Sample records for fourier transform electron

  1. Component analyses of urinary nanocrystallites of uric acid stone formers by combination of high-resolution transmission electron microscopy, fast Fourier transformation, energy dispersive X-ray spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy.

    PubMed

    Sun, Xin-Yuan; Xue, Jun-Fa; Xia, Zhi-Yue; Ouyang, Jian-Ming

    2015-06-01

    This study aimed to analyse the components of nanocrystallites in urines of patients with uric acid (UA) stones. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy (HRTEM), fast Fourier transformation (FFT) of HRTEM, and energy dispersive X-ray spectroscopy (EDS) were performed to analyse the components of these nanocrystallites. XRD and FFT showed that the main component of urinary nanocrystallites was UA, which contains a small amount of calcium oxalate monohydrate and phosphates. EDS showed the characteristic absorption peaks of C, O, Ca and P. The formation of UA stones was closely related to a large number of UA nanocrystallites in urine. A combination of HRTEM, FFT, EDS and XRD analyses could be performed accurately to analyse the components of urinary nanocrystallites.

  2. An efficient and accurate molecular alignment and docking technique using ab initio quality scoring

    PubMed Central

    Füsti-Molnár, László; Merz, Kenneth M.

    2008-01-01

    An accurate and efficient molecular alignment technique is presented based on first principle electronic structure calculations. This new scheme maximizes quantum similarity matrices in the relative orientation of the molecules and uses Fourier transform techniques for two purposes. First, building up the numerical representation of true ab initio electronic densities and their Coulomb potentials is accelerated by the previously described Fourier transform Coulomb method. Second, the Fourier convolution technique is applied for accelerating optimizations in the translational coordinates. In order to avoid any interpolation error, the necessary analytical formulas are derived for the transformation of the ab initio wavefunctions in rotational coordinates. The results of our first implementation for a small test set are analyzed in detail and compared with published results of the literature. A new way of refinement of existing shape based alignments is also proposed by using Fourier convolutions of ab initio or other approximate electron densities. This new alignment technique is generally applicable for overlap, Coulomb, kinetic energy, etc., quantum similarity measures and can be extended to a genuine docking solution with ab initio scoring. PMID:18624561

  3. Experimental image alignment system

    NASA Technical Reports Server (NTRS)

    Moyer, A. L.; Kowel, S. T.; Kornreich, P. G.

    1980-01-01

    A microcomputer-based instrument for image alignment with respect to a reference image is described which uses the DEFT sensor (Direct Electronic Fourier Transform) for image sensing and preprocessing. The instrument alignment algorithm which uses the two-dimensional Fourier transform as input is also described. It generates signals used to steer the stage carrying the test image into the correct orientation. This algorithm has computational advantages over algorithms which use image intensity data as input and is suitable for a microcomputer-based instrument since the two-dimensional Fourier transform is provided by the DEFT sensor.

  4. Modulated Fourier Transform Raman Fiber-Optic Spectroscopy

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Cooper, John B. (Inventor); Wise, Kent L. (Inventor)

    2000-01-01

    A modification to a commercial Fourier Transform (FT) Raman spectrometer is presented for the elimination of thermal backgrounds in the FT Raman spectra. The modification involves the use of a mechanical optical chopper to modulate the continuous wave laser, remote collection of the signal via fiber optics, and connection of a dual-phase digital-signal-processor (DSP) lock-in amplifier between the detector and the spectrometer's collection electronics to demodulate and filter the optical signals. The resulting Modulated Fourier Transform Raman Fiber-Optic Spectrometer is capable of completely eliminating thermal backgrounds at temperatures exceeding 300 C.

  5. Synthesis of samarium doped gadolinium oxide nanorods, its spectroscopic and physical properties

    NASA Astrophysics Data System (ADS)

    Boopathi, G.; Gokul Raj, S.; Ramesh Kumar, G.; Mohan, R.; Mohan, S.

    2018-06-01

    One-dimensional samarium doped gadolinium oxide [Sm:Gd2O3] nanorods have been synthesized successfully through co-precipitation technique in aqueous solution. The as-synthesized and calcined products were characterized by using powder X-ray diffraction pattern, Fourier transform Raman spectroscopy, thermogravimetric/differential thermal analysis, scanning electron microscopy with energy-dispersive X-ray analysis, transmission electron microscopy, Fourier transform infrared spectroscopy, Ultraviolet-Visible spectrometry, photoluminescence spectrophotometer and X-ray photoelectron spectroscopy techniques. The obtained results are discussed in detailed manner.

  6. Probing biological redox chemistry with large amplitude Fourier transformed ac voltammetry

    PubMed Central

    Adamson, Hope

    2017-01-01

    Biological electron-exchange reactions are fundamental to life on earth. Redox reactions underpin respiration, photosynthesis, molecular biosynthesis, cell signalling and protein folding. Chemical, biomedical and future energy technology developments are also inspired by these natural electron transfer processes. Further developments in techniques and data analysis are required to gain a deeper understanding of the redox biochemistry processes that power Nature. This review outlines the new insights gained from developing Fourier transformed ac voltammetry as a tool for protein film electrochemistry. PMID:28804798

  7. Double-resolution electron holography with simple Fourier transform of fringe-shifted holograms.

    PubMed

    Volkov, V V; Han, M G; Zhu, Y

    2013-11-01

    We propose a fringe-shifting holographic method with an appropriate image wave recovery algorithm leading to exact solution of holographic equations. With this new method the complex object image wave recovered from holograms appears to have much less traditional artifacts caused by the autocorrelation band present practically in all Fourier transformed holograms. The new analytical solutions make possible a double-resolution electron holography free from autocorrelation band artifacts and thus push the limits for phase resolution. The new image wave recovery algorithm uses a popular Fourier solution of the side band-pass filter technique, while the fringe-shifting holographic method is simple to implement in practice. Published by Elsevier B.V.

  8. Fourier Deconvolution Methods for Resolution Enhancement in Continuous-Wave EPR Spectroscopy.

    PubMed

    Reed, George H; Poyner, Russell R

    2015-01-01

    An overview of resolution enhancement of conventional, field-swept, continuous-wave electron paramagnetic resonance spectra using Fourier transform-based deconvolution methods is presented. Basic steps that are involved in resolution enhancement of calculated spectra using an implementation based on complex discrete Fourier transform algorithms are illustrated. Advantages and limitations of the method are discussed. An application to an experimentally obtained spectrum is provided to illustrate the power of the method for resolving overlapped transitions. © 2015 Elsevier Inc. All rights reserved.

  9. RANKING TEM CAMERAS BY THEIR RESPONSE TO ELECTRON SHOT NOISE

    PubMed Central

    Grob, Patricia; Bean, Derek; Typke, Dieter; Li, Xueming; Nogales, Eva; Glaeser, Robert M.

    2013-01-01

    We demonstrate two ways in which the Fourier transforms of images that consist solely of randomly distributed electrons (shot noise) can be used to compare the relative performance of different electronic cameras. The principle is to determine how closely the Fourier transform of a given image does, or does not, approach that of an image produced by an ideal camera, i.e. one for which single-electron events are modeled as Kronecker delta functions located at the same pixels where the electrons were incident on the camera. Experimentally, the average width of the single-electron response is characterized by fitting a single Lorentzian function to the azimuthally averaged amplitude of the Fourier transform. The reciprocal of the spatial frequency at which the Lorentzian function falls to a value of 0.5 provides an estimate of the number of pixels at which the corresponding line-spread function falls to a value of 1/e. In addition, the excess noise due to stochastic variations in the magnitude of the response of the camera (for single-electron events) is characterized by the amount to which the appropriately normalized power spectrum does, or does not, exceed the total number of electrons in the image. These simple measurements provide an easy way to evaluate the relative performance of different cameras. To illustrate this point we present data for three different types of scintillator-coupled camera plus a silicon-pixel (direct detection) camera. PMID:23747527

  10. A Quantitative Approach to Scar Analysis

    PubMed Central

    Khorasani, Hooman; Zheng, Zhong; Nguyen, Calvin; Zara, Janette; Zhang, Xinli; Wang, Joyce; Ting, Kang; Soo, Chia

    2011-01-01

    Analysis of collagen architecture is essential to wound healing research. However, to date no consistent methodologies exist for quantitatively assessing dermal collagen architecture in scars. In this study, we developed a standardized approach for quantitative analysis of scar collagen morphology by confocal microscopy using fractal dimension and lacunarity analysis. Full-thickness wounds were created on adult mice, closed by primary intention, and harvested at 14 days after wounding for morphometrics and standard Fourier transform-based scar analysis as well as fractal dimension and lacunarity analysis. In addition, transmission electron microscopy was used to evaluate collagen ultrastructure. We demonstrated that fractal dimension and lacunarity analysis were superior to Fourier transform analysis in discriminating scar versus unwounded tissue in a wild-type mouse model. To fully test the robustness of this scar analysis approach, a fibromodulin-null mouse model that heals with increased scar was also used. Fractal dimension and lacunarity analysis effectively discriminated unwounded fibromodulin-null versus wild-type skin as well as healing fibromodulin-null versus wild-type wounds, whereas Fourier transform analysis failed to do so. Furthermore, fractal dimension and lacunarity data also correlated well with transmission electron microscopy collagen ultrastructure analysis, adding to their validity. These results demonstrate that fractal dimension and lacunarity are more sensitive than Fourier transform analysis for quantification of scar morphology. PMID:21281794

  11. Synthesis, characterization, in vitro anti-proliferative and hemolytic activity of hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Palanivelu, R.; Ruban Kumar, A.

    2014-06-01

    Hydroxyapatite (Ca10(PO4)6(OH)2, HAP) nanoparticles are widely used in several biomedical applications due to its compositional similarities to bone mineral, excellent biocompatibility and bioactivity, osteoconductivity. In this present investigation, HAP nanoparticles synthesized by precipitation technique using calcium nitrate and di-ammonium phosphate. The crystalline nature and the functional group analysis are confirmed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Fourier transform Raman spectroscopy (FT-Raman) respectively. The morphological observations are ascertained from field emission electron scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). In vitro anti-proliferative and hemolytic activities are carried out on the synthesized HAP samples and the studies reveals that HAP have mild activity against erythrocytes.

  12. Synthesis, characterization, in vitro anti-proliferative and hemolytic activity of hydroxyapatite.

    PubMed

    Palanivelu, R; Ruban Kumar, A

    2014-06-05

    Hydroxyapatite (Ca10(PO4)6(OH)2, HAP) nanoparticles are widely used in several biomedical applications due to its compositional similarities to bone mineral, excellent biocompatibility and bioactivity, osteoconductivity. In this present investigation, HAP nanoparticles synthesized by precipitation technique using calcium nitrate and di-ammonium phosphate. The crystalline nature and the functional group analysis are confirmed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Fourier transform Raman spectroscopy (FT-Raman) respectively. The morphological observations are ascertained from field emission electron scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). In vitro anti-proliferative and hemolytic activities are carried out on the synthesized HAP samples and the studies reveals that HAP have mild activity against erythrocytes. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Approximation for discrete Fourier transform and application in study of three-dimensional interacting electron gas.

    PubMed

    Yan, Xin-Zhong

    2011-07-01

    The discrete Fourier transform is approximated by summing over part of the terms with corresponding weights. The approximation reduces significantly the requirement for computer memory storage and enhances the numerical computation efficiency with several orders without losing accuracy. As an example, we apply the algorithm to study the three-dimensional interacting electron gas under the renormalized-ring-diagram approximation where the Green's function needs to be self-consistently solved. We present the results for the chemical potential, compressibility, free energy, entropy, and specific heat of the system. The ground-state energy obtained by the present calculation is compared with the existing results of Monte Carlo simulation and random-phase approximation.

  14. Electron capture dissociation of polypeptides using a 3 Tesla Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Polfer, Nicolas C; Haselmann, Kim F; Zubarev, Roman A; Langridge-Smith, Pat R R

    2002-01-01

    Electron capture dissociation (ECD) of polypeptides has been demonstrated using a commercially available 3 Tesla Fourier transform ion cyclotron resonance (FTICR) instrument. A conventional rhenium filament, designed for high-energy electron impact ionisation, was used to effect ECD of substance P, bee venom melittin and bovine insulin, oxidised B chain. A retarding field analysis of the effective electron kinetic energy distribution entering the ICR cell suggests that one of the most important parameters governing ECD for this particular instrument is the need to employ low trapping plate voltages. This is shown to maximise the abundance of low-energy electrons. The demonstration of ECD at this relatively low magnetic field strength could offer the prospect of more routine ECD analysis for the wider research community, given the reduced cost of such magnets and (at least theoretically) the greater ease of electron/ion cloud overlap at lower field. Copyright 2002 John Wiley & Sons, Ltd.

  15. Spectroscopy of selected metal-containing diatomic molecules

    NASA Astrophysics Data System (ADS)

    Gordon, Iouli E.

    Fourier transform infrared emission spectra of MnH and MnD were observed in the ground X7Sigma+ electronic state. The vibration-rotation bands from v = 1 → 0 to v = 3 → 2 for MnH, and from v = 1 → 0 to v = 4 → 3 for MnD were recorded at an instrumental resolution of 0.0085 cm-1. Spectroscopic constants were determined for each vibrational level and equilibrium constants were found from a Dunham-type fit. The equilibrium vibrational constant oe for MnH was found to be 1546.84518(65) cm-1, the equilibrium rotational constant Be was found to be 5.6856789(103) cm-1 and the equilibrium bond distance re was determined to be 1.7308601(47) A. New high resolution emission spectra of CoH and CoD molecules have been recorded in the 640 nm to 3.5 mum region using a Fourier transform spectrometer. Many bands were observed for the A'3phi- X3phi electronic transition of CoH and CoD. In addition, a new [13.3]4 electronic state was found by observing the [13.3]4-X3phi3 and [13.3]4- X3phi4 transitions in the spectrum of CoD. Analysis of the transitions with DeltaO = 0, +/-1 provided more accurate values of spin-orbit splittings between O = 4 and O = 3 components. The ground state for both molecules was fitted both to band and Dunham-type constants. The estimated band constants of the perturbed upper states were also obtained. The emission spectrum of gas-phase YbO has been investigated using a Fourier transform spectrometer. A total of 8 red-degraded bands in the range 9 800--11 300 cm-1 were recorded at a resolution of 0.04 cm-1. Because of the multiple isotopomers present in the spectra, only 3 bands were rotationally analyzed. Perturbations were identified in two of these bands and all 3 transitions were found to terminate at the X1Sigma+ ground electronic state. The electronic configurations that give rise to the observed states are discussed and molecular parameters for all of the analyzed bands are reported. Electronic spectra of the previously unobserved EuH and EuD molecules were studied by means of Fourier transform spectroscopy and laser-induced fluorescence. The extreme complexity of these transitions made rotational assignments of EuH bands impossible. However, the spin-spin interaction constant, lambda, and Fermi contact parameter, bF, in the ground X9Sigma- electronic state were estimated for the 151EuH and 153EuH isotopologues. Electronic spectra of SmH, SmCl, TmH and ErF molecules were recorded for the first time using Fourier transform spectrometer. The poor signal to noise ratio of the observed bands coupled with their complexity prevented a rotational analysis. The electronic states that may be involved in the observed transitions are discussed.

  16. Spectroscopy of selected metal-containing diatomic molecules

    NASA Astrophysics Data System (ADS)

    Gordon, Iouli

    Fourier transform infrared emission spectra of MnH and MnD were observed in the ground X7[sigma]+ electronic state. The vibration-rotation bands from v = 1 to 0 to v = 3 to 2 for MnH, and from v = 1 to 0 to v = 4 to 3 for MnD were recorded at an instrumental resolution of 0. 0085 cm-1. Spectroscopic constants were determined for each vibrational level and equilibrium constants were found from a Dunham-type fit. The equilibrium vibrational constant [omega]e for MnH was found to be 1546. 84518(65) cm-1, the equilibrium rotational constant Be was found to be 5. 6856789(103) cm-1 and the equilibrium bond distance re was determined to be 1. 7308601(47) ?. New high resolution emission spectra of CoH and CoD molecules have been recorded in the 640 nm to 3. 5 _m region using a Fourier transform spectrometer. Many bands were observed for the A'3?-X3? electronic transition of CoH and CoD. In addition, a new [13. 3]4 electronic state was found by observing the [13. 3]4- X3?3 and [13. 3]4-X3?4 transitions in the spectrum of CoD. Analysis of the transitions with [delta][omega] = 0, ?1 provided more accurate values of spin-orbit splittings between [omega] = 4 and [omega] = 3 components. The ground state for both molecules was fitted both to band and Dunham-type constants. The estimated band constants of the perturbed upper states were also obtained. The emission spectrum of gas-phase YbO has been investigated using a Fourier transform spectrometer. A total of 8 red-degraded bands in the range 9 800 ? 11 300 cm-1 were recorded at a resolution of 0. 04 cm-1. Because of the multiple isotopomers present in the spectra, only 3 bands were rotationally analyzed. Perturbations were identified in two of these bands and all 3 transitions were found to terminate at the X1[sigma]+ ground electronic state. The electronic configurations that give rise to the observed states are discussed and molecular parameters for all of the analyzed bands are reported. Electronic spectra of the previously unobserved EuH and EuD molecules were studied by means of Fourier transform spectroscopy and laser-induced fluorescence. The extreme complexity of these transitions made rotational assignments of EuH bands impossible. However, the spin-spin interaction constant, [lambda], and Fermi contact parameter, bF, in the ground X9[sigma]- electronic state were estimated for the 151EuH and 153EuH isotopologues. Electronic spectra of SmH, SmCl, TmH and ErF molecules were recorded for the first time using Fourier transform spectrometer. The poor signal to noise ratio of the observed bands coupled with their complexity prevented a rotational analysis. The electronic states that may be involved in the observed transitions are discussed.

  17. High-resolution electron microscope

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1977-01-01

    Employing scanning transmission electron microscope as interferometer, relative phases of diffraction maximums can be determined by analysis of dark field images. Synthetic aperture technique and Fourier-transform computer processing of amplitude and phase information provide high resolution images at approximately one angstrom.

  18. Fourier-transform-based model for carrier transport in semiconductor heterostructures: Longitudinal optical phonon scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lü, X.; Schrottke, L.; Grahn, H. T.

    We present scattering rates for electrons at longitudinal optical phonons within a model completely formulated in the Fourier domain. The total intersubband scattering rates are obtained by averaging over the intrasubband electron distributions. The rates consist of the Fourier components of the electron wave functions and a contribution depending only on the intersubband energies and the intrasubband carrier distributions. The energy-dependent part can be reproduced by a rational function, which allows for the separation of the scattering rates into a dipole-like contribution, an overlap-like contribution, and a contribution which can be neglected for low and intermediate carrier densities of themore » initial subband. For a balance between accuracy and computation time, the number of Fourier components can be adjusted. This approach facilitates an efficient design of complex heterostructures with realistic, temperature- and carrier density-dependent rates.« less

  19. FT3D: three-dimensional Fourier analysis on small Unix workstations for electron microscopy and tomographic studies.

    PubMed

    Lanzavecchia, S; Bellon, P L; Tosoni, L

    1993-12-01

    FT3D is a self-contained package of tools for three-dimensional Fourier analysis, written in the C language for Unix workstations. It can evaluate direct transforms of three-dimensional real functions, inverse transforms, auto- and cross-correlations and spectra. The library has been developed to support three-dimensional reconstructions of biological structures from projections obtained in the electron microscope. This paper discusses some features of the library, which has been implemented in such a way as to profit from the resources of modern workstations. A table of elapsed times for jobs of different dimensions with different RAM buffers is reported for the particular hardware used in the authors' laboratory.

  20. Size controlled biogenic silver nanoparticles as antibacterial agent against isolates from HIV infected patients

    NASA Astrophysics Data System (ADS)

    Suganya, K. S. Uma; Govindaraju, K.; Kumar, V. Ganesh; Dhas, T. Stalin; Karthick, V.; Singaravelu, G.; Elanchezhiyan, M.

    2015-06-01

    Silver nanoparticles (AgNPs) are synthesized using biological sources due to its high specificity in biomedical applications. Herein, we report the size and shape controlled synthesis of AgNPs using the aqueous extract of blue green alga, Spirulina platensis. Size, shape and elemental composition of AgNPs were characterized using UV-vis spectroscopy, Fluorescence spectroscopy, FT-IR (Fourier Transform-Infrared Spectroscopy), FT-RS (Fourier Transform-Raman Spectroscopy), SEM-EDAX (Scanning Electron Microscopy-Energy Dispersive X-ray analysis) and HR-TEM (High Resolution Transmission Electron Microscopy). AgNPs were stable, well defined and monodispersed (spherical) with an average size of 6 nm. The synthesized AgNPs were tested for its antibacterial potency against isolates obtained from HIV patients.

  1. Atmospheric Pressure Ionization Permanent Magnet Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    PubMed Central

    Vilkov, Andrey N.; Gamage, Chaminda M.; Misharin, Alexander S.; Doroshenko, Vladimir M.; Tolmachev, Dmitry A.; Tarasova, Irina A.; Kharybin, Oleg N.; Novoselov, Konstantin P.; Gorshkov, Michael V.

    2007-01-01

    A new Fourier Transform Ion Cyclotron Resonance mass spectrometer based on a permanent magnet with an atmospheric pressure ionization source was designed and constructed. A mass resolving power (full-width-at-half-maximum) of up to 80,000 in the electron ionization mode and 25,000 in the electrospray mode was obtained. Also, a mass measurement accuracy at low-ppm level has been demonstrated for peptide mixtures in a mass range of up to 1,200 m/z in the isotopically resolved mass spectra. PMID:17587594

  2. WEATHERING DEGRADATION OF A POLYURETHANE COATING. (R828081E01)

    EPA Science Inventory

    The degradation of polyurethane topcoat over a chromate pigmented epoxy primer was examined by atomic force microscopy (AFM), scanning electronic microscopy (SEM), X-ray photo-electron spectroscopy (XPS) and Fourier transform infra-red spectroscopy (FTIR) after the coated pane...

  3. An optical Fourier transform coprocessor with direct phase determination.

    PubMed

    Macfaden, Alexander J; Gordon, George S D; Wilkinson, Timothy D

    2017-10-20

    The Fourier transform is a ubiquitous mathematical operation which arises naturally in optics. We propose and demonstrate a practical method to optically evaluate a complex-to-complex discrete Fourier transform. By implementing the Fourier transform optically we can overcome the limiting O(nlogn) complexity of fast Fourier transform algorithms. Efficiently extracting the phase from the well-known optical Fourier transform is challenging. By appropriately decomposing the input and exploiting symmetries of the Fourier transform we are able to determine the phase directly from straightforward intensity measurements, creating an optical Fourier transform with O(n) apparent complexity. Performing larger optical Fourier transforms requires higher resolution spatial light modulators, but the execution time remains unchanged. This method could unlock the potential of the optical Fourier transform to permit 2D complex-to-complex discrete Fourier transforms with a performance that is currently untenable, with applications across information processing and computational physics.

  4. Implementation of quantum and classical discrete fractional Fourier transforms.

    PubMed

    Weimann, Steffen; Perez-Leija, Armando; Lebugle, Maxime; Keil, Robert; Tichy, Malte; Gräfe, Markus; Heilmann, René; Nolte, Stefan; Moya-Cessa, Hector; Weihs, Gregor; Christodoulides, Demetrios N; Szameit, Alexander

    2016-03-23

    Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools.

  5. Implementation of quantum and classical discrete fractional Fourier transforms

    PubMed Central

    Weimann, Steffen; Perez-Leija, Armando; Lebugle, Maxime; Keil, Robert; Tichy, Malte; Gräfe, Markus; Heilmann, René; Nolte, Stefan; Moya-Cessa, Hector; Weihs, Gregor; Christodoulides, Demetrios N.; Szameit, Alexander

    2016-01-01

    Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools. PMID:27006089

  6. [Calculating the stark broadening of welding arc spectra by Fourier transform method].

    PubMed

    Pan, Cheng-Gang; Hua, Xue-Ming; Zhang, Wang; Li, Fang; Xiao, Xiao

    2012-07-01

    It's the most effective and accurate method to calculate the electronic density of plasma by using the Stark width of the plasma spectrum. However, it's difficult to separate Stark width from the composite spectrum linear produced by several mechanisms. In the present paper, Fourier transform was used to separate the Lorentz linear from the spectrum observed, thus to get the accurate Stark width. And we calculated the distribution of the TIG welding arc plasma. This method does not need to measure arc temperature accurately, to measure the width of the plasma spectrum broadened by instrument, and has the function to reject the noise data. The results show that, on the axis, the electron density of TIG welding arc decreases with the distance from tungsten increasing, and changes from 1.21 X 10(17) cm(-3) to 1.58 x 10(17) cm(-3); in the radial, the electron density decreases with the distance from axis increasing, and near the tungsten zone the biggest electronic density is off axis.

  7. A Unified Method of Finding Laplace Transforms, Fourier Transforms, and Fourier Series. [and] An Inversion Method for Laplace Transforms, Fourier Transforms, and Fourier Series. Integral Transforms and Series Expansions. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Units 324 and 325.

    ERIC Educational Resources Information Center

    Grimm, C. A.

    This document contains two units that examine integral transforms and series expansions. In the first module, the user is expected to learn how to use the unified method presented to obtain Laplace transforms, Fourier transforms, complex Fourier series, real Fourier series, and half-range sine series for given piecewise continuous functions. In…

  8. Application of micro-Fourier transform infrared spectroscopy to the examination of paint samples

    NASA Astrophysics Data System (ADS)

    Zięba-Palus, J.

    1999-11-01

    The examination and identification of automobile paints is an important problem in road accidents investigations. Since the real sample available is very small, only sensitive microtechniques can be applied. The methods of optical microscopy and micro-Fourier transform infrared spectroscopy (MK-FTIR) supported by scanning electron microscopy together with X-ray microanalysis (SEM-EDX) allow one to carry out the examination of each paint layer without any separation procedure. In this paper an attempt is made to discriminate between different automobile paints of the same colour by the use of these methods for criminalistic investigations.

  9. Retina as Reciprocal Spatial Fourier Transform Space Implies ``Wave-transformation'' Functions, String Theory, the Inappropriate Uncertainty Principle, and Predicts ``Quarked'' Protons.

    NASA Astrophysics Data System (ADS)

    Mc Leod, Roger David; Mc Leod, David M.

    2007-10-01

    Vision, via transform space: ``Nature behaves in a reciprocal way;' also, Rect x pressure-input sense-reports as Sinc p, indicating brain interprets reciprocal ``p'' space as object space. Use Mott's and Sneddon's Wave Mechanics and Its Applications. Wave transformation functions are strings of positron, electron, proton, and neutron; uncertainty is a semantic artifact. Neutrino-string de Broglie-Schr"odinger wave-function models for electron, positron, suggest three-quark models for protons, neutrons. Variably vibrating neutrino-quills of this model, with appropriate mass-energy, can be a vertical proton string, quills leftward; thread string circumferentially, forming three interlinked circles with ``overpasses''. Diameters are 2:1:2, center circle has quills radially outward; call it a down quark, charge --1/3, charge 2/3 for outward quills, the up quarks of outer circles. String overlap summations are nodes; nodes also far left and right. Strong nuclear forces may be --px. ``Dislodging" positron with neutrino switches quark-circle configuration to 1:2:1, `downers' outside. Unstable neutron charge is 0. Atoms build. With scale factors, retinal/vision's, and quantum mechanics,' spatial Fourier transforms/inverses are equivalent.

  10. Electronic part of the optical correlation function at finite temperature: the S-matrix expansion

    NASA Astrophysics Data System (ADS)

    Tavares, M.; Marques, G. E.; Tejedor, C.

    1998-12-01

    We present an extension to finite temperature of the Mahan-Nozières-De Dominicis framework to obtain the electronic part of the current-current correlation function. Its Fourier transform gives the absorption and emission spectra of doped low-dimensional semiconductors. We show the meaning of the new finite-temperature contributions characterizing the electronic part.

  11. ALTERNATIVE DISINFECTANTS FOR DRINKING WATER

    EPA Science Inventory

    Using a combination of spectral identification techniques - gas chromatography coupled with low-and high-resolution electron-impact mass spectrometry (GC/EI-MS), low-and high-resolution chemical ionization mass spectrometry (GC/CI-MS), and Fourier transform infrared spectroscopy ...

  12. Silver nanoparticle production by Rhizopus stolonifer and its antibacterial activity against extended spectrum {beta}-lactamase producing (ESBL) strains of Enterobacteriaceae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banu, Afreen; Rathod, Vandana, E-mail: drvandanarathod@rediffmail.com; Ranganath, E.

    Highlights: {yields} Silver nanoparticle production by using Rhizopus stolonifer. {yields} Antibacterial activity of silver nanoparticles against extended spectrum {beta}-lactamase producing (ESBL) strains of Enterobacteriaceae. {yields} Synergistic effect of antibiotics with silver nanoparticles towards ESBL-strains. {yields} Characterization of silver nanoparticles made by UV-vis spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, atomic force microscopy (AFM). -- Abstract: This report focuses on the synthesis of silver nanoparticles using the fungus, Rhizopus stolonifer and its antimicrobial activity. Research in nanotechnology highlights the possibility of green chemistry pathways to produce technologically important nanomaterials. Characterization of newly synthesized silvermore » nanoparticles was made by UV-visible absorption spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared (FTIR) spectroscopy and atomic force microscope (AFM). TEM micrograph revealed the formation of spherical nanoparticles with size ranging between 3 and 20 nm. The biosynthesized silver nanoparticles (AgNPs) showed excellent antibacterial activity against ESBL-strains which includes E. coli, Proteus. sp. and Klebsiella sp.« less

  13. A Short Biography of Joseph Fourier and Historical Development of Fourier Series and Fourier Transforms

    ERIC Educational Resources Information Center

    Debnath, Lokenath

    2012-01-01

    This article deals with a brief biographical sketch of Joseph Fourier, his first celebrated work on analytical theory of heat, his first great discovery of Fourier series and Fourier transforms. Included is a historical development of Fourier series and Fourier transforms with their properties, importance and applications. Special emphasis is made…

  14. Extracting Micro-Doppler Radar Signatures from Rotating Targets Using Fourier-Bessel Transform and Time-Frequency Analysis

    DTIC Science & Technology

    2014-10-16

    Time-Frequency analysis, Short-Time Fourier Transform, Wigner Ville Distribution, Fourier Bessel Transform, Fractional Fourier Transform. I...INTRODUCTION Most widely used time-frequency transforms are short-time Fourier Transform (STFT) and Wigner Ville distribution (WVD). In STFT, time and...frequency resolutions are limited by the size of window function used in calculating STFT. For mono-component signals, WVD gives the best time and frequency

  15. Wide-bandwidth high-resolution search for extraterrestrial intelligence

    NASA Technical Reports Server (NTRS)

    Horowitz, Paul

    1993-01-01

    Research accomplished during the third 6-month period is summarized. Research covered the following: dual-horn antenna performance; high electron mobility transistors (HEMT) low-noise amplifiers; downconverters; fast Fourier transform (FFT) array; and backend 'feature recognizer' array.

  16. Massively parallel X-ray holography

    NASA Astrophysics Data System (ADS)

    Marchesini, Stefano; Boutet, Sébastien; Sakdinawat, Anne E.; Bogan, Michael J.; Bajt, Saša; Barty, Anton; Chapman, Henry N.; Frank, Matthias; Hau-Riege, Stefan P.; Szöke, Abraham; Cui, Congwu; Shapiro, David A.; Howells, Malcolm R.; Spence, John C. H.; Shaevitz, Joshua W.; Lee, Joanna Y.; Hajdu, Janos; Seibert, Marvin M.

    2008-09-01

    Advances in the development of free-electron lasers offer the realistic prospect of nanoscale imaging on the timescale of atomic motions. We identify X-ray Fourier-transform holography as a promising but, so far, inefficient scheme to do this. We show that a uniformly redundant array placed next to the sample, multiplies the efficiency of X-ray Fourier transform holography by more than three orders of magnitude, approaching that of a perfect lens, and provides holographic images with both amplitude- and phase-contrast information. The experiments reported here demonstrate this concept by imaging a nano-fabricated object at a synchrotron source, and a bacterial cell with a soft-X-ray free-electron laser, where illumination by a single 15-fs pulse was successfully used in producing the holographic image. As X-ray lasers move to shorter wavelengths we expect to obtain higher spatial resolution ultrafast movies of transient states of matter.

  17. Molecular structure, vibrational spectral assignments (FT-IR and FT-RAMAN), NMR, NBO, HOMO-LUMO and NLO properties of O-methoxybenzaldehyde based on DFT calculations

    NASA Astrophysics Data System (ADS)

    Vennila, P.; Govindaraju, M.; Venkatesh, G.; Kamal, C.

    2016-05-01

    Fourier transform - Infra red (FT-IR) and Fourier transform - Raman (FT-Raman) spectroscopic techniques have been carried out to analyze O-methoxy benzaldehyde (OMB) molecule. The fundamental vibrational frequencies and intensity of vibrational bands were evaluated using density functional theory (DFT). The vibrational analysis of stable isomer of OMB has been carried out by FT-IR and FT-Raman in combination with theoretical method simultaneously. The first-order hyperpolarizability and the anisotropy polarizability invariant were computed by DFT method. The atomic charges, hardness, softness, ionization potential, electronegativity, HOMO-LUMO energies, and electrophilicity index have been calculated. The 13C and 1H Nuclear magnetic resonance (NMR) have also been obtained by GIAO method. Molecular electronic potential (MEP) has been calculated by the DFT calculation method. Electronic excitation energies, oscillator strength and excited states characteristics were computed by the closed-shell singlet calculation method.

  18. Preparation and characterization of novel carbon dioxide adsorbents based on polyethylenimine-modified Halloysite nanotubes.

    PubMed

    Cai, Haohao; Bao, Feng; Gao, Jie; Chen, Tao; Wang, Si; Ma, Rui

    2015-01-01

    New nano-sized carbon dioxide (CO2) adsorbents based on Halloysite nanotubes impregnated with polyethylenimine (PEI) were designed and synthesized, which were excellent adsorbents for the capture of CO2 at room temperature and had relatively high CO2 adsorption capacity. The prepared adsorbents were characterized by various techniques such as Fourier transform infrared spectrometry, gel permeation chromatography, dynamic light scattering, thermogravimetry, thermogravimetry-Fourier transform-infrared spectrometry, scanning electron microscopy and transmission electron microscopy. The adsorption characteristics and capacity were studied at room temperature, the highest CO2 adsorption capacity of 156.6 mg/g-PEI was obtained and the optimal adsorption capacity can reach a maximum value of 54.8 mg/g-adsorbent. The experiment indicated that this kind of adsorbent has a high stability at 80°C and PEI-impregnated adsorbents showed good reversibility and stability during cyclic adsorption-regeneration tests.

  19. Polypeptides Based Molecular Electronics

    DTIC Science & Technology

    2008-10-06

    average of 0.82 nm, corresponding to the theoretical height of a MPTMS monolayer of 0.87nm. Fourier Transform Infrared Spectroscopy (FTIR) spectrum of 3... Infrared Spectroscopy (FTIR) of 3-Mercaptopropyl trimethoxysilane (MPTMS) layer on Si wafer Figure 23a. Topographical image of peptide on MPTMS...transform infrared spectroscopy . Peptide with COOH group is proven to attach to Aminopropyltrimethoxysilane (APTES) functionalized silicon substrate

  20. Finite mode analysis through harmonic waveguides

    PubMed

    Alieva; Wolf

    2000-08-01

    The mode analysis of signals in a multimodal shallow harmonic waveguide whose eigenfrequencies are equally spaced and finite can be performed by an optoelectronic device, of which the optical part uses the guide to sample the wave field at a number of sensors along its axis and the electronic part computes their fast Fourier transform. We illustrate this process with the Kravchuk transform.

  1. Deblurring of Class-Averaged Images in Single-Particle Electron Microscopy.

    PubMed

    Park, Wooram; Madden, Dean R; Rockmore, Daniel N; Chirikjian, Gregory S

    2010-03-01

    This paper proposes a method for deblurring of class-averaged images in single-particle electron microscopy (EM). Since EM images of biological samples are very noisy, the images which are nominally identical projection images are often grouped, aligned and averaged in order to cancel or reduce the background noise. However, the noise in the individual EM images generates errors in the alignment process, which creates an inherent limit on the accuracy of the resulting class averages. This inaccurate class average due to the alignment errors can be viewed as the result of a convolution of an underlying clear image with a blurring function. In this work, we develop a deconvolution method that gives an estimate for the underlying clear image from a blurred class-averaged image using precomputed statistics of misalignment. Since this convolution is over the group of rigid body motions of the plane, SE(2), we use the Fourier transform for SE(2) in order to convert the convolution into a matrix multiplication in the corresponding Fourier space. For practical implementation we use a Hermite-function-based image modeling technique, because Hermite expansions enable lossless Cartesian-polar coordinate conversion using the Laguerre-Fourier expansions, and Hermite expansion and Laguerre-Fourier expansion retain their structures under the Fourier transform. Based on these mathematical properties, we can obtain the deconvolution of the blurred class average using simple matrix multiplication. Tests of the proposed deconvolution method using synthetic and experimental EM images confirm the performance of our method.

  2. Limiting factors in atomic resolution cryo electron microscopy: No simple tricks

    PubMed Central

    Zhang, Xing; Zhou, Z. Hong

    2013-01-01

    To bring cryo electron microscopy (cryoEM) of large biological complexes to atomic resolution, several factors – in both cryoEM image acquisition and 3D reconstruction – that may be neglected at low resolution become significantly limiting. Here we present thorough analyses of four limiting factors: (a) electron-beam tilt, (b) inaccurate determination of defocus values, (c) focus gradient through particles, and (d) particularly for large particles, dynamic (multiple) scattering of electrons. We also propose strategies to cope with these factors: (a) the divergence and direction tilt components of electron-beam tilt could be reduced by maintaining parallel illumination and by using a coma-free alignment procedure, respectively. Moreover, the effect of all beam tilt components, including spiral tilt, could be eliminated by use of a spherical aberration corrector. (b) More accurate measurement of defocus value could be obtained by imaging areas adjacent to the target area at high electron dose and by measuring the image shift induced by tilting the electron beam. (c) Each known Fourier coefficient in the Fourier transform of a cryoEM image is the sum of two Fourier coefficients of the 3D structure, one on each of two curved ‘characteristic surfaces’ in 3D Fourier space. We describe a simple model-based iterative method that could recover these two Fourier coefficients on the two characteristic surfaces. (d) The effect of dynamic scattering could be corrected by deconvolution of a transfer function. These analyses and our proposed strategies offer useful guidance for future experimental designs targeting atomic resolution cryoEM reconstruction. PMID:21627992

  3. Electronic and structural characteristics of zinc-blende wurtzite biphasic homostructure GaN nanowires

    DOE PAGES

    Jacobs, Benjamin W.; Ayres, Virginia M.; Petkov, Mihail P.; ...

    2007-04-07

    Here, we report a new biphasic crystalline wurtzite/zinc-blende homostructure in gallium nitride nanowires. Cathodoluminescence was used to quantitatively measure the wurtzite and zinc-blende band gaps. High-resolution transmission electron microscopy was used to identify distinct wurtzite and zinc-blende crystalline phases within single nanowires through the use of selected area electron diffraction, electron dispersive spectroscopy, electron energy loss spectroscopy, and fast Fourier transform techniques. A mechanism for growth is identified.

  4. Electronic and structural characteristics of zinc-blende wurtzite biphasic homostructure GaN nanowires.

    PubMed

    Jacobs, Benjamin W; Ayres, Virginia M; Petkov, Mihail P; Halpern, Joshua B; He, Maoqi; Baczewski, Andrew D; McElroy, Kaylee; Crimp, Martin A; Zhang, Jiaming; Shaw, Harry C

    2007-05-01

    We report a new biphasic crystalline wurtzite/zinc-blende homostructure in gallium nitride nanowires. Cathodoluminescence was used to quantitatively measure the wurtzite and zinc-blende band gaps. High-resolution transmission electron microscopy was used to identify distinct wurtzite and zinc-blende crystalline phases within single nanowires through the use of selected area electron diffraction, electron dispersive spectroscopy, electron energy loss spectroscopy, and fast Fourier transform techniques. A mechanism for growth is identified.

  5. Thermal stabilization of static single-mirror Fourier transform spectrometers

    NASA Astrophysics Data System (ADS)

    Schardt, Michael; Schwaller, Christian; Tremmel, Anton J.; Koch, Alexander W.

    2017-05-01

    Fourier transform spectroscopy has become a standard method for spectral analysis of infrared light. With this method, an interferogram is created by two beam interference which is subsequently Fourier-transformed. Most Fourier transform spectrometers used today provide the interferogram in the temporal domain. In contrast, static Fourier transform spectrometers generate interferograms in the spatial domain. One example of this type of spectrometer is the static single-mirror Fourier transform spectrometer which offers a high etendue in combination with a simple, miniaturized optics design. As no moving parts are required, it also features a high vibration resistance and high measurement rates. However, it is susceptible to temperature variations. In this paper, we therefore discuss the main sources for temperature-induced errors in static single-mirror Fourier transform spectrometers: changes in the refractive index of the optical components used, variations of the detector sensitivity, and thermal expansion of the housing. As these errors manifest themselves in temperature-dependent wavenumber shifts and intensity shifts, they prevent static single-mirror Fourier transform spectrometers from delivering long-term stable spectra. To eliminate these shifts, we additionally present a work concept for the thermal stabilization of the spectrometer. With this stabilization, static single-mirror Fourier transform spectrometers are made suitable for infrared process spectroscopy under harsh thermal environmental conditions. As the static single-mirror Fourier transform spectrometer uses the so-called source-doubling principle, many of the mentioned findings are transferable to other designs of static Fourier transform spectrometers based on the same principle.

  6. The Fourier analysis of biological transients.

    PubMed

    Harris, C M

    1998-08-31

    With modern computing technology the digital implementation of the Fourier transform is widely available, mostly in the form of the fast Fourier transform (FFT). Although the FFT has become almost synonymous with the Fourier transform, it is a fast numerical technique for computing the discrete Fourier transform (DFT) of a finite sequence of sampled data. The DFT is not directly equivalent to the continuous Fourier transform of the underlying biological signal, which becomes important when analyzing biological transients. Although this distinction is well known by some, for many it leads to confusion in how to interpret the FFT of biological data, and in how to precondition data so as to yield a more accurate Fourier transform using the FFT. We review here the fundamentals of Fourier analysis with emphasis on the analysis of transient signals. As an example of a transient, we consider the human saccade to illustrate the pitfalls and advantages of various Fourier analyses.

  7. Fourier transform magnitudes are unique pattern recognition templates.

    PubMed

    Gardenier, P H; McCallum, B C; Bates, R H

    1986-01-01

    Fourier transform magnitudes are commonly used in the generation of templates in pattern recognition applications. We report on recent advances in Fourier phase retrieval which are relevant to pattern recognition. We emphasise in particular that the intrinsic form of a finite, positive image is, in general, uniquely related to the magnitude of its Fourier transform. We state conditions under which the Fourier phase can be reconstructed from samples of the Fourier magnitude, and describe a method of achieving this. Computational examples of restoration of Fourier phase (and hence, by Fourier transformation, the intrinsic form of the image) from samples of the Fourier magnitude are also presented.

  8. Reducing aberration effect of Fourier transform lens by modifying Fourier spectrum of diffractive optical element in beam shaping optical system.

    PubMed

    Zhang, Fang; Zhu, Jing; Song, Qiang; Yue, Weirui; Liu, Jingdan; Wang, Jian; Situ, Guohai; Huang, Huijie

    2015-10-20

    In general, Fourier transform lenses are considered as ideal in the design algorithms of diffractive optical elements (DOEs). However, the inherent aberrations of a real Fourier transform lens disturb the far field pattern. The difference between the generated pattern and the expected design will impact the system performance. Therefore, a method for modifying the Fourier spectrum of DOEs without introducing other optical elements to reduce the aberration effect of the Fourier transform lens is proposed. By applying this method, beam shaping performance is improved markedly for the optical system with a real Fourier transform lens. The experiments carried out with a commercial Fourier transform lens give evidence for this method. The method is capable of reducing the system complexity as well as improving its performance.

  9. Fractional finite Fourier transform.

    PubMed

    Khare, Kedar; George, Nicholas

    2004-07-01

    We show that a fractional version of the finite Fourier transform may be defined by using prolate spheroidal wave functions of order zero. The transform is linear and additive in its index and asymptotically goes over to Namias's definition of the fractional Fourier transform. As a special case of this definition, it is shown that the finite Fourier transform may be inverted by using information over a finite range of frequencies in Fourier space, the inversion being sensitive to noise. Numerical illustrations for both forward (fractional) and inverse finite transforms are provided.

  10. Mode Transitions in Hall Effect Thrusters

    DTIC Science & Technology

    2013-07-01

    bM = number of pixels per bin m = spoke order 0m = spoke order m = 0 em = electron mass, 9.1110 -31 kg im = Xe ion mass, 2.18×10 -25...periodogram spectral estimate, Arb Hz -1 eT = electron temperature eT = electron temperature parallel to magnetic field, eV eT  = electron ...Fourier transform of x(t)  = inverse angle from 2D DFT, deg-1  = mean electron energy, eV * = material dependent cross-over energy, eV xy

  11. Multi-Beam Radio Frequency (RF) Aperture Arrays Using Multiplierless Approximate Fast Fourier Transform (FFT)

    DTIC Science & Technology

    2017-08-01

    filtering, correlation and radio- astronomy . In this report approximate transforms that closely follow the DFT have been studied and found. The approximate...communications, data networks, sensor networks, cognitive radio, radar and beamforming, imaging, filtering, correlation and radio- astronomy . FFTs efficiently...public release; distribution is unlimited. 4.3 Digital Hardware and Design Architectures Collaboration for Astronomy Signal Processing and Electronics

  12. Topics In Chemical Instrumentation: Fourier Transformations for Chemists Part I. Introduction to the Fourier Transform.

    ERIC Educational Resources Information Center

    Glasser, L.

    1987-01-01

    This paper explores how Fourier Transform (FT) mimics spectral transformation, how this property can be exploited to advantage in spectroscopy, and how the FT can be used in data treatment. A table displays a number of important FT serial/spectral pairs related by Fourier Transformations. A bibliography and listing of computer software related to…

  13. MULTISPECTRAL IDENTIFICATION OF ALKYL AND CHLOROALKYL PHOSPHATES FROM AN INDUSTRIAL EFFLUENT

    EPA Science Inventory

    Multispectral techniques (gas chromatography combined with low and high resolution electron-impact mass spectrometry, low and high resolution chemical ionization mass spectrometry, and Fourier transform infrared mass spectroscopy) were used to identify 13 alkyl and chloralkyl pho...

  14. Time-dependent Electron Acceleration in Blazar Transients: X-Ray Time Lags and Spectral Formation

    NASA Astrophysics Data System (ADS)

    Lewis, Tiffany R.; Becker, Peter A.; Finke, Justin D.

    2016-06-01

    Electromagnetic radiation from blazar jets often displays strong variability, extending from radio to γ-ray frequencies. In a few cases, this variability has been characterized using Fourier time lags, such as those detected in the X-rays from Mrk 421 using BeppoSAX. The lack of a theoretical framework to interpret the data has motivated us to develop a new model for the formation of the X-ray spectrum and the time lags in blazar jets based on a transport equation including terms describing stochastic Fermi acceleration, synchrotron losses, shock acceleration, adiabatic expansion, and spatial diffusion. We derive the exact solution for the Fourier transform of the electron distribution and use it to compute the Fourier transform of the synchrotron radiation spectrum and the associated X-ray time lags. The same theoretical framework is also used to compute the peak flare X-ray spectrum, assuming that a steady-state electron distribution is achieved during the peak of the flare. The model parameters are constrained by comparing the theoretical predictions with the observational data for Mrk 421. The resulting integrated model yields, for the first time, a complete first-principles physical explanation for both the formation of the observed time lags and the shape of the peak flare X-ray spectrum. It also yields direct estimates of the strength of the shock and the stochastic magnetohydrodynamical wave acceleration components in the Mrk 421 jet.

  15. Functional biocompatible magnetite-cellulose nanocomposite fibrous networks: Characterization by fourier transformed infrared spectroscopy, X-ray powder diffraction and field emission scanning electron microscopy analysis.

    PubMed

    Habibi, Neda

    2015-02-05

    The preparation and characterization of functional biocompatible magnetite-cellulose nano-composite fibrous material is described. Magnetite-cellulose nano-composite was prepared by a combination of the solution-based formation of magnetic nano-particles and subsequent coating with amino celluloses. Characterization was accomplished using X-ray powder diffraction (XRD), fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. The peaks of Fe3O4 in the XRD pattern of nanocomposite confirm existence of the nanoparticles in the amino cellulose matrix. Magnetite-cellulose particles exhibit an average diameter of roughly 33nm as demonstrated by field emission scanning electron microscopy. Magnetite nanoparticles were irregular spheres dispersed in the cellulose matrix. The vibration corresponding to the NCH3 functional group about 2850cm(-1) is assigned in the FTIR spectra. Functionalized magnetite-cellulose nano-composite polymers have a potential range of application as targeted drug delivery system in biomedical field. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Nanouric acid or nanocalcium phosphate as central nidus to induce calcium oxalate stone formation: a high-resolution transmission electron microscopy study on urinary nanocrystallites

    PubMed Central

    Gao, Jie; Xue, Jun-Fa; Xu, Meng; Gui, Bao-Song; Wang, Feng-Xin; Ouyang, Jian-Ming

    2014-01-01

    Purpose This study aimed to accurately analyze the relationship between calcium oxalate (CaOx) stone formation and the components of urinary nanocrystallites. Method High-resolution transmission electron microscopy (HRTEM), selected area electron diffraction, fast Fourier transformation of HRTEM, and energy dispersive X-ray spectroscopy were performed to analyze the components of these nanocrystallites. Results The main components of CaOx stones are calcium oxalate monohydrate and a small amount of dehydrate, while those of urinary nanocrystallites are calcium oxalate monohydrate, uric acid, and calcium phosphate. The mechanism of formation of CaOx stones was discussed based on the components of urinary nanocrystallites. Conclusion The formation of CaOx stones is closely related both to the properties of urinary nanocrystallites and to the urinary components. The combination of HRTEM, fast Fourier transformation, selected area electron diffraction, and energy dispersive X-ray spectroscopy could be accurately performed to analyze the components of single urinary nanocrystallites. This result provides evidence for nanouric acid and/or nanocalcium phosphate crystallites as the central nidus to induce CaOx stone formation. PMID:25258530

  17. Computationally efficient method for Fourier transform of highly chirped pulses for laser and parametric amplifier modeling.

    PubMed

    Andrianov, Alexey; Szabo, Aron; Sergeev, Alexander; Kim, Arkady; Chvykov, Vladimir; Kalashnikov, Mikhail

    2016-11-14

    We developed an improved approach to calculate the Fourier transform of signals with arbitrary large quadratic phase which can be efficiently implemented in numerical simulations utilizing Fast Fourier transform. The proposed algorithm significantly reduces the computational cost of Fourier transform of a highly chirped and stretched pulse by splitting it into two separate transforms of almost transform limited pulses, thereby reducing the required grid size roughly by a factor of the pulse stretching. The application of our improved Fourier transform algorithm in the split-step method for numerical modeling of CPA and OPCPA shows excellent agreement with standard algorithms.

  18. APPLICATION OF MULTISPECTRAL TECHNIQUES TO THE PRECISE IDENTIFICATION OF ALDEHYDES IN THE ENVIRONMENT

    EPA Science Inventory

    By using gas chromatography coupled with low- and high-resolution electron impact mass spectrometry, low- and high-resolution chemical ionization mass spectrometry, and Fourier transform infrared spectroscopy, eight straight-chain aldehydes were identified in a water sample taken...

  19. The fractional Fourier transform and applications

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Swarztrauber, Paul N.

    1991-01-01

    This paper describes the 'fractional Fourier transform', which admits computation by an algorithm that has complexity proportional to the fast Fourier transform algorithm. Whereas the discrete Fourier transform (DFT) is based on integral roots of unity e exp -2(pi)i/n, the fractional Fourier transform is based on fractional roots of unity e exp -2(pi)i(alpha), where alpha is arbitrary. The fractional Fourier transform and the corresponding fast algorithm are useful for such applications as computing DFTs of sequences with prime lengths, computing DFTs of sparse sequences, analyzing sequences with noninteger periodicities, performing high-resolution trigonometric interpolation, detecting lines in noisy images, and detecting signals with linearly drifting frequencies. In many cases, the resulting algorithms are faster by arbitrarily large factors than conventional techniques.

  20. Fourier fringe analysis and its application to metrology of extreme physical phenomena: a review [Invited].

    PubMed

    Takeda, Mitsuo

    2013-01-01

    The paper reviews a technique for fringe analysis referred to as Fourier fringe analysis (FFA) or the Fourier transform method, with a particular focus on its application to metrology of extreme physical phenomena. Examples include the measurement of extremely small magnetic fields with subfluxon sensitivity by electron wave interferometry, subnanometer wavefront evaluation of projection optics for extreme UV lithography, the detection of sub-Ångstrom distortion of a crystal lattice, and the measurement of ultrashort optical pulses in the femotsecond to attosecond range, which show how the advantages of FFA are exploited in these cutting edge applications.

  1. The τq-Fourier transform: Covariance and uniqueness

    NASA Astrophysics Data System (ADS)

    Kalogeropoulos, Nikolaos

    2018-05-01

    We propose an alternative definition for a Tsallis entropy composition-inspired Fourier transform, which we call “τq-Fourier transform”. We comment about the underlying “covariance” on the set of algebraic fields that motivates its introduction. We see that the definition of the τq-Fourier transform is automatically invertible in the proper context. Based on recent results in Fourier analysis, it turns that the τq-Fourier transform is essentially unique under the assumption of the exchange of the point-wise product of functions with their convolution.

  2. Hypercomplex Fourier transforms of color images.

    PubMed

    Ell, Todd A; Sangwine, Stephen J

    2007-01-01

    Fourier transforms are a fundamental tool in signal and image processing, yet, until recently, there was no definition of a Fourier transform applicable to color images in a holistic manner. In this paper, hypercomplex numbers, specifically quaternions, are used to define a Fourier transform applicable to color images. The properties of the transform are developed, and it is shown that the transform may be computed using two standard complex fast Fourier transforms. The resulting spectrum is explained in terms of familiar phase and modulus concepts, and a new concept of hypercomplex axis. A method for visualizing the spectrum using color graphics is also presented. Finally, a convolution operational formula in the spectral domain is discussed.

