interaction limit of density functional theory, defined as the limit λ→∞, turns out to be like the opposite noninteracting Kohn-Sham limit (λ→0) mathematically simpler than the physical (λ = 1) case and can be used to build an approximate interpolation formula between λ→0 and λ→∞ for the exchange-correlation energy. Here we extend the systematic treatment of the λ→∞ limit [Phys. Rev. A 2007, 75, 042511] to the next leading term, describing zero-point oscillations of strictly correlated electrons, with numerical examples for small spherical atoms. We also propose an improved approximate functional for the zero-point term and a revised interpolation formula for the exchange-correlation energy satisfying more exact constraints.

  18. Proceedings of the Antenna Applications Symposium (32nd) Held in Monticello, Illinois on 16-18 September 2008. Volume 1

    DTIC Science & Technology

    2008-12-20

    Equation 6 for the sample likelihood function gives a “concentrated likelihood function,” which depends on correlation parameters θh and ph. This...step one and estimates correlation parameters using the new data set including all previous sample points and the new data point x. The algorithm...Unclassified b. ABSTRACT Unclassified c. THIS PAGE Unclassified UU 279 19b. TELEPHONE NUMBER (include area code ) N/A

  19. Ways to improve your correlation functions

    NASA Technical Reports Server (NTRS)

    Hamilton, A. J. S.

    1993-01-01

    This paper describes a number of ways to improve on the standard method for measuring the two-point correlation function of large scale structure in the Universe. Issues addressed are: (1) the problem of the mean density, and how to solve it; (2) how to estimate the uncertainty in a measured correlation function; (3) minimum variance pair weighting; (4) unbiased estimation of the selection function when magnitudes are discrete; and (5) analytic computation of angular integrals in background pair counts.

  20. Normalization methods in time series of platelet function assays

    PubMed Central

    Van Poucke, Sven; Zhang, Zhongheng; Roest, Mark; Vukicevic, Milan; Beran, Maud; Lauwereins, Bart; Zheng, Ming-Hua; Henskens, Yvonne; Lancé, Marcus; Marcus, Abraham

    2016-01-01

    Abstract Platelet function can be quantitatively assessed by specific assays such as light-transmission aggregometry, multiple-electrode aggregometry measuring the response to adenosine diphosphate (ADP), arachidonic acid, collagen, and thrombin-receptor activating peptide and viscoelastic tests such as rotational thromboelastometry (ROTEM). The task of extracting meaningful statistical and clinical information from high-dimensional data spaces in temporal multivariate clinical data represented in multivariate time series is complex. Building insightful visualizations for multivariate time series demands adequate usage of normalization techniques. In this article, various methods for data normalization (z-transformation, range transformation, proportion transformation, and interquartile range) are presented and visualized discussing the most suited approach for platelet function data series. Normalization was calculated per assay (test) for all time points and per time point for all tests. Interquartile range, range transformation, and z-transformation demonstrated the correlation as calculated by the Spearman correlation test, when normalized per assay (test) for all time points. When normalizing per time point for all tests, no correlation could be abstracted from the charts as was the case when using all data as 1 dataset for normalization. PMID:27428217

  1. Coping strategies among patients with newly diagnosed amyotrophic lateral sclerosis.

    PubMed

    Jakobsson Larsson, Birgitta; Nordin, Karin; Askmark, Håkan; Nygren, Ingela

    2014-11-01

    To prospectively identify different coping strategies among newly diagnosed amyotrophic lateral sclerosis patients and whether they change over time and to determine whether physical function, psychological well-being, age and gender correlated with the use of different coping strategies. Amyotrophic lateral sclerosis is a fatal disease with impact on both physical function and psychological well-being. Different coping strategies are used to manage symptoms and disease progression, but knowledge about coping in newly diagnosed amyotrophic lateral sclerosis patients is scarce. This was a prospective study with a longitudinal and descriptive design. A total of 33 patients were included and evaluation was made at two time points, one to three months and six months after diagnosis. Patients were asked to complete the Motor Neuron Disease Coping Scale and the Hospital Anxiety and Depression Scale. Physical function was estimated using the revised Amyotrophic Lateral Sclerosis Functional Rating Scale. The most commonly used strategies were support and independence. Avoidance/venting and information seeking were seldom used at both time points. The use of information seeking decreased between the two time points. Men did not differ from women, but patients ≤64 years used positive action more often than older patients. Amyotrophic Lateral Sclerosis Functional Rating Scale was positively correlated with positive action at time point 1, but not at time point 2. Patients' psychological well-being was correlated with the use of different coping strategies. Support and independence were the most used coping strategies, and the use of different strategies changed over time. Psychological well-being was correlated with different coping strategies in newly diagnosed amyotrophic lateral sclerosis patients. The knowledge about coping strategies in early stage of the disease may help the nurses to improve and develop the care and support for these patients. © 2014 John Wiley & Sons Ltd.

  2. Correlated wave functions for three-particle systems with Coulomb interaction - The muonic helium atom

    NASA Technical Reports Server (NTRS)

    Huang, K.-N.

    1977-01-01

    A computational procedure for calculating correlated wave functions is proposed for three-particle systems interacting through Coulomb forces. Calculations are carried out for the muonic helium atom. Variational wave functions which explicitly contain interparticle coordinates are presented for the ground and excited states. General Hylleraas-type trial functions are used as the basis for the correlated wave functions. Excited-state energies of the muonic helium atom computed from 1- and 35-term wave functions are listed for four states.

  3. Four points function fitted and first derivative procedure for determining the end points in potentiometric titration curves: statistical analysis and method comparison.

    PubMed

    Kholeif, S A

    2001-06-01

    A new method that belongs to the differential category for determining the end points from potentiometric titration curves is presented. It uses a preprocess to find first derivative values by fitting four data points in and around the region of inflection to a non-linear function, and then locate the end point, usually as a maximum or minimum, using an inverse parabolic interpolation procedure that has an analytical solution. The behavior and accuracy of the sigmoid and cumulative non-linear functions used are investigated against three factors. A statistical evaluation of the new method using linear least-squares method validation and multifactor data analysis are covered. The new method is generally applied to symmetrical and unsymmetrical potentiometric titration curves, and the end point is calculated using numerical procedures only. It outperforms the "parent" regular differential method in almost all factors levels and gives accurate results comparable to the true or estimated true end points. Calculated end points from selected experimental titration curves compatible with the equivalence point category of methods, such as Gran or Fortuin, are also compared with the new method.

  4. Vision therapy in adults with convergence insufficiency: clinical and functional magnetic resonance imaging measures.

    PubMed

    Alvarez, Tara L; Vicci, Vincent R; Alkan, Yelda; Kim, Eun H; Gohel, Suril; Barrett, Anna M; Chiaravalloti, Nancy; Biswal, Bharat B

    2010-12-01

    This research quantified clinical measurements and functional neural changes associated with vision therapy in subjects with convergence insufficiency (CI). Convergence and divergence 4° step responses were compared between 13 control adult subjects with normal binocular vision and four CI adult subjects. All CI subjects participated in 18 h of vision therapy. Clinical parameters quantified throughout the therapy included: nearpoint of convergence, recovery point of convergence, positive fusional vergence at near, near dissociated phoria, and eye movements that were quantified using peak velocity. Neural correlates of the CI subjects were quantified with functional magnetic resonance imaging scans comparing random vs. predictable vergence movements using a block design before and after vision therapy. Images were quantified by measuring the spatial extent of activation and the average correlation within five regions of interests (ROI). The ROIs were the dorsolateral prefrontal cortex, a portion of the frontal lobe, part of the parietal lobe, the cerebellum, and the brain stem. All measurements were repeated 4 months to 1 year post-therapy in three of the CI subjects. Convergence average peak velocities to step stimuli were significantly slower (p = 0.016) in CI subjects compared with controls; however, significant differences in average peak velocities were not observed for divergence step responses (p = 0.30). The investigation of CI subjects participating in vision therapy showed that the nearpoint of convergence, recovery point of convergence, and near dissociated phoria significantly decreased. Furthermore, the positive fusional vergence, average peak velocity from 4° convergence steps, and the amount of functional activity within the frontal areas, cerebellum, and brain stem significantly increased. Several clinical and cortical parameters were significantly correlated. Convergence peak velocity was significantly slower in CI subjects compared with controls, which may result in asthenopic complaints reported by the CI subjects. Vision therapy was associated with and may have evoked clinical and cortical activity changes.

  5. Vision Therapy in Adults with Convergence Insufficiency: Clinical and Functional Magnetic Resonance Imaging Measures

    PubMed Central

    Alvarez, Tara L.; Vicci, Vincent R.; Alkan, Yelda; Kim, Eun H.; Gohel, Suril; Barrett, Anna M.; Chiaravalloti, Nancy; Biswal, Bharat B.

    2011-01-01

    Purpose This research quantified clinical measurements and functional neural changes associated with vision therapy in subjects with convergence insufficiency (CI). Methods Convergence and divergence 4° step responses were compared between 13 control adult subjects with normal binocular vision and four CI adult subjects. All CI subjects participated in 18 h of vision therapy. Clinical parameters quantified throughout the therapy included: nearpoint of convergence, recovery point of convergence, positive fusional vergence at near, near dissociated phoria, and eye movements that were quantified using peak velocity. Neural correlates of the CI subjects were quantified with functional magnetic resonance imaging scans comparing random vs. predictable vergence movements using a block design before and after vision therapy. Images were quantified by measuring the spatial extent of activation and the average correlation within five regions of interests (ROI). The ROIs were the dorsolateral prefrontal cortex, a portion of the frontal lobe, part of the parietal lobe, the cerebellum, and the brain stem. All measurements were repeated 4 months to 1 year post-therapy in three of the CI subjects. Results Convergence average peak velocities to step stimuli were significantly slower (p = 0.016) in CI subjects compared with controls; however, significant differences in average peak velocities were not observed for divergence step responses (p = 0.30). The investigation of CI subjects participating in vision therapy showed that the nearpoint of convergence, recovery point of convergence, and near dissociated phoria significantly decreased. Furthermore, the positive fusional vergence, average peak velocity from 4° convergence steps, and the amount of functional activity within the frontal areas, cerebellum, and brain stem significantly increased. Several clinical and cortical parameters were significantly correlated. Conclusions Convergence peak velocity was significantly slower in CI subjects compared with controls, which may result in asthenopic complaints reported by the CI subjects. Vision therapy was associated with and may have evoked clinical and cortical activity changes. PMID:21057347

  6. Basis convergence of range-separated density-functional theory.

    PubMed

    Franck, Odile; Mussard, Bastien; Luppi, Eleonora; Toulouse, Julien

    2015-02-21

    Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. We study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N2, and H2O) with cardinal number X of the Dunning basis sets cc - p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.

  7. Statistical Study of Turbulence: Spectral Functions and Correlation Coefficients

    NASA Technical Reports Server (NTRS)

    Frenkiel, Francois N.

    1958-01-01

    In reading the publications on turbulence of different authors, one often runs the risk of confusing the various correlation coefficients and turbulence spectra. We have made a point of defining, by appropriate concepts, the differences which exist between these functions. Besides, we introduce in the symbols a few new characteristics of turbulence. In the first chapter, we study some relations between the correlation coefficients and the different turbulence spectra. Certain relations are given by means of demonstrations which could be called intuitive rather than mathematical. In this way we demonstrate that the correlation coefficients between the simultaneous turbulent velocities at two points are identical, whether studied in Lagrange's or in Euler's systems. We then consider new spectra of turbulence, obtained by study of the simultaneous velocities along a straight line of given direction. We determine some relations between these spectra and the correlation coefficients. Examining the relation between the spectrum of the turbulence measured at a fixed point and the longitudinal-correlation curve given by G. I. Taylor, we find that this equation is exact only when the coefficient is very small.

  8. Lensing of the CMB: non-Gaussian aspects.

    PubMed

    Zaldarriaga, M

    2001-06-01

    We compute the small angle limit of the three- and four-point function of the cosmic microwave background (CMB) temperature induced by the gravitational lensing effect by the large-scale structure of the universe. We relate the non-Gaussian aspects presented in this paper with those in our previous studies of the lensing effects. We interpret the statistics proposed in previous work in terms of different configurations of the four-point function and show how they relate to the statistic that maximizes the S/N.

  9. Multiloop Functional Renormalization Group That Sums Up All Parquet Diagrams

    NASA Astrophysics Data System (ADS)

    Kugler, Fabian B.; von Delft, Jan

    2018-02-01

    We present a multiloop flow equation for the four-point vertex in the functional renormalization group (FRG) framework. The multiloop flow consists of successive one-loop calculations and sums up all parquet diagrams to arbitrary order. This provides substantial improvement of FRG computations for the four-point vertex and, consequently, the self-energy. Using the x-ray-edge singularity as an example, we show that solving the multiloop FRG flow is equivalent to solving the (first-order) parquet equations and illustrate this with numerical results.

  10. Monte Carlo study of four dimensional binary hard hypersphere mixtures

    NASA Astrophysics Data System (ADS)

    Bishop, Marvin; Whitlock, Paula A.

    2012-01-01

    A multithreaded Monte Carlo code was used to study the properties of binary mixtures of hard hyperspheres in four dimensions. The ratios of the diameters of the hyperspheres examined were 0.4, 0.5, 0.6, and 0.8. Many total densities of the binary mixtures were investigated. The pair correlation functions and the equations of state were determined and compared with other simulation results and theoretical predictions. At lower diameter ratios the pair correlation functions of the mixture agree with the pair correlation function of a one component fluid at an appropriately scaled density. The theoretical results for the equation of state compare well to the Monte Carlo calculations for all but the highest densities studied.

  11. Elucidation of spin echo small angle neutron scattering correlation functions through model studies.

    PubMed

    Shew, Chwen-Yang; Chen, Wei-Ren

    2012-02-14

    Several single-modal Debye correlation functions to approximate part of the overall Debey correlation function of liquids are closely examined for elucidating their behavior in the corresponding spin echo small angle neutron scattering (SESANS) correlation functions. We find that the maximum length scale of a Debye correlation function is identical to that of its SESANS correlation function. For discrete Debye correlation functions, the peak of SESANS correlation function emerges at their first discrete point, whereas for continuous Debye correlation functions with greater width, the peak position shifts to a greater value. In both cases, the intensity and shape of the peak of the SESANS correlation function are determined by the width of the Debye correlation functions. Furthermore, we mimic the intramolecular and intermolecular Debye correlation functions of liquids composed of interacting particles based on a simple model to elucidate their competition in the SESANS correlation function. Our calculations show that the first local minimum of a SESANS correlation function can be negative and positive. By adjusting the spatial distribution of the intermolecular Debye function in the model, the calculated SESANS spectra exhibit the profile consistent with that of hard-sphere and sticky-hard-sphere liquids predicted by more sophisticated liquid state theory and computer simulation. © 2012 American Institute of Physics

  12. Characteristics of propeller noise on an aircraft fuselage related to interior noise transmission

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Barton, C. K.; Piersol, A. G.; Wilby, J. F.

    1979-01-01

    Exterior noise was measured on the fuselage of a twin-engine, light aircraft at four values of engine rpm in ground static tests and at forward speeds up to 36 m/s in taxi tests. Propeller noise levels, spectra, and correlations were determined using a horizontal array of seven flush-mounted microphones and a vertical array of four flush-mounted microphones in the propeller plane. The measured levels and spectra are compared with predictions based on empirical and analytical methods for static and taxi conditions. Trace wavelengths of the propeller noise field, obtained from point-to-point correlations, are compared with the aircraft sidewall structural dimensions, and some analytical results are presented that suggest the sensitivity of interior noise transmission to variations of the propeller noise characteristics.

  13. More N =4 superconformal bootstrap

    NASA Astrophysics Data System (ADS)

    Beem, Christopher; Rastelli, Leonardo; van Rees, Balt C.

    2017-08-01

    In this long overdue second installment, we continue to develop the conformal bootstrap program for N =4 superconformal field theories (SCFTs) in four dimensions via an analysis of the correlation function of four stress-tensor supermultiplets. We review analytic results for this correlator and make contact with the SCFT/chiral algebra correspondence of Beem et al. [Commun. Math. Phys. 336, 1359 (2015), 10.1007/s00220-014-2272-x]. We demonstrate that the constraints of unitarity and crossing symmetry require the central charge c to be greater than or equal to 3 /4 in any interacting N =4 SCFT. We apply numerical bootstrap methods to derive upper bounds on scaling dimensions and operator product expansion coefficients for several low-lying, unprotected operators as a function of the central charge. We interpret our bounds in the context of N =4 super Yang-Mills theories, formulating a series of conjectures regarding the embedding of the conformal manifold—parametrized by the complexified gauge coupling—into the space of scaling dimensions and operator product expansion coefficients. Our conjectures assign a distinguished role to points on the conformal manifold that are self-dual under a subgroup of the S -duality group. This paper contains a more detailed exposition of a number of results previously reported in Beem et al. [Phys. Rev. Lett. 111, 071601 (2013), 10.1103/PhysRevLett.111.071601] in addition to new results.

  14. Double-trace flows and the swampland

    NASA Astrophysics Data System (ADS)

    Giombi, Simone; Perlmutter, Eric

    2018-03-01

    We explore the idea that large N, non-supersymmetric conformal field theories with a parametrically large gap to higher spin single-trace operators may be obtained as infrared fixed points of relevant double-trace deformations of superconformal field theories. After recalling the AdS interpretation and some potential pathologies of such flows, we introduce a concrete example that appears to avoid them: the ABJM theory at finite k, deformed by \\int O^2, where O is the superconformal primary in the stress-tensor multiplet. We address its relation to recent conjectures based on weak gravity bounds, and discuss the prospects for a wider class of similarly viable flows. Next, we proceed to analyze the spectrum and correlation functions of the putative IR CFT, to leading non-trivial order in 1 /N. This includes analytic computations of the change under double-trace flow of connected four-point functions of ABJM superconformal primaries; and of the IR anomalous dimensions of infinite classes of double-trace composite operators. These would be the first analytic results for anomalous dimensions of finite-spin composite operators in any large N CFT3 with an Einstein gravity dual.

  15. Non-invasive evaluation of stable renal allograft function using point shear-wave elastography.

    PubMed

    Kim, Bom Jun; Kim, Chan Kyo; Park, Jung Jae

    2018-01-01

    To investigate the feasibility of point shear-wave elastography (SWE) in evaluating patients with stable renal allograft function who underwent protocol biopsies. 95 patients with stable renal allograft function that underwent ultrasound-guided biopsies at predefined time points (10 days or 1 year after transplantation) were enrolled. Ultrasound and point SWE examinations were performed immediately before protocol biopsies. Patients were categorized into two groups: subclinical rejection (SCR) and non-SCR. Tissue elasticity (kPa) on SWE was measured in the cortex of all renal allografts. SCR was pathologically confirmed in 34 patients. Tissue elasticity of the SCR group (31.0 kPa) was significantly greater than that of the non-SCR group (24.5 kPa) (=0.016), while resistive index value did not show a significant difference between the two groups (p = 0.112). Tissue elasticity in renal allografts demonstrated significantly moderate negative correlation with estimated glomerular filtration rate (correlation coefficient = -0.604, p < 0.001). Tissue elasticity was not independent factor for SCR prediction on multivariate analysis. As a non-invasive tool, point SWE appears feasible in distinguishing between patients with SCR and without SCR in stable functioning renal allografts. Moreover, it may demonstrate the functional state of renal allografts. Advances in knowledge: On point SWE, SCR has greater tissue elasticity than non-SCR.

  16. Entanglement properties of boundary state and thermalization

    NASA Astrophysics Data System (ADS)

    Guo, Wu-zhong

    2018-06-01

    We discuss the regularized boundary state {e}^{-{τ}_0H}\\Big|{.B>}_a on two aspects in both 2D CFT and higher dimensional free field theory. One is its entanglement and correlation properties, which exhibit exponential decay in 2D CFT, the parameter 1 /τ 0 works as a mass scale. The other concerns with its time evolution, i.e., {e}^{-itH}{e}^{-{τ}_0H}\\Big|{.B>}_a . We investigate the Kubo-Martin-Schwinger (KMS) condition on correlation function of local operators to detect the thermal properties. Interestingly we find the correlation functions in the initial state {e}^{-{τ}_0H}\\Big|{.B>}_a also partially satisfy the KMS condition. In the limit t → ∞, the correlators will exactly satisfy the KMS condition. We generally analyse quantum quench by a pure state and obtain some constraints on the possible form of 2-point correlation function in the initial state if assuming they satisfies KMS condition in the final state. As a byproduct we find in an large τ 0 limit the thermal property of 2-point function in {e}^{-{τ}_0H}\\Big|{.B>}_a also appears.

  17. Homogeneous and heterogeneous noncovalent dimers of formaldehyde and thioformaldehyde: structures, energetics, and vibrational frequencies.

    PubMed

    Van Dornshuld, Eric; Holy, Christina M; Tschumper, Gregory S

    2014-05-08

    This work provides the first characterization of five stationary points of the homogeneous thioformaldehyde dimer, (CH2S)2, and seven stationary points of the heterogeneous formaldehyde/thioformaldehyde dimer, CH2O/CH2S, with correlated ab initio electronic structure methods. Full geometry optimizations and corresponding harmonic vibrational frequencies were computed with second-order Møller-Plesset perturbation theory (MP2) and 13 different density functionals in conjunction with triple-ζ basis sets augmented with diffuse and multiple sets of polarization functions. The MP2 results indicate that the three stationary points of (CH2S)2 and four of CH2O/CH2S are minima, in contrast to two stationary points of the formaldehyde dimer, (CH2O)2. Single-point energies were also computed using the explicitly correlated MP2-F12 and CCSD(T)-F12 methods and basis sets as large as heavy-aug-cc-pVTZ. The (CH2O)2 and CH2O/CH2S MP2 and MP2-F12 binding energies deviated from the CCSD(T)-F12 binding energies by no more than 0.2 and 0.4 kcal mol(-1), respectively. The (CH2O)2 and CH2O/CH2S global minimum is the same at every level of theory. However, the MP2 methods overbind (CH2S)2 by as much as 1.1 kcal mol(-1), effectively altering the energetic ordering of the thioformaldehyde dimer minima relative to the CCSD(T)-F12 energies. The CCSD(T)-F12 binding energies of the (CH2O)2 and CH2O/CH2S stationary points are quite similar, with the former ranging from around -2.4 to -4.6 kcal mol(-1) and the latter from about -1.1 to -4.4 kcal mol(-1). Corresponding (CH2S)2 stationary points have appreciably smaller CCSD(T)-F12 binding energies ranging from ca. -1.1 to -3.4 kcal mol(-1). The vibrational frequency shifts upon dimerization are also reported for each minimum on the MP2 potential energy surfaces.

  18. Otolith patterns of rockfishes from the northeastern Pacific.

    PubMed

    Tuset, Victor M; Imondi, Ralph; Aguado, Guillermo; Otero-Ferrer, José L; Santschi, Linda; Lombarte, Antoni; Love, Milton

    2015-04-01

    Sagitta otolith shape was analysed in twenty sympatric rockfishes off the southern California coast (Northeastern Pacific). The variation in shape was quantified using canonical variate analysis based on fifth wavelet function decomposition of otolith contour. We selected wavelets because this representation allow the identifications of zones or single morphological points along the contour. The entire otoliths along with four subsections (anterior, ventral, posterodorsal, and anterodorsal) with morphological meaning were examined. Multivariate analyses (MANOVA) showed significant differences in the contours of whole otolith morphology and corresponding subsection among rockfishes. Four patterns were found: fusiform, oblong, and two types of elliptic. A redundancy analysis indicated that anterior and anterodorsal subsections contribute most to define the entire otolith shape. Complementarily, the eco-morphological study indicated that the depth distribution and strategies for capture prey were correlated to otolith shape, especially with the anterodorsal zone. © 2014 Wiley Periodicals, Inc.

  19. Causality constraints in conformal field theory

    DOE PAGES

    Hartman, Thomas; Jain, Sachin; Kundu, Sandipan

    2016-05-17

    Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well knownmore » sign constraint on the (Φ) 4 coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. As a result, our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinning operators« less

  20. Dissecting polyclonal vaccine-induced humoral immunity against HIV using Systems Serology

    PubMed Central

    Chung, Amy W.; Kumar, Manu P.; Arnold, Kelly B.; Yu, Wen Han; Schoen, Matthew K.; Dunphy, Laura J.; Suscovich, Todd J.; Frahm, Nicole; Linde, Caitlyn; Mahan, Alison E.; Hoffner, Michelle; Streeck, Hendrik; Ackerman, Margaret E.; McElrath, M. Juliana; Schuitemaker, Hanneke; Pau, Maria G.; Baden, Lindsey R.; Kim, Jerome H.; Michael, Nelson L.; Barouch, Dan H.; Lauffenburger, Douglas A.; Alter, Galit

    2017-01-01

    While antibody titers and neutralization are considered the gold standard for the selection of successful vaccines, these parameters are often inadequate predictors of protective immunity. As antibodies mediate an array of extra-neutralizing Fc-functions, when neutralization fails to predict protection, investigating Fc-mediated activity may help identify immunological correlates and mechanism(s) of humoral protection. Here, we used an integrative approach termed Systems Serology to analyze relationships among humoral responses elicited in four HIV vaccine-trials. Each vaccine regimen induced a unique humoral “Fc-fingerprint”. Moreover, analysis of case:control data from the first moderately protective HIV vaccine trial, RV144, pointed to mechanistic insights into immune complex composition that may underlie protective immunity to HIV. Thus, multi-dimensional relational comparisons of vaccine humoral fingerprints offer a unique approach for the evaluation and design of novel vaccines against pathogens for which correlates of protection remain elusive. PMID:26544943

  1. Nontrivial thermodynamics in 't Hooft's large-N limit

    NASA Astrophysics Data System (ADS)

    Cubero, Axel Cortés

    2015-05-01

    We study the finite volume/temperature correlation functions of the (1 +1 )-dimensional SU (N ) principal chiral sigma model in the planar limit. The exact S-matrix of the sigma model is known to simplify drastically at large N , and this leads to trivial thermodynamic Bethe ansatz (TBA) equations. The partition function, if derived using the TBA, can be shown to be that of free particles. We show that the correlation functions and expectation values of operators at finite volume/temperature are not those of the free theory, and that the TBA does not give enough information to calculate them. Our analysis is done using the Leclair-Mussardo formula for finite-volume correlators, and knowledge of the exact infinite-volume form factors. We present analytical results for the one-point function of the energy-momentum tensor, and the two-point function of the renormalized field operator. The results for the energy-momentum tensor can be used to define a nontrivial partition function.

  2. Change Point Detection in Correlation Networks

    NASA Astrophysics Data System (ADS)

    Barnett, Ian; Onnela, Jukka-Pekka

    2016-01-01

    Many systems of interacting elements can be conceptualized as networks, where network nodes represent the elements and network ties represent interactions between the elements. In systems where the underlying network evolves, it is useful to determine the points in time where the network structure changes significantly as these may correspond to functional change points. We propose a method for detecting change points in correlation networks that, unlike previous change point detection methods designed for time series data, requires minimal distributional assumptions. We investigate the difficulty of change point detection near the boundaries of the time series in correlation networks and study the power of our method and competing methods through simulation. We also show the generalizable nature of the method by applying it to stock price data as well as fMRI data.

  3. Density functional theory for d- and f-electron materials and compounds

    DOE PAGES

    Mattson, Ann E.; Wills, John M.

    2016-02-12

    Here, the fundamental requirements for a computationally tractable Density Functional Theory-based method for relativistic f- and (nonrelativistic) d-electron materials and compounds are presented. The need for basing the Kohn–Sham equations on the Dirac equation is discussed. The full Dirac scheme needs exchange-correlation functionals in terms of four-currents, but ordinary functionals, using charge density and spin-magnetization, can be used in an approximate Dirac treatment. The construction of a functional that includes the additional confinement physics needed for these materials is illustrated using the subsystem-functional scheme. If future studies show that a full Dirac, four-current based, exchange-correlation functional is needed, the subsystemmore » functional scheme is one of the few schemes that can still be used for constructing functional approximations.« less

  4. Lagrangian space consistency relation for large scale structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horn, Bart; Hui, Lam; Xiao, Xiao

    Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias & Riotto and Peloso & Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present.more » Furthermore, the simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space.« less

  5. Lagrangian space consistency relation for large scale structure

    DOE PAGES

    Horn, Bart; Hui, Lam; Xiao, Xiao

    2015-09-29

    Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias & Riotto and Peloso & Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present.more » Furthermore, the simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space.« less

  6. [Correlation between four properties of traditional Chinese medicine and function of reversing multidrug resistance of tumor cells].

    PubMed

    Tang, Tao; Liao, Zheng-Gen; Dong, Wei; Zhang, Jing; Zhao, Guo-Wei; Guan, Xue-Jing; Liang, Xin-Li

    2017-02-01

    To study the correlation of four properties of traditional Chinese medicine and the function of reversing multidrug resistance (MDR) of tumor cells, with 580 herbs in Chinese Pharmacopoeia 2015 version as the research objects. CNKI, CBA, Wanfang, VIP, and PubMed were searched to screen the documents related to the reversal of MDR for collection, summarizing and analysis. The results of the research showed that a total of 114 species Chinese herbs had been reported to be associated with reversal of MDR in tumor cells. Among 15 Chinese herbs with heat nature, 7 herbs had the function of reversing MDR in tumor cells, accounting for 46.7%. Among the 48 herbs with cool nature, 12 herbs had the function of reversing MDR, accounting for 25%. Among the 211 herbs with cold nature, 46 herbs had the function of reversing MDR, accounting for 21.8%. Among the 179 herbs with warm nature, 34 herbs had the function of reversing MDR, accounting for 19%. Among the 127 herbs with neutral nature, 15 herbs had the function of reversing MDR, accounting for 11.8%. Through the analysis on the relationship between four properties of 114 kinds of traditional Chinese medicines and reversing multidrug resistance of tumor cells, this paper speculated that there was a certain correlation between four properties of traditional Chinese medicine and the function of reversing multidrug resistance of tumor cells. Copyright© by the Chinese Pharmaceutical Association.

  7. Relations between Brain Structure and Attentional Function in Spina Bifida: Utilization of Robust Statistical Approaches

    PubMed Central

    Kulesz, Paulina A.; Tian, Siva; Juranek, Jenifer; Fletcher, Jack M.; Francis, David J.

    2015-01-01

    Objective Weak structure-function relations for brain and behavior may stem from problems in estimating these relations in small clinical samples with frequently occurring outliers. In the current project, we focused on the utility of using alternative statistics to estimate these relations. Method Fifty-four children with spina bifida meningomyelocele performed attention tasks and received MRI of the brain. Using a bootstrap sampling process, the Pearson product moment correlation was compared with four robust correlations: the percentage bend correlation, the Winsorized correlation, the skipped correlation using the Donoho-Gasko median, and the skipped correlation using the minimum volume ellipsoid estimator Results All methods yielded similar estimates of the relations between measures of brain volume and attention performance. The similarity of estimates across correlation methods suggested that the weak structure-function relations previously found in many studies are not readily attributable to the presence of outlying observations and other factors that violate the assumptions behind the Pearson correlation. Conclusions Given the difficulty of assembling large samples for brain-behavior studies, estimating correlations using multiple, robust methods may enhance the statistical conclusion validity of studies yielding small, but often clinically significant, correlations. PMID:25495830

  8. Mapping the genome of meta-generalized gradient approximation density functionals: The search for B97M-V

    NASA Astrophysics Data System (ADS)

    Mardirossian, Narbe; Head-Gordon, Martin

    2015-02-01

    A meta-generalized gradient approximation density functional paired with the VV10 nonlocal correlation functional is presented. The functional form is selected from more than 1010 choices carved out of a functional space of almost 1040 possibilities. Raw data come from training a vast number of candidate functional forms on a comprehensive training set of 1095 data points and testing the resulting fits on a comprehensive primary test set of 1153 data points. Functional forms are ranked based on their ability to reproduce the data in both the training and primary test sets with minimum empiricism, and filtered based on a set of physical constraints and an often-overlooked condition of satisfactory numerical precision with medium-sized integration grids. The resulting optimal functional form has 4 linear exchange parameters, 4 linear same-spin correlation parameters, and 4 linear opposite-spin correlation parameters, for a total of 12 fitted parameters. The final density functional, B97M-V, is further assessed on a secondary test set of 212 data points, applied to several large systems including the coronene dimer and water clusters, tested for the accurate prediction of intramolecular and intermolecular geometries, verified to have a readily attainable basis set limit, and checked for grid sensitivity. Compared to existing density functionals, B97M-V is remarkably accurate for non-bonded interactions and very satisfactory for thermochemical quantities such as atomization energies, but inherits the demonstrable limitations of existing local density functionals for barrier heights.

  9. ωB97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mardirossian, Narbe; Head-Gordon, Martin

    2016-06-07

    A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation is presented in this paper. The final 12-parameter functional form is selected from approximately 10 × 10 9 candidate fits that are trained on a training set of 870 data points and tested on a primary test set of 2964 data points. The resulting density functional, ωB97M-V, is further tested for transferability on a secondary test set of 1152 data points. For comparison, ωB97M-V is benchmarked against 11 leading density functionals including M06-2X, ωB97X-D, M08-HX, M11, ωM05-D, ωB97X-V, and MN15. Encouragingly, the overall performance of ωB97M-V on nearlymore » 5000 data points clearly surpasses that of all of the tested density functionals. Finally, in order to facilitate the use of ωB97M-V, its basis set dependence and integration grid sensitivity are thoroughly assessed, and recommendations that take into account both efficiency and accuracy are provided.« less

  10. Three-point Green functions in the odd sector of QCD

    NASA Astrophysics Data System (ADS)

    Kadavý, T.; Kampf, K.; Novotný, J.

    2016-11-01

    A review of familiar results of the three-point Green functions of currents in the odd-intrinsic parity sector of QCD is presented. Such Green functions include very well-known examples of VVP, VAS or AAP correlators. We also shortly present some of the new results for VVA and AAA Green functions with a discussion of their high-energy behaviour and its relation to the QCD condensates.

  11. Holographic non-Fermi-liquid fixed points.

    PubMed

    Faulkner, Tom; Iqbal, Nabil; Liu, Hong; McGreevy, John; Vegh, David

    2011-04-28

    Techniques arising from string theory can be used to study assemblies of strongly interacting fermions. Via this 'holographic duality', various strongly coupled many-body systems are solved using an auxiliary theory of gravity. Simple holographic realizations of finite density exhibit single-particle spectral functions with sharp Fermi surfaces, of a form distinct from those of the Landau theory. The self-energy is given by a correlation function in an infrared (IR) fixed-point theory that is represented by a two-dimensional anti de Sitter space (AdS(2)) region in the dual gravitational description. Here, we describe in detail the gravity calculation of this IR correlation function.

  12. Comparison of laser Doppler imaging, fingertip lacticemy test, and nailfold capillaroscopy for assessment of digital microcirculation in systemic sclerosis

    PubMed Central

    2010-01-01

    Introduction Laser Doppler imaging (LDI) is a relatively new method for assessing the functional aspect of superficial skin blood flow in systemic sclerosis (SSc) and Raynaud's phenomenon. The present study investigated the dynamic behavior of digital skin microvascular blood flow before and after cold stimulus (CS) in SSc patients and in healthy controls by means of a comprehensive approach of the functional (LDI), morphological (nailfold capillaroscopy (NFC)), and biochemical (fingertip lacticemy (FTL)) microcirculation components. Methods Forty-four SSc patients and 40 healthy controls were included. After acclimatization, all subjects underwent NFC followed by LDI and FTL measurement. NFC was performed with a stereomicroscope under 10× to 20× magnification in the 10 digits of the hands. Skin blood flow of the dorsum of four fingertips (excluding the thumb) of the left hand was measured using LDI at baseline and for 30 minutes after CS. The mean finger blood flow (FBF) of the four fingertips was expressed as arbitrary perfusion units. FTL was determined on the fourth left finger before (pre-CS-FTL) and 10 minutes after CS. Results LDI showed significantly lower mean baseline FBF in SSc patients as compared with controls (296.9 ± 208.8 vs. 503.6 ± 146.4 perfusion units; P < 0.001) and also at all time points after CS (P < 0.001). There was a significant decrease in mean FBF after CS as compared with baseline in SSc patients and in controls, followed by recovery of the blood flow 27 minutes after CS in healthy controls, but not in SSc patients. FBF tended to be lower in patients with digital scars and previous ulceration/amputation (P = 0.06). There was no correlation between mean baseline FBF and NFC parameters. Interestingly, there was a negative correlation between FTL and FBF measured by LDI in basal conditions and 10 minutes after CS in SSc patients. Conclusions LDI showed lower digital blood flow in SSc patients when compared with healthy controls and correlated well with FTL both at baseline and after CS, allowing objective measurement of blood perfusion in SSc patients. The lack of correlation between functional and morphological microvascular abnormalities, measured by LDI and NFC, suggests they are complementary tools for evaluation of independent microangiopathy aspects in SSc patients. PMID:20696074

  13. Comparison of laser Doppler imaging, fingertip lacticemy test, and nailfold capillaroscopy for assessment of digital microcirculation in systemic sclerosis.

    PubMed

    Correa, Marcelo Ju; Andrade, Luis Ec; Kayser, Cristiane

    2010-01-01

    Laser Doppler imaging (LDI) is a relatively new method for assessing the functional aspect of superficial skin blood flow in systemic sclerosis (SSc) and Raynaud's phenomenon. The present study investigated the dynamic behavior of digital skin microvascular blood flow before and after cold stimulus (CS) in SSc patients and in healthy controls by means of a comprehensive approach of the functional (LDI), morphological (nailfold capillaroscopy (NFC)), and biochemical (fingertip lacticemy (FTL)) microcirculation components. Forty-four SSc patients and 40 healthy controls were included. After acclimatization, all subjects underwent NFC followed by LDI and FTL measurement. NFC was performed with a stereomicroscope under 10× to 20× magnification in the 10 digits of the hands. Skin blood flow of the dorsum of four fingertips (excluding the thumb) of the left hand was measured using LDI at baseline and for 30 minutes after CS. The mean finger blood flow (FBF) of the four fingertips was expressed as arbitrary perfusion units. FTL was determined on the fourth left finger before (pre-CS-FTL) and 10 minutes after CS. LDI showed significantly lower mean baseline FBF in SSc patients as compared with controls (296.9 ± 208.8 vs. 503.6 ± 146.4 perfusion units; P < 0.001) and also at all time points after CS (P < 0.001). There was a significant decrease in mean FBF after CS as compared with baseline in SSc patients and in controls, followed by recovery of the blood flow 27 minutes after CS in healthy controls, but not in SSc patients. FBF tended to be lower in patients with digital scars and previous ulceration/amputation (P = 0.06). There was no correlation between mean baseline FBF and NFC parameters. Interestingly, there was a negative correlation between FTL and FBF measured by LDI in basal conditions and 10 minutes after CS in SSc patients. LDI showed lower digital blood flow in SSc patients when compared with healthy controls and correlated well with FTL both at baseline and after CS, allowing objective measurement of blood perfusion in SSc patients. The lack of correlation between functional and morphological microvascular abnormalities, measured by LDI and NFC, suggests they are complementary tools for evaluation of independent microangiopathy aspects in SSc patients.

  14. Extremal Correlators in the Ads/cft Correspondence

    NASA Astrophysics Data System (ADS)

    D'Hoker, Eric; Freedman, Daniel Z.; Mathur, Samir D.; Matusis, Alec; Rastelli, Leonardo

    The non-renormalization of the 3-point functions

  15. SU-F-T-113: Inherent Functional Dependence of Spinal Cord Doses of Variable Irradiated Volumes in Spine SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, L; Braunstein, S; Chiu, J

    2016-06-15

    Purpose: Spinal cord tolerance for SBRT has been recommended for the maximum point dose level or at irradiated volumes such as 0.35 mL or 10% of contoured volumes. In this study, we investigated an inherent functional relationship that associates these dose surrogates for irradiated spinal cord volumes of up to 3.0 mL. Methods: A hidden variable termed as Effective Dose Radius (EDR) was formulated based on a dose fall-off model to correlate dose at irradiated spinal cord volumes ranging from 0 mL (point maximum) to 3.0 mL. A cohort of 15 spine SBRT cases was randomly selected to derive anmore » EDR-parameterized formula. The mean prescription dose for the studied cases was 21.0±8.0 Gy (range, 10–40Gy) delivered in 3±1 fractions with target volumes of 39.1 ± 70.6 mL. Linear regression and variance analysis were performed for the fitting parameters of variable EDR values. Results: No direct correlation was found between the dose at maximum point and doses at variable spinal cord volumes. For example, Pearson R{sup 2} = 0.643 and R{sup 2}= 0.491 were obtained when correlating the point maximum dose with the spinal cord dose at 1 mL and 3 mL, respectively. However, near perfect correlation (R{sup 2} ≥0.99) was obtained when corresponding parameterized EDRs. Specifically, Pearson R{sup 2}= 0.996 and R{sup 2} = 0.990 were obtained when correlating EDR (maximum point dose) with EDR (dose at 1 mL) and EDR(dose at 3 mL), respectively. As a result, high confidence level look-up tables were established to correlate spinal cord doses at the maximum point to any finite irradiated volumes. Conclusion: An inherent functional relationship was demonstrated for spine SBRT. Such a relationship unifies dose surrogates at variable cord volumes and proves that a single dose surrogate (e.g. point maximum dose) is mathematically sufficient in constraining the overall spinal cord dose tolerance for SBRT.« less

  16. Consistency relations for sharp inflationary non-Gaussian features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mooij, Sander; Palma, Gonzalo A.; Panotopoulos, Grigoris

    If cosmic inflation suffered tiny time-dependent deviations from the slow-roll regime, these would induce the existence of small scale-dependent features imprinted in the primordial spectra, with their shapes and sizes revealing information about the physics that produced them. Small sharp features could be suppressed at the level of the two-point correlation function, making them undetectable in the power spectrum, but could be amplified at the level of the three-point correlation function, offering us a window of opportunity to uncover them in the non-Gaussian bispectrum. In this article, we show that sharp features may be analyzed using only data coming frommore » the three point correlation function parametrizing primordial non-Gaussianity. More precisely, we show that if features appear in a particular non-Gaussian triangle configuration (e.g. equilateral, folded, squeezed), these must reappear in every other configuration according to a specific relation allowing us to correlate features across the non-Gaussian bispectrum. As a result, we offer a method to study scale-dependent features generated during inflation that depends only on data coming from measurements of non-Gaussianity, allowing us to omit data from the power spectrum.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Namikawa, Toshiya

    We study the reconstruction of the cosmic rotation power spectrum produced by parity-violating physics, with an eye to ongoing and near future cosmic microwave background (CMB) experiments such as BICEP Array, CMBS4, LiteBIRD and Simons Observatory. In addition to the inflationary gravitational waves and gravitational lensing, measurements of other various effects on CMB polarization open new window into the early Universe. One of these is anisotropies of the cosmic polarization rotation which probes the Chern-Simons term generally predicted by string theory. The anisotropies of the cosmic rotation are also generated by the primordial magnetism and in the Standard Model extentionmore » framework. The cosmic rotation anisotropies can be reconstructed as quadratic in CMB anisotropies. However, the power of the reconstructed cosmic rotation is a CMB four-point correlation and is not directly related to the cosmic-rotation power spectrum. Understanding all contributions in the four-point correlation is required to extract the cosmic rotation signal. Here, assuming inflationary motivated cosmic-rotation models, we employ simulation to quantify each contribution to the four-point correlation and find that (1) a secondary contraction of the trispectrum increases the total signal-to-noise, (2) a bias from the lensing-induced trispectrum is significant compared to the statistical errors in, e.g., LiteBIRD and CMBS4-like experiments, (3) the use of a realization-dependent estimator decreases the statistical errors by 10%–20%, depending on experimental specifications, and (4) other higher-order contributions are negligible at least for near future experiments.« less

  18. Extension of local-type inequality for the higher order correlation functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suyama, Teruaki; Yokoyama, Shuichiro, E-mail: suyama@resceu.s.u-tokyo.ac.jp, E-mail: shu@a.phys.nagoya-u.ac.jp

    2011-07-01

    For the local-type primordial perturbation, it is known that there is an inequality between the bispectrum and the trispectrum. By using the diagrammatic method, we develop a general formalism to systematically construct the similar inequalities up to any order correlation function. As an application, we explicitly derive all the inequalities up to six and eight-point functions.

  19. Contactless sub-millimeter displacement measurements

    NASA Astrophysics Data System (ADS)

    Sliepen, Guus; Jägers, Aswin P. L.; Bettonvil, Felix C. M.; Hammerschlag, Robert H.

    2008-07-01

    Weather effects on foldable domes, as used at the DOT and GREGOR, are investigated, in particular the correlation between the wind field and the stresses caused to both metal framework and tent clothing. Camera systems measure contactless the displacement of several dome points. The stresses follow from the measured deformation pattern. The cameras placed near the dome floor do not disturb telescope operations. In the set-ups of DOT and GREGOR, these cameras are up to 8 meters away from the measured points and must be able to detect displacements of less than 0.1 mm. The cameras have a FireWire (IEEE1394) interface to eliminate the need for frame grabbers. Each camera captures 15 images of 640 × 480 pixels per second. All data is processed on-site in real-time. In order to get the best estimate for the displacement within the constraints of available processing power, all image processing is done in Fourier-space, with all convolution operations being pre-computed once. A sub-pixel estimate of the peak of the correlation function is made. This enables to process the images of four cameras using only one commodity PC with a dual-core processor, and achieve an effective sensitivity of up to 0.01 mm. The deformation measurements are well correlated to the simultaneous wind measurements. The results are of high interest to upscaling the dome design (ELTs and solar telescopes).

  20. The Brazilian version of the Constant-Murley Score (CMS-BR): convergent and construct validity, internal consistency, and unidimensionality.

    PubMed

    Barreto, Rodrigo Py Gonçalves; Barbosa, Marcus Levi Lopes; Balbinotti, Marcos Alencar Abaide; Mothes, Fernando Carlos; da Rosa, Luís Henrique Telles; Silva, Marcelo Faria

    2016-01-01

    To translate and culturally adapt the CMS and assess the validity of the Brazilian version (CMS-BR). The translation was carried out according to the back-translation method by four independent translators. The produced versions were synthesized through extensive analysis and by consensus of an expert committee, reaching a final version used for the cultural adaptation. A field test was conducted with 30 subjects in order to obtain semantic considerations. For the psychometric analyzes, the sample was increased to 110 participants who answered two instruments: CMS-BR and the Disabilities of the Arm, shoulder and Hand (DASH). The CMS-BR and DASH score range from 0 to 100 points. For the first, higher points reflect better function and for the latter, the inverse is true. The validity was verified by Pearson's correlation test, the unidimensionality by factorial analysis, and the internal consistency by Cronbach's alpha. The explained variance was 60.28% with factor loadings ranging from 0.60 to 0.91. The CMS-BR exhibited strong negative correlation with the DASH score (-0.82, p  < 0.05), Cronbach's alpha 0.85, and its total score was strongly correlated with the patient's range of motion (0.93, p  < 0.001). The CMS was satisfactorily adapted for Brazilian Portuguese and demonstrated evidence of validity that allows its use in this population.

  1. Statistical indicators of collective behavior and functional clusters in gene networks of yeast

    NASA Astrophysics Data System (ADS)

    Živković, J.; Tadić, B.; Wick, N.; Thurner, S.

    2006-03-01

    We analyze gene expression time-series data of yeast (S. cerevisiae) measured along two full cell-cycles. We quantify these data by using q-exponentials, gene expression ranking and a temporal mean-variance analysis. We construct gene interaction networks based on correlation coefficients and study the formation of the corresponding giant components and minimum spanning trees. By coloring genes according to their cell function we find functional clusters in the correlation networks and functional branches in the associated trees. Our results suggest that a percolation point of functional clusters can be identified on these gene expression correlation networks.

  2. Basis convergence of range-separated density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franck, Odile, E-mail: odile.franck@etu.upmc.fr; Mussard, Bastien, E-mail: bastien.mussard@upmc.fr; CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris

    2015-02-21

    Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. Wemore » study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N{sub 2}, and H{sub 2}O) with cardinal number X of the Dunning basis sets cc − p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.« less

  3. Trust in Leadership DEOCS 4.1 Construct Validity Summary

    DTIC Science & Technology

    2017-08-01

    Item Corrected Item- Total Correlation Cronbach’s Alpha if Item Deleted Four-point Scale Items I can depend on my immediate supervisor to meet...1974) were used to assess the fit between the data and the factor. The BTS hypothesizes that the correlation matrix is an identity matrix. The...to reject the null hypothesis that the correlation matrix is an identity, and to conclude that the factor analysis is an appropriate method to

  4. Pores-scale hydrodynamics in a progressively bio-clogged three-dimensional porous medium: 3D particle tracking experiments and stochastic transport modelling

    NASA Astrophysics Data System (ADS)

    Morales, V. L.; Carrel, M.; Dentz, M.; Derlon, N.; Morgenroth, E.; Holzner, M.

    2017-12-01

    Biofilms are ubiquitous bacterial communities growing in various porous media including soils, trickling and sand filters and are relevant for applications such as the degradation of pollutants for bioremediation, waste water or drinking water production purposes. By their development, biofilms dynamically change the structure of porous media, increasing the heterogeneity of the pore network and the non-Fickian or anomalous dispersion. In this work, we use an experimental approach to investigate the influence of biofilm growth on pore scale hydrodynamics and transport processes and propose a correlated continuous time random walk model capturing these observations. We perform three-dimensional particle tracking velocimetry at four different time points from 0 to 48 hours of biofilm growth. The biofilm growth notably impacts pore-scale hydrodynamics, as shown by strong increase of the average velocity and in tailing of Lagrangian velocity probability density functions. Additionally, the spatial correlation length of the flow increases substantially. This points at the formation of preferential flow pathways and stagnation zones, which ultimately leads to an increase of anomalous transport in the porous media considered, characterized by non-Fickian scaling of mean-squared displacements and non-Gaussian distributions of the displacement probability density functions. A gamma distribution provides a remarkable approximation of the bulk and the high tail of the Lagrangian pore-scale velocity magnitude, indicating a transition from a parallel pore arrangement towards a more serial one. Finally, a correlated continuous time random walk based on a stochastic relation velocity model accurately reproduces the observations and could be used to predict transport beyond the time scales accessible to the experiment.

  5. Lagrangian space consistency relation for large scale structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horn, Bart; Hui, Lam; Xiao, Xiao, E-mail: bh2478@columbia.edu, E-mail: lh399@columbia.edu, E-mail: xx2146@columbia.edu

    Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias and Riotto and Peloso and Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present.more » The simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space.« less

  6. Nonlinear response from transport theory and quantum field theory at finite temperature

    NASA Astrophysics Data System (ADS)

    Carrington, M. E.; Defu, Hou; Kobes, R.

    2001-07-01

    We study the nonlinear response in weakly coupled hot φ4 theory. We obtain an expression for a quadratic shear viscous response coefficient using two different formalisms: transport theory and response theory. The transport theory calculation is done by assuming a local equilibrium form for the distribution function and expanding in the gradient of the local four dimensional velocity field. By performing a Chapman-Enskog expansion on the Boltzmann equation we obtain a hierarchy of equations for the coefficients of the expanded distribution function. To do the response theory calculation we use Zubarev's techniques in nonequilibrium statistical mechanics to derive a generalized Kubo formula. Using this formula allows us to obtain the quadratic shear viscous response from the three-point retarded Green function of the viscous shear stress tensor. We use the closed time path formalism of real time finite temperature field theory to show that this three-point function can be calculated by writing it as an integral equation involving a four-point vertex. This four-point vertex can in turn be obtained from an integral equation which represents the resummation of an infinite series of ladder and extended-ladder diagrams. The connection between transport theory and response theory is made when we show that the integral equation for this four-point vertex has exactly the same form as the equation obtained from the Boltzmann equation for the coefficient of the quadratic term of the gradient expansion of the distribution function. We conclude that calculating the quadratic shear viscous response using transport theory and keeping terms that are quadratic in the gradient of the velocity field in the Chapman-Enskog expansion of the Boltzmann equation is equivalent to calculating the quadratic shear viscous response from response theory using the next-to-linear response Kubo formula, with a vertex given by an infinite resummation of ladder and extended-ladder diagrams.

  7. Renormalizable Quantum Field Theories in the Large -n Limit

    NASA Astrophysics Data System (ADS)

    Guruswamy, Sathya

    1995-01-01

    In this thesis, we study two examples of renormalizable quantum field theories in the large-N limit. Chapter one is a general introduction describing physical motivations for studying such theories. In chapter two, we describe the large-N method in field theory and discuss the pioneering work of 't Hooft in large-N two-dimensional Quantum Chromodynamics (QCD). In chapter three we study a spherically symmetric approximation to four-dimensional QCD ('spherical QCD'). We recast spherical QCD into a bilocal (constrained) theory of hadrons which in the large-N limit is equivalent to large-N spherical QCD for all energy scales. The linear approximation to this theory gives an eigenvalue equation which is the analogue of the well-known 't Hooft's integral equation in two dimensions. This eigenvalue equation is a scale invariant one and therefore leads to divergences in the theory. We give a non-perturbative renormalization prescription to cure this and obtain a beta function which shows that large-N spherical QCD is asymptotically free. In chapter four, we review the essentials of conformal field theories in two and higher dimensions, particularly in the context of critical phenomena. In chapter five, we study the O(N) non-linear sigma model on three-dimensional curved spaces in the large-N limit and show that there is a non-trivial ultraviolet stable critical point at which it becomes conformally invariant. We study this model at this critical point on examples of spaces of constant curvature and compute the mass gap in the theory, the free energy density (which turns out to be a universal function of the information contained in the geometry of the manifold) and the two-point correlation functions. The results we get give an indication that this model is an example of a three-dimensional analogue of a rational conformal field theory. A conclusion with a brief summary and remarks follows at the end.

  8. Germylenes: structures, electron affinities, and singlet-triplet gaps of the conventional XGeCY(3) (X = H, F, Cl, Br, and I; Y = F and Cl) species and the unexpected cyclic XGeCY(3) (Y = Br and I) systems.

