Dubey, J.P.; Velmurugan, G.V.; Ragendran, C.; Yabsley, M.J.; Thomas, N.J.; Beckmen, K.B.; Sinnett, D.; Ruid, D.; Hart, J.; Fair, P.A.; McFee, W.E.; Shearn-Bochsler, V.; Kwok, O.C.H.; Ferreira, L.R.; Choudhary, S.; Faria, E.B.; Zhou, H.; Felix, T.A.; Su, C.
2011-01-01
Little is known of the genetic diversity of Toxoplasma gondii circulating in wildlife. In the present study wild animals, from the USA were examined for T. gondii infection. Tissues of naturally exposed animals were bioassayed in mice for isolation of viable parasites. Viable T. gondii was isolated from 31 animals including, to our knowledge for the first time, from a bald eagle (Haliaeetus leucocephalus), five gray wolves (Canis lupus), a woodrat (Neotoma micropus), and five Arctic foxes (Alopex lagopus). Additionally, 66 T. gondii isolates obtained previously, but not genetically characterised, were revived in mice. Toxoplasma gondii DNA isolated from these 97 samples (31+66) was characterised using 11 PCR-restriction fragment length polymorphism (RFLP) markers (SAG1, 5'- and 3'-SAG2, alt.SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1 and Apico). A total of 95 isolates were successfully genotyped. In addition to clonal Types II, and III, 12 different genotypes were found. These genotype data were combined with 74 T. gondii isolates previously characterised from wildlife from North America and a composite data set of 169 isolates comprised 22 genotypes, including clonal Types II, III and 20 atypical genotypes. Phylogenetic network analysis showed limited diversity with dominance of a recently designated fourth clonal type (Type 12) in North America, followed by the Type II and III lineages. These three major lineages together accounted for 85% of strains in North America. The Type 12 lineage includes previously identified Type A and X strains from sea otters. This study revealed that the Type 12 lineage accounts for 46.7% (79/169) of isolates and is dominant in wildlife of North America. No clonal Type I strain was identified among these wildlife isolates. These results suggest that T. gondii strains in wildlife from North America have limited diversity, with the occurrence of only a few major clonal types.
USDA-ARS?s Scientific Manuscript database
Little is known of the genetic diversity of Toxoplasma gondii circulating in wildlife. In the present study, wild animals, including dolphins from the USA were examined for T. gondii infection. Tissues of naturally exposed animals were bioassayed in mice for isolation of viable parasites. Viable T. ...
Engle, E K; Fisher, D A C; Miller, C A; McLellan, M D; Fulton, R S; Moore, D M; Wilson, R K; Ley, T J; Oh, S T
2015-04-01
Clonal architecture in myeloproliferative neoplasms (MPNs) is poorly understood. Here we report genomic analyses of a patient with primary myelofibrosis (PMF) transformed to secondary acute myeloid leukemia (sAML). Whole genome sequencing (WGS) was performed on PMF and sAML diagnosis samples, with skin included as a germline surrogate. Deep sequencing validation was performed on the WGS samples and an additional sample obtained during sAML remission/relapsed PMF. Clustering analysis of 649 validated somatic single-nucleotide variants revealed four distinct clonal groups, each including putative driver mutations. The first group (including JAK2 and U2AF1), representing the founding clone, included mutations with high frequency at all three disease stages. The second clonal group (including MYB) was present only in PMF, suggesting the presence of a clone that was dispensable for transformation. The third group (including ASXL1) contained mutations with low frequency in PMF and high frequency in subsequent samples, indicating evolution of the dominant clone with disease progression. The fourth clonal group (including IDH1 and RUNX1) was acquired at sAML transformation and was predominantly absent at sAML remission/relapsed PMF. Taken together, these findings illustrate the complex clonal dynamics associated with disease evolution in MPNs and sAML.
He, Nianpeng; Wu, Ling; Zhou, Daowei
2004-12-01
This paper studied the clonal architecture of two divergent Leymus chinensis types (grey-green type and yellow-green type) in Songnen grassland, and compared their internode length, spacer length, interbranching length, interbranching angle, and ramet population density and height under the same habitat. The results showed that there was no significant difference in these clonal characteristics except spacer length and ramet population density between the two types of L. chinensis, and yellow-green type, with less spacer length and more ramet density than grey-green type, should be more adaptable to the resourceful habitat. Moreover, the V-indices of the clonal architecture of two divergent L. chinensis types were all close to 1, and the difference was not significant. Therefore, both of the two types belonged to typical guerilla clonal plant.
Maksimov, Pavlo; Zerweck, Johannes; Dubey, Jitender P.; Pantchev, Nikola; Frey, Caroline F.; Maksimov, Aline; Reimer, Ulf; Schutkowski, Mike; Hosseininejad, Morteza; Ziller, Mario; Conraths, Franz J.; Schares, Gereon
2013-01-01
Background Cats are definitive hosts of Toxoplasma gondii and play an essential role in the epidemiology of this parasite. The study aims at clarifying whether cats are able to develop specific antibodies against different clonal types of T. gondii and to determine by serotyping the T. gondii clonal types prevailing in cats as intermediate hosts in Germany. Methodology To establish a peptide-microarray serotyping test, we identified 24 suitable peptides using serological T. gondii positive (n=21) and negative cat sera (n=52). To determine the clonal type-specific antibody response of cats in Germany, 86 field sera from T. gondii seropositive naturally infected cats were tested. In addition, we analyzed the antibody response in cats experimentally infected with non-canonical T. gondii types (n=7). Findings Positive cat reference sera reacted predominantly with peptides harbouring amino acid sequences specific for the clonal T. gondii type the cats were infected with. When the array was applied to field sera from Germany, 98.8% (85/86) of naturally-infected cats recognized similar peptide patterns as T. gondii type II reference sera and showed the strongest reaction intensities with clonal type II-specific peptides. In addition, naturally infected cats recognized type II-specific peptides significantly more frequently than peptides of other type-specificities. Cats infected with non-canonical types showed the strongest reactivity with peptides presenting amino-acid sequences specific for both, type I and type III. Conclusions Cats are able to mount a clonal type-specific antibody response against T. gondii. Serotyping revealed for most seropositive field sera patterns resembling those observed after clonal type II-T. gondii infection. This finding is in accord with our previous results on the occurrence of T. gondii clonal types in oocysts shed by cats in Germany. PMID:24244652
Merida-Vieyra, Jocelin; De Colsa, Agustin; Calderon Castañeda, Yair; Arzate Barbosa, Patricia; Aquino Andrade, Alejandra
2016-01-01
The aim of this study was to identify the presence of group CTX-M-9 extended spectrum beta-lactamases (ESBL) in clinical Escherichia coli isolates from pediatric patients. A total of 404 non-repeated positive ESBL E. coli isolates were collected from documented clinical infections in pediatric patients over a 2-year period. The identification and susceptibility profiles were determined using an automated system. Isolates that suggested ESBL production based on their resistance profiles to third and fourth generation cephalosporin and monobactam were selected. ESBL production was phenotypically confirmed using a diffusion method with cefotaxime and ceftazidime discs alone and in combination with clavulanic acid. blaESBL gene identification was performed through PCR amplification and sequencing. Pulsed Field Gel Electrophoresis (PFGE) and Multilocus Sequence Typing (MLST) were performed to establish the clonal relationships of the E. coli isolates. CTX-M-9-type ESBLs were detected in 2.5% of the isolates. The subtypes corresponded to blaCTX-M-14 (n = 4) and blaCTX-M-27 (n = 6). Additionally, coexistence with other beta-lactamases was observed. A clonal relationship was established in three isolates; the rest were classified as non-related. We found seven different sequence type (ST) in CTX-M-9- producing E. coli isolates. ST38 was the most frequent. This study is the first report in Mexico to document the presence of group CTX-M-9 ESBLs in E. coli isolates from pediatric patients. PMID:27992527
Babouee, B.; Frei, R.; Schultheiss, E.; Widmer, A. F.; Goldenberger, D.