  3. Study of lignification by noninvasive techniques in growing maize internodes. An investigation by Fourier transform infrared cross-polarization-magic angle spinning 13C-nuclear magnetic resonance spectroscopy and immunocytochemical transmission electron microscopy.

    PubMed Central

    Joseleau, J P; Ruel, K

    1997-01-01

    Noninvasive techniques were used for the study in situ of lignification in the maturing cell walls of the maize (Zea mays L.) stem. Within the longitudinal axis of a developing internode all of the stages of lignification can be found. The synthesis of the three types of lignins, p-hydroxyphenylpropane (H), guaiacyl (G), and syringyl (S), was investigated in situ by cross-polarization-magic angle spinning 13C-solid-state nuclear magnetic resonance, Fourier transform infrared spectroscopy, and immunocytochemical electron microscopy. The first lignin appearing in the parenchyma is of the G-type preceeding the incorporation of S nuclei in the later stages. However, in vascular bundles, typical absorption bands of S nuclei are visible in the Fourier transform infrared spectra at the earliest stage of lignification. Immunocytochemical determination of the three types of lignin in transmission electron microscopy was possible thanks to the use of antisera prepared against synthetic H, G, and the mixed GS dehydrogenative polymers (K. Ruel, O. Faix, J.P. Joseleau [1994] J Trace Microprobe Tech 12: 247-265). The specificity of the immunological probes demonstrated that there are differences in the relative temporal synthesis of the H, G, and GS lignins in the different tissues undergoing lignification. Considering the intermonomeric linkages predominating in the antigens used for the preparation of the immunological probes, the relative intensities of the labeling obtained provided, for the first time to our knowledge, information about the macromolecular nature of lignins (condensed versus noncondensed) in relation to their ultrastructural localization and development stage. PMID:9232887

  4. Causal Correlation Functions and Fourier Transforms: Application in Calculating Pressure Induced Shifts

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.; Lavrentieva, N. N.

    2012-01-01

    By adopting a concept from signal processing, instead of starting from the correlation functions which are even, one considers the causal correlation functions whose Fourier transforms become complex. Their real and imaginary parts multiplied by 2 are the Fourier transforms of the original correlations and the subsequent Hilbert transforms, respectively. Thus, by taking this step one can complete the two previously needed transforms. However, to obviate performing the Cauchy principal integrations required in the Hilbert transforms is the greatest advantage. Meanwhile, because the causal correlations are well-bounded within the time domain and band limited in the frequency domain, one can replace their Fourier transforms by the discrete Fourier transforms and the latter can be carried out with the FFT algorithm. This replacement is justified by sampling theory because the Fourier transforms can be derived from the discrete Fourier transforms with the Nyquis rate without any distortions. We apply this method in calculating pressure induced shifts of H2O lines and obtain more reliable values. By comparing the calculated shifts with those in HITRAN 2008 and by screening both of them with the pair identity and the smooth variation rules, one can conclude many of shift values in HITRAN are not correct.

  5. PASSIVELY ESTIMATING INDEX OF REFRACTION FOR SPECULAR REFLECTORS USING POLARIMETRIC HYPERSPECTRAL IMAGING

    DTIC Science & Technology

    2016-12-22

    23 6 Band-averaged radiance image with checkerboard is shown in the upper left. The 2-D Fourier transform of the image is...red is 1) that is multiplied by the Fourier transform of the original image. The inverse Fourier transform is then taken to get the final image with...Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 IFTS Imaging Fourier Transform Spectrometer

  6. Fourier transform infrared emission spectra of MnH and MnD

    NASA Astrophysics Data System (ADS)

    Gordon, Iouli E.; Appadoo, Dominique R. T.; Shayesteh, Alireza; Walker, Kaley A.; Bernath, Peter F.

    2005-01-01

    Fourier transform infrared emission spectra of MnH and MnD were observed in the ground X7Σ + electronic state. The vibration-rotation bands from v = 1 → 0 to v = 3 → 2 for MnH and from v = 1 → 0 to v = 4 → 3 for MnD were recorded at an instrumental resolution of 0.0085 cm -1. Spectroscopic constants were determined for each vibrational level and equilibrium constants were found from a Dunham-type fit. The equilibrium vibrational constant ( ωe) for MnH was found to be 1546.84518(65) cm -1, the equilibrium rotational constant ( Be) is 5.6856789(103) cm -1 and the eqilibrium bond distance ( re) was determined to be 1.7308601(47) Å.

  7. A Novel Application of Fourier Transform Spectroscopy with HEMT Amplifiers at Microwave Frequencies

    NASA Technical Reports Server (NTRS)

    Wilkinson, David T.; Page, Lyman

    1995-01-01

    The goal was to develop cryogenic high-electron-mobility transistor (HEMT) based radiometers and use them to measure the anisotropy in the cosmic microwave background (CMB). In particular, a novel Fourier transform spectrometer (FTS) built entirely of waveguide components would be developed. A dual-polarization Ka-band HEMT radiometer and a similar Q-band radiometer were built. In a series of measurements spanning three years made from a ground-based site in Saskatoon, SK, the amplitude, frequency spectrum, and spatial frequency spectrum of the anisotropy were measured. A prototype Ka-band FTS was built and tested, and a simplified version is proposed for the MAP satellite mission. The 1/f characteristics of HEMT amplifiers were quantified using correlation techniques.

  8. Why phase errors affect the electron function more than amplitude errors.

    PubMed

    Lattman, Eaton; DeRosier, David

    2008-03-01

    If Fexp(ialpha) are the set of structure factors for a structure f, the amplitudes can be converted to those of an uncorrelated structure g (amplitude swapping) by multiplying each F by the positive number G/F. Correspondingly, the image f is convoluted with k, the Fourier transform of G/F; k has a large peak at the origin, so that f * k approximately f. For swapped phases, the image f is convoluted with l, the Fourier transform of exp(iDeltaalpha), where Deltaalpha, the phase difference between F and G, is a random variable; l does not have a large peak at the origin, so that f * l does not resemble f. The paper provides quantitative descriptions of these arguments.

  9. Holographic maps of quasiparticle interference

    NASA Astrophysics Data System (ADS)

    Dalla Torre, Emanuele G.; He, Yang; Demler, Eugene

    2016-11-01

    The analysis of Fourier-transformed scanning tunnelling microscopy images with subatomic resolution is a common tool for studying the properties of quasiparticle excitations in strongly correlated materials. Although Fourier amplitudes are generally complex valued, earlier analysis primarily focused on their absolute values. Their complex phases were often deemed random, and thus irrelevant, due to the unknown positions of the impurities in the sample. Here we show how to factor out these random phases by analysing overlaps between Fourier amplitudes that differ by reciprocal lattice vectors. The resulting holographic maps provide important and previously unknown information about the electronic structures. When applied to superconducting cuprates, our method solves a long-standing puzzle of the dichotomy between equivalent wavevectors. We show that d-wave Wannier functions of the conduction band provide a natural explanation for experimental results that were interpreted as evidence for competing unconventional charge modulations. Our work opens a new pathway to identify the nature of electronic states in scanning tunnelling microscopy.

  10. Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM) for Study of the Kinetics of Formation and Structural Characterization of Tau Fibrils.

    PubMed

    Ramachandran, Gayathri

    2017-01-01

    Kinetic studies of tau fibril formation in vitro most commonly employ spectroscopic probes such as thioflavinT fluorescence and laser light scattering or negative stain transmission electron microscopy. Here, I describe the use of Fourier transform infrared (FTIR) spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and atomic force microscopy (AFM) as complementary probes for studies of tau aggregation. The sensitivity of vibrational spectroscopic techniques (FTIR and UVRR) to secondary structure content allows for measurement of conformational changes that occur when the intrinsically disordered protein tau transforms into cross-β-core containing fibrils. AFM imaging serves as a gentle probe of structures populated over the time course of tau fibrillization. Together, these assays help further elucidate the structural and mechanistic complexity inherent in tau fibril formation.

  11. Structural, thermal and electrical characterizations of multiwalled carbon nanotubes and polyaniline composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Kamal, E-mail: singhkamal204@gmail.com; Garg, Leena; Singh, Jaspal

    2016-05-06

    The undoped and doped composite of MWNTs (Multiwalled Carbon Nanotubes) with PANI (/Polyaniline) was prepared by chemical oxidative polymerization. The MWNTs/PANI composites have been characterized by using various techniques like Thermogravometric Analysis (TGA), Fourier transform infrared (FT-IR) spectrometer and Field emission scanning electron microscope (FE-SEM) and conductivity measurement by using two probe method. TGA results has shown that thermal stability followed the pattern undoped MWNTs/PANI composite < doped MWNTs/PANI composite. FE-SEM micrographs demonstrated the morphological changes on the surface of MWNTs as a result of composite formation. Fourier transformed infrared (FT-IR) spectra ascertained the formation of the composite. Study ofmore » electrical characteristics demonstrated that the doped MWNTs/PANI composite (1.2 × 10{sup 1} Scm{sup −1}) have better conductivity than the undoped MWNTs/PANI composite (10{sup −4} Scm{sup −1}). These CNTs based polymeric composites are of great importance in developing new nano-scale devices for future chemical, mechanical and electronic applications.« less

  12. Two-Dimensional Fourier Transform Electronic Spectroscopy of Peridinin and Peridinin Analogs

    NASA Astrophysics Data System (ADS)

    Khosravi, Soroush; Bishop, Michael; Obaid, Razib; Whitelock, Hope; Carroll, Ann Marie; Lafountain, Amy; Frank, Harry; Beck, Warren; Gibson, George; Berrah, Nora

    2016-05-01

    The peridinin chlorophyll- a protein (PCP) is a light harvesting complex in dinoflagellates that exhibits a carotenoid-to-chlorophyll (Chl) a excitation energy transfer (EET) efficiency of 85-95%. Unlike most light harvesting complexes, where the number of carotenoids is less than Chl, each subunit of PCP contains eight tightly-packed peridinins surrounding two Chl a molecules. The unusual solvent polarity dependence of the lowest excited S1 state of peridinin suggests the presence of an intramolecular charge-transfer (ICT) state. The nature of the ICT state, its coupling to the S1 of peridinin, and whether it enables the high EET efficiency is still unclear. Two-dimensional electronic Fourier transform spectroscopy (2DES) is a powerful method capable of examining these issues. The present work examines the ICT state of peridinin and peridinin analogs that have diminished ICT character. 2DES data adding new insight into the spectral signatures and nature of the ICT state in peridinin will be presented. Funded by the DoE-BES, Grant No. DE-SC0012376.

  13. A method of power analysis based on piecewise discrete Fourier transform

    NASA Astrophysics Data System (ADS)

    Xin, Miaomiao; Zhang, Yanchi; Xie, Da

    2018-04-01

    The paper analyzes the existing feature extraction methods. The characteristics of discrete Fourier transform and piecewise aggregation approximation are analyzed. Combining with the advantages of the two methods, a new piecewise discrete Fourier transform is proposed. And the method is used to analyze the lighting power of a large customer in this paper. The time series feature maps of four different cases are compared with the original data, discrete Fourier transform, piecewise aggregation approximation and piecewise discrete Fourier transform. This new method can reflect both the overall trend of electricity change and its internal changes in electrical analysis.

  14. Fourier Transforms Simplified: Computing an Infrared Spectrum from an Interferogram

    ERIC Educational Resources Information Center

    Hanley, Quentin S.

    2012-01-01

    Fourier transforms are used widely in chemistry and allied sciences. Examples include infrared, nuclear magnetic resonance, and mass spectroscopies. A thorough understanding of Fourier methods assists the understanding of microscopy, X-ray diffraction, and diffraction gratings. The theory of Fourier transforms has been presented in this "Journal",…

  15. A fast algorithm for vertex-frequency representations of signals on graphs

    PubMed Central

    Jestrović, Iva; Coyle, James L.; Sejdić, Ervin

    2016-01-01

    The windowed Fourier transform (short time Fourier transform) and the S-transform are widely used signal processing tools for extracting frequency information from non-stationary signals. Previously, the windowed Fourier transform had been adopted for signals on graphs and has been shown to be very useful for extracting vertex-frequency information from graphs. However, high computational complexity makes these algorithms impractical. We sought to develop a fast windowed graph Fourier transform and a fast graph S-transform requiring significantly shorter computation time. The proposed schemes have been tested with synthetic test graph signals and real graph signals derived from electroencephalography recordings made during swallowing. The results showed that the proposed schemes provide significantly lower computation time in comparison with the standard windowed graph Fourier transform and the fast graph S-transform. Also, the results showed that noise has no effect on the results of the algorithm for the fast windowed graph Fourier transform or on the graph S-transform. Finally, we showed that graphs can be reconstructed from the vertex-frequency representations obtained with the proposed algorithms. PMID:28479645

  16. Missing texture reconstruction method based on error reduction algorithm using Fourier transform magnitude estimation scheme.

    PubMed

    Ogawa, Takahiro; Haseyama, Miki

    2013-03-01

    A missing texture reconstruction method based on an error reduction (ER) algorithm, including a novel estimation scheme of Fourier transform magnitudes is presented in this brief. In our method, Fourier transform magnitude is estimated for a target patch including missing areas, and the missing intensities are estimated by retrieving its phase based on the ER algorithm. Specifically, by monitoring errors converged in the ER algorithm, known patches whose Fourier transform magnitudes are similar to that of the target patch are selected from the target image. In the second approach, the Fourier transform magnitude of the target patch is estimated from those of the selected known patches and their corresponding errors. Consequently, by using the ER algorithm, we can estimate both the Fourier transform magnitudes and phases to reconstruct the missing areas.

  17. The Fourier transforms for the spatially homogeneous Boltzmann equation and Landau equation

    NASA Astrophysics Data System (ADS)

    Meng, Fei; Liu, Fang

    2018-03-01

    In this paper, we study the Fourier transforms for two equations arising in the kinetic theory. The first equation is the spatially homogeneous Boltzmann equation. The Fourier transform of the spatially homogeneous Boltzmann equation has been first addressed by Bobylev (Sov Sci Rev C Math Phys 7:111-233, 1988) in the Maxwellian case. Alexandre et al. (Arch Ration Mech Anal 152(4):327-355, 2000) investigated the Fourier transform of the gain operator for the Boltzmann operator in the cut-off case. Recently, the Fourier transform of the Boltzmann equation is extended to hard or soft potential with cut-off by Kirsch and Rjasanow (J Stat Phys 129:483-492, 2007). We shall first establish the relation between the results in Alexandre et al. (2000) and Kirsch and Rjasanow (2007) for the Fourier transform of the Boltzmann operator in the cut-off case. Then we give the Fourier transform of the spatially homogeneous Boltzmann equation in the non cut-off case. It is shown that our results cover previous works (Bobylev 1988; Kirsch and Rjasanow 2007). The second equation is the spatially homogeneous Landau equation, which can be obtained as a limit of the Boltzmann equation when grazing collisions prevail. Following the method in Kirsch and Rjasanow (2007), we can also derive the Fourier transform for Landau equation.

  18. TIME-DEPENDENT ELECTRON ACCELERATION IN BLAZAR TRANSIENTS: X-RAY TIME LAGS AND SPECTRAL FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Tiffany R.; Becker, Peter A.; Finke, Justin D., E-mail: pbecker@gmu.edu, E-mail: tlewis13@gmu.edu, E-mail: justin.finke@nrl.navy.mil

    2016-06-20

    Electromagnetic radiation from blazar jets often displays strong variability, extending from radio to γ -ray frequencies. In a few cases, this variability has been characterized using Fourier time lags, such as those detected in the X-rays from Mrk 421 using Beppo SAX. The lack of a theoretical framework to interpret the data has motivated us to develop a new model for the formation of the X-ray spectrum and the time lags in blazar jets based on a transport equation including terms describing stochastic Fermi acceleration, synchrotron losses, shock acceleration, adiabatic expansion, and spatial diffusion. We derive the exact solution formore » the Fourier transform of the electron distribution and use it to compute the Fourier transform of the synchrotron radiation spectrum and the associated X-ray time lags. The same theoretical framework is also used to compute the peak flare X-ray spectrum, assuming that a steady-state electron distribution is achieved during the peak of the flare. The model parameters are constrained by comparing the theoretical predictions with the observational data for Mrk 421. The resulting integrated model yields, for the first time, a complete first-principles physical explanation for both the formation of the observed time lags and the shape of the peak flare X-ray spectrum. It also yields direct estimates of the strength of the shock and the stochastic magnetohydrodynamical wave acceleration components in the Mrk 421 jet.« less

  19. A controlled release of ibuprofen by systematically tailoring the morphology of mesoporous silica materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu Fengyu; Chemistry and Pharmaceutical College, Jiamusi University, Jiamusi 154007; Zhu Guangshan

    2006-07-15

    A series of mesoporous silica materials with similar pore sizes, different morphologies and variable pore geometries were prepared systematically. In order to control drug release, ibuprofen was employed as a model drug and the influence of morphology and pore geometry of mesoporous silica on drug release profiles was extensively studied. The mesoporous silica and drug-loaded samples were characterized by X-ray diffraction, Fourier transform IR spectroscopy, N{sub 2} adsorption and desorption, scanning electron microscopy, and transmission electron microscopy. It was found that the drug-loading amount was directly correlated to the Brunauer-Emmett-Teller surface area, pore geometry, and pore volume; while the drugmore » release profiles could be controlled by tailoring the morphologies of mesoporous silica carriers. - Graphical abstract: The release of ibuprofen is controlled by tailoring the morphologies of mesoporous silica. The mesoporous silica and drug-loaded samples are characterized by powder X-ray diffraction, Fourier transform IR spectroscopy, N{sub 2} adsorption and desorption, scanning electron microscopy, and transmission electron microscopy. The drug-loading amount is directly correlated to the Brunauer-Emmett-Teller surface area, pore geometry, and pore volume; while the drug release profiles can be controlled by tailoring the morphologies of mesoporous silica carriers.« less

  20. Effects of 160 keV electron irradiation on the optical properties and microstructure of "Panda" type Polarization-Maintaining optical fibers

    NASA Astrophysics Data System (ADS)

    Hong-Chen, Zhang; Hai, Liu; Hui-Jie, Xue; Wen-Qiang, Qiao; Shi-Yu, He

    2012-11-01

    In this paper, effects of 160 keV electron irradiated "Panda" type Polarization-Maintaining optical fiber at 1310 nm are investigated by us. Attenuation coefficient induced in optical fiber by electron beams at 1310 nm increases with increase in electron fluence. Electron irradiation-induced damage mechanism are studied by means of CASINO simulation program, the X-ray photoelectron spectroscopy (XPS), electron spin resonance spectrometer (EPR) and Fourier transform infrared spectroscopy (FTIR). The results show that Si-OH impurity defect concentration is the main reason of increasing attenuation coefficient at 1310 nm.

  1. Precise and fast spatial-frequency analysis using the iterative local Fourier transform.

    PubMed

    Lee, Sukmock; Choi, Heejoo; Kim, Dae Wook

    2016-09-19

    The use of the discrete Fourier transform has decreased since the introduction of the fast Fourier transform (fFT), which is a numerically efficient computing process. This paper presents the iterative local Fourier transform (ilFT), a set of new processing algorithms that iteratively apply the discrete Fourier transform within a local and optimal frequency domain. The new technique achieves 210 times higher frequency resolution than the fFT within a comparable computation time. The method's superb computing efficiency, high resolution, spectrum zoom-in capability, and overall performance are evaluated and compared to other advanced high-resolution Fourier transform techniques, such as the fFT combined with several fitting methods. The effectiveness of the ilFT is demonstrated through the data analysis of a set of Talbot self-images (1280 × 1024 pixels) obtained with an experimental setup using grating in a diverging beam produced by a coherent point source.

  2. Microwave-assisted hydrothermal synthesis of biocompatible silver sulfide nanoworms

    NASA Astrophysics Data System (ADS)

    Xing, Ruimin; Liu, Shanhu; Tian, Shufang

    2011-10-01

    In this study, silver sulfide nanoworms were prepared via a rapid microwave-assisted hydrothermal method by reacting silver nitrate and thioacetamide in the aqueous solution of the Bovine Serum Albumin (BSA) protein. The morphology, composition, and crystallinity of the nanoworms were characterized by field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray energy dispersive spectroscopy (EDS), and Fourier transform infrared (FTIR) spectroscopy. The results show that the nanoworms were assembled by multiple adjacent Ag2S nanoparticles and stabilized by a layer of BSA attached to their surface. The nanoworms have the sizes of about 50 nm in diameter and hundreds of nanometers in length. The analyses of high-resolution TEM and their correlative Fast Fourier Transform (FFT) indicate that the adjacent Ag2S nanoparticles grow by misoriented attachment at the connective interfaces to form the nanoworm structure. In vitro assays on the human cervical cancer cell line HeLa show that the nanoworms exhibit good biocompatibility due to the presence of BSA coating. This combination of features makes the nanoworms attractive and promising building blocks for advanced materials and devices.

  3. A gain and bandwidth enhanced transimpedance preamplifier for Fourier-transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Yung; Green, Roger J.; O'Connor, Peter B.

    2011-12-01

    The nature of the ion signal from a 12-T Fourier-transform ion cyclotron resonance mass spectrometer and the electronic noise were studied to further understand the electronic detection limit. At minimal cost, a new transimpedance preamplifier was designed, computer simulated, built, and tested. The preamplifier design pushes the electronic signal-to-noise performance at room temperature to the limit, because of its enhanced tolerance of the capacitance of the detection device, lower intrinsic noise, and larger flat mid-band gain (input current noise spectral density of around 1 pA/sqrt{Hz} when the transimpedance is about 85 dBΩ). The designed preamplifier has a bandwidth of ˜3 kHz to 10 MHz, which corresponds to the mass-to-charge ratio, m/z, of approximately 18 to 61 k at 12 T. The transimpedance and the bandwidth can be easily adjusted by changing the value of passive components. The feedback limitation of the circuit is discussed. With the maximum possible transimpedance of 5.3 MΩ when using an 0402 surface mount resistor, the preamplifier was estimated to be able to detect ˜110 charges in a single scan.

  4. A gain and bandwidth enhanced transimpedance preamplifier for Fourier-transform ion cyclotron resonance mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Tzu-Yung; Green, Roger J.; O'Connor, Peter B.

    2011-12-15

    The nature of the ion signal from a 12-T Fourier-transform ion cyclotron resonance mass spectrometer and the electronic noise were studied to further understand the electronic detection limit. At minimal cost, a new transimpedance preamplifier was designed, computer simulated, built, and tested. The preamplifier design pushes the electronic signal-to-noise performance at room temperature to the limit, because of its enhanced tolerance of the capacitance of the detection device, lower intrinsic noise, and larger flat mid-band gain (input current noise spectral density of around 1 pA/{radical}(Hz) when the transimpedance is about 85 dB{Omega}). The designed preamplifier has a bandwidth of {approx}3more » kHz to 10 MHz, which corresponds to the mass-to-charge ratio, m/z, of approximately 18 to 61 k at 12 T. The transimpedance and the bandwidth can be easily adjusted by changing the value of passive components. The feedback limitation of the circuit is discussed. With the maximum possible transimpedance of 5.3 M{Omega} when using an 0402 surface mount resistor, the preamplifier was estimated to be able to detect {approx}110 charges in a single scan.« less

  5. Fourier transform infrared difference and time-resolved infrared detection of the electron and proton transfer dynamics in photosynthetic water oxidation.

    PubMed

    Noguchi, Takumi

    2015-01-01

    Photosynthetic water oxidation, which provides the electrons necessary for CO₂ reduction and releases O₂ and protons, is performed at the Mn₄CaO₅ cluster in photosystem II (PSII). In this review, studies that assessed the mechanism of water oxidation using infrared spectroscopy are summarized focusing on electron and proton transfer dynamics. Structural changes in proteins and water molecules between intermediates known as Si states (i=0-3) were detected using flash-induced Fourier transform infrared (FTIR) difference spectroscopy. Electron flow in PSII and proton release from substrate water were monitored using the infrared changes in ferricyanide as an exogenous electron acceptor and Mes buffer as a proton acceptor. Time-resolved infrared (TRIR) spectroscopy provided information on the dynamics of proton-coupled electron transfer during the S-state transitions. In particular, a drastic proton movement during the lag phase (~200μs) before electron transfer in the S3→S0 transition was detected directly by monitoring the infrared absorption of a polarizable proton in a hydrogen bond network. Furthermore, the proton release pathways in the PSII proteins were analyzed by FTIR difference measurements in combination with site-directed mutagenesis, isotopic substitutions, and quantum chemical calculations. Therefore, infrared spectroscopy is a powerful tool for understanding the molecular mechanism of photosynthetic water oxidation. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Miscibility and thermal behavior of poly (ε-caprolactone)/long-chain ester of cellulose blends

    Treesearch

    Yuzhi Xu; Chunpeng Wang; Nicole M. Stark; Zhiyong Cai; Fuxiang Chu

    2012-01-01

    The long-chain cellulose ester (LCCE) cellulose laurate, poly(ε-caprolactone) (PCL) and their blends were characterized by tensile strength, Fourier transform infrared spectroscopy (FTIR), dynamic mechanical thermal analysis, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM). The compatibility of the blends was...

  7. Properties of the Magnitude Terms of Orthogonal Scaling Functions.

    PubMed

    Tay, Peter C; Havlicek, Joseph P; Acton, Scott T; Hossack, John A

    2010-09-01

    The spectrum of the convolution of two continuous functions can be determined as the continuous Fourier transform of the cross-correlation function. The same can be said about the spectrum of the convolution of two infinite discrete sequences, which can be determined as the discrete time Fourier transform of the cross-correlation function of the two sequences. In current digital signal processing, the spectrum of the contiuous Fourier transform and the discrete time Fourier transform are approximately determined by numerical integration or by densely taking the discrete Fourier transform. It has been shown that all three transforms share many analogous properties. In this paper we will show another useful property of determining the spectrum terms of the convolution of two finite length sequences by determining the discrete Fourier transform of the modified cross-correlation function. In addition, two properties of the magnitude terms of orthogonal wavelet scaling functions are developed. These properties are used as constraints for an exhaustive search to determine an robust lower bound on conjoint localization of orthogonal scaling functions.

  8. Probing photoelectron multiple interferences via Fourier spectroscopy in energetic photoionization of Xe@C60

    NASA Astrophysics Data System (ADS)

    Potter, Andrea; McCune, Matthew A.; de, Ruma; Madjet, Mohamed E.; Chakraborty, Himadri S.

    2010-09-01

    Considering the photoionization of the Xe@C60 endohedral compound, we study in detail the ionization cross sections of various levels of the system at energies higher than the plasmon resonance region. Five classes of single-electron levels are identified depending on their spectral character. Each class engenders distinct oscillations in the cross section, emerging from the interference between active ionization modes specific to that class. Analysis of the cross sections based on their Fourier transforms unravels oscillation frequencies that carry unique fingerprints of the emitting level.

  9. Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy

    DOE PAGES

    Paul, J.; Dey, P.; Tokumoto, T.; ...

    2014-10-07

    The dephasing of excitons in a modulation doped single quantum well was carefully measured using time integrated four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. These are the first 2DFT measurements performed on a modulation doped single quantum well. The inhomogeneous and homogeneous excitonic line widths were obtained from the diagonal and cross-diagonal profiles of the 2DFT spectra. The laser excitation density and temperature were varied and 2DFT spectra were collected. A very rapid increase of the dephasing decay, and as a result, an increase in the cross-diagonal 2DFT linewidths with temperature was observed. Furthermore, the lineshapes of themore » 2DFT spectra suggest the presence of excitation induced dephasing and excitation induced shift.« less

  10. Ag-doped CdO nanocatalysts: Preparation, characterization and catechol oxidase activity

    NASA Astrophysics Data System (ADS)

    El-Kemary, Maged; El-Mehasseb, Ibrahim; El-Shamy, Hany

    2018-06-01

    Silver doped cadmium oxide (Ag/CdO) nanoparticles with an average size of 41 nm have been successfully synthesized via thermal decomposition and liquid impregnation technique. The structural characterization has been performed by using several spectroscopic techniques, e.g., X-ray diffraction (XRD), scanning electron microscopy (SEM) and fourier-transform infrared (FT-IR). The catechol oxidase has been studied by UV-visible absorption spectroscopy and fourier-transform infrared as well as the mechanism has been assured by cyclic voltammetry and fluorescence spectroscopy. The results indicate that the oxidation does not occur in the presence of unsupported cadmium oxide particles by silver and in the same time, the catechol oxidase activity of silver doped CdO nanoparticles were improved by about three orders of magnitude than silver ions.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, Pragya; Srivastava, A. K.; Khattak, B. Q.

    Polymethyl methacrylate (PMMA) is characterized for electron beam interactions in the resist layer in lithographic applications. PMMA thin films (free standing) were prepared by solvent casting method. These films were irradiated with 30keV electron beam at different doses. Structural and chemical properties of the films were studied by means of X-ray diffraction and Fourier transform infra-red (FTIR) spectroscopy The XRD results showed that the amorphization increases with electron beam irradiation dose. FTIR spectroscopic analysis reveals that electron beam irradiation promotes the scission of carbonyl group and depletes hydrogen and converts polymeric structure into hydrogen depleted carbon network.

  12. Monetite formed in mixed solvents of water and ethylene glycol and its transformation to hydroxyapatite.

    PubMed

    Ma, Ming-Guo; Zhu, Ying-Jie; Chang, Jiang

    2006-07-27

    Agglomerated nanorods of hydroxyapatite have been synthesized using monetite as a precursor in a NaOH solution. Monetite consisting of nanosheets has been successfully synthesized by a one-step microwave-assisted method using CaCl(2).2.5H(2)O, NaH(2)PO(4), and sodium dodecyl sulfate (SDS) in water/ethylene glycol (EG) mixed solvents. The effects of the molar ratio of water to EG and the reaction time on the products were investigated. The products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared spectrometry (FTIR).

  13. [Study on Differential Optical Absorption Spectroscopy Data Processing Based on Chirp-Z Transformation].

    PubMed

    Zheng, Hai-ming; Li, Guang-jie; Wu, Hao

    2015-06-01

    Differential optical absorption spectroscopy (DOAS) is a commonly used atmospheric pollution monitoring method. Denoising of monitoring spectral data will improve the inversion accuracy. Fourier transform filtering method is effectively capable of filtering out the noise in the spectral data. But the algorithm itself can introduce errors. In this paper, a chirp-z transform method is put forward. By means of the local thinning of Fourier transform spectrum, it can retain the denoising effect of Fourier transform and compensate the error of the algorithm, which will further improve the inversion accuracy. The paper study on the concentration retrieving of SO2 and NO2. The results show that simple division causes bigger error and is not very stable. Chirp-z transform is proved to be more accurate than Fourier transform. Results of the frequency spectrum analysis show that Fourier transform cannot solve the distortion and weakening problems of characteristic absorption spectrum. Chirp-z transform shows ability in fine refactoring of specific frequency spectrum.

  14. Fourier removal of stripe artifacts in IRAS images

    NASA Technical Reports Server (NTRS)

    Van Buren, Dave

    1987-01-01

    By working in the Fourier plane, approximate removal of stripe artifacts in IRAS images can be effected. The image of interest is smoothed and subtracted from the original, giving the high-spatial-frequency part. This 'filtered' image is then clipped to remove point sources and then Fourier transformed. Subtracting the Fourier components contributing to the stripes in this image from the Fourier transform of the original and transforming back to the image plane yields substantial removal of the stripes.

  15. Structural evolution and electronic properties of n-type doped hydrogenated amorphous silicon thin films

    NASA Astrophysics Data System (ADS)

    He, Jian; Li, Wei; Xu, Rui; Qi, Kang-Cheng; Jiang, Ya-Dong

    2011-12-01

    The relationship between structure and electronic properties of n-type doped hydrogenated amorphous silicon (a-Si:H) thin films was investigated. Samples with different features were prepared by plasma enhanced chemical vapor deposition (PECVD) at various substrate temperatures. Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy were used to evaluate the structural evolution, meanwhile, electronic-spin resonance (ESR) and optical measurement were applied to explore the electronic properties of P-doped a-Si:H thin films. Results reveal that the changes in materials structure affect directly the electronic properties and the doping efficiency of dopant.

  16. Electro-Optical Imaging Fourier-Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Zhou, Hanying

    2006-01-01

    An electro-optical (E-O) imaging Fourier-transform spectrometer (IFTS), now under development, is a prototype of improved imaging spectrometers to be used for hyperspectral imaging, especially in the infrared spectral region. Unlike both imaging and non-imaging traditional Fourier-transform spectrometers, the E-O IFTS does not contain any moving parts. Elimination of the moving parts and the associated actuator mechanisms and supporting structures would increase reliability while enabling reductions in size and mass, relative to traditional Fourier-transform spectrometers that offer equivalent capabilities. Elimination of moving parts would also eliminate the vibrations caused by the motions of those parts. Figure 1 schematically depicts a traditional Fourier-transform spectrometer, wherein a critical time delay is varied by translating one the mirrors of a Michelson interferometer. The time-dependent optical output is a periodic representation of the input spectrum. Data characterizing the input spectrum are generated through fast-Fourier-transform (FFT) post-processing of the output in conjunction with the varying time delay.

  17. Geometric interpretations of the Discrete Fourier Transform (DFT)

    NASA Technical Reports Server (NTRS)

    Campbell, C. W.

    1984-01-01

    One, two, and three dimensional Discrete Fourier Transforms (DFT) and geometric interpretations of their periodicities are presented. These operators are examined for their relationship with the two sided, continuous Fourier transform. Discrete or continuous transforms of real functions have certain symmetry properties. The symmetries are examined for the one, two, and three dimensional cases. Extension to higher dimension is straight forward.

  18. Rovibrational intensities and electric dipole moment function of the X2 Pi hydroxyl radical

    NASA Technical Reports Server (NTRS)

    Chackerian, C., Jr.; Goorvitch, D.; Benidar, A.; Farrenq, R.; Guelachvili, G.; Martin, P. M.; Abrams, M. C.; Davis, S. P.

    1992-01-01

    Recent work aimed at determining the absolute rovibrational transition intensities for the ground electronic state of the hydroxyl radical is reviewed. Two new sets of Fourier transform emission spectra of OH are described which were recorded at the University of Paris and at the Kitt Peak National Solar Observatory.

  19. Fourier transform emission spectroscopy of the TiF radical in the 407 nm region

    NASA Astrophysics Data System (ADS)

    Imajo, Takashi; Kobayashi, Yuki; Nakashima, Yoshihiro; Tanaka, Keiichi; Tanaka, Takehiko

    2005-04-01

    Ultraviolet emission spectra of the TiF radical in the 407 nm region have been observed at a resolution of 0.04 cm -1 using a Fourier transform spectrometer. A new electronic assignment of 4Γ- X4Φ has been proposed. Rotational analysis has been obtained for the 0-0 and 1-1 vibrational bands of the 4Γ 5/2- X4Φ 3/2, 4Γ 9/2- X4Φ 7/2, and 4Γ 11/2- X4Φ 9/2 subbands and the 0-0 band of 4Γ 7/2- X4Φ 5/2. The lower state rotational and centrifugal distortion constants are consistent with the previous results [J. Mol. Spectrosc. 184 (1997) 186; J. Chem. Phys. 119 (2003) 9496], to the conformation that the lower state of the 407 nm band is the 4Φ ground electronic state. Rough estimates of the vibrational interval Δ G(1/2) and the spin-orbit coupling constant A in the 4Γ state were also obtained.

  20. An Introduction to Fast Fourier Transforms through the Study of Oscillating Reactions.

    ERIC Educational Resources Information Center

    Eastman, M. P.; And Others

    1986-01-01

    Discusses an experiment designed to introduce students to the basic principles of the fast Fourier transform and Fourier smoothing through transformation of time-dependent optical absorption data from an oscillating reaction. Uses the Belousov-Zhabotinskii reaction. Describes the experimental setup and data analysis techniques.

  1. Fourier Transforms for Chemists Part III. Fourier Transforms in Data Treatment.

    ERIC Educational Resources Information Center

    Glasser, L.

    1987-01-01

    Discusses the factors affecting the behavior of a spectral function. Lists some important properties of Fourier transform (FT) pairs that are helpful when using the FT. Notes that these properties of the mathematical formulation have identical counterparts in the physical behavior of FT systems. (TW)

  2. Determination of Fourier Transforms on an Instructional Analog Computer

    ERIC Educational Resources Information Center

    Anderson, Owen T.; Greenwood, Stephen R.

    1974-01-01

    An analog computer program to find and display the Fourier transform of some real, even functions is described. Oscilloscope traces are shown for Fourier transforms of a rectangular pulse, a Gaussian, a cosine wave, and a delayed narrow pulse. Instructional uses of the program are discussed briefly. (DT)

  3. The application and improvement of Fourier transform spectrometer experiment

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-min; Gao, En-duo; Zhou, Feng-qi; Wang, Lan-lan; Feng, Xiao-hua; Qi, Jin-quan; Ji, Cheng; Wang, Luning

    2017-08-01

    According to teaching and experimental requirements of Optoelectronic information science and Engineering, in order to consolidate theoretical knowledge and improve the students practical ability, the Fourier transform spectrometer ( FTS) experiment, its design, application and improvement are discussed in this paper. The measurement principle and instrument structure of Fourier transform spectrometer are introduced, and the spectrums of several common Laser devices are measured. Based on the analysis of spectrum and test, several possible improvement methods are proposed. It also helps students to understand the application of Fourier transform in physics.

  4. Validating data analysis of broadband laser ranging

    NASA Astrophysics Data System (ADS)

    Rhodes, M.; Catenacci, J.; Howard, M.; La Lone, B.; Kostinski, N.; Perry, D.; Bennett, C.; Patterson, J.

    2018-03-01

    Broadband laser ranging combines spectral interferometry and a dispersive Fourier transform to achieve high-repetition-rate measurements of the position of a moving surface. Telecommunications fiber is a convenient tool for generating the large linear dispersions required for a dispersive Fourier transform, but standard fiber also has higher-order dispersion that distorts the Fourier transform. Imperfections in the dispersive Fourier transform significantly complicate the ranging signal and must be dealt with to make high-precision measurements. We describe in detail an analysis process for interpreting ranging data when standard telecommunications fiber is used to perform an imperfect dispersive Fourier transform. This analysis process is experimentally validated over a 27-cm scan of static positions, showing an accuracy of 50 μm and a root-mean-square precision of 4.7 μm.

  5. The morphing of geographical features by Fourier transformation.

    PubMed

    Li, Jingzhong; Liu, Pengcheng; Yu, Wenhao; Cheng, Xiaoqiang

    2018-01-01

    This paper presents a morphing model of vector geographical data based on Fourier transformation. This model involves three main steps. They are conversion from vector data to Fourier series, generation of intermediate function by combination of the two Fourier series concerning a large scale and a small scale, and reverse conversion from combination function to vector data. By mirror processing, the model can also be used for morphing of linear features. Experimental results show that this method is sensitive to scale variations and it can be used for vector map features' continuous scale transformation. The efficiency of this model is linearly related to the point number of shape boundary and the interceptive value n of Fourier expansion. The effect of morphing by Fourier transformation is plausible and the efficiency of the algorithm is acceptable.

  6. A Preliminary Research on the Development of the Hard X-Ray Imaging Telescope

    NASA Astrophysics Data System (ADS)

    Zheng, C. X.; Cai, M. S.; Hu, Y. M.; Huang, Y. Y.; Gong, Y. Z.

    2014-03-01

    Since the 1860s, astronomers have explored a new field with the discovery of X-ray. Instead of the conventional imaging technique by using mirrors or lens, which can not work in the high-energy bands, direct imaging, coded aperture, and Fourier transform are used for the high-energy imaging. It can be implemented in various hardware configurations, among which the spatial modulation collimator are widely used. We adopt the grating collimator based on Fourier transform that is discussed in detail. This paper makes an investigation on the fabrication process of grating. The key components of the hard X-ray telescope based on the spatial modulation are developed, which contains 8 CsI-detector modules, 8-channel shaping amplifiers, and data acquisition system. The preliminary test results of readout electronics system are obtained.

  7. Experimental geometry for simultaneous beam characterization and sample imaging allowing for pink beam Fourier transform holography or coherent diffractive imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flewett, Samuel; Eisebitt, Stefan

    2011-02-20

    One consequence of the self-amplified stimulated emission process used to generate x rays in free electron lasers (FELs) is the intrinsic shot-to-shot variance in the wavelength and temporal coherence. In order to optimize the results from diffractive imaging experiments at FEL sources, it will be advantageous to acquire a means of collecting coherence and spectral information simultaneously with the diffraction pattern from the sample we wish to study. We present a holographic mask geometry, including a grating structure, which can be used to extract both temporal and spatial coherence information alongside the sample scatter from each individual FEL shot andmore » also allows for the real space reconstruction of the sample using either Fourier transform holography or iterative phase retrieval.« less

  8. Fast Implicit Methods For Elliptic Moving Interface Problems

    DTIC Science & Technology

    2015-12-11

    analyzed, and tested for the Fourier transform of piecewise polynomials given on d-dimensional simplices in D-dimensional Euclidean space. These transforms...evaluation, and one to three orders of magnitude slower than the classical uniform Fast Fourier Transform. Second, bilinear quadratures ---which...a fast algorithm was derived, analyzed, and tested for the Fourier transform of pi ecewise polynomials given on d-dimensional simplices in D

  9. A technique to detect periodic and non-periodic ultra-rapid flux time variations with standard radio-astronomical data

    NASA Astrophysics Data System (ADS)

    Borra, Ermanno F.; Romney, Jonathan D.; Trottier, Eric

    2018-06-01

    We demonstrate that extremely rapid and weak periodic and non-periodic signals can easily be detected by using the autocorrelation of intensity as a function of time. We use standard radio-astronomical observations that have artificial periodic and non-periodic signals generated by the electronics of terrestrial origin. The autocorrelation detects weak signals that have small amplitudes because it averages over long integration times. Another advantage is that it allows a direct visualization of the shape of the signals, while it is difficult to see the shape with a Fourier transform. Although Fourier transforms can also detect periodic signals, a novelty of this work is that we demonstrate another major advantage of the autocorrelation, that it can detect non-periodic signals while the Fourier transform cannot. Another major novelty of our work is that we use electric fields taken in a standard format with standard instrumentation at a radio observatory and therefore no specialized instrumentation is needed. Because the electric fields are sampled every 15.625 ns, they therefore allow detection of very rapid time variations. Notwithstanding the long integration times, the autocorrelation detects very rapid intensity variations as a function of time. The autocorrelation could also detect messages from Extraterrestrial Intelligence as non-periodic signals.

  10. The scale of the Fourier transform: a point of view of the fractional Fourier transform

    NASA Astrophysics Data System (ADS)

    Jimenez, C. J.; Vilardy, J. M.; Salinas, S.; Mattos, L.; Torres, C. O.

    2017-01-01

    In this paper using the Fourier transform of order fractional, the ray transfer matrix for the symmetrical optical systems type ABCD and the formulae by Collins for the diffraction, we obtain explicitly the expression for scaled Fourier transform conventional; this result is the great importance in optical signal processing because it offers the possibility of scaling the size of output the Fourier distribution of the system, only by manipulating the distance of the diffraction object toward the thin lens, this research also emphasizes on practical limits when a finite spherical converging lens aperture is used. Digital simulation was carried out using the numerical platform of Matlab 7.1.

  11. A simple method to synthesize polyhedral hexagonal boron nitride nanofibers

    NASA Astrophysics Data System (ADS)

    Lin, Liang-xu; Zheng, Ying; Li, Zhao-hui; shen, Xiao-nv; Wei, Ke-mei

    2007-12-01

    Hexagonal boron nitride (h-BN) fibers with polyhedral morphology were synthesized with a simple-operational, large-scale and low-cost method. The sample obtained was studied by X-ray photoelectron spectrometer (XPS), electron energy lose spectroscopy (EELS), X-ray powder diffraction (XRD), Fourier transformation infrared spectroscopy (FT-IR), etc., which matched with h-BN. Environment scanning electron microscopy (ESEM) and transmission electron microscope (TEM) indicated that the BN fibers possess polyhedral morphology. The diameter of the BN fibers is mainly in the range of 100-500 nm.

  12. Structural characterization and gas reactions of small metal particles by high resolution in-situ TEM (Transmission Electron Microscopy) and TED (Transmission Electron Diffraction)

    NASA Technical Reports Server (NTRS)

    Heinemann, K.

    1987-01-01

    The detection and size analysis of small metal particles supported on amorphous substrates becomes increasingly difficult when the particle size approaches that of the phase contrast background structures of the support. An approach of digital image analysis, involving Fourier transformation of the original image, filtering, and image reconstruction was studied with respect to the likelihood of unambiguously detecting particles of less than 1 nm diameter on amorphous substrates from a single electron micrograph.

  13. Synthesis and electrochemical properties of polyaniline nanofibers by interfacial polymerization.

    PubMed

    Manuel, James; Ahn, Jou-Hyeon; Kim, Dul-Sun; Ahn, Hyo-Jun; Kim, Ki-Won; Kim, Jae-Kwang; Jacobsson, Per

    2012-04-01

    Polyaniline nanofibers were prepared by interfacial polymerization with different organic solvents such as chloroform and carbon tetrachloride. Field emission scanning electron microscopy and transmission electron microscopy were used to study the morphological properties of polyaniline nanofibers. Chemical characterization was carried out using Fourier transform infrared spectroscopy, UV-Vis spectroscopy, and X-ray diffraction spectroscopy and surface area was measured using BET isotherm. Polyaniline nanofibers doped with lithium hexafluorophosphate were prepared and their electrochemical properties were evaluated.

  14. Symposium U: Thermoelectric Power Generation. Held in Boston, Massachusetts on November 26-29, 2007

    DTIC Science & Technology

    2008-04-01

    including X - ray /electron diffraction, TGA analysis, Raman / Fourier Transform Infrared Spectroscopy, electron microscopy, Rutherford back-scattering and...Energy dispersive X - ray analysis were performed on the treated sample. The results revealed that a surface layer (from 10 nm to up to micron in...nanoparticles into a matrix of bulk Bi2Te 3 material via a hot pressing process. These nanocomposites have been examined by SEM and X - ray powder

  15. Molecular surface mesh generation by filtering electron density map.

    PubMed

    Giard, Joachim; Macq, Benoît

    2010-01-01

    Bioinformatics applied to macromolecules are now widely spread and in continuous expansion. In this context, representing external molecular surface such as the Van der Waals Surface or the Solvent Excluded Surface can be useful for several applications. We propose a fast and parameterizable algorithm giving good visual quality meshes representing molecular surfaces. It is obtained by isosurfacing a filtered electron density map. The density map is the result of the maximum of Gaussian functions placed around atom centers. This map is filtered by an ideal low-pass filter applied on the Fourier Transform of the density map. Applying the marching cubes algorithm on the inverse transform provides a mesh representation of the molecular surface.

  16. Research about vibration characteristics of timing chain system based on short-time Fourier transform

    NASA Astrophysics Data System (ADS)

    Xi, Jiaxin; Liu, Ning

    2017-09-01

    Vibration characteristic of timing chain system is very important for an engine. In this study, we used a bush roller chain drive system as an example to explain how to use mulitybody dynamic techniques and short-time Fourier transform to investigate vibration characteristics of timing chain system. Multibody dynamic simulation data as chain tension force and external excitation sources curves were provided for short-time Fourier transform study. The study results of short-time Fourier transform illustrate that there are two main vibration frequency domain of timing chain system, one is the low frequency vibration caused by crankshaft sprocket velocity and camshaft sprocket torque. Another is vibration around 1000Hz lead by hydraulic tensioner. Hence, short-time Fourier transform method is useful for basic research of vibration characteristics for timing chain system.

  17. Fourier transform mass spectrometry.

    PubMed

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-07-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook.

  18. Fourier Transform Mass Spectrometry

    PubMed Central

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-01-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook. PMID:21742802

  19. Properly used ''aliasing'' can give better resolution from fewer points in Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    D'Astous, Y.; Blanchard, M.

    1982-05-01

    In the past years, the Journal has published a number of articles1-5 devoted to the introduction of Fourier transform spectroscopy in the undergraduate labs. In most papers, the proposed experimental setup consists of a Michelson interferometer, a light source, a light detector, and a chart recorder. The student uses this setup to record an interferogram which is then Fourier transformed to obtain the spectrogram of the light source. Although attempts have been made to ease the task of performing the required Fourier transform,6 the use of computers and Cooley-Tukey's fast Fourier transform (FFT) algorithm7 is by far the simplest method to use. However, to be able to use FFT, one has to get a number of samples of the interferogram, a tedious job which should be kept to a minimum. (AIP)

  20. The morphing of geographical features by Fourier transformation

    PubMed Central

    Liu, Pengcheng; Yu, Wenhao; Cheng, Xiaoqiang

    2018-01-01

    This paper presents a morphing model of vector geographical data based on Fourier transformation. This model involves three main steps. They are conversion from vector data to Fourier series, generation of intermediate function by combination of the two Fourier series concerning a large scale and a small scale, and reverse conversion from combination function to vector data. By mirror processing, the model can also be used for morphing of linear features. Experimental results show that this method is sensitive to scale variations and it can be used for vector map features’ continuous scale transformation. The efficiency of this model is linearly related to the point number of shape boundary and the interceptive value n of Fourier expansion. The effect of morphing by Fourier transformation is plausible and the efficiency of the algorithm is acceptable. PMID:29351344

  1. A gain and bandwidth enhanced transimpedance preamplifier for Fourier-transform ion cyclotron resonance mass spectrometry

    PubMed Central

    Lin, Tzu-Yung; Green, Roger J.; O'Connor, Peter B.

    2011-01-01

    The nature of the ion signal from a 12-T Fourier-transform ion cyclotron resonance mass spectrometer and the electronic noise were studied to further understand the electronic detection limit. At minimal cost, a new transimpedance preamplifier was designed, computer simulated, built, and tested. The preamplifier design pushes the electronic signal-to-noise performance at room temperature to the limit, because of its enhanced tolerance of the capacitance of the detection device, lower intrinsic noise, and larger flat mid-band gain (input current noise spectral density of around 1 pA/\\documentclass[12pt]{minimal}\\begin{document}$\\sqrt{\\mbox{Hz}}$\\end{document}Hz when the transimpedance is about 85 dBΩ). The designed preamplifier has a bandwidth of ∼3 kHz to 10 MHz, which corresponds to the mass-to-charge ratio, m/z, of approximately 18 to 61 k at 12 T. The transimpedance and the bandwidth can be easily adjusted by changing the value of passive components. The feedback limitation of the circuit is discussed. With the maximum possible transimpedance of 5.3 MΩ when using an 0402 surface mount resistor, the preamplifier was estimated to be able to detect ∼110 charges in a single scan. PMID:22225232

  2. Far-field radiation patterns of aperture antennas by the Winograd Fourier transform algorithm

    NASA Technical Reports Server (NTRS)

    Heisler, R.

    1978-01-01

    A more time-efficient algorithm for computing the discrete Fourier transform, the Winograd Fourier transform (WFT), is described. The WFT algorithm is compared with other transform algorithms. Results indicate that the WFT algorithm in antenna analysis appears to be a very successful application. Significant savings in cpu time will improve the computer turn around time and circumvent the need to resort to weekend runs.

  3. Figures of merit for detectors in digital radiography. II. Finite number of secondaries and structured backgrounds.

    PubMed

    Pineda, Angel R; Barrett, Harrison H

    2004-02-01

    The current paradigm for evaluating detectors in digital radiography relies on Fourier methods. Fourier methods rely on a shift-invariant and statistically stationary description of the imaging system. The theoretical justification for the use of Fourier methods is based on a uniform background fluence and an infinite detector. In practice, the background fluence is not uniform and detector size is finite. We study the effect of stochastic blurring and structured backgrounds on the correlation between Fourier-based figures of merit and Hotelling detectability. A stochastic model of the blurring leads to behavior similar to what is observed by adding electronic noise to the deterministic blurring model. Background structure does away with the shift invariance. Anatomical variation makes the covariance matrix of the data less amenable to Fourier methods by introducing long-range correlations. It is desirable to have figures of merit that can account for all the sources of variation, some of which are not stationary. For such cases, we show that the commonly used figures of merit based on the discrete Fourier transform can provide an inaccurate estimate of Hotelling detectability.

  4. Representation of Complex Spectra in Auditory Cortex

    DTIC Science & Technology

    1997-01-01

    predict the response to any broadband dynamic sound. Fourier Transform Inverse Transform ∫ [.] exp(±2πjΩx±2πjwt) 2 1 2 / 1 1 a 2 1 2 / 1 1 a...Systems Research University of Maryland Spectro-Temporal Transform Ω wx = log f t w = “ripple velocity” Ω = “ripple frequency” Fourier Transform Inverse ... Transform ∫ [.] exp(±2πjΩx±2πjwt) Real functions in the spectro-temporal domain give rise to complex conjugate symmetric functions in the Fourier

  5. [Optical-fiber Fourier transform spectrometer].

    PubMed

    Liu, Yong; Li, Bao-sheng; Liu, Yan; Zhai, Yu-feng; Wang, An

    2006-10-01

    A novel Fourier transform spectrum analyzer based on a single mode fiber Mach-Zehnder interferometer is reported. An optical fiber Fourier transform spectrometer, with bulk optics components replaced by fiber optical components and with the moving mirror replaced by a piezoelectric element fiber stretcher was constructed. The output spectrum of a LD below threshold was measured. Experiment result agrees with that by using grating spectrum analyzer, showing the feasibility of the optic fiber Fourier transform spectrometer for practical spectrum measurement. Spectrum resolution -7 cm(-1) was obtained in our experiment. The resolution can be further improved by increasing the maximum optical path difference.