    PubMed

    Bundhun, Ashwini; Abdallah, Hassan H; Ramasami, Ponnadurai; Schaefer, Henry F

    2010-12-23

    A systematic investigation of the X-Ge-CY(3) (X = H, F, Cl, Br, and I; Y = F, Cl, Br, and I) species is carried out using density functional theory. The basis sets used for all atoms (except iodine) in this work are of double-ζ plus polarization quality with additional s- and p-type diffuse functions, and denoted DZP++. Vibrational frequency analyses are performed to evaluate zero-point energy corrections and to determine the nature of the stationary points located. Predicted are four different forms of neutral-anion separations: adiabatic electron affinity (EA(ad)), zero-point vibrational energy corrected EA(ad(ZPVE)), vertical electron affinity (EA(vert)), and vertical detachment energy (VDE). The electronegativity (χ) reactivity descriptor for the halogens (X = F, Cl, Br, and I) is used as a tool to assess the interrelated properties of these germylenes. The topological position of the halogen atom bound to the divalent germanium center is well correlated with the trend in the electron affinities and singlet-triplet gaps. For the expected XGeCY(3) structures (X = H, F, Cl, Br, and I; Y = F and Cl), the predicted trend in the electron affinities is well correlated with simpler germylene derivatives (J. Phys. Chem. A 2009, 113, 8080). The predicted EA(ad(ZPVE)) values with the BHLYP functional range from 1.66 eV (FGeCCl(3)) to 2.20 eV (IGeCF(3)), while the singlet-triplet splittings range from 1.28 eV (HGeCF(3)) to 2.22 eV (FGeCCl(3)). The XGeCY(3) (Y = Br and I) species are most often characterized by three-membered cyclic systems involving the divalent germanium atom, the carbon atom, and a halogen atom.

  9. Experimental Investigation of Triplet Correlation Approximations for Fluid Water.

    PubMed

    Pallewela, Gayani N; Ploetz, Elizabeth A; Smith, Paul E

    2018-08-25

    Triplet correlations play a central role in our understanding of fluids and their properties. Of particular interest is the relationship between the pair and triplet correlations. Here we use a combination of Fluctuation Solution Theory and experimental pair radial distribution functions to investigate the accuracy of the Kirkwood Superposition Approximation (KSA), as given by integrals over the relevant pair and triplet correlation functions, at a series of state points for pure water using only experimental quantities. The KSA performs poorly, in agreement with a variety of other studies. Several additional approximate relationships between the pair and triplet correlations in fluids are also investigated and generally provide good agreement for the fluid thermodynamics for regions of the phase diagram where the compressibility is small. A simple power law relationship between the pair and triplet fluctuations is particularly successful for state points displaying low to moderately high compressibilities.

  10. Open-Ended Recursive Approach for the Calculation of Multiphoton Absorption Matrix Elements

    PubMed Central

    2015-01-01

    We present an implementation of single residues for response functions to arbitrary order using a recursive approach. Explicit expressions in terms of density-matrix-based response theory for the single residues of the linear, quadratic, cubic, and quartic response functions are also presented. These residues correspond to one-, two-, three- and four-photon transition matrix elements. The newly developed code is used to calculate the one-, two-, three- and four-photon absorption cross sections of para-nitroaniline and para-nitroaminostilbene, making this the first treatment of four-photon absorption in the framework of response theory. We find that the calculated multiphoton absorption cross sections are not very sensitive to the size of the basis set as long as a reasonably large basis set with diffuse functions is used. The choice of exchange–correlation functional, however, significantly affects the calculated cross sections of both charge-transfer transitions and other transitions, in particular, for the larger para-nitroaminostilbene molecule. We therefore recommend the use of a range-separated exchange–correlation functional in combination with the augmented correlation-consistent double-ζ basis set aug-cc-pVDZ for the calculation of multiphoton absorption properties. PMID:25821415

  11. Multitime correlation functions in nonclassical stochastic processes

    NASA Astrophysics Data System (ADS)

    Krumm, F.; Sperling, J.; Vogel, W.

    2016-06-01

    A general method is introduced for verifying multitime quantum correlations through the characteristic function of the time-dependent P functional that generalizes the Glauber-Sudarshan P function. Quantum correlation criteria are derived which identify quantum effects for an arbitrary number of points in time. The Magnus expansion is used to visualize the impact of the required time ordering, which becomes crucial in situations when the interaction problem is explicitly time dependent. We show that the latter affects the multi-time-characteristic function and, therefore, the temporal evolution of the nonclassicality. As an example, we apply our technique to an optical parametric process with a frequency mismatch. The resulting two-time-characteristic function yields full insight into the two-time quantum correlation properties of such a system.

  12. [Spatial point patterns of Antarctic krill fishery in the northern Antarctic Peninsula].

    PubMed

    Yang, Xiao Ming; Li, Yi Xin; Zhu, Guo Ping

    2016-12-01

    As a key species in the Antarctic ecosystem, the spatial distribution of Antarctic krill (thereafter krill) often tends to present aggregation characteristics, which therefore reflects the spatial patterns of krill fishing operation. Based on the fishing data collected from Chinese krill fishing vessels, of which vessel A was professional krill fishing vessel and Vessel B was a fishing vessel which shifted between Chilean jack mackerel (Trachurus murphyi) fishing ground and krill fishing ground. In order to explore the characteristics of spatial distribution pattern and their ecological effects of two obvious different fishing fleets under a high and low nominal catch per unit effort (CPUE), from the viewpoint of spatial point pattern, the present study analyzed the spatial distribution characteristics of krill fishery in the northern Antarctic Peninsula from three aspects: (1) the two vessels' point pattern characteristics of higher CPUEs and lower CPUEs at different scales; (2) correlation of the bivariate point patterns between these points of higher CPUE and lower CPUE; and (3) correlation patterns of CPUE. Under the analysis derived from the Ripley's L function and mark correlation function, the results showed that the point patterns of the higher/lo-wer catch available were similar, both showing an aggregation distribution in this study windows at all scale levels. The aggregation intensity of krill fishing was nearly maximum at 15 km spatial scale, and kept stably higher values at the scale of 15-50 km. The aggregation intensity of krill fishery point patterns could be described in order as higher CPUE of vessel A > lower CPUE of vessel B >higher CPUE of vessel B > higher CPUE of vessel B. The relationship of the higher and lo-wer CPUEs of vessel A showed positive correlation at the spatial scale of 0-75 km, and presented stochastic relationship after 75 km scale, whereas vessel B showed positive correlation at all spatial scales. The point events of higher and lower CPUEs were synchronized, showing significant correlations at most of spatial scales because of the dynamics nature and complex of krill aggregation patterns. The distribution of vessel A's CPUEs was positively correlated at scales of 0-44 km, but negatively correlated at the scales of 44-80 km. The distribution of vessel B's CPUEs was negatively correlated at the scales of 50-70 km, but no significant correlations were found at other scales. The CPUE mark point patterns showed a negative correlation, which indicated that intraspecific competition for space and prey was significant. There were significant differences in spatial point pattern distribution between vessel A with higher fishing capacity and vessel B with lower fishing capacity. The results showed that the professional krill fishing vessel is suitable to conduct the analysis of spatial point pattern and scientific fishery survey.

  13. The two-point correlation function for groups of galaxies in the Center for Astrophysics redshift survey

    NASA Technical Reports Server (NTRS)

    Ramella, Massimo; Geller, Margaret J.; Huchra, John P.

    1990-01-01

    The large-scale distribution of groups of galaxies selected from complete slices of the CfA redshift survey extension is examined. The survey is used to reexamine the contribution of group members to the galaxy correlation function. The relationship between the correlation function for groups and those calculated for rich clusters is discussed, and the results for groups are examined as an extension of the relation between correlation function amplitude and richness. The group correlation function indicates that groups and individual galaxies are equivalent tracers of the large-scale matter distribution. The distribution of group centers is equivalent to random sampling of the galaxy distribution. The amplitude of the correlation function for groups is consistent with an extrapolation of the amplitude-richness relation for clusters. The amplitude scaled by the mean intersystem separation is also consistent with results for richer clusters.

  14. Galaxy–galaxy lensing estimators and their covariance properties

    DOE PAGES

    Singh, Sukhdeep; Mandelbaum, Rachel; Seljak, Uros; ...

    2017-07-21

    Here, we study the covariance properties of real space correlation function estimators – primarily galaxy–shear correlations, or galaxy–galaxy lensing – using SDSS data for both shear catalogues and lenses (specifically the BOSS LOWZ sample). Using mock catalogues of lenses and sources, we disentangle the various contributions to the covariance matrix and compare them with a simple analytical model. We show that not subtracting the lensing measurement around random points from the measurement around the lens sample is equivalent to performing the measurement using the lens density field instead of the lens overdensity field. While the measurement using the lens densitymore » field is unbiased (in the absence of systematics), its error is significantly larger due to an additional term in the covariance. Therefore, this subtraction should be performed regardless of its beneficial effects on systematics. Comparing the error estimates from data and mocks for estimators that involve the overdensity, we find that the errors are dominated by the shape noise and lens clustering, which empirically estimated covariances (jackknife and standard deviation across mocks) that are consistent with theoretical estimates, and that both the connected parts of the four-point function and the supersample covariance can be neglected for the current levels of noise. While the trade-off between different terms in the covariance depends on the survey configuration (area, source number density), the diagnostics that we use in this work should be useful for future works to test their empirically determined covariances.« less

  15. Galaxy–galaxy lensing estimators and their covariance properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Sukhdeep; Mandelbaum, Rachel; Seljak, Uros

    Here, we study the covariance properties of real space correlation function estimators – primarily galaxy–shear correlations, or galaxy–galaxy lensing – using SDSS data for both shear catalogues and lenses (specifically the BOSS LOWZ sample). Using mock catalogues of lenses and sources, we disentangle the various contributions to the covariance matrix and compare them with a simple analytical model. We show that not subtracting the lensing measurement around random points from the measurement around the lens sample is equivalent to performing the measurement using the lens density field instead of the lens overdensity field. While the measurement using the lens densitymore » field is unbiased (in the absence of systematics), its error is significantly larger due to an additional term in the covariance. Therefore, this subtraction should be performed regardless of its beneficial effects on systematics. Comparing the error estimates from data and mocks for estimators that involve the overdensity, we find that the errors are dominated by the shape noise and lens clustering, which empirically estimated covariances (jackknife and standard deviation across mocks) that are consistent with theoretical estimates, and that both the connected parts of the four-point function and the supersample covariance can be neglected for the current levels of noise. While the trade-off between different terms in the covariance depends on the survey configuration (area, source number density), the diagnostics that we use in this work should be useful for future works to test their empirically determined covariances.« less

  16. Galaxy-galaxy lensing estimators and their covariance properties

    NASA Astrophysics Data System (ADS)

    Singh, Sukhdeep; Mandelbaum, Rachel; Seljak, Uroš; Slosar, Anže; Vazquez Gonzalez, Jose

    2017-11-01

    We study the covariance properties of real space correlation function estimators - primarily galaxy-shear correlations, or galaxy-galaxy lensing - using SDSS data for both shear catalogues and lenses (specifically the BOSS LOWZ sample). Using mock catalogues of lenses and sources, we disentangle the various contributions to the covariance matrix and compare them with a simple analytical model. We show that not subtracting the lensing measurement around random points from the measurement around the lens sample is equivalent to performing the measurement using the lens density field instead of the lens overdensity field. While the measurement using the lens density field is unbiased (in the absence of systematics), its error is significantly larger due to an additional term in the covariance. Therefore, this subtraction should be performed regardless of its beneficial effects on systematics. Comparing the error estimates from data and mocks for estimators that involve the overdensity, we find that the errors are dominated by the shape noise and lens clustering, which empirically estimated covariances (jackknife and standard deviation across mocks) that are consistent with theoretical estimates, and that both the connected parts of the four-point function and the supersample covariance can be neglected for the current levels of noise. While the trade-off between different terms in the covariance depends on the survey configuration (area, source number density), the diagnostics that we use in this work should be useful for future works to test their empirically determined covariances.

  17. An infinite set of Ward identities for adiabatic modes in cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinterbichler, Kurt; Hui, Lam; Khoury, Justin, E-mail: khinterbichler@perimeterinstitute.ca, E-mail: lh399@columbia.edu, E-mail: jkhoury@sas.upenn.edu

    2014-01-01

    We show that the correlation functions of any single-field cosmological model with constant growing-modes are constrained by an infinite number of novel consistency relations, which relate N+1-point correlation functions with a soft-momentum scalar or tensor mode to a symmetry transformation on N-point correlation functions of hard-momentum modes. We derive these consistency relations from Ward identities for an infinite tower of non-linearly realized global symmetries governing scalar and tensor perturbations. These symmetries can be labeled by an integer n. At each order n, the consistency relations constrain — completely for n = 0,1, and partially for n ≥ 2 — themore » q{sup n} behavior of the soft limits. The identities at n = 0 recover Maldacena's original consistency relations for a soft scalar and tensor mode, n = 1 gives the recently-discovered conformal consistency relations, and the identities for n ≥ 2 are new. As a check, we verify directly that the n = 2 identity is satisfied by known correlation functions in slow-roll inflation.« less

  18. Recording from two neurons: second-order stimulus reconstruction from spike trains and population coding.

    PubMed

    Fernandes, N M; Pinto, B D L; Almeida, L O B; Slaets, J F W; Köberle, R

    2010-10-01

    We study the reconstruction of visual stimuli from spike trains, representing the reconstructed stimulus by a Volterra series up to second order. We illustrate this procedure in a prominent example of spiking neurons, recording simultaneously from the two H1 neurons located in the lobula plate of the fly Chrysomya megacephala. The fly views two types of stimuli, corresponding to rotational and translational displacements. Second-order reconstructions require the manipulation of potentially very large matrices, which obstructs the use of this approach when there are many neurons. We avoid the computation and inversion of these matrices using a convenient set of basis functions to expand our variables in. This requires approximating the spike train four-point functions by combinations of two-point functions similar to relations, which would be true for gaussian stochastic processes. In our test case, this approximation does not reduce the quality of the reconstruction. The overall contribution to stimulus reconstruction of the second-order kernels, measured by the mean squared error, is only about 5% of the first-order contribution. Yet at specific stimulus-dependent instants, the addition of second-order kernels represents up to 100% improvement, but only for rotational stimuli. We present a perturbative scheme to facilitate the application of our method to weakly correlated neurons.

  19. Instanton effects on CP-violating gluonic correlators

    NASA Astrophysics Data System (ADS)

    Mori, Shingo; Frison, Julien; Kitano, Ryuichiro; Matsufuru, Hideo; Yamada, Norikazu

    2018-03-01

    In order to better understand the role played by instantons behind nonperturbative dynamics, we investigate the instanton contributions to the gluonic two point correlation functions in the SU(2) YM theory. Pseudoscalar-scalar gluonic correlation functions are calculated on the lattice at various temperatures and compared with the instanton calculus. We discuss how the instanton effects emerge or disappear with temperature and try to provide the interpretation behind it.

  20. The quadrant method measuring four points is as a reliable and accurate as the quadrant method in the evaluation after anatomical double-bundle ACL reconstruction.

    PubMed

    Mochizuki, Yuta; Kaneko, Takao; Kawahara, Keisuke; Toyoda, Shinya; Kono, Norihiko; Hada, Masaru; Ikegami, Hiroyasu; Musha, Yoshiro

    2017-11-20

    The quadrant method was described by Bernard et al. and it has been widely used for postoperative evaluation of anterior cruciate ligament (ACL) reconstruction. The purpose of this research is to further develop the quadrant method measuring four points, which we named four-point quadrant method, and to compare with the quadrant method. Three-dimensional computed tomography (3D-CT) analyses were performed in 25 patients who underwent double-bundle ACL reconstruction using the outside-in technique. The four points in this study's quadrant method were defined as point1-highest, point2-deepest, point3-lowest, and point4-shallowest, in femoral tunnel position. Value of depth and height in each point was measured. Antero-medial (AM) tunnel is (depth1, height2) and postero-lateral (PL) tunnel is (depth3, height4) in this four-point quadrant method. The 3D-CT images were evaluated independently by 2 orthopaedic surgeons. A second measurement was performed by both observers after a 4-week interval. Intra- and inter-observer reliability was calculated by means of intra-class correlation coefficient (ICC). Also, the accuracy of the method was evaluated against the quadrant method. Intra-observer reliability was almost perfect for both AM and PL tunnel (ICC > 0.81). Inter-observer reliability of AM tunnel was substantial (ICC > 0.61) and that of PL tunnel was almost perfect (ICC > 0.81). The AM tunnel position was 0.13% deep, 0.58% high and PL tunnel position was 0.01% shallow, 0.13% low compared to quadrant method. The four-point quadrant method was found to have high intra- and inter-observer reliability and accuracy. This method can evaluate the tunnel position regardless of the shape and morphology of the bone tunnel aperture for use of comparison and can provide measurement that can be compared with various reconstruction methods. The four-point quadrant method of this study is considered to have clinical relevance in that it is a detailed and accurate tool for evaluating femoral tunnel position after ACL reconstruction. Case series, Level IV.

  1. Large-scale structure of randomly jammed spheres

    NASA Astrophysics Data System (ADS)

    Ikeda, Atsushi; Berthier, Ludovic; Parisi, Giorgio

    2017-05-01

    We numerically analyze the density field of three-dimensional randomly jammed packings of monodisperse soft frictionless spherical particles, paying special attention to fluctuations occurring at large length scales. We study in detail the two-point static structure factor at low wave vectors in Fourier space. We also analyze the nature of the density field in real space by studying the large-distance behavior of the two-point pair correlation function, of density fluctuations in subsystems of increasing sizes, and of the direct correlation function. We show that such real space analysis can be greatly improved by introducing a coarse-grained density field to disentangle genuine large-scale correlations from purely local effects. Our results confirm that both Fourier and real space signatures of vanishing density fluctuations at large scale are absent, indicating that randomly jammed packings are not hyperuniform. In addition, we establish that the pair correlation function displays a surprisingly complex structure at large distances, which is however not compatible with the long-range negative correlation of hyperuniform systems but fully compatible with an analytic form for the structure factor. This implies that the direct correlation function is short ranged, as we also demonstrate directly. Our results reveal that density fluctuations in jammed packings do not follow the behavior expected for random hyperuniform materials, but display instead a more complex behavior.

  2. Mapping the genome of meta-generalized gradient approximation density functionals: The search for B97M-V

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mardirossian, Narbe; Head-Gordon, Martin, E-mail: mhg@cchem.berkeley.edu; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

    2015-02-21

    A meta-generalized gradient approximation density functional paired with the VV10 nonlocal correlation functional is presented. The functional form is selected from more than 10{sup 10} choices carved out of a functional space of almost 10{sup 40} possibilities. Raw data come from training a vast number of candidate functional forms on a comprehensive training set of 1095 data points and testing the resulting fits on a comprehensive primary test set of 1153 data points. Functional forms are ranked based on their ability to reproduce the data in both the training and primary test sets with minimum empiricism, and filtered based onmore » a set of physical constraints and an often-overlooked condition of satisfactory numerical precision with medium-sized integration grids. The resulting optimal functional form has 4 linear exchange parameters, 4 linear same-spin correlation parameters, and 4 linear opposite-spin correlation parameters, for a total of 12 fitted parameters. The final density functional, B97M-V, is further assessed on a secondary test set of 212 data points, applied to several large systems including the coronene dimer and water clusters, tested for the accurate prediction of intramolecular and intermolecular geometries, verified to have a readily attainable basis set limit, and checked for grid sensitivity. Compared to existing density functionals, B97M-V is remarkably accurate for non-bonded interactions and very satisfactory for thermochemical quantities such as atomization energies, but inherits the demonstrable limitations of existing local density functionals for barrier heights.« less

  3. Mapping the genome of meta-generalized gradient approximation density functionals: The search for B97M-V

    DOE PAGES

    Mardirossian, Narbe; Head-Gordon, Martin

    2015-02-20

    We present a meta-generalized gradient approximation density functional paired with the VV10 nonlocal correlation functional. The functional form is selected from more than 10 10 choices carved out of a functional space of almost 10 40 possibilities. This raw data comes from training a vast number of candidate functional forms on a comprehensive training set of 1095 data points and testing the resulting fits on a comprehensive primary test set of 1153 data points. Functional forms are ranked based on their ability to reproduce the data in both the training and primary test sets with minimum empiricism, and filteredmore » based on a set of physical constraints and an often-overlooked condition of satisfactory numerical precision with medium-sized integration grids. The resulting optimal functional form has 4 linear exchange parameters, 4 linear same-spin correlation parameters, and 4 linear opposite-spin correlation parameters, for a total of 12 fitted parameters. The final density functional, B97M-V, is further assessed on a secondary test set of 212 data points, applied to several large systems including the coronene dimer and water clusters, tested for the accurate prediction of intramolecular and intermolecular geometries, verified to have a readily attainable basis set limit, and checked for grid sensitivity. Compared to existing density functionals, B97M-V is remarkably accurate for non-bonded interactions and very satisfactory for thermochemical quantities such as atomization energies, but inherits the demonstrable limitations of existing local density functionals for barrier heights.« less

  4. Testing for the Gaussian nature of cosmological density perturbations through the three-point temperature correlation function

    NASA Technical Reports Server (NTRS)

    Luo, Xiaochun; Schramm, David N.

    1993-01-01

    One of the crucial aspects of density perturbations that are produced by the standard inflation scenario is that they are Gaussian where seeds produced by topological defects tend to be non-Gaussian. The three-point correlation function of the temperature anisotropy of the cosmic microwave background radiation (CBR) provides a sensitive test of this aspect of the primordial density field. In this paper, this function is calculated in the general context of various allowed non-Gaussian models. It is shown that the Cosmic Background Explorer and the forthcoming South Pole and balloon CBR anisotropy data may be able to provide a crucial test of the Gaussian nature of the perturbations.

  5. N-point functions in rolling tachyon background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jokela, Niko; Keski-Vakkuri, Esko; Department of Physics, P.O. Box 64, FIN-00014, University of Helsinki

    2009-04-15

    We study n-point boundary correlation functions in timelike boundary Liouville theory, relevant for open string multiproduction by a decaying unstable D brane. We give an exact result for the one-point function of the tachyon vertex operator and show that it is consistent with a previously proposed relation to a conserved charge in string theory. We also discuss when the one-point amplitude vanishes. Using a straightforward perturbative expansion, we find an explicit expression for a tachyon n-point amplitude for all n, however the result is still a toy model. The calculation uses a new asymptotic approximation for Toeplitz determinants, derived bymore » relating the system to a Dyson gas at finite temperature.« less

  6. Intersecting surface defects and two-dimensional CFT

    NASA Astrophysics Data System (ADS)

    Gomis, Jaume; Le Floch, Bruno; Pan, Yiwen; Peelaers, Wolfger

    2017-08-01

    We initiate the study of intersecting surface operators/defects in 4D quantum field theories (QFTs). We characterize these defects by coupled 4D/2D/0D theories constructed by coupling the degrees of freedom localized at a point and on intersecting surfaces in spacetime to each other and to the 4D QFT. We construct supersymmetric intersecting surface defects preserving just two supercharges in N =2 gauge theories. These defects are amenable to exact analysis by localization of the partition function of the underlying 4D/2D/0D QFT. We identify the 4D/2D/0D QFTs that describe intersecting surface operators in N =2 gauge theories realized by intersecting M2 branes ending on N M5 branes wrapping a Riemann surface. We conjecture and provide evidence for an explicit equivalence between the squashed four-sphere partition function of these intersecting defects and correlation functions in Liouville/Toda CFT with the insertion of arbitrary degenerate vertex operators, which are labeled by two representations of S U (N ).

  7. Functional sensibility of the hand in leprosy patients.

    PubMed

    van Brakel, W H; Kets, C M; van Leerdam, M E; Khawas, I B; Gurung, K S

    1997-03-01

    The aims of this cross-sectional comparative study was to compare the results of Semmes-Weinstein monofilament testing (SWM) and moving 2-point discrimination (M2PD) with four tests of functional sensibility: recognition of objects, discrimination of size and texture and detection of dots. Ninety-eight leprosy in- and outpatients at Green Pastures Hospital in Pokhara, Nepal were tested with each of the above tests and the results were compared to see how well they agreed. Using the tests of functional sensibility as reference points, we examined the validity of the SWM and M2PD as predictors of functional sensibility. There was definite, but only moderate correlation between thresholds of monofilaments and M2PD and functional sensibility of the hand. A normal result with the SWM and/or M2PD had a good predictive value for normal functional sensibility. Sensitivity was reasonable against recognition of objects and discrimination of textures as reference tests (80-90% and 88-93%), but poor against discrimination of size and detection of dots (50-75% and 43-65%). Specificity was high for most combinations of SWM or M2PD with any of the tests of functional sensibility (85-99%). Above a monofilament threshold of 2 g, the predictive value of an abnormal test was 100% for dot detection and 83-92% for textural discrimination. This indicates that impairment of touch sensibility at this level correlates well with loss of dot detection and textural discrimination in patients with leprous neuropathy. For M2PD the pattern was very similar. Above a threshold of 5 mm, 95-100% of affected hands had loss of dot detection and 73-80% had loss of textural discrimination. Monofilament testing and M2PD did not seem suitable as proxy measures of functional sensibility of the hand in leprosy patients. However, a normal threshold with monofilaments and/or M2PD had a good predictive value for normal functional sensibility. Above a monofilament threshold of 2 g and/or a M2PD threshold of 5 mm, textural discrimination was abnormal in most hands.

  8. Self similarity of two point correlations in wall bounded turbulent flows

    NASA Technical Reports Server (NTRS)

    Hunt, J. C. R.; Moin, P.; Moser, R. D.; Spalart, P. R.

    1987-01-01

    The structure of turbulence at a height y from a wall is affected by the local mean shear at y, by the direct effect of the wall on the eddies, and by the action of other eddies close to or far from the wall. Some researchers believe that a single one of these mechanisms is dominant, while others believe that these effects have to be considered together. It is important to understand the relative importance of these effects in order to develop closure models, for example for the dissipation or for the Reynolds stress equation, and to understand the eddy structure of cross correlation functions and other measures. The specific objective was to examine the two point correlation, R sub vv, of the normal velocity component v near the wall in a turbulent channel flow and in a turbulent boundary layer. The preliminary results show that even in the inhomogeneous turbulent boundary layer, the two-point correlation function may have self similar forms. The results also show that the effects of shear and of blocking are equally important in the form of correlation functions for spacing normal to the wall. But for spanwise spacing, it was found that the eddy structure is quire different in these near flows. So any theory for turbulent structure must take both these effects into account.

  9. Evolution of the real-space correlation function from next generation cluster surveys. Recovering the real-space correlation function from photometric redshifts

    NASA Astrophysics Data System (ADS)

    Sridhar, Srivatsan; Maurogordato, Sophie; Benoist, Christophe; Cappi, Alberto; Marulli, Federico

    2017-04-01

    Context. The next generation of galaxy surveys will provide cluster catalogues probing an unprecedented range of scales, redshifts, and masses with large statistics. Their analysis should therefore enable us to probe the spatial distribution of clusters with high accuracy and derive tighter constraints on the cosmological parameters and the dark energy equation of state. However, for the majority of these surveys, redshifts of individual galaxies will be mostly estimated by multiband photometry which implies non-negligible errors in redshift resulting in potential difficulties in recovering the real-space clustering. Aims: We investigate to which accuracy it is possible to recover the real-space two-point correlation function of galaxy clusters from cluster catalogues based on photometric redshifts, and test our ability to detect and measure the redshift and mass evolution of the correlation length r0 and of the bias parameter b(M,z) as a function of the uncertainty on the cluster redshift estimate. Methods: We calculate the correlation function for cluster sub-samples covering various mass and redshift bins selected from a 500 deg2 light-cone limited to H < 24. In order to simulate the distribution of clusters in photometric redshift space, we assign to each cluster a redshift randomly extracted from a Gaussian distribution having a mean equal to the cluster cosmological redshift and a dispersion equal to σz. The dispersion is varied in the range σ(z=0)=\\frac{σz{1+z_c} = 0.005,0.010,0.030} and 0.050, in order to cover the typical values expected in forthcoming surveys. The correlation function in real-space is then computed through estimation and deprojection of wp(rp). Four mass ranges (from Mhalo > 2 × 1013h-1M⊙ to Mhalo > 2 × 1014h-1M⊙) and six redshift slices covering the redshift range [0, 2] are investigated, first using cosmological redshifts and then for the four photometric redshift configurations. Results: From the analysis of the light-cone in cosmological redshifts we find a clear increase of the correlation amplitude as a function of redshift and mass. The evolution of the derived bias parameter b(M,z) is in fair agreement with theoretical expectations. We calculate the r0-d relation up to our highest mass, highest redshift sample tested (z = 2,Mhalo > 2 × 1014h-1M⊙). From our pilot sample limited to Mhalo > 5 × 1013h-1M⊙(0.4 < z < 0.7), we find that the real-space correlation function can be recovered by deprojection of wp(rp) within an accuracy of 5% for σz = 0.001 × (1 + zc) and within 10% for σz = 0.03 × (1 + zc). For higher dispersions (besides σz > 0.05 × (1 + zc)), the recovery becomes noisy and difficult. The evolution of the correlation in redshift and mass is clearly detected for all σz tested, but requires a large binning in redshift to be detected significantly between individual redshift slices when increasing σz. The best-fit parameters (r0 and γ) as well as the bias obtained from the deprojection method for all σz are within the 1σ uncertainty of the zc sample.

  10. Translation and validation of the new version of the Knee Society Score - The 2011 KS Score - into Brazilian Portuguese.

    PubMed

    Silva, Adriana Lucia Pastore E; Croci, Alberto Tesconi; Gobbi, Riccardo Gomes; Hinckel, Betina Bremer; Pecora, José Ricardo; Demange, Marco Kawamura

    2017-01-01

    Translation, cultural adaptation, and validation of the new version of the Knee Society Score - The 2011 KS Score - into Brazilian Portuguese and verification of its measurement properties, reproducibility, and validity. In 2012, the new version of the Knee Society Score was developed and validated. This scale comprises four separate subscales: (a) objective knee score (seven items: 100 points); (b) patient satisfaction score (five items: 40 points); (c) patient expectations score (three items: 15 points); and (d) functional activity score (19 items: 100 points). A total of 90 patients aged 55-85 years were evaluated in a clinical cross-sectional study. The pre-operative translated version was applied to patients with TKA referral, and the post-operative translated version was applied to patients who underwent TKA. Each patient answered the same questionnaire twice and was evaluated by two experts in orthopedic knee surgery. Evaluations were performed pre-operatively and three, six, or 12 months post-operatively. The reliability of the questionnaire was evaluated using the intraclass correlation coefficient (ICC) between the two applications. Internal consistency was evaluated using Cronbach's alpha. The ICC found no difference between the means of the pre-operative, three-month, and six-month post-operative evaluations between sub-scale items. The Brazilian Portuguese version of The 2011 KS Score is a valid and reliable instrument for objective and subjective evaluation of the functionality of Brazilian patients who undergo TKA and revision TKA.

  11. Itinerant quantum multicriticality of two-dimensional Dirac fermions

    NASA Astrophysics Data System (ADS)

    Roy, Bitan; Goswami, Pallab; Juričić, Vladimir

    2018-05-01

    We analyze emergent quantum multicriticality for strongly interacting, massless Dirac fermions in two spatial dimensions (d =2 ) within the framework of Gross-Neveu-Yukawa models, by considering the competing order parameters that give rise to fully gapped (insulating or superconducting) ground states. We focus only on those competing orders which can be rotated into each other by generators of an exact or emergent chiral symmetry of massless Dirac fermions, and break O(S1) and O(S2) symmetries in the ordered phase. Performing a renormalization-group analysis by using the ɛ =(3 -d ) expansion scheme, we show that all the coupling constants in the critical hyperplane flow toward a new attractive fixed point, supporting an enlarged O(S1+S2) chiral symmetry. Such a fixed point acts as an exotic quantum multicritical point (MCP), governing the continuous semimetal-insulator as well as insulator-insulator (for example, antiferromagnet to valence bond solid) quantum phase transitions. In comparison with the lower symmetric semimetal-insulator quantum critical points, possessing either O(S1) or O(S2) chiral symmetry, the MCP displays enhanced correlation length exponents, and anomalous scaling dimensions for both fermionic and bosonic fields. We discuss the scaling properties of the ratio of bosonic and fermionic masses, and the increased dc resistivity at the MCP. By computing the scaling dimensions of different local fermion bilinears in the particle-hole channel, we establish that most of the four fermion operators or generalized density-density correlation functions display faster power-law decays at the MCP compared to the free fermion and lower symmetric itinerant quantum critical points. Possible generalization of this scenario to higher-dimensional Dirac fermions is also outlined.

  12. Two-Point Microrheology of Phase-Separated Domains in Lipid Bilayers

    PubMed Central

    Hormel, Tristan T.; Reyer, Matthew A.; Parthasarathy, Raghuveer

    2015-01-01

    Though the importance of membrane fluidity for cellular function has been well established for decades, methods for measuring lipid bilayer viscosity remain challenging to devise and implement. Recently, approaches based on characterizing the Brownian dynamics of individual tracers such as colloidal particles or lipid domains have provided insights into bilayer viscosity. For fluids in general, however, methods based on single-particle trajectories provide a limited view of hydrodynamic response. The technique of two-point microrheology, in which correlations between the Brownian dynamics of pairs of tracers report on the properties of the intervening medium, characterizes viscosity at length-scales that are larger than that of individual tracers and has less sensitivity to tracer-induced distortions, but has never been applied to lipid membranes. We present, to our knowledge, the first two-point microrheological study of lipid bilayers, examining the correlated motion of domains in phase-separated lipid vesicles and comparing one- and two-point results. We measure two-point correlation functions in excellent agreement with the forms predicted by two-dimensional hydrodynamic models, analysis of which reveals a viscosity intermediate between those of the two lipid phases, indicative of global fluid properties rather than the viscosity of the local neighborhood of the tracer. PMID:26287625

  13. Quasi-periodic solutions to the hierarchy of four-component Toda lattices

    NASA Astrophysics Data System (ADS)

    Wei, Jiao; Geng, Xianguo; Zeng, Xin

    2016-08-01

    Starting from a discrete 3×3 matrix spectral problem, the hierarchy of four-component Toda lattices is derived by using the stationary discrete zero-curvature equation. Resorting to the characteristic polynomial of the Lax matrix for the hierarchy, we introduce a trigonal curve Km-2 of genus m - 2 and present the related Baker-Akhiezer function and meromorphic function on it. Asymptotic expansions for the Baker-Akhiezer function and meromorphic function are given near three infinite points on the trigonal curve, from which explicit quasi-periodic solutions for the hierarchy of four-component Toda lattices are obtained in terms of the Riemann theta function.

  14. On the effects of surrogacy of energy dissipation in determining the intermittency exponent in fully developed turbulence

    NASA Astrophysics Data System (ADS)

    Cleve, J.; Greiner, M.; Sreenivasan, K. R.

    2003-03-01

    The two-point correlation function of the energy dissipation, obtained from a one-point time record of an atmospheric boundary layer, reveals a rigorous power law scaling with intermittency exponent μ approx 0.20 over almost the entire inertial range of scales. However, for the related integral moment, the power law scaling is restricted to the upper part of the inertial range only. This observation is explained in terms of the operational surrogacy of the construction of energy dissipation, which influences the behaviour of the correlation function for small separation distances.

  15. Radiation-damage-induced transitions in zircon: Percolation theory applied to hardness and elastic moduli as a function of density

    NASA Astrophysics Data System (ADS)

    Beirau, Tobias; Nix, William D.; Ewing, Rodney C.; Pöllmann, Herbert; Salje, Ekhard K. H.

    2018-05-01

    Two in literature predicted percolation transitions in radiation-damaged zircon (ZrSiO4) were observed experimentally by measurement of the indentation hardness as a function of density and their correlation with the elastic moduli. Percolations occur near 30% and 70% amorphous fractions, where hardness deviates from its linear correlation with the elastic modulus (E), the shear modulus (G) and the bulk modulus (K). The first percolation point pc1 generates a cusp in the hardness versus density evolution, while the second percolation point is seen as a change of slope.

  16. Conformal field theories from deformations of theories with Wn symmetry

    NASA Astrophysics Data System (ADS)

    Babaro, Juan Pablo; Giribet, Gaston; Ranjbar, Arash

    2016-10-01

    We construct a set of nonrational conformal field theories that consist of deformations of Toda field theory for s l (n ). In addition to preserving conformal invariance, the theories may still exhibit a remnant infinite-dimensional affine symmetry. The case n =3 is used to illustrate this phenomenon, together with further deformations that yield enhanced Kac-Moody symmetry algebras. For generic n we compute N -point correlation functions on the Riemann sphere and show that these can be expressed in terms of s l (n ) Toda field theory ((N -2 )n +2 ) -point correlation functions.

  17. Characterization of topological phases of dimerized Kitaev chain via edge correlation functions

    NASA Astrophysics Data System (ADS)

    Wang, Yucheng; Miao, Jian-Jian; Jin, Hui-Ke; Chen, Shu

    2017-11-01

    We study analytically topological properties of a noninteracting modified dimerized Kitaev chain and an exactly solvable interacting dimerized Kitaev chain under open boundary conditions by analyzing two introduced edge correlation functions. The interacting dimerized Kitaev chain at the symmetry point Δ =t and the chemical potential μ =0 can be exactly solved by applying two Jordan-Wigner transformations and a spin rotation, which permits us to calculate the edge correlation functions analytically. We demonstrate that the two edge correlation functions can be used to characterize the trivial, Su-Schrieffer-Heeger-like topological and topological superconductor phases of both the noninteracting and interacting systems and give their phase diagrams.

  18. Neural field theory of perceptual echo and implications for estimating brain connectivity

    NASA Astrophysics Data System (ADS)

    Robinson, P. A.; Pagès, J. C.; Gabay, N. C.; Babaie, T.; Mukta, K. N.

    2018-04-01

    Neural field theory is used to predict and analyze the phenomenon of perceptual echo in which random input stimuli at one location are correlated with electroencephalographic responses at other locations. It is shown that this echo correlation (EC) yields an estimate of the transfer function from the stimulated point to other locations. Modal analysis then explains the observed spatiotemporal structure of visually driven EC and the dominance of the alpha frequency; two eigenmodes of similar amplitude dominate the response, leading to temporal beating and a line of low correlation that runs from the crown of the head toward the ears. These effects result from mode splitting and symmetry breaking caused by interhemispheric coupling and cortical folding. It is shown how eigenmodes obtained from functional magnetic resonance imaging experiments can be combined with temporal dynamics from EC or other evoked responses to estimate the spatiotemporal transfer function between any two points and hence their effective connectivity.

  19. LiquidLib: A comprehensive toolbox for analyzing classical and ab initio molecular dynamics simulations of liquids and liquid-like matter with applications to neutron scattering experiments

    NASA Astrophysics Data System (ADS)

    Walter, Nathan P.; Jaiswal, Abhishek; Cai, Zhikun; Zhang, Yang

    2018-07-01

    Neutron scattering is a powerful experimental technique for characterizing the structure and dynamics of materials on the atomic or molecular scale. However, the interpretation of experimental data from neutron scattering is oftentimes not trivial, partly because scattering methods probe ensemble-averaged information in the reciprocal space. Therefore, computer simulations, such as classical and ab initio molecular dynamics, are frequently used to unravel the time-dependent atomistic configurations that can reproduce the scattering patterns and thus assist in the understanding of the microscopic origin of certain properties of materials. LiquidLib is a post-processing package for analyzing the trajectory of atomistic simulations of liquids and liquid-like matter with application to neutron scattering experiments. From an atomistic simulation, LiquidLib provides the computation of various statistical quantities including the pair distribution function, the weighted and unweighted structure factors, the mean squared displacement, the non-Gaussian parameter, the four-point correlation function, the velocity auto correlation function, the self and collective van Hove correlation functions, the self and collective intermediate scattering functions, and the bond orientational order parameter. LiquidLib analyzes atomistic trajectories generated from packages such as LAMMPS, GROMACS, and VASP. It also offers an extendable platform to conveniently integrate new quantities into the library and integrate simulation trajectories of other file formats for analysis. Weighting the quantities by element-specific neutron-scattering lengths provides results directly comparable to neutron scattering measurements. Lastly, LiquidLib is independent of dimensionality, which allows analysis of trajectories in two, three, and higher dimensions. The code is beginning to find worldwide use.

  20. Undergraduate GPAs, MCAT scores, and academic performance the first 2 years in podiatric medical school at Des Moines University.

    PubMed

    Yoho, Robert M; Antonopoulos, Kosta; Vardaxis, Vassilios

    2012-01-01

    This study was performed to determine the relationship between undergraduate academic performance and total Medical College Admission Test score and academic performance in the podiatric medical program at Des Moines University. The allopathic and osteopathic medical professions have published educational research examining this relationship. To our knowledge, no such educational research has been published for podiatric medical education. The undergraduate cumulative and science grade point averages and total Medical College Admission Test scores of four podiatric medical classes (2007-2010, N = 169) were compared with their academic performance in the first 2 years of podiatric medical school using pairwise Pearson product moment correlations and multiple regression analysis. Significant low to moderate positive correlations were identified between undergraduate cumulative and science grade point averages and student academic performance in years 1 and 2 of podiatric medical school for each of the four classes (except one) and the pooled data. There was no significant correlation between Medical College Admission Test score and academic performance in years 1 and 2 (except one) and the pooled data. These results identify undergraduate cumulative grade point average as the strongest cognitive admissions variable in predicting academic performance in the podiatric medicine program at Des Moines University, followed by undergraduate science grade point average. These results also suggest limitations of the total Medical College Admission Test score in predicting academic performance. Information from this study can be used in the admissions process and to monitor student progress.

  1. Seismic interferometry by crosscorrelation and by multidimensional deconvolution: a systematic comparison

    NASA Astrophysics Data System (ADS)

    Wapenaar, Kees; van der Neut, Joost; Ruigrok, Elmer; Draganov, Deyan; Hunziker, Jürg; Slob, Evert; Thorbecke, Jan; Snieder, Roel

    2011-06-01

    Seismic interferometry, also known as Green's function retrieval by crosscorrelation, has a wide range of applications, ranging from surface-wave tomography using ambient noise, to creating virtual sources for improved reflection seismology. Despite its successful applications, the crosscorrelation approach also has its limitations. The main underlying assumptions are that the medium is lossless and that the wavefield is equipartitioned. These assumptions are in practice often violated: the medium of interest is often illuminated from one side only, the sources may be irregularly distributed, and losses may be significant. These limitations may partly be overcome by reformulating seismic interferometry as a multidimensional deconvolution (MDD) process. We present a systematic analysis of seismic interferometry by crosscorrelation and by MDD. We show that for the non-ideal situations mentioned above, the correlation function is proportional to a Green's function with a blurred source. The source blurring is quantified by a so-called interferometric point-spread function which, like the correlation function, can be derived from the observed data (i.e. without the need to know the sources and the medium). The source of the Green's function obtained by the correlation method can be deblurred by deconvolving the correlation function for the point-spread function. This is the essence of seismic interferometry by MDD. We illustrate the crosscorrelation and MDD methods for controlled-source and passive-data applications with numerical examples and discuss the advantages and limitations of both methods.

  2. Statistical analysis of 4 types of neck whiplash injuries based on classical meridian theory.

    PubMed

    Chen, Yemeng; Zhao, Yan; Xue, Xiaolin; Li, Hui; Wu, Xiuyan; Zhang, Qunce; Zheng, Xin; Wang, Tianfang

    2015-01-01

    As one component of the Chinese medicine meridian system, the meridian sinew (Jingjin, (see text), tendino-musculo) is specially described as being for acupuncture treatment of the musculoskeletal system because of its dynamic attributes and tender point correlations. In recent decades, the therapeutic importance of the sinew meridian has become revalued in clinical application. Based on this theory, the authors have established therapeutic strategies of acupuncture treatment in Whiplash-Associated Disorders (WAD) by categorizing four types of neck symptom presentations. The advantage of this new system is to make it much easier for the clinician to find effective acupuncture points. This study attempts to prove the significance of the proposed therapeutic strategies by analyzing data collected from a clinical survey of various WAD using non-supervised statistical methods, such as correlation analysis, factor analysis, and cluster analysis. The clinical survey data have successfully verified discrete characteristics of four neck syndromes, based upon the range of motion (ROM) and tender point location findings. A summary of the relationships among the symptoms of the four neck syndromes has shown the correlation coefficient as having a statistical significance (P < 0.01 or P < 0.05), especially with regard to ROM. Furthermore, factor and cluster analyses resulted in a total of 11 categories of general symptoms, which implies syndrome factors are more related to the Liver, as originally described in classical theory. The hypothesis of meridian sinew syndromes in WAD is clearly supported by the statistical analysis of the clinical trials. This new discovery should be beneficial in improving therapeutic outcomes.

  3. Testing parity-violating physics from cosmic rotation power reconstruction

    DOE PAGES

    Namikawa, Toshiya

    2017-02-22

    We study the reconstruction of the cosmic rotation power spectrum produced by parity-violating physics, with an eye to ongoing and near future cosmic microwave background (CMB) experiments such as BICEP Array, CMBS4, LiteBIRD and Simons Observatory. In addition to the inflationary gravitational waves and gravitational lensing, measurements of other various effects on CMB polarization open new window into the early Universe. One of these is anisotropies of the cosmic polarization rotation which probes the Chern-Simons term generally predicted by string theory. The anisotropies of the cosmic rotation are also generated by the primordial magnetism and in the Standard Model extentionmore » framework. The cosmic rotation anisotropies can be reconstructed as quadratic in CMB anisotropies. However, the power of the reconstructed cosmic rotation is a CMB four-point correlation and is not directly related to the cosmic-rotation power spectrum. Understanding all contributions in the four-point correlation is required to extract the cosmic rotation signal. Here, assuming inflationary motivated cosmic-rotation models, we employ simulation to quantify each contribution to the four-point correlation and find that (1) a secondary contraction of the trispectrum increases the total signal-to-noise, (2) a bias from the lensing-induced trispectrum is significant compared to the statistical errors in, e.g., LiteBIRD and CMBS4-like experiments, (3) the use of a realization-dependent estimator decreases the statistical errors by 10%–20%, depending on experimental specifications, and (4) other higher-order contributions are negligible at least for near future experiments.« less

  4. The correlation function for density perturbations in an expanding universe. IV - The evolution of the correlation function. [galaxy distribution

    NASA Technical Reports Server (NTRS)

    Mcclelland, J.; Silk, J.

    1979-01-01

    The evolution of the two-point correlation function for the large-scale distribution of galaxies in an expanding universe is studied on the assumption that the perturbation densities lie in a Gaussian distribution centered on any given mass scale. The perturbations are evolved according to the Friedmann equation, and the correlation function for the resulting distribution of perturbations at the present epoch is calculated. It is found that: (1) the computed correlation function gives a satisfactory fit to the observed function in cosmological models with a density parameter (Omega) of approximately unity, provided that a certain free parameter is suitably adjusted; (2) the power-law slope in the nonlinear regime reflects the initial fluctuation spectrum, provided that the density profile of individual perturbations declines more rapidly than the -2.4 power of distance; and (3) both positive and negative contributions to the correlation function are predicted for cosmological models with Omega less than unity.

  5. Use of the rVV10 Nonlocal Correlation Functional in the B97M-V Density Functional: Defining B97M-rV and Related Functionals [On the Use of the rVV10 Nonlocal Correlation Functional in the B97M-V Density Functional: Defining B97M-rV and Related Functionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mardirossian, Narbe; Ruiz Pestana, Luis; Womack, James C.

    The VV10 and rVV10 nonlocal correlation functionals are consistently implemented and assessed, with the goal of determining if the rVV10 nonlocal correlation functional can replace the VV10 nonlocal correlation functional in the recently developed B97M-V density functional, to give the B97M-rV density functional. Along the way, four density functionals are simultaneously tested: VV10, rVV10, B97M-V, and B97M-rV. An initial assessment is carried out across the S22 data set, and the short-range damping variable, b, is varied for all four density functionals in order to determine the sensitivity of the functionals to the empirical parameter. The results of this test indicatemore » that a value of b = 6 (fortuitously the same as that in B97M-V) is suitable for B97M-rV. The functionals are then compared across an extensive database of interaction energies, and it is demonstrated that B97M-rV either matches or outperforms B97M-V for all of the tests considered. Finally, the optimization of b across the S22 data set is extended to two range-separated hybrid density functionals, ωB97X-V and ωB97M-V, and a value of b = 6.2 is recommended for both ωB97X-rV and ωB97M-rV.« less

  6. Use of the rVV10 Nonlocal Correlation Functional in the B97M-V Density Functional: Defining B97M-rV and Related Functionals [On the Use of the rVV10 Nonlocal Correlation Functional in the B97M-V Density Functional: Defining B97M-rV and Related Functionals

    DOE PAGES

    Mardirossian, Narbe; Ruiz Pestana, Luis; Womack, James C.; ...

    2016-12-06

    The VV10 and rVV10 nonlocal correlation functionals are consistently implemented and assessed, with the goal of determining if the rVV10 nonlocal correlation functional can replace the VV10 nonlocal correlation functional in the recently developed B97M-V density functional, to give the B97M-rV density functional. Along the way, four density functionals are simultaneously tested: VV10, rVV10, B97M-V, and B97M-rV. An initial assessment is carried out across the S22 data set, and the short-range damping variable, b, is varied for all four density functionals in order to determine the sensitivity of the functionals to the empirical parameter. The results of this test indicatemore » that a value of b = 6 (fortuitously the same as that in B97M-V) is suitable for B97M-rV. The functionals are then compared across an extensive database of interaction energies, and it is demonstrated that B97M-rV either matches or outperforms B97M-V for all of the tests considered. Finally, the optimization of b across the S22 data set is extended to two range-separated hybrid density functionals, ωB97X-V and ωB97M-V, and a value of b = 6.2 is recommended for both ωB97X-rV and ωB97M-rV.« less

  7. Linear and quadratic static response functions and structure functions in Yukawa liquids.

    PubMed

    Magyar, Péter; Donkó, Zoltán; Kalman, Gabor J; Golden, Kenneth I

    2014-08-01

    We compute linear and quadratic static density response functions of three-dimensional Yukawa liquids by applying an external perturbation potential in molecular dynamics simulations. The response functions are also obtained from the equilibrium fluctuations (static structure factors) in the system via the fluctuation-dissipation theorems. The good agreement of the quadratic response functions, obtained in the two different ways, confirms the quadratic fluctuation-dissipation theorem. We also find that the three-point structure function may be factorizable into two-point structure functions, leading to a cluster representation of the equilibrium triplet correlation function.

  8. Spatial correlation of hydrometeor occurrence, reflectivity, and rain rate from CloudSat

    NASA Astrophysics Data System (ADS)

    Marchand, Roger

    2012-03-01

    This paper examines the along-track vertical and horizontal structure of hydrometeor occurrence, reflectivity, and column rain rate derived from CloudSat. The analysis assumes hydrometeors statistics in a given region are horizontally invariant, with the probability of hydrometeor co-occurrence obtained simply by determining the relative frequency at which hydrometeors can be found at two points (which may be at different altitudes and offset by a horizontal distance, Δx). A correlation function is introduced (gamma correlation) that normalizes hydrometeor co-occurrence values to the range of 1 to -1, with a value of 0 meaning uncorrelated in the usual sense. This correlation function is a generalization of the alpha overlap parameter that has been used in recent studies to describe the overlap between cloud (or hydrometeor) layers. Examples of joint histograms of reflectivity at two points are also examined. The analysis shows that the traditional linear (or Pearson) correlation coefficient provides a useful one-to-one measure of the strength of the relationship between hydrometeor reflectivity at two points in the horizontal (that is, two points at the same altitude). While also potentially useful in the vertical direction, the relationship between reflectivity values at different altitudes is not as well described by the linear correlation coefficient. The decrease in correlation of hydrometeor occurrence and reflectivity with horizontal distance, as well as precipitation occurrence and column rain rate, can be reasonably well fit with a simple two-parameter exponential model. In this paper, the North Pacific and tropical western Pacific are examined in detail, as is the zonal dependence.

  9. Comparing the Performance Status Scale and MD Anderson Dysphagia Inventory as swallowing outcome measures in head and neck cancer: a prospective cohort study.

    PubMed

    Khan, M K; Patterson, J; Owen, S; Rees, S; Gamberini, L; Paleri, V

    2015-08-01

    To examine the relationship between the two disease-specific measures currently in use to assess swallowing outcomes following treatment in patients with head and neck cancer: the Performance Status Scale (PSS) and MD Anderson Dysphagia Inventory (MDADI). A prospective cohort study. Four head and neck cancer multidisciplinary clinics in the North of England Cancer Network. 114 patients with cancers of the upper aerodigestive tract. Measures of swallowing function administered prospectively across 4 timepoints Spearman's correlation coefficients were used to measure the relationship between the two scales. There was statistically significant correlation between the two tools at pre-treatment (rs = 0.428, P < 0.000), 3 months post-treatment (rs = 0.454, P < 0.002), 6 months post-treatment (rs = 0.551, P < 0.000) and 12 months post-treatment (rs = 0.680, P < 0.000). This is the first prospective study comparing the MDADI and PSS questionnaires at multiple time points. Our study shows that these different instruments have a good relationship in measuring swallowing function in patients with head and neck cancer in short and medium term after treatment. © 2015 John Wiley & Sons Ltd.

  10. Many-body perturbation theory using the density-functional concept: beyond the GW approximation.

    PubMed

    Bruneval, Fabien; Sottile, Francesco; Olevano, Valerio; Del Sole, Rodolfo; Reining, Lucia

    2005-05-13

    We propose an alternative formulation of many-body perturbation theory that uses the density-functional concept. Instead of the usual four-point integral equation for the polarizability, we obtain a two-point one, which leads to excellent optical absorption and energy-loss spectra. The corresponding three-point vertex function and self-energy are then simply calculated via an integration, for any level of approximation. Moreover, we show the direct impact of this formulation on the time-dependent density-functional theory. Numerical results for the band gap of bulk silicon and solid argon illustrate corrections beyond the GW approximation for the self-energy.

