Fourier Analysis of Musical Intervals
ERIC Educational Resources Information Center
LoPresto, Michael C.
2008-01-01
Use of a microphone attached to a computer to capture musical sounds and software to display their waveforms and harmonic spectra has become somewhat commonplace. A recent article in "The Physics Teacher" aptly demonstrated the use of MacScope in just such a manner as a way to teach Fourier analysis. A logical continuation of this project is to…
Fourier Analysis of Musical Intervals
ERIC Educational Resources Information Center
LoPresto, Michael C.
2008-01-01
Use of a microphone attached to a computer to capture musical sounds and software to display their waveforms and harmonic spectra has become somewhat commonplace. A recent article in "The Physics Teacher" aptly demonstrated the use of MacScope in just such a manner as a way to teach Fourier analysis. A logical continuation of this project is to…
Fourier analysis for rotating-element ellipsometers.
Cho, Yong Jai; Chegal, Won; Cho, Hyun Mo
2011-01-15
We introduce a Fourier analysis of the waveform of periodic light-irradiance variation to capture Fourier coefficients for multichannel rotating-element ellipsometers. In this analysis, the Fourier coefficients for a sample are obtained using a discrete Fourier transform on the exposures. The analysis gives a generic function that encompasses the discrete Fourier transform or the Hadamard transform, depending on the specific conditions. Unlike the Hadamard transform, a well-known data acquisition method that is used only for conventional multichannel rotating-element ellipsometers with line arrays with specific readout-mode timing, this Fourier analysis is applicable to various line arrays with either nonoverlap or overlap readout-mode timing. To assess the effects of the novel Fourier analysis, the Fourier coefficients for a sample were measured with a custom-built rotating-polarizer ellipsometer, using this Fourier analysis with various numbers of scans, integration times, and rotational speeds of the polarizer.
Fourier Analysis of Blazar Variability
NASA Astrophysics Data System (ADS)
Finke, Justin D.; Becker, Peter A.
2014-08-01
Blazars display strong variability on multiple timescales and in multiple radiation bands. Their variability is often characterized by power spectral densities (PSDs) and time lags plotted as functions of the Fourier frequency. We develop a new theoretical model based on the analysis of the electron transport (continuity) equation, carried out in the Fourier domain. The continuity equation includes electron cooling and escape, and a derivation of the emission properties includes light travel time effects associated with a radiating blob in a relativistic jet. The model successfully reproduces the general shapes of the observed PSDs and predicts specific PSD and time lag behaviors associated with variability in the synchrotron, synchrotron self-Compton, and external Compton emission components, from submillimeter to γ-rays. We discuss applications to BL Lacertae objects and to flat-spectrum radio quasars (FSRQs), where there are hints that some of the predicted features have already been observed. We also find that FSRQs should have steeper γ-ray PSD power-law indices than BL Lac objects at Fourier frequencies <~ 10-4 Hz, in qualitative agreement with previously reported observations by the Fermi Large Area Telescope.
Ultrasonic Transducers for Fourier Analysis.
ERIC Educational Resources Information Center
Greenslade, Thomas B., Jr.
1995-01-01
Describes an experiment that uses the ultrasonic transducer for demonstrating the Fourier components of waveshapes such as the square and triangular waves produced by laboratory function generators. (JRH)
Ultrasonic Transducers for Fourier Analysis.
ERIC Educational Resources Information Center
Greenslade, Thomas B., Jr.
1995-01-01
Describes an experiment that uses the ultrasonic transducer for demonstrating the Fourier components of waveshapes such as the square and triangular waves produced by laboratory function generators. (JRH)
Gelbart, Stephen S.
1970-01-01
Two problems of Fourier analysis on GL(n,R) are studied. The first concerns the decomposition of the additive Fourier operator in terms of the group representation theory of G. The second concerns the analytic continuation of certain zeta-functions defined on G. It is found that the generalized Gamma functions of Gelfand and Graev arise naturally in the solution of both these problems. PMID:16591814
Fourier analysis and synthesis tomography.
Wagner, Kelvin H.; Sinclair, Michael B.; Feldkuhn, Daniel
2010-05-01
Most far-field optical imaging systems rely on a lens and spatially-resolved detection to probe distinct locations on the object. We describe and demonstrate a novel high-speed wide-field approach to imaging that instead measures the complex spatial Fourier transform of the object by detecting its spatially-integrated response to dynamic acousto-optically synthesized structured illumination. Tomographic filtered backprojection is applied to reconstruct the object in two or three dimensions. This technique decouples depth-of-field and working-distance from resolution, in contrast to conventional imaging, and can be used to image biological and synthetic structures in fluoresced or scattered light employing coherent or broadband illumination. We discuss the electronically programmable transfer function of the optical system and its implications for imaging dynamic processes. Finally, we present for the first time two-dimensional high-resolution image reconstructions demonstrating a three-orders-of-magnitude improvement in depth-of-field over conventional lens-based microscopy.
Fourier Analysis and Structure Determination: Part I: Fourier Transforms.
ERIC Educational Resources Information Center
Chesick, John P.
1989-01-01
Provides a brief introduction with some definitions and properties of Fourier transforms. Shows relations, ways of understanding the mathematics, and applications. Notes proofs are not included but references are given. First of three part series. (MVL)
Fourier Analysis Of Vibrations Of Round Structures
NASA Technical Reports Server (NTRS)
Davis, Gary A.
1990-01-01
Fourier-series representation developed for analysis of vibrations in complicated, round structures like turbopump impellers. Method eliminates guesswork involved in characterization of shapes of vibrational modes. Easy way to characterize complicated modes, leading to determination of responsiveness of given mode to various forcing functions. Used in conjunction with finite-element numerical simulation of vibrational modes of structure.
Nonlinear Fourier analysis with cnoidal waves
Osborne, A.R.
1996-12-31
Fourier analysis is one of the most useful tools to the ocean engineer. The approach allows one to analyze wave data and thereby to describe a dynamical motion in terms of a linear superposition of ordinary sine waves. Furthermore, the Fourier technique allows one to compute the response function of a fixed or floating structure: each sine wave in the wave or force spectrum yields a sine wave in the response spectrum. The counting of fatigue cycles is another area where the predictable oscillations of sine waves yield procedures for the estimation of the fatigue life of structures. The ocean environment, however, is a source of a number of nonlinear effects which must also be included in structure design. Nonlinearities in ocean waves deform the sinusoidal shapes into other kinds of waves such as the Stokes wave, cnoidal wave or solitary wave. A key question is: Does there exist a generalization of linear Fourier analysis which uses nonlinear basis functions rather than the familiar sine waves? Herein addresses the dynamics of nonlinear wave motion in shallow water where the basis functions are cnoidal waves and discuss nonlinear Fourier analysis in terms of a linear superposition of cnoidal waves plus their mutual nonlinear interactions. He gives a number of simple examples of nonlinear Fourier wave motion and then analyzes an actual surface-wave time series obtained on an offshore platform in the Adriatic Sea. Finally, he briefly discusses application of the cnoidal wave spectral approach to the computation of the frequency response function of a floating vessel. The results given herein will prove useful in future engineering studies for the design of fixed, floating and complaint offshore structures.
Fourier analysis of the SOR iteration
NASA Technical Reports Server (NTRS)
Leveque, R. J.; Trefethen, L. N.
1986-01-01
The SOR iteration for solving linear systems of equations depends upon an overrelaxation factor omega. It is shown that for the standard model problem of Poisson's equation on a rectangle, the optimal omega and corresponding convergence rate can be rigorously obtained by Fourier analysis. The trick is to tilt the space-time grid so that the SOR stencil becomes symmetrical. The tilted grid also gives insight into the relation between convergence rates of several variants.
Fourier analysis: from cloaking to imaging
NASA Astrophysics Data System (ADS)
Wu, Kedi; Cheng, Qiluan; Wang, Guo Ping
2016-04-01
Regarding invisibility cloaks as an optical imaging system, we present a Fourier approach to analytically unify both Pendry cloaks and complementary media-based invisibility cloaks into one kind of cloak. By synthesizing different transfer functions, we can construct different devices to realize a series of interesting functions such as hiding objects (events), creating illusions, and performing perfect imaging. In this article, we give a brief review on recent works of applying Fourier approach to analysis invisibility cloaks and optical imaging through scattering layers. We show that, to construct devices to conceal an object, no constructive materials with extreme properties are required, making most, if not all, of the above functions realizable by using naturally occurring materials. As instances, we experimentally verify a method of directionally hiding distant objects and create illusions by using all-dielectric materials, and further demonstrate a non-invasive method of imaging objects completely hidden by scattering layers.
Analysis method for Fourier transform spectroscopy
NASA Technical Reports Server (NTRS)
Park, J. H.
1983-01-01
A fast Fourier transform technique is given for the simulation of those distortion effects in the instrument line shape of the interferometric spectrum that are due to errors in the measured interferogram. The technique is applied to analyses of atmospheric absorption spectra and laboratory spectra. It is shown that the nonlinear least squares method can retrieve the correct information from the distorted spectrum. Analyses of HF absorption spectra obtained in a laboratory and solar CO absorption spectra gathered by a balloon-borne interferometer indicate that the retrieved amount of absorbing gas is less than the correct value in most cases, if the interferogram distortion effects are not included in the analysis.
Elliptic Fourier analysis of mandibular shape.
Ferrario, V F; Sforza, C; Guazzi, M; Serrao, G
1996-01-01
Craniofacial growth and development involve both size and shape variations. Shape variations can be assessed independently from size using mathematical methods such as the elliptic Fourier analysis, which allows a global evaluation of the shape of organs identified by their outlines independently from size, spatial orientation, and relation to reference planes. The mandibular outlines were digitized from the tracings of the Bolton standards (lateral view) from 1 to 18 years of age, and the age differences in shape independently from size were quantified using the elliptic Fourier series. A "morphologic distance" MD (i.e., a measurement of differences in shape) between each younger mandible and the oldest one was computed using the relevant Fourier coefficients like the cartesian coordinates in standard metric measurements. MD equals 0 when the profiles are identical. MD (Y) between the Bolton standard at 18 years of age and all the other Bolton tracings were significantly correlated (correlation coefficient r = 0.987, P < or = 0.001) with age (X) (semi-logarithmic interpolation Y = -3.87.log(e) X + 13.593). Differences between the size-independent shape of the Bolton standard at 18 years and the relevant plot at 1 year were located at the chin, gonion, coronoid process, anterior border of the ramus. Size differences were measured from the areas enclosed by the mandibular outlines. Mandibular area (Y) increased about 2.58 times from 1 to 18 years of age (X) (Y = -0.071.X2 + 4.917.X + 35.904, r = 0.997, P < or = 0.001). The shape effect was largely overwhelmed by the very evident size increments, and it could be measured only using the proper mathematical methods. The method developed could also be applied to the comparison between healthy and diseased individuals.
Describing Ammonite shape using Fourier analysis
NASA Astrophysics Data System (ADS)
El Hariri, Khadija; Bachnou, Ali
2004-06-01
A number of geometrical methods for comparing shapes have been developed recently. This paper explores two approaches for analyzing the morphological variation of some invertebrate fossil characteristics such as rib pattern and whorl section shape: (1) landmarks analysis (Procrustes methods), (2) mathematical modeling by Fourier analysis. The morphometric analysis has been applied to a faunal sequence of Graphoceratidae (Ammonitina) taken in the central High Atlas. In the first stage of analysis, we used landmarks to describe shapes. This calculation is done through the "Procrustes" program whose results generate phenetic trees with a typically morphological significance and whose nodes convey some degrees of morphological similarities among the different taxa analyzed. In the second stage of describing ammonite shape, a new approach will offer us a valuable morphologic descriptor by modeling the whorl section. It allows for transcription in the form and an equation will be used for descriptive variables which represent necessary data for an analysis in principal components. Factorial planes then correspond to morphological space within which the analyzed individuals are distributed. In this way, it is possible to determine the groups for which whorl section morphologies show similarities. These two morphometric techniques offer a valuable tool for the analysis and comparison of morphologies for both rib shape and whorl section. This allows one not only to analyze morphological diversity in Graphoceratidae with more reliability, but also to highlight the most important convergences among the analyzed taxa.
Fourier functional analysis for unsteady aerodynamic modeling
NASA Technical Reports Server (NTRS)
Lan, C. Edward; Chin, Suei
1991-01-01
A method based on Fourier analysis is developed to analyze the force and moment data obtained in large amplitude forced oscillation tests at high angles of attack. The aerodynamic models for normal force, lift, drag, and pitching moment coefficients are built up from a set of aerodynamic responses to harmonic motions at different frequencies. Based on the aerodynamic models of harmonic data, the indicial responses are formed. The final expressions for the models involve time integrals of the indicial type advocated by Tobak and Schiff. Results from linear two- and three-dimensional unsteady aerodynamic theories as well as test data for a 70-degree delta wing are used to verify the models. It is shown that the present modeling method is accurate in producing the aerodynamic responses to harmonic motions and the ramp type motions. The model also produces correct trend for a 70-degree delta wing in harmonic motion with different mean angles-of-attack. However, the current model cannot be used to extrapolate data to higher angles-of-attack than that of the harmonic motions which form the aerodynamic model. For linear ramp motions, a special method is used to calculate the corresponding frequency and phase angle at a given time. The calculated results from modeling show a higher lift peak for linear ramp motion than for harmonic ramp motion. The current model also shows reasonably good results for the lift responses at different angles of attack.
Fourier analysis of multitracer cosmological surveys
NASA Astrophysics Data System (ADS)
Abramo, L. Raul; Secco, Lucas F.; Loureiro, Arthur
2016-02-01
We present optimal quadratic estimators for the Fourier analysis of cosmological surveys that detect several different types of tracers of large-scale structure. Our estimators can be used to simultaneously fit the matter power spectrum and the biases of the tracers - as well as redshift-space distortions (RSDs), non-Gaussianities (NGs), or any other effects that are manifested through differences between the clusterings of distinct species of tracers. Our estimators reduce to the one by Feldman, Kaiser & Peacock (FKP) in the case of a survey consisting of a single species of tracer. We show that the multitracer estimators are unbiased, and that their covariance is given by the inverse of the multitracer Fisher matrix. When the biases, RSDs and NGs are fixed to their fiducial values, and one is only interested in measuring the underlying power spectrum, our estimators are projected into the estimator found by Percival, Verde & Peacock. We have tested our estimators on simple (lognormal) simulated galaxy maps, and we show that it performs as expected, being either equivalent or superior to the FKP method in all cases we analysed. Finally, we have shown how to extend the multitracer technique to include the one-halo term of the power spectrum.
Generalized Fourier analysis for phase retrieval of fringe pattern.
Zhong, Jingang; Weng, Jiawen
2010-12-20
A generalized Fourier analysis, by use of an adaptive multiscale windowed Fourier transform (AWFT), has been presented for the phase retrieval of fringe patterns. The Fourier transform method can be considered as a special case of AWFT method with a maximum window. The instantaneous frequency of the local signal is introduced to estimate whether the condition for separating the first spectrum component is satisfied for the phase retrieval of fringe patterns. The adaptive window width for this algorithm is determined by the length of the local stationary fringe pattern in order to balance the frequency and space resolution. The local stationary length of fringe pattern is defined as the signal satisfying the condition that whose first spectrum component is separated from all the other spectra within the local spatial area. In comparison with Fourier transform, fixed windowed Fourier transform and wavelet transform in numerical simulation and experiment, the adaptive multiscale windowed Fourier transform can present more accurate results of phase retrieval.
Double Fourier analysis for Emotion Identification in Voiced Speech
NASA Astrophysics Data System (ADS)
Sierra-Sosa, D.; Bastidas, M.; Ortiz P., D.; Quintero, O. L.
2016-04-01
We propose a novel analysis alternative, based on two Fourier Transforms for emotion recognition from speech. Fourier analysis allows for display and synthesizes different signals, in terms of power spectral density distributions. A spectrogram of the voice signal is obtained performing a short time Fourier Transform with Gaussian windows, this spectrogram portraits frequency related features, such as vocal tract resonances and quasi-periodic excitations during voiced sounds. Emotions induce such characteristics in speech, which become apparent in spectrogram time-frequency distributions. Later, the signal time-frequency representation from spectrogram is considered an image, and processed through a 2-dimensional Fourier Transform in order to perform the spatial Fourier analysis from it. Finally features related with emotions in voiced speech are extracted and presented.
Fourier mode analysis of source iteration in spatially periodic media
Zika, M.R.; Larsen, E.W.
1998-12-31
The standard Fourier mode analysis is an indispensable tool when designing acceleration techniques for transport iterations; however, it requires the assumption of a homogeneous infinite medium. For problems of practical interest, material heterogeneities may significantly impact iterative performance. Recent work has applied a Fourier analysis to the discretized two-dimensional transport operator with heterogeneous material properties. The results of these analyses may be difficult to interpret because the heterogeneity effects are inherently coupled to the discretization effects. Here, the authors describe a Fourier analysis of source iteration (SI) that allows the calculation of the eigenvalue spectrum for the one-dimensional continuous transport operator with spatially periodic heterogeneous media.
Fourier analysis on the Heisenberg group
Geller, Daryl
1977-01-01
We obtain a usable characterization of the (group) Fourier transform of 𝒮(Hn) (Schwartz space on the Heisenberg group). The characterization involves writing elements of [Formula: see text] as asymptotic series in Planck's constant. In the process, we derive a new “discrete” version of spherical harmonics, and elucidate the theory of group contractions. We give an application to Hardy space theory. PMID:16578749
Mountain Wave Analysis Using Fourier Methods
2007-10-01
Hydrodynamic and Hydromagnetic Stability . Dover, New York, 654 pp. Doyle, J.D., and Q. Jiang, 2006: Observations and numerical simulations of...v Figures 1. Fourier transform pair for terrain h(x,y) 8 2. Gaussian hill profile with constant wind speed and static stability ...10 3. Ridge with constant wind speed and static stability 10 4. Two-layer wind speed and
Quantum Algorithms, Symmetry, and Fourier Analysis
NASA Astrophysics Data System (ADS)
Denney, Aaron
I describe the role of symmetry in two quantum algorithms, with a focus on how that symmetry is made manifest by the Fourier transform. The Fourier transform can be considered in a wider context than the familiar one of functions on
Leak Location in Plates Using Spatial Fourier Transform Based Analysis
NASA Astrophysics Data System (ADS)
Roberts, R.; Holland, S.; Strei, M.; Song, J.; Chimenti, D. E.
2005-04-01
The location of air leaks in plate-like structures is examined using a spatial Fourier transform based analysis. Noise data is collected over 2-D spatial arrays at sensor locations, from which mean cross-correlations are compiled. Propagation properties, transit times, and energy distribution among modes are extracted through spatial Fourier transformation of these data. A simple algorithm to determine source location using a reduced set of transform data is demonstrated experimentally, based upon extraction of energy propagation direction.
Xgremlin: Interferograms and spectra from Fourier transform spectrometers analysis
NASA Astrophysics Data System (ADS)
Nave, G.; Griesmann, U.; Brault, J. W.; Abrams, M. C.
2015-11-01
Xgremlin is a hardware and operating system independent version of the data analysis program Gremlin used for Fourier transform spectrometry. Xgremlin runs on PCs and workstations that use the X11 window system, including cygwin in Windows. It is used to Fourier transform interferograms, plot spectra, perform phase corrections, perform intensity and wavenumber calibration, and find and fit spectral lines. It can also be used to construct synthetic spectra, subtract continua, compare several different spectra, and eliminate ringing around lines.
Fourier analysis and the Farnsworth-Munsell 100-Hue test.
Allan, D
1985-01-01
A mathematical method based on Fourier analysis devised for the assessment of score charts for the Farnsworth--Munsell 100-Hue test is described. The method facilitates the analysis of features of the shape of the score chart in an objective and quantitative manner. The calculations are easily performed by a microcomputer.
Comparative analysis of imaging configurations and objectives for Fourier microscopy.
Kurvits, Jonathan A; Jiang, Mingming; Zia, Rashid
2015-11-01
Fourier microscopy is becoming an increasingly important tool for the analysis of optical nanostructures and quantum emitters. However, achieving quantitative Fourier space measurements requires a thorough understanding of the impact of aberrations introduced by optical microscopes that have been optimized for conventional real-space imaging. Here we present a detailed framework for analyzing the performance of microscope objectives for several common Fourier imaging configurations. To this end, we model objectives from Nikon, Olympus, and Zeiss using parameters that were inferred from patent literature and confirmed, where possible, by physical disassembly. We then examine the aberrations most relevant to Fourier microscopy, including the alignment tolerances of apodization factors for different objective classes, the effect of magnification on the modulation transfer function, and vignetting-induced reductions of the effective numerical aperture for wide-field measurements. Based on this analysis, we identify an optimal objective class and imaging configuration for Fourier microscopy. In addition, the Zemax files for the objectives and setups used in this analysis have been made publicly available as a resource for future studies.
Fetal magnetocardiogram recordings and Fourier spectral analysis.
Anastasiadis, P; Anninos, P A; Lüdinghausen, M V; Kotini, A; Galazios, G; Limberis, B
1999-07-01
Power spectral analysis of fetal magnetocardiogram (FMCG) data was evaluated in 64 pregnancies, using the non-invasive one channel superconducting quantum interference device (DC-SQUID), in order to investigate the power spectral amplitude distribution in the frequency range between 2 and 3 Hz. In all cases with normal and uncomplicated pregnancies, the data from the fetal heart and specifically the QRS complexes, were identifiable and unaffected by any maternal cardiac activity and furthermore the power spectral amplitudes, which varied between 120 and 350 fT/Hz, were directly related to gestational age.
Vicinal fluorine-fluorine coupling constants: Fourier analysis
NASA Astrophysics Data System (ADS)
San Fabián, J.; Westra Hoekzema, A. J. A.
2004-10-01
Stereochemical dependences of vicinal fluorine-fluorine nuclear magnetic resonance coupling constants (3JFF) have been studied with the multiconfigurational self-consistent field in the restricted active space approach, with the second-order polarization propagator approximation (SOPPA), and with density functional theory. The SOPPA results show the best overall agreement with experimental couplings. The relationship with the dihedral angle between the coupled fluorines has been studied by Fourier analysis, the result is very different from that of proton-proton couplings. The Fourier coefficients do not resemble those of a typical Karplus equation. The four nonrelativistic contributions to the coupling constants of 1,2-difluoroethane configurations have been studied separately showing that up to six Fourier coefficients are required to reproduce the calculated values satisfactorily. Comparison with Fourier coefficients for matching hydrogen fluoride dimer configurations suggests that the higher order Fourier coefficients (Cn⩾3) originate mainly from through-space Fermi contact interaction. The through-space interaction is the main reason 3JFF do not follow the Karplus equation.
Application of Fourier analysis to multispectral/spatial recognition
NASA Technical Reports Server (NTRS)
Hornung, R. J.; Smith, J. A.
1973-01-01
One approach for investigating spectral response from materials is to consider spatial features of the response. This might be accomplished by considering the Fourier spectrum of the spatial response. The Fourier Transform may be used in a one-dimensional to multidimensional analysis of more than one channel of data. The two-dimensional transform represents the Fraunhofer diffraction pattern of the image in optics and has certain invariant features. Physically the diffraction pattern contains spatial features which are possibly unique to a given configuration or classification type. Different sampling strategies may be used to either enhance geometrical differences or extract additional features.
Fourier analysis of finite element preconditioned collocation schemes
NASA Technical Reports Server (NTRS)
Deville, Michel O.; Mund, Ernest H.
1990-01-01
The spectrum of the iteration operator of some finite element preconditioned Fourier collocation schemes is investigated. The first part of the paper analyses one-dimensional elliptic and hyperbolic model problems and the advection-diffusion equation. Analytical expressions of the eigenvalues are obtained with use of symbolic computation. The second part of the paper considers the set of one-dimensional differential equations resulting from Fourier analysis (in the tranverse direction) of the 2-D Stokes problem. All results agree with previous conclusions on the numerical efficiency of finite element preconditioning schemes.
Fourier analysis of the aerodynamic behavior of cup anemometers
NASA Astrophysics Data System (ADS)
Pindado, Santiago; Pérez, Imanol; Aguado, Maite
2013-06-01
The calibration results (the transfer function) of an anemometer equipped with several cup rotors were analyzed and correlated with the aerodynamic forces measured on the isolated cups in a wind tunnel. The correlation was based on a Fourier analysis of the normal-to-the-cup aerodynamic force. Three different cup shapes were studied: typical conical cups, elliptical cups and porous cups (conical-truncated shape). Results indicated a good correlation between the anemometer factor, K, and the ratio between the first two coefficients in the Fourier series decomposition of the normal-to-the-cup aerodynamic force.
Application of Fourier analysis to multispectral/spatial recognition
NASA Technical Reports Server (NTRS)
Hornung, R. J.; Smith, J. A.
1973-01-01
One approach for investigating spectral response from materials is to consider spatial features of the response. This might be accomplished by considering the Fourier spectrum of the spatial response. The Fourier Transform may be used in a one-dimensional to multidimensional analysis of more than one channel of data. The two-dimensional transform represents the Fraunhofer diffraction pattern of the image in optics and has certain invariant features. Physically the diffraction pattern contains spatial features which are possibly unique to a given configuration or classification type. Different sampling strategies may be used to either enhance geometrical differences or extract additional features.
On properties of certain classical operators occurring in Fourier analysis
NASA Astrophysics Data System (ADS)
Zhizhiashvili, L. V.; Tkebuchava, G. E.
2004-10-01
Properties of conjugate functions, Hilbert transforms, and certain maximal operators occurring in Fourier analysis in weighted Lebesgue spaces are established. For functions of several variables in Orlicz spaces the divergence in measure of the Cesáro and the Abel means of the conjugate trigonometric series, and the question of the existence of conjugate functions are investigated.
On properties of certain classical operators occurring in Fourier analysis
Zhizhiashvili, L V; Tkebuchava, G E
2004-10-31
Properties of conjugate functions, Hilbert transforms, and certain maximal operators occurring in Fourier analysis in weighted Lebesgue spaces are established. For functions of several variables in Orlicz spaces the divergence in measure of the Cesaro and the Abel means of the conjugate trigonometric series, and the question of the existence of conjugate functions are investigated.
Spatial Fourier Transform Analysis of Polishing Pad Surface Topography
NASA Astrophysics Data System (ADS)
Khajornrungruang, Panart; Kimura, Keiichi; Okuzono, Takahisa; Suzuki, Keisuke; Kushida, Takashi
2012-05-01
The spatial Fourier transform analysis is proposed to quantitatively evaluate the irregular topography of the conditioned chemical mechanical polishing (CMP) pad surface. We discuss the power spectrum in the spatial wavelengths of the surface topographies corresponding to polishing time. We conclude that the spatial wavelength of less than 5 µm in the topography yielded high material removal rates.
Application Of Moire Analysis Of Strain Using Fourier Transform
NASA Astrophysics Data System (ADS)
Morimoto, Yoshiharu; Seguchi, Yasuyuki; Higashi, Toshihiko
1988-08-01
By shifting the discrete Fourier spectrum of the image of a deformed grating, we obtain the "complex moire pattern," from which strain distribution is given as the derivatives of the phases of the complex moire fringes. The analysis is completely automated by digital image processing. All of the laborious and subjective procedures required in the conventional analysis such as fringe sign determination, fringe ordering, and fringe interpolation are thus eliminated, permitting objective, fast, and accurate analysis. Some applications for rubber plates are shown.
Absolute Measurement of Tilts via Fourier Analysis of Interferograms
NASA Technical Reports Server (NTRS)
Toland, Ronald W.
2004-01-01
The Fourier method of interferogram analysis requires the introduction of a constant tilt into the interferogram to serve as a carrier signal for information on the figure of the surface under test. This tilt is usually removed in the first steps of analysis and ignored thereafter. However, in the problem of aligning optical components and systems, knowledge of part orientation is crucial to proper instrument performance. This paper outlines an algorithm which uses the normally ignored carrier signal in Fourier analysis to compute an absolute tilt (orientation) of the test surface. We also provide a brief outline of how this technique, incorporated in a rotating Twyman-Green interferometer, can be used in alignment and metrology of optical systems.
Absolute Measurement of Tilts via Fourier Analysis of Interferograms
NASA Technical Reports Server (NTRS)
Toland, Ronald W.
2004-01-01
The Fourier method of interferogram analysis requires the introduction of a constant tilt into the inteferogram to serve as a 'carrier signal' for information on the figure of the surface under test. This tilt is usually removed in the first steps of analysis and ignored thereafter. However, in the problem of aligning optical components and systems, knowledge of part orientation is crucial to proper instrument performance. This paper outlines an algorithm which uses the normally ignored carrier signal in Fourier analysis to compute an absolute tilt (orientation) of the test surface. We also provide a brief outline of how this technique, incorporated in a rotating Twyman-Green interferometer, can be used in alignment and metrology of optical systems.
Fourier and fractal analysis of cytoskeletal morphology altered by xenobiotics
NASA Astrophysics Data System (ADS)
Crosta, Giovanni F.; Urani, Chiara; Fumarola, Laura
2003-06-01
The cytoskeletal microtubules (MTs) of rat hepatocytes treated by Benomyl (a fungicide) were imaged by means of immunofluorescent staining and optical microscopy. Images of untreated, or control (C), and of treated (T) cells were processed both by fractal and Fourier analysis. The C-MTs had contour fractal dimensions higher (>= 1.4) than those of T-MTs (<=1.3). Fourier analysis included computation of the anisotropy of power spectral density, angle averaging and "spectrum enhancement," which corresponds to the application of a (pseudo)differential operator to the image. Enhanced spectra were interpolated by a polynomial, q, of degree 39, from which morphological descriptors were extracted. Descriptors from Fourier analysis made image classification possible. Principal components analysis was applied to the descriptors. In the plane of the first two components, {z1,z2}, the minimum spanning tree was drawn. Images of T-MTs formed a single cluster, whereas images of C-MTs formed two clusters, C1 and C2. The component z1 correlated positively with the local maxima and minima of q, which reflected differences between T and C in power spectral density in the 1 to 2000 cycles/mm spatial frequency band. The difference between C1 and C2 was ascribed to anisotropy of the MT bundles. The implemented image classifier is capable of telling differences in cytoskeletal organization. As a consequence the method can become a tool for testing cytotoxicity and for extracting quantitative information about intracellular alterations of various origin.
Discrete Fourier Transform Analysis in a Complex Vector Space
NASA Technical Reports Server (NTRS)
Dean, Bruce H.
2009-01-01
Alternative computational strategies for the Discrete Fourier Transform (DFT) have been developed using analysis of geometric manifolds. This approach provides a general framework for performing DFT calculations, and suggests a more efficient implementation of the DFT for applications using iterative transform methods, particularly phase retrieval. The DFT can thus be implemented using fewer operations when compared to the usual DFT counterpart. The software decreases the run time of the DFT in certain applications such as phase retrieval that iteratively call the DFT function. The algorithm exploits a special computational approach based on analysis of the DFT as a transformation in a complex vector space. As such, this approach has the potential to realize a DFT computation that approaches N operations versus Nlog(N) operations for the equivalent Fast Fourier Transform (FFT) calculation.
On One Application of Fourier Analysis in Plastic Surgery
NASA Astrophysics Data System (ADS)
Rakhimov, Abdumalik; Zainuddin, Hishamuddin
In present paper, we discuss the spectral methods of measurement of the degree of speech and/or quality of sound by comparing the coefficient of performance indicators depending on energy distributions, ratio of energy of the fundamental tone and energy of overtones. Such a method is very efficient for string oscillation with different initial conditions and it is useful for justification of applications of Fourier analysis in plastic surgery in treatment of some medical diseases.
A comparative image analysis of radial Fourier-Chebyshev moments
NASA Astrophysics Data System (ADS)
Li, Bo
2017-08-01
On the basis of the discrete Fourier functions and the discrete Chebyshev polynomials, a new set of radial orthogonal moment functions were presented. The new moments construct a new discrete orthogonal plane, and take a new sampling method that overcomes the default of classical method, which can be effectively used in the image analysis. The experimental results show that the new radial moments are superior to the conventional moments in image reconstruction and computing efficiency.
Two-Dimensional Fourier Transform Analysis of Helicopter Flyover Noise
NASA Technical Reports Server (NTRS)
SantaMaria, Odilyn L.; Farassat, F.; Morris, Philip J.
1999-01-01
A method to separate main rotor and tail rotor noise from a helicopter in flight is explored. Being the sum of two periodic signals of disproportionate, or incommensurate frequencies, helicopter noise is neither periodic nor stationary. The single Fourier transform divides signal energy into frequency bins of equal size. Incommensurate frequencies are therefore not adequately represented by any one chosen data block size. A two-dimensional Fourier analysis method is used to separate main rotor and tail rotor noise. The two-dimensional spectral analysis method is first applied to simulated signals. This initial analysis gives an idea of the characteristics of the two-dimensional autocorrelations and spectra. Data from a helicopter flight test is analyzed in two dimensions. The test aircraft are a Boeing MD902 Explorer (no tail rotor) and a Sikorsky S-76 (4-bladed tail rotor). The results show that the main rotor and tail rotor signals can indeed be separated in the two-dimensional Fourier transform spectrum. The separation occurs along the diagonals associated with the frequencies of interest. These diagonals are individual spectra containing only information related to one particular frequency.
Two-Dimensional Fourier Transform Analysis of Helicopter Flyover Noise
NASA Technical Reports Server (NTRS)
SantaMaria, Odilyn L.; Farassat, F.; Morris, Philip J.
1999-01-01
A method to separate main rotor and tail rotor noise from a helicopter in flight is explored. Being the sum of two periodic signals of disproportionate, or incommensurate frequencies, helicopter noise is neither periodic nor stationary. The single Fourier transform divides signal energy into frequency bins of equal size. Incommensurate frequencies are therefore not adequately represented by any one chosen data block size. A two-dimensional Fourier analysis method is used to separate main rotor and tail rotor noise. The two-dimensional spectral analysis method is first applied to simulated signals. This initial analysis gives an idea of the characteristics of the two-dimensional autocorrelations and spectra. Data from a helicopter flight test is analyzed in two dimensions. The test aircraft are a Boeing MD902 Explorer (no tail rotor) and a Sikorsky S-76 (4-bladed tail rotor). The results show that the main rotor and tail rotor signals can indeed be separated in the two-dimensional Fourier transform spectrum. The separation occurs along the diagonals associated with the frequencies of interest. These diagonals are individual spectra containing only information related to one particular frequency.
Application Of Moire Analysis Of Strain Using Fourier Transform
NASA Astrophysics Data System (ADS)
Morimoto, Yoshiharu; Seguchi, Yasuyuki; Higashi, Toshihiko
1987-02-01
By shifting the discrete Fourier spectrum of the image of a deformed grating, we can obtain "the complex moire pattern", from which strain distribution is given as the derivatives of the phases of the complex moire fringes. The analysis is completely automatized by introducing the digital image processing. All of the laborious and subjective procedures required in the conventional analysis such as fringe sign determination, fringe ordering, fringe interpolation are so eliminated that objective, fast and accurate analysis can be made. Some applications for rubber plates are shown.
Fourier analysis of conductive heat transfer for glazed roofing materials
NASA Astrophysics Data System (ADS)
Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah; Zakaria, Nor Zaini
2014-07-01
For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.
Elliptical Fourier analysis: fundamentals, applications, and value for forensic anthropology.
Caple, Jodi; Byrd, John; Stephan, Carl N
2017-02-17
The numerical description of skeletal morphology enables forensic anthropologists to conduct objective, reproducible, and structured tests, with the added capability of verifying morphoscopic-based analyses. One technique that permits comprehensive quantification of outline shape is elliptical Fourier analysis. This curve fitting technique allows a form's outline to be approximated via the sum of multiple sine and cosine waves, permitting the profile perimeter of an object to be described in a dense (continuous) manner at a user-defined level of precision. A large amount of shape information (the entire perimeter) can thereby be collected in contrast to other methods relying on sparsely located landmarks where information falling in between the landmarks fails to be acquired. First published in 1982, elliptical Fourier analysis employment in forensic anthropology from 2000 onwards reflects a slow uptake despite large computing power that makes its calculations easy to conduct. Without hurdles arising from calculation speed or quantity, the slow uptake may partly reside with the underlying mathematics that on first glance is extensive and potentially intimidating. In this paper, we aim to bridge this gap by pictorially illustrating how elliptical Fourier harmonics work in a simple step-by-step visual fashion to facilitate universal understanding and as geared towards increased use in forensic anthropology. We additionally provide a short review of the method's utility for osteology, a summary of past uses in forensic anthropology, and software options for calculations that largely save the user the trouble of coding customized routines.
Fourier analysis of conductive heat transfer for glazed roofing materials
Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah; Zakaria, Nor Zaini
2014-07-10
For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.
Vortex metrology using Fourier analysis techniques: vortex networks correlation fringes.
Angel-Toro, Luciano; Sierra-Sosa, Daniel; Tebaldi, Myrian; Bolognini, Néstor
2012-10-20
In this work, we introduce an alternative method of analysis in vortex metrology based on the application of the Fourier optics techniques. The first part of the procedure is conducted as is usual in vortex metrology for uniform in-plane displacement determination. On the basis of two recorded intensity speckled distributions, corresponding to two states of a diffuser coherently illuminated, we numerically generate an analytical signal from each recorded intensity pattern by using a version of the Riesz integral transform. Then, from each analytical signal, a two-dimensional pseudophase map is generated in which the vortices are located and characterized in terms of their topological charges and their core's structural properties. The second part of the procedure allows obtaining Young's interference fringes when Fourier transforming the light passing through a diffracting mask with multiple apertures at the locations of the homologous vortices. In fact, we use the Fourier transform as a mathematical operation to compute the far-field diffraction intensity pattern corresponding to the multiaperture set. Each aperture from the set is associated with a rectangular hole that coincides both in shape and size with a pixel from recorded images. We show that the fringe analysis can be conducted as in speckle photography in an extended range of displacement measurements. Effects related with speckled decorrelation are also considered. Our experimental results agree with those of speckle photography in the range in which both techniques are applicable.
A time Fourier analysis of zonal averaged ozone heating rates
NASA Technical Reports Server (NTRS)
Wang, P.-H.; Wu, M.-F.; Deepak, A.; Hong, S.-S.
1981-01-01
A time-Fourier analysis is presented for the yearly variation of the zonal averaged ozone heating rates in the middle atmosphere based on a model study. The ozone heating rates are determined by utilizing two-dimensional ozone distributions, the altitude and latitude, and by including the effect of the curved earth's atmosphere. In addition, assumptions are introduced to the yearly variations of the ozone distributions due to the lack of sufficient existing ozone data. Among other results, it is shown that the first harmonic component indicates that the heating rates are completely out of phase between the northern and southern hemispheres. The second Fourier component shows a symmetric pattern with respect to the equator, as well as five distinct local extreme values of the ozone heating rate. The third harmonic component shows a pattern close to that of the first component except in the regions above 70 deg between 45-95 km in both hemispheres.
Fourier analysis and signal processing by use of the Moebius inversion formula
NASA Technical Reports Server (NTRS)
Reed, Irving S.; Yu, Xiaoli; Shih, Ming-Tang; Tufts, Donald W.; Truong, T. K.
1990-01-01
A novel Fourier technique for digital signal processing is developed. This approach to Fourier analysis is based on the number-theoretic method of the Moebius inversion of series. The Fourier transform method developed is shown also to yield the convolution of two signals. A computer simulation shows that this method for finding Fourier coefficients is quite suitable for digital signal processing. It competes with the classical FFT (fast Fourier transform) approach in terms of accuracy, complexity, and speed.
Fourier analysis and signal processing by use of the Moebius inversion formula
NASA Technical Reports Server (NTRS)
Reed, Irving S.; Yu, Xiaoli; Shih, Ming-Tang; Tufts, Donald W.; Truong, T. K.
1990-01-01
A novel Fourier technique for digital signal processing is developed. This approach to Fourier analysis is based on the number-theoretic method of the Moebius inversion of series. The Fourier transform method developed is shown also to yield the convolution of two signals. A computer simulation shows that this method for finding Fourier coefficients is quite suitable for digital signal processing. It competes with the classical FFT (fast Fourier transform) approach in terms of accuracy, complexity, and speed.
Speech processing based on short-time Fourier analysis
Portnoff, M.R.
1981-06-02
Short-time Fourier analysis (STFA) is a mathematical technique that represents nonstationary signals, such as speech, music, and seismic signals in terms of time-varying spectra. This representation provides a formalism for such intuitive notions as time-varying frequency components and pitch contours. Consequently, STFA is useful for speech analysis and speech processing. This paper shows that STFA provides a convenient technique for estimating and modifying certain perceptual parameters of speech. As an example of an application of STFA of speech, the problem of time-compression or expansion of speech, while preserving pitch and time-varying frequency content is presented.
Chiral Analysis of Isopulegol by Fourier Transform Molecular Rotational Spectroscopy
NASA Astrophysics Data System (ADS)
Evangelisti, Luca; Seifert, Nathan A.; Spada, Lorenzo; Pate, Brooks
2016-06-01
Chiral analysis on molecules with multiple chiral centers can be performed using pulsed-jet Fourier transform rotational spectroscopy. This analysis includes quantitative measurement of diastereomer products and, with the three wave mixing methods developed by Patterson, Schnell, and Doyle (Nature 497, 475-477 (2013)), quantitative determination of the enantiomeric excess of each diastereomer. The high resolution features enable to perform the analysis directly on complex samples without the need for chromatographic separation. Isopulegol has been chosen to show the capabilities of Fourier transform rotational spectroscopy for chiral analysis. Broadband rotational spectroscopy produces spectra with signal-to-noise ratio exceeding 1000:1. The ability to identify low-abundance (0.1-1%) diastereomers in the sample will be described. Methods to rapidly identify rotational spectra from isotopologues at natural abundance will be shown and the molecular structures obtained from this analysis will be compared to theory. The role that quantum chemistry calculations play in identifying structural minima and estimating their spectroscopic properties to aid spectral analysis will be described. Finally, the implementation of three wave mixing techniques to measure the enantiomeric excess of each diastereomer and determine the absolute configuration of the enantiomer in excess will be described.
Comparison Study of Fourier and SVD Method for Plasma Mode Analysis in Tokamaks
NASA Astrophysics Data System (ADS)
Saadat, Shervin; Salem, Mohammad K.; Goranneviss, Mahmoud; Khorshid, Pejman
2011-02-01
Fourier analysis and Singular Value Decomposition (SVD) are two familiar methods for mode detection in tokamaks. In this article this two methods, fourier and SVD, have compared. The results show fourier analysis in m ≥ 3 and when the energy is balanced between modes could not recognize the correct mode number. The SVD analysis is cited method for all modes.
Particle field holography data reduction by Fourier transform analysis
NASA Technical Reports Server (NTRS)
Hess, Cecil F.; Trolinger, James D.
1987-01-01
The size distribution of a particle field hologram is obtained with a Fourier transformation of the Fraunhofer diffraction pattern of the reconstructed hologram. Off-axis absorption holograms of particle fields with known characteristics were obtained and analyzed with a commercially available instrument. The mean particle size of the reconstructed hologram was measured with an error of + or - 5 percent, while the distribution broadening was estimated within + or - 15 percent. Small sections of a pulsed laser hologram of a synthetic fuel spray were analyzed with this method thus yielding a spatially resolved size distribution. The method yields fast and accurate automated analysis of particle field holograms.
Non-Harmonic Fourier Analysis for bladed wheels damage detection
NASA Astrophysics Data System (ADS)
Neri, P.; Peeters, B.
2015-11-01
The interaction between bladed wheels and the fluid distributed by the stator vanes results in cyclic loading of the rotating components. Compressors and turbines wheels are subject to vibration and fatigue issues, especially when resonance conditions are excited. Even if resonance conditions can be often predicted and avoided, high cycle fatigue failures can occur, causing safety issues and economic loss. Rigorous maintenance programs are then needed, forcing the system to expensive shut-down. Blade crack detection methods are beneficial for condition-based maintenance. While contact measurement systems are not always usable in exercise conditions (e.g. high temperature), non-contact methods can be more suitable. One (or more) stator-fixed sensor can measure all the blades as they pass by, in order to detect the damaged ones. The main drawback in this situation is the short acquisition time available for each blade, which is shortened by the high rotational speed of the components. A traditional Discrete Fourier Transform (DFT) analysis would result in a poor frequency resolution. A Non-Harmonic Fourier Analysis (NHFA) can be executed with an arbitrary frequency resolution instead, allowing to obtain frequency information even with short-time data samples. This paper shows an analytical investigation of the NHFA method. A data processing algorithm is then proposed to obtain frequency shift information from short time samples. The performances of this algorithm are then studied by experimental and numerical tests.
Quantitative assessment of human body shape using Fourier analysis
NASA Astrophysics Data System (ADS)
Friess, Martin; Rohlf, F. J.; Hsiao, Hongwei
2004-04-01
Fall protection harnesses are commonly used to reduce the number and severity of injuries. Increasing the efficiency of harness design requires the size and shape variation of the user population to be assessed as detailed and as accurately as possible. In light of the unsatisfactory performance of traditional anthropometry with respect to such assessments, we propose the use of 3D laser surface scans of whole bodies and the statistical analysis of elliptic Fourier coefficients. Ninety-eight male and female adults were scanned. Key features of each torso were extracted as a 3D curve along front, back and the thighs. A 3D extension of Elliptic Fourier analysis4 was used to quantify their shape through multivariate statistics. Shape change as a function of size (allometry) was predicted by regressing the coefficients onto stature, weight and hip circumference. Upper and lower limits of torso shape variation were determined and can be used to redefine the design of the harness that will fit most individual body shapes. Observed allometric changes are used for adjustments to the harness shape in each size. Finally, the estimated outline data were used as templates for a free-form deformation of the complete torso surface using NURBS models (non-uniform rational B-splines).
The Fourier analysis technique and epsilon-pseudo-eigenvalues
Donato, J.M.
1993-07-01
The spectral radii of iteration matrices and the spectra and condition numbers of preconditioned systems are important in forecasting the convergence rates for iterative methods. Unfortunately, the spectra of iteration matrices or preconditioned systems is rarely easily available. The Fourier analysis technique has been shown to be a useful tool in studying the effectiveness of iterative methods by determining approximate expressions for the eigenvalues or condition numbers of matrix systems. For non-symmetric matrices the eigenvalues may be highly sensitive to perturbations. The spectral radii of nonsymmetric iteration matrices may not give a numerically realistic indication of the convergence of the iterative method. Trefethen and others have presented a theory on the use of {epsilon}-pseudo-eigenvalues in the study of matrix equations. For Toeplitz matrices, we show that the theory of c-pseudo-eigenvalues includes the Fourier analysis technique as a limiting case. For non-Toeplitz matrices, the relationship is not clear. We shall examine this relationship for non-Toeplitz matrices that arise when studying preconditioned systems for methods applied to a two-dimensional discretized elliptic differential equation.
A Fourier analysis of symmetry in protein structure.
Taylor, William R; Heringa, Jaap; Baud, Franck; Flores, Tomas P
2002-02-01
The score matrix from a structure comparison program (SAP) was used to search for repeated structures using a Fourier analysis. When tested with artificial data, a simple Fourier transform of the smoothed matrix provided a clear signal of the repeat periodicity that could be used to extract the repeating units with the SAP program. The strength of the Fourier signal was calibrated against the signal from model proteins. The most useful of these was the novel random-walk approach employed to generate realistic 'fake' structures. On the basis of these it was possible to conclude that only a small proportion of protein structures have an unexpected degree of symmetry. Artificially generated 'ideal' folds provided an upper limit on the strength of signal that could be expected from a 'perfectly' repeating compact structure. Unexpectedly, some of the very regular beta-propellor folds attained the same strength but the majority of symmetric structures lay below this region. When native proteins were ranked by the power of their spectrum a wide variety of fold types were seen to score highly. In the betaalpha class, these included the globular betaalpha proteins and the more repetitive leucine-rich betaalpha folds. In the all-beta class; beta-propellors, beta-prisms and beta-helices were found as well as the more globular gamma-crystalin domains. When this ranked list was filtered to remove proteins that contained detectable internal sequence similarity (using the program REPRO), the list became exclusively composed of just globular betaalpha class proteins and in the top 50 re-ranked proteins, only a single 4-fold propellor structure remained.
Analysis of far-infrared emission Fourier transform spectra
NASA Technical Reports Server (NTRS)
Park, J. H.; Carli, B.
1986-01-01
An analysis method that uses the nonlinear least-squares fit technique has been developed for emission spectra obtained with a Fourier transform spectrometer. This method is used for the analysis of submillimeter-region atmospheric emission spectra obtained with a balloon-borne FT spectrometer that was carried out as a correlative measurement for the Limb IR Monitor of the Stratosphere (LIMS) satellite experiment. The retrieved mixing ratios of H2O and O3 in the stratosphere from four spectral intervals have standard deviations of about 10 percent, and the average values agree to within 10 percent of corresponding results from the LIMS satellite experiment which used a broadband emission radiometer in the IR region.
Gas emission analysis based on Fourier transformed infrared spectroscopy
NASA Astrophysics Data System (ADS)
Shu, Xiaowen; Zhang, Xiaofu; Lian, Xu; Jin, Hui
2014-12-01
Solar occultation flux (SOF), a new optical technology to detect the gas based on the traditional Fourier transformed infrared spectroscopy (FTIR) developed quickly recently. In this paper, the system and the data analysis is investigated. First a multilayer transmission model of solar radiation is simulated. Then the retrieval process is illustrated. In the proceeding of the data analysis, the Levenberg-Marquardt non-linear square fitting is used to obtain the gas column concentration and the related emission ratio. After the theory certification, the built up system is conducted in a fertilizer plant in Hefei city .The results show SOF is available in the practice and the retrieved gas column concentration can give important information about the pollution emission and dispersion
Mei, Liang; Svanberg, Sune
2015-03-20
This work presents a detailed study of the theoretical aspects of the Fourier analysis method, which has been utilized for gas absorption harmonic detection in wavelength modulation spectroscopy (WMS). The lock-in detection of the harmonic signal is accomplished by studying the phase term of the inverse Fourier transform of the Fourier spectrum that corresponds to the harmonic signal. The mathematics and the corresponding simulation results are given for each procedure when applying the Fourier analysis method. The present work provides a detailed view of the WMS technique when applying the Fourier analysis method.
Construction and Fourier analysis of invariant surfaces from tracking data
Warnock, R.L.; Ruth, R.D.; Ecklund, K.
1989-03-01
We study invariant surfaces in phase space by application of a symplectic tracking code. For motion in two degrees of freedom we use the code to compute I(s), /Phi/(s) for s = 0,C,2C...nC, where I = (I/sub 1/,I/sub 2/), /Phi/ = (/phi//sub 1/,/phi//sub 2/) are action-angle coordinates of points on a single orbit, and C is the circumference of the reference orbit. As a test to see whether the orbit lies on an invariant surface (i.e., to test for regular and nonresonant motion) we fit the points to a smooth, piece-wise polynomial surface I = /cflx I/(/phi//sub 1/,/phi//sub 2/). We then compute additional points on the same orbit, and test for their closeness to /cflx I/. We find that data from a few thousand turns are sufficient to construct accurate approximations to an invariant surface, even in cases with strong nonlinearities. Two-dimensional Fourier analysis of the surface leads to information on the strength of nonlinear resonances, and provides the generator of a canonical transformation as a Fourier series in angle variables. The generator can be used in a program to derive rigorous bounds on the motion for a finite time T. 6 refs., 2 figs., 1 tab.
Insights into Fourier Synthesis and Analysis: Part I--Using Simple Programs and Equipment.
ERIC Educational Resources Information Center
Moore, Guy S. M.
1988-01-01
Introduced is a unique generation method of Fourier series requiring simple mathematical skills and using computer programs. Discusses Fourier synthesis by microcomputer, and Fourier analysis with simple equipment. Shown are a circuit diagram, computer programs, monitor displays and tables of data. (YP)
Higher-order Fourier analysis over finite fields and applications
NASA Astrophysics Data System (ADS)
Hatami, Pooya
Higher-order Fourier analysis is a powerful tool in the study of problems in additive and extremal combinatorics, for instance the study of arithmetic progressions in primes, where the traditional Fourier analysis comes short. In recent years, higher-order Fourier analysis has found multiple applications in computer science in fields such as property testing and coding theory. In this thesis, we develop new tools within this theory with several new applications such as a characterization theorem in algebraic property testing. One of our main contributions is a strong near-equidistribution result for regular collections of polynomials. The densities of small linear structures in subsets of Abelian groups can be expressed as certain analytic averages involving linear forms. Higher-order Fourier analysis examines such averages by approximating the indicator function of a subset by a function of bounded number of polynomials. Then, to approximate the average, it suffices to know the joint distribution of the polynomials applied to the linear forms. We prove a near-equidistribution theorem that describes these distributions for the group F(n/p) when p is a fixed prime. This fundamental fact was previously known only under various extra assumptions about the linear forms or the field size. We use this near-equidistribution theorem to settle a conjecture of Gowers and Wolf on the true complexity of systems of linear forms. Our next application is towards a characterization of testable algebraic properties. We prove that every locally characterized affine-invariant property of functions f : F(n/p) → R with n∈ N, is testable. In fact, we prove that any such property P is proximity-obliviously testable. More generally, we show that any affine-invariant property that is closed under subspace restrictions and has "bounded complexity" is testable. We also prove that any property that can be described as the property of decomposing into a known structure of low
Fourier domain target transformation analysis in the thermal infrared
NASA Technical Reports Server (NTRS)
Anderson, D. L.
1993-01-01
Remote sensing uses of principal component analysis (PCA) of multispectral images include band selection and optimal color selection for display of information content. PCA has also been used for quantitative determination of mineral types and abundances given end member spectra. The preliminary results of the investigation of target transformation PCA (TTPCA) in the fourier domain to both identify end member spectra in an unknown spectrum, and to then calculate the relative concentrations of these selected end members are presented. Identification of endmember spectra in an unknown sample has previously been performed through bandmatching, expert systems, and binary classifiers. Both bandmatching and expert system techniques require the analyst to select bands or combinations of bands unique to each endmember. Thermal infrared mineral spectra have broad spectral features which vary subtly with composition. This makes identification of unique features difficult. Alternatively, whole spectra can be used in the classification process, in which case there is not need for an expert to identify unique spectra. Use of binary classifiers on whole spectra to identify endmember components has met with some success. These techniques can be used, along with a least squares fit approach on the endmembers identified, to derive compositional information. An alternative to the approach outlined above usese target transformation in conjunction with PCA to both identify and quantify the composition of unknown spectra. Preprocessing of the library and unknown spectra into the fourier domain, and using only a specific number of the components, allows for significant data volume reduction while maintaining a linear relationship in a Beer's Law sense. The approach taken here is to iteratively calculate concentrations, reducing the number of endmember components until only non-negative concentrations remain.
Fourier domain target transformation analysis in the thermal infrared
NASA Technical Reports Server (NTRS)
Anderson, D. L.
1993-01-01
Remote sensing uses of principal component analysis (PCA) of multispectral images include band selection and optimal color selection for display of information content. PCA has also been used for quantitative determination of mineral types and abundances given end member spectra. The preliminary results of the investigation of target transformation PCA (TTPCA) in the fourier domain to both identify end member spectra in an unknown spectrum, and to then calculate the relative concentrations of these selected end members are presented. Identification of endmember spectra in an unknown sample has previously been performed through bandmatching, expert systems, and binary classifiers. Both bandmatching and expert system techniques require the analyst to select bands or combinations of bands unique to each endmember. Thermal infrared mineral spectra have broad spectral features which vary subtly with composition. This makes identification of unique features difficult. Alternatively, whole spectra can be used in the classification process, in which case there is not need for an expert to identify unique spectra. Use of binary classifiers on whole spectra to identify endmember components has met with some success. These techniques can be used, along with a least squares fit approach on the endmembers identified, to derive compositional information. An alternative to the approach outlined above usese target transformation in conjunction with PCA to both identify and quantify the composition of unknown spectra. Preprocessing of the library and unknown spectra into the fourier domain, and using only a specific number of the components, allows for significant data volume reduction while maintaining a linear relationship in a Beer's Law sense. The approach taken here is to iteratively calculate concentrations, reducing the number of endmember components until only non-negative concentrations remain.
Partial differential equation transform - Variational formulation and Fourier analysis.
Wang, Yang; Wei, Guo-Wei; Yang, Siyang
2011-12-01
Nonlinear partial differential equation (PDE) models are established approaches for image/signal processing, data analysis and surface construction. Most previous geometric PDEs are utilized as low-pass filters which give rise to image trend information. In an earlier work, we introduced mode decomposition evolution equations (MoDEEs), which behave like high-pass filters and are able to systematically provide intrinsic mode functions (IMFs) of signals and images. Due to their tunable time-frequency localization and perfect reconstruction, the operation of MoDEEs is called a PDE transform. By appropriate selection of PDE transform parameters, we can tune IMFs into trends, edges, textures, noise etc., which can be further utilized in the secondary processing for various purposes. This work introduces the variational formulation, performs the Fourier analysis, and conducts biomedical and biological applications of the proposed PDE transform. The variational formulation offers an algorithm to incorporate two image functions and two sets of low-pass PDE operators in the total energy functional. Two low-pass PDE operators have different signs, leading to energy disparity, while a coupling term, acting as a relative fidelity of two image functions, is introduced to reduce the disparity of two energy components. We construct variational PDE transforms by using Euler-Lagrange equation and artificial time propagation. Fourier analysis of a simplified PDE transform is presented to shed light on the filter properties of high order PDE transforms. Such an analysis also offers insight on the parameter selection of the PDE transform. The proposed PDE transform algorithm is validated by numerous benchmark tests. In one selected challenging example, we illustrate the ability of PDE transform to separate two adjacent frequencies of sin(x) and sin(1.1x). Such an ability is due to PDE transform's controllable frequency localization obtained by adjusting the order of PDEs. The
Partial differential equation transform — Variational formulation and Fourier analysis
Wang, Yang; Wei, Guo-Wei; Yang, Siyang
2011-01-01
Nonlinear partial differential equation (PDE) models are established approaches for image/signal processing, data analysis and surface construction. Most previous geometric PDEs are utilized as low-pass filters which give rise to image trend information. In an earlier work, we introduced mode decomposition evolution equations (MoDEEs), which behave like high-pass filters and are able to systematically provide intrinsic mode functions (IMFs) of signals and images. Due to their tunable time-frequency localization and perfect reconstruction, the operation of MoDEEs is called a PDE transform. By appropriate selection of PDE transform parameters, we can tune IMFs into trends, edges, textures, noise etc., which can be further utilized in the secondary processing for various purposes. This work introduces the variational formulation, performs the Fourier analysis, and conducts biomedical and biological applications of the proposed PDE transform. The variational formulation offers an algorithm to incorporate two image functions and two sets of low-pass PDE operators in the total energy functional. Two low-pass PDE operators have different signs, leading to energy disparity, while a coupling term, acting as a relative fidelity of two image functions, is introduced to reduce the disparity of two energy components. We construct variational PDE transforms by using Euler-Lagrange equation and artificial time propagation. Fourier analysis of a simplified PDE transform is presented to shed light on the filter properties of high order PDE transforms. Such an analysis also offers insight on the parameter selection of the PDE transform. The proposed PDE transform algorithm is validated by numerous benchmark tests. In one selected challenging example, we illustrate the ability of PDE transform to separate two adjacent frequencies of sin(x) and sin(1.1x). Such an ability is due to PDE transform’s controllable frequency localization obtained by adjusting the order of PDEs. The
Gas Analysis by Fourier Transform Mm-Wave Spectroscopy
NASA Astrophysics Data System (ADS)
Harris, Brent J.; Steber, Amanda L.; Lehmann, Kevin K.; Pate, Brooks H.
2013-06-01
Molecular rotational spectroscopy of low pressure, room temperature gases offers high chemical selectivity and sensitivity with the potential for a wide range of applications in gas analysis. A strength of the technique is the potential to identify molecules that have not been previously studied by rotational spectroscopy by comparing experimental results to predictions of the spectroscopic parameters from quantum chemistry -6 so called library-free detection. The development of Fourier transform mm-wave spectrometers using high peak power (30 mW) active multiplier chain mm-wave sources brings new measurement capabilities to the analysis of complex gas mixtures. Strategies for gas analysis based on high-throughput mm-wave spectroscopy and arbitrary waveform generator driven mm-wave sources are described. Several new measurement capabilities come from the intrinsic time-domain measurement technique. High-sensitivity double-resonance measurements can be performed to speed the analysis of a complex gas sample containing several species. This technique uses a "pi-pulse" to selectively invert the population of two selected rotational energy levels and the effect of this excitation pulse on all other transitions in the spectrometer operating range is monitored using segmented chirped-pulse Fourier transform spectroscopy. This method can lead to automated determination of the molecular rotational constants. Rapid pulse duration scan experiments can be used to estimate the magnitude and direction of the dipole moment of the molecule from an unknown spectrum. Coherent pulse echo experiments, using the traditional Hahn sequence or two-color population recovery methods, can be used to determine the collisional relaxation rate of the unknown molecule. This rate determination improves the ability to estimate the mass of the unknown molecule from the determination of the Doppler dephasing rate. By performing a suite of automated, high-throughput measurements, there is the
Fourier Transform Infrared Spectroscopy and Photoacoustic Spectroscopy for Saliva Analysis.
Mikkonen, Jopi J W; Raittila, Jussi; Rieppo, Lassi; Lappalainen, Reijo; Kullaa, Arja M; Myllymaa, Sami
2016-09-01
Saliva provides a valuable tool for assessing oral and systemic diseases, but concentrations of salivary components are very small, calling the need for precise analysis methods. In this work, Fourier transform infrared (FT-IR) spectroscopy using transmission and photoacoustic (PA) modes were compared for quantitative analysis of saliva. The performance of these techniques was compared with a calibration series. The linearity of spectrum output was verified by using albumin-thiocyanate (SCN(-)) solution at different SCN(-) concentrations. Saliva samples used as a comparison were obtained from healthy subjects. Saliva droplets of 15 µL were applied on the silicon sample substrate, 6 drops for each specimen, and dried at 37 ℃ overnight. The measurements were carried out using an FT-IR spectrometer in conjunction with an accessory unit for PA measurements. The findings with both transmission and PA modes mirror each other. The major bands presented were 1500-1750 cm(-1) for proteins and 1050-1200 cm(-1) for carbohydrates. In addition, the distinct spectral band at 2050 cm(-1) derives from SCN(-) anions, which is converted by salivary peroxidases to hypothiocyanate (OSCN(-)). The correlation between the spectroscopic data with SCN(-) concentration (r > 0.990 for transmission and r = 0.967 for PA mode) was found to be significant (P < 0.01), thus promising to be utilized in future applications. © The Author(s) 2016.
Kim, Hwi; Kim, Seyoon; Lee, Il-Min; Lee, Byoungho
2006-09-01
A pseudo-Fourier modal analysis method for analyzing finite-sized dielectric slabs with arbitrary longitudinal permittivity and permeability profiles is proposed. In the proposed method, the permittivity and permeability profiles are represented by the Fourier expansion without using the conventional staircase approximation. The total electromagnetic field distribution inside a dielectric slab is a linear superposition of extracted pseudo-Fourier eigenmodes with specific coupling coefficients selected to satisfy given boundary conditions. The proposed pseudo-Fourier modal analysis method shows excellent agreement with the conventional rigorous coupled-wave analysis with the S-matrix method.