  6. Building a symbolic computer algebra toolbox to compute 2D Fourier transforms in polar coordinates.

    PubMed

    Dovlo, Edem; Baddour, Natalie

    2015-01-01

    The development of a symbolic computer algebra toolbox for the computation of two dimensional (2D) Fourier transforms in polar coordinates is presented. Multidimensional Fourier transforms are widely used in image processing, tomographic reconstructions and in fact any application that requires a multidimensional convolution. By examining a function in the frequency domain, additional information and insights may be obtained. The advantages of our method include: •The implementation of the 2D Fourier transform in polar coordinates within the toolbox via the combination of two significantly simpler transforms.•The modular approach along with the idea of lookup tables implemented help avoid the issue of indeterminate results which may occur when attempting to directly evaluate the transform.•The concept also helps prevent unnecessary computation of already known transforms thereby saving memory and processing time.

  7. Automatic Fourier transform and self-Fourier beams due to parabolic potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yiqi, E-mail: zhangyiqi@mail.xjtu.edu.cn; Liu, Xing; Belić, Milivoj R., E-mail: milivoj.belic@qatar.tamu.edu

    We investigate the propagation of light beams including Hermite–Gauss, Bessel–Gauss and finite energy Airy beams in a linear medium with parabolic potential. Expectedly, the beams undergo oscillation during propagation, but quite unexpectedly they also perform automatic Fourier transform, that is, periodic change from the beam to its Fourier transform and back. In addition to oscillation, the finite-energy Airy beams exhibit periodic inversion during propagation. The oscillating period of parity-asymmetric beams is twice that of the parity-symmetric beams. Based on the propagation in parabolic potential, we introduce a class of optically-interesting beams that are self-Fourier beams—that is, the beams whose Fouriermore » transforms are the beams themselves.« less

  8. Combination of oriented partial differential equation and shearlet transform for denoising in electronic speckle pattern interferometry fringe patterns.

    PubMed

    Xu, Wenjun; Tang, Chen; Gu, Fan; Cheng, Jiajia

    2017-04-01

    It is a key step to remove the massive speckle noise in electronic speckle pattern interferometry (ESPI) fringe patterns. In the spatial-domain filtering methods, oriented partial differential equations have been demonstrated to be a powerful tool. In the transform-domain filtering methods, the shearlet transform is a state-of-the-art method. In this paper, we propose a filtering method for ESPI fringe patterns denoising, which is a combination of second-order oriented partial differential equation (SOOPDE) and the shearlet transform, named SOOPDE-Shearlet. Here, the shearlet transform is introduced into the ESPI fringe patterns denoising for the first time. This combination takes advantage of the fact that the spatial-domain filtering method SOOPDE and the transform-domain filtering method shearlet transform benefit from each other. We test the proposed SOOPDE-Shearlet on five experimentally obtained ESPI fringe patterns with poor quality and compare our method with SOOPDE, shearlet transform, windowed Fourier filtering (WFF), and coherence-enhancing diffusion (CEDPDE). Among them, WFF and CEDPDE are the state-of-the-art methods for ESPI fringe patterns denoising in transform domain and spatial domain, respectively. The experimental results have demonstrated the good performance of the proposed SOOPDE-Shearlet.

  9. A discrete Fourier transform for virtual memory machines

    NASA Technical Reports Server (NTRS)

    Galant, David C.

    1992-01-01

    An algebraic theory of the Discrete Fourier Transform is developed in great detail. Examination of the details of the theory leads to a computationally efficient fast Fourier transform for the use on computers with virtual memory. Such an algorithm is of great use on modern desktop machines. A FORTRAN coded version of the algorithm is given for the case when the sequence of numbers to be transformed is a power of two.

  10. A Simple Approach to Fourier Aliasing

    ERIC Educational Resources Information Center

    Foadi, James

    2007-01-01

    In the context of discrete Fourier transforms the idea of aliasing as due to approximation errors in the integral defining Fourier coefficients is introduced and explained. This has the positive pedagogical effect of getting to the heart of sampling and the discrete Fourier transform without having to delve into effective, but otherwise long and…

  11. A general spectral transformation simultaneously including a Fourier transformation and a Laplace transformation

    NASA Technical Reports Server (NTRS)

    Marko, H.

    1978-01-01

    A general spectral transformation is proposed and described. Its spectrum can be interpreted as a Fourier spectrum or a Laplace spectrum. The laws and functions of the method are discussed in comparison with the known transformations, and a sample application is shown.

  12. Fourier Analysis and Structure Determination: Part I: Fourier Transforms.

    ERIC Educational Resources Information Center

    Chesick, John P.

    1989-01-01

    Provides a brief introduction with some definitions and properties of Fourier transforms. Shows relations, ways of understanding the mathematics, and applications. Notes proofs are not included but references are given. First of three part series. (MVL)

  13. Fourier transform of delayed fluorescence as an indicator of herbicide concentration.

    PubMed

    Guo, Ya; Tan, Jinglu

    2014-12-21

    It is well known that delayed fluorescence (DF) from Photosystem II (PSII) of plant leaves can be potentially used to sense herbicide pollution and evaluate the effect of herbicides on plant leaves. The research of using DF as a measure of herbicides in the literature was mainly conducted in time domain and qualitative correlation was often obtained. Fourier transform is often used to analyze signals. Viewing DF signal in frequency domain through Fourier transform may allow separation of signal components and provide a quantitative method for sensing herbicides. However, there is a lack of an attempt to use Fourier transform of DF as an indicator of herbicide. In this work, the relationship between the Fourier transform of DF and herbicide concentration was theoretically modelled and analyzed, which immediately yielded a quantitative method to measure herbicide concentration in frequency domain. Experiments were performed to validate the developed method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Electrical conductivity and morphology of electrochemical synthesized polyaniline/CuO nano composites

    NASA Astrophysics Data System (ADS)

    Ashokkumar, S. P.; Yesappa, L.; Vijeth, H.; Niranjana, M.; Devendrappa, H.

    2018-05-01

    Polyaniline (PANI) and Polyaniline/CuO nanocomposite have been synthesized by using electrochemical deposition method. The composite was characterized using Fourier transform infra-red spectroscopy (FT-IR) to confirm the chemical interaction changes, micro structural morphology was done by Field Emission Scanning Electronic Microscopy (FESEM) and High Resolution Transmission Electron Microscopy (HRTEM). The dielectric constant and AC conductivity are found to increases with increase in temperature range (303 to 393K), these results shows enhancement in electrical conductivity due to effect of nanocomposite.

  15. Green synthesis of silver nanoparticles using leaf extract of medicinally potent plant Saraca indica: a novel study

    NASA Astrophysics Data System (ADS)

    Perugu, Shyam; Nagati, Veerababu; Bhanoori, Manjula

    2016-06-01

    Eco-friendly silver nanoparticles (AgNPs) have various applications in modern biotechnology for better outcomes and benefits to the society. In the present study, we report an eco-friendly synthesis of silver nanoparticles using Saraca indica leaf extract. Characterization of S. indica silver nanoparticles (SAgNPs) was carried out by Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectrometry, Zeta potential, and transmission electron microscopy. SAgNPs showed antimicrobial activity against Gram-negative and Gram-positive bacteria.

  16. Study on sampling of continuous linear system based on generalized Fourier transform

    NASA Astrophysics Data System (ADS)

    Li, Huiguang

    2003-09-01

    In the research of signal and system, the signal's spectrum and the system's frequency characteristic can be discussed through Fourier Transform (FT) and Laplace Transform (LT). However, some singular signals such as impulse function and signum signal don't satisfy Riemann integration and Lebesgue integration. They are called generalized functions in Maths. This paper will introduce a new definition -- Generalized Fourier Transform (GFT) and will discuss generalized function, Fourier Transform and Laplace Transform under a unified frame. When the continuous linear system is sampled, this paper will propose a new method to judge whether the spectrum will overlap after generalized Fourier transform (GFT). Causal and non-causal systems are studied, and sampling method to maintain system's dynamic performance is presented. The results can be used on ordinary sampling and non-Nyquist sampling. The results also have practical meaning on research of "discretization of continuous linear system" and "non-Nyquist sampling of signal and system." Particularly, condition for ensuring controllability and observability of MIMO continuous systems in references 13 and 14 is just an applicable example of this paper.

  17. A Ka-band chirped-pulse Fourier transform microwave spectrometer

    NASA Astrophysics Data System (ADS)

    Zaleski, Daniel P.; Neill, Justin L.; Muckle, Matt T.; Seifert, Nathan A.; Brandon Carroll, P.; Widicus Weaver, Susanna L.; Pate, Brooks H.

    2012-10-01

    The design and performance of a new chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer operating from 25 to 40 GHz (Ka-band) is presented. This spectrometer is well-suited for the study of complex organic molecules of astronomical interest in the size range of 6-10 atoms that have strong rotational transitions in Ka-band under pulsed jet sample conditions (Trot = 1-10 K). The spectrometer permits acquisition of the full spectral band in a single data acquisition event. Sensitivity is enhanced by using two pulsed jet sources and acquiring 10 broadband measurements for each sample injection cycle. The spectrometer performance is benchmarked by measuring the pure rotational spectrum of several isotopologues of acetaldehyde in natural abundance. The rotational spectra of the singly substituted 13C and 18O isotopologues of the two lowest energy conformers of ethyl formate have been analyzed and the resulting substitution structures for these conformers are compared to electronic structure theory calculations.

  18. Structural and magnetic properties of nanocrystalline NiFe2O4 thin film prepared by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Chavan, Apparao R.; Chilwar, R. R.; Shisode, M. V.; Hivrekar, Mahesh M.; Mande, V. K.; Jadhav, K. M.

    2018-05-01

    The nanocrystalline NiFe2O4 thin film has been prepared using a spray pyrolysis technique on glass substrate. The prepared thin film was characterized by using X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FTIR), and Field Emission-Scanning Electron Microscopy (FE-SEM) characterization techniques for the structural and microstructural analysis. The magnetic property was measured using vibrating sample magnetometer (VSM) at room temperature. X-ray diffraction studies show the formation of single phase spinel structure of the thin film. The octahedral and tetrahedral vibration in the sample was studied by Fourier transform infrared (FT-IR) spectra. Magnetic hysteresis loop was recorded for thin film at room temperature. At 15 kOe, saturation magnetization (Ms) was found to increase while coercivity (Hc) decreases with thickness of the NiFe2O4 thin film.

  19. Fourier transform microwave spectroscopy of the SiCl+ ion

    NASA Astrophysics Data System (ADS)

    Tanaka, Keiichi; Harada, Kensuke; Cabezas, Carlos; Endo, Yasuki

    2018-03-01

    Fourier transform microwave spectra for the J = 1 ← 0 and 2 ← 1 rotational transitions of the SiCl+ ion were observed for two isotopologues (35 Cl and 37 Cl) in the ground and the first excited vibrational states of the ground 1Σ+ electronic state. Thanks to the high resolution of the FTMW spectrometer, hyperfine structures due to the quadrupole moment of the chlorine nucleus and the nuclear spin-rotation interaction were fully resolved. The observed FTMW spectra were combined with previously reported MMW and diode laser spectra in an analysis to determine the mass-independent Dunham coefficients Uk,l as well as a mass scaling parameter Δ01Cl = - 0.856 (30) . The equilibrium bond length of SiCl+ determined is re = 1.9439729 (10) Å and the nuclear quadrupole coupling constant of Si35 Cl+ is eQqe = - 11.8788 (23) MHz.

  20. Artefacts in geometric phase analysis of compound materials.

    PubMed

    Peters, Jonathan J P; Beanland, Richard; Alexe, Marin; Cockburn, John W; Revin, Dmitry G; Zhang, Shiyong Y; Sanchez, Ana M

    2015-10-01

    The geometric phase analysis (GPA) algorithm is known as a robust and straightforward technique that can be used to measure lattice strains in high resolution transmission electron microscope (TEM) images. It is also attractive for analysis of aberration-corrected scanning TEM (ac-STEM) images that resolve every atom column, since it uses Fourier transforms and does not require real-space peak detection and assignment to appropriate sublattices. Here it is demonstrated that, in ac-STEM images of compound materials with compositionally distinct atom columns, an additional geometric phase is present in the Fourier transform. If the structure changes from one area to another in the image (e.g. across an interface), the change in this additional phase will appear as a strain in conventional GPA, even if there is no lattice strain. Strategies to avoid this pitfall are outlined. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Structure in the 3D Galaxy Distribution. III. Fourier Transforming the Universe: Phase and Power Spectra

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.; Way, M. J.; Gazis, P. G.

    2017-01-01

    We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform of finely binned galaxy positions. In both cases, deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multipoint hierarchy. We identify some threads of modern large-scale inference methodology that will presumably yield detections in new wider and deeper surveys.

  2. Building a symbolic computer algebra toolbox to compute 2D Fourier transforms in polar coordinates

    PubMed Central

    Dovlo, Edem; Baddour, Natalie

    2015-01-01

    The development of a symbolic computer algebra toolbox for the computation of two dimensional (2D) Fourier transforms in polar coordinates is presented. Multidimensional Fourier transforms are widely used in image processing, tomographic reconstructions and in fact any application that requires a multidimensional convolution. By examining a function in the frequency domain, additional information and insights may be obtained. The advantages of our method include: • The implementation of the 2D Fourier transform in polar coordinates within the toolbox via the combination of two significantly simpler transforms. • The modular approach along with the idea of lookup tables implemented help avoid the issue of indeterminate results which may occur when attempting to directly evaluate the transform. • The concept also helps prevent unnecessary computation of already known transforms thereby saving memory and processing time. PMID:26150988

  3. Performance of the Wavelet Decomposition on Massively Parallel Architectures

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek A.; LeMoigne, Jacqueline; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    Traditionally, Fourier Transforms have been utilized for performing signal analysis and representation. But although it is straightforward to reconstruct a signal from its Fourier transform, no local description of the signal is included in its Fourier representation. To alleviate this problem, Windowed Fourier transforms and then wavelet transforms have been introduced, and it has been proven that wavelets give a better localization than traditional Fourier transforms, as well as a better division of the time- or space-frequency plane than Windowed Fourier transforms. Because of these properties and after the development of several fast algorithms for computing the wavelet representation of any signal, in particular the Multi-Resolution Analysis (MRA) developed by Mallat, wavelet transforms have increasingly been applied to signal analysis problems, especially real-life problems, in which speed is critical. In this paper we present and compare efficient wavelet decomposition algorithms on different parallel architectures. We report and analyze experimental measurements, using NASA remotely sensed images. Results show that our algorithms achieve significant performance gains on current high performance parallel systems, and meet scientific applications and multimedia requirements. The extensive performance measurements collected over a number of high-performance computer systems have revealed important architectural characteristics of these systems, in relation to the processing demands of the wavelet decomposition of digital images.

  4. Realistic Analytical Polyhedral MRI Phantoms

    PubMed Central

    Ngo, Tri M.; Fung, George S. K.; Han, Shuo; Chen, Min; Prince, Jerry L.; Tsui, Benjamin M. W.; McVeigh, Elliot R.; Herzka, Daniel A.

    2015-01-01

    Purpose Analytical phantoms have closed form Fourier transform expressions and are used to simulate MRI acquisitions. Existing 3D analytical phantoms are unable to accurately model shapes of biomedical interest. It is demonstrated that polyhedral analytical phantoms have closed form Fourier transform expressions and can accurately represent 3D biomedical shapes. Theory The derivations of the Fourier transform of a polygon and polyhedron are presented. Methods The Fourier transform of a polyhedron was implemented and its accuracy in representing faceted and smooth surfaces was characterized. Realistic anthropomorphic polyhedral brain and torso phantoms were constructed and their use in simulated 3D/2D MRI acquisitions was described. Results Using polyhedra, the Fourier transform of faceted shapes can be computed to within machine precision. Smooth surfaces can be approximated with increasing accuracy by increasing the number of facets in the polyhedron; the additional accumulated numerical imprecision of the Fourier transform of polyhedra with many faces remained small. Simulations of 3D/2D brain and 2D torso cine acquisitions produced realistic reconstructions free of high frequency edge aliasing as compared to equivalent voxelized/rasterized phantoms. Conclusion Analytical polyhedral phantoms are easy to construct and can accurately simulate shapes of biomedical interest. PMID:26479724

  5. A Comparison of Optical versus Hardware Fourier Transforms.

    DTIC Science & Technology

    1983-10-31

    AD- R136 223 A COMPRISON’OF OPTICAL ERSUS HARDWARE FOURIER i/i.TRANSFORMS(U) VIRGINIA POLYTECHNIC INST AND STATE UNIV BLACKSBURG DEPT OF PHYSICS S P...transform and its inverse filtered Fourier transform obtained with the Digital Image Processing (DIP) hardware system located at the School of Aerospace...transparencies, and provided to us by Dr. Ralph G. Allen, Director of the Laser Effects Branch (Division of Radiation Sciences). The DIP system consisted of: an

  6. Fourier analysis and signal processing by use of the Moebius inversion formula

    NASA Technical Reports Server (NTRS)

    Reed, Irving S.; Yu, Xiaoli; Shih, Ming-Tang; Tufts, Donald W.; Truong, T. K.

    1990-01-01

    A novel Fourier technique for digital signal processing is developed. This approach to Fourier analysis is based on the number-theoretic method of the Moebius inversion of series. The Fourier transform method developed is shown also to yield the convolution of two signals. A computer simulation shows that this method for finding Fourier coefficients is quite suitable for digital signal processing. It competes with the classical FFT (fast Fourier transform) approach in terms of accuracy, complexity, and speed.

  7. Double Fourier analysis for Emotion Identification in Voiced Speech

    NASA Astrophysics Data System (ADS)

    Sierra-Sosa, D.; Bastidas, M.; Ortiz P., D.; Quintero, O. L.

    2016-04-01

    We propose a novel analysis alternative, based on two Fourier Transforms for emotion recognition from speech. Fourier analysis allows for display and synthesizes different signals, in terms of power spectral density distributions. A spectrogram of the voice signal is obtained performing a short time Fourier Transform with Gaussian windows, this spectrogram portraits frequency related features, such as vocal tract resonances and quasi-periodic excitations during voiced sounds. Emotions induce such characteristics in speech, which become apparent in spectrogram time-frequency distributions. Later, the signal time-frequency representation from spectrogram is considered an image, and processed through a 2-dimensional Fourier Transform in order to perform the spatial Fourier analysis from it. Finally features related with emotions in voiced speech are extracted and presented.

  8. Phase retrieval by constrained power inflation and signum flipping

    NASA Astrophysics Data System (ADS)

    Laganà, A. R.; Morabito, A. F.; Isernia, T.

    2016-12-01

    In this paper we consider the problem of retrieving a signal from the modulus of its Fourier transform (or other suitable transformations) and some additional information, which is also known as "Phase Retrieval" problem. The problem arises in many areas of applied Sciences such as optics, electron microscopy, antennas, and crystallography. In particular, we introduce a new approach, based on power inflation and tunneling, allowing an increased robustness with respect to the possible occurrence of false solutions. Preliminary results are presented for the simple yet relevant case of one-dimensional arrays and noisy data.

  9. Rapid update of discrete Fourier transform for real-time signal processing

    NASA Astrophysics Data System (ADS)

    Sherlock, Barry G.; Kakad, Yogendra P.

    2001-10-01

    In many identification and target recognition applications, the incoming signal will have properties that render it amenable to analysis or processing in the Fourier domain. In such applications, however, it is usually essential that the identification or target recognition be performed in real time. An important constraint upon real-time processing in the Fourier domain is the time taken to perform the Discrete Fourier Transform (DFT). Ideally, a new Fourier transform should be obtained after the arrival of every new data point. However, the Fast Fourier Transform (FFT) algorithm requires on the order of N log2 N operations, where N is the length of the transform, and this usually makes calculation of the transform for every new data point computationally prohibitive. In this paper, we develop an algorithm to update the existing DFT to represent the new data series that results when a new signal point is received. Updating the DFT in this way uses less computational order by a factor of log2 N. The algorithm can be modified to work in the presence of data window functions. This is a considerable advantage, because windowing is often necessary to reduce edge effects that occur because the implicit periodicity of the Fourier transform is not exhibited by the real-world signal. Versions are developed in this paper for use with the boxcar window, the split triangular, Hanning, Hamming, and Blackman windows. Generalization of these results to 2D is also presented.

  10. In situ CF3 Detection in Low Pressure Inductive Discharges by Fourier Transform Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Kim, J. S.; Cappelli, M. A.; Sharma, S. P.; Arnold, J. O. (Technical Monitor)

    1998-01-01

    The detection of CF(x) (x=1-3) radicals in low pressure discharges using source gases such as CF4 and CHF3 is of importance to the understanding of their chemical structure and relevance in plasma based etching processes. These radicals are known to contribute to the formation of fluorocarbon polymer films, which affect the selectivity and anisotropy of etching. In this study, we present preliminary results of the quantitative measurement of trifluoromethyl radicals, CF3, in low pressure discharges. The discharge studied here is an inductively (transformer) coupled plasma (ICP) source in the GEC reference cell, operating on pure CF4 at pressures ranging from 10 - 100 mTorr, This plasma source generates higher electron number densities at lower operating pressures than obtainable with the parallel-plate capacitively coupled version of the GEC reference cell. Also, this expanded operating regime is more relevant to new generations of industrial plasma reactors being used by the microelectronics industry. Fourier transform infrared (FTIR) spectroscopy is employed to observe the absorption band of CF3 radicals in the electronic ground state X2Al in the region of 1233-1270/cm. The spectrometer is equipped with a high sensitivity HgCdTe (MCT) detector and has a fixed resolution of 0.125/cm. The CF3 concentrations are measured for a range of operating pressures and discharge power levels.

  11. Deconvolution of Stark broadened spectra for multi-point density measurements in a flow Z-pinch

    DOE PAGES

    Vogman, G. V.; Shumlak, U.

    2011-10-13

    Stark broadened emission spectra, once separated from other broadening effects, provide a convenient non-perturbing means of making plasma density measurements. A deconvolution technique has been developed to measure plasma densities in the ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are captured at 20 locations using a multi-chord spectroscopic system. Spectra that are time- and chord-integrated are well approximated by a Voigt function. The proposed method simultaneously resolves plasma electron density and ion temperature by deconvolving the spectral Voigt profile into constituent functions: a Gaussian functionmore » associated with instrument effects and Doppler broadening by temperature; and a Lorentzian function associated with Stark broadening by electron density. The method uses analytic Fourier transforms of the constituent functions to fit the Voigt profile in the Fourier domain. The method is discussed and compared to a basic least-squares fit. The Fourier transform fitting routine requires fewer fitting parameters and shows promise in being less susceptible to instrumental noise and to contamination from neighboring spectral lines. The method is evaluated and tested using simulated lines and is applied to experimental data for the 229.69 nm C III line from multiple chords to determine plasma density and temperature across the diameter of the pinch. As a result, these measurements are used to gain a better understanding of Z-pinch equilibria.« less

  12. Deconvolution of Stark broadened spectra for multi-point density measurements in a flow Z-pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogman, G. V.; Shumlak, U.

    2011-10-15

    Stark broadened emission spectra, once separated from other broadening effects, provide a convenient non-perturbing means of making plasma density measurements. A deconvolution technique has been developed to measure plasma densities in the ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are captured at 20 locations using a multi-chord spectroscopic system. Spectra that are time- and chord-integrated are well approximated by a Voigt function. The proposed method simultaneously resolves plasma electron density and ion temperature by deconvolving the spectral Voigt profile into constituent functions: a Gaussian functionmore » associated with instrument effects and Doppler broadening by temperature; and a Lorentzian function associated with Stark broadening by electron density. The method uses analytic Fourier transforms of the constituent functions to fit the Voigt profile in the Fourier domain. The method is discussed and compared to a basic least-squares fit. The Fourier transform fitting routine requires fewer fitting parameters and shows promise in being less susceptible to instrumental noise and to contamination from neighboring spectral lines. The method is evaluated and tested using simulated lines and is applied to experimental data for the 229.69 nm C III line from multiple chords to determine plasma density and temperature across the diameter of the pinch. These measurements are used to gain a better understanding of Z-pinch equilibria.« less

  13. Mahan excitons in degenerate wurtzite InN: Photoluminescence spectroscopy and reflectivity measurements

    NASA Astrophysics Data System (ADS)

    Feneberg, Martin; Däubler, Jürgen; Thonke, Klaus; Sauer, Rolf; Schley, Pascal; Goldhahn, Rüdiger

    2008-06-01

    Unintentionally degenerately doped n -type hexagonal wurtzite InN samples were studied by using Fourier-transform photoluminescence spectroscopy and reflectivity measurements. We found in luminescence overlapping band acceptor (e,A0) transitions related to two different acceptors with a strong enhancement of their intensities close to the Fermi energy of the electrons recombining with the localized holes. Our explanation is in terms of a Fermi-edge singularity of the electrons due to strongly increased electron-hole scattering. Electron-hole pairs with such resonantly enhanced oscillator strengths have been referred to as Mahan excitons. Temperature-dependent reflectivity measurements confirm this interpretation.

  14. Room temperature chemical synthesis of lead selenide thin films with preferred orientation

    NASA Astrophysics Data System (ADS)

    Kale, R. B.; Sartale, S. D.; Ganesan, V.; Lokhande, C. D.; Lin, Yi-Feng; Lu, Shih-Yuan

    2006-11-01

    Room temperature chemical synthesis of PbSe thin films was carried out from aqueous ammoniacal solution using Pb(CH3COO)2 as Pb2+ and Na2SeSO3 as Se2- ion sources. The films were characterized by a various techniques including, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fast Fourier transform (FFT) and UV-vis-NIR techniques. The study revealed that the PbSe thin film consists of preferentially oriented nanocubes with energy band gap of 0.5 eV.

  15. A generalization of the theory of fringe patterns containing displacement information

    NASA Astrophysics Data System (ADS)

    Sciammarella, C. A.; Bhat, G.

    The theory that provides the interpretation of interferometric fringes as frequency modulated signals, is used to show that the electrooptical system used to analyze fringe patterns can be considered as a simultaneous Fourier spectrum analyzer. This interpretation generalizes the quasi-heterodyning techniques. It is pointed out that the same equations that yield the discrete Fourier transform as summations, yield correct values for a reduced number of steps. Examples of application of the proposed technique to electronic holography are given. It is found that for a uniform field the standard deviation of the individual readings is 1/20 of the fringe spacing.

  16. Direct measurement of cyclotron coherence times of high-mobility two-dimensional electron gases.

    PubMed

    Wang, X; Hilton, D J; Reno, J L; Mittleman, D M; Kono, J

    2010-06-07

    We have observed long-lived (approximately 30 ps) coherent oscillations of charge carriers due to cyclotron resonance (CR) in high-mobility two-dimensional electrons in GaAs in perpendicular magnetic fields using time-domain terahertz spectroscopy. The observed coherent oscillations were fitted well by sinusoids with exponentially-decaying amplitudes, through which we were able to provide direct and precise measures for the decay times and oscillation frequencies simultaneously. This method thus overcomes the CR saturation effect, which is known to prevent determination of true CR linewidths in high-mobility electron systems using Fourier-transform infrared spectroscopy.

  17. Ship Vibration Design Guide

    DTIC Science & Technology

    1989-07-01

    for further development are indicated. This guide addresses the major components over which we have the ability to excercise control in the design...this same period, very fast electronic analyzers also became available at a reasonable cost. Known as Fast Fourier Transform (FFT), these analyzers...An oscilloscope is desirable anyway to judge whether the signals look reasonable or not. Usually intermittent connections, 60 Hz noise, or other

  18. New developments in photoacoustics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosencwaig, A.

    1981-07-01

    There have been several important new developments in the fields of photoacoustics and photoacoustic spectroscopy. Photoactoustic techniques are now being used in ferromagnetic and electron spin resonance experiments, and there have been rapid advances in Fourier-transform infrared photoacoustic spectroscopy. In addition, the calorimetric aspects of photoacoustics are now being extensively exploited for phase transition studies, and to perform thermal-wave imaging and microscopy.

  19. Naval Research Laboratory 1984 Review.

    DTIC Science & Technology

    1985-07-16

    pulsed infrared comprehensive characterization of ultrahigh trans- sources and electronics for video signal process- parency fluoride glasses and...operates a video system through this port if desired. The optical bench in consisting of visible and infrared television cam- the trailer holds a high...resolution Fourier eras, a high-quality video cassette recorder and transform spectrometer to use in the receiving display, and a digitizer to convert

  20. Waste Minimization in Circuit Board Manufacturing by PARMOD(TM) Technology

    DTIC Science & Technology

    1998-06-24

    a foil package in air or in a plastic syringe. Thermogravimetric Analysis (TGA) Ink samples were evaluated using thermogravimetric analysis in...DTA Differential Thermal Analysis FEP Fluorinated Ethylene Propylene (Teflon®) FTIR Fourier Transform Infrared spectroscopy MOD Metallo-Organic...Decomposition ROM Reactive Organic Medium SEM Scanning Electron Microscopy TGA Thermal Gravimetry Analysis Torr Unit of pressure (one mm mercury

  1. Fourier transform-wavefront reconstruction for the pyramid wavefront sensor

    NASA Astrophysics Data System (ADS)

    Quirós-Pacheco, Fernando; Correia, Carlos; Esposito, Simone

    The application of Fourier-transform reconstruction techniques to the pyramid wavefront sensor has been investigated. A preliminary study based on end-to-end simulations of an adaptive optics system with ≈40x40 subapertures and actuators shows that the performance of the Fourier-transform reconstructor (FTR) is of the same order of magnitude than the one obtained with a conventional matrix-vector multiply (MVM) method.

  2. Polarization Ratio Determination with Two Identical Linearly Polarized Antennas

    DTIC Science & Technology

    2017-01-17

    Fourier transform analysis of 21 measurements with one of the antennas rotating about its axis a circular polarization ratio is derived which can be...deter- mined directly from a discrete Fourier transform (DFT) of (5). However, leakage between closely spaced DFT bins requires improving the... Fourier transform and a mechanical antenna rotation to separate the principal and opposite circular polarization components followed by a basis

  3. Location of cholesterol in liposomes by using small-angle X-ray scattering (SAXS) data and the generalized indirect Fourier transformation (GIFT) method.

    PubMed

    Aburai, Kenichi; Ogura, Taku; Hyodo, Ryo; Sakai, Hideki; Abe, Masahiko; Glatter, Otto

    2013-01-01

    We investigated the location of cholesterol (Chol) in liposomes and its interaction with phospholipids using small-angle x-ray scattering (SAXS) data and applying the generalized indirect Fourier transformation (GIFT) method. The GIFT method has been applied to lamellar liquid crystal systems and it gives quantitative data on bilayer thickness, electron density profile, and membrane flexibility (Caillé parameter). When the GIFT method is applied to the SAXS data of dipalmitoylphosphatidylcholine (DPPC) alone (Chol [-]) or a DPPC/Chol = 7/3 mixed system (Chol [+], molar ratio), change in the bilayer thickness was insignificant in both systems. However, the electron density for the Chol (+) system was higher than that for the Chol (-) system at the location of hydrophilic groups of phospholipids, and whereas Caillé parameter value increased with temperature for the Chol (-) system, no significant change with temperature was observed in the Caillé parameter for the Chol (+) system. These results indicated that Chol is located in the vicinity of the hydrophilic group of the phospholipids and constricts the packing of the acyl chain of phospholipids in the bilayer.

  4. Analysis of Roman age wall paintings found in Pordenone, Trieste and Montegrotto.

    PubMed

    Mazzocchin, G A; Agnoli, F; Salvadori, M

    2004-10-20

    The aim of the present work is the study of many fragments of wall painting from archaeological excavations in three different Roman age sites dating back to the I Century before Common Era: Pordenone (località Torre); Trieste (Crosada) and Padova (Montegrotto). The techniques used were optical microscopy, scanning electron microscopy (SEM), equipped with a EDS microanalysis detector, X-rays powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Fourier transform Raman spectroscopy (FT-Raman) and electron paramagnetic resonance (EPR) spectroscopy. The identified pigments were: cinnabar, hematite, celadonite, glauconite, cuprorivaite (Egyptian blue), yellow and red ochre, calcite, limonite, coal black. In general, the mortar preparation did not correspond to the complex procedure suggested by Vitruvius (De Architectura), but generally showed a porous layer, with crushed grains under the pigment layer. In some cases, two superimposed pigment layers were found: yellow superimposed on both red and pink, black on pink, green on black. The slight differences we found in the use of the pigments in the three studied sites might show that the same technology, culture and taste spread all over the Roman Empire in North Eastern Italy (X(a) Regio Venetia et Histria).

  5. Structural and morphological peculiarities of hybrid Au/nanodiamond engineered nanostructures

    NASA Astrophysics Data System (ADS)

    Matassa, Roberto; Orlanducci, Silvia; Reina, Giacomo; Cassani, Maria Cristina; Passeri, Daniele; Terranova, Maria Letizia; Rossi, Marco

    2016-08-01

    Nanostructured Au nano-platelets have been synthesized from an Au(III) complex by growth process triggered by nanodiamond (ND). An electroless synthetic route has been used to obtain 2D Au/ND architectures, where individual nanodiamond particles are intimately embedded into face-centered cubic Au platelets. The combined use of high resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED), was able to reveal the unusual organization of these hybrid nanoparticles, ascertaining the existence of preferential crystallographic orientations for both nanocrystalline species and highlighting their mutual locations. Detailed information on the sample microstructure have been gathered by fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) of HR-TEM images, allowing us to figure out the role of Au defects, able to anchor ND crystallites and to provide specific sites for heteroepitaxial Au growth. Aggregates constituted by coupled ND and Au, represent interesting systems conjugating the best optoelectronics and plasmonics properties of the two different materials. In order to promote realistically the applications of such outstanding Au/ND materials, the cooperative mechanisms at the basis of material synthesis and their influence on the details of the hybrid nanostructures have to be deeply understood.

  6. Structural and morphological peculiarities of hybrid Au/nanodiamond engineered nanostructures

    PubMed Central

    Matassa, Roberto; Orlanducci, Silvia; Reina, Giacomo; Cassani, Maria Cristina; Passeri, Daniele; Terranova, Maria Letizia; Rossi, Marco

    2016-01-01

    Nanostructured Au nano-platelets have been synthesized from an Au(III) complex by growth process triggered by nanodiamond (ND). An electroless synthetic route has been used to obtain 2D Au/ND architectures, where individual nanodiamond particles are intimately embedded into face-centered cubic Au platelets. The combined use of high resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED), was able to reveal the unusual organization of these hybrid nanoparticles, ascertaining the existence of preferential crystallographic orientations for both nanocrystalline species and highlighting their mutual locations. Detailed information on the sample microstructure have been gathered by fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) of HR-TEM images, allowing us to figure out the role of Au defects, able to anchor ND crystallites and to provide specific sites for heteroepitaxial Au growth. Aggregates constituted by coupled ND and Au, represent interesting systems conjugating the best optoelectronics and plasmonics properties of the two different materials. In order to promote realistically the applications of such outstanding Au/ND materials, the cooperative mechanisms at the basis of material synthesis and their influence on the details of the hybrid nanostructures have to be deeply understood. PMID:27514638

  7. Coherence Conversion for Optimized Resolution in Optical Measurements - Example of Femtosecond Time Resolution Using the Transverse Coherence of 100-Picosecond X-Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Bernhard W.

    2015-01-01

    A way is proposed to obtain a femtosecond time resolution over a picosecond range in x-ray spectroscopic measurements where the light source and the detector are much slower than that. It is based on the invariance of the modulus of the Fourier transform to object translations. The method geometrically correlates time in the sample with x-ray amplitudes over a spatial coordinate, and then takes the optical Fourier transform through far-field diffraction. Thus, explicitly time-invariant intensities that encode the time evolution of the sample can be measured with a slow detector. This corresponds to a phase-space transformation that converts the transversemore » coherence to become effective in the longitudinal direction. Because synchrotron-radiation sources have highly anisotropic coherence properties with about $10^5$ longitudinal electromagnetic-field modes at 1 eV bandwidth, but only tens to hundreds transverse modes, coherence conversion can drastically improve the time resolution. Reconstruction of the femtosecond time evolution in the sample from the Fourier intensities is subject to a phase ambiguity that is well-known in crystallography. However, a way is presented to resolve it that is not available in that discipline. Finally, data from a demonstration experiment are presented. The same concept can be used to obtain attosecond time resolution with an x-ray free-electron laser.« less

  8. Generalized prolate spheroidal wave functions for optical finite fractional Fourier and linear canonical transforms.

    PubMed

    Pei, Soo-Chang; Ding, Jian-Jiun

    2005-03-01

    Prolate spheroidal wave functions (PSWFs) are known to be useful for analyzing the properties of the finite-extension Fourier transform (fi-FT). We extend the theory of PSWFs for the finite-extension fractional Fourier transform, the finite-extension linear canonical transform, and the finite-extension offset linear canonical transform. These finite transforms are more flexible than the fi-FT and can model much more generalized optical systems. We also illustrate how to use the generalized prolate spheroidal functions we derive to analyze the energy-preservation ratio, the self-imaging phenomenon, and the resonance phenomenon of the finite-sized one-stage or multiple-stage optical systems.

  9. Automated magnification calibration in transmission electron microscopy using Fourier analysis of replica images.

    PubMed

    van der Laak, Jeroen A W M; Dijkman, Henry B P M; Pahlplatz, Martin M M

    2006-03-01

    The magnification factor in transmission electron microscopy is not very precise, hampering for instance quantitative analysis of specimens. Calibration of the magnification is usually performed interactively using replica specimens, containing line or grating patterns with known spacing. In the present study, a procedure is described for automated magnification calibration using digital images of a line replica. This procedure is based on analysis of the power spectrum of Fourier transformed replica images, and is compared to interactive measurement in the same images. Images were used with magnification ranging from 1,000 x to 200,000 x. The automated procedure deviated on average 0.10% from interactive measurements. Especially for catalase replicas, the coefficient of variation of automated measurement was considerably smaller (average 0.28%) compared to that of interactive measurement (average 3.5%). In conclusion, calibration of the magnification in digital images from transmission electron microscopy may be performed automatically, using the procedure presented here, with high precision and accuracy.

  10. Electron interference effects in energetic photoelectrons from C60@C240 probed by the Fourier spectroscopy

    NASA Astrophysics Data System (ADS)

    McCreary, Meghan; Chakraborty, Himadri

    2013-05-01

    The ground state structure of the simplest two-fullerene onion system, the C60@C240 molecule, is solved in the Kohn-Sham framework of local density approximation (LDA). Calculations are carried out with delocalized carbon valence electrons after modeling the onion ion-core of sixty C4+ ions from C60 and two hundred and forty of those from C240 in a smeared out jellium-type double-shell structure. Ionization cross sections of all the levels are then calculated in both independent particle LDA and many-particle time dependent LDA approaches at photon energies above the plasmon resonances. These high-energy results exhibit rich structures of energy dependent oscillations from the quantum interference of electron waves produced at the edges of the fullerene layers. A detailed scrutiny of these structures is conducted by Fourier transforming the spectra to the configuration space that relates the oscillations to the onion geometry. Supported by NSF and DOE.

  11. Theory and operational rules for the discrete Hankel transform.

    PubMed

    Baddour, Natalie; Chouinard, Ugo

    2015-04-01

    Previous definitions of a discrete Hankel transform (DHT) have focused on methods to approximate the continuous Hankel integral transform. In this paper, we propose and evaluate the theory of a DHT that is shown to arise from a discretization scheme based on the theory of Fourier-Bessel expansions. The proposed transform also possesses requisite orthogonality properties which lead to invertibility of the transform. The standard set of shift, modulation, multiplication, and convolution rules are derived. In addition to the theory of the actual manipulated quantities which stand in their own right, this DHT can be used to approximate the continuous forward and inverse Hankel transform in the same manner that the discrete Fourier transform is known to be able to approximate the continuous Fourier transform.

  12. Sequential measurement of conjugate variables as an alternative quantum state tomography.

    PubMed

    Di Lorenzo, Antonio

    2013-01-04

    It is shown how it is possible to reconstruct the initial state of a one-dimensional system by sequentially measuring two conjugate variables. The procedure relies on the quasicharacteristic function, the Fourier transform of the Wigner quasiprobability. The proper characteristic function obtained by Fourier transforming the experimentally accessible joint probability of observing "position" then "momentum" (or vice versa) can be expressed as a product of the quasicharacteristic function of the two detectors and that unknown of the quantum system. This allows state reconstruction through the sequence (1) data collection, (2) Fourier transform, (3) algebraic operation, and (4) inverse Fourier transform. The strength of the measurement should be intermediate for the procedure to work.

  13. Photonic fractional Fourier transformer with a single dispersive device.

    PubMed

    Cuadrado-Laborde, C; Carrascosa, A; Díez, A; Cruz, J L; Andres, M V

    2013-04-08

    In this work we used the temporal analog of spatial Fresnel diffraction to design a temporal fractional Fourier transformer with a single dispersive device, in this way avoiding the use of quadratic phase modulators. We demonstrate that a single dispersive passive device inherently provides the fractional Fourier transform of an incident optical pulse. The relationships linking the fractional Fourier transform order and scaling factor with the dispersion parameters are derived. We first provide some numerical results in order to prove the validity of our proposal, using a fiber Bragg grating as the dispersive device. Next, we experimentally demonstrate the feasibility of this proposal by using a spool of a standard optical fiber as the dispersive device.

  14. Teaching Fourier optics through ray matrices

    NASA Astrophysics Data System (ADS)

    Moreno, I.; Sánchez-López, M. M.; Ferreira, C.; Davis, J. A.; Mateos, F.

    2005-03-01

    In this work we examine the use of ray-transfer matrices for teaching and for deriving some topics in a Fourier optics course, exploiting the mathematical simplicity of ray matrices compared to diffraction integrals. A simple analysis of the physical meaning of the elements of the ray matrix provides a fast derivation of the conditions to obtain the optical Fourier transform. We extend this derivation to fractional Fourier transform optical systems, and derive the order of the transform from the ray matrix. Some examples are provided to stress this point of view, both with classical and with graded index lenses. This formulation cannot replace the complete explanation of Fourier optics provided by the wave theory, but it is a complementary tool useful to simplify many aspects of Fourier optics and to relate them to geometrical optics.

  15. Signal processing applications of massively parallel charge domain computing devices

    NASA Technical Reports Server (NTRS)

    Fijany, Amir (Inventor); Barhen, Jacob (Inventor); Toomarian, Nikzad (Inventor)

    1999-01-01

    The present invention is embodied in a charge coupled device (CCD)/charge injection device (CID) architecture capable of performing a Fourier transform by simultaneous matrix vector multiplication (MVM) operations in respective plural CCD/CID arrays in parallel in O(1) steps. For example, in one embodiment, a first CCD/CID array stores charge packets representing a first matrix operator based upon permutations of a Hartley transform and computes the Fourier transform of an incoming vector. A second CCD/CID array stores charge packets representing a second matrix operator based upon different permutations of a Hartley transform and computes the Fourier transform of an incoming vector. The incoming vector is applied to the inputs of the two CCD/CID arrays simultaneously, and the real and imaginary parts of the Fourier transform are produced simultaneously in the time required to perform a single MVM operation in a CCD/CID array.

  16. Apparatus for direct-to-digital spatially-heterodyned holography

    DOEpatents

    Thomas, Clarence E.; Hanson, Gregory R.

    2006-12-12

    An apparatus operable to record a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis includes: a laser; a beamsplitter optically coupled to the laser; an object optically coupled to the beamsplitter; a focusing lens optically coupled to both the beamsplitter and the object; a digital recorder optically coupled to the focusing lens; and a computer that performs a Fourier transform, applies a digital filter, and performs an inverse Fourier transform. A reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis which is recorded by the digital recorder, and the computer transforms the recorded spatially low-frequency heterodyne hologram including spatially heterodyne fringes and shifts axes in Fourier space to sit on top of a heterodyne carrier frequency defined by an angle between the reference beam and the object beam and cuts off signals around an original origin before performing the inverse Fourier transform.

  17. Practical Sub-Nyquist Sampling via Array-Based Compressed Sensing Receiver Architecture

    DTIC Science & Technology

    2016-07-10

    different array ele- ments at different sub-Nyquist sampling rates. Signal processing inspired by the sparse fast Fourier transform allows for signal...reconstruction algorithms can be computationally demanding (REF). The related sparse Fourier transform algorithms aim to reduce the processing time nec- essary to...compute the DFT of frequency-sparse signals [7]. In particular, the sparse fast Fourier transform (sFFT) achieves processing time better than the

  18. Discrete fourier transform (DFT) analysis for applications using iterative transform methods

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H. (Inventor)

    2012-01-01

    According to various embodiments, a method is provided for determining aberration data for an optical system. The method comprises collecting a data signal, and generating a pre-transformation algorithm. The data is pre-transformed by multiplying the data with the pre-transformation algorithm. A discrete Fourier transform of the pre-transformed data is performed in an iterative loop. The method further comprises back-transforming the data to generate aberration data.

  19. Ultrafast electrical spectrum analyzer based on all-optical Fourier transform and temporal magnification.

    PubMed

    Duan, Yuhua; Chen, Liao; Zhou, Haidong; Zhou, Xi; Zhang, Chi; Zhang, Xinliang

    2017-04-03

    Real-time electrical spectrum analysis is of great significance for applications involving radio astronomy and electronic warfare, e.g. the dynamic spectrum monitoring of outer space signal, and the instantaneous capture of frequency from other electronic systems. However, conventional electrical spectrum analyzer (ESA) has limited operation speed and observation bandwidth due to the electronic bottleneck. Therefore, a variety of photonics-assisted methods have been extensively explored due to the bandwidth advantage of the optical domain. Alternatively, we proposed and experimentally demonstrated an ultrafast ESA based on all-optical Fourier transform and temporal magnification in this paper. The radio-frequency (RF) signal under test is temporally multiplexed to the spectrum of an ultrashort pulse, thus the frequency information is converted to the time axis. Moreover, since the bandwidth of this ultrashort pulse is far beyond that of the state-of-the-art photo-detector, a temporal magnification system is applied to stretch the time axis, and capture the RF spectrum with 1-GHz resolution. The observation bandwidth of this ultrafast ESA is over 20 GHz, limited by that of the electro-optic modulator. Since all the signal processing is in the optical domain, the acquisition frame rate can be as high as 50 MHz. This ultrafast ESA scheme can be further improved with better dispersive engineering, and is promising for some ultrafast spectral information acquisition applications.

  20. Effect of SiO2, PVA and glycerol concentrations on chemical and mechanical properties of alginate-based films.

    PubMed

    Yang, Manli; Shi, Jinsheng; Xia, Yanzhi

    2018-02-01

    Sodium alginate (SA)/polyvinyl alcohol (PVA)/SiO 2 nanocomposite films were prepared by in situ polymerization through solution casting and solvent evaporation. The effect of different SA/PVA ratios, SiO 2 , and glycerol content on the mechanical properties, water content, water solubility, and water vapor permeability were studied. The nanocomposite films were characterized by Fourier transform infrared, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and thermal stability (thermogravimetric analysis/differential thermogravimetry) analyses. The nanocomposites showed the highest values of mechanical properties, such as SA/PVA ratio, SiO 2 , and glycerol content was 7:3, 6wt.%, and 0.25g/g SA, respectively. The tensile strength and elongation at break (E%) of the nanocomposites increased by 525.7% and 90.7%, respectively, compared with those of the pure alginate film. The Fourier transform infrared spectra showed a new SiOC band formed in the SA/PVA/SiO 2 nanocomposite film. The scanning electron microscopy image revealed good adhesion between SiO 2 and SA/PVA matrix. After the incorporation of PVA and SiO 2 , the water resistance of the SA/PVA/SiO 2 nanocomposite film was markedly improved. Transparency decreased with increasing PVA content but was enhanced by adding SiO 2 . Copyright © 2017. Published by Elsevier B.V.

  1. STRUCTURE IN THE 3D GALAXY DISTRIBUTION: III. FOURIER TRANSFORMING THE UNIVERSE: PHASE AND POWER SPECTRA.

    PubMed

    Scargle, Jeffrey D; Way, M J; Gazis, P R

    2017-04-10

    We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform (FFT) of finely binned galaxy positions. In both cases deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multi-point hierarchy. We identify some threads of modern large scale inference methodology that will presumably yield detections in new wider and deeper surveys.

  2. STRUCTURE IN THE 3D GALAXY DISTRIBUTION: III. FOURIER TRANSFORMING THE UNIVERSE: PHASE AND POWER SPECTRA

    PubMed Central

    Scargle, Jeffrey D.; Way, M. J.; Gazis, P. R.

    2017-01-01

    We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform (FFT) of finely binned galaxy positions. In both cases deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multi-point hierarchy. We identify some threads of modern large scale inference methodology that will presumably yield detections in new wider and deeper surveys. PMID:29628519

  3. Structure in the 3D Galaxy Distribution: III. Fourier Transforming the Universe: Phase and Power Spectra

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.; Way, M. J.; Gazis, P. R.

    2017-01-01

    We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform (FFT) of finely binned galaxy positions. In both cases deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multi-point hierarchy. We identify some threads of modern large scale inference methodology that will presumably yield detections in new wider and deeper surveys.

  4. Simulating first order optical systems—algorithms for and composition of discrete linear canonical transforms

    NASA Astrophysics Data System (ADS)

    Healy, John J.

    2018-01-01

    The linear canonical transforms (LCTs) are a parameterised group of linear integral transforms. The LCTs encompass a number of well-known transformations as special cases, including the Fourier transform, fractional Fourier transform, and the Fresnel integral. They relate the scalar wave fields at the input and output of systems composed of thin lenses and free space, along with other quadratic phase systems. In this paper, we perform a systematic search of all algorithms based on up to five stages of magnification, chirp multiplication and Fourier transforms. Based on that search, we propose a novel algorithm, for which we present numerical results. We compare the sampling requirements of three algorithms. Finally, we discuss some issues surrounding the composition of discrete LCTs.

  5. pH-Dependent Regulation of the Relaxation Rate of the Radical Anion of the Secondary Quinone Electron Acceptor QB in Photosystem II As Revealed by Fourier Transform Infrared Spectroscopy.

    PubMed

    Nozawa, Yosuke; Noguchi, Takumi

    2018-05-15

    Photosystem II (PSII) is a protein complex that performs water oxidation using light energy during photosynthesis. In PSII, electrons abstracted from water are eventually transferred to the secondary quinone electron acceptor, Q B , and upon double reduction, Q B is converted to quinol by binding two protons. Thus, excess electron transfer in PSII increases the pH of the stroma. In this study, to investigate the pH-dependent regulation of the electron flow in PSII, we have estimated the relaxation rate of the Q B - radical anion in the pH region between 5 and 8 by direct monitoring of its population using light-induced Fourier transform infrared difference spectroscopy. The decay of Q B - by charge recombination with the S 2 state of the water oxidation center in PSII membranes was shown to be accelerated at higher pH, whereas that of Q A - examined in the presence of a herbicide was virtually unaffected at pH ≤7.5 and slightly slowed at pH 8. These observations were consistent with the previous studies that included rather indirect monitoring of the Q B - and Q A - decays using fluorescence detection. The accelerated relaxation of Q B - was explained by the shift of a redox equilibrium between Q A - and Q B - to the Q A - side due to the decrease in the redox potential of Q B at higher pH, which is induced by deprotonation of a single amino acid residue near Q B . It is proposed that this pH-dependent Q B - relaxation is one of the mechanisms of electron flow regulation in PSII for its photoprotection.

  6. An Investigation into the Use of Spatially-Filtered Fourier Transforms to Classify Mammary Lesions.

    DTIC Science & Technology

    difference in Fourier space between lesioned breast tissue which would enable accurate computer classification of benign and malignant lesions. Low...separate benign and malignant breast tissue. However, no success was achieved when using two-dimensional Fourier transform and power spectrum analysis. (Author)

  7. Detection of Fast Moving and Accelerating Targets Compensating Range and Doppler Migration

    DTIC Science & Technology

    2014-06-01

    Radon -Fourier transform has been introduced to realize long- term coherent integration of the moving targets with range migration [8, 9]. Radon ...2010) Long-time coherent integration for radar target detection base on Radon -Fourier transform, in Proceedings of the IEEE Radar Conference, pp...432–436. 9. Xu, J., Yu, J., Peng, Y. & Xia, X. (2011) Radon -Fourier transform for radar target detection, I: Generalized Doppler filter bank, IEEE

  8. Optical Properties of III-V Semiconductor Nanostructures and Quantum Wells

    DTIC Science & Technology

    2006-12-31

    measurements were made using a BOMEM Fourier-transform infrared spectrometer in conjunction with a continuous flow cryostat. A low- noise current...infrared photodetector ( QWIP ). Quantum well infrared photodetectors are designed from wide bandgap (III-V) semiconductor materials in such a way where...quantum confinement is created. Unlike HgCdTe which utilizes electronic transitions across the fundamental bandgap, QWIPs relies on transitions between

  9. Synthesis of rose-like boron nitride particles with a high specific surface area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Hongming; Huang, Xiaoxiao; Wen, Guangwu, E-mail: wgw@hitwh.edu.cn

    2010-08-15

    Novel rose-like BN nanostructures were synthesized on a large scale via a two-step procedure. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectrometer and nitrogen porosimetry. The results show that the obtained rose-like nanostructures are composed of a large amount of h-BN crystalline flakes and have a surface area of 90.31 m{sup 2}/g. A mechanism was proposed to explain the formation process of the rose-like BN nanostructures.

  10. Effect of preparation conditions on the nanostructure of hydroxyapatite and brushite phases

    NASA Astrophysics Data System (ADS)

    Mansour, S. F.; El-dek, S. I.; Ahmed, M. A.; Abd-Elwahab, S. M.; Ahmed, M. K.

    2016-10-01

    Hydroxyapatite (HAP) and dicalcium phosphate dihydrate (brushite) nanoparticles were prepared by co-precipitation method. The obtained products were characterized by X-ray powder diffraction (XRD), Fourier transformation infra-red spectroscopy (FTIR) and thermo-gravimetric analysis (TGA). Scanning electron microscopy (SEM) and transmission electron microscope (TEM) were used to investigate the morphology of the powdered samples as well as their microstructure, respectively. Brushite samples were obtained in a spherical shape, while hydroxyapatite was formed in a needle and rice shape depending on the pH value.

  11. A Primer of Fourier Transform NMR.

    ERIC Educational Resources Information Center

    Macomber, Roger S.