2011-01-01
The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has become an increasing problem worldwide in recent decades. Molecular typing methods have been developed to identify clonality of strains and monitor spread of MRSA. We compared a new commercially available DiversiLab (DL) repetitive element PCR system with spa typing, spa clonal cluster analysis, and pulsed-field gel electrophoresis (PFGE) in terms of discriminatory power and concordance. A collection of 106 well-defined MRSA strains from our hospital was analyzed, isolated between 1994 and 2006. In addition, we analyzed 6 USA300 strains collected in our institution. DL typing separated the 106 MRSA isolates in 10 distinct clusters and 8 singleton patterns. Clustering analysis into spa clonal complexes resulted in 3 clusters: spa-CC 067/548, spa-CC 008, and spa-CC 012. The discriminatory powers (Simpson's index of diversity) were 0.982, 0.950, 0.846, and 0.757 for PFGE, spa typing, DL typing, and spa clonal clustering, respectively. DL typing and spa clonal clustering showed the highest concordance, calculated by adjusted Rand's coefficients. The 6 USA300 isolates grouped homogeneously into distinct PFGE and DL clusters, and all belonged to spa type t008 and spa-CC 008. Among the three methods, DL proved to be rapid and easy to perform. DL typing qualifies for initial screening during outbreak investigation. However, compared to PFGE and spa typing, DL typing has limited discriminatory power and therefore should be complemented by more discriminative methods in isolates that share identical DL patterns. PMID:21307215
Song, Yao-Bin; Yu, Fei-Hai; Keser, Lidewij H; Dawson, Wayne; Fischer, Markus; Dong, Ming; van Kleunen, Mark
2013-02-01
Many ecosystems are dominated by clonal plants. Among the most distinctive characteristics of clonal plants is their potential for clonal integration (i.e. the translocation of resources between interconnected ramets), suggesting that integration may play a role in their success. However, a general synthesis of effects of clonal integration on plant performance is lacking. We conducted a meta-analysis on the effects of clonal integration on biomass production and asexual reproduction of the whole clone, the recipient part (i.e. the part of a clone that imports resources) and the donor part (i.e. the part of a clone that exports resources). The final dataset contained 389 effect sizes from 84 studies covering 57 taxa. Overall, clonal integration increased performance of recipient parts without decreasing that of donor parts, and thus increased performance of whole clones. Among the studies and taxa considered, the benefits of clonal integration did not differ between two types of experimental approaches, between stoloniferous and rhizomatous growth forms, between directions of resource translocation (from younger to older ramet or vice versa), or among types of translocated resources (water, nutrients and carbohydrates). Clonal taxa with larger benefits of integration on whole-clone performance were not more invasive globally, but taxa in which recipient parts in unfavorable patches benefited more from integration were. Our results demonstrate general performance benefits of clonal integration, at least in the short term, and suggest that clonal integration contributes to the success of clonal plants.
Clonality of Bacterial Pathogens Causing Hospital-Acquired Pneumonia.
Pudová, V; Htoutou Sedláková, M; Kolář, M
2016-09-01
Hospital-acquired pneumonia (HAP) is one of the most serious complications in patients staying in intensive care units. This multicenter study of Czech patients with HAP aimed at assessing the clonality of bacterial pathogens causing the condition. Bacterial isolates were compared using pulsed-field gel electrophoresis. Included in this study were 330 patients hospitalized between May 1, 2013 and December 31, 2014 at departments of anesthesiology and intensive care medicine of four big hospitals in the Czech Republic. A total of 531 bacterial isolates were obtained, of which 267 were classified as etiological agents causing HAP. Similarity or identity was assessed in 231 bacterial isolates most frequently obtained from HAP patients. Over the study period, no significant clonal spread was noted. Most isolates were unique strains, and the included HAP cases may therefore be characterized as mostly endogenous. Yet there were differences in species and potential identical isolates between the participating centers. In three hospitals, Gram-negative bacteria (Enterobacteriaceae and Pseudomonas aeruginosa) prevailed as etiological agents, and Staphylococcus aureus was most prevalent in the fourth center.
Narayan, Lakshmi; Dodd, Richard S.; O’Hara, Kevin L.
2015-01-01
Premise of the study: Identifying clonal lineages in asexually reproducing plants using microsatellite markers is complicated by the possibility of nonidentical genotypes from the same clonal lineage due to somatic mutations, null alleles, and scoring errors. We developed and tested a clonal identification protocol that is robust to these issues for the asexually reproducing hexaploid tree species coast redwood (Sequoia sempervirens). Methods: Microsatellite data from four previously published and two newly developed primers were scored using a modified protocol, and clones were identified using Bruvo genetic distances. The effectiveness of this clonal identification protocol was assessed using simulations and by genotyping a test set of paired samples of different tissue types from the same trees. Results: Data from simulations showed that our protocol allowed us to accurately identify clonal lineages. Multiple test samples from the same trees were identified correctly, although certain tissue type pairs had larger genetic distances on average. Discussion: The methods described in this paper will allow for the accurate identification of coast redwood clones, facilitating future studies of the reproductive ecology of this species. The techniques used in this paper can be applied to studies of other clonal organisms as well. PMID:25798341
Narayan, Lakshmi; Dodd, Richard S; O'Hara, Kevin L
2015-03-01
Identifying clonal lineages in asexually reproducing plants using microsatellite markers is complicated by the possibility of nonidentical genotypes from the same clonal lineage due to somatic mutations, null alleles, and scoring errors. We developed and tested a clonal identification protocol that is robust to these issues for the asexually reproducing hexaploid tree species coast redwood (Sequoia sempervirens). Microsatellite data from four previously published and two newly developed primers were scored using a modified protocol, and clones were identified using Bruvo genetic distances. The effectiveness of this clonal identification protocol was assessed using simulations and by genotyping a test set of paired samples of different tissue types from the same trees. Data from simulations showed that our protocol allowed us to accurately identify clonal lineages. Multiple test samples from the same trees were identified correctly, although certain tissue type pairs had larger genetic distances on average. The methods described in this paper will allow for the accurate identification of coast redwood clones, facilitating future studies of the reproductive ecology of this species. The techniques used in this paper can be applied to studies of other clonal organisms as well.
Langerak, A W; Molina, T J; Lavender, F L; Pearson, D; Flohr, T; Sambade, C; Schuuring, E; Al Saati, T; van Dongen, J J M; van Krieken, J H J M
2007-02-01
Lymphoproliferations are generally diagnosed via histomorphology and immunohistochemistry. Although mostly conclusive, occasionally the differential diagnosis between reactive lesions and malignant lymphomas is difficult. In such cases molecular clonality studies of immunoglobulin (Ig)/T-cell receptor (TCR) rearrangements can be useful. Here we address the issue of clonality assessment in 106 histologically defined reactive lesions, using the standardized BIOMED-2 Ig/TCR multiplex polymerase chain reaction (PCR) heteroduplex and GeneScan assays. Samples were reviewed nationally, except 10% random cases and cases with clonal results selected for additional international panel review. In total 75% (79/106) only showed polyclonal Ig/TCR targets (type I), whereas another 15% (16/106) represent probably polyclonal cases, with weak Ig/TCR (oligo)clonality in an otherwise polyclonal background (type II). Interestingly, in 10% (11/106) clear monoclonal Ig/TCR products were observed (types III/IV), which prompted further pathological review. Clonal cases included two missed lymphomas in national review and nine cases that could be explained as diagnostically difficult cases or probable lymphomas upon additional review. Our data show that the BIOMED-2 Ig/TCR multiplex PCR assays are very helpful in confirming the polyclonal character in the vast majority of reactive lesions. However, clonality detection in a minority should lead to detailed pathological review, including close interaction between pathologist and molecular biologist.