HIGH RESOLUTION FOURIER ANALYSIS WITH AUTO-REGRESSIVE LINEAR PREDICTION
Barton, J.; Shirley, D.A.
1984-04-01
Auto-regressive linear prediction is adapted to double the resolution of Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) Fourier transforms. Even with the optimal taper (weighting function), the commonly used taper-and-transform Fourier method has limited resolution: it assumes the signal is zero beyond the limits of the measurement. By seeking the Fourier spectrum of an infinite extent oscillation consistent with the measurements but otherwise having maximum entropy, the errors caused by finite data range can be reduced. Our procedure developed to implement this concept adapts auto-regressive linear prediction to extrapolate the signal in an effective and controllable manner. Difficulties encountered when processing actual ARPEFS data are discussed. A key feature of this approach is the ability to convert improved measurements (signal-to-noise or point density) into improved Fourier resolution.
FOURIER ANALYSIS OF EXTENDED FINE STRUCTURE WITH AUTOREGRESSIVE PREDICTION
Barton, J.; Shirley, D.A.
1985-01-01
Autoregressive prediction is adapted to double the resolution of Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) Fourier transforms. Even with the optimal taper (weighting function), the commonly used taper-and-transform Fourier method has limited resolution: it assumes the signal is zero beyond the limits of the measurement. By seeking the Fourier spectrum of an infinite extent oscillation consistent with the measurements but otherwise having maximum entropy, the errors caused by finite data range can be reduced. Our procedure developed to implement this concept applies autoregressive prediction to extrapolate the signal to an extent controlled by a taper width. Difficulties encountered when processing actual ARPEFS data are discussed. A key feature of this approach is the ability to convert improved measurements (signal-to-noise or point density) into improved Fourier resolution.
On the Fourier and Wavelet Analysis of Coronal Time Series
NASA Astrophysics Data System (ADS)
Auchère, F.; Froment, C.; Bocchialini, K.; Buchlin, E.; Solomon, J.
2016-07-01
Using Fourier and wavelet analysis, we critically re-assess the significance of our detection of periodic pulsations in coronal loops. We show that the proper identification of the frequency dependence and statistical properties of the different components of the power spectra provides a strong argument against the common practice of data detrending, which tends to produce spurious detections around the cut-off frequency of the filter. In addition, the white and red noise models built into the widely used wavelet code of Torrence & Compo cannot, in most cases, adequately represent the power spectra of coronal time series, thus also possibly causing false positives. Both effects suggest that several reports of periodic phenomena should be re-examined. The Torrence & Compo code nonetheless effectively computes rigorous confidence levels if provided with pertinent models of mean power spectra, and we describe the appropriate manner in which to call its core routines. We recall the meaning of the default confidence levels output from the code, and we propose new Monte-Carlo-derived levels that take into account the total number of degrees of freedom in the wavelet spectra. These improvements allow us to confirm that the power peaks that we detected have a very low probability of being caused by noise.
Fourier analysis of polar cap electric field and current distributions
NASA Technical Reports Server (NTRS)
Barbosa, D. D.
1984-01-01
A theoretical study of high-latitude electric fields and currents, using analytic Fourier analysis methods, is conducted. A two-dimensional planar model of the ionosphere with an enhanced conductivity auroral belt and field-aligned currents at the edges is employed. Two separate topics are treated. A field-aligned current element near the cusp region of the polar cap is included to investigate the modifications to the convection pattern by the east-west component of the interplanetary magnetic field. It is shown that a sizable one-cell structure is induced near the cusp which diverts equipotential contours to the dawnside or duskside, depending on the sign of the cusp current. This produces characteristic dawn-dusk asymmetries to the electric field that have been previously observed over the polar cap. The second topic is concerned with the electric field configuration obtained in the limit of perfect shielding, where the field is totally excluded equatorward of the auroral oval. When realistic field-aligned current distributions are used, the result is to produce severely distorted, crescent-shaped equipotential contours over the cap. Exact, analytic formulae applicable to this case are also provided.
Cutoff probe using Fourier analysis for electron density measurement
Na, Byung-Keun; You, Kwang-Ho; Kim, Dae-Woong; Chang, Hong-Young; You, Shin-Jae; Kim, Jung-Hyung
2012-01-15
This paper proposes a new method for cutoff probe using a nanosecond impulse generator and an oscilloscope, instead of a network analyzer. The nanosecond impulse generator supplies a radiating signal of broadband frequency spectrum simultaneously without frequency sweeping, while frequency sweeping method is used by a network analyzer in a previous method. The transmission spectrum (S21) was obtained through a Fourier analysis of the transmitted impulse signal detected by the oscilloscope and was used to measure the electron density. The results showed that the transmission frequency spectrum and the electron density obtained with a new method are very close to those obtained with a previous method using a network analyzer. And also, only 15 ns long signal was necessary for spectrum reconstruction. These results were also compared to the Langmuir probe's measurements with satisfactory results. This method is expected to provide not only fast measurement of absolute electron density, but also function in other diagnostic situations where a network analyzer would be used (a hairpin probe and an impedance probe) by replacing the network analyzer with a nanosecond impulse generator and an oscilloscope.
Fourier transform infrared spectroscopy for molecular analysis of microbial cells.
Ojeda, Jesús J; Dittrich, Maria
2012-01-01
A rapid and inexpensive method to characterise chemical cell properties and identify the functional groups present in the cell wall is Fourier transform infrared spectroscopy (FTIR). Infrared spectroscopy is a well-established technique to identify functional groups in organic molecules based on their vibration modes at different infrared wave numbers. The presence or absence of functional groups, their protonation states, or any changes due to new interactions can be monitored by analysing the position and intensity of the different infrared absorption bands. Additionally, infrared spectroscopy is non-destructive and can be used to monitor the chemistry of living cells. Despite the complexity of the spectra, the elucidation of functional groups on Gram-negative and Gram-positive bacteria has been already well documented in the literature. Recent advances in detector sensitivity have allowed the use of micro-FTIR spectroscopy as an important analytical tool to analyse biofilm samples without the need of previous treatment. Using FTIR spectroscopy, the infrared bands corresponding to proteins, lipids, polysaccharides, polyphosphate groups, and other carbohydrate functional groups on the bacterial cells can now be identified and compared along different conditions. Despite some differences in FTIR spectra among bacterial strains, experimental conditions, or changes in microbiological parameters, the IR absorption bands between approximately 4,000 and 400 cm(-1) are mainly due to fundamental vibrational modes and can often be assigned to the same particular functional groups. In this chapter, an overview covering the different sample preparation protocols for infrared analysis of bacterial cells is given, alongside the basic principles of the technique, the procedures for calculating vibrational frequencies based on simple harmonic motion, and the advantages and disadvantages of FTIR spectroscopy for the analysis of microorganisms.
A Review of Maximum Entropy Spectral Analysis and Applications to Fourier Spectroscopy.
1985-04-03
Jean Baptiste Joseph Fourier to the French Academy. (There are constraints on the function, but analyticity is not one of them.) The distinguished...Spectral Analysis and Applications to Fourier Spectroscopy EDMOND MA. DEWAN DTIC 3 April 1985 Approved for public release; distribution unlimited...1jop11Litions to Fourier , Soert!rosrom.___________ 12 PERSONAL AIUTITORISI D)ea in, Fdyond Ml. 13. TYPE OF REPORT 13b TIME COVE RED 114 DATE OF
Yang, Jiao-lan; Luo, Tian
2002-08-01
This paper expatriated the applications for Fourier transform infrared spectrum analysis technique in preventive medicine field from four aspects of environmental pollution, life science, and the latest infrared analysis methods and near infrared analysis technique. In the environmental pollution field, it mainly described the advantages, the limitations and the solutions of the combined applications for gas chromatograph and Fourier transform infrared spectrum. In the life science field, it described the application for Fourier transform infrared spectrum analysis technique on protein secondary structure, membrane protein, phospholipid, nucleic acid, cell, tissue. In addition, it also introduced a few latest infrared analysis methods and the applications for near infrared spectrum analysis technique in food, cosmetic, drug.
NASA Astrophysics Data System (ADS)
Scherer, Philipp O. J.
Fourier transformation is a very important tool for signal analysis but also helpful to simplify the solution of differential equations or the calculation of convolution integrals. An important numerical method is the discrete Fourier transformation which can be used for trigonometric interpolation and also as a numerical approximation to the continuous Fourier integral. It can be realized efficiently by Goertzel's algorithm or the family of fast Fourier transformation methods. For real valued even functions the computationally simpler discrete cosine transformation can be applied. Several computer experiments demonstrate the principles of trigonometric interpolation and nonlinear filtering.
Identification of Magnetic Materials By Discrete Fourier Analysis
2007-11-02
on the coercivity, and on the highest applied field. The field and the coercivity dependences can be separated by using complex Fourier coefficients...FFT) 2.4. Definitions used 3. FT and DFT of magnetic hysteresis 3.1. Linear model of the M-H loop 3.2. Non-linear (erf function) model 3.3
Using Musical Intervals to Demonstrate Superposition of Waves and Fourier Analysis
ERIC Educational Resources Information Center
LoPresto, Michael C.
2013-01-01
What follows is a description of a demonstration of superposition of waves and Fourier analysis using a set of four tuning forks mounted on resonance boxes and oscilloscope software to create, capture and analyze the waveforms and Fourier spectra of musical intervals.
Using musical intervals to demonstrate superposition of waves and Fourier analysis
NASA Astrophysics Data System (ADS)
LoPresto, Michael C.
2013-09-01
What follows is a description of a demonstration of superposition of waves and Fourier analysis using a set of four tuning forks mounted on resonance boxes and oscilloscope software to create, capture and analyze the waveforms and Fourier spectra of musical intervals.
Using Musical Intervals to Demonstrate Superposition of Waves and Fourier Analysis
ERIC Educational Resources Information Center
LoPresto, Michael C.
2013-01-01
What follows is a description of a demonstration of superposition of waves and Fourier analysis using a set of four tuning forks mounted on resonance boxes and oscilloscope software to create, capture and analyze the waveforms and Fourier spectra of musical intervals.
Transfer function analysis in epi-illumination Fourier ptychography
Pacheco, Shaun; Salahieh, Basel; Milster, Tom; Rodriguez, Jeffrey J.; Liang, Rongguang
2016-01-01
This letter explores Fourier ptychography (FP) using epi-illumination. The approach effectively modifies the FP transfer function to be coherent-like out to the incoherent limit of twice the numerical aperture over the wavelength 2NA/λ. Images reconstructed using this approach are shown to have higher contrast at finer details compared with images using incoherent illumination, indicating that the FP transfer function is superior in high spatial frequency regions. PMID:26565870
Analysis and application of Fourier transform spectroscopy in atmospheric remote sensing
NASA Technical Reports Server (NTRS)
Park, J. H.
1984-01-01
An analysis method for Fourier transform spectroscopy is summarized with applications to various types of distortion in atmospheric absorption spectra. This analysis method includes the fast Fourier transform method for simulating the interferometric spectrum and the nonlinear least-squares method for retrieving the information from a measured spectrum. It is shown that spectral distortions can be simulated quite well and that the correct information can be retrieved from a distorted spectrum by this analysis technique.
Precise and fast spatial-frequency analysis using the iterative local Fourier transform.
Lee, Sukmock; Choi, Heejoo; Kim, Dae Wook
2016-09-19
The use of the discrete Fourier transform has decreased since the introduction of the fast Fourier transform (fFT), which is a numerically efficient computing process. This paper presents the iterative local Fourier transform (ilFT), a set of new processing algorithms that iteratively apply the discrete Fourier transform within a local and optimal frequency domain. The new technique achieves 2^{10} times higher frequency resolution than the fFT within a comparable computation time. The method's superb computing efficiency, high resolution, spectrum zoom-in capability, and overall performance are evaluated and compared to other advanced high-resolution Fourier transform techniques, such as the fFT combined with several fitting methods. The effectiveness of the ilFT is demonstrated through the data analysis of a set of Talbot self-images (1280 × 1024 pixels) obtained with an experimental setup using grating in a diverging beam produced by a coherent point source.
Thibos, L N; Wheeler, W; Horner, D
1997-06-01
The description of sphero-cylinder lenses is approached from the viewpoint of Fourier analysis of the power profile. It is shown that the familiar sine-squared law leads naturally to a Fourier series representation with exactly three Fourier coefficients, representing the natural parameters of a thin lens. The constant term corresponds to the mean spherical equivalent (MSE) power, whereas the amplitude and phase of the harmonic correspond to the power and axis of a Jackson cross-cylinder (JCC) lens, respectively. Expressing the Fourier series in rectangular form leads to the representation of an arbitrary sphero-cylinder lens as the sum of a spherical lens and two cross-cylinders, one at axis 0 degree and the other at axis 45 degrees. The power of these three component lenses may be interpreted as (x,y,z) coordinates of a vector representation of the power profile. Advantages of this power vector representation of a sphero-cylinder lens for numerical and graphical analysis of optometric data are described for problems involving lens combinations, comparison of different lenses, and the statistical distribution of refractive errors.
Fourier analysis of a gated blood-pool study during atrial flutter
Makler, P.T. Jr.; McCarthy, D.M.; London, J.W.; Sandler, M.S.; Alavi, A.
1983-08-01
First-harmonic Fourier analysis of a gated blood-pool study is based on the assumption that the cardiac chambers contract once per cardiac cycle. In atrial arrhythmias this condition may not exist for the atria. We recently studied a patient with atrial flutter and 2:1 artioventricular conduction. There were predictable alterations in the first-harmonic Fourier phase and amplitude images. The observed changes from first-harmonic Fourier analysis were: (a) very low atrial amplitude values, and (b) absence of identifiable atrial regions on the phase image.
Spatial Fourier Analysis of a Free-Free Beam for Structural Damage Detection
NASA Astrophysics Data System (ADS)
Bhagat, Mihir; Ganguli, Ranjan
2014-07-01
Free-free beams (FFB) are used to model many structures, such as missiles, rockets, MEMS (Micro Electro Mechanical Systems), etc. This paper aims to illustrate a novel structural health monitoring method-Fourier analysis of mode shapes of damaged beams-and extend it to the case of FFB. The damaged mode shapes of FFB are obtained by a finite element model and then studied using spatial Fourier analysis. The effect of noise in the mode shape data is considered and it is found that the Fourier coefficients provide a useful indication about the location and size of damage.
Fourier analysis of cell motility: correlation of motility with metastatic potential.
Partin, A W; Schoeniger, J S; Mohler, J L; Coffey, D S
1989-01-01
We report the development of a computerized, mathematical system for quantitating the various types of cell motility. This Fourier analysis method simultaneously quantifies for individual cells (i) temporal changes in cell shape represented by cell ruffling, undulation, and pseudopodal extension, (ii) cell translation, and (iii) average cell size and shape. This spatial-temporal Fourier analysis was tested on a series of well-characterized animal tumor cell lines of rat prostatic cancer to study in a quantitative manner the correlation of cell motility with increasing in vivo metastatic potential. Fourier motility coefficients measuring pseudopodal extension correlated best with metastatic potential in the cell lines studied. This study demonstrated that Fourier analysis provides quantitative measurement of cell motility that may be applied to the study of biological processes. This analysis should aid in the study of the motility of individual cells in various areas of cellular and tumor biology. Images PMID:2919174
Fourier-Beltrami Analysis of Dynamo Magnetic Field
NASA Astrophysics Data System (ADS)
Kato, Masahiko; Kusano, Kanya
2000-10-01
We performed a numerical analyses of the kinematic dynamo field based on the Fourier-Beltrami expansion technique. Since Beltrami function, which is the eigenfunction of curl operator, forms a complete set for the divergence free vector field, we can uniquely decompose any magnetic field into the positive and the negative helicity field using this technique. The objective of this work is to study the characteristic structure of the magnetic helicity generated by dynamo action. We first solve the kinematic dynamo equation for several flow models using high resolution numerical calculation, and numerically expands the solution by Beltrami functions. First we clearly show that dynamo field can grow if and only if the sign of the current helicity, which is created as a result of dynamo process, is same as the kinetic helicity. Secondly, we study the slow dynamo process produced by an integrable flow such as the Roberts cell, and found that the solution of that may be classified into two different classes between the cases those the magnetic Reynolds number (R) is lower and higher than the value to maximize the dynamo growth rate. In the lower R case, the asymmetry between the positive and the negative helicity components, that is the source of dynamo action, exists in the lowest Fourier modes, whereas in the higher R case it shifts to the higher Fourier modes, where the nonlinear coupling is largely affected by the resistive diffusion. Also the coupling between the positive and the negative component is calculated, and it is revealed that the nonlinear coupling between different sign modes is stronger in lower modes. It indicates that the slowing down of dynamo action might be caused by the equipartition of the helicity into different Beltrami modes. Also the result for chaotic flows, those are the candidate of fast dynamo, will be presented.
Analysis of a thioether lubricant by infrared Fourier microemission spectrophotometry
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.; Morales, W.; Lauer, J. L.
1986-01-01
An infrared Fourier microemission spectrophotometer is used to obtain spectra (wavenumber range, 630 to 1230 0.1 cm) from microgram quantities of thioether lubricant samples deposited on aluminum foil. Infrared bands in the spectra are reproducible and could be identified as originating from aromatic species (1,3-disubstituted benzenes). Spectra from all samples (neat and formulated, used and unused) are very similar. Additives (an acid and a phosphinate) present in low concentration (0.10 percent) in the formulated fluid are not detected. This instrument appears to be a viable tool in helping to identify lubricant components separated by liquid chromatography.
Modeling of woven fabric structures based on fourier image analysis.
Escofet, J; Millán, M S; Ralló, M
2001-12-01
The periodic woven structures of fabrics can be defined on the basis of the convolution theorem. Here an elementary unit with the minimum number of thread crossings and a nonrectangular two-dimensional comb function for the pattern of repetition is used to define woven structures. The expression derived is more compact than the conventional diagram for weaving, and the parameters that one needs to determine a given fabric can easily be extracted from its Fourier transform. Several results with real samples of the most common structures-plain, twill, and satin-are presented.
A Fourier analysis for a fast simulation algorithm. [for switching converters
NASA Technical Reports Server (NTRS)
King, Roger J.
1988-01-01
This paper presents a derivation of compact expressions for the Fourier series analysis of the steady-state solution of a typical switching converter. The modeling procedure for the simulation and the steady-state solution is described, and some desirable traits for its matrix exponential subroutine are discussed. The Fourier analysis algorithm was tested on a phase-controlled parallel-loaded resonant converter, providing an experimental confirmation.
Fourier analysis of high-spatial-frequency holographic phase gratings
NASA Astrophysics Data System (ADS)
Bányász, I.
2005-11-01
Plane-wave holograms were recorded on Agfa Gevaert 8E75HD holographic plates, in a wide range of bias exposures and fringe visibilities. Plates were processed by developer AAC and bleaching agent R-9. Phase gratings were studied by phase-contrast microscopy, using a high-power immersion (100×) objective. Phase-contrast photomicrographs were Fourier analysed. Thus first-, second- and third-order modulations of the refractive index as functions of bias exposure and visibility of the recording interference pattern could be determined. Relative amplitudes of the higher-order modulations to that of the first-order modulation can serve as a measure of the nonlinearity of the holographic recording. The results presented here can be used to check the validity of grating profile calculations based on higher-order coupled-wave theory.
Fourier analysis of numerical algorithms for the Maxwell equations
NASA Technical Reports Server (NTRS)
Liu, Yen
1993-01-01
The Fourier method is used to analyze the dispersive, dissipative, and isotropy errors of various spatial and time discretizations applied to the Maxwell equations on multi-dimensional grids. Both Cartesian grids and non-Cartesian grids based on hexagons and tetradecahedra are studied and compared. The numerical errors are quantitatively determined in terms of phase speed, wave number, propagation direction, gridspacings, and CFL number. The study shows that centered schemes are more efficient than upwind schemes. The non-Cartesian grids yield superior isotropy and higher accuracy than the Cartesian ones. For the centered schemes, the staggered grids produce less errors than the unstaggered ones. A new unstaggered scheme which has all the best properties is introduced. The study also demonstrates that a proper choice of time discretization can reduce the overall numerical errors due to the spatial discretization.
Fourier Analysis of the Approximation Power of Principal Shift-Invariant Spaces
1991-07-01
finite, and hence arbitrary linear combinations are allowed in this sum. Approximation properties are primarily studied via approximation orders: for the...approximation order (and hopes of course to match them). The standard approach to lower bounds is via the quasi-interpolation argument: first, a space H C...crux of all the analysis here is the linkage between the Fourier transform and Fourier series via the periodization argument, and which is best expressed
Gasoline analysis and brand identification using a static Fourier-transform ultraviolet spectrometer
NASA Astrophysics Data System (ADS)
Steers, Darren; Gerrard, Carl; Hirst, Bill; Sibbett, Wilson; Padgett, Miles J.
1999-11-01
The ultraviolet (UV) absorption spectra of several gasoline samples are measured using a compact static Fourier-transform (FT) spectrometer. The FT-UV spectrometer is constructed from crystalline quartz Wollaston prisms and polarizers fabricated from beta barium borate to form an interferogram in the spatial domain. The interferogram is recorded with a UV-sensitive detector array and Fourier transformed to yield spectra. Investigation using principal component analysis enables the identification of important gasoline properties such as origin.
The Fourier decomposition method for nonlinear and non-stationary time series analysis.
Singh, Pushpendra; Joshi, Shiv Dutt; Patney, Rakesh Kumar; Saha, Kaushik
2017-03-01
for many decades, there has been a general perception in the literature that Fourier methods are not suitable for the analysis of nonlinear and non-stationary data. In this paper, we propose a novel and adaptive Fourier decomposition method (FDM), based on the Fourier theory, and demonstrate its efficacy for the analysis of nonlinear and non-stationary time series. The proposed FDM decomposes any data into a small number of 'Fourier intrinsic band functions' (FIBFs). The FDM presents a generalized Fourier expansion with variable amplitudes and variable frequencies of a time series by the Fourier method itself. We propose an idea of zero-phase filter bank-based multivariate FDM (MFDM), for the analysis of multivariate nonlinear and non-stationary time series, using the FDM. We also present an algorithm to obtain cut-off frequencies for MFDM. The proposed MFDM generates a finite number of band-limited multivariate FIBFs (MFIBFs). The MFDM preserves some intrinsic physical properties of the multivariate data, such as scale alignment, trend and instantaneous frequency. The proposed methods provide a time-frequency-energy (TFE) distribution that reveals the intrinsic structure of a data. Numerical computations and simulations have been carried out and comparison is made with the empirical mode decomposition algorithms.
Fourier transform infrared spectroscopic analysis of cell differentiation
NASA Astrophysics Data System (ADS)
Ishii, Katsunori; Kimura, Akinori; Kushibiki, Toshihiro; Awazu, Kunio
2007-02-01
Stem cells and its differentiations have got a lot of attentions in regenerative medicine. The process of differentiations, the formation of tissues, has become better understood by the study using a lot of cell types progressively. These studies of cells and tissue dynamics at molecular levels are carried out through various approaches like histochemical methods, application of molecular biology and immunology. However, in case of using regenerative sources (cells, tissues and biomaterials etc.) clinically, they are measured and quality-controlled by non-invasive methods from the view point of safety. Recently, the use of Fourier Transform Infrared spectroscopy (FT-IR) has been used to monitor biochemical changes in cells, and has gained considerable importance. The objective of this study is to establish the infrared spectroscopy of cell differentiation as a quality control of cell sources for regenerative medicine. In the present study, as a basic study, we examined the adipose differentiation kinetics of preadipocyte (3T3-L1) and the osteoblast differentiation kinetics of bone marrow mesenchymal stem cells (Kusa-A1) to analyze the infrared absorption spectra. As a result, we achieved to analyze the adipose differentiation kinetics using the infrared absorption peak at 1739 cm-1 derived from ester bonds of triglyceride and osteoblast differentiation kinetics using the infrared absorption peak at 1030 cm-1 derived from phosphate groups of calcium phosphate.
Fourier optics analysis of grating sensors with tilt errors.
Ferhanoglu, Onur; Toy, M Fatih; Urey, Hakan
2011-06-15
Dynamic diffraction gratings can be microfabricated with precision and offer extremely sensitive displacement measurements and light intensity modulation. The effect of pure translation of the moving part of the grating on diffracted order intensities is well known. This study focuses on the parameters that limit the intensity and the contrast of the interference. The effects of grating duty cycle, mirror reflectivities, sensor tilt and detector size are investigated using Fourier optics theory and Gaussian beam optics. Analytical findings reveal that fringe visibility becomes <0.3 when the optical path variation exceeds half the wavelength within the grating interferometer. The fringe visibility can be compensated by monitoring the interfering portion of the diffracted order light only through detector size reduction in the expense of optical power. Experiments were conducted with a grating interferometer that resulted in an eightfold increase in fringe visibility with reduced detector size, which is in agreement with theory. Findings show that diffraction grating readout principle is not limited to translating sensors but also can be used for sensors with tilt or other deflection modes.
Fourier Analysis of Conservation Patterns in Protein Secondary Structure.
Palaniappan, Ashok; Jakobsson, Eric
2017-01-01
Residue conservation is a common observation in alignments of protein families, underscoring positions important in protein structure and function. Though many methods measure the level of conservation of particular residue positions, currently we do not have a way to study spatial oscillations occurring in protein conservation patterns. It is known that hydrophobicity shows spatial oscillations in proteins, which is characterized by computing the hydrophobic moment of the protein domains. Here, we advance the study of moments of conservation of protein families to know whether there might exist spatial asymmetry in the conservation patterns of regular secondary structures. Analogous to the hydrophobic moment, the conservation moment is defined as the modulus of the Fourier transform of the conservation function of an alignment of related protein, where the conservation function is the vector of conservation values at each column of the alignment. The profile of the conservation moment is useful in ascertaining any periodicity of conservation, which might correlate with the period of the secondary structure. To demonstrate the concept, conservation in the family of potassium ion channel proteins was analyzed using moments. It was shown that the pore helix of the potassium channel showed oscillations in the moment of conservation matching the period of the α-helix. This implied that one side of the pore helix was evolutionarily conserved in contrast to its opposite side. In addition, the method of conservation moments correctly identified the disposition of the voltage sensor of voltage-gated potassium channels to form a 310 helix in the membrane.
Insights into Fourier Synthesis and Analysis: Part 2--A Simplified Mathematics.
ERIC Educational Resources Information Center
Moore, Guy S. M.
1988-01-01
Introduced is an analysis of a waveform into its Fourier components. Topics included are simplified analysis of a square waveform, a triangular waveform, half-wave rectified alternating current (AC), and impulses. Provides the mathematical expression and simplified analysis diagram of each waveform. (YP)
2014-10-16
1 Extracting micro-Doppler radar signatures from rotating targets using Fourier- Bessel Transform and Time-Frequency analysis P. Suresh1,T...kvenkataramanaiah@sssihl.edu.in Abstract In this paper, we report the efficiency of Fourier Bessel transform and time-frequency based method in conjunction with...decomposed into stationary and non-stationary components using Fourier Bessel transform in conjunction with the fractional Fourier transform. The
Refined Fourier-transform method of analysis of full two-dimensional digitized interferograms
NASA Astrophysics Data System (ADS)
Lovrić, Davorin; Vučić, Zlatko; Gladić, Jadranko; Demoli, Nazif; Mitrović, Slobodan; Milas, Mirko
2003-03-01
A refined Fourier-transform method of analysis of interference patterns is presented. The refinements include a method of automatic background subtraction and a way of treating the problem of heterodyning. The method proves particularly useful for analysis of long sequences of interferograms.
Fourier analysis of human soft tissue facial shape: sex differences in normal adults.
Ferrario, V F; Sforza, C; Schmitz, J H; Miani, A; Taroni, G
1995-01-01
Sexual dimorphism in human facial form involves both size and shape variations of the soft tissue structures. These variations are conventionally appreciated using linear and angular measurements, as well as ratios, taken from photographs or radiographs. Unfortunately this metric approach provides adequate quantitative information about size only, eluding the problems of shape definition. Mathematical methods such as the Fourier series allow a correct quantitative analysis of shape and of its changes. A method for the reconstruction of outlines starting from selected landmarks and for their Fourier analysis has been developed, and applied to analyse sex differences in shape of the soft tissue facial contour in a group of healthy young adults. When standardised for size, no sex differences were found between both cosine and sine coefficients of the Fourier series expansion. This shape similarity was largely overwhelmed by the very evident size differences and it could be measured only using the proper mathematical methods. PMID:8586558
Assessment of the site of ventricular activation by Fourier analysis of gated blood-pool studies
Links, J.M.; Raichlen, J.S.; Wagner, H.N. Jr.; Reid, P.R.
1985-01-01
The authors studied the use of first-harmonic Fourier analysis of gated blood-pool images to assess the site of ventricular activation in a group of 12 patients undergoing electrophysiologic pacing studies. They acquired gated blood-pool studies during pacing at up to four sites at each of two different rates. A total of 50 studies were made. At a pacing rate of 100 beats/min, when the pacing electrode was the right-ventricular outflow tract, 7/8; at the anterolateral left-ventricular wall, 4/4. When the Fourier activation site was at the right-ventricular apex, 9/9 times the pacing electrode was there; at the right-ventricular outflow tract, 7/10; in the left ventricle, 4/4. Fourier analysis of gated blood-pool studies can help identify the site of ventricular activation but is not sufficiently accurate to fully replace endocardial mapping.
Investigation of Aperiodic Time Processes with Autocorrelation and Fourier Analysis
NASA Technical Reports Server (NTRS)
Exner, Marie Luise
1958-01-01
Autocorrelation and frequency analyses of a series of aperiodic time events, in particular, filtered noises and sibilant sounds, were made. The position and band width of the frequency ranges are best obtained from the frequency analysis, but the energies contained in the several bands are most easily obtained from the autocorrelation function. The mean number of zero crossings of the time function was determined from the curvature of the latter function in the vicinity of the zero crossing, and also with the aid of a decimal counter. The second method was found to be more exact.
Wahbi, A M; Abdine, H; Korany, M A
1978-05-01
The basic principle for the use of Fourier functions in spectrophotometric analysis is discussed. Fourier function coefficients are linearly related to concentration and are associated with relative standard deviations of less than 1%. The proper choice of function and range, number of points and the transformation of an absorption curve are discussed. New trigonometric functions are derived to correct for linear irrelevant absorption. The method is illustrated by the determination of progesterone and testosterone propionate in oily solutions without prior chromatography. The results obtained are compared with those obtained using orthogonal polynomials.
NASA Astrophysics Data System (ADS)
Huang, Yulin; Wu, Junjie; Li, Zhongyu; Yang, Haiguang; Yang, Jianyu
2016-01-01
Raw data generation for synthetic aperture radar (SAR) is very powerful for designing systems and testing imaging algorithms. In this paper, a raw data generation method based on Fourier analysis for one-stationary bistatic SAR is presented. In this mode, two-dimensional (2-D) spatial variation is the major problem faced by the fast Fourier transform-based raw data generation. To deal with this problem, a 2-D linearization followed by a 2-D frequency transformation is employed in this method. This frequency transformation can reflect the 2-D spatial variation. Residual phase compensation is also discussed. Numerical simulation verifies the method.
Computational analysis of thermal transfer and related phenomena based on the Fourier method
NASA Astrophysics Data System (ADS)
Vala, Jiří; Jarošová, Petra
2017-07-01
Modelling and simulation of thermal processes, based on the principles of classical thermodynamics, requires numerical analysis of partial differential equations of evolution of the parabolic type. This paper demonstrates how the generalized Fourier method can be applied to the development of robust and effective computational algorithms, with the direct application to the design and performance of buildings with controlled energy consumption.
Program for the analysis of time series. [by means of fast Fourier transform algorithm
NASA Technical Reports Server (NTRS)
Brown, T. J.; Brown, C. G.; Hardin, J. C.
1974-01-01
A digital computer program for the Fourier analysis of discrete time data is described. The program was designed to handle multiple channels of digitized data on general purpose computer systems. It is written, primarily, in a version of FORTRAN 2 currently in use on CDC 6000 series computers. Some small portions are written in CDC COMPASS, an assembler level code. However, functional descriptions of these portions are provided so that the program may be adapted for use on any facility possessing a FORTRAN compiler and random-access capability. Properly formatted digital data are windowed and analyzed by means of a fast Fourier transform algorithm to generate the following functions: (1) auto and/or cross power spectra, (2) autocorrelations and/or cross correlations, (3) Fourier coefficients, (4) coherence functions, (5) transfer functions, and (6) histograms.
Rose, Adam D; Woods, Michael G; Clement, John G; Thomas, C David L
2003-06-01
This study was designed to investigate the relationship between traditional skeletal cephalometric measurement and Fourier analysis of the lateral soft-tissue profile. A random sample of 121 untreated subjects of European descent, with wide ranges of malocclusions and underlying facial patterns, was selected in the Orthodontic Unit at the University of Melbourne. Lateral cephalograms were available for all subjects. Both traditional lateral cephalometric analysis and Fourier soft-tissue profile analysis were carried out. Multivariate statistical analysis among 11 hard-tissue cephalometric measurements and the first 50 Fourier harmonics was then performed. This analysis formed the basis for a subsequently proposed soft-tissue prediction model. From this model, 50 predicted x- and y-harmonics were generated for each subject in the total sample. Calculation of Pearson's correlation coefficients between the actual and predicted harmonics revealed strong relationships for many of the lower-order harmonics. To further test the model, the prediction-coefficients derived from all 121 subjects were then used to make predictions for the first 50 x- and y-harmonics for a subgroup of 10 independent test subjects. Once again, Pearson's correlations between the actual and predicted harmonics of the test model in the lower-order harmonics revealed strong associations. Superimposition of the actual and predicted soft-tissue outlines, however, revealed that much actual detail in the region between the nose and the chin was still lost using the predicted Fourier harmonics. This suggests that soft-tissue prediction based on this Fourier test model, while already useful in Forensic facial reconstruction, may not yet be appropriate for useful diagnosis and planning in clinical disciplines. Copyright 2003 Wiley-Liss, Inc.
Strain analysis by mismatch moire method and grid method using Fourier transform
NASA Astrophysics Data System (ADS)
Morimoto, Y.; Seguchi, Y.; Higashi, T.
1990-01-01
We have formerly presented a new method of the moire analysis of strain using the Fourier transform. It uses the phase information of the moire fringe brightness. By shifting the Fourier spectrum of the image of deformed grating lines, we obtain the “complex moire pattern”. Strain distribution is given as the derivatives of the phases of the complex moire fringes. The analysis is completely automated by digital image processing. All of the laborious and subjective procedures required in the conventional analysis such as fringe sign determination, fringe ordering and fringe interpolation are thus eliminated, and objective, fast and accurate analysis can be made. In this paper, we develop the method to a mismatch method and a grid method. We show some applications for analyzing strain distribution by using this method.
Improved detection of anterior left ventricular aneurysm with multiharmonic fourier analysis
Valette, H.B.; Bourguignon, M.H.; Merlet, P.; Gregoire, M.C.; Le Guludec, D.; Pascal, O.; Briandet, P.; Syrota, A.
1990-08-01
Single and multiharmonic Fourier analysis of LAO 30-45 degrees gated blood-pool studies were performed in a selected group of 30 patients with a left ventricular anterior aneurysm proven by contrast angiography. The sensitivity of the first harmonic phase image for the diagnosis of ventricular aneurysm was 80%. The clear phase shift (greater than 110 degrees) between the normal and the aneurysmal areas was missing in six patients. Peak acceleration images (negative maximum of the second derivative of the Fourier series) were calculated for each pixel with the analytical Fourier formula using two or three harmonics. A clear phase shift (greater than 126 degrees) than appeared in all the patients. This improvement was related to the increased weight of the second and third harmonics in the aneurysmal area when compared to control patients or to patients with dilative cardiomyopathy. Multiharmonic Fourier analysis clearly improved the sensitivity of the diagnosis of anterior left ventricular aneurysm on LAO 30 degrees-45 degrees gated blood-pool images.
A Fast Fourier transform stochastic analysis of the contaminant transport problem
Deng, F.W.; Cushman, J.H.; Delleur, J.W.
1993-01-01
A three-dimensional stochastic analysis of the contaminant transport problem is developed in the spirit of Naff (1990). The new derivation is more general and simpler than previous analysis. The fast Fourier transformation is used extensively to obtain numerical estimates of the mean concentration and various spatial moments. Data from both the Borden and Cape Cod experiments are used to test the methodology. Results are comparable to results obtained by other methods, and to the experiments themselves.
Time sequence analysis of flickering auroras. I - Application of Fourier analysis. [in atmosphere
NASA Technical Reports Server (NTRS)
Berkey, F. T.; Silevitch, M. B.; Parsons, N. R.
1980-01-01
Using a technique that enables one to digitize the brightness of auroral displays from individual fields of a video signal, we have analyzed the frequency content of flickering aurora. Through the application of Fourier analysis to our data, we have found that flickering aurora contains a wide range of enhanced frequencies, although the dominant frequency enhancement generally occurs in the range 6-12 Hz. Each incidence of flickering that we observed was associated with increased radio wave absorption. Furthermore, we have found that flickering occurs in bright auroral surges, the occurrence of which is not limited to the 'breakup' phase of auroral substorms. Our results are interpreted in terms of a recently proposed theory of fluctuating double layers that accounts for a number of the observational features.
Sexual dimorphism of the human mandible: demonstration by elliptical Fourier analysis.
Schmittbuhl, M; Le Minor, J M; Taroni, F; Mangin, P
2001-10-01
A new quantitative approach of the mandibular sexual dimorphism, based on computer-aided image analysis and elliptical Fourier analysis of the mandibular outline in lateral view is presented. This method was applied to a series of 117 dentulous mandibles from 69 male and 48 female individuals native of Rhenish countries. Statistical discriminant analysis of the elliptical Fourier harmonics allowed the demonstration of a significant sexual dimorphism in 97.1% of males and 91.7% of females, i.e. in a higher proportion than in previous studies using classical metrical approaches. This original method opens interesting perspectives for increasing the accuracy of sex identification in current anthropological practice and in forensic procedures.
Accuracy and precision of regional multiharmonic Fourier analysis of gated blood-pool images.
Machac, J; Horowitz, S F; Broder, D; Goldsmith, S J
1984-12-01
In order to estimate the precision and accuracy of parameters derived from segmental multiharmonic Fourier analysis of gated blood-pool images, a Monte Carlo computer noise simulation was tested on five sample regional time-activity curves. The first three Fourier harmonics were retained and the precision and accuracy of parameters of ventricular function were calculated, varying the ejection fraction, segment size, and framing rate. Precision improved with higher ejection fraction, higher counts per frame, or higher framing rate. There was no change in precision as the framing rate changed at fixed total counts. Accuracy changed little with changing framing rate. Thus, for segmental analysis there is no advantage to using a higher framing rate. Regions five or more pixels in size are recommended for reliable results. This study provides useful information for the optimization of acquisition and processing conditions for regional gated blood-pool analysis.
Fourier analysis methodology of trabecular orientation measurement in the human tibial epiphysis
HERRERA, M.; PONS, A. M.; ILLUECA, C.; ERADES, D.
2001-01-01
Methods to quantify trabecular orientation are crucial in order to assess the exact trajectory of trabeculae in anatomical and histological sections. Specific methods for evaluating trabecular orientation include the ‘point counting’ technique (Whitehouse, 1974), manual tracing of trabecular outlines on a digitising board (Whitehouse, 1980), textural analysis (Veenland et al. 1998), graphic representation of vectors (Shimizu et al. 1993; Kamibayashi et al. 1995) and both mathematical (Geraets, 1998) and fractal analysis (Millard et al. 1998). Optical and computer-assisted methods to detect trabecular orientation of bone using the Fourier transform were introduced by Oxnard (1982) later refined by Kuo & Carter (1991) (see also Oxnard, 1993, for a review), in the analysis of planar sections of vertebral bodies as well as in planar radiographs of cancellous bone in the distal radius (Wigderowitz et al. 1997). At present no studies have applied this technique to 2-D images or to the study of dried bones. We report a universal computer-automated technique for assessing the preferential orientation of the tibial subarticular trabeculae based on Fourier analysis, emphasis being placed on the search for improvements in accuracy over previous methods and applied to large stereoscopic (2-D) fields of anatomical sections of dried human tibiae. Previous studies on the trajectorial architecture of the tibial epiphysis (Takechi, 1977; Maquet, 1984) and research data about trabecular orientation (Kamibayashi et al. 1995) have not employed Fourier analysis. PMID:11273050
Zarabadi, Atefeh S; Pawliszyn, Janusz
2015-02-17
Analysis in the frequency domain is considered a powerful tool to elicit precise information from spectroscopic signals. In this study, the Fourier transformation technique is employed to determine the diffusion coefficient (D) of a number of proteins in the frequency domain. Analytical approaches are investigated for determination of D from both experimental and data treatment viewpoints. The diffusion process is modeled to calculate diffusion coefficients based on the Fourier transformation solution to Fick's law equation, and its results are compared to time domain results. The simulations characterize optimum spatial and temporal conditions and demonstrate the noise tolerance of the method. The proposed model is validated by its application for the electropherograms from the diffusion path of a set of proteins. Real-time dynamic scanning is conducted to monitor dispersion by employing whole column imaging detection technology in combination with capillary isoelectric focusing (CIEF) and the imaging plug flow (iPF) experiment. These experimental techniques provide different peak shapes, which are utilized to demonstrate the Fourier transformation ability in extracting diffusion coefficients out of irregular shape signals. Experimental results confirmed that the Fourier transformation procedure substantially enhanced the accuracy of the determined values compared to those obtained in the time domain.
A fourier tool for the analysis of coherent light scattering by bio-optical nanostructures.
Prum, Richard O; Torres, Rodolfo H
2003-08-01
The fundamental dichotomy between incoherent (phase independent) and coherent (phase dependent) light scattering provides the best criterion for a classification of biological structural color production mechanisms. Incoherent scattering includes Rayleigh, Tyndall, and Mie scattering. Coherent scattering encompasses interference, reinforcement, thin-film reflection, and diffraction. There are three main classes of coherently scattering nanostructures-laminar, crystal-like, and quasi-ordered. Laminar and crystal-like nanostructures commonly produce iridescence, which is absent or less conspicuous in quasi-ordered nanostructures. Laminar and crystal-like arrays have been analyzed with methods from thin-film optics and Bragg's Law, respectively, but no traditional methods were available for the analysis of color production by quasi-ordered arrays. We have developed a tool using two-dimensional (2D) Fourier analysis of transmission electron micrographs (TEMs) that analyzes the spatial variation in refractive index (available from the authors). This Fourier tool can examine whether light scatterers are spatially independent, and test whether light scattering can be characterized as predominantly incoherent or coherent. The tool also provides a coherent scattering prediction of the back scattering reflectance spectrum of a biological nanostructure. Our applications of the Fourier tool have falsified the century old hypothesis that the non-iridescent structural colors of avian feather barbs and skin are produced by incoherent Rayleigh or Tyndall scattering. 2D Fourier analysis of these quasi-ordered arrays in bird feathers and skin demonstrate that these non-iridescent colors are produced by coherent scattering. No other previous examples of biological structural color production by incoherent scattering have been tested critically with either analysis of scatterer spatial independence or spectrophotometry. The Fourier tool is applied here for the first time to coherent
Fourier analysis of cell-wise Block-Jacobi splitting in two-dimensional geometry
Rosa, Massimiliano; Warsa, James S; Kelley, Timothy M
2009-01-01
A Fourier analysis is conducted in two-dimensional (2D) geometry for the discrete-ordinates (SN) approximation of the neutron transport problem solved with Richardson iteration (Source Iteration) using the cell-wise Block-Jacobi (B1) algorithm. The results of the Fourier analysis show that convergence of cell-wise BJ can degrade, leading to a spectral radius equal to 1, in problems containing optically thin cells. For problems containing cells that are optically thick, instead, the spectral radius tends to O. Hence, in the optically thick-cell regime, cell-wise BJ is rapidly convergent even for problems that are scattering dominated, with a scattering ratio c close to I.
Romanov, Yu A; Zharkova, N A; Antochin, A I; Zakharchenko, A V
2009-05-01
Rhythms of cell division with different periods in the mouse small intestinal cryptic epithelium were studied using Fourier analysis. It was found that the proliferative system of the crypt is characterized by an intricate spatial and temporal organization. The amplitude of low-frequency rhythms increases, while the amplitude of high-frequency rhythms decreased in the direction from the crypt bottom to the neck.
Comparison Of Various Fourier Transform Infrared (FTIR) Techniques For Polymer Analysis
NASA Astrophysics Data System (ADS)
Groves, G. K.; Brasch, J. W.; Jakobsen, R. J.
1981-10-01
A brief comparison of different FT-IR techniques for analysis of a polymer film on a me-tal surface is made. DRIFT (Diffuse Reflectance Fourier Transform Infrared Spectroscopy) is used to obtain spectra of thin films of polystyrene on metal and glass substrates. Band intensities measured for different thicknesses of free polystyrene films are found to follow correctly the Kubelka-Munk theory relating concentration and band intensity.
NASA Technical Reports Server (NTRS)
Deissler, Robert G.
1996-01-01
Background material on Fourier analysis and on the spectral form of the continuum equations, both averaged and unaveraged, are given. The equations are applied to a number of cases of homogeneous turbulence with and without mean gradients. Spectral transfer of turbulent activity between scales of motion is studied in some detail. The effects of mean shear, heat transfer, normal strain, and buoyancy are included in the analyses.
NASA Technical Reports Server (NTRS)
Menenti, M.; Azzali, S.; Verhoef, W.; Van Swol, R.
1993-01-01
Examples are presented of applications of a fast Fourier transform algorithm to analyze time series of images of Normalized Difference Vegetation Index values. The results obtained for a case study on Zambia indicated that differences in vegetation development among map units of an existing agroclimatic map were not significant, while reliable differences were observed among the map units obtained using the Fourier analysis.
NASA Technical Reports Server (NTRS)
Menenti, M.; Azzali, S.; Verhoef, W.; Van Swol, R.
1993-01-01
Examples are presented of applications of a fast Fourier transform algorithm to analyze time series of images of Normalized Difference Vegetation Index values. The results obtained for a case study on Zambia indicated that differences in vegetation development among map units of an existing agroclimatic map were not significant, while reliable differences were observed among the map units obtained using the Fourier analysis.
Bladed wheels damage detection through Non-Harmonic Fourier Analysis improved algorithm
NASA Astrophysics Data System (ADS)
Neri, P.
2017-05-01
Recent papers introduced the Non-Harmonic Fourier Analysis for bladed wheels damage detection. This technique showed its potential in estimating the frequency of sinusoidal signals even when the acquisition time is short with respect to the vibration period, provided that some hypothesis are fulfilled. Anyway, previously proposed algorithms showed severe limitations in cracks detection at their early stage. The present paper proposes an improved algorithm which allows to detect a blade vibration frequency shift due to a crack whose size is really small compared to the blade width. Such a technique could be implemented for condition-based maintenance, allowing to use non-contact methods for vibration measurements. A stator-fixed laser sensor could monitor all the blades as they pass in front of the spot, giving precious information about the wheel health. This configuration determines an acquisition time for each blade which become shorter as the machine rotational speed increases. In this situation, traditional Discrete Fourier Transform analysis results in poor frequency resolution, being not suitable for small frequency shift detection. Non-Harmonic Fourier Analysis instead showed high reliability in vibration frequency estimation even with data samples collected in a short time range. A description of the improved algorithm is provided in the paper, along with a comparison with the previous one. Finally, a validation of the method is presented, based on finite element simulations results.
Fourier amplitude and phase analysis in the clinical evaluation of patients with cardiomyopathy
Alcan, K.E.; Robeson, W.; Graham, M.C.; Palestro, C.; Oliver, F.H.; Benua, R.S.
1984-06-01
Fifty-four patients with a cardiomyopathy were studied by Radionuclide Cardangiography (RNCA) and Fourier amplitude and phase image analysis. The study group included patients with ischemic cardiomyopathy (27) and an equal number of patients with a primary cardiomyopathy: drug-induced (22), idiopathic (three), radiation-induced (one), and amyloidosis (one). Twenty-eight patients had rest studies alone and 26 had both rest and stress studies (80 total). The mean rest LVEF in the ischemic group was 27.9%, in the drug-induced group 36.5%, and in the idiopathic group 30%. The stress LVEF decreased in 92% of patients with ischemic cardiomyopathy and 45% of patients with primary (drug-induced) cardiomyopathy. Fourier amplitude and phase images were generated for each study. Amplitude and phase images were abnormal in all patients with an ischemic cardiomyopathy. LV amplitude abnormalities were regional and phase was directional. A zone of dysynergy on phase analysis was present in 44% of patients with ischemic cardiomyopathy. In the drug-induced primary cardiomyopathy group, all patients had abnormal amplitude and 86% had abnormal phase. Amplitude abnormalities were global rather than regional and phase patterns were nondirectional. Only one patient had a zone of dysynergy on the phase image. We conclude that the stress LVEF alone cannot consistently differentiate between ischemic and primary cardiomyopathies and that Fourier amplitude and phase analysis may be useful in determining the etiology of a cardiomyopathy (ischemic vs primary).
Short time Fourier analysis of the electromyogram - Fast movements and constant contraction
NASA Technical Reports Server (NTRS)
Hannaford, Blake; Lehman, Steven
1986-01-01
Short-time Fourier analysis was applied to surface electromyograms (EMG) recorded during rapid movements, and during isometric contractions at constant forces. A portion of the data to be transformed by multiplying the signal by a Hamming window was selected, and then the discrete Fourier transform was computed. Shifting the window along the data record, a new spectrum was computed each 10 ms. The transformed data were displayed in spectograms or 'voiceprints'. This short-time technique made it possible to see time-dependencies in the EMG that are normally averaged in the Fourier analysis of these signals. Spectra of EMGs during isometric contractions at constant force vary in the short (10-20 ms) term. Short-time spectra from EMGs recorded during rapid movements were much less variable. The windowing technique picked out the typical 'three-burst pattern' in EMG's from both wrist and head movements. Spectra during the bursts were more consistent than those during isometric contractions. Furthermore, there was a consistent shift in spectral statistics in the course of the three bursts. Both the center frequency and the variance of the spectral energy distribution grew from the first burst to the second burst in the same muscle. The analogy between EMGs and speech signals is extended to argue for future applicability of short-time spectral analysis of EMG.
Short time Fourier analysis of the electromyogram - Fast movements and constant contraction
NASA Technical Reports Server (NTRS)
Hannaford, Blake; Lehman, Steven
1986-01-01
Short-time Fourier analysis was applied to surface electromyograms (EMG) recorded during rapid movements, and during isometric contractions at constant forces. A portion of the data to be transformed by multiplying the signal by a Hamming window was selected, and then the discrete Fourier transform was computed. Shifting the window along the data record, a new spectrum was computed each 10 ms. The transformed data were displayed in spectograms or 'voiceprints'. This short-time technique made it possible to see time-dependencies in the EMG that are normally averaged in the Fourier analysis of these signals. Spectra of EMGs during isometric contractions at constant force vary in the short (10-20 ms) term. Short-time spectra from EMGs recorded during rapid movements were much less variable. The windowing technique picked out the typical 'three-burst pattern' in EMG's from both wrist and head movements. Spectra during the bursts were more consistent than those during isometric contractions. Furthermore, there was a consistent shift in spectral statistics in the course of the three bursts. Both the center frequency and the variance of the spectral energy distribution grew from the first burst to the second burst in the same muscle. The analogy between EMGs and speech signals is extended to argue for future applicability of short-time spectral analysis of EMG.
NASA Astrophysics Data System (ADS)
Dong, Bing; Qin, Shun; Hu, Xinqi
2013-09-01
Large-aperture segmented primary mirror will be widely used in next-generation space-based and ground-based telescopes. The effects of intersegment gaps, obstructions, position and figure errors of segments, which are all involved in the pupil plane, on the image quality metric should be analyzed using diffractive imaging theory. Traditional Fast Fourier Transform (FFT) method is very time-consuming and costs a lot of memory especially in dealing with large pupil-sampling matrix. A Partial Fourier Transform (PFT) method is first proposed to substantially speed up the computation and reduce memory usage for diffractive imaging analysis. Diffraction effects of a 6-meter segmented mirror including 18 hexagonal segments are simulated and analyzed using PFT method. The influence of intersegment gaps and position errors of segments on Strehl ratio is quantitatively analyzed by computing the Point Spread Function (PSF). By comparing simulation results with theoretical results, the correctness and feasibility of PFT method is confirmed.
Asymptotic solutions of weakly nonlinear, dispersive wave-propagation problems by Fourier analysis
Srinivasan, R.
1989-01-01
A perturbation method based on Fourier analysis and multiple scales is introduced for solving weakly nonlinear, dispersive wave propagation problems with Fourier transformable initial conditions. Asymptotic solutions are derived for the weakly nonlinear cubic Schroedinger (NLS) equation with variable coefficients and the weakly nonlinear Kortewegde-Vries (KdV) equation; the results for the NLS equation are verified by comparison with numerical solutions. In the special case of constant coefficients, the asymptotic solution for the weakly nonlinear NLS equation agrees to leading order with previously derived results in the literature; in general, this is not true to higher orders. Therefore previous asymptotic results for the strongly nonlinear Schroedinger equation can be valid only for restricted initial conditions. Similar conclusions apply to the KdV equation.
Sheng, Ming; Gorzsás, András; Tuck, Simon
2016-01-01
ABSTRACT Changes in intermediary metabolism have profound effects on many aspects of C. elegans biology including growth, development and behavior. However, many traditional biochemical techniques for analyzing chemical composition require relatively large amounts of starting material precluding the analysis of mutants that cannot be grown in large amounts as homozygotes. Here we describe a technique for detecting changes in the chemical compositions of C. elegans worms by Fourier transform infrared microspectroscopy. We demonstrate that the technique can be used to detect changes in the relative levels of carbohydrates, proteins and lipids in one and the same worm. We suggest that Fourier transform infrared microspectroscopy represents a useful addition to the arsenal of techniques for metabolic studies of C. elegans worms. PMID:27073735
Fourier analysis of real-time, high-statistics solar neutrino observations
Fogli, G.L.; Lisi, E.; Montanino, D.
1997-10-01
Solar neutrino oscillations with wavelengths comparable to the Earth-Sun distance provide a viable explanation of the long-standing solar neutrino deficit. They imply a time-dependent modulation of the solar neutrino flux due to the eccentricity of the Earth orbit. Motivated by this testable prediction, we propose a Fourier analysis of the signal observable in real-time, solar neutrino experiments. We give the general expressions of the Fourier coefficients and of their correlated uncertainties in the presence of background. The expressions assume a particularly compact form in the case of two-flavor neutrino oscillations in vacuum. We discuss the sensitivity to the lowest harmonics of the new-generation, high-statistics experiments SuperKamiokande, Sudbury Neutrino Observatory, and Borexino. {copyright} {ital 1997} {ital The American Physical Society}
Unsupervised defect detection in textiles based on Fourier analysis and wavelet shrinkage.
Hu, Guang-Hua; Wang, Qing-Hui; Zhang, Guo-Hui
2015-04-01
An unsupervised approach for the inspection of defects in textiles by applying Fourier analysis and wavelet shrinkage is proposed. It does not rely on any reference images. For each sample under inspection, the periodic pattern in the background is first eliminated by zero-masking their dominant frequency components that show high gradient values in the spectrum. The Fourier-restored residual image is then denoised by wavelet shrinkage. The approximation coefficients and the processed wavelet coefficients are individually back-transformed to produce a pair of reconstructions from which either the low or the high-frequency information about the defects can be segmented using a simple thresholding process. The performance of the method has been extensively evaluated by a wide variety of samples with different defect types and texture backgrounds. The effectiveness of the proposed method is demonstrated by the experimental results in comparison with other methods.
Taylor, Samuel E; Cao, Tuoxin; Talauliker, Pooja M; Lifshitz, Jonathan
Quantification of immunohistochemistry (IHC) and immunofluorescence (IF) using image intensity depends on a number of variables. These variables add a subjective complexity in keeping a standard within and between laboratories. Fast Fourier Transformation (FFT) algorithms, however, allow for a rapid and objective quantification (via statistical analysis) using cell morphologies when the microscopic structures are oriented or aligned. Quantification of alignment is given in terms of a ratio of FFT intensity to the intensity of an orthogonal angle, giving a numerical value of the alignment of the microscopic structures. This allows for a more objective analysis than alternative approaches, which rely upon relative intensities.
Taylor, Samuel E.; Cao, Tuoxin; Talauliker, Pooja M.; Lifshitz, Jonathan
2016-01-01
Quantification of immunohistochemistry (IHC) and immunofluorescence (IF) using image intensity depends on a number of variables. These variables add a subjective complexity in keeping a standard within and between laboratories. Fast Fourier Transformation (FFT) algorithms, however, allow for a rapid and objective quantification (via statistical analysis) using cell morphologies when the microscopic structures are oriented or aligned. Quantification of alignment is given in terms of a ratio of FFT intensity to the intensity of an orthogonal angle, giving a numerical value of the alignment of the microscopic structures. This allows for a more objective analysis than alternative approaches, which rely upon relative intensities. PMID:27134700
Su, Zhu; Jin, Guoyong
2016-11-01
This paper presents a Fourier spectral element method (FSEM) to analyze the free vibration of conical-cylindrical-spherical shells with arbitrary boundary conditions. Cylindrical-conical and cylindrical-spherical shells as special cases are also considered. In this method, each fundamental shell component (i.e., cylindrical, conical, and spherical shells) is divided into appropriate elements. The variational principle in conjunction with first-order shear deformation shell theory is employed to model the shell elements. Since the displacement and rotation components of each element are expressed as a linear superposition of nodeless Fourier sine functions and nodal Lagrangian polynomials, the global equations of the coupled shell structure can be obtained by adopting the assembly procedure. The Fourier sine series in the displacement field is introduced to enhance the accuracy and convergence of the solution. Numerical results show that the FSEM can be effectively applied to vibration analysis of the coupled shell structures. Numerous results for coupled shell structures with general boundary conditions are presented. Furthermore, the effects of geometric parameters and boundary conditions on the frequencies are investigated.
Brauns, Eric B; Dyer, R Brian
2006-08-01
The work presented in this paper details the design and performance characteristics of a new hyperspectral visible imaging technique. Rather than using optical filters or a dispersing element, this design implements Fourier transform spectroscopy to achieve spectral discrimination. One potentially powerful application of this new technology is the non-destructive analysis and authentication of written and printed documents. Document samples were prepared using red, blue, and black inks. The samples were later altered using a different ink of the same color. While the alterations are undetectable to the naked eye, the alterations involving the blue and black inks were easily detected when the spectrally resolved images were viewed. Analysis of the sample using the red inks was unsuccessful. A 2004 series 20 US dollars bill was imaged to demonstrate the application to document authentication. The results argue that counterfeit detection and quality control during printing are plausible applications of Fourier transform hyperspectral visible imaging. All of the images were subjected to fuzzy c-means cluster analysis in an effort to objectively analyze and automate image analysis. Our results show that cluster analysis can distinguish image features that have remarkably similar visible transmission spectra.
Radionuclide fourier amplitude analysis to predict post-aneurysmectomy ejection fraction
McCarthy, D.M.; Kleaveland, J.P.; Makler, P.T. Jr.; Alavi, A.
1984-01-01
Post-operative LV ejection fraction (EF) is an important determinant of outcome following aneurysmectomy but is difficult to predict noninvasively. First harmonic Fourier analysis of radionuclide angiography (RNA) in patients with aneurysms gives characteristic phase and amplitude images which delineate contractile and dyskinetic regions. Since pixel amplitude is proportional to stroke counts, the summed amplitude values from the contractile region (CR) and the aneurysm should reflect regional stroke volumes. A predicted post-operative LVEF may be determined from the pre-operative global LVEF and the proportion of the total amplitude located in the CR. The authors studied 19 patients undergoing LV aneurysmectomy with pre- and post-operative RNA. Three patients were excluded for technical reasons, leaving 16 patients for analysis. There were 13 males, and the mean age was 56.8 yrs (range 45-78). All patients had a history of anterior myocardial infarction and were undergoing surgery for recurrent sustained ventricular tachycardia. The global LVEF increased from 0.25 +- .13 (sd) pre-operatively to 0.38+-.11 following surgery (p<.001). The predicted post-operative LVEF (from amplitude analysis of the pre-operative RNA) averaged 0.35 +- .13 and correlated significantly with the actual post-operative LVEf (r=0.87, SEE=.06, p<.01). The results suggest that the LVEF following aneurysmectomy can be predicted from Fourier amplitude analysis of the pre-operative RNA.
Ferrario, V F; Sforza, C; Poggio, C E; Colombo, A; Cova, M
1997-12-01
The age- and gender-related shape variations of the craniofacial skeleton in skeletal Class I children were quantified using a Fourier analysis on the pre-treatment lateral head films of 122 orthodontic patients (age range 7-15 years), who were subdivided into six groups for sex and age (2-year intervals). Seven landmarks representative of the maxillo-mandibular sagittal and vertical relationship were identified and digitized. The contiguous landmarks were connected by segments, the form was normalized with respect to its orientation and size, and a Fourier analysis of the contour was performed. Mean values of the cosine and sine coefficients of the first six harmonics in the sex and age classes were computed. The size-standardized outlines of the oldest boys were narrower and longer than the outlines of the youngest boys (differences at gonion, menton, sella and nasion). Shape differences between mean plots in girls were negligible. In the youngest patients, girls had a larger size-independent shape in the mandibular region; their shape was narrower (anterior-posterior direction) and longer (vertical direction) than male shape. In the oldest patients, boys had a larger size-independent shape at gonion, and a narrower shape at articulare and pogonion than girls. Size increased from the youngest to the oldest boys; size differences were not conspicuous in girls. Within an age class, male size was always larger than female. Fourier analysis allowed a global evaluation of the cephalometric forms, with separate quantifications of the age- and gender-related differences in size and shape.
Shimizu, Ryosuke; Edamatsu, Keiichi; Itoh, Tadashi
2006-07-15
We present one- and two-photon diffraction and interference experiments involving parametric down-converted photon pairs. By controlling the divergence of the pump beam in parametric down-conversion, the diffraction-interference pattern produced by an object changes from a quantum (perfectly correlated) case to a classical (uncorrelated) one. The observed diffraction and interference patterns are accurately reproduced by Fourier-optical analysis taking into account the quantum spatial correlation. We show that the relation between the spatial correlation and the object size plays a crucial role in the formation of both one- and two-photon diffraction-interference patterns.
NASA Astrophysics Data System (ADS)
Candra, Panglijen; Xia, Tian; Huston, Dryver; Wang, Guoan
2013-04-01
Accurate detection of rebar location using Ground Penetrating Radar (GPR) proves to be very useful in assessing roadway/bridge deck concrete structure. Due to large signal processing resource needed to locate and image rebar on a whole road structure, more efficient signal processing method is needed. This paper proposes to combine two-dimensional (2D) entropy algorithm to narrow down the scope of interested data from large radar data set and Short Time Fourier Transform (STFT) algorithm to perform further feature characterization. To validate the analysis, experiments with different rebar setups are conducted.