    1985-01-01

    Fourier transform nuclear magnetic resonance (NMR) is a new spectroscopic technique that is often omitted from undergraduate curricula because of lack of instructional materials. Therefore, information is provided to introduce students to the technique of data collection and transformation into the frequency domain. (JN)

  12. Geometric Representations for Discrete Fourier Transforms

    NASA Technical Reports Server (NTRS)

    Cambell, C. W.

    1986-01-01

    Simple geometric representations show symmetry and periodicity of discrete Fourier transforms (DFT's). Help in visualizing requirements for storing and manipulating transform value in computations. Representations useful in any number of dimensions, but particularly in one-, two-, and three-dimensional cases often encountered in practice.

  13. Sparsity guided empirical wavelet transform for fault diagnosis of rolling element bearings

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Zhao, Yang; Yi, Cai; Tsui, Kwok-Leung; Lin, Jianhui

    2018-02-01

    Rolling element bearings are widely used in various industrial machines, such as electric motors, generators, pumps, gearboxes, railway axles, turbines, and helicopter transmissions. Fault diagnosis of rolling element bearings is beneficial to preventing any unexpected accident and reducing economic loss. In the past years, many bearing fault detection methods have been developed. Recently, a new adaptive signal processing method called empirical wavelet transform attracts much attention from readers and engineers and its applications to bearing fault diagnosis have been reported. The main problem of empirical wavelet transform is that Fourier segments required in empirical wavelet transform are strongly dependent on the local maxima of the amplitudes of the Fourier spectrum of a signal, which connotes that Fourier segments are not always reliable and effective if the Fourier spectrum of the signal is complicated and overwhelmed by heavy noises and other strong vibration components. In this paper, sparsity guided empirical wavelet transform is proposed to automatically establish Fourier segments required in empirical wavelet transform for fault diagnosis of rolling element bearings. Industrial bearing fault signals caused by single and multiple railway axle bearing defects are used to verify the effectiveness of the proposed sparsity guided empirical wavelet transform. Results show that the proposed method can automatically discover Fourier segments required in empirical wavelet transform and reveal single and multiple railway axle bearing defects. Besides, some comparisons with three popular signal processing methods including ensemble empirical mode decomposition, the fast kurtogram and the fast spectral correlation are conducted to highlight the superiority of the proposed method.

  14. Fourier Transforms of Pulses Containing Exponential Leading and Trailing Profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warshaw, S I

    2001-07-15

    In this monograph we discuss a class of pulse shapes that have exponential rise and fall profiles, and evaluate their Fourier transforms. Such pulses can be used as models for time-varying processes that produce an initial exponential rise and end with the exponential decay of a specified physical quantity. Unipolar examples of such processes include the voltage record of an increasingly rapid charge followed by a damped discharge of a capacitor bank, and the amplitude of an electromagnetic pulse produced by a nuclear explosion. Bipolar examples include acoustic N waves propagating for long distances in the atmosphere that have resultedmore » from explosions in the air, and sonic booms generated by supersonic aircraft. These bipolar pulses have leading and trailing edges that appear to be exponential in character. To the author's knowledge the Fourier transforms of such pulses are not generally well-known or tabulated in Fourier transform compendia, and it is the purpose of this monograph to derive and present these transforms. These Fourier transforms are related to a definite integral of a ratio of exponential functions, whose evaluation we carry out in considerable detail. From this result we derive the Fourier transforms of other related functions. In all Figures showing plots of calculated curves, the actual numbers used for the function parameter values and dependent variables are arbitrary and non-dimensional, and are not identified with any particular physical phenomenon or model.« less

  15. A Short-Segment Fourier Transform Methodology

    DTIC Science & Technology

    2009-03-01

    defined sampling of the continuous-valued discrete-time Fourier transform, superresolution in the frequency domain and allowance of Dirac delta functions associated with pure sinusoidal input data components.

  16. 40 CFR 98.414 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... appropriate detector, infrared (IR), fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR... Compounds by Extractive Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy (incorporated by...

  17. 40 CFR 98.414 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... appropriate detector, infrared (IR), fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR... Compounds by Extractive Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy (incorporated by...

  18. 40 CFR 98.414 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... appropriate detector, infrared (IR), fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR... Compounds by Extractive Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy (incorporated by...

  19. 40 CFR 98.414 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... appropriate detector, infrared (IR), fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR... Compounds by Extractive Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy (incorporated by...

  20. CCD correlation techniques

    NASA Technical Reports Server (NTRS)

    Hewes, C. R.; Bosshart, P. W.; Eversole, W. L.; Dewit, M.; Buss, D. D.

    1976-01-01

    Two CCD techniques were discussed for performing an N-point sampled data correlation between an input signal and an electronically programmable reference function. The design and experimental performance of an implementation of the direct time correlator utilizing two analog CCDs and MOS multipliers on a single IC were evaluated. The performance of a CCD implementation of the chirp z transform was described, and the design of a new CCD integrated circuit for performing correlation by multiplication in the frequency domain was presented. This chip provides a discrete Fourier transform (DFT) or inverse DFT, multipliers, and complete support circuitry for the CCD CZT. The two correlation techniques are compared.

  1. Analysis and application of Fourier transform spectroscopy in atmospheric remote sensing

    NASA Technical Reports Server (NTRS)

    Park, J. H.

    1984-01-01

    An analysis method for Fourier transform spectroscopy is summarized with applications to various types of distortion in atmospheric absorption spectra. This analysis method includes the fast Fourier transform method for simulating the interferometric spectrum and the nonlinear least-squares method for retrieving the information from a measured spectrum. It is shown that spectral distortions can be simulated quite well and that the correct information can be retrieved from a distorted spectrum by this analysis technique.

  2. Robust alignment of chromatograms by statistically analyzing the shifts matrix generated by moving window fast Fourier transform cross-correlation.

    PubMed

    Zhang, Mingjing; Wen, Ming; Zhang, Zhi-Min; Lu, Hongmei; Liang, Yizeng; Zhan, Dejian

    2015-03-01

    Retention time shift is one of the most challenging problems during the preprocessing of massive chromatographic datasets. Here, an improved version of the moving window fast Fourier transform cross-correlation algorithm is presented to perform nonlinear and robust alignment of chromatograms by analyzing the shifts matrix generated by moving window procedure. The shifts matrix in retention time can be estimated by fast Fourier transform cross-correlation with a moving window procedure. The refined shift of each scan point can be obtained by calculating the mode of corresponding column of the shifts matrix. This version is simple, but more effective and robust than the previously published moving window fast Fourier transform cross-correlation method. It can handle nonlinear retention time shift robustly if proper window size has been selected. The window size is the only one parameter needed to adjust and optimize. The properties of the proposed method are investigated by comparison with the previous moving window fast Fourier transform cross-correlation and recursive alignment by fast Fourier transform using chromatographic datasets. The pattern recognition results of a gas chromatography mass spectrometry dataset of metabolic syndrome can be improved significantly after preprocessing by this method. Furthermore, the proposed method is available as an open source package at https://github.com/zmzhang/MWFFT2. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Implementation of the semiclassical quantum Fourier transform in a scalable system.

    PubMed

    Chiaverini, J; Britton, J; Leibfried, D; Knill, E; Barrett, M D; Blakestad, R B; Itano, W M; Jost, J D; Langer, C; Ozeri, R; Schaetz, T; Wineland, D J

    2005-05-13

    We report the implementation of the semiclassical quantum Fourier transform in a system of three beryllium ion qubits (two-level quantum systems) confined in a segmented multizone trap. The quantum Fourier transform is the crucial final step in Shor's algorithm, and it acts on a register of qubits to determine the periodicity of the quantum state's amplitudes. Because only probability amplitudes are required for this task, a more efficient semiclassical version can be used, for which only single-qubit operations conditioned on measurement outcomes are required. We apply the transform to several input states of different periodicities; the results enable the location of peaks corresponding to the original periods. This demonstration incorporates the key elements of a scalable ion-trap architecture, suggesting the future capability of applying the quantum Fourier transform to a large number of qubits as required for a useful quantum factoring algorithm.

  4. Automatic Whistler Detector and Analyzer system: Implementation of the analyzer algorithm

    NASA Astrophysics Data System (ADS)

    Lichtenberger, JáNos; Ferencz, Csaba; Hamar, Daniel; Steinbach, Peter; Rodger, Craig J.; Clilverd, Mark A.; Collier, Andrew B.

    2010-12-01

    The full potential of whistlers for monitoring plasmaspheric electron density variations has not yet been realized. The primary reason is the vast human effort required for the analysis of whistler traces. Recently, the first part of a complete whistler analysis procedure was successfully automated, i.e., the automatic detection of whistler traces from the raw broadband VLF signal was achieved. This study describes a new algorithm developed to determine plasmaspheric electron density measurements from whistler traces, based on a Virtual (Whistler) Trace Transformation, using a 2-D fast Fourier transform transformation. This algorithm can be automated and can thus form the final step to complete an Automatic Whistler Detector and Analyzer (AWDA) system. In this second AWDA paper, the practical implementation of the Automatic Whistler Analyzer (AWA) algorithm is discussed and a feasible solution is presented. The practical implementation of the algorithm is able to track the variations of plasmasphere in quasi real time on a PC cluster with 100 CPU cores. The electron densities obtained by the AWA method can be used in investigations such as plasmasphere dynamics, ionosphere-plasmasphere coupling, or in space weather models.

  5. [Using 2-DCOS to identify the molecular spectrum peaks for the isomer in the multi-component mixture gases Fourier transform infrared analysis].

    PubMed

    Zhao, An-Xin; Tang, Xiao-Jun; Zhang, Zhong-Hua; Liu, Jun-Hua

    2014-10-01

    The generalized two-dimensional correlation spectroscopy and Fourier transform infrared were used to identify hydrocarbon isomers in the mixed gases for absorption spectra resolution enhancement. The Fourier transform infrared spectrum of n-butane and iso-butane and the two-dimensional correlation infrared spectrum of concentration perturbation were used for analysis as an example. The all band and the main absorption peak wavelengths of Fourier transform infrared spectrum for single component gas showed that the spectra are similar, and if they were mixed together, absorption peaks overlap and peak is difficult to identify. The synchronous and asynchronous spectrum of two-dimensional correlation spectrum can clearly identify the iso-butane and normal butane and their respective characteristic absorption peak intensity. Iso-butane has strong absorption characteristics spectrum lines at 2,893, 2,954 and 2,893 cm(-1), and n-butane at 2,895 and 2,965 cm(-1). The analysis result in this paper preliminary verified that the two-dimensional infrared correlation spectroscopy can be used for resolution enhancement in Fourier transform infrared spectrum quantitative analysis.

  6. [The reconstruction of welding arc 3D electron density distribution based on Stark broadening].

    PubMed

    Zhang, Wang; Hua, Xue-Ming; Pan, Cheng-Gang; Li, Fang; Wang, Min

    2012-10-01

    The three-dimensional electron density is very important for welding arc quality control. In the present paper, Side-on characteristic line profile was collected by a spectrometer, and the lateral experimental data were approximated by a polynomial fitting. By applying an Abel inversion technique, the authors obtained the radial intensity distribution at each wavelength and thus constructed a profile for the radial positions. The Fourier transform was used to separate the Lorentz linear from the spectrum reconstructed, thus got the accurate Stark width. And we calculated the electronic density three-dimensional distribution of the TIG welding are plasma.

  7. Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy.

    PubMed

    Segawa, Takuya F; Doll, Andrin; Pribitzer, Stephan; Jeschke, Gunnar

    2015-07-28

    The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclear modulation spectrum.

  8. An efficient 3-dim FFT for plane wave electronic structure calculations on massively parallel machines composed of multiprocessor nodes

    NASA Astrophysics Data System (ADS)

    Goedecker, Stefan; Boulet, Mireille; Deutsch, Thierry

    2003-08-01

    Three-dimensional Fast Fourier Transforms (FFTs) are the main computational task in plane wave electronic structure calculations. Obtaining a high performance on a large numbers of processors is non-trivial on the latest generation of parallel computers that consist of nodes made up of a shared memory multiprocessors. A non-dogmatic method for obtaining high performance for such 3-dim FFTs in a combined MPI/OpenMP programming paradigm will be presented. Exploiting the peculiarities of plane wave electronic structure calculations, speedups of up to 160 and speeds of up to 130 Gflops were obtained on 256 processors.

  9. A BASIC program for the removal of noise from reaction traces using Fourier filtering.

    PubMed

    Brittain, T

    1989-04-01

    Software for the removal of noise from reaction curves using the principle of Fourier filtering has been written in BASIC to execute on a PC. The program inputs reaction traces which are subjected to a rotation-inversion process, to produce functions suitable for Fourier analysis. Fourier transformation into the frequency domain is followed by multiplication of the transform by a rectangular filter function, to remove the noise frequencies. Inverse transformation then yields a noise-reduced reaction trace suitable for further analysis. The program is interactive at each stage and could easily be modified to remove noise from a range of input data types.

  10. Method for determining and displaying the spacial distribution of a spectral pattern of received light

    DOEpatents

    Bennett, C.L.

    1996-07-23

    An imaging Fourier transform spectrometer is described having a Fourier transform infrared spectrometer providing a series of images to a focal plane array camera. The focal plane array camera is clocked to a multiple of zero crossing occurrences as caused by a moving mirror of the Fourier transform infrared spectrometer and as detected by a laser detector such that the frame capture rate of the focal plane array camera corresponds to a multiple of the zero crossing rate of the Fourier transform infrared spectrometer. The images are transmitted to a computer for processing such that representations of the images as viewed in the light of an arbitrary spectral ``fingerprint`` pattern can be displayed on a monitor or otherwise stored and manipulated by the computer. 2 figs.

  11. Nonlinear Fourier transform—towards the construction of nonlinear Fourier modes

    NASA Astrophysics Data System (ADS)

    Saksida, Pavle

    2018-01-01

    We study a version of the nonlinear Fourier transform associated with ZS-AKNS systems. This version is suitable for the construction of nonlinear analogues of Fourier modes, and for the perturbation-theoretic study of their superposition. We provide an iterative scheme for computing the inverse of our transform. The relevant formulae are expressed in terms of Bell polynomials and functions related to them. In order to prove the validity of our iterative scheme, we show that our transform has the necessary analytic properties. We show that up to order three of the perturbation parameter, the nonlinear Fourier mode is a complex sinusoid modulated by the second Bernoulli polynomial. We describe an application of the nonlinear superposition of two modes to a problem of transmission through a nonlinear medium.

  12. 40 CFR 98.224 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy. (2) ASTM D6348-03 Standard Test Method for Determination of Gaseous Compounds by Extractive Direct Interface Fourier Transform...

  13. 40 CFR 98.224 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy. (2) ASTM D6348-03 Standard Test Method for Determination of Gaseous Compounds by Extractive Direct Interface Fourier Transform...

  14. 40 CFR 98.224 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy. (2) ASTM D6348-03 Standard Test Method for Determination of Gaseous Compounds by Extractive Direct Interface Fourier Transform...

  15. 40 CFR 98.224 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy. (2) ASTM D6348-03 Standard Test Method for Determination of Gaseous Compounds by Extractive Direct Interface Fourier Transform...

  16. Reduction and coding of synthetic aperture radar data with Fourier transforms

    NASA Technical Reports Server (NTRS)

    Tilley, David G.

    1995-01-01

    Recently, aboard the Space Radar Laboratory (SRL), the two roles of Fourier Transforms for ocean image synthesis and surface wave analysis have been implemented with a dedicated radar processor to significantly reduce Synthetic Aperture Radar (SAR) ocean data before transmission to the ground. The object was to archive the SAR image spectrum, rather than the SAR image itself, to reduce data volume and capture the essential descriptors of the surface wave field. SAR signal data are usually sampled and coded in the time domain for transmission to the ground where Fourier Transforms are applied both to individual radar pulses and to long sequences of radar pulses to form two-dimensional images. High resolution images of the ocean often contain no striking features and subtle image modulations by wind generated surface waves are only apparent when large ocean regions are studied, with Fourier transforms, to reveal periodic patterns created by wind stress over the surface wave field. Major ocean currents and atmospheric instability in coastal environments are apparent as large scale modulations of SAR imagery. This paper explores the possibility of computing complex Fourier spectrum codes representing SAR images, transmitting the coded spectra to Earth for data archives and creating scenes of surface wave signatures and air-sea interactions via inverse Fourier transformations with ground station processors.

  17. Fourier-transform spectroscopy of HD in the vacuum ultraviolet at λ = 87-112 nm

    NASA Astrophysics Data System (ADS)

    Ivanov, T. I.; Dickenson, G. D.; Roudjane, M.; de Oliveira, N.; Joyeux, D.; Nahon, L.; Tchang-Brillet, W.-Ü. L.; Ubachs, W.

    2010-03-01

    Absorption spectroscopy in the vacuum ultraviolet (VUV) domain was performed on the hydrogen-deuteride molecule with a novel Fourier-transform spectrometer based upon wavefront division interferometry. This unique instrument, which is a permanent endstation of the undulator-based beamline DESIRS on the synchrotron SOLEIL facility, opens the way to Fourier-transform spectroscopy in the VUV range. The HD spectral lines in the Lyman and Werner bands were recorded in the 87-112 nm range from a quasi-static gas sample in a windowless configuration and with a Doppler-limited resolution. Line positions of some 268 transitions in the ? Lyman bands and 141 transitions in the ? Werner bands were deduced with uncertainties of 0.04 cm-1 (1σ) which correspond to Δλ/λ ∼ 4 × 10-7. This extensive laboratory database is of relevance for comparison with astronomical observations of H2 and HD spectra from highly redshifted objects, with the goal of extracting a possible variation of the proton-to-electron mass ratio (μ = m p /m e ) on a cosmological time scale. For this reason also calculations of the so-called sensitivity coefficients K i were performed in order to allow for deducing constraints on Δμ/μ. The K i coefficients, associated with the line shift that each spectral line undergoes as a result of a varying value for μ, were derived from calculations as a function of μ solving the Schrödinger equation using ab initio potentials.

  18. In-situ chemical analyses of trans-polyisoprene by histochemical staining and Fourier transform infrared microspectroscopy in a rubber-producing plant, Eucommia ulmoides Oliver.

    PubMed

    Bamba, Takeshi; Fukusaki, Ei-Ichiro; Nakazawa, Yoshihisa; Kobayashi, Akio

    2002-10-01

    The localization of polyisoprene in young stem tissues of Eucommia ulmoides Oliver was investigated by histochemical staining and Fourier transform infrared (FT-IR) microspectroscopy. The fibrous structures were stained with Oil Red O. FT-IR microspectroscopic analysis proved that the fibrous structures were trans-polyisoprene. Granular structures stained with the dye, and characteristic absorptions at 2,960 cm(-1) and 1,430 cm(-1) in FT-IR suggested that trans-polyisoprene accumulated in the vicinity of the cambium layer. We have thus successfully shown for the first time the localization of trans-polyisoprene in plant tissues, and our histological investigation allowed us to presume the main sites of biosynthesis and accumulation of trans-rubber. Furthermore, a new technical approach, the preparation of sections using an electronic freezing unit and the in situ analysis of polyisoprene using FT-IR microspectroscopy, is demonstrated to be a promising method for determining the accumulation of polyisoprene as well as other metabolites.

  19. New Insights into CO2 Adsorption on Layered Double Hydroxide (LDH)-Based Nanomaterials

    NASA Astrophysics Data System (ADS)

    Tang, Nian; He, Tingyu; Liu, Jie; Li, Li; Shi, Han; Cen, Wanglai; Ye, Zhixiang

    2018-02-01

    The interlamellar spacing of layered double hydroxides (LDHs) was enlarged by dodecyl sulfonate ions firstly, and then, (3-aminopropyl)triethoxysilane (APS) was chemically grafted (APS/LDHs). The structural characteristics and thermal stability of these prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), reflectance Fourier transform infrared spectrometer (FTIR), thermogravimetric analysis (TG), and elemental analysis (EA) respectively. The CO2 adsorption performance was investigated adopting TG and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The results presented that the CO2 adsorption capacity on APS/LDHs was as high as 90 mg/g and showed no obvious reduction during a five cyclic adsorption-desorption test, indicating its superior performance stability. The DRIFTS results showed that both carbamates and weakly bounded CO2 species were generated on APS/LDHs. The weakly adsorbed species was due to the different local chemical environment for CO2 capture provided by the surface moieties of LDHs like free silanol and hydrogen bonds.

  20. Resonant antenna probes for tip-enhanced infrared near-field microscopy.

    PubMed

    Huth, Florian; Chuvilin, Andrey; Schnell, Martin; Amenabar, Iban; Krutokhvostov, Roman; Lopatin, Sergei; Hillenbrand, Rainer

    2013-03-13

    We report the development of infrared-resonant antenna probes for tip-enhanced optical microscopy. We employ focused-ion-beam machining to fabricate high-aspect ratio gold cones, which replace the standard tip of a commercial Si-based atomic force microscopy cantilever. Calculations show large field enhancements at the tip apex due to geometrical antenna resonances in the cones, which can be precisely tuned throughout a broad spectral range from visible to terahertz frequencies by adjusting the cone length. Spectroscopic analysis of these probes by electron energy loss spectroscopy, Fourier transform infrared spectroscopy, and Fourier transform infrared near-field spectroscopy corroborates their functionality as resonant antennas and verifies the broad tunability. By employing the novel probes in a scattering-type near-field microscope and imaging a single tobacco mosaic virus (TMV), we experimentally demonstrate high-performance mid-infrared nanoimaging of molecular absorption. Our probes offer excellent perspectives for optical nanoimaging and nanospectroscopy, pushing the detection and resolution limits in many applications, including nanoscale infrared mapping of organic, molecular, and biological materials, nanocomposites, or nanodevices.

  1. Synthesis, spectral, thermal, optical and theoretical studies of (2E,6E)-2-benzylidene-6-(4-methoxybenzylidene)cyclohexanone.

    PubMed

    Meenatchi, V; Muthu, K; Rajasekar, M; Meenakshisundaram, Sp

    2014-01-01

    Single crystals of (2E,6E)-2-benzylidine-6-(4-methoxybenzylidine)cyclohexanone are grown by slow evaporation of ethanolic solution at room temperature. The characteristic functional groups present in the molecule are confirmed by Fourier transform infrared and Fourier transform Raman analyses. The scanning electron microscopy study reveals the surface morphology of the material. Thermogravimetric/differential thermal analysis study reveals the purity of the material and the crystal is transparent in the visible region having a lower optical cut-off at ∼487nm. The second harmonic generation efficiency of as-grown material is estimated by Kurtz and Perry technique. Optimized geometry has been derived using Hartree-Fock calculations performed at the level 6-31G (d,p) and the first-order molecular hyperpolarizability (β) is estimated. The specimen is further characterized by nuclear magnetic resonance spectroscopy. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  2. Big Data in Reciprocal Space: Sliding Fast Fourier Transforms for Determining Periodicity

    DOE PAGES

    Vasudevan, Rama K.; Belianinov, Alex; Gianfrancesco, Anthony G.; ...

    2015-03-03

    Significant advances in atomically resolved imaging of crystals and surfaces have occurred in the last decade allowing unprecedented insight into local crystal structures and periodicity. Yet, the analysis of the long-range periodicity from the local imaging data, critical to correlation of functional properties and chemistry to the local crystallography, remains a challenge. Here, we introduce a Sliding Fast Fourier Transform (FFT) filter to analyze atomically resolved images of in-situ grown La5/8Ca3/8MnO3 films. We demonstrate the ability of sliding FFT algorithm to differentiate two sub-lattices, resulting from a mixed-terminated surface. Principal Component Analysis (PCA) and Independent Component Analysis (ICA) of themore » Sliding FFT dataset reveal the distinct changes in crystallography, step edges and boundaries between the multiple sub-lattices. The method is universal for images with any periodicity, and is especially amenable to atomically resolved probe and electron-microscopy data for rapid identification of the sub-lattices present.« less

  3. Big Data in Reciprocal Space: Sliding Fast Fourier Transforms for Determining Periodicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasudevan, Rama K.; Belianinov, Alex; Gianfrancesco, Anthony G.

    Significant advances in atomically resolved imaging of crystals and surfaces have occurred in the last decade allowing unprecedented insight into local crystal structures and periodicity. Yet, the analysis of the long-range periodicity from the local imaging data, critical to correlation of functional properties and chemistry to the local crystallography, remains a challenge. Here, we introduce a Sliding Fast Fourier Transform (FFT) filter to analyze atomically resolved images of in-situ grown La5/8Ca3/8MnO3 films. We demonstrate the ability of sliding FFT algorithm to differentiate two sub-lattices, resulting from a mixed-terminated surface. Principal Component Analysis (PCA) and Independent Component Analysis (ICA) of themore » Sliding FFT dataset reveal the distinct changes in crystallography, step edges and boundaries between the multiple sub-lattices. The method is universal for images with any periodicity, and is especially amenable to atomically resolved probe and electron-microscopy data for rapid identification of the sub-lattices present.« less

  4. Comparison study on biosynthesis of silver nanoparticles using fresh and hot air oven dried IMPERATA CYLINDRICA leaf

    NASA Astrophysics Data System (ADS)

    Najmi Bonnia, Noor; Fairuzi, Afiza Ahmad; Akhir, Rabiatuladawiyah Md.; Yahya, Sabrina M.; Rani, Mohd Azri Ab; Ratim, Suzana; Rahman, Norafifah A.; Akil, Hazizan Md

    2018-01-01

    The perennial rhizomatous grass; Imperata cylindrica (I. cylindrica) has been reported rich in various phytochemicals. In present study, silver nanoparticles were synthesized from aqueous leaf extract of I. cylindrica at two different leaf conditions; fresh leaves and hot-air oven dried leaves. Biosynthesized silver nanoparticles were characterized by UV-visible spectroscopy, field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). Maximum absorption was recorded between 400 nm to 500 nm. FESEM analysis revealed that the silver nanoparticles predominantly form spherical shapes. The particles sizes were ranging from 22-37 nm. The elemental composition of the synthesized silver nanoparticles was confirmed by using energy dispersive X-ray spectroscopy (EDX) analysis. Fourier transform infrared spectroscopy (FTIR) confirmed the reducing and stabilizing actions came from biomolecules associated with I. cylindrica leaf extract. Thus in this investigation, an environmentally safe method to synthesized silver nanoparticles using local plant extract was successfully established.

  5. Use of a Fourier transform spectrometer on a balloon-borne telescope and at the multiple mirror telescope (MMT)

    NASA Technical Reports Server (NTRS)

    Traub, W. A.; Chance, K. V.; Brasunas, J. C.; Vrtilek, J. M.; Carleton, N. P.

    1982-01-01

    The design and use of an infrared Fourier transform spectrometer which has been used for observations of laboratory, stratospheric, and astronomical spectra are described. The spectrometer has a spectral resolution of 0.032/cm and has operated in the mid-infrared (12 to 13 microns) as well as the far-infrared (40 to 140 microns), using both bolometer and photoconductor cryogenic detectors. The spectrometer is optically sized to accept an f/9 beam from the multi-mirror telescope (MMT). The optical and electronic design are discussed, including remote operation of the spectrometer on a balloon-borne 102-cm telescope. The performance of the laser-controlled, screw-driven moving cat's-eye mirror is discussed. Segments of typical far-infrared balloon flight spectra, lab spectra, and mid-infrared MMT spectra are presented. Data reduction, interferogram processing, artifact removal, wavelength calibration, and intensity calibration methods are discussed. Future use of the spectrometer is outlined.

  6. Use of the fractional Fourier transform in {pi}/2 converters of laser modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyutin, A A

    2004-02-28

    The possibility of using the fractional Fourier transform (FrFT) in optical schemes for astigmatic {pi}/2 converters of Hermite-Gaussian modes to donut Laguerre-Gaussian modes is considered. Several schemes of converters based on the FrFT of the half-integer and irrational orders are presented. The lowest FrFT order than can be used in astigmatic mode converters is found. The properties of converters based on the fractional and ordinary Fourier transforms are compared. (laser beams)

  7. Restoration algorithms for imaging through atmospheric turbulence

    DTIC Science & Technology

    2017-02-18

    the Fourier spectrum of each frame. The reconstructed image is then obtained by taking the inverse Fourier transform of the average of all processed...with wipξq “ Gσp|Fpviqpξq|pq řM j“1Gσp|Fpvjqpξq|pq , where F denotes the Fourier transform (ξ are the frequencies) and Gσ is a Gaussian filter of...a combination of SIFT [26] and ORSA [14] algorithms) in order to remove affine transformations (translations, rotations and homothety). The authors

  8. Tomography: Three Dimensional Image Construction. Applications of Analysis to Medical Radiology. [and] Genetic Counseling. Applications of Probability to Medicine. [and] The Design of Honeycombs. Applications of Differential Equations to Biology. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Units 318, 456, 502.

    ERIC Educational Resources Information Center

    Solomon, Frederick; And Others.

    This document consists of three modules. The first looks at applications of analysis to medical radiology. The goals are to provide: 1) acquaintance with a significant applied mathematics problem utilizing Fourier Transforms; 2) generalization of the Fourier Transforms to two dimensions; 3) practice with Fourier Transforms; and 4) introduction to…

  9. A laboratory demonstration of high-resolution hard X-ray and gamma-ray imaging using Fourier-transform techniques

    NASA Technical Reports Server (NTRS)

    Palmer, David; Prince, Thomas A.

    1987-01-01

    A laboratory imaging system has been developed to study the use of Fourier-transform techniques in high-resolution hard X-ray and gamma-ray imaging, with particular emphasis on possible applications to high-energy astronomy. Considerations for the design of a Fourier-transform imager and the instrumentation used in the laboratory studies is described. Several analysis methods for image reconstruction are discussed including the CLEAN algorithm and maximum entropy methods. Images obtained using these methods are presented.

  10. Static harmonization of dynamically harmonized Fourier transform ion cyclotron resonance cell.

    PubMed

    Zhdanova, Ekaterina; Kostyukevich, Yury; Nikolaev, Eugene

    2017-08-01

    Static harmonization in the Fourier transform ion cyclotron resonance cell improves the resolving power of the cell and prevents dephasing of the ion cloud in the case of any trajectory of the charged particle, not necessarily axisymmetric cyclotron (as opposed to dynamic harmonization). We reveal that the Fourier transform ion cyclotron resonance cell with dynamic harmonization (paracell) is proved to be statically harmonized. The volume of the statically harmonized potential distribution increases with an increase in the number of trap segments.

  11. Fast Fourier Transform algorithm design and tradeoffs

    NASA Technical Reports Server (NTRS)

    Kamin, Ray A., III; Adams, George B., III

    1988-01-01

    The Fast Fourier Transform (FFT) is a mainstay of certain numerical techniques for solving fluid dynamics problems. The Connection Machine CM-2 is the target for an investigation into the design of multidimensional Single Instruction Stream/Multiple Data (SIMD) parallel FFT algorithms for high performance. Critical algorithm design issues are discussed, necessary machine performance measurements are identified and made, and the performance of the developed FFT programs are measured. Fast Fourier Transform programs are compared to the currently best Cray-2 FFT program.

  12. A Comparative Analysis for Selection of Appropriate Mother Wavelet for Detection of Stationary Disturbances

    NASA Astrophysics Data System (ADS)

    Kamble, Saurabh Prakash; Thawkar, Shashank; Gaikwad, Vinayak G.; Kothari, D. P.

    2017-12-01

    Detection of disturbances is the first step of mitigation. Power electronics plays a crucial role in modern power system which makes system operation efficient but it also bring stationary disturbances in the power system and added impurities to the supply. It happens because of the non-linear loads used in modern day power system which inject disturbances like harmonic disturbances, flickers, sag etc. in power grid. These impurities can damage equipments so it is necessary to mitigate these impurities present in the supply very quickly. So, digital signal processing techniques are incorporated for detection purpose. Signal processing techniques like fast Fourier transform, short-time Fourier transform, Wavelet transform etc. are widely used for the detection of disturbances. Among all, wavelet transform is widely used because of its better detection capabilities. But, which mother wavelet has to use for detection is still a mystery. Depending upon the periodicity, the disturbances are classified as stationary and non-stationary disturbances. This paper presents the importance of selection of mother wavelet for analyzing stationary disturbances using discrete wavelet transform. Signals with stationary disturbances of various frequencies are generated using MATLAB. The analysis of these signals is done using various mother wavelets like Daubechies and bi-orthogonal wavelets and the measured root mean square value of stationary disturbance is obtained. The measured value obtained by discrete wavelet transform is compared with the exact RMS value of the frequency component and the percentage differences are presented which helps to select optimum mother wavelet.

  13. Detailed electrochemical studies of the tetraruthenium polyoxometalate water oxidation catalyst in acidic media: identification of an extended oxidation series using Fourier transformed alternating current voltammetry.

    PubMed

    Lee, Chong-Yong; Guo, Si-Xuan; Murphy, Aidan F; McCormac, Timothy; Zhang, Jie; Bond, Alan M; Zhu, Guibo; Hill, Craig L; Geletii, Yurii V

    2012-11-05

    The electrochemistry of the water oxidation catalyst, Rb(8)K(2)[{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(γ-SiW(10)O(36))(2)] (Rb(8)K(2)-1(0)) has been studied in the presence and absence of potassium cations in both hydrochloric and sulfuric acid solutions by transient direct current (dc) cyclic voltammetry, a steady state dc method in the rotating disk configuration and the kinetically sensitive technique of Fourier transformed large-amplitude alternating current (ac) voltammetry. In acidic media, the presence of potassium ions affects the kinetics (apparent rate of electron transfer) and thermodynamics (reversible potentials) of the eight processes (A'/A to H/H') that are readily detected under dc voltammetric conditions. The six most positive processes (A'/A to F/F'), each involve a one electron ruthenium based charge transfer step (A'/A, B'/B are Ru(IV/V) oxidation and C/C' to F/F' are Ru(IV/III) reduction). The apparent rate of electron transfer of the ruthenium centers in sulfuric acid is higher than in hydrochloric acid. The addition of potassium cations increases the apparent rates and gives rise to a small shift of reversible potential. Simulations of the Fourier transformed ac voltammetry method show that the B'/B, E/E', and F/F' processes are quasi-reversible, while the others are close to reversible. A third Ru(IV/V) oxidation process is observed just prior to the positive potential limit via dc methods. Importantly, the ability of the higher harmonic components of the ac method to discriminate against the irreversible background solvent process allows this (process I) as well as an additional fourth reversible ruthenium based process (J) to be readily identified. The steady-state rotating disk electrode (RDE) method confirmed that all four Ru-centers in Rb(8)K(2)-1(0) are in oxidation state IV. The dc and ac data indicate that reversible potentials of the four ruthenium centers are evenly spaced, which may be relevant to understanding of the water oxidation electrocatalysis. A profound effect of the potassium cation is observed for the one-electron transfer process (G/G') assigned to Ru(III/II) reduction and the multiple electron transfer reduction process (H/H') that arise from the tungstate polyoxometalate framework. A significant shift of E°' to a more positive potential value for process H/H' was observed on removal of K(+) (~100 mV in H(2)SO(4) and ~50 mV in HCl).

  14. Surface-functionalized cockle shell–based calcium carbonate aragonite polymorph as a drug nanocarrier

    PubMed Central

    Mohd Abd Ghafar, Syairah Liyana; Hussein, Mohd Zobir; Rukayadi, Yaya; Abu Bakar Zakaria, Md Zuki

    2017-01-01

    Calcium carbonate aragonite polymorph nanoparticles derived from cockle shells were prepared using surface functionalization method followed by purification steps. Size, morphology, and surface properties of the nanoparticles were characterized using transmission electron microscopy, field emission scanning electron microscopy, dynamic light scattering, zetasizer, X-ray powder diffraction, and Fourier transform infrared spectrometry techniques. The potential of surface-functionalized calcium carbonate aragonite polymorph nanoparticle as a drug-delivery agent were assessed through in vitro drug-loading test and drug-release test. Transmission electron microscopy, field emission scanning electron microscopy, and particle size distribution analyses revealed that size, morphology, and surface characterization had been improved after surface functionalization process. Zeta potential of the nanoparticles was found to be increased, thereby demonstrating better dispersion among the nanoparticles. Purification techniques showed a further improvement in the overall distribution of nanoparticles toward more refined size ranges <100 nm, which specifically favored drug-delivery applications. The purity of the aragonite phase and their chemical analyses were verified by X-ray powder diffraction and Fourier transform infrared spectrometry studies. In vitro biological response of hFOB 1.19 osteoblast cells showed that surface functionalization could improve the cytotoxicity of cockle shell–based calcium carbonate aragonite nanocarrier. The sample was also sensitive to pH changes and demonstrated good abilities to load and sustain in vitro drug. This study thus indicates that calcium carbonate aragonite polymorph nanoparticles derived from cockle shells, a natural biomaterial, with modified surface characteristics are promising and can be applied as efficient carriers for drug delivery. PMID:28572724

  15. 40 CFR Appendix B to Subpart Uuuuu... - -HCl and HF Monitoring Provisions

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... extractive Fourier Transform Infrared Spectroscopy (FTIR) continuous emissions monitoring systems in appendix... Fourier Transform Infrared (FTIR) Spectroscopy” (incorporated by reference, see § 63.14), each applied...

  16. 40 CFR 98.54 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy in 40 CFR part 63, Appendix... Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy (incorporated by reference, see § 98.7...

  17. 40 CFR 98.54 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy in 40 CFR part 63, Appendix... Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy (incorporated by reference, see § 98.7...

  18. 40 CFR 98.54 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy in 40 CFR part 63, Appendix... Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy (incorporated by reference, see § 98.7...

  19. 40 CFR 98.54 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy in 40 CFR part 63, Appendix... Direct Interface Fourier Transform Infrared (FTIR) Spectroscopy (incorporated by reference, see § 98.7...

  20. 40 CFR Appendix B to Subpart Uuuuu... - -HCl and HF Monitoring Provisions

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... extractive Fourier Transform Infrared Spectroscopy (FTIR) continuous emissions monitoring systems in appendix... Fourier Transform Infrared (FTIR) Spectroscopy” (incorporated by reference, see § 63.14), each applied...

  1. Interfacial and Thin Film Chemistry in Electron Device Fabrication

    DTIC Science & Technology

    1990-11-20

    mounted on our UHV surface analysis system, and J. Forster and D. V. Podlesnik of the IBM General Technology Division. The following discussion...IBM (East Fishkill). The system being built consists of three chambers: one UHV analysis chamber, one UHV reaction chamber and one high pressure...system will be equipped with several surface analysis and cleaning techniques. Fourier transform infrared spectrometry will be used to do attenuated

  2. Characterization technique for detection of atom-size crystalline defects and strains using two-dimensional fast-Fourier-transform sampling Moiré method

    NASA Astrophysics Data System (ADS)

    Kodera, Masako; Wang, Qinghua; Ri, Shien; Tsuda, Hiroshi; Yoshioka, Akira; Sugiyama, Toru; Hamamoto, Takeshi; Miyashita, Naoto

    2018-04-01

    Recently, we have developed a two-dimensional (2D) fast-Fourier-transform (FFT) sampling Moiré technique to visually and quantitatively determine the locations of minute defects in a transmission electron microscopy (TEM) image. We applied this technique for defect detection with GaN high electron mobility transistor (HEMT) devices, and successfully and clearly visualized atom-size defects in AlGaN/GaN crystalline structures. The defect density obtained in the AlGaN/GaN structures is ∼1013 counts/cm2. In addition, we have successfully confirmed that the distribution and number of defects closely depend on the process conditions. Thus, this technique is quite useful for a device development. Moreover, the strain fields in an AlGaN/GaN crystal were effectively calculated with nm-scale resolution using this method. We also demonstrated that this sampling Moiré technique is applicable to silicon devices, which have principal directions different from those of AlGaN/GaN crystals. As a result, we believe that the 2D FFT sampling Moiré method has great potential applications to the discovery of new as yet unknown phenomena occurring between the characteristics of a crystalline material and device performance.

  3. Ferroxidase activity of apoferritin is increased in the presence of platinum nanoparticles.

    PubMed

    Sennuga, Afolake; van Marwijk, Jacqueline; Whiteley, Chris G

    2012-01-27

    The ferroxidase activity of horse spleen apoferritin (HSAF) is increased by nine-fold in the presence of platinum nanoparticles. HSAF was mixed with varying concentrations of K2PtCl4 followed by a 20-fold concentration of sodium borohydride to afford Pt:HSAF nanoparticle complexes in a ratio of between 1:250 and 1:4000. Typical colour changes, from colourless or pale yellow to brown, occurred that were dependent on the amount of platinum present. These complexes were characterized by UV/vis, inductively coupled plasma optical emission spectroscopy, Fourier transform infrared, transmission electron microscopy and energy dispersive x-ray spectroscopy. Transmission electron microscopy analysis revealed that the size of nanoparticles increased as the molar ratio of platinum to HSAF increased with an average size diameter of 2-6 nm generated with HSAF:platinum molar ratios of 1:250-1:4000. Fourier transform infrared spectroscopy (FTIR) spectra showed no distinct changes in the structure of HSAF but confirmed that the nanoparticles were attached to the protein. The effect of platinum nanoparticles on the ferroxidase activity of HSAF showed a specific activity of 360 ρmol min(-1) mg(-1), (nine-fold increase over the control) at the molar ratio of HSAF:platinum nanoparticles of 1:1000.

  4. Broadband W-band Rapid Frequency Sweep Considerations for Fourier Transform EPR.

    PubMed

    Strangeway, Robert A; Hyde, James S; Camenisch, Theodore G; Sidabras, Jason W; Mett, Richard R; Anderson, James R; Ratke, Joseph J; Subczynski, Witold K

    2017-12-01

    A multi-arm W-band (94 GHz) electron paramagnetic resonance spectrometer that incorporates a loop-gap resonator with high bandwidth is described. A goal of the instrumental development is detection of free induction decay following rapid sweep of the microwave frequency across the spectrum of a nitroxide radical at physiological temperature, which is expected to lead to a capability for Fourier transform electron paramagnetic resonance. Progress toward this goal is a theme of the paper. Because of the low Q-value of the loop-gap resonator, it was found necessary to develop a new type of automatic frequency control, which is described in an appendix. Path-length equalization, which is accomplished at the intermediate frequency of 59 GHz, is analyzed. A directional coupler is favored for separation of incident and reflected power between the bridge and the loop-gap resonator. Microwave leakage of this coupler is analyzed. An oversize waveguide with hyperbolic-cosine tapers couples the bridge to the loop-gap resonator, which results in reduced microwave power and signal loss. Benchmark sensitivity data are provided. The most extensive application of the instrument to date has been the measurement of T 1 values using pulse saturation recovery. An overview of that work is provided.

  5. High Accuracy Evaluation of the Finite Fourier Transform Using Sampled Data

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1997-01-01

    Many system identification and signal processing procedures can be done advantageously in the frequency domain. A required preliminary step for this approach is the transformation of sampled time domain data into the frequency domain. The analytical tool used for this transformation is the finite Fourier transform. Inaccuracy in the transformation can degrade system identification and signal processing results. This work presents a method for evaluating the finite Fourier transform using cubic interpolation of sampled time domain data for high accuracy, and the chirp Zeta-transform for arbitrary frequency resolution. The accuracy of the technique is demonstrated in example cases where the transformation can be evaluated analytically. Arbitrary frequency resolution is shown to be important for capturing details of the data in the frequency domain. The technique is demonstrated using flight test data from a longitudinal maneuver of the F-18 High Alpha Research Vehicle.

  6. 3-D surface profilometry based on modulation measurement by applying wavelet transform method

    NASA Astrophysics Data System (ADS)

    Zhong, Min; Chen, Feng; Xiao, Chao; Wei, Yongchao

    2017-01-01

    A new analysis of 3-D surface profilometry based on modulation measurement technique by the application of Wavelet Transform method is proposed. As a tool excelling for its multi-resolution and localization in the time and frequency domains, Wavelet Transform method with good localized time-frequency analysis ability and effective de-noizing capacity can extract the modulation distribution more accurately than Fourier Transform method. Especially for the analysis of complex object, more details of the measured object can be well remained. In this paper, the theoretical derivation of Wavelet Transform method that obtains the modulation values from a captured fringe pattern is given. Both computer simulation and elementary experiment are used to show the validity of the proposed method by making a comparison with the results of Fourier Transform method. The results show that the Wavelet Transform method has a better performance than the Fourier Transform method in modulation values retrieval.

  7. 40 CFR Appendix B to Subpart Uuuuu - -HCl and HF Monitoring Provisions

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fourier Transform Infrared Spectroscopy (FTIR) continuous emissions monitoring systems in appendix B to... Fourier Transform Infrared (FTIR) Spectroscopy” (incorporated by reference, see § 63.14), each applied...

  8. Molecular conformational analysis, vibrational spectra and normal coordinate analysis of trans-1,2-bis(3,5-dimethoxy phenyl)-ethene based on density functional theory calculations.

    PubMed

    Joseph, Lynnette; Sajan, D; Chaitanya, K; Isac, Jayakumary

    2014-03-25

    The conformational behavior and structural stability of trans-1,2-bis(3,5-dimethoxy phenyl)-ethene (TDBE) were investigated by using density functional theory (DFT) method with the B3LYP/6-311++G(d,p) basis set combination. The vibrational wavenumbers of TDBE were computed at DFT level and complete vibrational assignments were made on the basis of normal coordinate analysis calculations (NCA). The DFT force field transformed to natural internal coordinates was corrected by a well-established set of scale factors that were found to be transferable to the title compound. The infrared and Raman spectra were also predicted from the calculated intensities. The observed Fourier transform infrared (FTIR) and Fourier transform (FT) Raman vibrational wavenumbers were analyzed and compared with the theoretically predicted vibrational spectra. Comparison of the simulated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecules has been obtained by mapping electron density isosurface with electrostatic potential surfaces (ESP). Copyright © 2013 Elsevier B.V. All rights reserved.

  9. An Evaluation of the Environmental Fate and Behavior of Munitions Materiel (Tetryl and Polar Metabolites of TNT) in Soil and Plant Systems. Environmental Fate and Behavior of Tetryl

    DTIC Science & Technology

    1992-03-01

    attempted to verify product identity and purity by GC with either Fourier transform infrared spectro.icopy (FTIR) or mass spectroscopy (MS) detection...ýl0 5 In-1 z U)-’i0oo -3g’i o -6o0 626o a i60 ito1 2i oo I ’ o [JfnVENUII8ER (cm- FIGURE 3,9. Fourier Transform Infrared Spectroscopy Spectrum of...Fourier Transform Infrared Spectroscopy Spectrum of Tetryl I-I F1U~IGUR Fourier Utransformlfret Spcrop S ectrum of TeasomtinPoutrl 0 , -39 i : : : -. . i

  10. Polarizable atomic multipole X-ray refinement: application to peptide crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnieders, Michael J.; Fenn, Timothy D.; Howard Hughes Medical Institute

    2009-09-01

    A method to accelerate the computation of structure factors from an electron density described by anisotropic and aspherical atomic form factors via fast Fourier transformation is described for the first time. Recent advances in computational chemistry have produced force fields based on a polarizable atomic multipole description of biomolecular electrostatics. In this work, the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) force field is applied to restrained refinement of molecular models against X-ray diffraction data from peptide crystals. A new formalism is also developed to compute anisotropic and aspherical structure factors using fast Fourier transformation (FFT) of Cartesian Gaussianmore » multipoles. Relative to direct summation, the FFT approach can give a speedup of more than an order of magnitude for aspherical refinement of ultrahigh-resolution data sets. Use of a sublattice formalism makes the method highly parallelizable. Application of the Cartesian Gaussian multipole scattering model to a series of four peptide crystals using multipole coefficients from the AMOEBA force field demonstrates that AMOEBA systematically underestimates electron density at bond centers. For the trigonal and tetrahedral bonding geometries common in organic chemistry, an atomic multipole expansion through hexadecapole order is required to explain bond electron density. Alternatively, the addition of interatomic scattering (IAS) sites to the AMOEBA-based density captured bonding effects with fewer parameters. For a series of four peptide crystals, the AMOEBA–IAS model lowered R{sub free} by 20–40% relative to the original spherically symmetric scattering model.« less

  11. Modified solvothermal synthesis of cobalt ferrite (CoFe2O4) magnetic nanoparticles photocatalysts for degradation of methylene blue with H2O2/visible light

    NASA Astrophysics Data System (ADS)

    Kalam, Abul; Al-Sehemi, Abdullah G.; Assiri, Mohammed; Du, Gaohui; Ahmad, Tokeer; Ahmad, Irfan; Pannipara, M.

    2018-03-01

    Different grads of magnetic nano-scaled cobalt ferrites (CoFe2O4) photocatalysts were synthesized by modified Solvothermal (MST) process with and without polysaccharide. The indigenously synthesized photocatalysts were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), thermo gravimetric analysis (TGA), Fourier transform infrared (FT-IR), UV-visible (UV-vis) spectroscopy and N2 adsorption-desorption isotherm method. The Fourier transform infrared spectroscopy study showed the Fe-O stretching vibration 590-619 cm-1, confirming the formation of metal oxide. The crystallite size of the synthesized photocatalysts was found in the range between 20.0 and 30.0 nm. The surface area of obtained magnetic nanoparticles is found to be reasonably high in the range of 63.0-76.0 m2/g. The results shown that only MST-2 is the most active catalyst for photo-Fenton like scheme for fast photodegradation action of methylene blue dye, this is possible due to optical band gap estimated of 2.65 eV. Captivatingly the percentage of degradation efficiency increases up to 80% after 140 min by using MST-2 photocatalyst. Photocatalytic degradation of methylene blue (MB) dye under visible light irradiation with cobalt ferrite magnetic nanoparticles followed first order kinetic constant and rate constant of MST-2 is almost 2.0 times greater than MST-1 photocatalyst.

  12. A transform from absorption to Raman excitation profile. A time-dependent approach

    NASA Astrophysics Data System (ADS)

    Lee, Soo-Y.; Yeo, Robert C. K.

    1994-04-01

    An alternative time-frame approach, which is canonically conjugate to the energy-frame approach, for implementing the transform relations for calculating Raman excitation profiles directly from the optical absorption spectrum is presented. Practical and efficient fast Fourier transformation in the time frame replaces the widely used Chan and Page algorithm for evaluating the Hilbert transform in the energy frame. The time-frame approach is applied to: (a) a two-mode model which illustrates the missing mode effect in both absorption and Raman excitation profiles, (b) carotene, in which both the absorption spectrum and the Raman excitation profile show vibrational structure and (c) hexamethylbenzene: TCNE electron donor—acceptor complex where the same spectra are structureless and the Raman excitation profile for the 168 cm -1 mode poses a problem for the energy-frame approach. A similar time-frame approach can be used for the inverse transform from the Raman excitation profile to the optical absorption spectrum.

  13. Normal modes and mode transformation of pure electron vortex beams

    PubMed Central

    Thirunavukkarasu, G.; Mousley, M.; Babiker, M.

    2017-01-01

    Electron vortex beams constitute the first class of matter vortex beams which are currently routinely produced in the laboratory. Here, we briefly review the progress of this nascent field and put forward a natural quantum basis set which we show is suitable for the description of electron vortex beams. The normal modes are truncated Bessel beams (TBBs) defined in the aperture plane or the Fourier transform of the transverse structure of the TBBs (FT-TBBs) in the focal plane of a lens with the said aperture. As these modes are eigenfunctions of the axial orbital angular momentum operator, they can provide a complete description of the two-dimensional transverse distribution of the wave function of any electron vortex beam in such a system, in analogy with the prominent role Laguerre–Gaussian (LG) beams played in the description of optical vortex beams. The characteristics of the normal modes of TBBs and FT-TBBs are described, including the quantized orbital angular momentum (in terms of the winding number l) and the radial index p>0. We present the experimental realization of such beams using computer-generated holograms. The mode analysis can be carried out using astigmatic transformation optics, demonstrating close analogy with the astigmatic mode transformation between LG and Hermite–Gaussian beams. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069769

  14. Normal modes and mode transformation of pure electron vortex beams.

    PubMed

    Thirunavukkarasu, G; Mousley, M; Babiker, M; Yuan, J

    2017-02-28

    Electron vortex beams constitute the first class of matter vortex beams which are currently routinely produced in the laboratory. Here, we briefly review the progress of this nascent field and put forward a natural quantum basis set which we show is suitable for the description of electron vortex beams. The normal modes are truncated Bessel beams (TBBs) defined in the aperture plane or the Fourier transform of the transverse structure of the TBBs (FT-TBBs) in the focal plane of a lens with the said aperture. As these modes are eigenfunctions of the axial orbital angular momentum operator, they can provide a complete description of the two-dimensional transverse distribution of the wave function of any electron vortex beam in such a system, in analogy with the prominent role Laguerre-Gaussian (LG) beams played in the description of optical vortex beams. The characteristics of the normal modes of TBBs and FT-TBBs are described, including the quantized orbital angular momentum (in terms of the winding number l) and the radial index p>0. We present the experimental realization of such beams using computer-generated holograms. The mode analysis can be carried out using astigmatic transformation optics, demonstrating close analogy with the astigmatic mode transformation between LG and Hermite-Gaussian beams.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  15. Simple systematization of vibrational excitation cross-section calculations for resonant electron-molecule scattering in the boomerang and impulse models.

    PubMed

    Sarma, Manabendra; Adhikari, S; Mishra, Manoj K

    2007-01-28

    Vibrational excitation (nu(f)<--nu(i)) cross-sections sigma(nu(f)<--nu(i) )(E) in resonant e-N(2) and e-H(2) scattering are calculated from transition matrix elements T(nu(f),nu(i) )(E) obtained using Fourier transform of the cross correlation function , where psi(nu(i))(R,t) approximately =e(-iH(A(2))-(R)t/h phi(nu(i))(R) with time evolution under the influence of the resonance anionic Hamiltonian H(A(2) (-))(A(2) (-)=N(2)(-)/H(2) (-)) implemented using Lanczos and fast Fourier transforms. The target (A(2)) vibrational eigenfunctions phi(nu(i))(R) and phi(nu(f))(R) are calculated using Fourier grid Hamiltonian method applied to potential energy (PE) curves of the neutral target. Application of this simple systematization to calculate vibrational structure in e-N(2) and e-H(2) scattering cross-sections provides mechanistic insights into features underlying presence/absence of structure in e-N(2) and e-H(2) scattering cross-sections. The results obtained with approximate PE curves are in reasonable agreement with experimental/calculated cross-section profiles, and cross correlation functions provide a simple demarcation between the boomerang and impulse models.