Verhelst, Stefanie; Poppe, Willy A J; Bogers, Johannes J; Depuydt, Christophe E
2017-03-01
This retrospective study examined whether human papillomavirus (HPV) type-specific viral load changes measured in two or three serial cervical smears are predictive for the natural evolution of HPV infections and correlate with histological grades of cervical intraepithelial neoplasia (CIN), allowing triage of HPV-positive women. A cervical histology database was used to select consecutive women with biopsy-proven CIN in 2012 who had at least two liquid-based cytology samples before the diagnosis of CIN. Before performing cytology, 18 different quantitative PCRs allowed HPV type-specific viral load measurement. Changes in HPV-specific load between measurements were assessed by linear regression, with calculation of coefficient of determination (R) and slope. All infections could be classified into one of five categories: (i) clonal progressing process (R≥0.85; positive slope), (ii) simultaneously occurring clonal progressive and transient infection, (iii) clonal regressing process (R≥0.85; negative slope), (iv) serial transient infection with latency [R<0.85; slopes (two points) between 0.0010 and -0.0010 HPV copies/cell/day], and (v) transient productive infection (R<0.85; slope: ±0.0099 HPV copies/cell/day). Three hundred and seven women with CIN were included; 124 had single-type infections and 183 had multiple HPV types. Only with three consecutive measurements could a clonal process be identified in all CIN3 cases. We could clearly demonstrate clonal regressing lesions with a persistent linear decrease in viral load (R≥0.85; -0.003 HPV copies/cell/day) in all CIN categories. Type-specific viral load increase/decrease in three consecutive measurements enabled classification of CIN lesions in clonal HPV-driven transformation (progression/regression) and nonclonal virion-productive (serial transient/transient) processes.
Miragaia, M.; Thomas, J. C.; Couto, I.; Enright, M. C.; de Lencastre, H.
2007-01-01
Despite its importance as a human pathogen, information on population structure and global epidemiology of Staphylococcus epidermidis is scarce and the relative importance of the mechanisms contributing to clonal diversification is unknown. In this study, we addressed these issues by analyzing a representative collection of S. epidermidis isolates from diverse geographic and clinical origins using multilocus sequence typing (MLST). Additionally, we characterized the mobile element (SCCmec) carrying the genetic determinant of methicillin resistance. The 217 S. epidermidis isolates from our collection were split by MLST into 74 types, suggesting a high level of genetic diversity. Analysis of MLST data using the eBURST algorithm revealed the existence of nine epidemic clonal lineages that were disseminated worldwide. One single clonal lineage (clonal complex 2) comprised 74% of the isolates, whereas the remaining isolates were clustered into 8 minor clonal lineages and 13 singletons. According to our evolutionary model, SCCmec was acquired at least 56 times by S. epidermidis. Although geographic dissemination of S. epidermidis strains and the value of the index of association between the alleles, 0.2898 (P < 0.05), support the clonality of S. epidermidis species, examination of the sequence changes at MLST loci during clonal diversification showed that recombination gives rise to new alleles approximately twice as frequently as point mutations. We suggest that S. epidermidis has a population with an epidemic structure, in which nine clones have emerged upon a recombining background and evolved quickly through frequent transfer of genetic mobile elements, including SCCmec. PMID:17220222
Genetic diversity of Toxoplasma gondii isolates in Egyptian feral cats reveals new genotypes.
Al-Kappany, Y M; Rajendran, C; Abu-Elwafa, S A; Hilali, M; Su, C; Dubey, J P
2010-12-01
Cats are important in the epidemiology of Toxoplasma gondii because they are the only hosts that excrete environmentally resistant oocysts in feces. In the present study, 115 viable T. gondii isolates from tissues of cats from Egypt were genotyped using 10 PCR-restriction fragment length polymorphism markers (SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico) and DNA from tachyzoites. Seven genotypes were recognized including the clonal Type II, Type III (2 genotypes), and 4 atypical genotypes. Ninety percent (103 of 115) of isolates were clonal, i.e., Type II (n = 61) and Type III (n = 42) strains. Of the 61 Type II strains, all had the Type II alleles at all loci, except for 2 strains that had allele I at Apico. Eight isolates were divided into 4 atypical genotypes. One of these genotypes (with 4 isolates) was previously reported in dogs from Sri Lanka and in sand cats from the United Arab Emirates. Four isolates had mixed infections. These results revealed a strong clonal population structure with the dominance of clonal Type II and III lineages of T. gondii in feral cats from Egypt.
Koelle, Samson J.
2017-01-01
Autologous transplantation of hematopoietic stem and progenitor cells lentivirally labeled with unique oligonucleotide barcodes flanked by sequencing primer targets enables quantitative assessment of the self-renewal and differentiation patterns of these cells in a myeloablative rhesus macaque model. Compared with other approaches to clonal tracking, this approach is highly quantitative and reproducible. We documented stable multipotent long-term hematopoietic clonal output of monocytes, granulocytes, B cells, and T cells from a polyclonal pool of hematopoietic stem and progenitor cells in 4 macaques observed for up to 49 months posttransplantation. A broad range of clonal behaviors characterized by contribution level and biases toward certain cell types were extremely stable over time. Correlations between granulocyte and monocyte clonalities were greatest, followed by correlations between these cell types and B cells. We also detected quantitative expansion of T cell–biased clones consistent with an adaptive immune response. In contrast to recent data from a nonquantitative murine model, there was little evidence for clonal succession after initial hematopoietic reconstitution. These findings have important implications for human hematopoiesis, given the similarities between macaque and human physiologies. PMID:28087539
Maksimov, Pavlo; Zerweck, Johannes; Maksimov, Aline; Hotop, Andrea; Groß, Uwe; Spekker, Katrin; Däubener, Walter; Werdermann, Sandra; Niederstrasser, Olaf; Petri, Eckhardt; Mertens, Marc; Ulrich, Rainer G.; Conraths, Franz J.; Schares, Gereon
2012-01-01
Background Different clonal types of Toxoplasma gondii are thought to be associated with distinct clinical manifestations of infections. Serotyping is a novel technique which may allow to determine the clonal type of T. gondii humans are infected with and to extend typing studies to larger populations which include infected but non-diseased individuals. Methodology A peptide-microarray test for T. gondii serotyping was established with 54 previously published synthetic peptides, which mimic clonal type-specific epitopes. The test was applied to human sera (n = 174) collected from individuals with an acute T. gondii infection (n = 21), a latent T. gondii infection (n = 53) and from T. gondii-seropositive forest workers (n = 100). Findings The majority (n = 124; 71%) of all T. gondii seropositive human sera showed reactions against synthetic peptides with sequences specific for clonal type II (type II peptides). Type I and type III peptides were recognized by 42% (n = 73) or 16% (n = 28) of the human sera, respectively, while type II–III, type I–III or type I–II peptides were recognized by 49% (n = 85), 36% (n = 62) or 14% (n = 25) of the sera, respectively. Highest reaction intensities were observed with synthetic peptides mimicking type II-specific epitopes. A proportion of the sera (n = 22; 13%) showed no reaction with type-specific peptides. Individuals with acute toxoplasmosis reacted with a statistically significantly higher number of peptides as compared to individuals with latent T. gondii infection or seropositive forest workers. Conclusions Type II-specific reactions were overrepresented and higher in intensity in the study population, which was in accord with genotyping studies on T. gondii oocysts previously conducted in the same area. There were also individuals with type I- or type III-specific reactions. Well-characterized reference sera and further specific peptide markers are needed to establish and to perform future serotyping approaches with higher resolution. PMID:22470537
Indirect genetic effects from competition in the clonal herb Sedum album (Crassulaceae).