NASA Astrophysics Data System (ADS)
Hanafi, Abdelmalek; Gharbi, Tijani; Cornu, Jean-Yves
2005-07-01
We explore the potential use of the Fourier-transform profilometry technique in in vivo studies of muscular contractions through the variation of muscle-group cross sections. Thanks to a tensorial analysis of the technique, a general expression of its sensitivity vector is established. It allows derivation of the expression of the resolution and the limit condition imposed by the spatial sampling of the fringe pattern. Key parameters that maximize the sensitivity are then simulated. A measurement system is accordingly built up and characterized. It is then successfully applied to the evaluation of the deformation of the forearm muscles during grasping exertions.
On the Fourier spectrum analysis of the solar neutrino capture rate
NASA Astrophysics Data System (ADS)
Haubold, H. J.; Gerth, E.
1990-06-01
Periodic variations in Davis' experimental data concerning the solar neutrino capture rate are derived on the basis of a Fourier spectrum analysis. Variations in the Ar-37 production rate are obtained for a series of randomly spaced observations in the period 1970-1985 (runs 18-89). The harmonic analysis of runs 18-89 has determined solar neutrino capture rate variations with periods of 8.33, 5.00, 2.13, 1.61, 0.83, 0.61, 0.54, and 0.51 yr, thereby confirming earlier calculations performed for the set of runs 18-69 (1983), 18.74 (1985a), and 18-80 (1985b). The results also confirm those of Sakurai (1979) who showed that there is strong evidence that the observed solar neutrino flux has a tendency to vary with quasi-biennial periodicity. It is shown that the results of the Fourier spectrum analysis do not depend upon certain high or low values in Davis' experimental data.
Sideroudi, Haris; Labiris, Georgios; Georgantzoglou, Kimon; Ntonti, Panagiota; Siganos, Charalambos; Kozobolis, Vassilios
2017-07-01
To develop an algorithm for the Fourier analysis of posterior corneal videokeratographic data and to evaluate the derived parameters in the diagnosis of Subclinical Keratoconus (SKC) and Keratoconus (KC). This was a cross-sectional, observational study that took place in the Eye Institute of Thrace, Democritus University, Greece. Eighty eyes formed the KC group, 55 eyes formed the SKC group while 50 normal eyes populated the control group. A self-developed algorithm in visual basic for Microsoft Excel performed a Fourier series harmonic analysis for the posterior corneal sagittal curvature data. The algorithm decomposed the obtained curvatures into a spherical component, regular astigmatism, asymmetry and higher order irregularities for averaged central 4 mm and for each individual ring separately (1, 2, 3 and 4 mm). The obtained values were evaluated for their diagnostic capacity using receiver operating curves (ROC). Logistic regression was attempted for the identification of a combined diagnostic model. Significant differences were detected in regular astigmatism, asymmetry and higher order irregularities among groups. For the SKC group, the parameters with high diagnostic ability (AUC > 90%) were the higher order irregularities, the asymmetry and the regular astigmatism, mainly in the corneal periphery. Higher predictive accuracy was identified using diagnostic models that combined the asymmetry, regular astigmatism and higher order irregularities in averaged 3and 4 mm area (AUC: 98.4%, Sensitivity: 91.7% and Specificity:100%). Fourier decomposition of posterior Keratometric data provides parameters with high accuracy in differentiating SKC from normal corneas and should be included in the prompt diagnosis of KC. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.
Fourier photometric analysis of isolated galaxies in the context of the AMIGA project
NASA Astrophysics Data System (ADS)
Durbala, A.; Buta, R.; Sulentic, J. W.; Verdes-Montenegro, L.
2009-08-01
We present here the results of a Fourier photometric decomposition of a representative sample of ~100 isolated CIG galaxies (Catalog of Isolated Galaxies) in the morphological range Sb-Sc. This study is an integral part of the AMIGA (Analysis of the Interstellar Medium of Isolated Galaxies) project. It complements the photometric analysis presented in our previous paper for the same sample of disc galaxies by allowing a description of the spiral structure morphology. We also estimate dynamical measures like torque strength for bar and spiral, and also the total non-axisymmetric torque by assuming a constant mass-to-light ratio, and explore the interplay between the spiral and bar components of galaxies. Both the length (lbar) and the contrast (e.g. A2b) of the Fourier bars decrease along the morphological sequence Sb-Sbc-Sc, with bars in earlier types being longer and showing higher contrast. The bars of Sb galaxies are ~three times longer than the bars in Sc types, consistent with our previous study. We find that the longer bars are not necessarily stronger (as quantified by the torque Qb measure), but longer bars show a higher contrast A2b, in very good agreement with theoretical predictions. Our data suggest that bar and spiral components are rather independent in the sense that the torque strengths of the two components are not correlated. The total strength Qg is a very reliable tracer of the bar strength measure Qb, the two quantities showing a very tight linear correlation. Comparison with a similar sample of disc galaxies (same morphological range) extracted from the OSUBGS (Ohio State University Bright Galaxy Survey) indicates that the isolated CIG/AMIGA galaxies host significantly longer Fourier bars and possibly show a different distribution of spiral torque Qs. The Fourier analysis also revealed a potential case of counterwinding spiral structure (KIG652/NGC5768), which deserves further kinematic study. We find that m = 2 (i.e. dominating two
NASA Technical Reports Server (NTRS)
Eppler, D. T.; Nummedal, D.; Ehrlich, R.
1977-01-01
If the lithology of lunar crust influences impact crater morphology, a method of analysis that is sensitive to small-scale changes in crater shape is required. In the present paper, it is shown that Fourier analysis in closed form can provide detailed information regarding planimetric crater shape. Preliminary analysis of the rim crest outline of 247 nearside lunar craters (larger than 18 km in diam) led to the following information: Imbrian and pre-Imbrian craters are more elongate than younger craters, possibly as a result of widespread crustal deformation early in the moon's history. Crater size does not affect the planimetric shape of craters. Highland craters are less circular than mare craters, probably due to the greater structural and lithologic complexity of the highland crust. Craters comprising each shape family of the eleventh harmonic typically are located in the same general geographic region of the moon.
Fourier transform infrared spectroscopy techniques for the analysis of drugs of abuse
NASA Astrophysics Data System (ADS)
Kalasinsky, Kathryn S.; Levine, Barry K.; Smith, Michael L.; Magluilo, Joseph J.; Schaefer, Teresa
1994-01-01
Cryogenic deposition techniques for Gas Chromatography/Fourier Transform Infrared (GC/FT-IR) can be successfully employed in urinalysis for drugs of abuse with detection limits comparable to those of the established Gas Chromatography/Mass Spectrometry (GC/MS) technique. The additional confidence of the data that infrared analysis can offer has been helpful in identifying ambiguous results, particularly, in the case of amphetamines where drugs of abuse can be confused with over-the-counter medications or naturally occurring amines. Hair analysis has been important in drug testing when adulteration of urine samples has been a question. Functional group mapping can further assist the analysis and track drug use versus time.
Assessment of vasomotor oscillations with Fourier analysis of biological tissue impedance
NASA Astrophysics Data System (ADS)
Nesterov, A.; Gavrilov, I.; Selector, L.; Mudraya, I.; Revenko, S.
2010-04-01
Fourier analysis revealed a number of periodicities in small variations of bioimpedance of human finger including the major spectrum peaks at the frequencies of heart beats, respiration, and Mayer wave (0.1 Hz). These periodic variations of bioimpedance were detected under the normal conditions and during blood flow arrest in the hand by a pneumatic cuff placed on the arm. They are explained by periodic variations in systemic blood pressure and by oscillations of regional vascular tone resulted from neural vasomotor control. During normal blood flow, the greatest variations in bioimpedance were observed at the heart rate, and their amplitude surpassed by an order of magnitude the amplitudes of respiratory oscillations and Mayer wave. In contrast, during blood arrest, the largest amplitude of rhythmical changes of the impedance characterized the oscillations at respiration rate, while the amplitude of oscillations at the heart rate was the smallest. During normal respiration and circulation, two side cardiac peaks were revealed in bioimpedance amplitude spectrum which disappeared during respiration arrest and thought to reflect the amplitude respiratory modulation of the cardiac output via sympathetic influences. During normal breathing, the second and the third harmonics of the cardiac spectrum peak were split reflecting frequency respiratory modulation of the heart rate by parasympathetic influences. The results favour applicability of Fourier analysis of bioimpedance variations in assessment of regional neural influences and neurogenic modulation of cardiac activity.
Giant magnetoimpedance modelling using Fourier analysis in soft magnetic amorphous wires
NASA Astrophysics Data System (ADS)
Gómez-Polo, C.; Knobel, M.; Pirota, K. R.; Vázquez, M.
2001-06-01
In this work, the Fourier analysis is employed to investigate the giant magnetoimpedance (GMI) effect in a FeCoSiB amorphous wire with vanishing magnetostriction. In order to modify the initial quenched-in anisotropy, pieces 8 cm in length were submitted to Joule heating treatments below the corresponding Curie point. The induced circumferential anisotropy determines the field evolution of the electrical impedance of the sample upon the application of an axial magnetic field. The experimental results are interpreted within the framework of the classical electrodynamical theory, where a simple rotational model is used to estimate the circular magnetization process of the sample. The mean value of the circumferential permeability is obtained through Fourier analysis of the time derivative of the estimated circular magnetization. Moreover, the existence of a second harmonic component of the GMI voltage is also experimentally detected. Its amplitude sensitively evolves with the axial DC magnetic field and its appearance is associated to an asymmetry in the circular magnetization process.
Sideroudi, Haris; Labiris, Georgios; Georgatzoglou, Kimon; Ditzel, Fienke; Siganos, Charalambos; Kozobolis, Vassilios
2016-05-01
To evaluate the contribution of Fourier analysis of videokeratographic data in the diagnosis of subclinical keratoconus and keratoconus. Eye Institute of Thrace, Democritus University, Alexandroupolis, Greece. Observational case series. The following Pentacam-derived parameters, resulting from Fourier decomposition of keratometric data, were evaluated for their diagnostic capacity using receiver operating curves: spherical component and eccentricity, maximum decentration, regular astigmatism in the center and in the periphery, mean astigmatism, irregularities, regular astigmatism in the center plus the irregularities, and total astigmatism. Logistic regression was performed to identify a combined diagnostic model. The study comprised 80 keratoconus eyes, 55 eyes diagnosed with subclinical keratoconus, and 50 normal eyes. Significant differences were detected in spherical eccentricity, maximum decentration, irregularities, regular astigmatism in the center and in the periphery, regular astigmatism in the center plus the irregularities, mean astigmatism, and total astigmatism parameters between the groups. Almost all parameters had high diagnostic ability in both study groups (area under the curve >90%). Among individual parameters, those with the highest predictive accuracy were the regular astigmatism in the center plus the irregularities (subclinical keratoconus 97.6%, keratoconus 98.8%) and the maximum decentration (subclinical keratoconus 91.4%, keratoconus 98.5%). Sufficient predictive accuracy (subclinical keratoconus 99.4, keratoconus 100%) was identified in a diagnostic model that combined the regular astigmatism in the center plus the irregularities and the maximum decentration. Fourier decomposition of keratometric data provided parameters with high accuracy in differentiating corneas with subclinical keratoconus from normal corneas and should be included to allow prompt diagnosis of keratoconus. None of the authors has a financial or proprietary interest
Requirements Formulation and Dynamic Jitter Analysis for Fourier-Kelvin Stellar Interferometer
NASA Technical Reports Server (NTRS)
Liu, Kuo-Chia; Hyde, Tristram; Blaurock, Carl; Bolognese, Jeff; Howard, Joseph; Danchi, William
2004-01-01
The Fourier-Kelvin Stellar Interferometer (FKSI) has been proposed to detect and characterize extra solar giant planets. The baseline configuration for FKSI is a two- aperture, structurally connected nulling interferometer, capable of providing null depth less than lo4 in the infrared. The objective of this paper is to summarize the process for setting the top level requirements and the jitter analysis performed on FKSI to date. The first part of the paper discusses the derivation of dynamic stability requirements, necessary for meeting the FKSI nulling demands. An integrated model including structures, optics, and control systems has been developed to support dynamic jitter analysis and requirements verification. The second part of the paper describes how the integrated model is used to investigate the effects of reaction wheel disturbances on pointing and optical path difference stabilities.
Thompson, Sandra E.; Foster, Nancy S.; Johnson, Timothy J.; Valentine, Nancy B.; Amonette, James E.
2003-08-28
Fourier Transform Infrared Photoacoustic Spectroscopy (FTIR-PAS) has been applied for the first time to the identification and speciation of bacterial spores. With minimal preparation the spores were deposited into the photoacoustic sample cup and their spectra recorded. A total of 40 different samples of 5 different strains of Bacillus spores were analyzed: Bacillus subtilis ATCC 49760, Bacillus atrophaeus ATCC 49337, Bacillus subtilis 6051, Bacillus thuringiensis ssp. kurstaki, and Bacillus globigii Dugway. The statistical methods used included principal-component analysis (PCA), classification and regression trees (CART), and Mahalanobis-distance calculations. Internal cross-validation studies successfully classify the spores according to their bacterial strain in 38 of 40 cases (95%) and 36 of 40 (90%) in cross-validation. Analysis of fifteen blind samples, which included library and other spores, and nonbacterial materials, resulted in correct strain classification the blind samples that were members of the library and correct rejection of the nonbacterial samples.
Fourier mode analysis of slab-geometry transport iterations in spatially periodic media
Larsen, E; Zika, M
1999-04-01
We describe a Fourier analysis of the diffusion-synthetic acceleration (DSA) and transport-synthetic acceleration (TSA) iteration schemes for a spatially periodic, but otherwise arbitrarily heterogeneous, medium. Both DSA and TSA converge more slowly in a heterogeneous medium than in a homogeneous medium composed of the volume-averaged scattering ratio. In the limit of a homogeneous medium, our heterogeneous analysis contains eigenvalues of multiplicity two at ''resonant'' wave numbers. In the presence of material heterogeneities, error modes corresponding to these resonant wave numbers are ''excited'' more than other error modes. For DSA and TSA, the iteration spectral radius may occur at these resonant wave numbers, in which case the material heterogeneities most strongly affect iterative performance.
Fourier mode analysis of slab-geometry transport iterations in spatially periodic media
Larsen, E W; Zika, M R
1999-05-07
We describe a Fourier analysis of the diffusion-synthetic acceleration (DSA) and transport-synthetic acceleration (TSA) iteration schemes for a spatially periodic, but otherwise arbitrarily heterogeneous, medium. Both DSA and TSA converge more slowly in a heterogeneous medium than in a homogeneous medium composed of the volume-averaged scattering ratio. In the limit of a homogeneous medium, our heterogeneous analysis contains eigenvalues of multiplicity two at ''resonant'' wave numbers. In the presence of material heterogeneities, error modes corresponding to these resonant wave numbers are ''excited'' more than other error modes. For DSA and TSA, the iteration spectral radius may occur at these resonant wave numbers, in which case the material heterogeneities most strongly affect iterative performance.
Requirements Formulation and Dynamic Jitter Analysis for Fourier-Kelvin Stellar Interferometer
NASA Technical Reports Server (NTRS)
Liu, Kuo-Chia; Hyde, Tristram; Blaurock, Carl; Bolognese, Jeff; Howard, Joseph; Danchi, William
2004-01-01
The Fourier-Kelvin Stellar Interferometer (FKSI) has been proposed to detect and characterize extra solar giant planets. The baseline configuration for FKSI is a two- aperture, structurally connected nulling interferometer, capable of providing null depth less than lo4 in the infrared. The objective of this paper is to summarize the process for setting the top level requirements and the jitter analysis performed on FKSI to date. The first part of the paper discusses the derivation of dynamic stability requirements, necessary for meeting the FKSI nulling demands. An integrated model including structures, optics, and control systems has been developed to support dynamic jitter analysis and requirements verification. The second part of the paper describes how the integrated model is used to investigate the effects of reaction wheel disturbances on pointing and optical path difference stabilities.
Hands-on Fourier analysis by means of far-field diffraction
NASA Astrophysics Data System (ADS)
Ceffa, Nicolo' Giovanni; Collini, Maddalena; D'Alfonso, Laura; Chirico, Giuseppe
2016-11-01
Coherent sources of light are easily available to university undergraduate laboratory courses and the demonstration of electro-magnetic wave diffraction is typically made with light. However, the construction of arbitrary patterns for the study of light diffraction is particularly demanding due to the small linear scale needed when using sub-micrometer wavelengths, limiting the possibility to thoroughly investigate diffraction experimentally. We describe and test a simple and affordable method to develop arbitrary light diffraction patterns with first year undergraduate or last year high school students. This method is exploited to investigate experimentally the connection between diffraction and the Fourier transform, leading to the development of the concept of spectral analysis of a (2D) signal. We therefore discuss the possibility of building a teaching unit for first year undergraduate or last year high school students on the interdisciplinary topic of spectral analysis starting from an experimental approach to light diffraction.
Laremore, Tatiana N; Leach, Franklin E; Amster, I Jonathan; Linhardt, Robert J
2011-08-15
A mixture of glycosaminoglycan (GAG) chains from a plasma proteoglycan bikunin was fractionated using native, continuous-elution polyacrylamide gel electrophoresis, and the resulting fractions were analyzed by electrospray ionization Fourier transform mass spectrometry (ESI FTMS). Molecular mass analysis of the intact GAG afforded information about the length and composition of GAG chains in the mixture. Ambiguity in the interpretation of the intact GAG mass spectra was eliminated by conducting an additional experiment in which the GAG chains of known molecular mass were treated with a GAG-degrading enzyme, chondroitinase ABC, and the digestion products were analyzed by ESI FTMS. The plasma bikunin GAG chains consisted predominantly of odd number of saccharides, although few chains consisting of even number of saccharides were also detected. Majority of the analyzed chains were tetrasulfated or pentasulfated and comprised by 29 to 41 monosaccharides.
Zhang, Xiaoxing; Liu, Heng; Ren, Jiangbo; Li, Jian; Li, Xin
2015-02-05
Gas-insulated switchgear (GIS) internal SF6 gas produces specific decomposition components under partial discharge (PD). By detecting these characteristic decomposition components, such information as the type and level of GIS internal insulation deterioration can be obtained effectively, and the status of GIS internal insulation can be evaluated. SF6 was selected as the background gas for Fourier transform infrared spectroscopy (FTIR) detection in this study. SOF2, SO2F2, SO2, and CO were selected as the characteristic decomposition components for system analysis. The standard infrared absorption spectroscopy of the four characteristic components was measured, the optimal absorption peaks were recorded and the corresponding absorption coefficient was calculated. Quantitative detection experiments on the four characteristic components were conducted. The volume fraction variation trend of four characteristic components at different PD time were analyzed. And under five different PD quantity, the quantitative relationships among gas production rate, PD time, and PD quantity were studied.
NASA Astrophysics Data System (ADS)
Nosi, D.; Delfino, G.; Quercioli, F.
2013-03-01
A combined transmission electron microscopy (TEM) and Fourier transform analysis has been performed on the secretory granules storing active peptides/proteins in serous cutaneous glands of n = 12 anuran species. Previous TEM investigation showed that the granules are provided with remarkable repeating substructures based on discrete subunits, arranged into a consistent framework. Furthermore, TEM findings revealed that this recurrent arrangement is acquired during a prolonged post-Golgian (or maturational) processing that affects the secretory product. Maturation leads to a variety of patterns depending on the degree of subunit clustering. This variety of recurrent patterns has been plotted into a range of frequency spectra. Through this quantitative approach, we found that the varying granule substructure can be reduced to a single mechanism of peptide/protein aggregation.
Analysis of nanostructure of red blood cells membranes by space Fourier transform of AFM images.
Kozlova, Elena K; Chernysh, Alexander M; Moroz, Victor V; Kuzovlev, Artem N
2013-01-01
Atomic force microscopy (AFM) allows a researcher to obtain images of red blood cells (RBC) and their membranes. Various effects on blood lead to surface alterations of cell membranes. Such alterations are estimated by a corrugation of membrane surface. This problem is complicated for statistical analysis because the membrane is the ensemble of structures with different sizes. In the present work we used the space Fourier transform to decompose the complex AFM image of the surface into three simpler ones. The parameters of spectral windows were selected according to the natural structures of RBC membranes. This method allowed us to obtain high resolution images for the corresponding spectral windows, to establish specificity of alterations from each effect, to estimate quantitatively the membrane nanostructures at different space scales and to compare their sizes statistically after actions of different agents. The blood intoxication was modeled by adding hemin, furosemide, chlorpromazine and zinc ions into blood, in vitro. Copyright © 2012 Elsevier Ltd. All rights reserved.
Impedance of the arterial system in terms of Fourier harmonic analysis of the pulse wave.
Oliva, I; Geshwind, H; Guttenbergerová, K; Roztocil, K; Laurent, D
1978-01-01
The results obtained by analysis of pulse waves by means of Fourier harmonics in healthy subjects and patients with aortic insufficiency show good agreement between input impedance of the aorta and the initial segment of the femoral bed in both groups. This means that in this region there is no marked increase in impedance, which provides a favourable background for energy transfer (blood content) in the distal direction. Impedance in healthy subjects increases in vessels of the lower extremity. In patients with aortic insufficiency there is a marked decrease in amplitude of all higher harmonic frequencies. This practically means that the second harmonic is no longer the main accumulator of energy of the pulse wave as in healthy subjects, and the same is also true, to a proportionate degree, for the third, fourth and fifth harmonics.
Fenner, R.A.; Lephardt, J.O.
1981-01-01
The thermal decomposition of kraft lignin was examined by Fourier-transform IR evolved-gas analysis, a technique designed for on-the-fly, simultaneous monitoring of multiple vapor-phase species. Initial degradation occurs at 120-300 degrees from bond fragmentation in the phenylpropane side chains as evidenced by the formation of HCO2H, HCHO, CO2, H2O and SO2. The presence of SO2 is supporting evidence that S from the kraft pulping process may be incorporated into the lignin structure in the form of sulfoxide and(or) sulfone linkages. Major decomposition initiates at approximately 300 degrees and extends to 480 degrees at which point half the intital weight has been lost. MeOH 2-methoxyphenol (guaiacol), and a 2-methoxy-4-alkyl- substituted phenol are the most apparent species evolving in this region and indicate fragmentation of the major chain linkages between the monomeric phenol units in the lignin structure.
[Monitoring and analysis of urban ozone using open path Fourier transform infrared spectrometry].
Li, Sheng; Gao, Min-guang; Zhang, Yu-jun; Liu, Wen-qing; Xu, Liang; Tong, Jing-jing; Cheng, Si-yang; Jin, Ling; Wei, Xiu-li; Wang, Ya-ping; Chen, Jun
2011-12-01
An ozone monitoring system was developed by the method of open path Fourier transform infrared (OP-FTIR) spectrometry based on our FTIR spectrometer. In order to improve measurement precision and detection limit, the quantitative analysis was completed to get ozone concentration by combining synthetic background spectrum method which uses information from HITRAN database and instrumental line shape, and nonlinear least squares (NLLSQ) method. The measurement methods for system detection limit were discussed and the result is 1.42 nmol x mol(-1) with sixteen times averages. The authors developed continuous monitoring experiments in the suburban area of Hefei. For the day and month measurement results, the authors analyzed their variations with the generation sources. The result has shown that this system is reliable and precise and can be used as a new device and method for national ozone monitoring.
Rohman, A; Man, Yb Che; Sismindari
2009-10-01
Today, virgin coconut oil (VCO) is becoming valuable oil and is receiving an attractive topic for researchers because of its several biological activities. In cosmetics industry, VCO is excellent material which functions as a skin moisturizer and softener. Therefore, it is important to develop a quantitative analytical method offering a fast and reliable technique. Fourier transform infrared (FTIR) spectroscopy with sample handling technique of attenuated total reflectance (ATR) can be successfully used to analyze VCO quantitatively in cream cosmetic preparations. A multivariate analysis using calibration of partial least square (PLS) model revealed the good relationship between actual value and FTIR-predicted value of VCO with coefficient of determination (R2) of 0.998.
Huck-Pezzei, V A; Pallua, J D; Pezzei, C; Bittner, L K; Schönbichler, S A; Abel, G; Popp, M; Bonn, G K; Huck, C W
2012-10-01
In the present study, Fourier transform infrared (FTIR) imaging and data analysis methods were combined to study morphological and molecular patterns of St. John's wort (Hypericum perforatum) in detail. For interpretation, FTIR imaging results were correlated with histological information gained from light microscopy (LM). Additionally, we tested several evaluation processes and optimized the methodology for use of complex FTIR microscopic images to monitor molecular patterns. It is demonstrated that the combination of the used spectroscopic method with LM enables a more distinct picture, concerning morphology and distribution of active ingredients, to be gained. We were able to obtain high-quality FTIR microscopic imaging results and to distinguish different tissue types with their chemical ingredients.
Seynaeve, Bert; Rosseel, Eveline; Nicolai, Bart; Vandewalle, Stefan . E-mail: Stefan.Vandewalle@cs.kuleuven.be
2007-05-20
Partial differential equations with random coefficients appear for example in reliability problems and uncertainty propagation models. Various approaches exist for computing the stochastic characteristics of the solution of such a differential equation. In this paper, we consider the spectral expansion approach. This method transforms the continuous model into a large discrete algebraic system. We study the convergence properties of iterative methods for solving this discretized system. We consider one-level and multi-level methods. The classical Fourier mode analysis technique is extended towards the stochastic case. This is done by taking the eigenstructure into account of a certain matrix that depends on the random structure of the problem. We show how the convergence properties depend on the particulars of the algorithm, on the discretization parameters and on the stochastic characteristics of the model. Numerical results are added to illustrate some of our theoretical findings.
Neichel, Benoit; Fusco, Thierry; Conan, Jean-Marc
2009-01-01
Several wide-field-of-view adaptive optics (WFAO) concepts such as multi-conjugate AO (MCAO), multi-object AO (MOAO), and ground-layer AO (GLAO) are currently being studied for the next generation of Extremely Large Telescopes (ELTs). All these concepts will use atmospheric tomography to reconstruct the turbulent-phase volume. In this paper, we explore different reconstruction algorithms and their fundamental limitations, conducting this analysis in the Fourier domain. This approach allows us to derive simple analytical formulations for the different configurations and brings a comprehensive view of WFAO limitations. We then investigate model and statistical errors and their effect on the phase reconstruction. Finally, we show some examples of different WFAO systems and their expected performance on a 42 m telescope case.
NASA Astrophysics Data System (ADS)
Zhang, Xiaoxing; Liu, Heng; Ren, Jiangbo; Li, Jian; Li, Xin
2015-02-01
Gas-insulated switchgear (GIS) internal SF6 gas produces specific decomposition components under partial discharge (PD). By detecting these characteristic decomposition components, such information as the type and level of GIS internal insulation deterioration can be obtained effectively, and the status of GIS internal insulation can be evaluated. SF6 was selected as the background gas for Fourier transform infrared spectroscopy (FTIR) detection in this study. SOF2, SO2F2, SO2, and CO were selected as the characteristic decomposition components for system analysis. The standard infrared absorption spectroscopy of the four characteristic components was measured, the optimal absorption peaks were recorded and the corresponding absorption coefficient was calculated. Quantitative detection experiments on the four characteristic components were conducted. The volume fraction variation trend of four characteristic components at different PD time were analyzed. And under five different PD quantity, the quantitative relationships among gas production rate, PD time, and PD quantity were studied.
Singular Spectrum Analysis: A Note on Data Processing for Fourier Transform Hyperspectral Imagers.
Rafert, J Bruce; Zabalza, Jaime; Marshall, Stephen; Ren, Jinchang
2016-09-01
Hyperspectral remote sensing is experiencing a dazzling proliferation of new sensors, platforms, systems, and applications with the introduction of novel, low-cost, low-weight sensors. Curiously, relatively little development is now occurring in the use of Fourier transform (FT) systems, which have the potential to operate at extremely high throughput without use of a slit or reductions in both spatial and spectral resolution that thin film based mosaic sensors introduce. This study introduces a new physics-based analytical framework called singular spectrum analysis (SSA) to process raw hyperspectral imagery collected with FT imagers that addresses some of the data processing issues associated with the use of the inverse FT. Synthetic interferogram data are analyzed using SSA, which adaptively decomposes the original synthetic interferogram into several independent components associated with the signal, photon and system noise, and the field illumination pattern. © The Author(s) 2016.
Almeida, Francylaine S; Lima, Sandro M; Andrade, Luis H C; Súarez, Yzel R
2012-07-01
Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) was applied to nineteen fish species in Brazil's Upper Paraná River basin to identify differences in the structural composition of their scales. To differentiate the species, a canonical discriminant analysis was used to indicate the most important absorption peaks in the mid-infrared region. Significant differences were found in the chemical composition of scales among the studied fish species, with Wilk's lambda = 5.2 × 10(-6), F((13,18,394)) = 37.57, and P < 0.001, indicating that O-CH(2) wag at 1396 cm(-1) can be used as a biomarker of this species group. The species could be categorized into four groups according to phylogenetic similarity, suggesting that the O-CH(2) 1396 cm(-1) absorbance is related to the biological traits of each species. This procedure can also be used to complement evolutionary studies.
Group-level spatial independent component analysis of Fourier envelopes of resting-state MEG data.
Ramkumar, Pavan; Parkkonen, Lauri; Hyvärinen, Aapo
2014-02-01
We developed a data-driven method to spatiotemporally and spectrally characterize the dynamics of brain oscillations in resting-state magnetoencephalography (MEG) data. The method, called envelope spatial Fourier independent component analysis (eSFICA), maximizes the spatial and spectral sparseness of Fourier energies of a cortically constrained source current estimate. We compared this method using a simulated data set against 5 other variants of independent component analysis and found that eSFICA performed on par with its temporal variant, eTFICA, and better than other ICA variants, in characterizing dynamics at time scales of the order of minutes. We then applied eSFICA to real MEG data obtained from 9 subjects during rest. The method identified several networks showing within- and cross-frequency inter-areal functional connectivity profiles which resemble previously reported resting-state networks, such as the bilateral sensorimotor network at ~20Hz, the lateral and medial parieto-occipital sources at ~10Hz, a subset of the default-mode network at ~8 and ~15Hz, and lateralized temporal lobe sources at ~8Hz. Finally, we interpreted the estimated networks as spatiospectral filters and applied the filters to obtain the dynamics during a natural stimulus sequence presented to the same 9 subjects. We observed occipital alpha modulation to visual stimuli, bilateral rolandic mu modulation to tactile stimuli and video clips of hands, and the temporal lobe network modulation to speech stimuli, but no modulation of the sources in the default-mode network. We conclude that (1) the proposed method robustly detects inter-areal cross-frequency networks at long time scales, (2) the functional relevance of the resting-state networks can be probed by applying the obtained spatiospectral filters to data from measurements with controlled external stimulation. © 2013 Elsevier Inc. All rights reserved.
Peix, A; Ponce, F; Zayas, R; López, A; Cabrera, O; Dorticós, F; Maltas, A Ma; Carrillo, R
2003-01-01
Radionuclide ventriculography (RNV) evaluates segmental and global ventricular contractility and also detects conduction abnormalities. To assess the temporal parameters of ventricular synchronization in the normal heart by a third harmonic (3H) Fourier phase analysis in a RNV and introduce this technique in our center. Thirty normal subjects (19 men and 11 women) were included. An equilibrium RNV was performed in 35 degree left anterior oblique projection with 10 degree caudal tilt. The onset (T0); mean time (T(m)); total contraction time (T(t)); final time (T(f)) and propagation time (T(p)) for right (RV) and left ventricle (LV); as well as total propagation time (T(TP)); interventricular time (T(RV-LV)) and septum-lateral wall conduction time (T(S-LW)) were measured on the 3H Fourier histogram of the time-activity curve. Right ventricle contraction started 5 ms before that of the left ventricle (T(0RV) = 66 +/- 38 ms; T(OLV) = 71 +/- 30 ms), with a longer total contraction time (T(tVD) = 67 +/- 28 ms vs T(tVI) = 64 +/- 38 ms). Total propagation time (T(TP)) was 69 +/- 37 ms and the interventricular time (T(RV-LV)) was 2 +/- 25 ms. Contraction progressed from septum to lateral wall, with a septum-lateral wall conduction time (T(S-LW)) of 4 +/- 22 ms. Simultaneous contraction of right and left ventricles can be quantified by RNV phase analysis, providing a useful tool for ventricular resynchronization assessment in multisite pacing.
Rajačić, M M; Todorović, D J; Krneta Nikolić, J D; Janković, M M; Djurdjević, V S
2016-09-01
Air sample monitoring in Serbia, Belgrade started in the 1960s, while (7)Be activity in air and total (dry and wet) deposition has been monitored for the last 22 years by the Environment and Radiation Protection Department of the Institute for Nuclear Sciences, Vinca. Using this data collection, the changes of the (7)Be activity in the air and the total (wet and dry) deposition samples, as well as their correlation with meteorological parameters (temperature, pressure, cloudiness, sunshine duration, precipitation and humidity) that affect (7)Be concentration in the atmosphere, were mathematically described using the Fourier analysis. Fourier analysis confirmed the expected; the frequency with the largest intensity in the harmonic spectra of the (7)Be activity corresponds to a period of 1 year, the same as the largest intensity frequency in Fourier series of meteorological parameters. To analyze the quality of the results produced by the Fourier analysis, we compared the measured values of the parameters with the values calculated according to the Fourier series. Absolute deviations between measured and predicted mean monthly values are in range from 0.02 mBq/m(3) to 0.7 mBq/m(3) for (7)Be activity in air, and 0.01 Bq/m(2) and 0.6 Bq/m(2) for (7)Be activity in deposition samples. Relatively good agreement of measured and predicted results offers the possibility of prediction of the (7)Be activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
An improved model for whole genome phylogenetic analysis by Fourier transform.
Yin, Changchuan; Yau, Stephen S-T
2015-10-07
DNA sequence similarity comparison is one of the major steps in computational phylogenetic studies. The sequence comparison of closely related DNA sequences and genomes is usually performed by multiple sequence alignments (MSA). While the MSA method is accurate for some types of sequences, it may produce incorrect results when DNA sequences undergone rearrangements as in many bacterial and viral genomes. It is also limited by its computational complexity for comparing large volumes of data. Previously, we proposed an alignment-free method that exploits the full information contents of DNA sequences by Discrete Fourier Transform (DFT), but still with some limitations. Here, we present a significantly improved method for the similarity comparison of DNA sequences by DFT. In this method, we map DNA sequences into 2-dimensional (2D) numerical sequences and then apply DFT to transform the 2D numerical sequences into frequency domain. In the 2D mapping, the nucleotide composition of a DNA sequence is a determinant factor and the 2D mapping reduces the nucleotide composition bias in distance measure, and thus improving the similarity measure of DNA sequences. To compare the DFT power spectra of DNA sequences with different lengths, we propose an improved even scaling algorithm to extend shorter DFT power spectra to the longest length of the underlying sequences. After the DFT power spectra are evenly scaled, the spectra are in the same dimensionality of the Fourier frequency space, then the Euclidean distances of full Fourier power spectra of the DNA sequences are used as the dissimilarity metrics. The improved DFT method, with increased computational performance by 2D numerical representation, can be applicable to any DNA sequences of different length ranges. We assess the accuracy of the improved DFT similarity measure in hierarchical clustering of different DNA sequences including simulated and real datasets. The method yields accurate and reliable phylogenetic trees
NASA Astrophysics Data System (ADS)
Brzezinski, A.
2014-12-01
The methods of spectral analysis are applied to solve the following two problems concerning the free Chandler wobble (CW): 1) to estimate the CW resonance parameters, the period T and the quality factor Q, and 2) to perform the excitation balance of the observed free wobble. It appears, however, that the results depend on the algorithm of spectral analysis applied. Here we compare the following two algorithms which are frequently applied for analysis of the polar motion data, the classical discrete Fourier analysis and the maximum entropy method corresponding to the autoregressive modeling of the input time series. We start from general description of both methods and of their application to the analysis of the Earth orientation observations. Then we compare results of the analysis of the polar motion and the related excitation data.
Sanfilippo, P G; Grimm, J L; Flanagan, J G; Lathrop, K L; Sigal, I A
2014-11-01
The lamina cribrosa (LC) plays an important biomechanical role in the optic nerve head (ONH). We developed a statistical shape model of the LC and tested if the shape varies with age or IOP. The ONHs of 18 donor eyes (47-91 years, mean 76 years) fixed at either 5 or 50 mmHg of IOP were sectioned, stained, and imaged under a microscope. A 3D model of each ONH was reconstructed and the outline of the vertical sagittal section closest to the geometric center of the LC extracted. The outline shape was described using Elliptic Fourier analysis, and principal components analysis (PCA) employed to identify the primary modes of LC shape variation. Linear mixed effect models were used to determine if the shape measurements were associated with age or IOP. The analysis revealed several modes of shape variation: thickness and depth directly (PC 1), or inversely (PC 2) related, and superior-inferior asymmetry (PC 3). Only PC 3 was associated with IOP, with higher IOP correlating with greater curvature of the LC superiorly compared to inferiorly. Our analysis enabled a concise and complete characterization of LC shape, revealing variations without defining them a priori. No association between LC shape and age was found for the relatively old population studied. Superior-inferior asymmetry of LC shape was associated with IOP, with more asymmetry at higher IOP. Increased IOP was not associated with LC thickness or depth.
Sanfilippo, P.G.; Grimm, J.L.; Flanagan, J.G.; Lathrop, K.L.; Sigal, I.A.
2014-01-01
The lamina cribrosa (LC) plays an important biomechanical role in the optic nerve head (ONH). We developed a statistical shape model of the LC and tested if the shape varies with age or IOP. The ONHs of 18 donor eyes (47 to 91 years, mean 76 years) fixed at either 5 or 50 mm Hg of IOP were sectioned, stained, and imaged under a microscope. A 3D model of each ONH was reconstructed and the outline of the vertical sagittal section closest to the geometric centre of the LC extracted. The outline shape was described using elliptic Fourier analysis, and principal components analysis (PCA) employed to identify the primary modes of LC shape variation. Linear mixed effect models were used to determine if the shape measurements were associated with age or IOP. The analysis revealed several modes of shape variation: thickness and depth directly (PC1), or inversely (PC2) related, and superior-inferior asymmetry (PC3). Only PC3 was associated with IOP, with higher IOP correlating with greater curvature of the LC superiorly compared to inferiorly. Our analysis enabled a concise and complete characterization of LC shape, revealing variations without defining them a priori. No association between LC shape and age was found for the relatively old population studied. Superior-inferior asymmetry of LC shape was associated with IOP, with more asymmetry at higher IOP. Increased IOP was not associated with LC thickness or depth. PMID:25193035
Childs, Paul; Wong, Allan C L; Fu, H Y; Liao, Yanbiao; Tam, Hwayaw; Lu, Chao; Wai, P K A
2010-12-20
We measured the hydrostatic pressure dependence of the birefringence and birefringent dispersion of a Sagnac interferometric sensor incorporating a length of highly birefringent photonic crystal fiber using Fourier analysis. Sensitivity of both the phase and chirp spectra to hydrostatic pressure is demonstrated. Using this analysis, phase-based measurements showed a good linearity with an effective sensitivity of 9.45 nm/MPa and an accuracy of ±7.8 kPa using wavelength-encoded data and an effective sensitivity of -55.7 cm(-1)/MPa and an accuracy of ±4.4 kPa using wavenumber-encoded data. Chirp-based measurements, though nonlinear in response, showed an improvement in accuracy at certain pressure ranges with an accuracy of ±5.5 kPa for the full range of measured pressures using wavelength-encoded data and dropping to within ±2.5 kPa in the range of 0.17 to 0.4 MPa using wavenumber-encoded data. Improvements of the accuracy demonstrated the usefulness of implementing chirp-based analysis for sensing purposes.
Childs, Paul; Wong, Allan C. L.; Fu, H. Y.; Liao, Yanbiao; Tam, Hwayaw; Lu Chao; Wai, P. K. A.
2010-12-20
.We measured the hydrostatic pressure dependence of the birefringence and birefringent dispersion of a Sagnac interferometric sensor incorporating a length of highly birefringent photonic crystal fiber using Fourier analysis. Sensitivity of both the phase and chirp spectra to hydrostatic pressure is demonstrated. Using this analysis, phase-based measurements showed a good linearity with an effective sensitivity of 9.45nm/MPa and an accuracy of {+-}7.8kPa using wavelength-encoded data and an effective sensitivity of -55.7cm{sup -1}/MPa and an accuracy of {+-}4.4kPa using wavenumber-encoded data. Chirp-based measurements, though nonlinear in response, showed an improvement in accuracy at certain pressure ranges with an accuracy of {+-}5.5kPa for the full range of measured pressures using wavelength-encoded data and dropping to within {+-}2.5kPa in the range of 0.17 to 0.4MPa using wavenumber-encoded data. Improvements of the accuracy demonstrated the usefulness of implementing chirp-based analysis for sensing purposes.
Chang, Byoung-Yong; Park, Su-Moon
2007-07-01
We report a novel comprehensive Fourier transform electrochemical impedance spectroscopic (FTEIS) analysis method of a series of chronoamperometric currents obtained during staircase cyclic voltammetric (SCV) experiments. In our method, FTEIS analysis of a set of chronoamperometric currents recorded upon applying a series of small potential steps during an SCV experiment provides a complete description of an electron-transfer reaction at the electrode/electrolyte interface in forms of equivalent circuit elements. Conversion of the circuit elements thus obtained from the analysis allows electrode kinetic parameters including the electron-transfer rate constant, transfer coefficient, diffusion coefficient, and double layer capacitance as well as thermodynamic parameters such as the half-wave potential and the apparent number of electrons transferred to be determined. Theories for obtaining an ac admittance voltammogram, as well as both the thermodynamic and mass-transfer kinetic parameters thereof, from the SCV data have been developed and verified. A decided advantage of the method is that it provides completely self-contained information regarding an electron-transfer reaction from a single pass of the SCV experiment.
Koçak, A; Lucania, J P; Berets, S L
2009-05-01
The transflection technique offers significant potential for both qualitative and quantitative analysis in the mid-infrared region. The higher sensitivity for bands in the mid-infrared provides a distinct advantage over the lower absorbance values typically encountered in the near-infrared region. Other advantages, such as small sample size and little sample preparation, make this technique a good candidate for the analysis of forensic substances. Small amounts of illegal drugs such as cocaine can be reliably and nondestructively identified with little or no sample preparation. With the approach to transflection described in this paper, single grains can be quickly identified by simply placing the sample on a specially designed substrate and recording the Fourier transform infrared (FT-IR) spectrum. Transflection was applied to the qualitative analysis of aqueous solutions and solid particles using relatively simple equipment in conjunction with a commercially available diffuse reflection accessory. Improvements in both equipment and technique are discussed. Extensions of the equipment into two new forms, with potential uses in proteomics and forensics, are introduced.
Xiao, H; Levine, S P; Nowak, J; Puskar, M; Spear, R C
1993-09-01
A Remote Sensing-Fourier Transform Infrared (RS-FTIR) system was applied to identify and quantify air contaminants along the beam, ranging from single compounds to mixtures, in various workplaces. Gas chromatography (GC) was used to provide information of point concentration variation by means of analyzing charcoal tube samples placed along the beam path. The results indicated a correlation between the charcoal tube-GC and the RS-FTIR for the analysis of most compounds. Discrepancies were found for some compounds, such as acetone, due to inhomogeneous concentration distributions along the IR beam, and due to the overlap of the acetone signal with off-scale water peaks. The study also demonstrated that there was little effect on quantitative analysis from partial or complete IR beam blockages during measurement. Qualitative analysis of unexpected compounds using RS-FTIR was also evaluated. In addition, the ability of the RS-FTIR to detect a sudden release of chemicals was demonstrated in the study.
Zhang, Li; Aksan, Alptekin
2010-01-01
This paper presents a study using in vitro Fourier transform infrared spectroscopy (FT-IR) analysis to determine the thermal damage induced to the human cornea by the conductive keratoplasty (CK) procedure. Human cornea tissues were treated with CK at different radiofrequency power (58-64%) and pulse duration (0.6-1.0 s) settings. The cornea tissues were cryo-sectioned and FT-IR analysis was performed to detect the extent of thermal damage by the second-derivative analysis of the infrared (IR) spectral bands corresponding to protein secondary structure. The protein amide I and II spectral bands measured in vitro mainly arose from collagen. The denatured cornea tissue showed a higher beta-sheet content than the native tissue. The extent of the thermal damage created by the CK treatment depended on power and duration settings, with the latter having a stronger effect. With clinical settings (60%, 0.6 s), the thermal damage area was confined within a radius of 100 microm. CK treatment duration had a more significant effect on the damage zone than the power setting.
Anderson, Timothy J.; Ai, Yongfeng; Jones, Roger W.; Houk, Robert S.; Jane, Jay-lin; Zhao, Yinsheng; Birt, Diane F.; McClelland, John F.
2013-01-29
Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) qualitatively and quantitatively measured resistant starch (RS) in rat cecal contents. Fisher 344 rats were fed diets of 55% (w/w, dry basis) starch for 8 weeks. Cecal contents were collected from sacrificed rats. A corn starch control was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. To calibrate the FTIR-PAS analysis, samples from each diet were analyzed using an enzymatic assay. A partial least-squares cross-validation plot generated from the enzymatic assay and FTIR-PAS spectral results for starch fit the ideal curve with a R2 of 0.997. A principal component analysis plot of components 1 and 2 showed that spectra from diets clustered significantly from each other. This study clearly showed that FTIR-PAS can accurately quantify starch content and identify the form of starch in complex matrices.
Williams, Anthony; Chung, Jaebum; Ou, Xiaoze; Zheng, Guoan; Rawal, Siddarth; Ao, Zheng; Datar, Ram; Yang, Changhuei; Cote, Richard
2014-06-01
Circulating tumor cells (CTCs) are recognized as a candidate biomarker with strong prognostic and predictive potential in metastatic disease. Filtration-based enrichment technologies have been used for CTC characterization, and our group has previously developed a membrane microfilter device that demonstrates efficacy in model systems and clinical blood samples. However, uneven filtration surfaces make the use of standard microscopic techniques a difficult task, limiting the performance of automated imaging using commercially available technologies. Here, we report the use of Fourier ptychographic microscopy (FPM) to tackle this challenge. Employing this method, we were able to obtain high-resolution color images, including amplitude and phase, of the microfilter samples over large areas. FPM's ability to perform digital refocusing on complex images is particularly useful in this setting as, in contrast to other imaging platforms, we can focus samples on multiple focal planes within the same frame despite surface unevenness. In model systems, FPM demonstrates high image quality, efficiency, and consistency in detection of tumor cells when comparing corresponding microfilter samples to standard microscopy with high correlation (R² = 0.99932). Based on these results, we believe that FPM will have important implications for improved, high throughput, filtration-based CTC analysis, and, more generally, image analysis of uneven surfaces.
NASA Astrophysics Data System (ADS)
Williams, Anthony; Chung, Jaebum; Ou, Xiaoze; Zheng, Guoan; Rawal, Siddarth; Ao, Zheng; Datar, Ram; Yang, Changhuei; Cote, Richard
2014-06-01
Circulating tumor cells (CTCs) are recognized as a candidate biomarker with strong prognostic and predictive potential in metastatic disease. Filtration-based enrichment technologies have been used for CTC characterization, and our group has previously developed a membrane microfilter device that demonstrates efficacy in model systems and clinical blood samples. However, uneven filtration surfaces make the use of standard microscopic techniques a difficult task, limiting the performance of automated imaging using commercially available technologies. Here, we report the use of Fourier ptychographic microscopy (FPM) to tackle this challenge. Employing this method, we were able to obtain high-resolution color images, including amplitude and phase, of the microfilter samples over large areas. FPM's ability to perform digital refocusing on complex images is particularly useful in this setting as, in contrast to other imaging platforms, we can focus samples on multiple focal planes within the same frame despite surface unevenness. In model systems, FPM demonstrates high image quality, efficiency, and consistency in detection of tumor cells when comparing corresponding microfilter samples to standard microscopy with high correlation (R2=0.99932). Based on these results, we believe that FPM will have important implications for improved, high throughput, filtration-based CTC analysis, and, more generally, image analysis of uneven surfaces.
Measurement of multi-bunch transfer functions using time-domain data and Fourier analysis
Hindi, H.; Sapozhnikov, L.; Fox, J.; Prabhakar, S.; Oxoby, G.; Linscott, I.; Drago, A.
1993-12-01
Multi-bunch transfer functions are principal ingredients in understanding both the behavior of high-current storage rings as well as control of their instabilities. The measurement of transfer functions on a bunch-by-bunch basis is particularly important in the design of active feedback systems. Traditional methods of network analysis that work well in the single bunch case become difficult to implement for many bunches. We have developed a method for obtaining empirical estimates of the multi-bunch longitudinal transfer functions from the time-domain measurements of the bunches` phase oscillations. This method involves recording the response of the bunch of interest to a white-noise excitation. The transfer function can then be computed as the ratio of the fast Fourier transforms (FFTs) of the response and excitation sequences, averaged over several excitations. The calculation is performed off-line on bunch-phase data and is well-suited to the multi-bunch case. A description of this method and an analysis of its performance is presented with results obtained using the longitudinal quick prototype feedback system developed at SLAC.
Measurement of multi-bunch transfer functions using time-domain data and Fourier analysis
Hindi, H.; Sapozhnikov, L.; Fox, J.; Prabhakar, S.; Oxoby, G.; Linscott, I. ); Drago, A. )
1994-10-10
Multi-bunch transfer functions are principal ingredients in understanding both the behavior of high-current storage rings as well as control of their instabilities. The measurement of transfer functions on a bunch-by-bunch basis is particularly important in the design of the active feedback systems. Traditional methods of network analysis that work well in the single bunch case become difficult to implement for many bunches. We have developed a method for obtaining empirical estimates of the multi-bunch longitudinal transfer functions from the time-domain measurements of the bunches' phase oscillations. This method involves recording the response of the bunch of interest to a white-noise excitation. The transfer function can then be computed as the ratio of the fast Fourier transforms (FFTs) of the response and excitation sequences, averaged over several excitations. The calculation is performed off-line on bunch-phase data and is well-suited to the multi-bunch case. A description of this method and an analysis of its performance is presented with results obtained using the longitudinal quick prototype feedback system developed at SLAC.
Ferrario, V F; Sforza, C; Serrao, G; Frattini, T; Del Favero, C
1994-07-01
Sex, age, or functional-asymmetry-related variations in the size and shape characteristics of the midsagittal magnetic resonance (MR) image of the human corpus callosum (CC) have been widely investigated in the last 10 years, with conflicting results. In the current study, the authors attempted to analyze the sex- and age-related shape differences of the human CC in a large sample of adult subjects from a mathematical standpoint. On the midsagittal MR images of 143 neurologically intact adults (75 women, 68 men, 21 to 81 years of age) the outline of the CC was identified. The shape of the CC was quantified using elliptic Fourier analysis, which allows for a global evaluation of the shape of organs identified by their outlines independent of their size, spatial orientation, and relation to reference planes. Subjects were grouped by sex and age. The shape of the human CC within age and sex class was highly variable. The analysis of variance showed a significant effect of age; however no significant sex differences could be demonstrated. Larger sample sizes are required to definitively assess the normal shape variations in human CC. The method developed also could be applied to the comparison of healthy and diseased individuals.
Williams, Anthony; Chung, Jaebum; Ou, Xiaoze; Zheng, Guoan; Rawal, Siddarth; Ao, Zheng; Datar, Ram; Yang, Changhuei; Cote, Richard
2014-01-01
Abstract. Circulating tumor cells (CTCs) are recognized as a candidate biomarker with strong prognostic and predictive potential in metastatic disease. Filtration-based enrichment technologies have been used for CTC characterization, and our group has previously developed a membrane microfilter device that demonstrates efficacy in model systems and clinical blood samples. However, uneven filtration surfaces make the use of standard microscopic techniques a difficult task, limiting the performance of automated imaging using commercially available technologies. Here, we report the use of Fourier ptychographic microscopy (FPM) to tackle this challenge. Employing this method, we were able to obtain high-resolution color images, including amplitude and phase, of the microfilter samples over large areas. FPM’s ability to perform digital refocusing on complex images is particularly useful in this setting as, in contrast to other imaging platforms, we can focus samples on multiple focal planes within the same frame despite surface unevenness. In model systems, FPM demonstrates high image quality, efficiency, and consistency in detection of tumor cells when comparing corresponding microfilter samples to standard microscopy with high correlation (R2=0.99932). Based on these results, we believe that FPM will have important implications for improved, high throughput, filtration-based CTC analysis, and, more generally, image analysis of uneven surfaces. PMID:24949708
Pabon, Peter; Ternström, Sten; Lamarche, Anick
2011-06-01
To describe a method for unified description, statistical modeling, and comparison of voice range profile (VRP) contours, even from diverse sources. A morphologic modeling technique, which is based on Fourier descriptors (FDs), is applied to the VRP contour. The technique, which essentially involves resampling of the curve of the contour, is assessed and also is compared to density-based VRP averaging methods that use the overlap count. VRP contours can be usefully described and compared using FDs. The method also permits the visualization of the local covariation along the contour average. For example, the FD-based analysis shows that the population variance for ensembles of VRP contours is usually smallest at the upper left part of the VRP. To illustrate the method's advantages and possible further application, graphs are given that compare the averaged contours from different authors and recording devices--for normal, trained, and untrained male and female voices as well as for child voices. The proposed technique allows any VRP shape to be brought to the same uniform base. On this uniform base, VRP contours or contour elements coming from a variety of sources may be placed within the same graph for comparison and for statistical analysis.
Chaerkady, Raghothama; Kelkar, Dhanashree S; Muthusamy, Babylakshmi; Kandasamy, Kumaran; Dwivedi, Sutopa B; Sahasrabuddhe, Nandini A; Kim, Min-Sik; Renuse, Santosh; Pinto, Sneha M; Sharma, Rakesh; Pawar, Harsh; Sekhar, Nirujogi Raja; Mohanty, Ajeet Kumar; Getnet, Derese; Yang, Yi; Zhong, Jun; Dash, Aditya P; MacCallum, Robert M; Delanghe, Bernard; Mlambo, Godfree; Kumar, Ashwani; Keshava Prasad, T S; Okulate, Mobolaji; Kumar, Nirbhay; Pandey, Akhilesh
2011-11-01
Anopheles gambiae is a major mosquito vector responsible for malaria transmission, whose genome sequence was reported in 2002. Genome annotation is a continuing effort, and many of the approximately 13,000 genes listed in VectorBase for Anopheles gambiae are predictions that have still not been validated by any other method. To identify protein-coding genes of An. gambiae based on its genomic sequence, we carried out a deep proteomic analysis using high-resolution Fourier transform mass spectrometry for both precursor and fragment ions. Based on peptide evidence, we were able to support or correct more than 6000 gene annotations including 80 novel gene structures and about 500 translational start sites. An additional validation by RT-PCR and cDNA sequencing was successfully performed for 105 selected genes. Our proteogenomic analysis led to the identification of 2682 genome search-specific peptides. Numerous cases of encoded proteins were documented in regions annotated as intergenic, introns, or untranslated regions. Using a database created to contain potential splice sites, we also identified 35 novel splice junctions. This is a first report to annotate the An. gambiae genome using high-accuracy mass spectrometry data as a complementary technology for genome annotation.
NASA Astrophysics Data System (ADS)
Lun, Lim Wei; Gunny, Ahmad Anas Nagoor; Kasim, Farizul Hafiz; Arbain, Dachyar
2017-04-01
This study focus on Fourier Transform Infrared Spectroscopy (FTIR) analysis of paddy straw pulp treated using deep eutectic solvent (DES). DES was synthesized using potassium carbonate and glycerol at different molar ratio under normal atmospheric pressure. Pretreatment of lignocellulosic biomass was carried out at temperature of 120°C for 60 minutes under mass ratio of paddy straw to DES 1:9. The chemical structures of the untreated paddy straw and paddy straw pulp treated with different molar ratio of DES were analyzed using FTIR. The characterization result from FT-IR spectra indicated that the potassium carbonate-glycerol DES deconstructed the structures of paddy straw by removing lignin and hemicellulose during the pulping process. The peak intensity that occurs at region between 900 cm-1 and 1500 cm-1 shows that the presence of elevated level of cellulose after lignocellulosic pulping. From FT-IR analysis, DES could not remove the functional group of lignin and hemicellulose completely but yet expose the structure of cellulose.
NASA Astrophysics Data System (ADS)
Bej, Subhajit; Tervo, Jani; Francés, Jorge; Svirko, Yuri P.; Turunen, Jari
2016-05-01
We propose the nonlinear Fourier Modal Method (FMM) [J. Opt. Soc. Am. B 31, 2371 (2014)] as a convenient and versatile numerical tool for the design and analysis of grating based next generation all-optical devices. Here, we include several numerical examples where the FMM is used to simulate all-optically tunable functionalities in sub-wavelength periodic structures. At first, we numerically investigate a 1-D periodic nonlinear binary grating with amorphous TiO2. We plot the diffraction efficiency in the transmitted orders against the structure depth for normally incident plane wave. Change in diffraction efficiencies for different incident field amplitudes are evident from the plots. We verify the accuracy of our implementation by comparing our results with the results obtained with the nonlinear Split Field-Finite Difference Time Domain (SF-FDTD) method. Next we repeat the same experiment with vertically standing amorphous Titanium dioxide (TiO2) nanowire arrays grown on top of quartz which are periodic in two mutually perpendicular directions and examine the efficiencies in the direct transmitted light for different incident field amplitudes. Our third example includes analysis of a form birefringent linear grating with Kerr medium. With FMM we demonstrate that the birefringence of such a structure can be tuned by all-optical means. As a final example, we design a narrow band Guided Mode Resonance Filter (GMRF). Numerical experiments based on the nonlinear FMM reveal that the spectral tunability of such a filter can be obtained by all-optical means.
Gillard, Frédéric; Ferrec, Yann; Guérineau, Nicolas; Rommeluère, Sylvain; Taboury, Jean; Chavel, Pierre
2012-06-01
Stationary Fourier transform spectrometry is an interesting concept for building reliable field or embedded spectroradiometers, especially for the mid- and far- IR. Here, a very compact configuration of a cryogenic stationary Fourier transform IR (FTIR) spectrometer is investigated, where the interferometer is directly integrated in the focal plane array (FPA). We present a theoretical analysis to explain and describe the fringe formation inside the FTIR-FPA structure when illuminated by an extended source positioned at a finite distance from the detection plane. The results are then exploited to propose a simple front lens design compatible with a handheld package.
Cai, Xi-lan; Wu, Guo-ping
2007-12-01
In the present paper, using Fourier transform infrared (FTIR) absorption spectrometry, the characteristic peaks of fingerprint infrared spectra of heroin samples from different routes were identified with clustering analysis successfully. It is a very fast, simple and reliable method. That is to say, a new method for the discrimination of heroin seizured from different routes is provided.
Rana, Sohel; Kanesan, Jeevan; Reza, Ahmed Wasif; Ramiah, Harikrishnan
2014-01-01
Non-Fourier heat conduction model with dual phase lag wave-diffusion model was analyzed by using well-conditioned asymptotic wave evaluation (WCAWE) and finite element method (FEM). The non-Fourier heat conduction has been investigated where the maximum likelihood (ML) and Tikhonov regularization technique were used successfully to predict the accurate and stable temperature responses without the loss of initial nonlinear/high frequency response. To reduce the increased computational time by Tikhonov WCAWE using ML (TWCAWE-ML), another well-conditioned scheme, called mass effect (ME) T-WCAWE, is introduced. TWCAWE with ME (TWCAWE-ME) showed more stable and accurate temperature spectrum in comparison to asymptotic wave evaluation (AWE) and also partial Pade AWE without sacrificing the computational time. However, the TWCAWE-ML remains as the most stable and hence accurate model to analyze the fast transient thermal analysis of non-Fourier heat conduction model.
Msimanga, Huggins Z; Ollis, Robert J
2010-06-01
Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to classify acetaminophen-containing medicines using their attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectra. Four formulations of Tylenol (Arthritis Pain Relief, Extra Strength Pain Relief, 8 Hour Pain Relief, and Extra Strength Pain Relief Rapid Release) along with 98% pure acetaminophen were selected for this study because of the similarity of their spectral features, with correlation coefficients ranging from 0.9857 to 0.9988. Before acquiring spectra for the predictor matrix, the effects on spectral precision with respect to sample particle size (determined by sieve size opening), force gauge of the ATR accessory, sample reloading, and between-tablet variation were examined. Spectra were baseline corrected and normalized to unity before multivariate analysis. Analysis of variance (ANOVA) was used to study spectral precision. The large particles (35 mesh) showed large variance between spectra, while fine particles (120 mesh) indicated good spectral precision based on the F-test. Force gauge setting did not significantly affect precision. Sample reloading using the fine particle size and a constant force gauge setting of 50 units also did not compromise precision. Based on these observations, data acquisition for the predictor matrix was carried out with the fine particles (sieve size opening of 120 mesh) at a constant force gauge setting of 50 units. After removing outliers, PCA successfully classified the five samples in the first and second components, accounting for 45.0% and 24.5% of the variances, respectively. The four-component PLS-DA model (R(2)=0.925 and Q(2)=0.906) gave good test spectra predictions with an overall average of 0.961 +/- 7.1% RSD versus the expected 1.0 prediction for the 20 test spectra used.
Moffat, Jonathan G; Mayes, Andrew G; Belton, Peter S; Craig, Duncan Q M; Reading, Mike
2010-01-01
Photothermal-Fourier transform-infrared (PT-FT-IR) microspectroscopy employs a thermal probe mounted in a scanning probe microscope (SPM). By placement of the tip of the probe on the surface of a solid sample, it can obtain localized IR spectra of a wide range of samples. A second mode of analysis is also available; a sample can be taken from the selected location using a technique called thermally assisted nanosampling (TAN), then a spectrum can be obtained of the nanosample while the probe is remote from the surface. We report a novel method of local compositional analysis that combines both of these types of measurement; a reagent is attached to the tip using TAN, then the reagent is placed in contact with analyte. IR spectroscopy can then be used to analyze any interaction between the reagent and surface it is placed in contact with. All of these modes of analysis were illustrated using a metal chelating agent. In the surface mode, changes to a solid bead of a chelating resin were measured using standard PT-FT-IR. In the nanosampling mode of analysis, a particle of a chelating polymer was attached to the tip of the probe using TAN and this was placed in contact with a concentrated calcium solution. Strong spectral changes were observed that mirrored those found when exposing the surface bound chelating resin bead to a solution of the same ion. A semiquantitative simulation of the PT spectrum for a chelating resin bead was achieved using a thermal diffusion model derived from photoacoustic spectroscopy indicating that semiquantitative or quantitative measurements will be possible in such a system.
Computational chemistry, in conjunction with gas chromatography/mass spectrometry/Fourier transform infrared spectrometry (GC/MS/FT-IR), was used to tentatively identify seven tetrachlorobutadiene (TCBD) isomers detected in an environmental sample. Computation of the TCBD infrare...
Computational chemistry, in conjunction with gas chromatography/mass spectrometry/Fourier transform infrared spectrometry (GC/MS/FT-IR), was used to tentatively identify seven tetrachlorobutadiene (TCBD) isomers detected in an environmental sample. Computation of the TCBD infrare...