  16. Synthesis, Analysis, and Processing of Fractal Signals

    DTIC Science & Technology

    1991-10-01

    coordinator in hockey, squash, volleyball, and softball, but also for reminding me periodically that 1/f noise can exist outside a computer. More...similar signals as Fourier-based representations are for stationary and periodic signals. Furthermore, because wave- let transformations can be...and periodic signals. Furthermore, just as the discovery of fast Fourier transform (FFT) algorithms dramatically increased the viability the Fourier

  17. Wavelets

    NASA Astrophysics Data System (ADS)

    Strang, Gilbert

    1994-06-01

    Several methods are compared that are used to analyze and synthesize a signal. Three ways are mentioned to transform a symphony: into cosine waves (Fourier transform), into pieces of cosines (short-time Fourier transform), and into wavelets (little waves that start and stop). Choosing the best basis, higher dimensions, fast wavelet transform, and Daubechies wavelets are discussed. High-definition television is described. The use of wavelets in identifying fingerprints in the future is related.

  18. Nonuniform fast Fourier transform method for numerical diffraction simulation on tilted planes.

    PubMed

    Xiao, Yu; Tang, Xiahui; Qin, Yingxiong; Peng, Hao; Wang, Wei; Zhong, Lijing

    2016-10-01

    The method, based on the rotation of the angular spectrum in the frequency domain, is generally used for the diffraction simulation between the tilted planes. Due to the rotation of the angular spectrum, the interval between the sampling points in the Fourier domain is not even. For the conventional fast Fourier transform (FFT)-based methods, a spectrum interpolation is needed to get the approximate sampling value on the equidistant sampling points. However, due to the numerical error caused by the spectrum interpolation, the calculation accuracy degrades very quickly as the rotation angle increases. Here, the diffraction propagation between the tilted planes is transformed into a problem about the discrete Fourier transform on the uneven sampling points, which can be evaluated effectively and precisely through the nonuniform fast Fourier transform method (NUFFT). The most important advantage of this method is that the conventional spectrum interpolation is avoided and the high calculation accuracy can be guaranteed for different rotation angles, even when the rotation angle is close to π/2. Also, its calculation efficiency is comparable with that of the conventional FFT-based methods. Numerical examples as well as a discussion about the calculation accuracy and the sampling method are presented.

  19. Applying wavelet transforms to analyse aircraft-measured turbulence and turbulent fluxes in the atmospheric boundary layer over eastern Siberia

    NASA Astrophysics Data System (ADS)

    Strunin, M. A.; Hiyama, T.

    2004-11-01

    The wavelet spectral method was applied to aircraft-based measurements of atmospheric turbulence obtained during joint Russian-Japanese research on the atmospheric boundary layer near Yakutsk (eastern Siberia) in April-June 2000. Practical ways to apply Fourier and wavelet methods for aircraft-based turbulence data are described. Comparisons between Fourier and wavelet transform results are shown and they demonstrate, in conjunction with theoretical and experimental restrictions, that the Fourier transform method is not useful for studying non-homogeneous turbulence. The wavelet method is free from many disadvantages of Fourier analysis and can yield more informative results. Comparison of Fourier and Morlet wavelet spectra showed good agreement at high frequencies (small scales). The quality of the wavelet transform and corresponding software was estimated by comparing the original data with restored data constructed with an inverse wavelet transform. A Haar wavelet basis was inappropriate for the turbulence data; the mother wavelet function recommended in this study is the Morlet wavelet. Good agreement was also shown between variances and covariances estimated with different mathematical techniques, i.e. through non-orthogonal wavelet spectra and through eddy correlation methods.

  20. Numerical Solution of 3D Poisson-Nernst-Planck Equations Coupled with Classical Density Functional Theory for Modeling Ion and Electron Transport in a Confined Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Da; Zheng, Bin; Lin, Guang

    2014-08-29

    We have developed efficient numerical algorithms for the solution of 3D steady-state Poisson-Nernst-Planck equations (PNP) with excess chemical potentials described by the classical density functional theory (cDFT). The coupled PNP equations are discretized by finite difference scheme and solved iteratively by Gummel method with relaxation. The Nernst-Planck equations are transformed into Laplace equations through the Slotboom transformation. Algebraic multigrid method is then applied to efficiently solve the Poisson equation and the transformed Nernst-Planck equations. A novel strategy for calculating excess chemical potentials through fast Fourier transforms is proposed which reduces computational complexity from O(N2) to O(NlogN) where N is themore » number of grid points. Integrals involving Dirac delta function are evaluated directly by coordinate transformation which yields more accurate result compared to applying numerical quadrature to an approximated delta function. Numerical results for ion and electron transport in solid electrolyte for Li ion batteries are shown to be in good agreement with the experimental data and the results from previous studies.« less

  1. A Comparison of FTNMR and FTIR Techniques.

    ERIC Educational Resources Information Center

    Ahn, Myong-Ku

    1989-01-01

    Nuclear magnetic resonance and infrared are two spectroscopic methods that commonly use the Fourier transform technique. Discussed are the similarities and differences in the use of the Fourier transform in these two spectroscopic techniques. (CW)

  2. A Graphical Presentation to Teach the Concept of the Fourier Transform

    ERIC Educational Resources Information Center

    Besalu, E.

    2006-01-01

    A study was conducted to visualize the reason why the Fourier transform technique is useful to detect the originating frequencies of a complicated superposition of waves. The findings reveal that students respond well when instructors adapt pictorial presentation to show how the time-domain function is transformed into the frequency domain.

  3. Novel hybrid optical correlator: theory and optical simulation.

    PubMed

    Casasent, D; Herold, R L

    1975-02-01

    The inverse transform of the product of two Fourier transform holograms is analyzed and shown to contain the correlation of the two images from which the holograms were formed. The theory, analysis, and initial experimental demonstration of the feasibility of a novel correlation scheme using this multiplied Fourier transform hologram system are presented.

  4. Fast algorithm for chirp transforms with zooming-in ability and its applications.

    PubMed

    Deng, X; Bihari, B; Gan, J; Zhao, F; Chen, R T

    2000-04-01

    A general fast numerical algorithm for chirp transforms is developed by using two fast Fourier transforms and employing an analytical kernel. This new algorithm unifies the calculations of arbitrary real-order fractional Fourier transforms and Fresnel diffraction. Its computational complexity is better than a fast convolution method using Fourier transforms. Furthermore, one can freely choose the sampling resolutions in both x and u space and zoom in on any portion of the data of interest. Computational results are compared with analytical ones. The errors are essentially limited by the accuracy of the fast Fourier transforms and are higher than the order 10(-12) for most cases. As an example of its application to scalar diffraction, this algorithm can be used to calculate near-field patterns directly behind the aperture, 0 < or = z < d2/lambda. It compensates another algorithm for Fresnel diffraction that is limited to z > d2/lambdaN [J. Opt. Soc. Am. A 15, 2111 (1998)]. Experimental results from waveguide-output microcoupler diffraction are in good agreement with the calculations.

  5. Non-stationary component extraction in noisy multicomponent signal using polynomial chirping Fourier transform.

    PubMed

    Lu, Wenlong; Xie, Junwei; Wang, Heming; Sheng, Chuan

    2016-01-01

    Inspired by track-before-detection technology in radar, a novel time-frequency transform, namely polynomial chirping Fourier transform (PCFT), is exploited to extract components from noisy multicomponent signal. The PCFT combines advantages of Fourier transform and polynomial chirplet transform to accumulate component energy along a polynomial chirping curve in the time-frequency plane. The particle swarm optimization algorithm is employed to search optimal polynomial parameters with which the PCFT will achieve a most concentrated energy ridge in the time-frequency plane for the target component. The component can be well separated in the polynomial chirping Fourier domain with a narrow-band filter and then reconstructed by inverse PCFT. Furthermore, an iterative procedure, involving parameter estimation, PCFT, filtering and recovery, is introduced to extract components from a noisy multicomponent signal successively. The Simulations and experiments show that the proposed method has better performance in component extraction from noisy multicomponent signal as well as provides more time-frequency details about the analyzed signal than conventional methods.

  6. Hydrothermal synthesis of NiCo2O4 nanowires/nitrogen-doped graphene for high-performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Yu, Mei; Chen, Jianpeng; Ma, Yuxiao; Zhang, Jingdan; Liu, Jianhua; Li, Songmei; An, Junwei

    2014-09-01

    NiCo2O4 nanowires/nitrogen-doped graphene (NCO/NG) composite materials were synthesized by hydrothermal treatment in a water-glycerol mixed solvent and subsequent thermal transformation. The obtained materials were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. The electrochemical performance of the composites was evaluated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectrum techniques. NiCo2O4 nanowires are densely coated by nitrogen-doped graphene and the composite displays good electrochemical performance. The maximum specific capacitance of NCO/NG is 1273.13 F g-1 at 0.5 A g-1 in 6 M KOH aqueous solution, and it exhibits good capacity retention without noticeable degradation after 3000 cycles at 4 A g-1.

  7. Improving the accuracy and efficiency of time-resolved electronic spectra calculations: cellular dephasing representation with a prefactor.

    PubMed

    Zambrano, Eduardo; Šulc, Miroslav; Vaníček, Jiří

    2013-08-07

    Time-resolved electronic spectra can be obtained as the Fourier transform of a special type of time correlation function known as fidelity amplitude, which, in turn, can be evaluated approximately and efficiently with the dephasing representation. Here we improve both the accuracy of this approximation-with an amplitude correction derived from the phase-space propagator-and its efficiency-with an improved cellular scheme employing inverse Weierstrass transform and optimal scaling of the cell size. We demonstrate the advantages of the new methodology by computing dispersed time-resolved stimulated emission spectra in the harmonic potential, pyrazine, and the NCO molecule. In contrast, we show that in strongly chaotic systems such as the quartic oscillator the original dephasing representation is more appropriate than either the cellular or prefactor-corrected methods.

  8. Fourier-transform and global contrast interferometer alignment methods

    DOEpatents

    Goldberg, Kenneth A.

    2001-01-01

    Interferometric methods are presented to facilitate alignment of image-plane components within an interferometer and for the magnified viewing of interferometer masks in situ. Fourier-transforms are performed on intensity patterns that are detected with the interferometer and are used to calculate pseudo-images of the electric field in the image plane of the test optic where the critical alignment of various components is being performed. Fine alignment is aided by the introduction and optimization of a global contrast parameter that is easily calculated from the Fourier-transform.

  9. Green synthesis of BiVO4 nanorods via aqueous extracts of Callistemon viminalis

    NASA Astrophysics Data System (ADS)

    Mohamed, H. E. A.; Sone, B. T.; Fuku, X. G.; Dhlamini, M. S.; Maaza, M.

    2018-05-01

    Nowadays, the development of efficient green chemistry methods for synthesis of metal oxides nanoparticles has become a major focus of researchers. These methods are being investigated in order to find an eco-friendly technique for production of well-characterized nanoparticles. In this contribution we report for the first time, the synthesis and structural characterization of n-type Bismuth vanadate (BiVO4) nanoparticles using aqueous extracts of Callistemon viminalis as a chelating agent. To ascertain the formation of BiVO4, X-Ray diffraction analysis (XRD), Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), Electron Dispersion X-ray Spectroscopy (EDS), Fourier Transform Infra-red Spectroscopy (FTIR), and Photoluminescence spectroscopy (PL) were carried out.

  10. Hydrothermal Synthesis and Biocompatibility Study of Highly Crystalline Carbonated Hydroxyapatite Nanorods

    NASA Astrophysics Data System (ADS)

    Xue, Caibao; Chen, Yingzhi; Huang, Yongzhuo; Zhu, Peizhi

    2015-08-01

    Highly crystalline carbonated hydroxyapatite (CHA) nanorods with different carbonate contents were synthesized by a novel hydrothermal method. The crystallinity and chemical structure of synthesized nanorods were studied by Fourier transform infrared spectroscopy (FTIR), X-ray photo-electronic spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). The biocompatibility of synthesized CHA nanorods was evaluated by cell viability and alkaline phosphatase (ALP) activity of MG-63 cell line. The biocompatibility evaluation results show that these CHA nanorods are biologically active apatites and potentially promising bone-substitute biomaterials for orthopedic application.

  11. Analysis of geometric phase effects in the quantum-classical Liouville formalism.

    PubMed

    Ryabinkin, Ilya G; Hsieh, Chang-Yu; Kapral, Raymond; Izmaylov, Artur F

    2014-02-28

    We analyze two approaches to the quantum-classical Liouville (QCL) formalism that differ in the order of two operations: Wigner transformation and projection onto adiabatic electronic states. The analysis is carried out on a two-dimensional linear vibronic model where geometric phase (GP) effects arising from a conical intersection profoundly affect nuclear dynamics. We find that the Wigner-then-Adiabatic (WA) QCL approach captures GP effects, whereas the Adiabatic-then-Wigner (AW) QCL approach does not. Moreover, the Wigner transform in AW-QCL leads to an ill-defined Fourier transform of double-valued functions. The double-valued character of these functions stems from the nontrivial GP of adiabatic electronic states in the presence of a conical intersection. In contrast, WA-QCL avoids this issue by starting with the Wigner transform of single-valued quantities of the full problem. As a consequence, GP effects in WA-QCL can be associated with a dynamical term in the corresponding equation of motion. Since the WA-QCL approach uses solely the adiabatic potentials and non-adiabatic derivative couplings as an input, our results indicate that WA-QCL can capture GP effects in two-state crossing problems using first-principles electronic structure calculations without prior diabatization or introduction of explicit phase factors.

  12. Analysis of geometric phase effects in the quantum-classical Liouville formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryabinkin, Ilya G.; Izmaylov, Artur F.; Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6

    2014-02-28

    We analyze two approaches to the quantum-classical Liouville (QCL) formalism that differ in the order of two operations: Wigner transformation and projection onto adiabatic electronic states. The analysis is carried out on a two-dimensional linear vibronic model where geometric phase (GP) effects arising from a conical intersection profoundly affect nuclear dynamics. We find that the Wigner-then-Adiabatic (WA) QCL approach captures GP effects, whereas the Adiabatic-then-Wigner (AW) QCL approach does not. Moreover, the Wigner transform in AW-QCL leads to an ill-defined Fourier transform of double-valued functions. The double-valued character of these functions stems from the nontrivial GP of adiabatic electronic statesmore » in the presence of a conical intersection. In contrast, WA-QCL avoids this issue by starting with the Wigner transform of single-valued quantities of the full problem. As a consequence, GP effects in WA-QCL can be associated with a dynamical term in the corresponding equation of motion. Since the WA-QCL approach uses solely the adiabatic potentials and non-adiabatic derivative couplings as an input, our results indicate that WA-QCL can capture GP effects in two-state crossing problems using first-principles electronic structure calculations without prior diabatization or introduction of explicit phase factors.« less

  13. A fast D.F.T. algorithm using complex integer transforms

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1978-01-01

    Winograd (1976) has developed a new class of algorithms which depend heavily on the computation of a cyclic convolution for computing the conventional DFT (discrete Fourier transform); this new algorithm, for a few hundred transform points, requires substantially fewer multiplications than the conventional FFT algorithm. Reed and Truong have defined a special class of finite Fourier-like transforms over GF(q squared), where q = 2 to the p power minus 1 is a Mersenne prime for p = 2, 3, 5, 7, 13, 17, 19, 31, 61. In the present paper it is shown that Winograd's algorithm can be combined with the aforementioned Fourier-like transform to yield a new algorithm for computing the DFT. A fast method for accurately computing the DFT of a sequence of complex numbers of very long transform-lengths is thus obtained.

  14. Structure comparison of PMN-PT and PMN-PZT nanocrystals prepared by gel-combustion method at optimized temperatures

    NASA Astrophysics Data System (ADS)

    Ghasemifard, M.; Hosseini, S. M.; Bagheri-Mohagheghi, M. M.; Shahtahmasbi, N.

    2009-09-01

    We have synthesized and were performed a comparison of structures and optical properties between relaxor ferroelectric PMN-PT and PMN-PZT nanopowders. A gel-combustion method has been used to synthesize PMN-PT and PMN-PZT nanocrystalline with the perovskite structure. The precursors employed in the gel-combustion process were lead nitrate, magnesium acetate, niobium ammonium oxalate and zirconium nitrate. The nanopowders were characterized using the X-ray diffraction (XRD) and transmission electron microscopy (TEM) observation. Fourier transform infrared (FTIR) spectroscopy was employed to monitor the transformation of precursor solutions during the thermal reactions leading to the formation of perovskite phase.

  15. A High Resolution Fourier-Transform Spectrometer for the Measurement of Atmospheric Column Abundances

    NASA Technical Reports Server (NTRS)

    Cageao, R.; Sander, S.; Blavier, J.; Jiang, Y.; Nemtchinov, V.

    2000-01-01

    A compact, high resolution Fourier-transform spectrometer for atmospheric near ultraviolet spectroscopy has been installed at the Jet Propulsion Laboratory's Table Mountain Facility (34.4N, 117.7 W, elevation 2290m).

  16. Technique for the metrology calibration of a Fourier transform spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Locke D.; Naylor, David A

    2008-11-10

    A method is presented for using a Fourier transform spectrometer (FTS) to calibrate the metrology of a second FTS. This technique is particularly useful when the second FTS is inside a cryostat or otherwise inaccessible.

  17. Method for determining and displaying the spacial distribution of a spectral pattern of received light

    DOEpatents

    Bennett, Charles L.

    1996-01-01

    An imaging Fourier transform spectrometer (10, 210) having a Fourier transform infrared spectrometer (12) providing a series of images (40) to a focal plane array camera (38). The focal plane array camera (38) is clocked to a multiple of zero crossing occurrences as caused by a moving mirror (18) of the Fourier transform infrared spectrometer (12) and as detected by a laser detector (50) such that the frame capture rate of the focal plane array camera (38) corresponds to a multiple of the zero crossing rate of the Fourier transform infrared spectrometer (12). The images (40) are transmitted to a computer (45) for processing such that representations of the images (40) as viewed in the light of an arbitrary spectral "fingerprint" pattern can be displayed on a monitor (60) or otherwise stored and manipulated by the computer (45).

  18. Atomic Gaussian type orbitals and their Fourier transforms via the Rayleigh expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yükçü, Niyazi

    Gaussian type orbitals (GTOs), which are one of the types of exponential type orbitals (ETOs), are used usually as basis functions in the multi-center atomic and molecular integrals to better understand physical and chemical properties of matter. In the Fourier transform method (FTM), basis functions have not simplicity to make mathematical operations, but their Fourier transforms are easier to use. In this work, with the help of FTM, Rayleigh expansion and some properties of unnormalized GTOs, we present new mathematical results for the Fourier transform of GTOs in terms of Laguerre polynomials, hypergeometric and Whittaker functions. Physical and analytical propertiesmore » of GTOs are discussed and some numerical results have been given in a table. Finally, we compare our mathematical results with the other known literature results by using a computer program and details of evaluation are presented.« less

  19. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    van Agthoven, Maria A; Barrow, Mark P; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O'Connor, Peter B

    2015-12-01

    Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules. Graphical Abstract ᅟ.

  20. Application and sensitivity investigation of Fourier transforms for microwave radiometric inversions

    NASA Technical Reports Server (NTRS)

    Holmes, J. J.; Balanis, C. A.

    1974-01-01

    Existing microwave radiometer technology now provides a suitable method for remote determination of the ocean surface's absolute brightness temperature. To extract the brightness temperature of the water from the antenna temperature equation, an unstable Fredholm integral equation of the first kind was solved. Fast Fourier Transform techniques were used to invert the integral after it is placed into a cross-correlation form. Application and verification of the methods to a two-dimensional modeling of a laboratory wave tank system were included. The instability of the Fredholm equation was then demonstrated and a restoration procedure was included which smooths the resulting oscillations. With the recent availability and advances of Fast Fourier Transform techniques, the method presented becomes very attractive in the evaluation of large quantities of data. Actual radiometric measurements of sea water are inverted using the restoration method, incorporating the advantages of the Fast Fourier Transform algorithm for computations.

  1. Single Channel Quantum Color Image Encryption Algorithm Based on HSI Model and Quantum Fourier Transform

    NASA Astrophysics Data System (ADS)

    Gong, Li-Hua; He, Xiang-Tao; Tan, Ru-Chao; Zhou, Zhi-Hong

    2018-01-01

    In order to obtain high-quality color images, it is important to keep the hue component unchanged while emphasize the intensity or saturation component. As a public color model, Hue-Saturation Intensity (HSI) model is commonly used in image processing. A new single channel quantum color image encryption algorithm based on HSI model and quantum Fourier transform (QFT) is investigated, where the color components of the original color image are converted to HSI and the logistic map is employed to diffuse the relationship of pixels in color components. Subsequently, quantum Fourier transform is exploited to fulfill the encryption. The cipher-text is a combination of a gray image and a phase matrix. Simulations and theoretical analyses demonstrate that the proposed single channel quantum color image encryption scheme based on the HSI model and quantum Fourier transform is secure and effective.

  2. Applications of the diffraction and interference of light and electronic waves

    NASA Astrophysics Data System (ADS)

    Bahrim, Cristian; Lanning, Robert

    2010-10-01

    As part of a NSF sponsored program, called STAIRSTEP, at Lamar University we work on improving the basic knowledge of our physics majors in topics with broader impact in various areas of science and engineering [1]. The purpose is to facilitate a deeper understanding of some fundamental concepts in the field of optics through hands-on experience [2]. We choose to study the interference/diffraction of light and matter waves, because of its fundamental importance in physics with many applications. We target multiple goals in our field of study such as to understand the formation of electronic waves (wave packets) and their interaction with atoms in crystals (electron diffraction); the Fourier analysis of light with applications in spectroscopy, etc. We can show that a crystal lattice Fourier transforms the sinusoidal waves associated to free electrons fired toward the crystal. Our studies led to a simple and instructive recipe for discovering the arrangement of atoms in crystals from the analysis of the diffraction patterns produced by radiation or by electrons transmitted through crystals. [1] Doerschuk P. et al., 39th ASEE/IEEE Frontiers in Education Conference, San Antonio 2009, M3F-1. [2] Bahrim C, Innovation 2006 -- World Innovations in Engineering Education and Research, Chapter 17, iNEER Innovation Series, ISBN 0-9741252-5-3.

  3. Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segawa, Takuya F.; Doll, Andrin; Pribitzer, Stephan

    2015-07-28

    The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclearmore » modulation spectrum.« less

  4. Using Hyperfine Structure to Quantify the Effects of Substitution on the Electron Distribution Within a Pyridine Ring: a Study of 2-, 3-, and 4-PICOLYLAMINE

    NASA Astrophysics Data System (ADS)

    McDivitt, Lindsey M.; Himes, Korrina M.; Bailey, Josiah R.; McMahon, Timothy J.; Bird, Ryan G.

    2017-06-01

    The ground state rotational spectra of the three methylamine substituted pyridines, 2-, 3-, and 4-picolylamine, were collected and analyzed over the frequency range of 7-17.5 GHz using chirped-pulsed Fourier transform microwave spectroscopy. All three molecules show a distinctive quadrupole splitting, which is representative of the local electronic environment around the two different ^{14}N nuclei, with the pyridine nitrogen being particularly sensitive to the pi-electron distribution within the ring. The role that the position of the methylamine group plays on the quadrupole coupling constants on both nitrogens will be discussed and compared to other substituted pyridines.

  5. Enhanced corrosion resistance of strontium hydroxyapatite coating on electron beam treated surgical grade stainless steel

    NASA Astrophysics Data System (ADS)

    Gopi, D.; Rajeswari, D.; Ramya, S.; Sekar, M.; R, Pramod; Dwivedi, Jishnu; Kavitha, L.; Ramaseshan, R.

    2013-12-01

    The surface of 316L stainless steel (316L SS) is irradiated by high energy low current DC electron beam (HELCDEB) with energy of 500 keV and beam current of 1.5 mA followed by the electrodeposition of strontium hydroxyapatite (Sr-HAp) to enhance its corrosion resistance in physiological fluid. The coatings were characterised by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and High resolution scanning electron microscopy (HRSEM). The Sr-HAp coating on HELCDEB treated 316L SS exhibits micro-flower structure. Electrochemical results show that the Sr-HAp coating on HELCDEB treated 316L SS possesses maximum corrosion resistance in Ringer's solution.

  6. Conducting Polymeric Hydrogel Electrolyte Based on Carboxymethylcellulose and Polyacrylamide/Polyaniline for Supercapacitor Applications

    NASA Astrophysics Data System (ADS)

    Suganya, N.; Jaisankar, V.; Sivakumar, E. K. T.

    Conducting polymer hydrogels represent a unique class of materials that possess enormous application in flexible electronic devices. In the present work, conducting carboxymethylcellulose (CMC)-co-polyacrylamide (PAAm)/polyaniline was synthesized by a two-step interpenetrating network solution polymerization technique. The synthesized CMC-co-PAAm/polyaniline with interpenetrating network structure was prepared by in situ polymerization of aniline to enhance conductivity. The molecular structure and morphology of the copolymer hydrogels were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The novel conducting polymer hydrogels show good electrical and electrochemical behavior, which makes them potentially useful in electronic devices such as supercapacitors, biosensors, bioelectronics, solar cells and memory devices.

  7. Characterization of Irradiated and Non-Irradiated Rubber from Automotive Scrap Tires

    NASA Astrophysics Data System (ADS)

    Souza, Clécia Moura; Silva, Leonardo G.

    The aim of this work was to characterize the samples of irradiated and non-irradiated rubber from automotive scrap tires. Rubber samples from scrap tires were irradiated at irradiation doses of 200, 400 and 600kGy in an electron beam accelerator. Subsequently, both the irradiated and non-irradiated samples were characterized by thermogravimetry (TG), differential scanning calorimetry (DSC), tensile strength mechanical test, and Fourier transform infrared (FTIR) spectrophotometry.

  8. Composition of prehistoric rock-painting pigments from Egypt (Gilf Kébir area).

    PubMed

    Darchuk, L; Rotondo, G Gatto; Swaenen, M; Worobiec, A; Tsybrii, Z; Makarovska, Y; Van Grieken, R

    2011-12-01

    The composition of rock-painting pigments from Egypt (Gilf Kebia area) has been analyzed by means of molecular spectroscopy such as Fourier transform infrared and micro-Raman spectroscopy and scanning electron microscopy coupled to an energy dispersive X-ray spectrometer and X-ray fluorescence analysis. Red and yellow pigments were recognized as red and yellow ochre with additional rutile. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Hybrid Optical Processor

    DTIC Science & Technology

    1990-08-01

    LCTVs) ..................... 17 2.14 JOINT FOURIER TRANSFORM PROCESSOR .................. 18 2.15 HOLOGRAPHIC ASSOCIATIVE MEMORY USING A MICRO ...RADC-TR-90-256 Final Technical Report August1990 AD-A227 163 HYBRID OPTICAL PROCESSOR Dove Electronics, Inc. J.F. Dove, F.T .S. Yu, C. Eldering...ANM SUSUE & FUNDING NUMBERS C - F19628-87-C-0086 HYBRID OPTICAL PROCESSOR PE - 61102F PR - 2305 &AUThNOA TA - J7 J.F. Dove, F.T.S. Yu, C. Eldering WU

  10. Application of the fractional Fourier transform to the design of LCOS based optical interconnects and fiber switches.

    PubMed

    Robertson, Brian; Zhang, Zichen; Yang, Haining; Redmond, Maura M; Collings, Neil; Liu, Jinsong; Lin, Ruisheng; Jeziorska-Chapman, Anna M; Moore, John R; Crossland, William A; Chu, D P

    2012-04-20

    It is shown that reflective liquid crystal on silicon (LCOS) spatial light modulator (SLM) based interconnects or fiber switches that use defocus to reduce crosstalk can be evaluated and optimized using a fractional Fourier transform if certain optical symmetry conditions are met. Theoretically the maximum allowable linear hologram phase error compared to a Fourier switch is increased by a factor of six before the target crosstalk for telecom applications of -40 dB is exceeded. A Gerchberg-Saxton algorithm incorporating a fractional Fourier transform modified for use with a reflective LCOS SLM is used to optimize multi-casting holograms in a prototype telecom switch. Experiments are in close agreement to predicted performance.

  11. Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units.

    PubMed

    Watanabe, Yuuki; Maeno, Seiya; Aoshima, Kenji; Hasegawa, Haruyuki; Koseki, Hitoshi

    2010-09-01

    The real-time display of full-range, 2048?axial pixelx1024?lateral pixel, Fourier-domain optical-coherence tomography (FD-OCT) images is demonstrated. The required speed was achieved by using dual graphic processing units (GPUs) with many stream processors to realize highly parallel processing. We used a zero-filling technique, including a forward Fourier transform, a zero padding to increase the axial data-array size to 8192, an inverse-Fourier transform back to the spectral domain, a linear interpolation from wavelength to wavenumber, a lateral Hilbert transform to obtain the complex spectrum, a Fourier transform to obtain the axial profiles, and a log scaling. The data-transfer time of the frame grabber was 15.73?ms, and the processing time, which includes the data transfer between the GPU memory and the host computer, was 14.75?ms, for a total time shorter than the 36.70?ms frame-interval time using a line-scan CCD camera operated at 27.9?kHz. That is, our OCT system achieved a processed-image display rate of 27.23 frames/s.

  12. A new Fourier transform based CBIR scheme for mammographic mass classification: a preliminary invariance assessment

    NASA Astrophysics Data System (ADS)

    Gundreddy, Rohith Reddy; Tan, Maxine; Qui, Yuchen; Zheng, Bin

    2015-03-01

    The purpose of this study is to develop and test a new content-based image retrieval (CBIR) scheme that enables to achieve higher reproducibility when it is implemented in an interactive computer-aided diagnosis (CAD) system without significantly reducing lesion classification performance. This is a new Fourier transform based CBIR algorithm that determines image similarity of two regions of interest (ROI) based on the difference of average regional image pixel value distribution in two Fourier transform mapped images under comparison. A reference image database involving 227 ROIs depicting the verified soft-tissue breast lesions was used. For each testing ROI, the queried lesion center was systematically shifted from 10 to 50 pixels to simulate inter-user variation of querying suspicious lesion center when using an interactive CAD system. The lesion classification performance and reproducibility as the queried lesion center shift were assessed and compared among the three CBIR schemes based on Fourier transform, mutual information and Pearson correlation. Each CBIR scheme retrieved 10 most similar reference ROIs and computed a likelihood score of the queried ROI depicting a malignant lesion. The experimental results shown that three CBIR schemes yielded very comparable lesion classification performance as measured by the areas under ROC curves with the p-value greater than 0.498. However, the CBIR scheme using Fourier transform yielded the highest invariance to both queried lesion center shift and lesion size change. This study demonstrated the feasibility of improving robustness of the interactive CAD systems by adding a new Fourier transform based image feature to CBIR schemes.

  13. Discrete Fourier Transform Analysis in a Complex Vector Space

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2009-01-01

    Alternative computational strategies for the Discrete Fourier Transform (DFT) have been developed using analysis of geometric manifolds. This approach provides a general framework for performing DFT calculations, and suggests a more efficient implementation of the DFT for applications using iterative transform methods, particularly phase retrieval. The DFT can thus be implemented using fewer operations when compared to the usual DFT counterpart. The software decreases the run time of the DFT in certain applications such as phase retrieval that iteratively call the DFT function. The algorithm exploits a special computational approach based on analysis of the DFT as a transformation in a complex vector space. As such, this approach has the potential to realize a DFT computation that approaches N operations versus Nlog(N) operations for the equivalent Fast Fourier Transform (FFT) calculation.

  14. Instrument Line Shape Modeling and Correction for Off-Axis Detectors in Fourier Transform Spectrometry

    NASA Technical Reports Server (NTRS)

    Bowman, K.; Worden, H.; Beer, R.

    1999-01-01

    Spectra measured by off-axis detectors in a high-resolution Fourier transform spectrometer (FTS) are characterized by frequency scaling, asymmetry and broadening of their line shape, and self-apodization in the corresponding interferogram.

  15. Fourier Transform Mass Spectrometry.

    ERIC Educational Resources Information Center

    Gross, Michael L.; Rempel, Don L.

    1984-01-01

    Discusses the nature of Fourier transform mass spectrometry and its unique combination of high mass resolution, high upper mass limit, and multichannel advantage. Examines its operation, capabilities and limitations, applications (ion storage, ion manipulation, ion chemistry), and future applications and developments. (JN)

  16. Fourier Transform Infrared Spectroscopy: Part II. Advantages of FT-IR.

    ERIC Educational Resources Information Center

    Perkins, W. D.

    1987-01-01

    This is Part II in a series on Fourier transform infrared spectroscopy (FT-IR). Described are various advantages of FT-IR spectroscopy including energy advantages, wavenumber accuracy, constant resolution, polarization effects, and stepping at grating changes. (RH)

  17. A fast Karhunen-Loeve transform for a class of random processes

    NASA Technical Reports Server (NTRS)

    Jain, A. K.

    1976-01-01

    It is shown that for a class of finite first-order Markov signals, the Karhunen-Loeve (KL) transform for data compression is a set of periodic sine functions if the boundary values of the signal are fixed or known. These sine functions are shown to be related to the Fourier transform so that a fast Fourier transform algorithm can be used to implement the KL transform. Extension to two dimensions with reference to images with separable contravariance function is shown.

  18. Empirical transfer functions for stations in the Central California seismological network

    USGS Publications Warehouse

    Bakun, W.H.; Dratler, Jay

    1976-01-01

    A sequence of calibration signals composed of a station identification code, a transient from the release of the seismometer mass at rest from a known displacement from the equilibrium position, and a transient from a known step in voltage to the amplifier input are generated by the automatic daily calibration system (ADCS) now operational in the U.S. Geological Survey central California seismographic network. Documentation of a sequence of interactive programs to compute, from the calibration data, the complex transfer functions for the seismographic system (ground motion through digitizer) the electronics (amplifier through digitizer), and the seismometer alone are presented. The analysis utilizes the Fourier transform technique originally suggested by Espinosa et al (1962). Section I is a general description of seismographic calibration. Section II contrasts the 'Fourier transform' and the 'least-squares' techniques for analyzing transient calibration signals. Theoretical consideration for the Fourier transform technique used here are described in Section III. Section IV is a detailed description of the sequence of calibration signals generated by the ADCS. Section V is a brief 'cookbook description' of the calibration programs; Section VI contains a detailed sample program execution. Section VII suggests the uses of the resultant empirical transfer functions. Supplemental interactive programs by which smooth response functions, suitable for reducing seismic data to ground motion, are also documented in Section VII. Appendices A and B contain complete listings of the Fortran source Codes while Appendix C is an update containing preliminary results obtained from an analysis of some of the calibration signals from stations in the seismographic network near Oroville, California.

  19. Reactions of hydrated electrons (H2O)n- with carbon dioxide and molecular oxygen: hydration of the CO2- and O2- ions.

    PubMed

    Balaj, O Petru; Siu, Chi-Kit; Balteanu, Iulia; Beyer, Martin K; Bondybey, Vladimir E

    2004-10-04

    The gas-phase reactions of hydrated electrons with carbon dioxide and molecular oxygen were studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Both CO2 and O2 react efficiently with (H2O)n- because they possess low-lying empty pi* orbitals. The molecular CO2- and O2- anions are concurrently solvated and stabilized by the water ligands to form CO2(-)(H2O)n and O2(-)(H2O)n. Core exchange reactions are also observed, in which CO2(-)(H2O)n is transformed into O2(-)(H2O)n upon collision with O2. This is in agreement with the prediction based on density functional theory calculations that O2(-)(H2O)n clusters are thermodynamically favored with respect to CO2(-)(H2O)n. Electron detachment from the product species is only observed for CO2(-)(H2O)2, in agreement with the calculated electron affinities and solvation energies.

  20. Recurrence spectra of a helium atom in parallel electric and magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dehua; Department of Mathematics and Physics, Shandong Architecture and Engineering Institute, Jinan 250014, People's Republic of China; Ding, Shiliang

    2003-08-01

    A model potential for the general Rydberg atom is put forward, which includes not only the Coulomb interaction potential and the core-attractive potential, but also the exchange potential between the excited electron and other electrons. Using the region-splitting consistent and iterative method, we calculated the scaled recurrence spectra of the helium atom in parallel electric and magnetic fields and the closed orbits in the corresponding classical system have also been obtained. In order to remove the Coulomb singularity of the classical motion of Hamiltonian, we implement the Kustaanheimo-Stiefel transformation, which transforms the system from a three-dimensional to a four-dimensional one.more » The Fourier-transformed spectra of the helium atom has allowed direct comparison between peaks in such a plot and the scaled action values of closed orbits. Considering the exchange potential, the number of the closed orbits increased, which led to more peaks in the recurrence spectra. The results are compared with those of the hydrogen case, which shows that the core-scattered effects and the electron exchange potential play an important role in the multielectron Rydberg atom.« less

  1. KAM Tori Construction Algorithms

    NASA Astrophysics Data System (ADS)

    Wiesel, W.

    In this paper we evaluate and compare two algorithms for the calculation of KAM tori in Hamiltonian systems. The direct fitting of a torus Fourier series to a numerically integrated trajectory is the first method, while an accelerated finite Fourier transform is the second method. The finite Fourier transform, with Hanning window functions, is by far superior in both computational loading and numerical accuracy. Some thoughts on applications of KAM tori are offered.

  2. Generalized fiber Fourier optics.

    PubMed

    Cincotti, Gabriella

    2011-06-15

    A twofold generalization of the optical schemes that perform the discrete Fourier transform (DFT) is given: new passive planar architectures are presented where the 2 × 2 3 dB couplers are replaced by M × M hybrids, reducing the number of required connections and phase shifters. Furthermore, the planar implementation of the discrete fractional Fourier transform (DFrFT) is also described, with a waveguide grating router (WGR) configuration and a properly modified slab coupler.

  3. Investigating Antibacterial Effects of Garlic (Allium sativum) Concentrate and Garlic-Derived Organosulfur Compounds on Campylobacter jejuni by Using Fourier Transform Infrared Spectroscopy, Raman Spectroscopy, and Electron Microscopy ▿ †

    PubMed Central

    Lu, Xiaonan; Rasco, Barbara A.; Jabal, Jamie M. F.; Aston, D. Eric; Lin, Mengshi; Konkel, Michael E.

    2011-01-01

    Fourier transform infrared (FT-IR) spectroscopy and Raman spectroscopy were used to study the cell injury and inactivation of Campylobacter jejuni from exposure to antioxidants from garlic. C. jejuni was treated with various concentrations of garlic concentrate and garlic-derived organosulfur compounds in growth media and saline at 4, 22, and 35°C. The antimicrobial activities of the diallyl sulfides increased with the number of sulfur atoms (diallyl sulfide < diallyl disulfide < diallyl trisulfide). FT-IR spectroscopy confirmed that organosulfur compounds are responsible for the substantial antimicrobial activity of garlic, much greater than those of garlic phenolic compounds, as indicated by changes in the spectral features of proteins, lipids, and polysaccharides in the bacterial cell membranes. Confocal Raman microscopy (532-nm-gold-particle substrate) and Raman mapping of a single bacterium confirmed the intracellular uptake of sulfur and phenolic components. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to verify cell damage. Principal-component analysis (PCA), discriminant function analysis (DFA), and soft independent modeling of class analogs (SIMCA) were performed, and results were cross validated to differentiate bacteria based upon the degree of cell injury. Partial least-squares regression (PLSR) was employed to quantify and predict actual numbers of healthy and injured bacterial cells remaining following treatment. PLSR-based loading plots were investigated to further verify the changes in the cell membrane of C. jejuni treated with organosulfur compounds. We demonstrated that bacterial injury and inactivation could be accurately investigated by complementary infrared and Raman spectroscopies using a chemical-based, “whole-organism fingerprint” with the aid of chemometrics and electron microscopy. PMID:21642409

  4. QUANTITATIVE FOURIER TRANSFORM INFRARED SPECTROSCOPIC INVESTIGATION OF HUMIC SUBSTANCE FUNCTIONAL GROUP COMPOSITION

    EPA Science Inventory

    Infrared (IR) spectroscopy has been widely used for the structural investigation of humic substances. Although Fourier Transform Infrared (FTIR) instrumentation has been available for sometime, relatively little work with these instruments has been reported for humic substances,...

  5. Fast Fourier Transform Spectral Analysis Program

    NASA Technical Reports Server (NTRS)

    Daniel, J. A., Jr.; Graves, M. L.; Hovey, N. M.

    1969-01-01

    Fast Fourier Transform Spectral Analysis Program is used in frequency spectrum analysis of postflight, space vehicle telemetered trajectory data. This computer program with a digital algorithm can calculate power spectrum rms amplitudes and cross spectrum of sampled parameters at even time increments.

  6. [Research on spatially modulated Fourier transform imaging spectrometer data processing method].

    PubMed

    Huang, Min; Xiangli, Bin; Lü, Qun-Bo; Zhou, Jin-Song; Jing, Juan-Juan; Cui, Yan

    2010-03-01

    Fourier transform imaging spectrometer is a new technic, and has been developed very rapidly in nearly ten years. The data catched by Fourier transform imaging spectrometer is indirect data, can not be used by user, and need to be processed by various approaches, including data pretreatment, apodization, phase correction, FFT, and spectral radicalization calibration. No paper so far has been found roundly to introduce this method. In the present paper, the author will give an effective method to process the interfering data to spectral data, and with this method we can obtain good result.

  7. Deficiencies of the cryptography based on multiple-parameter fractional Fourier transform.

    PubMed

    Ran, Qiwen; Zhang, Haiying; Zhang, Jin; Tan, Liying; Ma, Jing

    2009-06-01

    Methods of image encryption based on fractional Fourier transform have an incipient flaw in security. We show that the schemes have the deficiency that one group of encryption keys has many groups of keys to decrypt the encrypted image correctly for several reasons. In some schemes, many factors result in the deficiencies, such as the encryption scheme based on multiple-parameter fractional Fourier transform [Opt. Lett.33, 581 (2008)]. A modified method is proposed to avoid all the deficiencies. Security and reliability are greatly improved without increasing the complexity of the encryption process. (c) 2009 Optical Society of America.

  8. Biogenic hydroxysulfate green rust, a potential electron acceptor for SRB activity

    NASA Astrophysics Data System (ADS)

    Zegeye, Asfaw; Huguet, Lucie; Abdelmoula, Mustapha; Carteret, Cédric; Mullet, Martine; Jorand, Frédéric

    2007-11-01

    Microbiological reduction of a biogenic sulfated green rust (GR2(SO42-)), was examined using a sulfate reducing bacterium ( Desulfovibrio alaskensis). Experiments investigated whether GR2(SO42-) could serve as a sulfate source for D. alaskensis anaerobic respiration by analyzing mineral transformation. Batch experiments were conducted using lactate as the electron donor and biogenic GR2(SO42-) as the electron acceptor, at circumneutral pH in unbuffered medium. GR2(SO42-) transformation was monitored with time by X-ray diffraction (XRD), Transmission Mössbauer Spectroscopy (TMS), Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). The reduction of sulfate anions and the formation of iron sulfur mineral were clearly identified by XPS analyses. TMS showed the formation of additional mineral as green rust (GR) and vivianite. XRD analyses discriminated the type of the newly formed GR as GR1. The formed GR1 was GR1(CO32-) as indicated by DRIFTS analysis. Thus, the results presented in this study indicate that D. alaskensis cells were able to use GR2(SO42-) as an electron acceptor. GR1(CO32-), vivianite and an iron sulfur compound were formed as a result of GR2(SO42-) reduction by D. alaskensis. Hence, in environments where geochemical conditions promote biogenic GR2(SO42-) formation, this mineral could stimulate the anaerobic respiration of sulfate reducing bacteria.

  9. A 2D Fourier tool for the analysis of photo-elastic effect in large granular assemblies

    NASA Astrophysics Data System (ADS)

    Leśniewska, Danuta

    2017-06-01

    Fourier transforms are the basic tool in constructing different types of image filters, mainly those reducing optical noise. Some DIC or PIV software also uses frequency space to obtain displacement fields from a series of digital images of a deforming body. The paper presents series of 2D Fourier transforms of photo-elastic transmission images, representing large pseudo 2D granular assembly, deforming under varying boundary conditions. The images related to different scales were acquired using the same image resolution, but taken at different distance from the sample. Fourier transforms of images, representing different stages of deformation, reveal characteristic features at the three (`macro-`, `meso-` and `micro-`) scales, which can serve as a data to study internal order-disorder transition within granular materials.

  10. Bessel function expansion to reduce the calculation time and memory usage for cylindrical computer-generated holograms.

    PubMed

    Sando, Yusuke; Barada, Daisuke; Jackin, Boaz Jessie; Yatagai, Toyohiko

    2017-07-10

    This study proposes a method to reduce the calculation time and memory usage required for calculating cylindrical computer-generated holograms. The wavefront on the cylindrical observation surface is represented as a convolution integral in the 3D Fourier domain. The Fourier transformation of the kernel function involving this convolution integral is analytically performed using a Bessel function expansion. The analytical solution can drastically reduce the calculation time and the memory usage without any cost, compared with the numerical method using fast Fourier transform to Fourier transform the kernel function. In this study, we present the analytical derivation, the efficient calculation of Bessel function series, and a numerical simulation. Furthermore, we demonstrate the effectiveness of the analytical solution through comparisons of calculation time and memory usage.

  11. Enhancement of Signal-to-noise Ratio in Natural-source Transient Magnetotelluric Data with Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Paulson, K. V.

    For audio-frequency magnetotelluric surveys where the signals are lightning-stroke transients, the conventional Fourier transform method often fails to produce a high quality impedance tensor. An alternative approach is to use the wavelet transform method which is capable of localizing target information simultaneously in both the temporal and frequency domains. Unlike Fourier analysis that yields an average amplitude and phase, the wavelet transform produces an instantaneous estimate of the amplitude and phase of a signal. In this paper a complex well-localized wavelet, the Morlet wavelet, has been used to transform and analyze audio-frequency magnetotelluric data. With the Morlet wavelet, the magnetotelluric impedance tensor can be computed directly in the wavelet transform domain. The lightning-stroke transients are easily identified on the dilation-translation plane. Choosing those wavelet transform values where the signals are located, a higher signal-to-noise ratio estimation of the impedance tensor can be obtained. In a test using real data, the wavelet transform showed a significant improvement in the signal-to-noise ratio over the conventional Fourier transform.

  12. Fourier transform spectroscopy of cotton and cotton trash

    USDA-ARS?s Scientific Manuscript database

    Fourier Transform techniques have been shown to have higher signal-to-noise capabilities, higher throughput, negligible stray light, continuous spectra, and higher resolution. In addition, FT spectroscopy affords for frequencies in spectra to be measured all at once and more precise wavelength calib...

  13. The Fourier Transform in Chemistry. Part 1. Nuclear Magnetic Resonance: Introduction.

    ERIC Educational Resources Information Center

    King, Roy W.; Williams, Kathryn R.

    1989-01-01

    Using fourier transformation methods in nuclear magnetic resonance has made possible increased sensitivity in chemical analysis. This article describes these methods as they relate to magnetization, the RF magnetic field, nuclear relaxation, the RF pulse, and free induction decay. (CW)

  14. ENVIRONMENTAL ANALYSIS BY AB INITIO QUANTUM MECHANICAL COMPUTATION AND GAS CHROMATOGRAPHY/FOURIER TRANSFORM INFRARED SPECTROMETRY.

    EPA Science Inventory

    Computational chemistry, in conjunction with gas chromatography/mass spectrometry/Fourier transform infrared spectrometry (GC/MS/FT-IR), was used to tentatively identify seven tetrachlorobutadiene (TCBD) isomers detected in an environmental sample. Computation of the TCBD infrare...

  15. A method to perform a fast fourier transform with primitive image transformations.

    PubMed

    Sheridan, Phil

    2007-05-01

    The Fourier transform is one of the most important transformations in image processing. A major component of this influence comes from the ability to implement it efficiently on a digital computer. This paper describes a new methodology to perform a fast Fourier transform (FFT). This methodology emerges from considerations of the natural physical constraints imposed by image capture devices (camera/eye). The novel aspects of the specific FFT method described include: 1) a bit-wise reversal re-grouping operation of the conventional FFT is replaced by the use of lossless image rotation and scaling and 2) the usual arithmetic operations of complex multiplication are replaced with integer addition. The significance of the FFT presented in this paper is introduced by extending a discrete and finite image algebra, named Spiral Honeycomb Image Algebra (SHIA), to a continuous version, named SHIAC.

  16. Efficient transformation of corn stover to furfural using p-hydroxybenzenesulfonic acid-formaldehyde resin solid acid.

    PubMed

    Zhang, Tingwei; Li, Wenzhi; An, Shengxin; Huang, Feng; Li, Xinzhe; Liu, Jingrong; Pei, Gang; Liu, Qiying

    2018-05-24

    In this work, p-hydroxybenzenesulfonic acid-formaldehyde resin acid catalyst (MSPFR), was synthesized by a hydrothermal method, and employed for the furfural production from raw corn stover. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), N 2 adsorption-desorption, elemental analysis (EA), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FT-IR) were used to characterize the MSPFR. The effects of reaction time, temperature, solvents and corn stover loading were investigated. The MSPFR presented high catalytic activity for the formation of furfural from corn stover. When the MSPFR/corn stover mass loading ratio was 0.5, a higher furfural yield of 43.4% could be achieved at 190 °C in 100 min with 30.7% 5-hydroxymethylfurfural (HMF) yield. Additionally, quite importantly, the recyclability of the MSPFR for xylose dehydration is good, and for the conversion of corn stover was reasonable. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Structure in the 3D Galaxy Distribution. III. Fourier Transforming the Universe: Phase and Power Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scargle, Jeffrey D.; Way, M. J.; Gazis, P. R., E-mail: Jeffrey.D.Scargle@nasa.gov, E-mail: Michael.J.Way@nasa.gov, E-mail: PGazis@sbcglobal.net

    We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform of finely binned galaxy positions. In both cases, deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fouriermore » transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multipoint hierarchy. We identify some threads of modern large-scale inference methodology that will presumably yield detections in new wider and deeper surveys.« less

  18. Algebraic signal processing theory: 2-D spatial hexagonal lattice.

    PubMed

    Pünschel, Markus; Rötteler, Martin

    2007-06-01

    We develop the framework for signal processing on a spatial, or undirected, 2-D hexagonal lattice for both an infinite and a finite array of signal samples. This framework includes the proper notions of z-transform, boundary conditions, filtering or convolution, spectrum, frequency response, and Fourier transform. In the finite case, the Fourier transform is called discrete triangle transform. Like the hexagonal lattice, this transform is nonseparable. The derivation of the framework makes it a natural extension of the algebraic signal processing theory that we recently introduced. Namely, we construct the proper signal models, given by polynomial algebras, bottom-up from a suitable definition of hexagonal space shifts using a procedure provided by the algebraic theory. These signal models, in turn, then provide all the basic signal processing concepts. The framework developed in this paper is related to Mersereau's early work on hexagonal lattices in the same way as the discrete cosine and sine transforms are related to the discrete Fourier transform-a fact that will be made rigorous in this paper.

  19. Characterization of the surfaces of platinum/tin oxide based catalysts by Fourier Transform Infrared Spectroscopy (FTIR)

    NASA Technical Reports Server (NTRS)

    Keiser, Joseph T.; Upchurch, Billy T.

    1990-01-01

    A Pt/SnO2 catalyst has been developed at NASA Langley that is effective for the oxidation of CO at room temperature (1). A mechanism has been proposed to explain the effectiveness of this catalyst (2), but most of the species involved in this mechanism have not been observed under actual catalytic conditions. A number of these species are potentially detectable by Fourier Transform Infrared Spectroscopy (FTIR), e.g., HOSnO sub x, HO sub y PtO sub z, Pt-CO, and SnHCO3. Therefore a preliminary investigation was conducted to determine what might be learned about this particular catalyst by transmission FTIR. The main advantage of FTIR for this work is that the catalyst can be examined under conditions similar to the actual catalytic conditions. This can be of critical importance since some surface species may exist only when the reaction gases are present. Another advantage of the infrared approach is that since vibrations are probed, subtle chemical details may be obtained. The main disadvantage of this approach is that FTIR is not nearly as sensitive as the Ultra High Vacuum (UHV) surface analytical techniques such as Auger, Electron Spectroscopy for Chemical Analysis (ESCA), Electron Energy Loss Spectroscopy (EELS), etc. Another problem is that the assignment of the observed infrared bands may be difficult.

  20. VUV Fourier-transform absorption study of the Lyman and Werner bands in D2

    NASA Astrophysics Data System (ADS)

    de Lange, Arno; Dickenson, Gareth D.; Salumbides, Edcel J.; Ubachs, Wim; de Oliveira, Nelson; Joyeux, Denis; Nahon, Laurent

    2012-06-01

    An extensive survey of the D2 absorption spectrum has been performed with the high-resolution VUV Fourier-transform spectrometer employing synchrotron radiation. The frequency range of 90 000-119 000 cm-1 covers the full depth of the potential wells of the B sideset{^1}{+u}{Σ}, B^' } sideset{^1}{+u}{Σ}, and C 1Πu electronic states up to the D(1s) + D(2ℓ) dissociation limit. Improved level energies of rovibrational levels have been determined up to respectively v = 51, v = 13, and v = 20. Highest resolution is achieved by probing absorption in a molecular gas jet with slit geometry, as well as in a liquid helium cooled static gas cell, resulting in line widths of ≈0.35 cm-1. Extended calibration methods are employed to extract line positions of D2 lines at absolute accuracies of 0.03 cm-1. The D 1Πu and B^' ' } sideset{^1}{+u}{Σ} electronic states correlate with the D(1s) + D(3ℓ) dissociation limit, but support a few vibrational levels below the second dissociation limit, respectively, v = 0-3 and v = 0-1, and are also included in the presented study. The complete set of resulting level energies is the most comprehensive and accurate data set for D2. The observations are compared with previous studies, both experimental and theoretical.