  11. Decay of Complex-Time Determinantal and Pfaffian Correlation Functionals in Lattices

    NASA Astrophysics Data System (ADS)

    Aza, N. J. B.; Bru, J.-B.; de Siqueira Pedra, W.

    2018-04-01

    We supplement the determinantal and Pfaffian bounds of Sims and Warzel (Commun Math Phys 347:903-931, 2016) for many-body localization of quasi-free fermions, by considering the high dimensional case and complex-time correlations. Our proof uses the analyticity of correlation functions via the Hadamard three-line theorem. We show that the dynamical localization for the one-particle system yields the dynamical localization for the many-point fermionic correlation functions, with respect to the Hausdorff distance in the determinantal case. In Sims and Warzel (2016), a stronger notion of decay for many-particle configurations was used but only at dimension one and for real times. Considering determinantal and Pfaffian correlation functionals for complex times is important in the study of weakly interacting fermions.

  12. Decay of Complex-Time Determinantal and Pfaffian Correlation Functionals in Lattices

    NASA Astrophysics Data System (ADS)

    Aza, N. J. B.; Bru, J.-B.; de Siqueira Pedra, W.

    2018-06-01

    We supplement the determinantal and Pfaffian bounds of Sims and Warzel (Commun Math Phys 347:903-931, 2016) for many-body localization of quasi-free fermions, by considering the high dimensional case and complex-time correlations. Our proof uses the analyticity of correlation functions via the Hadamard three-line theorem. We show that the dynamical localization for the one-particle system yields the dynamical localization for the many-point fermionic correlation functions, with respect to the Hausdorff distance in the determinantal case. In Sims and Warzel (2016), a stronger notion of decay for many-particle configurations was used but only at dimension one and for real times. Considering determinantal and Pfaffian correlation functionals for complex times is important in the study of weakly interacting fermions.

  13. C-class functions with new approach on coincidence point results for generalized [Formula: see text]-weakly contractions in ordered b-metric spaces.

    PubMed

    Mustafa, Zead; Jaradat, Mohammed M M; Ansari, Arslan Hojat; Popović, Branislav Z; Jaradat, Husein M

    2016-01-01

    In this paper, by using the C-class functions and a new approach we present some coincidence point results for four mappings satisfying generalized [Formula: see text]-weakly contractive condition in the setting of ordered b-metric spaces. Also, an application and example are given to support our results.

  14. Multiple scattered radiation emerging from Rayleigh and continental haze layers. 1: Radiance, polarization, and neutral points.

    PubMed

    Kattawar, G W; Plass, G N; Hitzfelder, S J

    1976-03-01

    The complete radiation field including polarization is calculated by the matrix operator method for scattering layers of various optical thicknesses. Results obtained for Rayleigh scattering are compared with those for scattering from a continental haze. Radiances calculated using Stokes vectors show differences as large as 23% compared to the approximate scalar theory of radiative transfer, while the same differences are only of the order of 0.1% for a continental haze phase function. The polarization of the reflected and transmitted radiation is given for a wide range of optical thicknesses of the scattering layer, for various solar zenith angles, and various surface albedos. Two entirely different types of neutral points occur for aerosol phase functions. Rayleigh-like neutral points (RNP) arise from the zero polarization in single scattering that occurs for all phase functions at scattering angles of 0 degrees and 180 degrees . For Rayleigh phase functions, the position of the RNP varies appreciably with the optical thickness of the scattering layer. At low solar elevations there may be four RNP. For a continental haze phase function the position of the RNP in the reflected radiation shows only a small variation with the optical thickness, and the RNP exists in the transmitted radiation only for extremely small optical thicknesses. Another type of neutral point (NRNP) exists for aerosol phase functions. It is associated with the zeros of the single scattered polarization, which occur between the end points of the curve; these are called non-Rayleigh neutral points (NRNP). There may be from zero to four of these neutral points associated with each zero of the single scattering curve. They occur over a range of azimuthal angles, unlike the RNP that are in the principal plane only. The position of these neutral points is given as a function of solar angle and optical thickness.

  15. Point processes in arbitrary dimension from fermionic gases, random matrix theory, and number theory

    NASA Astrophysics Data System (ADS)

    Torquato, Salvatore; Scardicchio, A.; Zachary, Chase E.

    2008-11-01

    It is well known that one can map certain properties of random matrices, fermionic gases, and zeros of the Riemann zeta function to a unique point process on the real line \\mathbb {R} . Here we analytically provide exact generalizations of such a point process in d-dimensional Euclidean space \\mathbb {R}^d for any d, which are special cases of determinantal processes. In particular, we obtain the n-particle correlation functions for any n, which completely specify the point processes in \\mathbb {R}^d . We also demonstrate that spin-polarized fermionic systems in \\mathbb {R}^d have these same n-particle correlation functions in each dimension. The point processes for any d are shown to be hyperuniform, i.e., infinite wavelength density fluctuations vanish, and the structure factor (or power spectrum) S(k) has a non-analytic behavior at the origin given by S(k)~|k| (k \\rightarrow 0 ). The latter result implies that the pair correlation function g2(r) tends to unity for large pair distances with a decay rate that is controlled by the power law 1/rd+1, which is a well-known property of bosonic ground states and more recently has been shown to characterize maximally random jammed sphere packings. We graphically display one-and two-dimensional realizations of the point processes in order to vividly reveal their 'repulsive' nature. Indeed, we show that the point processes can be characterized by an effective 'hard core' diameter that grows like the square root of d. The nearest-neighbor distribution functions for these point processes are also evaluated and rigorously bounded. Among other results, this analysis reveals that the probability of finding a large spherical cavity of radius r in dimension d behaves like a Poisson point process but in dimension d+1, i.e., this probability is given by exp[-κ(d)rd+1] for large r and finite d, where κ(d) is a positive d-dependent constant. We also show that as d increases, the point process behaves effectively like a sphere packing with a coverage fraction of space that is no denser than 1/2d. This coverage fraction has a special significance in the study of sphere packings in high-dimensional Euclidean spaces.

  16. Approach to the origin of turbulence on the basis of two-point kinetic theory

    NASA Technical Reports Server (NTRS)

    Tsuge, S.

    1974-01-01

    Equations for the fluctuation correlation in an incompressible shear flow are derived on the basis of kinetic theory, utilizing the two-point distribution function which obeys the BBGKY hierarchy equation truncated with the hypothesis of 'ternary' molecular chaos. The step from the molecular to the hydrodynamic description is accomplished by a moment expansion which is a two-point version of the thirteen-moment method, and which leads to a series of correlation equations, viz., the two-point counterparts of the continuity equation, the Navier-Stokes equation, etc. For almost parallel shearing flows the two-point equation is separable and reduces to two Orr-Sommerfeld equations with different physical implications.

  17. A Special Golden Curve in Human Upper Limbs' Length Proportion: A Functional Partition Which Is Different from Anatomy.

    PubMed

    Wang, Nan; Ma, Jie; Jin, Dan; Yu, Bin

    2017-01-01

    Aim . The purpose of this study was to investigate the relationship between upper limbs' three functional partitions and the golden curve. Materials and Methods . We measured 30 subjects' right or left upper limb data and investigate the relationship between them and the golden curve by use of SPSS version 20.0 statistical software (SPSS, Inc., Chicago, Illinois), one-sample t -test. Results . There are four points on human's upper limbs which have no difference with the four points on the golden curve. And there is one point of which the difference is obvious. But we still could draw the conclusion that human upper limbs are accordant with the golden curve. Conclusion . Human upper limbs are accordant with the golden curve.

  18. Stringy horizons and generalized FZZ duality in perturbation theory

    NASA Astrophysics Data System (ADS)

    Giribet, Gaston

    2017-02-01

    We study scattering amplitudes in two-dimensional string theory on a black hole bakground. We start with a simple derivation of the Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality, which associates correlation functions of the sine-Liouville integrable model on the Riemann sphere to tree-level string amplitudes on the Euclidean two-dimensional black hole. This derivation of FZZ duality is based on perturbation theory, and it relies on a trick originally due to Fateev, which involves duality relations between different Selberg type integrals. This enables us to rewrite the correlation functions of sine-Liouville theory in terms of a special set of correlators in the gauged Wess-Zumino-Witten (WZW) theory, and use this to perform further consistency checks of the recently conjectured Generalized FZZ (GFZZ) duality. In particular, we prove that n-point correlation functions in sine-Liouville theory involving n - 2 winding modes actually coincide with the correlation functions in the SL(2,R)/U(1) gauged WZW model that include n - 2 oscillator operators of the type described by Giveon, Itzhaki and Kutasov in reference [1]. This proves the GFZZ duality for the case of tree level maximally winding violating n-point amplitudes with arbitrary n. We also comment on the connection between GFZZ and other marginal deformations previously considered in the literature.

  19. Asymptotic behaviour of two-point functions in multi-species models

    NASA Astrophysics Data System (ADS)

    Kozlowski, Karol K.; Ragoucy, Eric

    2016-05-01

    We extract the long-distance asymptotic behaviour of two-point correlation functions in massless quantum integrable models containing multi-species excitations. For such a purpose, we extend to these models the method of a large-distance regime re-summation of the form factor expansion of correlation functions. The key feature of our analysis is a technical hypothesis on the large-volume behaviour of the form factors of local operators in such models. We check the validity of this hypothesis on the example of the SU (3)-invariant XXX magnet by means of the determinant representations for the form factors of local operators in this model. Our approach confirms the structure of the critical exponents obtained previously for numerous models solvable by the nested Bethe Ansatz.

  20. Dynamical correlation functions of the quadratic coupling spin-Boson model

    NASA Astrophysics Data System (ADS)

    Zheng, Da-Chuan; Tong, Ning-Hua

    2017-06-01

    The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method. We focus on the dynamical auto-correlation functions {C}O(ω ), with the operator \\hat{O} taken as {\\hat{{{σ }}}}x, {\\hat{{{σ }}}}z, and \\hat{X}, respectively. In the weak-coupling regime α < {α }{{c}}, these functions show power law ω-dependence in the small frequency limit, with the powers 1+2s, 1+2s, and s, respectively. At the critical point α ={α }{{c}} of the boson-unstable quantum phase transition, the critical exponents y O of these correlation functions are obtained as {y}{{{σ }}x}={y}{{{σ }}z}=1-2s and {y}X=-s, respectively. Here s is the bath index and X is the boson displacement operator. Close to the spin flip point, the high frequency peak of {C}{{{σ }}x}(ω ) is broadened significantly and the line shape changes qualitatively, showing enhanced dephasing at the spin flip point. Project supported by the National Key Basic Research Program of China (Grant No. 2012CB921704), the National Natural Science Foundation of China (Grant No. 11374362), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 15XNLQ03).

  1. David Adler Lectureship Award: n-point Correlation Functions in Heterogeneous Materials.

    NASA Astrophysics Data System (ADS)

    Torquato, Salvatore

    2009-03-01

    The determination of the bulk transport, electromagnetic, mechanical, and optical properties of heterogeneous materials has a long and venerable history, attracting the attention of some of the luminaries of science, including Maxwell, Lord Rayleigh, and Einstein. The bulk properties can be shown to depend rigorously upon infinite sets of various n-point correlation functions. Many different types of correlation functions arise, depending on the physics of the problem. A unified approach to characterize the microstructure and bulk properties of a large class of disordered materials is developed [S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer-Verlag, New York, 2002)]. This is accomplished via a canonical n-point function Hn from which one can derive exact analytical expressions for any microstructural function of interest. This microstructural information can then be used to estimate accurately the bulk properties of the material. Unlike homogeneous materials, seemingly different bulk properties (e.g., transport and mechanical properties) of a heterogeneous material can be linked to one another because of the common microstructure that they share. Such cross-property relations can be used to estimate one property given a measurement of another. A recently identified decorrelation principle, roughly speaking, refers to the phenomenon that unconstrained correlations that exist in low-dimensional disordered materials vanish as the space dimension becomes large. Among other results, this implies that in sufficiently high dimensions the densest spheres packings may be disordered (rather than ordered) [S. Torquato and F. H. Stillinger, ``New Conjectural Lower Bounds on the Optimal Density of Sphere Packings," Experimental Mathematics, 15, 307 (2006)].

  2. Correlation Function Analysis of Fiber Networks: Implications for Thermal Conductivity

    NASA Technical Reports Server (NTRS)

    Martinez-Garcia, Jorge; Braginsky, Leonid; Shklover, Valery; Lawson, John W.

    2011-01-01

    The heat transport in highly porous fiber structures is investigated. The fibers are supposed to be thin, but long, so that the number of the inter-fiber connections along each fiber is large. We show that the effective conductivity of such structures can be found from the correlation length of the two-point correlation function of the local conductivities. Estimation of the parameters, determining the conductivity, from the 2D images of the structures is analyzed.

  3. Stochastic transformation of points in polygons according to the Voronoi tessellation: microstructural description.

    PubMed

    Di Vito, Alessia; Fanfoni, Massimo; Tomellini, Massimo

    2010-12-01

    Starting from a stochastic two-dimensional process we studied the transformation of points in disks and squares following a protocol according to which at any step the island size increases proportionally to the corresponding Voronoi tessera. Two interaction mechanisms among islands have been dealt with: coalescence and impingement. We studied the evolution of the island density and of the island size distribution functions, in dependence on island collision mechanisms for both Poissonian and correlated spatial distributions of points. The island size distribution functions have been found to be invariant with the fraction of transformed phase for a given stochastic process. The n(Θ) curve describing the island decay has been found to be independent of the shape (apart from high correlation degrees) and interaction mechanism.

  4. Charged fixed point in the Ginzburg-Landau superconductor and the role of the Ginzburg parameter /κ

    NASA Astrophysics Data System (ADS)

    Kleinert, Hagen; Nogueira, Flavio S.

    2003-02-01

    We present a semi-perturbative approach which yields an infrared-stable fixed point in the Ginzburg-Landau for N=2, where N/2 is the number of complex components. The calculations are done in d=3 dimensions and below Tc, where the renormalization group functions can be expressed directly as functions of the Ginzburg parameter κ which is the ratio between the two fundamental scales of the problem, the penetration depth λ and the correlation length ξ. We find a charged fixed point for κ>1/ 2, that is, in the type II regime, where Δκ≡κ-1/ 2 is shown to be a natural expansion parameter. This parameter controls a momentum space instability in the two-point correlation function of the order field. This instability appears at a non-zero wave-vector p0 whose magnitude scales like ˜ Δκ β¯, with a critical exponent β¯=1/2 in the one-loop approximation, a behavior known from magnetic systems with a Lifshitz point in the phase diagram. This momentum space instability is argued to be the origin of the negative η-exponent of the order field.

  5. Aspects of the RVB Luttinger Liquid Theory of the High Temperature Superconductivity

    NASA Astrophysics Data System (ADS)

    Ren, Yong

    1992-01-01

    This thesis describes work on a large-U Hubbard model theory for high temperature superconductors. After an introduction to the Hubbard model and the normal state properties of the high T_{rm c} superconductors, we briefly examine the definition of the Fermi liquid and its breakdown. Then we explain why the 1D Hubbard model is the best starting point to approach our problem. In one dimension, the exact Lieb-Wu solution is available. We discuss the Lieb-Wu solution, and calculate various asymptotic correlation functions in the ground state. This clarifies the nature of the ground state which has not been known before. Instead of simply getting the exponents of the correlation functions from the Bethe Ansatz integral equations, we establish the connection between phase shifts at different Fermi points and the asymptotic correlation functions. We believe that this connection contains the most important physics and it can be readily generalized into higher dimensions. We then discuss bosonization in two dimensions and define the 2D RVB-Luttinger liquid theory, proposing that the ground state of the 2D Hubbard model belongs to a different fixed point than the Landau Fermi liquid-Luttinger liquid. Finally we apply the understanding of the 1D result to explain the normal state properties of the high T_ {c} superconductors, putting emphasis on how the non-Fermi liquid correlation functions explain the "anomalous" experimental results. In the Appendix, several issues related to the 1D and 2D Hubbard model are discussed.

  6. The role of natural disaster in individual and relational adjustment in Sri Lankan mothers following the 2004 tsunami.

    PubMed

    Banford, Alyssa; Ivey, David C; Wickrama, Thulitha; Fischer, Judith; Prouty, Anne; Smith, Douglas

    2016-01-01

    The purpose of this study is to examine the associations between maternal mental health distress symptoms, including depression and post-traumatic stress disorder, the extent to which the presence of a child's disaster-related physical health problem(s) have interfered with daily functioning, and family cohesion over time among Sri Lankan mothers who survived the tsunami on 26 December 2004. Study variables were measured using a self-report questionnaire administered approximately four months after the event and three years later in summer 2008. Univariate, bivariate, and multivariate analyses were conducted. Path analysis was employed to assess the relationships between the key variables over time and the correlations in the study variables at each time point. Among other findings, the results of the path analysis indicated that post-traumatic stress symptom distress four months after the disaster significantly predicted variance in family cohesion three years later. Clinical and empirical research implications are presented and discussed. © 2016 The Author(s). Disasters © Overseas Development Institute, 2016.

  7. Deuteration as a Means to Tune Crystallinity of Conducting Polymers

    DOE PAGES

    Jakowski, Jacek; Huang, Jingsong; Garashchuk, Sophya; ...

    2017-08-25

    The effects of deuterium isotope substitution on conjugated polymer chain stacking of poly(3-hexylthiophene) is studied in this paper experimentally by X-ray diffraction (XRD) in combination with gel permeation chromatography and theoretically using density functional theory and quantum molecular dynamics. For four P3HT materials with different levels of deuteration (pristine, main-chain deuterated, side-chain deuterated, and fully deuterated), the XRD measurements show that main-chain thiophene deuteration significantly reduces crystallinity, regardless of the side-chain deuteration. The reduction of crystallinity due to the main-chain deuteration is a quantum nuclear effect resulting from a static zero-point vibrational energy combined with a dynamic correlation of themore » dipole fluctuations. The quantum molecular dynamics simulations confirm the interchain correlation of the proton–proton and deuteron–deuteron motions but not of the proton–deuteron motion. Thus and finally, isotopic purity is an important factor affecting stability and properties of conjugated polymer crystals, which should be considered in the design of electronic and spintronic devices.« less

  8. Deuteration as a Means to Tune Crystallinity of Conducting Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakowski, Jacek; Huang, Jingsong; Garashchuk, Sophya

    The effects of deuterium isotope substitution on conjugated polymer chain stacking of poly(3-hexylthiophene) is studied in this paper experimentally by X-ray diffraction (XRD) in combination with gel permeation chromatography and theoretically using density functional theory and quantum molecular dynamics. For four P3HT materials with different levels of deuteration (pristine, main-chain deuterated, side-chain deuterated, and fully deuterated), the XRD measurements show that main-chain thiophene deuteration significantly reduces crystallinity, regardless of the side-chain deuteration. The reduction of crystallinity due to the main-chain deuteration is a quantum nuclear effect resulting from a static zero-point vibrational energy combined with a dynamic correlation of themore » dipole fluctuations. The quantum molecular dynamics simulations confirm the interchain correlation of the proton–proton and deuteron–deuteron motions but not of the proton–deuteron motion. Thus and finally, isotopic purity is an important factor affecting stability and properties of conjugated polymer crystals, which should be considered in the design of electronic and spintronic devices.« less

  9. Thermal form-factor approach to dynamical correlation functions of integrable lattice models

    NASA Astrophysics Data System (ADS)

    Göhmann, Frank; Karbach, Michael; Klümper, Andreas; Kozlowski, Karol K.; Suzuki, Junji

    2017-11-01

    We propose a method for calculating dynamical correlation functions at finite temperature in integrable lattice models of Yang-Baxter type. The method is based on an expansion of the correlation functions as a series over matrix elements of a time-dependent quantum transfer matrix rather than the Hamiltonian. In the infinite Trotter-number limit the matrix elements become time independent and turn into the thermal form factors studied previously in the context of static correlation functions. We make this explicit with the example of the XXZ model. We show how the form factors can be summed utilizing certain auxiliary functions solving finite sets of nonlinear integral equations. The case of the XX model is worked out in more detail leading to a novel form-factor series representation of the dynamical transverse two-point function.

  10. Characterizing the evolution of WISE-selected obscured and unobscured quasars using HOD models.

    NASA Astrophysics Data System (ADS)

    Myers, Adam D.; DiPompeo, Michael A.; Mitra, Kaustav; Hickox, Ryan C.; Chatterjee, Suchetana; Whalen, Kelly

    2018-06-01

    Large-area imaging surveys in the infrared are now beginning to unlock the links between the activity of supermassive black holes and the cosmic evolution of dark matter halos during the significant times when black hole growth is enshrouded in dust. With data from the Wide-Field Infrared Survey Explorer (WISE) and complementary optical photometry, we construct samples of nearly half-a-million obscured and unobscured quasars around redshift 1. We study the dark matter halos of these populations using both angular autocorrelation functions and CMB lensing cross-correlations, carefully characterizing the redshift distribution of the obscured quasar sample using cross-correlations. Independent of our measurement technique, we find that obscured quasars occupy dark matter halos a few times more massive than their unobscured counterparts, despite being matched in luminosity at 12 and 22 microns. Modeling the two-point correlation function using a four-parameter Halo Occupation Distribution (HOD) formalism, we determine that purely optically selected quasars reside in dark matter halos that are about half the mass of WISE-selected obscured quasars, and that satellite fractions are somewhat larger for obscured quasars. We investigate scenarios such as merger-driven fueling and Eddington-dependent obscuration to explore what combinations of physical effects can reproduce our observed halo mass measurements. This work was, in part, supported by NASA ADAP award NNX16AN48G.

  11. Correlation and nonlocality measures as indicators of quantum phase transitions in several critical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altintas, Ferdi, E-mail: ferdialtintas@ibu.edu.tr; Eryigit, Resul, E-mail: resul@ibu.edu.tr

    2012-12-15

    We have investigated the quantum phase transitions in the ground states of several critical systems, including transverse field Ising and XY models as well as XY with multiple spin interactions, XXZ and the collective system Lipkin-Meshkov-Glick models, by using different quantumness measures, such as entanglement of formation, quantum discord, as well as its classical counterpart, measurement-induced disturbance and the Clauser-Horne-Shimony-Holt-Bell function. Measurement-induced disturbance is found to detect the first and second order phase transitions present in these critical systems, while, surprisingly, it is found to fail to signal the infinite-order phase transition present in the XXZ model. Remarkably, the Clauser-Horne-Shimony-Holt-Bellmore » function is found to detect all the phase transitions, even when quantum and classical correlations are zero for the relevant ground state. - Highlights: Black-Right-Pointing-Pointer The ability of correlation measures to detect quantum phase transitions has been studied. Black-Right-Pointing-Pointer Measurement induced disturbance fails to detect the infinite order phase transition. Black-Right-Pointing-Pointer CHSH-Bell function detects all phase transitions even when the bipartite density matrix is uncorrelated.« less

  12. 2D Kac-Moody symmetry of 4D Yang-Mills theory

    DOE PAGES

    He, Temple; Mitra, Prahar; Strominger, Andrew

    2016-10-25

    Scattering amplitudes of any four-dimensional theory with nonabelian gauge group G may be recast as two-dimensional correlation functions on the asymptotic twosphere at null in nity. The soft gluon theorem is shown, for massless theories at the semiclassical level, to be the Ward identity of a holomorphic two-dimensional G-Kac-Moody symmetry acting on these correlation functions. Holomorphic Kac-Moody current insertions are positive helicity soft gluon insertions. Furthermore, the Kac-Moody transformations are a CPT invariant subgroup of gauge transformations which act nontrivially at null in nity and comprise the four-dimensional asymptotic symmetry group.

  13. Four-time 7Li stimulated-echo spectroscopy for the study of dynamic heterogeneities: Application to lithium borate glass.

    PubMed

    Storek, M; Tilly, J F; Jeffrey, K R; Böhmer, R

    2017-09-01

    To study the nature of the nonexponential ionic hopping in solids a pulse sequence was developed that yields four-time stimulated-echo functions of previously inaccessible spin-3/2-nuclei such as 7 Li. It exploits combined Zeeman and octupolar order as longitudinal carrier state. Higher-order correlation functions were successfully generated for natural-abundance and isotopically-enriched lithium diborate glasses. Four-time 7 Li measurements are presented and compared with two-time correlation functions. The results are discussed with reference to approaches devised to quantify the degree of nonexponentiality in glass forming systems and evidence for the occurrence of dynamic heterogeneities and dynamic exchange were found. Additional experiments using the 6 Li species illustrate the challenge posed by subensemble selection when the dipolar interactions are not very much smaller than the quadrupolar ones. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Gluon and Wilson loop TMDs for hadrons of spin ≤ 1

    NASA Astrophysics Data System (ADS)

    Boer, Daniël; Cotogno, Sabrina; van Daal, Tom; Mulders, Piet J.; Signori, Andrea; Zhou, Ya-Jin

    2016-10-01

    In this paper we consider the parametrizations of gluon transverse momentum dependent (TMD) correlators in terms of TMD parton distribution functions (PDFs). These functions, referred to as TMDs, are defined as the Fourier transforms of hadronic matrix elements of nonlocal combinations of gluon fields. The nonlocality is bridged by gauge links, which have characteristic paths (future or past pointing), giving rise to a process dependence that breaks universality. For gluons, the specific correlator with one future and one past pointing gauge link is, in the limit of small x, related to a correlator of a single Wilson loop. We present the parametrization of Wilson loop correlators in terms of Wilson loop TMDs and discuss the relation between these functions and the small- x `dipole' gluon TMDs. This analysis shows which gluon TMDs are leading or suppressed in the small- x limit. We discuss hadronic targets that are unpolarized, vector polarized (relevant for spin-1 /2 and spin-1 hadrons), and tensor polarized (relevant for spin-1 hadrons). The latter are of interest for studies with a future Electron-Ion Collider with polarized deuterons.

  15. Entropy of finite random binary sequences with weak long-range correlations.

    PubMed

    Melnik, S S; Usatenko, O V

    2014-11-01

    We study the N-step binary stationary ergodic Markov chain and analyze its differential entropy. Supposing that the correlations are weak we express the conditional probability function of the chain through the pair correlation function and represent the entropy as a functional of the pair correlator. Since the model uses the two-point correlators instead of the block probability, it makes it possible to calculate the entropy of strings at much longer distances than using standard methods. A fluctuation contribution to the entropy due to finiteness of random chains is examined. This contribution can be of the same order as its regular part even at the relatively short lengths of subsequences. A self-similar structure of entropy with respect to the decimation transformations is revealed for some specific forms of the pair correlation function. Application of the theory to the DNA sequence of the R3 chromosome of Drosophila melanogaster is presented.

  16. Entropy of finite random binary sequences with weak long-range correlations

    NASA Astrophysics Data System (ADS)

    Melnik, S. S.; Usatenko, O. V.

    2014-11-01

    We study the N -step binary stationary ergodic Markov chain and analyze its differential entropy. Supposing that the correlations are weak we express the conditional probability function of the chain through the pair correlation function and represent the entropy as a functional of the pair correlator. Since the model uses the two-point correlators instead of the block probability, it makes it possible to calculate the entropy of strings at much longer distances than using standard methods. A fluctuation contribution to the entropy due to finiteness of random chains is examined. This contribution can be of the same order as its regular part even at the relatively short lengths of subsequences. A self-similar structure of entropy with respect to the decimation transformations is revealed for some specific forms of the pair correlation function. Application of the theory to the DNA sequence of the R3 chromosome of Drosophila melanogaster is presented.

  17. Carboxyhemoglobin - the forgotten parameter of neonatal hyperbilirubinemia.

    PubMed

    Bailey, Douggl G N; Fuchs, Hans; Hentschel, Roland

    2017-07-26

    Neonatal hyperbilirubinemia is influenced by a wide variety of factors, one of which is hemolysis. Serious hyperbilirubinemia may lead to a kernicterus with detrimental neurologic sequelae. Patients suffering from hemolytic disease have a higher risk of developing kernicterus. Carbon monoxide (CO), a byproduct of hemolysis or heme degradation, was described by Sjöstrand in the 1960s. It is transported as carboxyhemoglobin (COHb) and exhaled through the lungs. We were interested in a potential correlation between COHb and total serum bilirubin (TSB) and the time course of both parameters. We used a point of care (POC) blood gas analyzer and did a retrospective analysis of bilirubin and COHb data collected over a 60-day period. An arbitrary cut-off point set at 2% COHb identified four patients with hemolytic disease of different origins who required phototherapy. In one patient with atypical hemolytic uremic syndrome (aHUS), COHb preceded the rise in bilirubin by about 2 days. Despite this displacement, there was a moderately good correlation of COHb with TSB levels <15 mg/dL (257 μmol/L) (r2: 0.80) and direct bilirubin (r2: 0.78) in the first patient. For all the four patients and all time points the correlation was slightly lower (r2: 0.59). COHb might be useful as a marker for high hemoglobin turnover to allow an earlier identification of newborns at risk to a rapid rise in bilirubin.

  18. Objective voice and speech analysis of persons with chronic hoarseness by prosodic analysis of speech samples.

    PubMed

    Haderlein, Tino; Döllinger, Michael; Matoušek, Václav; Nöth, Elmar

    2016-10-01

    Automatic voice assessment is often performed using sustained vowels. In contrast, speech analysis of read-out texts can be applied to voice and speech assessment. Automatic speech recognition and prosodic analysis were used to find regression formulae between automatic and perceptual assessment of four voice and four speech criteria. The regression was trained with 21 men and 62 women (average age 49.2 years) and tested with another set of 24 men and 49 women (48.3 years), all suffering from chronic hoarseness. They read the text 'Der Nordwind und die Sonne' ('The North Wind and the Sun'). Five voice and speech therapists evaluated the data on 5-point Likert scales. Ten prosodic and recognition accuracy measures (features) were identified which describe all the examined criteria. Inter-rater correlation within the expert group was between r = 0.63 for the criterion 'match of breath and sense units' and r = 0.87 for the overall voice quality. Human-machine correlation was between r = 0.40 for the match of breath and sense units and r = 0.82 for intelligibility. The perceptual ratings of different criteria were highly correlated with each other. Likewise, the feature sets modeling the criteria were very similar. The automatic method is suitable for assessing chronic hoarseness in general and for subgroups of functional and organic dysphonia. In its current version, it is almost as reliable as a randomly picked rater from a group of voice and speech therapists.

  19. Mapping the Structure-Function Relationship in Glaucoma and Healthy Patients Measured with Spectralis OCT and Humphrey Perimetry

    PubMed Central

    Muñoz–Negrete, Francisco J.; Oblanca, Noelia; Rebolleda, Gema

    2018-01-01

    Purpose To study the structure-function relationship in glaucoma and healthy patients assessed with Spectralis OCT and Humphrey perimetry using new statistical approaches. Materials and Methods Eighty-five eyes were prospectively selected and divided into 2 groups: glaucoma (44) and healthy patients (41). Three different statistical approaches were carried out: (1) factor analysis of the threshold sensitivities (dB) (automated perimetry) and the macular thickness (μm) (Spectralis OCT), subsequently applying Pearson's correlation to the obtained regions, (2) nonparametric regression analysis relating the values in each pair of regions that showed significant correlation, and (3) nonparametric spatial regressions using three models designed for the purpose of this study. Results In the glaucoma group, a map that relates structural and functional damage was drawn. The strongest correlation with visual fields was observed in the peripheral nasal region of both superior and inferior hemigrids (r = 0.602 and r = 0.458, resp.). The estimated functions obtained with the nonparametric regressions provided the mean sensitivity that corresponds to each given macular thickness. These functions allowed for accurate characterization of the structure-function relationship. Conclusions Both maps and point-to-point functions obtained linking structure and function damage contribute to a better understanding of this relationship and may help in the future to improve glaucoma diagnosis. PMID:29850196

  20. Counting conformal correlators

    NASA Astrophysics Data System (ADS)

    Kravchuk, Petr; Simmons-Duffin, David

    2018-02-01

    We introduce simple group-theoretic techniques for classifying conformallyinvariant tensor structures. With them, we classify tensor structures of general n-point functions of non-conserved operators, and n ≥ 4-point functions of general conserved currents, with or without permutation symmetries, and in any spacetime dimension d. Our techniques are useful for bootstrap applications. The rules we derive simultaneously count tensor structures for flat-space scattering amplitudes in d + 1 dimensions.

  1. Study of the time evolution of correlation functions of the transverse Ising chain with ring frustration by perturbative theory

    NASA Astrophysics Data System (ADS)

    Zheng, Zhen-Yu; Li, Peng

    2018-04-01

    We consider the time evolution of two-point correlation function in the transverse-field Ising chain (TFIC) with ring frustration. The time-evolution procedure we investigated is equivalent to a quench process in which the system is initially prepared in a classical kink state and evolves according to the time-dependent Schrödinger equation. Within a framework of perturbative theory (PT) in the strong kink phase, the evolution of the correlation function is disclosed to demonstrate a qualitatively new behavior in contrast to the traditional case without ring frustration.

  2. Separating non-diffuse component from ambient seismic noise cross-correlation in southern California­­

    NASA Astrophysics Data System (ADS)

    Liu, X.; Beroza, G. C.; Nakata, N.

    2017-12-01

    Cross-correlation of fully diffuse wavefields provides Green's function between receivers, although the ambient noise field in the real world contains both diffuse and non-diffuse fields. The non-diffuse field potentially degrades the correlation functions. We attempt to blindly separate the diffuse and the non-diffuse components from cross-correlations of ambient seismic noise and analyze the potential bias caused by the non-diffuse components. We compute the 9-component noise cross-correlations for 17 stations in southern California. For the Rayleigh wave components, we assume that the cross-correlation of multiply scattered waves (diffuse component) is independent from the cross-correlation of ocean microseismic quasi-point source responses (non-diffuse component), and the cross-correlation function of ambient seismic data is the sum of both components. Thus we can blindly separate the non-diffuse component due to physical point sources and the more diffuse component due to cross-correlation of multiply scattered noise based on their statistical independence. We also perform beamforming over different frequency bands for the cross-correlations before and after the separation, and we find that the decomposed Rayleigh wave represents more coherent features among all Rayleigh wave polarization cross-correlation components. We show that after separating the non-diffuse component, the Frequency-Time Analysis results are less ambiguous. In addition, we estimate the bias in phase velocity on the raw cross-correlation data due to the non-diffuse component. We also apply this technique to a few borehole stations in Groningen, the Netherlands, to demonstrate its applicability in different instrument/geology settings.

  3. Dark Energy Survey Year 1 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, T.M.C.; et al.

    We present cosmological results from a combined analysis of galaxy clustering and weak gravitational lensing, using 1321 degmore » $^2$ of $griz$ imaging data from the first year of the Dark Energy Survey (DES Y1). We combine three two-point functions: (i) the cosmic shear correlation function of 26 million source galaxies in four redshift bins, (ii) the galaxy angular autocorrelation function of 650,000 luminous red galaxies in five redshift bins, and (iii) the galaxy-shear cross-correlation of luminous red galaxy positions and source galaxy shears. To demonstrate the robustness of these results, we use independent pairs of galaxy shape, photometric redshift estimation and validation, and likelihood analysis pipelines. To prevent confirmation bias, the bulk of the analysis was carried out while blind to the true results; we describe an extensive suite of systematics checks performed and passed during this blinded phase. The data are modeled in flat $$\\Lambda$$CDM and $w$CDM cosmologies, marginalizing over 20 nuisance parameters, varying 6 (for $$\\Lambda$$CDM) or 7 (for $w$CDM) cosmological parameters including the neutrino mass density and including the 457 $$\\times$$ 457 element analytic covariance matrix. We find consistent cosmological results from these three two-point functions, and from their combination obtain $$S_8 \\equiv \\sigma_8 (\\Omega_m/0.3)^{0.5} = 0.783^{+0.021}_{-0.025}$$ and $$\\Omega_m = 0.264^{+0.032}_{-0.019}$$ for $$\\Lambda$$CDM for $w$CDM, we find $$S_8 = 0.794^{+0.029}_{-0.027}$$, $$\\Omega_m = 0.279^{+0.043}_{-0.022}$$, and $$w=-0.80^{+0.20}_{-0.22}$$ at 68% CL. The precision of these DES Y1 results rivals that from the Planck cosmic microwave background measurements, allowing a comparison of structure in the very early and late Universe on equal terms. Although the DES Y1 best-fit values for $$S_8$$ and $$\\Omega_m$$ are lower than the central values from Planck ...« less

  4. On the saturation of the refractive index structure function. II - Influence of the correlation length on astronomical 'seeing'

    NASA Technical Reports Server (NTRS)

    Venkatakrishnan, P.

    1987-01-01

    A physical length scale in the wavefront corresponding to the parameter (r sub 0) characterizing the loss in detail in a long exposure image is identified, and the influence of the correlation scale of turbulence as r sub 0 approaches this scale is shown. Allowing for the effect of 2-point correlations in the fluctuations of the refractive index, Venkatakrishnan and Chatterjee (1987) proposed a modified law for the phase structure function. It is suggested that the departure of the phase structure function from the 5/3 power law for length scales in the wavefront approaching the correlation scale of turbulence may lead to better 'seeing' at longer wavelengths.

  5. The functional significance of EEG microstates--Associations with modalities of thinking.

    PubMed

    Milz, P; Faber, P L; Lehmann, D; Koenig, T; Kochi, K; Pascual-Marqui, R D

    2016-01-15

    The momentary, global functional state of the brain is reflected by its electric field configuration. Cluster analytical approaches consistently extracted four head-surface brain electric field configurations that optimally explain the variance of their changes across time in spontaneous EEG recordings. These four configurations are referred to as EEG microstate classes A, B, C, and D and have been associated with verbal/phonological, visual, subjective interoceptive-autonomic processing, and attention reorientation, respectively. The present study tested these associations via an intra-individual and inter-individual analysis approach. The intra-individual approach tested the effect of task-induced increased modality-specific processing on EEG microstate parameters. The inter-individual approach tested the effect of personal modality-specific parameters on EEG microstate parameters. We obtained multichannel EEG from 61 healthy, right-handed, male students during four eyes-closed conditions: object-visualization, spatial-visualization, verbalization (6 runs each), and resting (7 runs). After each run, we assessed participants' degrees of object-visual, spatial-visual, and verbal thinking using subjective reports. Before and after the recording, we assessed modality-specific cognitive abilities and styles using nine cognitive tests and two questionnaires. The EEG of all participants, conditions, and runs was clustered into four classes of EEG microstates (A, B, C, and D). RMANOVAs, ANOVAs and post-hoc paired t-tests compared microstate parameters between conditions. TANOVAs compared microstate class topographies between conditions. Differences were localized using eLORETA. Pearson correlations assessed interrelationships between personal modality-specific parameters and EEG microstate parameters during no-task resting. As hypothesized, verbal as opposed to visual conditions consistently affected the duration, occurrence, and coverage of microstate classes A and B. Contrary to associations suggested by previous reports, parameters were increased for class A during visualization, and class B during verbalization. In line with previous reports, microstate D parameters were increased during no-task resting compared to the three internal, goal-directed tasks. Topographic differences between conditions included particular sub-regions of components of the metabolic default mode network. Modality-specific personal parameters did not consistently correlate with microstate parameters except verbal cognitive style which correlated negatively with microstate class A duration and positively with class C occurrence. This is the first study that aimed to induce EEG microstate class parameter changes based on their hypothesized functional significance. Beyond the associations of microstate classes A and B with visual and verbal processing, respectively, our results suggest that a finely-tuned interplay between all four EEG microstate classes is necessary for the continuous formation of visual and verbal thoughts. Our results point to the possibility that the EEG microstate classes may represent the head-surface measured activity of intra-cortical sources primarily exhibiting inhibitory functions. However, additional studies are needed to verify and elaborate on this hypothesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Lensing-induced morphology changes in CMB temperature maps in modified gravity theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munshi, D.; Coles, P.; Hu, B.

    2016-04-01

    Lensing of the Cosmic Microwave Background (CMB) changes the morphology of pattern of temperature fluctuations, so topological descriptors such as Minkowski Functionals can probe the gravity model responsible for the lensing. We show how the recently introduced two-to-two and three-to-one kurt-spectra (and their associated correlation functions), which depend on the power spectrum of the lensing potential, can be used to probe modified gravity theories such as f ( R ) theories of gravity and quintessence models. We also investigate models based on effective field theory, which include the constant-Ω model, and low-energy Hořava theories. Estimates of the cumulative signal-to-noise formore » detection of lensing-induced morphology changes, reaches O(10{sup 3}) for the future planned CMB polarization mission COrE{sup +}. Assuming foreground removal is possible to ℓ{sub max}=3000, we show that many modified gravity theories can be rejected with a high level of significance, making this technique comparable in power to galaxy weak lensing or redshift surveys. These topological estimators are also useful in distinguishing lensing from other scattering secondaries at the level of the four-point function or trispectrum. Examples include the kinetic Sunyaev-Zel'dovich (kSZ) effect which shares, with lensing, a lack of spectral distortion. We also discuss the complication of foreground contamination from unsubtracted point sources.« less

  7. THREE-POINT PHASE CORRELATIONS: A NEW MEASURE OF NONLINEAR LARGE-SCALE STRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolstenhulme, Richard; Bonvin, Camille; Obreschkow, Danail

    2015-05-10

    We derive an analytical expression for a novel large-scale structure observable: the line correlation function. The line correlation function, which is constructed from the three-point correlation function of the phase of the density field, is a robust statistical measure allowing the extraction of information in the nonlinear and non-Gaussian regime. We show that, in perturbation theory, the line correlation is sensitive to the coupling kernel F{sub 2}, which governs the nonlinear gravitational evolution of the density field. We compare our analytical expression with results from numerical simulations and find a 1σ agreement for separations r ≳ 30 h{sup −1} Mpc.more » Fitting formulae for the power spectrum and the nonlinear coupling kernel at small scales allow us to extend our prediction into the strongly nonlinear regime, where we find a 1σ agreement with the simulations for r ≳ 2 h{sup −1} Mpc. We discuss the advantages of the line correlation relative to standard statistical measures like the bispectrum. Unlike the latter, the line correlation is independent of the bias, in the regime where the bias is local and linear. Furthermore, the variance of the line correlation is independent of the Gaussian variance on the modulus of the density field. This suggests that the line correlation can probe more precisely the nonlinear regime of gravity, with less contamination from the power spectrum variance.« less

  8. Evaluation of limited sampling models for prediction of oral midazolam AUC for CYP3A phenotyping and drug interaction studies.

    PubMed

    Mueller, Silke C; Drewelow, Bernd

    2013-05-01

    The area under the concentration-time curve (AUC) after oral midazolam administration is commonly used for cytochrome P450 (CYP) 3A phenotyping studies. The aim of this investigation was to evaluate a limited sampling strategy for the prediction of AUC with oral midazolam. A total of 288 concentration-time profiles from 123 healthy volunteers who participated in four previously performed drug interaction studies with intense sampling after a single oral dose of 7.5 mg midazolam were available for evaluation. Of these, 45 profiles served for model building, which was performed by stepwise multiple linear regression, and the remaining 243 datasets served for validation. Mean prediction error (MPE), mean absolute error (MAE) and root mean squared error (RMSE) were calculated to determine bias and precision The one- to four-sampling point models with the best coefficient of correlation were the one-sampling point model (8 h; r (2) = 0.84), the two-sampling point model (0.5 and 8 h; r (2) = 0.93), the three-sampling point model (0.5, 2, and 8 h; r (2) = 0.96), and the four-sampling point model (0.5,1, 2, and 8 h; r (2) = 0.97). However, the one- and two-sampling point models were unable to predict the midazolam AUC due to unacceptable bias and precision. Only the four-sampling point model predicted the very low and very high midazolam AUC of the validation dataset with acceptable precision and bias. The four-sampling point model was also able to predict the geometric mean ratio of the treatment phase over the baseline (with 90 % confidence interval) results of three drug interaction studies in the categories of strong, moderate, and mild induction, as well as no interaction. A four-sampling point limited sampling strategy to predict the oral midazolam AUC for CYP3A phenotyping is proposed. The one-, two- and three-sampling point models were not able to predict midazolam AUC accurately.

  9. The large-scale three-point correlation function of the SDSS BOSS DR12 CMASS galaxies

    NASA Astrophysics Data System (ADS)

    Slepian, Zachary; Eisenstein, Daniel J.; Beutler, Florian; Chuang, Chia-Hsun; Cuesta, Antonio J.; Ge, Jian; Gil-Marín, Héctor; Ho, Shirley; Kitaura, Francisco-Shu; McBride, Cameron K.; Nichol, Robert C.; Percival, Will J.; Rodríguez-Torres, Sergio; Ross, Ashley J.; Scoccimarro, Román; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana

    2017-06-01

    We report a measurement of the large-scale three-point correlation function of galaxies using the largest data set for this purpose to date, 777 202 luminous red galaxies in the Sloan Digital Sky Survey Baryon Acoustic Oscillation Spectroscopic Survey (SDSS BOSS) DR12 CMASS sample. This work exploits the novel algorithm of Slepian & Eisenstein to compute the multipole moments of the 3PCF in O(N^2) time, with N the number of galaxies. Leading-order perturbation theory models the data well in a compressed basis where one triangle side is integrated out. We also present an accurate and computationally efficient means of estimating the covariance matrix. With these techniques, the redshift-space linear and non-linear bias are measured, with 2.6 per cent precision on the former if σ8 is fixed. The data also indicate a 2.8σ preference for the BAO, confirming the presence of BAO in the three-point function.

  10. Dimensionality of Helicopter Parenting and Relations to Emotional, Decision-Making, and Academic Functioning in Emerging Adults.

    PubMed

    Luebbe, Aaron M; Mancini, Kathryn J; Kiel, Elizabeth J; Spangler, Brooke R; Semlak, Julie L; Fussner, Lauren M

    2016-08-24

    The current study tests the underlying structure of a multidimensional construct of helicopter parenting (HP), assesses reliability of the construct, replicates past relations of HP to poor emotional functioning, and expands the literature to investigate links of HP to emerging adults' decision-making and academic functioning. A sample of 377 emerging adults (66% female; ages 17-30; 88% European American) were administered several items assessing HP as well as measures of other parenting behaviors, depression, anxiety, decision-making style, grade point average, and academic functioning. Exploratory factor analysis results suggested a four-factor, 23-item measure that encompassed varying levels of parental involvement in the personal and professional lives of their children. A bifactor model was also fit to the data and suggested the presence of a reliable overarching HP factor in addition to three reliable subfactors. The fourth subfactor was not reliable and item variances were subsumed by the general HP factor. HP was found to be distinct from, but correlated in expected ways with, other reports of parenting behavior. HP was also associated with poorer functioning in emotional functioning, decision making, and academic functioning. Parents' information-seeking behaviors, when done in absences of other HP behaviors, were associated with better decision making and academic functioning. © The Author(s) 2016.

  11. Binder model system to be used for determination of prepolymer functionality

    NASA Technical Reports Server (NTRS)

    Martinelli, F. J.; Hodgkin, J. H.

    1971-01-01

    Development of a method for determining the functionality distribution of prepolymers used for rocket binders is discussed. Research has been concerned with accurately determining the gel point of a model polyester system containing a single trifunctional crosslinker, and the application of these methods to more complicated model systems containing a second trifunctional crosslinker, monofunctional ingredients, or a higher functionality crosslinker. Correlations of observed with theoretical gel points for these systems would allow the methods to be applied directly to prepolymers.

  12. Studies in astronomical time series analysis. III - Fourier transforms, autocorrelation functions, and cross-correlation functions of unevenly spaced data

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.

    1989-01-01

    This paper develops techniques to evaluate the discrete Fourier transform (DFT), the autocorrelation function (ACF), and the cross-correlation function (CCF) of time series which are not evenly sampled. The series may consist of quantized point data (e.g., yes/no processes such as photon arrival). The DFT, which can be inverted to recover the original data and the sampling, is used to compute correlation functions by means of a procedure which is effectively, but not explicitly, an interpolation. The CCF can be computed for two time series not even sampled at the same set of times. Techniques for removing the distortion of the correlation functions caused by the sampling, determining the value of a constant component to the data, and treating unequally weighted data are also discussed. FORTRAN code for the Fourier transform algorithm and numerical examples of the techniques are given.

  13. Phase transition in 2-d system of quadrupoles on square lattice with anisotropic field

    NASA Astrophysics Data System (ADS)

    Sallabi, A. K.; Alkhttab, M.

    2014-12-01

    Monte Carlo method is used to study a simple model of two-dimensional interacting quadrupoles on ionic square lattice with anisotropic strength provided by the ionic lattice. Order parameter, susceptibility and correlation function data, show that this system form an ordered structure with p(2×1) symmetry at low temperature. The p(2×1) structure undergoes an order-disorder phase transition into disordered (1×1) phase at 8.3K. The two-point correlation function show exponential dependence on distance both above and below the transition temperature. At Tc the two-point correlation function shows a power law dependence on distance, e.g. C(r) ~ 1η. The value of the exponent η at Tc shows small deviation from the Ising value and indicates that this system falls into the same universality class as the XY model with cubic anisotropy. This model can be applied to prototypical quadrupoles physisorbed systems as N2 on NaCl(100).

  14. SU-E-T-72: A Retrospective Correlation Analysis On Dose-Volume Control Points and Treatment Outcomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, A; Nohadani, O; Refaat, T

    2015-06-15

    Purpose: To quantify correlation between dose-volume control points and treatment outcomes. Specifically, two outcomes are analyzed: occurrence of radiation induced dysphagia and target complications. The results inform the treatment planning process when competing dose-volume criteria requires relaxations. Methods: 32 patients, treated with whole-field sequential intensity modulated radiation therapy during 2009–2010 period, are considered for this study. Acute dysphagia that is categorized into 3 grades is observed on all patients. 3 patients are observed in grade 1, 17 patients in grade 2, and 12 patients in grade 3. Ordinal logistic regression is employed to establish correlations between grades of dysphagia andmore » dose to cervico-thoracic esophagus. Particularly, minimum (Dmin), mean (Dmean), and maximum (Dmax) dose control points are analyzed. Additionally, target complication, which includes local-regional recurrence and/or distant metastasis, is observed on 4 patients. Binary logistic regression is used to quantify correlation between target complication and four dose control points. Namely, ICRU recommended dose control points, D2, D50, D95, and D98 are analyzed. Results: For correlation with dysphagia, Dmin on cervico-thoracic esophagus is statistically significant (p-value = 0.005). Additionally, Dmean on cervico-thoracic esophagus is also significant in association with dysphagia (p-value = 0.012). However, no correlation was observed between Dmax and dysphagia (p-value = 0.263). For target complications, D50 on the target is a statistically significant dose control point (p-value = 0.032). No correlations were observed between treatment complications and D2 (p-value = 0.866), D95 (p-value = 0.750), and D98 (p-value = 0.710) on the target. Conclusion: Significant correlations are observed between radiation induced dysphagia and Dmean (and Dmin) to cervico-thoracic esophagus. Additionally, correlation between target complications and median dose to target (D50) is observed. Quantification of these correlations can inform treatment planners when any competing objectives requires relaxation of target D50 or Dmean (or Dmin) to cervico-thoracic esophagus.« less

  15. Image Processing, Coding, and Compression with Multiple-Point Impulse Response Functions.

    NASA Astrophysics Data System (ADS)

    Stossel, Bryan Joseph

    1995-01-01

    Aspects of image processing, coding, and compression with multiple-point impulse response functions are investigated. Topics considered include characterization of the corresponding random-walk transfer function, image recovery for images degraded by the multiple-point impulse response, and the application of the blur function to image coding and compression. It is found that although the zeros of the real and imaginary parts of the random-walk transfer function occur in continuous, closed contours, the zeros of the transfer function occur at isolated spatial frequencies. Theoretical calculations of the average number of zeros per area are in excellent agreement with experimental results obtained from computer counts of the zeros. The average number of zeros per area is proportional to the standard deviations of the real part of the transfer function as well as the first partial derivatives. Statistical parameters of the transfer function are calculated including the mean, variance, and correlation functions for the real and imaginary parts of the transfer function and their corresponding first partial derivatives. These calculations verify the assumptions required in the derivation of the expression for the average number of zeros. Interesting results are found for the correlations of the real and imaginary parts of the transfer function and their first partial derivatives. The isolated nature of the zeros in the transfer function and its characteristics at high spatial frequencies result in largely reduced reconstruction artifacts and excellent reconstructions are obtained for distributions of impulses consisting of 25 to 150 impulses. The multiple-point impulse response obscures original scenes beyond recognition. This property is important for secure transmission of data on many communication systems. The multiple-point impulse response enables the decoding and restoration of the original scene with very little distortion. Images prefiltered by the random-walk transfer function yield greater compression ratios than are obtained for the original scene. The multiple-point impulse response decreases the bit rate approximately 40-70% and affords near distortion-free reconstructions. Due to the lossy nature of transform-based compression algorithms, noise reduction measures must be incorporated to yield acceptable reconstructions after decompression.

  16. Equilibration and GGE in interacting-to-free quantum quenches in dimensions d\\gt 1

    NASA Astrophysics Data System (ADS)

    Sotiriadis, Spyros; Martelloni, Gabriele

    2016-03-01

    Ground states ofinteracting QFTs are non-Gaussian states, i.e. their connected n-point correlation functions do not vanish for n\\gt 2, in contrast to the free QFT case. We show that, when the ground state of an interacting QFT evolves under a free massive QFT for a long time (a scenario that can be realised by a quantum quench), the connected correlation functions decay and all local physical observables equilibrate to values that are given by a Gaussian density matrix that retains memory only of the two-point initial correlation function. The argument hinges upon the fundamental physical principle of cluster decomposition, which is valid for the ground state of a general QFT. An analogous result was already known to be valid in the case of d = 1 spatial dimensions, where it is a special case of the so-called generalised Gibbs ensemble (GGE) hypothesis, and we now generalise it to higher dimensions. Moreover, in the case of massless free evolution, despite the fact that the evolution may lead not to equilibration but instead to unbounded increase of correlations with time, the GGE gives correctly the leading-order asymptotic behaviour of correlation functions in the thermodynamic and large time limit. The demonstration is performed in the context of a bosonic relativistic QFT, but the arguments apply more generally.