Finn, James E.; Burger, Carl V.; Holland-Bartels, Leslie E.
1997-01-01
We used otolith banding patterns formed during incubation to discriminate among hatchery- and wild-incubated fry of sockeye salmon Oncorhynchus nerka from Tustumena Lake, Alaska. Fourier analysis of otolith luminance profiles was used to describe banding patterns: the amplitudes of individual Fourier harmonics were discriminant variables. Correct classification of otoliths to either hatchery or wild origin was 83.1% (cross-validation) and 72.7% (test data) with the use of quadratic discriminant function analysts on 10 Fourier amplitudes. Overall classification rates among the six test groups (one hatchery and five wild groups) were 46.5% (cross-validation) and 39.3% (test data) with the use of linear discriminant function analysis on 16 Fourier amplitudes. Although classification rates for wild-incubated fry from any one site never exceeded 67% (cross-validation) or 60% (test data), location-specific information was evident for all groups because the probability of classifying an individual to its true incubation location was significantly greater than chance. Results indicate phenotypic differences in otolith microstructure among incubation sites separated by less than 10 km. Analysis of otolith luminance profiles is a potentially useful technique for discriminating among and between various populations of hatchery and wild fish.
2-D Fourier transform analysis of the gravitational field of Northern Sinai Peninsula
NASA Astrophysics Data System (ADS)
Khalil, Mohamed A.; Santos, Fernando M.; Farzamian, Mohammad; El-Kenawy, Abeer
2015-04-01
The Sinai Peninsula has fascinated the consideration of many geophysical studies as it is influenced by major tectonic events. Those are (1) the Mesozoic to Early Cenozoic tectonically active opening of Tethys, (2) the Late Cretaceous to Early Tertiary (Laramide) Syrian arc system, due to closing of the Tethys (3) the Oligo-Miocene Gulf of Suez rifted basin, and (4) the Late Miocene to Recent transform Dead Sea-Gulf of Aqaba rift. Moreover, the shear zones inside Sinai have affected intensely the structure development of the northern Sinai area. 2-D fast Fourier transform (FFT) analysis has been applied to transfer the data from space domain to frequency domain, in which basic gradients and derived gradients have been estimated. The frequency domain operations resulted in frequency filtering, first and second degree xyz gradients, horizontal, total (analytical signal) and tilt gradients, maximum horizontal gradient amplitude (total horizontal derivative), and theta map. As a result, the basic and derived gradient maps have succeeded to outline the major structure elements of Northern Sinai Peninsula. Comparisons with some well known surface structures showed a large degree of matching.
NASA Astrophysics Data System (ADS)
Kandpal, Lalit Mohan; Tewari, Jagdish; Gopinathan, Nishanth; Stolee, Jessica; Strong, Rick; Boulas, Pierre; Cho, Byoung-Kwan
2017-09-01
Determination of the content uniformity, assessed by the amount of an active pharmaceutical ingredient (API), and hardness of pharmaceutical materials is important for achieving a high-quality formulation and to ensure the intended therapeutic effects of the end-product. In this work, Fourier transform near infrared (FT-NIR) spectroscopy was used to determine the content uniformity and hardness of a pharmaceutical mini-tablet and standard tablet samples. Tablet samples were scanned using an FT-NIR instrument and tablet spectra were collected at wavelengths of 1000-2500 nm. Furthermore, multivariate analysis was applied to extract the relationship between the FT-NIR spectra and the measured parameters. The results of FT-NIR spectroscopy for API and hardness prediction were as precise as the reference high-performance liquid chromatography and mechanical hardness tests. For the prediction of mini-tablet API content, the highest coefficient of determination for the prediction (R2p) was found to be 0.99 with a standard error of prediction (SEP) of 0.72 mg. Moreover, the standard tablet hardness measurement had a R2p value of 0.91 with an SEP of 0.25 kg. These results suggest that FT-NIR spectroscopy is an alternative and accurate nondestructive measurement tool for the detection of the chemical and physical properties of pharmaceutical samples.
Lu, Zhibing; Scherlag, Benjamin J; Lin, Jiaxiong; Niu, Guodong; Ghias, Muhammad; Jackman, Warren M; Lazzara, Ralph; Jiang, Hong; Po, Sunny S
2008-08-01
The mechanism(s) underlying complex fractionated atrial electrograms (CFAE) is not well understood. We hypothesized that CFAE may be caused by enhanced activity of the intrinsic cardiac autonomic nervous system. In 35 anesthetized dogs, via a right or left thoracotomy, sustained atrial fibrillation was induced by local application of acetylcholine (ACh; 10, 100 mM) to the surface of the atrial appendage (AA) or by injection of ACh (10 mM) into the ganglionated plexi (GP). Fast Fourier transform analysis was performed from recordings at AA, atrial sites near the AA, mid portion of the atrium, atrial sites near the GP, and the pulmonary veins. After AF was induced with ACh either by topical application to the AA or by direct injection into the GP, CFAE exhibited a significant gradient of progressively decreasing dominant frequency and incidence of CFAE (CFAE%) from the GP toward distant sites, while regularity index progressively decreased in the opposite direction. Ablation of GP markedly attenuated CFAE and eliminated these gradients. These results suggest CFAE may result from activation of the intrinsic cardiac autonomic nervous system in these animal models of sustained AF. Ablation of GP attenuates CFAE and eliminates the DF gradient.
Portable Fourier Transform Spectroscopy for Analysis of Surface Contamination and Quality Control
NASA Technical Reports Server (NTRS)
Pugel, Diane
2012-01-01
Progress has been made into adapting and enhancing a commercially available infrared spectrometer for the development of a handheld device for in-field measurements of the chemical composition of various samples of materials. The intent is to duplicate the functionality of a benchtop Fourier transform infrared spectrometer (FTIR) within the compactness of a handheld instrument with significantly improved spectral responsivity. Existing commercial technology, like the deuterated L-alanine triglycine sulfide detectors (DLATGS), is capable of sensitive in-field chemical analysis. This proposed approach compares several subsystem elements of the FTIR inside of the commercial, non-benchtop system to the commercial benchtop systems. These subsystem elements are the detector, the preamplifier and associated electronics of the detector, the interferometer, associated readout parameters, and cooling. This effort will examine these different detector subsystem elements to look for limitations in each. These limitations will be explored collaboratively with the commercial provider, and will be prioritized to meet the deliverable objectives. The tool design will be that of a handheld gun containing the IR filament source and associated optics. It will operate in a point-and-shoot manner, pointing the source and optics at the sample under test and capturing the reflected response of the material in the same handheld gun. Data will be captured via the gun and ported to a laptop.
NASA Astrophysics Data System (ADS)
González, Andrés. L.; Contreras, Carlos R.; Meneses, Jaime E.
2014-05-01
In order to get measures with a high accurate, three-dimensional reconstruction systems are implemented in industrial, medical, and investigative fields. To obtain high accurate is necessary to carry out an appropriate calibration procedure. In fringe projection profilometry, this procedure allows obtaining a relation between absolute phase and three-dimensional (3D) information of the object in study; however, to execute such procedure a precise movement stage is required. A fringe projection system is formed by a projector, a digital camera and a control unit, called like a projection-acquisition unit in this paper. The calibration of the projection-acquisition unit consists in to establish the parameters that are required to transform the phase of the projected fringes to metric coordinates of the object surface. These parameters are a function of the intrinsic and extrinsic parameters of both camera and projector, due to the projector is modeled as an inverse camera. For this purpose, in this paper a novel and flexible calibration method that allows calibrating any device that works with fringe projection profilometry is proposed. In this method is used a reference plane placed in random positions and the projection of an encoded pattern of control points. The camera parameters are computed using Zhang's calibration method; and the projector parameters are computed from the camera parameters and the phase of the pattern of control points, which is determined by using Fourier analysis. Experimental results are presented to demonstrate the performance of the calibration method.
Spectroscopic analysis of bladder cancer tissues using Fourier transform infrared spectroscopy
NASA Astrophysics Data System (ADS)
Al-Muslet, Nafie A.; Ali, Essam E.
2012-03-01
Bladder cancer is one of the most common cancers in Africa. It takes several days to reach a diagnosis using histological examinations of specimens obtained by endoscope, which increases the medical expense. Recently, spectroscopic analysis of bladder cancer tissues has received considerable attention as a diagnosis technique due to its sensitivity to biochemical variations in the samples. This study investigated the use of Fourier transform infrared (FTIR) spectroscopy to analyze a number of bladder cancer tissues. Twenty-two samples were collected from 11 patients diagnosed with bladder cancer from different hospitals without any pretreatment. From each patient two samples were collected, one normal and another cancerous. FTIR spectrometer was used to differentiate between normal and cancerous bladder tissues via changes in spectra of these samples. The investigations detected obvious changes in the bands of proteins (1650, 1550 cm-1), lipids (2925, 2850 cm-1), and nucleic acid (1080, 1236 cm-1). The results show that FTIR spectroscopy is promising as a rapid, accurate, nondestructive, and easy to use alternative method for identification and diagnosis of bladder cancer tissues.
Dishberger, Debra McLean
1983-04-01
This report represents a continuation of gravity work in the Cascade Mountains of Washington supported by the Division of Geology and Earth Resources since 1974. The purpose of this research has been collection of baseline gravity data for use in geothermal resource evaluation. Results of the Division's gravity studies to date are given in Danes and Phillips (1983a, 1983b). One of the problems encountered when analyzing gravity data is distinguishing between those parts of the data that represent geologic structures of interest, and those that do not. In many cases, the features of interest are relatively small, near-surface features, such as those sought in mineral, petroleum, or geothermal exploration. Gravity anomalies caused by such structures may be distorted or masked by anomalies caused by larger, deeper geologic structures. Gravity anomalies caused by relatively shallow, small geologic structures are termed residual anomalies. Those due to broad, deep-seated features can be described as regional anomalies. The purpose of this report is to describe a Fourier analysis method for separating residual and regional gravity anomalies from a complete Bouguer gravity anomaly field. The technique has been applied to gravity data from the Southern Cascade Mountains, Washington. Residual gravity anomaly maps at a scale of 1:250,000 are presented for various regional wavelength filters, and a power spectrum of the frequency components in the South Cascade gravity data is displayed. No attempt is made to interpret the results of this study in terms of geologic structures.
Mijatović, Vilena Vrbanović; Šerman, Ljiljana; Gamulin, Ozren
2017-01-01
Pulmonary surfactant, consisting primarily of phospholipids and four surfactant-specific proteins, is among the first structures that is exposed to inhalation anesthetics. Consequently, changes of pulmonary surfactant due to this exposure could cause respiratory complications after long anesthetic procedures. Fourier transform infrared (FTIR) spectroscopy was used to explore the effects of two inhalation anesthetics, sevoflurane and isoflurane, on a commercially available pulmonary surfactant. The research was primarily focused on the effect of anesthetics on the lipid component of the surfactant. Four different concentrations of anesthetics were added, and the doses were higher from the low clinical doses typically used. Recorded spectra were analyzed using principal component analysis, and the Student’s t-test was performed to confirm the results. The exposure to both anesthetics induced similar changes, consistent with the increase of the anesthetic concentration. The most pronounced effect was on the hydrophilic head group of phospholipids, which is in agreement with the disruption of the hydrogen bond, caused by the anesthetics. A change in the band intensities of CH2 stretching vibrations, indicative of a disordering effect of anesthetics on the hydrophobic tails of phospholipids, was also observed. Changes induced by isoflurane appear to be more pronounced than those induced by sevoflurane. Furthermore, our results suggest that FTIR spectroscopy is a promising tool in studying anesthetic effects on pulmonary surfactant. PMID:28027455
Vrbanović Mijatović, Vilena; Šerman, Ljiljana; Gamulin, Ozren
2017-02-21
Pulmonary surfactant, consisting primarily of phospholipids and four surfactant-specific proteins, is among the first structures that is exposed to inhalation anesthetics. Consequently, changes of pulmonary surfactant due to this exposure could cause respiratory complications after long anesthetic procedures. Fourier transform infrared (FTIR) spectroscopy was used to explore the effects of two inhalation anesthetics, sevoflurane and isoflurane, on a commercially available pulmonary surfactant. The research was primarily focused on the effect of anesthetics on the lipid component of the surfactant. Four different concentrations of anesthetics were added, and the doses were higher from the low clinical doses typically used. Recorded spectra were analyzed using principal component analysis, and the Student's t-test was performed to confirm the results. The exposure to both anesthetics induced similar changes, consistent with the increase of the anesthetic concentration. The most pronounced effect was on the hydrophilic head group of phospholipids, which is in agreement with the disruption of the hydrogen bond, caused by the anesthetics. A change in the band intensities of CH2 stretching vibrations, indicative of a disordering effect of anesthetics on the hydrophobic tails of phospholipids, was also observed. Changes induced by isoflurane appear to be more pronounced than those induced by sevoflurane. Furthermore, our results suggest that FTIR spectroscopy is a promising tool in studying anesthetic effects on pulmonary surfactant.
Fourier spectral-based modal curvature analysis and its application to damage detection in beams
NASA Astrophysics Data System (ADS)
Yang, Zhi-Bo; Radzienski, Maciej; Kudela, Pawel; Ostachowicz, Wieslaw
2017-02-01
In this paper, a simple Fourier spectral-based method is proposed to calculate the modal curvature (MC) of beams instead of the traditional central difference method. Based on the present method, damages in beam-like structures are localized. The present method provides an alternative selection to estimate MC in damage detection. There are two advantages of the present method. Firstly, the spectral calculation of spatial derivatives is conducted globally, which provides the suppression for noise. In addition, signal processing in the wavenumber domain provides an alternative choice for spatial filtering for mode shapes. Secondly, the proposed method provides a precise estimation of the MC which is related to original definition. With the absence of numerical derivative, the estimated results can be more stable and robust. Statistical analysis is conducted to show the effectiveness and noise immunity of the proposed method. In order to obtain the better identification, the MC calculated by the proposed method is employed as the input of continuous wavelet transform, and then the hybrid method is generated. The validations of the present method and comparison with the traditional central difference method are numerically and experimentally demonstrated.
Ojeda, Jesús J; Romero-González, María E; Banwart, Steven A
2009-08-01
Reflectance micro-Fourier transform infrared (FT-IR) analysis has been applied to characterize biofilm formation of Aquabacterium commune, a common microorganism present on drinking water distribution systems, onto the increasingly popular pipe material stainless steel EN1.4307. The applicability of the reflectance micro-FT-IR technique for analyzing the bacterial functional groups is discussed, and the results are compared to spectra obtained using more conventional FT-IR techniques: transmission micro-FT-IR, attenuated transmitted reflectance (ATR), and KBr pellets. The differences between the infrared spectra of wet and dried bacteria, as well as free versus attached bacteria, are also discussed. The spectra obtained using reflectance micro-FT-IR spectroscopy were comparable to those obtained using other FT-IR techniques. The absence of sample preparation, the potential to analyze intact samples, and the ability to characterize opaque and thick samples without the need to transfer the bacterial samples to an infrared transparent medium or produce a pure culture were the main advantages of reflectance micro-FT-IR spectroscopy.
NASA Astrophysics Data System (ADS)
Prudhomme, G.; Berthe, L.; Bénier, J.; Bozier, O.; Mercier, P.
2017-01-01
Photonic Doppler Velocimetry is a plug-and-play and versatile diagnostic used in dynamic physic experiments to measure velocities. When signals are analyzed using a Short-Time Fourier Transform, multiple velocities can be distinguished: for example, the velocities of moving particle-cloud appear on spectrograms. In order to estimate the back-scattering fluxes of target, we propose an original approach "PDV Radiometric analysis" resulting in an expression of time-velocity spectrograms coded in power units. Experiments involving micron-sized particles raise the issue of detection limit; particle-size limit is very difficult to evaluate. From the quantification of noise sources, we derive an estimation of the spectrogram noise leading to a detectivity limit, which may be compared to the fraction of the incoming power which has been back-scattered by the particle and then collected by the probe. This fraction increases with their size. At last, some results from laser-shock accelerated particles using two different PDV systems are compared: it shows the improvement of detectivity with respect to the Effective Number of Bits (ENOB) of the digitizer.
Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy.
Rohman, A; Sismindari; Erwanto, Y; Che Man, Yaakob B
2011-05-01
Meatball is one of the favorite foods in Indonesia. The adulteration of pork in beef meatball is frequently occurring. This study was aimed to develop a fast and non destructive technique for the detection and quantification of pork in beef meatball using Fourier transform infrared (FTIR) spectroscopy and partial least square (PLS) calibration. The spectral bands associated with pork fat (PF), beef fat (BF), and their mixtures in meatball formulation were scanned, interpreted, and identified by relating them to those spectroscopically representative to pure PF and BF. For quantitative analysis, PLS regression was used to develop a calibration model at the selected fingerprint regions of 1200-1000 cm(-1). The equation obtained for the relationship between actual PF value and FTIR predicted values in PLS calibration model was y = 0.999x + 0.004, with coefficient of determination (R(2)) and root mean square error of calibration are 0.999 and 0.442, respectively. The PLS calibration model was subsequently used for the prediction of independent samples using laboratory made meatball samples containing the mixtures of BF and PF. Using 4 principal components, root mean square error of prediction is 0.742. The results showed that FTIR spectroscopy can be used for the detection and quantification of pork in beef meatball formulation for Halal verification purposes.
Analysis of human face skin surface molecules in situ by Fourier-transform infrared spectroscopy.
Sakuyama, Shu; Hirabayashi, Chiaki; Hasegawa, Jun-Ichi; Yoshida, Satoshi
2010-05-01
For medical and dermatological researchers, it is important to realize the molecular dynamics and its control in the stratum corneum (SC) of human skin, which may be related to some skin abnormalities such as atopic dermatitis and skin pruritus. We have tried to analyze the periodic molecular dynamics of the outermost layers of SC in vivo. We measured the skin surface molecules of human face in situ non-invasively using a Fourier-transform infrared (FTIR) spectroscopy system attached with a newly designed attenuated total reflection (ATR) probe. The water-extracted components from the SC were also analyzed using mass spectrometry, an enzymatic assay and high-performance liquid chromatography characterization. The infrared spectral changes of some components on the face skin at around 1000-1200 cm(-1) with circa-monthly rhythms were observed when monitored for 10 months, and the components also showed a seasonal change. The analysis of different FTIR spectrum of the changeable components with circa-monthly rhythm suggested the presence of a lactate compound. The presence of magnesium lactate in a conjugated form was detected in the water extract of SC. We demonstrate that the periodically changed components of the human face skin contained magnesium lactate conjugate as a major component.
NASA Astrophysics Data System (ADS)
Long, C. L.
1991-02-01
Multivariate calibration techniques can reduce the time required for routine testing and can provide new methods of analysis. Multivariate calibration is commonly used with near infrared reflectance analysis (NIRA) and Fourier transform infrared (FTIR) spectroscopy. Two feasibility studies were performed to determine the capability of NIRA, using multivariate calibration techniques, to perform analyses on the types of samples that are routinely analyzed at this laboratory. The first study performed included a variety of samples and indicated that NIRA would be well-suited to perform analyses on selected materials properties such as water content and hydroxyl number on polyol samples, epoxy content on epoxy resins, water content of desiccants, and the amine values of various amine cure agents. A second study was performed to assess the capability of NIRA to perform quantitative analysis of hydroxyl numbers and water contents of hydroxyl-containing materials. Hydroxyl number and water content were selected for determination because these tests are frequently run on polyol materials and the hydroxyl number determination is time consuming. This study pointed out the necessity of obtaining calibration standards identical to the samples being analyzed for each type of polyol or other material being analyzed. Multivariate calibration techniques are frequently used with FTIR data to determine the composition of a large variety of complex mixtures. A literature search indicated many applications of multivariate calibration to FTIR data. Areas identified where quantitation by FTIR would provide a new capability are quantitation of components in epoxy and silicone resins, polychlorinated biphenyls (PCBs) in oils, and additives to polymers.
NASA Astrophysics Data System (ADS)
Haubold, H. J.; Gorth, E.
1985-01-01
The authors continue the Fourier analysis of the argon-37 production rate for runs 18 - 80 observed in Davis' well known solar neutrino experiment. The method of Fourier analysis with the unequally-spaced data of Davis and associates is described and the discovered periods compared with the authors' recently published results for the analysis of runs 18 - 69 (Haubold and Gerth, 1983). The harmonic analysis of the data of runs 18 - 80 shows time variations of the solar neutrino flux with periods π = 8.33; 5.26; 2.13; 1.56; 0.83; 0.64; 0.54; and 0.50 years, respectively, which confirm the authors' earlier computations.
Ma, Jing; Wu, Xian-Xue; Tai, Xi; Xu, Liu-Xian; Zhu, Jin-Lan; Qin, Yao; Zhou, Qun; Sun, Su-Qin
2014-10-01
In order to develop a process analysis method to guide extraction process of Arenaria polytrichoides (AP) based on tracking analysis by Fourier transform infrared (FTIR), IR spectra of petroleum ether extracts (PE-E), ethyl acetate extracts (EtOAc-E), n-butanol extracts (n-BuOH-E) and water extracts (H2O-E) of AP from three extraction methods were recorded. The FTIR and corresponding second derivative infrared (SDIR) spectra were analyzed comparatively from two aspects, namely, different extracts from a same extraction process and the same extracts from different methods. The spectral analysis results show that different extracts obtained from a same extraction process have distinctly different spectral absorbance character. Although the IR spectral absorption characteristics of the same extracts from different methods are rather similar in holistic, some explicit spectral differences still could be found among each other. In extraction process one (M1), main flavonoids and their glycosides of AP migrated to EtOAc-E and the rest part of them shift to n-BuOH-E according to FTIR peaks such as 1,603 and 1,123 cm(-1). However, the circumstances in method two (M2) and method three (M3) were just the reverse. Moreover, a few flavonoid glycosides got into H2O-E. The relative content of all kinds of aglycones and higher saturated alkyl are much higher in EtOAc-E of M2 than that of M1 and M3 according to the relative absorption intensive of peak at 2,850 cm(-1). Similarly, n-BuOH-E of M3 has relative rich contents of glycosides: and polysaccharides than those of M1 and M2 by peaks, such as 1,066 and 2,927 cm(-1). These results demonstrate that the migration rules of AP components are not always same in different extrac- tion process. The substance migration information during the extraction process could be recorded and disclosed in an intuitive way by FTIR tracking analysis of corresponding extracts. Consequently, FTIR tracking analysis is a fast, efficient, low-carbon and
Kouvoutsakis, G; Mitsi, C; Tarantilis, P A; Polissiou, M G; Pappas, C S
2014-02-15
Diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) and discriminant analysis were used for the geographical differentiation of dried lentil seed (Lens culinaris) samples. Specifically, 18 Greek samples and nine samples imported from other countries were distinguished using the 2250-1720 and 1275-955 cm⁻¹ spectral regions. The differentiation is complete. The combination of DRIFTS and discriminant analysis enables simple, rapid, cheap and accurate differentiation of commercial lentil seeds in terms of geographical origin.
Fourier Analysis and Structure Determination--Part III: X-ray Crystal Structure Analysis.
ERIC Educational Resources Information Center
Chesick, John P.
1989-01-01
Discussed is single crystal X-ray crystal structure analysis. A common link between the NMR imaging and the traditional X-ray crystal structure analysis is reported. Claims that comparisons aid in the understanding of both techniques. (MVL)
Philip Ye, X; Liu, Lu; Hayes, Douglas; Womac, Alvin; Hong, Kunlun; Sokhansanj, Shahab
2008-10-01
The objectives of this research were to determine the variation of chemical composition across botanical fractions of cornstover, and to probe the potential of Fourier transform near-infrared (FT-NIR) techniques in qualitatively classifying separated cornstover fractions and in quantitatively analyzing chemical compositions of cornstover by developing calibration models to predict chemical compositions of cornstover based on FT-NIR spectra. Large variations of cornstover chemical composition for wide calibration ranges, which is required by a reliable calibration model, were achieved by manually separating the cornstover samples into six botanical fractions, and their chemical compositions were determined by conventional wet chemical analyses, which proved that chemical composition varies significantly among different botanical fractions of cornstover. Different botanic fractions, having total saccharide content in descending order, are husk, sheath, pith, rind, leaf, and node. Based on FT-NIR spectra acquired on the biomass, classification by Soft Independent Modeling of Class Analogy (SIMCA) was employed to conduct qualitative classification of cornstover fractions, and partial least square (PLS) regression was used for quantitative chemical composition analysis. SIMCA was successfully demonstrated in classifying botanical fractions of cornstover. The developed PLS model yielded root mean square error of prediction (RMSEP %w/w) of 0.92, 1.03, 0.17, 0.27, 0.21, 1.12, and 0.57 for glucan, xylan, galactan, arabinan, mannan, lignin, and ash, respectively. The results showed the potential of FT-NIR techniques in combination with multivariate analysis to be utilized by biomass feedstock suppliers, bioethanol manufacturers, and bio-power producers in order to better manage bioenergy feedstocks and enhance bioconversion.
Selective Weighted Least Squares Method for Fourier Transform Infrared Quantitative Analysis.
Wang, Xin; Li, Yan; Wei, Haoyun; Chen, Xia
2016-10-26
Classical least squares (CLS) regression is a popular multivariate statistical method used frequently for quantitative analysis using Fourier transform infrared (FT-IR) spectrometry. Classical least squares provides the best unbiased estimator for uncorrelated residual errors with zero mean and equal variance. However, the noise in FT-IR spectra, which accounts for a large portion of the residual errors, is heteroscedastic. Thus, if this noise with zero mean dominates in the residual errors, the weighted least squares (WLS) regression method described in this paper is a better estimator than CLS. However, if bias errors, such as the residual baseline error, are significant, WLS may perform worse than CLS. In this paper, we compare the effect of noise and bias error in using CLS and WLS in quantitative analysis. Results indicated that for wavenumbers with low absorbance, the bias error significantly affected the error, such that the performance of CLS is better than that of WLS. However, for wavenumbers with high absorbance, the noise significantly affected the error, and WLS proves to be better than CLS. Thus, we propose a selective weighted least squares (SWLS) regression that processes data with different wavenumbers using either CLS or WLS based on a selection criterion, i.e., lower or higher than an absorbance threshold. The effects of various factors on the optimal threshold value (OTV) for SWLS have been studied through numerical simulations. These studies reported that: (1) the concentration and the analyte type had minimal effect on OTV; and (2) the major factor that influences OTV is the ratio between the bias error and the standard deviation of the noise. The last part of this paper is dedicated to quantitative analysis of methane gas spectra, and methane/toluene mixtures gas spectra as measured using FT-IR spectrometry and CLS, WLS, and SWLS. The standard error of prediction (SEP), bias of prediction (bias), and the residual sum of squares of the errors
Shawkey, Matthew D.; Saranathan, Vinodkumar; Pálsdóttir, Hildur; Crum, John; Ellisman, Mark H.; Auer, Manfred; Prum, Richard O.
2009-01-01
Organismal colour can be created by selective absorption of light by pigments or light scattering by photonic nanostructures. Photonic nanostructures may vary in refractive index over one, two or three dimensions and may be periodic over large spatial scales or amorphous with short-range order. Theoretical optical analysis of three-dimensional amorphous nanostructures has been challenging because these structures are difficult to describe accurately from conventional two-dimensional electron microscopy alone. Intermediate voltage electron microscopy (IVEM) with tomographic reconstruction adds three-dimensional data by using a high-power electron beam to penetrate and image sections of material sufficiently thick to contain a significant portion of the structure. Here, we use IVEM tomography to characterize a non-iridescent, three-dimensional biophotonic nanostructure: the spongy medullary layer from eastern bluebird Sialia sialis feather barbs. Tomography and three-dimensional Fourier analysis reveal that it is an amorphous, interconnected bicontinuous matrix that is appropriately ordered at local spatial scales in all three dimensions to coherently scatter light. The predicted reflectance spectra from the three-dimensional Fourier analysis are more precise than those predicted by previous two-dimensional Fourier analysis of transmission electron microscopy sections. These results highlight the usefulness, and obstacles, of tomography in the description and analysis of three-dimensional photonic structures. PMID:19158016
Fourier transform infrared imaging analysis in discrimination studies of squamous cell carcinoma.
Pallua, J D; Pezzei, C; Zelger, B; Schaefer, G; Bittner, L K; Huck-Pezzei, V A; Schoenbichler, S A; Hahn, H; Kloss-Brandstaetter, A; Kloss, F; Bonn, G K; Huck, C W
2012-09-07
Oral squamous cell carcinoma (OSCC) of the oral cavity and oropharynx represents more than 95% of all malignant neoplasms in the oral cavity. Histomorphological evaluation of this cancer type is invasive and remains a time consuming and subjective technique. Therefore, novel approaches for histological recognition are necessary to identify malignancy at an early stage. Fourier transform infrared (FTIR) imaging has become an essential tool for the detection and characterization of the molecular components of biological processes, such as those responsible for the dynamic properties of tumor progression. FTIR imaging is a modern analytical technique enabling molecular imaging of a complex biological sample and is based on the absorption of IR radiation by vibrational transitions in covalent bonds. One major advantage of this technique is the acquisition of local molecular expression profiles, while maintaining the topographic integrity of the tissue and avoiding time-consuming extraction, purification, and separation steps. With this imaging technique, it is possible to obtain unique images of the spatial distribution of proteins, lipids, carbohydrates, cholesterols, nucleic acids, phospholipids, and small molecules with high spatial resolution. Analysis and visualization of FTIR imaging datasets are challenging and the use of chemometric tools is crucial in order to take advantage of the full measurement. Therefore, methodologies for this task based on the novel developed algorithm for multivariate image analysis (MIA) are often necessary. In the present study, FTIR imaging and data analysis methods were combined to optimize the tissue measurement mode after deparaffinization and subsequent data evaluation (univariate analysis and MIAs). We demonstrate that it is possible to collect excellent IR spectra from formalin-fixed paraffin-embedded (FFPE) tissue microarrays (TMAs) of OSCC tissue sections employing an optimised analytical protocol. The correlation of FTIR
A fourier analysis on the maximum acceptable grid size for discrete proton beam dose calculation.
Li, Haisen S; Romeijn, H Edwin; Dempsey, James F
2006-09-01
We developed an analytical method for determining the maximum acceptable grid size for discrete dose calculation in proton therapy treatment plan optimization, so that the accuracy of the optimized dose distribution is guaranteed in the phase of dose sampling and the superfluous computational work is avoided. The accuracy of dose sampling was judged by the criterion that the continuous dose distribution could be reconstructed from the discrete dose within a 2% error limit. To keep the error caused by the discrete dose sampling under a 2% limit, the dose grid size cannot exceed a maximum acceptable value. The method was based on Fourier analysis and the Shannon-Nyquist sampling theorem as an extension of our previous analysis for photon beam intensity modulated radiation therapy [J. F. Dempsey, H. E. Romeijn, J. G. Li, D. A. Low, and J. R. Palta, Med. Phys. 32, 380-388 (2005)]. The proton beam model used for the analysis was a near monoenergetic (of width about 1% the incident energy) and monodirectional infinitesimal (nonintegrated) pencil beam in water medium. By monodirection, we mean that the proton particles are in the same direction before entering the water medium and the various scattering prior to entrance to water is not taken into account. In intensity modulated proton therapy, the elementary intensity modulation entity for proton therapy is either an infinitesimal or finite sized beamlet. Since a finite sized beamlet is the superposition of infinitesimal pencil beams, the result of the maximum acceptable grid size obtained with infinitesimal pencil beam also applies to finite sized beamlet. The analytic Bragg curve function proposed by Bortfeld [T. Bortfeld, Med. Phys. 24, 2024-2033 (1997)] was employed. The lateral profile was approximated by a depth dependent Gaussian distribution. The model included the spreads of the Bragg peak and the lateral profiles due to multiple Coulomb scattering. The dependence of the maximum acceptable dose grid size on the
NASA Astrophysics Data System (ADS)
Villiger, Nathan J.; Weinschenk, Sedrick; Hettinger, Paul T.; Murphy, Brian W.
2017-01-01
Globular clusters are excellent objects to study to help us understand the ways in which stars evolve. Key to this understanding are RR Lyrae variable stars. This research focused on the RR Lyrae stars in the globular cluster NGC 6584 to gain a better knowledge of post main sequence stellar evolution, horizontal branch morphology, and interstellar reddening to cluster variables. Using the 0.6 m SARA telescope at CTIO, we obtained nearly 1000 images in B, V, and I bands from July 2014 through July 2015. In addition to our prior work in V-band, this research adds B and I bands. By using difference image analysis, we found 77 variable stars in our 13’ x 13’ field of view. These consisted of 66 RR Lyrae stars, 7 long period variables, and 4 eclipsing binaries. The RR Lyrae stars were divided into 50 RR0 type stars, of which 14 exhibit the Blazhko effect, and 16 RR1 type stars. We found an average period for the RR0 variables of 0.56465 days and 0.30610 for the RR1 variables. By applying Fourier decomposition and examining the light curves in B, V, and I bands for each RR Lyrae variable, we were able to determine an average [Fe/H]JKZW of -1.619 ± 0.090, an average E(B-V) of 0.100 ± 0.032, and a distance to the cluster of 13527 ± 939 pc. This is the first detailed study to use RR Lyrae variable stars to estimate these parameters and the results are consistent with those obtained by other methods.
Nontargeted metabolome analysis by use of Fourier Transform Ion Cyclotron Mass Spectrometry.
Aharoni, Asaph; Ric de Vos, C H; Verhoeven, Harrie A; Maliepaard, Chris A; Kruppa, Gary; Bino, Raoul; Goodenowe, Dayan B
2002-01-01
Advanced functional genomic tools now allow the parallel and high-throughput analyses of gene and protein expression. Although this information is crucial to our understanding of gene function, it offers insufficient insight into phenotypic changes associated with metabolism. Here we introduce a high-capacity Fourier Transform Ion Cyclotron Mass Spectrometry (FTMS)-based method, capable of nontargeted metabolic analysis and suitable for rapid screening of similarities and dissimilarities in large collections of biological samples (e.g., plant mutant populations). Separation of the metabolites was achieved solely by ultra-high mass resolution; Identification of the putative metabolite or class of metabolites to which it belongs was achieved by determining the elemental composition of the metabolite based upon the accurate mass determination; and relative quantitation was achieved by comparing the absolute intensities of each mass using internal calibration. Crude plant extracts were introduced via direct (continuous flow) injection and ionized by either electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) in both positive or negative ionization modes. We first analyzed four consecutive stages of strawberry fruit development and identified changes in the levels of a large range of masses corresponding to known fruit metabolites. The data also revealed novel information on the metabolic transition from immature to ripe fruit. In another set of experiments, the method was used to track changes in metabolic profiles of tobacco flowers overexpressing a strawberry MYB transcription factor and altered in petal color. Only nine masses appeared different between transgenic and control plants, among which was the mass corresponding to cyanidin-3-rhamnoglucoside, the main flower pigment. The results demonstrate the feasibility and utility of the FTMS approach for a nontargeted and rapid metabolic "fingerprinting," which will greatly speed up current
Liu, Hui; Yang, Jie; Wang, Meng; Xue, Li; Chou, Kuo-Chen
2005-08-01
Membrane proteins are generally classified into the following five types: (1) type I membrane protein, (2) type II membrane protein, (3) multipass transmembrane proteins, (4) lipid chain-anchored membrane proteins, and (5) GPI-anchored membrane proteins. Given the sequence of an uncharacterized membrane protein, how can we identify which one of the above five types it belongs to? This is important because the biological function of a membrane protein is closely correlated with its type. Particularly, with the explosion of protein sequences entering into databanks, it is in high demand to develop an automated method to address this problem. To realize this, the key is to catch the statistical characteristics for each of the five types. However, it is not easy because they are buried in a pile of long and complicated sequences. In this paper, based on the concept of the pseudo amino acid composition (Chou, K. C. (2001). PROTEINS: Structure, Function, and Genetics 43: 246-255), the technique of Fourier spectrum analysis is introduced. By doing so, the sample of a protein is represented by a set of discrete components that can incorporate a considerable amount of the sequence order effects as well as its amino acid composition information. On the basis of such a statistical frame, the support vector machine (SVM) is introduced to perform predictions. High success rates were yielded by the self-consistency test, jackknife test, and independent dataset test, suggesting that the current approach holds a promising potential to become a high throughput tool for membrane protein type prediction as well as other related areas.
NASA Astrophysics Data System (ADS)
Townley-Smith, Keeley; Nave, Gillian; Imperial College London
2016-01-01
There is an on-going project in the Atomic Spectroscopy Group at NIST to obtain comprehensive spectral data for all of the singly ionized iron group elements and acquire more accurate energy levels, wavelengths and hyperfine structure (HFS) constants. The heavy abundance of the iron group elements and their contributions to a wide range of stellar spectra makes them of interest for astrophysical observations.Existing spectroscopic data for Mn are insufficient to model spectra obtained from HgMn stars such as HD 175640. Since manganese has an odd number of nucleons, its spectral lines generally exhibit HFS, a relativistic effect due to interaction between the magnetic moment of the nucleus and the orbiting electrons. If proper treatment of line broadening effects such as HFS is not taken, there is a poor fit of the lines in stellar spectra, leading to an overestimate of the abundance of Mn. The abnormally high abundance of manganese in HgMn stars means both weak and strong transitions are important. Weak lines may not be observed in the laboratory, but HFS constants for them can be derived from stronger transitions that combine with the two levels involved in the weak transition.Holt et al. (1999) measured HFS constants for 56 energy levels using laser spectroscopy. We have analyzed Fourier Transform spectra of a high current Mn/Ni hollow cathode lamp to obtain magnetic dipole A constants levels of Mn II. The A constants of Holt et al. (1999, MNRAS 306, 1007) for the z5P, z7P2, a5P and z5F levels were the starting point for our analysis, from which we derived A constants for 71 energy levels, including 51 previously unstudied levels. Our A constant for the a7S3 ground level differs by 5x10-4 cm-1 from that of Blackwell-Whitehead et al. (2005, ApJS 157, 402) and has a factor of 6 lower uncertainty.
Wang, Ya-Mei; Ma, Shu-Ling; Feng, Li-Qun
2014-03-01
Wood preservative treatment can improve defects of plantation wood such as easy to corrupt and moth eaten. Among them heat-treatment is not only environmental and no pollution, also can improve the corrosion resistance and dimension stability of wood. In this test Poplar and Mongolian Seoteh Pine was treated by soybean oil as heat-conducting medium, and the heat treatment wood was studied for indoor decay resistance; wood chemical components before and after treatment, the effect of heat treatment on wood decay resistance performance and main mechanism of action were analysed by Fourier infrared spectrometric. Results showed that the mass loss rate of poplar fell from 19.37% to 5% and Mongolian Seoteh Pine's fell from 8.23% to 3.15%, so oil heat treatment can effectively improve the decay resistance. Infrared spectrum analysis shows that the heat treatment made wood's hydrophilic groups such as hydroxyl groups in largely reduced, absorbing capacity decreased and the moisture of wood rotting fungi necessary was reduced; during the heat treatment wood chemical components such as cellulose, hemicellu lose were degraded, and the nutrient source of wood rotting fungi growth necessary was reduced. Wood decay fungi can grow in the wood to discredit wood is because of that wood can provide better living conditions for wood decay fungi, such as nutrients, water, oxygen, and so on. The cellulose and hemicellulose in wood is the main nutrition source of wood decay fungi. So the oil heat-treatment can reduce the cellulose, hemicellulose nutrition source of wood decay fungi so as to improve the decay resistance of wood.
NASA Astrophysics Data System (ADS)
Kim, Youngsun
2017-05-01
The most common structure used for current transformers (CTs) consists of secondary windings around a ferromagnetic core past the primary current being measured. A CT used as a surge protection device (SPD) may experience large inrushes of current, like surges. However, when a large current flows into the primary winding, measuring the magnitude of the current is difficult because the ferromagnetic core becomes magnetically saturated. Several approaches to reduce the saturation effect are described in the literature. A Rogowski coil is representative of several devices that measure large currents. It is an electrical device that measures alternating current (AC) or high-frequency current. However, such devices are very expensive in application. In addition, the volume of a CT must be increased to measure sufficiently large currents, but for installation spaces that are too small, other methods must be used. To solve this problem, it is necessary to analyze the magnetic field and electromotive force (EMF) characteristics when designing a CT. Thus, we proposed an analysis method for the CT under an inrush current using the time-domain finite element method (TDFEM). The input source current of a surge waveform is expanded by a Fourier series to obtain an instantaneous value. An FEM model of the device is derived in a two-dimensional system and coupled with EMF circuits. The time-derivative term in the differential equation is solved in each time step by the finite difference method. It is concluded that the proposed algorithm is useful for analyzing CT characteristics, including the field distribution. Consequently, the proposed algorithm yields a reference for obtaining the effects of design parameters and magnetic materials for special shapes and sizes before the CT is designed and manufactured.
Bochner's theorem on Fourier-Stieltjes integrals in the framework of quaternion analysis
NASA Astrophysics Data System (ADS)
Georgiev, S.; Morais, J.
2012-11-01
Let σ(x) be a nondecreasing function, such that σ(-∞) = 0,σ(∞) = 1 and let us denote by B the class of functions which can be represented by a Fourier-Stieltjes integral f(t) = ∫ -∞∞eitxdσ(x). In continuation to [12], we prove a generalization of the classical theorem of Bochner on Fourier integral transforms to quaternion functions belonging to a subclass of B. The underlying functions are continuous functions of bounded variation defined in R2 and taking values on the quaternion algebra. Additionally, we introduce the definition of convolution of quaternion functions of bounded variation.
Steerable Discrete Fourier Transform
NASA Astrophysics Data System (ADS)
Fracastoro, Giulia; Magli, Enrico
2017-03-01
Directional transforms have recently raised a lot of interest thanks to their numerous applications in signal compression and analysis. In this letter, we introduce a generalization of the discrete Fourier transform, called steerable DFT (SDFT). Since the DFT is used in numerous fields, it may be of interest in a wide range of applications. Moreover, we also show that the SDFT is highly related to other well-known transforms, such as the Fourier sine and cosine transforms and the Hilbert transforms.
Franck-Condon Factors for Diatomics: Insights and Analysis Using the Fourier Grid Hamiltonian Method
ERIC Educational Resources Information Center
Ghosh, Supriya; Dixit, Mayank Kumar; Bhattacharyya, S. P.; Tembe, B. L.
2013-01-01
Franck-Condon factors (FCFs) play a crucial role in determining the intensities of the vibrational bands in electronic transitions. In this article, a relatively simple method to calculate the FCFs is illustrated. An algorithm for the Fourier Grid Hamiltonian (FGH) method for computing the vibrational wave functions and the corresponding energy…
USDA-ARS?s Scientific Manuscript database
A new chemometric method based on absorbance ratios from Fourier transform infrared spectra was devised to analyze multicomponent biodegradable plastics. The method uses the BeerLambert law to directly compute individual component concentrations and weight losses before and after biodegradation of c...
Fourier Descriptor Analysis and Unification of Voice Range Profile Contours: Method and Applications
ERIC Educational Resources Information Center
Pabon, Peter; Ternstrom, Sten; Lamarche, Anick
2011-01-01
Purpose: To describe a method for unified description, statistical modeling, and comparison of voice range profile (VRP) contours, even from diverse sources. Method: A morphologic modeling technique, which is based on Fourier descriptors (FDs), is applied to the VRP contour. The technique, which essentially involves resampling of the curve of the…
Franck-Condon Factors for Diatomics: Insights and Analysis Using the Fourier Grid Hamiltonian Method
ERIC Educational Resources Information Center
Ghosh, Supriya; Dixit, Mayank Kumar; Bhattacharyya, S. P.; Tembe, B. L.
2013-01-01
Franck-Condon factors (FCFs) play a crucial role in determining the intensities of the vibrational bands in electronic transitions. In this article, a relatively simple method to calculate the FCFs is illustrated. An algorithm for the Fourier Grid Hamiltonian (FGH) method for computing the vibrational wave functions and the corresponding energy…
Fourier Descriptor Analysis and Unification of Voice Range Profile Contours: Method and Applications
ERIC Educational Resources Information Center
Pabon, Peter; Ternstrom, Sten; Lamarche, Anick
2011-01-01
Purpose: To describe a method for unified description, statistical modeling, and comparison of voice range profile (VRP) contours, even from diverse sources. Method: A morphologic modeling technique, which is based on Fourier descriptors (FDs), is applied to the VRP contour. The technique, which essentially involves resampling of the curve of the…
Fourier series analysis of fractal lenses: theory and experiments with a liquid-crystal display.
Davis, Jeffrey A; Sigarlaki, Sean P; Craven, Julia M; Calvo, María Luisa
2006-02-20
We report on a Fourier series approach that predicts the focal points and intensities produced by fractal zone plate lenses. This approach allows us to separate the effects of the fractal order from those of the lens aperture. We implement these fractal lenses onto a liquid-crystal display and show experimental verification of our theory.
Prum, R. O.; Torres, R.; Williamson, S.; Dyck, J.
1999-01-01
We conducted two-dimensional (2D) discrete Fourier analyses of the spatial variation in refractive index of the spongy medullary keratin from four different colours of structurally coloured feather barbs from three species of bird: the rose-faced lovebird, Agapornis roseicollis (Psittacidae), the budgerigar, Melopsittacus undulatus (Psittacidae), and the Gouldian finch, Poephila guttata (Estrildidae). These results indicate that the spongy medullary keratin is a nanostructured tissue that functions as an array of coherent scatterers. The nanostructure of the medullary keratin is nearly uniform in all directions. The largest Fourier components of spatial variation in refractive index in the tissue are of the appropriate size to produce the observed colours by constructive interference alone. The peaks of the predicted reflectance spectra calculated from the 2D Fourier power spectra are congruent with the reflectance spectra measured by using microspectrophotometry. The alternative physical models for the production of these colours, the Rayleigh and Mie theories, hypothesize that medullary keratin is an incoherent array and that scattered waves are independent in phase. This assumption is falsified by the ring-like Fourier power spectra of these feathers, and the spacing of the scattering air vacuoles in the medullary keratin. Structural colours of avian feather barbs are produced by constructive interference of coherently scattered light waves from the optically heterogeneous matrix of keratin and air in the spongy medullary layer.
NASA Astrophysics Data System (ADS)
Vorontsov, Vadim; Zhuravlev, Danil; Cherepanov, Alexander
2014-09-01
This scientific work is devoted to the study of the genetic connection structures of solid and liquid phases. Fourier analysis of signals of acoustic emission (AE) accompanying the melting of high purity aluminum from the melting point up to t=860°C was performed. The experimental data allowed for following the dynamics of the range order of the disorder zones in the melt with increasing melt temperature until their complete destruction.
Carballo, Teresa; Gil, Ma Victoria; Gómez, Xiomar; González-Andrés, Fernando; Morán, Antonio
2008-11-01
Compost extract or "compost tea" is a liquid extract of compost obtained by mixing compost and water for a defined period of time. Compost tea contains nutrients and a range of different organisms and is applied to the soil or directly to plants with the principal aim of suppressing certain plant diseases. In addition, the application of compost tea supplies nutrients and organic matter to the soil. Thermal analysis and Fourier transform infrared spectroscopy (FTIR) are two widely applied analytical techniques for establishing the stability of compost, and although numerous studies have evaluated the capacity of compost tea to suppress plant diseases, there are no studies employing these techniques to characterize compost-tea. For the present study, 12 compost extracts were produced under varying conditions in a purpose-built reactor. Two different composts, an stable compost produced from manure and an unstable compost produced from municipal solid waste, respectively, two aeration systems (aerated and non-aerated extracts) and three temperatures (10, 20 and 30 degrees C) were used in these experiments. The extracts were freeze-dried and subsequently analysed, together with the two composts, by means of FTIR and thermal analysis. Extracts produced from high stability compost, independently of the conditions of aeration and temperature, showed very similar results. In contrast, differences among extracts produced from the unstable compost were more noticeable. However, the different conditions of aeration and temperature during the production of the extracts only explained partially these differences, since the transformations undergone by compost over the 3 months that the experiments lasted were also reflected in the composition of the extracts. In spite of everything, extraction process favoured the degradation of easily oxidizable organic matter, which was more abundant in unstable compost. This degradation was more intense for non-aerated processes, probably
De Koninck, Anne-Sophie; Nys, Karen; Vandenheede, Brent; Van Biervliet, Stephanie; Speeckaert, Marijn M; Delanghe, Joris R
2016-11-01
Fourier transform infrared (FTIR) spectroscopic determination of faecal fat is a simple and elegant alternative for the classical Van De Kamer approach. Besides quantification of the total amount of fat, analysis of the lipase hydrolysis efficiency (fatty acid/triglyceride ratio), fatty acid chain length and trans-unsaturated fatty acids could provide a better monitoring of dietary treatment. Stool samples (26 routine samples and 36 cystic fibrosis patients) were analysed with the Perkin Elmer Spectrum Two® spectrometer (3500-450cm(-1)). Fatty acid/triglyceride ratio was calculated using the absorbance ratio at 2855:1746cm(-1). To estimate lipase hydrolysis efficiency, sample ratios were compared with the ratio of butter and pure free fatty acids. Mean fatty acid chain length was calculated using the absorbance ratio at 2855:1709cm(-1). The absorbance at 966cm(-1) was used to trace the presence of trans-type unsaturated fatty acids. Butter showed a low fatty acid/triglyceride ratio (1.21) and pure free fatty acids a high fatty acid/triglyceride ratio (6.76). Mean fatty acid/triglyceride ratio of routine stool samples was 4.16±1.01. The applicability of fatty acid/triglyceride ratios was also tested in cystic fibrosis patients under treatment with a mean of 4.92±0.98. Relative absorbance contribution per carbon atom was 0.06 (ratio 1.06 for C18 standard, 0.91 for C16 standard). The mean ratio of the stool samples was 1.12 (mean acyl chain length of C19), with values ranging from 0.73 (C12) to 1.68 (C28). The presence of traceable amounts of trans-unsaturated fatty acids was also demonstrated. For the analysis of faecal material, FTIR provides unique information, difficult to obtain using other techniques. These findings offer perspectives for diet monitoring in patients with (non-)pancreatic malabsorption. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sasmita, Yoga; Darmawan, Gumgum
2017-08-01
This research aims to evaluate the performance of forecasting by Fourier Series Analysis (FSA) and Singular Spectrum Analysis (SSA) which are more explorative and not requiring parametric assumption. Those methods are applied to predicting the volume of motorcycle sales in Indonesia from January 2005 to December 2016 (monthly). Both models are suitable for seasonal and trend component data. Technically, FSA defines time domain as the result of trend and seasonal component in different frequencies which is difficult to identify in the time domain analysis. With the hidden period is 2,918 ≈ 3 and significant model order is 3, FSA model is used to predict testing data. Meanwhile, SSA has two main processes, decomposition and reconstruction. SSA decomposes the time series data into different components. The reconstruction process starts with grouping the decomposition result based on similarity period of each component in trajectory matrix. With the optimum of window length (L = 53) and grouping effect (r = 4), SSA predicting testing data. Forecasting accuracy evaluation is done based on Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). The result shows that in the next 12 month, SSA has MAPE = 13.54 percent, MAE = 61,168.43 and RMSE = 75,244.92 and FSA has MAPE = 28.19 percent, MAE = 119,718.43 and RMSE = 142,511.17. Therefore, to predict volume of motorcycle sales in the next period should use SSA method which has better performance based on its accuracy.
Compact standing-wave Fourier-transform interferometer with harmonic spectral analysis
NASA Astrophysics Data System (ADS)
Fu, Junxian; Yu, Xiaojun; Zhang, Bingyang; Harris, James S., Jr.
2006-02-01
A new technique utilizing harmonic Fourier spectra created by the non-linear properties of a compact Fourier transform infrared interferometer (FTIR) was proposed and realized to improve the system resolution. The compact standing wave FTIR (SWFTIR) system consists of a partial transparent hetero-junction bipolar phototransistor (HPT) and a free scanning highly reflective mirror. The overall size of the system is less than 5×5×5cm 3, and the resolution at 1.5μm is better than 37.5cm -1 at the 5 th harmonic spectral component. The SWFTIR array system has theoretical resolution of better than 1cm -1 covering the whole near-infrared region with potential compact portable applications.
Discrete fourier transform (DFT) analysis for applications using iterative transform methods
NASA Technical Reports Server (NTRS)
Dean, Bruce H. (Inventor)
2012-01-01
According to various embodiments, a method is provided for determining aberration data for an optical system. The method comprises collecting a data signal, and generating a pre-transformation algorithm. The data is pre-transformed by multiplying the data with the pre-transformation algorithm. A discrete Fourier transform of the pre-transformed data is performed in an iterative loop. The method further comprises back-transforming the data to generate aberration data.
NASA Astrophysics Data System (ADS)
Osbin, K.; Jayan, Manuel; Bhadrakumari, S.; Predeep, P.
2017-06-01
This study investigates the presence of various amide bands present in different spider silk species, which provides extraordinary physical properties. Three different spider silks were collected from Western Ghats region. The collected spider silks samples belonging to the spider Heteropoda venatoria (species 1), Hersilia savignyi (species 2) and Pholcus phalangioides (species 3). Fourier transform infrared (FTIR) spectra reveals the protein peaks in the amide I, II, and III regions in all the three types of spider silk species.
FFTFIL; a filtering program based on two-dimensional Fourier analysis of geophysical data
Hildenbrand, T.G.
1983-01-01
The filtering program 'fftfil' performs a variety of operations commonly required in geophysical studies of gravity, magnetic, and terrain data. Filtering operations are carried out in the wave number domain where the Fourier coefficients of the input data are multiplied by the response of the selected filter. Input grids can be large (2=number of rows or columns=1024) and are not required to have numbers of rows and columns equal to powers of two.
Fourier transform infrared detection in miniaturized total analysis systems for sucrose analysis.
Lendl, B; Schindler, R; Frank, J; Kellner, R; Drott, J; Laurell, T
1997-08-01
In this work, a flow system containing a micromachined lamella-type porous silicon reactor and a novel mid-IR fiber-optic flow cell were used for the enzymatic determination of sucrose in aqueous solution. The method relies on the enzymatic hydrolysis of sucrose to fructose and glucose catalyzed by β-fructosidase and on the acquisition of FT-IR spectra before and after complete reaction. β-Fructosidase was covalently bound to the porous silicon surface of the channels in the microreactor. The porous silicon was achieved by anodization of the silicon reactor in a HF/ethanol mixture. For the measurement of small amounts of aqueous solution, a miniaturized flow cell was developed which consisted of two AgCl(x)Br(1)(-)(x) fiber tips (diameter, 0.75 mm) coaxially mounted in a PTFE block at a distance of 23 μm. The flowing stream was directed through the gap of the two fiber tips which served to define the optical path length and to bring the focused mid-IR radiation to the place of measurement. Using this construction, a probed volume of ∼10 nL was obtained. The calibration curve was linear between 10 and 100 mmol/L sucrose. Furthermore, the potential of this method was demonstrated by the analysis of binary sucrose/glucose mixtures showing no interference from glucose and by the successful determination of sucrose in real samples.
Nonparaxial Fourier propagation tool for aberration analysis and point spread function calculation
NASA Astrophysics Data System (ADS)
Cain, Stephen C.; Watts, Tatsuki
2016-08-01
This paper describes a Fourier propagator for computing the impulse response of an optical system, while including terms ignored in Fresnel and Fraunhofer calculations. The propagator includes a Rayleigh-Sommerfeld diffraction formula calculation from a distant point through the optical system to its image point predicted by geometric optics. The propagator then approximates the neighboring field points via the traditional binomial approximation of the Taylor series expansion around that field point. This technique results in a propagator that combines the speed of a Fourier transform operation with the accuracy of the Rayleigh-Sommerfeld diffraction formula calculation and extends Fourier optics to cases that are nonparaxial. The proposed propagator facilitates direct calculation of aberration coefficients, making it more versatile than the angular spectrum propagator. Bounds on the phase error introduced by the approximations are derived, which show that it should be more widely applicable than the Fresnel propagator. Guidance on how to sample the pupil and detector planes of a simulated imaging system is provided. This report concludes by showing examples of diffraction calculations for a laboratory setup and comparing them to measured diffraction patterns to demonstrate the utility of the propagator.
White light Fourier spectrometer: Monte Carlo noise analysis and test measurements
NASA Astrophysics Data System (ADS)
Stoykova, Elena; Ivanov, Branimir
2007-06-01
This work reports on investigation of the sensitivity of a Fourier-transform spectrometer to noise sources based on Monte-Carlo simulation of measurement of a single spectrum. Flexibility of this approach permits easily to imitate various noise contaminations of the interferograms and to obtain statistically reliable results for widely varying noise characteristics. More specifically, we evaluate the accuracy of restoration of a single absorption peak for the cases of an additive detection noise and the noise which adds a fluctuating component to the carrier frequency in the source and the measurement channel of the interferometer. Comparison of spectra of an etalon He-Ne source calculated from more than 200 measured interferograms with the true spectrum supports a hypothesis that the latter fluctuations have characteristics of a coloured noise. Taking into account that the signal-to-noise ratio in the Fourier spectroscopy is constantly increasing, we focus on limitations on the achievable accuracy of spectrum restoration that are set by this type of noise which modifies the shape of the recorded interferograms. We present also results of the test measurements of the spectrum of a laser diode chosen as a test source using a three-channel Fourier spectroscopic system based on a white-sourced Michelson interferometer realized with the Twyman-Green scheme. The obtained results exhibit that fluctuations in the current displacement of the movable mirror of the interferometer should remain below 20 nm to restore the absorption spectrum with acceptable accuracy, especially at higher frequency bandwidth of the fluctuations.
Hauge, Erik R; Berle, Jan Øystein; Oedegaard, Ketil J; Holsten, Fred; Fasmer, Ole Bernt
2011-01-28
The purpose of this study has been to describe motor activity data obtained by using wrist-worn actigraphs in patients with schizophrenia and major depression by the use of linear and non-linear methods of analysis. Different time frames were investigated, i.e., activity counts measured every minute for up to five hours and activity counts made hourly for up to two weeks. The results show that motor activity was lower in the schizophrenic patients and in patients with major depression, compared to controls. Using one minute intervals the depressed patients had a higher standard deviation (SD) compared to both the schizophrenic patients and the controls. The ratio between the root mean square successive differences (RMSSD) and SD was higher in the schizophrenic patients compared to controls. The Fourier analysis of the activity counts measured every minute showed that the relation between variance in the low and the high frequency range was lower in the schizophrenic patients compared to the controls. The sample entropy was higher in the schizophrenic patients compared to controls in the time series from the activity counts made every minute. The main conclusions of the study are that schizophrenic and depressive patients have distinctly different profiles of motor activity and that the results differ according to period length analysed.
Hauge, Erik R.; Berle, Jan Øystein; Oedegaard, Ketil J.; Holsten, Fred; Fasmer, Ole Bernt
2011-01-01
The purpose of this study has been to describe motor activity data obtained by using wrist-worn actigraphs in patients with schizophrenia and major depression by the use of linear and non-linear methods of analysis. Different time frames were investigated, i.e., activity counts measured every minute for up to five hours and activity counts made hourly for up to two weeks. The results show that motor activity was lower in the schizophrenic patients and in patients with major depression, compared to controls. Using one minute intervals the depressed patients had a higher standard deviation (SD) compared to both the schizophrenic patients and the controls. The ratio between the root mean square successive differences (RMSSD) and SD was higher in the schizophrenic patients compared to controls. The Fourier analysis of the activity counts measured every minute showed that the relation between variance in the low and the high frequency range was lower in the schizophrenic patients compared to the controls. The sample entropy was higher in the schizophrenic patients compared to controls in the time series from the activity counts made every minute. The main conclusions of the study are that schizophrenic and depressive patients have distinctly different profiles of motor activity and that the results differ according to period length analysed. PMID:21297977
NASA Astrophysics Data System (ADS)
McCullough, Sési M.; Gard, Eric; Lebrilla, Carlito B.
1991-06-01
A versatile quadrupole Fourier transform mass spectrometry instrument for both ion/molecule chemistry and analysis is described. Preliminary results show that despite the relatively low field (3T), a large mass range (up to m/z 16 000) and high resolution (41 000 FWHH at m/z 1692) are obtained. Metal ions (e.g. Fe+) for ion/molecule chemistry and organic ions (e.g. maltose) for analysis are routinely produced via secondary ion mass spectrometry (and liquid secondary ion mass spectrometry) in the external source.
Ferrario, V F; Sforza, C; Tartaglia, G M; Colombo, A; Serrao, G
1999-03-01
Form can be viewed as a combination of size and shape. Shape refers to the boundary outline independently from its orientation, relation to reference planes, and dimension (or size). Shape and its changes could be quantified by mathematical methods such as the Fourier series. In this investigation, Fourier analysis has been used to quantify the morphologic characteristics (size and shape) of the outline of the occlusal surface and maximum circumference (equator) in 259 normal, healthy human first permanent maxillary and mandibular molars and to assess the effect of sex. Large within-group variability was found in the Fourier coefficients. Both equatorial and occlusal molar areas were on average larger in male than in female homologous teeth, but the difference was statistically significant only for the equatorial areas. The mean ratios between equatorial and occlusal dental areas were independent from arch (maxillary and mandibular), side, or sex. Both equatorial and occlusal outlines of left and right homologous molars within sex and arch were similar, without size and shape differences. Similarly, no sex differences in shape were found in the comparison of homologous teeth. The method used in the present study could supply information about dental shape in both its entirety and local variations. In particular, the method is extremely sensitive to local variations in dental shape, and it could be usefully employed to compare single teeth to a standard.
Chae, Byung Gyu
2014-05-20
We carry out a comparative analysis on a viewing angle change in Fresnel and Fourier holographic images reconstructed by a tilted plane wave. A tilted plane wave illuminating an on-axis hologram generates a diffractive wave carrying the holographic image in a paraxial region of a new diffraction axis. The reconstructed image in the Fresnel hologram is deformed along the new viewing direction, which is well described as Affine transformation. In the Fourier holographic image, the replica of the image is formed without its deformation when the hologram is placed in the front focal plane of the lens, whereas in the case of a hologram that is located at a distance different from a focal length, image deformation arises. This property is investigated through numerical simulation based on a wide-angle diffraction phenomenon. We also perform a similar interpretation for high-order diffraction images appearing in the sampled Fourier hologram and discuss a method for enlarging the viewing angle of the holographic image.