  1. Development of a High-Throughput Microwave Imaging System for Concealed Weapons Detection

    DTIC Science & Technology

    2016-07-15

    hardware. Index Terms—Microwave imaging, multistatic radar, Fast Fourier Transform (FFT). I. INTRODUCTION Near-field microwave imaging is a non-ionizing...configuration, but its computational demands are extreme. Fast Fourier Transform (FFT) imaging has long been used to efficiently construct images sampled with...Simulated image of 25 point scatterers imaged at range 1.5m, with array layout depicted in Fig. 3. Left: image formed with Equation (5) ( Fourier

  2. A THz Spectroscopy System Based on Coherent Radiation from Ultrashort Electron Bunches

    NASA Astrophysics Data System (ADS)

    Saisut, J.; Rimjaem, S.; Thongbai, C.

    2018-05-01

    A spectroscopy system will be discussed for coherent THz transition radiation emitted from short electron bunches, which are generated from a system consisting of an RF gun with a thermionic cathode, an alpha-magnet as a magnetic bunch compressor, and a linear accelerator for post-acceleration. The THz radiation is generated as backward transition radiation when electron bunches pass through an aluminum foil. The emitted THz transition radiation, which is coherent at wavelengths equal to and longer than the electron bunch length, is coupled to a Michelson interferometer. The performance of the spectroscopy system employing a Michelson interferometer is discussed. The radiation power spectra under different conditions are presented. As an example, the optical constant of a silicon wafer can be obtained using the dispersive Fourier transform spectroscopy (DFTS) technique.

  3. Biological applications of phase-contrast electron microscopy.

    PubMed

    Nagayama, Kuniaki

    2014-01-01

    Here, I review the principles and applications of phase-contrast electron microscopy using phase plates. First, I develop the principle of phase contrast based on a minimal model of microscopy, introducing a double Fourier-transform process to mathematically formulate the image formation. Next, I explain four phase-contrast (PC) schemes, defocus PC, Zernike PC, Hilbert differential contrast, and schlieren optics, as image-filtering processes in the context of the minimal model, with particular emphases on the Zernike PC and corresponding Zernike phase plates. Finally, I review applications of Zernike PC cryo-electron microscopy to biological systems such as protein molecules, virus particles, and cells, including single-particle analysis to delineate three-dimensional (3D) structures of protein and virus particles and cryo-electron tomography to reconstruct 3D images of complex protein systems and cells.

  4. Influence of Surface Modification on the Microstructure and Thermo-Mechanical Properties of Bamboo Fibers

    PubMed Central

    Zhang, Xiaoping; Wang, Fang; Keer, Leon M.

    2015-01-01

    The objective of this study is to investigate the effect of surface treatment on the morphology and thermo-mechanical properties of bamboo fibers. The fibers are subjected to an alkali treatment using 4 wt % sodium hydroxide (NaOH) for 1 h. Mechanical measurements show that the present concentration has an insignificant effect on the fiber tensile strength. In addition, systematic experimental results characterizing the morphological aspects and thermal properties of the bamboo fibers are analyzed by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. It is found that an alkali treatment may increase the effective surface area, which is in turn available for superior bonding with the matrix. Fourier transform infrared spectroscopy analysis reveals that the alkali treatment leads to a gradual removal of binding materials, such as hemicellulose and lignin from the bamboo fiber. A comparison of the curve of thermogravimetric analysis and differential scanning calorimetry for the treated and untreated samples is presented to demonstrate that the presence of treatment contributes to a better thermal stability for bamboo fibers. PMID:28793585

  5. Effect of ingested tungsten oxide (WOx) nanofibers on digestive gland tissue of Porcellio scaber (Isopoda, Crustacea): fourier transform infrared (FTIR) imaging.

    PubMed

    Novak, Sara; Drobne, Damjana; Vaccari, Lisa; Kiskinova, Maya; Ferraris, Paolo; Birarda, Giovanni; Remškar, Maja; Hočevar, Matej

    2013-10-01

    Tungsten nanofibers are recognized as biologically potent. We study deviations in molecular composition between normal and digestive gland tissue of WOx nanofibers (nano-WOx) fed invertebrate Porcellio scaber (Iosopda, Crustacea) and revealed mechanisms of nano-WOx effect in vivo. Fourier Transform Infrared (FTIR) imaging performed on digestive gland epithelium was supplemented by toxicity and cytotoxicity analyses as well as scanning electron microscopy (SEM) of the surface of the epithelium. The difference in the spectra of the Nano-WOx treated and control cells showed up in the central region of the cells and were related to lipid peroxidation, and structural changes of nucleic acids. The conventional toxicity parameters failed to show toxic effects of nano-WOx, whereas the cytotoxicity biomarkers and SEM investigation of digestive gland epithelium indicated sporadic effects of nanofibers. Since toxicological and cytological measurements did not highlight severe effects, the biochemical alterations evidenced by FTIR imaging have been explained as the result of cell protection (acclimation) mechanisms to unfavorable conditions and indication of a nonhomeostatic state, which can lead to toxic effects.

  6. Imaging the distribution of individual platinum-based anticancer drug molecules attached to single-wall carbon nanotubes

    PubMed Central

    Bhirde, Ashwin A; Sousa, Alioscka A; Patel, Vyomesh; Azari, Afrouz A; Gutkind, J Silvio; Leapman, Richard D; Rusling, James F

    2009-01-01

    Aims To image the distribution of drug molecules attached to single-wall carbon nanotubes (SWNTs). Materials & methods Herein we report the use of scanning transmission electron microscopy (STEM) for atomic scale visualization and quantitation of single platinum-based drug molecules attached to SWNTs designed for targeted drug delivery. Fourier transform infrared spectroscopy and energy-dispersive x-ray spectroscopy were used for characterization of the SWNT drug conjugates. Results Z-contrast STEM imaging enabled visualization of the first-line anticancer drug cisplatin on the nanotubes at single molecule level. The identity and presence of cisplatin on the nanotubes was confirmed using energy-dispersive x-ray spectroscopy and Fourier transform infrared spectroscopy. STEM tomography was also used to provide additional insights concerning the nanotube conjugates. Finally, our observations provide a rationale for exploring the use of SWNT bioconjugates to selectively target and kill squamous cancer cells. Conclusion Z-contrast STEM imaging provides a means for direct visualization of heavy metal containing molecules (i.e., cisplatin) attached to surfaces of carbon SWNTs along with distribution and quantitation. PMID:19839812

  7. Study of Surface Wettability Change of Unconsolidated Sand Using Diffuse Reflectance Infrared Fourier Transform Spectroscopy and Thermogravimetric Analysis.

    PubMed

    Gómora-Herrera, Diana; Navarrete Bolaños, Juan; Lijanova, Irina V; Olivares-Xometl, Octavio; Likhanova, Natalya V

    2018-04-01

    The effects exerted by the adsorption of vapors of a non-polar compound (deuterated benzene) and a polar compound (water) on the surface of Ottawa sand and a sample of reservoir sand (Channel), which was previously impregnated with silicon oil or two kinds of surfactants, (2-hydroxyethyl) trimethylammonium oleate (HETAO) and (2-hydroxyethyl)trimethylammonium azelate (HETAA), were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and thermogravimetric analysis (TGA). The surface chemistry of the sandstone rocks was elucidated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX). Terminal surface groups such as hydroxyls can strongly adsorb molecules that interact with these surface groups (surfactants), resulting in a wettability change. The wettability change effect suffered by the surface after treating it with surfactants was possible to be detected by the DRIFTS technique, wherein it was observed that the surface became more hydrophobic after being treated with silicon oil and HETAO; the surface became more hydrophilic after treating it with HETAA.

  8. Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasudevan, Rama K., E-mail: rvv@ornl.gov; Belianinov, Alex; Baddorf, Arthur P.

    Significant advances in atomically resolved imaging of crystals and surfaces have occurred in the last decade allowing unprecedented insight into local crystal structures and periodicity. Yet, the analysis of the long-range periodicity from the local imaging data, critical to correlation of functional properties and chemistry to the local crystallography, remains a challenge. Here, we introduce a Sliding Fast Fourier Transform (FFT) filter to analyze atomically resolved images of in-situ grown La{sub 5/8}Ca{sub 3/8}MnO{sub 3} (LCMO) films. We demonstrate the ability of sliding FFT algorithm to differentiate two sub-lattices, resulting from a mixed-terminated surface. Principal Component Analysis and Independent Component Analysismore » of the Sliding FFT dataset reveal the distinct changes in crystallography, step edges, and boundaries between the multiple sub-lattices. The implications for the LCMO system are discussed. The method is universal for images with any periodicity, and is especially amenable to atomically resolved probe and electron-microscopy data for rapid identification of the sub-lattices present.« less

  9. The effect of a hot, spherical scattering cloud on quasi-periodic oscillation behavior

    NASA Astrophysics Data System (ADS)

    Bussard, R. W.; Weisskopf, M. C.; Elsner, R. F.; Shibazaki, N.

    1988-04-01

    A Monte Carlo technique is used to investigate the effects of a hot electron scattering cloud surrounding a time-dependent X-ray source. Results are presented for the time-averaged emergent energy spectra and the mean residence time in the cloud as a function of energy. Moreover, after Fourier transforming the scattering Green's function, it is shown how the cloud affects both the observed power spectrum of a time-dependent source and the cross spectrum (Fourier transform of a cross correlation between energy bands). It is found that the power spectra intrinsic to the source are related to those observed by a relatively simple frequency-dependent multiplicative factor (a transmission function). The cloud can severely attenuate high frequencies in the power spectra, depending on optical depth, and, at lower frequencies, the transmission function has roughly a Lorentzian shape. It is also found that if the intrinsic energy spectrum is constant in time, the phase of the cross spectrum is determined entirely by scattering. Finally, the implications of the results for studies of the X-ray quasi-periodic oscillators are discussed.

  10. Incommensurate crystallography without additional dimensions.

    PubMed

    Kocian, Philippe

    2013-07-01

    It is shown that the Euclidean group of translations, when treated as a Lie group, generates translations not only in Euclidean space but on any space, curved or not. Translations are then not necessarily vectors (straight lines); they can be any curve compatible with the parameterization of the considered space. In particular, attention is drawn to the fact that one and only one finite and free module of the Lie algebra of the group of translations can generate both modulated and non-modulated lattices, the modulated character being given only by the parameterization of the space in which the lattice is generated. Moreover, it is shown that the diffraction pattern of a structure is directly linked to the action of that free and finite module. In the Fourier transform of a whole structure, the Fourier transform of the electron density of one unit cell (i.e. the structure factor) appears concretely, whether the structure is modulated or not. Thus, there exists a neat separation: the geometrical aspect on the one hand and the action of the group on the other, without requiring additional dimensions.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zia-ul-Mustafa, M., E-mail: engr.ziamustafa@gmail.com; Ahmad, Faiz; Megat-Yusoff, Puteri S. M.

    In this study, intumescent fire retardant coatings (IFRC) were developed to investigate the synergistic effects of reinforced mica and wollastonite fillers based IFRC towards heat shielding, char expansion, char composition and char morphology. Ammonium poly-phosphate (APP) was used as acid source, expandable graphite (EG) as carbon source, melamine as blowing agent, boric acid as additive and Hardener H-2310 polyamide amine in bisphenol A epoxy resin BE-188(BPA) was used as curing agent. Bunsen burner fire test was used for thermal performance according to UL-94 for 1 h. Field Emission Scanning Electron Microscopy (FESEM) was used to observe char microstructure. X-Ray Diffraction (XRD)more » and Fourier transform infrared spectroscopy (FTIR) were used to analyse char composition. The results showed that addition of clay filler in IFRC enhanced the fire protection performance of intumescent coating. X-Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) results showed the presence of boron phosphate, silicon phosphate oxide, aluminium borate in the char that improved the thermal performance of intumescent fire retardant coating (IFRC). Resultantly, the presence of these developed compounds enhanced the Integrity of structural steel upto 500°C.« less

  12. Formulation of the rotational transformation of wave fields and their application to digital holography.

    PubMed

    Matsushima, Kyoji

    2008-07-01

    Rotational transformation based on coordinate rotation in Fourier space is a useful technique for simulating wave field propagation between nonparallel planes. This technique is characterized by fast computation because the transformation only requires executing a fast Fourier transform twice and a single interpolation. It is proved that the formula of the rotational transformation mathematically satisfies the Helmholtz equation. Moreover, to verify the formulation and its usefulness in wave optics, it is also demonstrated that the transformation makes it possible to reconstruct an image on arbitrarily tilted planes from a wave field captured experimentally by using digital holography.

  13. A Method to Compute the Force Signature of a Body Impacting on a Linear Elastic Structure Using Fourier Analysis

    DTIC Science & Technology

    1982-09-17

    FK * 1PK (2) The convolution of two transforms in time domain is the inverse transform of the product in frequency domain. Thus Rp(s) - Fgc() Ipg(*) (3...its inverse transform by: R,(r)- R,(a.)e’’ do. (5)2w In order to nuke use f a very accurate numerical method to ompute Fourier "ke and coil...taorm. When the inverse transform it tken by using Eq. (15), the cosine transform, because it converges faster than the sine transform refu-ft the

  14. Fourier Transform Emission Spectroscopy of the [7.3] 2Δ- a2Φ and [9.4] 2Φ- a2Φ Systems of ZrCl

    NASA Astrophysics Data System (ADS)

    Ram, R. S.; Bernath, P. F.

    1999-08-01

    The emission spectrum of ZrCl has been observed in the 1800-12 000 cm-1 region using a Fourier transform spectrometer. The molecules were excited in a microwave discharge of a mixture of helium and a trace of ZrCl4 vapor. In addition to the C4Δ-X4Φ transition reported previously, numerous new bands observed in the near infrared have been classified into two electronic transitions, [7.3]2Δ-a2Φ and [9.4]2Φ-a2Φ. Five new bands observed in the 6700-7400 cm-1 region have been assigned as 2Δ3/2-2Φ5/2 and 2Δ5/2-2Φ7/2 subbands of a new electronic transition, [7.3]2Δ-a2Φ. The two subbands of the [9.4]2Φ-a2Φ transition were previously observed by G. Phillips, S. P. Davis, and D. C. Galehouse [Astrophys. J. Suppl. 43, 417-434 (1980)], who tentatively labeled them as 2Π1/2-2Π1/2 and 2Π3/2-2Π3/2 subbands. A number of new bands involving higher vibrational levels have been identified for these two subbands. A rotational analysis of a number of bands of both transitions has been obtained and spectroscopic constants have been determined. Global perturbations have been observed in both spin components of the a2Φ state. The assignment of the observed electronic states has been discussed in light of recent theoretical calculations.

  15. Enabling two-dimensional fourier transform electronic spectroscopy on quantum dots

    NASA Astrophysics Data System (ADS)

    Hill, Robert John, Jr.

    Colloidal semiconductor nanocrystals exhibit unique properties not seen in their bulk counterparts. Quantum confinement of carriers causes a size-tunable bandgap, making them attractive candidates for solar cells. Fundamental understanding of their spectra and carrier dynamics is obscured by inhomogeneous broadening arising from the size distribution. Because quantum dots have long excited state lifetimes and are sensitive to both air and moisture, there are many potential artifacts in femtosecond experiments. Two-dimensional electronic spectroscopy promises insight into the photo-physics, but required key instrumental advances. Optics that can process a broad bandwidth without distortion are required for a two-dimensional optical spectrometer. To control pathlength differences for femtosecond time delays, hollow retro-reflectors are used on actively stabilized delay lines in interferometers. The fabrication of rigid, lightweight, precision hollow rooftop retroreflectors that allow beams to be stacked while preserving polarization is described. The rigidity and low mass enable active stabilization of an interferometer to within 0.6 nm rms displacement, while the return beam deviation is sufficient for Fourier transform spectroscopy with a frequency precision of better than 1 cm -1. Keeping samples oxygen and moisture free while providing fresh sample between laser shots is challenging in an interferometer. A low-vibration spinning sample cell was designed and built to keep samples oxygen free for days while allowing active stabilization of interferometer displacement to ˜1 nm. Combining these technologies has enabled 2D short-wave infrared spectroscopy on colloidal PbSe nanocrystals. 2D spectra demonstrate the advantages of this key instrumentation while providing valuable insight into the low-lying electronic states of colloidal quantum dots.

  16. EVALUATION OF A PORTABLE FOURIER TRANSFORM INFRARED GAS ANALYZER FOR MEASUREMENTS OF AIR TOXICS IN POLLUTION PREVENTION RESEARCH

    EPA Science Inventory

    A portable Fourier transform infrared gas analyzer with a photoacoustic detector performed reliably during pollution prevention research at two industrial facilities. It exhibited good agreement (within approximately 6%) with other analytical instruments (dispersive infrared and ...

  17. PARTICULATE MATTER MEASUREMENTS USING OPEN-PATH FOURIER TRANSFORM INFRARED SPECTROSCOPY

    EPA Science Inventory

    Open-path Fourier transform infrared (OP-FT1R) spectroscopy is an accepted technology for measuring gaseous air contaminants. OP-FT1R absorbance spectra acquired during changing aerosols conditions reveal related changes in very broad baseline features. Usually, this shearing of ...

  18. Gravity data inversion to determine 3D topographycal density contrast of Banten area, Indonesia based on fast Fourier transform

    NASA Astrophysics Data System (ADS)

    Windhari, Ayuty; Handayani, Gunawan

    2015-04-01

    The 3D inversion gravity anomaly to estimate topographical density using a matlab source code from gridded data provided by Parker Oldenburg algorithm based on fast Fourier transform was computed. We extend and improved the source code of 3DINVERT.M invented by Gomez Ortiz and Agarwal (2005) using the relationship between Fourier transform of the gravity anomaly and the sum of the Fourier transform from the topography density. We gave density contrast between the two media to apply the inversion. FFT routine was implemented to construct amplitude spectrum to the given mean depth. The results were presented as new graphics of inverted topography density, the gravity anomaly due to the inverted topography and the difference between the input gravity data and the computed ones. It terminates when the RMS error is lower than pre-assigned value used as convergence criterion or until maximum of iterations is reached. As an example, we used the matlab program on gravity data of Banten region, Indonesia.

  19. Construction of high frame rate images with Fourier transform

    NASA Astrophysics Data System (ADS)

    Peng, Hu; Lu, Jian-Yu

    2002-05-01

    Traditionally, images are constructed with a delay-and-sum method that adjusts the phases of received signals (echoes) scattered from the same point in space so that they are summed in phase. Recently, the relationship between the delay-and-sum method and the Fourier transform is investigated [Jian-yu Lu, Anjun Liu, and Hu Peng, ``High frame rate and delay-and-sum imaging methods,'' IEEE Trans. Ultrason. Ferroelectr. Freq. Control (submitted)]. In this study, a generic Fourier transform method is developed. Two-dimensional (2-D) or three-dimensional (3-D) high frame rate images can be constructed using the Fourier transform with a single transmission of an ultrasound pulse from an array as long as the transmission field of the array is known. To verify our theory, computer simulations have been performed with a linear array, a 2-D array, a convex curved array, and a spherical 2-D array. The simulation results are consistent with our theory. [Work supported in part by Grant 5RO1 HL60301 from NIH.

  20. Wavelength-encoded tomography based on optical temporal Fourier transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chi; Wong, Kenneth K. Y., E-mail: kywong@eee.hku.hk

    We propose and demonstrate a technique called wavelength-encoded tomography (WET) for non-invasive optical cross-sectional imaging, particularly beneficial in biological system. The WET utilizes time-lens to perform the optical Fourier transform, and the time-to-wavelength conversion generates a wavelength-encoded image of optical scattering from internal microstructures, analogous to the interferometery-based imaging such as optical coherence tomography. Optical Fourier transform, in principle, comes with twice as good axial resolution over the electrical Fourier transform, and will greatly simplify the digital signal processing after the data acquisition. As a proof-of-principle demonstration, a 150 -μm (ideally 36 μm) resolution is achieved based on a 7.5-nm bandwidth swept-pump,more » using a conventional optical spectrum analyzer. This approach can potentially achieve up to 100-MHz or even higher frame rate with some proven ultrafast spectrum analyzer. We believe that this technique is innovative towards the next-generation ultrafast optical tomographic imaging application.« less

  1. The limit distribution in the q-CLT for q\\,\\geqslant \\,1 is unique and can not have a compact support

    NASA Astrophysics Data System (ADS)

    Umarov, Sabir; Tsallis, Constantino

    2016-10-01

    In a paper by Umarov et al (2008 Milan J. Math. 76 307-28), a generalization of the Fourier transform, called the q-Fourier transform, was introduced and applied for the proof of a q-generalized central limit theorem (q-CLT). Subsequently, Hilhorst illustrated (2009 Braz. J. Phys. 39 371-9 2010 J. Stat. Mech. P10023) that the q-Fourier transform for q\\gt 1, is not invertible in the space of density functions. Indeed, using an invariance principle, he constructed a family of densities with the same q-Fourier transform and noted that ‘as a consequence, the q-CLT falls short of achieving its stated goal’. The distributions constructed there have compact support. We prove now that the limit distribution in the q-CLT is unique and can not have a compact support. This result excludes all the possible counterexamples which can be constructed using the invariance principle and fills the gap mentioned by Hilhorst.

  2. Application of the fractional Fourier transform to image reconstruction in MRI.

    PubMed

    Parot, Vicente; Sing-Long, Carlos; Lizama, Carlos; Tejos, Cristian; Uribe, Sergio; Irarrazaval, Pablo

    2012-07-01

    The classic paradigm for MRI requires a homogeneous B(0) field in combination with linear encoding gradients. Distortions are produced when the B(0) is not homogeneous, and several postprocessing techniques have been developed to correct them. Field homogeneity is difficult to achieve, particularly for short-bore magnets and higher B(0) fields. Nonlinear magnetic components can also arise from concomitant fields, particularly in low-field imaging, or intentionally used for nonlinear encoding. In any of these situations, the second-order component is key, because it constitutes the first step to approximate higher-order fields. We propose to use the fractional Fourier transform for analyzing and reconstructing the object's magnetization under the presence of quadratic fields. The fractional fourier transform provides a precise theoretical framework for this. We show how it can be used for reconstruction and for gaining a better understanding of the quadratic field-induced distortions, including examples of reconstruction for simulated and in vivo data. The obtained images have improved quality compared with standard Fourier reconstructions. The fractional fourier transform opens a new paradigm for understanding the MR signal generated by an object under a quadratic main field or nonlinear encoding. Copyright © 2011 Wiley Periodicals, Inc.

  3. Doping effect of polyaniline/MWCNT composites on capacitance and cyclic stability of supercapacitors.

    PubMed

    Karthikeyan, G; Sahoo, S; Nayak, G C; Das, C K

    2012-03-01

    Polyaniline doped by Zn2+ ions was synthesized as nanocomposites with multiwalled carbon nanotubes (MWCNT) by in-situ oxidative polymerization and investigated as electrode material for supercapacitors. The uniform coating of polyaniline on MWCNT was characterized by field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). The effect of Zn2+ ions on nanocomposites were characterized by Fourier transform infrared (FTIR) spectroscopy. The electrochemical performances were investigated by cyclic voltammetry (CV), constant current charging/discharging cyclic test (CC) and electrochemical impedance spectroscopy (EIS) using a three-electrode system. The doped polyaniline composites show higher specific capacitance and better cyclic stability.

  4. Colloidal silver nanoparticles/rhamnolipid (SNPRL) composite as novel chemotactic antibacterial agent.

    PubMed

    Bharali, P; Saikia, J P; Paul, S; Konwar, B K

    2013-10-01

    The antibacterial activity of silver nanoparticles and rhamnolipid are well known individually. In the present research, antibacterial and chemotactic activity due to colloidal silver nanoparticles (SNP), rhamnolipid (RL) and silver nanoparticles/rhamnolipid composite (SNPRL) were evaluated using Staphylococcus aureus (MTCC3160), Escherichia coli (MTCC40), Pseudomonas aeruginosa (MTCC8163) and Bacillus subtilis (MTCC441) as test strains. Further, the SNPRL nanoparticles were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). The observation clearly indicates that SNPRL shows prominent antibacterial and chemotactic activity in comparison to all of its individual precursor components. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Fabrication of frequency selective surface for band stop IR-filter

    NASA Astrophysics Data System (ADS)

    Mishra, Akshita; Sudheer, Tiwari, P.; Mondal, P.; Bhatt, H.; Rai, V. N.; Srivastava, A. K.

    2016-05-01

    Fabrication and characterization of frequency selective surfaces (FSS) on silicon dioxide/ silicon is reported. Electron beam lithography based techniques are used for the fabrication of periodic slot structure in tungsten layer on silicon dioxide/silicon. The fabrication process consists of growth of SiO2 on silicon, tungsten deposition, electron beam lithography, and wet etching of tungsten. The optical characterization of the structural pattern was carried out using fourier transform infrared spectroscopy (FTIR). The reflectance spectra clearly show a resonance peak at 9.09 µm in the mid infrared region. This indicates that the patterned surface acts as band stop filter in the mid-infrared region.

  6. Optical properties of hydrothermally synthesized TGA-capped CdS nanoparticles: controlling crystalline size and phase

    NASA Astrophysics Data System (ADS)

    Tavakoli Banizi, Zoha; Seifi, Majid

    2017-10-01

    TGA-capped CdS nanoparticles were obtained in the presence of thioglycolic acid (TGA) as capping agent via a facile hydrothermal method at relatively low temperature and over a short duration. As-synthesized TGA-capped CdS nanoparticles were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, photoluminescence spectroscopy, Ultraviolet-visible spectroscopy and energy-dispersive x-ray spectroscopy. The products had spherical shapes, although their crystalline size and phase was dependent on temperature and time of the reaction. Photoluminescence spectra showed that the fluorescence intensity decreased when increasing the reaction time and temperature.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gantayat, S., E-mail: subhra-gantayat@rediffmail.com; Rout, D.; Swain, S. K.

    The effect of the functionalization of multiwalled carbon nanotube on the structure and electrical properties of composites was investigated. Samples based on epoxy resin with different weight percentage of MWCNTs were prepared and characterized. The interaction between MWCNT & epoxy resin was noticed by Fourier transform infrared spectroscopy (FTIR). The structure of functionalized multiwalled carbon nanotube (f-MWCNT) reinforced epoxy composite was studied by field emission scanning electron microscope (FESEM). The dispersion of f-MWCNT in epoxy resin was evidenced by high resolution transmission electron microscope (HRTEM). Electrical properties of epoxy/f-MWCNT nanocomposites were measured & the result indicated that the conductivity increasedmore » with increasing concentration of f-MWCNTs.« less

  8. Synthesis of functional carbon nanospheres by a composite-molten-salt method and amperometric sensing of hydrogen peroxide.

    PubMed

    Wang, Xue; Hu, Chenguo; Xiong, Yufeng; Zhang, Cuiling

    2013-02-01

    Functional carbon nanospheres have been synthesized from analytically pure glucose by a composite-molten-salt (CMS) method. Field emission scanning electron microscopy, transmission electron microscopy, Raman and Fourier transformation infra-red spectroscopy indicate the carbon nanospheres are solid, bond hybridisation (sp2/sp3) and with many functional groups on their surfaces. Amperometric sensor based on the synthesized carbon nanospheres have been fabricated without pretreatment or modification. The detection of hydrogen peroxide exhibits high sensitivity and good selectivity. The electrochemical measurement of these nanospheres demonstrates much superior performance to those of the carbon nanospheres synthesized by hydrothermal method.

  9. Zone plate method for electronic holographic display using resolution redistribution technique.

    PubMed

    Takaki, Yasuhiro; Nakamura, Junya

    2011-07-18

    The resolution redistribution (RR) technique can increase the horizontal viewing-zone angle and screen size of electronic holographic display. The present study developed a zone plate method that would reduce hologram calculation time for the RR technique. This method enables calculation of an image displayed on a spatial light modulator by performing additions of the zone plates, while the previous calculation method required performing the Fourier transform twice. The derivation and modeling of the zone plate are shown. In addition, the look-up table approach was introduced for further reduction in computation time. Experimental verification using a holographic display module based on the RR technique is presented.

  10. Direct Evidence for Delocalization of Charge Carriers at the Fermi Level in a Doped Conducting Polymer

    NASA Astrophysics Data System (ADS)

    Zhuo, Jing-Mei; Zhao, Li-Hong; Chia, Perq-Jon; Sim, Wee-Sun; Friend, Richard H.; Ho, Peter K. H.

    2008-05-01

    The infrared absorption spectrum of the polaron charges at the Fermi level EF in a heavily p-doped conducting poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) film has been measured using interferogram-modulated Fourier-transform charge-modulation spectroscopy. The spectrum indicates softer phonons and weaker electron-phonon coupling riding on a strongly redshifted Drude-like electronic transition, different from the population-averaged “bulk” spectrum. This provides direct evidence that the EF holes are sufficiently delocalized even in such disordered materials to reside in an energy continuum (band states) while the rest of the hole population resides in self-localized gap states.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janeoo, Shashi; Sharma, Mamta, E-mail: mamta.phy85@gmail.com; Goswamy, J.

    Polyaniline-indium oxide (In{sub 2}O{sub 3}/PANI) nanocomposite have been prepared by in-situ polymerization of aniline and as-synthesized In{sub 2}O{sub 3} nanoparticles. X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier transformation infrared (FTIR) and UV/Vis spectroscopy techniques are used to investigate the structural and optical properties of In{sub 2}O{sub 3}/PANI nanocomposite. TEM analysis shows In{sub 2}O{sub 3} nanoparticles are embedded in PANI nanofibers. FTIR spectra show the good interactions between PANI nanofibers and In{sub 2}O{sub 3} nanoparticles. The band gap and electronic transitions in In{sub 2}O{sub 3}/PANI nanocomposite is determined by using UV/Vis spectra.

  12. Application of fast Fourier transforms to the direct solution of a class of two-dimensional separable elliptic equations on the sphere

    NASA Technical Reports Server (NTRS)

    Moorthi, Shrinivas; Higgins, R. W.

    1993-01-01

    An efficient, direct, second-order solver for the discrete solution of a class of two-dimensional separable elliptic equations on the sphere (which generally arise in implicit and semi-implicit atmospheric models) is presented. The method involves a Fourier transformation in longitude and a direct solution of the resulting coupled second-order finite-difference equations in latitude. The solver is made efficient by vectorizing over longitudinal wave-number and by using a vectorized fast Fourier transform routine. It is evaluated using a prescribed solution method and compared with a multigrid solver and the standard direct solver from FISHPAK.

  13. Eliminating the zero spectrum in Fourier transform profilometry using empirical mode decomposition.

    PubMed

    Li, Sikun; Su, Xianyu; Chen, Wenjing; Xiang, Liqun

    2009-05-01

    Empirical mode decomposition is introduced into Fourier transform profilometry to extract the zero spectrum included in the deformed fringe pattern without the need for capturing two fringe patterns with pi phase difference. The fringe pattern is subsequently demodulated using a standard Fourier transform profilometry algorithm. With this method, the deformed fringe pattern is adaptively decomposed into a finite number of intrinsic mode functions that vary from high frequency to low frequency by means of an algorithm referred to as a sifting process. Then the zero spectrum is separated from the high-frequency components effectively. Experiments validate the feasibility of this method.

  14. Angular acceptance analysis of an infrared focal plane array with a built-in stationary Fourier transform spectrometer.

    PubMed

    Gillard, Frédéric; Ferrec, Yann; Guérineau, Nicolas; Rommeluère, Sylvain; Taboury, Jean; Chavel, Pierre

    2012-06-01

    Stationary Fourier transform spectrometry is an interesting concept for building reliable field or embedded spectroradiometers, especially for the mid- and far- IR. Here, a very compact configuration of a cryogenic stationary Fourier transform IR (FTIR) spectrometer is investigated, where the interferometer is directly integrated in the focal plane array (FPA). We present a theoretical analysis to explain and describe the fringe formation inside the FTIR-FPA structure when illuminated by an extended source positioned at a finite distance from the detection plane. The results are then exploited to propose a simple front lens design compatible with a handheld package.

  15. Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (4).

    PubMed

    Murase, Kenya

    2016-01-01

    Partial differential equations are often used in the field of medical physics. In this (final) issue, the methods for solving the partial differential equations were introduced, which include separation of variables, integral transform (Fourier and Fourier-sine transforms), Green's function, and series expansion methods. Some examples were also introduced, in which the integral transform and Green's function methods were applied to solving Pennes' bioheat transfer equation and the Fourier series expansion method was applied to Navier-Stokes equation for analyzing the wall shear stress in blood vessels.Finally, the author hopes that this series will be helpful for people who engage in medical physics.

  16. Direct generation of abruptly focusing vortex beams using a 3/2 radial phase-only pattern.

    PubMed

    Davis, Jeffrey A; Cottrell, Don M; Zinn, Jonathan M

    2013-03-20

    Abruptly focusing Airy beams have previously been generated using a radial cubic phase pattern that represents the Fourier transform of the Airy beam. The Fourier transform of this pattern is formed using a system length of 2f, where f is the focal length of the Fourier transform lens. In this work, we directly generate these abruptly focusing Airy beams using a 3/2 radial phase pattern encoded onto a liquid crystal display. The resulting optical system is much shorter. In addition, we can easily produce vortex patterns at the focal point of these beams. Experimental results match theoretical predictions.

  17. Crystalline structures, thermal properties and crystallizing mechanism of polyamide 6 nanotubes in confined space

    NASA Astrophysics Data System (ADS)

    Li, Xiaoru; Peng, Zhi; Yang, Chao; Han, Ping; Song, Guojun; Cong, Longliang

    2016-09-01

    The polyamide 6 (PA6) nanotubes were prepared by infiltrating the anodic aluminum oxide templates with polymer solution. Crystalline regions in the nanotube walls were detected by high-resolution transmission electron microscopy (HRTEM). X-ray diffraction (XRD), Fast Fourier Transform (FFT) and differential scanning calorimetry (DSC) techniques were employed to investigate crystallization, crystal faces and thermodynamics. It was found that the crystals were transformed from α-form in bulk to γ-form in nanotubes. It was made a detailed analysis in this article. Moreover, schematic diagram for the crystallizing mechanism of PA6 nanotubes was given to explain PA6 molecules how to crystallize in the nano-pores.

  18. Electron paramagnetic resonance and FT-IR spectroscopic studies of glycine anhydride and betaine hydrochloride

    NASA Astrophysics Data System (ADS)

    Halim Başkan, M.; Kartal, Zeki; Aydın, Murat

    2015-12-01

    Gamma irradiated powders of glycine anhydride and betaine hydrochloride have been investigated at room temperature by electron paramagnetic resonance (EPR). In these compounds, the observed paramagnetic species were attributed to the R1 and R2 radicals, respectively. It was determined that the free electron interacted with environmental protons and 14N nucleus in both radicals. The EPR spectra of gamma irradiated powder samples remained unchanged at room temperature for two weeks after irradiation. Also, the Fourier Transform Infrared (FT-IR), FT-Raman and thermal analyses of both compounds were investigated. The functional groups in the molecular structures of glycine anhydride and betaine hydrochloride were identified by vibrational spectroscopies (FT-IR and FT-Raman).

  19. A Graphene-Based Terahertz Hot Electron Bolometer with Johnson Noise Readout

    NASA Astrophysics Data System (ADS)

    Miao, W.; Gao, H.; Wang, Z.; Zhang, W.; Ren, Y.; Zhou, K. M.; Shi, S. C.; Yu, C.; He, Z. Z.; Liu, Q. B.; Feng, Z. H.

    2018-05-01

    In this paper, we present the development of a graphene-based hot electron bolometer with Johnson noise readout. The bolometer is a graphene microbridge connected to a log spiral antenna by Au contact pads. The Fourier transform spectrometer measurement shows the bolometer has high coupling efficiency in the frequency range from 0.3 to 1.6 THz. Using 300/77 K blackbody loads, we measure an optical noise equivalent power of 5.6 × 10-12 W/Hz0.5 at 3.0 K. To understand the thermal transport inside the graphene microbridge, we measure the bolometers with different microbridge lengths at different bath temperatures. We find that the thermal conductance due to electron diffusion is significant in the bolometers.

  20. Surface modification of boron nitride nanosheets by polyelectrolytes via atom transfer radical polymerization

    NASA Astrophysics Data System (ADS)

    Wu, Yuanpeng; Guo, Meiling; Liu, Guanfei; Xue, Shishan; Xia, Yuanmeng; Liu, Dan; Lei, Weiwei

    2018-04-01

    In this study, the surface modification of boron nitride nanosheets (BNNSs) with poly 2-acrylamido-2-methyl- propanesulfonate (PAMPS) brushes is achieved through electron transfer atom transfer radical polymerization (ARGET ATRP). BNNSs surface was first modified with α-bromoisobutyryl bromide (BIBB) via hydroxyl groups, then PAMPS brushes were grown on the surface through ARGET ATRP. Polyelectrolyte brushes modified BNNSs were further characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analyses (TGA), x-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The concentraction of water-dispersion of BNNSs have been enhanced significantly by PAMPS and the high water-dispersible functional BNNSs/PAMPS composites are expected to have potential applications in biomedical and thermal management in electronics.

  1. Determination of Structural Parameters from EXAFS (Extended X-Ray Absorption Fine Structure): Application to Solutions and Catalysts.

    DTIC Science & Technology

    1984-05-23

    the disorder was accurately known. Inverse Transform To isolate the EAFS contribution due to a single feature in the Fourier transform, the inverse ...is associated with setting the "fold" components to 27 zero in r-space. An inverse transform (real part) of the major feature of the Fig. 4 Fourier...phase of the resulting inverse transform represents only any differences between the material being studied and the reference. This residual is

  2. Preparation of high performance NBR/HNTs nanocomposites using an electron transferring interaction method

    NASA Astrophysics Data System (ADS)

    Yang, Shuyan; Zhou, Yanxue; Zhang, Peng; Cai, Zhuodi; Li, Yangping; Fan, Hongbo

    2017-12-01

    Interfacial interaction is one of the key factors to improve comprehensive properties of polymer/inorganic filler nanocomposites. In this work, a new interfacial interaction called electron transferring interaction is reported in the nitrile-butadiene rubber/halloysite nanotubes (NBR/HNTs) nanocomposites. The X-ray photoelectron spectroscopy (XPS) and in-situ controlling temperature Fourier transform infrared spectroscopy (FTIR) have confirmed that electrons of electron-rich -CN groups in NBR can transfer to the electron-deficiency aluminum atoms of HNTs, which packs a part of NBR molecules onto the surface of HNTs to form bound rubber and stabilize the homogeneous dispersion of HNTs with few agglomeration as revealed by scanning electron microscope (SEM) and dynamic mechanical analysis (DMA) performances, even at high HNTs addition, resulting in high light transmittance. The tensile strength of NBR/30wt%HNTs nanocomposites is about 291% higher than pure NBR, without sacrificing the elongation at break.

  3. 8 MeV electron beam induced modifications in the thermal, structural and electrical properties of nanophase CeO2 for potential electronics applications

    NASA Astrophysics Data System (ADS)

    Babitha, K. K.; Sreedevi, A.; Priyanka, K. P.; Ganesh, S.; Varghese, Thomas

    2018-06-01

    The effect of 8 MeV electron beam irradiation on the thermal, structural and electrical properties of CeO2 nanoparticles synthesized by chemical precipitation route was investigated. The dose dependent effect of electron irradiation was studied using various characterization techniques such as, thermogravimetric and differential thermal analyses, X-ray diffraction, Fourier transformed infrared spectroscopy and impedance spectroscopy. Systematic investigation based on the results of structural studies confirm that electron beam irradiation induces defects and particle size variation on CeO2 nanoparticles, which in turn results improvements in AC conductivity, dielectric constant and loss tangent. Structural modifications and high value of dielectric constant for CeO2 nanoparticles due to electron beam irradiation make it as a promising material for the fabrication of gate dielectric in metal oxide semiconductor devices.

  4. Fourier-transform imaging of cotton and botanical and field trash mixtures

    USDA-ARS?s Scientific Manuscript database

    Botanical and field cotton trash comingled with cotton lint can greatly reduce the marketability and quality of cotton. Trash can be found comingled with cotton lint during harvesting, ginning, and processing, thus this study is of interest. Attenuated Total Reflectance-Fourier Transform Infrared (A...

  5. Detection and classification of salmonella serotypes using spectral signatures collected by fourier transform infrared (FT-IR) spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Spectral signatures of Salmonella serotypes namely Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky were collected using Fourier transform infrared spectroscopy (FT-IR). About 5-10 µL of Salmonella suspensions with concentrations of 1...

  6. Identification and characterization of salmonella serotypes using DNA spectral characteristics by fourier transform infrared (FT-IR) spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Analysis of DNA samples of Salmonella serotypes (Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky) were performed using Fourier transform infrared spectroscopy (FT-IR) spectrometer by placing directly in contact with a diamond attenua...

  7. Is Fourier analysis performed by the visual system or by the visual investigator.

    PubMed

    Ochs, A L

    1979-01-01

    A numerical Fourier transform was made of the pincushion grid illusion and the spectral components orthogonal to the illusory lines were isolated. Their inverse transform creates a picture of the illusion. The spatial-frequency response of cortical, simple receptive field neurons similarly filters the grid. A complete set of these neurons thus approximates a two-dimensional Fourier analyzer. One cannot conclude, however, that the brain actually uses frequency-domain information to interpret visual images.

  8. Scaled nonuniform Fourier transform for image reconstruction in swept source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Mezgebo, Biniyam; Nagib, Karim; Fernando, Namal; Kordi, Behzad; Sherif, Sherif

    2018-02-01

    Swept Source optical coherence tomography (SS-OCT) is an important imaging modality for both medical and industrial diagnostic applications. A cross-sectional SS-OCT image is obtained by applying an inverse discrete Fourier transform (DFT) to axial interferograms measured in the frequency domain (k-space). This inverse DFT is typically implemented as a fast Fourier transform (FFT) that requires the data samples to be equidistant in k-space. As the frequency of light produced by a typical wavelength-swept laser is nonlinear in time, the recorded interferogram samples will not be uniformly spaced in k-space. Many image reconstruction methods have been proposed to overcome this problem. Most such methods rely on oversampling the measured interferogram then use either hardware, e.g., Mach-Zhender interferometer as a frequency clock module, or software, e.g., interpolation in k-space, to obtain equally spaced samples that are suitable for the FFT. To overcome the problem of nonuniform sampling in k-space without any need for interferogram oversampling, an earlier method demonstrated the use of the nonuniform discrete Fourier transform (NDFT) for image reconstruction in SS-OCT. In this paper, we present a more accurate method for SS-OCT image reconstruction from nonuniform samples in k-space using a scaled nonuniform Fourier transform. The result is demonstrated using SS-OCT images of Axolotl salamander eggs.

  9. Spatially-Heterodyned Holography

    DOEpatents

    Thomas, Clarence E [Knoxville, TN; Hanson, Gregory R [Clinton, TN

    2006-02-21

    A method of recording a spatially low-frequency heterodyne hologram, including spatially heterodyne fringes for Fourier analysis, includes: splitting a laser beam into a reference beam and an object beam; interacting the object beam with an object; focusing the reference beam and the object beam at a focal plane of a digital recorder to form a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digital recording the spatially low-frequency heterodyne hologram; Fourier transforming axes of the recorded spatially low-frequency heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined by an angle between the reference beam and the object beam; cutting off signals around an origin; and performing an inverse Fourier transform.

  10. Feature Extraction for Bearing Prognostics and Health Management (PHM) - A Survey (Preprint)

    DTIC Science & Technology

    2008-05-01

    Envelope analysis • Cepstrum analysis • Higher order spectrum • Short-time Fourier Transform (STFT) • Wigner - Ville distribution ( WVD ) • Empirical mode...techniques are the short-time Fourier transform (STFT), the Wigner - Ville distribution , and the wavelet transform. In this paper we categorize wavelets...diagnosis have shown in many publications, for example, [22]. b) Wigner – Ville distribution : The afore-mentioned STFT is conceptually simple. However

  11. Limitations and potential of spectral subtractions in fourier-transform infrared (FTIR) spectroscopy of soil samples

    USDA-ARS?s Scientific Manuscript database

    Soil science research is increasingly applying Fourier transform infrared (FTIR) spectroscopy for analysis of soil organic matter (SOM). However, the compositional complexity of soils and the dominance of the mineral component can limit spectroscopic resolution of SOM and other minor components. The...

  12. Detection of starch adulteration in onion powder by FT-NIR and FT-IR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Adulteration of onion powder with cornstarch was identified by Fourier transform near-infrared (FT-NIR) and Fourier transform infrared (FT-IR) spectroscopy. The reflectance spectra of 180 pure and adulterated samples (1–35 wt% starch) were collected and preprocessed to generate calibration and predi...

  13. Coordinate axes, location of origin, and redundancy for the one and two-dimensional discrete Fourier transform

    NASA Technical Reports Server (NTRS)

    Ioup, G. E.; Ioup, J. W.

    1985-01-01

    Appendix 4 of the Study of One- and Two-Dimensional Filtering and Deconvolution Algorithms for a Streaming Array Computer discusses coordinate axes, location of origin, and redundancy for the one- and two-dimensional Fourier transform for complex and real data.

  14. 3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography

    Treesearch

    Michael C. Martin; Charlotte Dabat-Blondeau; Miriam Unger; Julia Sedlmair; Dilworth Y. Parkinson; Hans A. Bechtel; Barbara Illman; Jonathan M. Castro; Marco Keiluweit; David Buschke; Brenda Ogle; Michael J. Nasse; Carol J. Hirschmugl

    2013-01-01

    We report Fourier transform infrared spectro-microtomography, a nondestructive three-dimensional imaging approach that reveals the distribution of distinctive chemical compositions throughout an intact biological or materials sample. The method combines mid-infrared absorption contrast with computed tomographic data acquisition and reconstruction to enhance chemical...

  15. Chemometric Analysis of Multicomponent Biodegradable Plastics by Fourier Transform Infrared Spectrometry: The R-Matrix Method

    USDA-ARS?s Scientific Manuscript database

    A new chemometric method based on absorbance ratios from Fourier transform infrared spectra was devised to analyze multicomponent biodegradable plastics. The method uses the BeerLambert law to directly compute individual component concentrations and weight losses before and after biodegradation of c...

  16. Applications of Fourier transform infrared spectroscopy to quality control of the epoxy matrix

    NASA Technical Reports Server (NTRS)

    Antoon, M. K.; Starkey, K. M.; Koenig, J. L.

    1979-01-01

    The object of the paper is to demonstrate the utility of Fourier transform infrared (FT-IR) difference spectra for investigating the composition of a neat epoxy resin, hardener, and catalysts. The composition and degree of cross-linking of the cured matrix is also considered.

  17. The Kinetics of Mo(Co)6 Substitution Monitored by Fourier Transform Infrared Spectrophotometry.

    ERIC Educational Resources Information Center

    Suslick, Kenneth S.; And Others

    1987-01-01

    Describes a physical chemistry experiment that uses Fourier transform (FTIR) spectrometers and microcomputers as a way of introducing students to the spectral storage and manipulation techniques associated with digitized data. It can be used to illustrate FTIR spectroscopy, simple kinetics, inorganic mechanisms, and Beer's Law. (TW)

  18. A statistical evaluation of spectral fingerprinting methods using analysis of variance and principal component analysis

    USDA-ARS?s Scientific Manuscript database

    Six methods were compared with respect to spectral fingerprinting of a well-characterized series of broccoli samples. Spectral fingerprints were acquired for finely-powdered solid samples using Fourier transform-infrared (IR) and Fourier transform-near infrared (NIR) spectrometry and for aqueous met...

  19. Machine Learning-Aided, Robust Wideband Spectrum Sensing for Cognitive Radios

    DTIC Science & Technology

    2015-06-12

    to even Approved for public release; distribution is unlimited. 2 on the order of a giga -Hertz (GHz). Due to wide bandwidth and noncontiguous...Frequency Band CS Compressive Sampling DFT Discrete Fourier Transform EMI Electro Magnetic Interference FFT Fast Fourier Transform GHz Giga Hertz Hz Hertz

  20. Synthesis and characterization of some metal oxide nanocrystals by microwave irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashad, M.; Gaber, A.; Abdelrahim, M. A.

    2013-12-16

    Copper oxide and cobalt oxide (CuO, Co3O4) nanocrystals (NCs) have been successfully prepared in a short time using microwave irradiation. The resulted powders of nanocrystals (NCs) were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Thermogravimetric analysis (TGA) measurements are also studied. Fourier-transform infrared (FT-IR) and UV–visible absorption spectroscopy of both kind of nanoparticels are illustrated. Optical absorption analysis indicated the direct band gap for both kinds of nanocrystals.

  1. Sol-gel synthesis and characterization of SiO{sub 2}/PEG hybrid materials containing quercetin as implants with antioxidant properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catauro, Michelina; Bollino, Flavia; Gloria, Antonio

    2016-05-18

    In the present work, Silica/Polyethylene glycol (PEG) hybrid nanocomposites containing an antioxidant agent, the quercetin, were synthesized via sol-gel to be used as implants with antioxidant properties. Fourier transform infrared (FT-IR) analysis proved that a modification of both polymer and quercetin occurs due to synthesis process. Scanning electron microscope (SEM) showed that the proposed materials were hybrid nanocomposites. The bioactivity was ascertained by soaking the samples in a simulated body fluid (SBF).

  2. Hazard detection and avoidance sensor for NASA's planetary landers

    NASA Technical Reports Server (NTRS)

    Lau, Brian; Chao, Tien-Hsin

    1992-01-01

    An optical terrain analysis based sensor system specifically designed for landing hazard detection as required for NASA's autonomous planetary landers is introduced. This optical hazard detection and avoidance (HDA) sensor utilizes an optoelectronic wedge-and-ting (WRD) filter for Fourier transformed feature extraction and an electronic neural network processor for pattern classification. A fully implemented optical HDA sensor would assure safe landing of the planetary landers. Computer simulation results of a successful feasibility study is reported. Future research for hardware system implementation is also provided.

  3. Transient Gratings, Four-Wave Mixing and Polariton Effects in Nonlinear Optics

    DTIC Science & Technology

    1991-06-01

    w, are. under some very general conditions, equal to the Fourier transform of the TG signal 1361. The possibility of exciton localization l37-3...which is tile analogue of the Anderson electron localization , could also be probed ideally by the grating technique 1401. In this review we develop a...often handled using, at mean-tield t heor ilie local -tield approximation) I 7). -lI. Our -,encral formialism reduce,, to these commnon procedureN xxci he

  4. Characterization of graphene oxide produced by Hummers method and its supercapacitor applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akgül, Ö., E-mail: omeraakgul@gmail.com; Tanrıverdi, A., E-mail: aa.kudret@hotmail.com; Alver, Ü., E-mail: ualver@ktu.edu.tr

    2016-03-25

    In this study, Graphene Oxide (GO) is produced using Hummers method. The produced GO were investigated by x-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), UV-Vis spectrum, Raman spectroscopy and scanning electron microscopy (SEM). GO films on Ni foam were prepared by doctor-blading technique. The electrochemical performances of the as-synthesized GO electrode was evaluated using cyclic voltammetry (CV) in 6 M KOH aqueous solution. Capacitances of GO electrode was measured as 0.76 F/g.

  5. Surface molecular imprinting onto fluorescein-coated magnetic nanoparticlesvia reversible addition fragmentation chain transfer polymerization: A facile three-in-one system for recognition and separation of endocrine disrupting chemicals

    NASA Astrophysics Data System (ADS)

    Li, Ying; Dong, Cunku; Chu, Jia; Qi, Jingyao; Li, Xin

    2011-01-01

    In this study, we present a general protocol for the making of surface-imprinted magnetic fluorescence beads viareversible addition-fragmentation chain transfer polymerization. The resulting composites were characterized by X-ray diffraction analysis, transmission electron microscopy, scanning electron microscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, and energy dispersive spectroscopy. The as-synthesized beads exhibited homogeneous polymer films (thickness of about 5.7 nm), spherical shape, high fluorescence intensity and magnetic property (Magnetization (Ms) = 3.67 emu g-1). The hybrids bind the original template 17β-estradiol with an appreciable selectivity over structurally related compounds. In addition, the resulting hybrids performed without obvious deterioration after five repeated cycles. This study therefore demonstrates the potential of molecularly imprinted polymers for the recognition and separation of endocrine disrupting chemicals.In this study, we present a general protocol for the making of surface-imprinted magnetic fluorescence beads viareversible addition-fragmentation chain transfer polymerization. The resulting composites were characterized by X-ray diffraction analysis, transmission electron microscopy, scanning electron microscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, and energy dispersive spectroscopy. The as-synthesized beads exhibited homogeneous polymer films (thickness of about 5.7 nm), spherical shape, high fluorescence intensity and magnetic property (Magnetization (Ms) = 3.67 emu g-1). The hybrids bind the original template 17β-estradiol with an appreciable selectivity over structurally related compounds. In addition, the resulting hybrids performed without obvious deterioration after five repeated cycles. This study therefore demonstrates the potential of molecularly imprinted polymers for the recognition and separation of endocrine disrupting chemicals. Electronic supplementary information (ESI) available: Supplementary figure S1. The hysteresis loop of Fe3O4 (a), Fe3O4@SiO2 (b), and Fe3O4@SiO2-Dye-SiO2 (c). See DOI: 10.1039/c0nr00614a

  6. The Effect of Substrate Emissivity on the Spectral Emission of a Hot-Gas Overlayer

    DTIC Science & Technology

    2015-12-30

    unlimited. Unclassified Unlimited Unclassified Unlimited Unclassified Unlimited Unclassified Unlimited 19 Harold D. Ladouceur (202) 767-3558 Fourier ...13 REFERENCES………………………………………………………………………………….………..14 E-1 EXECUTIVE SUMMARY Fourier transform infrared...Raman spectroscopy, ambient x-ray photoelectron spectroscopy, near- infrared thermal imaging, and Fourier transform infrared emission spectroscopy

  7. Products of multiple Fourier series with application to the multiblade transformation

    NASA Technical Reports Server (NTRS)

    Kunz, D. L.

    1981-01-01

    A relatively simple and systematic method for forming the products of multiple Fourier series using tensor like operations is demonstrated. This symbolic multiplication can be performed for any arbitrary number of series, and the coefficients of a set of linear differential equations with periodic coefficients from a rotating coordinate system to a nonrotating system is also demonstrated. It is shown that using Fourier operations to perform this transformation make it easily understood, simple to apply, and generally applicable.