  17. Covariance analyses of satellite-derived mesoscale wind fields

    NASA Technical Reports Server (NTRS)

    Maddox, R. A.; Vonder Haar, T. H.

    1979-01-01

    Statistical structure functions have been computed independently for nine satellite-derived mesoscale wind fields that were obtained on two different days. Small cumulus clouds were tracked at 5 min intervals, but since these clouds occurred primarily in the warm sectors of midlatitude cyclones the results cannot be considered representative of the circulations within cyclones in general. The field structure varied considerably with time and was especially affected if mesoscale features were observed. The wind fields on the 2 days studied were highly anisotropic with large gradients in structure occurring approximately normal to the mean flow. Structure function calculations for the combined set of satellite winds were used to estimate random error present in the fields. It is concluded for these data that the random error in vector winds derived from cumulus cloud tracking using high-frequency satellite data is less than 1.75 m/s. Spatial correlation functions were also computed for the nine data sets. Normalized correlation functions were considerably different for u and v components and decreased rapidly as data point separation increased for both components. The correlation functions for transverse and longitudinal components decreased less rapidly as data point separation increased.

  18. CONSTRAINTS ON SPATIAL VARIATIONS IN THE FINE-STRUCTURE CONSTANT FROM PLANCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Bryan, Jon; Smidt, Joseph; De Bernardis, Francesco

    2015-01-01

    We use the cosmic microwave background (CMB) anisotropy data from Planck to constrain the spatial fluctuations of the fine-structure constant α at a redshift of 1100. We use a quadratic estimator to measure the four-point correlation function of the CMB temperature anisotropies and extract the angular power spectrum fine-structure constant spatial variations projected along the line of sight at the last scattering surface. At tens of degree angular scales and above, we constrain the fractional rms fluctuations of the fine-structure constant to be (δα/α){sub rms} < 3.4 × 10{sup –3} at the 68% confidence level. We find no evidence formore » a spatially varying α at a redshift of 10{sup 3}.« less

  19. Dark Energy Survey Year 1 Results: Methodology and Projections for Joint Analysis of Galaxy Clustering, Galaxy Lensing, and CMB Lensing Two-point Functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giannantonio, T.; et al.

    Optical imaging surveys measure both the galaxy density and the gravitational lensing-induced shear fields across the sky. Recently, the Dark Energy Survey (DES) collaboration used a joint fit to two-point correlations between these observables to place tight constraints on cosmology (DES Collaboration et al. 2017). In this work, we develop the methodology to extend the DES Collaboration et al. (2017) analysis to include cross-correlations of the optical survey observables with gravitational lensing of the cosmic microwave background (CMB) as measured by the South Pole Telescope (SPT) and Planck. Using simulated analyses, we show how the resulting set of five two-pointmore » functions increases the robustness of the cosmological constraints to systematic errors in galaxy lensing shear calibration. Additionally, we show that contamination of the SPT+Planck CMB lensing map by the thermal Sunyaev-Zel'dovich effect is a potentially large source of systematic error for two-point function analyses, but show that it can be reduced to acceptable levels in our analysis by masking clusters of galaxies and imposing angular scale cuts on the two-point functions. The methodology developed here will be applied to the analysis of data from the DES, the SPT, and Planck in a companion work.« less

  20. Evaluation of Denoising Strategies to Address Motion-Correlated Artifacts in Resting-State Functional Magnetic Resonance Imaging Data from the Human Connectome Project

    PubMed Central

    Kandala, Sridhar; Nolan, Dan; Laumann, Timothy O.; Power, Jonathan D.; Adeyemo, Babatunde; Harms, Michael P.; Petersen, Steven E.; Barch, Deanna M.

    2016-01-01

    Abstract Like all resting-state functional connectivity data, the data from the Human Connectome Project (HCP) are adversely affected by structured noise artifacts arising from head motion and physiological processes. Functional connectivity estimates (Pearson's correlation coefficients) were inflated for high-motion time points and for high-motion participants. This inflation occurred across the brain, suggesting the presence of globally distributed artifacts. The degree of inflation was further increased for connections between nearby regions compared with distant regions, suggesting the presence of distance-dependent spatially specific artifacts. We evaluated several denoising methods: censoring high-motion time points, motion regression, the FMRIB independent component analysis-based X-noiseifier (FIX), and mean grayordinate time series regression (MGTR; as a proxy for global signal regression). The results suggest that FIX denoising reduced both types of artifacts, but left substantial global artifacts behind. MGTR significantly reduced global artifacts, but left substantial spatially specific artifacts behind. Censoring high-motion time points resulted in a small reduction of distance-dependent and global artifacts, eliminating neither type. All denoising strategies left differences between high- and low-motion participants, but only MGTR substantially reduced those differences. Ultimately, functional connectivity estimates from HCP data showed spatially specific and globally distributed artifacts, and the most effective approach to address both types of motion-correlated artifacts was a combination of FIX and MGTR. PMID:27571276

  1. Scattering amplitude and bosonization duality in general Chern-Simons vector models

    NASA Astrophysics Data System (ADS)

    Yokoyama, Shuichi

    2016-09-01

    We present the exact large N calculus of four point functions in general Chern-Simons bosonic and fermionic vector models. Applying the LSZ formula to the four point function we determine the two body scattering amplitudes in these theories taking a special care for a non-analytic term to achieve unitarity in the singlet channel. We show that the S-matrix enjoys the bosonization duality, an unusual crossing relation and a non-relativistic reduction to Aharonov-Bohm scattering. We also argue that the S-matrix develops a pole in a certain range of coupling constants, which disappears in the range where the theory reduces to the Chern-Simons theory interacting with free fermions.

  2. Analysis/forecast experiments with a flow-dependent correlation function using FGGE data

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Bloom, S. C.; Carus, H.; Nestler, M. S.

    1986-01-01

    The use of a flow-dependent correlation function to improve the accuracy of an optimum interpolation (OI) scheme is examined. The development of the correlation function for the OI analysis scheme used for numerical weather prediction is described. The scheme uses a multivariate surface analysis over the oceans to model the pressure-wind error cross-correlation and it has the ability to use an error correlation function that is flow- and geographically-dependent. A series of four-day data assimilation experiments, conducted from January 5-9, 1979, were used to investigate the effect of the different features of the OI scheme (error correlation) on forecast skill for the barotropic lows and highs. The skill of the OI was compared with that of a successive correlation method (SCM) of analysis. It is observed that the largest difference in the correlation statistics occurred in barotropic and baroclinic lows and highs. The comparison reveals that the OI forecasts were more accurate than the SCM forecasts.

  3. Correlation between physics A-levels/A-levels and degree performance

    NASA Astrophysics Data System (ADS)

    Chadwick, Roy

    1985-09-01

    The author presents an analysis of 178 students who left Solihull Sixth form College between 1975 and 1981 to do a degree in physics (approximately one third) or engineering (approximately two thirds) at university or polytechnic. The first table is an analysis of physics A-level grade and degree performance; the second table an analysis of the points total for physics A-level plus maths A-level (five for A, four for B, etc.), against degree performances, and the final table an analysis of the points total for physics A-level plus maths A-level plus third A-level (again five for A, four for B, etc.), against degree performance.

  4. Modulational Instability of Cylindrical and Spherical NLS Equations. Statistical Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grecu, A. T.; Grecu, D.; Visinescu, Anca

    2010-01-21

    The modulational (Benjamin-Feir) instability for cylindrical and spherical NLS equations (c/s NLS equations) is studied using a statistical approach (SAMI). A kinetic equation for a two-point correlation function is written and analyzed using the Wigner-Moyal transform. The linear stability of the Fourier transform of the two-point correlation function is studied and an implicit integral form for the dispersion relation is found. This is solved for different expressions of the initial spectrum (delta-spectrum, Lorentzian, Gaussian), and in the case of a Lorentzian spectrum the total growth of the instability is calculated. The similarities and differences with the usual one-dimensional NLS equationmore » are emphasized.« less

  5. Nucleon Axial and Electromagnetic Form Factors

    NASA Astrophysics Data System (ADS)

    Jang, Yong-Chull; Bhattacharya, Tanmoy; Gupta, Rajan; Lin, Huey-Wen; Yoon, Boram

    2018-03-01

    We present results for the isovector axial, induced pseudoscalar, electric, and magnetic form factors of the nucleon. The calculations were done using 2 + 1 + 1-flavor HISQ ensembles generated by the MILC collaboration with lattice spacings a ≈ 0.12, 0.09, 0.06 fm and pion masses Mπ ≈ 310, 220, 130 MeV. Excited-states contamination is controlled by using four-state fits to two-point correlators and by comparing two-versus three-states in three-point correlators. The Q2 behavior is analyzed using the model independent z-expansion and the dipole ansatz. Final results for the charge radii and magnetic moment are obtained using a simultaneous fit in Mπ, lattice spacing a and finite volume.

  6. Evidence for biasing in the CfA survey

    NASA Technical Reports Server (NTRS)

    Hamilton, A. J. S.

    1988-01-01

    Intrinsically bright galaxies appear systematically more correlated than faint galaxies in the Center for Astrophysics redshift survey. The amplification of the two-point correlation function behaves exponentially with luminosity, being essentially flat up to the knee of the luminosity function, then increasing markedly. The amplification reaches a factor of 3.5e + or - 0.4 in the very brightest galaxies. The effect is dominated by spirals rather than ellipticals, so that the correlation function of bright spirals becomes comparable to that of normal ellipticals. Similar results are obtained whether the correlation function is measured in two or three dimensions. The effect persists to separations of a correlation length or more, and is not confined to the cores of the Virgo, Coma, and Abell 1367 clusters, suggesting that the effect is caused by biasing, that is, galaxies kindle preferentially in more clustered regions, rather than by gravitational relaxation.

  7. Seasonal variation in denitrification and dissimilatory nitrate reduction to ammonia process rates and corresponding key functional genes along an estuarine nitrate gradient

    PubMed Central

    Smith, Cindy J.; Dong, Liang F.; Wilson, John; Stott, Andrew; Osborn, A. Mark; Nedwell, David B.

    2015-01-01

    This research investigated spatial-temporal variation in benthic bacterial community structure, rates of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) processes and abundances of corresponding genes and transcripts at three sites—the estuary-head, mid-estuary and the estuary mouth (EM) along the nitrate gradient of the Colne estuary over an annual cycle. Denitrification rates declined down the estuary, while DNRA rates were higher at the estuary head and middle than the EM. In four out of the six 2-monthly time-points, rates of DNRA were greater than denitrification at each site. Abundance of gene markers for nitrate-reduction (nitrate reductase narG and napA), denitrification (nitrite reductase nirS) and DNRA (DNRA nitrite reductase nrfA) declined along the estuary with significant relationships between denitrification and nirS abundance, and DNRA and nrfA abundance. Spatially, rates of denitrification, DNRA and corresponding functional gene abundances decreased along the estuary. However, temporal correlations between rate processes and functional gene and transcript abundances were not observed. PMID:26082763

  8. Gravitational Lensing Effect on the Two-Point Correlation of Hot Spots in the Cosmic Microwave Background.

    PubMed

    Takada; Komatsu; Futamase

    2000-04-20

    We investigate the weak gravitational lensing effect that is due to the large-scale structure of the universe on two-point correlations of local maxima (hot spots) in the two-dimensional sky map of the cosmic microwave background (CMB) anisotropy. According to the Gaussian random statistics, as most inflationary scenarios predict, the hot spots are discretely distributed, with some characteristic angular separations on the last scattering surface that are due to oscillations of the CMB angular power spectrum. The weak lensing then causes pairs of hot spots, which are separated with the characteristic scale, to be observed with various separations. We found that the lensing fairly smooths out the oscillatory features of the two-point correlation function of hot spots. This indicates that the hot spot correlations can be a new statistical tool for measuring the shape and normalization of the power spectrum of matter fluctuations from the lensing signatures.

  9. CMB bispectrum, trispectrum, non-Gaussianity, and the Cramer-Rao bound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamionkowski, Marc; Smith, Tristan L.; Heavens, Alan

    Minimum-variance estimators for the parameter f{sub nl} that quantifies local-model non-Gaussianity can be constructed from the cosmic microwave background (CMB) bispectrum (three-point function) and also from the trispectrum (four-point function). Some have suggested that a comparison between the estimates for the values of f{sub nl} from the bispectrum and trispectrum allow a consistency test for the model. But others argue that the saturation of the Cramer-Rao bound--which gives a lower limit to the variance of an estimator--by the bispectrum estimator implies that no further information on f{sub nl} can be obtained from the trispectrum. Here, we elaborate the nature ofmore » the correlation between the bispectrum and trispectrum estimators for f{sub nl}. We show that the two estimators become statistically independent in the limit of large number of CMB pixels, and thus that the trispectrum estimator does indeed provide additional information on f{sub nl} beyond that obtained from the bispectrum. We explain how this conclusion is consistent with the Cramer-Rao bound. Our discussion of the Cramer-Rao bound may be of interest to those doing Fisher-matrix parameter-estimation forecasts or data analysis in other areas of physics as well.« less

  10. Forest restoration paradigms

    Treesearch

    John Stanturf; Brian J. Palik; Mary I. Williams; R. Kasten Dumroese

    2014-01-01

    An estimated 2 billion ha of forests are degraded globally and global change suggests even greater need for forest restoration. Four forest restoration paradigms are identified and discussed: revegetation, ecological restoration, functional restoration, and forest landscape restoration. Restoration is examined in terms of a degraded starting point and an ending point...

  11. Test-retest reliability of the KINARM end-point robot for assessment of sensory, motor and neurocognitive function in young adult athletes.

    PubMed

    Mang, Cameron S; Whitten, Tara A; Cosh, Madeline S; Scott, Stephen H; Wiley, J Preston; Debert, Chantel T; Dukelow, Sean P; Benson, Brian W

    2018-01-01

    Current assessment tools for sport-related concussion are limited by a reliance on subjective interpretation and patient symptom reporting. Robotic assessments may provide more objective and precise measures of neurological function than traditional clinical tests. To determine the reliability of assessments of sensory, motor and cognitive function conducted with the KINARM end-point robotic device in young adult elite athletes. Sixty-four randomly selected healthy, young adult elite athletes participated. Twenty-five individuals (25 M, mean age±SD, 20.2±2.1 years) participated in a within-season study, where three assessments were conducted within a single season (assessments labeled by session: S1, S2, S3). An additional 39 individuals (28M; 22.8±6.0 years) participated in a year-to-year study, where annual pre-season assessments were conducted for three consecutive seasons (assessments labeled by year: Y1, Y2, Y3). Forty-four parameters from five robotic tasks (Visually Guided Reaching, Position Matching, Object Hit, Object Hit and Avoid, and Trail Making B) and overall Task Scores describing performance on each task were quantified. Test-retest reliability was determined by intra-class correlation coefficients (ICCs) between the first and second, and second and third assessments. In the within-season study, ICCs were ≥0.50 for 68% of parameters between S1 and S2, 80% of parameters between S2 and S3, and for three of the five Task Scores both between S1 and S2, and S2 and S3. In the year-to-year study, ICCs were ≥0.50 for 64% of parameters between Y1 and Y2, 82% of parameters between Y2 and Y3, and for four of the five Task Scores both between Y1 and Y2, and Y2 and Y3. Overall, the results suggest moderate-to-good test-retest reliability for the majority of parameters measured by the KINARM robot in healthy young adult elite athletes. Future work will consider the potential use of this information for clinical assessment of concussion-related neurological deficits.

  12. Generalized conformal structure, dilaton gravity and SYK

    NASA Astrophysics Data System (ADS)

    Taylor, Marika

    2018-01-01

    A theory admits generalized conformal structure if the only scale in the quantum theory is set by a dimensionful coupling. SYK is an example of a theory with generalized conformal structure and in this paper we investigate the consequences of this structure for correlation functions and for the holographic realization of SYK. The Ward identities associated with the generalized conformal structure of SYK are implemented holographically in gravity/multiple scalar theories, which always have a parent AdS3 origin. For questions involving only the graviton/running scalar sector, one can always describe the bulk running in terms of a single scalar but multiple running scalars are in general needed once one includes the bulk fields corresponding to all SYK operators. We then explore chaos in holographic theories with generalized conformal structure. The four point function explored by Maldacena, Shenker and Stanford exhibits exactly the same chaotic behaviour in any such theory as in holographic realizations of conformal theories i.e. the dimensionful coupling scale does not affect the chaotic exponential growth.

  13. Separable projection integrals for higher-order correlators of the cosmic microwave sky: Acceleration by factors exceeding 100

    NASA Astrophysics Data System (ADS)

    Briggs, J. P.; Pennycook, S. J.; Fergusson, J. R.; Jäykkä, J.; Shellard, E. P. S.

    2016-04-01

    We present a case study describing efforts to optimise and modernise "Modal", the simulation and analysis pipeline used by the Planck satellite experiment for constraining general non-Gaussian models of the early universe via the bispectrum (or three-point correlator) of the cosmic microwave background radiation. We focus on one particular element of the code: the projection of bispectra from the end of inflation to the spherical shell at decoupling, which defines the CMB we observe today. This code involves a three-dimensional inner product between two functions, one of which requires an integral, on a non-rectangular domain containing a sparse grid. We show that by employing separable methods this calculation can be reduced to a one-dimensional summation plus two integrations, reducing the overall dimensionality from four to three. The introduction of separable functions also solves the issue of the non-rectangular sparse grid. This separable method can become unstable in certain scenarios and so the slower non-separable integral must be calculated instead. We present a discussion of the optimisation of both approaches. We demonstrate significant speed-ups of ≈100×, arising from a combination of algorithmic improvements and architecture-aware optimisations targeted at improving thread and vectorisation behaviour. The resulting MPI/OpenMP hybrid code is capable of executing on clusters containing processors and/or coprocessors, with strong-scaling efficiency of 98.6% on up to 16 nodes. We find that a single coprocessor outperforms two processor sockets by a factor of 1.3× and that running the same code across a combination of both microarchitectures improves performance-per-node by a factor of 3.38×. By making bispectrum calculations competitive with those for the power spectrum (or two-point correlator) we are now able to consider joint analysis for cosmological science exploitation of new data.

  14. Multiplicity and transverse momentum dependence of two- and four-particle correlations in pPb and PbPb collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.

    2013-07-01

    Measurements of two- and four-particle angular correlations for charged particles emitted in pPb collisions are presented over a wide range in pseudorapidity and full azimuth. The data, corresponding to an integrated luminosity of approximately 31 inverse nanobarns, were collected during the 2013 LHC pPb run at a nucleon-nucleon center-of-mass energy of 5.02 TeV by the CMS experiment. The results are compared to 2.76 TeV semi-peripheral PbPb collision data, collected during the 2011 PbPb run, covering a similar range of particle multiplicities. The observed correlations are characterized by the near-side (abs(Delta(phi)~0) associated pair yields and the azimuthal anisotropy Fourier harmonics (v[n]).more » The second-order (v[2]) and third-order (v[3]) anisotropy harmonics are extracted using the two-particle azimuthal correlation technique. A four-particle correlation method is also applied to obtain the value of v[2] and further explore the multi-particle nature of the correlations. Both associated pair yields and anisotropy harmonics are studied as a function of particle multiplicity and transverse momentum. The associated pair yields, the four-particle v[2], and the v[3] become apparent at about the same multiplicity. A remarkable similarity in the v[3] signal as a function of multiplicity is observed between the pPb and PbPb systems. Predictions based on the color glass condensate and hydrodynamic models are compared to the experimental results.« less

  15. Matrix elements of explicitly correlated Gaussian basis functions with arbitrary angular momentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joyce, Tennesse; Varga, Kálmán

    2016-05-14

    A new algorithm for calculating the Hamiltonian matrix elements with all-electron explicitly correlated Gaussian functions for quantum-mechanical calculations of atoms with arbitrary angular momentum is presented. The calculations are checked on several excited states of three and four electron systems. The presented formalism can be used as unified framework for high accuracy calculations of properties of small atoms and molecules.

  16. Liquid-gas phase transitions and C K symmetry in quantum field theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Hiromichi; Ogilvie, Michael C.; Pangeni, Kamal

    A general field-theoretic framework for the treatment of liquid-gas phase transitions is developed. Starting from a fundamental four-dimensional field theory at nonzero temperature and density, an effective three-dimensional field theory is derived. The effective field theory has a sign problem at finite density. Although finite density explicitly breaks charge conjugation C , there remains a symmetry under C K , where K is complex conjugation. Here, we consider four models: relativistic fermions, nonrelativistic fermions, static fermions and classical particles. The interactions are via an attractive potential due to scalar field exchange and a repulsive potential due to massive vector exchange.more » The field-theoretic representation of the partition function is closely related to the equivalence of the sine-Gordon field theory with a classical gas. The thermodynamic behavior is extracted from C K -symmetric complex saddle points of the effective field theory at tree level. In the cases of nonrelativistic fermions and classical particles, we find complex saddle point solutions but no first-order transitions, and neither model has a ground state at tree level. The relativistic and static fermions show a liquid-gas transition at tree level in the effective field theory. The liquid-gas transition, when it occurs, manifests as a first-order line at low temperature and high density, terminated by a critical end point. The mass matrix controlling the behavior of correlation functions is obtained from fluctuations around the saddle points. Due to the C K symmetry of the models, the eigenvalues of the mass matrix are not always real but can be complex. This then leads to the existence of disorder lines, which mark the boundaries where the eigenvalues go from purely real to complex. The regions where the mass matrix eigenvalues are complex are associated with the critical line. In the case of static fermions, a powerful duality between particles and holes allows for the analytic determination of both the critical line and the disorder lines. Depending on the values of the parameters, either zero, one, or two disorder lines are found. Our numerical results for relativistic fermions give a very similar picture.« less

  17. Liquid-gas phase transitions and C K symmetry in quantum field theories

    DOE PAGES

    Nishimura, Hiromichi; Ogilvie, Michael C.; Pangeni, Kamal

    2017-04-04

    A general field-theoretic framework for the treatment of liquid-gas phase transitions is developed. Starting from a fundamental four-dimensional field theory at nonzero temperature and density, an effective three-dimensional field theory is derived. The effective field theory has a sign problem at finite density. Although finite density explicitly breaks charge conjugation C , there remains a symmetry under C K , where K is complex conjugation. Here, we consider four models: relativistic fermions, nonrelativistic fermions, static fermions and classical particles. The interactions are via an attractive potential due to scalar field exchange and a repulsive potential due to massive vector exchange.more » The field-theoretic representation of the partition function is closely related to the equivalence of the sine-Gordon field theory with a classical gas. The thermodynamic behavior is extracted from C K -symmetric complex saddle points of the effective field theory at tree level. In the cases of nonrelativistic fermions and classical particles, we find complex saddle point solutions but no first-order transitions, and neither model has a ground state at tree level. The relativistic and static fermions show a liquid-gas transition at tree level in the effective field theory. The liquid-gas transition, when it occurs, manifests as a first-order line at low temperature and high density, terminated by a critical end point. The mass matrix controlling the behavior of correlation functions is obtained from fluctuations around the saddle points. Due to the C K symmetry of the models, the eigenvalues of the mass matrix are not always real but can be complex. This then leads to the existence of disorder lines, which mark the boundaries where the eigenvalues go from purely real to complex. The regions where the mass matrix eigenvalues are complex are associated with the critical line. In the case of static fermions, a powerful duality between particles and holes allows for the analytic determination of both the critical line and the disorder lines. Depending on the values of the parameters, either zero, one, or two disorder lines are found. Our numerical results for relativistic fermions give a very similar picture.« less

  18. Nonperturbative renormalization-group approach preserving the momentum dependence of correlation functions

    NASA Astrophysics Data System (ADS)

    Rose, F.; Dupuis, N.

    2018-05-01

    We present an approximation scheme of the nonperturbative renormalization group that preserves the momentum dependence of correlation functions. This approximation scheme can be seen as a simple improvement of the local potential approximation (LPA) where the derivative terms in the effective action are promoted to arbitrary momentum-dependent functions. As in the LPA, the only field dependence comes from the effective potential, which allows us to solve the renormalization-group equations at a relatively modest numerical cost (as compared, e.g., to the Blaizot-Mendéz-Galain-Wschebor approximation scheme). As an application we consider the two-dimensional quantum O(N ) model at zero temperature. We discuss not only the two-point correlation function but also higher-order correlation functions such as the scalar susceptibility (which allows for an investigation of the "Higgs" amplitude mode) and the conductivity. In particular, we show how, using Padé approximants to perform the analytic continuation i ωn→ω +i 0+ of imaginary frequency correlation functions χ (i ωn) computed numerically from the renormalization-group equations, one can obtain spectral functions in the real-frequency domain.

  19. Cosmological Constraints from Fourier Phase Statistics

    NASA Astrophysics Data System (ADS)

    Ali, Kamran; Obreschkow, Danail; Howlett, Cullan; Bonvin, Camille; Llinares, Claudio; Oliveira Franco, Felipe; Power, Chris

    2018-06-01

    Most statistical inference from cosmic large-scale structure relies on two-point statistics, i.e. on the galaxy-galaxy correlation function (2PCF) or the power spectrum. These statistics capture the full information encoded in the Fourier amplitudes of the galaxy density field but do not describe the Fourier phases of the field. Here, we quantify the information contained in the line correlation function (LCF), a three-point Fourier phase correlation function. Using cosmological simulations, we estimate the Fisher information (at redshift z = 0) of the 2PCF, LCF and their combination, regarding the cosmological parameters of the standard ΛCDM model, as well as a Warm Dark Matter (WDM) model and the f(R) and Symmetron modified gravity models. The galaxy bias is accounted for at the level of a linear bias. The relative information of the 2PCF and the LCF depends on the survey volume, sampling density (shot noise) and the bias uncertainty. For a volume of 1h^{-3}Gpc^3, sampled with points of mean density \\bar{n} = 2× 10^{-3} h3 Mpc^{-3} and a bias uncertainty of 13%, the LCF improves the parameter constraints by about 20% in the ΛCDM cosmology and potentially even more in alternative models. Finally, since a linear bias only affects the Fourier amplitudes (2PCF), but not the phases (LCF), the combination of the 2PCF and the LCF can be used to break the degeneracy between the linear bias and σ8, present in 2-point statistics.

  20. Amygdala reactivity in healthy adults is correlated with prefrontal cortical thickness.

    PubMed

    Foland-Ross, Lara C; Altshuler, Lori L; Bookheimer, Susan Y; Lieberman, Matthew D; Townsend, Jennifer; Penfold, Conor; Moody, Teena; Ahlf, Kyle; Shen, Jim K; Madsen, Sarah K; Rasser, Paul E; Toga, Arthur W; Thompson, Paul M

    2010-12-08

    Recent evidence suggests that putting feelings into words activates the prefrontal cortex (PFC) and suppresses the response of the amygdala, potentially helping to alleviate emotional distress. To further elucidate the relationship between brain structure and function in these regions, structural and functional magnetic resonance imaging (MRI) data were collected from a sample of 20 healthy human subjects. Structural MRI data were processed using cortical pattern-matching algorithms to produce spatially normalized maps of cortical thickness. During functional scanning, subjects cognitively assessed an emotional target face by choosing one of two linguistic labels (label emotion condition) or matched geometric forms (control condition). Manually prescribed regions of interest for the left amygdala were used to extract percentage signal change in this region occurring during the contrast of label emotion versus match forms. A correlation analysis between left amygdala activation and cortical thickness was then performed along each point of the cortical surface, resulting in a color-coded r value at each cortical point. Correlation analyses revealed that gray matter thickness in left ventromedial PFC was inversely correlated with task-related activation in the amygdala. These data add support to a general role of the ventromedial PFC in regulating activity of the amygdala.

  1. Substituting Tyr138 in the active site loop of human phenylalanine hydroxylase affects catalysis and substrate activation.

    PubMed

    Leandro, João; Stokka, Anne J; Teigen, Knut; Andersen, Ole A; Flatmark, Torgeir

    2017-07-01

    Mammalian phenylalanine hydroxylase (PAH) is a key enzyme in l-phenylalanine (l-Phe) metabolism and is active as a homotetramer. Biochemical and biophysical work has demonstrated that it cycles between two states with a variably low and a high activity, and that the substrate l-Phe is the key player in this transition. X-ray structures of the catalytic domain have shown mobility of a partially intrinsically disordered Tyr 138 -loop to the active site in the presence of l-Phe. The mechanism by which the loop dynamics are coupled to substrate binding at the active site in tetrameric PAH is not fully understood. We have here conducted functional studies of four Tyr 138 point mutants. A high linear correlation ( r 2 = 0.99) was observed between their effects on the catalytic efficiency of the catalytic domain dimers and the corresponding effect on the catalytic efficiency of substrate-activated full-length tetramers. In the tetramers, a correlation ( r 2 = 0.96) was also observed between the increase in catalytic efficiency (activation) and the global conformational change (surface plasmon resonance signal response) at the same l-Phe concentration. The new data support a similar functional importance of the Tyr 138 -loop in the catalytic domain and the full-length enzyme homotetramer.

  2. On monogamy of four-qubit entanglement

    NASA Astrophysics Data System (ADS)

    Sharma, S. Shelly; Sharma, N. K.

    2018-07-01

    Our main result is a monogamy inequality satisfied by the entanglement of a focus qubit (one-tangle) in a four-qubit pure state and entanglement of subsystems. Analytical relations between three-tangles of three-qubit marginal states, two-tangles of two-qubit marginal states and unitary invariants of four-qubit pure state are used to obtain the inequality. The contribution of three-tangle to one-tangle is found to be half of that suggested by a simple extension of entanglement monogamy relation for three qubits. On the other hand, an additional contribution due to a two-qubit invariant which is a function of three-way correlations is found. We also show that four-qubit monogamy inequality conjecture of Regula et al. (Phys Rev Lett 113:110501, 2014), in which three-tangles are raised to the power 3/2, does not estimate the residual correlations, correctly, for certain subsets of four-qubit states. A lower bound on residual four-qubit correlations is obtained.

  3. Gaussian statistics of the cosmic microwave background: Correlation of temperature extrema in the COBE DMR two-year sky maps

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Banday, A. J.; Bennett, C. L.; Hinshaw, G.; Lubin, P. M.; Smoot, G. F.

    1995-01-01

    We use the two-point correlation function of the extrema points (peaks and valleys) in the Cosmic Background Explorer (COBE) Differential Microwave Radiometers (DMR) 2 year sky maps as a test for non-Gaussian temperature distribution in the cosmic microwave background anisotropy. A maximum-likelihood analysis compares the DMR data to n = 1 toy models whose random-phase spherical harmonic components a(sub lm) are drawn from either Gaussian, chi-square, or log-normal parent populations. The likelihood of the 53 GHz (A+B)/2 data is greatest for the exact Gaussian model. There is less than 10% chance that the non-Gaussian models tested describe the DMR data, limited primarily by type II errors in the statistical inference. The extrema correlation function is a stronger test for this class of non-Gaussian models than topological statistics such as the genus.

  4. Functional renormalization-group approaches, one-particle (irreducible) reducible with respect to local Green’s functions, with dynamical mean-field theory as a starting point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katanin, A. A., E-mail: katanin@mail.ru

    We consider formulations of the functional renormalization-group (fRG) flow for correlated electronic systems with the dynamical mean-field theory as a starting point. We classify the corresponding renormalization-group schemes into those neglecting one-particle irreducible six-point vertices (with respect to the local Green’s functions) and neglecting one-particle reducible six-point vertices. The former class is represented by the recently introduced DMF{sup 2}RG approach [31], but also by the scale-dependent generalization of the one-particle irreducible representation (with respect to local Green’s functions, 1PI-LGF) of the generating functional [20]. The second class is represented by the fRG flow within the dual fermion approach [16, 32].more » We compare formulations of the fRG approach in each of these cases and suggest their further application to study 2D systems within the Hubbard model.« less

  5. Long-term and short-term effects of hemodialysis on liver function evaluated using the galactose single-point test.

    PubMed

    Hou, Yi-Chou; Liu, Wen-Chih; Liao, Min-Tser; Lu, Kuo-Cheng; Lo, Lan; Pan, Heng-Chih; Wu, Chia-Chao; Hu, Oliver Yoa-Pu; Tang, Hung-Shang

    2014-01-01

    The galactose single-point (GSP) test assesses functioning liver mass by measuring the galactose concentration in the blood 1 hour after its administration. The purpose of this study was to investigate the impact of hemodialysis (HD) on short-term and long-term liver function by use of GSP test. Seventy-four patients on maintenance HD (46 males and 28 females, 60.38 ± 11.86 years) with a mean time on HD of 60.77 ± 48.31 months were studied. The GSP values were compared in two groups: (1) before and after single session HD, and (2) after one year of maintenance HD. Among the 74 HD patient, only the post-HD Cr levels and years on dialysis were significantly correlated with GSP values (r = 0.280, P < 0.05 and r = -0.240, P < 0.05, resp.). 14 of 74 patients were selected for GSP evaluation before and after a single HD session, and the hepatic clearance of galactose was similar (pre-HD 410 ± 254 g/mL, post-HD 439 ± 298 g/mL, P = 0.49). GSP values decreased from 420.20 ± 175.26 g/mL to 383.40 ± 153.97 g/mL after 1 year maintenance HD in other 15 patients (mean difference: 19.00 ± 37.66 g/mL, P < 0.05). Patients on maintenance HD for several years may experience improvement of their liver function. However, a single HD session does not affect liver function significantly as assessed by the GSP test. Since the metabolism of galactose is dependent on liver blood flow and hepatic functional mass, further studies are needed.

  6. The Fine-Scale Functional Correlation of Striate Cortex in Sighted and Blind People

    PubMed Central

    Butt, Omar H.; Benson, Noah C.; Datta, Ritobrato

    2013-01-01

    To what extent are spontaneous neural signals within striate cortex organized by vision? We examined the fine-scale pattern of striate cortex correlations within and between hemispheres in rest-state BOLD fMRI data from sighted and blind people. In the sighted, we find that corticocortico correlation is well modeled as a Gaussian point-spread function across millimeters of striate cortical surface, rather than degrees of visual angle. Blindness produces a subtle change in the pattern of fine-scale striate correlations between hemispheres. Across participants blind before the age of 18, the degree of pattern alteration covaries with the strength of long-range correlation between left striate cortex and Broca's area. This suggests that early blindness exchanges local, vision-driven pattern synchrony of the striate cortices for long-range functional correlations potentially related to cross-modal representation. PMID:24107953

  7. Ontogeny and Phylogeny from an Epigenetic Point of View.

    ERIC Educational Resources Information Center

    Lovtrup, Soren

    1984-01-01

    The correlation between ontogeny and phylogeny is analyzed through the discussion of four theories on the reality, history, epigenetic, and ecological aspects of the mechanism of evolution. Also discussed are historical and creative aspects of evolution and three epigenetic mechanisms instantiated in the case of the amphibian embryo. (Author/RH)

  8. New methods for engineering site characterization using reflection and surface wave seismic survey

    NASA Astrophysics Data System (ADS)

    Chaiprakaikeow, Susit

    This study presents two new seismic testing methods for engineering application, a new shallow seismic reflection method and Time Filtered Analysis of Surface Waves (TFASW). Both methods are described in this dissertation. The new shallow seismic reflection was developed to measure reflection at a single point using two to four receivers, assuming homogeneous, horizontal layering. It uses one or more shakers driven by a swept sine function as a source, and the cross-correlation technique to identify wave arrivals. The phase difference between the source forcing function and the ground motion due to the dynamic response of the shaker-ground interface was corrected by using a reference geophone. Attenuated high frequency energy was also recovered using the whitening in frequency domain. The new shallow seismic reflection testing was performed at the crest of Porcupine Dam in Paradise, Utah. The testing used two horizontal Vibroseis sources and four receivers for spacings between 6 and 300 ft. Unfortunately, the results showed no clear evidence of the reflectors despite correction of the magnitude and phase of the signals. However, an improvement in the shape of the cross-correlations was noticed after the corrections. The results showed distinct primary lobes in the corrected cross-correlated signals up to 150 ft offset. More consistent maximum peaks were observed in the corrected waveforms. TFASW is a new surface (Rayleigh) wave method to determine the shear wave velocity profile at a site. It is a time domain method as opposed to the Spectral Analysis of Surface Waves (SASW) method, which is a frequency domain method. This method uses digital filtering to optimize bandwidth used to determine the dispersion curve. Results from testings at three different sites in Utah indicated good agreement with the dispersion curves measured using both TFASW and SASW methods. The advantage of TFASW method is that the dispersion curves had less scatter at long wavelengths as a result from wider bandwidth used in those tests.

  9. Operator product expansion in Liouville field theory and Seiberg-type transitions in log-correlated random energy models

    NASA Astrophysics Data System (ADS)

    Cao, Xiangyu; Le Doussal, Pierre; Rosso, Alberto; Santachiara, Raoul

    2018-04-01

    We study transitions in log-correlated random energy models (logREMs) that are related to the violation of a Seiberg bound in Liouville field theory (LFT): the binding transition and the termination point transition (a.k.a., pre-freezing). By means of LFT-logREM mapping, replica symmetry breaking and traveling-wave equation techniques, we unify both transitions in a two-parameter diagram, which describes the free-energy large deviations of logREMs with a deterministic background log potential, or equivalently, the joint moments of the free energy and Gibbs measure in logREMs without background potential. Under the LFT-logREM mapping, the transitions correspond to the competition of discrete and continuous terms in a four-point correlation function. Our results provide a statistical interpretation of a peculiar nonlocality of the operator product expansion in LFT. The results are rederived by a traveling-wave equation calculation, which shows that the features of LFT responsible for the transitions are reproduced in a simple model of diffusion with absorption. We examine also the problem by a replica symmetry breaking analysis. It complements the previous methods and reveals a rich large deviation structure of the free energy of logREMs with a deterministic background log potential. Many results are verified in the integrable circular logREM, by a replica-Coulomb gas integral approach. The related problem of common length (overlap) distribution is also considered. We provide a traveling-wave equation derivation of the LFT predictions announced in a precedent work.

  10. Clinical and hematological data to group different chronic kidney disease patients: A practical approach to establish different groups of patients.

    PubMed

    Péterle, Vinícius B; Souza, Jéssica de O; Busato, Fernanda de O; Eutrópio, Frederico J; da Costa, Gisele de A P; Olivieri, David N; Tadokoro, Carlos E

    2018-06-01

    Chronic kidney disease (CKD) is the convergent point of several pathological processes, and its evolution is insidious and characterized by a progressive and irreversible loss of kidney function. This impaired function induces the accumulation of uremic toxins and individuals with terminal CKD often have altered physiological responses, including a persistent state of immuno-suppression and development of diseases. A better characterization and stratification of these patients with CKD in different immuno-compromised groups would contribute to more effective and personalized treatments. The focus of this study was to use two parameters to stratify patients with CKD into four separate groups that are representative of different immunological status. Patients with CKD were chosen randomly and stratified into four separate groups according to the period of time receiving dialysis treatment and leukocyte blood counts. The amount of apoptotic CD4 T cells were measured in each group of patients, and clinical/hematological parameters were correlated by multivariate analysis with each group. Observations reveal that one of the four groups of patients with CKD (group 3) had more apoptotic CD4 T cells than the other group; this group also had an increased malnutrition inflammation score (MIS), an elevated Kt/V, and a higher incidence of smoking. A simple two-parameter-based stratification strategy could be used to design effective immunological therapies that differentiate the degrees of immuno-suppression across groups of patients with CKD. © 2018 Wiley Periodicals, Inc.

  11. Detecting correlation changes in multivariate time series: A comparison of four non-parametric change point detection methods.

    PubMed

    Cabrieto, Jedelyn; Tuerlinckx, Francis; Kuppens, Peter; Grassmann, Mariel; Ceulemans, Eva

    2017-06-01

    Change point detection in multivariate time series is a complex task since next to the mean, the correlation structure of the monitored variables may also alter when change occurs. DeCon was recently developed to detect such changes in mean and\\or correlation by combining a moving windows approach and robust PCA. However, in the literature, several other methods have been proposed that employ other non-parametric tools: E-divisive, Multirank, and KCP. Since these methods use different statistical approaches, two issues need to be tackled. First, applied researchers may find it hard to appraise the differences between the methods. Second, a direct comparison of the relative performance of all these methods for capturing change points signaling correlation changes is still lacking. Therefore, we present the basic principles behind DeCon, E-divisive, Multirank, and KCP and the corresponding algorithms, to make them more accessible to readers. We further compared their performance through extensive simulations using the settings of Bulteel et al. (Biological Psychology, 98 (1), 29-42, 2014) implying changes in mean and in correlation structure and those of Matteson and James (Journal of the American Statistical Association, 109 (505), 334-345, 2014) implying different numbers of (noise) variables. KCP emerged as the best method in almost all settings. However, in case of more than two noise variables, only DeCon performed adequately in detecting correlation changes.

  12. Redshift Evolution of Non-Gaussianity in Cosmic Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Sullivan, James; Wiegand, Alexander; Eisenstein, Daniel

    2018-01-01

    We probe the higher-order galaxy clustering in the final data release (DR12) of the Sloan Digital Sky Survey using germ-grain Minkowski Functionals (MFs). Our data selection contains 979,430 BOSS galaxies from both the northern and southern galactic caps over the redshift range 0.2 - 0.6. We extract the higher-order parts of the MFs and find deviations from the case without higher order MFs with chi-squared values of order 1000 for 24 degrees of freedom across the entire data selection. We show the MFs to be sensitive to contributions up to the five-point correlation function across the entire data selection. We measure significant redshift evolution in the higher-order functionals for the first time, with a percentage growth between redshift bins of approximately 20 % in both galactic caps. This is a nearly a factor of 2 greater than similar growth in the two-point correlation function and will allow for tests of non-linear structure growth by comparing the three-point and higher-order parts to their expected theoretical values. The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.

  13. Dispersion- and Exchange-Corrected Density Functional Theory for Sodium Ion Hydration.

    PubMed

    Soniat, Marielle; Rogers, David M; Rempe, Susan B

    2015-07-14

    A challenge in density functional theory is developing functionals that simultaneously describe intermolecular electron correlation and electron delocalization. Recent exchange-correlation functionals address those two issues by adding corrections important at long ranges: an atom-centered pairwise dispersion term to account for correlation and a modified long-range component of the electron exchange term to correct for delocalization. Here we investigate how those corrections influence the accuracy of binding free energy predictions for sodium-water clusters. We find that the dual-corrected ωB97X-D functional gives cluster binding energies closest to high-level ab initio methods (CCSD(T)). Binding energy decomposition shows that the ωB97X-D functional predicts the smallest ion-water (pairwise) interaction energy and larger multibody contributions for a four-water cluster than most other functionals - a trend consistent with CCSD(T) results. Also, ωB97X-D produces the smallest amounts of charge transfer and the least polarizable waters of the density functionals studied, which mimics the lower polarizability of CCSD. When compared with experimental binding free energies, however, the exchange-corrected CAM-B3LYP functional performs best (error <1 kcal/mol), possibly because of its parametrization to experimental formation enthalpies. For clusters containing more than four waters, "split-shell" coordination must be considered to obtain accurate free energies in comparison with experiment.

  14. The effects of sex hormones on immune function: a meta-analysis.

    PubMed

    Foo, Yong Zhi; Nakagawa, Shinichi; Rhodes, Gillian; Simmons, Leigh W

    2017-02-01

    The effects of sex hormones on immune function have received much attention, especially following the proposal of the immunocompetence handicap hypothesis. Many studies, both experimental and correlational, have been conducted to test the relationship between immune function and the sex hormones testosterone in males and oestrogen in females. However, the results are mixed. We conducted four cross-species meta-analyses to investigate the relationship between sex hormones and immune function: (i) the effect of testosterone manipulation on immune function in males, (ii) the correlation between circulating testosterone level and immune function in males, (iii) the effect of oestrogen manipulation on immune function in females, and (iv) the correlation between circulating oestrogen level and immune function in females. The results from the experimental studies showed that testosterone had a medium-sized immunosuppressive effect on immune function. The effect of oestrogen, on the other hand, depended on the immune measure used. Oestrogen suppressed cell-mediated immune function while reducing parasite loads. The overall correlation (meta-analytic relationship) between circulating sex hormone level and immune function was not statistically significant for either testosterone or oestrogen despite the power of meta-analysis. These results suggest that correlational studies have limited value for testing the effects of sex hormones on immune function. We found little evidence of publication bias in the four data sets using indirect tests. There was a weak and positive relationship between year of publication and effect size for experimental studies of testosterone that became non-significant after we controlled for castration and immune measure, suggesting that the temporal trend was due to changes in these moderators over time. Graphical analyses suggest that the temporal trend was due to an increased use of cytokine measures across time. We found substantial heterogeneity in effect sizes, except in correlational studies of testosterone, even after we accounted for the relevant random and fixed factors. In conclusion, our results provide good evidence that testosterone suppresses immune function and that the effect of oestrogen varies depending on the immune measure used. © 2016 Cambridge Philosophical Society.

  15. Regional Differences in Tear Film Stability and Meibomian Glands in Patients With Aqueous-Deficient Dry Eye.

    PubMed

    Koh, Shizuka; Ikeda, Chikako; Fujimoto, Hisataka; Oie, Yoshinori; Soma, Takeshi; Maeda, Naoyuki; Nishida, Kohji

    2016-07-01

    To noninvasively investigate regional differences in tear film stability and meibomian glands in patients with aqueous-deficient dry eye. Forty-nine dry eyes and 31 normal eyes were analyzed. A corneal topographer with a tear film scanning function was used for noninvasive tear film break-up time (NI-TFBUT) measurements and meibomian gland observations. The NI-TFBUT values and location of the first tear film break-up point were recorded in four quadrants. Meibomian gland loss was graded for each eyelid using meiboscores. Lid margin abnormality was scored from zero to four according to the number of existing abnormalities. The NI-TFBUT values and meiboscores were compared between two groups, and regional differences in NI-TFBUT values and meiboscores were analyzed. Also, the correlation between the NI-TFBUT and ocular surface examination results were investigated. The NI-TFBUT values and meiboscores were significantly lower and higher, respectively, for the dry eye group than for the normal group. In the dry eye group, the occurrence rate for first tear film break-up was the highest in the inferior nasal quadrant, and the mean meiboscore was significantly higher for the upper eyelids than for the lower eyelids. The NI-TFBUT and lid margin abnormality scores showed a weak negative correlation, and the NI-TFBUT values and meiboscores showed no correlation. Compared to normal eyes, aqueous-deficient dry eyes show significant regional differences in tear film stability and meibomian glands. Considering these regional differences, the overall observation of the ocular surface, including both upper and lower eyelids, will aid clinicians in understanding this condition better.

  16. FUNDUS AUTOFLUORESCENCE IN RUBELLA RETINOPATHY: Correlation With Photoreceptor Structure and Function.

    PubMed

    Bukowska, Danuta M; Wan, Sue Ling; Chew, Avenell L; Chelva, Enid; Tang, Ivy; Mackey, David A; Chen, Fred K

    2017-01-01

    To illustrate altered fundus autofluorescence in rubella retinopathy and to investigate their relationships with photoreceptor structure and function using multimodal imaging. The authors report four cases of rubella retinopathy aged 8, 33, 42, and 50 years. All patients had dilated clinical fundus examination; wide-field color photography; blue, green, and near-infrared autofluorescence imaging and spectral domain optical coherence tomography. Two patients also underwent microperimetry and adaptive optics imaging. En face optical coherence tomography, cone mosaic, and microperimetry were coregistered with autofluorescence images. The authors explored the structure-function correlation. All four patients had a "salt-and-pepper" appearance on dilated fundus examination and wide-field color photography. There were variable-sized patches of hypoautofluorescence on both blue and near-infrared excitation in all four patients. Wave-guiding cones were visible and retinal sensitivity was intact over these regions. There was no correlation between hypoautofluorescence and regions of attenuated ellipsoid and interdigitation zones. Hyperautofluorescent lesions were also noted and some of these were pseudo-vitelliform lesions. Patchy hypoautofluorescence on near-infrared excitation can be a feature of rubella retinopathy. This may be due to abnormal melanin production or loss of melanin within retinal pigment epithelium cells harboring persistent rubella virus infection. Preservation of the ellipsoid zone, wave-guiding cones, and retinal sensitivity within hypoautofluorescent lesions suggest that these retinal pigment epithelium changes have only mild impact on photoreceptor cell function.

  17. Spin-orbital quantum liquid on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Corboz, Philippe

    2013-03-01

    The symmetric Kugel-Khomskii can be seen as a minimal model describing the interactions between spin and orbital degrees of freedom in transition-metal oxides with orbital degeneracy, and it is equivalent to the SU(4) Heisenberg model of four-color fermionic atoms. We present simulation results for this model on various two-dimensional lattices obtained with infinite projected-entangled pair states (iPEPS), an efficient variational tensor-network ansatz for two dimensional wave functions in the thermodynamic limit. This approach can be seen as a two-dimensional generalization of matrix product states - the underlying ansatz of the density matrix renormalization group method. We find a rich variety of exotic phases: while on the square and checkerboard lattices the ground state exhibits dimer-Néel order and plaquette order, respectively, quantum fluctuations on the honeycomb lattice destroy any order, giving rise to a spin-orbital liquid. Our results are supported from flavor-wave theory and exact diagonalization. Furthermore, the properties of the spin-orbital liquid state on the honeycomb lattice are accurately accounted for by a projected variational wave-function based on the pi-flux state of fermions on the honeycomb lattice at 1/4-filling. In that state, correlations are algebraic because of the presence of a Dirac point at the Fermi level, suggesting that the ground state is an algebraic spin-orbital liquid. This model provides a good starting point to understand the recently discovered spin-orbital liquid behavior of Ba3CuSb2O9. The present results also suggest to choose optical lattices with honeycomb geometry in the search for quantum liquids in ultra-cold four-color fermionic atoms. We acknowledge the financial support from the Swiss National Science Foundation.

  18. Ensemble Space-Time Correlation of Plasma Turbulence in the Solar Wind.

    PubMed

    Matthaeus, W H; Weygand, J M; Dasso, S

    2016-06-17

    Single point measurement turbulence cannot distinguish variations in space and time. We employ an ensemble of one- and two-point measurements in the solar wind to estimate the space-time correlation function in the comoving plasma frame. The method is illustrated using near Earth spacecraft observations, employing ACE, Geotail, IMP-8, and Wind data sets. New results include an evaluation of both correlation time and correlation length from a single method, and a new assessment of the accuracy of the familiar frozen-in flow approximation. This novel view of the space-time structure of turbulence may prove essential in exploratory space missions such as Solar Probe Plus and Solar Orbiter for which the frozen-in flow hypothesis may not be a useful approximation.

  19. Relationships Between Changes in Patient-Reported Health Status and Functional Capacity in Outpatients With Heart Failure

    PubMed Central

    Flynn, Kathryn E.; Lin, Li; Moe, Gordon W.; Howlett, Jonathan G.; Fine, Lawrence J.; Spertus, John A.; McConnell, Timothy R.; Piña, Ileana L.; Weinfurt, Kevin P.

    2011-01-01

    Background Heart failure trials use a variety of measures of functional capacity and quality of life. Lack of formal assessments of the relationships between changes in multiple aspects of patient-reported health status and measures of functional capacity over time limit the ability to compare results across studies. Methods Using data from HF-ACTION (N = 2331), we used Pearson correlation coefficients and predicted change scores from linear mixed-effects modeling to demonstrate associations between changes in patient-reported health status measured with the EQ-5D visual analog scale (VAS) and the Kansas City Cardiomyopathy Questionnaire (KCCQ) and changes in peak VO2 and 6-minute walk distance at 3 and 12 months. We examined a 5-point change in KCCQ within individuals to provide a framework for interpreting changes in these measures. Results After adjustment for baseline characteristics, correlations between changes in the VAS and changes in peak VO2 and 6-minute walk distance ranged from 0.13 to 0.28, and correlations between changes in the KCCQ overall and subscale scores and changes in peak VO2 and 6-minute walk distance ranged from 0.18 to 0.34. A 5-point change in KCCQ was associated with a 2.50 ml/kg/min change in peak VO2 (95% confidence interval, 2.21–2.86) and a 112-meter change in 6-minute walk distance (95% confidence interval, 96–134). Conclusions Changes in patient-reported health status are not highly correlated with changes in functional capacity. Our findings generally support the current practice of considering a 5-point change in the KCCQ within individuals to be clinically meaningful. Trial Registration clinicaltrials.gov Identifier: NCT00047437 PMID:22172441

  20. Statistical correlations in an ideal gas of particles obeying fractional exclusion statistics.

    PubMed

    Pellegrino, F M D; Angilella, G G N; March, N H; Pucci, R

    2007-12-01

    After a brief discussion of the concepts of fractional exchange and fractional exclusion statistics, we report partly analytical and partly numerical results on thermodynamic properties of assemblies of particles obeying fractional exclusion statistics. The effect of dimensionality is one focal point, the ratio mu/k_(B)T of chemical potential to thermal energy being obtained numerically as a function of a scaled particle density. Pair correlation functions are also presented as a function of the statistical parameter, with Friedel oscillations developing close to the fermion limit, for sufficiently large density.