Andersson, Stefan
2014-01-01
Recent years have seen increasing interest in indirect genetic effects, i.e. influences on the phenotype that depend on the genotype of other conspecific individuals; however, the empirical evidence for such effects is still limited, especially in wild plant species. The present study of the clonal herb Sedum album assessed direct and indirect genetic effects on performance-related traits in a 4-year experiment with clonally replicated genotypes, grown in pairs and differing in anthocyanin pigmentation to allow separation of individuals during data collection. In agreement with the existence of indirect genetic effects, the experimentally-paired plants not only expressed their own genotype but were also affected by the genotype of their pair mate. The effect of neighbour genotype explained up to one-fourth of the variation in performance and most likely resulted from competition, imposed by the close physical contact between paired individuals and the limiting conditions used in the garden environment. Indirect genetic effects from competition have the potential to enhance the efficacy of group-level selection relative to individual selection, given the nutrient-poor and spatially-confined substrate available to plants of S. album in the natural habitat.
Lima, Josilene B T; Ribeiro, Guilherme S; Cordeiro, Soraia M; Gouveia, Edilane L; Salgado, Kátia; Spratt, Brian G; Godoy, Daniel; Reis, Mitermayer G; Ko, Albert I; Reis, Joice N
2010-11-15
Since the introduction of Haemophilus influenzae type b (Hib) conjugate vaccines, meningitis caused by serotypes other than Hib has gained in importance. We conducted active hospital-based surveillance for meningitis over an 11-year period in Salvador, Brazil. H. influenzae isolates were serotyped and analyzed by polymerase chain reaction, pulsed-field gel electrophoresis, and DNA sequencing to identify strains with a specific deletion (IS1016) in the bexA gene (IS1016-bexA). We identified 43 meningitis cases caused by non-type b H. influenzae: 28 (65%) were caused by type a (Hia), 9 (21%) were caused by noncapsulated strains, and 3 (7%) each were caused by types e and f. Hia isolates clustered in 2 clonal groups; clonal group A strains (n = 9) had the IS1016-bexA deletion. Among children <5 years of age, meningitis caused by Hia from clonal group A had higher case-fatality than meningitis caused by clonal group B. Despite small numbers, these results indicate that the presence of the IS1016-bexA deletion is associated with enhanced virulence in non-type b H. influenzae.
Flower-deficient mice have reduced susceptibility to skin papilloma formation
Petrova, Evgeniya; López-Gay, Jesús M.; Rhiner, Christa; Moreno, Eduardo
2012-01-01
SUMMARY Skin papillomas arise as a result of clonal expansion of mutant cells. It has been proposed that the expansion of pretumoral cell clones is propelled not only by the increased proliferation capacity of mutant cells, but also by active cell selection. Previous studies in Drosophila describe a clonal selection process mediated by the Flower (Fwe) protein, whereby cells that express certain Fwe isoforms are recognized and forced to undergo apoptosis. It was further shown that knock down of fwe expression in Drosophila can prevent the clonal expansion of dMyc-overexpressing pretumoral cells. Here, we study the function of the single predicted mouse homolog of Drosophila Fwe, referred to as mFwe, by clonal overexpression of mFwe isoforms in Drosophila and by analyzing mFwe knock-out mice. We show that clonal overexpression of certain mFwe isoforms in Drosophila also triggers non-autonomous cell death, suggesting that Fwe function is evolutionarily conserved. Although mFwe-deficient mice display a normal phenotype, they develop a significantly lower number of skin papillomas upon exposure to DMBA/TPA two-stage skin carcinogenesis than do treated wild-type and mFwe heterozygous mice. Furthermore, mFwe expression is higher in papillomas and the papilloma-surrounding skin of treated wild-type mice compared with the skin of untreated wild-type mice. Thus, we propose that skin papilloma cells take advantage of mFwe activity to facilitate their clonal expansion. PMID:22362363
Clonality and serotypes of Streptococcus mutans among children by multilocus sequence typing
Momeni, Stephanie S.; Whiddon, Jennifer; Cheon, Kyounga; Moser, Stephen A.; Childers, Noel K.
2015-01-01
Studies using multilocus sequence typing (MLST) have demonstrated that Streptococcus mutans isolates are genetically diverse. Our laboratory previously demonstrated clonality of S. mutans using MLST but could not discount the possibility of sampling bias. In this study, the clonality of randomly selected S. mutans plaque isolates from African American children was examined using MLST. Serotype and presence of collagen-binding proteins (CBP) cnm/cbm were also assessed. One hundred S. mutans isolates were randomly selected for MLST analysis. Sequence analysis was performed and phylogenetic trees were generated using START2 and MEGA. Thirty-four sequence types (ST) were identified of which 27 were unique to this population. Seventy-five percent of the isolates clustered into 16 clonal groups. Serotypes observed were c (n=84), e (n=3), and k (n=11). The prevalence of S. mutans isolates serotype k was notably high at 17.5%. All isolates were cnm/cbm negative. The clonality of S. mutans demonstrated in this study illustrates the importance of localized populations studies and are consistent with transmission. The prevalence of serotype k, a recently proposed systemic pathogen, observed in this study is higher than reported in most populations and is the first report of S. mutans serotype k in a US population. PMID:26443288
Population Structure in Nontypeable Haemophilus influenzae
LaCross, Nathan C.; Marrs, Carl F.; Gilsdorf, Janet R.
2013-01-01
Nontypeable Haemophilus influenzae (NTHi) frequently colonize the human pharynx asymptomatically, and are an important cause of otitis media in children. Past studies have identified typeable H. influenzae as being clonal, but the population structure of NTHi has not been extensively characterized. The research presented here investigated the diversity and population structure in a well-characterized collection of NTHi isolated from the middle ears of children with otitis media or the pharynges of healthy children in three disparate geographic regions. Multilocus sequence typing identified 109 unique sequence types among 170 commensal and otitis media-associated NTHi isolates from Finland, Israel, and the US. The largest clonal complex contained only five sequence types, indicating a high level of genetic diversity. The eBURST v3, ClonalFrame 1.1, and structure 2.3.3 programs were used to further characterize diversity and population structure from the sequence typing data. Little clustering was apparent by either disease state (otitis media or commensalism) or geography in the ClonalFrame phylogeny. Population structure was clearly evident, with support for eight populations when all 170 isolates were analyzed. Interestingly, one population contained only commensal isolates, while two others consisted solely of otitis media isolates, suggesting associations between population structure and disease. PMID:23266487
TEM Derivative-Producing Enterobacter aerogenes Strains: Dissemination of a Prevalent Clone
Dumarche, P.; De Champs, C.; Sirot, D.; Chanal, C.; Bonnet, R.; Sirot, J.
2002-01-01
TEM-24 (CAZ-6) extended-spectrum β-lactamase (ESBL) was detected in 1988 in Clermont-Ferrand, France, in Klebsiella pneumoniae (blaTEM-24) and Enterobacter aerogenes (blaTEM-24b), and since 1994, a TEM-24-producing E. aerogenes clonal strain has been observed elsewhere in the country. To determine if the spread of this clonal strain was restricted to TEM-24-producing E. aerogenes strains, 84 E. aerogenes strains (non-TEM/SHV-producing strains, TEM-1- or -2-producing strains, and different ESBL-producing strains), isolated from 1988 to 1999 in Clermont-Ferrand (n = 59) and in 11 other French hospitals in 1998 (n = 25), were studied. A clonal strain was found for TEM-24- but also for TEM-3- and TEM-1- or 2-producing isolates. This study shows that there is a clonal strain dependent on acquisition of the TEM-type enzyme (TEM-24 and other TEM types). PMID:11897606
Momeni, Stephanie S; Whiddon, Jennifer; Cheon, Kyounga; Moser, Stephen A; Childers, Noel K
2015-12-01
Studies using multilocus sequence typing (MLST) have demonstrated that Streptococcus mutans isolates are genetically diverse. Our laboratory previously demonstrated clonality of S. mutans using MLST but could not discount the possibility of sampling bias. In this study, the clonality of randomly selected S. mutans plaque isolates from African-American children was examined using MLST. Serotype and the presence of collagen-binding proteins (CBPs) encoded by cnm/cbm were also assessed. One-hundred S. mutans isolates were randomly selected for MLST analysis. Sequence analysis was performed and phylogenetic trees were generated using start2 and mega. Thirty-four sequence types were identified, of which 27 were unique to this population. Seventy-five per cent of the isolates clustered into 16 clonal groups. The serotypes observed were c (n = 84), e (n = 3), and k (n = 11). The prevalence of S. mutans isolates of serotype k was notably high, at 17.5%. All isolates were cnm/cbm negative. The clonality of S. mutans demonstrated in this study illustrates the importance of localized population studies and are consistent with transmission. The prevalence of serotype k, a recently proposed systemic pathogen, observed in this study, is higher than reported in most populations and is the first report of S. mutans serotype k in a United States population. © 2015 Eur J Oral Sci.