  8. Diffraction Theory and Almost Periodic Distributions

    NASA Astrophysics Data System (ADS)

    Strungaru, Nicolae; Terauds, Venta

    2016-09-01

    We introduce and study the notions of translation bounded tempered distributions, and autocorrelation for a tempered distribution. We further introduce the spaces of weakly, strongly and null weakly almost periodic tempered distributions and show that for weakly almost periodic tempered distributions the Eberlein decomposition holds. For translation bounded measures all these notions coincide with the classical ones. We show that tempered distributions with measure Fourier transform are weakly almost periodic and that for this class, the Eberlein decomposition is exactly the Fourier dual of the Lebesgue decomposition, with the Fourier-Bohr coefficients specifying the pure point part of the Fourier transform. We complete the project by looking at few interesting examples.

  9. Transient binding of CO to Cu(B) in cytochrome c oxidase is dynamically linked to structural changes around a carboxyl group: a time-resolved step-scan Fourier transform infrared investigation.

    PubMed Central

    Heitbrink, Dirk; Sigurdson, Håkan; Bolwien, Carsten; Brzezinski, Peter; Heberle, Joachim

    2002-01-01

    The redox-driven proton pump cytochrome c oxidase is that enzymatic machinery of the respiratory chain that transfers electrons from cytochrome c to molecular oxygen and thereby splits molecular oxygen to form water. To investigate the reaction mechanism of cytochrome c oxidase on the single vibrational level, we used time-resolved step-scan Fourier transform infrared spectroscopy and studied the dynamics of the reduced enzyme after photodissociation of bound carbon monoxide across the mid-infrared range (2300-950 cm(-1)). Difference spectra of the bovine complex were obtained at -20 degrees C with 5 micros time resolution. The data demonstrate a dynamic link between the transient binding of CO to Cu(B) and changes in hydrogen bonding at the functionally important residue E(I-286). Variation of the pH revealed that the pK(a) of E(I-286) is >9.3 in the fully reduced CO-bound oxidase. Difference spectra of cytochrome c oxidase from beef heart are compared with those of the oxidase isolated from Rhodobacter sphaeroides. The bacterial enzyme does not show the environmental change in the vicinity of E(I-286) upon CO dissociation. The characteristic band shape appears, however, in redox-induced difference spectra of the bacterial enzyme but is absent in redox-induced difference spectra of mammalian enzyme. In conclusion, it is demonstrated that the dynamics of a large protein complex such as cytochrome c oxidase can be resolved on the single vibrational level with microsecond Fourier transform infrared spectroscopy. The applied methodology provides the basis for future investigations of the physiological reaction steps of this important enzyme. PMID:11751290

  10. MRS3D: 3D Spherical Wavelet Transform on the Sphere

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2011-12-01

    Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. We present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We tested the 3D wavelet transform and as a toy-application, applied a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and found we can successfully remove noise without much loss to the large scale structure. The new spherical 3D isotropic wavelet transform, called MRS3D, is ideally suited to analysing and denoising future 3D spherical cosmological surveys; it uses a novel discrete spherical Fourier-Bessel Transform. MRS3D is based on two packages, IDL and Healpix and can be used only if these two packages have been installed.

  11. Wavelet based detection of manatee vocalizations

    NASA Astrophysics Data System (ADS)

    Gur, Berke M.; Niezrecki, Christopher

    2005-04-01

    The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of watercraft collisions in Florida's coastal waterways. Several boater warning systems, based upon manatee vocalizations, have been proposed to reduce the number of collisions. Three detection methods based on the Fourier transform (threshold, harmonic content and autocorrelation methods) were previously suggested and tested. In the last decade, the wavelet transform has emerged as an alternative to the Fourier transform and has been successfully applied in various fields of science and engineering including the acoustic detection of dolphin vocalizations. As of yet, no prior research has been conducted in analyzing manatee vocalizations using the wavelet transform. Within this study, the wavelet transform is used as an alternative to the Fourier transform in detecting manatee vocalizations. The wavelet coefficients are analyzed and tested against a specified criterion to determine the existence of a manatee call. The performance of the method presented is tested on the same data previously used in the prior studies, and the results are compared. Preliminary results indicate that using the wavelet transform as a signal processing technique to detect manatee vocalizations shows great promise.

  12. The Use of Continuous Wavelet Transform Based on the Fast Fourier Transform in the Analysis of Multi-channel Electrogastrography Recordings.

    PubMed

    Komorowski, Dariusz; Pietraszek, Stanislaw

    2016-01-01

    This paper presents the analysis of multi-channel electrogastrographic (EGG) signals using the continuous wavelet transform based on the fast Fourier transform (CWTFT). The EGG analysis was based on the determination of the several signal parameters such as dominant frequency (DF), dominant power (DP) and index of normogastria (NI). The use of continuous wavelet transform (CWT) allows for better visible localization of the frequency components in the analyzed signals, than commonly used short-time Fourier transform (STFT). Such an analysis is possible by means of a variable width window, which corresponds to the scale time of observation (analysis). Wavelet analysis allows using long time windows when we need more precise low-frequency information, and shorter when we need high frequency information. Since the classic CWT transform requires considerable computing power and time, especially while applying it to the analysis of long signals, the authors used the CWT analysis based on the fast Fourier transform (FFT). The CWT was obtained using properties of the circular convolution to improve the speed of calculation. This method allows to obtain results for relatively long records of EGG in a fairly short time, much faster than using the classical methods based on running spectrum analysis (RSA). In this study authors indicate the possibility of a parametric analysis of EGG signals using continuous wavelet transform which is the completely new solution. The results obtained with the described method are shown in the example of an analysis of four-channel EGG recordings, performed for a non-caloric meal.

  13. Analytical properties of time-of-flight PET data.

    PubMed

    Cho, Sanghee; Ahn, Sangtae; Li, Quanzheng; Leahy, Richard M

    2008-06-07

    We investigate the analytical properties of time-of-flight (TOF) positron emission tomography (PET) sinograms, where the data are modeled as line integrals weighted by a spatially invariant TOF kernel. First, we investigate the Fourier transform properties of 2D TOF data and extend the 'bow-tie' property of the 2D Radon transform to the time-of-flight case. Second, we describe a new exact Fourier rebinning method, TOF-FOREX, based on the Fourier transform in the time-of-flight variable. We then combine TOF-FOREX rebinning with a direct extension of the projection slice theorem to TOF data, to perform fast 3D TOF PET image reconstruction. Finally, we illustrate these properties using simulated data.

  14. Analytical properties of time-of-flight PET data

    NASA Astrophysics Data System (ADS)

    Cho, Sanghee; Ahn, Sangtae; Li, Quanzheng; Leahy, Richard M.

    2008-06-01

    We investigate the analytical properties of time-of-flight (TOF) positron emission tomography (PET) sinograms, where the data are modeled as line integrals weighted by a spatially invariant TOF kernel. First, we investigate the Fourier transform properties of 2D TOF data and extend the 'bow-tie' property of the 2D Radon transform to the time-of-flight case. Second, we describe a new exact Fourier rebinning method, TOF-FOREX, based on the Fourier transform in the time-of-flight variable. We then combine TOF-FOREX rebinning with a direct extension of the projection slice theorem to TOF data, to perform fast 3D TOF PET image reconstruction. Finally, we illustrate these properties using simulated data.

  15. Improving Spectral Results Using Row-by-Row Fourier Transform of Spatial Heterodyne Raman Spectrometer Interferogram.

    PubMed

    Barnett, Patrick D; Strange, K Alicia; Angel, S Michael

    2017-06-01

    This work describes a method of applying the Fourier transform to the two-dimensional Fizeau fringe patterns generated by the spatial heterodyne Raman spectrometer (SHRS), a dispersive interferometer, to correct the effects of certain types of optical alignment errors. In the SHRS, certain types of optical misalignments result in wavelength-dependent and wavelength-independent rotations of the fringe pattern on the detector. We describe here a simple correction technique that can be used in post-processing, by applying the Fourier transform in a row-by-row manner. This allows the user to be more forgiving of fringe alignment and allows for a reduction in the mechanical complexity of the SHRS.

  16. The investigation of the bio-oil produced by hydrothermal liquefaction of Spirulina platensis using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Kostyukevich, Yury; Vlaskin, Mikhail; Vladimirov, Gleb; Zherebker, Alexander; Kononikhin, Alexey; Popov, Igor; Nikolaev, Eugene

    2017-04-01

    We report the investigation of the hydrothermal liquefaction products of the Spirulina platensis microalgae by using the Fourier transform ion cyclotron resonance mass spectrometry. The hydrothermal liquefaction produced two fractions: one with boiling temperature below 300℃ and the dense residue that remained in the reactor. It was observed that N 2 and N classes of compounds that dominate in the positive ESI Fourier transform ion cyclotron resonance spectra for both fractions, and that the light fraction is considerably more saturated then the heavy one. The performed hydrogen/deuterium exchange reaction indicated the presence of the onium compounds in the bio-oil.

  17. The application of digital signal processing techniques to a teleoperator radar system

    NASA Technical Reports Server (NTRS)

    Pujol, A.

    1982-01-01

    A digital signal processing system was studied for the determination of the spectral frequency distribution of echo signals from a teleoperator radar system. The system consisted of a sample and hold circuit, an analog to digital converter, a digital filter, and a Fast Fourier Transform. The system is interfaced to a 16 bit microprocessor. The microprocessor is programmed to control the complete digital signal processing. The digital filtering and Fast Fourier Transform functions are implemented by a S2815 digital filter/utility peripheral chip and a S2814A Fast Fourier Transform chip. The S2815 initially simulates a low-pass Butterworth filter with later expansion to complete filter circuit (bandpass and highpass) synthesizing.

  18. Color image cryptosystem using Fresnel diffraction and phase modulation in an expanded fractional Fourier transform domain

    NASA Astrophysics Data System (ADS)

    Chen, Hang; Liu, Zhengjun; Chen, Qi; Blondel, Walter; Varis, Pierre

    2018-05-01

    In this letter, what we believe is a new technique for optical color image encryption by using Fresnel diffraction and a phase modulation in an extended fractional Fourier transform domain is proposed. Different from the RGB component separation based method, the color image is converted into one component by improved Chirikov mapping. The encryption system is addressed with Fresnel diffraction and phase modulation. A pair of lenses is placed into the fractional Fourier transform system for the modulation of beam propagation. The structure parameters of the optical system and parameters in Chirikov mapping serve as extra keys. Some numerical simulations are given to test the validity of the proposed cryptosystem.

  19. Metasurface Enabled Wide-Angle Fourier Lens.

    PubMed

    Liu, Wenwei; Li, Zhancheng; Cheng, Hua; Tang, Chengchun; Li, Junjie; Zhang, Shuang; Chen, Shuqi; Tian, Jianguo

    2018-06-01

    Fourier optics, the principle of using Fourier transformation to understand the functionalities of optical elements, lies at the heart of modern optics, and it has been widely applied to optical information processing, imaging, holography, etc. While a simple thin lens is capable of resolving Fourier components of an arbitrary optical wavefront, its operation is limited to near normal light incidence, i.e., the paraxial approximation, which puts a severe constraint on the resolvable Fourier domain. As a result, high-order Fourier components are lost, resulting in extinction of high-resolution information of an image. Other high numerical aperture Fourier lenses usually suffer from the bulky size and costly designs. Here, a dielectric metasurface consisting of high-aspect-ratio silicon waveguide array is demonstrated experimentally, which is capable of performing 1D Fourier transform for a large incident angle range and a broad operating bandwidth. Thus, the device significantly expands the operational Fourier space, benefitting from the large numerical aperture and negligible angular dispersion at large incident angles. The Fourier metasurface will not only facilitate efficient manipulation of spatial spectrum of free-space optical wavefront, but also be readily integrated into micro-optical platforms due to its compact size. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Ultra-Wideband Radar Transient Detection using Time-Frequency and Wavelet Transforms.

    DTIC Science & Technology

    1992-12-01

    if p==2, mesh(flipud(abs(spdatamatrix).A2)) end 2. Wigner - Ville Distribution function P = wvd (data,winlenstep,begintheendp) % Filename: wvd.m % Title...short time Fourier transform (STFT), the Instantaneous Power Spectrum and the Wigner - Ville distribution , and time-scale methods, such as the a trous...such as the short time Fourier transform (STFT), the Instantaneous Power Spectrum and the Wigner - Ville distribution [1], and time-scale methods, such

  1. SAR image formation with azimuth interpolation after azimuth transform

    DOEpatents

    Doerry,; Armin W. , Martin; Grant D. , Holzrichter; Michael, W [Albuquerque, NM

    2008-07-08

    Two-dimensional SAR data can be processed into a rectangular grid format by subjecting the SAR data to a Fourier transform operation, and thereafter to a corresponding interpolation operation. Because the interpolation operation follows the Fourier transform operation, the interpolation operation can be simplified, and the effect of interpolation errors can be diminished. This provides for the possibility of both reducing the re-grid processing time, and improving the image quality.

  2. Delineation of First-Order Elastic Property Closures for Hexagonal Metals Using Fast Fourier Transforms

    PubMed Central

    Landry, Nicholas W.; Knezevic, Marko

    2015-01-01

    Property closures are envelopes representing the complete set of theoretically feasible macroscopic property combinations for a given material system. In this paper, we present a computational procedure based on fast Fourier transforms (FFTs) for delineation of elastic property closures for hexagonal close packed (HCP) metals. The procedure consists of building a database of non-zero Fourier transforms for each component of the elastic stiffness tensor, calculating the Fourier transforms of orientation distribution functions (ODFs), and calculating the ODF-to-elastic property bounds in the Fourier space. In earlier studies, HCP closures were computed using the generalized spherical harmonics (GSH) representation and an assumption of orthotropic sample symmetry; here, the FFT approach allowed us to successfully calculate the closures for a range of HCP metals without invoking any sample symmetry assumption. The methodology presented here facilitates for the first time computation of property closures involving normal-shear coupling stiffness coefficients. We found that the representation of these property linkages using FFTs need more terms compared to GSH representations. However, the use of FFT representations reduces the computational time involved in producing the property closures due to the use of fast FFT algorithms. Moreover, FFT algorithms are readily available as opposed to GSH codes. PMID:28793566

  3. Accurate determination of the diffusion coefficient of proteins by Fourier analysis with whole column imaging detection.

    PubMed

    Zarabadi, Atefeh S; Pawliszyn, Janusz

    2015-02-17

    Analysis in the frequency domain is considered a powerful tool to elicit precise information from spectroscopic signals. In this study, the Fourier transformation technique is employed to determine the diffusion coefficient (D) of a number of proteins in the frequency domain. Analytical approaches are investigated for determination of D from both experimental and data treatment viewpoints. The diffusion process is modeled to calculate diffusion coefficients based on the Fourier transformation solution to Fick's law equation, and its results are compared to time domain results. The simulations characterize optimum spatial and temporal conditions and demonstrate the noise tolerance of the method. The proposed model is validated by its application for the electropherograms from the diffusion path of a set of proteins. Real-time dynamic scanning is conducted to monitor dispersion by employing whole column imaging detection technology in combination with capillary isoelectric focusing (CIEF) and the imaging plug flow (iPF) experiment. These experimental techniques provide different peak shapes, which are utilized to demonstrate the Fourier transformation ability in extracting diffusion coefficients out of irregular shape signals. Experimental results confirmed that the Fourier transformation procedure substantially enhanced the accuracy of the determined values compared to those obtained in the time domain.

  4. Optical joint transform correlation on the DMD. [deformable mirror device

    NASA Technical Reports Server (NTRS)

    Knopp, Jerome; Juday, Richard D.

    1989-01-01

    Initial experimental investigation of the deformable mirror device (DMD) in a joint optical transform correlation is reported. The inverted cloverleaf version of the DMD, in which form the DMD is phase-mostly but of limited phase range, is used. Binarized joint Fourier transforms were calculated for similar and dissimilar objects and written onto the DMD. Inverse Fourier transform was done in a diffraction order for which the DMD shows phase-mostly modulation. Matched test objects produced sharp correlation, distinct objects did not. Further studies are warranted and they are outlined.

  5. Innovative design method of automobile profile based on Fourier descriptor

    NASA Astrophysics Data System (ADS)

    Gao, Shuyong; Fu, Chaoxing; Xia, Fan; Shen, Wei

    2017-10-01

    Aiming at the innovation of the contours of automobile side, this paper presents an innovative design method of vehicle side profile based on Fourier descriptor. The design flow of this design method is: pre-processing, coordinate extraction, standardization, discrete Fourier transform, simplified Fourier descriptor, exchange descriptor innovation, inverse Fourier transform to get the outline of innovative design. Innovative concepts of the innovative methods of gene exchange among species and the innovative methods of gene exchange among different species are presented, and the contours of the innovative design are obtained separately. A three-dimensional model of a car is obtained by referring to the profile curve which is obtained by exchanging xenogeneic genes. The feasibility of the method proposed in this paper is verified by various aspects.

  6. Fourier transform wavefront control with adaptive prediction of the atmosphere.

    PubMed

    Poyneer, Lisa A; Macintosh, Bruce A; Véran, Jean-Pierre

    2007-09-01

    Predictive Fourier control is a temporal power spectral density-based adaptive method for adaptive optics that predicts the atmosphere under the assumption of frozen flow. The predictive controller is based on Kalman filtering and a Fourier decomposition of atmospheric turbulence using the Fourier transform reconstructor. It provides a stable way to compensate for arbitrary numbers of atmospheric layers. For each Fourier mode, efficient and accurate algorithms estimate the necessary atmospheric parameters from closed-loop telemetry and determine the predictive filter, adjusting as conditions change. This prediction improves atmospheric rejection, leading to significant improvements in system performance. For a 48x48 actuator system operating at 2 kHz, five-layer prediction for all modes is achievable in under 2x10(9) floating-point operations/s.

  7. PLANE-INTEGRATED OPEN-PATH FOURIER TRANSFORM INFRARED SPECTROMETRY METHODOLOGY FOR ANAEROBIC SWINE LAGOON EMISSION MEASUREMENTS

    EPA Science Inventory

    Emissions of ammonia and methane from an anaerobic lagoon at a swine animal feeding operation were evaluated five times over a period of two years. The plane-integrated (PI) open-path Fourier transform infrared spectrometry (OP-FTIR) methodology was used to transect the plume at ...

  8. Turbulence excited frequency domain damping measurement and truncation effects

    NASA Technical Reports Server (NTRS)

    Soovere, J.

    1976-01-01

    Existing frequency domain modal frequency and damping analysis methods are discussed. The effects of truncation in the Laplace and Fourier transform data analysis methods are described. Methods for eliminating truncation errors from measured damping are presented. Implications of truncation effects in fast Fourier transform analysis are discussed. Limited comparison with test data is presented.

  9. Comparison and validation of Fourier transform infrared spectroscopic methods for monitoring secondary cell wall cellulose from cotton fibers

    USDA-ARS?s Scientific Manuscript database

    The amount of secondary cell wall (SCW) cellulose in the fiber affects the quality and commercial value of cotton. Accurate assessments of SCW cellulose are essential for improving cotton fibers. Fourier Transform Infrared (FT-IR) spectroscopy enables distinguishing SCW from other cell wall componen...

  10. CHARACTERIZATION OF AMBIENT PM2.5 AEROSOL AT A SOUTHEASTERN US SITE: FOURIER TRANSFORM INFRARED ANALYSIS OR PARTICLE PHASE

    EPA Science Inventory

    During a field study in the summer of 2000 in the Research Triangle Park (RTP), aerosol samples were collected using a five stage cascade impactor and subsequently analyzed using Fourier Transform Infrared Spectroscopy (FTIR). The impaction surfaces were stainless steel disks....

  11. Abel inversion using fast Fourier transforms.

    PubMed

    Kalal, M; Nugent, K A

    1988-05-15

    A fast Fourier transform based Abel inversion technique is proposed. The method is faster than previously used techniques, potentially very accurate (even for a relatively small number of points), and capable of handling large data sets. The technique is discussed in the context of its use with 2-D digital interferogram analysis algorithms. Several examples are given.

  12. Topics in Chemical Instrumentation: Fourier Transform-Infrared Spectroscopy: Part I. Instrumentation.

    ERIC Educational Resources Information Center

    Perkins, W. D.

    1986-01-01

    Discusses: (1) the design of the Fourier Transform-Infrared Spectroscopy (FT-IR) spectrometer; (2) the computation of the spectrum from the interferogram; and (3) the use of apodization. (Part II will discuss advantages of FT-IR over dispersive techniques and show applications of FT-IR to difficult spectroscopic measurements.) (JN)

  13. Diffuse-reflectance fourier-transform mid-infrared spectroscopy as a method of characterizing changes in soil organic matter

    USDA-ARS?s Scientific Manuscript database

    Diffuse-Reflectance Fourier-Transform Mid-Infrared Spectroscopy (MidIR) can identify the presence of important organic functional groups in soil organic matter (SOM). Soils contain myriad organic and inorganic components that absorb in the MidIR so spectral interpretation needs to be validated in or...

  14. Secondary cell wall development in cotton fibers as examined with attenuated total reflection Fourier transform infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy. The selected harvesting points coincide with secondary cell wall (SCW) development in the fibers. Progressive but moderat...

  15. Development of secondary cell wall in cotton fibers as examined with Fourier transform-infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Our presentation will focus on continuing efforts to examine secondary cell wall development in cotton fibers using infrared Spectroscopy. Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-...

  16. INFFTM: Fast evaluation of 3d Fourier series in MATLAB with an application to quantum vortex reconnections

    NASA Astrophysics Data System (ADS)

    Caliari, Marco; Zuccher, Simone

    2017-04-01

    Although Fourier series approximation is ubiquitous in computational physics owing to the Fast Fourier Transform (FFT) algorithm, efficient techniques for the fast evaluation of a three-dimensional truncated Fourier series at a set of arbitrary points are quite rare, especially in MATLAB language. Here we employ the Nonequispaced Fast Fourier Transform (NFFT, by J. Keiner, S. Kunis, and D. Potts), a C library designed for this purpose, and provide a Matlab® and GNU Octave interface that makes NFFT easily available to the Numerical Analysis community. We test the effectiveness of our package in the framework of quantum vortex reconnections, where pseudospectral Fourier methods are commonly used and local high resolution is required in the post-processing stage. We show that the efficient evaluation of a truncated Fourier series at arbitrary points provides excellent results at a computational cost much smaller than carrying out a numerical simulation of the problem on a sufficiently fine regular grid that can reproduce comparable details of the reconnecting vortices.

  17. Vibrational spectroscopy and DFT calculations of flavonoid derriobtusone A

    NASA Astrophysics Data System (ADS)

    Marques, A. N. L.; Mendes Filho, J.; Freire, P. T. C.; Santos, H. S.; Albuquerque, M. R. J. R.; Bandeira, P. N.; Leite, R. V.; Braz-Filho, R.; Gusmão, G. O. M.; Nogueira, C. E. S.; Teixeira, A. M. R.

    2017-02-01

    Flavonoids are secondary metabolites of plants which perform various functions. One subclass of flavonoid is auronol that can present immunostimulating activity. In this work Fourier-Transform Infrared with Attenuated Total Reflectance (FTIR-ATR) and Fourier-Transform Raman (FT-Raman) spectra of an auronol, derriobtusone A (C18H12O4), were obtained at room temperature. Theoretical calculations using Density Functional Theory (DFT) were performed in order to assign the normal modes and to interpret the spectra of the derriobtusone A molecule. The FTIR-ATR and FT-Raman spectra of the crystal, were recorded at room temperature in the regions 600 cm-1 to 4000 cm-1 and 40 cm-1 to 4000 cm-1, respectively. The normal modes of vibrations were obtained using Density Functional Theory with B3LYP functional and 6-31G+ (d,p) basis set. The calculated frequencies are in good agreement with those obtained experimentally. Detailed assignments of the normal modes present in both the Fourier-Transform infrared and the Fourier-Transform Raman spectra of the crystal are given.

  18. An alternative path to the boundary: The CFT as the Fourier space of AdS

    NASA Astrophysics Data System (ADS)

    Tolfree, Ian M.

    2009-12-01

    In this thesis we shed new light on the conjectured duality between an n + 1 dimensional theory of gravity in anti de Sitter space (AdS) and an n dimensional conformal field theory (CFT) by showing that the CFT can be interpreted as the Fourier space of AdS. We then make use of this to gain insight into the nature of black hole entropy. In the first part of this thesis, we give an introduction to the ideas of and review the basics of the AdS/CFT. In the next section we make use of well known integral geometry techniques to derive the Fourier transformation of a function on AdS and see it is a function with compact support on the boundary. Comparing this to the literature, we find that the Green's functions from the literature are actually the Fourier weights of the transformation and that the boundary values of fields appearing in the correspondence are the Fourier coefficients of the transformation. One is thus left to interpret the CFT as the quantized version of a classical theory in AdS and the dual operator as the Fourier coefficients. Group theoretic considerations are discussed in relation to the transformation and its potential use in constructing QCD like theories. In the last section, we then build upon this to study the BTZ black hole. Named after its authors, Banados, Teitelboim and Zanelli, the BTZ black hole is a three dimensional (two space plus one time dimension) black hole in anti de Sitter space. Following standard procedures for modifying Fourier Transformations to accommodate quotient spaces we arrive at a mapping in a black hole background consistent with known results that yields the exact micro-states of a scalar field in a black hole background. We find that the micro-states are the Fourier coefficients on the boundary, which transform under the principal series representation of SL(2, R). Using the knowledge of how to represent a bulk scalar field in the CFT, and knowing how a black hole interacts with a scalar field, we deduce the possible representations of a black hole in the CFT. We find that the black hole micro-states live on the boundary, not on the horizon, and correspond to the possible emission modes of the black hole.

  19. A technique for phase correction in Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Artsang, P.; Pongchalee, P.; Palawong, K.; Buisset, C.; Meemon, P.

    2018-03-01

    Fourier transform spectroscopy (FTS) is a type of spectroscopy that can be used to analyze components in the sample. The basic setup that is commonly used in this technique is "Michelson interferometer". The interference signal obtained from interferometer can be Fourier transformed into the spectral pattern of the illuminating light source. To experimentally study the concept of the Fourier transform spectroscopy, the project started by setup the Michelson interferometer in the laboratory. The implemented system used a broadband light source in near infrared region (0.81-0.89 μm) and controlled the movable mirror by using computer controlled motorized translation stage. In the early study, there is no sample the interference path. Therefore, the theoretical spectral results after the Fourier transformation of the captured interferogram must be the spectral shape of the light source. One main challenge of the FTS is to retrieve the correct phase information of the inferferogram that relates with the correct spectral shape of the light source. One main source of the phase distortion in FTS that we observed from our system is the non-linear movement of the movable reference mirror of the Michelson interferometer. Therefore, to improve the result, we coupled a monochromatic light source to the implemented interferometer. We simultaneously measured the interferograms of the monochromatic and broadband light sources. The interferogram of the monochromatic light source was used to correct the phase of the interferogram of the broadband light source. The result shows significant improvement in the computed spectral shape.

  20. Three-dimensional Fourier transform evaluation of sequences of spatially and temporally modulated speckle interferograms.

    PubMed

    Trillo, C; Doval, A F; López-Vázquez, J C

    2010-07-05

    Phase evaluation methods based on the 2D spatial Fourier transform of a speckle interferogram with spatial carrier usually assume that the Fourier spectrum of the interferogram has a trimodal distribution, i. e. that the side lobes corresponding to the interferential terms do not overlap the other two spectral terms, which are related to the intensity of the object and reference beams, respectively. Otherwise, part of the spectrum of the object beam is inside the inverse-transform window of the selected interference lobe and induces an error in the resultant phase map. We present a technique for the acquisition and processing of speckle interferogram sequences that separates the interference lobes from the other spectral terms when the aforementioned assumption does not apply and regardless of the temporal bandwidth of the phase signal. It requires the recording of a sequence of interferograms with spatial and temporal carriers, and their processing with a 3D Fourier transform. In the resultant 3D spectrum, the spatial and temporal carriers separate the conjugate interferential terms from each other and from the term related to the object beam. Experimental corroboration is provided through the measurement of the amplitude of surface acoustic waves in plates with a double-pulsed TV holography setup. The results obtained with the proposed method are compared to those obtained with the processing of individual interferograms with the regular spatial-carrier 2D Fourier transform method.

  1. Investigations of the functional states of dendritic cells under different conditioned microenvironments by Fourier transformed infrared spectroscopy.

    PubMed

    Dong, Rong; Long, Jinhua; Xu, Xiaoli; Zhang, Chunlin; Wen, Zongyao; Li, Long; Yao, Weijuan; Zeng, Zhu

    2014-01-10

    Dendritic cells are potent and specialized antigen presenting cells, which play a crucial role in initiating and amplifying both the innate and adaptive immune responses. The dendritic cell-based vaccination against cancer has been clinically achieved promising successes. But there are still many challenges in its clinical application, especially for how to identify the functional states. The CD14+ monocytes were isolated from human peripheral blood after plastic adherence and purified to approximately 98% with cocktail immunomagnetic beads. The immature dendritic cells and mature dendritic cells were induced by traditional protocols. The resulting dendritic cells were cocultured with normal cells and cancer cells. The functional state of dendritic cells including immature dendritic cells (imDCs) and mature dendritic cells (mDCs) under different conditioned microenvironments were investigated by Fourier transformed infrared spectroscopy (FTIR) and molecular biological methods. The results of Fourier transformed infrared spectroscopy showed that the gene transcription activity and energy states of dendritic cells were specifically suppressed by tumor cells (P < 0.05 or 0.01). The expression levels of NF-kappa B (NF-κB) in dendritic cells were also specifically inhibited by tumor-derived factors (P < 0.05 or 0.01). Moreover, the ratios of absorption intensities of Fourier transformed infrared spectroscopy at given wave numbers were closely correlated with the expression levels of NF-κB (R2:0.69 and R2:0.81, respectively). Our results confirmed that the ratios of absorption intensities of Fourier transformed infrared spectroscopy at given wave numbers were positively correlated with the expression levels of NF-κB, suggesting that Fourier transformed infrared spectroscopy technology could be clinically applied to identify the functional states of dendritic cell when performing dendritic cell-based vaccination. It's significant for the simplification and standardization of dendritic cell-based vaccination clinical preparation protocols.

  2. Theory of Wavelet-Based Coarse-Graining Hierarchies for Molecular Dynamics

    DTIC Science & Technology

    2017-04-01

    resolution. ............................................... 15 Fig. 6 Fourier transform of the y-component of 1,000 atoms in crystalline PE (100,800 atoms...of magnitude of optimal representation. . 16 Fig. 7 Top row: Fourier transform of the y-component of a 100,800 atom crystalline PE sampled at 1 fs. 3... transform of the z-component of alanine dipeptide in vacuum excluding zero frequency to allow detail at other frequencies. MD at 500 K and 1 atm. Left

  3. Quantum mechanical study and spectroscopic (FT-IR, FT-Raman, UV-Visible) study, potential energy surface scan, Fukui function analysis and HOMO-LUMO analysis of 3-tert-butyl-4-methoxyphenol by DFT methods.

    PubMed

    Saravanan, S; Balachandran, V

    2014-09-15

    This study represents an integral approach towards understanding the electronic and structural aspects of 3-tert-butyl-4-methoxyphenol (TBMP). Fourier-transform Infrared (FT-IR) and Fourier-transform Raman (FT-Raman) spectra of TBMP was recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The molecular structures, vibrational wavenumbers, infrared intensities and Raman activities were calculated using DFT (B3LYP and LSDA) methods using 6-311++G (d,p) basis set. The most stable conformer of TBMP was identified from the computational results. The assignments of vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the scaled quantum mechanical force field (SQMFF) methodology. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of TBMP have been discussed. The stability and charge delocalization of the molecule was studied by Natural Bond Orbital (NBO) analysis. UV-Visible spectrum and effects of solvents have been discussed and the electronic properties such as HOMO and LUMO energies were determined by time-dependent TD-DFT approach with B3LYP/6-311++G (d,p) level of theory. The molecule orbital contributions are studied by density of energy states (DOSs). The reactivity sites are identified by mapping the electron density into electrostatic potential surface (MEP). Mulliken analysis of atomic charges is also calculated. The thermodynamic properties at different temperatures were calculated, revealing the correlations between standard heat capacities, standard entropy and standard enthalpy changes with temperatures. Global hardness, global softness, global electrophilicity and ionization potential of the title compound are determined. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. [Biomimetic nanohydroxyapatite/gelatin composite material preparation and in vitro study].

    PubMed

    Li, Siriguleng; Hu, Xiaowen

    2014-09-01

    To prepare nHA/gelatin porous scaffold and to evaluate its physical and chemical properties and biocompatibility. We used nano-powders of HA and gelatin to prepare 3D porous composite scaffold by freeze-drying technique, and used scanning electron microscope, fourier transform infrared spectroscopy and universal testing machine to characterize the composite material. Osteoblasts were primarily cultured, and the third-passage osteoblasts were co-cultured with the composite material. The cell adhesion and morphology were examined under scanning electron microscope. The cell viability analysis was performed by MTT assay, and the alkaline phosphatase activity was measured with alkaline phosphatase kit. Scanning electron microscope showed that the scaffold possessed a 3-dimensional interconnected homogenous porous structure with pore sizes ranging from 150 to 400 μm. Fourier transform infrared spectroscopy showed that the composite material had a strong chemical bond between the inorganic phase and organic phase. The scaffold presented the compressive strength of (3.28 ± 0.51) MPa and porosities of (80.6 ± 4.1)%. Composite materials showed features of had good biocompatibility. Mouse osteoblasts were well adhered and spread on the materials. The grade of the cell toxicity ranged from I to II. On the 5th and 7th day the proliferative rate of osteoblasts on scaffolds in the composite materials was significantly higher than that in the control group. The activity of alkaline phosphatase was obviously higher than that in the control group on Day 1 and 3. Nano-hydroxyapatite and gelatin in certain proportions and under certain conditions can be prepared into a composite biomimetic porous scaffolds with high porosity and three-dimensional structure using freeze-drying method. The scaffold shows good biocompatibility with mouse osteoblasts and may be a novel scaffolds for bone tissue engineering.

  5. The effect of mutations on the structure of insulin fibrils studied by Fourier transform infrared (FTIR) spectroscopy and electron microscopy.

    PubMed

    Garriques, Liza Nielsen; Frokjaer, Sven; Carpenter, John F; Brange, Jens

    2002-12-01

    Fibril formation (aggregation) of human and bovine insulin and six human insulin mutants in hydrochloric acid were investigated by visual inspection, Thioflavin T fluorescence spectroscopy, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The fibrillation tendencies of the wild-type insulins and the insulin mutants were (in order of decreasing fibrillation tendencies): Glu(B1) + Glu(B27) = bovine < human < des-(B1,B2)-insulin < Ser(B2) + Asp(B10) < Glu(A13) + Glu(B10) = Gln(B17) < Asp(B10). Transmission electron micrographs showed that the protofibrils of the mutants were similar to those of wild-type insulins and had a diameter of 5-10 nm and lengths varying from 50 nm to several microns. The fibrils of human insulin mutants exhibited varying degrees of lateral aggregation. The Asp(B10) mutant and human insulin had greater tendency to form laterally aggregated fibrils arranged in parallel bundles, whereas fibrils of the other mutants and bovine insulin were mainly arranged in helical filaments. FTIR spectroscopy showed that the native secondary structure of the wild-type insulins and the human insulin mutants in hydrochloric acid were identical, whereas the secondary structure of the fibrils formed by heating at 50 degrees C depended on the amino acid substitution. FTIR spectra of fibrils of the human insulin mutants exhibited different beta-sheet bands at 1,620-1,640 cm(-1), indicating that the beta-sheet interactions in the fibrils depended on variations in the primary structure of insulin. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91:2473-2480, 2002

  6. Studies of the structure of insulin fibrils by Fourier transform infrared (FTIR) spectroscopy and electron microscopy.

    PubMed

    Nielsen, L; Frokjaer, S; Carpenter, J F; Brange, J

    2001-01-01

    Fibril formation (aggregation) of insulin was investigated in acid media by visual inspection, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. Insulin fibrillated faster in hydrochloric acid than in acetic acid at elevated temperatures, whereas the fibrillation tendencies were reversed at ambient temperatures. Electron micrographs showed that bovine insulin fibrils consisted of long fibers with a diameter of 5 to 10 nm and lengths of several microns. The fibrils appeared either as helical filaments (in hydrochloric acid) or arranged laterally in bundles (in acetic acid, NaCl). Freeze-thawing cycles broke the fibrils into shorter segments. FTIR spectroscopy showed that the native secondary structure of insulin was identical in hydrochloric acid and acetic acid, whereas the secondary structure of fibrils formed in hydrochloric acid was different from that formed in acetic acid. Fibrils of bovine insulin prepared by heating or agitating an acid solution of insulin showed an increased content of beta-sheet (mostly intermolecular) and a decrease in the intensity of the alpha-helix band. In hydrochloric acid, the frequencies of the beta-sheet bands depended on whether the fibrillation was induced by heating or agitation. This difference was not seen in acetic acid. Freeze-thawing cycles of the fibrils in hydrochloric acid caused an increase in the intensity of the band at 1635 cm(-1) concomitant with reduction of the band at 1622 cm(-1). The results showed that the structure of insulin fibrils is highly dependent on the composition of the acid media and on the treatment. Copyright 2001 Wiley-Liss Inc. and the American Pharmaceutical Association J Pharm Sci 90: 29-37, 2001

  7. Effects of chirp on two-dimensional Fourier transform electronic spectra.

    PubMed

    Tekavec, Patrick F; Myers, Jeffrey A; Lewis, Kristin L M; Fuller, Franklin D; Ogilvie, Jennifer P

    2010-05-24

    We examine the effect that pulse chirp has on the shape of two- dimensional electronic spectra through calculations and experiments. For the calculations we use a model two electronic level system with a solvent interaction represented by a simple Gaussian correlation function and compare the resulting spectra to experiments carried out on an organic dye molecule (Rhodamine 800). Both calculations and experiments show that distortions due to chirp are most significant when the pulses used in the experiment have different amounts of chirp, introducing peak shape asymmetry that could be interpreted as spectrally dependent relaxation. When all pulses have similar chirp the distortions are reduced but still affect the anti-diagonal symmetry of the peak shapes and introduce negative features that could be interpreted as excited state absorption.

  8. Microstructural Parameters in 8 MeV Electron-Irradiated BOMBYX MORI Silk Fibers by Wide-ANGLE X-Ray Scattering Studies (waxs)

    NASA Astrophysics Data System (ADS)

    Sangappa, Asha, S.; Sanjeev, Ganesh; Subramanya, G.; Parameswara, P.; Somashekar, R.

    2010-01-01

    The present work looks into the microstructural modification in electron irradiated Bombyx mori P31 silk fibers. The irradiation process was performed in air at room temperature using 8 MeV electron accelerator at different doses: 0, 25, 50 and 100 kGy. Irradiation of polymer is used to cross-link or degrade the desired component or to fix the polymer morphology. The changes in microstructural parameters in these natural polymer fibers have been computed using wide angle X-ray scattering (WAXS) data and employing line profile analysis (LPA) using Fourier transform technique of Warren. Exponential, Lognormal and Reinhold functions for the column length distributions have been used for the determination of crystal size, lattice strain and enthalpy parameters.

  9. Morphological and chemical changes in dentin after using endodontic agents: Fourier transform Raman spectroscopy, energy-dispersive x-ray fluorescence spectrometry, and scanning electron microscopy study

    NASA Astrophysics Data System (ADS)

    Pascon, Fernanda Miori; Kantovitz, Kamila Rosamilia; Soares, Luís Eduardo Silva; Santo, Ana Maria do Espírito; Martin, Airton Abraha~o.; Puppin-Rontani, Regina Maria

    2012-07-01

    We examine the morphological and chemical changes in the pulp chamber dentin after using endodontic agents by scanning electron microscopy (SEM), Fourier transform Raman spectroscopy (FT-Raman), and micro energy-dispersive x-ray fluorescence spectrometry (μEDXRF). Thirty teeth were sectioned exposing the pulp chamber and divided by six groups (n=5): NT-no treatment; CHX-2% chlorhexidine; CHXE-2% chlorhexidine+17% EDTA E-17% EDTA; SH5-5.25% NaOCl; SH5E-5.25% NaOCl+17% EDTA. The inorganic and organic content was analyzed by FT-Raman. μEDXRF examined calcium (Ca) and phosphorus (P) content as well as Ca/P ratio. Impressions of specimens were evaluated by SEM. Data were submitted to Kruskal-Wallis and Dunn tests (p<0.05). Differences were observed among groups for the 960 cm-1 peak. Ca and P content differences were significant (SH5>NT=SH5E>CHX>E>CHXE). CHXE and E presented the highest Ca/P ratio values compared to the other groups (p<0.05). The SEM images in the EDTA-treated groups had the highest number of open tubules. Erosion in the tubules was observed in CHX and SH5E groups. Endodontic agents change the inorganic and organic content of pulp chamber dentin. NaOCl used alone, or in association with EDTA, was the most effective agent considering chemical and morphological approaches.

  10. Large amplitude Fourier transformed ac voltammetry at a rotating disc electrode: a versatile technique for covering Levich and flow rate insensitive regimes in a single experiment.

    PubMed

    Bano, Kiran; Kennedy, Gareth F; Zhang, Jie; Bond, Alan M

    2012-04-14

    The theory for large amplitude Fourier transformed ac voltammetry at a rotating disc electrode is described. Resolution of time domain data into dc and ac harmonic components reveals that the mass transport for the dc component is controlled by convective-diffusion, while the background free higher order harmonic components are flow rate insensitive and mainly governed by linear diffusion. Thus, remarkable versatility is available; Levich behaviour of the dc component limiting current provides diffusion coefficient values and access to higher harmonics allows fast electrode kinetics to be probed. Two series of experiments (dc and ac voltammetry) have been required to extract these parameters; here large amplitude ac voltammetry with RDE methodology is used to demonstrate that kinetics and diffusion coefficient information can be extracted from a single experiment. To demonstrate the power of this approach, theoretical and experimental comparisons of data obtained for the reversible [Ru(NH(3))(6)](3+/2+) and quasi-reversible [Fe(CN)(6)](3-/4-) electron transfer processes are presented over a wide range of electrode rotation rates and with different concentrations and electrode materials. Excellent agreement of experimental and simulated data is achieved, which allows parameters such as electron transfer rate, diffusion coefficient, uncompensated resistance and others to be determined using a strategically applied approach that takes into account the different levels of sensitivity of each parameter to the dc or the ac harmonic.

  11. "Vibrational spectroscopic analysis and molecular docking studies of (E)-4-methoxy-N‧-(4-methylbenzylidene) benzohydrazide by DFT"

    NASA Astrophysics Data System (ADS)

    Maheswari, R.; Manjula, J.

    2016-07-01

    (E)-4-methoxy-N‧-(4-methylbenzylidene)benzohydrazide (4MN'MBH) a novel, organic, hydrazone Schiff base compound was synthesized and its structure was characterized by Fourier Transform Infrared (4000-400 cm-1), Fourier Transform Raman (3500-50 cm-1), Ultraviolet-Visible (200-800 nm) and 1H and 13C NMR spectroscopic analysis. Optimized molecular structure, vibrational frequencies and corresponding vibrational assignments regarding 4MN'MBH has become screened tentatively as well as hypothetically utilizing Gaussian09Wprogram package. Potential energy distributions of the normal modes of vibrations connected with vibrations are generally accomplished by applying VEDA program. Natural Bonding Orbital (NBO) assessment was completed with a reason to clarify charge transfer or conjugative interaction, the intra-molecular-hybridization and delocalization of electron density within the molecule. Electronic transitions were studied employing UV-Visible spectrum and the observed values were compared with theoretical values. 1H and13C NMR spectral assessment had been made with choosing structure property relationship by chemical shifts along with magnetic shielding effects of title compound. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of 4MN'MBH were calculated. The computed first order hyperpolarizability commensurate with the documented worth of very similar structure and could be an interesting thing for more experiments on non linear optics. Molecular docking study has been performed by in silico method to analysis their antituberculosis aspects against Enoyl acyl carrier protein reductase (Mycobacterium tuberculosis InhA) protein.

  12. Characterization of the calcification of cardiac valve bioprostheses by environmental scanning electron microscopy and vibrational spectroscopy.

    PubMed

    Delogne, Christophe; Lawford, Patricia V; Habesch, Steven M; Carolan, Vikki A

    2007-10-01

    Bioprosthetic heart valve tissue and associated calcification were studied in their natural state, using environmental scanning electron microscopy (ESEM). Energy dispersive X-ray micro-analysis, X-ray diffraction, Fourier-transform infrared and Raman spectroscopy were used to characterize the various calcific deposits observed with ESEM. The major elements present in calcified valves were also analyzed by inductively coupled plasma-optical emission spectroscopy. To better understand the precursor formation of the calcific deposits, results from the elemental analyses were statistically correlated. ESEM revealed the presence of four broad types of calcium phosphate crystal morphology. In addition, two main patterns of organization of calcific deposits were observed associated with the collagen fibres. Energy dispersive X-ray micro-analysis identified the crystals observed by ESEM as salts containing mainly calcium and phosphate with ratios from 1.340 (possibly octacalcium phosphate, which has a Ca/P ratio of 1.336) to 2.045 (possibly hydroxyapatite with incorporation of carbonate and metal ion contaminants, such as silicon and magnesium, in the crystal lattice). Raman and fourier-transform infrared spectroscopy also identified the presence of carbonate and the analyses showed spectral features very similar to a crystalline hydroxyapatite spectrum, also refuting the presence of precursor phases such as beta-tricalcium phosphate, octacalcium phosphate and dicalcium phosphate dihydrate. The results of this study raised the possibility of the presence of precursor phases associated with the early stages of calcification.

  13. Label-Free Ferrocene-Loaded Nanocarrier Engineering for In Vivo Cochlear Drug Delivery and Imaging.

    PubMed

    Youm, Ibrahima; Musazzi, Umberto M; Gratton, Michael Anne; Murowchick, James B; Youan, Bi-Botti C

    2016-10-01

    It is hypothesized that ferrocene (FC)-loaded nanocarriers (FC-NCs) are safe label-free contrast agents for cochlear biodistribution study by transmission electron microscopy (TEM). To test this hypothesis, after engineering, the poly(epsilon-caprolactone)/polyglycolide NCs are tested for stability with various types and ratios of sugar cryoprotectants during freeze-drying. Their physicochemical properties are characterized by UV-visible spectroscopy, dynamic light scattering, Fourier transform infrared spectroscopy, and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDS). The biodistribution of the FC-NCs in the cochlear tissue after intratympanic injection in guinea pigs is visualized by TEM. Auditory brainstem responses are measured before and after 4-day treatments. These FC-NCs have 153.4 ± 8.7 nm, 85.5 ± 11.2%, and -22.1 ± 1.1 mV as mean diameters, percent drug association efficiency, and zeta potential, respectively (n = 3). The incorporation of FC into the NCs is confirmed by Fourier transform infrared spectroscopy and SEM/EDS spectra. Lactose (3:1 ratio, v/v) is the most effective stabilizer after a 12-day study. The administered NCs are visible by TEM in the scala media cells of the cochlea. Based on auditory brainstem response data, FC-NCs do not adversely affect hearing. Considering the electrondense, radioactive, and magnetic properties of iron inside FC, FC-NCs are promising nanotemplate for future inner ear theranostics. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Stereochemistry of quinoxaline antagonist binding to a glutamate receptor investigated by Fourier transform infrared spectroscopy.

    PubMed

    Madden, D R; Thiran, S; Zimmermann, H; Romm, J; Jayaraman, V

    2001-10-12

    The stereochemistry of the interactions between quinoxaline antagonists and the ligand-binding domain of the glutamate receptor 4 (GluR4) have been investigated by probing their vibrational modes using Fourier transform infrared spectroscopy. In solution, the electron-withdrawing nitro groups of both compounds establish a resonance equilibrium that appears to stabilize the keto form of one of the cyclic amide carbonyl bonds. Changes in the 6,7-dinitro-2,3-dihydroxyquinoxaline vibrational spectra on binding to the glutamate receptor, interpreted within the framework of a published crystal structure, illuminate the stereochemistry of the interaction and suggest that the binding site imposes a more polarized electronic bonding configuration on this antagonist. Similar spectral changes are observed for 6-cyano-7-dinitro-2,3-dihydroxyquinoxaline, confirming that its interactions with the binding site are highly similar to those of 6,7-dinitro-2,3-dihydroxyquinoxaline and leading to a model of the 6-cyano-7-dinitro-2,3-dihydroxyquinoxaline-S1S2 complex, for which no crystal structure is available. Conformational changes within the GluR ligand binding domain were also monitored. Compared with the previously reported spectral changes seen on binding of the agonist glutamate, only a relatively small change is detected on antagonist binding. This correlation between the functional effects of different classes of ligand and the magnitude of the spectroscopic changes they induce suggests that the spectral data reflect physiologically relevant conformational processes.

  15. A new method of functionalized multi walled carbon nanotubes by natural oil for microorganism cells detection

    NASA Astrophysics Data System (ADS)

    Haider, Adawiya J.; Marzoog, Thorria R.; Hadi, Iman H.; Jameel, Zainab N.

    2018-05-01

    In this work, new surfactants for Functionalization of Multi Walled Carbon Nanotubes (F-MWCNTs) with functional groups have been developed by using walnut oil, to improve their surface activity (solubility) and a create free reticules (functional groups) on it. MWCNTs were functionalized with walnut oil via ultra-sonication technique at 25°C for 1h with no drastic fragmentation of MWCNTs. Fourier Transformed Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (HRTEM) and have been employed for the characterizations and analysis. In addition, the antibacterial activity of functionalized MWCNTs against Gram negative. Escherichia coli (E. coli) and Gram positive Staphylococcus aureus (S. aureus) bacteria are examined.

  16. Assembly of Ring-Shaped Phosphorus within Carbon Nanotube Nanoreactors.

    PubMed

    Zhang, Jinying; Zhao, Dan; Xiao, Dingbin; Ma, Chuansheng; Du, Hongchu; Li, Xin; Zhang, Lihui; Huang, Jialiang; Huang, Hongyang; Jia, Chun-Lin; Tománek, David; Niu, Chunming

    2017-02-06

    A phosphorus allotrope that has not been observed so far, ring-shaped phosphorus consisting of alternate P 8 and P 2 structural units, has been assembled inside multi-walled carbon nanotube nanoreactors with inner diameters of 5-8 nm by a chemical vapor transport and reaction of red phosphorus at 500 °C. The ring-shaped nanostructures with surrounding graphene walls are stable under ambient conditions. The nanostructures were characterized by high-resolution transmission electron microscopy, scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, Raman scattering, attenuated total reflectance Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Metallic cyanoacetylides of copper, silver and gold: generation and structural characterization.

    PubMed

    Cabezas, Carlos; Barrientos, Carmen; Largo, Antonio; Guillemin, Jean-Claude; Alonso, J L

    2016-10-19

    The metallic cyanoacetylides CuCCCN, AgCCCN, and AuCCCN have been synthesized in the throat of a pulsed supersonic expansion by reaction of metal vapors, produced by laser ablation, and BrCCCN. Their pure rotational spectra in the (X 1 Σ + ) electronic ground state were observed by Fourier transform microwave spectroscopy in the 2-10 GHz frequency region. Importantly, the rotational spectroscopy constants determined from the analysis of the rotational spectra clearly established the existence of metal-CCCN arrangements for all the mentioned cyanoacetylides. A study of the chemical bonding by means of a topological analysis of the electron density helps to understand the preference for metal-C bonding over metal-N bonding.

  18. HA/Bioglass composite films deposited by pulsed laser with different substrate temperature

    NASA Astrophysics Data System (ADS)

    Wang, D. G.; Chen, C. Z.; Jin, Q. P.; Li, H. C.; Pan, Y. K.

    2014-03-01

    In this experiment, the HA/Bioglass composite films on Ti-6Al-4V were deposited by a pulsed laser at Ar atmosphere, and the influence of substrate temperature on the morphology, phase constitutions, bonding configurations and adhesive strength of the films was studied. The obtained films were characterized by an electron probe microanalyzer (EPMA), scanning electron microscope (SEM), X-ray diffractometer (XRD), Fourier transform infrared spectrometer (FTIR), scratch apparatus, and so on. The results show that the amount of the droplets, the crystallinity, and the critical load of the deposited films all increase with the increase of the substrate temperature; however, the substrate temperature has little influence on the functional groups of the films.

  19. Fabrication of frequency selective surface for band stop IR-filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Akshita, E-mail: akshitamishra27@gmail.com; Sudheer,; Tiwari, P.

    2016-05-23

    Fabrication and characterization of frequency selective surfaces (FSS) on silicon dioxide/ silicon is reported. Electron beam lithography based techniques are used for the fabrication of periodic slot structure in tungsten layer on silicon dioxide/silicon. The fabrication process consists of growth of SiO{sub 2} on silicon, tungsten deposition, electron beam lithography, and wet etching of tungsten. The optical characterization of the structural pattern was carried out using fourier transform infrared spectroscopy (FTIR). The reflectance spectra clearly show a resonance peak at 9.09 µm in the mid infrared region. This indicates that the patterned surface acts as band stop filter in the mid-infraredmore » region.« less

  20. Solution combustion method for synthesis of nanostructured hydroxyapatite, fluorapatite and chlorapatite

    NASA Astrophysics Data System (ADS)

    Zhao, Junjie; Dong, Xiaochen; Bian, Mengmeng; Zhao, Junfeng; Zhang, Yao; Sun, Yue; Chen, JianHua; Wang, XuHong

    2014-09-01

    Hydroxyapatite (HAP), fluorapatite (Fap) and chlorapatite (Clap) were prepared by solution combustion method with further annealing at 800 °C. The characterization and structural features of the synthesized powders were evaluated by the powder X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques. Characterization results from XRD and Rietveld analysis revealed that OH- in the HAP lattice were gradually substituted with the increase of F- and Cl- content and totally substituted at the molar concentration of 0.28 and 0.6, respectively. The results from FI-IR have also confirmed the incorporation of substituted anions in the apatite structure.

  1. Effect of annealing temperature on titania nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manikandan, K., E-mail: sanjaymani367@gmail.com; Arumugam, S., E-mail: sanjaymani367@gmail.com; Chandrasekaran, G.