  1. Proposed Diagnostic Criteria for Smartphone Addiction

    PubMed Central

    Lin, Yu-Hsuan; Chiang, Chih-Lin; Lin, Po-Hsien; Chang, Li-Ren; Ko, Chih-Hung; Lee, Yang-Han

    2016-01-01

    Background Global smartphone penetration has led to unprecedented addictive behaviors. The aims of this study are to develop diagnostic criteria of smartphone addiction and to examine the discriminative ability and the validity of the diagnostic criteria. Methods We developed twelve candidate criteria for characteristic symptoms of smartphone addiction and four criteria for functional impairment caused by excessive smartphone use. The participants consisted of 281 college students. Each participant was systematically assessed for smartphone-using behaviors by psychiatrist’s structured diagnostic interview. The sensitivity, specificity, and diagnostic accuracy of the candidate symptom criteria were analyzed with reference to the psychiatrists’ clinical global impression. The optimal model selection with its cutoff point of the diagnostic criteria differentiating the smartphone addicted subjects from non-addicted subjects was then determined by the best diagnostic accuracy. Results Six symptom criteria model with optimal cutoff point were determined based on the maximal diagnostic accuracy. The proposed smartphone addiction diagnostic criteria consisted of (1) six symptom criteria, (2) four functional impairment criteria and (3) exclusion criteria. Setting three symptom criteria as the cutoff point resulted in the highest diagnostic accuracy (84.3%), while the sensitivity and specificity were 79.4% and 87.5%, respectively. We suggested determining the functional impairment by two or more of the four domains considering the high accessibility and penetration of smartphone use. Conclusion The diagnostic criteria of smartphone addiction demonstrated the core symptoms “impaired control” paralleled with substance related and addictive disorders. The functional impairment involved multiple domains provide a strict standard for clinical assessment. PMID:27846211

  2. Proposed Diagnostic Criteria for Smartphone Addiction.

    PubMed

    Lin, Yu-Hsuan; Chiang, Chih-Lin; Lin, Po-Hsien; Chang, Li-Ren; Ko, Chih-Hung; Lee, Yang-Han; Lin, Sheng-Hsuan

    2016-01-01

    Global smartphone penetration has led to unprecedented addictive behaviors. The aims of this study are to develop diagnostic criteria of smartphone addiction and to examine the discriminative ability and the validity of the diagnostic criteria. We developed twelve candidate criteria for characteristic symptoms of smartphone addiction and four criteria for functional impairment caused by excessive smartphone use. The participants consisted of 281 college students. Each participant was systematically assessed for smartphone-using behaviors by psychiatrist's structured diagnostic interview. The sensitivity, specificity, and diagnostic accuracy of the candidate symptom criteria were analyzed with reference to the psychiatrists' clinical global impression. The optimal model selection with its cutoff point of the diagnostic criteria differentiating the smartphone addicted subjects from non-addicted subjects was then determined by the best diagnostic accuracy. Six symptom criteria model with optimal cutoff point were determined based on the maximal diagnostic accuracy. The proposed smartphone addiction diagnostic criteria consisted of (1) six symptom criteria, (2) four functional impairment criteria and (3) exclusion criteria. Setting three symptom criteria as the cutoff point resulted in the highest diagnostic accuracy (84.3%), while the sensitivity and specificity were 79.4% and 87.5%, respectively. We suggested determining the functional impairment by two or more of the four domains considering the high accessibility and penetration of smartphone use. The diagnostic criteria of smartphone addiction demonstrated the core symptoms "impaired control" paralleled with substance related and addictive disorders. The functional impairment involved multiple domains provide a strict standard for clinical assessment.

  3. Analysis of data from NASA B-57B gust gradient program

    NASA Technical Reports Server (NTRS)

    Frost, W.; Lin, M. C.; Chang, H. P.; Ringnes, E.

    1985-01-01

    Statistical analysis of the turbulence measured in flight 6 of the NASA B-57B over Denver, Colorado, from July 7 to July 23, 1982 included the calculations of average turbulence parameters, integral length scales, probability density functions, single point autocorrelation coefficients, two point autocorrelation coefficients, normalized autospectra, normalized two point autospectra, and two point cross sectra for gust velocities. The single point autocorrelation coefficients were compared with the theoretical model developed by von Karman. Theoretical analyses were developed which address the effects spanwise gust distributions, using two point spatial turbulence correlations.

  4. Analytical study of sandwich structures using Euler-Bernoulli beam equation

    NASA Astrophysics Data System (ADS)

    Xue, Hui; Khawaja, H.

    2017-01-01

    This paper presents an analytical study of sandwich structures. In this study, the Euler-Bernoulli beam equation is solved analytically for a four-point bending problem. Appropriate initial and boundary conditions are specified to enclose the problem. In addition, the balance coefficient is calculated and the Rule of Mixtures is applied. The focus of this study is to determine the effective material properties and geometric features such as the moment of inertia of a sandwich beam. The effective parameters help in the development of a generic analytical correlation for complex sandwich structures from the perspective of four-point bending calculations. The main outcomes of these analytical calculations are the lateral displacements and longitudinal stresses for each particular material in the sandwich structure.

  5. Radiological study of the secondary reduction effect of early functional exercise on displaced intra-articular calcaneal fractures after internal compression fixation.

    PubMed

    Chen, Wei; Liu, Bo; Lv, Hongzhi; Su, Yanling; Chen, Xiao; Zhu, Yanbin; Du, Chenguang; Zhang, Xiaolin; Zhang, Yingze

    2017-09-01

    Early post-operative exercise and weight-bearing activities are found to improve the functional recovery of patients with displaced intra-articular calcaneal fractures (DIACFs). We hypothesized that early functional exercise after surgery might have a secondary reduction effect on the subtalar joint, in particular the smaller fracture fragments that were not fixed firmly. A prospective study was conducted to verify this hypothesis. From December 2012 to September 2013, patients with unilateral DIACFs were enrolled and received a treatment consisting of percutaneous leverage and minimally invasive fixation. After surgery, patients in the study group started exercising on days two to three, using partial weight bearing starting week three, and full weight bearing starting week 12. Patients in the control group followed a conventional post-operative protocol of partial weight bearing after week six and full weight bearing after the bone healed. Computed tomography (CT) scanning was performed at post-operative day one, week four, week eight, and week 12 to reconstruct coronal, sagittal, and axial images, on which the maximal residual displacements of the fractures were measured. Function was evaluated using the American Orthopaedic Foot and Ankle Society (AOFAS) scoring scale at the 12th post-operative month. Twenty-eight patients in the study group and 32 in the control group were followed up for more than 12 months; their data were collected and used for the final analysis. Repeated-measures analysis of variance (ANOVA) of the maximal residual displacements of the fracture measured on CT images revealed significant differences between the study and the control groups. There were interaction effects between group and time point. Except for the first time point, the differences between the groups at all studied time points were significant. In the study group, the differences between all studied time points were significant. Strong correlations were observed between the AOFAS score at post-operative month 12 and the maximal residual displacement of the fractures on the CT images at postoperative week 12. Early functional exercise and weight bearing activity can smooth and shape the subtalar joint and reduce the residual displacement of the articular surface, improving functional recovery of the affected foot. Therefore, early rehabilitation functional exercise can be recommended in clinical practice.

  6. Fine reservoir structure modeling based upon 3D visualized stratigraphic correlation between horizontal wells: methodology and its application

    NASA Astrophysics Data System (ADS)

    Chenghua, Ou; Chaochun, Li; Siyuan, Huang; Sheng, James J.; Yuan, Xu

    2017-12-01

    As the platform-based horizontal well production mode has been widely applied in petroleum industry, building a reliable fine reservoir structure model by using horizontal well stratigraphic correlation has become very important. Horizontal wells usually extend between the upper and bottom boundaries of the target formation, with limited penetration points. Using these limited penetration points to conduct well deviation correction means the formation depth information obtained is not accurate, which makes it hard to build a fine structure model. In order to solve this problem, a method of fine reservoir structure modeling, based on 3D visualized stratigraphic correlation among horizontal wells, is proposed. This method can increase the accuracy when estimating the depth of the penetration points, and can also effectively predict the top and bottom interfaces in the horizontal penetrating section. Moreover, this method will greatly increase not only the number of points of depth data available, but also the accuracy of these data, which achieves the goal of building a reliable fine reservoir structure model by using the stratigraphic correlation among horizontal wells. Using this method, four 3D fine structure layer models have been successfully built of a specimen shale gas field with platform-based horizontal well production mode. The shale gas field is located to the east of Sichuan Basin, China; the successful application of the method has proven its feasibility and reliability.

  7. Algebraic approach to electronic spectroscopy and dynamics.

    PubMed

    Toutounji, Mohamad

    2008-04-28

    Lie algebra, Zassenhaus, and parameter differentiation techniques are utilized to break up the exponential of a bilinear Hamiltonian operator into a product of noncommuting exponential operators by the virtue of the theory of Wei and Norman [J. Math. Phys. 4, 575 (1963); Proc. Am. Math. Soc., 15, 327 (1964)]. There are about three different ways to find the Zassenhaus exponents, namely, binomial expansion, Suzuki formula, and q-exponential transformation. A fourth, and most reliable method, is provided. Since linearly displaced and distorted (curvature change upon excitation/emission) Hamiltonian and spin-boson Hamiltonian may be classified as bilinear Hamiltonians, the presented algebraic algorithm (exponential operator disentanglement exploiting six-dimensional Lie algebra case) should be useful in spin-boson problems. The linearly displaced and distorted Hamiltonian exponential is only treated here. While the spin-boson model is used here only as a demonstration of the idea, the herein approach is more general and powerful than the specific example treated. The optical linear dipole moment correlation function is algebraically derived using the above mentioned methods and coherent states. Coherent states are eigenvectors of the bosonic lowering operator a and not of the raising operator a(+). While exp(a(+)) translates coherent states, exp(a(+)a(+)) operation on coherent states has always been a challenge, as a(+) has no eigenvectors. Three approaches, and the results, of that operation are provided. Linear absorption spectra are derived, calculated, and discussed. The linear dipole moment correlation function for the pure quadratic coupling case is expressed in terms of Legendre polynomials to better show the even vibronic transitions in the absorption spectrum. Comparison of the present line shapes to those calculated by other methods is provided. Franck-Condon factors for both linear and quadratic couplings are exactly accounted for by the herein calculated linear absorption spectra. This new methodology should easily pave the way to calculating the four-point correlation function, F(tau(1),tau(2),tau(3),tau(4)), of which the optical nonlinear response function may be procured, as evaluating F(tau(1),tau(2),tau(3),tau(4)) is only evaluating the optical linear dipole moment correlation function iteratively over different time intervals, which should allow calculating various optical nonlinear temporal/spectral signals.

  8. Greater impulsivity is associated with decreased brain activation in obese women during a delay discounting task.

    PubMed

    Stoeckel, Luke E; Murdaugh, Donna L; Cox, James E; Cook, Edwin W; Weller, Rosalyn E

    2013-06-01

    Impulsivity and poor inhibitory control are associated with higher rates of delay discounting (DD), or a greater preference for smaller, more immediate rewards at the expense of larger, but delayed rewards. Of the many functional magnetic resonance imaging (fMRI) studies of DD, few have investigated the correlation between individual differences in DD rate and brain activation related to DD trial difficulty, with difficult DD trials expected to activate putative executive function brain areas involved in impulse control. In the current study, we correlated patterns of brain activation as measured by fMRI during difficult vs. easy trials of a DD task with DD rate (k) in obese women. Difficulty was defined by how much a reward choice deviated from an individual's 'indifference point', or the point where the subjective preference for an immediate and a delayed reward was approximately equivalent. We found that greater delay discounting was correlated with less modulation of activation in putative executive function brain areas, such as the middle and superior frontal gyri and inferior parietal lobule, in response to difficult compared to easy DD trials. These results support the suggestion that increased impulsivity is associated with deficient functioning of executive function areas of the brain.

  9. Relationships between Community Level Functional Traits of Trees and Seedlings during Secondary Succession in a Tropical Lowland Rainforest.

    PubMed

    Lu, XingHui; Zang, RunGuo; Huang, JiHong

    2015-01-01

    Most of the previous studies on functional traits focus exclusively on either seedlings or trees. Little knowledge exists on the relationships between community level functional traits of trees and seedlings during succession. Here, we examine variations of the community-level functional traits for trees and seedlings and their correlations along a secondary successional and environmental gradient in a tropical lowland rainforest after shifting cultivation. The results showed that the dynamic patterns in community level functional traits of seedlings were generally consistent with those of the trees during secondary succession. Compared with seedlings, community level traits for trees were less affected by abiotic factors during secondary succession. Correlations between community level functional traits of trees and seedlings were significant for: leaf dry matter content and leaf nitrogen concentration in the 18-year-old fallow; leaf chlorophyll content in the 30-year-old fallow; specific leaf area, leaf dry matter content and leaf nitrogen concentration in the 60-year-old fallow; and leaf nitrogen concentration in old growth. However, these traits except specific leaf area for the tree and seedling communities were all significantly correlated if all the successional stages were combined. Our results suggest that the correlations between community level functional traits of trees and those of seedlings depend on the actual traits and the successional stages examined. However, if all the four successional stages are combined, then four out of five of the community level functional traits for trees could be well predicted by those of the seedlings in the tropical lowland rain forest.

  10. Relationships between Community Level Functional Traits of Trees and Seedlings during Secondary Succession in a Tropical Lowland Rainforest

    PubMed Central

    Lu, XingHui; Zang, RunGuo; Huang, JiHong

    2015-01-01

    Most of the previous studies on functional traits focus exclusively on either seedlings or trees. Little knowledge exists on the relationships between community level functional traits of trees and seedlings during succession. Here, we examine variations of the community-level functional traits for trees and seedlings and their correlations along a secondary successional and environmental gradient in a tropical lowland rainforest after shifting cultivation. The results showed that the dynamic patterns in community level functional traits of seedlings were generally consistent with those of the trees during secondary succession. Compared with seedlings, community level traits for trees were less affected by abiotic factors during secondary succession. Correlations between community level functional traits of trees and seedlings were significant for: leaf dry matter content and leaf nitrogen concentration in the 18-year-old fallow; leaf chlorophyll content in the 30-year-old fallow; specific leaf area, leaf dry matter content and leaf nitrogen concentration in the 60-year-old fallow; and leaf nitrogen concentration in old growth. However, these traits except specific leaf area for the tree and seedling communities were all significantly correlated if all the successional stages were combined. Our results suggest that the correlations between community level functional traits of trees and those of seedlings depend on the actual traits and the successional stages examined. However, if all the four successional stages are combined, then four out of five of the community level functional traits for trees could be well predicted by those of the seedlings in the tropical lowland rain forest. PMID:26172543

  11. Using galaxy pairs to investigate the three-point correlation function in the squeezed limit

    NASA Astrophysics Data System (ADS)

    Yuan, Sihan; Eisenstein, Daniel J.; Garrison, Lehman H.

    2017-11-01

    We investigate the three-point correlation function (3PCF) in the squeezed limit by considering galaxy pairs as discrete objects and cross-correlating them with the galaxy field. We develop an efficient algorithm using fast Fourier transforms to compute such cross-correlations and their associated pair-galaxy bias bp, g and the squeezed 3PCF coefficient Qeff. We implement our method using N-body cosmological simulations and a fiducial halo occupation distribution (HOD) and present the results in both the real space and redshift space. In real space, we observe a peak in bp, g and Qeff at pair separation of ∼2 Mpc, attributed to the fact that galaxy pairs at 2 Mpc separation trace the most massive dark matter haloes. We also see strong anisotropy in the bp, g and Qeff signals that track the large-scale filamentary structure. In redshift space, both the 2 Mpc peak and the anisotropy are significantly smeared out along the line of sight due to finger-of-God effect. In both the real space and redshift space, the squeezed 3PCF shows a factor of 2 variation, contradicting the hierarchical ansatz, but offering rich information on the galaxy-halo connection. Thus, we explore the possibility of using the squeezed 3PCF to constrain the HOD. When we compare two simple HOD models that are closely matched in their projected two-point correlation function (2PCF), we do not yet see a strong variation in the 3PCF that is clearly disentangled from variations in the projected 2PCF. Nevertheless, we propose that more complicated HOD models, e.g. those incorporating assembly bias, can break degeneracies in the 2PCF and show a distinguishable squeezed 3PCF signal.

  12. Structure of the BBGKY hierarchy near phase transition

    NASA Astrophysics Data System (ADS)

    Ramanathan, G. V.; Jedrzejek, C.

    1980-06-01

    A nonperturbative method, as opposed to diagrammatic expansions, is used to study critical phenomena in a fluid with a small hard core and a weak, long-ranged attractive potential. Using the natural small parameter related to the inverse of the range of the attractive potential, spatially uniformly valid asymptotic estimates are made for the magnitudes of all correlations (which are defined as the excess from the generalized superposition approximation) in a region near phase transition in arbitrary number of dimensions. It is shown that if the dimension of the space is larger than four, the correlation hierarchy truncates at the three-body level. The pair correlation satisfies a linear equation. The solution is precisely of Ornstein-Zernike form. For dimensions smaller than four, the hierarchy is still an infinite chain, but considerably simpler than the BBGKY hierarchy. In this case, at the critical point, the correlations are shown to satisfy a scaling law which is the same as that for S4 spin systems.

  13. Reconstructing the primordial spectrum of fluctuations of the universe from the observed nonlinear clustering of galaxies

    NASA Technical Reports Server (NTRS)

    Hamilton, A. J. S.; Matthews, Alex; Kumar, P.; Lu, Edward

    1991-01-01

    It was discovered that the nonlinear evolution of the two point correlation function in N-body experiments of galaxy clustering with Omega = 1 appears to be described to good approximation by a simple general formula. The underlying form of the formula is physically motivated, but its detailed representation is obtained empirically by fitting to N-body experiments. In this paper, the formula is presented along with an inverse formula which converts a final, nonlinear correlation function into the initial linear correlation function. The inverse formula is applied to observational data from the CfA, IRAs, and APM galaxy surveys, and the initial spectrum of fluctuations of the universe, if Omega = 1.

  14. Bradykinesia and bradyphrenia revisited: patterns of subclinical deficit in motor speed and cognitive functioning in head-injured patients with good recovery.

    PubMed

    Gray, C; Cantagallo, A; Della Sala, S; Basaglia, N

    1998-05-01

    Twenty-four patients, showing a good clinical recovery from coma-inducing injury and coping well with the activities of everyday living, were tested, at least 1 year after trauma, on motor speed and reaction time, and given a neuropsychological examination. While the patients generally performed within the normal range on the neuropsychological tests, their motor speeds and reaction times--both simple (SRT) and complex (CRT)--were significantly slower than those of matched controls. This points to a subclinical bradykinesia. The patients' motor speed scores did not correlate significantly with any of the neuropsychological tests; nor did SRT or CRT. While the difference between simple and complex reaction time was significantly greater in the patient group, the percentage difference was not significantly different between the two groups. Collectively, these results suggest that bradykinesia and bradyphrenia do not necessarily overlap. Finally, there was no significant correlation between motor performance and severity of original injury, whether the latter was measured by number and size of lesions or by duration of post-traumatic amnesia.

  15. Analysis of Loss-of-Function Mutants in Aspartate Kinase and Homoserine Dehydrogenase Genes Points to Complexity in the Regulation of Aspartate-Derived Amino Acid Contents1[OPEN

    PubMed Central

    2015-01-01

    Biosynthesis of aspartate (Asp)-derived amino acids lysine (Lys), methionine (Met), threonine (Thr), and isoleucine involves monofunctional Asp kinases (AKs) and dual-functional Asp kinase-homoserine dehydrogenases (AK-HSDHs). Four-week-old loss-of-function Arabidopsis (Arabidopsis thaliana) mutants in the AK-HSDH2 gene had increased amounts of Asp and Asp-derived amino acids, especially Thr, in leaves. To explore mechanisms behind this phenotype, we obtained single mutants for other AK and AK-HSDH genes, generated double mutants from ak-hsdh2 and ak mutants, and performed free and protein-bound amino acid profiling, transcript abundance, and activity assays. The increases of Asp, Lys, and Met in ak-hsdh2 were also observed in ak1-1, ak2-1, ak3-1, and ak-hsdh1-1. However, the Thr increase in ak-hsdh2 was observed in ak-hsdh1-1 but not in ak1-1, ak2-1, or ak3-1. Activity assays showed that AK2 and AK-HSDH1 are the major contributors to overall AK and HSDH activities, respectively. Pairwise correlation analysis revealed positive correlations between the amount of AK transcripts and Lys-sensitive AK activity and between the amount of AK-HSDH transcripts and both Thr-sensitive AK activity and total HSDH activity. In addition, the ratio of total AK activity to total HSDH activity negatively correlates with the ratio of Lys to the total amount of Met, Thr, and isoleucine. These data led to the hypothesis that the balance between Lys-sensitive AKs and Thr-sensitive AK-HSDHs is important for maintaining the amounts and ratios of Asp-derived amino acids. PMID:26063505

  16. Correlation Functions in Two-Dimensional Critical Systems with Conformal Symmetry

    NASA Astrophysics Data System (ADS)

    Flores, Steven Miguel

    This thesis presents a study of certain conformal field theory (CFT) correlation functions that describe physical observables in conform ally invariant two-dimensional critical systems. These are typically continuum limits of critical lattice models in a domain within the complex plane and with a boundary. Certain clusters, called boundary clusters, anchor to the boundary of the domain, and many of their features are governed by a conformally invariant probability measure. For example, percolaion is an example of a critical lattice model, and when it is confined to a domain with a boundary, connected clusters of activated bonds that touch that boundary are the boundary clusters. This thesis is concerned with how the boundary clusters interact with each other according to that measure. One question that it considers are "how likely are these clusters to repel each other or to connect with one another in a certain topological configuration?" Chapter one non-rigorously derives an already well-known elliptic system of differential equations closely tied to this matter by using standard techniques of CFT, chapters two and three rigorously infer certain properties concerning the solution space of this system, and chapter four uses some of those results to predict an answer to this question. This thesis also considers local variations of this question such as "what regions of the domain do the perimeters of the boundary clusters explore," and "how often will several boundary clusters connect at just a single, specified point in the domain?" Chapter five predicts precise answers to these questions. All of these answers are quantitative predictions that we verify via high-precision computer simulation. Chapters four and five also present these simulation results. Further material that supplements chapter one is included in two appendices.

  17. Measurement Properties of the Modified Spinal Function Sort (M-SFS): Is It Reliable and Valid in Workers with Chronic Musculoskeletal Pain?

    PubMed

    Trippolini, Maurizio Alen; Janssen, Svenja; Hilfiker, Roger; Oesch, Peter

    2018-06-01

    Purpose To analyze the reliability and validity of a picture-based questionnaire, the Modified Spinal Function Sort (M-SFS). Methods Sixty-two injured workers with chronic musculoskeletal disorders (MSD) were recruited from two work rehabilitation centers. Internal consistency was assessed by Cronbach's alpha. Construct validity was tested based on four a priori hypotheses. Structural validity was measured with principal component analysis (PCA). Test-retest reliability and agreement was evaluated using intraclass correlation coefficient (ICC) and measurement error with the limits of agreement (LoA). Results Total score of the M-SFS was 54.4 (SD 16.4) and 56.1 (16.4) for test and retest, respectively. Item distribution showed no ceiling effects. Cronbach's alpha was 0.94 and 0.95 for test and retest, respectively. PCA showed the presence of four components explaining a total of 74% of the variance. Item communalities were >0.6 in 17 out of 20 items. ICC was 0.90, LoA was ±12.6/16.2 points. The correlations between the M-SFS were 0.89 with the original SFS, 0.49 with the Pain Disability Index, -0.37 and -0.33 with the Numeric Rating Scale for actual pain, -0.52 for selfreported disability due to chronic low back pain, and 0.50, 0.56-0.59 with three distinct lifting tests. No a priori defined hypothesis for construct validity was rejected. Conclusions The M-SFS allows reliable and valid assessment of perceived self-efficacy for work-related tasks and can be recommended for use in patients with chronic MSD. Further research should investigate the proposed M-SFS score of <56 for its predictive validity for non-return to work.

  18. Reading the Freudian theory of sexual drives from a functional neuroimaging perspective

    PubMed Central

    Stoléru, Serge

    2014-01-01

    One of the essential tasks of neuropsychoanalysis is to investigate the neural correlates of sexual drives. Here, we consider the four defining characteristics of sexual drives as delineated by Freud: their pressure, aim, object, and source. We systematically examine the relations between these characteristics and the four-component neurophenomenological model that we have proposed based on functional neuroimaging studies, which comprises a cognitive, a motivational, an emotional and an autonomic/neuroendocrine component. Functional neuroimaging studies of sexual arousal (SA) have thrown a new light on the four fundamental characteristics of sexual drives by identifying their potential neural correlates. While these studies are essentially consistent with the Freudian model of drives, the main difference emerging between the functional neuroimaging perspective on sexual drives and the Freudian theory relates to the source of drives. From a functional neuroimaging perspective, sources of sexual drives, conceived by psychoanalysis as processes of excitation occurring in a peripheral organ, do not seem, at least in adult subjects, to be an essential part of the determinants of SA. It is rather the central processing of visual or genital stimuli that gives to these stimuli their sexually arousing and sexually pleasurable character. Finally, based on functional neuroimaging results, some possible improvements to the psychoanalytic theory of sexual drives are suggested. PMID:24672467

  19. Analysis of heart rate deflection points to predict the anaerobic threshold by a computerized method.

    PubMed

    Marques-Neto, Silvio R; Maior, Alex S; Maranhão Neto, Geraldo A; Santos, Edil L

    2012-07-01

    Many studies have used the heart rate deflection points (HRDPs) during incremental exercise tests, because of their strong correlation with the anaerobic threshold. The aim of this study was to evaluate the profile of the HRDPs identified by a computerized method and compare them with ventilatory and lactate thresholds. Twenty-four professional soccer players (age, 22 ± 5 years; body mass, 74 ± 7 kg; height 177 ± 7 cm) volunteered for the study. The subjects completed a Bruce-protocol incremental treadmill exercise test to volitional fatigue. Heart rate (HR) and alveolar gas exchange were recorded continuously at ≥1 Hz during exercise testing. Subsequently, the time course of the HR was fit by a computer algorithm, and a set of lines yielding the lowest pooled residual sum of squares was chosen as the best fit. This procedure defined 2 HRDPs (HRDP1 and HRDP2). The HR break points averaged 43.9 ± 5.9 and 89.7 ± 7.5% of the VO2peak. The HRDP1 showed a poor correlation with ventilatory threshold (VT; r = 0.50), but HRDP2 was highly correlated to the respiratory compensation (RC) point (r = 0.98). Neither HRDP1 nor HRDP2 was correlated with LT1 (at VO2 = 2.26 ± 0.72 L·min(-1); r = 0.26) or LT2 (2.79 ± 0.59 L·min(-1); r = 0.49), respectively. LT1 and LT2 also were not well correlated with VT (2.93 ± 0.68 L·min(-1); r = 0.20) or RC (3.82 ± 0.60 L·min(-1); r = 0.58), respectively. Although the HR deflection points were not correlated to LT, HRDP2 could be identified in all the subjects and was strongly correlated with RC, consistent with a relationship to cardiorespiratory fatigue and endurance performance.

  20. QCD as a Theory of Hadrons

    NASA Astrophysics Data System (ADS)

    Narison, Stephan

    2004-05-01

    About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD Spectral Sum Rules: 47. Introduction; 48. Theoretical foundations; 49. Survey of QCD spectral sum rules; 50. Weinberg and DMO sum rules; 51. The QCD coupling as; 52. The QCD condensates; 53. Light and heavy quark masses, etc.; 54. Hadron spectroscopy; 55. D, B and Bc exclusive weak decays; 56. B0(s)-B0(s) mixing, kaon CP violation; 57. Thermal behaviour of QCD; 58. More on spectral sum rules; Part XI. Appendix A: physical constants and unites; Appendix B: weight factors for SU(N)c; Appendix C: coordinates and momenta; Appendix D: Dirac equation and matrices; Appendix E: Feynman rules; Appendix F: Feynman integrals; Appendix G: useful formulae for the sum rules; Bibliography; Index.

  1. QCD as a Theory of Hadrons

    NASA Astrophysics Data System (ADS)

    Narison, Stephan

    2007-07-01

    About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD Spectral Sum Rules: 47. Introduction; 48. Theoretical foundations; 49. Survey of QCD spectral sum rules; 50. Weinberg and DMO sum rules; 51. The QCD coupling as; 52. The QCD condensates; 53. Light and heavy quark masses, etc.; 54. Hadron spectroscopy; 55. D, B and Bc exclusive weak decays; 56. B0(s)-B0(s) mixing, kaon CP violation; 57. Thermal behaviour of QCD; 58. More on spectral sum rules; Part XI. Appendix A: physical constants and unites; Appendix B: weight factors for SU(N)c; Appendix C: coordinates and momenta; Appendix D: Dirac equation and matrices; Appendix E: Feynman rules; Appendix F: Feynman integrals; Appendix G: useful formulae for the sum rules; Bibliography; Index.

  2. Correlation functions in the D1-D5 orbifold CFT

    NASA Astrophysics Data System (ADS)

    i Tormo, Joan Garcia; Taylor, Marika

    2018-06-01

    The D1-D5 system has an orbifold point in its moduli space, at which it may be described by an N = (4,4) supersymmetric sigma model with target space M N /S( N) where M is T^4 or K3. In this paper we consider correlation functions involving chiral operators constructed from twist fields: we find explicit expressions for processes involving a twist n operator joining n twist operators of arbitrary twist. These expressions are universal, in that they are independent of the choice of M , and the final results can be expressed in a compact form. We explain how these results are relevant to the black hole microstate programme: one point functions of chiral operators can be used to reconstruct AdS3 near horizon regions of D1-D5 microstates and to match microstates constructed in supergravity with the CFT.

  3. Determination of the Time-Space Magnetic Correlation Functions in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Weygand, J. M.; Matthaeus, W. H.; Kivelson, M.; Dasso, S.

    2013-12-01

    Magnetic field data from many different intervals and 7 different solar wind spacecraft are employed to estimate the scale-dependent time decorrelation function in the interplanetary magnetic field in both the slow and fast solar wind. This estimation requires correlations varying with both space and time lags. The two point correlation function with no time lag is determined by correlating time series data from multiple spacecraft separated in space and for complete coverage of length scales relies on many intervals with different spacecraft spatial separations. In addition we employ single spacecraft time-lagged correlations, and two spacecraft time lagged correlations to access different spatial and temporal correlation data. Combining these data sets gives estimates of the scale-dependent time decorrelation function, which in principle tells us how rapidly time decorrelation occurs at a given wavelength. For static fields the scale-dependent time decorrelation function is trivially unity, but in turbulence the nonlinear cascade process induces time-decorrelation at a given length scale that occurs more rapidly with decreasing scale. The scale-dependent time decorrelation function is valuable input to theories as well as various applications such as scattering, transport, and study of predictability. It is also a fundamental element of formal turbulence theory. Our results are extension of the Eulerian correlation functions estimated in Matthaeus et al. [2010], Weygand et al [2012; 2013].

  4. The useful potential of using existing data to uniquely identify predictable wind events and regimes, part 1

    NASA Technical Reports Server (NTRS)

    Trettel, D. W.; Aquino, J. T.; Piazza, T. R.; Taylor, L. E.; Trask, D. C.

    1982-01-01

    Correlations between standard meteorological data and wind power generation potential were developed. Combined with appropriate wind forecasts, these correlations can be useful to load dispatchers to supplement conventional energy sources. Hourly wind data were analyzed for four sites, each exhibiting a unique physiography. These sites are Amarillo, Texas; Ludington, Michigan; Montauk Point, New York; and San Gorgonio, California. Synoptic weather maps and tables are presented to illustrate various wind 'regimes' at these sites.

  5. Detection of the power spectrum of cosmic microwave background lensing by the Atacama Cosmology Telescope.

    PubMed

    Das, Sudeep; Sherwin, Blake D; Aguirre, Paula; Appel, John W; Bond, J Richard; Carvalho, C Sofia; Devlin, Mark J; Dunkley, Joanna; Dünner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hincks, Adam D; Hlozek, Renée; Huffenberger, Kevin M; Hughes, John P; Irwin, Kent D; Klein, Jeff; Kosowsky, Arthur; Lupton, Robert H; Marriage, Tobias A; Marsden, Danica; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Parker, Lucas; Reese, Erik D; Schmitt, Benjamin L; Sehgal, Neelima; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Swetz, Daniel S; Switzer, Eric R; Thornton, Robert; Visnjic, Katerina; Wollack, Ed

    2011-07-08

    We report the first detection of the gravitational lensing of the cosmic microwave background through a measurement of the four-point correlation function in the temperature maps made by the Atacama Cosmology Telescope. We verify our detection by calculating the levels of potential contaminants and performing a number of null tests. The resulting convergence power spectrum at 2° angular scales measures the amplitude of matter density fluctuations on comoving length scales of around 100 Mpc at redshifts around 0.5 to 3. The measured amplitude of the signal agrees with Lambda cold dark matter cosmology predictions. Since the amplitude of the convergence power spectrum scales as the square of the amplitude of the density fluctuations, the 4σ detection of the lensing signal measures the amplitude of density fluctuations to 12%.

  6. The use of copula functions for predictive analysis of correlations between extreme storm tides

    NASA Astrophysics Data System (ADS)

    Domino, Krzysztof; Błachowicz, Tomasz; Ciupak, Maurycy

    2014-11-01

    In this paper we present a method used in quantitative description of weakly predictable hydrological, extreme events at inland sea. Investigations for correlations between variations of individual measuring points, employing combined statistical methods, were carried out. As a main tool for this analysis we used a two-dimensional copula function sensitive for correlated extreme effects. Additionally, a new proposed methodology, based on Detrended Fluctuations Analysis (DFA) and Anomalous Diffusion (AD), was used for the prediction of negative and positive auto-correlations and associated optimum choice of copula functions. As a practical example we analysed maximum storm tides data recorded at five spatially separated places at the Baltic Sea. For the analysis we used Gumbel, Clayton, and Frank copula functions and introduced the reversed Clayton copula. The application of our research model is associated with modelling the risk of high storm tides and possible storm flooding.

  7. Prevalence of hypertension and circadian blood pressure variations in patients with obstructive sleep apnoea-hypopnoea syndrome.

    PubMed

    Wang, Yan; Li, Caili; Feng, Liting; Feng, Jing; Cao, Jie; Chen, Baoyuan

    2014-06-01

    To investigate the prevalence of hypertension and circadian blood pressure (BP) variations in patients with obstructive sleep apnoea-hypopnoea syndrome (OSAHS). Patients referred to a sleep clinic underwent polysomnography with measurement of BP at four time points. They were classified into four groups (control, and mild, moderate or severe sleep apnoea) using the apnoea-hypopnoea index (AHI). Circadian variation was assessed using night-time to daytime mean BP (R(N/D)) and morning to evening mean BP (R(M/E)) ratios. Hypertension was significantly more common in patients with OSAHS (50.5%) than in controls (30.4%). AHI was positively correlated with hypertension after controlling for related confounders. Mean BP values at all four time points rose with increasing AHI. The increase in night-time and morning values was more pronounced than the increase in daytime and evening values in patients with OSAHS, resulting in loss of the normal BP diurnal rhythm. The R(N/D) and R(M/E) ratios increased with increasing AHI. Daytime BP was significantly correlated with AHI and the lowest oxygen saturation value. OSAHS was shown to be an independent risk factor for hypertension. It was also associated with loss of the normal BP diurnal rhythm. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  8. The separate universe approach to soft limits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenton, Zachary; Mulryne, David J., E-mail: z.a.kenton@qmul.ac.uk, E-mail: d.mulryne@qmul.ac.uk

    We develop a formalism for calculating soft limits of n -point inflationary correlation functions using separate universe techniques. Our method naturally allows for multiple fields and leads to an elegant diagrammatic approach. As an application we focus on the trispectrum produced by inflation with multiple light fields, giving explicit formulae for all possible single- and double-soft limits. We also investigate consistency relations and present an infinite tower of inequalities between soft correlation functions which generalise the Suyama-Yamaguchi inequality.

  9. Functional-anatomic correlates of individual differences in memory.

    PubMed

    Kirchhoff, Brenda A; Buckner, Randy L

    2006-07-20

    Memory abilities differ greatly across individuals. To explore a source of these differences, we characterized the varied strategies people adopt during unconstrained encoding. Participants intentionally encoded object pairs during functional MRI. Principal components analysis applied to a strategy questionnaire revealed that participants variably used four main strategies to aid learning. Individuals' use of verbal elaboration and visual inspection strategies independently correlated with their memory performance. Verbal elaboration correlated with activity in a network of regions that included prefrontal regions associated with controlled verbal processing, while visual inspection correlated with activity in a network of regions that included an extrastriate region associated with object processing. Activity in regions associated with use of these strategies was also correlated with memory performance. This study reveals functional-anatomic correlates of verbal and perceptual strategies that are variably used by individuals during encoding. These strategies engage distinct brain regions and may separately influence memory performance.

  10. Validation of Accelerometer Cut-Points in Children With Cerebral Palsy Aged 4 to 5 Years.

    PubMed

    Keawutan, Piyapa; Bell, Kristie L; Oftedal, Stina; Davies, Peter S W; Boyd, Roslyn N

    2016-01-01

    To derive and validate triaxial accelerometer cut-points in children with cerebral palsy (CP) and compare these with previously established cut-points in children with typical development. Eighty-four children with CP aged 4 to 5 years wore the ActiGraph during a play-based gross motor function measure assessment that was video-taped for direct observation. Receiver operating characteristic and Bland-Altman plots were used for analyses. The ActiGraph had good classification accuracy in Gross Motor Function Classification System (GMFCS) levels III and V and fair classification accuracy in GMFCS levels I, II, and IV. These results support the use of the previously established cut-points for sedentary time of 820 counts per minute in children with CP aged 4 to 5 years across all functional abilities. The cut-point provides an objective measure of sedentary and active time in children with CP. The cut-point is applicable to group data but not for individual children.

  11. BINARY CORRELATIONS IN IONIZED GASES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balescu, R.; Taylor, H.S.

    1961-01-01

    An equation of evolution for the binary distribution function in a classical homogeneous, nonequilibrium plasma was derived. It is shown that the asymptotic (long-time) solution of this equation is the Debye distribution, thus providing a rigorous dynamical derivation of the equilibrium distribution. This proof is free from the fundamental conceptual difficulties of conventional equilibrium derivations. Out of equilibrium, a closed formula was obtained for the long living correlations, in terms of the momentum distribution function. These results should form an appropriate starting point for a rigorous theory of transport phenomena in plasmas, including the effect of molecular correlations. (auth)

  12. Removing the Impact of Correlated PSF Uncertainties in Weak Lensing

    NASA Astrophysics Data System (ADS)

    Lu, Tianhuan; Zhang, Jun; Dong, Fuyu; Li, Yingke; Liu, Dezi; Fu, Liping; Li, Guoliang; Fan, Zuhui

    2018-05-01

    Accurate reconstruction of the spatial distributions of the point-spread function (PSF) is crucial for high precision cosmic shear measurements. Nevertheless, current methods are not good at recovering the PSF fluctuations of high spatial frequencies. In general, the residual PSF fluctuations are spatially correlated, and therefore can significantly contaminate the correlation functions of the weak lensing signals. We propose a method to correct for this contamination statistically, without any assumptions on the PSF and galaxy morphologies or their spatial distribution. We demonstrate our idea with the data from the W2 field of CFHTLenS.

  13. Lower Limb Function in Elderly Korean Adults Is Related to Cognitive Function.

    PubMed

    Kim, A-Sol; Ko, Hae-Jin

    2018-05-01

    Patients with cognitive impairment have decreased lower limb function. Therefore, we aimed to investigate the relationship between lower limb function and cognitive disorders to determine whether lower limb function can be screened to identify cognitive decline. Using Korean National Health Insurance Service-National Sample Cohort database data, we assessed the cognitive and lower limb functioning of 66-year-olds who underwent national health screening between 2010 and 2014. Cognitive function was assessed via a questionnaire. Timed Up-and-Go (TUG) and one-leg-standing (OLS) tests were performed to evaluate lower limb function. Associations between cognitive and lower limb functions were analyzed, and optimal cut-off points for these tests to screen for cognitive decline, were determined. Cognitive function was significantly correlated with TUG interval ( r = 0.414, p < 0.001) and OLS duration ( r = −0.237, p < 0.001). Optimal cut-off points for screening cognitive disorders were >11 s and ≤12 s for TUG interval and OLS duration, respectively. Among 66-year-olds who underwent national health screening, a significant correlation between lower limb and cognitive function was demonstrated. The TUG and OLS tests are useful screening tools for cognitive disorders in elderly patients. A large-scale prospective cohort study should be conducted to investigate the causal relationship between cognitive and lower limb function.

  14. Student Engagement and Academic Success in Veterans' Post-Secondary Education

    ERIC Educational Resources Information Center

    Osagie, Shelley E.

    2016-01-01

    The major purpose of this study was to investigate whether the level of engagement, as measured by the National Survey of Student Engagement (NSSE) correlates with veterans' academic success as measured by cumulative Grade Point Average (GPA). Participants were senior college students, at a four-year urban public university who completed the…

  15. The Ballantine Teachers' Guide to Science Fiction.

    ERIC Educational Resources Information Center

    Allen, L. David

    A guide for teaching science fiction in secondary and college classrooms, this book contains an introductory essay that covers a variety of points about teaching science fiction, with a discussion of the audience, the correlation between science and fiction, and the changing role of science fiction. In a second essay, four categories of science…

  16. Tree-level correlations in the strong field regime

    NASA Astrophysics Data System (ADS)

    Gelis, François

    2017-09-01

    We consider the correlation function of an arbitrary number of local observables in quantum field theory, in situations where the field amplitude is large. Using a quasi-classical approximation (valid for a highly occupied initial mixed state, or for a coherent initial state if the classical dynamics has instabilities), we show that at tree level these correlations are dominated by fluctuations at the initial time. We obtain a general expression of the correlation functions in terms of the classical solution of the field equation of motion and its derivatives with respect to its initial conditions, that can be arranged graphically as the sum of labeled trees where the nodes are the individual observables, and the links are pairs of derivatives acting on them. For 3-point (and higher) correlation functions, there are additional tree-level terms beyond the quasi-classical approximation, generated by fluctuations in the bulk.

  17. Is computer-aided interpretation of 99Tcm-HMPAO leukocyte scans better than the naked eye?

    PubMed

    Almer, S; Peters, A M; Ekberg, S; Franzén, L; Granerus, G; Ström, M

    1995-04-01

    In order to compare visual interpretation of inflammation detected by leukocyte scintigraphy with that of different computer-aided quantification methods, 34 patients (25 with ulcerative colitis and 9 with endoscopically verified non-inflamed colonic mucosa), were investigated using 99Tcm-hexamethylpropyleneamine oxime (99Tcm-HMPAO) leukocyte scintigraphy and colonoscopy with biopsies. Scintigrams were obtained 45 min and 4 h after the injection of labelled cells. Computer-generated grading of seven colon segments using four different methods was performed on each scintigram for each patient. The same segments were graded independently using a 4-point visual scale. Endoscopic and histological inflammation were scored on 4-point scales. At 45 min, a positive correlation was found between endoscopic and scan gradings in individual colon segments when using visual grading and three of the four computer-aided methods (Spearman's rs = 0.30-0.64, P < 0.001). Histological grading correlated with visual grading and with two of the four computer-aided methods at 45 min (rs = 0.42-0.54, P < 0.001). At 4 h, all grading methods correlated positively with both endoscopic and histological assessment. The correlation coefficients were, in all but one instance, highest for the visual grading. As an inter-observer comparison to assess agreement between the visual gradings of two nuclear physicians, 14 additional patients (9 ulcerative colitis, 5 infectious enterocolitis) underwent leukocyte scintigraphy. Agreement assessed using kappa statistics was 0.54 at 45 min (P < 0.001). Separate data concerning the presence/absence of active inflammation showed a high kappa value (0.74, P < 0.001). Our results showed that a simple scintigraphic scoring system based on assessment using the human eye reflects colonic inflammation at least as well as computer-aided grading, and that highly correlated results can be achieved between different investigators.

  18. The three-point function as a probe of models for large-scale structure

    NASA Astrophysics Data System (ADS)

    Frieman, Joshua A.; Gaztanaga, Enrique

    1994-04-01

    We analyze the consequences of models of structure formation for higher order (n-point) galaxy correlation functions in the mildly nonlinear regime. Several variations of the standard Omega = 1 cold dark matter model with scale-invariant primordial perturbations have recently been introduced to obtain more power on large scales, Rp is approximately 20/h Mpc, e.g., low matter-density (nonzero cosmological constant) models, 'tilted' primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower et al. We show that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale dependence leads to a dramatic decrease of the the hierarchical amplitudes QJ at large scales, r is greater than or approximately Rp. Current observational constraints on the three-point amplitudes Q3 and S3 can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales.

  19. Correlation in photon pairs generated using four-wave mixing in a cold atomic ensemble

    NASA Astrophysics Data System (ADS)

    Ferdinand, Andrew Richard; Manjavacas, Alejandro; Becerra, Francisco Elohim

    2017-04-01

    Spontaneous four-wave mixing (FWM) in atomic ensembles can be used to generate narrowband entangled photon pairs at or near atomic resonances. While extensive research has been done to investigate the quantum correlations in the time and polarization of such photon pairs, the study and control of high dimensional quantum correlations contained in their spatial degrees of freedom has not been fully explored. In our work we experimentally investigate the generation of correlated light from FWM in a cold ensemble of cesium atoms as a function of the frequencies of the pump fields in the FWM process. In addition, we theoretically study the spatial correlations of the photon pairs generated in the FWM process, specifically the joint distribution of their orbital angular momentum (OAM). We investigate the width of the distribution of the OAM modes, known as the spiral bandwidth, and the purity of OAM correlations as a function of the properties of the pump fields, collected photons, and the atomic ensemble. These studies will guide experiments involving high dimensional entanglement of photons generated from this FWM process and OAM-based quantum communication with atomic ensembles. This work is supported by AFORS Grant FA9550-14-1-0300.

  20. Spatial correlations and probability density function of the phase difference in a developed speckle-field: numerical and natural experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mysina, N Yu; Maksimova, L A; Ryabukho, V P

    Investigated are statistical properties of the phase difference of oscillations in speckle-fields at two points in the far-field diffraction region, with different shapes of the scatterer aperture. Statistical and spatial nonuniformity of the probability density function of the field phase difference is established. Numerical experiments show that, for the speckle-fields with an oscillating alternating-sign transverse correlation function, a significant nonuniformity of the probability density function of the phase difference in the correlation region of the field complex amplitude, with the most probable values 0 and p, is observed. A natural statistical interference experiment using Young diagrams has confirmed the resultsmore » of numerical experiments. (laser applications and other topics in quantum electronics)« less

  1. Producing data-based sensitivity kernels from convolution and correlation in exploration geophysics.

    NASA Astrophysics Data System (ADS)

    Chmiel, M. J.; Roux, P.; Herrmann, P.; Rondeleux, B.

    2016-12-01

    Many studies have shown that seismic interferometry can be used to estimate surface wave arrivals by correlation of seismic signals recorded at a pair of locations. In the case of ambient noise sources, the convergence towards the surface wave Green's functions is obtained with the criterion of equipartitioned energy. However, seismic acquisition with active, controlled sources gives more possibilities when it comes to interferometry. The use of controlled sources makes it possible to recover the surface wave Green's function between two points using either correlation or convolution. We investigate the convolutional and correlational approaches using land active-seismic data from exploration geophysics. The data were recorded on 10,710 vertical receivers using 51,808 sources (seismic vibrator trucks). The sources spacing is the same in both X and Y directions (30 m) which is known as a "carpet shooting". The receivers are placed in parallel lines with a spacing 150 m in the X direction and 30 m in the Y direction. Invoking spatial reciprocity between sources and receivers, correlation and convolution functions can thus be constructed between either pairs of receivers or pairs of sources. Benefiting from the dense acquisition, we extract sensitivity kernels from correlation and convolution measurements of the seismic data. These sensitivity kernels are subsequently used to produce phase-velocity dispersion curves between two points and to separate the higher mode from the fundamental mode for surface waves. Potential application to surface wave cancellation is also envisaged.

  2. Performance evaluation of thermally treated graphite felt electrodes for vanadium redox flow battery and their four-point single cell characterization

    NASA Astrophysics Data System (ADS)

    Mazúr, P.; Mrlík, J.; Beneš, J.; Pocedič, J.; Vrána, J.; Dundálek, J.; Kosek, J.

    2018-03-01

    In our contribution we study the electrocatalytic effect of oxygen functionalization of thermally treated graphite felt on kinetics of electrode reactions of vanadium redox flow battery. Chemical and morphological changes of the felts are analysed by standard physico-chemical characterization techniques. A complex method four-point method is developed and employed for characterization of the felts in a laboratory single-cell. The method is based on electrochemical impedance spectroscopy and load curves measurements of positive and negative half-cells using platinum wire pseudo-reference electrodes. The distribution of ohmic and faradaic losses within a single-cell is evaluated for both symmetric and asymmetric electrode set-up with respect to the treatment conditions. Positive effect of oxygen functionalization is observed only for negative electrode, whereas kinetics of positive electrode reaction is almost unaffected by the treatment. This is in a contradiction to the results of typically employed cyclovoltammetric characterization which indicate that both electrodes are enhanced by the treatment to a similar extent. The developed four-point characterization method can be further used e.g., for the component screening and in-situ durability studies on single-cell scale redox flow batteries of various chemistries.

  3. Exploring the squeezed three-point galaxy correlation function with generalized halo occupation distribution models

    NASA Astrophysics Data System (ADS)

    Yuan, Sihan; Eisenstein, Daniel J.; Garrison, Lehman H.

    2018-04-01

    We present the GeneRalized ANd Differentiable Halo Occupation Distribution (GRAND-HOD) routine that generalizes the standard 5 parameter halo occupation distribution model (HOD) with various halo-scale physics and assembly bias. We describe the methodology of 4 different generalizations: satellite distribution generalization, velocity bias, closest approach distance generalization, and assembly bias. We showcase the signatures of these generalizations in the 2-point correlation function (2PCF) and the squeezed 3-point correlation function (squeezed 3PCF). We identify generalized HOD prescriptions that are nearly degenerate in the projected 2PCF and demonstrate that these degeneracies are broken in the redshift-space anisotropic 2PCF and the squeezed 3PCF. We also discuss the possibility of identifying degeneracies in the anisotropic 2PCF and further demonstrate the extra constraining power of the squeezed 3PCF on galaxy-halo connection models. We find that within our current HOD framework, the anisotropic 2PCF can predict the squeezed 3PCF better than its statistical error. This implies that a discordant squeezed 3PCF measurement could falsify the particular HOD model space. Alternatively, it is possible that further generalizations of the HOD model would open opportunities for the squeezed 3PCF to provide novel parameter measurements. The GRAND-HOD Python package is publicly available at https://github.com/SandyYuan/GRAND-HOD.

  4. Exact relations for energy transfer in self-gravitating isothermal turbulence

    NASA Astrophysics Data System (ADS)

    Banerjee, Supratik; Kritsuk, Alexei G.

    2017-11-01

    Self-gravitating isothermal supersonic turbulence is analyzed in the asymptotic limit of large Reynolds numbers. Based on the inviscid invariance of total energy, an exact relation is derived for homogeneous (not necessarily isotropic) turbulence. A modified definition for the two-point energy correlation functions is used to comply with the requirement of detailed energy equipartition in the acoustic limit. In contrast to the previous relations (S. Galtier and S. Banerjee, Phys. Rev. Lett. 107, 134501 (2011), 10.1103/PhysRevLett.107.134501; S. Banerjee and S. Galtier, Phys. Rev. E 87, 013019 (2013), 10.1103/PhysRevE.87.013019), the current exact relation shows that the pressure dilatation terms play practically no role in the energy cascade. Both the flux and source terms are written in terms of two-point differences. Sources enter the relation in a form of mixed second-order structure functions. Unlike the kinetic and thermodynamic potential energies, the gravitational contribution is absent from the flux term. An estimate shows that, for the isotropic case, the correlation between density and gravitational acceleration may play an important role in modifying the energy transfer in self-gravitating turbulence. The exact relation is also written in an alternative form in terms of two-point correlation functions, which is then used to describe scale-by-scale energy budget in spectral space.

  5. Analysis and attenuation of artifacts caused by spatially and temporally correlated noise sources in Green's function estimates

    NASA Astrophysics Data System (ADS)

    Martin, E. R.; Dou, S.; Lindsey, N.; Chang, J. P.; Biondi, B. C.; Ajo Franklin, J. B.; Wagner, A. M.; Bjella, K.; Daley, T. M.; Freifeld, B. M.; Robertson, M.; Ulrich, C.; Williams, E. F.

    2016-12-01

    Localized strong sources of noise in an array have been shown to cause artifacts in Green's function estimates obtained via cross-correlation. Their effect is often reduced through the use of cross-coherence. Beyond independent localized sources, temporally or spatially correlated sources of noise frequently occur in practice but violate basic assumptions of much of the theory behind ambient noise Green's function retrieval. These correlated noise sources can occur in urban environments due to transportation infrastructure, or in areas around industrial operations like pumps running at CO2 sequestration sites or oil and gas drilling sites. Better understanding of these artifacts should help us develop and justify methods for their automatic removal from Green's function estimates. We derive expected artifacts in cross-correlations from several distributions of correlated noise sources including point sources that are exact time-lagged repeats of each other and Gaussian-distributed in space and time with covariance that exponentially decays. Assuming the noise distribution stays stationary over time, the artifacts become more coherent as more ambient noise is included in the Green's function estimates. We support our results with simple computational models. We observed these artifacts in Green's function estimates from a 2015 ambient noise study in Fairbanks, AK where a trenched distributed acoustic sensing (DAS) array was deployed to collect ambient noise alongside a road with the goal of developing a permafrost thaw monitoring system. We found that joints in the road repeatedly being hit by cars travelling at roughly the speed limit led to artifacts similar to those expected when several points are time-lagged copies of each other. We also show test results of attenuating the effects of these sources during time-lapse monitoring of an active thaw test in the same location with noise detected by a 2D trenched DAS array.

  6. Theory of nonstationary Hawkes processes

    NASA Astrophysics Data System (ADS)

    Tannenbaum, Neta Ravid; Burak, Yoram

    2017-12-01

    We expand the theory of Hawkes processes to the nonstationary case, in which the mutually exciting point processes receive time-dependent inputs. We derive an analytical expression for the time-dependent correlations, which can be applied to networks with arbitrary connectivity, and inputs with arbitrary statistics. The expression shows how the network correlations are determined by the interplay between the network topology, the transfer functions relating units within the network, and the pattern and statistics of the external inputs. We illustrate the correlation structure using several examples in which neural network dynamics are modeled as a Hawkes process. In particular, we focus on the interplay between internally and externally generated oscillations and their signatures in the spike and rate correlation functions.

  7. Prosthodontic and speech rehabilitation after partial and complete glossectomy.

    PubMed

    Lauciello, F R; Vergo, T; Schaaf, N G; Zimmerman, R

    1980-02-01

    A multidisciplinary approach to the rehabilitation of four glossectomy patients has been presented. Points emphasized were the anatomic defects, their effect on the three oral functions of mastication, deglutition, and speech, and the various prosthetic modifications found most effective to restore the impaired oral functions.