Whole-organism clone tracing using single-cell sequencing.
Alemany, Anna; Florescu, Maria; Baron, Chloé S; Peterson-Maduro, Josi; van Oudenaarden, Alexander
2018-04-05
Embryonic development is a crucial period in the life of a multicellular organism, during which limited sets of embryonic progenitors produce all cells in the adult body. Determining which fate these progenitors acquire in adult tissues requires the simultaneous measurement of clonal history and cell identity at single-cell resolution, which has been a major challenge. Clonal history has traditionally been investigated by microscopically tracking cells during development, monitoring the heritable expression of genetically encoded fluorescent proteins and, more recently, using next-generation sequencing technologies that exploit somatic mutations, microsatellite instability, transposon tagging, viral barcoding, CRISPR-Cas9 genome editing and Cre-loxP recombination. Single-cell transcriptomics provides a powerful platform for unbiased cell-type classification. Here we present ScarTrace, a single-cell sequencing strategy that enables the simultaneous quantification of clonal history and cell type for thousands of cells obtained from different organs of the adult zebrafish. Using ScarTrace, we show that a small set of multipotent embryonic progenitors generate all haematopoietic cells in the kidney marrow, and that many progenitors produce specific cell types in the eyes and brain. In addition, we study when embryonic progenitors commit to the left or right eye. ScarTrace reveals that epidermal and mesenchymal cells in the caudal fin arise from the same progenitors, and that osteoblast-restricted precursors can produce mesenchymal cells during regeneration. Furthermore, we identify resident immune cells in the fin with a distinct clonal origin from other blood cell types. We envision that similar approaches will have major applications in other experimental systems, in which the matching of embryonic clonal origin to adult cell type will ultimately allow reconstruction of how the adult body is built from a single cell.
Fatal Toxoplasma gondii infection in the giant panda.
Ma, Hongyu; Wang, Zedong; Wang, Chengdong; Li, Caiwu; Wei, Feng; Liu, Quan
2015-01-01
Toxoplasma gondii can infect nearly all warm-blooded animals. We report an acute fatal T. gondii infection in the endangered giant panda (Ailuropoda melanoleuca) in a zoo in China, characterized by acute gastroenteritis and respiratory symptoms. T. gondii infection was confirmed by immunological and molecular methods. Multilocus nested PCR-RFLP revealed clonal type I at the SAG1 and c29-2 loci, clonal type II at the SAG2, BTUB, GRA6, c22-8, and L358 loci, and clonal type III at the alternative SAG2 and SAG3 loci, thus, a potential new genotype of T. gondii in the giant panda. Other possible pathogens were not detected. To our knowledge, this is the first report of clinical toxoplasmosis in a giant panda. © H. Ma et al., published by EDP Sciences, 2015.
McCarthy, Noel M.; Wimalarathna, Helen L.; Colles, Frances M.; Clark, Lorraine; Bowler, Ian C. J. W.; Maiden, Martin C. J.; Dingle, Kate E.
2012-01-01
Temporal and seasonal trends in Campylobacter genotypes causing human gastroenteritis were investigated in a 6-year study of 3,300 recent isolates from Oxfordshire, United Kingdom. Genotypes (sequence types [ST]) were defined using multilocus sequence typing and assigned to a clonal complex (a cluster of related strains that share four or more identical alleles with a previously defined central genotype). A previously undescribed clonal complex (ST-464) was identified which, together with ST-42, ST-45, and ST-52 complexes, showed increasing incidence. Concurrently, the incidence of ST-574, ST-607, and ST-658 complexes declined. The relative frequencies of three clonal complexes (ST-45, ST-283, and ST-42) peaked during summer and those of two (ST-353 and ST-403) peaked during winter. Nine clonal complexes (ST-22, ST-45, ST-48, ST-61, ST-257, ST-283, ST-403, ST-658, and ST-677) were significantly associated with ciprofloxacin sensitivity (P < 0.05). Seven clonal complexes (ST-49, ST-206, ST-354, ST-446, ST-460, ST-464, and ST-607) were associated with ciprofloxacin resistance (P < 0.05). Clonal complexes exhibited changing incidence and differences in seasonality and antibiotic resistance phenotype. These data also demonstrated that detailed surveillance at a single site captures information which reflects that observed nationally. PMID:22814466
Singh, Garima; Dal Grande, Francesco; Werth, Silke; Scheidegger, Christoph
2015-01-01
The effect of disturbance on symbiotic organisms such as lichens is particularly severe. In case of heterothallic lichen-forming fungi, disturbances may lead to unbalanced gene frequency and patchy distribution of mating types, thus inhibiting sexual reproduction and imposing clonality. The impact of disturbance on reproductive strategies and genetic diversity of clonal systems has so far received little attention. To infer the effects of disturbances on mating-type allele frequencies and population structure, we selected three populations in the Parc Jurassien Vaudois (Switzerland), which were affected by uneven-aged forestry, intensive logging and fire, respectively. We used microsatellite markers to infer genetic diversity, allelic richness and clonal diversity of the epiphytic lichen Lobaria pulmonaria and used L. pulmonaria-specific MAT1-1 and MAT1-2 markers to analyse the frequency and distribution of mating types of 889 individuals. Our study shows that stand-replacing disturbances affect the mating-type frequency and distribution, thus compromising the potential for sexual reproduction. The fire-disturbed area had a significantly lower genetic and genotypic diversity and a higher clonality. Furthermore, the majority of compatible mating pairs in this area were beyond the effective vegetative dispersal range of the species. We conclude that stand-replacing disturbances lead to lower chances of sex and symbiont reshuffling and thus have long-lasting negative consequences on the reproductive strategies and adaptive potential of epiphytic lichen symbioses. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Zarfel, Gernot; Luxner, Josefa; Folli, Bettina; Leitner, Eva; Feierl, Gebhard; Kittinger, Clemens; Grisold, Andrea
2016-07-01
Spa-typing and microarray techniques were used to study epidemiological changes in methicillin-resistant Staphylococcus aureus (MRSA) in South-East Austria. The population structure of 327 MRSA isolated between 2002 and 2012 was investigated. MRSA was assigned to 58 different spa types and 14 different MLST CC (multilocus sequence type clonal complexes); in particular, between 2007 and 2012, an increasing diversity in MRSA clones could be observed. The most abundant clonal complex was CC5. On the respective SCCmec cassettes, the CC5 isolates differed clearly within this decade and CC5/SCCmecI, the South German MRSA, predominant in 2002, was replaced by CC5/SCCmecII, the Rhine-Hesse MRSA in 2012. Whereas in many European countries MLST CC22-MRSA (EMRSA 15, the Barnim epidemic MRSA) is predominant, this clone occurred in Austria nearly 10 years later than in neighbouring countries. CC45, the Berlin EMRSA, epidemic in Germany, was only sporadically found in South-East Austria. The Irish ST8-MRSA-II represented by spa-type t190 was frequently found in 2002 and 2007, but disappeared in 2012. Our results demonstrate clonal replacement of MRSA clones within the last years in Austria. Ongoing surveillance is warranted for detection of changes within the MRSA population. © FEMS 2016.