    2014-04-24

    Titania polycrystalline samples are prepared by using sol-gel route hydrolyzing a alkoxide titanium precursor under acidic conditions. The as prepared samples are treated with different calcination temperatures. The anatase phase of titania forms when treated below 600°C, above that temperature the anatase phase tends to transform into the rutile phase of titania. The experimental determination of average grain size, phase formation, lattice parameters and the crystal structures of titania samples at different calcinations is done using X-ray diffraction (XRD). Fourier Transform Infra-red Spectroscopy (FTIR), UV-vis-NIR spectroscopy and Scanning Electron Microscopy (SEM) and Energy Dispersive Analysis X-ray are used to characterizemore » the samples to bring impact on the respective properties.« less

  2. Discrete Fourier Transform in a Complex Vector Space

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H. (Inventor)

    2015-01-01

    An image-based phase retrieval technique has been developed that can be used on board a space based iterative transformation system. Image-based wavefront sensing is computationally demanding due to the floating-point nature of the process. The discrete Fourier transform (DFT) calculation is presented in "diagonal" form. By diagonal we mean that a transformation of basis is introduced by an application of the similarity transform of linear algebra. The current method exploits the diagonal structure of the DFT in a special way, particularly when parts of the calculation do not have to be repeated at each iteration to converge to an acceptable solution in order to focus an image.

  3. Use of Fourier transforms for asynoptic mapping: Applications to the Upper Atmosphere Research Satellite microwave limb sounder

    NASA Technical Reports Server (NTRS)

    Elson, Lee S.; Froidevaux, Lucien

    1993-01-01

    Fourier analysis has been applied to data obtained from limb viewing instruments on the Upper Atmosphere Research Satellite. A coordinate system rotation facilitates the efficient computation of Fourier transforms in the temporal and longitudinal domains. Fields such as ozone (O3), chlorine monoxide (ClO), temperature, and water vapor have been transformed by this process. The transforms have been inverted to provide maps of these quantities at selected times, providing a method of accurate time interpolation. Maps obtained by this process show evidence of both horizontal and vertical transport of important trace species such as O3 and ClO. An examination of the polar regions indicates that large-scale planetary variations are likely to play a significant role in transporting midstratospheric O3 into the polar regions. There is also evidence that downward transport occurs, providing a means of moving O3 into the polar vortex at lower altitudes. The transforms themselves show the structure and propagation characteristics of wave variations.

  4. Electro-optic imaging Fourier transform spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Znod, Hanying (Inventor)

    2009-01-01

    An Electro-Optic Imaging Fourier Transform Spectrometer (EOIFTS) for Hyperspectral Imaging is described. The EOIFTS includes an input polarizer, an output polarizer, and a plurality of birefringent phase elements. The relative orientations of the polarizers and birefringent phase elements can be changed mechanically or via a controller, using ferroelectric liquid crystals, to substantially measure the spectral Fourier components of light propagating through the EIOFTS. When achromatic switches are used as an integral part of the birefringent phase elements, the EIOFTS becomes suitable for broadband applications, with over 1 micron infrared bandwidth.

  5. Geometry and dynamics in the fractional discrete Fourier transform.

    PubMed

    Wolf, Kurt Bernardo; Krötzsch, Guillermo

    2007-03-01

    The N x N Fourier matrix is one distinguished element within the group U(N) of all N x N unitary matrices. It has the geometric property of being a fourth root of unity and is close to the dynamics of harmonic oscillators. The dynamical correspondence is exact only in the N-->infinity contraction limit for the integral Fourier transform and its fractional powers. In the finite-N case, several options have been considered in the literature. We compare their fidelity in reproducing the classical harmonic motion of discrete coherent states.

  6. A novel recursive Fourier transform for nonuniform sampled signals: application to heart rate variability spectrum estimation.

    PubMed

    Holland, Alexander; Aboy, Mateo

    2009-07-01

    We present a novel method to iteratively calculate discrete Fourier transforms for discrete time signals with sample time intervals that may be widely nonuniform. The proposed recursive Fourier transform (RFT) does not require interpolation of the samples to uniform time intervals, and each iterative transform update of N frequencies has computational order N. Because of the inherent non-uniformity in the time between successive heart beats, an application particularly well suited for this transform is power spectral density (PSD) estimation for heart rate variability. We compare RFT based spectrum estimation with Lomb-Scargle Transform (LST) based estimation. PSD estimation based on the LST also does not require uniform time samples, but the LST has a computational order greater than Nlog(N). We conducted an assessment study involving the analysis of quasi-stationary signals with various levels of randomly missing heart beats. Our results indicate that the RFT leads to comparable estimation performance to the LST with significantly less computational overhead and complexity for applications requiring iterative spectrum estimations.

  7. Computing the Power-Density Spectrum for an Engineering Model

    NASA Technical Reports Server (NTRS)

    Dunn, H. J.

    1982-01-01

    Computer program for calculating of power-density spectrum (PDS) from data base generated by Advanced Continuous Simulation Language (ACSL) uses algorithm that employs fast Fourier transform (FFT) to calculate PDS of variable. Accomplished by first estimating autocovariance function of variable and then taking FFT of smoothed autocovariance function to obtain PDS. Fast-Fourier-transform technique conserves computer resources.

  8. Using Mathematical Software to Introduce Fourier Transforms in Physical Chemistry to Develop Improved Understanding of Their Applications in Analytical Chemistry

    ERIC Educational Resources Information Center

    Miller, Tierney C.; Richardson, John N.; Kegerreis, Jeb S.

    2016-01-01

    This manuscript presents an exercise that utilizes mathematical software to explore Fourier transforms in the context of model quantum mechanical systems, thus providing a deeper mathematical understanding of relevant information often introduced and treated as a "black-box" in analytical chemistry courses. The exercise is given to…

  9. Teaching Stable Two-Mirror Resonators through the Fractional Fourier Transform

    ERIC Educational Resources Information Center

    Moreno, Ignacio; Garcia-Martinez, Pascuala; Ferreira, Carlos

    2010-01-01

    We analyse two-mirror resonators in terms of their fractional Fourier transform (FRFT) properties. We use the basic ABCD ray transfer matrix method to show how the resonator can be regarded as the cascade of two propagation-lens-propagation FRFT systems. Then, we present a connection between the geometric properties of the resonator (the g…

  10. Rapid identification and classification of Listeria spp. and serotype assignment of Listeria monocytogenes using fourier transform-infrared spectroscopy and artificial neural network analysis

    USDA-ARS?s Scientific Manuscript database

    The use of Fourier Transform-Infrared Spectroscopy (FT-IR) in conjunction with Artificial Neural Network software, NeuroDeveloper™ was examined for the rapid identification and classification of Listeria species and serotyping of Listeria monocytogenes. A spectral library was created for 245 strains...

  11. COMPARISON OF AN INNOVATIVE NONLINEAR ALGORITHM TO CLASSICAL LEAST SQUARES FOR ANALYZING OPEN-PATH FOURIER TRANSFORM INFRARED SPECTRA COLLECTED AT A CONCENTRATED SWINE PRODUCTION FACILITY

    EPA Science Inventory

    Open-path Fourier transform infrared (OP/FTIR) spectrometry was used to measure the concentrations of ammonia, methane, and other atmospheric gases at an integrated swine production facility. The concentration-pathlength products of the target gases at this site often exceeded th...

  12. APPLICATION OF STANDARDIZED QUALITY CONTROL PROCEDURES TO OPEN-PATH FOURIER TRANSFORM INFRARED DATA COLLECTED AT A CONCENTRATED SWINE PRODUCTION FACILITY

    EPA Science Inventory

    Open-path Fourier transform infrared (OP/FT-IR) spectrometry was used to measure the concentrations of ammonia, methane, and other atmospheric eases at a concentrated swine production facility. A total of 2200 OP/FT-IR spectra were acquired along nine different monitoring paths d...

  13. “Self-absorption” phenomenon in near-infrared Fourier transform Raman spectroscopy of cellulosic and lignocellulosic materials

    Treesearch

    Umesh P. Agarwal; Nancy Kawai

    2005-01-01

    While cellulosic and lignocellulosic materials have been studied using conventional Raman spectroscopy, availability of near-infrared (NIR) Fourier transform (FT) Raman instrumentation has made studying these materials much more convenient. This is especially true because the problem of laser-induced fluorescence can be avoided or minimized in FT- Raman (NIR Raman)...

  14. Propagation Characteristics Of Weakly Guiding Optical Fibers

    NASA Technical Reports Server (NTRS)

    Manshadi, Farzin

    1992-01-01

    Report discusses electromagnetic propagation characteristics of weakly guiding optical-fiber structures having complicated shapes with cross-sectional dimensions of order of wavelength. Coupling, power-dividing, and transition dielectric-waveguide structures analyzed. Basic data computed by scalar-wave, fast-Fourier-transform (SW-FFT) technique, based on numerical solution of scalar version of wave equation by forward-marching fast-Fourier-transform method.

  15. Analytical Properties of Time-of-Flight PET Data

    PubMed Central

    Cho, Sanghee; Ahn, Sangtae; Li, Quanzheng; Leahy, Richard M.

    2015-01-01

    We investigate the analytical properties of time-of-flight (TOF) positron emission tomography (PET) sinograms, where the data are modeled as line integrals weighted by a spatially invariant TOF kernel. First, we investigate the Fourier transform properties of 2D TOF data and extend the “bow-tie” property of the 2D Radon transform to the time of flight case. Second, we describe a new exact Fourier rebinning method, TOF-FOREX, based on the Fourier transform in the time-of-flight variable. We then combine TOF-FOREX rebinning with a direct extension of the projection slice theorem to TOF data, to perform fast 3D TOF PET image reconstruction. Finally, we illustrate these properties using simulated data. PMID:18460746

  16. Electro-optic Imaging Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    2005-01-01

    JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-O IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 micron (1000-4000/cm) to allow high-resolution, high-speed hyperspectral imaging applications. One application will be the remote sensing of the measurement of a large number of different atmospheric gases simultaneously in the same airmass. Due to the use of a combination of birefringent phase retarders and multiple achromatic phase switches to achieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventional Fourier transform spectrometer but without any moving parts. In this paper, the principle of operations, system architecture and recent experimental progress will be presented.

  17. Electro-optic Imaging Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    2005-01-01

    JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-0IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 pm (1000 -4000 cm-') to allow high-resolution, high-speed hyperspectral imaging applications [l-51. One application will be theremote sensing of the measurement of a large number of different atmospheric gases simultaneously in the sameairmass. Due to the use of a combination of birefiingent phase retarders and multiple achromatic phase switches toachieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventionalFourier transform spectrometer but without any moving parts. In this paper, the principle of operations, systemarchitecture and recent experimental progress will be presen.

  18. Application of Fourier transforms for microwave radiometric inversions

    NASA Technical Reports Server (NTRS)

    Holmes, J. J.; Balanis, C. A.; Truman, W. M.

    1975-01-01

    Existing microwave radiometer technology now provides a suitable method for remote determination of the ocean surface's absolute brightness temperature. To extract the brightness temperature of the water from the antenna temperature, an unstable Fredholm integral equation of the first kind is solved. Fourier transform techniques are used to invert the integral after it is placed into a cross correlation form. Application and verification of the methods to a two-dimensional modeling of a laboratory wave tank system are included. The instability of the ill-posed Fredholm equation is examined and a restoration procedure is included which smooths the resulting oscillations. With the recent availability and advances of fast Fourier transform (FFT) techniques, the method presented becomes very attractive in the evaluation of large quantities of data.

  19. Fourier transform infrared microspectroscopy for the analysis of the biochemical composition of C. elegans worms.

    PubMed

    Sheng, Ming; Gorzsás, András; Tuck, Simon

    2016-01-01

    Changes in intermediary metabolism have profound effects on many aspects of C. elegans biology including growth, development and behavior. However, many traditional biochemical techniques for analyzing chemical composition require relatively large amounts of starting material precluding the analysis of mutants that cannot be grown in large amounts as homozygotes. Here we describe a technique for detecting changes in the chemical compositions of C. elegans worms by Fourier transform infrared microspectroscopy. We demonstrate that the technique can be used to detect changes in the relative levels of carbohydrates, proteins and lipids in one and the same worm. We suggest that Fourier transform infrared microspectroscopy represents a useful addition to the arsenal of techniques for metabolic studies of C. elegans worms.

  20. The short time Fourier transform and local signals

    NASA Astrophysics Data System (ADS)

    Okumura, Shuhei

    In this thesis, I examine the theoretical properties of the short time discrete Fourier transform (STFT). The STFT is obtained by applying the Fourier transform by a fixed-sized, moving window to input series. We move the window by one time point at a time, so we have overlapping windows. I present several theoretical properties of the STFT, applied to various types of complex-valued, univariate time series inputs, and their outputs in closed forms. In particular, just like the discrete Fourier transform, the STFT's modulus time series takes large positive values when the input is a periodic signal. One main point is that a white noise time series input results in the STFT output being a complex-valued stationary time series and we can derive the time and time-frequency dependency structure such as the cross-covariance functions. Our primary focus is the detection of local periodic signals. I present a method to detect local signals by computing the probability that the squared modulus STFT time series has consecutive large values exceeding some threshold after one exceeding observation following one observation less than the threshold. We discuss a method to reduce the computation of such probabilities by the Box-Cox transformation and the delta method, and show that it works well in comparison to the Monte Carlo simulation method.

  1. The extended Fourier transform for 2D spectral estimation.

    PubMed

    Armstrong, G S; Mandelshtam, V A

    2001-11-01

    We present a linear algebraic method, named the eXtended Fourier Transform (XFT), for spectral estimation from truncated time signals. The method is a hybrid of the discrete Fourier transform (DFT) and the regularized resolvent transform (RRT) (J. Chen et al., J. Magn. Reson. 147, 129-137 (2000)). Namely, it estimates the remainder of a finite DFT by RRT. The RRT estimation corresponds to solution of an ill-conditioned problem, which requires regularization. The regularization depends on a parameter, q, that essentially controls the resolution. By varying q from 0 to infinity one can "tune" the spectrum between a high-resolution spectral estimate and the finite DFT. The optimal value of q is chosen according to how well the data fits the form of a sum of complex sinusoids and, in particular, the signal-to-noise ratio. Both 1D and 2D XFT are presented with applications to experimental NMR signals. Copyright 2001 Academic Press.

  2. Replica Fourier Tansforms on Ultrametric Trees, and Block-Diagonalizing Multi-Replica Matrices

    NASA Astrophysics Data System (ADS)

    de Dominicis, C.; Carlucci, D. M.; Temesvári, T.

    1997-01-01

    The analysis of objects living on ultrametric trees, in particular the block-diagonalization of 4-replica matrices M^{α β;γ^δ}, is shown to be dramatically simplified through the introduction of properly chosen operations on those objects. These are the Replica Fourier Transforms on ultrametric trees. Those transformations are defined and used in the present work. On montre que l'analyse d'objets vivant sur un arbre ultramétrique, en particulier, la diagonalisation par blocs d'une matrice M^{α β;γ^δ} dépendant de 4-répliques, se simplifie de façon dramatique si l'on introduit les opérations appropriées sur ces objets. Ce sont les Transformées de Fourier de Répliques sur un arbre ultramétrique. Ces transformations sont définies et utilisées dans le présent travail.

  3. Intelligent Automatic Classification of True and Counterfeit Notes Based on Spectrum Analysis

    NASA Astrophysics Data System (ADS)

    Matsunaga, Shohei; Omatu, Sigeru; Kosaka, Toshohisa

    The purpose of this paper is to classify bank notes into “true” or “counterfeit” ones faster and more precisely compared with a conventional method. We note that thin lines are represented by direct lines in the images of true notes while they are represented in the counterfeit notes by dotted lines. This is due to properties of dot printers or scanner levels. To use the properties, we propose two method to classify a note into true or counterfeited one by checking whether there exist thin lines or dotted lines of the note. First, we use Fourier transform of the note to find quantity of features for classification and we classify a note into true or counterfeit one by using the features by Fourier transform. Then we propose a classification method by using wavelet transform in place of Fourier transform. Finally, some classification results are illustrated to show the effectiveness of the proposed methods.

  4. Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation

    PubMed Central

    Biedermann, Benjamin R.; Wieser, Wolfgang; Eigenwillig, Christoph M.; Palte, Gesa; Adler, Desmond C.; Srinivasan, Vivek J.; Fujimoto, James G.; Huber, Robert

    2009-01-01

    We demonstrate en face swept source optical coherence tomography (ss-OCT) without requiring a Fourier transformation step. The electronic optical coherence tomography (OCT) interference signal from a k-space linear Fourier domain mode-locked laser is mixed with an adjustable local oscillator, yielding the analytic reflectance signal from one image depth for each frequency sweep of the laser. Furthermore, a method for arbitrarily shaping the spectral intensity profile of the laser is presented, without requiring the step of numerical apodization. In combination, these two techniques enable sampling of the in-phase and quadrature signal with a slow analog-to-digital converter and allow for real-time display of en face projections even for highest axial scan rates. Image data generated with this technique is compared to en face images extracted from a three-dimensional OCT data set. This technique can allow for real-time visualization of arbitrarily oriented en face planes for the purpose of alignment, registration, or operator-guided survey scans while simultaneously maintaining the full capability of high-speed volumetric ss-OCT functionality. PMID:18978919

  5. Synergistic effects of mica and wollastonite fillers on thermal performance of intumescent fire retardant coating

    NASA Astrophysics Data System (ADS)

    Zia-ul-Mustafa, M.; Ahmad, Faiz; Megat-Yusoff, Puteri S. M.; Aziz, Hammad

    2015-07-01

    In this study, intumescent fire retardant coatings (IFRC) were developed to investigate the synergistic effects of reinforced mica and wollastonite fillers based IFRC towards heat shielding, char expansion, char composition and char morphology. Ammonium poly-phosphate (APP) was used as acid source, expandable graphite (EG) as carbon source, melamine as blowing agent, boric acid as additive and Hardener H-2310 polyamide amine in bisphenol A epoxy resin BE-188(BPA) was used as curing agent. Bunsen burner fire test was used for thermal performance according to UL-94 for 1 h. Field Emission Scanning Electron Microscopy (FESEM) was used to observe char microstructure. X-Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to analyse char composition. The results showed that addition of clay filler in IFRC enhanced the fire protection performance of intumescent coating. X-Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) results showed the presence of boron phosphate, silicon phosphate oxide, aluminium borate in the char that improved the thermal performance of intumescent fire retardant coating (IFRC). Resultantly, the presence of these developed compounds enhanced the Integrity of structural steel upto 500°C.

  6. Effect of temperature on the magnetic properties of nano-sized M-type barium hexagonal ferrites

    NASA Astrophysics Data System (ADS)

    Tchouank Tekou Carol, T.; Sharma, Jyoti; Mohammed, J.; Kumar, Sachin; Srivastava, A. K.

    2017-07-01

    The application of M-type hexagonal ferrites in electronic devices is increasing with technological advancement. This is due to the possibility of improving the physical and magnetic properties to suit the desired application. Enhanced magnetic properties make hexagonal ferrites suitable for hyper frequency and radar absorbing application. In this paper, we investigated the effect of heat-treatment temperature on the structural and magnetic properties of M-type barium hexagonal ferrites with chemical composition Ba1-xAlxFe12-yMnyO19 (x=0.6 and y=0.3) synthesized by sol-gel auto-combustion method and sintered at 750°C, 850°C, 950°C and 1050°C. Characterisations of the prepared samples were done using Fourier transform-infrared (FT-IR), and vibrating sample magnetometer (VSM). The formation of M-type hexaferrite has been confirmed from XRD. The presence of two prominent peaks between 400 cm-1 and 600 cm-1 in the spectra of Fourier transform-infrared spectroscopy (FT-IR) also shows the formation of ferrite phase. Saturation magnetisation (MS), remnant magnetisation (Mr), coercivity (Hc) and squareness ratio (SR) were calculated from the M-H loop obtained from vibrating sample magnetometer (VSM).

  7. Uniaxial three-dimensional shape measurement with multioperation modes for different modulation algorithms

    NASA Astrophysics Data System (ADS)

    Jing, Hailong; Su, Xianyu; You, Zhisheng

    2017-03-01

    A uniaxial three-dimensional shape measurement system with multioperation modes for different modulation algorithms is proposed. To provide a general measurement platform that satisfies the specific measurement requirements in different application scenarios, a measuring system with multioperation modes based on modulation measuring profilometry (MMP) is presented. Unlike the previous solutions, vertical scanning by focusing control of an electronic focus (EF) lens is implemented. The projection of a grating pattern is based on a digital micromirror device, which means fast phase-shifting with high precision. A field programmable gate array-based master control center board acts as the coordinator of the MMP system; it harmonizes the workflows, such as grating projection, focusing control of the EF lens, and fringe pattern capture. Fourier transform, phase-shifting technique, and temporary Fourier transform are used for modulation analysis in different operation modes. The proposed system features focusing control, speed, programmability, compactness, and availability. This paper details the principle of MMP for multioperation modes and the design of the proposed system. The performances of different operation modes are analyzed and compared, and a work piece with steep holes is measured to verify this multimode MMP system.

  8. Supply of avocado starch (Persea americana mill) as bioplastic material

    NASA Astrophysics Data System (ADS)

    Ginting, M. H. S.; Hasibuan, R.; Lubis, M.; Alanjani, F.; Winoto, F. A.; Siregar, R. C.

    2018-02-01

    The purpose of this study was to determine the effect of time precipitation of avocado slurry seed to yield of starch. Starch analysis included starch content, moisture content, amylose content, amylopectin content, ash content, protein content, fat content, Fourier transform infra red analysis and rapid visco analyzer. Supply of starch from avocado seeds was used by extraction method. Every one hundred grams of avocado slurry was precipitated by gravity with variations for 4 hours, 8 hours, 12 hours, 16 hours, 20 hours and 24 hours. The Starch yield was washed, and dried using oven at 70°C for 30 minutes. Starch yield was the highest as 24.20 gram at 24 hours. The result of starch characterization was 73.62%, water content 16.6%, amylose 0.07%, amylopectin 73.55%, ash content 0.23%, protein content 2.16%, fat content 1.09%. Rapid visco analyzer obtained at 91.33°C of gelatinization temperature. Scanning electron microscopy analyzes obtained 20 μm oval-shaped starch granules. Fourier Transform Infra Red analysis of starch obtained the peak spectrum of O-H group of alcohols, C-H alkanes and C-O ether.

  9. Functionalized MIL-101 with imidazolium-based ionic liquids for the cycloaddition of CO2 and epoxides under mild condition

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Li, Gang; Liu, Haiou

    2018-01-01

    A kind of multi-functional sites metal-organic framework (MOF) composite (MIL-101-IMBr) was successfully prepared by post-synthesis modification of MIL-101 with imidazolium-based ionic liquids. The ionic liquids not only functionalize as basic sites but also provide halide anions, which serve as a nucleophile in cycloaddition reaction. The prepared functional MOF materials were characterized by X-ray diffraction, fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, N2 adsorption-desorption and CO2 temperature programmed desorption. The results of fourier transform infrared spectroscopy and energy dispersive spectroscopy show that the MIL-101-IMBr composite was successfully synthesized. The N2 adsorption-desorption results clearly demonstrated that the modified composites still preserve high BET surface area and total pore volume. The composite exhibits high catalytic activity for the cycloaddition of CO2 with epoxides under mild and co-catalyst free conditions. The conversion of propylene oxide was 95.8% and the selectivity of cyclic carbonate was 97.6% under 0.8 MPa at 80 °C for 4 h. Moreover, the catalyst can be used for at least five times.

  10. Molecular structure, vibrational spectra, NBO, UV and first order hyperpolarizability, analysis of 4-Chloro-dl-phenylalanine by density functional theory.

    PubMed

    Govindarasu, K; Kavitha, E

    2014-12-10

    The Fourier transform infrared (4000-400cm(-1)) and Fourier transform Raman (3500-50cm(-1)) spectra of 4-Chloro-dl-phenylalanine (4CLPA) were recorded and analyzed. The equilibrium geometry, bonding features and harmonic vibrational wavenumbers were investigated with the help of density functional theory (DFT) method using B3LYP/6-31G(d,p) as basis set. The observed vibrational wavenumbers were compared with the calculated results. Natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction. Predicted electronic absorption spectra from TD-DFT calculation have been analyzed comparing with the UV-Vis (200-800nm) spectrum. The effects of chlorine and ethylene group substituent in benzene ring in the vibrational wavenumbers have been analyzed. The HOMO-LUMO energy gap explains the charge interaction taking place within the molecule. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of 4CLPA were calculated. The Chemical reactivity and chemical potential of 4CLPA is calculated. In addition, molecular electrostatic potential (MEP), frontier molecular orbital (FMO) analysis were investigated using theoretical calculations. Published by Elsevier B.V.

  11. An 18-26 GHz Segmented Chirped Pulse Fourier Transform Microwave Spectrometer for Astrochemical Applications

    NASA Astrophysics Data System (ADS)

    Steber, Amanda; Fatima, Mariyam; Perez, Cristobal; Schnell, Melanie

    2017-06-01

    In the past decade, astrochemistry has seen an increase in interest. As higher throughput and increased resolution radio astronomy facilities come online, faster laboratory instrumentation that directly covers the frequency ranges of these facilities is needed. The 18-26 GHz region is of interest astronomically as many cold organic molecules have their peak intensity in this region. We present here a new segmented chirped pulse Fourier transform microwave (CP-FTMW) spectrometer operating between 18-26 GHz. Using state-of-the-art digital electronics and the segmented approach[1], this design has the potential to be faster and cheaper than the previously presented broadband design. Characterization of the instrument using OCS will be presented, along with a comparison to the previously built and optimized 18-26 CP-FTMW built at the University of Virginia. It will be coupled with a discharge nozzle[2], and its applications to astrochemistry will be explored in this talk. [1] Neill, J.L., Harris, B.J., Steber, A.L., Douglass, K.O., Plusquellic, D.F., Pate, B.H. Opt. Express, 21, 19743-19749, 2013. [2] McCarthy, M.C., Chen, W., Travers, M.J., Thaddeus, P. Astrophys. J. Suppl. Ser., 129, 611-623 , 2000.

  12. On the action of Heisenberg's uncertainty principle in discrete linear methods for calculating the components of the deflection of the vertical

    NASA Astrophysics Data System (ADS)

    Mazurova, Elena; Lapshin, Aleksey

    2013-04-01

    The method of discrete linear transformations that can be implemented through the algorithms of the Standard Fourier Transform (SFT), Short-Time Fourier Transform (STFT) or Wavelet transform (WT) is effective for calculating the components of the deflection of the vertical from discrete values of gravity anomaly. The SFT due to the action of Heisenberg's uncertainty principle indicates weak spatial localization that manifests in the following: firstly, it is necessary to know the initial digital signal on the complete number line (in case of one-dimensional transform) or in the whole two-dimensional space (if a two-dimensional transform is performed) in order to find the SFT. Secondly, the localization and values of the "peaks" of the initial function cannot be derived from its Fourier transform as the coefficients of the Fourier transform are formed by taking into account all the values of the initial function. Thus, the SFT gives the global information on all frequencies available in the digital signal throughout the whole time period. To overcome this peculiarity it is necessary to localize the signal in time and apply the Fourier transform only to a small portion of the signal; the STFT that differs from the SFT only by the presence of an additional factor (window) is used for this purpose. A narrow enough window is chosen to localize the signal in time and, according to Heisenberg's uncertainty principle, it results in have significant enough uncertainty in frequency. If one chooses a wide enough window it, according to the same principle, will increase time uncertainty. Thus, if the signal is narrowly localized in time its spectrum, on the contrary, is spread on the complete axis of frequencies, and vice versa. The STFT makes it possible to improve spatial localization, that is, it allows one to define the presence of any frequency in the signal and the interval of its presence. However, owing to Heisenberg's uncertainty principle, it is impossible to tell precisely, what frequency is present in the signal at the current moment of time: it is possible to speak only about the range of frequencies. Besides, it is impossible to specify precisely the time moment of the presence of this or that frequency: it is possible to speak only about the time frame. It is this feature that imposes major constrains on the applicability of the STFT. In spite of the fact that the problems of resolution in time and frequency result from a physical phenomenon (Heisenberg's uncertainty principle) and exist independent of the transform applied, there is a possibility to analyze any signal, using the alternative approach - the multiresolutional analysis (MRA). The wavelet-transform is one of the methods for making a MRA-type analysis. Thanks to it, low frequencies can be shown in a more detailed form with respect to time, and high ones - with respect to frequency. The paper presents the results of calculating of the components of the deflection of the vertical, done by the SFT, STFT and WT. The results are presented in the form of 3-d models that visually show the action of Heisenberg's uncertainty principle in the specified algorithms. The research conducted allows us to recommend the application of wavelet-transform to calculate of the components of the deflection of the vertical in the near-field zone. Keywords: Standard Fourier Transform, Short-Time Fourier Transform, Wavelet Transform, Heisenberg's uncertainty principle.

  13. Mathematical Methods for Optical Physics and Engineering

    NASA Astrophysics Data System (ADS)

    Gbur, Gregory J.

    2011-01-01

    1. Vector algebra; 2. Vector calculus; 3. Vector calculus in curvilinear coordinate systems; 4. Matrices and linear algebra; 5. Advanced matrix techniques and tensors; 6. Distributions; 7. Infinite series; 8. Fourier series; 9. Complex analysis; 10. Advanced complex analysis; 11. Fourier transforms; 12. Other integral transforms; 13. Discrete transforms; 14. Ordinary differential equations; 15. Partial differential equations; 16. Bessel functions; 17. Legendre functions and spherical harmonics; 18. Orthogonal functions; 19. Green's functions; 20. The calculus of variations; 21. Asymptotic techniques; Appendices; References; Index.

  14. Transfer Functions Via Laplace- And Fourier-Borel Transforms

    NASA Technical Reports Server (NTRS)

    Can, Sumer; Unal, Aynur

    1991-01-01

    Approach to solution of nonlinear ordinary differential equations involves transfer functions based on recently-introduced Laplace-Borel and Fourier-Borel transforms. Main theorem gives transform of response of nonlinear system as Cauchy product of transfer function and transform of input function of system, together with memory effects. Used to determine responses of electrical circuits containing variable inductances or resistances. Also possibility of doing all noncommutative algebra on computers in such symbolic programming languages as Macsyma, Reduce, PL1, or Lisp. Process of solution organized and possibly simplified by algebraic manipulations reducing integrals in solutions to known or tabulated forms.

  15. α-Fe2O3 nanosheet-assembled hierarchical hollow mesoporous microspheres: Microwave-assisted solvothermal synthesis and application in photocatalysis.

    PubMed

    Sun, Tuan-Wei; Zhu, Ying-Jie; Qi, Chao; Ding, Guan-Jun; Chen, Feng; Wu, Jin

    2016-02-01

    α-Fe2O3 nanosheet-assembled hierarchical hollow mesoporous microspheres (HHMSs) were prepared by thermal transformation of nanosheet-assembled hierarchical hollow mesoporous microspheres of a precursor. The precursor was rapidly synthesized using FeCl3·6H2O as the iron source, ethanolamine (EA) as the alkali source, and ethylene glycol (EG) as the solvent by the microwave-assisted solvothermal method. The samples were characterized by X-ray powder diffraction (XRD), thermogravimetric (TG) analysis, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption-desorption isotherm. The effects of the microwave solvothermal temperature and EA amount on the morphology of the precursor were investigated. The as-prepared α-Fe2O3 HHMSs exhibit a good photocatalytic activity for the degradation of salicylic acid, and are promising for the application in wastewater treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Improved pulse shape discrimination in EJ-301 liquid scintillators

    NASA Astrophysics Data System (ADS)

    Lang, R. F.; Masson, D.; Pienaar, J.; Röttger, S.

    2017-06-01

    Digital pulse shape discrimination has become readily available to distinguish nuclear recoil and electronic recoil events in scintillation detectors. We evaluate digital implementations of pulse shape discrimination algorithms discussed in the literature, namely the Charge Comparison Method, Pulse-Gradient Analysis, Fourier Series and Standard Event Fitting. In addition, we present a novel algorithm based on a Laplace Transform. Instead of comparing the performance of these algorithms based on a single Figure of Merit, we evaluate them as a function of recoil energy. Specifically, using commercial EJ-301 liquid scintillators, we examined both the resulting acceptance of nuclear recoils at a given rejection level of electronic recoils, as well as the purity of the selected nuclear recoil event samples. We find that both a Standard Event fit and a Laplace Transform can be used to significantly improve the discrimination capabilities over the whole considered energy range of 0 - 800keVee . Furthermore, we show that the Charge Comparison Method performs poorly in accurately identifying nuclear recoils.

  17. Probing atomic scale transformation of fossil dental enamel using Fourier transform infrared and nuclear magnetic resonance spectroscopy: a case study from the Tugen Hills (Rift Gregory, Kenya).

    PubMed

    Yi, Haohao; Balan, Etienne; Gervais, Christel; Ségalen, Loïc; Roche, Damien; Person, Alain; Fayon, Franck; Morin, Guillaume; Babonneau, Florence

    2014-09-01

    A series of fossil tooth enamel samples was investigated by Fourier transform infrared (FTIR) spectroscopy, (13)C and (19)F magic-angle spinning nuclear magnetic resonance (MAS NMR) and scanning electron microscopy (SEM). Tooth remains were collected in Mio-Pliocene deposits of the Tugen Hills in Kenya. Significant transformations were observed in fossil enamel as a function of increasing fluorine content (up to 2.8wt.%). FTIR spectroscopy revealed a shift of the ν1 PO4 stretching band to higher frequency. The ν2 CO3 vibrational band showed a decrease in the intensity of the primary B-type carbonate signal, which was replaced by a specific band at 864cm(-1). This last band was ascribed to a specific carbonate environment in which the carbonate group is closely associated to a fluoride ion. The occurrence of this carbonate defect was consistently attested by the observation of two different fluoride signals in the (19)F NMR spectra. One main signal, at ∼-100ppm, is related to structural F ions in the apatite channel and the other, at -88ppm, corresponds to the composite defect. These spectroscopic observations can be understood as resulting from the mixture of two phases: biogenic hydroxylapatite (bioapatite) and secondary fluorapatite. SEM observations of the most altered sample confirmed the extensive replacement of the bioapatite by fluorapatite, resulting from the dissolution of the primary bioapatite followed by the precipitation of carbonate-fluorapatite. The ν2 CO3 IR bands can be efficiently used to monitor the extent of this type of bioapatite transformation during fossilization. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Electron-molecule chemistry and charging processes on organic ices and Titan's icy aerosol surrogates

    NASA Astrophysics Data System (ADS)

    Pirim, C.; Gann, R. D.; McLain, J. L.; Orlando, T. M.

    2015-09-01

    Electron-induced polymerization processes and charging events that can occur within Titan's atmosphere or on its surface were simulated using electron irradiation and dissociative electron attachment (DEA) studies of nitrogen-containing organic condensates. The DEA studies probe the desorption of H- from hydrogen cyanide (HCN), acetonitrile (CH3CN), and aminoacetonitrile (NH2CH2CN) ices, as well as from synthesized tholin materials condensed or deposited onto a graphite substrate maintained at low temperature (90-130 K). The peak cross sections for H- desorption during low-energy (3-15 eV) electron irradiation were measured and range from 3 × 10-21 to 2 × 10-18 cm2. Chemical and structural transformations of HCN ice upon 2 keV electron irradiation were investigated using X-ray photoelectron and Fourier-transform infrared spectroscopy techniques. The electron-beam processed materials displayed optical properties very similar to tholins produced by conventional discharge methods. Electron and negative ion trapping lead to 1011 charges cm-2 on a flat surface which, assuming a radius of 0.05 μm for Titan aerosols, is ∼628 charges/radius (in μm). The facile charge trapping indicates that electron interactions with nitriles and complex tholin-like molecules could affect the conductivity of Titan's atmosphere due to the formation of large negative ion complexes. These negatively charged complexes can also precipitate onto Titan's surface and possibly contribute to surface reactions and the formation of dunes.

  19. Coherent time-stretch transformation for real-time capture of wideband signals.

    PubMed

    Buckley, Brandon W; Madni, Asad M; Jalali, Bahram

    2013-09-09

    Time stretch transformation of wideband waveforms boosts the performance of analog-to-digital converters and digital signal processors by slowing down analog electrical signals before digitization. The transform is based on dispersive Fourier transformation implemented in the optical domain. A coherent receiver would be ideal for capturing the time-stretched optical signal. Coherent receivers offer improved sensitivity, allow for digital cancellation of dispersion-induced impairments and optical nonlinearities, and enable decoding of phase-modulated optical data formats. Because time-stretch uses a chirped broadband (>1 THz) optical carrier, a new coherent detection technique is required. In this paper, we introduce and demonstrate coherent time stretch transformation; a technique that combines dispersive Fourier transform with optically broadband coherent detection.

  20. Adaptive Filtering to Enhance Noise Immunity of Impedance and Admittance Spectroscopy: Comparison with Fourier Transformation

    NASA Astrophysics Data System (ADS)

    Stupin, Daniil D.; Koniakhin, Sergei V.; Verlov, Nikolay A.; Dubina, Michael V.

    2017-05-01

    The time-domain technique for impedance spectroscopy consists of computing the excitation voltage and current response Fourier images by fast or discrete Fourier transformation and calculating their relation. Here we propose an alternative method for excitation voltage and current response processing for deriving a system impedance spectrum based on a fast and flexible adaptive filtering method. We show the equivalence between the problem of adaptive filter learning and deriving the system impedance spectrum. To be specific, we express the impedance via the adaptive filter weight coefficients. The noise-canceling property of adaptive filtering is also justified. Using the RLC circuit as a model system, we experimentally show that adaptive filtering yields correct admittance spectra and elements ratings in the high-noise conditions when the Fourier-transform technique fails. Providing the additional sensitivity of impedance spectroscopy, adaptive filtering can be applied to otherwise impossible-to-interpret time-domain impedance data. The advantages of adaptive filtering are justified with practical living-cell impedance measurements.

  1. Strong Quantum Coherence between Fermi Liquid Mahan Excitons

    NASA Astrophysics Data System (ADS)

    Paul, J.; Stevens, C. E.; Liu, C.; Dey, P.; McIntyre, C.; Turkowski, V.; Reno, J. L.; Hilton, D. J.; Karaiskaj, D.

    2016-04-01

    In modulation doped quantum wells, the excitons are formed as a result of the interactions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the so-called "Mahan excitons." The binding energy of Mahan excitons is expected to be greatly reduced and any quantum coherence destroyed as a result of the screening and electron-electron interactions. Surprisingly, we observe strong quantum coherence between the heavy hole and light hole excitons. Such correlations are revealed by the dominating cross-diagonal peaks in both one-quantum and two-quantum two-dimensional Fourier transform spectra. Theoretical simulations based on the optical Bloch equations where many-body effects are included phenomenologically reproduce well the experimental spectra. Time-dependent density functional theory calculations provide insight into the underlying physics and attribute the observed strong quantum coherence to a significantly reduced screening length and collective excitations of the many-electron system.

  2. Strong Quantum Coherence between Fermi Liquid Mahan Excitons.

    PubMed

    Paul, J; Stevens, C E; Liu, C; Dey, P; McIntyre, C; Turkowski, V; Reno, J L; Hilton, D J; Karaiskaj, D

    2016-04-15

    In modulation doped quantum wells, the excitons are formed as a result of the interactions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the so-called "Mahan excitons." The binding energy of Mahan excitons is expected to be greatly reduced and any quantum coherence destroyed as a result of the screening and electron-electron interactions. Surprisingly, we observe strong quantum coherence between the heavy hole and light hole excitons. Such correlations are revealed by the dominating cross-diagonal peaks in both one-quantum and two-quantum two-dimensional Fourier transform spectra. Theoretical simulations based on the optical Bloch equations where many-body effects are included phenomenologically reproduce well the experimental spectra. Time-dependent density functional theory calculations provide insight into the underlying physics and attribute the observed strong quantum coherence to a significantly reduced screening length and collective excitations of the many-electron system.

  3. Nonlinear Raman forward scattering of a short laser pulse in a collisional transversely magnetized plasma

    NASA Astrophysics Data System (ADS)

    Paknezhad, Alireza

    2013-01-01

    Nonlinear Raman forward scattering (NRFS) of an intense short laser pulse with a duration shorter than the plasma period through a homogenous collisional transversely magnetized plasma is investigated theoretically when ponderomotive, relativistic and collioninal nonlinearities are taken into account. The plasma is embedded in a uniform magnetic field perpendicular to both, the direction of propagation and electric vector of the radiation field. Nonlinear wave equation is set up and Fourier transformation method is used to solve the coupled equations describing NRFS instability. Finally, the growth rate of this instability is obtained. Thermal effects of plasma electrons and effect of the electron-ion collisions are examined. It is found that the growth rate of Raman forward scattering first decreases on increasing electron thermal velocity, minimizes at an optimum value, and then increases. Our results also show that the growth rate increases by increasing the electron-ion collisions.

  4. Kinetics and Product Branching Fractions of Reactions between a Cation and a Radical: Ar+ + CH3 and O2+ + CH3 (Postprint)

    DTIC Science & Technology

    2015-01-13

    Gross group using a Chen nozzle coupled to a Fourier transform ion cyclotron reso- nance (FT-ICR) mass spectrometer for reactions of the benzyl radical...reactions: A Fourier transform ion cyclotron resonance study of allyl radical reacting with aromatic radical cations. Int. J. Mass Spectrom. 2009, 287, 8

  5. Introduction to Flight Test Engineering (Introduction aux techniques des essais en vol)

    DTIC Science & Technology

    2005-07-01

    or aircraft parameters • Calculations in the frequency domain ( Fast Fourier Transform) • Data analysis with dedicated software for: • Signal...density Fast Fourier Transform Transfer function analysis Frequency response analysis Etc. PRESENTATION Color/black & white Display screen...envelope by operating the airplane at increasing ranges - representing increasing risk - of engine operation, airspeeds both fast and slow, altitude

  6. Color and surface chemistry changes of extracted wood flour after heating at 120 °C

    Treesearch

    Yao Chen; Mandla A. Tshabalala; Jianmin Gao; Nicole M. Stark

    2013-01-01

    To investigate the effect of heat on color and surface chemistry of wood flour (WF), unextracted, extracted and delignified samples of commercial WF were heated at 120 °C for 24 h and analyzed by colorimetry, diffuse reflectance visible (DRV), attenuated total reflectance Fourier transform infrared (ATR-FTIR) and Fourier transform Raman (FT-Raman) spectroscopies....

  7. Characterization of southern yellow pine bark layers by Attenuated Total Reflectance (ATR) and Fourier Transform Infrared (FT-IR) Spectroscopy

    Treesearch

    Thomas L. Eberhardt

    2009-01-01

    The outer bark (rhytidome) of the southern yellow pines is a complex structure comprised of alternating layers of obliterated phloem and periderm tissues, with the latter comprised of three layers, those being phellem, phellogen, and phelloderm. An attenuated total reflectance (ATR) sampling accessory, coupled with a Fourier transform infrared (FTIR) spectrometer,...

  8. Determination of diosmin in pharmaceutical formulations using Fourier transform infrared spectrophotometry

    PubMed Central

    Bunaciu, Andrei A.; Udristioiu, Gabriela Elena; Ruţă, Lavinia L.; Fleschin, Şerban; Aboul-Enein, Hassan Y.

    2009-01-01

    A Fourier transform infrared (FT-IR) spectrometric method was developed for the rapid, direct measurement of diosmin in different pharmaceutical drugs. Conventional KBr-spectra were compared for best determination of active substance in commercial preparations. The Beer–Lambert law and two chemometric approaches, partial least squares (PLS) and principal component regression (PCR+) methods, were tried in data processing. PMID:23960715

  9. Molecular Isotopic Distribution Analysis (MIDAs) with Adjustable Mass Accuracy

    NASA Astrophysics Data System (ADS)

    Alves, Gelio; Ogurtsov, Aleksey Y.; Yu, Yi-Kuo

    2014-01-01

    In this paper, we present Molecular Isotopic Distribution Analysis (MIDAs), a new software tool designed to compute molecular isotopic distributions with adjustable accuracies. MIDAs offers two algorithms, one polynomial-based and one Fourier-transform-based, both of which compute molecular isotopic distributions accurately and efficiently. The polynomial-based algorithm contains few novel aspects, whereas the Fourier-transform-based algorithm consists mainly of improvements to other existing Fourier-transform-based algorithms. We have benchmarked the performance of the two algorithms implemented in MIDAs with that of eight software packages (BRAIN, Emass, Mercury, Mercury5, NeutronCluster, Qmass, JFC, IC) using a consensus set of benchmark molecules. Under the proposed evaluation criteria, MIDAs's algorithms, JFC, and Emass compute with comparable accuracy the coarse-grained (low-resolution) isotopic distributions and are more accurate than the other software packages. For fine-grained isotopic distributions, we compared IC, MIDAs's polynomial algorithm, and MIDAs's Fourier transform algorithm. Among the three, IC and MIDAs's polynomial algorithm compute isotopic distributions that better resemble their corresponding exact fine-grained (high-resolution) isotopic distributions. MIDAs can be accessed freely through a user-friendly web-interface at http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/midas/index.html.

  10. GPU-accelerated non-uniform fast Fourier transform-based compressive sensing spectral domain optical coherence tomography.

    PubMed

    Xu, Daguang; Huang, Yong; Kang, Jin U

    2014-06-16

    We implemented the graphics processing unit (GPU) accelerated compressive sensing (CS) non-uniform in k-space spectral domain optical coherence tomography (SD OCT). Kaiser-Bessel (KB) function and Gaussian function are used independently as the convolution kernel in the gridding-based non-uniform fast Fourier transform (NUFFT) algorithm with different oversampling ratios and kernel widths. Our implementation is compared with the GPU-accelerated modified non-uniform discrete Fourier transform (MNUDFT) matrix-based CS SD OCT and the GPU-accelerated fast Fourier transform (FFT)-based CS SD OCT. It was found that our implementation has comparable performance to the GPU-accelerated MNUDFT-based CS SD OCT in terms of image quality while providing more than 5 times speed enhancement. When compared to the GPU-accelerated FFT based-CS SD OCT, it shows smaller background noise and less side lobes while eliminating the need for the cumbersome k-space grid filling and the k-linear calibration procedure. Finally, we demonstrated that by using a conventional desktop computer architecture having three GPUs, real-time B-mode imaging can be obtained in excess of 30 fps for the GPU-accelerated NUFFT based CS SD OCT with frame size 2048(axial) × 1,000(lateral).

  11. Determination of Spectroscopic Properties of Atmospheric Molecules from High Resolution Vacuum Ultraviolet Cross Section and Wavelength Measurements

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Yoshino, K.

    1997-01-01

    An account is given of progress during the period 8/l/96-7/31/97 on work on (a) cross section measurements of O2 S-R using a Fourier transform spectrometer (FTS) at the Photon Factory in Japan; (b) the determination of the predissociation linewidths of the Schumann-Runge bands (S-R) of 02; (c) cross section measurements of 02 Herzberg bands using a Fourier transform spectrometer (FTS) at Imperial College; and (d) cross section measurements of H2O in the wavelength region 120-188 nm. The experimental investigations are effected at high resolution with a 6.65 m scanning spectrometer and with the Fourier transform spectrometer. Below 175 nm, synchrotron radiation is most suitable for cross section measurements in combination with spectrometers at the Photon Factory Japan. Cross section measurements of the Doppler limited bands depend on using the very high resolution, available with the Fourier transform spectrometer, (0.025/cm resolution). All of these spectroscopic measurements are needed for accurate calculations of the production of atomic oxygen, the penetration of solar radiation into the Earth's atmosphere, and photochemistry of minor molecules.

  12. Molecular Isotopic Distribution Analysis (MIDAs) with adjustable mass accuracy.

    PubMed

    Alves, Gelio; Ogurtsov, Aleksey Y; Yu, Yi-Kuo

    2014-01-01

    In this paper, we present Molecular Isotopic Distribution Analysis (MIDAs), a new software tool designed to compute molecular isotopic distributions with adjustable accuracies. MIDAs offers two algorithms, one polynomial-based and one Fourier-transform-based, both of which compute molecular isotopic distributions accurately and efficiently. The polynomial-based algorithm contains few novel aspects, whereas the Fourier-transform-based algorithm consists mainly of improvements to other existing Fourier-transform-based algorithms. We have benchmarked the performance of the two algorithms implemented in MIDAs with that of eight software packages (BRAIN, Emass, Mercury, Mercury5, NeutronCluster, Qmass, JFC, IC) using a consensus set of benchmark molecules. Under the proposed evaluation criteria, MIDAs's algorithms, JFC, and Emass compute with comparable accuracy the coarse-grained (low-resolution) isotopic distributions and are more accurate than the other software packages. For fine-grained isotopic distributions, we compared IC, MIDAs's polynomial algorithm, and MIDAs's Fourier transform algorithm. Among the three, IC and MIDAs's polynomial algorithm compute isotopic distributions that better resemble their corresponding exact fine-grained (high-resolution) isotopic distributions. MIDAs can be accessed freely through a user-friendly web-interface at http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/midas/index.html.

  13. Biosynthesis of silver nanoparticles using fresh extracts of Tridax procumbens linn.

    PubMed

    Bhati-Kushwaha, Himakshi

    2014-04-01

    A simple and eco-friendly method for the synthesis of biogenic nanoparticles (NP's) using an aqueous solution of T. procumbens fresh plant extract (leaf and stem) as a bioreductant is reported. The prepared biogenic nanoparticles were well characterized using U.V. visible spectroscopy, scanning electron microscopy, X-ray diffraction and Fourier-transform infrared spectroscopy. The particles were confirmed to be elemental crystal by X-ray diffraction. The potential applications of biosynthesized nanoparticles as antimicrobial (antibacterial and antifungal) against pathogens Escherichia coli, Vibrio cholerae, Aspergillus niger and Aspergillusflavus were demonstrated.

  14. Chemical phase analysis of seed mediated synthesized anisotropic silver nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bharti, Amardeep, E-mail: abharti@pu.ac.in; Goyal, Navdeep; Singh, Suman

    Noble-metal nanoparticles are of great interest because of its broad applications almost in every stream (i.e. biology, chemistry and engineering) due to their unique size/shape dependant properties. In this paper, chemical phase of seed mediated synthesized anisotropic silver nanoparticle (AgNPs) has been investigated via fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). These nanaoparticles were synthesized by seed-growth method controlled by urea and dextrose results to highly stable 12-20 nm particle size revealed by zeta potential and transmission electron microscopy (TEM)

  15. Hair waving natural product: Dillenia indica seed sap.

    PubMed

    Saikia, Jyoti Prasad

    2013-02-01

    Knowing keratin is the main component and mechanical strength of hair a study was performed to evaluate whether Dillenia indica seed sap can affect molecular strength of hair or not. In the present study the human hair collected from barber shop waste were subjected to purified sap for 12 h and then analysed using Fourier transform infrared spectroscopy (FTIR) for documenting evidence for keratin degradation. Further the deterioration was confirmed by thermo gravimetric analysis (TGA) and scanning electron microscopy (SEM). Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Spaceborne Hybrid-FPGA System for Processing FTIR Data

    NASA Technical Reports Server (NTRS)

    Bekker, Dmitriy; Blavier, Jean-Francois L.; Pingree, Paula J.; Lukowiak, Marcin; Shaaban, Muhammad

    2008-01-01

    Progress has been made in a continuing effort to develop a spaceborne computer system for processing readout data from a Fourier-transform infrared (FTIR) spectrometer to reduce the volume of data transmitted to Earth. The approach followed in this effort, oriented toward reducing design time and reducing the size and weight of the spectrometer electronics, has been to exploit the versatility of recently developed hybrid field-programmable gate arrays (FPGAs) to run diverse software on embedded processors while also taking advantage of the reconfigurable hardware resources of the FPGAs.

  17. Solvothermal synthesis of fusiform hexagonal prism SrCO{sub 3} microrods via ethylene glycol solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi Liange; Du Fanglin

    2007-08-07

    Fusiform hexagonal prism SrCO{sub 3} microrods were prepared by a simple solvothermal route at 120 deg. C, and characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and Fourier transform infrared (FT-IR) spectroscopy. By controlling the content of ethylene glycol (EG), it was found that ethylene glycol (EG) played an important role in the formation of such SrCO{sub 3} microrods. Finally, effects of other solvents on the products, including 1,2-propanediol and glycerin, were also investigated.

  18. Simulating Picosecond X-ray Diffraction from shocked crystals by Post-processing Molecular Dynamics Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimminau, G; Nagler, B; Higginbotham, A

    2008-06-19

    Calculations of the x-ray diffraction patterns from shocked crystals derived from the results of Non-Equilibrium-Molecular-Dynamics (NEMD) simulations are presented. The atomic coordinates predicted by the NEMD simulations combined with atomic form factors are used to generate a discrete distribution of electron density. A Fast-Fourier-Transform (FFT) of this distribution provides an image of the crystal in reciprocal space, which can be further processed to produce quantitative simulated data for direct comparison with experiments that employ picosecond x-ray diffraction from laser-irradiated crystalline targets.

  19. Plasma-enhanced preparation of graphene composites with polyaniline and polypyrrole

    NASA Astrophysics Data System (ADS)

    Uygun Oksuz, Aysegul; Cogal, Sadik; Celik Cogal, Gamze; Uygun, Emre; Oksuz, Lutfi

    2016-10-01

    This study presents the preparation of graphene (GR) nanocomposites with polyaniline (PANI) and polypyrrole (PPy) through the fast, versatile and environmentally friendly process of radiofrequency (RF) -plasma polymerization. Morphological characterization of nanocomposites was performed using scanning electron microscopy (SEM) and showed that the PANI and PPy conducting polymers coated the GR surface. The surface properties of the GR nanocomposites were determined using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis. This work has been supported by Tubitak with 114M867 project number.

  20. Structural and optical properties of electrospun MoO3 nanowires

    NASA Astrophysics Data System (ADS)

    Das, Arnab Kumar; Modak, Rajkumar; Srinivasan, Ananthakrishnan

    2018-05-01

    Nanofibers of polyvinyl alcohol (PVA) containing ammonium molybdate were prepared by a combination of sol-gel and electrospinning techniques. Heat treatment of the as-spun composite nanofibers at 500 °C yielded MoO3 nanowires with a diameter of ˜180 nm. The product was characterized by X-ray diffraction (XRD), scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. XRD and Raman spectra of the heat nanowires clearly show the formation of orthorhombic single phase MoO3 structure without any impurity phases.

Top