  8. Aspects and the Overlap Function.

    ERIC Educational Resources Information Center

    Levine, Marilyn M.; Levine, Leonard P.

    1984-01-01

    Presents system for automatic handling of ordered sets, states based on these sets, and differing points of view regarding Universe of Discourse. Aspects are represented by new logical "overlap" function with examples taken from Ranganathan's horse and carriage parable and several books involving four main concepts (history, geography,…

  9. Apolipoprotein E4 influences growth and cognitive responses to micronutrient supplementation in shantytown children from northeast Brazil.

    PubMed

    Mitter, Sumeet S; Oriá, Reinaldo B; Kvalsund, Michelle P; Pamplona, Paula; Joventino, Emanuella Silva; Mota, Rosa M S; Gonçalves, Davi C; Patrick, Peter D; Guerrant, Richard L; Lima, Aldo A M

    2012-01-01

    Apolipoprotein E4 may benefit children during early periods of life when the body is challenged by infection and nutritional decline. We examined whether apolipoprotein E4 affects intestinal barrier function, improving short-term growth and long-term cognitive outcomes in Brazilian shantytown children. A total of 213 Brazilian shantytown children with below-median height-for-age z-scores (HAZ) received 200,000 IU of retinol (every four months), zinc (40 mg twice weekly), or both for one year, with half of each group receiving glutamine supplementation for 10 days. Height-for-age z-scores, weight-for-age z-scores, weight-for-height z-scores, and lactulose:mannitol ratios were assessed during the initial four months of treatment. An average of four years (range 1.4-6.6) later, the children underwent cognitive testing to evaluate non-verbal intelligence, coding, verbal fluency, verbal learning, and delayed verbal learning. Apolipoprotein E4 carriage was determined by PCR analysis for 144 children. Thirty-seven children were apolipoprotein E4(+), with an allele frequency of 13.9%. Significant associations were found for vitamin A and glutamine with intestinal barrier function. Apolipoprotein E4(+) children receiving glutamine presented significant positive Pearson correlations between the change in height-for-age z-scores over four months and delayed verbal learning, along with correlated changes over the same period in weight-for-age z-scores and weight-for-height z-scores associated with non-verbal intelligence quotients. There was a significant correlation between vitamin A supplementation of apolipoprotein E4(+) children and improved delta lactulose/mannitol. Apolipoprotein E4(-) children, regardless of intervention, exhibited negative Pearson correlations between the change in lactulose-to-mannitol ratio over four months and verbal learning and non-verbal intelligence. During development, apolipoprotein E4 may function concomitantly with gut-tropic nutrients to benefit immediate nutritional status, which can translate into better long-term cognitive outcomes.

  10. Testing for the Presence of Correlation Changes in a Multivariate Time Series: A Permutation Based Approach.

    PubMed

    Cabrieto, Jedelyn; Tuerlinckx, Francis; Kuppens, Peter; Hunyadi, Borbála; Ceulemans, Eva

    2018-01-15

    Detecting abrupt correlation changes in multivariate time series is crucial in many application fields such as signal processing, functional neuroimaging, climate studies, and financial analysis. To detect such changes, several promising correlation change tests exist, but they may suffer from severe loss of power when there is actually more than one change point underlying the data. To deal with this drawback, we propose a permutation based significance test for Kernel Change Point (KCP) detection on the running correlations. Given a requested number of change points K, KCP divides the time series into K + 1 phases by minimizing the within-phase variance. The new permutation test looks at how the average within-phase variance decreases when K increases and compares this to the results for permuted data. The results of an extensive simulation study and applications to several real data sets show that, depending on the setting, the new test performs either at par or better than the state-of-the art significance tests for detecting the presence of correlation changes, implying that its use can be generally recommended.

  11. Heat perturbation spreading in the Fermi-Pasta-Ulam-β system with next-nearest-neighbor coupling: Competition between phonon dispersion and nonlinearity

    NASA Astrophysics Data System (ADS)

    Xiong, Daxing

    2017-06-01

    We employ the heat perturbation correlation function to study thermal transport in the one-dimensional Fermi-Pasta-Ulam-β lattice with both nearest-neighbor and next-nearest-neighbor couplings. We find that such a system bears a peculiar phonon dispersion relation, and thus there exists a competition between phonon dispersion and nonlinearity that can strongly affect the heat correlation function's shape and scaling property. Specifically, for small and large anharmoncities, the scaling laws are ballistic and superdiffusive types, respectively, which are in good agreement with the recent theoretical predictions; whereas in the intermediate range of the nonlinearity, we observe an unusual multiscaling property characterized by a nonmonotonic delocalization process of the central peak of the heat correlation function. To understand these multiscaling laws, we also examine the momentum perturbation correlation function and find a transition process with the same turning point of the anharmonicity as that shown in the heat correlation function. This suggests coupling between the momentum transport and the heat transport, in agreement with the theoretical arguments of mode cascade theory.

  12. Apparent diffusion coefficient histogram analysis can evaluate radiation-induced parotid damage and predict late xerostomia degree in nasopharyngeal carcinoma

    PubMed Central

    Zhou, Nan; Guo, Tingting; Zheng, Huanhuan; Pan, Xia; Chu, Chen; Dou, Xin; Li, Ming; Liu, Song; Zhu, Lijing; Liu, Baorui; Chen, Weibo; He, Jian; Yan, Jing; Zhou, Zhengyang; Yang, Xiaofeng

    2017-01-01

    We investigated apparent diffusion coefficient (ADC) histogram analysis to evaluate radiation-induced parotid damage and predict xerostomia degrees in nasopharyngeal carcinoma (NPC) patients receiving radiotherapy. The imaging of bilateral parotid glands in NPC patients was conducted 2 weeks before radiotherapy (time point 1), one month after radiotherapy (time point 2), and four months after radiotherapy (time point 3). From time point 1 to 2, parotid volume, skewness, and kurtosis decreased (P < 0.001, = 0.001, and < 0.001, respectively), but all other ADC histogram parameters increased (all P < 0.001, except P = 0.006 for standard deviation [SD]). From time point 2 to 3, parotid volume continued to decrease (P = 0.022), and SD, 75th and 90th percentiles continued to increase (P = 0.024, 0.010, and 0.006, respectively). Early change rates of parotid ADCmean, ADCmin, kurtosis, and 25th, 50th, 75th, 90th percentiles (from time point 1 to 2) correlated with late parotid atrophy rate (from time point 1 to 3) (all P < 0.05). Multiple linear regression analysis revealed correlations among parotid volume, time point, and ADC histogram parameters. Early mean change rates for bilateral parotid SD and ADCmax could predict late xerostomia degrees at seven months after radiotherapy (three months after time point 3) with AUC of 0.781 and 0.818 (P = 0.014, 0.005, respectively). ADC histogram parameters were reproducible (intraclass correlation coefficient, 0.830 - 0.999). ADC histogram analysis could be used to evaluate radiation-induced parotid damage noninvasively, and predict late xerostomia degrees of NPC patients treated with radiotherapy. PMID:29050274

  13. Apparent diffusion coefficient histogram analysis can evaluate radiation-induced parotid damage and predict late xerostomia degree in nasopharyngeal carcinoma.

    PubMed

    Zhou, Nan; Guo, Tingting; Zheng, Huanhuan; Pan, Xia; Chu, Chen; Dou, Xin; Li, Ming; Liu, Song; Zhu, Lijing; Liu, Baorui; Chen, Weibo; He, Jian; Yan, Jing; Zhou, Zhengyang; Yang, Xiaofeng

    2017-09-19

    We investigated apparent diffusion coefficient (ADC) histogram analysis to evaluate radiation-induced parotid damage and predict xerostomia degrees in nasopharyngeal carcinoma (NPC) patients receiving radiotherapy. The imaging of bilateral parotid glands in NPC patients was conducted 2 weeks before radiotherapy (time point 1), one month after radiotherapy (time point 2), and four months after radiotherapy (time point 3). From time point 1 to 2, parotid volume, skewness, and kurtosis decreased ( P < 0.001, = 0.001, and < 0.001, respectively), but all other ADC histogram parameters increased (all P < 0.001, except P = 0.006 for standard deviation [SD]). From time point 2 to 3, parotid volume continued to decrease ( P = 0.022), and SD, 75 th and 90 th percentiles continued to increase ( P = 0.024, 0.010, and 0.006, respectively). Early change rates of parotid ADC mean , ADC min , kurtosis, and 25 th , 50 th , 75 th , 90 th percentiles (from time point 1 to 2) correlated with late parotid atrophy rate (from time point 1 to 3) (all P < 0.05). Multiple linear regression analysis revealed correlations among parotid volume, time point, and ADC histogram parameters. Early mean change rates for bilateral parotid SD and ADC max could predict late xerostomia degrees at seven months after radiotherapy (three months after time point 3) with AUC of 0.781 and 0.818 ( P = 0.014, 0.005, respectively). ADC histogram parameters were reproducible (intraclass correlation coefficient, 0.830 - 0.999). ADC histogram analysis could be used to evaluate radiation-induced parotid damage noninvasively, and predict late xerostomia degrees of NPC patients treated with radiotherapy.

  14. Standardization of a spinal cord lesion model and neurologic evaluation using mice

    PubMed Central

    Borges, Paulo Alvim; Cristante, Alexandre Fogaça; de Barros-Filho, Tarcísio Eloy Pessoa; Natalino, Renato Jose Mendonça; dos Santos, Gustavo Bispo; Marcon, Raphael Marcus

    2018-01-01

    OBJECTIVE: To standardize a spinal cord lesion mouse model. METHODS: Thirty BALB/c mice were divided into five groups: four experimental groups and one control group (sham). The experimental groups were subjected to spinal cord lesion by a weight drop from different heights after laminectomy whereas the sham group only underwent laminectomy. Mice were observed for six weeks, and functional behavior scales were applied. The mice were then euthanized, and histological investigations were performed to confirm and score spinal cord lesion. The findings were evaluated to prove whether the method of administering spinal cord lesion was effective and different among the groups. Additionally, we correlated the results of the functional scales with the results from the histology evaluations to identify which scale is more reliable. RESULTS: One mouse presented autophagia, and six mice died during the experiment. Because four of the mice that died were in Group 5, Group 5 was excluded from the study. All the functional scales assessed proved to be significantly different from each other, and mice presented functional evolution during the experiment. Spinal cord lesion was confirmed by histology, and the results showed a high correlation between the Basso, Beattie, Bresnahan Locomotor Rating Scale and the Basso Mouse Scale. The mouse function scale showed a moderate to high correlation with the histological findings, and the horizontal ladder test had a high correlation with neurologic degeneration but no correlation with the other histological parameters evaluated. CONCLUSION: This spinal cord lesion mouse model proved to be effective and reliable with exception of lesions caused by a 10-g drop from 50 mm, which resulted in unacceptable mortality. The Basso, Beattie, Bresnahan Locomotor Rating Scale and Basso Mouse Scale are the most reliable functional assessments, and but the horizontal ladder test is not recommended. PMID:29561931

  15. The correlated network of acupuncture effect: a functional connectivity study.

    PubMed

    Qin, Wei; Tian, Jie; Pan, Xiaohong; Yang, Lin; Zhen, Zonglei

    2006-01-01

    A functional connectivity, which are temporally correlated in functionally related brain regions, before and after acupuncture manipulation was measured by MRI. Amygdala, as the control system of endogenetic analgesia, was selected for "seed" point. We found that compelling similarity existed in the network of resting state before and after acupuncture manipulation. A paired student t-test was implemented to investigate under the different conditions. The main difference was found in the limbic system, brainstem and cerebellum. We conclude that the default endogenous analgesia functional network exists in human brain at a low level, and it could be increased to a higher level by acupuncture modulation.

  16. Break point on the auto-correlation function of Elsässer variable z- in the super-Alfvénic solar wind fluctuations

    NASA Astrophysics Data System (ADS)

    Wang, X.; Tu, C. Y.; He, J.; Wang, L.

    2017-12-01

    It has been a longstanding debate on what the nature of Elsässer variables z- observed in the Alfvénic solar wind is. It is widely believed that z- represents inward propagating Alfvén waves and undergoes non-linear interaction with z+ to produce energy cascade. However, z- variations sometimes show nature of convective structures. Here we present a new data analysis on z- autocorrelation functions to get some definite information on its nature. We find that there is usually a break point on the z- auto-correlation function when the fluctuations show nearly pure Alfvénicity. The break point observed by Helios-2 spacecraft near 0.3 AU is at the first time lag ( 81 s), where the autocorrelation coefficient has the value less than that at zero-time lag by a factor of more than 0.4. The autocorrelation function breaks also appear in the WIND observations near 1 AU. The z- autocorrelation function is separated by the break into two parts: fast decreasing part and slowly decreasing part, which cannot be described in a whole by an exponential formula. The breaks in the z- autocorrelation function may represent that the z- time series are composed of high-frequency white noise and low-frequency apparent structures, which correspond to the flat and steep parts of the function, respectively. This explanation is supported by a simple test with a superposition of an artificial random data series and a smoothed random data series. Since in many cases z- autocorrelation functions do not decrease very quickly at large time lag and cannot be considered as the Lanczos type, no reliable value for correlation-time can be derived. Our results showed that in these cases with high Alfvénicity, z- should not be considered as inward-propagating wave. The power-law spectrum of z+ should be made by fluid turbulence cascade process presented by Kolmogorov.

  17. A Solution Space for a System of Null-State Partial Differential Equations: Part 1

    NASA Astrophysics Data System (ADS)

    Flores, Steven M.; Kleban, Peter

    2015-01-01

    This article is the first of four that completely and rigorously characterize a solution space for a homogeneous system of 2 N + 3 linear partial differential equations (PDEs) in 2 N variables that arises in conformal field theory (CFT) and multiple Schramm-Löwner evolution (SLE). In CFT, these are null-state equations and conformal Ward identities. They govern partition functions for the continuum limit of a statistical cluster or loop-gas model, such as percolation, or more generally the Potts models and O( n) models, at the statistical mechanical critical point. (SLE partition functions also satisfy these equations.) For such a lattice model in a polygon with its 2 N sides exhibiting a free/fixed side-alternating boundary condition , this partition function is proportional to the CFT correlation function where the w i are the vertices of and where is a one-leg corner operator. (Partition functions for "crossing events" in which clusters join the fixed sides of in some specified connectivity are linear combinations of such correlation functions.) When conformally mapped onto the upper half-plane, methods of CFT show that this correlation function satisfies the system of PDEs that we consider. In this first article, we use methods of analysis to prove that the dimension of this solution space is no more than C N , the Nth Catalan number. While our motivations are based in CFT, our proofs are completely rigorous. This proof is contained entirely within this article, except for the proof of Lemma 14, which constitutes the second article (Flores and Kleban, in Commun Math Phys, arXiv:1404.0035, 2014). In the third article (Flores and Kleban, in Commun Math Phys, arXiv:1303.7182, 2013), we use the results of this article to prove that the solution space of this system of PDEs has dimension C N and is spanned by solutions constructed with the CFT Coulomb gas (contour integral) formalism. In the fourth article (Flores and Kleban, in Commun Math Phys, arXiv:1405.2747, 2014), we prove further CFT-related properties about these solutions, some useful for calculating cluster-crossing probabilities of critical lattice models in polygons.

  18. Modeling clustered activity increase in amyloid-beta positron emission tomographic images with statistical descriptors.

    PubMed

    Shokouhi, Sepideh; Rogers, Baxter P; Kang, Hakmook; Ding, Zhaohua; Claassen, Daniel O; Mckay, John W; Riddle, William R

    2015-01-01

    Amyloid-beta (Aβ) imaging with positron emission tomography (PET) holds promise for detecting the presence of Aβ plaques in the cortical gray matter. Many image analyses focus on regional average measurements of tracer activity distribution; however, considerable additional information is available in the images. Metrics that describe the statistical properties of images, such as the two-point correlation function (S2), have found wide applications in astronomy and materials science. S2 provides a detailed characterization of spatial patterns in images typically referred to as clustering or flocculence. The objective of this study was to translate the two-point correlation method into Aβ-PET of the human brain using 11C-Pittsburgh compound B (11C-PiB) to characterize longitudinal changes in the tracer distribution that may reflect changes in Aβ plaque accumulation. We modified the conventional S2 metric, which is primarily used for binary images and formulated a weighted two-point correlation function (wS2) to describe nonbinary, real-valued PET images with a single statistical function. Using serial 11C-PiB scans, we calculated wS2 functions from two-dimensional PET images of different cortical regions as well as three-dimensional data from the whole brain. The area under the wS2 functions was calculated and compared with the mean/median of the standardized uptake value ratio (SUVR). For three-dimensional data, we compared the area under the wS2 curves with the subjects' cerebrospinal fluid measures. Overall, the longitudinal changes in wS2 correlated with the increase in mean SUVR but showed lower variance. The whole brain results showed a higher inverse correlation between the cerebrospinal Aβ and wS2 than between the cerebrospinal Aβ and SUVR mean/median. We did not observe any confounding of wS2 by region size or injected dose. The wS2 detects subtle changes and provides additional information about the binding characteristics of radiotracers and Aβ accumulation that are difficult to verify with mean SUVR alone.

  19. On the Large R-charge Expansion in N=2 Superconformal Field Theories

    NASA Astrophysics Data System (ADS)

    Hellerman, Simeon; Maeda, Shunsuke

    2017-12-01

    In this note we study two point functions of Coulomb branch chiral ring elements with large R-charge, in quantum field theories with N=2 superconformal symmetry in four spacetime dimensions. Focusing on the case of one-dimensional Coulomb branch, we use the effective-field-theoretic methods of [1], to estimate the two-point correlation function Y_n≡ {|x-y|}^{2n{Δ}_O}< {(O(x))}^n{(\\overlineO(y))}^n> in the limit where the operator insertion O^n has large total R-charge J=n{Δ}_O . We show that Y_n has a nontrivial but universal asymptotic expansion at large J , of the form Y_n from "Euclid Math One" (0x3D)J!{(|{N}_O|/2π)}^{2J}J^{α }{\\tildeY}_n, where {\\tildeY}_n approaches a constant as n → ∞, and {N}_O is an n-independent constant describing on the normalization of the operator relative to the effective Abelian gauge coupling. The exponent α is a positive number proportional to the difference between the a-anomaly coefficient of the underlying CFT and that of the effective theory of the Coulomb branch. For Lagrangian SCFT, we check our predictions for the logarithm B_n= log (Y_n) , up to and including order log J against exact results from supersymmetric localization [2-5]. In the case of N=4 we find precise agreement and in the case N=2 we find reasonably good numerical agreement at J˜eq 60 using the no-instanton approximation to the S 4 partition function. We also give predictions for the growth of two-point functions in all rank-one SCFT in the classification of [6-9]. In this way, we show the large- R-charge expansion serves as a bridge from the world of unbroken superconformal symmetry, OPE data, and bootstraps, to the world of the low-energy dynamics of the moduli space of vacua.

  20. Long-term sensorimotor and therapeutical effects of a mild regime of prism adaptation in spatial neglect. A double-blind RCT essay.

    PubMed

    Rode, G; Lacour, S; Jacquin-Courtois, S; Pisella, L; Michel, C; Revol, P; Alahyane, N; Luauté, J; Gallagher, S; Halligan, P; Pélisson, D; Rossetti, Y

    2015-04-01

    Spatial neglect (SN) is commonly associated with poor functional outcome. Adaptation to a rightward optical deviation of vision has been shown to benefit to SN rehabilitation. The neurophysiological foundations and the optimal modalities of prism adaptation (PA) therapy however remain to be validated. This study is aimed at exploring the long-term sensory-motor, cognitive and functional effects produced by weekly PA sessions over a period of four weeks. A double-blind, monocentric randomized and controlled trial (RCT) was carried out. Twenty patients with left SN secondary to stroke were included, 10 in the "prism" group and 10 in the "control" group. The sensory-motor effects of PA were evaluated by measurement of manual and visual straight-ahead, and also by precision of pointing without visual feedback before and after each PA session. The functional independence measure (FIM) was evaluated before and at 1, 3 and 6 months after PA, while SN severity was assessed using the Behavioural Inattention Test (BIT) before and 6 months after PA. Before the intervention, only manual straight-ahead pointing constituted a reproducible sensory-motor measurement. During prism exposure, a questionnaire showed that not a single patient were aware of the direct effects of optical deviation on pointing movement performance. The sensory-motor after-effects produced by the PA produced a more rapid reduction of the rightward manual straight-ahead, which was secondarily followed by visual straight-ahead. These sensory-motor effects helped to clarify the action mechanisms of PA on SN. At the conclusion of the 6-month follow-up, the two groups showed similar improvement, indicating that a weekly PA session over 4 weeks was not sufficient to produce long-term functional benefit. This improvement was correlated with the evolution of visual straight-ahead, which can be proposed as a marker for patients outcome. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Body sway, aim point fluctuation and performance in rifle shooters: inter- and intra-individual analysis.

    PubMed

    Ball, Kevin A; Best, Russell J; Wrigley, Tim V

    2003-07-01

    In this study, we examined the relationships between body sway, aim point fluctuation and performance in rifle shooting on an inter- and intra-individual basis. Six elite shooters performed 20 shots under competition conditions. For each shot, body sway parameters and four aim point fluctuation parameters were quantified for the time periods 5 s to shot, 3 s to shot and 1 s to shot. Three parameters were used to indicate performance. An AMTI LG6-4 force plate was used to measure body sway parameters, while a SCATT shooting analysis system was used to measure aim point fluctuation and shooting performance. Multiple regression analysis indicated that body sway was related to performance for four shooters. Also, body sway was related to aim point fluctuation for all shooters. These relationships were specific to the individual, with the strength of association, parameters of importance and time period of importance different for different shooters. Correlation analysis of significant regressions indicated that, as body sway increased, performance decreased and aim point fluctuation increased for most relationships. We conclude that body sway and aim point fluctuation are important in elite rifle shooting and performance errors are highly individual-specific at this standard. Individual analysis should be a priority when examining elite sports performance.

  2. correlcalc: Two-point correlation function from redshift surveys

    NASA Astrophysics Data System (ADS)

    Rohin, Yeluripati

    2017-11-01

    correlcalc calculates two-point correlation function (2pCF) of galaxies/quasars using redshift surveys. It can be used for any assumed geometry or Cosmology model. Using BallTree algorithms to reduce the computational effort for large datasets, it is a parallelised code suitable for running on clusters as well as personal computers. It takes redshift (z), Right Ascension (RA) and Declination (DEC) data of galaxies and random catalogs as inputs in form of ascii or fits files. If random catalog is not provided, it generates one of desired size based on the input redshift distribution and mangle polygon file (in .ply format) describing the survey geometry. It also calculates different realisations of (3D) anisotropic 2pCF. Optionally it makes healpix maps of the survey providing visualization.

  3. Asymptotic coincidence of the statistics for degenerate and non-degenerate correlated real Wishart ensembles

    NASA Astrophysics Data System (ADS)

    Wirtz, Tim; Kieburg, Mario; Guhr, Thomas

    2017-06-01

    The correlated Wishart model provides the standard benchmark when analyzing time series of any kind. Unfortunately, the real case, which is the most relevant one in applications, poses serious challenges for analytical calculations. Often these challenges are due to square root singularities which cannot be handled using common random matrix techniques. We present a new way to tackle this issue. Using supersymmetry, we carry out an anlaytical study which we support by numerical simulations. For large but finite matrix dimensions, we show that statistical properties of the fully correlated real Wishart model generically approach those of a correlated real Wishart model with doubled matrix dimensions and doubly degenerate empirical eigenvalues. This holds for the local and global spectral statistics. With Monte Carlo simulations we show that this is even approximately true for small matrix dimensions. We explicitly investigate the k-point correlation function as well as the distribution of the largest eigenvalue for which we find a surprisingly compact formula in the doubly degenerate case. Moreover we show that on the local scale the k-point correlation function exhibits the sine and the Airy kernel in the bulk and at the soft edges, respectively. We also address the positions and the fluctuations of the possible outliers in the data.

  4. Correlation of rheumatoid arthritis activity indexes (Disease Activity Score 28 measured with ESR and CRP, Simplified Disease Activity Index and Clinical Disease Activity Index) and agreement of disease activity states with various cut-off points in a Northeastern Brazilian population.

    PubMed

    Medeiros, Marta Maria das Chagas; de Oliveira, Brenda Maria Gurgel Barreto; de Cerqueira, João Victor Medeiros; Quixadá, Raquel Telles de Souza; de Oliveira, Ídila Mont'Alverne Xavier

    2015-01-01

    The Disease Activity Score 28 (DAS28) and its versions have been used to measure rheumatoid arthritis (RA) activity, but there is no consensus about which one is the best. Determine the correlation among indexes (DAS28 ESR, DAS28 CRP, SDAI and CDAI) and evaluate agreement of activity strata using different cutoff points. Rheumatoid arthritis patients were cross-sectionally evaluated with data collection to calculate the DAS28 (ESR and CRP), SDAI and CDAI, using different cut-offs for defining remission, mild, moderate and high activity. Pearson correlations were calculated for continuous measures and agreement (kappa test) for the strata (remission, mild, moderate and high activity). Of 111 patients included, 108 were women, age 55.6 years, 11-year disease duration. DAS28 (ESR) was significantly higher than DAS28 (CRP) (4.0 vs. 3.5; p<0.001) and the values remained higher after stratification by age, gender, disease duration, rheumatoid factor and HAQ. Correlations among indexes ranged from 0.84 to 0.99, with better correlation between SDAI and CDAI. Agreements among activity strata ranged from 46.8% to 95.8%. DAS28 (CRP) with cut-off point for the remission of 2.3 underestimated disease activity by 45.8% compared with DAS28 (ESR). SDAI and CDAI showed agreement of 95.8%. The four indexes were associated with disease duration and HAQ. Although the activity indexes show good correlation, they show discrepancies in activity strata, thus requiring more researches to define a better index and better cutoff points. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.

  5. Natural occupation numbers in two-electron quantum rings.

    PubMed

    Tognetti, Vincent; Loos, Pierre-François

    2016-02-07

    Natural orbitals (NOs) are central constituents for evaluating correlation energies through efficient approximations. Here, we report the closed-form expression of the NOs of two-electron quantum rings, which are prototypical finite-extension systems and new starting points for the development of exchange-correlation functionals in density functional theory. We also show that the natural occupation numbers for these two-electron paradigms are in general non-vanishing and follow the same power law decay as atomic and molecular two-electron systems.

  6. Low Temperature Properties for Correlation Functions in Classical N-Vector Spin Models

    NASA Astrophysics Data System (ADS)

    Balaban, Tadeusz; O'Carroll, Michael

    We obtain convergent multi-scale expansions for the one-and two-point correlation functions of the low temperature lattice classical N- vector spin model in d>= 3 dimensions, N>= 2. The Gibbs factor is taken as where , , , are large and 0 < v<= 1. In the thermodynamic and limits, with h=e1, and Δ≡∂*∂, the expansion gives (spontaneous magnetization), , (Goldstone Bosons), , and , where , for some ρ > 0, and c0 is aprecisely determined constant.

  7. Natural occupation numbers in two-electron quantum rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tognetti, Vincent, E-mail: vincent.tognetti@univ-rouen.fr; Loos, Pierre-François

    2016-02-07

    Natural orbitals (NOs) are central constituents for evaluating correlation energies through efficient approximations. Here, we report the closed-form expression of the NOs of two-electron quantum rings, which are prototypical finite-extension systems and new starting points for the development of exchange-correlation functionals in density functional theory. We also show that the natural occupation numbers for these two-electron paradigms are in general non-vanishing and follow the same power law decay as atomic and molecular two-electron systems.

  8. Analyzing survival curves at a fixed point in time for paired and clustered right-censored data

    PubMed Central

    Su, Pei-Fang; Chi, Yunchan; Lee, Chun-Yi; Shyr, Yu; Liao, Yi-De

    2018-01-01

    In clinical trials, information about certain time points may be of interest in making decisions about treatment effectiveness. Rather than comparing entire survival curves, researchers can focus on the comparison at fixed time points that may have a clinical utility for patients. For two independent samples of right-censored data, Klein et al. (2007) compared survival probabilities at a fixed time point by studying a number of tests based on some transformations of the Kaplan-Meier estimators of the survival function. However, to compare the survival probabilities at a fixed time point for paired right-censored data or clustered right-censored data, their approach would need to be modified. In this paper, we extend the statistics to accommodate the possible within-paired correlation and within-clustered correlation, respectively. We use simulation studies to present comparative results. Finally, we illustrate the implementation of these methods using two real data sets. PMID:29456280

  9. The Angular Correlation Function of Galaxies from Early Sloan Digital Sky Survey Data

    NASA Astrophysics Data System (ADS)

    Connolly, Andrew J.; Scranton, Ryan; Johnston, David; Dodelson, Scott; Eisenstein, Daniel J.; Frieman, Joshua A.; Gunn, James E.; Hui, Lam; Jain, Bhuvnesh; Kent, Stephen; Loveday, Jon; Nichol, Robert C.; O'Connell, Liam; Postman, Marc; Scoccimarro, Roman; Sheth, Ravi K.; Stebbins, Albert; Strauss, Michael A.; Szalay, Alexander S.; Szapudi, István; Tegmark, Max; Vogeley, Michael S.; Zehavi, Idit; Annis, James; Bahcall, Neta; Brinkmann, J.; Csabai, István; Doi, Mamoru; Fukugita, Masataka; Hennessy, G. S.; Hindsley, Robert; Ichikawa, Takashi; Ivezić, Željko; Kim, Rita S. J.; Knapp, Gillian R.; Kunszt, Peter; Lamb, D. Q.; Lee, Brian C.; Lupton, Robert H.; McKay, Timothy A.; Munn, Jeff; Peoples, John; Pier, Jeff; Rockosi, Constance; Schlegel, David; Stoughton, Christopher; Tucker, Douglas L.; Yanny, Brian; York, Donald G.

    2002-11-01

    The Sloan Digital Sky Survey is one of the first multicolor photometric and spectroscopic surveys designed to measure the statistical properties of galaxies within the local universe. In this paper we present some of the initial results on the angular two-point correlation function measured from the early SDSS galaxy data. The form of the correlation function, over the magnitude interval 18

  10. On non-homogeneous tachyon condensation in closed string theory

    NASA Astrophysics Data System (ADS)

    Giribet, Gaston; Rado, Laura

    2017-08-01

    Lorentzian continuation of the Sine-Liouville model describes non-homogeneous rolling closed string tachyon. Via T-duality, this relates to the gauged H + 3 Wess-Zumino-Witten model at subcritical level. This model is exactly solvable. We give a closed formula for the 3-point correlation functions for the model at level k within the range 0 < k < 2, which relates to the analogous quantity for k > 2 in a similar way as how the Harlow-Maltz-Witten 3-point function of timelike Liouville field theory relates to the analytic continuation of the Dorn-Otto-Zamolodchikov-Zamolodchikov structure constants: we find that the ratio between both 3-point functions can be written in terms of quotients of Jacobi's θ-functions, while their product exhibits remarkable cancellations and eventually factorizes. Our formula is consistent with previous proposals made in the literature.

  11. Ab initio conformational analysis of N-formyl ?-alanine amide including electron correlation

    NASA Astrophysics Data System (ADS)

    Yu, Ching-Hsing; Norman, Mya A.; Schäfer, Lothar; Ramek, Michael; Peeters, Anik; van Alsenoy, Christian

    2001-06-01

    The conformational properties of N-formyl L-alanine amide (ALA) were investigated using RMP2/6-311G∗∗ ab initio gradient geometry optimization. One hundred forty four structures of ALA were optimized at 30° grid points in its φ(N-C(α)), ψ(C(α)-C‧) conformational space. Using cubic spline functions, the grid structures were then used to construct analytical representations of complete surfaces, in φ,ψ-space, of bond lengths, bond angles, torsional sensitivity and electrostatic atomic charges. Analyses show that, in agreement with previous studies, the right-handed helical conformation, αR, is not a local energy minimum of the potential energy surface of ALA. Comparisons with protein crystallographic data show that the characteristic differences between geometrical trends in dipeptides and proteins, previously found for ab initio dipeptide structures obtained without electron correlation, are also found in the electron-correlated geometries. In contrast to generally accepted features of force fields used in empirical molecular modeling, partial atomic charges obtained by the CHELPG method are found to be not constant, but to vary significantly throughout the φ,ψ-space. By comparing RHF and MP2 structures, the effects of dispersion forces on ALA were studied, revealing molecular contractions for those conformations, in which small adjustments of torsional angles entail large changes in non-bonded distances.

  12. Persistent Hg contamination and occurrence of Hg-methylating transcript (hgcA) downstream of a chlor-alkali plant in the Olt River (Romania).

    PubMed

    Bravo, Andrea G; Loizeau, Jean-Luc; Dranguet, Perrine; Makri, Stamatina; Björn, Erik; Ungureanu, Viorel Gh; Slaveykova, Vera I; Cosio, Claudia

    2016-06-01

    Chlor-alkali plants using mercury (Hg) cell technology are acute point sources of Hg pollution in the aquatic environment. While there have been recent efforts to reduce the use of Hg cells, some of the emitted Hg can be transformed to neurotoxic methylmercury (MeHg). Here, we aimed (i) to study the dispersion of Hg in four reservoirs located downstream of a chlor-alkali plant along the Olt River (Romania) and (ii) to track the activity of bacterial functional genes involved in Hg methylation. Total Hg (THg) concentrations in water and sediments decreased successively from the initial reservoir to downstream reservoirs. Suspended fine size particles and seston appeared to be responsible for the transport of THg into downstream reservoirs, while macrophytes reflected the local bioavailability of Hg. The concentration and proportion of MeHg were correlated with THg, but were not correlated with bacterial activity in sediments, while the abundance of hgcA transcript correlated with organic matter and Cl(-) concentration, indicating the importance of Hg bioavailability in sediments for Hg methylation. Our data clearly highlights the importance of considering Hg contamination as a legacy pollutant since there is a high risk of continued Hg accumulation in food webs long after Hg-cell phase out.

  13. Nuclear relaxation and critical fluctuations in membranes containing cholesterol

    NASA Astrophysics Data System (ADS)

    McConnell, Harden

    2009-04-01

    Nuclear resonance frequencies in bilayer membranes depend on lipid composition. Our calculations describe the combined effects of composition fluctuations and diffusion on nuclear relaxation near a miscibility critical point. Both tracer and gradient diffusion are included. The calculations involve correlation functions and a correlation length ξ =ξ0T/(T -Tc), where T -Tc is temperature above the critical temperature and ξ0 is a parameter of molecular length. Several correlation functions are examined, each of which is related in some degree to the Ising model correlation function. These correlation functions are used in the calculation of transverse deuterium relaxation rates in magic angle spinning and quadrupole echo experiments. The calculations are compared with experiments that report maxima in deuterium and proton nuclear relaxation rates at the critical temperature [Veatch et al., Proc. Nat. Acad. Sci. U.S.A. 104, 17650 (2007)]. One Ising-model-related correlation function yields a maximum 1/T2 relaxation rate at the critical temperature for both magic angle spinning and quadrupole echo experiments. The calculated rates at the critical temperature are close to the experimental rates. The rate maxima involve relatively rapid tracer diffusion in a static composition gradient over distances of up to 10-100 nm.

  14. The GaOH-HGaO potential energy hypersurface and the necessity of correlating the 3d electrons

    NASA Astrophysics Data System (ADS)

    Richards, Claude A., Jr.; Yamaguchi, Yukio; Kim, Seung-Joon; Schaefer, Henry F., III

    1996-06-01

    The ground state potential energy hypersurface of the GaOH-HGaO system has been investigated using high level ab initio molecular electronic structure theory. The geometries and physical properties of two equilibrium structures, one isomerization transition state and one inversion transition state were determined at the self-consistent field (SCF), configuration interaction with single and double excitations (CISD), coupled cluster with single and double excitations (CCSD), and CCSD with perturbative triple excitations [CCSD(T)] levels of theory with four sets of basis functions. It has been found that freezing the 3d electrons of the Ga atom in the correlation procedures is not appropriate for this system. For the energy difference ΔE (GaOH-HGaO) the freezing of the 3d electrons results in an error of 25 kcal/mol! The dipole moments, harmonic vibrational frequencies, and infrared (IR) intensities are predicted for the four stationary points. At the highest level of theory employed in this study, CCSD(T) using triple zeta plus double polarization with higher angular momentum and diffuse functions [TZ2P(f,d)+diff] basis set, the bent GaOH was found to be 41.9 kcal/mol more stable than the linear HGaO species; with the zero-point vibrational energy (ZPVE) correction, the energy separation becomes 40.4 kcal/mol. The classical barrier height for the exothermic isomerization (1,2 hydrogen shift) reaction HGaO→GaOH is determined to be 44.5 kcal/mol and the barrier height with the ZPVE correction 42.3 kcal/mol. The classical barrier to linearity for the bent GaOH molecule is determined to be 1.7 kcal/mol and the barrier height with the ZPVE correction to be 1.2 kcal/mol. The predicted dipole moments of GaOH and HGaO are 1.41 and 4.45 Debye, respectively. The effects of electron correlation reduce the dipole moment of HGaO by the sizable amount of 1.2 Debye. The two equilibrium species may be suitable for microwave spectroscopic investigation. Furthermore, they may also be detectable by IR techniques due to the relatively large intensities of their vibrational modes. The geometrical and energetic features are compared with those of the valence isoelectronic HXO-XOH systems, where X is a group IIIA atom and the HXO+-XOH+ systems, where X is a group IVA atom.

  15. Density matrix embedding in an antisymmetrized geminal power bath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuchimochi, Takashi; Welborn, Matthew; Van Voorhis, Troy, E-mail: tvan@mit.edu

    2015-07-14

    Density matrix embedding theory (DMET) has emerged as a powerful tool for performing wave function-in-wave function embedding for strongly correlated systems. In traditional DMET, an accurate calculation is performed on a small impurity embedded in a mean field bath. Here, we extend the original DMET equations to account for correlation in the bath via an antisymmetrized geminal power (AGP) wave function. The resulting formalism has a number of advantages. First, it allows one to properly treat the weak correlation limit of independent pairs, which DMET is unable to do with a mean-field bath. Second, it associates a size extensive correlationmore » energy with a given density matrix (for the models tested), which AGP by itself is incapable of providing. Third, it provides a reasonable description of charge redistribution in strongly correlated but non-periodic systems. Thus, AGP-DMET appears to be a good starting point for describing electron correlation in molecules, which are aperiodic and possess both strong and weak electron correlation.« less

  16. Different femorotibial contact points between fixed- and mobile-bearing TKAs do not show clinical impact.

    PubMed

    van Stralen, R A; Heesterbeek, P J C; Wymenga, A B

    2015-11-01

    In anteroposterior (AP)-gliding mobile-bearing total knee arthroplasty (TKA), the femoral component can theoretically slide forward resulting in a more anterior contact point, causing pain due to impingement. A lower lever arm of the extensor apparatus can also attribute to higher patella pressures and pain. The goal of this study was to determine the contact point in a cohort of mobile- and fixed-bearing TKAs, to determine whether the contact point lies more anteriorly in mobile-bearing TKA and to confirm whether this results in anterior knee pain. We used 38 fixed-bearing TKA and 40 mobile-bearing TKA from a randomized trial with straight lateral knee X-rays and measured the contact point. The functional outcome was measured by Knee Society Score at 12 months postoperatively. Pain scores were analysed using a VAS score (0-100 mm) in all patients at rest and when moving. Difficulty at rising up out of a chair was also assessed using a VAS score. The contact point in mobile-bearing TKA was situated at 59.5 % of the AP distance of the tibia and in the fixed-bearing TKA group at 66.1 % (P< 0.05). Patients with mobile- and fixed-bearing TKAs had similar knee scores, pain scores and difficulty in chair rise. No significant correlation was found between contact point and knee pain. The hypothesis of a more anterior contact point in the mobile-bearing cohort was confirmed but no correlation with functional and pain scores in this cohort could be found. The tibiofemoral contact point could not be correlated with a different clinical outcome and higher incidence of anterior knee pain. This study further adds to the knowledge on possible differences between mobile- and fixed-bearing prostheses. Next to that, bad outcomes could not be explained by CP. Case series, Level IV.

  17. Past Taurine Intake Has a Positive Effect on Present Cognitive Function in the Elderly.

    PubMed

    Bae, Mi Ae; Gao, Ranran; Kim, Sung Hoon; Chang, Kyung Ja

    2017-01-01

    This study investigated the associations between dietary history of past taurine intake and cognitive function in the elderly. Subjects of this study were 40 elderly persons with dementia (men 14, women 26) and 37 normal elderly persons (men 5, women 32). Data were collected using questionnaires by investigator-based interview to the elderly and family caregivers. We examined their general characteristics, anthropometric data, cognitive function, and taurine index. Cognitive function was measured using MMSE-DS and higher score means better cognitive function. As dietary history of past taurine intake, taurine index was evaluated by scoring the intake frequency of 41 kinds of taurine-containing foods. Part correlation analysis (sex, age, and school educational period correction) was used to analyze associations between taurine index and cognitive function. The analysis of all data was carried out by the SPSS 20.0 program for windows. The age, height, weight, and BMI of elderly with dementia showed no statistical significance compared to normal elderly. The elderly with dementia had significantly higher school education period (7.4 years) than the normal elderly (4.8 years) (p < 0.01). Nevertheless, the average total score of cognitive function (MMSE-DS) of the elderly with dementia (18.1 points) was significantly lower than score of the normal elderly (21.7 points) (p < 0.05). The average taurine index of the elderly with dementia (104.7 points) was significantly lower than average taurine index of the normal elderly (123.7 points) (p < 0.01). There were positive correlations between total taurine index and total score of cognitive function in all the elderly subjects (p < 0.05). In particular, as taurine index was higher, there were significantly higher scores of cognitive function such as 'time orientation' and 'judgement and abstract thinking' (p < 0.01). In conclusion, these results suggest that past taurine intake may have a positive effect on present cognitive function in the elderly.

  18. Comparison between a serum creatinine-and a cystatin C-based glomerular filtration rate equation in patients receiving amphotericin B.

    PubMed

    Karimzadeh, Iman; Khalili, Hossein

    2016-06-06

    Serum cystatin C (Cys C) has a number of advantages over serum creatinine in the evaluation of kidney function. Apart from Cys C level itself, several formulas have also been introduced in different clinical settings for the estimation of glomerular filtration rate (GFR) based upon serum Cys C level. The aim of the present study was to compare a serum Cys C-based equation with Cockcroft-Gault serum creatinine-based formula, both used in the calculation of GFR, in patients receiving amphotericin B. Fifty four adult patients with no history of acute or chronic kidney injury having been planned to receive conventional amphotericin B for an anticipated duration of at least 1 week for any indication were recruited. At three time points during amphotericin B treatment, including days 0, 7, and 14, serum cystatin C as well as creatinine levels were measured. GFR at the above time points was estimated by both creatinine (Cockcroft-Gault) and serum Cys C based equations. There was significant correlation between creatinine-based and Cys C-based GFR values at days 0 (R = 0.606, P = 0.001) and 7 (R = 0.714, P < 0.001). In contrast to GFR estimated by the Cockcroft-Gault equation, the mean (95 % confidence interval) Cys C-based GFR values at different studied time points were comparable within as well as between patients with and without amphotericin B nephrotoxicity. Our results suggested that the Gentian Cys C-based GFR equation correlated significantly with the Cockcroft-Gault formula at least at the early time period of treatment with amphotericin B. Graphical abstract Comparison between a serum creatinine-and a cystatin C-based glomerular filtration rate equation in patients receiving amphotericin B.

  19. Real time correlation function in a single phase space integral beyond the linearized semiclassical initial value representation.

    PubMed

    Liu, Jian; Miller, William H

    2007-06-21

    It is shown how quantum mechanical time correlation functions [defined, e.g., in Eq. (1.1)] can be expressed, without approximation, in the same form as the linearized approximation of the semiclassical initial value representation (LSC-IVR), or classical Wigner model, for the correlation function [cf. Eq. (2.1)], i.e., as a phase space average (over initial conditions for trajectories) of the Wigner functions corresponding to the two operators. The difference is that the trajectories involved in the LSC-IVR evolve classically, i.e., according to the classical equations of motion, while in the exact theory they evolve according to generalized equations of motion that are derived here. Approximations to the exact equations of motion are then introduced to achieve practical methods that are applicable to complex (i.e., large) molecular systems. Four such methods are proposed in the paper--the full Wigner dynamics (full WD) and the second order WD based on "Wigner trajectories" [H. W. Lee and M. D. Scully, J. Chem. Phys. 77, 4604 (1982)] and the full Donoso-Martens dynamics (full DMD) and the second order DMD based on "Donoso-Martens trajectories" [A. Donoso and C. C. Martens, Phys. Rev. Lett. 8722, 223202 (2001)]--all of which can be viewed as generalizations of the original LSC-IVR method. Numerical tests of the four versions of this new approach are made for two anharmonic model problems, and for each the momentum autocorrelation function (i.e., operators linear in coordinate or momentum operators) and the force autocorrelation function (nonlinear operators) have been calculated. These four new approximate treatments are indeed seen to be significant improvements to the original LSC-IVR approximation.

  20. Strong correlations in gravity and biophysics

    NASA Astrophysics Data System (ADS)

    Krotov, Dmitry

    The unifying theme of this dissertation is the use of correlations. In the first part (chapter 2), we investigate correlations in quantum field theories in de Sitter space. In the second part (chapters 3,4,5), we use correlations to investigate a theoretical proposal that real (observed in nature) transcriptional networks of biological organisms are operating at a critical point in their phase diagram. In chapter 2 we study the infrared dependence of correlators in various external backgrounds. Using the Schwinger-Keldysh formalism we calculate loop corrections to the correlators in the case of the Poincare patch and the complete de Sitter space. In the case of the Poincare patch, the loop correction modifies the behavior of the correlator at large distances. In the case of the complete de Sitter space, the loop correction has a strong dependence on the infrared cutoff in the past. It grows linearly with time, suggesting that at some point the correlations become strong and break the symmetry of the classical background. In chapter 3 we derive the signatures of critical behavior in a model organism, the embryo of Drosophila melanogaster. They are: strong correlations in the fluctuations of different genes, a slowing of dynamics, long range correlations in space, and departures from a Gaussian distribution of these fluctuations. We argue that these signatures are observed experimentally. In chapter 4 we construct an effective theory for the zero mode in this system. This theory is different from the standard Landau-Ginsburg description. It contains gauge fields (the result of the broken translational symmetry inside the cell), which produce observable contributions to the two-point function of the order parameter. We show that the behavior of the two-point function for the network of N genes is described by the action of a relativistic particle moving on the surface of the N - 1 dimensional sphere. We derive a theoretical bound on the decay of the correlations and compare it with experimental data. How difficult is it to tune a network to criticality? In chapter 5 we construct the space of all possible networks within a simple thermodynamic model of biological enhancers. We demonstrate that there is a reasonable number of models within this framework that accurately capture the mean expression profiles of the gap genes that are observed experimentally.

  1. Combined Vocal Exercises for Rehabilitation After Supracricoid Laryngectomy: Evaluation of Different Execution Times.

    PubMed

    Silveira, Hevely Saray Lima; Simões-Zenari, Marcia; Kulcsar, Marco Aurélio; Cernea, Claudio Roberto; Nemr, Kátia

    2017-10-27

    The supracricoid partial laryngectomy allows the preservation of laryngeal functions with good local cancer control. To assess laryngeal configuration and voice analysis data following the performance of a combination of two vocal exercises: the prolonged /b/vocal exercise combined with the vowel /e/ using chest and arm pushing with different durations among individuals who have undergone supracricoid laryngectomy. Eleven patients undergoing partial laryngectomy supracricoid with cricohyoidoepiglottopexy (CHEP) were evaluated using voice recording. Four judges performed separately a perceptive-vocal analysis of hearing voices, with random samples. For the analysis of intrajudge reliability, repetitions of 70% of the voices were done. Intraclass correlation coefficient was used to analyze the reliability of the judges. For an analysis of each judge to the comparison between zero time (time point 0), after the first series of exercises (time point 1), after the second series (time point 2), after the third series (time point 3), after the fourth series (time point 4), and after the fifth and final series (time point 5), the Friedman test was used with a significance level of 5%. The data relative to the configuration of the larynx were subjected to a descriptive analysis. In the evaluation, were considered the judge results 1 which have greater reliability. There was an improvement in the general level of vocal, roughness, and breathiness deviations from time point 4 [T4]. The prolonged /b/vocal exercise, combined with the vowel /e/ using chest- and arm-pushing exercises, was associated with an improvement in the overall grade of vocal deviation, roughness, and breathiness starting at minute 4 among patients who had undergone supracricoid laryngectomy with CHEP reconstruction. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  2. Spatiotemporal correlation buildup after an interaction quench in the Luttinger model

    NASA Astrophysics Data System (ADS)

    Abeling, Nils O.; Kehrein, Stefan

    We study the evolution of density-density correlations at different times and distances in the exactly solvable Luttinger model after a sudden quench from the ground state. We discuss the difference between correlations and susceptibilities, and how these results can be interpreted from the point of view of Lieb-Robinson bounds. For the correlation functions we specifically show that pre-quench entanglement in the ground state leads to algebraically decaying long distance tails outside the light cone.

  3. Diagrammatic analysis of correlations in polymer fluids: Cluster diagrams via Edwards' field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morse, David C.

    2006-10-15

    Edwards' functional integral approach to the statistical mechanics of polymer liquids is amenable to a diagrammatic analysis in which free energies and correlation functions are expanded as infinite sums of Feynman diagrams. This analysis is shown to lead naturally to a perturbative cluster expansion that is closely related to the Mayer cluster expansion developed for molecular liquids by Chandler and co-workers. Expansion of the functional integral representation of the grand-canonical partition function yields a perturbation theory in which all quantities of interest are expressed as functionals of a monomer-monomer pair potential, as functionals of intramolecular correlation functions of non-interacting molecules,more » and as functions of molecular activities. In different variants of the theory, the pair potential may be either a bare or a screened potential. A series of topological reductions yields a renormalized diagrammatic expansion in which collective correlation functions are instead expressed diagrammatically as functionals of the true single-molecule correlation functions in the interacting fluid, and as functions of molecular number density. Similar renormalized expansions are also obtained for a collective Ornstein-Zernicke direct correlation function, and for intramolecular correlation functions. A concise discussion is given of the corresponding Mayer cluster expansion, and of the relationship between the Mayer and perturbative cluster expansions for liquids of flexible molecules. The application of the perturbative cluster expansion to coarse-grained models of dense multi-component polymer liquids is discussed, and a justification is given for the use of a loop expansion. As an example, the formalism is used to derive a new expression for the wave-number dependent direct correlation function and recover known expressions for the intramolecular two-point correlation function to first-order in a renormalized loop expansion for coarse-grained models of binary homopolymer blends and diblock copolymer melts.« less

  4. Correlations between topography and intraflow width behavior in Martian and terrestrial lava flows

    NASA Astrophysics Data System (ADS)

    Peitersen, Matthew N.; Crown, David A.

    2000-02-01

    Local correlations between topography and width behavior within lava flows at Puu Oo, Mount Etna, Glass Mountain, Cerro Bayo, Alba Patera, Tyrrhena Patera, Elysium Mons, and Olympus Mons were investigated. For each flow, width and slope data were both referenced via downflow distance as a sequence of points; the data were then divided into collections of adjacent three-point features and two-point segments. Four discrete types of analyses were conducted: (1) Three-point analysis examined positional correlations between width and slope features, (2) two-point analysis did the same for flow segments, (3) mean slope analysis included segment slope comparisons, and (4) sudden width behavior analysis measured abruptness of width changes. The distribution of types of correlations compared to random combinations of features and segments does not suggest a significant correlation between flow widths and local underlying slopes and indicates that for these flows at least, other factors have more influence on changes in width than changes in underlying topography. Mean slopes underlying narrowing, widening, and constant flow width segments were calculated. An inverse correlation between slope and width was found only at Mount Etna, where slopes underlying narrowing segments were greater than those underlying widening in 62% of the examined flows. For the majority of flows at Mount Etna, Puu Oo, and Olympus Mons, slopes were actually greatest under constant width segments; this may imply a topographically dependent resistance to width changes. The rate of change of width was also examined. Sudden width changes are relatively common at Puu Oo, Mount Etna, Elysium Mons, and Tyrrhena Patera and relatively rare at Glass Mountain, Cerro Bayo, Olympus Mons, and Alba Patera. After correction for mapping scale, Puu Oo, Mount Etna, Olympus Mons, and Alba Patera appear to fall on the same trend; Glass Mount exhibits unusually small amounts of sudden width behavior, and Tyrrhena Patera exhibits a relatively large number of sudden width behavior occurrences.

  5. Muscle enzyme release does not predict muscle function impairment after triathlon.

    PubMed

    Margaritis, I; Tessier, F; Verdera, F; Bermon, S; Marconnet, P

    1999-06-01

    We sought to determine the effects of a long distance triathlon (4 km swim, 120 km bike-ride, and 30 km run) on the four-day kinetics of the biochemical markers of muscle damage, and whether they were quantitatively linked with muscle function impairment and soreness. Data were collected from 2 days before until 4 days after the completion of the race. Twelve triathletes performed the triathlon and five did not. Maximal voluntary contraction (MVC), muscle soreness (DOMS) and total serum CK, CK-MB, LDH, AST and ALT activities were assessed. Significant changes after triathlon completion were found for all muscle damage indirect markers over time (p < 0.0001). MVC of the knee extensor and flexor muscles decreased over time (p < 0.05). There is disparity in the time point at which peak values where reached for DOMS, MVC and enzyme leakage. There is no correlation between serum enzyme leakage, DOMS and MVC impairment which occur after triathlon. Long distance triathlon race caused muscle damage, but extent, as well as muscle recovery cannot be evaluated by the magnitude of changes in serum enzyme activities. Muscle enzyme release cannot be used to predict the magnitude of the muscle function impairment caused by muscle damage.