Takayama, Ryoko; Ansai, Shin-Ichi; Ishiwata, Toshiyuki; Yamamoto, Tetsushi; Matsuda, Yoko; Naito, Zenya; Kawana, Seiji
2014-08-01
Lumican, a member of the small leucine-rich proteoglycan family, regulates the assembly and diameter of collagen fibers in the extracellular matrix of various tissues. The lumican expression correlates with pathological conditions and the growth and metastasis of various malignancies. In cutaneous neoplasms, the lumican expression is lower in advanced-stage malignant melanomas that invade the dermis than in early-stage melanomas. Furthermore, we have recently reported that the expression pattern of lumican is different from that of actinic keratosis and the Bowen disease. Lumican is positive in the poroid cells of intraepidermal sweat ducts; therefore, we examined the expression patterns of lumican in acanthotic-type seborrheic keratosis and Pinkus-type poroma followed by clonal-type seborrheic keratosis and hidroacanthoma simplex. The neoplastic cells of acanthotic-type seborrheic keratosis exhibited positive immunostaining in only 1 of 31 cases (3.23%), whereas the poroid cells of Pinkus-type poroma exhibited positive immunoreactivity in 26 of 28 patients (92.8%). In the hidroacanthoma simplex cases, lumican was expressed in poroid cells forming intraepidermal nests in 22 of 28 patients (78.6%), whereas the neoplastic cells in most cases of clonal-type seborrheic keratosis were negative for lumican. In some seborrheic keratosis cases that were positive for lumican in neoplastic cells, lumican was observed in squamoid cells but not in basaloid cells. Therefore, it is necessary to evaluate the immunoreactivity of lumican in seborrheic keratosis and in basaloid cells. These findings suggest that lumican is a potent differential diagnostic marker that distinguishes hidroacanthoma simplex from clonal-type seborrheic keratosis.
Endemic and Epidemic Lineages of Escherichia coli that Cause Urinary Tract Infections
Tabor, Helen; Tellis, Patricia; Vincent, Caroline; Tellier, Pierre-Paul
2008-01-01
Women with urinary tract infections (UTIs) in California, USA (1999–2001), were infected with closely related or indistinguishable strains of Escherichia coli (clonal groups), which suggests point source dissemination. We compared strains of UTI-causing E. coli in California with strains causing such infections in Montréal, Québec, Canada. Urine specimens from women with community-acquired UTIs in Montréal (2006) were cultured for E. coli. Isolates that caused 256 consecutive episodes of UTI were characterized by antimicrobial drug susceptibility profile, enterobacterial repetitive intergenic consensus 2 PCR, serotyping, XbaI and NotI pulsed-field gel electrophoresis, multilocus sequence typing, and phylogenetic typing. We confirmed the presence of drug-resistant, genetically related, and temporally clustered E. coli clonal groups that caused community-acquired UTIs in unrelated women in 2 locations and 2 different times. Two clonal groups were identified in both locations. Epidemic transmission followed by endemic transmission of UTI-causing clonal groups may explain these clusters of UTI cases. PMID:18826822
The role of weak selection and high mutation rates in nearly neutral evolution.
Lawson, Daniel John; Jensen, Henrik Jeldtoft
2009-04-21
Neutral dynamics occur in evolution if all types are 'effectively equal' in their reproductive success, where the definition of 'effectively equal' depends on the population size and the details of mutations. Empirically observed neutral genetic evolution in extremely large clonal populations can only be explained under current models if selection is completely absent. Such models typically consider the case where population dynamics occurs on a different timescale to evolution. However, this assumption is invalid when mutations are not rare in a whole population. We show that this has important consequences for the occurrence of neutral evolution in clonal populations. In highly connected type spaces, neutral dynamics can occur for all population sizes despite significant selective differences, via the forming of effectively neutral networks connecting rare neutral types. Biological implications include an explanation for the high diversity of rare types that survive in large clonal populations, and a theoretical justification for the use of neutral null models.
Ilczyszyn, Weronika M.; Sabat, Artur J.; Akkerboom, Viktoria; Szkarlat, Anna; Klepacka, Joanna; Sowa-Sierant, Iwona; Wasik, Barbara; Kosecka-Strojek, Maja; Buda, Aneta; Miedzobrodzki, Jacek; Friedrich, Alexander W.
2016-01-01
The aim of current study was to examine clonal structure and genetic profile of invasive Staphylococcus aureus isolates recovered from infants and children treated at the Jagiellonian University Children’s Hospital of Krakow, Poland. The 107 invasive S. aureus isolates, collected between February 2012 and August 2014, were analysed retrospectively. Antimicrobial susceptibility testing, spa typing and DNA microarray analysis were performed to determine clonal distribution, diversity and gene content in regard to patients characteristics. In total, 107 isolates were recovered from 88 patients with clinical symptoms of invasive bacterial infection. The final set of 92 non-duplicate samples included 38 MRSA isolates. Additionally, a set of 54 S. aureus isolates collected during epidemiological screening was genotyped and analysed. There were 72 healthcare-associated (HCA) and 20 community-onset (CO) infection events caused by 33 and 5 MRSA isolates, respectively. The majority of isolates were affiliated with the major European clonal complexes CC5 (t003, spa-CC 002), CC45 (spa-CC 015), CC7 or CC15 (t084, t091, spa-CC 084). Two epidemic clones (CC5-MRSA-II or CC45-MRSA-IV) dominated among MRSA isolates, while MSSA population contained 15 different CCs. The epidemiological screening isolates belonged to similar genetic lineages as those collected from invasive infection cases. The HCA infection events, spa types t003, t2642 or CC5 were significantly associated with infections occurring in neonates and children under 5 years of age. Moreover, carriage of several genetic markers, including erm(A), sea (N315), egc-cluster, chp was significantly higher in isolates obtained from children in this age group. The spa types t091 and t008 were underrepresented among patients aged 5 years or younger, whereas spa type t008, CC8 and presence of splE was associated with infection in children aged 10 years or older. The HCA-MRSA strains were most frequently found in children under 5 years, although the majority of invasive infections was associated with MSSA strains. Moreover, an association between age group of children from the study population and a specific strain genotype (spa type, clonal complex or genetic content) was observed among the patients. PMID:26992009
“Epidemic Clones” of Listeria monocytogenes Are Widespread and Ancient Clonal Groups
Cantinelli, Thomas; Chenal-Francisque, Viviane; Diancourt, Laure; Frezal, Lise; Leclercq, Alexandre; Wirth, Thierry
2013-01-01
The food-borne pathogen Listeria monocytogenes is genetically heterogeneous. Although some clonal groups have been implicated in multiple outbreaks, there is currently no consensus on how “epidemic clones” should be defined. The objectives of this work were to compare the patterns of sequence diversity on two sets of genes that have been widely used to define L. monocytogenes clonal groups: multilocus sequence typing (MLST) and multi-virulence-locus sequence typing (MvLST). Further, we evaluated the diversity within clonal groups by pulsed-field gel electrophoresis (PFGE). Based on 125 isolates of diverse temporal, geographical, and source origins, MLST and MvLST genes (i) had similar patterns of sequence polymorphisms, recombination, and selection, (ii) provided concordant phylogenetic clustering, and (iii) had similar discriminatory power, which was not improved when we combined both data sets. Inclusion of representative strains of previous outbreaks demonstrated the correspondence of epidemic clones with previously recognized MLST clonal complexes. PFGE analysis demonstrated heterogeneity within major clones, most of which were isolated decades before their involvement in outbreaks. We conclude that the “epidemic clone” denominations represent a redundant but largely incomplete nomenclature system for MLST-defined clones, which must be regarded as successful genetic groups that are widely distributed across time and space. PMID:24006010
Farmanbar, Amir; Firouzi, Sanaz; Park, Sung-Joon; Nakai, Kenta; Uchimaru, Kaoru; Watanabe, Toshiki
2017-01-31
Clonal expansion of leukemic cells leads to onset of adult T-cell leukemia (ATL), an aggressive lymphoid malignancy with a very poor prognosis. Infection with human T-cell leukemia virus type-1 (HTLV-1) is the direct cause of ATL onset, and integration of HTLV-1 into the human genome is essential for clonal expansion of leukemic cells. Therefore, monitoring clonal expansion of HTLV-1-infected cells via isolation of integration sites assists in analyzing infected individuals from early infection to the final stage of ATL development. However, because of the complex nature of clonal expansion, the underlying mechanisms have yet to be clarified. Combining computational/mathematical modeling with experimental and clinical data of integration site-based clonality analysis derived from next generation sequencing technologies provides an appropriate strategy to achieve a better understanding of ATL development. As a comprehensively interdisciplinary project, this study combined three main aspects: wet laboratory experiments, in silico analysis and empirical modeling. We analyzed clinical samples from HTLV-1-infected individuals with a broad range of proviral loads using a high-throughput methodology that enables isolation of HTLV-1 integration sites and accurate measurement of the size of infected clones. We categorized clones into four size groups, "very small", "small", "big", and "very big", based on the patterns of clonal growth and observed clone sizes. We propose an empirical formal model based on deterministic finite state automata (DFA) analysis of real clinical samples to illustrate patterns of clonal expansion. Through the developed model, we have translated biological data of clonal expansion into the formal language of mathematics and represented the observed clonality data with DFA. Our data suggest that combining experimental data (absolute size of clones) with DFA can describe the clonality status of patients. This kind of modeling provides a basic understanding as well as a unique perspective for clarifying the mechanisms of clonal expansion in ATL.