Sundaram, Jaya; Park, Bosoon; Hinton, Arthur; Yoon, Seung Chul; Windham, William R; Lawrence, Kurt C
2012-02-01
Fourier transform infrared spectroscopy (FT-IR) was used to detect Salmonella Typhimurium and Salmonella Enteritidis food-borne bacteria and to distinguish between live and dead cells of both serotypes. Bacteria cells were prepared in 10(8) cfu/mL concentration, and 1 mL of each bacterium was loaded individually on the ZnSe attenuated total reflection (ATR) crystal surface (45° ZnSe, 10 bounces, and 48 mm × 5 mm effective area of analysis on the crystal) and scanned for spectral data collection from 4000 to 650 cm(-1) wavenumber. Analysis of spectral signatures of Salmonella isolates was conducted using principal component analysis (PCA). Spectral data were divided into three regions such as 900-1300, 1300-1800, and 3000-2200 cm(-1) based on their spectral signatures. PCA models were developed to differentiate the serotypes and live and dead cells of each serotype. Maximum classification accuracy of 100% was obtained for serotype differentiation as well as for live and dead cells differentiation. Soft independent modeling of class analogy (SIMCA) analysis was carried out on the PCA model and applied to validation sample sets. It gave a predicted classification accuracy of 100% for both the serotypes and its live and dead cells differentiation. The Mahalanobis distance calculated in three different spectral regions showed maximum distance for the 1800-1300 cm(-1) region, followed by the 3000-2200 cm(-1) region, and then by the 1300-900 cm(-1) region. It showed that both of the serotypes have maximum differences in their nucleic acids, DNA/RNA backbone structures, protein, and amide I and amide II bands.
NASA Astrophysics Data System (ADS)
Burlak, A. N.; Zasov, A. V.; Fridman, A. M.; Khoruzhi, O. V.
2000-12-01
Our main goal is to investigate the effects of data incompleteness on the results of Fourier analysis of line-of-sight velocity fields in the disks of spiral galaxies. We have carried out a number of numerical experiments, first with an artificially created simple velocity field and then with the velocity fields of two real galaxies, which qualitatively differ in data filling: NGC 157 and NGC 3631 with good and bad data filling, respectively. The field of purely circular velocities is chosen as the simplest artificial velocity field, because the circular velocities of spiral galaxies are much high than the residual (noncircular) velocities. Superimposing a "mask" simulating blank spots (holes) in the map of observational data on this artificial field has no effect on the results of Fourier analysis of this simplest field. A similar result is obtained for real galaxies with good data filling of the observed velocity fields. Superimposing arbitrarily shaped masks on the observed velocity field of NGC 157 in such a way that the field was filled by a mere 50% (at each radius) could not change appreciably the radial variations of large-scale Fourier harmonics. The situation qualitatively changes in attempting to fill the holes in the observed velocity field of NGC 3631 in some way. When missing velocities are artificially introduced by using the simplest model of purely circular gas rotation, the amplitudes and phases of the principal Fourier harmonics are distorted. In particular, a substantial distortion of the third harmonic also causes an increase in the error when determining the corotation radius from data of the filled field. When the filling of the velocity field is increased by degrading the spatial resolution, the amplitudes of most harmonics decrease throughout the entire disk region; as a result, their radial variations are smoothed out and the behavior of harmonic phases in the range of moderately high initial amplitudes can be distorted. An abnormal
NASA Technical Reports Server (NTRS)
Beecken, Brian P.; Kleinman, Randall R.
2004-01-01
New developments in infrared sensor technology have potentially made possible a new space-based system which can measure far-infrared radiation at lower costs (mass, power and expense). The Stationary Imaging Fourier Transform Spectrometer (SIFTS) proposed by NASA Langley Research Center, makes use of new detector array technology. A mathematical model which simulates resolution and spectral range relationships has been developed for analyzing the utility of such a radically new approach to spectroscopy. Calculations with this forward model emulate the effects of a detector array on the ability to retrieve accurate spectral features. Initial computations indicate significant attenuation at high wavenumbers.
Analysis of fixed point FFT for Fourier domain optical coherence tomography systems.
Ali, Murtaza; Parlapalli, Renuka; Magee, David P; Dasgupta, Udayan
2009-01-01
Optical coherence tomography (OCT) is a new imaging modality gaining popularity in the medical community. Its application includes ophthalmology, gastroenterology, dermatology etc. As the use of OCT increases, the need for portable, low power devices also increases. Digital signal processors (DSP) are well suited to meet the signal processing requirements of such a system. These processors usually operate on fixed precision. This paper analyzes the issues that a system implementer faces implementing signal processing algorithms on fixed point processor. Specifically, we show the effect of different fixed point precisions in the implementation of FFT on the sensitivity of Fourier domain OCT systems.
Characterizing the Nanoscale Layers of Tomorrow___s Electronics An Application of Fourier Analysis
Payne, Christopher Bishop; /Princeton U. /SLAC
2012-08-24
Thin film applications are of great interest to the semiconductor industry due to the important role they play in cutting edge technology such as thin film solar cells. X-Ray Reflectivity (XRR) characterizes thin films in a non-destructive and efficient manner yet complications exist in extracting these characteristics from raw XRR data. This study developed and tested two different algorithms to extract quantity of layers and thickness information on the nanometer scale from XRR data. It was concluded that an algorithm involving a local averaging technique revealed this information clearly in Fourier space.
Schoonover, J R; Steckle, Jr., W P; Elliot, N; Ebey, P S; Nobile, A; Nikroo, A; Cook, R C; Letts, S A
2005-06-16
Planar samples of varying thicknesses of both CH and CD glow discharge polymer have been measured with Fourier transform infrared (FTIR) spectroscopy before and after exposure to deuterium-tritium (DT) gas at elevated temperature and pressure. Planar samples of polyimide films made from both hydrogenated and deuterated precursors have also been examined by FTIR before and after DT exposure. The post-exposure FTIR spectra demonstrated no measurable exchange of hydrogen with deuterium or tritium for either polymer. Evidence for oxidation of the glow discharge polymer due to atmospheric oxygen was the only chemical change indicated by the FTIR data.
Mid-Latitude Temperatures at 87 km: Results From Multi-Instrument Fourier Analysis
NASA Technical Reports Server (NTRS)
Drob, Douglas P.; Picone, J. M.; Eckermann, Stephen D.; She, C . Y.; Kafkalidis, J. F.; Ortland, D. A.; Niciejewski, R. J.; Killeen, T. L.
2000-01-01
Using a novel Fourier fitting method we combine two years of mid-latitude temperature measurements at 87 km from the High Resolution Doppler Imager, the Colorado State University lidar, and the Peach Mountain Interferometer. After accounting for calibration bias, significant local-time variations on the order of 10 K were observed. Stationary planetary waves with amplitudes up to 10 K were observed during winter, with weaker wave amplitudes occurring during other seasons. Because of calibration biases among these instruments, we could estimate the annual mean temperature to no better than 193.5 plus or minus 8.5 K.
Fourier transform C-13 NMR analysis of some free and potassium-ion complexed antibiotics.
NASA Technical Reports Server (NTRS)
Ohnishi, M.; Fedarko, M.-C.; Baldeschwieler, J. D.; Johnson, L. F.
1972-01-01
Fourier transforms of the noise-decoupled, natural abundance C-13 NMR free induction decays of the cyclic antibiotic valinomycin and its potassium-ion complex have been obtained at 25.2 MHz. Comparisons are made with C-13 NMR spectra taken at 22.6 MHz of the cyclic antibiotic nonactin and the synthetic polyether dicyclohexyl-18-crown-6 and their potassium complexes. The results obtained suggest that conformational rearrangements of the molecule as a whole can compete with direct interactions between carbons and the potassium ion in determining C-13 chemical shift differences between the free and complexed species.
Mid-Latitude Temperatures at 87 km: Results From Multi-Instrument Fourier Analysis
NASA Technical Reports Server (NTRS)
Drob, Douglas P.; Picone, J. M.; Eckermann, Stephen D.; She, C . Y.; Kafkalidis, J. F.; Ortland, D. A.; Niciejewski, R. J.; Killeen, T. L.
2000-01-01
Using a novel Fourier fitting method we combine two years of mid-latitude temperature measurements at 87 km from the High Resolution Doppler Imager, the Colorado State University lidar, and the Peach Mountain Interferometer. After accounting for calibration bias, significant local-time variations on the order of 10 K were observed. Stationary planetary waves with amplitudes up to 10 K were observed during winter, with weaker wave amplitudes occurring during other seasons. Because of calibration biases among these instruments, we could estimate the annual mean temperature to no better than 193.5 plus or minus 8.5 K.
Leszczyński, Adam; Wasilewski, Wojciech
2016-04-01
We present a method to calibrate wavefront distortion of the spatial light modulator setup by registering far-field images of several Gaussian beams diffracted off the modulator. The Fourier transform of resulting interference images reveals phase differences among typically five movable points on the modulator. Repeating this measurement yields a wavefront surface. Next, the amplitude efficiency is calibrated for registering the near-field image. For verification, we produced a superposition of seventh and eighth Bessel beams with different phase velocities and observed their interference.
Fourier transform C-13 NMR analysis of some free and potassium-ion complexed antibiotics.
NASA Technical Reports Server (NTRS)
Ohnishi, M.; Fedarko, M.-C.; Baldeschwieler, J. D.; Johnson, L. F.
1972-01-01
Fourier transforms of the noise-decoupled, natural abundance C-13 NMR free induction decays of the cyclic antibiotic valinomycin and its potassium-ion complex have been obtained at 25.2 MHz. Comparisons are made with C-13 NMR spectra taken at 22.6 MHz of the cyclic antibiotic nonactin and the synthetic polyether dicyclohexyl-18-crown-6 and their potassium complexes. The results obtained suggest that conformational rearrangements of the molecule as a whole can compete with direct interactions between carbons and the potassium ion in determining C-13 chemical shift differences between the free and complexed species.
Wan, Jun-Hui; Tian, Pei-Ling; Yin, Hao; Han, Yun; Wei, Xiang-Cai; Pan, Tao
2013-01-01
The effectiveness of attenuated total reflection Fourier transform infrared spectroscopy for the hematological analysis of thalassemias was evaluated. The correlations of hemoglobin, mean corpuscular volume and mean corpuscular hemoglobin between routine method and attenuated total reflection Fourier transform infrared spectroscopy were analyzed using linear regression analysis. Appropriate cut-off values of predicted mean corpuscular volume and predicted mean corpuscular hemoglobin in screening of thalassemias were derived from the receiver operator characteristic curve conducted on 103 subjects. Obvious positive correlations of hemoglobin (beta=0.876, R(2)=0.791, P<0.001), mean corpuscular volume (beta=0.656, R(2)=0.516, P<0.001) and mean corpuscular hemoglobin (beta=0.674, R(2)=0.583, P<0.001) were observed between routine method and attenuated total reflection Fourier transform infrared spectroscopy. Based on the receiver operator characteristic curve analysis, the best cut off value of predicted mean corpuscular volume for the phenotype-positive subjects was found to be 79.9 fl with a sensitivity of 100.0% and a specificity of 97.8%, and the proposed cut off value of predicted mean corpuscular hemoglobin was 27.3 pg with a sensitivity of 100.0% and a specificity of 96.8%. The area under curve was 0.996 for predicted mean corpuscular volume and 0.992 for predicted mean corpuscular hemoglobin, respectively. The established method could be an additional potentially promising tool for the preliminary screening of thalassemias in population prevention and control program. The main advantage of this method is no unwanted chemical regents compared with conventional method. Strategy for the development of this method could be of use for the other important parameters of thalassemias. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
A fractional Fourier transform analysis of the scattering of ultrasonic waves.
Tant, Katherine M M; Mulholland, Anthony J; Langer, Matthias; Gachagan, Anthony
2015-03-08
Many safety critical structures, such as those found in nuclear plants, oil pipelines and in the aerospace industry, rely on key components that are constructed from heterogeneous materials. Ultrasonic non-destructive testing (NDT) uses high-frequency mechanical waves to inspect these parts, ensuring they operate reliably without compromising their integrity. It is possible to employ mathematical models to develop a deeper understanding of the acquired ultrasonic data and enhance defect imaging algorithms. In this paper, a model for the scattering of ultrasonic waves by a crack is derived in the time-frequency domain. The fractional Fourier transform (FrFT) is applied to an inhomogeneous wave equation where the forcing function is prescribed as a linear chirp, modulated by a Gaussian envelope. The homogeneous solution is found via the Born approximation which encapsulates information regarding the flaw geometry. The inhomogeneous solution is obtained via the inverse Fourier transform of a Gaussian-windowed linear chirp excitation. It is observed that, although the scattering profile of the flaw does not change, it is amplified. Thus, the theory demonstrates the enhanced signal-to-noise ratio permitted by the use of coded excitation, as well as establishing a time-frequency domain framework to assist in flaw identification and classification.
Fourier analysis of Solar atmospheric numerical simulations accelerated with GPUs (CUDA).
NASA Astrophysics Data System (ADS)
Marur, A.
2015-12-01
Solar dynamics from the convection zone creates a variety of waves that may propagate through the solar atmosphere. These waves are important in facilitating the energy transfer between the sun's surface and the corona as well as propagating energy throughout the solar system. How and where these waves are dissipated remains an open question. Advanced 3D numerical simulations have furthered our understanding of the processes involved. Fourier transforms to understand the nature of the waves by finding the frequency and wavelength of these waves through the simulated atmosphere, as well as the nature of their propagation and where they get dissipated. In order to analyze the different waves produced by the aforementioned simulations and models, Fast Fourier Transform algorithms will be applied. Since the processing of the multitude of different layers of the simulations (of the order of several 100^3 grid points) would be time intensive and inefficient on a CPU, CUDA, a computing architecture that harnesses the power of the GPU, will be used to accelerate the calculations.
A fractional Fourier transform analysis of the scattering of ultrasonic waves
Tant, Katherine M.M.; Mulholland, Anthony J.; Langer, Matthias; Gachagan, Anthony
2015-01-01
Many safety critical structures, such as those found in nuclear plants, oil pipelines and in the aerospace industry, rely on key components that are constructed from heterogeneous materials. Ultrasonic non-destructive testing (NDT) uses high-frequency mechanical waves to inspect these parts, ensuring they operate reliably without compromising their integrity. It is possible to employ mathematical models to develop a deeper understanding of the acquired ultrasonic data and enhance defect imaging algorithms. In this paper, a model for the scattering of ultrasonic waves by a crack is derived in the time–frequency domain. The fractional Fourier transform (FrFT) is applied to an inhomogeneous wave equation where the forcing function is prescribed as a linear chirp, modulated by a Gaussian envelope. The homogeneous solution is found via the Born approximation which encapsulates information regarding the flaw geometry. The inhomogeneous solution is obtained via the inverse Fourier transform of a Gaussian-windowed linear chirp excitation. It is observed that, although the scattering profile of the flaw does not change, it is amplified. Thus, the theory demonstrates the enhanced signal-to-noise ratio permitted by the use of coded excitation, as well as establishing a time–frequency domain framework to assist in flaw identification and classification. PMID:25792967
Bangalore, Arjun S.; Demirgian, Jack C.; Boparai, Amrit S.; Small, Gary W.
1999-11-01
The Fourier transform infrared (FT-IR) spectral data of two nerve agent simulants, diisopropyl methyl phosphonate (DIMP) and dimethyl methyl phosphonate (DMMP), are used as test cases to determine the spectral resolution that gives optimal pattern recognition performance. DIMP is used as the target analyte for detection, while DMMP is used to test the ability of the automated pattern recognition methodology to detect the analyte selectively. Interferogram data are collected by using a Midac passive FT-IR instrument. The methodology is based on the application of pattern recognition techniques to short segments of single-beam spectra obtained by Fourier processing the collected interferogram data. The work described in this article evaluates the effect of varying spectral resolution on the pattern recognition results. The objective is to determine the optimal spectral resolution to be used for data collection. The results of this study indicate that the data with a nominal spectral resolution of 16 cm{sup -1} provide sufficient selectivity to give pattern recognition results comparable to that obtained by using higher resolution data. We found that, while higher resolution does not increase selectivity sufficiently to provide better pattern recognition results, lower resolution decreases selectivity and degrades the pattern recognition results. These results can be used as guidelines to maximize detection sensitivity, to minimize the time needed for data collection, and to reduce data storage requirements. (c) 2000 Society for Applied Spectroscopy.
NASA Astrophysics Data System (ADS)
Dupont, S.; Gazalet, J.; Kastelik, J. C.
2014-03-01
Phononic crystal is a structured media with periodic modulation of its physical properties that influences the propagation of elastic waves and leads to a peculiar behaviour, for instance the phononic band gap effect by which elastic waves cannot propagate in certain frequency ranges. The formulation of the problem leads to a second order partial differential equation with periodic coefficients; different methods exist to determine the structure of the eigenmodes propagating in the material, both in the real or Fourier domain. Brillouin explains the periodicity of the band structure as a direct result of the discretization of the crystal in the real domain. Extending the Brillouin vision, we introduce digital signal processing tools developed in the frame of distribution functions theory. These tools associate physical meaning to mathematical expressions and reveal the correspondence between real and Fourier domains whatever is the physical domain under consideration. We present an illustrative practical example concerning two dimensions phononic crystals and highlight the appreciable shortcuts brought by the method and the benefits for physical interpretation.
Villa, E.
1999-07-28
Air samples from F-Canyon effluents were collected at the F-Canyon stack and transported to a laboratory at the Savannah River Technology Center (SRTC) for analysis using a Fourier transform infrared spectrometer in conjunction with a multipath cell. Air samples were collected during the decladding and acid cuts of the dissolution of the irradiated aluminum-cladded slugs. The FTIR analyses of the air samples show the presence of NO2, NO, HNO2, N2O, SF6, and 85Kr during the dissolution cycle. The concentration time profiles of these effluents corresponded with expected release rates from the F-Canyon operations.
Langenbucher, A; Seitz, B; Kus, M M; Steffen, P; Naumann, G O
1997-04-01
Videokeratography has given the possibility to obtain information in curvature from a much larger region of the cornea than that covered by keratometry. Fourier analysis as a mathematical model can be used to represent real physical attributes of the cornea and to divide corneal topography in its basic components: the zero-frequency component as the mean ring power, the one-cycle component as a representation of decentration and the two-cycle component as a representation of regular corneal toricity. The purpose of this study was the reconstruction of the corneal refraction after penetrating keratoplasty with a small number of characteristic parameters and the evaluation of the time course of the fourier coefficients as indices for a regular astigmatic cornea in the postkeratoplasty period including suture removal. Fourty patients (group 1: 20 primary dystrophies, group 2: 20 keratoconus) underwent nonmechanical trephination (excimer laser MEL60, Aesculap-Meditec, Heroldsberg, Germany) in penetrating keratoplasty. All procedures (7.5 mm in dystrophies, 8.0 mm in keratoconus, 8 orientation teeth, double-running 10-0 nylon suture) were performed by one surgeon. At a postoperative gate of 6 weeks, 6 months, before partial suture removal and after complete suture removal, corneal topography (TMS1, Tomey, Tennenlohe, Germany), keratometry, visual acuity and subjective refraction were assessed. Radial approximation with a 5th order polynomial fit of the refractive data on 25 non-centric rings of the TMS, within 256 hemimeridians was performed to get data at equally spaced concentric rings. Fast Fourier transformation of the data sets in the mid periphery (1.4-1.8 mm apical distance) was done to get DC-, one-cycle and two-cycle component. Fourier coefficients were correlated with keratometric readings, subjective refractive values and visual acuity. Spherical equivalent was fairly constant in the postoperative interval before suture removal. After suture removal, a
NASA Technical Reports Server (NTRS)
Zimmerman, G. A.; Gulkis, S.
1991-01-01
The sensitivity of a matched filter-detection system to a finite-duration continuous wave (CW) tone is compared with the sensitivities of a windowed discrete Fourier transform (DFT) system and an ideal bandpass filter-bank system. These comparisons are made in the context of the NASA Search for Extraterrestrial Intelligence (SETI) microwave observing project (MOP) sky survey. A review of the theory of polyphase-DFT filter banks and its relationship to the well-known windowed-DFT process is presented. The polyphase-DFT system approximates the ideal bandpass filter bank by using as few as eight filter taps per polyphase branch. An improvement in sensitivity of approx. 3 dB over a windowed-DFT system can be obtained by using the polyphase-DFT approach. Sidelobe rejection of the polyphase-DFT system is vastly superior to the windowed-DFT system, thereby improving its performance in the presence of radio frequency interference (RFI).
Ong, Eng Teo; Lee, Heow Pueh; Lim, Kian Meng
2004-09-01
This article presents a fast algorithm for the efficient solution of the Helmholtz equation. The method is based on the translation theory of the multipole expansions. Here, the speedup comes from the convolution nature of the translation operators, which can be evaluated rapidly using fast Fourier transform algorithms. Also, the computations of the translation operators are accelerated by using the recursive formulas developed recently by Gumerov and Duraiswami [SIAM J. Sci. Comput. 25, 1344-1381(2003)]. It is demonstrated that the algorithm can produce good accuracy with a relatively low order of expansion. Efficiency analyses of the algorithm reveal that it has computational complexities of O(Na), where a ranges from 1.05 to 1.24. However, this method requires substantially more memory to store the translation operators as compared to the fast multipole method. Hence, despite its simplicity in implementation, this memory requirement issue may limit the application of this algorithm to solving very large-scale problems.
Modeling and analysis of polarization effects in Fourier domain mode-locked lasers.
Jirauschek, Christian; Huber, Robert
2015-05-15
We develop a theoretical model for Fourier domain mode-locked (FDML) lasers in a non-polarization-maintaining configuration, which is the most widely used type of FDML source. This theoretical approach is applied to analyze a widely wavelength-swept FDML setup, as used for picosecond pulse generation by temporal compression of the sweeps. We demonstrate that good agreement between simulation and experiment can only be obtained by including polarization effects due to fiber bending birefringence, polarization mode dispersion, and cross-phase modulation into the theoretical model. Notably, the polarization dynamics are shown to have a beneficial effect on the instantaneous linewidth, resulting in improved coherence and thus compressibility of the wavelength-swept FDML output.
Analysis of collagen fiber domain organization by Fourier second harmonic generation microscopy.
Ghazaryan, Ara; Tsai, Halley F; Hayrapetyan, Gor; Chen, Wei-Liang; Chen, Yang-Fang; Jeong, Myung Yung; Kim, Chang-Seok; Chen, Shean-Jen; Dong, Chen-Yuan
2013-03-01
We present an automated and systematic two-dimensional discrete Fourier transform (2D-FFT) approach to analyze collagen fiber organization through the use of second harmonic generation (SHG) microscopy. Average orientations of individual domains and Ising-like order parameters introduced to characterize the correlation between orientations of adjacent domains may be used to quantitatively characterize fibrous tissues. Our approach was applied to analyze tissues including rat tail tendon, mouse skin, bovine corneas, and human corneas. We also show that collagen fiber organization in normal and keratokonus human corneas may be distinguished. The current approach may be used for the quantitative differentiation of SHG collagen fiber morphology in different tissues and may be applied for diagnostic purposes.
Analysis of collagen fiber domain organization by Fourier second harmonic generation microscopy
NASA Astrophysics Data System (ADS)
Ghazaryan, Ara; Tsai, Halley F.; Hayrapetyan, Gor; Chen, Wei-Liang; Chen, Yang-Fang; Jeong, Myung Yung; Kim, Chang-Seok; Chen, Shean-Jen; Dong, Chen-Yuan
2013-03-01
We present an automated and systematic two-dimensional discrete Fourier transform (2D-FFT) approach to analyze collagen fiber organization through the use of second harmonic generation (SHG) microscopy. Average orientations of individual domains and Ising-like order parameters introduced to characterize the correlation between orientations of adjacent domains may be used to quantitatively characterize fibrous tissues. Our approach was applied to analyze tissues including rat tail tendon, mouse skin, bovine corneas, and human corneas. We also show that collagen fiber organization in normal and keratokonus human corneas may be distinguished. The current approach may be used for the quantitative differentiation of SHG collagen fiber morphology in different tissues and may be applied for diagnostic purposes.
Hashempour, Hossein; Ghassempour, Alireza; Daly, Norelle L; Spengler, Bernhard; Römpp, Andreas
2011-07-01
Cyclotides are macrocyclic knotted peptides originating from plants. They are extremely stable and have a range of bioactivities including anti-HIV and insecticidal activity. Given the stability of the cyclotide framework, there is interest in using these peptides as scaffolds in drug design. In the current study, we have shown that nano-LC Fourier transform mass spectrometry (FTMS) is an effective method of analyzing cyclotides in plants. In addition, we have used this technique to find cyclotides in a novel species, Viola ignobilis (Violaceae plant family), which was collected from the West Azerbaijan province of Iran. Varv peptide A, cycloviolacin B2, and cycloviolacin O8 were found in this species. This study provides a novel method for directly analyzing cyclotide sequences without enzymatic digestion and further information regarding the distribution of cyclotides in plant species.
Analytical determination of orbital elements using Fourier analysis. I. The radial velocity case
NASA Astrophysics Data System (ADS)
Delisle, J.-B.; Ségransan, D.; Buchschacher, N.; Alesina, F.
2016-05-01
We describe an analytical method for computing the orbital parameters of a planet from the periodogram of a radial velocity signal. The method is very efficient and provides a good approximation of the orbital parameters. The accuracy is mainly limited by the accuracy of the computation of the Fourier decomposition of the signal which is sensitive to sampling and noise. Our method is complementary with more accurate (and more expensive in computer time) numerical algorithms (e.g. Levenberg-Marquardt, Markov chain Monte Carlo, genetic algorithms). Indeed, the analytical approximation can be used as an initial condition to accelerate the convergence of these numerical methods. Our method can be applied iteratively to search for multiple planets in the same system.
NASA Astrophysics Data System (ADS)
Watanabe, Hiroyuki
In this research, an iterative learning type courseware was made, the distribution of time scores in the courseware is gotten by the learning management system. It is a proposed method by which the distribution of time scores is changed to frequency and to power spectrum using Fourier Transform. The learning process continues until students get the passing scores and are classified by using these values, which are related to average time and the average of scores‧ square. Furthermore, the cross-correlation coefficients between the standard student and students are calculated, and delay times are analyzed. Finally, the transfer functions of some students are calculated, and the characteristics of the learning processes are analyzed.
Chang, Byoung-Yong; Hong, Sung-Young; Yoo, Jung-Suk; Park, Su-Moon
2006-10-05
A new attempt to obtain electron transfer kinetic parameters at an electrified electrode/electrolyte interface using Fourier transform electrochemical impedance spectroscopic (FTEIS) analyses of small potential step chronoamperometric currents is presented. The kinetic parameters thus obtained allowed mass transport free voltammograms to be constructed in an overpotential region, where the diffusion limits the electron transfer reaction, using the Butler-Volmer (B-V) relation. The B-V voltammograms clearly distinguish electrode reactions that are not much different in their electron transfer kinetic parameters, thus showing very similar normal linear sweep voltammetric (SCV) behaviors. Electrochemical reduction of p-benzoquinone, which displays nearly the same SCV responses at a gold electrode regardless whether the electrode is covered by a thiolated beta-cyclodextrin self-assembled monolayer, was taken as an example for the demonstration. The results show that the two voltametrically similar systems display very different electron transfer characteristics.
Nam, Yun Sik; Park, Jin Sook; Kim, Nak-Kyoon; Lee, Yeonhee; Lee, Kang-Bong
2014-07-01
Seals are traditionally used in the Far East Asia to stamp an impression on a document in place of a signature. In this study, an accuser claimed that a personal contract regarding mining development rights acquired by a defendant was devolved to the accuser because the defendant stamped the devolvement contract in the presence of the accuser and a witness. The accuser further stated that the seal ink stamped on the devolvement contract was the same as that stamped on the development rights application document. To verify this, the seals used in two documents were analyzed using micro-attenuated total reflectance Fourier transform infrared spectroscopy and infrared spectra. The findings revealed that the seals originated from different manufacturers. Thus, the accuser's claim on the existence of a devolvement contract was proved to be false.
Fourier-transform infrared spectroscopy (FTIR) analysis of triclinic and hexagonal birnessites.
Ling, Florence T; Post, Jeffrey E; Heaney, Peter J; Kubicki, James D; Santelli, Cara M
2017-05-05
The characterization of birnessite structures is particularly challenging for poorly crystalline materials of biogenic origin, and a determination of the relative concentrations of triclinic and hexagonal birnessite in a mixed assemblage has typically required synchrotron-based spectroscopy and diffraction approaches. In this study, Fourier-transform infrared spectroscopy (FTIR) is demonstrated to be capable of differentiating synthetic triclinic Na-birnessite and synthetic hexagonal H-birnessite. Furthermore, IR spectral deconvolution of peaks resulting from MnO lattice vibrations between 400 and 750cm(-1) yield results comparable to those obtained by linear combination fitting of synchrotron X-ray absorption fine structure (EXAFS) data when applied to known mixtures of triclinic and hexagonal birnessites. Density functional theory (DFT) calculations suggest that an infrared absorbance peak at ~1628cm(-1) may be related to OH vibrations near vacancy sites. The integrated intensity of this peak may show sensitivity to vacancy concentrations in the Mn octahedral sheet for different birnessites.
Discrete Fourier analysis of ultrasound RF time series for detection of prostate cancer.
Moradi, M; Mousavi, P; Siemens, D R; Sauerbrei, E E; Isotalo, P; Boag, A; Abolmaesumi, P
2007-01-01
In this paper, we demonstrate that a set of six features extracted from the discrete Fourier transform of ultrasound Radio-Frequency (RF) time series can be used to detect prostate cancer with high sensitivity and specificity. Ultrasound RF time series refer to a series of echoes received from one spatial location of tissue while the imaging probe and the tissue are fixed in position. Our previous investigations have shown that at least one feature, fractal dimension, of these signals demonstrates strong correlation with the tissue microstructure. In the current paper, six new features that represent the frequency spectrum of the RF time series have been used, in conjunction with a neural network classification approach, to detect prostate cancer in regions of tissue as small as 0.03 cm2. Based on pathology results used as gold standard, we have acquired mean accuracy of 91%, mean sensitivity of 92% and mean specificity of 90% on seven human prostates.
Fourier analysis of planet trajectories and the Copernican model of the solar system
NASA Astrophysics Data System (ADS)
Peralta, J. A.; Calles, A.; Yepez, E.
2003-06-01
The most important models before newtonian mechanics and the law of gravitation were stablished by Kepler and Copernicus. The relation between Newton's theory and Kepler's laws of planetary motion is widely discussed in textbooks; however, the relation with the model of Copernicus, where the position of a planet as a function of time is described as combination of circular motions, is usually avoided. In this work we use two simple and useful numerical techniques to show that this relation is easily performed. We use the algorithm of Verlet to solve the differential equations, not in polar coordinates as is usually done, but in cartesian coordinates, we also use the fast Fourier transform method to analyse the time series that in a natural way generate the deferent and epicicles of the Copernicus' model.
Segmented chirped-pulse Fourier transform submillimeter spectroscopy for broadband gas analysis.
Neill, Justin L; Harris, Brent J; Steber, Amanda L; Douglass, Kevin O; Plusquellic, David F; Pate, Brooks H
2013-08-26
Chirped-pulse Fourier transform spectroscopy has recently been extended to millimeter wave spectroscopy as a technique for the characterization of room-temperature gas samples. Here we present a variation of this technique that significantly reduces the technical requirements on high-speed digital electronics and the data throughput, with no reduction in the broadband spectral coverage and no increase in the time required to reach a given sensitivity level. This method takes advantage of the frequency agility of arbitrary waveform generators by utilizing a series of low-bandwidth chirped excitation pulses paired in time with a series of offset single frequency local oscillators, which are used to detect the molecular free induction decay signals in a heterodyne receiver. A demonstration of this technique is presented in which a 67 GHz bandwidth spectrum of methanol (spanning from 792 to 859 GHz) is acquired in 58 μs.
Cheshmedzhiev, Mihail V; Mircheva, Iskra S; Jordanov, Emil D; Kovacheva, Nina R
2014-01-01
To assess infrainguinal arterial reconstructions by intraoperative flowmetry under the distal anastomosis using a fast Fourier transformation; calculate and compare the amplitude ratios of peripheral arterial blood pressure and volume flow before and after drug-induced vasodilation of occluded bypass grafts and bypass grafts that have been patent at least for 1 year. To find what magnitude of the change of these ratios indicate a long-term patency of the bypass grafting. We compared the results of the intraoperative flowmetry tests of 97 patients with infrainguinal arterial reconstructions. The patients were divided into two groups based on the graft status: the grafts in 49 patients were patent for at least a year, and 48 patients had failed bypass. We used a fast Fourier transform (FFT) of the pressure and blood flow waves and compared the ratios of their amplitudes before and after administration of a vasodilator drug into the graft. Comparing the ratios obtained before and those after administration of the drug we quantified their change in each group and analysed them. After a drug-induced vasodilation, the blood pressure and flow amplitude ratios for the group with compromised reconstructions were less than 1.9 times smaller than those before drug infusion, while for the group with bypass grafts that had been functional for at least 12 months the ratios declined by more than 1.9 approximately 2 times. The magnitude of the change of amplitude ratios of the peripheral pressure and volume flow after drug-induced vasodilation can be used to make an assessment of the bypass graft and the distal arterial segment.
Introduction to Fourier Optics
ERIC Educational Resources Information Center
Huggins, Elisha
2007-01-01
Much like a physical prism, which displays the frequency components of a light wave, Fourier analysis can be thought of as a mathematical prism that can tell us what harmonics or frequency components are contained in a recording of a sound wave. We wrote the MacScope II program so that the user could not only see a plot of the harmonic amplitudes…
Introduction to Fourier Optics
ERIC Educational Resources Information Center
Huggins, Elisha
2007-01-01
Much like a physical prism, which displays the frequency components of a light wave, Fourier analysis can be thought of as a mathematical prism that can tell us what harmonics or frequency components are contained in a recording of a sound wave. We wrote the MacScope II program so that the user could not only see a plot of the harmonic amplitudes…
NASA Astrophysics Data System (ADS)
Scarfone, A. M.
2017-08-01
We present a new formulation of Fourier transform in the picture of the κ-algebra derived in the framework of the κ-generalized statistical mechanics. The κ-Fourier transform is obtained from a κ-Fourier series recently introduced by Scarfone (2013). The kernel of this transform, that reduces to the usual exponential phase in the κ → 0 limit, is composed by a κ-deformed phase and a damping factor that gives a wavelet-like behaviour. We show that the κ-Fourier transform is isomorph to the standard Fourier transform through a changing of time and frequency variables. Nevertheless, the new formalism is useful to study, according to Fourier analysis, those functions defined in the realm of the κ-algebra. As a relevant application, we discuss the central limit theorem for the κ-sum of n-iterate statistically independent random variables.
Khanmohammadi, Mohammadreza; Bagheri Garmarudi, Amir; Samani, Simin; Ghasemi, Keyvan; Ashuri, Ahmad
2011-06-01
Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) microspectroscopy was applied for detection of colon cancer according to the spectral features of colon tissues. Supervised classification models can be trained to identify the tissue type based on the spectroscopic fingerprint. A total of 78 colon tissues were used in spectroscopy studies. Major spectral differences were observed in 1,740-900 cm(-1) spectral region. Several chemometric methods such as analysis of variance (ANOVA), cluster analysis (CA) and linear discriminate analysis (LDA) were applied for classification of IR spectra. Utilizing the chemometric techniques, clear and reproducible differences were observed between the spectra of normal and cancer cases, suggesting that infrared microspectroscopy in conjunction with spectral data processing would be useful for diagnostic classification. Using LDA technique, the spectra were classified into cancer and normal tissue classes with an accuracy of 95.8%. The sensitivity and specificity was 100 and 93.1%, respectively.
NASA Astrophysics Data System (ADS)
Kochunas, Brendan; Fitzgerald, Andrew; Larsen, Edward
2017-09-01
A central problem in nuclear reactor analysis is calculating solutions of steady-state k-eigenvalue problems with thermal hydraulic feedback. In this paper we propose and utilize a model problem that permits the theoretical analysis of iterative schemes for solving such problems. To begin, we discuss a model problem (with nonlinear cross section feedback) and its justification. We proceed with a Fourier analysis for source iteration schemes applied to the model problem. Then we analyze commonly-used iteration schemes involving non-linear diffusion acceleration and feedback. For each scheme we show (1) that they are conditionally stable, (2) the conditions that lead to instability, and (3) that traditional relaxation approaches can improve stability. Lastly, we propose a new iteration scheme that theory predicts is an improvement upon the existing methods.
Wenning, Mareike; Theilmann, Vera; Scherer, Siegfried
2006-05-01
The species composition of microbial communities in natural habitats may be extremely complex and therefore a quantitative analysis of the fraction each species contributes to the consortium has proven to be difficult. During recent years, the identification of bacterial pure cultures based on their infrared spectra has been established. Fourier-transform infrared microspectroscopy now proceeds a step further and allows identification of microorganisms directly plated from community dilutions. Infrared spectra of microcolonies of 70-250 microm in diameter can be recorded without producing a pure culture of the isolate. We have applied this novel technique for quantitative comparative analysis of two undefined, geographically separated food-borne smear cheese microbial consortia of limited complexity. Due to the high degree of automation, up to 200 microcolonies could be identified in 1 day and, in total, 3170 infrared spectra of microcolonies were recorded. The results obtained have been verified by Fourier-transform infrared macrospectroscopy and 16S rDNA sequencing. Interestingly, although the communities were unrelated, Staphylococcus equorum, Corynebacterium casei, Arthrobacter casei and Brevibacterium linens were found to be part of both consortia, however, with different incidence. In addition, Corynebacterium variabile, Microbacterium gubbeenense, Brachybacterium alimentarium, Enterococcus faecalis and an unknown species were detected in either one of the consortia.
Yi, Shi-Lai; Deng, Lie; He, Shao-Lan; Shi, You-Ming; Zheng, Yong-Qiang; Lu, Qiang; Xie, Rang-Jin; Wei, Xian-Guoi; Li, Song-Wei; Jian, Shui-Xian
2012-11-01
Researched on diversity of the spring leaf samples of seven different Citrus sinensis (L.) Osbeck varieties by Fourier transform infrared (FTIR) spectroscopy technology, the results showed that the Fourier transform infrared spectra of seven varieties leaves was composited by the absorption band of cellulose and polysaccharide mainly, the wave number of characteristics absorption peaks were similar at their FTIR spectra. However, there were some differences in shape of peaks and relatively absorption intensity. The conspicuous difference was presented at the region between 1 500 and 700 cm(-1) by second derivative spectra. Through the hierarchical cluster analysis (HCA) of second derivative spectra between 1 500 and 700 cm(-1), the results showed that the clustering of the different varieties of Citrus sinensis (L.) Osbeck varieties was classification according to genetic relationship. The results showed that FTIR spectroscopy combined with hierarchical cluster analysis could be used to identify and classify of citrus varieties rapidly, it was an extension method to study on early leaves of varieties orange seedlings.
NASA Astrophysics Data System (ADS)
Jha, Mayank Shekhar; Chatti, Nizar; Declerck, Philippe
2017-09-01
This paper addresses the fault diagnosis problem of uncertain systems in the context of Bond Graph modelling technique. The main objective is to enhance the fault detection step based on Interval valued Analytical Redundancy Relations (named I-ARR) in order to overcome the problems related to false alarms, missed alarms and robustness issues. These I-ARRs are a set of fault indicators that generate the interval bounds called thresholds. A fault is detected once the nominal residuals (point valued part of I-ARRs) exceed the thresholds. However, the existing fault detection method is limited to parametric faults and it presents various limitations with regards to estimation of measurement signal derivatives, to which I-ARRs are sensitive. The novelties and scientific interest of the proposed methodology are: (1) to improve the accuracy of the measurements derivatives estimation by using a dedicated sliding mode differentiator proposed in this work, (2) to suitably integrate the Fourier-Motzkin Elimination (FME) technique within the I-ARRs based diagnosis so that measurements faults can be detected successfully. The latter provides interval bounds over the derivatives which are included in the thresholds. The proposed methodology is studied under various scenarios (parametric and measurement faults) via simulations over a mechatronic torsion bar system.
Fourier Analysis of Noise Characteristics in Cone-Beam Microtomography Laboratory Scanners.
Jang, Sun Young; Kim, Ho Kyung; Youn, Hanbean; Cho, Seungryong; Cunningham, Ian A
2017-01-01
We investigate the signal and noise performance of an x-ray microtomography system that incorporates a complementary metal-oxide-semiconductor flat-panel detector as a projection image receptor. Signal and noise performance is analyzed in the Fourier domain using modulation-transfer function (MTF), noise-power spectrum (NPS), and noise-equivalent number of quanta (NEQ) with respect to magnification and different convolution kernels for image reconstruction. Higher magnification provides lower NPS, and thus, higher NEQ performance in the transaxial planes from microtomography. A window function capable of smoothing the ramp filter edge to below one-half of the Nyquist limit results in better performance in terms of NPS and NEQ. The characteristics of convolution kernels do not affect signal and noise performance in longitudinal planes; hence, MTF performance mainly dominates the NEQ performance. The signal and noise performances investigated in this study are demonstrated with images obtained from the contrast phantom and postmortem mouse. The results of our study could be helpful in developing x-ray microtomography systems based on flat-panel detectors.
Fasina, Oladiran O.; Eckhardt, Lori G.
2016-01-01
Fourier transform infrared reflectance (FTIR) spectroscopy has been used to predict properties of forest logging residue, a very heterogeneous feedstock material. Properties studied included the chemical composition, thermal reactivity, and energy content. The ability to rapidly determine these properties is vital in the optimization of conversion technologies for the successful commercialization of biobased products. Partial least squares regression of first derivative treated FTIR spectra had good correlations with the conventionally measured properties. For the chemical composition, constructed models generally did a better job of predicting the extractives and lignin content than the carbohydrates. In predicting the thermochemical properties, models for volatile matter and fixed carbon performed very well (i.e., R 2 > 0.80, RPD > 2.0). The effect of reducing the wavenumber range to the fingerprint region for PLS modeling and the relationship between the chemical composition and higher heating value of logging residue were also explored. This study is new and different in that it is the first to use FTIR spectroscopy to quantitatively analyze forest logging residue, an abundant resource that can be used as a feedstock in the emerging low carbon economy. Furthermore, it provides a complete and systematic characterization of this heterogeneous raw material. PMID:28003929
[Study on analysis of copy paper by Fourier transform infrared spectroscopy].
Li, Ji-Min; Wang, Yan-Ji; Wang, Jing-Han; Yao, Li-Juan; Zhang, Biao
2009-06-01
A new method of fast identification of copy papers by Fourier transform infrared spectroscopy (FTIR) was developed. The kinds of filler and the cellulosic degree of crystallinity were analyzed by FTIR, and the ageing curves of cellulosic paper were studied with heating and ultraviolet light. The cellulosic degree of crystallinity was showed by the ratio of absorbance at 1 429 cm(-1) to that at 893 cm(-1), the standard deviation of different brands of copy papers was 0.010 7-0.016 0, and the standard deviation of the same brands of copy papers was 0.014 8. The kinds of filler and the cellulosic degree of crystallinity were different in copy papers from different brands of different manufacturing plants, different brands of same manufacturing plants and different manufacturing times of the same brands from the same manufacturing plants, and the curves of ageing were different with heating and ultraviolet light. The results of fast identification of copy papers by FTIR are satisfactory.
FOURIER ANALYSIS OF BLAZAR VARIABILITY: KLEIN–NISHINA EFFECTS AND THE JET SCATTERING ENVIRONMENT
Finke, Justin D.; Becker, Peter A. E-mail: pbecker@gmu.edu
2015-08-10
The strong variability of blazars can be characterized by power spectral densities (PSDs) and Fourier frequency-dependent time lags. In previous work, we created a new theoretical formalism for describing the PSDs and time lags produced via a combination of stochastic particle injection and emission via the synchrotron, synchrotron self-Compton, and external Compton (EC) processes. This formalism used the Thomson cross section and simple δ-function approximations to model the synchrotron and Compton emissivities. Here we expand upon this work, using the full Compton cross section and detailed and accurate emissivities. Our results indicate good agreement between the PSDs computed using the δ-function approximations and those computed using the accurate expressions, provided the observed photons are produced primarily by electrons with energies exceeding the lower limit of the injected particle population. Breaks are found in the PSDs at frequencies corresponding to the cooling timescales of the electrons primarily responsible for the observed emission, and the associated time lags are related to the difference in electron cooling timescales between the two energy channels, as expected. If the electron cooling timescales can be determined from the observed time lags and/or the observed EC PSDs, then one could in principle use the method developed here to determine the energy of the external seed photon source for EC, which is an important unsolved problem in blazar physics.
Kinetic studies of phosgene reduction via in-situ Fourier transform infrared analysis
NASA Astrophysics Data System (ADS)
Farquharson, Stuart; Chauvel, J. P., Jr.
1991-04-01
Phosgene, a common reactant in the production of polyurethanes and polycarbonates, is unfortunately hazardous (threshold limit value equals 0.1 ppm). Consequently, the detection and elimination of atmospheric releases are paramount safety and environmental concerns. Proper design of systems to mitigate phosgene requires knowledge of the reaction kinetics for the chemistry involved. This paper presents our investigation of the reactions for phosgene with steam and ammonia. A Fourier transform infrared spectrometer (FTIR) equipped with a large volume (15 L), temperature controlled (+0.5 degree(s)C), 24.5 cm path length cell was used to measure the reaction kinetics. The reaction of phosgene with steam at 110 degree(s)C followed first order kinetics (t1/2 equals 10.2 min.) producing carbon dioxide and hydrogen chloride. The reaction of phosgene with ammonia at 80 degree(s)C followed second order kinetics (t1/2 equals 1.2 min.) producing ammonium chloride and urea. It was found, however, that at 25 degree(s)C this reaction follows a previously unreported pathway producing ammonium chloride and ammonium isocyanate at a faster rate (t1/2 equals 15 sec.). Based on this reaction, a pilot scale scrubbing tower was built with a manifold to mix ammonia with ppm levels of phosgene. A complete description of the experimental conditions, the reaction pathways as a function of temperature, and the performance of the ammonia scrubbing tower are given.
Gao, Li-Li; Wang, Sheng-Feng; Han, Ya; Liu, Zi-Fei; Huang, Jin-Sheng; Hilman; Liu, Rong-Le; Wang, Hong
2014-11-01
The objective of the present study was to reveal different tolerance of peanut plants to Ca deficiency by determining Ca uptake and Fourier transform infrared spectral (FTIR) differences of two peanut cultivars grown in nutrition solution. Peanut cultivars LH11 and YZ9102 were selected. Seedlings at the first leaf stage were cultivated for 28 days in nutrient solution with 0, 0.01 and 2.0 mmol x L(-1) Ca treatments, respectively. The results showed that under 0 and 0.01 mmol x L(-1) Ca supply, YZ9102 did not show Ca deficiency symptoms and the plant biomass did not change, whereas LH11 exhibited shoot-tip necrosis, smaller plant size, more lateral branches, and plant dry matter weights decreased significantly. YZ9102 had higher plant Ca concentration and Ca accumulation than LH11. Besides, for LH11, Ca was mainly accumulated in roots, while for YZ9102 mainly in leaves. As compared with plants cultivated in 2.0 mol x L(-1) Ca nutrition, root, stem and leaf of LH11 plants under Ca deficiency stress showed higher transmittance at peaks 1 060, 1 380, 1 655, 2 922, and 3 420 cm(-1) in FTIR spectra, indicating that the contents of protein, sugar and lipid decreased obviously in LH11 plants in condition that Ca supply was limited. However, the FTIR spectra of YZ9102 were less affected by Ca deficiency. It is suggested that YZ9102 might be more tolerant to Ca deficiency.
Fourier spatial frequency analysis for image classification: training the training set
NASA Astrophysics Data System (ADS)
Johnson, Timothy H.; Lhamo, Yigah; Shi, Lingyan; Alfano, Robert R.; Russell, Stewart
2016-04-01
The Directional Fourier Spatial Frequencies (DFSF) of a 2D image can identify similarity in spatial patterns within groups of related images. A Support Vector Machine (SVM) can then be used to classify images if the inter-image variance of the FSF in the training set is bounded. However, if variation in FSF increases with training set size, accuracy may decrease as the size of the training set increases. This calls for a method to identify a set of training images from among the originals that can form a vector basis for the entire class. Applying the Cauchy product method we extract the DFSF spectrum from radiographs of osteoporotic bone, and use it as a matched filter set to eliminate noise and image specific frequencies, and demonstrate that selection of a subset of superclassifiers from within a set of training images improves SVM accuracy. Central to this challenge is that the size of the search space can become computationally prohibitive for all but the smallest training sets. We are investigating methods to reduce the search space to identify an optimal subset of basis training images.
Fourier transform infrared analysis of Tamra Bhasma at different levels: A preliminary study
Chaudhari, Swapnil Y.; Rajput, Dhirajsingh S.; Galib, R.; Prajapati, Pradeep Kumar
2015-01-01
Introduction: Tamra Bhasma, one among the herbo-metallic preparations is extensively used in Ayurveda for different conditions. To make it safe to use, Tamra has to pass through a set of classical pharmaceutical procedures including a series of quenching in prescribed liquids, followed by incineration with black sulfide of mercury and herbal juice of Citrus jambhiri Lush. and corm of Amorphophallus campanulatus Linn. FTIR profiles of Tamra Bhasma at different levels is not available. Aim: To evaluate the chemical changes in Tamra Bhasma at different steps by following Fourier transform infrared (FTIR) spectroscopy. Materials and Methods: In current study, raw Tamra, intermediate samples obtained during purification, incineration and Amritikarana were analyzed using FTIR. Results: It was observed that Shodhana procedure leads in the formation of bonds between surface particles of Tamra and Shodhana media. These formed bonds on the surface of Shodhita Tamra samples gave various sharp peaks representing presence of many functional groups. Conclusion: The FTIR spectra revealed that both Bhasma samples contained organic compounds probably in the form of a complex with common functional groups like alkyl, methyl, etc., which need further studies for exact characterization of the complexes. PMID:26730144
Fourier transform infrared analysis of Tamra Bhasma at different levels: A preliminary study.
Chaudhari, Swapnil Y; Rajput, Dhirajsingh S; Galib, R; Prajapati, Pradeep Kumar
2015-01-01
Tamra Bhasma, one among the herbo-metallic preparations is extensively used in Ayurveda for different conditions. To make it safe to use, Tamra has to pass through a set of classical pharmaceutical procedures including a series of quenching in prescribed liquids, followed by incineration with black sulfide of mercury and herbal juice of Citrus jambhiri Lush. and corm of Amorphophallus campanulatus Linn. FTIR profiles of Tamra Bhasma at different levels is not available. To evaluate the chemical changes in Tamra Bhasma at different steps by following Fourier transform infrared (FTIR) spectroscopy. In current study, raw Tamra, intermediate samples obtained during purification, incineration and Amritikarana were analyzed using FTIR. It was observed that Shodhana procedure leads in the formation of bonds between surface particles of Tamra and Shodhana media. These formed bonds on the surface of Shodhita Tamra samples gave various sharp peaks representing presence of many functional groups. The FTIR spectra revealed that both Bhasma samples contained organic compounds probably in the form of a complex with common functional groups like alkyl, methyl, etc., which need further studies for exact characterization of the complexes.
The Spectrum and Term Analysis of Co III Measured Using Fourier Transform and Grating Spectroscopy
NASA Astrophysics Data System (ADS)
Smillie, D. G.; Pickering, J. C.; Nave, G.; Smith, P. L.
2016-03-01
The spectrum of Co iii has been recorded in the region 1562-2564 Å (64,000 cm-1-39,000 cm-1) by Fourier transform (FT) spectroscopy, and in the region 1317-2500 Å (164,000 cm-1-40,000 cm-1) using a 10.7 m grating spectrograph with phosphor image plate detectors. The spectrum was excited in a cobalt-neon Penning discharge lamp. We classified 514 Co iii lines measured using FT spectroscopy, the strongest having wavenumber uncertainties approaching 0.004 cm-1 (approximately 0.2 mÅ at 2000 Å, or 1 part in 107), and 240 lines measured with grating spectroscopy with uncertainties between 5 and 10 mÅ. The wavelength calibration of 790 lines of Raassen & Ortí Ortin and 87 lines from Shenstone has been revised and combined with our measurements to optimize the values of all but one of the 288 previously reported energy levels. Order of magnitude reductions in uncertainty for almost two-thirds of the 3d64s and almost half of the 3d64p revised energy levels are obtained. Ritz wavelengths have been calculated for an additional 100 forbidden lines. Eigenvector percentage compositions for the energy levels and predicted oscillator strengths have been calculated using the Cowan code.
NASA Astrophysics Data System (ADS)
Sivaguru, Mayandi; Durgam, Sushmitha; Ambekar, Raghu; Luedtke, David; Fried, Glenn; Stewart, Allison; Toussaint, Kimani C., Jr.
2011-03-01
Fourier transform-second-harmonic generation (FT-SHG) imaging is used to quantitatively assess the structural organization of collagen fibers in tendonitis-induced horse tendons. Fiber orientation, isotropy, and the ratio of forward to backward SHG signal (F/B ratio) are used to differentiate the fiber organization between the normal and diseased horse tendons. Each second-harmonic generation (SHG) image is divided into several smaller regions of interest (ROI) and the aforementioned quantitative metrics are calculated across the whole grid. ROIs are further labeled as dark (no or minimal presence of fibers), isotropic (random fiber organization), or anisotropic (regular fiber organization) regions. Results show that the normal tendon possesses minimal isotropic regions and small standard deviations in the histograms of orientation and F/B ratio, indicating an intact and highly regular fiber organization. However, the tendonitis-induced horse tendons possess higher number of dark and isotropic regions, and larger standard deviations of the measured parameters, suggesting significantly disoriented and disorganized collagen fibers. This type of quantification would be highly beneficial in diagnosing and determining the stage of tendonitis in clinical settings. Not limited to tendonitis, the technique could also be applied to other diseases that structurally affect collagen fibers. The advantage of FT-SHG over the conventional polarization microscopy is also discussed.
Kim, Kyung Sook; Park, Hun-Kuk
2013-02-01
In the previous work, we investigated the aging effect on morphology and mechanical property of the hair by using atomic force microscopy. The effects of aging on chemical properties of human hair were investigated by Fourier transform infrared (FT-IR) spectroscopy. Healthy hair samples with no diseases were collected from 60 Koreans (30 males and 30 females) and they were grouped by age: 1-10, 11-20, 21-30, 31-40, 41-50, and 51-60 years. The characteristic parameters of FT-IR absorbance bands including center frequency, half width, height, and area were analyzed using the Gaussian model. To quantitatively analyze the chemical composition of hair, the height and area of all bands in the spectra were normalized to the amide I centered at 1652-1659 and 1654-1658 cm(-1), for male and female hairs, respectively. In all male and female hairs, the spectra of specific components of the hair keratin showed to have the same dependence on aging. The center positions of the bands arising from amide A, CH(3) mode, and amide I were altered by aging. The female hair contains more cystein than the male hair. Changes in the amount of amide II and amide A by aging were more significant in male hair than in female hair. The changes in chemical components of the hair according to the ages were shown at the inflection point at 30 s. © 2012 John Wiley & Sons A/S.
Attenuated total reflectance fourier transform infrared analysis of fly ash geopolymer gel aging.
Rees, Catherine A; Provis, John L; Lukey, Grant C; van Deventer, Jannie S J
2007-07-17
Structural changes in fly ash geopolymers activated with different sodium hydroxide and silicate concentrations are investigated using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy over a period of 200 days. A strong correlation is found between the concentration of silicate monomer in the activating solution and the position of the main Si-O-T stretching band in the FTIR spectrum, which gives an indication of the relative changes in the gel Si/Al ratio. The FTIR spectra of geopolymer samples with activating solution concentrations of up to 1.2 M SiO2 indicate that an Al-rich gel forms before the final gel composition is reached. The time required for the system to reach a steady gel composition depends on the silicate activating solution concentration and speciation. Geopolymers activated with solutions containing predominantly high-order silicate species rapidly reach a steady gel composition without first forming an Al-rich gel. A minimum silicate monomer concentration of approximately 0.6 M is required to shift the geopolymer synthesis mechanism from hydroxide activation to silicate activation. Silicate speciation in the activating solutions also affects zeolite formation and geopolymer microstructures, with a more homogeneous microstructure and less zeolite formation observed at a higher SiO2 content.
Analysis of carbonyl value of frying oil by fourier transform infrared spectroscopy.
Zhang, Han; Ma, Jinkui; Miao, Yelian; Tuchiya, Tomohiro; Chen, Jie Yu
2015-01-01
A rapid method for determining the carbonyl value of frying oils has been developed using Fourier-transform infrared (FTIR) spectroscopy and chemometrics. One hundred and fifty-six frying oils with different carbonyl values were collected from an actual potato frying process. FTIR spectra in the range of 4000-650 cm(-1) were scanned with a FTIR spectroscopy apparatus using the attenuated total reflectance (ATR) method. A good calibration model was obtained using the partial least-squares (PLS) regression method with full cross validation for predicting the carbonyl value of frying oils. For the model, the coefficients of determination (R(2)), standard errors of cross validation (SECV) and standard errors of prediction (SEP) were 0.99, 1.87 μmol g(-1) and 1.93 μmol g(-1), respectively. Moreover, standard deviation ratios of reference data in the validation sample set to the SEP were higher than 3. This study shows that the carbonyl value of frying oils can be successfully determined to a high accuracy using FTIR spectroscopy combined with PLS regression.
Liu, Na; Wei, Xiu-li; Gao, Min-guang; Xu, Liang; Jiao, Yang; Li, Sheng; Tong, Jing-jing; Cheng, Si-yang
2013-09-01
Airborne fine particulate matter PM2.5 as one of composite core pollutants of air pollution is concerned and NO as one of the main components of water-soluble ions has an important impact on precipitation and human health, so searching a method of rapid and reliable detection is an important work. According to advantages of the Fourier transform infrared spectroscopy technology, the infrared spectrum of NO3- in NH4NO3 was compared with PM2.5 by a sampling method of making film. The result shows that their spectra are consistent with each other. A range of infrared spectra of different masses of NO3- were measured and the absorbance was fitted with mass, correlation and mass range of which are 0.994 8 and 7.82-73.78 microg, respectively. According to the corresponding relationship of mass between solution and sample film, the FTIR of the sample film was measured directly and mass concentrations of NO3- in a month (between 2012-03-20 and 2012-04-20) of Hefei area are listed and the average is 4.1713 microg x m(-3).
Messaoudi, Imen; Elloumi-Oueslati, Afef; Lachiri, Zied
2014-01-01
Investigating the roles and functions of DNA within genomes is becoming a primary focus of genomic research. Thus, the research works are moving towards cooperation between different scientific disciplines which aims at facilitating the interpretation of genetic information. In order to characterize the DNA of living organisms, signal processing tools appear to be very suitable for such study. However, a DNA sequence must be converted into a numerical sequence before processing; which defines the concept of DNA coding. In line with this, we propose a new one dimensional model based on the chaos game representation theory called Frequency Chaos Game Signal: FCGS. Then, we perform a Smoothed Fourier Transform to enhance hidden periodicities in the C.elegans DNA sequences. Through this study, we demonstrate the performance of our coding approach in highlighting characteristic periodicities. Indeed, several periodicities are shown to be involved in the 1D spectra and the 2D spectrograms of FCGSs. To investigate further about the contribution of our method in the enhancement of characteristic spectral attributes, a comparison with a range of binary indicators is established.
THE SPECTRUM AND TERM ANALYSIS OF CO iii MEASURED USING FOURIER TRANSFORM AND GRATING SPECTROSCOPY
Smillie, D. G.; Pickering, J. C.; Nave, G.; Smith, P. L.
2016-03-15
The spectrum of Co iii has been recorded in the region 1562–2564 Å (64,000 cm{sup −1}–39,000 cm{sup −1}) by Fourier transform (FT) spectroscopy, and in the region 1317–2500 Å (164,000 cm{sup −1}–40,000 cm{sup −1}) using a 10.7 m grating spectrograph with phosphor image plate detectors. The spectrum was excited in a cobalt–neon Penning discharge lamp. We classified 514 Co iii lines measured using FT spectroscopy, the strongest having wavenumber uncertainties approaching 0.004 cm{sup −1} (approximately 0.2 mÅ at 2000 Å, or 1 part in 10{sup 7}), and 240 lines measured with grating spectroscopy with uncertainties between 5 and 10 mÅ. The wavelength calibration of 790 lines of Raassen and Ortí Ortin and 87 lines from Shenstone has been revised and combined with our measurements to optimize the values of all but one of the 288 previously reported energy levels. Order of magnitude reductions in uncertainty for almost two-thirds of the 3d{sup 6}4s and almost half of the 3d{sup 6}4p revised energy levels are obtained. Ritz wavelengths have been calculated for an additional 100 forbidden lines. Eigenvector percentage compositions for the energy levels and predicted oscillator strengths have been calculated using the Cowan code.
Zhao, Ming; Li, Yu; Peng, Leilei
2014-01-01
We report a fast non-iterative lifetime data analysis method for the Fourier multiplexed frequency-sweeping confocal FLIM (Fm-FLIM) system [ Opt. Express22, 10221 ( 2014)24921725]. The new method, named R-method, allows fast multi-channel lifetime image analysis in the system’s FPGA data processing board. Experimental tests proved that the performance of the R-method is equivalent to that of single-exponential iterative fitting, and its sensitivity is well suited for time-lapse FLIM-FRET imaging of live cells, for example cyclic adenosine monophosphate (cAMP) level imaging with GFP-Epac-mCherry sensors. With the R-method and its FPGA implementation, multi-channel lifetime images can now be generated in real time on the multi-channel frequency-sweeping FLIM system, and live readout of FRET sensors can be performed during time-lapse imaging. PMID:25321778
Zhao, Ming; Li, Yu; Peng, Leilei
2014-09-22
We report a fast non-iterative lifetime data analysis method for the Fourier multiplexed frequency-sweeping confocal FLIM (Fm-FLIM) system [Opt. Express 22, 10221 (2014)]. The new method, named R-method, allows fast multi-channel lifetime image analysis in the system's FPGA data processing board. Experimental tests proved that the performance of the R-method is equivalent to that of single-exponential iterative fitting, and its sensitivity is well suited for time-lapse FLIM-FRET imaging of live cells, for example cyclic adenosine monophosphate (cAMP) level imaging with GFP-Epac-mCherry sensors. With the R-method and its FPGA implementation, multi-channel lifetime images can now be generated in real time on the multi-channel frequency-sweeping FLIM system, and live readout of FRET sensors can be performed during time-lapse imaging.
NASA Astrophysics Data System (ADS)
Olurin, Oluwaseun T.; Ganiyu, Saheed A.; Hammed, Olaide S.; Aluko, Taiwo J.
2016-10-01
This study presents the results of spectral analysis of magnetic data over Abeokuta area, Southwestern Nigeria, using fast Fourier transform (FFT) in Microsoft Excel. The study deals with the quantitative interpretation of airborne magnetic data (Sheet No. 260), which was conducted by the Nigerian Geological Survey Agency in 2009. In order to minimise aliasing error, the aeromagnetic data was gridded at spacing of 1 km. Spectral analysis technique was used to estimate the magnetic basement depth distributed at two levels. The result of the interpretation shows that the magnetic sources are mainly distributed at two levels. The shallow sources (minimum depth) range in depth from 0.103 to 0.278 km below ground level and are inferred to be due to intrusions within the region. The deeper sources (maximum depth) range in depth from 2.739 to 3.325 km below ground and are attributed to the underlying basement.