  6. Apo AIV and Citrulline Plasma Concentrations in Short Bowel Syndrome Patients: The Influence of Short Bowel Anatomy.

    PubMed

    López-Tejero, M Dolores; Virgili, Núria; Targarona, Jordi; Ruiz, Jorge; García, Natalia; Oró, Denise; García-Villoria, Judit; Creus, Gloria; Pita, Ana M

    Parenteral nutrition (PN) dependence in short bowel syndrome (SBS) patients is linked to the functionality of the remnant small bowel (RSB). Patients may wean off PN following a period of intestinal adaptation that restores this functionality. Currently, plasma citrulline is the standard biomarker for monitoring intestinal functionality and adaptation. However, available studies reveal that the relationship the biomarker with the length and function of the RSB is arguable. Thus, having additional biomarkers would improve pointing out PN weaning. By measuring concomitant changes in citrulline and the novel biomarker apolipoprotein AIV (Apo AIV), as well as taking into account the anatomy of the RSB, this exploratory study aims to a better understanding of the intestinal adaptation process and characterization of the SBS patients under PN. Thirty four adult SBS patients were selected and assigned to adapted (aSBS) and non-adapted (nSBS) groups after reconstructive surgeries. Remaining jejunum and ileum lengths were recorded. The aSBS patients were either on an oral diet (ORAL group), those with intestinal insufficiency, or on oral and home parenteral nutrition (HPN group), those with chronic intestinal failure. Apo AIV and citrulline were analyzed in plasma samples after overnight fasting. An exploratory ROC analysis using citrulline as gold standard was performed. Biomarkers, Apo AIV and citrulline showed a significant correlation with RSBL in aSBS patients. In jejuno-ileocolic patients, only Apo AIV correlated with RSBL (rb = 0.54) and with ileum length (rb = 0.84). In patients without ileum neither biomarker showed any correlation with RSBL. ROC analysis indicated the Apo AIV cut-off value to be 4.6 mg /100 mL for differentiating between the aSBS HPN and ORAL groups. Therefore, in addition to citrulline, Apo AIV can be set as a biomarker to monitor intestinal adaptation in SBS patients. As short bowel anatomy is shown to influence citrulline and Apo AIV plasma values, both biomarkers complement each other furnishing a new insight to manage PN dependence.

  7. - and Scene-Guided Integration of Tls and Photogrammetric Point Clouds for Landslide Monitoring

    NASA Astrophysics Data System (ADS)

    Zieher, T.; Toschi, I.; Remondino, F.; Rutzinger, M.; Kofler, Ch.; Mejia-Aguilar, A.; Schlögel, R.

    2018-05-01

    Terrestrial and airborne 3D imaging sensors are well-suited data acquisition systems for the area-wide monitoring of landslide activity. State-of-the-art surveying techniques, such as terrestrial laser scanning (TLS) and photogrammetry based on unmanned aerial vehicle (UAV) imagery or terrestrial acquisitions have advantages and limitations associated with their individual measurement principles. In this study we present an integration approach for 3D point clouds derived from these techniques, aiming at improving the topographic representation of landslide features while enabling a more accurate assessment of landslide-induced changes. Four expert-based rules involving local morphometric features computed from eigenvectors, elevation and the agreement of the individual point clouds, are used to choose within voxels of selectable size which sensor's data to keep. Based on the integrated point clouds, digital surface models and shaded reliefs are computed. Using an image correlation technique, displacement vectors are finally derived from the multi-temporal shaded reliefs. All results show comparable patterns of landslide movement rates and directions. However, depending on the applied integration rule, differences in spatial coverage and correlation strength emerge.

  8. Do Between-Culture Differences Really Mean that People Are Different? A Look at Some Measures of Culture Effect Size.

    ERIC Educational Resources Information Center

    Matsumoto, David; Grissom, Robert J.; Dinnel, Dale L.

    2001-01-01

    Recommends four measures of cultural effect size appropriate for cross-cultural research (standardized difference between two sample means, probabilistic superiority effect size measure, Cohen's U1, and point biserial correlation), demonstrating their efficacy on two data sets from previously published studies and arguing for their use in future…

  9. Correlation functional in screened-exchange density functional theory procedures.

    PubMed

    Chan, Bun; Kawashima, Yukio; Hirao, Kimihiko

    2017-10-15

    In the present study, we have explored several prospects for the further development of screened-exchange density functional theory (SX-DFT) procedures. Using the performance of HSE06 as our measure, we find that the use of alternative correlation functionals (as oppose to PBEc in HSE06) also yields adequate results for a diverse set of thermochemical properties. We have further examined the performance of new SX-DFT procedures (termed HSEB-type methods) that comprise the HSEx exchange and a (near-optimal) reparametrized B97c (c OS,0  = c SS,0  = 1, c OS,1  = -1.5, c OS,2  = -0.644, c SS,1  = -0.5, and c SS,2  = 1.10) correlation functionals. The different variants of HSEB all perform comparably to or slightly better than the original HSE-type procedures. These results, together with our fundamental analysis of correlation functionals, point toward various directions for advancing SX-DFT methods. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Analysis of the linguistic profile in down syndrome using the arizona battery for communication disorders of dementia - a pilot study.

    PubMed

    Carvalho, Cláudia Lopes; Belan, Ariella Fornachari Ribeiro; Castro, Leila Regina de; Radanovic, Márcia

    2018-03-12

    To characterize the linguistic profile of adults and elderly with Down Syndrome (DS) using the Arizona Battery for Communication Disorders of Dementia (ABCD). Thirty adult individuals with DS were evaluated through the MoCA cognitive battery, four functional scales (Pfeffer, Lawton-IADL, Katz-IADL and IQCODE) and the ABCD battery, which evaluates Mental State, Episodic Memory, Linguistic Expression, Linguistic Comprehension and Visuospatial Construction. The scores obtained by the individuals in the ABCD were correlated to those obtained on the Lawton-IADL scale. Individuals with DS had significantly lower performance than cognitively normal adults and elderly as described in Brazilian studies. Due to the lack of similar studies in our country, we compared our results to those of elderly with Alzheimer's Disease (AD), verifying that the performance of the DS population is similar to that of AD patients, although the former presented better scores on episodic immediate memory tests. There was a significant positive correlation between the scores obtained in the Lawton-IADL and those on the constructs Mental State, Episodic Memory, Linguistic Comprehension and Total ABCD. The ABCD battery is a useful tool in the evaluation of adults and elderly with DS and the performance of individuals in this battery correlates with indices of functionality. This is a pioneer study in Brazil, and it points to the need for a better characterization of the linguistic abilities of individuals with DS, in order to allow the elaboration of strategies that stimulate their communicative abilities as to promote greater social insertion for this population.

  11. Psychometrics of Multiple Choice Questions with Non-Functioning Distracters: Implications to Medical Education.

    PubMed

    Deepak, Kishore K; Al-Umran, Khalid Umran; AI-Sheikh, Mona H; Dkoli, B V; Al-Rubaish, Abdullah

    2015-01-01

    The functionality of distracters in a multiple choice question plays a very important role. We examined the frequency and impact of functioning and non-functioning distracters on psychometric properties of 5-option items in clinical disciplines. We analyzed item statistics of 1115 multiple choice questions from 15 summative assessments of undergraduate medical students and classified the items into five groups by their number of non-functioning distracters. We analyzed the effect of varying degree of non-functionality ranging from 0 to 4, on test reliability, difficulty index, discrimination index and point biserial correlation. The non-functionality of distracters inversely affected the test reliability and quality of items in a predictable manner. The non-functioning distracters made the items easier and lowered the discrimination index significantly. Three non-functional distracters in a 5-option MCQ significantly affected all psychometric properties (p < 0.5). The corrected point biserial correlation revealed that the items with 3 functional options were psychometrically as effective as 5-option items. Our study reveals that a multiple choice question with 3 functional options provides lower most limit of item format that has adequate psychometric property. The test containing items with less number of functioning options have significantly lower reliability. The distracter function analysis and revision of nonfunctioning distracters can serve as important methods to improve the psychometrics and reliability of assessment.

  12. Training balance with opto-kinetic stimuli in the home: a randomized controlled feasibility study in people with pure cerebellar disease.

    PubMed

    Bunn, Lisa M; Marsden, Jonathan F; Giunti, Paola; Day, Brian L

    2015-02-01

    To investigate the feasibility of a randomized controlled trial of a home-based balance intervention for people with cerebellar ataxia. A randomized controlled trial design. Intervention and assessment took place in the home environment. A total of 12 people with spinocerebellar ataxia type 6 were randomized into a therapy or control group. Both groups received identical assessments at baseline, four and eight weeks. Therapy group participants undertook balance exercises in front of optokinetic stimuli during weeks 4-8, while control group participants received no intervention. Test-retest reliability was analysed from outcome measures collected twice at baseline and four weeks later. Feasibility issues were evaluated using daily diaries and end trial exit interviews. The home-based training intervention with opto-kinetic stimuli was feasible for people with pure ataxia, with one drop-out. Test-retest reliability is strong (intraclass correlation coefficient >0.7) for selected outcome measures evaluating balance at impairment and activity levels. Some measures reveal trends towards improvement for those in the therapy group. Sample size estimations indicate that Bal-SARA scores could detect a clinically significant change of 0.8 points in this functional balance score if 80 people per group were analysed in future trials. Home-based targeted training of functional balance for people with pure cerebellar ataxia is feasible and the outcome measures employed are reliable. © The Author(s) 2014.

  13. Comparing current definitions of return to work: a measurement approach.

    PubMed

    Steenstra, I A; Lee, H; de Vroome, E M M; Busse, J W; Hogg-Johnson, S J

    2012-09-01

    Return-to-work (RTW) status is an often used outcome in work and health research. In low back pain, work is regarded as a normal activity a worker should return to in order to fully recover. Comparing outcomes across studies and even jurisdictions using different definitions of RTW can be challenging for readers in general and when performing a systematic review in particular. In this study, the measurement properties of previously defined RTW outcomes were examined with data from two studies from two countries. Data on RTW in low back pain (LBP) from the Canadian Early Claimant Cohort (ECC); a workers' compensation based study, and the Dutch Amsterdam Sherbrooke Evaluation (ASE) study were analyzed. Correlations between outcomes, differences in predictive validity when using different outcomes and construct validity when comparing outcomes to a functional status outcome were analyzed. In the ECC all definitions were highly correlated and performed similarly in predictive validity. When compared to functional status, RTW definitions in the ECC study performed fair to good on all time points. In the ASE study all definitions were highly correlated and performed similarly in predictive validity. The RTW definitions, however, failed to compare or compared poorly with functional status. Only one definition compared fairly on one time point. Differently defined outcomes are highly correlated, give similar results in prediction, but seem to differ in construct validity when compared to functional status depending on societal context or possibly birth cohort. Comparison of studies using different RTW definitions appears valid as long as RTW status is not considered as a measure of functional status.

  14. Visualization and Quantification of Nasal and Olfactory Deposition in a Sectional Adult Nasal Airway Cast.

    PubMed

    Xi, Jinxiang; Yuan, Jiayao Eddie; Zhang, Yu; Nevorski, Dannielle; Wang, Zhaoxuan; Zhou, Yue

    2016-06-01

    To compare drug deposition in the nose and olfactory region with different nasal devices and administration techniques. A Sar-Gel based colorimetry method will be developed to quantify local deposition rates. A sectional nasal airway cast was developed based on an MRI-based nasal airway model to visualize deposition patterns and measure regional dosages. Four nasal spray pumps and four nebulizers were tested with both standard and point-release administration techniques. Delivered dosages were measured using a high-precision scale. The colorimetry correlation for deposited mass was developed via image processing in Matlab and its performance was evaluated through comparison to experimental measurements. Results show that the majority of nasal spray droplets deposited in the anterior nose while only a small fraction (less than 4.6%) reached the olfactory region. For all nebulizers considered, more droplets went beyond the nasal valve, leading to distinct deposition patterns as a function of both the nebulizer type (droplet size and initial speed) and inhalation flow rate. With the point-release administration, up to 9.0% (±1.9%) of administered drugs were delivered to the olfactory region and 15.7 (±2.4%) to the upper nose using Pari Sinus. Standard nasal devices are inadequate to deliver clinically significant olfactory dosages without excess drug losses in other nasal epitheliums. The Sar-Gel based colorimetry method appears to provide a simple and practical approach to visualize and quantify regional deposition.

  15. Evaluation of coral reef carbonate production models at a global scale

    NASA Astrophysics Data System (ADS)

    Jones, N. S.; Ridgwell, A.; Hendy, E. J.

    2014-09-01

    Calcification by coral reef communities is estimated to account for half of all carbonate produced in shallow water environments and more than 25% of the total carbonate buried in marine sediments globally. Production of calcium carbonate by coral reefs is therefore an important component of the global carbon cycle. It is also threatened by future global warming and other global change pressures. Numerical models of reefal carbonate production are essential for understanding how carbonate deposition responds to environmental conditions including future atmospheric CO2 concentrations, but these models must first be evaluated in terms of their skill in recreating present day calcification rates. Here we evaluate four published model descriptions of reef carbonate production in terms of their predictive power, at both local and global scales, by comparing carbonate budget outputs with independent estimates. We also compile available global data on reef calcification to produce an observation-based dataset for the model evaluation. The four calcification models are based on functions sensitive to combinations of light availability, aragonite saturation (Ωa) and temperature and were implemented within a specifically-developed global framework, the Global Reef Accretion Model (GRAM). None of the four models correlated with independent rate estimates of whole reef calcification. The temperature-only based approach was the only model output to significantly correlate with coral-calcification rate observations. The absence of any predictive power for whole reef systems, even when consistent at the scale of individual corals, points to the overriding importance of coral cover estimates in the calculations. Our work highlights the need for an ecosystem modeling approach, accounting for population dynamics in terms of mortality and recruitment and hence coral cover, in estimating global reef carbonate budgets. In addition, validation of reef carbonate budgets is severely hampered by limited and inconsistent methodology in reef-scale observations.

  16. Redshift-space distortions of group and galaxy correlations in the Updated Zwicky Catalog

    NASA Astrophysics Data System (ADS)

    Padilla, N. D.; Merchán, M.; García Lambas, D.; Maia, M. G.

    We calculate two-point correlation functions of galaxies and groups of galaxies selected in three dimensions from the Updated Zwicky Galaxy Catalog - (UZC). The redshift space distortion of the correlation function ξ(σ,π) in the directions parallel and perpendicular to the line of sight, induced by pairwise group peculiar velocities is evaluated. Two methods are used to characterize the pairwise velocity field. The first method consists in fitting the observed ξ(σ,π) with a distorted model with an exponential pairwise velocity distribution, in fixed σ bins. The second method compares the contours of constant predicted correlation function of this model with the data. The results are consistent with a one-dimensional pairwise rms velocity dispersion of groups 1/2=250 ± 110 km/s. We find that UZC galaxy pairwise velocity dispersion is 1/2 = 460 ± 35 km/s. Such findings point towards a smoothly varying peculiar velocity field from galaxies to systems of galaxies, a expected in a hierarchical scenario of structure formation. We estimate the real-space correlation function in the power-law approximation ξ(r)=(r/r0)γ for groups and galaxies in UZC. We obtain the correlation length, r0, from the projected correlation function W(σ)=∫- ∞∞ξ(σ,π)dπ= 2 ∫0∞ ξ(σ,π) dπ using the values of γ derived from the correlation function in projected separations ω(σ). The best fitting parameters are γ=-1.89 ± 0.17 and r0=9.7 ± 4.5 Mpc h-1 for groups, and γ=-2.00 ± 0.03, r0=5.29 ± 0.21 Mpc h-1 for galaxies. We carried out an estimate of the parameter β= Ω0.6/b for groups and galaxies using the linear approximation regime relating the real and the redshift-space correlation functions. We find βgalaxies=0.51 ± 0.15 for galaxies, in agreement with previous works, while for groups we obtain a noisy estimate β < 1.5. We have tested our methods on mock UZC catalogs taken from N-body simulations. The results of these tests show that the conclusions derived from the application of our methods to the observations are reliable and provide a suitable characterization of the spatial correlation and pairwise velocities of groups and galaxies. We also find that the second method, developed in this work, provides more stable and precise results.

  17. Analysis and experiments for composite laminates with holes and subjected to 4-point bending

    NASA Technical Reports Server (NTRS)

    Shuart, M. J.; Prasad, C. B.

    1990-01-01

    Analytical and experimental results are presented for composite laminates with a hole and subjected to four-point bending. A finite-plate analysis is used to predict moment and strain distributions for six-layer quasi-isotropic laminates and transverse-ply laminates. Experimental data are compared with the analytical results. Experimental and analytical strain results show good agreement for the quasi-isotropic laminates. Failure of the two types of composite laminates is described, and failure strain results are presented as a function of normalized hole diameter. The failure results suggest that the initial failure mechanism for laminates subjected to four-point bending are similar to the initial failure mechanisms for corresponding laminates subjected to uniaxial inplane loadings.

  18. Plasmacytoid dendritic cell and functional HIV Gag p55-specific T cells before treatment interruption can inform set-point plasma HIV viral load after treatment interruption in chronically suppressed HIV-1(+) patients.

    PubMed

    Papasavvas, Emmanouil; Foulkes, Andrea; Yin, Xiangfan; Joseph, Jocelin; Ross, Brian; Azzoni, Livio; Kostman, Jay R; Mounzer, Karam; Shull, Jane; Montaner, Luis J

    2015-07-01

    The identification of immune correlates of HIV control is important for the design of immunotherapies that could support cure or antiretroviral therapy (ART) intensification-related strategies. ART interruptions may facilitate this task through exposure of an ART partially reconstituted immune system to endogenous virus. We investigated the relationship between set-point plasma HIV viral load (VL) during an ART interruption and innate/adaptive parameters before or after interruption. Dendritic cell (DC), natural killer (NK) cell and HIV Gag p55-specific T-cell functional responses were measured in paired cryopreserved peripheral blood mononuclear cells obtained at the beginning (on ART) and at set-point of an open-ended interruption from 31 ART-suppressed chronically HIV-1(+) patients. Spearman correlation and linear regression modeling were used. Frequencies of plasmacytoid DC (pDC), and HIV Gag p55-specific CD3(+)  CD4(-)  perforin(+)  IFN-γ(+) cells at the beginning of interruption associated negatively with set-point plasma VL. Inclusion of both variables with interaction into a model resulted in the best fit (adjusted R(2)  = 0·6874). Frequencies of pDC or HIV Gag p55-specific CD3(+)  CD4(-)  CSFE(lo)  CD107a(+) cells at set-point associated negatively with set-point plasma VL. The dual contribution of pDC and anti-HIV T-cell responses to viral control, supported by our models, suggests that these variables may serve as immune correlates of viral control and could be integrated in cure or ART-intensification strategies. © 2015 John Wiley & Sons Ltd.

  19. N-point correlation functions in the CfA and SSRS redshift distribution of galaxies

    NASA Technical Reports Server (NTRS)

    Gaztanaga, Enrique

    1992-01-01

    Using counts in cells, we estimate the volume-average N-point galaxy correlation functions for N = 2, 3, and 4, in redshift samples of the CfA and SSRS catalogs. Volume-limited samples of different sizes are used to study the uncertainties at different scales, the shot noise, and the problem with the boundaries. The hierarchical constants S3 and S4 agree well in all samples in CfA and SSRS, with average S3 = 194 +/- 0.07 and S4 = 4.56 +/- 0.53. We compare these results with estimates obtained from angular catalogs and recent analysis over IRAS samples. The amplitudes SJ seem larger in real space than in redshift space, although the values from the angular analysis correspond to smaller scales, where we might expect larger nonperturbative effects. It is also found that S3 and S4 are smaller for IRAS than for optical galaxies. This, together with the fact that IRAS galaxies have smaller amplitude for the above correlation functions, indicates that the density fluctuations of IRAS galaxies cannot be simply proportional to the density fluctuations of optical galaxies, i.e., biasing has to be nonlinear between them.

  20. The correlation function for density perturbations in an expanding universe. I - Linear theory

    NASA Technical Reports Server (NTRS)

    Mcclelland, J.; Silk, J.

    1977-01-01

    The evolution of the two-point correlation function for adiabatic density perturbations in the early universe is studied. Analytical solutions are obtained for the evolution of linearized spherically symmetric adiabatic density perturbations and the two-point correlation function for these perturbations in the radiation-dominated portion of the early universe. The results are then extended to the regime after decoupling. It is found that: (1) adiabatic spherically symmetric perturbations comparable in scale with the maximum Jeans length would survive the radiation-dominated regime; (2) irregular fluctuations are smoothed out up to the scale of the maximum Jeans length in the radiation era, but regular fluctuations might survive on smaller scales; (3) in general, the only surviving structures for irregularly shaped adiabatic density perturbations of arbitrary but finite scale in the radiation regime are the size of or larger than the maximum Jeans length in that regime; (4) infinite plane waves with a wavelength smaller than the maximum Jeans length but larger than the critical dissipative damping scale could survive the radiation regime; and (5) black holes would also survive the radiation regime and might accrete sufficient mass after decoupling to nucleate the formation of galaxies.

  1. Timed function tests, motor function measure, and quantitative thigh muscle MRI in ambulant children with Duchenne muscular dystrophy: A cross-sectional analysis.

    PubMed

    Schmidt, Simone; Hafner, Patricia; Klein, Andrea; Rubino-Nacht, Daniela; Gocheva, Vanya; Schroeder, Jonas; Naduvilekoot Devasia, Arjith; Zuesli, Stephanie; Bernert, Guenther; Laugel, Vincent; Bloetzer, Clemens; Steinlin, Maja; Capone, Andrea; Gloor, Monika; Tobler, Patrick; Haas, Tanja; Bieri, Oliver; Zumbrunn, Thomas; Fischer, Dirk; Bonati, Ulrike

    2018-01-01

    The development of new therapeutic agents for the treatment of Duchenne muscular dystrophy has put a focus on defining outcome measures most sensitive to capture treatment effects. This cross-sectional analysis investigates the relation between validated clinical assessments such as the 6-minute walk test, motor function measure and quantitative muscle MRI of thigh muscles in ambulant Duchenne muscular dystrophy patients, aged 6.5 to 10.8 years (mean 8.2, SD 1.1). Quantitative muscle MRI included the mean fat fraction using a 2-point Dixon technique, and transverse relaxation time (T2) measurements. All clinical assessments were highly significantly inter-correlated with p < 0.001. The strongest correlation with the motor function measure and its D1-subscore was shown by the 6-minute walk test. Clinical assessments showed no correlation with age. Importantly, quantitative muscle MRI values significantly correlated with all clinical assessments with the extensors showing the strongest correlation. In contrast to the clinical assessments, quantitative muscle MRI values were highly significantly correlated with age. In conclusion, the motor function measure and timed function tests measure disease severity in a highly comparable fashion and all tests correlated with quantitative muscle MRI values quantifying fatty muscle degeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Design of exchange-correlation functionals through the correlation factor approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlíková Přecechtělová, Jana, E-mail: j.precechtelova@gmail.com, E-mail: Matthias.Ernzerhof@UMontreal.ca; Institut für Chemie, Theoretische Chemie / Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin; Bahmann, Hilke

    The correlation factor model is developed in which the spherically averaged exchange-correlation hole of Kohn-Sham theory is factorized into an exchange hole model and a correlation factor. The exchange hole model reproduces the exact exchange energy per particle. The correlation factor is constructed in such a manner that the exchange-correlation energy correctly reduces to exact exchange in the high density and rapidly varying limits. Four different correlation factor models are presented which satisfy varying sets of physical constraints. Three models are free from empirical adjustments to experimental data, while one correlation factor model draws on one empirical parameter. The correlationmore » factor models are derived in detail and the resulting exchange-correlation holes are analyzed. Furthermore, the exchange-correlation energies obtained from the correlation factor models are employed to calculate total energies, atomization energies, and barrier heights. It is shown that accurate, non-empirical functionals can be constructed building on exact exchange. Avenues for further improvements are outlined as well.« less

  3. The assessment of changes in cognitive functioning: age-, education-, and gender-specific reliable change indices for older adults tested on the CERAD-NP battery: results of the German Study on Ageing, Cognition, and Dementia in Primary Care Patients (AgeCoDe).

    PubMed

    Stein, Janine; Luppa, Melanie; Luck, Tobias; Maier, Wolfgang; Wagner, Michael; Daerr, Moritz; van den Bussche, Hendrik; Zimmermann, Thomas; Köhler, Mirjam; Bickel, Horst; Mösch, Edelgard; Weyerer, Siegfried; Kaufeler, Teresa; Pentzek, Michael; Wiese, Birgitt; Wollny, Anja; König, Hans-Helmut; Riedel-Heller, Steffi G

    2012-01-01

    The Consortium to Establish a Registry for Alzheimer's Disease-Neuropsychological (CERAD-NP) battery represents a commonly used neuropsychological instrument to measure cognitive functioning in the elderly. This study provides normative data for changes in cognitive function that normally occur in cognitively healthy individuals to interpret changes in CERAD-NP test scores over longer time periods. Longitudinal cohort study with three assessments at 1.5-year intervals over a period of 3 years. : Primary care medical record registry sample. As part of the German Study on Ageing, Cognition, and Dementia in Primary Care Patients, a sample of 1,450 cognitively healthy general practitioner patients, age 75 years and older, was assessed. Age-, education-, and gender-specific Reliable Change Indices (RCIs) were computed for a 90% confidence interval for selected subtests of the CERAD-NP battery. Across different age, education, and gender subgroups, changes from at least six to nine points in Verbal Fluency, four to eight points in Word List Memory, two to four points in Word List Recall, and one to four points in Word List Recognition indicated significant (i.e. reliable) changes in CERAD-NP test scores at the 90% confidence level. Furthermore, the calculation of RCIs for individual patients is demonstrated. Smaller changes in CERAD-NP test scores can be interpreted with only high uncertainty because of probable measurement error, practice effects, and normal age-related cognitive decline. This study, for the first time, provides age-, education-, and gender-specific CERAD-NP reference values on the basis of RCI methods for the interpretation of cognitive changes in older-age groups.

  4. Microscopic Electron Variations Measured Simultaneously By The Cluster Spacecraft

    NASA Astrophysics Data System (ADS)

    Buckley, A. M.; Carozzi, T. D.; Gough, M. P.; Beloff, N.

    Data is used from the Particle Correlator experiments running on each of the four Cluster spacecraft so as to determine common microscopic behaviour in the elec- tron population observed over the macroscopic Cluster separations. The Cluster par- ticle correlator experiments operate by forming on board Auto Correlation Functions (ACFs) generated from short time series of electron counts obtained, as a function of electron energy, from the PEACE HEEA sensor. The information on the microscopic variation of the electron flux covers the frequency range DC up to 41 kHz (encom- passing typical electron plasma frequencies and electron gyro frequencies and their harmonics), the electron energy range is that covered by the PEACE HEEA sensor (within the range 1 eV to 26 keV). Results are presented of coherent electron struc- tures observed simultaneously by the four spacecraft in the differing plasma interac- tion regions and boundaries encountered by Cluster. As an aid to understanding the plasma interactions, use is made of numerical simulations which model both the un- derlying statistical properties of the electrons and also the manner in which particle correlator experiments operate.

  5. A Semi-Empirical Model for Forecasting Relativistic Electrons at Geostationary Orbit

    NASA Technical Reports Server (NTRS)

    Lyatsky, Wladislaw; Khazanov, George V.

    2008-01-01

    We developed a new prediction model for forecasting relativistic (>2MeV) electrons, which provides a VERY HIGH correlation between predicted and actually measured electron fluxes at geostationary orbit. This model implies the multi-step particle acceleration and is based on numerical integrating two linked continuity equations for primarily accelerated particles and relativistic electrons. The model includes a source and losses, and used solar wind data as only input parameters. We used the coupling function which is a best-fit combination of solar wind/Interplanetary Magnetic Field parameters, responsible for the generation of geomagnetic activity, as a source. The loss function was derived from experimental data. We tested the model for four year period 2004-2007. The correlation coefficient between predicted and actual values of the electron fluxes for whole four year period as well as for each of these years is about 0.9. The high and stable correlation between the computed and actual electron fluxes shows that the reliable forecasting these electrons at geostationary orbit is possible. The correlation coefficient between predicted and actual electron fluxes is stable and incredibly high.

  6. Self-referenced single-shot THz detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Brandon K.; Ofori-Okai, Benjamin K.; Chen, Zhijiang

    We demonstrate a self-referencing method to reduce noise in a single-shot terahertz detection scheme. By splitting a single terahertz pulse and using a reflective echelon, both the signal and reference terahertz time-domain waveforms were measured using one laser pulse. Simultaneous acquisition of these waveforms significantly reduces noise originating from shot-to-shot fluctuations. Here, we show that correlation function based referencing, which is not limited to polarization dependent measurements, can achieve a noise floor that is comparable to state-of-the-art polarization-gated balanced detection. Lastly, we extract the DC conductivity of a 30 nm free-standing gold film using a single THz pulse. The measuredmore » value of σ 0 = 1.3 ± 0.4 × 10 7 S m -1 is in good agreement with the value measured by four-point probe, indicating the viability of this method for measuring dynamical changes and small signals.« less

  7. Self-referenced single-shot THz detection

    DOE PAGES

    Russell, Brandon K.; Ofori-Okai, Benjamin K.; Chen, Zhijiang; ...

    2017-06-29

    We demonstrate a self-referencing method to reduce noise in a single-shot terahertz detection scheme. By splitting a single terahertz pulse and using a reflective echelon, both the signal and reference terahertz time-domain waveforms were measured using one laser pulse. Simultaneous acquisition of these waveforms significantly reduces noise originating from shot-to-shot fluctuations. Here, we show that correlation function based referencing, which is not limited to polarization dependent measurements, can achieve a noise floor that is comparable to state-of-the-art polarization-gated balanced detection. Lastly, we extract the DC conductivity of a 30 nm free-standing gold film using a single THz pulse. The measuredmore » value of σ 0 = 1.3 ± 0.4 × 10 7 S m -1 is in good agreement with the value measured by four-point probe, indicating the viability of this method for measuring dynamical changes and small signals.« less

  8. Relativistic effects on the NMR parameters of Si, Ge, Sn, and Pb alkynyl compounds: Scalar versus spin-orbit effects

    NASA Astrophysics Data System (ADS)

    Demissie, Taye B.

    2017-11-01

    The NMR chemical shifts and indirect spin-spin coupling constants of 12 molecules containing 29Si, 73Ge, 119Sn, and 207Pb [X(CCMe)4, Me2X(CCMe)2, and Me3XCCH] are presented. The results are obtained from non-relativistic as well as two- and four-component relativistic density functional theory (DFT) calculations. The scalar and spin-orbit relativistic contributions as well as the total relativistic corrections are determined. The main relativistic effect in these molecules is not due to spin-orbit coupling but rather to the scalar relativistic contraction of the s-shells. The correlation between the calculated and experimental indirect spin-spin coupling constants showed that the four-component relativistic density functional theory (DFT) approach using the Perdew's hybrid scheme exchange-correlation functional (PBE0; using the Perdew-Burke-Ernzerhof exchange and correlation functionals) gives results in good agreement with experimental values. The indirect spin-spin coupling constants calculated using the spin-orbit zeroth order regular approximation together with the hybrid PBE0 functional and the specially designed J-coupling (JCPL) basis sets are in good agreement with the results obtained from the four-component relativistic calculations. For the coupling constants involving the heavy atoms, the relativistic corrections are of the same order of magnitude compared to the non-relativistically calculated results. Based on the comparisons of the calculated results with available experimental values, the best results for all the chemical shifts and non-existing indirect spin-spin coupling constants for all the molecules are reported, hoping that these accurate results will be used to benchmark future DFT calculations. The present study also demonstrates that the four-component relativistic DFT method has reached a level of maturity that makes it a convenient and accurate tool to calculate indirect spin-spin coupling constants of "large" molecular systems involving heavy atoms.

  9. Stress intensity and crack displacement for small edge cracks

    NASA Technical Reports Server (NTRS)

    Orange, Thomas W.

    1988-01-01

    The weight function method was used to derive stress intensity factors and crack mouth displacement coefficients for small edge cracks (less than 20 percent of the specimen width) in common fracture specimen configurations. Contact stresses due to point application of loads were found to be small but significant for three-point bending and insignificant for four-point bending. The results are compared with available equations and numerical solutions from the literature and with unpublished boundary collocation results.

  10. Transverse spin correlations of the random transverse-field Ising model

    NASA Astrophysics Data System (ADS)

    Iglói, Ferenc; Kovács, István A.

    2018-03-01

    The critical behavior of the random transverse-field Ising model in finite-dimensional lattices is governed by infinite disorder fixed points, several properties of which have already been calculated by the use of the strong disorder renormalization-group (SDRG) method. Here we extend these studies and calculate the connected transverse-spin correlation function by a numerical implementation of the SDRG method in d =1 ,2 , and 3 dimensions. At the critical point an algebraic decay of the form ˜r-ηt is found, with a decay exponent being approximately ηt≈2 +2 d . In d =1 the results are related to dimer-dimer correlations in the random antiferromagnetic X X chain and have been tested by numerical calculations using free-fermionic techniques.

  11. Geostatistics and the representative elementary volume of gamma ray tomography attenuation in rocks cores

    USGS Publications Warehouse

    Vogel, J.R.; Brown, G.O.

    2003-01-01

    Semivariograms of samples of Culebra Dolomite have been determined at two different resolutions for gamma ray computed tomography images. By fitting models to semivariograms, small-scale and large-scale correlation lengths are determined for four samples. Different semivariogram parameters were found for adjacent cores at both resolutions. Relative elementary volume (REV) concepts are related to the stationarity of the sample. A scale disparity factor is defined and is used to determine sample size required for ergodic stationarity with a specified correlation length. This allows for comparison of geostatistical measures and representative elementary volumes. The modifiable areal unit problem is also addressed and used to determine resolution effects on correlation lengths. By changing resolution, a range of correlation lengths can be determined for the same sample. Comparison of voxel volume to the best-fit model correlation length of a single sample at different resolutions reveals a linear scaling effect. Using this relationship, the range of the point value semivariogram is determined. This is the range approached as the voxel size goes to zero. Finally, these results are compared to the regularization theory of point variables for borehole cores and are found to be a better fit for predicting the volume-averaged range.

  12. Application-Oriented Chemical Optimization of a Metakaolin Based Geopolymer.

    PubMed

    Ferone, Claudio; Colangelo, Francesco; Roviello, Giuseppina; Asprone, Domenico; Menna, Costantino; Balsamo, Alberto; Prota, Andrea; Cioffi, Raffaele; Manfredi, Gaetano

    2013-05-10

    In this study the development of a metakaolin based geopolymeric mortar to be used as bonding matrix for external strengthening of reinforced concrete beams is reported. Four geopolymer formulations have been obtained by varying the composition of the activating solution in terms of SiO₂/Na₂O ratio. The obtained samples have been characterized from a structural, microstructural and mechanical point of view. The differences in structure and microstructure have been correlated to the mechanical properties. A major issue of drying shrinkage has been encountered in the high Si/Al ratio samples. In the light of the characterization results, the optimal geopolymer composition was then applied to fasten steel fibers to reinforced concrete beams. The mechanical behavior of the strengthened reinforced beams was evaluated by four-points bending tests, which were performed also on reinforced concrete beams as they are for comparison. The preliminary results of the bending tests point out an excellent behavior of the geopolymeric mixture tested, with the failure load of the reinforced beams roughly twice that of the control beam.

  13. $$ \\mathcal{N} $$ = 4 superconformal bootstrap of the K 3 CFT

    DOE PAGES

    Lin, Ying-Hsuan; Shao, Shu-Heng; Simmons-Duffin, David; ...

    2017-05-23

    We study two-dimensional (4; 4) superconformal eld theories of central charge c = 6, corresponding to nonlinear sigma models on K3 surfaces, using the superconformal bootstrap. This is made possible through a surprising relation between the BPS N = 4 superconformal blocks with c = 6 and bosonic Virasoro conformal blocks with c = 28, and an exact result on the moduli dependence of a certain integrated BPS 4-point function. Nontrivial bounds on the non-BPS spectrum in the K3 CFT are obtained as functions of the CFT moduli, that interpolate between the free orbifold points and singular CFT points. Wemore » observe directly from the CFT perspective the signature of a continuous spectrum above a gap at the singular moduli, and fi nd numerically an upper bound on this gap that is saturated by the A1 N = 4 cigar CFT. We also derive an analytic upper bound on the fi rst nonzero eigenvalue of the scalar Laplacian on K3 in the large volume regime, that depends on the K3 moduli data. As two byproducts, we find an exact equivalence between a class of BPS N = 2 superconformal blocks and Virasoro conformal blocks in two dimensions, and an upper bound on the four-point functions of operators of sufficiently low scaling dimension in three and four dimensional CFTs.« less

  14. $$ \\mathcal{N} $$ = 4 superconformal bootstrap of the K 3 CFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Ying-Hsuan; Shao, Shu-Heng; Simmons-Duffin, David

    We study two-dimensional (4; 4) superconformal eld theories of central charge c = 6, corresponding to nonlinear sigma models on K3 surfaces, using the superconformal bootstrap. This is made possible through a surprising relation between the BPS N = 4 superconformal blocks with c = 6 and bosonic Virasoro conformal blocks with c = 28, and an exact result on the moduli dependence of a certain integrated BPS 4-point function. Nontrivial bounds on the non-BPS spectrum in the K3 CFT are obtained as functions of the CFT moduli, that interpolate between the free orbifold points and singular CFT points. Wemore » observe directly from the CFT perspective the signature of a continuous spectrum above a gap at the singular moduli, and fi nd numerically an upper bound on this gap that is saturated by the A1 N = 4 cigar CFT. We also derive an analytic upper bound on the fi rst nonzero eigenvalue of the scalar Laplacian on K3 in the large volume regime, that depends on the K3 moduli data. As two byproducts, we find an exact equivalence between a class of BPS N = 2 superconformal blocks and Virasoro conformal blocks in two dimensions, and an upper bound on the four-point functions of operators of sufficiently low scaling dimension in three and four dimensional CFTs.« less

  15. Translation and Validation of the Dysphagia Handicap Index in Hebrew-Speaking Patients.

    PubMed

    Shapira-Galitz, Yael; Drendel, Michael; Yousovich-Ulriech, Ruth; Shtreiffler-Moskovich, Liat; Wolf, Michael; Lahav, Yonatan

    2018-06-07

    The Dysphagia Handicap Index (DHI) is a 25-item questionnaire assessing the physical, functional, and emotional aspects of dysphagia patients' quality of life (QoL). The study goal was to translate and validate the Hebrew-DHI. 148 patients undergoing fiberoptic endoscopic examination of swallowing (FEES) in two specialized dysphagia clinics between February and August 2017 filled the Hebrew-DHI and self-reported their dysphagia severity on a scale of 1-7. 21 patients refilled the DHI during a 2-week period following their first visit. FEES were scored for residue (1 point per consistency), penetration and aspiration (1 point for penetration, 2 points for aspiration, per consistency). 51 healthy volunteers also filled the DHI. Internal consistency and test-retest reproducibility were used for reliability testing. Validity was established by comparing DHI scores of dysphagia patients and healthy controls. Concurrent validity was established by correlating the DHI score with the FEES score. Internal consistency of the Hebrew-DHI was high (Cronbach's alpha = 0.96), as was the test-retest reproducibility (Spearman's correlation coefficient = 0.82, p < 0.001). The Hebrew-DHI's total score, and its three subscales (physical/functional/emotional) were significantly higher in dysphagia patients compared to those in healthy controls (median 38 pts, IQR 18-56 for dysphagia patients compared to 0, IQR 0-2 for healthy controls, p < 0.0001). A strong correlation was observed between the DHI score and the self-reported dysphagia severity measure (Spearman's correlation coefficient = 0.88, p < 0.0001). A moderate correlation was found between the DHI score and the FEES score (Pearson's correlation coefficient = 0.245, p = 0.003). The Hebrew-DHI is a reliable and valid questionnaire assessing dysphagia patients' QoL.

  16. The ground states of iron(III) porphines: role of entropy-enthalpy compensation, Fermi correlation, dispersion, and zero-point energies.

    PubMed

    Kepp, Kasper P

    2011-10-01

    Porphyrins are much studied due to their biochemical relevance and many applications. The density functional TPSSh has previously accurately described the energy of close-lying electronic states of transition metal systems such as porphyrins. However, a recent study questioned this conclusion based on calculations of five iron(III) porphines. Here, we compute the geometries of 80 different electronic configurations and the free energies of the most stable configurations with the functionals TPSSh, TPSS, and B3LYP. Zero-point energies and entropy favor high-spin by ~4kJ/mol and 0-10kJ/mol, respectively. When these effects are included, and all electronic configurations are evaluated, TPSSh correctly predicts the spin of all the four difficult phenylporphine cases and is within the lower bound of uncertainty of any known theoretical method for the fifth, iron(III) chloroporphine. Dispersion computed with DFT-D3 favors low-spin by 3-53kJ/mol (TPSSh) or 4-15kJ/mol (B3LYP) due to the attractive r(-6) term and the shorter distances in low-spin. The very large and diverse corrections from TPSS and TPSSh seem less consistent with the similarity of the systems than when calculated from B3LYP. If the functional-specific corrections are used, B3LYP and TPSSh are of equal accuracy, and TPSS is much worse, whereas if the physically reasonable B3LYP-computed dispersion effect is used for all functionals, TPSSh is accurate for all systems. B3LYP is significantly more accurate when dispersion is added, confirming previous results. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Bond breaking and bond formation: how electron correlation is captured in many-body perturbation theory and density-functional theory.

    PubMed

    Caruso, Fabio; Rohr, Daniel R; Hellgren, Maria; Ren, Xinguo; Rinke, Patrick; Rubio, Angel; Scheffler, Matthias

    2013-04-05

    For the paradigmatic case of H(2) dissociation, we compare state-of-the-art many-body perturbation theory in the GW approximation and density-functional theory in the exact-exchange plus random-phase approximation (RPA) for the correlation energy. For an unbiased comparison and to prevent spurious starting point effects, both approaches are iterated to full self-consistency (i.e., sc-RPA and sc-GW). The exchange-correlation diagrams in both approaches are topologically identical, but in sc-RPA they are evaluated with noninteracting and in sc-GW with interacting Green functions. This has a profound consequence for the dissociation region, where sc-RPA is superior to sc-GW. We argue that for a given diagrammatic expansion, sc-RPA outperforms sc-GW when it comes to bond breaking. We attribute this to the difference in the correlation energy rather than the treatment of the kinetic energy.

  18. Temporal cross-correlation asymmetry and departure from equilibrium in a bistable chemical system.

    PubMed

    Bianca, C; Lemarchand, A

    2014-06-14

    This paper aims at determining sustained reaction fluxes in a nonlinear chemical system driven in a nonequilibrium steady state. The method relies on the computation of cross-correlation functions for the internal fluctuations of chemical species concentrations. By employing Langevin-type equations, we derive approximate analytical formulas for the cross-correlation functions associated with nonlinear dynamics. Kinetic Monte Carlo simulations of the chemical master equation are performed in order to check the validity of the Langevin equations for a bistable chemical system. The two approaches are found in excellent agreement, except for critical parameter values where the bifurcation between monostability and bistability occurs. From the theoretical point of view, the results imply that the behavior of cross-correlation functions cannot be exploited to measure sustained reaction fluxes in a specific nonlinear system without the prior knowledge of the associated chemical mechanism and the rate constants.

  19. Does point-of-care functional echocardiography enhance cardiovascular care in the NICU?

    PubMed

    Sehgal, A; McNamara, P J

    2008-11-01

    Although the last two decades have seen major advances in the care of sick, extremely premature newborns, the approach to cardiovascular assessment and monitoring remains suboptimal owing to an overreliance on poorly predictive clinical markers such as heart rate or capillary refill time. Point-of-care functional echocardiography (PCFecho) enables real-time evaluation of cardiac performance and systemic hemodynamics to characterize acute physiology, identify the exact nature of cardiovascular compromise and guide therapeutic decisions. In this article, we will review four clinical scenarios where bedside functional cardiac imaging enabled delineation of the real clinical problem and refinement of the therapeutic care plan with direct patient benefits.

  20. Exponential approximations in optimal design

    NASA Technical Reports Server (NTRS)

    Belegundu, A. D.; Rajan, S. D.; Rajgopal, J.

    1990-01-01

    One-point and two-point exponential functions have been developed and proved to be very effective approximations of structural response. The exponential has been compared to the linear, reciprocal and quadratic fit methods. Four test problems in structural analysis have been selected. The use of such approximations is attractive in structural optimization to reduce the numbers of exact analyses which involve computationally expensive finite element analysis.

  1. The three-point function as a probe of models for large-scale structure

    NASA Technical Reports Server (NTRS)

    Frieman, Joshua A.; Gaztanaga, Enrique

    1993-01-01

    The consequences of models of structure formation for higher-order (n-point) galaxy correlation functions in the mildly non-linear regime are analyzed. Several variations of the standard Omega = 1 cold dark matter model with scale-invariant primordial perturbations were recently introduced to obtain more power on large scales, R(sub p) is approximately 20 h(sup -1) Mpc, e.g., low-matter-density (non-zero cosmological constant) models, 'tilted' primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower, etal. It is shown that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale-dependence leads to a dramatic decrease of the hierarchical amplitudes Q(sub J) at large scales, r is approximately greater than R(sub p). Current observational constraints on the three-point amplitudes Q(sub 3) and S(sub 3) can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales.

  2. Modelling the large-scale redshift-space 3-point correlation function of galaxies

    NASA Astrophysics Data System (ADS)

    Slepian, Zachary; Eisenstein, Daniel J.

    2017-08-01

    We present a configuration-space model of the large-scale galaxy 3-point correlation function (3PCF) based on leading-order perturbation theory and including redshift-space distortions (RSD). This model should be useful in extracting distance-scale information from the 3PCF via the baryon acoustic oscillation method. We include the first redshift-space treatment of biasing by the baryon-dark matter relative velocity. Overall, on large scales the effect of RSD is primarily a renormalization of the 3PCF that is roughly independent of both physical scale and triangle opening angle; for our adopted Ωm and bias values, the rescaling is a factor of ˜1.8. We also present an efficient scheme for computing 3PCF predictions from our model, important for allowing fast exploration of the space of cosmological parameters in future analyses.

  3. Detection of Baryon Acoustic Oscillation features in the large-scale 3-point correlation function of SDSS BOSS DR12 CMASS galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slepian, Zachary; Slosar, Anze; Eisenstein, Daniel J.

    We present the large-scale 3-point correlation function (3PCF) of the SDSS DR12 CMASS sample of 777,202 Luminous Red Galaxies, the largest-ever sample used for a 3PCF or bispectrum measurement. We make the first high-significance (4.5σ) detection of Baryon Acoustic Oscillations (BAO) in the 3PCF. Using these acoustic features in the 3PCF as a standard ruler, we measure the distance to z=0.57 to 1.7% precision (statistical plus systematic). We find D V = 2024 ± 29Mpc (stat) ± 20Mpc(sys) for our fiducial cosmology (consistent with Planck 2015) and bias model. This measurement extends the use of the BAO technique from themore » 2-point correlation function (2PCF) and power spectrum to the 3PCF and opens an avenue for deriving additional cosmological distance information from future large-scale structure redshift surveys such as DESI. Our measured distance scale from the 3PCF is fairly independent from that derived from the pre-reconstruction 2PCF and is equivalent to increasing the length of BOSS by roughly 10%; reconstruction appears to lower the independence of the distance measurements. In conclusion, fitting a model including tidal tensor bias yields a moderate significance (2.6σ) detection of this bias with a value in agreement with the prediction from local Lagrangian biasing.« less

  4. Detection of baryon acoustic oscillation features in the large-scale three-point correlation function of SDSS BOSS DR12 CMASS galaxies

    NASA Astrophysics Data System (ADS)

    Slepian, Zachary; Eisenstein, Daniel J.; Brownstein, Joel R.; Chuang, Chia-Hsun; Gil-Marín, Héctor; Ho, Shirley; Kitaura, Francisco-Shu; Percival, Will J.; Ross, Ashley J.; Rossi, Graziano; Seo, Hee-Jong; Slosar, Anže; Vargas-Magaña, Mariana

    2017-08-01

    We present the large-scale three-point correlation function (3PCF) of the Sloan Digital Sky Survey DR12 Constant stellar Mass (CMASS) sample of 777 202 Luminous Red Galaxies, the largest-ever sample used for a 3PCF or bispectrum measurement. We make the first high-significance (4.5σ) detection of baryon acoustic oscillations (BAO) in the 3PCF. Using these acoustic features in the 3PCF as a standard ruler, we measure the distance to z = 0.57 to 1.7 per cent precision (statistical plus systematic). We find DV = 2024 ± 29 Mpc (stat) ± 20 Mpc (sys) for our fiducial cosmology (consistent with Planck 2015) and bias model. This measurement extends the use of the BAO technique from the two-point correlation function (2PCF) and power spectrum to the 3PCF and opens an avenue for deriving additional cosmological distance information from future large-scale structure redshift surveys such as DESI. Our measured distance scale from the 3PCF is fairly independent from that derived from the pre-reconstruction 2PCF and is equivalent to increasing the length of BOSS by roughly 10 per cent; reconstruction appears to lower the independence of the distance measurements. Fitting a model including tidal tensor bias yields a moderate-significance (2.6σ) detection of this bias with a value in agreement with the prediction from local Lagrangian biasing.

  5. Detection of Baryon Acoustic Oscillation features in the large-scale 3-point correlation function of SDSS BOSS DR12 CMASS galaxies

    DOE PAGES

    Slepian, Zachary; Slosar, Anze; Eisenstein, Daniel J.; ...

    2017-03-01

    We present the large-scale 3-point correlation function (3PCF) of the SDSS DR12 CMASS sample of 777,202 Luminous Red Galaxies, the largest-ever sample used for a 3PCF or bispectrum measurement. We make the first high-significance (4.5σ) detection of Baryon Acoustic Oscillations (BAO) in the 3PCF. Using these acoustic features in the 3PCF as a standard ruler, we measure the distance to z=0.57 to 1.7% precision (statistical plus systematic). We find D V = 2024 ± 29Mpc (stat) ± 20Mpc(sys) for our fiducial cosmology (consistent with Planck 2015) and bias model. This measurement extends the use of the BAO technique from themore » 2-point correlation function (2PCF) and power spectrum to the 3PCF and opens an avenue for deriving additional cosmological distance information from future large-scale structure redshift surveys such as DESI. Our measured distance scale from the 3PCF is fairly independent from that derived from the pre-reconstruction 2PCF and is equivalent to increasing the length of BOSS by roughly 10%; reconstruction appears to lower the independence of the distance measurements. In conclusion, fitting a model including tidal tensor bias yields a moderate significance (2.6σ) detection of this bias with a value in agreement with the prediction from local Lagrangian biasing.« less

  6. Detecting dark-matter waves with a network of precision-measurement tools

    NASA Astrophysics Data System (ADS)

    Derevianko, Andrei

    2018-04-01

    Virialized ultralight fields (VULFs) are viable cold dark-matter candidates and include scalar and pseudoscalar bosonic fields, such as axions and dilatons. Direct searches for VULFs rely on low-energy precision-measurement tools. While previous proposals have focused on detecting coherent oscillations of the VULF signals at the VULF Compton frequencies for individual devices, here I consider a network of such devices. Virialized ultralight fields are essentially dark-matter waves and as such they carry both temporal and spatial phase information. Thereby, the discovery reach can be improved by using networks of precision-measurement tools. To formalize this idea, I derive a spatiotemporal two-point correlation function for the ultralight dark-matter fields in the framework of the standard halo model. Due to VULFs being Gaussian random fields, the derived two-point correlation function fully determines N -point correlation functions. For a network of ND devices within the coherence length of the field, the sensitivity compared to a single device can be improved by a factor of √{ND}. Further, I derive a VULF dark-matter signal profile for an individual device. The resulting line shape is strongly asymmetric due to the parabolic dispersion relation for massive nonrelativistic bosons. I discuss the aliasing effect that extends the discovery reach to VULF frequencies higher than the experimental sampling rate. I present sensitivity estimates and develop a stochastic field signal-to-noise ratio statistic. Finally, I consider an application of the formalism developed to atomic clocks and their networks.

  7. Three Essays on the Economics of Education

    ERIC Educational Resources Information Center

    Quin, Elizabeth

    2013-01-01

    Community colleges are a large part of the nation's higher education system and provide an important access point to post-secondary education for many students. Transfer to a four-year institution is one of the many functions served by community colleges. Despite the importance of the transfer function, the process of transferring between higher…

  8. 40 CFR 89.422 - Dilute sampling procedures-CVS calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Pressure depression at CVS pump inlet PPI kPa ±.055 kPa Pressure head at CVS pump outlet PPO kPa ±.055 kPa... restricted condition in an increment of pump inlet depression that will yield a minimum of six data points... depression, (kPa). (iii) The correlation function at each test point is then calculated from the calibration...

  9. 40 CFR 89.422 - Dilute sampling procedures-CVS calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Pressure depression at CVS pump inlet PPI kPa ±.055 kPa Pressure head at CVS pump outlet PPO kPa ±.055 kPa... restricted condition in an increment of pump inlet depression that will yield a minimum of six data points... depression, (kPa). (iii) The correlation function at each test point is then calculated from the calibration...

  10. 40 CFR 89.422 - Dilute sampling procedures-CVS calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Pressure depression at CVS pump inlet PPI kPa ±.055 kPa Pressure head at CVS pump outlet PPO kPa ±.055 kPa... restricted condition in an increment of pump inlet depression that will yield a minimum of six data points... depression, (kPa). (iii) The correlation function at each test point is then calculated from the calibration...

  11. 40 CFR 89.422 - Dilute sampling procedures-CVS calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Pressure depression at CVS pump inlet PPI kPa ±.055 kPa Pressure head at CVS pump outlet PPO kPa ±.055 kPa... restricted condition in an increment of pump inlet depression that will yield a minimum of six data points... depression, (kPa). (iii) The correlation function at each test point is then calculated from the calibration...