Zaman, Taher Uz; Alrodayyan, Maha; Albladi, Maha; Aldrees, Mohammed; Siddique, Mohammed Ismail; Aljohani, Sameera; Balkhy, Hanan H
2018-05-03
The nexus between resistance determinants, plasmid type, and clonality appears to play a crucial role in the dissemination and survival of carbapenem-resistant Klebsiella pneumoniae (CRKP). The incidence of infections involving CRKP in Saudi Arabia is increasing and there is a need for detailed molecular profiling of this pathogen for CRKP surveillance and control. The resistance determinants of 71 non-redundant CRKP isolates were investigated by polymerase chain reaction (PCR) and sequencing. Plasmid typing was performed using PCR-based replicon typing and the clonality of isolates was determined by multilocus sequence typing. Capsular polysaccharide synthesis genes and other virulence factors were examined using multiplex PCR. Diversity was calculated using DIVEIN, clonal relationship was determined using eBURST, and phylogenetic analysis was performed using SplitsTree4. A polyclonal OXA-48 gene alone was the most common carbapenemase detected in 48/71 (67.6%) isolates followed by NDM-1 alone in 9/71 (12.7%) isolates. Coproduction of OXA-48 and NDM-1 was observed in 6/71 (8.5%) isolates. Both carbapenemase genes could be transferred into an Escherichia coli recipient. CTX-M-15 was the most abundant extended-spectrum β-lactamase gene detected in 47/71 (66.2%) isolates, whereas clone-specific CTX-M-14 (ST-199 and -709) was found in 15/71 (21%) isolates. Sixty-seven of 71 isolates were positive for one or more plasmid replicons. The replicons detected were: IncFII; IncFIIK; IncFIA; IncFIB; L/M; IncI1; and IncN. FIIK and L/M were predominant, with 69 and 67% positivity, respectively. All isolates were negative for the magA (K1), rmpA, and K2 genes and presented a non-hypermucoviscous phenotype. A polyclonal CRKP reservoir of sequence types (STs)-37, - 199, and - 152 was observed and ST-152 appeared to be a "frequent carrier" of the NDM-1 gene. ST-199, a singleton not previously reported, showed a sequence diversity suggestive of positive selection. A significant association was evident between resistance determinants and the clonal types of K. pneumoniae: all ST-152 isolates were positive for NDM-1 but negative for OXA-48; ST-199 isolates were positive for OXA-48 but negative for NDM-1; and ST-709 and -199 isolates were positive for CTX-M-14. The incidence of certain clonal types in large numbers predicts an outbreak-like situation and warrants stringent surveillance and infection control.
A Clonal Lineage of Fusarium oxysporum Circulates in the Tap Water of Different French Hospitals
Sautour, Marc; Gautheron, Nadine; Laurent, Julie; Aho, Serge; Bonnin, Alain; Sixt, Nathalie; Hartemann, Philippe; Dalle, Frédéric; Steinberg, Christian
2016-01-01
ABSTRACT Fusarium oxysporum is typically a soilborne fungus but can also be found in aquatic environments. In hospitals, water distribution systems may be reservoirs for the fungi responsible for nosocomial infections. F. oxysporum was previously detected in the water distribution systems of five French hospitals. Sixty-eight isolates from water representative of all hospital units that were previously sampled and characterized by translation elongation factor 1α sequence typing were subjected to microsatellite analysis and full-length ribosomal intergenic spacer (IGS) sequence typing. All but three isolates shared common microsatellite loci and a common two-locus sequence type (ST). This ST has an international geographical distribution in both the water networks of hospitals and among clinical isolates. The ST dominant in water was not detected among 300 isolates of F. oxysporum that originated from surrounding soils. Further characterization of 15 isolates by vegetative compatibility testing allowed us to conclude that a clonal lineage of F. oxysporum circulates in the tap water of the different hospitals. IMPORTANCE We demonstrated that a clonal lineage of Fusarium oxysporum inhabits the water distribution systems of several French hospitals. This clonal lineage, which appears to be particularly adapted to water networks, represents a potential risk for human infection and raises questions about its worldwide distribution. PMID:27663024
USDA-ARS?s Scientific Manuscript database
Numerous in vitro observations have been published to show that mature adipocytes may resume proliferation and begin to populate the adipofibroblast fraction or form other cell types. In the present study, we evaluated clonal cultures of mature pig-derived adipocytes as they began to reestablish the...