Boonen, Hennie A L; Koskamp, Janou A; Theiss, Wolfgang; Iedema, Piet D; Willemse, Robin X E
2017-01-01
The curing characteristics of an ultraviolet (UV) ink layer are of utmost importance for the development of UV inks. Measuring either bulk or bottom cure in itself is not new and has been the subject of many articles. In this article, two methods are described based on Fourier transform infrared (FT-IR) spectrometry to measure in real time and simultaneously the bulk and bottom cure of a thin UV ink layer. The procedure consists of applying a thin (10-12 µm) layer of UV-curing ink on an attenuated total reflection (ATR) crystal. The bottom cure is measured with ATR. The bulk cure is measured simultaneously with a reflection analysis (method 1) or a transmission analysis (method 2). With both methods, the bulk and bottom cure can be determined. To overcome problems with the interference in the ATR reflection setup, it is recommended to use the ATR transmission setup.
Al-Holy, Murad A; Lin, Mengshi; Alhaj, Omar A; Abu-Goush, Mahmoud H
2015-02-01
Alicyclobacillus is a causative agent of spoilage in pasteurized and heat-treated apple juice products. Differentiating between this genus and the closely related Bacillus is crucially important. In this study, Fourier transform infrared spectroscopy (FT-IR) was used to identify and discriminate between 4 Alicyclobacillus strains and 4 Bacillus isolates inoculated individually into apple juice. Loading plots over the range of 1350 and 1700 cm(-1) reflected the most distinctive biochemical features of Bacillus and Alicyclobacillus. Multivariate statistical methods (for example, principal component analysis and soft independent modeling of class analogy) were used to analyze the spectral data. Distinctive separation of spectral samples was observed. This study demonstrates that FT-IR spectroscopy in combination with multivariate analysis could serve as a rapid and effective tool for fruit juice industry to differentiate between Bacillus and Alicyclobacillus and to distinguish between species belonging to these 2 genera. © 2015 Institute of Food Technologists®
Hyatt, C J; Maughan, D W
1994-01-01
A method for determining and analyzing the wing beat frequency in Diptera is presented. This method uses an optical tachometer to measure Diptera wing movement during flight. The resulting signal from the optical measurement is analyzed using a Fast Fourier Transform (FFT) technique, and the dominant frequency peak in the Fourier spectrum is selected as the wing beat frequency. Also described is a method for determining quantitatively the degree of variability of the wing beat frequency about the dominant frequency. This method is based on determination of a quantity called the Hindex, which is derived using data from the FFT analysis. Calculation of the H index allows computer-based selection of the most suitable segment of recorded data for determination of the representative wing beat frequency. Experimental data suggest that the H index can also prove useful in examining wing beat frequency variability in Diptera whose flight muscle structure has been genetically altered. Examples from Drosophila indirect flight muscle studies as well as examples of artificial data are presented to illustrate the method. This method fulfills a need for a standardized method for determining wing beat frequencies and examining wing beat frequency variability in insects whose flight muscles have been altered by protein engineering methods. PMID:7811927
Sciscio, Andrea; Hull, Christopher C; Stephenson, Chris G; Baldwin, Heather; O'Brart, David; Marshall, John
2003-09-01
To analyze corneal topographic data by Fourier analysis to determine differences in irregular astigmatism following spherical hyperopic correction by photorefractive keratectomy (PRK) or laser in situ keratomileusis (LASIK). Department of Ophthalmology, St. Thomas' Hospital, London, United Kingdom. Thirty-six eyes of 18 patients with moderate hyperopia had LASIK in 1 eye and PRK in the other eye. The flap was cut on a nasal hinge with a Moria LSK One microkeratome. The laser was a Summit SVS Apex Plus with an optical zone of 6.5 mm and a blending zone of 1.5 mm. Corneal topographic data were acquired with a TMS-1 topographer (Computed Anatomy Inc.) preoperatively and 1, 3, 6, and 12 months postoperatively. The ASCII files containing the dioptric power values were extracted and analyzed with custom-written software to extract the Fourier harmonics. The irregular astigmatism increased in both groups postoperatively, peaking at 3 months and then decreasing over the next 9 months. There was no statistically significant difference between the 2 groups at any time point (P<.05). The change in the topographically derived equivalent sphere showed undercorrection in both groups at all time points. Regular astigmatism showed a marginal statistically significant increase in the LASIK group at 12 months (P =.049). Irregular astigmatism, equivalent sphere, and regular astigmatism were not significantly different in the PRK and LASIK groups during the follow-up. Based on the corneal topography, the 2 procedures induced an equal amount of irregular astigmatism.
Deswysen, A G; Dutilleul, P; Godfrin, J P; Ellis, W C
1993-10-01
Average daily and within-day nycterohemeral patterns of eating and ruminating behavior were determined in six Holstein-Friesian heifers (average BW = 427 kg) given ad libitum access to either corn or grass silage in a two-period crossover design. Rhythm components (number of cycles/24 h) were characterized by finite Fourier transform of the 24-h mastication activities as measured during 4 d by continuous jaw movement recordings. Average daily voluntary intake of corn silage was 8.2% greater (P = .05) than that for grass silage and was associated (P < .05) with fewer meals and shorter daily, unitary eating and ruminating times, and smaller number of rumination boli. Analysis of variance of the daily mean of hourly activities and Rhythm Components 1 to 12 indicated effects of (P < .05) silage type (S), animal (A), period (P), and a significant interaction (S x A x P) for each mastication activity. The finite Fourier transform was reparameterized to express the amplitude (as periodograms) and phase of each rhythm component. Rhythm Components 1, 3, and 4 contributed primarily to explaining the total dispersion of the 24-h series of time spent eating and ruminating, for both silage types and individual heifers. Relative importance of Rhythm Component 1 of time spent eating, indicative of a main circadian pattern, was related positively to pedigree value for milk production (P = .01) and negatively to milk protein concentration (P = .09).(ABSTRACT TRUNCATED AT 250 WORDS)
Russell, C.A. ); Ridky, R.W. . Dept. of Geology); Ehrlich, R. . Dept. of Geosciences)
1992-01-01
Quartz sand and silt shapes from sites throughout Chesapeake Bay were characterized by Fourier and fractal descriptors for use as sediment tracers. Shape distributions of harmonic amplitudes and fractal dimensions showing greatest sample contrast were unmixed by polytopic vector analysis into populations of mathematical endmembers. For both methods and both size fractions, the shape distributions containing the greatest variability (as assessed by relative entropy) were of measures characterizing finer detail rather than gross shape. The textural fractal dimension distributions had lower relative entropies (greater sample contrast) than the higher Fourier harmonics, and produced the most unambiguous solutions after unmixing. To assess sediment transport pathways, the spatial and shape patterns of the component mathematical endmembers in the Bay were examined for relationships to geologic factors. For many solutions, samples consisted of varying mixtures of endmembers without strong dominance by any one endmember. Consistent spatial trends for most solutions were not apparent, making geologic interpretations of mathematical endmembers difficult. However, some a priori source'' samples did emerge as representative of several endmembers. These solutions were interpretable, and support the following conclusions: (1) fluvial silt is widely distributed throughout the bay, with highest amounts at the Susquehanna River mouth and in the northern bay; (2) marine silt is concentrated at the bay mouth and extends northward into the midbay; and (3) fluvial, marine and coastal sand, along the coastal silt, show more localized abundances that fall off rapidly over short distances. Extensive mixing in coastal environments may complicate coherent endmember tracing.
Zoehrer, Ruth; Dempster, David W.; Bilezikian, John P.; Zhou, Hua; Silverberg, Shonni J.; Shane, Elizabeth; Roschger, Paul; Paschalis, Eleftherios P.; Klaushofer, Klaus
2008-01-01
Context: Mild primary hyperparathyroidism (PHPT) is characterized by asymptomatic hypercalcemia, most commonly in the absence of classical signs and symptoms. Hence, there is need to characterize this disorder with particular attention to the skeleton. Design: We determined the ratio of pyridinium and dehydrodihydroxylysinonorleucine collagen cross-links in 46 iliac crest bone biopsies from patients with PHPT (14 men, aged 28–68 yr; 32 women, aged 26–74 yr) by Fourier transform infrared imaging. The results were compared with previously reported collagen cross-links ratio determined in iliac crest biopsies from normal subjects. Results: PHPT patients exhibited significantly lower pyridinium to dehydrodihydroxylysinonorleucine collagen cross-links ratio, compared with normal controls. Parathyroidectomy restored values to those comparable with normal controls. Moreover, the differences among PHPT subjects were gender dependent, with female PHPT patients having a statistically significant lower ratio, compared with either male PHPT patients or normal controls. Comparison of the obtained outcomes with histomorphometry showed that the collagen cross-link ratio was strongly correlated with rate of bone formation, and mineralizing surface, in individual patients. This ratio was also correlated with bone mineralization density distribution parameters obtained in the same patients. The strongest correlations were with bone mineralization density distribution variables reflecting heterogeneity of mineralization and primary mineralization parameters. Conclusions: The results are consistent with the high turnover state manifested in PHPT patients. Reduced collagen cross-link ratio in patients with PHPT would be expected to reduce the stiffness of bone tissue. These observations provide a more complete assessment of bone material properties in this disorder. PMID:18593769
Oussama, A; Kzaiber, F; Mernari, B; Hilmi, A; Semmoud, A; Daudon, M
2000-06-01
To determine the stone composition in adult patients from the medium Atlas of Morocco. A series of 183 calculi from adult patients (males: 123, females: 60) collected in medium Atlas of Morocco was analysed by Fourier Transform infrared spectroscopy. The stones were surgically removed (n = 168) or spontaneously passed (n = 15). Kidney stones are encountered in 70.5% of calculi. The stones were twice frequent in males than in females (M/F = 2.10). Whewellite was the main component in 51.4% of the stones and 49.7% of the stone core, weddellite in only 7.1% of stones and 6.4% of the nuclei. Uric acid was predominant in 18% of stones and also 19.7% of nuclei, and carbapatite in 12.6% of stones and nuclei. All in all, whewellite was present in 77.6% of calculi and weddellite in 25.1%, carbapatite in 68.3% and PACC in 23.5%, struvite in 15.3%, uric acid in 20.8% and ammonium hydrogen urate in 14.2% of cases. Struvite stones were more frequent in females and uric acid calculi in males, in particular in patients aged more than 60 years old. As observed in most countries, calcium oxalate was the most frequent major component of the stones (58.5%). Uric acid stones were more frequent (18%) than reported in Western countries, thus suggesting that particular dietary habits are involved in stone formation. The relatively high occurrence of struvite stones (8%) could be a marker of an insufficient early detection and treatment of chronic urinary tract infection.
A coevolution analysis for identifying protein-protein interactions by Fourier transform
Yin, Changchuan; Yau, Stephen S. -T.
2017-01-01
Protein-protein interactions (PPIs) play key roles in life processes, such as signal transduction, transcription regulations, and immune response, etc. Identification of PPIs enables better understanding of the functional networks within a cell. Common experimental methods for identifying PPIs are time consuming and expensive. However, recent developments in computational approaches for inferring PPIs from protein sequences based on coevolution theory avoid these problems. In the coevolution theory model, interacted proteins may show coevolutionary mutations and have similar phylogenetic trees. The existing coevolution methods depend on multiple sequence alignments (MSA); however, the MSA-based coevolution methods often produce high false positive interactions. In this paper, we present a computational method using an alignment-free approach to accurately detect PPIs and reduce false positives. In the method, protein sequences are numerically represented by biochemical properties of amino acids, which reflect the structural and functional differences of proteins. Fourier transform is applied to the numerical representation of protein sequences to capture the dissimilarities of protein sequences in biophysical context. The method is assessed for predicting PPIs in Ebola virus. The results indicate strong coevolution between the protein pairs (NP-VP24, NP-VP30, NP-VP40, VP24-VP30, VP24-VP40, and VP30-VP40). The method is also validated for PPIs in influenza and E.coli genomes. Since our method can reduce false positive and increase the specificity of PPI prediction, it offers an effective tool to understand mechanisms of disease pathogens and find potential targets for drug design. The Python programs in this study are available to public at URL (https://github.com/cyinbox/PPI). PMID:28430779
A coevolution analysis for identifying protein-protein interactions by Fourier transform.
Yin, Changchuan; Yau, Stephen S-T
2017-01-01
Protein-protein interactions (PPIs) play key roles in life processes, such as signal transduction, transcription regulations, and immune response, etc. Identification of PPIs enables better understanding of the functional networks within a cell. Common experimental methods for identifying PPIs are time consuming and expensive. However, recent developments in computational approaches for inferring PPIs from protein sequences based on coevolution theory avoid these problems. In the coevolution theory model, interacted proteins may show coevolutionary mutations and have similar phylogenetic trees. The existing coevolution methods depend on multiple sequence alignments (MSA); however, the MSA-based coevolution methods often produce high false positive interactions. In this paper, we present a computational method using an alignment-free approach to accurately detect PPIs and reduce false positives. In the method, protein sequences are numerically represented by biochemical properties of amino acids, which reflect the structural and functional differences of proteins. Fourier transform is applied to the numerical representation of protein sequences to capture the dissimilarities of protein sequences in biophysical context. The method is assessed for predicting PPIs in Ebola virus. The results indicate strong coevolution between the protein pairs (NP-VP24, NP-VP30, NP-VP40, VP24-VP30, VP24-VP40, and VP30-VP40). The method is also validated for PPIs in influenza and E.coli genomes. Since our method can reduce false positive and increase the specificity of PPI prediction, it offers an effective tool to understand mechanisms of disease pathogens and find potential targets for drug design. The Python programs in this study are available to public at URL (https://github.com/cyinbox/PPI).
Liu, Y.; Yao, X.; Liu, Y.W.; Wang, Y.
2015-01-01
It is well known that caries invasion leads to the differentiation of dentin into zones with altered composition, collagen integrity and mineral identity. However, understanding of these changes from the fundamental perspective of molecular structure has been lacking so far. In light of this, the present work aims to utilize Fourier transform infrared spectroscopy (FTIR) to directly extract molecular information regarding collagen's and hydroxyapatite's structural changes as dentin transitions from the transparent zone (TZ) into the normal zone (NZ). Unembedded ultrathin dentin films were sectioned from carious teeth, and an FTIR imaging system was used to obtain spatially resolved FTIR spectra. According to the mineral-to-matrix ratio image generated from large-area low-spectral-resolution scan, the TZ, the NZ and the intermediate subtransparent zone (STZ) were identified. High-spectral-resolution spectra were taken from each zone and subsequently examined with regard to mineral content, carbonate distribution, collagen denaturation and carbonate substitution patterns. The integrity of collagen's triple helical structure was also evaluated based on spectra collected from demineralized dentin films of selected teeth. The results support the argument that STZ is the real sclerotic layer, and they corroborate the established knowledge that collagen in TZ is hardly altered and therefore should be reserved for reparative purposes. Moreover, the close resemblance between the STZ and the NZ in terms of carbonate content, and that between the STZ and the TZ in terms of being A-type carbonate-rich, suggest that the mineral that initially occludes dentin tubules is hydroxyapatite newly generated from odontoblastic activities, which is then transformed into whitlockite in the demineralization/remineralization process as caries progresses. PMID:24556607
Mandibular shape analysis in fossil hominins: Fourier descriptors in norma lateralis.
Lestrel, P E; Wolfe, C A; Bodt, A
2013-08-01
Biological shape can be defined as the boundary of a form in 2-space (R(2)). An earlier study (Lestrel et al., 2010, HOMO-J. Comp. Hum. Biol.) of the cranial vault found that there were statistically significant differences between each of the three groups: H. erectus, H. heidelbergensis, and H. neanderthalensis compared with H. sapiens. In contrast, there was no statistically significant difference among the first three groups. These results suggest that these three groups may have formed single evolving lineage while H. sapiens represents a separate evolutionary development. The purpose of the current research was to discern if the mandible reflected a similar pattern as the cranial vault data. This study used lateral jpeg images of the mandible. Five fossil samples were used: A. robustus (n=7), H. erectus (n=12), H. heidelbergensis (n=4), H. neanderthalensis (n=22) and H. sapiens (n=61). Each mandible image was pre-processed with Photoshop Elements. Each image was then submitted to a specially written routine that digitized the 84 points along the mandible boundary. Each mandible was fitted with elliptical Fourier functions (EFFs). Procrustes superimposition was imposed to insure minimum shape differences. The mandible results largely mirrored the earlier cranial vault study with one exception. Statistically significant results were obtained for the mandible between the H. erectus and H. neanderthalensis samples in contrast to the earlier cranial vault data. F-tests disclosed that the statistical significance was limited to the anterior symphysis of the mandible. This mosaic pattern may be explained by the reduction in prognathism with the concomitant if rudimentary development of the chin as seen in H. neanderthalensis compared to H. erectus.
NASA Astrophysics Data System (ADS)
Lucassen, Gerald W.; Bakker, Bernard L.; Neerken, Sieglinde; Hendriks, Rob F. M.
2003-07-01
We present results from 2D Fourier analysis on 3D stacks of images obtained by confocal laser scanning reflectance microscopy (CLSM) and two-photon fluorescence microscopy (2PM) on human skin in vivo. CLSM images were obtained with a modified commercial system (Vivascope1000, Lucid Inc, excitation wavelength 830 nm) equipped with a piezo-focusing element (350 μm range) for depth positioning of the objective lens. 2PM was performed with a specially designed set-up with excitation wavelength 730 nm. Mean cell size in the epidermal layer and structural orientation in the dermal layer have been determined as a function of depth by 2D Fourier analysis. Fourier analysis on microscopic images enables automatic non-invasive quantitative structural analysis (mean cell size and orientation) of living human skin.
NASA Astrophysics Data System (ADS)
Caprioli, A.; Cigada, A.; Raveglia, D.
2007-02-01
Nowadays the power of data analysis tools like the wavelet decomposition of signals is well known and spread. On the other hand the theoretical advantages of such methods often fight with reality, when real field signals are collected and analysed: it sometimes comes out that this time-frequency approach somehow fails, demanding for a deeper insight into the kind of physical problem to be considered, and requiring a sort of "benchmark" between the traditional Fourier approach and the more recent time-frequency one. In this paper, sharply application-oriented, the possibilities offered by the wavelet techniques have been analysed: both the DSP specialist and the field engineer points of view have been joined to exploit the new approach of its best. A real problem has been considered, in which acceleration signals from a train bogie are collected and real-time analysed, to get a diagnostic tool to know the track condition of a subway line. This paper would like to look for a compromise point between complex mathematics based techniques, such as wavelet packet, sometimes hard to comprehend to the application engineer, and the physical meaning of these tools helping in fixing the real method limits. Therefore the aim is not just trying this analysis on an almost random process, like the accelerations measured on a running bogie, to locate defects, but rather a discussion on the development of the continuous and discrete wavelet transform, in comparison with the classical Fourier analysis or filter banks. Only the minimum mathematical background is provided in the text, with the needed references, to give tools fit for comprehending the physical meaning of the new tools, capable of sparing computing effort, while preserving or even improving the system effectiveness.
Kwon, Yong-Kook; Ahn, Myung Suk; Park, Jong Suk; Liu, Jang Ryol; In, Dong Su; Min, Byung Whan; Kim, Suk Weon
2013-01-01
To determine whether Fourier transform (FT)-IR spectral analysis combined with multivariate analysis of whole-cell extracts from ginseng leaves can be applied as a high-throughput discrimination system of cultivation ages and cultivars, a total of total 480 leaf samples belonging to 12 categories corresponding to four different cultivars (Yunpung, Kumpung, Chunpung, and an open-pollinated variety) and three different cultivation ages (1 yr, 2 yr, and 3 yr) were subjected to FT-IR. The spectral data were analyzed by principal component analysis and partial least squares-discriminant analysis. A dendrogram based on hierarchical clustering analysis of the FT-IR spectral data on ginseng leaves showed that leaf samples were initially segregated into three groups in a cultivation age-dependent manner. Then, within the same cultivation age group, leaf samples were clustered into four subgroups in a cultivar-dependent manner. The overall prediction accuracy for discrimination of cultivars and cultivation ages was 94.8% in a cross-validation test. These results clearly show that the FT-IR spectra combined with multivariate analysis from ginseng leaves can be applied as an alternative tool for discriminating of ginseng cultivars and cultivation ages. Therefore, we suggest that this result could be used as a rapid and reliable F1 hybrid seed-screening tool for accelerating the conventional breeding of ginseng. PMID:24558311
Kwon, Yong-Kook; Ahn, Myung Suk; Park, Jong Suk; Liu, Jang Ryol; In, Dong Su; Min, Byung Whan; Kim, Suk Weon
2014-01-01
To determine whether Fourier transform (FT)-IR spectral analysis combined with multivariate analysis of whole-cell extracts from ginseng leaves can be applied as a high-throughput discrimination system of cultivation ages and cultivars, a total of total 480 leaf samples belonging to 12 categories corresponding to four different cultivars (Yunpung, Kumpung, Chunpung, and an open-pollinated variety) and three different cultivation ages (1 yr, 2 yr, and 3 yr) were subjected to FT-IR. The spectral data were analyzed by principal component analysis and partial least squares-discriminant analysis. A dendrogram based on hierarchical clustering analysis of the FT-IR spectral data on ginseng leaves showed that leaf samples were initially segregated into three groups in a cultivation age-dependent manner. Then, within the same cultivation age group, leaf samples were clustered into four subgroups in a cultivar-dependent manner. The overall prediction accuracy for discrimination of cultivars and cultivation ages was 94.8% in a cross-validation test. These results clearly show that the FT-IR spectra combined with multivariate analysis from ginseng leaves can be applied as an alternative tool for discriminating of ginseng cultivars and cultivation ages. Therefore, we suggest that this result could be used as a rapid and reliable F1 hybrid seed-screening tool for accelerating the conventional breeding of ginseng.
Mueller, Daniela; Ferrão, Marco Flôres; Marder, Luciano; da Costa, Adilson Ben; Schneider, Rosana de Cássia de Souza
2013-03-28
The main objective of this study was to use infrared spectroscopy to identify vegetable oils used as raw material for biodiesel production and apply multivariate analysis to the data. Six different vegetable oil sources--canola, cotton, corn, palm, sunflower and soybeans--were used to produce biodiesel batches. The spectra were acquired by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor (FTIR-UATR). For the multivariate analysis principal component analysis (PCA), hierarchical cluster analysis (HCA), interval principal component analysis (iPCA) and soft independent modeling of class analogy (SIMCA) were used. The results indicate that is possible to develop a methodology to identify vegetable oils used as raw material in the production of biodiesel by FTIR-UATR applying multivariate analysis. It was also observed that the iPCA found the best spectral range for separation of biodiesel batches using FTIR-UATR data, and with this result, the SIMCA method classified 100% of the soybean biodiesel samples.
Mueller, Daniela; Ferrão, Marco Flôres; Marder, Luciano; da Costa, Adilson Ben; de Cássia de Souza Schneider, Rosana
2013-01-01
The main objective of this study was to use infrared spectroscopy to identify vegetable oils used as raw material for biodiesel production and apply multivariate analysis to the data. Six different vegetable oil sources—canola, cotton, corn, palm, sunflower and soybeans—were used to produce biodiesel batches. The spectra were acquired by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor (FTIR-UATR). For the multivariate analysis principal component analysis (PCA), hierarchical cluster analysis (HCA), interval principal component analysis (iPCA) and soft independent modeling of class analogy (SIMCA) were used. The results indicate that is possible to develop a methodology to identify vegetable oils used as raw material in the production of biodiesel by FTIR-UATR applying multivariate analysis. It was also observed that the iPCA found the best spectral range for separation of biodiesel batches using FTIR-UATR data, and with this result, the SIMCA method classified 100% of the soybean biodiesel samples. PMID:23539030
Zhang, T; Yang, M; Xiao, X; Feng, Z; Li, C; Zhou, Z; Ren, Q; Li, X
2014-03-01
Many infectious diseases exhibit repetitive or regular behaviour over time. Time-domain approaches, such as the seasonal autoregressive integrated moving average model, are often utilized to examine the cyclical behaviour of such diseases. The limitations for time-domain approaches include over-differencing and over-fitting; furthermore, the use of these approaches is inappropriate when the assumption of linearity may not hold. In this study, we implemented a simple and efficient procedure based on the fast Fourier transformation (FFT) approach to evaluate the epidemic dynamic of scarlet fever incidence (2004-2010) in China. This method demonstrated good internal and external validities and overcame some shortcomings of time-domain approaches. The procedure also elucidated the cycling behaviour in terms of environmental factors. We concluded that, under appropriate circumstances of data structure, spectral analysis based on the FFT approach may be applicable for the study of oscillating diseases.
NASA Astrophysics Data System (ADS)
Rajiv, P.; Rajeshwari, Sivaraj; Venckatesh, Rajendran
2013-12-01
Fourier transform infrared spectroscopy (FT-IR) and Gas chromatography-mass spectroscopy have been carried out to investigate the chemical composition of Parthenium mediated vermicompost. Four different concentrations of Parthenium and cow dung mixtures were vermicomposted using the earthworms (Eudrilus eugeniae). FT-IR spectra reveal the absence of Parthenin toxin (sesquiterpene lactone) and phenols in vermicompost which was obtained from high concentration of cow dung mixed treatments. GC-MS analysis shows no phenolic compounds and predominant level of intermediate metabolites such as 4,8,12,16-Tetramethylheptadecan-4-olide (7.61%), 2-Pentadecanone, 6,10,14-trimethyl- (5.29%) and Methyl 16-methyl-heptadecanoate (4.69%) during the vermicomposting process. Spectral results indicated that Parthenin toxin and phenols can be eradicated via vermicomposting if mixed with appropriate quantity of cow dung.
Gao, Wenjing; Huyen, Nguyen Thi Thanh; Loi, Ho Sy; Kemao, Qian
2009-12-07
In optical interferometers, fringe projection systems, and synthetic aperture radars, fringe patterns are common outcomes and usually degraded by unavoidable noises. The presence of noises makes the phase extraction and phase unwrapping challenging. Windowed Fourier transform (WFT) based algorithms have been proven to be effective for fringe pattern analysis to various applications. However, the WFT-based algorithms are computationally expensive, prohibiting them from real-time applications. In this paper, we propose a fast parallel WFT-based library using graphics processing units and computer unified device architecture. Real-time WFT-based algorithms are achieved with 4 frames per second in processing 256x256 fringe patterns. Up to 132x speedup is obtained for WFT-based algorithms using NVIDIA GTX295 graphics card than sequential C in quad-core 2.5GHz Intel(R)Xeon(R) CPU E5420.
Rajiv, P; Rajeshwari, Sivaraj; Venckatesh, Rajendran
2013-12-01
Fourier transform infrared spectroscopy (FT-IR) and Gas chromatography-mass spectroscopy have been carried out to investigate the chemical composition of Parthenium mediated vermicompost. Four different concentrations of Parthenium and cow dung mixtures were vermicomposted using the earthworms (Eudrilus eugeniae). FT-IR spectra reveal the absence of Parthenin toxin (sesquiterpene lactone) and phenols in vermicompost which was obtained from high concentration of cow dung mixed treatments. GC-MS analysis shows no phenolic compounds and predominant level of intermediate metabolites such as 4,8,12,16-Tetramethylheptadecan-4-olide (7.61%), 2-Pentadecanone, 6,10,14-trimethyl- (5.29%) and Methyl 16-methyl-heptadecanoate (4.69%) during the vermicomposting process. Spectral results indicated that Parthenin toxin and phenols can be eradicated via vermicomposting if mixed with appropriate quantity of cow dung.
NASA Astrophysics Data System (ADS)
Samlan, C. T.; Naik, Dinesh N.; Viswanathan, Nirmal K.
2016-09-01
Discovered in 1813, the conoscopic interference pattern observed due to light propagating through a crystal, kept between crossed polarizers, shows isochromates and isogyres, respectively containing information about the dynamic and geometric phase acquired by the beam. We propose and demonstrate a closed-fringe Fourier analysis method to disentangle the isogyres from the isochromates, leading us to the azimuthally varying geometric phase and its manifestation as isogyres. This azimuthally varying geometric phase is shown to be the underlying mechanism for the spin-to-orbital angular momentum conversion observed in a diverging optical field propagating through a z-cut uniaxial crystal. We extend the formalism to study the optical activity mediated uniaxial-to-biaxial transformation due to a weak transverse electric field applied across the crystal. Closely associated with the phase and polarization singularities of the optical field, the formalism enables us to understand crystal optics in a new way, paving the way to anticipate several emerging phenomena.
NASA Astrophysics Data System (ADS)
Zhang, Xue-Xi; Yin, Jian-Hua; Mao, Zhi-Hua; Xia, Yang
2015-06-01
Fourier transform infrared imaging (FTIRI) combined with chemometrics algorithm has strong potential to obtain complex chemical information from biology tissues. FTIRI and partial least squares-discriminant analysis (PLS-DA) were used to differentiate healthy and osteoarthritic (OA) cartilages for the first time. A PLS model was built on the calibration matrix of spectra that was randomly selected from the FTIRI spectral datasets of healthy and lesioned cartilage. Leave-one-out cross-validation was performed in the PLS model, and the fitting coefficient between actual and predicted categorical values of the calibration matrix reached 0.95. In the calibration and prediction matrices, the successful identifying percentages of healthy and lesioned cartilage spectra were 100% and 90.24%, respectively. These results demonstrated that FTIRI combined with PLS-DA could provide a promising approach for the categorical identification of healthy and OA cartilage specimens.
Mackie, David M; Jahnke, Justin P; Benyamin, Marcus S; Sumner, James J
2016-01-01
The standard methodologies for quantitative analysis (QA) of mixtures using Fourier transform infrared (FTIR) instruments have evolved until they are now more complicated than necessary for many users' purposes. We present a simpler methodology, suitable for widespread adoption of FTIR QA as a standard laboratory technique across disciplines by occasional users.•Algorithm is straightforward and intuitive, yet it is also fast, accurate, and robust.•Relies on component spectra, minimization of errors, and local adaptive mesh refinement.•Tested successfully on real mixtures of up to nine components. We show that our methodology is robust to challenging experimental conditions such as similar substances, component percentages differing by three orders of magnitude, and imperfect (noisy) spectra. As examples, we analyze biological, chemical, and physical aspects of bio-hybrid fuel cells.
Samlan, C. T.; Naik, Dinesh N.; Viswanathan, Nirmal K.
2016-01-01
Discovered in 1813, the conoscopic interference pattern observed due to light propagating through a crystal, kept between crossed polarizers, shows isochromates and isogyres, respectively containing information about the dynamic and geometric phase acquired by the beam. We propose and demonstrate a closed-fringe Fourier analysis method to disentangle the isogyres from the isochromates, leading us to the azimuthally varying geometric phase and its manifestation as isogyres. This azimuthally varying geometric phase is shown to be the underlying mechanism for the spin-to-orbital angular momentum conversion observed in a diverging optical field propagating through a z-cut uniaxial crystal. We extend the formalism to study the optical activity mediated uniaxial-to-biaxial transformation due to a weak transverse electric field applied across the crystal. Closely associated with the phase and polarization singularities of the optical field, the formalism enables us to understand crystal optics in a new way, paving the way to anticipate several emerging phenomena. PMID:27625210
NASA Astrophysics Data System (ADS)
Padilla, Diomaris
The Fourier transform infrared examination of the combustion products of a selection of forest materials has been undertaken in order to guide future detection of biomass burning using satellite remote sensing. Combustion of conifer Pinus strobus (white pine) and deciduous Prunus serotina (cherry), Acer rubrum (red maple), Friglans nigra (walnut), Fraxinus americana (ash), Betula papyrifera (birch), Querus alba (white oak) and Querus rubra (red oak) lumber, in a Meeker burner flame at temperatures of 400 to 900 degrees Fahrenheit produces a broad and relatively flat signal with a few distinct peaks throughout the wavelength spectra (400 to 4000 cm-1). The distinct bands located near wavelengths of 400-700, 1500-1700, 2200-2400 and 3300-3600 cm-1 vary in intensity with an average difference between the highest and lowest absorbing species of 47 percent. Spectral band differences of 10 percent are within the range of modern satellite spectrometers, and support the argument that band differences can be used to discriminate between various types of vegetation. A similar examination of soot and smoke derived from the leaves and branches of the conifer Pinus strobus and deciduous Querus alba (white oak), Querus rubra (red oak), Liquidambar styraciflua (sweetgum), Acer rubrum (maple) and Tilea americana (American basswood) at combustion temperatures of 400 to 900 degrees Fahrenheit produce a similar broad spectrum with a shift in peak location occurring in peaks below the 1700 cm-1 wavelength. The new peaks occur near wavelengths of 1438-1444, 875 and 713 cm-1. This noted shift in wavelength location may be indicative of a fingerprint region for green woods distinguishable from lumber through characteristic biomass suites. Temperature variations during burning show that the spectra of low temperature smoldered aerosols, occurring near 400 to 450 degrees Fahrenheit, may be distinguished from higher temperature soot aerosols that occur above 600 degrees Fahrenheit. A
NASA Astrophysics Data System (ADS)
Brito, Ana C.; Fernandes, Teresa F.; Newton, Alice; Facca, Chiara; Tett, Paul
2012-09-01
Shallow coastal lagoons, especially the ones with clear waters and lighted substrata, are likely to have large microphytobenthos (MPB) communities. MPB is an important component of these systems, representing up to 99% of the chlorophyll concentration when compared to phytoplankton. It is therefore expected that MPB resuspension play a key role in the dynamics of phytoplankton due to the tide and wind action. Water samples were collected twice per month inside and outside Ria Formosa lagoon (Portugal), for nutrients and chlorophyll a (chl a). Sediment samples were also collected for MPB chl a. Chl a was also analysed in water and sediment samples from Venice lagoon (Italy), at least once per month. A truncated Fourier series was fitted to the data to investigate the seasonal and high-frequency components of the time-series. In the Ria Formosa, the best significant fit for MPB was obtained considering the sum of 26 wave-pairs (sin and cosine), which explained 31% of the variability. The seasonal cycle (1-3 waves) explained approximately 5% of the total variability. Within-day variability which includes spatial heterogeneity explained 61% of the variability. The best fit for phytoplankton inside Ria Formosa was obtained considering the sum of 23 wave-pairs. Outside the lagoon the best fit was obtained using only the sum of 16 wave-pairs. For both cases, the sum of waves explained more than 64% of the variability and the seasonal cycle explained more than 31% of the variability. It is expected that primary producers in the water column have a strong seasonal factor due to the direct effect of the solar cycle, which is the case of other clear waters. In the Venice lagoon, which is microtidal, the best fit for MPB was obtained using 10 wave-pairs. However, the best fit for phytoplankton was obtained with only 3 wave-pairs, indicating the importance of the seasonal cycle. Significant relationships were found between phytoplankton inside and outside the Ria Formosa, as
Li, Jian-Rui; Chen, Jian-Bo; Zhou, Qun; Sun, Su-Qin; Lü, Guang-Hua
2014-03-01
The techniques of Fourier transform infrared (FTIR) spectroscopy were applied to analyze the different parts and tissues of Panax Notoginseng (Sanqi, SQ), i.e. rhizome, main root, rootlet, fibrous root, xylem, cambium, phloem and epidermis. Both the FTIR spectra and second derivative spectra of these various parts and tissues of SQ samples were found to be similar. Their dominant component is starch resulting from the characteristic peaks of starch observed at 3 400, 2 930, 1 645, 1 155, 1,080 and 1,020 cm(-1) on the spectra of all these SQ samples. However, the varieties of peaks were found on the spectra among these specific samples. The rhizome contains more saponins than others on the basis of the largest ratio of the peak intensity at 1,077 cm(-1) to that at 1,152 cm(-1). The peaks located at 1 317 and 780 cm(-1) on the FTIR spectra of the rhizome and its epidermis indicate that the two parts of SQ samples contain large amount of calcium oxalate, and its content in the latter is relative larger than that in former. The fibrous root contains much amount of nitrate owing to the obvious characteristic peaks at 1 384 and 831 cm(-1). For the difference among the various tissues of SQ samples, the peaks at 2,926, 2,854 and 1,740 cm(-1) on the FTIR spectra of epidermis is the strongest among the various tissues of main root indicating the largest amount of esters in epidermis. Protein was also found in the cambium of the main root based on the relative strong peaks of amide I and II band at 1,641 and 1,541 cm(-1), respectively. The results indicate that FTIR spectra with its second derivative spectra can show the characteristic of the various parts and tissues of SQ samples in both the holistic chemical constituents and specific chemical components, including organic macromolecule compounds and small inorganic molecule compounds. FTIR spectroscopy is a useful analytical method for the genuine and rapid identification and quality assessment of SQ samples.
NASA Astrophysics Data System (ADS)
Civco, Daniel L.; Witharana, Chandi
2012-10-01
Pan-sharpening of moderate resolution multispectral remote sensing data with those of a higher spatial resolution is a standard practice in remote sensing image processing. This paper suggests a method by which the spatial properties of resolution merge products can be assessed. Whereas there are several accepted metrics, such as correlation and root mean square error, for quantifying the spectral integrity of fused images, relative to the original multispectral data, there is less agreement on a means by which to assess the spatial properties, relative to the original higher-resolution, pansharpening data. In addition to qualitative, visual, and somewhat subjective evaluation, quantitative measures used have included correlations between high-pass filtered panchromatic and fused images, gradient analysis, wavelet analysis, among others. None of these methods, however, fully exploits the spatial and structural information contained in the original high resolution and fused images. This paper proposes the use of the Fourier transform as a means to quantify the degree to which a fused image preserves the spatial properties of the pan-sharpening high resolution data. A highresolution 8-bit panchromatic image was altered to produce a set of nine different test images, as well as a random image. The Fourier Magnitude (FM) image was calculated for each of the datasets and compared via FM to FM image correlation. Furthermore, the following edge detection algorithms were applied to the original and altered images: (a) Canny; (b) Sobel; and (c) Laplacian. These edge-filtered images were compared, again by way of correlation, with the original edge-filtered panchromatic image. Results indicate that the proposed method of using FTMI as a means of assessing the spatial fidelity of high-resolution imagery used in the data fusion process outperforms the correlations produced by way of comparing edge-enhanced images.
An automated approach for analysis of Fourier Transform Infrared (FTIR) spectra of edible oils.
Sim, Siong Fong; Ting, Woei
2012-01-15
This paper reports a computational approach for analysis of FTIR spectra where peaks are detected, assigned and matched across samples to produce a peak table with rows corresponding to samples and columns to variables. The algorithm is applied on a dataset of 103 spectra of a broad range of edible oils for exploratory analysis and variable selection using Self Organising Maps (SOMs) and t-statistics, respectively. Analysis on the resultant peak table allows the underlying patterns and the discriminatory variables to be revealed. The algorithm is user-friendly; it involves a minimal number of tunable parameters and would be useful for analysis of a large and complicated FTIR dataset.
NASA Astrophysics Data System (ADS)
Zhu, Ying; Tan, Tuck Lee
2016-04-01
An effective and simple analytical method using Fourier transform infrared (FTIR) spectroscopy to distinguish wild-grown high-quality Ganoderma lucidum (G. lucidum) from cultivated one is of essential importance for its quality assurance and medicinal value estimation. Commonly used chemical and analytical methods using full spectrum are not so effective for the detection and interpretation due to the complex system of the herbal medicine. In this study, two penalized discriminant analysis models, penalized linear discriminant analysis (PLDA) and elastic net (Elnet),using FTIR spectroscopy have been explored for the purpose of discrimination and interpretation. The classification performances of the two penalized models have been compared with two widely used multivariate methods, principal component discriminant analysis (PCDA) and partial least squares discriminant analysis (PLSDA). The Elnet model involving a combination of L1 and L2 norm penalties enabled an automatic selection of a small number of informative spectral absorption bands and gave an excellent classification accuracy of 99% for discrimination between spectra of wild-grown and cultivated G. lucidum. Its classification performance was superior to that of the PLDA model in a pure L1 setting and outperformed the PCDA and PLSDA models using full wavelength. The well-performed selection of informative spectral features leads to substantial reduction in model complexity and improvement of classification accuracy, and it is particularly helpful for the quantitative interpretations of the major chemical constituents of G. lucidum regarding its anti-cancer effects.
Zhu, Ying; Tan, Tuck Lee
2016-04-15
An effective and simple analytical method using Fourier transform infrared (FTIR) spectroscopy to distinguish wild-grown high-quality Ganoderma lucidum (G. lucidum) from cultivated one is of essential importance for its quality assurance and medicinal value estimation. Commonly used chemical and analytical methods using full spectrum are not so effective for the detection and interpretation due to the complex system of the herbal medicine. In this study, two penalized discriminant analysis models, penalized linear discriminant analysis (PLDA) and elastic net (Elnet),using FTIR spectroscopy have been explored for the purpose of discrimination and interpretation. The classification performances of the two penalized models have been compared with two widely used multivariate methods, principal component discriminant analysis (PCDA) and partial least squares discriminant analysis (PLSDA). The Elnet model involving a combination of L1 and L2 norm penalties enabled an automatic selection of a small number of informative spectral absorption bands and gave an excellent classification accuracy of 99% for discrimination between spectra of wild-grown and cultivated G. lucidum. Its classification performance was superior to that of the PLDA model in a pure L1 setting and outperformed the PCDA and PLSDA models using full wavelength. The well-performed selection of informative spectral features leads to substantial reduction in model complexity and improvement of classification accuracy, and it is particularly helpful for the quantitative interpretations of the major chemical constituents of G. lucidum regarding its anti-cancer effects.
Graichen, Uwe; Eichardt, Roland; Fiedler, Patrique; Strohmeier, Daniel; Zanow, Frank; Haueisen, Jens
2015-01-01
Important requirements for the analysis of multichannel EEG data are efficient techniques for signal enhancement, signal decomposition, feature extraction, and dimensionality reduction. We propose a new approach for spatial harmonic analysis (SPHARA) that extends the classical spatial Fourier analysis to EEG sensors positioned non-uniformly on the surface of the head. The proposed method is based on the eigenanalysis of the discrete Laplace-Beltrami operator defined on a triangular mesh. We present several ways to discretize the continuous Laplace-Beltrami operator and compare the properties of the resulting basis functions computed using these discretization methods. We apply SPHARA to somatosensory evoked potential data from eleven volunteers and demonstrate the ability of the method for spatial data decomposition, dimensionality reduction and noise suppression. When employing SPHARA for dimensionality reduction, a significantly more compact representation can be achieved using the FEM approach, compared to the other discretization methods. Using FEM, to recover 95% and 99% of the total energy of the EEG data, on average only 35% and 58% of the coefficients are necessary. The capability of SPHARA for noise suppression is shown using artificial data. We conclude that SPHARA can be used for spatial harmonic analysis of multi-sensor data at arbitrary positions and can be utilized in a variety of other applications. PMID:25885290
NASA Astrophysics Data System (ADS)
Shen, Wei; Li, Dongsheng; Zhang, Shuaifang; Ou, Jinping
2017-07-01
This paper presents a hybrid method that combines the B-spline wavelet on the interval (BSWI) finite element method and spectral analysis based on fast Fourier transform (FFT) to study wave propagation in One-Dimensional (1D) structures. BSWI scaling functions are utilized to approximate the theoretical wave solution in the spatial domain and construct a high-accuracy dynamic stiffness matrix. Dynamic reduction on element level is applied to eliminate the interior degrees of freedom of BSWI elements and substantially reduce the size of the system matrix. The dynamic equations of the system are then transformed and solved in the frequency domain through FFT-based spectral analysis which is especially suitable for parallel computation. A comparative analysis of four different finite element methods is conducted to demonstrate the validity and efficiency of the proposed method when utilized in high-frequency wave problems. Other numerical examples are utilized to simulate the influence of crack and delamination on wave propagation in 1D rods and beams. Finally, the errors caused by FFT and their corresponding solutions are presented.
Huang, An-min; Wang, Ge; Zhou, Qun; Liu, Jun-liang; Sun, Su-qin
2008-06-01
The Fourier transform infrared spectroscopy (FTIR) combined with generalized two-dimensional correlation analysis was applied to study the mini-heating process of natural bamboo fiber. The absorption peaks of natural bamboo fiber and bamboo in the FTIR spectra were different, which showed the contents of lignin and hemicelluloses of natural bamboo fiber was lower than those of bamboo. The changes in absorption peaks of natural bamboo fiber in the FTIR spectra at different temperatures were inconspicuous during heating up from 50 to 120 degrees C, which showed that there was not oxidation reaction in natural bamboo fiber during the process. With the help of 2D correlation analysis, the changes of different groups of natural bamboo fiber and bamboo during heating process were reflected. The strongest autopeak of them was all aroused at 1 665 cm1 in synchronous spectrum. The difference was that there were several weak auto-peaks and cross peaks in the natural bamboo fiber, but in the bamboo, one stronger 5 x 5 group was aroused in the 833-1230 cm(-1). Region the reason was the difference in chemistry composition and the change degree during heating process. In conclusion, the 2D correlation analysis of FTIR can be a new method to analyze the microcosmic dynamic change in the structure of natural bamboo fiber and bamboo during the mini-heating process and also offers an important theory gist for the study of oxidation mechanism of them.
NASA Astrophysics Data System (ADS)
Afanasyeva, Natalia I.; Welser, Leslie; Bruch, Reinhard F.; Kano, Angelique; Makhine, Volodymyr
1999-10-01
A new infrared (IR) interferometric method has been developed in conjunction with low-loss, flexible optical fibers, sensors, and probes. This combination of fiber optical sensors and Fourier Transform (FT) spectrometers can be applied to many fields, including (1) noninvasive medical diagnostics of cancer and other different diseases in vivo, (2) minimally invasive bulk diagnostics of tissue, (3) remote monitoring of tissue, chemical processes, and environment, (4) surface analysis of polymers and other materials, (5) characterization of the quality of food, pharmacological products, cosmetics, paper, and other wood-related products, as well as (6) agricultural, forensic, geological, mining, and archeological field measurements. In particular, our nondestructive, fast, compact, portable, remote and highly sensitive diagnostics tools are very promising for subsurface analysis at the molecular level without sample preparation. For example, this technique is ideal for different types of soft porous foams, rough polymers, and rock surfaces. Such surfaces, as well as living tissue, are very difficult to investigate by traditional FTIR methods. We present here FEW-FTIR spectra of polymers, banana and grapefruit peels, and living tissues detected directly at surfaces. In addition, results on the vibrational spectral analysis of normal and pathological skin tissue in the region of 850 - 4000 cm-1 are discussed.
Faires, L.M.; Palmer, B.A.; Brault, J.W.
1984-01-01
High resolution Fourier transform spectrometry has been used to perform line width and line shape analysis of eighty-one iron I emision lines in the spectral range 290 to 390nm originating in the normal analytical zone of an inductively coupled plasma. Computer programs using non-linear least squares fitting techniques for line shape analysis were applied to the fully resolved spectra to determine Gaussian and Lorentzian components of the total observed line width. The effect of noise in the spectrum on the precision of the line fitting technique was assessed, and the importance of signal to noise ratio for line shape analysis is discussed. Translational (Doppler) temperatures were calculated from the Gaussian components of the line width and were found to be on the order of 6300/sup 0/K. The excitation temperature of iron I was also determined from the same spectral data by the spectroscopic slope method based on the Einstein-Boltzmann expression for spectral intensity and was found to be on the order of 4700/sup 0/K. 31 references.
Marcos-Garcés, V; Harvat, M; Molina Aguilar, P; Ferrández Izquierdo, A; Ruiz-Saurí, A
2017-08-01
Measurement of collagen bundle orientation in histopathological samples is a widely used and useful technique in many research and clinical scenarios. Fourier analysis is the preferred method for performing this measurement, but the most appropriate staining and microscopy technique remains unclear. Some authors advocate the use of Haematoxylin-Eosin (H&E) and confocal microscopy, but there are no studies comparing this technique with other classical collagen stainings. In our study, 46 human skin samples were collected, processed for histological analysis and stained with Masson's trichrome, Picrosirius red and H&E. Five microphotographs of the reticular dermis were taken with a 200× magnification with light microscopy, polarized microscopy and confocal microscopy, respectively. Two independent observers measured collagen bundle orientation with semiautomated Fourier analysis with the Image-Pro Plus 7.0 software and three independent observers performed a semiquantitative evaluation of the same parameter. The average orientation for each case was calculated with the values of the five pictures. We analyzed the interrater reliability, the consistency between Fourier analysis and average semiquantitative evaluation and the consistency between measurements in Masson's trichrome, Picrosirius red and H&E-confocal. Statistical analysis for reliability and agreement was performed with the SPSS 22.0 software and consisted of intraclass correlation coefficient (ICC), Bland-Altman plots and limits of agreement and coefficient of variation. Interrater reliability was almost perfect (ICC > 0.8) with all three histological and microscopy techniques and always superior in Fourier analysis than in average semiquantitative evaluation. Measurements were consistent between Fourier analysis by one observer and average semiquantitative evaluation by three observers, with an almost perfect agreement with Masson's trichrome and Picrosirius red techniques (ICC > 0.8) and a strong
Kolmogorov-Smirnov like test for time-frequency Fourier spectrogram analysis in LISA Pathfinder
NASA Astrophysics Data System (ADS)
Ferraioli, Luigi; Armano, Michele; Audley, Heather; Congedo, Giuseppe; Diepholz, Ingo; Gibert, Ferran; Hewitson, Martin; Hueller, Mauro; Karnesis, Nikolaos; Korsakova, Natalia; Nofrarias, Miquel; Plagnol, Eric; Vitale, Stefano
2015-03-01
A statistical procedure for the analysis of time-frequency noise maps is presented and applied to LISA Pathfinder mission synthetic data. The procedure is based on the Kolmogorov-Smirnov like test that is applied to the analysis of time-frequency noise maps produced with the spectrogram technique. The influence of the finite size windowing on the statistic of the test is calculated with a Monte Carlo simulation for 4 different windows type. Such calculation demonstrate that the test statistic is modified by the correlations introduced in the spectrum by the finite size of the window and by the correlations between different time bins originated by overlapping between windowed segments. The application of the test procedure to LISA Pathfinder data demonstrates the test capability of detecting non-stationary features in a noise time series that is simulating low frequency non-stationary noise in the system.
Mass Spectrometry and Fourier Transform Infrared Spectroscopy for Analysis of Biological Materials
Anderson, Timothy J.
2014-12-01
Time-of-flight mass spectrometry along with statistical analysis was utilized to study metabolic profiles among rats fed resistant starch (RS) diets. Fischer 344 rats were fed four starch diets consisting of 55% (w/w, dbs) starch. A control starch diet consisting of corn starch was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. A subgroup received antibiotic treatment to determine if perturbations in the gut microbiome were long lasting. A second subgroup was treated with azoxymethane (AOM), a carcinogen. At the end of the eight week study, cecal and distal-colon contents samples were collected from the sacrificed rats. Metabolites were extracted from cecal and distal colon samples into acetonitrile. The extracts were then analyzed on an accurate-mass time-of-flight mass spectrometer to obtain their metabolic profile. The data were analyzed using partial least-squares discriminant analysis (PLS-DA). The PLS-DA analysis utilized a training set and verification set to classify samples within diet and treatment groups. PLS-DA could reliably differentiate the diet treatments for both cecal and distal colon samples. The PLS-DA analyses of the antibiotic and no antibiotic treated subgroups were well classified for cecal samples and modestly separated for distal-colon samples. PLS-DA analysis had limited success separating distal colon samples for rats given AOM from those not treated; the cecal samples from AOM had very poor classification. Mass spectrometry profiling coupled with PLS-DA can readily classify metabolite differences among rats given RS diets.
Analysis of the nutritional status of algae by Fourier transform infrared chemical imaging
NASA Astrophysics Data System (ADS)
Hirschmugl, Carol J.; Bayarri, Zuheir-El; Bunta, Maria; Holt, Justin B.; Giordano, Mario
2006-09-01
A new non-destructive method to study the nutritional status of algal cells and their environments is demonstrated. This approach allows rapid examination of whole cells without any or little pre-treatment providing a large amount of information on the biochemical composition of cells and growth medium. The method is based on the analysis of a collection of infrared (IR) spectra for individual cells; each spectrum describes the biochemical composition of a portion of a cell; a complete set of spectra is used to reconstruct an image of the entire cell. To obtain spatially resolved information synchrotron radiation was used as a bright IR source. We tested this method on the green flagellate Euglena gracilis; a comparison was conducted between cells grown in nutrient replete conditions (Type 1) and on cells allowed to deplete their medium (Type 2). Complete sets of spectra for individual cells of both types were analyzed with agglomerative hierarchical clustering, leading to distinct clusters representative of the two types of cells. The average spectra for the clusters confirmed the similarities between the clusters and the types of cells. The clustering analysis, therefore, allows the distinction of cells of the same species, but with different nutritional histories. In order to facilitate the application of the method and reduce manipulation (washing), we analyzed the cells in the presence of residual medium. The results obtained showed that even with residual medium the outcome of the clustering analysis is reliable. Our results demonstrate the applicability FTIR microspectroscopy for ecological and ecophysiological studies.
Analysis of lard in meatball broth using Fourier transform infrared spectroscopy and chemometrics.
Kurniawati, Endah; Rohman, Abdul; Triyana, Kuwat
2014-01-01
Meatball is one of the favorite foods in Indonesia. For the economic reason (due to the price difference), the substitution of beef meat with pork can occur. In this study, FTIR spectroscopy in combination with chemometrics of partial least square (PLS) and principal component analysis (PCA) was used for analysis of pork fat (lard) in meatball broth. Lard in meatball broth was quantitatively determined at wavenumber region of 1018-1284 cm(-1). The coefficient of determination (R(2)) and root mean square error of calibration (RMSEC) values obtained were 0.9975 and 1.34% (v/v), respectively. Furthermore, the classification of lard and beef fat in meatball broth as well as in commercial samples was performed at wavenumber region of 1200-1000 cm(-1). The results showed that FTIR spectroscopy coupled with chemometrics can be used for quantitative analysis and classification of lard in meatball broth for Halal verification studies. The developed method is simple in operation, rapid and not involving extensive sample preparation.
Badhan, Ajay; Wang, Yuxi; McAllister, Tim A
2017-01-01
Fourier transformed mid-infrared spectroscopy (FTIR) is a powerful tool for compositional analysis of plant cell walls (Acebes et al., Front Plant Sci 5:303, 2014; Badhan et al., Biotechnol Biofuels 7:1-15, 2014; Badhan et al., BioMed Res Int 2015: 562952, 2015; Roach et al., Plant Physiol 156:1351-1363, 2011). The infrared spectrum generates a fingerprint of a sample with absorption peaks corresponding to the frequency of vibrations between the bonds of the atoms making up the material. Here, we describe a method focused on the use of FTIR in combination with principal component analysis (PCA) to characterize the composition of the plant cell wall. This method has been successfully used to study complex enzyme saccharification processes like rumen digestion to identify recalcitrant moieties in low-quality forage which resist rumen digestion (Badhan et al., BioMed Res Int 2015: 562952, 2015), as well as to characterize cell wall mutant lines or transgenic lines expressing exogenous hydrolases (Badhan et al., Biotechnol Biofuels 7:1-15, 2014; Roach et al., Plant Physiol 156:1351-1363, 2011). The FTIR method described here facilitates high-throughput identification of the major compositional differences across a large set of samples in a low cost and nondestructive manner.
NASA Astrophysics Data System (ADS)
Guerrero, Andres; Lerno, Larry; Barile, Daniela; Lebrilla, Carlito B.
2015-03-01
Bovine κ-caseinoglycomacropeptide (GMP) is a highly modified peptide from κ-casein produced during the cheese making process. The chemical nature of GMP makes analysis by traditional proteomic approaches difficult, as the peptide bears a strong net negative charge and a variety of post-translational modifications. In this work, we describe the use of electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) for the top-down analysis of GMP. The method allows the simultaneous detection of different GMP forms that result from the combination of amino acid genetic variations and post-translational modifications, specifically phosphorylation and O-glycosylation. The different GMP forms were identified by high resolution mass spectrometry in both negative and positive mode and confirmation was achieved by tandem MS. The results showed the predominance of two genetic variants of GMP that occur as either mono- or bi-phosphorylated species. Additionally, these four forms can be modified with up to two O-glycans generally sialylated. The results demonstrate the presence of glycosylated, bi-phosphorylated forms of GMP never described before.
Li, Guoyun; Steppich, Julia; Wang, Zhenyu; Sun, Yi; Xue, Changhu; Linhardt, Robert J; Li, Lingyun
2014-07-01
Low molecular weight heparins (LMWHs) are heterogeneous, polydisperse, and highly negatively charged mixtures of glycosaminoglycan chains prescribed as anticoagulants. The detailed characterization of LMWH is important for the drug quality assurance and for new drug research and development. In this study, online hydrophilic interaction chromatography (HILIC) Fourier transform mass spectrometry (FTMS) was applied to analyze the oligosaccharide fragments of LMWHs generated by heparin lyase II digestion. More than 40 oligosaccharide fragments of LMWH were quantified and used to compare LMWHs prepared by three different manufacturers. The quantified fragment structures included unsaturated disaccharides/oligosaccharides arising from the prominent repeating units of these LMWHs, 3-O-sulfo containing tetrasaccharides arising from their antithrombin III binding sites, 1,6-anhydro ring-containing oligosaccharides formed during their manufacture, saturated uronic acid oligosaccharides coming from some chain nonreducing ends, and oxidized linkage region oligosaccharides coming from some chain reducing ends. This bottom-up approach provides rich detailed structural analysis and quantitative information with high accuracy and reproducibility. When combined with the top-down approach, HILIC LC-FTMS based analysis should be suitable for the advanced quality control and quality assurance in LMWH production.
NASA Astrophysics Data System (ADS)
Kabardiadi, Alexander; Greiner, Andreas; Assmann, Heiko; Baselt, Tobias; Hartmann, Peter
2016-03-01
The measurement of a wavefront is a powerful tool for characterizing optical systems. The most commonly used wavefront measurement technique is the method of local-light aberrometry. The conventional version of this kind of measurement principle is the Hartmann-Shack wavefront sensor. This method returns the result of the matrix of spatially-resolved gradients of the wavefront. However, the last and crucial step of the wavefront analysis is the reconstruction of the wavefront from the measured data packets. The issues of the measurement preparation and design are interesting in the same volume. The work presented here describes the comparison between a Fourier-Iteration algorithm and the Zernike approximation method for the wavefront reconstruction in relation to the measurement design. In the context of this work, the term "design of the measurement" refers to the issue of the number and relative positions of the measurement points. In this work, the behavior of the wavefront reconstruction method using Monte-Carlo simulations was analyzed. The optimum point distribution was found and a validation parameter to describe the impact of measurement errors on the analysis results was determined. Based on this parameter, a Monte-Carlo based simulation to make the design of the experiment with the highest accuracy was realized. The technique of white noise injection was implemented in the reconstruction routine and the propagation of errors was analyzed. The presented comparison technique was applied to determine the optimum measurement positions over the beam's surface.
Mao, Zhi-Hua; Yin, Jian-Hua; Zhang, Xue-Xi; Wang, Xiao; Xia, Yang
2016-01-01
Fourier transform infrared spectroscopic imaging (FTIRI) technique can be used to obtain the quantitative information of content and spatial distribution of principal components in cartilage by combining with chemometrics methods. In this study, FTIRI combining with principal component analysis (PCA) and Fisher’s discriminant analysis (FDA) was applied to identify the healthy and osteoarthritic (OA) articular cartilage samples. Ten 10-μm thick sections of canine cartilages were imaged at 6.25μm/pixel in FTIRI. The infrared spectra extracted from the FTIR images were imported into SPSS software for PCA and FDA. Based on the PCA result of 2 principal components, the healthy and OA cartilage samples were effectively discriminated by the FDA with high accuracy of 94% for the initial samples (training set) and cross validation, as well as 86.67% for the prediction group. The study showed that cartilage degeneration became gradually weak with the increase of the depth. FTIRI combined with chemometrics may become an effective method for distinguishing healthy and OA cartilages in future. PMID:26977354
Foster, Nancy S.; Thompson, Sandra E.; Valentine, Nancy B.; Amonette, James E.; Johnson, Timothy J.
2004-02-01
A combined mid-infrared spectroscopic/statistical modeling approach for the discrimination and identification, at the strain level, of both sporulated and vegetative bacterial samples is presented. Transmission mode spectra of bacteria dried on ZnSe windows were collected using a Fourier-transform mid-infrared (FTIR) spectrometer. Five Bacillus bacterial strains (B. atrophaeus 49337, B. globigii, B. thuringiensis ssp. kurstaki, B. subtilis 49780, and B. subtilis 6051) were used to construct a reference spectral library and to parameterize a four-step statistical model for the systematic identification of bacteria. The statistical methods used included principal-component analysis (PCA), classification and regression trees (CART), and Mahalanobis-distance calculations. Internal cross-validation studies successfully classified 100% of the samples into their correct physiological state (sporulated or vegetative) and identified 67% of the samples correctly as to their bacterial strain. Analysis of thirteen blind samples, which included reference and other bacteria, nonbiological materials, and mixtures of both nonbiological and bacterial samples, yielded comparable accuracy. The chief advantage of this approach is the accurate identification of unknown bacteria, including spores, in a matter of minutes.
Gajjar, Ketan; Heppenstall, Lara D; Pang, Weiyi; Ashton, Katherine M; Trevisan, Júlio; Patel, Imran I; Llabjani, Valon; Stringfellow, Helen F; Martin-Hirsch, Pierre L; Dawson, Timothy; Martin, Francis L
2012-09-06
The most common initial treatment received by patients with a brain tumour is surgical removal of the growth. Precise histopathological diagnosis of brain tumours is to some extent subjective. Furthermore, currently available diagnostic imaging techniques to delineate the excision border during cytoreductive surgery lack the required spatial precision to aid surgeons. We set out to determine whether infrared (IR) and/or Raman spectroscopy combined with multivariate analysis could be applied to discriminate between normal brain tissue and different tumour types (meningioma, glioma and brain metastasis) based on the unique spectral "fingerprints" of their biochemical composition. Formalin-fixed paraffin-embedded tissue blocks of normal brain and different brain tumours were de-waxed, mounted on low-E slides and desiccated before being analyzed using attenuated total reflection Fourier-transform IR (ATR-FTIR) and Raman spectroscopy. ATR-FTIR spectroscopy showed a clear segregation between normal and different tumour subtypes. Discrimination of tumour classes was also apparent with Raman spectroscopy. Further analysis of spectral data revealed changes in brain biochemical structure associated with different tumours. Decreased tentatively-assigned lipid-to-protein ratio was associated with increased tumour progression. Alteration in cholesterol esters-to-phenylalanine ratio was evident in grade IV glioma and metastatic tumours. The current study indicates that IR and/or Raman spectroscopy have the potential to provide a novel diagnostic approach in the accurate diagnosis of brain tumours and have potential for application in intra-operative diagnosis.
Deflandre, A; Williams, R J; Elorza, F J; Mira, J; Boorman, D B
2006-05-01
This paper presents the sensitivity analysis of a well-known in-stream water quality model, QUESTOR (QUality Evaluation and Simulation TOol for River systems) as applied to two rivers of contrasting land-use in the northeast of England: the 'rural' Ouse and the 'urban' Aire. The analysis employed a version of the Fourier Amplitude Sensitivity Test (FAST) that quantifies the contribution of changes in individual parameters and combination of parameters to the variance of the model output (here the Nash-Sutcliffe) in an efficient way. The quantification of the sensitivity of the model output to the parameters led to the identification of the most influential parameters. Differences between the Aire and the Ouse were found, reflecting their different water quality regime. Results highlighted the importance of interactions between two, or more, parameters on the model output. It led to question the one-at-a-time calibration method currently applied with QUESTOR and underlined the importance of including interactions between parameters in sensitivity analyses. Comparison of the relative influence of parameters versus input data showed contrasting results. In the urban system, the inputs from discharges (sewage treatment works and industrial effluents) were highly influential on model outputs and generally more important than the model parameters. For the rural river, the tributary discharges were most influential, but only at a similar or a lower level than the model parameters.