  12. 40 CFR 89.422 - Dilute sampling procedures-CVS calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Pressure depression at CVS pump inlet PPI kPa ±.055 kPa Pressure head at CVS pump outlet PPO kPa ±.055 kPa... restricted condition in an increment of pump inlet depression that will yield a minimum of six data points... depression, (kPa). (iii) The correlation function at each test point is then calculated from the calibration...

  13. Interactions as intertwiners in 4D QFT

    NASA Astrophysics Data System (ADS)

    de Mello Koch, Robert; Ramgoolam, Sanjaye

    2016-03-01

    In a recent paper we showed that the correlators of free scalar field theory in four dimensions can be constructed from a two dimensional topological field theory based on so(4 , 2) equivariant maps (intertwiners). The free field result, along with recent results of Frenkel and Libine on equivariance properties of Feynman integrals, are developed further in this paper. We show that the coefficient of the log term in the 1-loop 4-point conformal integral is a projector in the tensor product of so(4 , 2) representations. We also show that the 1-loop 4-point integral can be written as a sum of four terms, each associated with the quantum equation of motion for one of the four external legs. The quantum equation of motion is shown to be related to equivariant maps involving indecomposable representations of so(4 , 2), a phenomenon which illuminates multiplet recombination. The harmonic expansion method for Feynman integrals is a powerful tool for arriving at these results. The generalization to other interactions and higher loops is discussed.

  14. Factors of the Earning Functions and Their Influence on the Intellectual Capital of an Organization

    ERIC Educational Resources Information Center

    Ileanu, Bogdan Vasile; Tanasoiu, Ovidiu Emil

    2008-01-01

    This paper tries to consider some earning function as "start point" for the construction of indicators for intellectual capital measure. The analyze combines concepts from Mincer's and Becker theories and intellectual capital definitions currently in use. The correlation, significance and relation between elements are shown using three econometric…

  15. Signatures of bifurcation on quantum correlations: Case of the quantum kicked top

    NASA Astrophysics Data System (ADS)

    Bhosale, Udaysinh T.; Santhanam, M. S.

    2017-01-01

    Quantum correlations reflect the quantumness of a system and are useful resources for quantum information and computational processes. Measures of quantum correlations do not have a classical analog and yet are influenced by classical dynamics. In this work, by modeling the quantum kicked top as a multiqubit system, the effect of classical bifurcations on measures of quantum correlations such as the quantum discord, geometric discord, and Meyer and Wallach Q measure is studied. The quantum correlation measures change rapidly in the vicinity of a classical bifurcation point. If the classical system is largely chaotic, time averages of the correlation measures are in good agreement with the values obtained by considering the appropriate random matrix ensembles. The quantum correlations scale with the total spin of the system, representing its semiclassical limit. In the vicinity of trivial fixed points of the kicked top, the scaling function decays as a power law. In the chaotic limit, for large total spin, quantum correlations saturate to a constant, which we obtain analytically, based on random matrix theory, for the Q measure. We also suggest that it can have experimental consequences.

  16. Two-point correlation function in systems with van der Waals type interaction

    NASA Astrophysics Data System (ADS)

    Dantchev, D.

    2001-09-01

    The behavior of the bulk two-point correlation function G( r; T| d ) in d-dimensional system with van der Waals type interactions is investigated and its consequences on the finite-size scaling properties of the susceptibility in such finite systems with periodic boundary conditions is discussed within mean-spherical model which is an example of Ornstein and Zernike type theory. The interaction is supposed to decay at large distances r as r - (d + σ), with 2 < d < 4, 2 < σ < 4 and d + σ≤6. It is shown that G( r; T| d ) decays as r - (d - 2) for 1 ≪ r≪ξ, exponentially for ξ≪ r≪ r *, where r * = (σ - 2)ξlnξ, and again in a power law as r - (d + σ) for r≫ r *. The analytical form of the leading-order scaling function of G( r; T| d ) in any of these regimes is derived.

  17. Carcass classification in suckling lambs. Discrimination ability of the European Union scale.

    PubMed

    Miguel, E; Onega, E; Cañeque, V; Velasco, S; Díaz, M T; Lauzurica, S; Pérez, C; Blázquez, B; Ruiz de Huidobro, F

    2003-01-01

    Forty-nine Manchega suckling lambs were used in this trial. Lambs were slaughtered at 10, 12 and 14 kg liveweight (cold carcass weight lower than 13 kg). The degree of fatness was assessed by three assessors on colour photographs of the carcasses, using the European Union scale for light lambs (EU), and another new scale developed in our laboratory (Suckling Lamb scale, SL). Carcass degree of fatness was reassessed using the same scales divided into 0.25 point-intervals (EUI, SLI). Carcasses were allocated into four groups by means of a tree classification algorithm (cluster analysis), according to 27 variates, namely muscle percentage, whole fat percentage, subcutaneous fat, intermuscular fat, kidney knob and channel fat percentage and muscle percentage, both in the carcass and in three joints (leg, best end neck plus loin, and shoulder). SL scale groups showed a higher number of variates well correlated to assessors' scoring than EU scale groups. Nevertheless, the EU scale showed significant between-groups differences in a higher number of variates (P<0.01). Using 0.25-points interval scales, EUI scale scoring was the best correlated to tissue composition. However, most variates were better correlated to dorsal fat thickness measurement (4 cm back from last rib and 4 cm from the carcass midline) than to assessors' scoring. All four groups in the tree classification were statistically different from one another, but assessors only were able to detect differences between whole fat percentage in group 1 and the rest. These results suggest that it is possible to improve the photographic standards of the EU method by using a 0.25 points interval scale. In abattoir conditions, the new SL method (1.0 point intervals) proved to be better. Measure of dorsal fat thickness proved to be a very good predictor of carcass tissue composition, but it is a more expensive measure.

  18. Gravity's Smoking Gun?

    NASA Astrophysics Data System (ADS)

    Gaztañaga, Enrique; Juszkiewicz, Roman

    2001-09-01

    We present a new constraint on the biased galaxy formation picture. Gravitational instability theory predicts that the two-point mass density correlation function, ξ(r), has an inflection point at the separation r=r0, corresponding to the boundary between the linear and nonlinear regime of clustering, ξ~=1. We show how this feature can be used to constrain the biasing parameter b2≡ξg(r)/ξ(r) on scales r~=r0, where ξg is the galaxy-galaxy correlation function, which is allowed to differ from ξ. We apply our method to real data: the ξg(r), estimated from the Automatic Plate Measuring (APM) galaxy survey. Our results suggest that the APM galaxies trace the mass at separations r>~5 h-1 Mpc, where h is the Hubble constant in units of 100 km s-1 Mpc-1. The present results agree with earlier studies, based on comparing higher order correlations in the APM with weakly nonlinear perturbation theory. Both approaches constrain the b factor to be within 20% of unity. If the existence of the feature that we identified in the APM ξg(r)-the inflection point near ξg=1-is confirmed by more accurate surveys, we may have discovered gravity's smoking gun: the long-awaited ``shoulder'' in ξ, predicted by Gott and Rees 25 years ago.

  19. A Short Note on the Scaling Function Constant Problem in the Two-Dimensional Ising Model

    NASA Astrophysics Data System (ADS)

    Bothner, Thomas

    2018-02-01

    We provide a simple derivation of the constant factor in the short-distance asymptotics of the tau-function associated with the 2-point function of the two-dimensional Ising model. This factor was first computed by Tracy (Commun Math Phys 142:297-311, 1991) via an exponential series expansion of the correlation function. Further simplifications in the analysis are due to Tracy and Widom (Commun Math Phys 190:697-721, 1998) using Fredholm determinant representations of the correlation function and Wiener-Hopf approximation results for the underlying resolvent operator. Our method relies on an action integral representation of the tau-function and asymptotic results for the underlying Painlevé-III transcendent from McCoy et al. (J Math Phys 18:1058-1092, 1977).

  20. Correlations of occupation numbers in the canonical ensemble and application to a Bose-Einstein condensate in a one-dimensional harmonic trap

    NASA Astrophysics Data System (ADS)

    Giraud, Olivier; Grabsch, Aurélien; Texier, Christophe

    2018-05-01

    We study statistical properties of N noninteracting identical bosons or fermions in the canonical ensemble. We derive several general representations for the p -point correlation function of occupation numbers n1⋯np ¯. We demonstrate that it can be expressed as a ratio of two p ×p determinants involving the (canonical) mean occupations n1¯, ..., np¯, which can themselves be conveniently expressed in terms of the k -body partition functions (with k ≤N ). We draw some connection with the theory of symmetric functions and obtain an expression of the correlation function in terms of Schur functions. Our findings are illustrated by revisiting the problem of Bose-Einstein condensation in a one-dimensional harmonic trap, for which we get analytical results. We get the moments of the occupation numbers and the correlation between ground-state and excited-state occupancies. In the temperature regime dominated by quantum correlations, the distribution of the ground-state occupancy is shown to be a truncated Gumbel law. The Gumbel law, describing extreme-value statistics, is obtained when the temperature is much smaller than the Bose-Einstein temperature.

  1. Dynamics of leaf hydraulic conductance with water status: quantification and analysis of species differences under steady state

    PubMed Central

    Scoffoni, Christine; McKown, Athena D.; Rawls, Michael; Sack, Lawren

    2012-01-01

    Leaf hydraulic conductance (Kleaf) is a major determinant of photosynthetic rate in well-watered and drought-stressed plants. Previous work assessed the decline of Kleaf with decreasing leaf water potential (Ψleaf), most typically using rehydration kinetics methods, and found that species varied in the shape of their vulnerability curve, and that hydraulic vulnerability correlated with other leaf functional traits and with drought sensitivity. These findings were tested and extended, using a new steady-state evaporative flux method under high irradiance, and the function for the vulnerability curve of each species was determined individually using maximum likelihood for 10 species varying strongly in drought tolerance. Additionally, the ability of excised leaves to recover in Kleaf with rehydration was assessed, and a new theoretical framework was developed to estimate how rehydration of measured leaves may affect estimation of hydraulic parameters. As hypothesized, species differed in their vulnerability function. Drought-tolerant species showed shallow linear declines and more negative Ψleaf at 80% loss of Kleaf (P80), whereas drought-sensitive species showed steeper, non-linear declines, and less negative P80. Across species, the maximum Kleaf was independent of hydraulic vulnerability. Recovery of Kleaf after 1 h rehydration of leaves dehydrated below their turgor loss point occurred only for four of 10 species. Across species without recovery, a more negative P80 correlated with the ability to maintain Kleaf through both dehydration and rehydration. These findings indicate that resistance to Kleaf decline is important not only in maintaining open stomata during the onset of drought, but also in enabling sustained function during drought recovery. PMID:22016424

  2. Exact Asymptotics of the Freezing Transition of a Logarithmically Correlated Random Energy Model

    NASA Astrophysics Data System (ADS)

    Webb, Christian

    2011-12-01

    We consider a logarithmically correlated random energy model, namely a model for directed polymers on a Cayley tree, which was introduced by Derrida and Spohn. We prove asymptotic properties of a generating function of the partition function of the model by studying a discrete time analogy of the KPP-equation—thus translating Bramson's work on the KPP-equation into a discrete time case. We also discuss connections to extreme value statistics of a branching random walk and a rescaled multiplicative cascade measure beyond the critical point.

  3. Liquid Dynamics from Neutron Spectrometry

    DOE R&D Accomplishments Database

    Brockhouse, Bertram N.; Bergsma, J.; Dasannacharya, B. A.; Pope, N. K.

    1962-10-01

    Recent experiments carried out at Chalk River on the dynamics of liquids using neutron inelastic scattering are reviewed, including one by Sakamoto et al., in which the Van Hove self-correlation functions in water at 25 and 75 deg C were determined, and another in which the correlation functions in liquid argon near its triple point were studied. The possible occurrence of short wavelength phonons in classical liquids is discussed, in analogy with their existence in the quantum liquid He4, and in connection with incomplete experiments on liquid tin. (auth)

  4. Relations between volumetric measures of brain structure and attentional function in spina bifida: utilization of robust statistical approaches.

    PubMed

    Kulesz, Paulina A; Tian, Siva; Juranek, Jenifer; Fletcher, Jack M; Francis, David J

    2015-03-01

    Weak structure-function relations for brain and behavior may stem from problems in estimating these relations in small clinical samples with frequently occurring outliers. In the current project, we focused on the utility of using alternative statistics to estimate these relations. Fifty-four children with spina bifida meningomyelocele performed attention tasks and received MRI of the brain. Using a bootstrap sampling process, the Pearson product-moment correlation was compared with 4 robust correlations: the percentage bend correlation, the Winsorized correlation, the skipped correlation using the Donoho-Gasko median, and the skipped correlation using the minimum volume ellipsoid estimator. All methods yielded similar estimates of the relations between measures of brain volume and attention performance. The similarity of estimates across correlation methods suggested that the weak structure-function relations previously found in many studies are not readily attributable to the presence of outlying observations and other factors that violate the assumptions behind the Pearson correlation. Given the difficulty of assembling large samples for brain-behavior studies, estimating correlations using multiple, robust methods may enhance the statistical conclusion validity of studies yielding small, but often clinically significant, correlations. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  5. Four and Five-body non-local correlations in pure and mixed states

    NASA Astrophysics Data System (ADS)

    Sharma, Santosh Shelly; Sharma, Naresh Kumar

    2014-03-01

    In our earlier works, quantifiers of four and three-body correlations based on four qubit invariants had been constructed for pure states. The principal construction tools, local unitary invariance and notion of negativity fonts, make it possible to outline the process of selective construction of meaningful invariants that quanify N and N - 1 qubit correlations. It is found that, in general, starting from degree k invariants relevant to detection and quantifcation of specific type of non-local quantum correlations in (N - 1) (N > 2) qubit system, one can construct degree k coefficients of an N-qubit bilinear form. When k =2 N - 2 (N > 2), one of the invariants of degree 2 N - 1 quantifies N-body non-local correlations The process is recursive. While for few body systems it yields analytical expressions in terms of functions of state coefficients, for larger systems it can be the guiding principle to numerical caculations of invariants. To illustrate the process, an expression for a five qubit correlation quantifier for pure states is constructed. In addition, the extension to specific rank two mixed states through convex-roof extension is investigated. We gratefully acknowledge Financial support from CNPq Brazil and Fundacao Araucaria PR Brazil.

  6. Response of circulating ghrelin levels to insulin therapy in children with newly diagnosed type 1 diabetes mellitus.

    PubMed

    Soriano-Guillén, Leandro; Barrios, Vicente; Lechuga-Sancho, Alfonso; Chowen, Julie A; Argente, Jesús

    2004-05-01

    Ghrelin is secreted primarily by the stomach, although other tissues such as the pancreas synthesize a minor proportion. The discovery of a new cell type that produces ghrelin in the human pancreas and that this organ expresses GHS-R opens new perspectives in the understanding of the control of glucose metabolism. We have studied 22 children with newly diagnosed type 1 diabetes mellitus at four different points: at diagnosis before insulin therapy, after 48-60 h of insulin therapy, and after 1 and 4 mo of insulin treatment. At each point circulating levels of ghrelin, leptin, IGF-I, IGF binding protein (IGFBP)-1, IGFBP-2, IGFBP-3, and glucose were determined. Ghrelin levels were significantly decreased at diagnosis (573 +/- 68 pg/mL, p < 0.01) compared with controls (867 +/- 38 pg/mL) and remained decreased after insulin therapy (d 2: 595 +/- 68 pg/mL; 1 mo: 590 +/- 61 pg/mL; 4 mo: 538 +/- 67 pg/mL) with no differences before or after insulin treatment. There was a negative correlation between ghrelin levels and body mass index at all of the study points, whereas a negative correlation between ghrelin and glucose concentrations was only observed after insulin therapy. No correlation between ghrelin and HbA1c was found at any point. A positive correlation between ghrelin and IGFBP-1 was found after insulin therapy, but no correlation with other members of the IGF system or leptin was found. In conclusion, these data could indicate a possible link between glucose concentrations and ghrelin; hence, the persisting low ghrelin levels in diabetic children may suggest a defensive mechanism against hyperglycemia.

  7. The Correlated Jacobi and the Correlated Cauchy-Lorentz Ensembles

    NASA Astrophysics Data System (ADS)

    Wirtz, Tim; Waltner, Daniel; Kieburg, Mario; Kumar, Santosh

    2016-01-01

    We calculate the k-point generating function of the correlated Jacobi ensemble using supersymmetric methods. We use the result for complex matrices for k=1 to derive a closed-form expression for the eigenvalue density. For real matrices we obtain the density in terms of a twofold integral that we evaluate numerically. For both expressions we find agreement when comparing with Monte Carlo simulations. Relations between these quantities for the Jacobi and the Cauchy-Lorentz ensemble are derived.

  8. Prediction Model for Relativistic Electrons at Geostationary Orbit

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Lyatsky, Wladislaw

    2008-01-01

    We developed a new prediction model for forecasting relativistic (greater than 2MeV) electrons, which provides a VERY HIGH correlation between predicted and actually measured electron fluxes at geostationary orbit. This model implies the multi-step particle acceleration and is based on numerical integrating two linked continuity equations for primarily accelerated particles and relativistic electrons. The model includes a source and losses, and used solar wind data as only input parameters. We used the coupling function which is a best-fit combination of solar wind/interplanetary magnetic field parameters, responsible for the generation of geomagnetic activity, as a source. The loss function was derived from experimental data. We tested the model for four year period 2004-2007. The correlation coefficient between predicted and actual values of the electron fluxes for whole four year period as well as for each of these years is stable and incredibly high (about 0.9). The high and stable correlation between the computed and actual electron fluxes shows that the reliable forecasting these electrons at geostationary orbit is possible.

  9. Relativistic Electrons at Geostationary Orbit: Modeling Results

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Lyatsky, Wladislaw

    2008-01-01

    We developed a new prediction model for forecasting relativistic (greater than 2MeV) electrons, which provides a VERY HIGH correlation between predicted and actually measured electron fluxes at geostationary orbit. This model implies the multi-step particle acceleration and is based on numerical integrating two linked continuity equations for primarily accelerated particles and relativistic electrons. The model includes a source and losses, and used solar wind data as only input parameters. We used the coupling function which is a best-fit combination of solar wind/interplanetary magnetic field parameters, responsible for the generation of geomagnetic activity, as a source. The loss function was derived from experimental data. We tested the model for four year period 2004-2007. The correlation coefficient between predicted and actual values of the electron fluxes for whole four year period as well as for each of these years is stable and incredibly high (about 0.9). The high and stable correlation between the computed and actual electron fluxes shows that the reliable forecasting these electrons at geostationary orbit is possible.

  10. Optimized effective potential method and application to static RPA correlation

    NASA Astrophysics Data System (ADS)

    Fukazawa, Taro; Akai, Hisazumi

    2015-03-01

    The optimized effective potential (OEP) method is a promising technique for calculating the ground state properties of a system within the density functional theory. However, it is not widely used as its computational cost is rather high and, also, some ambiguity remains in the theoretical framework. In order to overcome these problems, we first introduced a method that accelerates the OEP scheme in a static RPA-level correlation functional. Second, the Krieger-Li-Iafrate (KLI) approximation is exploited to solve the OEP equation. Although seemingly too crude, this approximation did not reduce the accuracy of the description of the magnetic transition metals (Fe, Co, and Ni) examined here, the magnetic properties of which are rather sensitive to correlation effects. Finally, we reformulated the OEP method to render it applicable to the direct RPA correlation functional and other, more precise, functionals. Emphasis is placed on the following three points of the discussion: (i) level-crossing at the Fermi surface is taken into account; (ii) eigenvalue variations in a Kohn-Sham functional are correctly treated; and (iii) the resultant OEP equation is different from those reported to date.

  11. Lévy-stable two-pion Bose-Einstein correlations in s NN = 200 GeV Au + Au collisions

    DOE PAGES

    Adare, A.; Aidala, C.; Ajitanand, N. N.; ...

    2018-06-14

    Here, we present a detailed measurement of charged two-pion correlation functions in 0–30% centrality √ sNN = 200 GeV Au + Au collisions by the PHENIX experiment at the Relativistic Heavy Ion Collider. The data are well described by Bose-Einstein correlation functions stemming from Lévy-stable source distributions. Using a fine transverse momentum binning, we extract the correlation strength parameter λ, the Lévy index of stability α, and the Lévy length scale parameter R as a function of average transverse mass of the pair m T. We find that the positively and the negatively charged pion pairs yield consistent results, andmore » their correlation functions are represented, within uncertainties, by the same Lévy-stable source functions. The λ(m T) measurements indicate a decrease of the strength of the correlations at low m T. The Lévy length scale parameter R(m T) decreases with increasing m T, following a hydrodynamically predicted type of scaling behavior. The values of the Lévy index of stability α are found to be significantly lower than the Gaussian case of α = 2, but also significantly larger than the conjectured value that may characterize the critical point of a second-order quark-hadron phase transition.« less

  12. Lévy-stable two-pion Bose-Einstein correlations in s NN = 200 GeV Au + Au collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adare, A.; Aidala, C.; Ajitanand, N. N.

    Here, we present a detailed measurement of charged two-pion correlation functions in 0–30% centrality √ sNN = 200 GeV Au + Au collisions by the PHENIX experiment at the Relativistic Heavy Ion Collider. The data are well described by Bose-Einstein correlation functions stemming from Lévy-stable source distributions. Using a fine transverse momentum binning, we extract the correlation strength parameter λ, the Lévy index of stability α, and the Lévy length scale parameter R as a function of average transverse mass of the pair m T. We find that the positively and the negatively charged pion pairs yield consistent results, andmore » their correlation functions are represented, within uncertainties, by the same Lévy-stable source functions. The λ(m T) measurements indicate a decrease of the strength of the correlations at low m T. The Lévy length scale parameter R(m T) decreases with increasing m T, following a hydrodynamically predicted type of scaling behavior. The values of the Lévy index of stability α are found to be significantly lower than the Gaussian case of α = 2, but also significantly larger than the conjectured value that may characterize the critical point of a second-order quark-hadron phase transition.« less

  13. Isovector and flavor-diagonal charges of the nucleon

    NASA Astrophysics Data System (ADS)

    Gupta, Rajan; Bhattacharya, Tanmoy; Jang, Yong-Chull; Lin, Huey-Wen; Yoon, Boram

    2018-03-01

    We present an update on the status of the calculations of isovector and flavor-diagonal charges of the nucleon. The calculations of the isovector charges are being done using ten 2+1+1-flavor HISQ ensembles generated by the MILC collaboration covering the range of lattice spacings a ≈ 0.12, 0.09, 0.06 fm and pion masses Mπ ≈ 310, 220, 130 MeV. Excited-states contamination is controlled by using four-state fits to two-point correlators and three-states fits to the three-point correlators. The calculations of the disconnected diagrams needed to estimate flavor-diagonal charges are being done on a subset of six ensembles using the stocastic method. Final results are obtained using a simultaneous fit in M2π, the lattice spacing a and the finite volume parameter MπL keeping only the leading order corrections.

  14. Zero point energy of polyhedral water clusters.

    PubMed

    Anick, David J

    2005-06-30

    Polyhedral water clusters (PWCs) are cage-like (H2O)n clusters where every O participates in exactly three H bonds. For a database of 83 PWCs, 8 < or = n < or = 20, geometry was optimized and zero point energy (ZPE) was calculated at the B3LYP/6-311++G** level. ZPE correlates negatively with electronic energy (E0): each increase of 1 kcal/mol in E0 corresponds to a decrease of about 0.11 kcal/mol in ZPE. For each n, a set of four connectivity parameters accounts for 98% or more of the variance in ZPE. Linear regression of ZPE against n and this set gives an RMS error of 0.13 kcal/mol. The contributions to ZPE from stretch modes only (ZPE(S)) and from torsional modes only (ZPE(T)) also correlate strongly with E0 and with each other.

  15. Study on the stability of adrenaline and on the determination of its acidity constants

    NASA Astrophysics Data System (ADS)

    Corona-Avendaño, S.; Alarcón-Angeles, G.; Rojas-Hernández, A.; Romero-Romo, M. A.; Ramírez-Silva, M. T.

    2005-01-01

    In this work, the results are presented concerning the influence of time on the spectral behaviour of adrenaline (C 9H 13NO 3) (AD) and of the determination of its acidity constants by means of spectrophotometry titrations and point-by-point analysis, using for the latter freshly prepared samples for each analysis at every single pH. As the catecholamines are sensitive to light, all samples were protected against it during the course of the experiments. Each method rendered four acidity constants corresponding each to the four acid protons belonging to the functional groups present in the molecule; for the point-by-point analysis the values found were: log β 1=38.25±0.21 , log β 2=29.65±0.17 , log β 3=21.01±0.14 , log β 4=11.34±0.071 .

  16. Inflation in Flatland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinterbichler, Kurt; Joyce, Austin; Khoury, Justin, E-mail: kurt.hinterbichler@case.edu, E-mail: austin.joyce@columbia.edu, E-mail: jkhoury@sas.upenn.edu

    We investigate the symmetry structure of inflation in 2+1 dimensions. In particular, we show that the asymptotic symmetries of three-dimensional de Sitter space are in one-to-one correspondence with cosmological adiabatic modes for the curvature perturbation. In 2+1 dimensions, the asymptotic symmetry algebra is infinite-dimensional, given by two copies of the Virasoro algebra, and can be traced to the conformal symmetries of the two-dimensional spatial slices of de Sitter. We study the consequences of this infinite-dimensional symmetry for inflationary correlation functions, finding new soft theorems that hold only in 2+1 dimensions. Expanding the correlation functions as a power series in themore » soft momentum q , these relations constrain the traceless part of the tensorial coefficient at each order in q in terms of a lower-point function. As a check, we verify that the O( q {sup 2}) identity is satisfied by inflationary correlation functions in the limit of small sound speed.« less

  17. Collision Induced Velocity Changes from Molecular Dynamic Simulations. Application to the Spectral Shape of the Q(1) Raman Lines of H{_2}/H{_2}

    NASA Astrophysics Data System (ADS)

    Tran, H.; Hartmann, J. M.

    2011-06-01

    Collision induced velocity changes for pure H{_2} have been computed from classical dynamic simulations. The results have been compared with the Keilson-Storer model from four different points of view. The first involves various autocorrelation functions associated with the velocity. The second and third give more detailed information, and are time evolutions of some conditional probabilities for changes of the velocity modulus and orientation and the collision kernels themselves. The fourth considers the evolutions, with density, of the half widths of the Q(1) lines of the isotropic Raman (1-0) fundamental band and of the (2-0) overtone quadrupole band. These spectroscopic data enable an indirect test of the models since velocity changes translate into line-shape modifications through the speed dependence of collisional parameters and the Dicke narrowing of the Doppler contribution to the profile. The results indicate that, while the KS approach gives a poor description of detailed velocity-to-velocty changes, it leads to accurate results for the correlation functions and spectral shapes, quantities related to large averages over the velocity. It is also shown that the use of collision kernels directly derived from MDS lead to an almost perfect prediction of all considered quantities (correlation functions, conditional probabilities, and spectral shapes). Finally, the results stress the need for very accurate calculations of line-broadening and -shifting coefficients from the intermolecular potential to obviate the need for experimental data and permit fully meaningful tests of the models. H. Tran, J.M. Hartmann J. Chem. Phys. 130, 094301, 2009.

  18. Functional analysis of the plant disease resistance gene Pto using DNA shuffling.

    PubMed

    Bernal, Adriana J; Pan, Qilin; Pollack, Jeff; Rose, Laura; Kozik, Alexander; Willits, Neil; Luo, Yao; Guittet, Muriel; Kochetkova, Elena; Michelmore, Richard W

    2005-06-17

    Pto is a serine/threonine kinase that mediates resistance in tomato to strains of Pseudomonas syringae pv. tomato expressing the (a)virulence proteins AvrPto or AvrPtoB. DNA shuffling was used as a combinatorial in vitro genetic approach to dissect the functional regions of Pto. The Pto gene was shuffled with four of its paralogs from a resistant haplotype to create a library of recombinant products that was screened for interaction with AvrPto in yeast. All interacting clones and a representative sample of noninteracting clones were sequenced, and their ability to signal downstream was tested by the elicitation of a hypersensitive response in an AvrPto-dependent or -independent manner in planta. Eight candidate regions important for binding to AvrPto or for downstream signaling were identified by statistical correlations between individual amino acid positions and phenotype. A subset of the regions had previously been identified as important for recognition, confirming the validity of the shuffling approach. Three novel regions important for Pto function were validated by site-directed mutagenesis. Several chimeras and point mutants exhibited a differential interaction with (a)virulence proteins in the AvrPto and VirPphA family, demonstrating distinct binding requirements for different ligands. Additionally, the identification of chimeras that are both constitutively active as well as capable of binding AvrPto indicates that elicitation of downstream signaling does not involve a conformational change that precludes binding of AvrPto, as previously hypothesized. The correlations between phenotypes and variation generated by DNA shuffling paralleled natural variation observed between orthologs of Pto from Lycopersicon spp.

  19. MR measures of renal perfusion, oxygen bioavailability and total renal blood flow in a porcine model: noninvasive regional assessment of renal function.

    PubMed

    Wentland, Andrew L; Artz, Nathan S; Fain, Sean B; Grist, Thomas M; Djamali, Arjang; Sadowski, Elizabeth A

    2012-01-01

    Magnetic resonance imaging (MRI) may be a useful adjunct to current methods of evaluating renal function. MRI is a noninvasive imaging modality that has the ability to evaluate the kidneys regionally, which is lacking in current clinical methods. Other investigators have evaluated renal function with MRI-based measurements, such as with techniques to measure cortical and medullary perfusion, oxygen bioavailability and total renal blood flow (TRBF). However, use of all three techniques simultaneously, and therefore the relationships between these MRI-derived functional parameters, have not been reported previously. To evaluate the ability of these MRI techniques to track changes in renal function, we scanned 11 swine during a state of hyperperfusion with acetylcholine and a saline bolus and subsequently scanned during a state of hypoperfusion with the prolonged use of isoflurane anesthesia. For each time point, measurements of perfusion, oxygen bioavailability and TRBF were acquired. Measurements of perfusion and oxygen bioavailability were compared with measurements of TRBF for all swine across all time points. Cortical perfusion, cortical oxygen bioavailability, medullary oxygen bioavailability and TRBF significantly increased with the acetylcholine challenge. Cortical perfusion, medullary perfusion, cortical oxygen bioavailability and TRBF significantly decreased during isoflurane anesthesia. Cortical perfusion (Spearman's correlation coefficient = 0.68; P < 1 × 10(-6)) and oxygen bioavailability (Spearman's correlation coefficient = -0.60; P < 0.0001) correlated significantly with TRBF, whereas medullary perfusion and oxygen bioavailability did not correlate with TRBF. Our results demonstrate expected changes given the pharmacologically induced changes in renal function. Maintenance of the medullary oxygen bioavailability in low blood flow states may reflect the autoregulation particular to this region of the kidney. The ability to non-invasively measure all three parameters of kidney function in a single MRI examination and to evaluate the relationships between these functional parameters is potentially useful for evaluating the state of the human kidneys in situ in future studies.

  20. CCD correlation techniques

    NASA Technical Reports Server (NTRS)

    Hewes, C. R.; Bosshart, P. W.; Eversole, W. L.; Dewit, M.; Buss, D. D.

    1976-01-01

    Two CCD techniques were discussed for performing an N-point sampled data correlation between an input signal and an electronically programmable reference function. The design and experimental performance of an implementation of the direct time correlator utilizing two analog CCDs and MOS multipliers on a single IC were evaluated. The performance of a CCD implementation of the chirp z transform was described, and the design of a new CCD integrated circuit for performing correlation by multiplication in the frequency domain was presented. This chip provides a discrete Fourier transform (DFT) or inverse DFT, multipliers, and complete support circuitry for the CCD CZT. The two correlation techniques are compared.

  1. Ambiguity resolution in systems using Omega for position location

    NASA Technical Reports Server (NTRS)

    Frenkel, G.; Gan, D. G.

    1974-01-01

    The lane ambiguity problem prevents the utilization of the Omega system for many applications such as locating buoys and balloons. The method of multiple lines of position introduced herein uses signals from four or more Omega stations for ambiguity resolution. The coordinates of the candidate points are determined first through the use of the Newton iterative procedure. Subsequently, a likelihood function is generated for each point, and the ambiguity is resolved by selecting the most likely point. The method was tested through simulation.

  2. Holographic corrections to meson scattering amplitudes

    NASA Astrophysics Data System (ADS)

    Armoni, Adi; Ireson, Edwin

    2017-06-01

    We compute meson scattering amplitudes using the holographic duality between confining gauge theories and string theory, in order to consider holographic corrections to the Veneziano amplitude and associated higher-point functions. The generic nature of such computations is explained, thanks to the well-understood nature of confining string backgrounds, and two different examples of the calculation in given backgrounds are used to illustrate the details. The effect we discover, whilst only qualitative, is re-obtainable in many such examples, in four-point but also higher point amplitudes.

  3. Correlation between capillary oxygen saturation and small intestinal wall thickness in the equine colic patient

    PubMed Central

    Mirle, Elisabeth; Wogatzki, Anna; Kunzmann, Robert; Schoenfelder, Axel M; Litzke, Lutz F

    2017-01-01

    The surgical evaluation of haemorrhagic infarcted intestine and the decision for or against bowel resection require a lot of experience and are subjective. The aim of this prospective, clinical study was to examine the correlation between oxygen saturation and small intestinal wall (IW) thickness, using two objective methods. In 22 colicky horses, the blood flow, oxygen saturation and relative amount of haemoglobin were measured intraoperatively via laser Doppler and white light spectroscopy (O2C, oxygen to see, LEA Medizintechnik) at six measuring points (MPs) in small and large intestines. Furthermore, the IW thickness was measured ultrasonographically. Nine of 22 horses had an increased small IW thickness greater than 4 mm (Freeman 2002, Scharner and others 2002, le Jeune and Whitcomb 2014) at measuring point 1 (MP1) (strangulated segment), four horses had a thickened bowel wall at measuring point 3 (MP3) (poststenotic) and one at measuring point 2 (MP2). The oxygen saturation was 0 at MP1 in six horses, at MP3 in two horses and at MP2 (prestenotic) in one. Oxygen saturation and small IW thickness were independent of each other at MP1 and MP2. At MP3, the two parameters were negatively correlated. In summary, it is not possible to draw conclusions about oxygen saturation based on IW thickness. PMID:28761667

  4. Correlation between capillary oxygen saturation and small intestinal wall thickness in the equine colic patient.

    PubMed

    Mirle, Elisabeth; Wogatzki, Anna; Kunzmann, Robert; Schoenfelder, Axel M; Litzke, Lutz F

    2017-01-01

    The surgical evaluation of haemorrhagic infarcted intestine and the decision for or against bowel resection require a lot of experience and are subjective. The aim of this prospective, clinical study was to examine the correlation between oxygen saturation and small intestinal wall (IW) thickness, using two objective methods. In 22 colicky horses, the blood flow, oxygen saturation and relative amount of haemoglobin were measured intraoperatively via laser Doppler and white light spectroscopy (O2C, oxygen to see, LEA Medizintechnik) at six measuring points (MPs) in small and large intestines. Furthermore, the IW thickness was measured ultrasonographically. Nine of 22 horses had an increased small IW thickness greater than 4 mm (Freeman 2002, Scharner and others 2002, le Jeune and Whitcomb 2014) at measuring point 1 (MP1) (strangulated segment), four horses had a thickened bowel wall at measuring point 3 (MP3) (poststenotic) and one at measuring point 2 (MP2). The oxygen saturation was 0 at MP1 in six horses, at MP3 in two horses and at MP2 (prestenotic) in one. Oxygen saturation and small IW thickness were independent of each other at MP1 and MP2. At MP3, the two parameters were negatively correlated. In summary, it is not possible to draw conclusions about oxygen saturation based on IW thickness.

  5. Optimization of the time series NDVI-rainfall relationship using linear mixed-effects modeling for the anti-desertification area in the Beijing and Tianjin sandstorm source region

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Sun, Tao; Fu, Anmin; Xu, Hao; Wang, Xinjie

    2018-05-01

    Degradation in drylands is a critically important global issue that threatens ecosystem and environmental in many ways. Researchers have tried to use remote sensing data and meteorological data to perform residual trend analysis and identify human-induced vegetation changes. However, complex interactions between vegetation and climate, soil units and topography have not yet been considered. Data used in the study included annual accumulated Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m normalized difference vegetation index (NDVI) from 2002 to 2013, accumulated rainfall from September to August, digital elevation model (DEM) and soil units. This paper presents linear mixed-effect (LME) modeling methods for the NDVI-rainfall relationship. We developed linear mixed-effects models that considered the random effects of sample points nested in soil units for nested two-level modeling and single-level modeling of soil units and sample points, respectively. Additionally, three functions, including the exponential function (exp), the power function (power), and the constant plus power function (CPP), were tested to remove heterogeneity, and an additional three correlation structures, including the first-order autoregressive structure [AR(1)], a combination of first-order autoregressive and moving average structures [ARMA(1,1)] and the compound symmetry structure (CS), were used to address the spatiotemporal correlations. It was concluded that the nested two-level model considering both heteroscedasticity with (CPP) and spatiotemporal correlation with [ARMA(1,1)] showed the best performance (AMR = 0.1881, RMSE = 0.2576, adj- R 2 = 0.9593). Variations between soil units and sample points that may have an effect on the NDVI-rainfall relationship should be included in model structures, and linear mixed-effects modeling achieves this in an effective and accurate way.

  6. Linguistic Correlates of Two Writing Functions, Two Age Levels, and Two Achievement Levels.

    ERIC Educational Resources Information Center

    Fox, Barry

    Microresearch of the type performed by W. Loban and K. Hunt was used to describe two functions of macroresearch methodology--reporting and classifying--of the type conducted by J. Britton. This was done by contrasting the use of nine linguistic features of writing produced by four groups of students in each of the functions. The features were…

  7. Study protocol to examine the effects of spaceflight and a spaceflight analog on neurocognitive performance: extent, longevity, and neural bases.

    PubMed

    Koppelmans, Vincent; Erdeniz, Burak; De Dios, Yiri E; Wood, Scott J; Reuter-Lorenz, Patricia A; Kofman, Igor; Bloomberg, Jacob J; Mulavara, Ajitkumar P; Seidler, Rachael D

    2013-12-18

    Long duration spaceflight (i.e., 22 days or longer) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes. Whether spaceflight also affects other central nervous system functions such as cognition is yet largely unknown, but of importance in consideration of the health and performance of crewmembers both in- and post-flight. We are therefore conducting a controlled prospective longitudinal study to investigate the effects of spaceflight on the extent, longevity and neural bases of sensorimotor and cognitive performance changes. Here we present the protocol of our study. This study includes three groups (astronauts, bed rest subjects, ground-based control subjects) for which each the design is single group with repeated measures. The effects of spaceflight on the brain will be investigated in astronauts who will be assessed at two time points pre-, at three time points during-, and at four time points following a spaceflight mission of six months. To parse out the effect of microgravity from the overall effects of spaceflight, we investigate the effects of seventy days head-down tilted bed rest. Bed rest subjects will be assessed at two time points before-, two time points during-, and three time points post-bed rest. A third group of ground based controls will be measured at four time points to assess reliability of our measures over time. For all participants and at all time points, except in flight, measures of neurocognitive performance, fine motor control, gait, balance, structural MRI (T1, DTI), task fMRI, and functional connectivity MRI will be obtained. In flight, astronauts will complete some of the tasks that they complete pre- and post flight, including tasks measuring spatial working memory, sensorimotor adaptation, and fine motor performance. Potential changes over time and associations between cognition, motor-behavior, and brain structure and function will be analyzed. This study explores how spaceflight induced brain changes impact functional performance. This understanding could aid in the design of targeted countermeasures to mitigate the negative effects of long-duration spaceflight.

  8. Applications of the CAM Based on a New Decoupling Procedure of Correlation Functions in the One-Dimensional Contact Process

    NASA Astrophysics Data System (ADS)

    Konno, Norio; Katori, Makoto

    The one-dimensional contact process (CP) is studied by a systematic series of approximations. A new decoupling procedure of correlation functions is proposed by combining the idea of Suzuki's correlation-identity-decoupling (CID) with a concept of window. Liggett's approximations are also considered. Applying Suzuki's coherent-anomaly method (CAM) to the mean-field-type solutions, the values of the critical point and the critical exponents are estimated as λc = 1.6490(±0.0008), β=0.280(±0.013), Δ(= Δ/δ)= 1.734(±O.OO1), β=0.627(±0.005). Finally a comparison with other estimates is shown.

  9. Applications of the CAM Based on a New Decoupling Procedure of Correlation Functions in the One-Dimensional Contact Process

    NASA Astrophysics Data System (ADS)

    Konno, Norio; Katori, Makoto

    1990-05-01

    The one-dimensional contact process (CP) is studied by a systematic series of approximations. A new decoupling procedure of correlation functions is proposed by combining the idea of Suzuki’s correlation-identity-decoupling (CID) with a concept of window. Liggett’s approximations are also considered. Applying Suzuki’s coherent-anomaly method (CAM) to the mean-field-type solutions, the values of the critical point and the critical exponents are estimated as λc{=}1.6490(± 0.0008), β{=}0.280(± 0.013), \\varDelta({=}β/δ){=}1.734(± 0.001), \\hatβ{=}0.627(± 0.005). Finally a comparison with other estimates is shown.

  10. N-point statistics of large-scale structure in the Zel'dovich approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tassev, Svetlin, E-mail: tassev@astro.princeton.edu

    2014-06-01

    Motivated by the results presented in a companion paper, here we give a simple analytical expression for the matter n-point functions in the Zel'dovich approximation (ZA) both in real and in redshift space (including the angular case). We present numerical results for the 2-dimensional redshift-space correlation function, as well as for the equilateral configuration for the real-space 3-point function. We compare those to the tree-level results. Our analysis is easily extendable to include Lagrangian bias, as well as higher-order perturbative corrections to the ZA. The results should be especially useful for modelling probes of large-scale structure in the linear regime,more » such as the Baryon Acoustic Oscillations. We make the numerical code used in this paper freely available.« less

  11. Applying the Manning equation to determine the critical distance in non-point source pollution using remotely sensed data and cartographic modelling

    NASA Astrophysics Data System (ADS)

    de Oliveira, Lília M.; Santos, Nádia A. P.; Maillard, Philippe

    2013-10-01

    Non-point source pollution (NPSP) is perhaps the leading cause of water quality problems and one of the most challenging environmental issues given the difficulty of modeling and controlling it. In this article, we applied the Manning equation, a hydraulic concept, to improve models of non-point source pollution and determine its influence as a function of slope - land cover roughness for runoff to reach the stream. In our study the equation is somewhat taken out of its usual context to be applies to the flow of an entire watershed. Here a digital elevation model (DEM) from the SRTM satellite was used to compute the slope and data from the RapidEye satellite constellation was used to produce a land cover map later transformed into a roughness surface. The methodology is applied to a 1433 km2 watershed in Southeast Brazil mostly covered by forest, pasture, urban and wetlands. The model was used to create slope buffer of varying width in which the proportions of land cover and roughness coefficient were obtained. Next we correlated these data, through regression, with four water quality parameters measured in situ: nitrate, phosphorous, faecal coliform and turbidity. We compare our results with the ones obtained by fixed buffer. It was found that slope buffer outperformed fixed buffer with higher coefficients of determination up to 15%.

  12. Illusory correlation: a function of availability or representativeness heuristics?

    PubMed

    MacDonald, M G

    2000-08-01

    The present study sought to investigate the illusory correlation phenomenon by experimentally manipulating the availability of information through the use of the "lag" effect (Madigan, 1969). Seventy-four university students voluntarily participated in this study. Similar to Starr and Katkin's (1969) methodology, subjects were visually presented with each possible combination of four experimental problem descriptions and four sentence completions that were paired and shown twice at each of four lags (i.e., with 0, 2, 8 and 20 intervening variables). Subjects were required to make judgements concerning the frequency with which sentence completions and problem descriptions co-occurred. In agreement with previous research (Starr & Katkin, 1969), the illusory correlation effect was found for specific descriptions and sentence completions. Results also yielded a significant effect of lag for mean ratings between 0 and 2 lags; however, there was no reliable increase in judged co-occurrence at lags 8 and 20. Evidence failed to support the hypothesis that greater availability, through the experimental manipulation of lag, would result in increased frequency of co-occurrence judgements. Findings indicate that, in the present study, the illusory correlation effect is probably due to a situational bias based on the representativeness heuristic.

  13. Algebraic approach to electronic spectroscopy and dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toutounji, Mohamad

    Lie algebra, Zassenhaus, and parameter differentiation techniques are utilized to break up the exponential of a bilinear Hamiltonian operator into a product of noncommuting exponential operators by the virtue of the theory of Wei and Norman [J. Math. Phys. 4, 575 (1963); Proc. Am. Math. Soc., 15, 327 (1964)]. There are about three different ways to find the Zassenhaus exponents, namely, binomial expansion, Suzuki formula, and q-exponential transformation. A fourth, and most reliable method, is provided. Since linearly displaced and distorted (curvature change upon excitation/emission) Hamiltonian and spin-boson Hamiltonian may be classified as bilinear Hamiltonians, the presented algebraic algorithm (exponentialmore » operator disentanglement exploiting six-dimensional Lie algebra case) should be useful in spin-boson problems. The linearly displaced and distorted Hamiltonian exponential is only treated here. While the spin-boson model is used here only as a demonstration of the idea, the herein approach is more general and powerful than the specific example treated. The optical linear dipole moment correlation function is algebraically derived using the above mentioned methods and coherent states. Coherent states are eigenvectors of the bosonic lowering operator a and not of the raising operator a{sup +}. While exp(a{sup +}) translates coherent states, exp(a{sup +}a{sup +}) operation on coherent states has always been a challenge, as a{sup +} has no eigenvectors. Three approaches, and the results, of that operation are provided. Linear absorption spectra are derived, calculated, and discussed. The linear dipole moment correlation function for the pure quadratic coupling case is expressed in terms of Legendre polynomials to better show the even vibronic transitions in the absorption spectrum. Comparison of the present line shapes to those calculated by other methods is provided. Franck-Condon factors for both linear and quadratic couplings are exactly accounted for by the herein calculated linear absorption spectra. This new methodology should easily pave the way to calculating the four-point correlation function, F({tau}{sub 1},{tau}{sub 2},{tau}{sub 3},{tau}{sub 4}), of which the optical nonlinear response function may be procured, as evaluating F({tau}{sub 1},{tau}{sub 2},{tau}{sub 3},{tau}{sub 4}) is only evaluating the optical linear dipole moment correlation function iteratively over different time intervals, which should allow calculating various optical nonlinear temporal/spectral signals.« less

  14. New correlation for the temperature-dependent viscosity for saturated liquids

    NASA Astrophysics Data System (ADS)

    Tian, Jianxiang; Zhang, Laibin

    2016-11-01

    Based on the recent progress on both the temperature dependence of surface tension [H. L. Yi, J. X. Tian, A. Mulero and I. Cachading, J. Therm. Anal. Calorim. 126 (2016) 1603, and the correlation between surface tension and viscosity of liquids [J. X. Tian and A. Mulero, Ind. Eng. Chem. Res. 53 (2014) 9499], we derived a new multiple parameter correlation to describe the temperature-dependent viscosity of liquids. This correlation is verified by comparing with data from NIST Webbook for 35 saturated liquids including refrigerants, hydrocarbons and others, in a wide temperature range from the triple point temperature to the one very near to the critical temperature. Results show that this correlation predicts the NIST data with high accuracy with absolute average deviation (AAD) less than 1% for 21 liquids and more than 3% for only four liquids, and is clearly better than the popularly used Vogel-Fulcher-Tamman (VFT) correlation.

  15. Longitudinal Associations between Executive Functioning and Academic Skills across Content Areas

    ERIC Educational Resources Information Center

    Fuhs, Mary Wagner; Nesbitt, Kimberly Turner; Farran, Dale Clark; Dong, Nianbo

    2014-01-01

    This study assessed 562 four-year-old children at the beginning and end of their prekindergarten (pre-k) year and followed them to the end of kindergarten. At each time point children were assessed on 6 measures of executive function (EF) and 5 subtests of the Woodcock-Johnson III academic achievement battery. Exploratory factor analyses yielded…

  16. Functional segregation of the human cingulate cortex is confirmed by functional connectivity based neuroanatomical parcellation.

    PubMed

    Yu, Chunshui; Zhou, Yuan; Liu, Yong; Jiang, Tianzi; Dong, Haiwei; Zhang, Yunting; Walter, Martin

    2011-02-14

    The four-region model with 7 specified subregions represents a theoretical construct of functionally segregated divisions of the cingulate cortex based on integrated neurobiological assessments. Under this framework, we aimed to investigate the functional specialization of the human cingulate cortex by analyzing the resting-state functional connectivity (FC) of each subregion from a network perspective. In 20 healthy subjects we systematically investigated the FC patterns of the bilateral subgenual (sACC) and pregenual (pACC) anterior cingulate cortices, anterior (aMCC) and posterior (pMCC) midcingulate cortices, dorsal (dPCC) and ventral (vPCC) posterior cingulate cortices and retrosplenial cortices (RSC). We found that each cingulate subregion was specifically integrated in the predescribed functional networks and showed anti-correlated resting-state fluctuations. The sACC and pACC were involved in an affective network and anti-correlated with the sensorimotor and cognitive networks, while the pACC also correlated with the default-mode network and anti-correlated with the visual network. In the midcingulate cortex, however, the aMCC was correlated with the cognitive and sensorimotor networks and anti-correlated with the visual, affective and default-mode networks, whereas the pMCC only correlated with the sensorimotor network and anti-correlated with the cognitive and visual networks. The dPCC and vPCC involved in the default-mode network and anti-correlated with the sensorimotor, cognitive and visual networks, in contrast, the RSC was mainly correlated with the PCC and thalamus. Based on a strong hypothesis driven approach of anatomical partitions of the cingulate cortex, we could confirm their segregation in terms of functional neuroanatomy, as suggested earlier by task studies or exploratory multi-seed investigations. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Can the displacement of a conservatively treated distal radius fracture be predicted at the beginning of treatment?

    PubMed Central

    Einsiedel, T.; Freund, W.; Sander, S.; Trnavac, S.; Gebhard, F.

    2008-01-01

    The aim of this study was to investigate whether the final displacement of conservatively treated distal radius fractures can be predicted after primary reduction. We analysed the radiographic documents of 311 patients with a conservatively treated distal radius fracture at the time of injury, after reduction and after bony consolidation. We measured the dorsal angulation (DA), the radial angle (RA) and the radial shortening (RS) at each time point. The parameters were analysed separately for metaphyseally “stable” (A2, C1) and “unstable” (A3, C2, C3) fractures, according to the AO classification system. Spearman’s rank correlations and regression functions were determined for the analysis. The highest correlations were found for the DA between the time points ‘reduction’ and ‘complete healing’ (r = 0.75) and for the RA between the time points ‘reduction’ and ‘complete healing’ (r = 0.80). The DA and the RA after complete healing can be predicted from the regression functions. PMID:18504577

  18. Geophysical Surveying of Shallow Magnetic Anomalies Using the iPhone Magnetometer

    NASA Astrophysics Data System (ADS)

    Opdyke, P.; Dudley, C.; Louie, J. N.

    2012-12-01

    This investigation examined whether the 3-axis Hall-effect magnetometer in the Apple iPhone 3GS can function as an effective shallow magnetic survey instrument. The xSensor Pro app from Crossbow Systems allows recoding of all three sensor components along with the GPS location, at a frequency of 1.0, 4.0, 16.0, and 32.0 Hz. If the iPhone proves successful in collecting useful magnetic data, then geophysicists and especially educators would have a new tool for high-density geophysical mapping. No-contract iPhones that can connect with WiFi can be obtained for about $400, allowing deployment of large numbers of instruments. iPhones with the xSensor Pro app surveyed in parallel with an Overhauser GEM system magnetometer (1 nT sensitivity) to test this idea. Anderson Bay, located on the Pyramid Lake Paiute Reservation, provided a rural survey location free from cultural interference. xSensor Pro, logged each component's intensity and the GPS location at a frequency of four measurements per second. Two Overhauser units functioned as a base unit and a roving unit. The roving unit collected total field at set points located with a handheld GPS. Comparing the total field computed from the iPhone components against that collected by the Overhauser establishes the level of anomalies that the iPhone can detect. iPhone total-field measurements commonly vary by 200 nT from point to point, so a spatial-temporal average over 25 seconds produces a smoothed signal for comparison. Preliminary analysis of the iPhone results show that the data do not accurately correlate to the total field collected by the Overhauser for any anomaly of less than 200 nT.

  19. Contour-time approach to the Bose-Hubbard model in the strong coupling regime: Studying two-point spatio-temporal correlations at the Hartree-Fock-Bogoliubov level

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Matthew R. C.; Kennett, Malcolm P.

    2018-05-01

    We develop a formalism that allows the study of correlations in space and time in both the superfluid and Mott insulating phases of the Bose-Hubbard Model. Specifically, we obtain a two particle irreducible effective action within the contour-time formalism that allows for both equilibrium and out of equilibrium phenomena. We derive equations of motion for both the superfluid order parameter and two-point correlation functions. To assess the accuracy of this formalism, we study the equilibrium solution of the equations of motion and compare our results to existing strong coupling methods as well as exact methods where possible. We discuss applications of this formalism to out of equilibrium situations.

  20. A Comparative Study of Different Deblurring Methods Using Filters

    NASA Astrophysics Data System (ADS)

    Srimani, P. K.; Kavitha, S.

    2011-12-01

    This paper attempts to undertake the study of Restored Gaussian Blurred Images by using four types of techniques of deblurring image viz., Wiener filter, Regularized filter, Lucy Richardson deconvolution algorithm and Blind deconvolution algorithm with an information of the Point Spread Function (PSF) corrupted blurred image. The same is applied to the scanned image of seven months baby in the womb and they are compared with one another, so as to choose the best technique for restored or deblurring image. This paper also attempts to undertake the study of restored blurred image using Regualr Filter(RF) with no information about the Point Spread Function (PSF) by using the same four techniques after executing the guess of the PSF. The number of iterations and the weight threshold of it to choose the best guesses for restored or deblurring image of these techniques are determined.

Top