ERIC Educational Resources Information Center
Pezzolo, Alessandra De Lorenzi
2011-01-01
The diffuse reflectance infrared Fourier transform (DRIFT) spectra of sand samples exhibit features reflecting their composition. Basic multivariate analysis (MVA) can be used to effectively sort subsets of homogeneous specimens collected from nearby locations, as well as pointing out similarities in composition among sands of different origins.…
Xiao, H.K.; Levine, S.P.; Kinnes, G.; Almaguer, D. )
1990-07-01
Results obtained using Fourier transform infrared spectrophotometry (FTIR) for the analysis of samples of carbon disulfide (CS2) eluates containing trichloroethylene (TCE) and freon from charcoal air sampling tubes were evaluated by comparison with results obtained when using gas chromatography (GC). The FTIR yielded accurate results without regard to the presence of freon.
Xiao, H K; Levine, S P; Kinnes, G; Almaguer, D
1990-07-01
Results obtained using Fourier transform infrared spectrophotometry (FTIR) for the analysis of samples of carbon disulfide (CS2) eluates containing trichloroethylene (TCE) and Freon from charcoal air sampling tubes were evaluated by comparison with results obtained when using gas chromatography (GC). The FTIR yielded accurate results without regard to the presence of Freon.
ERIC Educational Resources Information Center
Pezzolo, Alessandra De Lorenzi
2011-01-01
The diffuse reflectance infrared Fourier transform (DRIFT) spectra of sand samples exhibit features reflecting their composition. Basic multivariate analysis (MVA) can be used to effectively sort subsets of homogeneous specimens collected from nearby locations, as well as pointing out similarities in composition among sands of different origins.…
Komorowski, Dariusz; Pietraszek, Stanislaw
2016-01-01
This paper presents the analysis of multi-channel electrogastrographic (EGG) signals using the continuous wavelet transform based on the fast Fourier transform (CWTFT). The EGG analysis was based on the determination of the several signal parameters such as dominant frequency (DF), dominant power (DP) and index of normogastria (NI). The use of continuous wavelet transform (CWT) allows for better visible localization of the frequency components in the analyzed signals, than commonly used short-time Fourier transform (STFT). Such an analysis is possible by means of a variable width window, which corresponds to the scale time of observation (analysis). Wavelet analysis allows using long time windows when we need more precise low-frequency information, and shorter when we need high frequency information. Since the classic CWT transform requires considerable computing power and time, especially while applying it to the analysis of long signals, the authors used the CWT analysis based on the fast Fourier transform (FFT). The CWT was obtained using properties of the circular convolution to improve the speed of calculation. This method allows to obtain results for relatively long records of EGG in a fairly short time, much faster than using the classical methods based on running spectrum analysis (RSA). In this study authors indicate the possibility of a parametric analysis of EGG signals using continuous wavelet transform which is the completely new solution. The results obtained with the described method are shown in the example of an analysis of four-channel EGG recordings, performed for a non-caloric meal.
Polyimide analysis using diffuse reflectance-FTIR. [Fourier Transform IR Spectroscopy
NASA Technical Reports Server (NTRS)
Young, P. R.; Chang, A. C.
1985-01-01
The thermal imidization of a number of polyimide precursors in the form of powders, films, and prepregs was examined by an in situ diffuse reflectance-FTIR technique where infrared spectra were determined while the material was being heated. An analysis of these spectra revealed that, with the exception of one water soluble adhesive, each precursor developed an anhydride band around 1850 cm/cu during imidization. This band diminished in intensity during final stages of cure. Efforts were made to quantify the amount of anhydride in several samples. Evidence obtained could be interpreted to mean that poly(amic acid) resins undergo an initial reduction in molecular weight during imidization before recombining to achieve their ultimate molecular weights as polyimides. Several reports in the literature are cited to support this interpretation. This report serves both to document anhydride formation during imidization and to increase our fundamental understanding of how polyimides cure.
NASA Astrophysics Data System (ADS)
Benetti, Carolina; Kazarain, Sergei G.; Alves, Marco A. V.; Blay, Alberto; Correa, Luciana; Zezell, Denise M.
2014-03-01
The cutting of bone is routinely required in medical procedures, especially in dental applications. In such cases, bone regeneration and new bone quality can determine the success of the treatment. This study investigated the main spectral differences of undamaged and healed bone using the ATR-FTIR spectroscopy technique. Three rabbits were submitted to a surgical procedure; a small piece of bone (3x3 mm2) was removed from both sides of their jaws using a high speed drill. After 15 days, the rabbits were euthanized and the jaws were removed. A bone slice was cut from each side of the jaw containing regions of undamaged and newly formed bone, resulting in six samples which were polished for spectroscopic comparison. The samples were analyzed by FTIR spectroscopy using a diamond ATR accessory. Spectral characteristics were compared and particular attention was paid to the proportion of phosphate to amide I bands and the width of the phosphate band. The results show that the ratio of phosphate to amide I is smaller in new bone tissue than in the undamaged bone, indicating a higher organic content in the newly formed bone. The analysis of the width of the phosphate band suggests a crystallinity difference between both tissues, since the width was higher in the new bone than in the natural bone. These results suggest that the differences observed in bone aging processes by FTIR spectroscopic can be applied to the study of healing processes.
Zhao, An-Xin; Tang, Xiao-Jun; Zhang, Zhong-Hua; Liu, Jun-Hua
2014-10-01
The generalized two-dimensional correlation spectroscopy and Fourier transform infrared were used to identify hydrocarbon isomers in the mixed gases for absorption spectra resolution enhancement. The Fourier transform infrared spectrum of n-butane and iso-butane and the two-dimensional correlation infrared spectrum of concentration perturbation were used for analysis as an example. The all band and the main absorption peak wavelengths of Fourier transform infrared spectrum for single component gas showed that the spectra are similar, and if they were mixed together, absorption peaks overlap and peak is difficult to identify. The synchronous and asynchronous spectrum of two-dimensional correlation spectrum can clearly identify the iso-butane and normal butane and their respective characteristic absorption peak intensity. Iso-butane has strong absorption characteristics spectrum lines at 2,893, 2,954 and 2,893 cm(-1), and n-butane at 2,895 and 2,965 cm(-1). The analysis result in this paper preliminary verified that the two-dimensional infrared correlation spectroscopy can be used for resolution enhancement in Fourier transform infrared spectrum quantitative analysis.
NASA Astrophysics Data System (ADS)
Donchenko, Sergey S.; Odinokov, Sergey B.; Verenikina, Nina M.; Betin, Alexandr U.; Hanevich, Pavel; Zlokazov, Evgenii Y.
2017-05-01
Holographic memory systems provide such advantages as long data storage term, high data density and do not need a power supply. Instead of recording interference pattern, it is proposed to record computer generated 1D Fourier holograms (CGFH). High information density is reached by multiplexing 1D Fourier Holograms. In this work factors, which impact the quality of recorded CGFH are analyzed in mathematical modelling and experimental researches.
Mohanan, Sharika; Srivastava, Atul
2014-04-10
The present work is concerned with the development and application of a novel fringe analysis technique based on the principles of the windowed-Fourier-transform (WFT) for the determination of temperature and concentration fields from interferometric images for a range of heat and mass transfer applications. Based on the extent of the noise level associated with the experimental data, the technique has been coupled with two different phase unwrapping methods: the Itoh algorithm and the quality guided phase unwrapping technique for phase extraction. In order to generate the experimental data, a range of experiments have been carried out which include cooling of a vertical flat plate in free convection conditions, combustion of mono-propellant flames, and growth of organic as well as inorganic crystals from their aqueous solutions. The flat plate and combustion experiments are modeled as heat transfer applications wherein the interest is to determine the whole-field temperature distribution. Aqueous-solution-based crystal growth experiments are performed to simulate the mass transfer phenomena and the interest is to determine the two-dimensional solute concentration field around the growing crystal. A Mach-Zehnder interferometer has been employed to record the path-integrated quantity of interest (temperature and/or concentration) in the form of interferometric images in the experiments. The potential of the WFT method has also been demonstrated on numerically simulated phase data for varying noise levels, and the accuracy in phase extraction have been quantified in terms of the root mean square errors. Three levels of noise, i.e., 0%, 10%, and 20% have been considered. Results of the present study show that the WFT technique allows an accurate extraction of phase values that can subsequently be converted into two-dimensional temperature and/or concentration distribution fields. Moreover, since WFT is a local processing technique, speckle patterns and the inherent
Pounder, F Nell; Reddy, Rohith K; Bhargava, Rohit
2016-06-23
Breast cancer screening provides sensitive tumor identification, but low specificity implies that a vast majority of biopsies are not ultimately diagnosed as cancer. Automated techniques to evaluate biopsies can prevent errors, reduce pathologist workload and provide objective analysis. Fourier transform infrared (FT-IR) spectroscopic imaging provides both molecular signatures and spatial information that may be applicable for pathology. Here, we utilize both the spectral and spatial information to develop a combined classifier that provides rapid tissue assessment. First, we evaluated the potential of IR imaging to provide a diagnosis using spectral data alone. While highly accurate histologic [epithelium, stroma] recognition could be achieved, the same was not possible for disease [cancer, no-cancer] due to the diversity of spectral signals. Hence, we employed spatial data, developing and evaluating increasingly complex models, to detect cancers. Sub-mm tumors could be very confidently predicted as indicated by the quantitative measurement of accuracy via receiver operating characteristic (ROC) curve analyses. The developed protocol was validated with a small set and statistical performance used to develop a model that predicts study design for a large scale, definitive validation. The results of evaluation on different instruments, at higher noise levels, under a coarser spectral resolution and two sampling modes [transmission and transflection], indicate that the protocol is highly accurate under a variety of conditions. The study paves the way to validating IR imaging for rapid breast tumor detection, its statistical validation and potential directions for optimization of the speed and sampling for clinical deployment.
Ruíz, A; Ayora Cañada, M J; Lendl, B
2001-02-01
The development of an automated, rapid and highly precise method for determination of the peroxide value in edible oils based on a continuous flow system and Fourier transform infrared (FTIR) spectroscopic detection is described. The sample stream was mixed with a solvent mixture consisting of 25% (v/v) toluene in hexanol which contained triphenylphosphine (TPP). The hydroperoxides present in the sample reacted stoichiometrically with TPP to give triphenylphosphine oxide (TPPO) which has a characteristic and intense absorption band at 542 cm-1. A 10% (m/v) TPP solution in the solvent mixture and a 100 cm reaction coil were necessary for complete reaction. FTIR transmission spectra were recorded using a flow cell equipped with CsI windows having an optical pathlength of 100 microns. By using tert-butyl hydroperoxide spiked oil standards and evaluation of the band formed at 542 cm-1 a linear calibration graph covering the range 1-100 PV (peroxide value; mequiv O2 kg-1 oil) was obtained. The relative standard deviation was 0.23% (n = 11) and the throughput 24 samples h-1. The developed system was also applied to the determination of PV in olive, sunflower and corn oils, showing good agreement with the official reference method of the European Community which is based on titration using organic solvents. The results obtained clearly show that the developed method is superior to the standard wet chemical method, hence suggesting its application in routine analysis and quality control.
Meier, D C; Benkstein, K D; Hurst, W S; Chu, P M
2017-05-01
Performance standard specifications for point chemical vapor detectors are established in ASTM E 2885-13 and ASTM E 2933-13. The performance evaluation of the detectors requires the accurate delivery of known concentrations of the chemical target to the system under test. Referee methods enable the analyte test concentration and associated uncertainties in the analyte test concentration to be validated by independent analysis, which is especially important for reactive analytes. This work extends the capability of a previously demonstrated method for using Fourier transform infrared (FT-IR) absorption spectroscopy for quantitatively evaluating the composition of vapor streams containing hazardous materials at Acute Exposure Guideline Levels (AEGL) to include test conditions colder than laboratory ambient temperatures. The described method covers the use of primary reference spectra to establish analyte concentrations, the generation of secondary reference spectra suitable for measuring analyte concentrations under specified testing environments, and the use of additional reference spectra and spectral profile strategies to mitigate the uncertainties due to impurities and water condensation within the low-temperature (7 °C, -5 °C) test cell. Important benefits of this approach include verification of the test analyte concentration with characterized uncertainties by in situ measurements co-located with the detector under test, near-real-time feedback, and broad applicability to toxic industrial chemicals.
NASA Astrophysics Data System (ADS)
Mingwei, Zhang; Qingbo, Zhou; Zhongxin, Chen; Jia, Liu; Yong, Zhou; Chongfa, Cai
2008-12-01
Crop identification is the basis of crop monitoring using remote sensing. Remote sensing the extent and distribution of individual crop types has proven useful to a wide range of users, including policy-makers, farmers, and scientists. Northern China is not merely the political, economic, and cultural centre of China, but also an important base for grain production. Its main grains are wheat, maize, and cotton. By employing the Fourier analysis method, we studied crop planting patterns in the Northern China plain. Then, using time-series EOS-MODIS NDVI data, we extracted the key parameters to discriminate crop types. The results showed that the estimated area and the statistics were correlated well at the county-level. Furthermore, there was little difference between the crop area estimated by the MODIS data and the statistics at province-level. Our study shows that the method we designed is promising for use in regional spatial scale crop mapping in Northern China using the MODIS NDVI time-series.
Ross, Charles W.; Simonsick, William J.; Bogusky, Michael J.; Celikay, Recep W.; Guare, James P.; Newton, Randall C.
2016-01-01
Ceramides are a central unit of all sphingolipids which have been identified as sites of biological recognition on cellular membranes mediating cell growth and differentiation. Several glycosphingolipids have been isolated, displaying immunomodulatory and anti-tumor activities. These molecules have generated considerable interest as potential vaccine adjuvants in humans. Accurate analyses of these and related sphingosine analogues are important for the characterization of structure, biological function, and metabolism. We report the complementary use of direct laser desorption ionization (DLDI), sheath flow electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and high-field nuclear magnetic resonance (NMR) analysis for the rapid, accurate identification of hexacosanoylceramide and starting materials. DLDI does not require stringent sample preparation and yields representative ions. Sheath-flow ESI yields ions of the product and byproducts and was significantly better than monospray ESI due to improved compound solubility. Negative ion sheath flow ESI provided data of starting materials and products all in one acquisition as hexacosanoic acid does not ionize efficiently when ceramides are present. NMR provided characterization of these lipid molecules complementing the results obtained from MS analyses. NMR data was able to differentiate straight chain versus branched chain alkyl groups not easily obtained from mass spectrometry. PMID:27367671
Ross, Charles W; Simonsick, William J; Bogusky, Michael J; Celikay, Recep W; Guare, James P; Newton, Randall C
2016-06-28
Ceramides are a central unit of all sphingolipids which have been identified as sites of biological recognition on cellular membranes mediating cell growth and differentiation. Several glycosphingolipids have been isolated, displaying immunomodulatory and anti-tumor activities. These molecules have generated considerable interest as potential vaccine adjuvants in humans. Accurate analyses of these and related sphingosine analogues are important for the characterization of structure, biological function, and metabolism. We report the complementary use of direct laser desorption ionization (DLDI), sheath flow electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and high-field nuclear magnetic resonance (NMR) analysis for the rapid, accurate identification of hexacosanoylceramide and starting materials. DLDI does not require stringent sample preparation and yields representative ions. Sheath-flow ESI yields ions of the product and byproducts and was significantly better than monospray ESI due to improved compound solubility. Negative ion sheath flow ESI provided data of starting materials and products all in one acquisition as hexacosanoic acid does not ionize efficiently when ceramides are present. NMR provided characterization of these lipid molecules complementing the results obtained from MS analyses. NMR data was able to differentiate straight chain versus branched chain alkyl groups not easily obtained from mass spectrometry.
Oinas, J; Rieppo, L; Finnilä, M A J; Valkealahti, M; Lehenkari, P; Saarakkala, S
2016-07-21
The changes in chemical composition of human articular cartilage (AC) caused by osteoarthritis (OA) were investigated using Fourier transform infrared microspectroscopy (FTIR-MS). We demonstrate the sensitivity of FTIR-MS for monitoring compositional changes that occur with OA progression. Twenty-eight AC samples from tibial plateaus were imaged with FTIR-MS. Hyperspectral images of all samples were combined for K-means clustering. Partial least squares regression (PLSR) analysis was used to compare the spectra with the OARSI grade (histopathological grading of OA). Furthermore, the amide I and the carbohydrate regions were used to estimate collagen and proteoglycan contents, respectively. Spectral peak at 1338 cm(-1) was used to estimate the integrity of the collagen network. The layered structure of AC was revealed using the carbohydrate region for clustering. Statistically significant correlation was observed between the OARSI grade and the collagen integrity in the superficial (r = -0.55) and the deep (r = -0.41) zones. Furthermore, PLSR models predicted the OARSI grade from the superficial (r = 0.94) and the deep (r = 0.77) regions of the AC with high accuracy. Obtained results suggest that quantitative and qualitative changes occur in the AC composition during OA progression, and these can be monitored by the use of FTIR-MS.
Hu, Jun; Xiao, Rui; Shen, Dekui; Zhang, Huiyan
2013-01-01
Structural characteristics of benzene-ethanol-extracted lignin (BEL) and acetone-extracted lignin (AL) precipitated from black liquor were identified by elemental analysis, FTIR, (13)C NMR, and (1)H NMR, while the thermal behaviors were examined with thermogravimetric-Fourier transform infrared spectroscopy (TG-FTIR). The frequency of β-O-4 bonds per 100 C9 monomeric units was 28 and 17 for BEL and AL. Two-stage pyrolysis processes were observed for the two lignins. The mass loss rate of the initial solvent evolution stage (110-180 °C) of BEL was greater than that of AL. The two lignins presented slightly different mass loss curves and evolution profiles of gases in the main pyrolysis stage (280-500 °C). A global kinetic model was proposed for lignin pyrolysis and activation energies of 39.5 and 38.8 kJ/mol was obtained for BEL and AL. The results enhance understanding of lignin pyrolysis and facilitate commercial utilization of black-liquor lignin.
NASA Astrophysics Data System (ADS)
Tan, T. L.; Gabona, M. G.; Godfrey, Peter D.; McNaughton, Don
2015-01-01
The Fourier transform infrared (FTIR) spectrum of the unperturbed a-type ν12 band of 13C2D4 was recorded at an unapodized resolution of 0.0063 cm-1 between 1000 and 1140 cm-1 for a rovibrational analysis. By assigning and fitting a total of 2068 infrared transitions using a Watson's A-reduced and S-reduced Hamiltonians in the Ir representation, rovibrational constants for the upper state (ν12 = 1) up to five quartic centrifugal distortion terms were derived for the first time. The root-mean-square (rms) deviation of the fits was 0.00034 cm-1 both in the A-reduction and S-reduction Hamiltonian. The ground state rovibrational constants of 13C2D4 in the A-reduced and S-reduced Hamiltonians were also determined for the first time by a fit of 985 combination-differences from the present infrared measurements, with rms deviation of 0.00036 cm-1. The ν12 band centre of 13C2D4 was at 1069.970824(17) cm-1 and at 1069.970799(17) cm-1 for the A-reduced and S-reduced Hamiltonians respectively. The ground state constants of 13C2D4 from this experimental work are in close agreement to those derived from theoretical calculations using the B3LYP/cc-pVTZ, MP2/cc-pVTZ, and CSSD(T)/cc-pVTZ levels of theory.
Toja, Francesca; Nevin, Austin; Comelli, Daniela; Levi, Marinella; Cubeddu, Rinaldo; Toniolo, Lucia
2011-03-01
The preservation of design object collections requires an understanding of their constituent materials which are often polymeric blends. Challenges associated with aging of complex polymers from objects with an unknown physical history may compromise the interpretation of data from analytical techniques, and therefore complicate the assessment of the condition of polymers in indoor museum environments. This study focuses on the analysis of polymeric materials from three well-known Italian design lamps from the 1960s. To assess the degree of chemical modifications in the polymers, non-destructive molecular spectroscopic techniques, Fourier-transform infrared (FTIR) and fluorescence spectroscopy, have been applied directly on the object surfaces using an optical fiber probe and through examination of micro samples. FTIR spectra of the different polymers, polyvinylacetate (PVAc) for the lamps Taraxacum and Fantasma, and both acrylonitrile-butadiene-styrene polymer (ABS) and cellulose acetate (CA) for the lamp Nesso, allowed the detection of ongoing deterioration processes. Fluorescence spectroscopy proved particularly sensitive for the detection of molecular changes in the polymeric objects, as the spectra obtained from the examined lamps differ significantly from those of the unaged reference materials. Differences in fluorescence spectra are also detected between different points on the same object further indicating the presence of different chemical species on the surfaces. With the aid of complementary data from FTIR spectroscopy, an interpretation of the emission spectra of the studied polymeric objects is here proposed, further suggesting that fluorescence spectroscopy may be useful for following the degradation of historical polymeric objects.
Meier, D.C.; Benkstein, K.D.; Hurst, W.S.; Chu, P.M.
2016-01-01
Performance standard specifications for point chemical vapor detectors are established in ASTM E 2885-13 and ASTM E 2933-13. The performance evaluation of the detectors requires the accurate delivery of known concentrations of the chemical target to the system under test. Referee methods enable the analyte test concentration and associated uncertainties in the analyte test concentration to be validated by independent analysis, which is especially important for reactive analytes. This work extends the capability of a previously demonstrated method for using Fourier transform infrared (FT-IR) absorption spectroscopy for quantitatively evaluating the composition of vapor streams containing hazardous materials at Acute Exposure Guideline Levels (AEGL) to include test conditions colder than laboratory ambient temperatures. The described method covers the use of primary reference spectra to establish analyte concentrations, the generation of secondary reference spectra suitable for measuring analyte concentrations under specified testing environments, and the use of additional reference spectra and spectral profile strategies to mitigate the uncertainties due to impurities and water condensation within the low-temperature (7 °C, −5 °C) test cell. Important benefits of this approach include verification of the test analyte concentration with characterized uncertainties by in situ measurements co-located with the detector under test, near-real-time feedback, and broad applicability to toxic industrial chemicals. PMID:28090126
Corilo, Yuri E; Podgorski, David C; McKenna, Amy M; Lemkau, Karin L; Reddy, Christopher M; Marshall, Alan G; Rodgers, Ryan P
2013-10-01
One fundamental challenge with either acute or chronic oil spills is to identify the source, especially in highly polluted areas, near natural oil seeps, when the source contains more than one petroleum product or when extensive weathering has occurred. Here we focus on heavy fuel oil that spilled (~200,000 L) from two suspected fuel tanks that were ruptured on the motor vessel (M/V) Cosco Busan when it struck the San Francisco-Oakland Bay Bridge in November 2007. We highlight the utility of principal component analysis (PCA) of elemental composition data obtained by high resolution FT-ICR mass spectrometry to correctly identify the source of environmental contamination caused by the unintended release of heavy fuel oil (HFO). Using ultrahigh resolution electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry, we uniquely assigned thousands of elemental compositions of heteroatom-containing species in neat samples from both tanks and then applied principal component analysis. The components were based on double bond equivalents for constituents of elemental composition, CcHhN1S1. To determine if the fidelity of our source identification was affected by weathering, field samples were collected at various intervals up to two years after the spill. We are able to identify a suite of polar petroleum markers that are environmentally persistent, enabling us to confidently identify that only one tank was the source of the spilled oil: in fact, a single principal component could account for 98% of the variance. Although identification is unaffected by the presence of higher polarity, petrogenic oxidation (weathering) products, future studies may require removal of such species by anion exchange chromatography prior to mass spectral analysis due to their preferential ionization by ESI.
Yang Yong; Disselkamp, R. S.; Szanyi, J.; Peden, C. H. F.; Campbell, C. T.; Goodwin, J. G. Jr.
2006-09-15
A novel apparatus for gas phase heterogeneous catalysis kinetics is described. The apparatus enables fast isotopic transient kinetic analysis (ITKA) to be performed in which both the gaseous and adsorbed species inside the catalytic reactor are monitored simultaneously with rapid-scan transmission Fourier transform infrared (FTIR), and its gaseous effluent can be monitored by mass spectroscopy during rapid switching of reagent gas streams. This enables a more powerful version of the well-known steady-state isotopic transient kinetic analysis (SSITKA) technique in which the vibrational spectra of the gas phase and adsorbed species are also probed: FTIR-SSITKA. Unique reactor characteristics include tungsten construction, liquid nitrogen cooling or heating ({approx}200-770 K), pressures of 1.0-2.5 atm, fast reactor disassembly and reassembly, and catalyst loading in a common volume. The FTIR data acquisition rate of this apparatus (3 Hz) is tenfold faster than previously reported instruments. A 95% signal decay time of {approx}3 s for gas switching was measured. Very good temperature reproducibility and uniformity (<{+-}3 K) were observed by in situ rotational temperature analysis, which allows accurate calibration of the reactor thermocouple to the reactor gas temperature. Finally, FTIR-SSITKA capabilities are demonstrated for CO{sub 2} isotope switching over a {gamma}-alumina sample at 75 deg. C, which reveal an adsorbed carbonate species with an average surface residence time of {tau}=148{+-}5 s and a coverage of {approx}2.5x10{sup 15} molecules cm{sup -2}.
Bellisola, Giuseppe; Cinque, Gianfelice; Vezzalini, Marzia; Moratti, Elisabetta; Silvestri, Giovannino; Redaelli, Sara; Gambacorti Passerini, Carlo; Wehbe, Katia; Sorio, Claudio
2013-07-21
We tested the ability of Fourier Transform (FT) InfraRed (IR) microspectroscopy (microFTIR) in combination with unsupervised Hierarchical Cluster Analysis (HCA) in identifying drug-resistance/sensitivity in leukemic cells exposed to tyrosine kinase inhibitors (TKIs). Experiments were carried out in a well-established mouse model of human Chronic Myelogenous Leukemia (CML). Mouse-derived pro-B Ba/F3 cells transfected with and stably expressing the human p210(BCR-ABL) drug-sensitive wild-type BCR-ABL or the V299L or T315I p210(BCR-ABL) drug-resistant BCR-ABL mutants were exposed to imatinib-mesylate (IMA) or dasatinib (DAS). MicroFTIR was carried out at the Diamond IR beamline MIRIAM where the mid-IR absorbance spectra of individual Ba/F3 cells were acquired using the high brilliance IR synchrotron radiation (SR) via aperture of 15 × 15 μm(2) in sizes. A conventional IR source (globar) was used to compare average spectra over 15 cells or more. IR signatures of drug actions were identified by supervised analyses in the spectra of TKI-sensitive cells. Unsupervised HCA applied to selected intervals of wavenumber allowed us to classify the IR patterns of viable (drug-resistant) and apoptotic (drug-sensitive) cells with an accuracy of >95%. The results from microFTIR + HCA analysis were cross-validated with those obtained via immunochemical methods, i.e. immunoblotting and flow cytometry (FC) that resulted directly and significantly correlated. We conclude that this combined microFTIR + HCA method potentially represents a rapid, convenient and robust screening approach to study the impact of drugs in leukemic cells as well as in peripheral blasts from patients in clinical trials with new anti-leukemic drugs.
Davis, Reeta; Mauer, Lisa J
2011-11-01
Listeria monocytogenes is a widespread foodborne pathogen that represents a major concern with respect to food safety. Rapid identification of this bacterium at a subspecies level is important to trace back an outbreak and improve risk-based inspection programs. A method for subtyping L. monocytogenes at the serotype and haplotype levels was developed using Fourier transform infrared (FT-IR) reflectance microscopy. Thirty strains of L. monocytogenes belonging to four different PCR serotypes (1/2a, 1/2b, 4b, and 4c) that had previously been characterized by Multilocus genotyping (MLGT) and Pulsed field gel electrophoresis (PFGE) assays were used in this study. The FT-IR based identification and classification was compared to the known MLGT and PFGE subtyping of the L. monocytogenes. Canonical variate analysis (CVA) of the spectra resulted in 96.6% correct identification of L. monocytogenes at the serotype level. Hierarchical cluster analysis (HCA) and CVA of the spectra showed 91.7% correct identification of strains at the haplotype level consistent with their MLGT groupings. FT-IR spectra of strains were also differentiated correctly in accordance with their PFGE haplotyping. Additionally, by using HCA of FT-IR spectra, each bacterium was differentiated at the strain level. Starting from a pure culture, this method enabled classification of L. monocytogenes at the serotype, haplotype, and/or strain level within 18 h, which is faster and potentially less expensive than the molecular methods and previous FT-IR methods. This is the first report of the identification of L. monocytogenes at the haplotype level using FT-IR. Copyright © 2011 Elsevier B.V. All rights reserved.
A 2D Fourier tool for the analysis of photo-elastic effect in large granular assemblies
NASA Astrophysics Data System (ADS)
Leśniewska, Danuta
2017-06-01
Fourier transforms are the basic tool in constructing different types of image filters, mainly those reducing optical noise. Some DIC or PIV software also uses frequency space to obtain displacement fields from a series of digital images of a deforming body. The paper presents series of 2D Fourier transforms of photo-elastic transmission images, representing large pseudo 2D granular assembly, deforming under varying boundary conditions. The images related to different scales were acquired using the same image resolution, but taken at different distance from the sample. Fourier transforms of images, representing different stages of deformation, reveal characteristic features at the three (`macro-`, `meso-` and `micro-`) scales, which can serve as a data to study internal order-disorder transition within granular materials.
NASA Astrophysics Data System (ADS)
Debnath, Lokenath
2012-07-01
Programs for high-speed Fourier, Mellin and Fourier-Bessel transforms
NASA Technical Reports Server (NTRS)
Ikhabisimov, D. K.; Debabov, A. S.; Kolosov, B. I.; Usikov, D. A.
1979-01-01
Several FORTRAN program modules for performing one-dimensional and two-dimensional discrete Fourier transforms, Mellin, and Fourier-Bessel transforms are described along with programs that realize the algebra of high speed Fourier transforms on a computer. The programs can perform numerical harmonic analysis of functions, synthesize complex optical filters on a computer, and model holographic image processing methods.
NASA Technical Reports Server (NTRS)
Nichols, P. D.; Henson, J. M.; Guckert, J. B.; Nivens, D. E.; White, D. C.
1985-01-01
Fourier transform-infrared (FT-IR) spectroscopy has been used to rapidly and nondestructively analyze bacteria, bacteria-polymer mixtures, digester samples and microbial biofilms. Diffuse reflectance FT-IR (DRIFT) analysis of freeze-dried, powdered samples offered a means of obtaining structural information. The bacteria examined were divided into two groups. The first group was characterized by a dominant amide I band and the second group of organisms displayed an additional strong carbonyl stretch at approximately 1740 cm-1. The differences illustrated by the subtraction spectra obtained for microbes of the two groups suggest that FT-IR spectroscopy can be utilized to recognize differences in microbial community structure. Calculation of specific band ratios has enabled the composition of bacteria and extracellular or intracellular storage product polymer mixtures to be determined for bacteria-gum arabic (amide I/carbohydrate C-O approximately 1150 cm-1) and bacteria-poly-beta-hydroxybutyrate (amide I/carbonyl approximately 1740 cm-1). The key band ratios correlate with the compositions of the material and provide useful information for the application of FT-IR spectroscopy to environmental biofilm samples and for distinguishing bacteria grown under differing nutrient conditions. DRIFT spectra have been obtained for biofilms produced by Vibrio natriegens on stainless steel disks. Between 48 and 144 h, an increase in bands at approximately 1440 and 1090 cm-1 was seen in FT-IR spectra of the V. natriegens biofilm. DRIFT spectra of mixed culture effluents of anaerobic digesters show differences induced by shifts in input feedstocks. The use of flow-through attenuated total reflectance has permitted in situ real-time changes in biofilm formation to be monitored and provides a powerful tool for understanding the interactions within adherent microbial consortia.
Nichols, P D; Henson, J M; Guckert, J B; Nivens, D E; White, D C
1985-01-01
Fourier transform-infrared (FT-IR) spectroscopy has been used to rapidly and nondestructively analyze bacteria, bacteria-polymer mixtures, digester samples and microbial biofilms. Diffuse reflectance FT-IR (DRIFT) analysis of freeze-dried, powdered samples offered a means of obtaining structural information. The bacteria examined were divided into two groups. The first group was characterized by a dominant amide I band and the second group of organisms displayed an additional strong carbonyl stretch at approximately 1740 cm-1. The differences illustrated by the subtraction spectra obtained for microbes of the two groups suggest that FT-IR spectroscopy can be utilized to recognize differences in microbial community structure. Calculation of specific band ratios has enabled the composition of bacteria and extracellular or intracellular storage product polymer mixtures to be determined for bacteria-gum arabic (amide I/carbohydrate C-O approximately 1150 cm-1) and bacteria-poly-beta-hydroxybutyrate (amide I/carbonyl approximately 1740 cm-1). The key band ratios correlate with the compositions of the material and provide useful information for the application of FT-IR spectroscopy to environmental biofilm samples and for distinguishing bacteria grown under differing nutrient conditions. DRIFT spectra have been obtained for biofilms produced by Vibrio natriegens on stainless steel disks. Between 48 and 144 h, an increase in bands at approximately 1440 and 1090 cm-1 was seen in FT-IR spectra of the V. natriegens biofilm. DRIFT spectra of mixed culture effluents of anaerobic digesters show differences induced by shifts in input feedstocks. The use of flow-through attenuated total reflectance has permitted in situ real-time changes in biofilm formation to be monitored and provides a powerful tool for understanding the interactions within adherent microbial consortia.
Thompson, Bruce T; Mizaikoff, Boris
2006-03-01
Fourier transform infrared (FT-IR) spectroscopy was compared directly to independent standard analytical techniques for the routine measurement of carbon monoxide (CO) and nitric oxide (NO) yields from cigarette sidestream smoke. The FT-IR instrument was configured in-line with a nondispersive infrared (NDIR) analyzer for CO analysis and a chemiluminescence (CL) analyzer for NO analysis to monitor the sidestream smoke from a single port of a linear smoking machine. A cold trap was inserted prior to the FT-IR to minimize the levels of vapor phase interferents, such as water. Univariate and multivariate regression analysis were evaluated for the prediction of cigarette yield from time-resolved spectral data at 1, 2, 4 and 8 cm-1 spectral resolution. Regressions were developed using three different spectral ranges including unique rotation-vibration lines, the R-branch, and the entire absorption band. As per standard methods, yields were calculated from the concentration traces generated during the smoke runs for five different cigarettes spanning the expected range of mainstream total particulate matter deliveries. The FT-IR traces for the smoke runs revealed improved temporal resolution yielding analytical information from smoke generated in between puffs. The performance between the validation methods and the FT-IR calibrations was statistically compared. In general, for the determination of CO, the FT-IR calibrations underestimated the yield measured by NDIR by less than 10%. For the NO measurement, the univariate FT-IR calibrations overestimated the NO yield measured by the CL analyzer, whereas the partial least squares (PLS) calibrations showed good agreement. PLS calibrations were developed for both analytes providing no significant difference when compared to the respective standard analytical techniques. Results for sidestream CO and NO yields for Kentucky reference cigarette 1R4F utilizing 8 cm-1 calibrations compared favorably to values reported elsewhere
During a field study in the summer of 2000 in the Research Triangle Park (RTP), aerosol samples were collected using a five stage cascade impactor and subsequently analyzed using Fourier Transform Infrared Spectroscopy (FTIR). The impaction surfaces were stainless steel disks....
NASA Technical Reports Server (NTRS)
Shakib, Farzin; Hughes, Thomas J. R.
1991-01-01
A Fourier stability and accuracy analysis of the space-time Galerkin/least-squares method as applied to a time-dependent advective-diffusive model problem is presented. Two time discretizations are studied: a constant-in-time approximation and a linear-in-time approximation. Corresponding space-time predictor multi-corrector algorithms are also derived and studied. The behavior of the space-time algorithms is compared to algorithms based on semidiscrete formulations.
NASA Technical Reports Server (NTRS)
Shakib, Farzin; Hughes, Thomas J. R.
1991-01-01
A Fourier stability and accuracy analysis of the space-time Galerkin/least-squares method as applied to a time-dependent advective-diffusive model problem is presented. Two time discretizations are studied: a constant-in-time approximation and a linear-in-time approximation. Corresponding space-time predictor multi-corrector algorithms are also derived and studied. The behavior of the space-time algorithms is compared to algorithms based on semidiscrete formulations.
A Two-Color Fourier Transform Mm-Wave Spectrometer for Gas Analysis Operating from 260-295 GHZ
NASA Astrophysics Data System (ADS)
Steber, Amanda L.; Harris, Brent J.; Lehmann, Kevin K.; Pate, Brooks H.
2013-06-01
We have designed a two-color mm-wave spectrometer for Fourier transform mm-wave spectroscopy that uses consumer level components for the tunable synthesizers, digital control of the pulse modulators, and digitization of the coherent free induction decay (FID). The excitation pulses are generated using an x24 active multiplier chain (AMC) that produces a peak power of 30 mW. The microwave input to the AMC is generated in a frequency up conversion circuit that accepts a microwave input frequency from about 2-4 GHz. This circuit also generates the input to the mm-wave subhamonic mixer that creates the local oscillator from a separate 2-4 GHz microwave input. Excitation pulses at two independently tunable frequencies are generated using a dual-channel source based on a low-cost, wideband synthesizer integrated circuit (Valon Technology Model 5008). The outputs of the synthesizer are pulse modulated using a PIN diode switch that is driven using the arbitrary waveform generator (AWG) output of a USB-controlled high-speed digitizer / arbitrary waveform generator combination unit (Tie Pie HS-5 530 XM). The two pulses are combined using a Wilkinson power divider before input to the up conversion circuit. The FID frequency is down converted in a two-stage mixing process to 65 MHz. The two LO frequencies used in the receiver are provided by a second Valon 5008. The FID is digitized at 200 MSamples/s using the 12-bit Tie Pie digitizer. The digital oscilloscope (and its AWG channel) and the two synthesizers use a 10 MHz reference signal from a Rubidium clock to permit time-domain signal averaging. A key feature of the digital oscilloscope is its deep memory of 32 Mpts (complemented by the 64 Mpt memory in the 240 MS/s AWG). This makes it possible to perform several one- and two-color coherent measurements, including pulse echoes and double-resonance spectroscopy, in a single "readout" experiment to speed the analysis of mm-wave rotational spectra. The spectrometer sensitivity
NASA Astrophysics Data System (ADS)
Lanusse, F.; Rassat, A.; Starck, J.-L.
2015-06-01
Context. Upcoming spectroscopic galaxy surveys are extremely promising to help in addressing the major challenges of cosmology, in particular in understanding the nature of the dark universe. The strength of these surveys, naturally described in spherical geometry, comes from their unprecedented depth and width, but an optimal extraction of their three-dimensional information is of utmost importance to best constrain the properties of the dark universe. Aims: Although there is theoretical motivation and novel tools to explore these surveys using the 3D spherical Fourier-Bessel (SFB) power spectrum of galaxy number counts Cℓ(k,k'), most survey optimisations and forecasts are based on the tomographic spherical harmonics power spectrum C(ij)_ℓ. The goal of this paper is to perform a new investigation of the information that can be extracted from these two analyses in the context of planned stage IV wide-field galaxy surveys. Methods: We compared tomographic and 3D SFB techniques by comparing the forecast cosmological parameter constraints obtained from a Fisher analysis. The comparison was made possible by careful and coherent treatment of non-linear scales in the two analyses, which makes this study the first to compare 3D SFB and tomographic constraints on an equal footing. Nuisance parameters related to a scale- and redshift-dependent galaxy bias were also included in the computation of the 3D SFB and tomographic power spectra for the first time. Results: Tomographic and 3D SFB methods can recover similar constraints in the absence of systematics. This requires choosing an optimal number of redshift bins for the tomographic analysis, which we computed to be N = 26 for zmed ≃ 0.4, N = 30 for zmed ≃ 1.0, and N = 42 for zmed ≃ 1.7. When marginalising over nuisance parameters related to the galaxy bias, the forecast 3D SFB constraints are less affected by this source of systematics than the tomographic constraints. In addition, the rate of increase of the
NASA Technical Reports Server (NTRS)
Scargle, Jeffrey D.
1989-01-01
This paper develops techniques to evaluate the discrete Fourier transform (DFT), the autocorrelation function (ACF), and the cross-correlation function (CCF) of time series which are not evenly sampled. The series may consist of quantized point data (e.g., yes/no processes such as photon arrival). The DFT, which can be inverted to recover the original data and the sampling, is used to compute correlation functions by means of a procedure which is effectively, but not explicitly, an interpolation. The CCF can be computed for two time series not even sampled at the same set of times. Techniques for removing the distortion of the correlation functions caused by the sampling, determining the value of a constant component to the data, and treating unequally weighted data are also discussed. FORTRAN code for the Fourier transform algorithm and numerical examples of the techniques are given.
NASA Technical Reports Server (NTRS)
Rosenkranz, P. W.
1981-01-01
The Scanning Multichannel Microwave Radiometer measures thermal microwave emission from the earth in both polarizations at wavelengths of 0.8, 1.4, 1.7, 2.8 and 4.6 cm. Similar instruments were launched on Nimbus 7 and Seasat. Both spatial resolution on the earth and relative sensitivity to different geophysical parameters change with wavelength. Therefore, spatial Fourier components of geophysical parameters are inferred from the corresponding Fourier components of the radiometer measurements, taking into account the different dependence of signal-to-noise ratio on spatial frequency for each radiometer wavelength. The geophysical parameters are sea surface temperature, near-surface wind speed, integrated water vapor mass, integrated liquid water mass, and the product of rainfall rate with height of the rain layer. The capabilities and limitations of the inversion method are illustrated by means of data from the North Atlantic and from tropical storms.
NASA Technical Reports Server (NTRS)
Scargle, Jeffrey D.
1989-01-01
This paper develops techniques to evaluate the discrete Fourier transform (DFT), the autocorrelation function (ACF), and the cross-correlation function (CCF) of time series which are not evenly sampled. The series may consist of quantized point data (e.g., yes/no processes such as photon arrival). The DFT, which can be inverted to recover the original data and the sampling, is used to compute correlation functions by means of a procedure which is effectively, but not explicitly, an interpolation. The CCF can be computed for two time series not even sampled at the same set of times. Techniques for removing the distortion of the correlation functions caused by the sampling, determining the value of a constant component to the data, and treating unequally weighted data are also discussed. FORTRAN code for the Fourier transform algorithm and numerical examples of the techniques are given.
Trout, T.K.; Bellama, J.M.; Brinckman, F.E.; Faltynek, R.A.
1989-03-01
Fourier transform infrared spectroscopy (FT-IR) forms the basis for determining the morphological composition of mixtures containing alpha, beta, and amorphous phases of silicon nitride. The analytical technique, involving multiple linear regression treatment of Kubelka-Munk absorbance values from diffuse reflectance measurements, yields specific percent composition data for the amorphous phase as well as the crystalline phases in ternary mixtures of 0--1% by weight Si/sub 3/N/sub 4/ in potassium bromide.
Wang, Yubo; Veluvolu, Kalyana C
2017-06-14
It is often difficult to analyze biological signals because of their nonlinear and non-stationary characteristics. This necessitates the usage of time-frequency decomposition methods for analyzing the subtle changes in these signals that are often connected to an underlying phenomena. This paper presents a new approach to analyze the time-varying characteristics of such signals by employing a simple truncated Fourier series model, namely the band-limited multiple Fourier linear combiner (BMFLC). In contrast to the earlier designs, we first identified the sparsity imposed on the signal model in order to reformulate the model to a sparse linear regression model. The coefficients of the proposed model are then estimated by a convex optimization algorithm. The performance of the proposed method was analyzed with benchmark test signals. An energy ratio metric is employed to quantify the spectral performance and results show that the proposed method Sparse-BMFLC has high mean energy (0.9976) ratio and outperforms existing methods such as short-time Fourier transfrom (STFT), continuous Wavelet transform (CWT) and BMFLC Kalman Smoother. Furthermore, the proposed method provides an overall 6.22% in reconstruction error.
Astronomical Fourier spectropolarimetry
NASA Technical Reports Server (NTRS)
Forbes, F. F.; Fymat, A. L.
1974-01-01
Spectra of the Stokes polarization parameters of Venus (resolution 0.5 per cm) are presented. They were obtained at the Cassegrain focus of the 154-cm telescope of the National Mexican Observatory, Baja California, Mexico, July 12 and 13, 1972, with the Fourier Interferometer Polarimeter (FIP). A preliminary, limited analysis of four spectral features and of the CO2 rotational band structures at 6080 and 6200 per cm has demonstrated that spectral polarization is indeed present. These experimental results, confirmed by two series of observations, provide substantiation for this theoretically predicted phenomenon. They also tend to show that the FIP represents a novel astronomical tool for variable spectral resolution studies of both the intensity and the state of polarization of astronomical light sources.
Astronomical Fourier spectropolarimetry
NASA Technical Reports Server (NTRS)
Forbes, F. F.; Fymat, A. L.
1974-01-01
Spectra of the Stokes polarization parameters of Venus (resolution 0.5 per cm) are presented. They were obtained at the Cassegrain focus of the 154-cm telescope of the National Mexican Observatory, Baja California, Mexico, July 12 and 13, 1972, with the Fourier Interferometer Polarimeter (FIP). A preliminary, limited analysis of four spectral features and of the CO2 rotational band structures at 6080 and 6200 per cm has demonstrated that spectral polarization is indeed present. These experimental results, confirmed by two series of observations, provide substantiation for this theoretically predicted phenomenon. They also tend to show that the FIP represents a novel astronomical tool for variable spectral resolution studies of both the intensity and the state of polarization of astronomical light sources.
Samsir, Sri A'jilah; Bunawan, Hamidun; Yen, Choong Chee; Noor, Normah Mohd
2016-09-01
In this dataset, we distinguish 15 accessions of Garcinia mangostana from Peninsular Malaysia using Fourier transform-infrared spectroscopy coupled with chemometric analysis. We found that the position and intensity of characteristic peaks at 3600-3100 cm(-) (1) in IR spectra allowed discrimination of G. mangostana from different locations. Further principal component analysis (PCA) of all the accessions suggests the two main clusters were formed: samples from Johor, Melaka, and Negeri Sembilan (South) were clustered together in one group while samples from Perak, Kedah, Penang, Selangor, Kelantan, and Terengganu (North and East Coast) were in another clustered group.
Fourier Series Operating Package
NASA Technical Reports Server (NTRS)
Charnow, Milton L.
1961-01-01
This report presents a computer program for multiplying, adding, differentiating, integrating, "barring" and scalarly multiplying "literal" Fourier series as such, and for extracting the coefficients of specified terms.
NASA Astrophysics Data System (ADS)
Tátrai, Erika; Ranganathan, Sudarshan; Ferencz, Mária; Debuc, Delia Cabrera; Somfai, Gábor Márk
2011-05-01
Purpose: To compare thickness measurements between Fourier-domain optical coherence tomography (FD-OCT) and time-domain OCT images analyzed with a custom-built OCT retinal image analysis software (OCTRIMA). Methods: Macular mapping (MM) by StratusOCT and MM5 and MM6 scanning protocols by an RTVue-100 FD-OCT device are performed on 11 subjects with no retinal pathology. Retinal thickness (RT) and the thickness of the ganglion cell complex (GCC) obtained with the MM6 protocol are compared for each early treatment diabetic retinopathy study (ETDRS)-like region with corresponding results obtained with OCTRIMA. RT results are compared by analysis of variance with Dunnett post hoc test, while GCC results are compared by paired t-test. Results: A high correlation is obtained for the RT between OCTRIMA and MM5 and MM6 protocols. In all regions, the StratusOCT provide the lowest RT values (mean difference 43 +/- 8 μm compared to OCTRIMA, and 42 +/- 14 μm compared to RTVue MM6). All RTVue GCC measurements were significantly thicker (mean difference between 6 and 12 μm) than the GCC measurements of OCTRIMA. Conclusion: High correspondence of RT measurements is obtained not only for RT but also for the segmentation of intraretinal layers between FD-OCT and StratusOCT-derived OCTRIMA analysis. However, a correction factor is required to compensate for OCT-specific differences to make measurements more comparable to any available OCT device.
NASA Astrophysics Data System (ADS)
von Larcher, Thomas; Fournier, Alexandre; Hollerbach, Rainer
2010-05-01
We present the application of a fourier-spectral element code [1, 2] to perform a linear stability analysis of non-axisymmetric thermal driven flows in a rotating cylindrical gap with (a) a flat bottom and (b) an inclined bottom topography. The model of the differentially heated, rotating cylindrical gap filled with a fluid is since more than four decades extensively used for laboratory experiments as well as for numerical simulation of baroclinic wave instabilities. While a number of experiments are performed in set-ups with a flat bottom topography, the β- effect is considered in models with an inclined bottom. Linearisation about a basic state is the natural way to go to determine stability curves. If performed about an axisymmetric basic state, linearisation decouples the modes in ?, the azimuthal coordinate, and breaks an original 3D problem in 2D ones which can be studied independently, i.e. one can then test each Fourier mode m, the azimuthal wave number, individually. [1] Fournier, A., Bunge, H.-P., Hollerbach, R., and Vilotte, J.-P, 2004, Application of the spectral-element method to the axisymmetric Navier-Stokes equation, Geophys. J. Int., 156(3), 682-700 [2] Fournier, A., Bunge, H.-P., Hollerbach, R., and Vilotte, J.-P, 2005, A Fourier-spectral element algorithm for thermal convection in rotating axisymmetric containers, Journal of Computational Physics, 204(2)
Fourier analysis of blood plasma laser images phase maps in the diagnosis of cancer in human organs
NASA Astrophysics Data System (ADS)
Angelsky, P. O.; Kushnerick, L. Ya.; Bachinskiy, V. T.; Vanchuliak, O. Ya.; Garazdiuk, M.; Pashkovska, N. V.; Andriychuk, D.
2013-12-01
A method of polarization mapping of the optico-anisotropic polycrystalline networks of the blood plasma albumin and globulin proteins with adjusted spatial-frequency filtering of the coordinate distributions of the azimuth and ellipticity of the polarization of laser radiation in the Fourier plane is proposed and substantiated. Comparative studies of the effectiveness of direct methods of mapping and a spatial-frequency selection in differentiating polarization azimuth and ellipticity maps of the field of laser radiation converted by the networks of albumin - globulin crystals of the blood plasma in healthy people and patients with prostate cancer have been carried out.
NASA Astrophysics Data System (ADS)
Sterken, C.
2003-03-01
This paper gives a short account of some key elements in the life of Jean Baptiste Joseph Fourier (1768-1830), specifically his relation to Napoleon Bonaparte. The mathematical approach to Fourier series and the original scepticism by French mathematicians are briefly illustrated.
Fourier Series Optimization Opportunity
ERIC Educational Resources Information Center
Winkel, Brian
2008-01-01
This note discusses the introduction of Fourier series as an immediate application of optimization of a function of more than one variable. Specifically, it is shown how the study of Fourier series can be motivated to enrich a multivariable calculus class. This is done through discovery learning and use of technology wherein students build the…
Fourier Series Optimization Opportunity
ERIC Educational Resources Information Center
Winkel, Brian
2008-01-01
This note discusses the introduction of Fourier series as an immediate application of optimization of a function of more than one variable. Specifically, it is shown how the study of Fourier series can be motivated to enrich a multivariable calculus class. This is done through discovery learning and use of technology wherein students build the…
Bu, Gui-jun; Yu, Jing; Di, Hui-hui; Luo, Shi-jia; Zhou, Da-zhai; Xiao, Qiang
2015-02-01
The composition and structure of humic acids formed during composting play an important influence on the quality and mature of compost. In order to explore the composition and evolution mechanism, municipal solid wastes were collected to compost and humic and fulvic acids were obtained from these composted municipal solid wastes. Furthermore, fourier transform infrared spectra and two-dimensional correlation analysis were applied to study the composition and transformation of humic and fulvic acids during composting. The results from fourier transform infrared spectra showed that, the composition of humic acids was complex, and several absorbance peaks were observed at 2917-2924, 2844-2852, 2549, 1662, 1622, 1566, 1454, 1398, 1351, 990-1063, 839 and 711 cm(-1). Compared to humic acids, the composition of fulvci acids was simple, and only three peaks were detected at 1725, 1637 and 990 cm(-1). The appearance of these peaks showed that both humic and fulvic acids comprised the benzene originated from lignin and the polysaccharide. In addition, humic acids comprised a large number of aliphatic and protein which were hardly detected in fulvic acids. Aliphatic, polysaccharide, protein and lignin all were degraded during composting, however, the order of degradation was different between humic and fulvci acids. The result from two-dimensional correlation analysis showed that, organic compounds in humic acids were degraded in the following sequence: aliphatic> protein> polysaccharide and lignin, while that in fulvic acids was as following: protein> polysaccharide and aliphatic. A large number of carboxyl, alcohols and ethers were formed during the degradation process, and the carboxyl was transformed into carbonates. It can be concluded that, fourier transform infrared spectra coupled with two-dimensional correlation analysis not only can analyze the function group composition of humic substances, but also can characterize effectively the degradation sequence of these
Glezer, V D
1978-12-01
On the basis of previously published data, a neuronal scheme of organization of the visual perception in the cerebral cortex, is suggested. An idea of neuronal module is introduced: a cylinder of cortical neurons whose receptive fields are directed towards the same area of the visual field and respond to different spatial frequencies and orientations. A system of overlapping modules is able of piece--wise Fourier--description of portions of the image. The modules of the Clare--Bishop area are composed of receptive fields of different size. Owing to that each neuron of the module projects inhibitory influence upon other neurons, the module acts as a filter picking out the texture. Therefore, the modules of the Clare--Bishop area single out and supply Fourier--description of subimages, the latters being characterized by the same local spectrum within their own limits. The lower portiön of temporal cortex performs a rough identification of subimages and images with the aid of systems of learning neurons. The parietal cortex conforms the description from temporal cortex to the complete description in the modules of occipital cortex, thus performing the transition from an image to a concrete picture.
Klein, Thomas; Wieser, Wolfgang; Biedermann, Benjamin R; Eigenwillig, Christoph M; Palte, Gesa; Huber, Robert
2008-12-01
We demonstrate a Raman-pumped Fourier-domain mode-locked (FDML) fiber laser and optical coherence tomography imaging with this source. The wavelength sweep range of only 30 nm centered around 1550 nm results in limited axial resolution, hence a nonbiological sample is imaged. An output power of 1.9 mW was achieved at a sweep rate of 66 kHz and a maximum ranging depth of ~2.5 cm. Roll-off characteristics are found to be similar to FDML lasers with semiconductor optical amplifiers as gain media. The application of Raman gain also enables unperturbed cavity ring-down experiments in FDML lasers for the first time, providing direct access to the photon lifetime in the laser cavity. Good agreement with nonswept cw operation is proof of the stationary operation of FDML lasers.
Yang, Qing; Yin, Xiuli; Wu, Chuangzhi; Wu, Shubin; Guo, Daliang
2012-03-01
CO(2) gasification of the reed (Phragmites australis) kraft black liquor (KBL) and its water-soluble lignin (WSL) was analyzed by thermogravimetry coupled with Fourier transform infrared spectrometry (TG-FTIR). In KBL gasification, major mass loss of KBL occurred between 150 and 1000°C, followed by a further slow mass loss until the heating was stopped and the TG curve leveled off. The TG profiles of the WSL and the KBL were similar during gasification; however, the differential thermogravimetry (DTG) curves and mass decrease from 300°C of the TG curves of the WSL and the KBL were different because of their dissimilar ingredients. The CO formation mechanism was the same and independent of structural types of lignins between reed and wood in their KBL CO(2) gasification.
NASA Astrophysics Data System (ADS)
Suwansukho, Kajpanya; Sumriddetchkajorn, Sarun; Buranasiri, Prathan
2012-11-01
Instead of considering only the amount of fluorescent signal spatially distributed on the image of milled rice grains this paper shows how our single-wavelength spectral-imaging-based Thai jasmine (KDML105) rice identification system can be improved by analyzing the shape and size of the image of each milled rice variety especially during the image threshold operation. The image of each milled rice variety is expressed as chain codes and elliptic Fourier coefficients. After that, a feed-forward back-propagation neural network model is applied, resulting in an improved average FAR of 11.0% and FRR of 19.0% in identifying KDML105 milled rice from the unwanted four milled rice varieties.
NASA Astrophysics Data System (ADS)
Li, Qi; Li, Shi; Shi, Yushu; Li, Wei; Gao, Sitian
2014-09-01
The nonlinearity of the interferometer is an essential error in nanoscale measurements influenced by anisotropic gain and nonorthogonality of imperfect polarization components. In this paper, polarization error and the corresponding nonlinearity correction method are studied. The paper is divided into two parts, in the first part, main research focuses on the polarization mixing effect of multi-pass interferometer, besides this, polarization beam splitter and retardation plate are also analyzed, then a final synthetic evaluation is obtained through Jones matrix. In the second part, a harmonic separation method of interferometer signals is researched, the method first decomposes signals into Fourier series, then uses least square fitting to estimate coefficients of main terms of series. In the correction process, the primary phase angle is obtained through coefficients of base series and trigonometric formulas; the finer phase angle is obtained through coefficients of harmonics and Taylor expansion. Experimental results demonstrate that the nonlinearity of homodyne interferometer is significantly reduced in nanometer measurements.
Fourier Modulus Image Construction.
1981-05-01
Fourier Optics: the Encoding of Infor- mation by Complex Zeroes," Optica Acta 26, 1139-46 (1979). 13. Y.M. Bruck and L.(. Sodin, "On the Ambiguity of the...0002 UNCLASSIFIED RADC-TR-81-63 NL -- END LEVEL# " DC-TR-61143 Finul Technical Relort 0 FOURIER MODULUS IMAGE "N CONSTRUCTION C Environmental Research... FOURIER MODULUS IMAGE CONSTRUCTION 7Sep 9--3 Sep 8 _ N/A 7. AUTHOR(s) N . James E Fienup. 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT
Yu, Peiqiang
2005-09-07
Synchrotron technology based Fourier transform infrared microspectroscopy (S-FTIR) is a recently emerging bioanalytical microprobe capable of exploring the molecular chemistry within microstructures of feed tissues at a cellular or subcellular level. To date there has been very little application of hierarchical cluster analysis (CLA) and principal component analysis (PCA) to the study of feed inherent microstructures and feed molecular chemistry between feeds and/or between different structures within a feed, in relation to feed quality and nutrient availability using S-FTIR. In this paper, multivariate statistical methods--CLA and PCA--were used to analyze synchrotron-based FTIR individual spectra obtained from feed inherent microstructures within intact tissues by using the S-FTIR as a novel approach. The S-FTIR spectral data of three feed inherent structures (strucutre 1, feed pericarp; structure 2, feed aleurone; structure 3, feed endosperm) and different varieties of feeds within cellular dimensions were collected at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL), U.S. Department of Energy (NSLS-BNL, New York). Both PCA and CLA methods gave satisfactory analytical results and are conclusive in showing that they can discriminate and classify inherent structures and molecular chemistry between and among the feed tissues. They also can be used to identify whether differences exist between the varieties. These statistical analyses place synchrotron-based FTIR microspectroscopy at the forefront of those new potential techniques that could be used in rapid, nondestructive, and noninvasive screening of feed intrinsic microstructures and feed molecular chemistry in relation to the quality and nutritive value of feeds.
ERIC Educational Resources Information Center
Debnath, Lokenath
2012-01-01
This article deals with a brief biographical sketch of Joseph Fourier, his first celebrated work on analytical theory of heat, his first great discovery of Fourier series and Fourier transforms. Included is a historical development of Fourier series and Fourier transforms with their properties, importance and applications. Special emphasis is made…
ERIC Educational Resources Information Center
Debnath, Lokenath
2012-01-01
This article deals with a brief biographical sketch of Joseph Fourier, his first celebrated work on analytical theory of heat, his first great discovery of Fourier series and Fourier transforms. Included is a historical development of Fourier series and Fourier transforms with their properties, importance and applications. Special emphasis is made…
NASA Astrophysics Data System (ADS)
Vakil, Ashkan; Engheta, Nader
2012-02-01
Using numerical simulations, here, we demonstrate that a single sheet of graphene with properly designed inhomogeneous, nonuniform conductivity distributions can act as a convex lens for focusing and collimating the transverse-magnetic (TM) surface plasmon polariton (SPP) surface waves propagating along the graphene. Consequently, we show that the graphene can act as a platform for obtaining spatial Fourier transform of infrared (IR) SPP signals. This may lead to rebirth of the field of Fourier optics on a 1-atom-thick structure.
Generalized fiber Fourier optics.
Cincotti, Gabriella
2011-06-15
A twofold generalization of the optical schemes that perform the discrete Fourier transform (DFT) is given: new passive planar architectures are presented where the 2 × 2 3 dB couplers are replaced by M × M hybrids, reducing the number of required connections and phase shifters. Furthermore, the planar implementation of the discrete fractional Fourier transform (DFrFT) is also described, with a waveguide grating router (WGR) configuration and a properly modified slab coupler.
NASA Astrophysics Data System (ADS)
Hu, J.; Pavel, I.; Moigno, D.; Wumaier, M.; Kiefer, W.; Chen, Z.; Ye, Y.; Wu, Q.; Huang, Q.; Chen, S.; Niu, F.; Gu, Y.
2003-07-01
The Fourier-transform Raman (FT-Raman) and infrared (FT-IR) spectra of 2-nitro-tetraphenylporphyrin (2-NO 2-TPP), nickel-2-nitro-tetraphenylporphyrin (Ni-2-NO 2-TPP), zinc-2-nitro-tetraphenylporphyrin (Zn-2-NO 2-TPP) and copper-2-nitro-tetraphenylporphyrin (Cu-2-NO 2-TPP) were acquired for the first time and carefully assigned and discussed. The effects of a β-NO 2 group and the influence of the central metal on the molecular symmetry and vibrational spectra of the porphyrin macrocycle were also examined. The bands at 1323-1339, 1516-1526 and 961-971 cm -1 were attributed to the symmetric and asymmetric stretching vibration of the NO 2 group and to the stretching vibration of the C βN bond, respectively, which connects the NO 2 group with the β-carbon of the porphyrin macrocycle. These bands can act as a marker to distinguish β-NO 2 TPPs from other β-substituent TPPs. Cu-2-NO 2-TPP has a C4 ν molecular symmetry, which is different from those of Ni-2-NO 2-TPP and Zn-2-NO 2-TPP, i.e. D4 h.
Li, Yin-long
2016-01-01
The objective of this study was to investigate the spectra characteristics (SC) at wavelengths of 400~1000 nm and 2.5~15.5 μm of pure moxa stick (MS) during its 25-minute burning process using new spectral imaging techniques. Spectral images were collected for the burning pure MS at 5, 10, 15, 20, and 25 min using hyperspectral imaging (HSI) and Fourier transform infrared spectroscopy (FTIR) for the first time. The results showed that, at wavelengths of 400~1000 nm, the spectral range of the cross section of MS burning was 750~980 nm; the peak position was 860 nm. At wavelengths of 2.5~15.5 μm, the spectral range of the cross section of MS burning was 3.0~4.0 μm; the peak position was approximately 3.5 μm. The radiation spectra of MS burning include litter red and amount of infrared (but mainly near infrared) wavelengths. The temperature, blood perfusion, and oxygen saturation increase of Shenshu (BL23) after moxibustion radiation were observed too. According to mechanism of photobiological effects and moxibustion biological effects, it was inferred that moxibustion effects should be linked with moxibustion SC. This study provided new data and means for physical properties of moxibustion research. PMID:27721889
NASA Astrophysics Data System (ADS)
Harthcock, Matthew A.
1985-12-01
Fourier self-deconvolution (FSD) has been applied to several regions of the infrared spectra of ethylene/acrylic and methacrylic acid copolymers to obtain detailed information on the structure of these copolymers. The computer assisted technique has been applied to the 1050-830 cm-1 region of the infrared spectrum of the copolymers to resolve the vinyl (909 cm-1) and vinylidene (887 cm-1) CH2 wagging vibrations from the in-phase out-of-plane hydrogen deformation vibration of the acid dimer (943 cm-1). The technique was applied to the carbonyl stretching vibration region (1820-1660 cm-1) to study the structure of the acid groups. Two distinct hydrogen bonded (1710 and 1696 cm-1) and free (1758 and 1745 cm-1) acid group structures were observed for the 9% acrylic acid copolymers, while the methacrylic acid copolymer showed predominantly one hydrogen bonded (1696 cm-1) and one free (1758 cm-1) acid group structure. Also, the 6.5% acrylic acid copolymers showed essentially one type of hydrogen bonded (1706 cm-1) carbonyl and two free carbonyl stretching absorptions (1758 and 1745 cm-1).
NASA Astrophysics Data System (ADS)
Walker, K. A.; Sheese, P.; Zou, J.; Boone, C. D.; Bernath, P. F.
2016-12-01
To progress from monitoring atmospheric composition to investigating and quantifying atmospheric changes, well-characterized measurements over many years are required. The long lifetime of the Atmospheric Chemistry Experiment (ACE) has provided more than a decade of composition measurements that contribute to our understanding of ozone recovery, climate change and pollutant emissions. The primary ACE instrument on SCISAT is a high-resolution (0.02 cm-1) Fourier Transform Spectrometer (ACE-FTS) operating between 750 and 4400 cm-1. The ACE-FTS data set provides profiles of temperature, pressure, and volume mixing ratios of more than 30 atmospheric trace gas species, as well as 20 subsidiary isotopologues of the most abundant trace atmospheric constituents. The profiles from this Canadian scientific satellite mission provide altitude-resolved data that are necessary for understanding processes that occur at specific altitudes or over limited vertical length scales. This paper will describe current validation results for the ACE-FTS version 3.5 data set and describe the drift analyses that are being undertaken to characterize these data to enable the generation of climate data records.
Taradolsirithitikul, Panchita; Sirisomboon, Panmanas; Dachoupakan Sirisomboon, Cheewanun
2017-03-01
Ochratoxin A (OTA) contamination is highly prevalent in a variety of agricultural products including the commercially important coffee bean. As such, rapid and accurate detection methods are considered necessary for the identification of OTA in green coffee beans. The goal of this research was to apply Fourier transform near infrared spectroscopy to detect and classify OTA contamination in green coffee beans in both a quantitative and qualitative manner. PLSR models were generated using pretreated spectroscopic data to predict the OTA concentration. The best model displayed a correlation coefficient (r) of 0.814, a standard error of prediction (SEP and bias of 1.965 µg kg(-1) and 0.358 µg kg(-1) , respectively. Additionally, a PLS-DA model was also generated, displaying a classification accuracy of 96.83% for a non-OTA contaminated model and 80.95% for an OTA contaminated model, with an overall classification accuracy of 88.89%. The results demonstrate that the developed model could be used for detecting OTA contamination in green coffee beans in either a quantitative or qualitative manner. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
2017-01-01
Abstract Background: Leaf shape among Passiflora species is spectacularly diverse. Underlying this diversity in leaf shape are profound changes in the patterning of the primary vasculature and laminar outgrowth. Each of these aspects of leaf morphology—vasculature and blade—provides different insights into leaf patterning. Results: Here, we morphometrically analyze >3300 leaves from 40 different Passiflora species collected sequentially across the vine. Each leaf is measured in two different ways: using 1) 15 homologous Procrustes-adjusted landmarks of the vasculature, sinuses, and lobes; and 2) Elliptical Fourier Descriptors (EFDs), which quantify the outline of the leaf. The ability of landmarks, EFDs, and both datasets together are compared to determine their relative ability to predict species and node position within the vine. Pairwise correlation of x and y landmark coordinates and EFD harmonic coefficients reveals close associations between traits and insights into the relationship between vasculature and blade patterning. Conclusions: Landmarks, more reflective of the vasculature, and EFDs, more reflective of the blade contour, describe both similar and distinct features of leaf morphology. Landmarks and EFDs vary in ability to predict species identity and node position in the vine and exhibit a correlational structure (both within landmark or EFD traits and between the two data types) revealing constraints between vascular and blade patterning underlying natural variation in leaf morphology among Passiflora species. PMID:28369351
Cooper, Helen J; Case, Martin A; McLendon, George L; Marshall, Alan G
2003-05-07
The application of electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry to the investigation of the relative stabilities (and thus packing efficiencies) of Fe-bound trihelix peptide bundles is demonstrated. Small dynamic protein libraries are created by metal-ion assisted assembly of peptide subunits. Control of the trimeric aggregation state is coupled to stability selection by exploiting the coordination requirements of Fe(2+) in the presence of bidentate 2,2'-bipyridyl ligands covalently appended to the peptide monomers. At limiting metal-ion concentration, the most thermodynamically stable, optimally packed peptide trimers dominate the mass spectrum. The identities of optimally stable candidate trimers observed in the ESI FT-ICR mass spectra are confirmed by resynthesis of exchange-inert analogues and measurement of their folding free energies. The peptide composition of the trimers may be determined by infrared multiphoton dissociation (IRMPD) MS(3) experiments. Additional sequence information for the peptide subunits is obtained from electron capture dissociation (ECD) of peptides and metal-bound trimers. The experiments also suggest the presence of secondary structure in the gas phase, possibly due to partial retention of the solution-phase coiled coil structure.
Courtiol, Alexandre; Ferdy, Jean Baptiste; Godelle, Bernard; Raymond, Michel; Claude, Julien
2010-05-01
Many studies use representations of human body outlines to study how individual characteristics, such as height and body mass, affect perception of body shape. These typically involve reality-based stimuli (e.g., pictures) or manipulated stimuli (e.g., drawings). These two classes of stimuli have important drawbacks that limit result interpretations. Realistic stimuli vary in terms of traits that are correlated, which makes it impossible to assess the effect of a single trait independently. In addition, manipulated stimuli usually do not represent realistic morphologies. We describe and examine a method based on elliptic Fourier descriptors to automatically predict and represent body outlines for a given set of predicted variables (e.g., sex, height, and body mass). We first estimate whether these predictive variables are significantly related to human outlines. We find that height and body mass significantly influence body shape. Unlike height, the effect of body mass on shape differs between sexes. Then, we show that we can easily build a regression model that creates hypothetical outlines for an arbitrary set of covariates. These statistically computed outlines are quite realistic and may be used as stimuli in future studies.
Otón, Joaquín; Sorzano, Carlos Oscar S; Marabini, Roberto; Pereiro, Eva; Carazo, Jose M
2015-04-20
Soft X-ray tomography (SXT) is becoming a powerful imaging technique to analyze eukaryotic whole cells close to their native state. Central to the analysis of the quality of SXT 3D reconstruction is the estimation of the spatial resolution and Depth of Field of the X-ray microscope. In turn, the characterization of the Modulation Transfer Function (MTF) of the optical system is key to calculate both parameters. Consequently, in this work we introduce a fully automated technique to accurately estimate the transfer function of such an optical system. Our proposal is based on the preprocessing of the experimental images to obtain an estimate of the input pattern, followed by the analysis in Fourier space of multiple orders of a Siemens Star test sample, extending in this way its measured frequency range.
NASA Astrophysics Data System (ADS)
Akyuz, Sevim; Akyuz, Tanil; Mukhamedshina, Nuranya M.; Mirsagatova, A. Adiba; Basaran, Sait; Cakan, Banu
2012-05-01
Ancient glass fragments excavated in the archaeological district Enez (Ancient Ainos)-Turkey were investigated by combined Instrumental Neutron Activation Analysis (INAA) and Fourier Transform Infrared (FTIR) spectrometry techniques. Multi-elemental contents of 15 glass fragments that belong to Hellenistic, Roman, Byzantine, and Ottoman Periods, were determined by INAA. The concentrations of twenty six elements (Na, K, Ca, Sc, Cr, Mn, Fe, Co, Cu, Zn, As, Rb, Sr, Sb, Cs, Ba, Ce, Sm, Eu, Tb, Yb, Lu, Hf, Ta, Au and Th), which might be present in the samples as flux, stabilizers, colorants or opacifiers, and impurities, were examined. Chemometric treatment of the INAA data was performed and principle component analysis revealed presence of 3 distinct groups. The thermal history of the glass samples was determined by FTIR spectrometry.
NASA Technical Reports Server (NTRS)
Miller, J. G.
1979-01-01
To investigate the use of Fourier analysis techniques model systems had to be designed to test some of the general properties of the interaction of sound with an inhomogeneity. The first models investigated were suspensions of solid spheres in water. These systems allowed comparison between theoretical computation of the frequency dependence of the attenuation coefficient and measurement of the attenuation coefficient over a range of frequencies. Ultrasonic scattering processes in both suspensions of hard spheres in water, and suspensions of hard spheres in polyester resin were investigated. The second model system was constructed to test the applicability of partial wave analysis to the description of an inhomogeneity in a solid, and to test the range of material properties over which the measurement systems were valid.
Nakabayashi, Ryo; Tsugawa, Hiroshi; Kitajima, Mariko; Takayama, Hiromitsu; Saito, Kazuki
2015-01-01
In metabolomics, the analysis of product ions in tandem mass spectrometry (MS/MS) is noteworthy to chemically assign structural information. However, the development of relevant analytical methods are less advanced. Here, we developed a method to boost sensitivity in liquid chromatography-Fourier transform ion cyclotron resonance-tandem mass spectrometry analysis (MS/MS boost analysis). To verify the MS/MS boost analysis, both quercetin and uniformly labeled (13)C quercetin were analyzed, revealing that the origin of the product ions is not the instrument, but the analyzed compounds resulting in sensitive product ions. Next, we applied this method to the analysis of monoterpene indole alkaloids (MIAs). The comparative analyses of MIAs having indole basic skeleton (ajmalicine, catharanthine, hirsuteine, and hirsutine) and oxindole skeleton (formosanine, isoformosanine, pteropodine, isopteropodine, rhynchophylline, isorhynchophylline, and mitraphylline) identified 86 and 73 common monoisotopic ions, respectively. The comparative analyses of the three pairs of stereoisomers showed more than 170 common monoisotopic ions in each pair. This method was also applied to the targeted analysis of MIAs in Catharanthus roseus and Uncaria rhynchophylla to profile indole and oxindole compounds using the product ions. This analysis is suitable for chemically assigning features of the metabolite groups, which contributes to targeted metabolome analysis.
Nakabayashi, Ryo; Tsugawa, Hiroshi; Kitajima, Mariko; Takayama, Hiromitsu; Saito, Kazuki
2015-01-01
In metabolomics, the analysis of product ions in tandem mass spectrometry (MS/MS) is noteworthy to chemically assign structural information. However, the development of relevant analytical methods are less advanced. Here, we developed a method to boost sensitivity in liquid chromatography–Fourier transform ion cyclotron resonance–tandem mass spectrometry analysis (MS/MS boost analysis). To verify the MS/MS boost analysis, both quercetin and uniformly labeled 13C quercetin were analyzed, revealing that the origin of the product ions is not the instrument, but the analyzed compounds resulting in sensitive product ions. Next, we applied this method to the analysis of monoterpene indole alkaloids (MIAs). The comparative analyses of MIAs having indole basic skeleton (ajmalicine, catharanthine, hirsuteine, and hirsutine) and oxindole skeleton (formosanine, isoformosanine, pteropodine, isopteropodine, rhynchophylline, isorhynchophylline, and mitraphylline) identified 86 and 73 common monoisotopic ions, respectively. The comparative analyses of the three pairs of stereoisomers showed more than 170 common monoisotopic ions in each pair. This method was also applied to the targeted analysis of MIAs in Catharanthus roseus and Uncaria rhynchophylla to profile indole and oxindole compounds using the product ions. This analysis is suitable for chemically assigning features of the metabolite groups, which contributes to targeted metabolome analysis. PMID:26734034
Compact Microwave Fourier Spectrum Analyzer
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry
2009-01-01
A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.
Salo, Raimo A; Miettinen, Tuukka; Laitinen, Teemu; Gröhn, Olli; Sierra, Alejandra
2017-03-04
Imaging markers for monitoring disease progression, recovery, and treatment efficacy are a major unmet need for many neurological diseases, including epilepsy. Recent evidence suggests that diffusion tensor imaging (DTI) provides high microstructural contrast even outside major white matter tracts. We hypothesized that in vivo DTI could detect progressive microstructural changes in the dentate gyrus and the hippocampal CA3bc in the rat brain after status epilepticus (SE). To test this hypothesis, we induced SE with systemic kainic acid or pilocarpine in adult male Wistar rats and subsequently scanned them using in vivo DTI at five time-points: prior to SE, and 10, 20, 34, and 79 days post SE. In order to tie the DTI findings to changes in the tissue microstructure, myelin- and glial fibrillary acidic protein (GFAP)-stained sections from the same animals underwent Fourier analysis. We compared the Fourier analysis parameters, anisotropy index and angle of myelinated axons or astrocyte processes, to corresponding DTI parameters, fractional anisotropy (FA) and the orientation angle of the principal eigenvector. We found progressive detectable changes in DTI parameters in both the dentate gyrus (FA, axial diffusivity [D||], linear anisotropy [CL] and spherical anisotropy [CS], p<0.001, linear mixed-effects model [LMEM]) and the CA3bc (FA, D||, CS, and angle, p<0.001, LMEM; CL and planar anisotropy [CP], p<0.01, LMEM) post SE. The Fourier analysis revealed that both myelinated axons and astrocyte processes played a role in the water diffusion anisotropy changes detected by DTI in individual portions of the dentate gyrus (suprapyramidal blade, mid-portion, and infrapyramidal blade). In the whole dentate gyrus, myelinated axons markedly contributed to the water diffusion changes. In CA3bc as well as in CA3b and CA3c, both myelinated axons and astrocyte processes contributed to water diffusion anisotropy and orientation. Our study revealed that DTI is a promising method
NASA Technical Reports Server (NTRS)
Maeda, A.; Sasaki, J.; Shichida, Y.; Yoshizawa, T.; Chang, M.; Ni, B.; Needleman, R.; Lanyi, J. K.
1992-01-01
The light-induced difference Fourier transform infrared spectrum between the L or N intermediate minus light-adapted bacteriorhodopsin (BR) was measured in order to examine the protonated states and the changes in the interactions of carboxylic acids of Asp-96 and Asp-115 in these intermediates. Vibrational bands due to the protonated and unprotonated carboxylic acid were identified by isotope shift and band depletion upon substitution of Asp-96 or -115 by asparagine. While the signal due to the deprotonation of Asp-96 was clearly observed in the N intermediate, this residue remained protonated in L. Asp-115 was partially deprotonated in L. The C = O stretching vibration of protonated Asp-96 of L showed almost no shift upon 2H2O substitution, in contrast to the corresponding band of Asp-96 or Asp-115 of BR, which shifted by 9-12 cm-1 under the same conditions. In the model system of acetic acid in organic solvents, such an absence of the shift of the C = O stretching vibration of the protonated carboxylic acid upon 2H2O substitution was seen only when the O-H of acetic acid is hydrogen-bonded. The non-hydrogen-bonded monomer showed the 2H2O-dependent shift. Thus, the O-H bond of Asp-96 enters into hydrogen bonding upon conversion of BR to L. Its increased hydrogen bonding in L is consistent with the observed downshift of the O-H stretching vibration of the carboxylic acid of Asp-96.
Tzall, W.R.; Sciacca, R.R.; Blood, D.K.; McCarthy, D.M.; Cannon, P.J.
1984-08-01
Bayes' theorem of conditional probability was applied to the diagnosis of coronary artery disease (CAD) using thallium-201 scintigraphy as the testing procedure. Thallium-201 scintiscans were evaluated with a discriminant function previously developed using the amplitude coefficients of the Fourier transforms of the scans. The technique was applied prospectively to a population of 100 patients undergoing diagnostic coronary arteriography and thallium-201 scintigraphy, including 83 patients with CAD (70% or greater stenosis of luminal diameter) and 17 control subjects. A pretest probability of CAD was determined for each patient from the patient's age, sex and anginal symptoms. The pretest probability was combined with the patient's discriminant score to determine a post-test probability for CAD. For patients with CAD, the mean post-test probability was 0.85. Moreover, 57 of 83 patients (69%) had post-test probabilities exceeding 90%, including 40 patients (48%) with post-test probabilities exceeding 99%. For control subjects, the mean post-test probability was 0.19, with 11 of 17 (65%) having a post-test probability of less than 10%. Overall, 68 subjects had a post-test probability either less than 10% or more than 90% of which 63 were correctly classified (93%). Using a 50% post-test probability as a cutoff for classification, the technique has an 89% sensitivity, an 82% specificity and an overall accuracy of 88%. Therefore, this method objectively distinguishes patients with CAD from control subjects and provides a measure of the certainty of diagnosis. In addition, the discriminant function avoids the problem of inter- and intraobserver variability in visually interpreting thallium-201 scans.
Dave, N; Troullier, A; Mus-Veteau, I; Duñach, M; Leblanc, G; Padrós, E
2000-01-01
The structure of the melibiose permease from Escherichia coli has been investigated by Fourier transform infrared spectroscopy, using the purified transporter either in the solubilized state or reconstituted in E. coli lipids. In both instances, the spectra suggest that the permease secondary structure is dominated by alpha-helical components (up to 50%) and contains beta-structure (20%) and additional components assigned to turns, 3(10) helix, and nonordered structures (30%). Two distinct and strong absorption bands are recorded at 1660 and 1653 cm(-1), i.e., in the usual range of absorption of helices of membrane proteins. Moreover, conditions that preserve the transporter functionality (reconstitution in liposomes or solubilization with dodecyl maltoside) make possible the detection of two separate alpha-helical bands of comparable intensity. In contrast, a single intense band, centered at approximately 1656 cm(-1), is recorded from the inactive permease in Triton X-100, or a merged and broader signal is recorded after the solubilized protein is heated in dodecyl maltoside. It is suggested that in the functional permease, distinct signals at 1660 and 1653 cm(-1) arise from two different populations of alpha-helical domains. Furthermore, the sodium- and/or melibiose-induced changes in amide I line shape, and in particular, in the relative amplitudes of the 1660 and 1653 cm(-1) bands, indicate that the secondary structure is modified during the early step of sugar transport. Finally, the observation that approximately 80% of the backbone amide protons can be exchanged suggests high conformational flexibility and/or a large accessibility of the membrane domains to the aqueous solvent. PMID:10920008
NASA Technical Reports Server (NTRS)
Maeda, A.; Sasaki, J.; Shichida, Y.; Yoshizawa, T.; Chang, M.; Ni, B.; Needleman, R.; Lanyi, J. K.
1992-01-01
The light-induced difference Fourier transform infrared spectrum between the L or N intermediate minus light-adapted bacteriorhodopsin (BR) was measured in order to examine the protonated states and the changes in the interactions of carboxylic acids of Asp-96 and Asp-115 in these intermediates. Vibrational bands due to the protonated and unprotonated carboxylic acid were identified by isotope shift and band depletion upon substitution of Asp-96 or -115 by asparagine. While the signal due to the deprotonation of Asp-96 was clearly observed in the N intermediate, this residue remained protonated in L. Asp-115 was partially deprotonated in L. The C = O stretching vibration of protonated Asp-96 of L showed almost no shift upon 2H2O substitution, in contrast to the corresponding band of Asp-96 or Asp-115 of BR, which shifted by 9-12 cm-1 under the same conditions. In the model system of acetic acid in organic solvents, such an absence of the shift of the C = O stretching vibration of the protonated carboxylic acid upon 2H2O substitution was seen only when the O-H of acetic acid is hydrogen-bonded. The non-hydrogen-bonded monomer showed the 2H2O-dependent shift. Thus, the O-H bond of Asp-96 enters into hydrogen bonding upon conversion of BR to L. Its increased hydrogen bonding in L is consistent with the observed downshift of the O-H stretching vibration of the carboxylic acid of Asp-96.
USDA-ARS?s Scientific Manuscript database
Fourier Transform Infrared Spectroscopy (FT-IR) was used to detect Salmonella typhimurium and Salmonella enteritidis foodborne bacteria and distinguish between live and dead cells of both serotypes. Bacteria were loaded individually on the ZnSe Attenuated Total Reflection (ATR) crystal surface and s...
Ishizuka, Kazuo; Kimoto, Koji
2016-10-01
The resolution of high-resolution transmission electron microscopes (TEM) has been improved down to subangstrom levels by correcting the spherical aberration (Cs) of the objective lens, and the information limit is thus determined mainly by partial temporal coherence. As a traditional Young's fringe test does not reveal the true information limit for an ultra-high-resolution electron microscope, new methods to evaluate temporal coherence have been proposed based on a tilted-beam diffractogram. However, the diffractogram analysis cannot be applied when the nonlinear contribution becomes significant. Therefore, we have proposed a method based on the three-dimensional (3D) Fourier transform (FT) of through-focus TEM images, and evaluated the performance of some Cs-corrected TEMs at lower voltages. In this report, we generalize the 3D FT analysis and derive the 3D transmission cross-coefficient. The profound difference of the 3D FT analysis from the diffractogram analysis is its capability to extract linear image information from the image intensity, and further to evaluate two linear image contributions separately on the Ewald sphere envelopes. Therefore, contrary to the diffractogram analysis the 3D FT analysis can work with a strong scattering object. This is the necessary condition if we want to directly observe the linear image transfer down to a few tens of picometer.
Shim, J Y; Cho, I K; Khurana, H K; Li, Q X; Jun, S
2008-06-01
Fourier transform infrared (FTIR) spectroscopy was investigated as a method for analysis of acesulfame-K content after a simple extraction procedure for certain commercial diet food samples. Partial least squares (PLS) models were developed for prediction of acesulfame-K using select spectral ranges on the basis of relevant IR absorption bands associated with acesulfame-K. The acesulfame-K content of test food samples was predicted accurately in the fingerprint region between 1100 and 1300 cm(-1) with a maximum prediction error of 9.82% when compared with conventional HPLC method. The PLS was found to be a consistently better predictor when both PLS and principal component regression (PCR) analyses were used for quantification of acesulfame-K. The developed procedure was further validated by comparing with HPLC results as well as recovery studies. As a quick tool, the method developed is expected to be used for routine estimation of acesulfame-K in commercial products.
NASA Astrophysics Data System (ADS)
Habibi, Neda
2015-02-01
The preparation and characterization of functional biocompatible magnetite-cellulose nano-composite fibrous material is described. Magnetite-cellulose nano-composite was prepared by a combination of the solution-based formation of magnetic nano-particles and subsequent coating with amino celluloses. Characterization was accomplished using X-ray powder diffraction (XRD), fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. The peaks of Fe3O4 in the XRD pattern of nanocomposite confirm existence of the nanoparticles in the amino cellulose matrix. Magnetite-cellulose particles exhibit an average diameter of roughly 33 nm as demonstrated by field emission scanning electron microscopy. Magnetite nanoparticles were irregular spheres dispersed in the cellulose matrix. The vibration corresponding to the Nsbnd CH3 functional group about 2850 cm-1 is assigned in the FTIR spectra. Functionalized magnetite-cellulose nano-composite polymers have a potential range of application as targeted drug delivery system in biomedical field.
Prokai, Laszlo; Stevens, Stanley M
2016-01-16
Direct analysis in real time (DART) is a recently developed ambient ionization technique for mass spectrometry to enable rapid and sensitive analyses with little or no sample preparation. After swab-based field sampling, the organothiophosphate malathion was analyzed using DART-Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Mass resolution was documented to be over 800,000 in full-scan MS mode and over 1,000,000 for an MS/MS product ion produced by collision-induced dissociation of the protonated analyte. Mass measurement accuracy below 1 ppm was obtained for all DART-generated ions that belonged to the test compound in the mass spectra acquired using only external mass calibration. This high mass measurement accuracy, achievable at present only through FTMS, was required for unequivocal identification of the corresponding molecular formulae.
Causin, Valerio; Casamassima, Rosario; Marega, Carla; Maida, Pietro; Schiavone, Sergio; Marigo, Antonio; Villari, Antonino
2008-11-01
The knowledge of the discriminating power of analytical techniques used for the differentiation of writing inks can be useful when interpreting results. Ultraviolet-visible (UV-VIS) spectrophotometry, thin layer chromatography (TLC), and diffuse reflectance Fourier transform infrared spectroscopy (FT-IR) were used to examine a population of 21 black and 12 blue ballpoint writing inks. Based on corroborative results of these methods, the discrimination power for UV-VIS, TLC, and FT-IR was determined to be 100% and 98% for the black and blue inks, respectively. Generally, TLC and UV-VIS can be used to differentiate the colorant components (i.e., dyes and some pigments) found in inks. As FT-IR can be utilized to identify some of the noncolorant components, it was determined to be an excellent complementary technique that can be implemented into an analytical scheme for ink analysis.
Prokai, Laszlo; Stevens, Stanley M.
2016-01-01
Direct analysis in real time (DART) is a recently developed ambient ionization technique for mass spectrometry to enable rapid and sensitive analyses with little or no sample preparation. After swab-based field sampling, the organothiophosphate malathion was analyzed using DART-Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Mass resolution was documented to be over 800,000 in full-scan MS mode and over 1,000,000 for an MS/MS product ion produced by collision-induced dissociation of the protonated analyte. Mass measurement accuracy below 1 ppm was obtained for all DART-generated ions that belonged to the test compound in the mass spectra acquired using only external mass calibration. This high mass measurement accuracy, achievable at present only through FTMS, was required for unequivocal identification of the corresponding molecular formulae. PMID:26784186
Zhu, Huiping; Cao, Gang; Cai, Hao; Cai, Baochang; Hu, Jue
2014-01-01
Objective: The main objective of this work is to determine the feasibility of identification of crude and processed Radix Scrophulariae using the Fourier transform infrared spectroscopy couple with soft independent modeling of class analogy (FT-IR-SIMCA). Materials and Methods: A total of 50 different crude Radix Scrophulariae was used to product processed ones. The spectra were acquired by FT-IR spectroscopy using a diffuse reflectance fiber optic probe. For the multivariate analysis, SIMCA was used. Results showed that FT-IR-SIMCA was useful to discriminate the processed Radix Scrophulariae samples from crude samples. These samples could be successfully classified by SIMCA. Results: In all cases, the recognition and rejection rates were 97.8% and 100%, respectively. When testing with the blind sample that was picked out from the chosen samples, the accuracy was up to 90%. Conclusion: It means that the methodology is capable of accurately separating processed Radix Scrophulariae from crude samples. PMID:25210313
Fourier plane imaging microscopy
Dominguez, Daniel Peralta, Luis Grave de; Alharbi, Nouf; Alhusain, Mdhaoui; Bernussi, Ayrton A.
2014-09-14
We show how the image of an unresolved photonic crystal can be reconstructed using a single Fourier plane (FP) image obtained with a second camera that was added to a traditional compound microscope. We discuss how Fourier plane imaging microscopy is an application of a remarkable property of the obtained FP images: they contain more information about the photonic crystals than the images recorded by the camera commonly placed at the real plane of the microscope. We argue that the experimental results support the hypothesis that surface waves, contributing to enhanced resolution abilities, were optically excited in the studied photonic crystals.
Li, Yan; Zhang, Ji; Zhao, Yanli; Liu, Honggao; Wang, Yuanzhong; Jin, Hang
2016-01-01
In this study the geographical differentiation of dried sclerotia of the medicinal mushroom Wolfiporia extensa, obtained from different regions in Yunnan Province, China, was explored using Fourier-transform infrared (FT-IR) spectroscopy coupled with multivariate data analysis. The FT-IR spectra of 97 samples were obtained for wave numbers ranging from 4000 to 400 cm-1. Then, the fingerprint region of 1800-600 cm-1 of the FT-IR spectrum, rather than the full spectrum, was analyzed. Different pretreatments were applied on the spectra, and a discriminant analysis model based on the Mahalanobis distance was developed to select an optimal pretreatment combination. Two unsupervised pattern recognition procedures- principal component analysis and hierarchical cluster analysis-were applied to enhance the authenticity of discrimination of the specimens. The results showed that excellent classification could be obtained after optimizing spectral pretreatment. The tested samples were successfully discriminated according to their geographical locations. The chemical properties of dried sclerotia of W. extensa were clearly dependent on the mushroom's geographical origins. Furthermore, an interesting finding implied that the elevations of collection areas may have effects on the chemical components of wild W. extensa sclerotia. Overall, this study highlights the feasibility of FT-IR spectroscopy combined with multivariate data analysis in particular for exploring the distinction of different regional W. extensa sclerotia samples. This research could also serve as a basis for the exploitation and utilization of medicinal mushrooms.
Fourier methods for turbomachinery applications
NASA Astrophysics Data System (ADS)
He, L.
2010-11-01
Rapid increase in computing power has made a huge difference in scales and complexities of the problems in turbomachinery that we can tackle by use of computational fluid dynamics (CFD). It is recognised, however, that there is always a need for developing efficient methods for applications to blade designs. In a design cycle, a large number of flow solutions are sought to interact iteratively or concurrently with various options, opportunities and constraints from other disciplines. This basic requirement for fast prediction methods in a multi-disciplinary design environment remains unchanged, regardless of computer speed. And it must be recognised that the multi-disciplinary nature of blading design increasingly influences outcomes of advanced gas turbine and aeroengine developments. Recently there has been considerable progress in the Fourier harmonic modelling method development for turbomachinery applications. The main driver is to develop efficient and accurate computational methodologies and working methods for prediction and analysis of unsteady effects on aerothermal performance (loading and efficiency) and aeroelasticity (blade vibration due to flutter and forced response) in turbomachinery. In this article, the developments and applications of this type of methods in the past 20 years or so are reviewed. The basic modelling assumptions and various forms of implementations for the temporal Fourier modelling approach are presented and discussed. Computational examples for realistic turbomachinery configurations/flow conditions are given to illustrate the validity and effectiveness of the approach. Although the major development has been in the temporal Fourier harmonic modelling, some recent progress in use of the spatial Fourier modelling is also described with demonstration examples.
Evan Brooks; Valerie Thomas; Wynne Randolph; John Coulston
2012-01-01
With the advent of free Landsat data stretching back decades, there has been a surge of interest in utilizing remotely sensed data in multitemporal analysis for estimation of biophysical parameters. Such analysis is confounded by cloud cover and other image-specific problems, which result in missing data at various aperiodic times of the year. While there is a wealth...
NASA Astrophysics Data System (ADS)
Pellat-Finet, Pierre
L'optique de Fourier doit son nom à l'emploi délibéré de la transformation de Fourier dans la représentation de phénomènes fondés sur la diffraction de la lumière1. Inscrite dans les limites d'une théorie scalaire, elle est, traditionnellement, liée à l'optique cohérente et les sujets développés dans ce livre se rattachent à ce thème. Le domaine et les applications ussuelles de l'optique de Fourier concernent la formation des images, la résolution des instruments d'optique, le traitement du signal optique, l'holographie, le transfert de la cohérence. Nous verrons comment y inclure la théorie des résonateurs optiques et celle des faisseaux gaussiens; celle de la dispersion dans les fibres optiques. L'optique de Fourier fournit ainsi un cadre général à la modélisation d'un grand nombre de phénomènes optiques2.
Fourier Transform Mass Spectrometry.
ERIC Educational Resources Information Center
Gross, Michael L.; Rempel, Don L.
1984-01-01
Discusses the nature of Fourier transform mass spectrometry and its unique combination of high mass resolution, high upper mass limit, and multichannel advantage. Examines its operation, capabilities and limitations, applications (ion storage, ion manipulation, ion chemistry), and future applications and developments. (JN)
Fourier-Bessel rotational invariant eigenimages.
Zhao, Zhizhen; Singer, Amit
2013-05-01
We present an efficient and accurate algorithm for principal component analysis (PCA) of a large set of two-dimensional images and, for each image, the set of its uniform rotations in the plane and its reflection. The algorithm starts by expanding each image, originally given on a Cartesian grid, in the Fourier-Bessel basis for the disk. Because the images are essentially band limited in the Fourier domain, we use a sampling criterion to truncate the Fourier-Bessel expansion such that the maximum amount of information is preserved without the effect of aliasing. The constructed covariance matrix is invariant to rotation and reflection and has a special block diagonal structure. PCA is efficiently done for each block separately. This Fourier-Bessel-based PCA detects more meaningful eigenimages and has improved denoising capability compared to traditional PCA for a finite number of noisy images.
Nurdalila, A'wani Aziz; Bunawan, Hamidun; Kumar, Subbiah Vijay; Rodrigues, Kenneth Francis; Baharum, Syarul Nataqain
2015-07-02
Taxonomic confusion exists within the genus Epinephelus due to the lack of morphological specializations and the overwhelming number of species reported in several studies. The homogenous nature of the morphology has created confusion in the Malaysian Marine fish species Epinephelus fuscoguttatus and Epinephelus hexagonatus. In this study, the partial DNA sequence of the 16S gene and mitochondrial nucleotide sequences of two gene regions, Cytochrome Oxidase Subunit I and III were used to investigate the phylogenetic relationship between them. In the phylogenetic trees, E. fuscoguttatus was monophyletic with E. hexagonatus species and morphology examination shows that no significant differences were found in the morphometric features between these two taxa. This suggests that E. fuscoguttatus is not distinguishable from E. hexagonatus species, and that E. fuscoguttatus have been identified to be E. hexagonatus species is likely attributed to differences in environment and ability to camouflage themselves under certain conditions. Interestingly, this finding was also supported by Principal Component Analysis on Attenuated Total Reflectance-Fourier-transform Infrared (ATR-FTIR) data analysis. Molecular, morphological and meristic characteristics were combined with ATR-FTIR analysis used in this study offer new perspectives in fish species identification. To our knowledge, this is the first report of an extensive genetic population study of E. fuscoguttatus in Malaysia and this understanding will play an important role in informing genetic stock-specific strategies for the management and conservation of this highly valued fish.
Al-Qadiri, Hamzah M; Al-Holy, Murad A; Lin, Mengshi; Alami, Nivin I; Cavinato, Anna G; Rasco, Barbara A
2006-08-09
Fourier transform infrared (FT-IR) spectroscopy and multivariate analysis were used to identify Pseudomonas aeruginosa and Escherichia coli ATCC 25922 inoculated into bottled drinking water. Three inoculation treatments were examined: (i) E. coli ATCC 25922 (N = 3), (ii) P. aeruginosa (N = 3), and (iii) a 1:1 (v:v) mixed culture of both P. aeruginosa and E. coli ATCC 25922 (N = 3). The control treatment was noninoculated drinking water (N = 3). Second derivative transformation and loadings plots over the range of 1800-900 cm(-1) indicate variations in the following bacterial constituents: amide I band ca. 1650 cm(-1), amide II band ca. 1540 cm(-1), phosphodiester backbone of nucleic acids ca. 1242 and 1080 cm(-1), and polysaccharide compounds ca. 1050-950 cm(-1). Cells with the different treatments were clearly segregated from a mean centered principal component analysis. By using soft independent modeling of class analogy analysis, spectra from a given treatment could be correctly classified 83-88% of the time. These results suggest that FT-IR spectroscopy can determine whether a pure culture is present, in addition to confirming that this method can discriminate between closely related bacteria based on differences in biochemical and phenotypic characteristics that can be detected in this spectral region.
Ye, Qiang; Parthasarathy, Ranganathan; Abedin, Farhana; Laurence, Jennifer S.; Misra, Anil; Spencer, Paulette
2014-01-01
Water is ubiquitous in the mouths of healthy individuals and is a major interfering factor in the development of a durable seal between the tooth and composite restoration. Water leads to the formation of a variety of defects in dentin adhesives; these defects undermine the tooth-composite bond. Our group recently analyzed phase partitioning of dentin adhesives using high-performance liquid chromatography (HPLC). The concentration measurements provided by HPLC offered a more thorough representation of current adhesive performance and elucidated directions to be taken for further improvement. The sample preparation and instrument analysis using HPLC are, however, time-consuming and labor-intensive. The objective of this work was to develop a methodology for rapid, reliable, and accurate quantitative analysis of near-equilibrium phase partitioning in adhesives exposed to conditions simulating the wet oral environment. Analysis by Fourier transform infrared (FT-IR) spectroscopy in combination with multivariate statistical methods, including partial least squares (PLS) regression and principal component regression (PCR), were used for multivariate calibration to quantify the compositions in separated phases. Excellent predictions were achieved when either the hydrophobic-rich phase or the hydrophilic-rich phase mixtures were analyzed. These results indicate that FT-IR spectroscopy has excellent potential as a rapid method of detection and quantification of dentin adhesives that experience phase separation under conditions that simulate the wet oral environment. PMID:24359662
Levitskaia, Tatiana G.; Peterson, James M.; Campbell, Emily L.; Casella, Amanda J.; Peterman, Dean; Bryan, Samuel A.
2013-11-05
In liquid-liquid extraction separation processes, accumulation of organic solvent degradation products is detrimental to the process robustness and frequent solvent analysis is warranted. Our research explores feasibility of online monitoring of the organic solvents relevant to used nuclear fuel reprocessing. This paper describes the first phase of developing a system for monitoring the tributyl phosphate (TBP)/n-dodecane solvent commonly used to separate used nuclear fuel. In this investigation, the effect of extraction of nitric acid from aqueous solutions of variable concentrations on the quantification of TBP and its major degradation product dibutyl phosphoric acid (HDBP) was assessed. Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy was used to discriminate between HDBP and TBP in the nitric acid-containing TBP/n-dodecane solvent. Multivariate analysis of the spectral data facilitated the development of regression models for HDBP and TBP quantification in real time, enabling online implementation of the monitoring system. The predictive regression models were validated using TBP/n-dodecane solvent samples subjected to the high dose external gamma irradiation. The predictive models were translated to flow conditions using a hollow fiber FTIR probe installed in a centrifugal contactor extraction apparatus demonstrating the applicability of the FTIR technique coupled with multivariate analysis for the online monitoring of the organic solvent degradation products.
Liu, Yongliang; Kim, Hee-Jin
2017-06-22
With cotton fiber growth or maturation, cellulose content in cotton fibers markedly increases. Traditional chemical methods have been developed to determine cellulose content, but it is time-consuming and labor-intensive, mostly owing to the slow hydrolysis process of fiber cellulose components. As one approach, the attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy technique has also been utilized to monitor cotton cellulose formation, by implementing various spectral interpretation strategies of both multivariate principal component analysis (PCA) and 1-, 2- or 3-band/-variable intensity or intensity ratios. The main objective of this study was to compare the correlations between cellulose content determined by chemical analysis and ATR FT-IR spectral indices acquired by the reported procedures, among developmental Texas Marker-1 (TM-1) and immature fiber (im) mutant cotton fibers. It was observed that the R value, CIIR, and the integrated intensity of the 895 cm(-1) band exhibited strong and linear relationships with cellulose content. The results have demonstrated the suitability and utility of ATR FT-IR spectroscopy, combined with a simple algorithm analysis, in assessing cotton fiber cellulose content, maturity, and crystallinity in a manner which is rapid, routine, and non-destructive.
Liu, Yongliang; Kim, Hee-Jin
2017-01-01
With cotton fiber growth or maturation, cellulose content in cotton fibers markedly increases. Traditional chemical methods have been developed to determine cellulose content, but it is time-consuming and labor-intensive, mostly owing to the slow hydrolysis process of fiber cellulose components. As one approach, the attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy technique has also been utilized to monitor cotton cellulose formation, by implementing various spectral interpretation strategies of both multivariate principal component analysis (PCA) and 1-, 2- or 3-band/-variable intensity or intensity ratios. The main objective of this study was to compare the correlations between cellulose content determined by chemical analysis and ATR FT-IR spectral indices acquired by the reported procedures, among developmental Texas Marker-1 (TM-1) and immature fiber (im) mutant cotton fibers. It was observed that the R value, CIIR, and the integrated intensity of the 895 cm−1 band exhibited strong and linear relationships with cellulose content. The results have demonstrated the suitability and utility of ATR FT-IR spectroscopy, combined with a simple algorithm analysis, in assessing cotton fiber cellulose content, maturity, and crystallinity in a manner which is rapid, routine, and non-destructive. PMID:28640185
Nurdalila, A’wani Aziz; Bunawan, Hamidun; Kumar, Subbiah Vijay; Rodrigues, Kenneth Francis; Baharum, Syarul Nataqain
2015-01-01
Taxonomic confusion exists within the genus Epinephelus due to the lack of morphological specializations and the overwhelming number of species reported in several studies. The homogenous nature of the morphology has created confusion in the Malaysian Marine fish species Epinephelus fuscoguttatus and Epinephelus hexagonatus. In this study, the partial DNA sequence of the 16S gene and mitochondrial nucleotide sequences of two gene regions, Cytochrome Oxidase Subunit I and III were used to investigate the phylogenetic relationship between them. In the phylogenetic trees, E. fuscoguttatus was monophyletic with E. hexagonatus species and morphology examination shows that no significant differences were found in the morphometric features between these two taxa. This suggests that E. fuscoguttatus is not distinguishable from E. hexagonatus species, and that E. fuscoguttatus have been identified to be E. hexagonatus species is likely attributed to differences in environment and ability to camouflage themselves under certain conditions. Interestingly, this finding was also supported by Principal Component Analysis on Attenuated Total Reflectance–Fourier-transform Infrared (ATR-FTIR) data analysis. Molecular, morphological and meristic characteristics were combined with ATR-FTIR analysis used in this study offer new perspectives in fish species identification. To our knowledge, this is the first report of an extensive genetic population study of E. fuscoguttatus in Malaysia and this understanding will play an important role in informing genetic stock-specific strategies for the management and conservation of this highly valued fish. PMID:26147421
Tatiana G. Levitskaia; James M. Peterson; Emily L. Campbell; Amanda J. Casella; Dean R. Peterman; Samuel A. Bryan
2013-12-01
In liquid–liquid extraction separation processes, accumulation of organic solvent degradation products is detrimental to the process robustness, and frequent solvent analysis is warranted. Our research explores the feasibility of online monitoring of the organic solvents relevant to used nuclear fuel reprocessing. This paper describes the first phase of developing a system for monitoring the tributyl phosphate (TBP)/n-dodecane solvent commonly used to separate used nuclear fuel. In this investigation, the effect of extraction of nitric acid from aqueous solutions of variable concentrations on the quantification of TBP and its major degradation product dibutylphosphoric acid (HDBP) was assessed. Fourier transform infrared (FTIR) spectroscopy was used to discriminate between HDBP and TBP in the nitric acid-containing TBP/n-dodecane solvent. Multivariate analysis of the spectral data facilitated the development of regression models for HDBP and TBP quantification in real time, enabling online implementation of the monitoring system. The predictive regression models were validated using TBP/n-dodecane solvent samples subjected to high-dose external ?-irradiation. The predictive models were translated to flow conditions using a hollow fiber FTIR probe installed in a centrifugal contactor extraction apparatus, demonstrating the applicability of the FTIR technique coupled with multivariate analysis for the online monitoring of the organic solvent degradation products.
NASA Astrophysics Data System (ADS)
Du, Y.; Jiang, X.; Ma, X.; Liu, X.; Lv, G.; Jin, Y.; Wang, F.; Chi, Y.; Yan, J.
2015-01-01
Bio-ferment residues (BR) are wastes produced by a biological fermentation process for the production of antibiotics. In this work, the evolution characteristics of pyrolysis products of BR were studied using TG-FTIR analysis and MS analysis. It was found that species such as H2O, NH3, CH4, carboxylic acid, aldehydes, alkanes, HCN, HNCO, CO, and CO2 were released at a temperature lower than 600°C. Above 600°C, the dominant products were H2, CO, and CO2. Scarcely any acetylene or benzene was observed. HCN and HNCO were found to evolve in a small amount, while other potential pollutants such as H2S, COS, and CS2 were hardly detected.
Li, Tao; He, Xuan
2016-01-01
A nondestructive, efficient, and rapid method for quantitative analysis of two bioactive components (salidroside and p-tyrosol) in Rhodiola crenulata, a traditional Tibetan medicine, by Fourier transform near-infrared (FT-NIR) spectroscopy was developed. Near-infrared diffuse reflectance spectra in the range of 4000 to 10000 cm(-1) of 50 samples of Rhodiola crenulata with different sources were measured. To get a satisfying result, partial least squares regression (PLSR) was used to establish NIR models for salidroside and p-tyrosol content determination. Different preprocessing methods, including smoothing, taking a second derivative, standard normal variate (SNV) transformation, and multiplicative scatter correction (MSC), were investigated to improve the model accuracy of PLSR. The performance of the two final models (salidroside model and p-tyrosol model) was evaluated by factors such as the values of correlation coefficient (R(2)), root mean square error of prediction (RMSEP), and root mean square error of calibration (RMSEC). The optimal results of the PLSR model of salidroside showed that R(2), RMSEP and RMSEC were 0.99572, 0.0294 and 0.0309, respectively. Meanwhile, in the optimization model of p-tyrosol, the R(2), RMSEP and RMSEC were 0.99714, 0.0154 and 0.0168, respectively. These results demonstrate that FT-NIR spectroscopy not only provides a precise, rapid method for quantitative analysis of major effective constituents in Rhodiola crenulata, but can also be applied to the quality control of Rhodiola crenulata.
Feng, Tao; Wang, Feng; Pinal, Rodolfo; Wassgren, Carl; Carvajal, M Teresa
2008-01-01
The purpose of this research was to investigate the variability of the roller compaction process while monitoring in-line with near-infrared (NIR) spectroscopy. In this paper, a pragmatic method in determining this variability of in-line NIR monitoring roller compaction process was developed and the variability limits were established. Fast Fourier Transform (FFT) analysis was used to study the source of the systematic fluctuations of the NIR spectra. An off-line variability analysis method was developed as well to simulate the in-line monitoring process in order to determine the variability limits of the roller compaction process. For this study, a binary formulation was prepared composed of acetaminophen and microcrystalline cellulose. Different roller compaction parameters such as roll speed and feeding rates were investigated to understand the variability of the process. The best-fit line slope of NIR spectra exhibited frequency dependence only on the roll speed regardless of the feeding rates. The eccentricity of the rolling motion of rollers was identified as the major source of variability and correlated with the fluctuations of the slopes of NIR spectra. The off-line static and dynamic analyses of the compacts defined two different variability of the roller compaction; the variability limits were established. These findings were proved critical in the optimization of the experimental setup of the roller compaction process by minimizing the variability of NIR in-line monitoring.
Somogyi, Árpád; Thissen, Roland; Orthous-Daunay, Francois-Régis; Vuitton, Véronique
2016-03-24
It is an important but also a challenging analytical problem to understand the chemical composition and structure of prebiotic organic matter that is present in extraterrestrial materials. Its formation, evolution and content in the building blocks ("seeds") for more complex molecules, such as proteins and DNA, are key questions in the field of exobiology. Ultrahigh resolution mass spectrometry is one of the best analytical techniques that can be applied because it provides reliable information on the chemical composition and structure of individual components of complex organic mixtures. Prebiotic organic material is delivered to Earth by meteorites or generated in laboratories in simulation (model) experiments that mimic space or atmospheric conditions. Recent representative examples for ultrahigh resolution mass spectrometry studies using Fourier-transform (FT) mass spectrometers such as Orbitrap and ion cyclotron resonance (ICR) mass spectrometers are shown and discussed in the present article, including: (i) the analysis of organic matter of meteorites; (ii) modeling atmospheric processes in ICR cells; and (iii) the structural analysis of laboratory made tholins that might be present in the atmosphere and surface of Saturn's largest moon, Titan.
Somogyi, Árpád; Thissen, Roland; Orthous-Daunay, Francois-Régis; Vuitton, Véronique
2016-01-01
It is an important but also a challenging analytical problem to understand the chemical composition and structure of prebiotic organic matter that is present in extraterrestrial materials. Its formation, evolution and content in the building blocks (“seeds”) for more complex molecules, such as proteins and DNA, are key questions in the field of exobiology. Ultrahigh resolution mass spectrometry is one of the best analytical techniques that can be applied because it provides reliable information on the chemical composition and structure of individual components of complex organic mixtures. Prebiotic organic material is delivered to Earth by meteorites or generated in laboratories in simulation (model) experiments that mimic space or atmospheric conditions. Recent representative examples for ultrahigh resolution mass spectrometry studies using Fourier-transform (FT) mass spectrometers such as Orbitrap and ion cyclotron resonance (ICR) mass spectrometers are shown and discussed in the present article, including: (i) the analysis of organic matter of meteorites; (ii) modeling atmospheric processes in ICR cells; and (iii) the structural analysis of laboratory made tholins that might be present in the atmosphere and surface of Saturn’s largest moon, Titan. PMID:27023520
Gudi, Gennadi; Krähmer, Andrea; Krüger, Hans; Schulz, Hartwig
2015-10-07
Sage (Salvia officinalis L.) is cultivated worldwide for its aromatic leaves, which are used as herbal spice, and for phytopharmaceutical applications. Fast analytical strategies for essential oil analysis, performed directly on plant material, would reduce the delay between sampling and analytical results. This would enhance product quality by improving technical control of cultivation. The attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) method described here provides a reliable calibration model for quantification of essential oil components [EOCs; R(2) = 0.96; root-mean-square error of cross-validation (RMSECV) = 0.249 mL 100 g(-1) of dry matter (DM); and range = 1.115-5.280 mL 100 g(-1) of DM] and main constituents [e.g., α-thujone/β-thujone; R(2) = 0.97/0.86; RMSECV = 0.0581/0.0856 mL 100 g(-1) of DM; and range = 0.010-1.252/0.005-0.893 mL 100 g(-1) of DM] directly on dried intact leaves of sage. Except for drying, no further sample preparation is required for ATR-FTIR, and the measurement time of less than 5 min per sample contrasts with the most common alternative of hydrodistillation followed by gas chromatography analysis, which can take several hours per sample.
NASA Astrophysics Data System (ADS)
Land, Donald Paul
The field of surface science is growing rapidly, fueled by the needs to refine petroleum more efficiently, to clean up automobile exhaust, to protect against corrosion and wear, and to shrink the size of electronic components and information storage systems. These are important aspects of daily life, all of which could benefit from a better understanding of the fundamental processes that occur at the interfaces between different phases of matter. For the technologies mentioned, the most important interface is that between the gas and the solid phases. The technique described in this dissertation merges several recently established methods into a powerful instrument for the analysis of the solid-gas interface, yielding information on the chemical nature of species at this interface, relative concentrations, and even reactivities and intermediates. Details of the design and construction of the instrument are followed by a performance evaluation and a presentation of characterization studies for postionization methods, including electron impact ionization, resonance -enhanced multiphoton ionization, and chemical ionization. The use of the technique for the analysis of unknowns on surfaces is then detailed, highlighting the ability to obtain accurate mass measurement using the high resolution capabilities of FTMS. The use of ion storage techniques results in further unique analysis methods via gas-phase charge exchange reactions. This technique opens the door to the study of more complex molecules on surfaces, as well as mixtures of surface species, because FT mass spectrometry is well suited for such analyses. In this dissertation, data is presented for desorption of tens of molecular species encompassing nearly every organic functional group and including species as widely varying as cyanogen, ethylene, cyclohexane, methanol, and even a tetra-peptide. In-depth analyses of the kinetics of ethylene dehydrogenation and the identification of cyclohexene and 1,6-hexa
Burger, D.E.; Jett, J.H.; Mullaney, P.F.
1982-03-01
Models of biological cells of varying geometric complexity were used to generate data to test a method of extracting geometric features from light scatter distributions. Measurements of the dynamic range and angular distribution of intensity and light scatter from these models was compared to the distributions predicted by a complete theory of light scatter (Mie) and by diffraction theory (Fraunhofer). An approximation to the Fraunhofer theory provides a means of obtaining size and shape features from the data by a spectrum analysis. Experimental verification using nucleated erythrocytes as the biological material show the potential application of this method for the extraction of important size and shape parameters from light scatter data.
Optical signal processing - Fourier transforms and convolution/correlation
NASA Astrophysics Data System (ADS)
Rhodes, William T.
The application of Fourier techniques and linear-systems theory to the analysis and synthesis of optical systems is described in a theoretical review, and Fourier-based optical signal-processing methods are considered. Topics examined include monochromatic wave fields and their phasor representation, wave propagation, Fourier-transform and spectrum analysis with a spherical lens, coherent and incoherent imaging and spatial filtering, and a channelized spectrum analyzer (using both spherical and cylindrical lenses) for multiple one-dimensional input signals.
Musingarabwi, Davirai M; Nieuwoudt, Hélène H; Young, Philip R; Eyéghè-Bickong, Hans A; Vivier, Melané A
2016-01-01
Fourier transform (FT) near-infrared (NIR) and attenuated total reflection (ATR) FT mid-infrared (MIR) spectroscopy were used to qualitatively and quantitatively analyse Vitis vinifera L. cv Sauvignon blanc grape berries. FT-NIR and ATR FT-MIR spectroscopy, coupled with spectral preprocessing and multivariate data analysis (MVDA), provided reliable methods to qualitatively assess berry samples at five distinct developmental stages: green, pre-véraison, véraison, post-véraison and ripe (harvest), without any prior metabolite extraction. Compared to NIR spectra, MIR spectra provided more reliable discrimination between the berry samples from the different developmental stages. Interestingly, ATR FT-MIR spectra from fresh homogenized berry samples proved more discriminatory than spectra from frozen homogenized berry samples. Different developmental stages were discriminated by principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). In order to generate partial least squares (PLS) models from the MIR/NIR spectral datasets; the major sugars (glucose and fructose) and organic acids (malic acid, succinic acid and tartaric acid) were separated and quantified by high performance liquid chromatography (HPLC) and the data used as a reference dataset. PLS regression was used to develop calibration models to predict the concentration of the major sugars and organic acids in the berry samples from different developmental stages. Our data show that infrared (IR) spectroscopy could provide a rapid, reproducible and cost-effective alternative to the chromatographic analysis of the sugar and organic acid composition of grape berries at various developmental stages, using small sample volumes and requiring limited sample preparation. This provides scope and support for the possible development of hand-held devices to assess quality parameters in field-settings in real-time and non-destructively using IR technologies. Copyright
NASA Astrophysics Data System (ADS)
Seifert, Nathan A.; Thomas, Javix; Jäger, Wolfgang; Xu, Yunjie
2017-06-01
Low frequency microwave spectroscopy (< 10 GHz) is ideal for studies of large molecular systems including higher order molecular complexes. The cold rotational temperature of a pulsed jet makes detections in this region highly attractive for these larger molecular systems with small rotational constants. Here, we report on the construction and initial benchmarking results for a new 2.0-6.0 GHz CP-FTMW spectrometer, similar in design to the 2.0-8.0 GHz spectrometer designed in Brooks Pate's group at the University of Virginia, that takes advantage of numerous improvements in solid-state microwave devices and high-speed digitizers. In addition to details and analysis of the new instrumental design, comparisons to the previous generation 7.5-18.0 GHz spectrometer at the University of Alberta will be presented using the microwave spectrum of methyl lactate as a benchmark. Finally, initial results for several novel molecular systems studied using this new spectrometer, including the tetramer of 2-fluoroethanol, will be presented. C. Perez, S. Lobsiger, N. A. Seifert, D. P. Zaleski, B. Temelso, G. C. Shields, Z. Kisiel, B. H. Pate, Chem. Phys. Lett., 2013, 571, 1-15.
Rotational analysis of the 7390- and 7937-Å bands of NO 2 by means of Fourier transform spectroscopy
NASA Astrophysics Data System (ADS)
Perrin, A.; Camy-Peyret, C.; Flaud, J.-M.; Luc, P.
1981-08-01
We have extended to higher N and to Ka = 3 and 4 the rotational analysis of the 7390-Å band of NO 2 performed by K. E. Hallin and A. J. Merer ( Canad. J. Phys.55, 2101-2112 (1977)). The lines belong to a perturbed parallel band for which Hallin and others have proposed the vibrational assignment (2 13 1)-(0 0 0) within the electronic ground state. These authors presumed that this band borrows its intensity through a vibronic coupling (spin-orbit and/or Coriolis coupling) from the stronger (0 2 0)-(0 0 0) band of the Ö X˜ electronic system at 7460 Å. We have observed about 900 transitions belonging to the Ka = 0, 1, 2, 3, 4 subbands of the (2 13 1)-(0 0 0) band for N values going up to about 23, and 300 lines of the "hot" band (2 13 1)-(0 1 0). We have also looked for spin-orbit-induced transitions and we have detected about 400 transitions with Δ N ≠ Δ J. Among them Δ N = ±2 transitions with Δ Ka = 0 or ± 2 have been observed, indicating that N and Ka are no longer good quantum numbers, and demonstrating clearly the existence of rovibronic interactions perturbing the upper levels of the transitions.
NASA Astrophysics Data System (ADS)
Węcławik, M.; Baran, J.; Durlak, P.; Marciniak, Ł.; Piecha-Bisiorek, A.; Jakubas, R.
2017-05-01
The paper presents the Infrared and Raman spectra of the powdered [C3N2H5+]2[I-• I3-] crystal at the temperature intervals of 11-270 K, covering two low-temperature phase transitions: discontinuous at 182/188 K (cooling/heating) and continuous at 254 K. The research shows that the vibrational states of the pyrazolium cations change significantly during discontinuous phase transition (III→II), while the continuous nature of successive structural transformation is more subtle and displays an insignificant change in the temperature coefficient of numerous vibrations during the II → I PT at 254 K. The spectacular changes at Raman spectra above 188 K confirm a huge rebuilding of inorganic network from [I-• I3-] to [I42 -]. Additionally, a complete geometry optimization was carried out in the solid state in order to obtain minimum structures and bonding properties. The theoretical results correspond well with the experimental data. Moreover, the infrared spectrum in harmonic approximation was calculated, and a comparative vibrational analysis was performed. CRYSTAL09 vibrational results appear to be in a good agreement with the experimental ones.
Kogkaki, Efstathia A; Sofoulis, Manos; Natskoulis, Pantelis; Tarantilis, Petros A; Pappas, Christos S; Panagou, Efstathios Z
2017-10-16
The purpose of this study was to evaluate the potential of FT-IR spectroscopy as a high-throughput method for rapid differentiation among the ochratoxigenic species of Aspergillus carbonarius and the non-ochratoxigenic or low toxigenic species of Aspergillus niger aggregate, namely A. tubingensis and A. niger isolated previously from grapes of Greek vineyards. A total of 182 isolates of A. carbonarius, A. tubingensis, and A. niger were analyzed using FT-IR spectroscopy. The first derivative of specific spectral regions (3002-2801cm(-1), 1773-1550cm(-1), and 1286-952cm(-1)) were chosen and evaluated with respect to absorbance values. The average spectra of 130 fungal isolates were used for model calibration based on Discriminant analysis and the remaining 52 spectra were used for external model validation. This methodology was able to differentiate correctly 98.8% in total accuracy in both model calibration and validation. The per class accuracy for A. carbonarius was 95.3% and 100% for model calibration and validation, respectively, whereas for A. niger aggregate the per class accuracy amounted to 100% in both cases. The obtained results indicated that FT-IR could become a promising, fast, reliable and low-cost tool for the discrimination and differentiation of closely related fungal species. Copyright © 2017 Elsevier B.V. All rights reserved.
Caraveo, M; McNamara, J; Rimner, A; Yorke, E; Li, G; Wei, J
2014-06-15
Purpose: Motion artifacts are common in patient 4DCT, leading to an illdefined tumor volume with variation up to 110% or setting up a poor foundation with low imaging fidelity for tumor motion study. We developed a method to estimate 4DCT image quality by establishing a correlation between the severity of motion artifacts in 4DCT images and the periodicity of corresponding 1D respiratory wave-function (1DRW) surrogate used for 4DCT reconstruction. Methods: Fast Fourier Transformation (FFT) was applied to analyze 1DRW periodicity, defined as the sum of the 5 largest Fourier coefficients, ranging in 0–1. Distortional motion artifacts of cine-scan 4DCT at the junctions of adjacent couchposition scans around the diaphragm were identified in 3 categories: incomplete, overlapping and duplicate. To quantify these artifacts, the discontinuity of the diaphragm at the junctions was measured in distance and averaged along 6 directions in 3 orthogonal views. Mean and sum artifacts per junction (APJ) across the entire diaphragm were calculated in each breathing phase. To make the APJ inter-patient comparable, patientspecific motion was removed from APJ by dividing patient-specific diaphragmatic velocity (displacement divided by the mean period, from FFT analysis of the 1DRW) and the normalized APJ was defined as motion artifact severity (MAS). Twenty-five patients with free-breathing 10-phase 4DCT and corresponding 1DRW surrogate datasets were studied. Results: A mild correlation of 0.56 was found between 1DRW periodicity and 4DCT artifact severity. Higher MAS tends to appear around mid inhalation and mid exhalation and the lowest MAS tends to be around full exhalation. The breathing periodicity of >0.8 possesses minimal motion artifacts. Conclusion: The 1D-4D correlation provides a fast means to estimate 4DCT image quality. Using 1DRW signal, we can retrospectively screen out high-quality 4DCT images for clinical research (periodicity>0.8) and prospectively identify poor
Guo, Yizhen; Lv, Beiran; Wang, Jingjuan; Liu, Yang; Sun, Suqin; Xiao, Yao; Lu, Lina; Xiang, Li; Yang, Yanfang; Qu, Lei; Meng, Qinghong
2016-01-15
As complicated mixture systems, active components of Chuanxiong Rhizoma are very difficult to identify and discriminate. In this paper, the macroscopic IR fingerprint method including Fourier transform infrared spectroscopy (FT-IR), the second derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR), was applied to study and identify Chuanxiong raw materials and its different segmented production of HPD-100 macroporous resin. Chuanxiong Rhizoma is rich in sucrose. In the FT-IR spectra, water eluate is more similar to sucrose than the powder and the decoction. Their second derivative spectra amplified the differences and revealed the potentially characteristic IR absorption bands and combined with the correlation coefficient, concluding that 50% ethanol eluate had more ligustilide than other eluates. Finally, it can be found from 2DCOS-IR spectra that proteins were extracted by ethanol from Chuanxiong decoction by HPD-100 macroporous resin. It was demonstrated that the above three-step infrared spectroscopy could be applicable for quick, non-destructive and effective analysis and identification of very complicated and similar mixture systems of traditional Chinese medicines.