Freitas, Ana R.; Novais, Carla; Ruiz-Garbajosa, Patricia; Coque, Teresa M.; Peixe, Luísa
2009-01-01
The population structure of 56 Enterococcus faecium isolates selected from a collection of enterococci from humans, animals, and the environment in Portugal (1997 to 2007) was analyzed by multilocus sequence typing. We identified 41 sequence types clustering into CC17, CC5, CC9, CC22 and CC94, all clonal lineages comprising isolates from different hosts. Our findings highlight the role of community-associated hosts as reservoirs of enterococci able to cause human infections. PMID:19447948
Kokovic, Ira; Novakovic, Barbara Jezersek; Cerkovnik, Petra; Novakovic, Srdjan
2014-01-01
Background Clonality determination in patients with lymphoproliferative disorders can improve the final diagnosis. The aim of our study was to evaluate the applicative value of standardized BIOMED-2 gene clonality assay protocols for the analysis of clonality of lymphocytes in a group of different lymphoid proliferations. Materials and methods. With this purpose, 121 specimens from 91 patients with suspected lymphoproliferations submitted for routine diagnostics from January to December 2011 were retrospectively analyzed. According to the final diagnosis, our series comprised 32 cases of B-cell lymphomas, 38 cases of non-Hodgkin’s T-cell lymphomas and 51 cases of reactive lymphoid proliferations. Clonality testing was performed using the BIOMED-2 clonality assays. Results The determined sensitivity of the TCR assay was 91.9%, while the sensitivity of the IGH assay was 74.2%. The determined specificity of the IGH assay was 73.3% in the group of lymphomas and 87.2% in the group of reactive lesions. The determined specificity of the TCR assay was 62.5% in the group of lymphomas and 54.3% in the group of reactive lesions. Conclusions In the present study, we confirmed the utility of standardized BIOMED-2 clonality assays for the detection of clonality in a routine diagnostical setting of non-Hodgkin’s lymphomas. Reactions for the detection of the complete IGH rearrangements and reactions for the detection of the TCR rearrangements are a good choice for clonality testing of a wide range of lymphoid proliferations and specimen types while the reactions for the detection of incomplete IGH rearrangements have not shown any additional diagnostic value. PMID:24991205
Ohmi, Aki; Ohno, Koichi; Uchida, Kazuyuki; Goto-Koshino, Yuko; Tomiyasu, Hirotaka; Kanemoto, Hideyuki; Fukushima, Kenjiro; Tsujimoto, Hajime
2017-09-29
Shiba dogs are predisposed to chronic enteropathy (CE) and have poorer prognosis than other dog breeds. The objective of this study was to investigate the significance of polymerase chain reaction for antigen receptor rearrangement (PARR) results on clinical findings and prognosis of Shiba dogs with CE. We retrospectively collected data on 22 Shiba dogs diagnosed as having CE. Fifty-nine percent of the dogs had clonality-positive results on PARR analysis. Furthermore, on histopathology, epitheliotropic behavior of small lymphocytes of the intestinal mucosa was observed significantly more frequently in dogs with clonal rearrangement of antigen receptor genes (P=0.027). The median overall survival time of clonality-positive dogs was 48 days (range, 4-239 days), compared to 271 days (range, 45-1,316+ days) in clonality-negative dogs. The median overall survival time of epitheliotropism-positive dogs was 76 days (range, 30-349 days) compared to 239 days (range, 4-1,316+ days) for epitheliotropism-negative dogs. Statistical analysis revealed that the clonality-positive result was associated with significantly shorter survival time (P=0.036). In contrast, presence or absence of epitheliotropism had no statistically significant effect on survival time (P=0.223). These cases might appropriately be diagnosed as small T-cell intestinal lymphoma; there are some common clinical and pathogenic features with human enteropathy-associated T-cell lymphoma type 2. The pathogenesis and poor prognosis for Shiba dogs with CE seem to be associated with this type of lymphoma, although further investigation is warranted.
Scally, Mark; Schuenzel, Erin L; Stouthamer, Richard; Nunney, Leonard
2005-12-01
Multilocus sequence typing (MLST) identifies and groups bacterial strains based on DNA sequence data from (typically) seven housekeeping genes. MLST has also been employed to estimate the relative contributions of recombination and point mutation to clonal divergence. We applied MLST to the plant pathogen Xylella fastidiosa using an initial set of sequences for 10 loci (9.3 kb) of 25 strains from five different host plants, grapevine (PD strains), oleander (OLS strains), oak (OAK strains), almond (ALS strains), and peach (PP strains). An eBURST analysis identified six clonal complexes using the grouping criterion that each member must be identical to at least one other member at 7 or more of the 10 loci. These clonal complexes corresponded to previously identified phylogenetic clades; clonal complex 1 (CC1) (all PD strains plus two ALS strains) and CC2 (OLS strains) defined the X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. sandyi clades, while CC3 (ALS strains), CC4 (OAK strains), and CC5 (PP strains) were subclades of X. fastidiosa subsp. multiplex. CC6 (ALS strains) identified an X. fastidiosa subsp. multiplex-like group characterized by a high frequency of intersubspecific recombination. Compared to the recombination rate in other bacterial species, the recombination rate in X. fastidiosa is relatively low. Recombination between different alleles was estimated to give rise to 76% of the nucleotide changes and 31% of the allelic changes observed. The housekeeping loci holC, nuoL, leuA, gltT, cysG, petC, and lacF were chosen to form the basis of a public database for typing X. fastidiosa (www.mlst.net). These loci identified the same six clonal complexes using the strain grouping criterion of identity at five or more loci with at least one other member.
Maciejewski, Jaroslaw P; Balasubramanian, Suresh K
2017-12-08
Recent technological advances in genomics have led to the discovery of new somatic mutations and have brought deeper insights into clonal diversity. This discovery has changed not only the understanding of disease mechanisms but also the diagnostics and clinical management of bone marrow failure. The clinical applications of genomics include enhancement of current prognostic schemas, prediction of sensitivity or refractoriness to treatments, and conceptualization and selective application of targeted therapies. However, beyond these traditional clinical aspects, complex hierarchical clonal architecture has been uncovered and linked to the current concepts of leukemogenesis and stem cell biology. Detection of clonal mutations, otherwise typical of myelodysplastic syndrome, in the course of aplastic anemia (AA) and paroxysmal nocturnal hemoglobinuria has led to new pathogenic concepts in these conditions and created a new link between AA and its clonal complications, such as post-AA and paroxysmal nocturnal hemoglobinuria. Distinctions among founder vs subclonal mutations, types of clonal evolution (linear or branching), and biological features of individual mutations (sweeping, persistent, or vanishing) will allow for better predictions of the biologic impact they impart in individual cases. As clonal markers, mutations can be used for monitoring clonal dynamics of the stem cell compartment during physiologic aging, disease processes, and leukemic evolution. © 2016 by The American Society of Hematology. All rights reserved.
Infliximab induces clonal expansion of γδ-T cells in Crohn's disease: a predictor of lymphoma risk?
Kelsen, Jens; Dige, Anders; Schwindt, Heinrich; D'Amore, Francesco; Pedersen, Finn S; Agnholt, Jørgen; Christensen, Lisbet A; Dahlerup, Jens F; Hvas, Christian L
2011-03-31
Concominant with the widespread use of combined immunotherapy in the management of Crohn's disease (CD), the incidence of hepato-splenic gamma-delta (γδ)-T cell lymphoma has increased sharply in CD patients. Malignant transformation of lymphocytes is believed to be a multistep process resulting in the selection of malignant γδ-T cell clones. We hypothesised that repeated infusion of anti-TNF-α agents may induce clonal selection and that concurrent treatment with immunomodulators further predisposes patients to γδ-T cell expansion. We investigated dynamic changes in the γδ-T cells of patient with CD following treatment with infliximab (Remicade®; n=20) or adalimumab (Humira®; n=26) using flow cytometry. In patients with a high γδ-T cell level, the γδ-T cells were assessed for clonality. Of these 46 CD patients, 35 had a γδ-T cells level (mean 1.6%) comparable to healthy individuals (mean 2.2%), and 11 CD patients (24%) exhibited an increased level of γδ-T cells (5-15%). In the 18 patients also receiving thiopurines or methotrexate, the average baseline γδ-T cell level was 4.4%. In three male CD patients with a high baseline value, the γδ-T cell population increased dramatically following infliximab therapy. A fourth male patient also on infliximab monotherapy presented with 20% γδ-T cells, which increased to 25% shortly after treatment and was 36% between infusions. Clonality studies revealed an oligoclonal γδ-T cell pattern with dominant γδ-T cell clones. In support of our clinical findings, in vitro experiments showed a dose-dependent proliferative effect of anti-TNF-α agents on γδ-T cells. CD patients treated with immunomodulators had constitutively high levels of γδ-T cells. Infliximab exacerbated clonal γδ-T cell expansion in vivo and induced γδ-T cell proliferation in vitro. Overall, young, male CD patients with high baseline γδ-T cell levels may be at an increased risk of developing malignant γδ-T cell lymphomas following treatment with anti-TNF-α agents.
Migliore, Sergio; La Marca, Salvatore; Stabile, Cristian; Di Marco Lo Presti, Vincenzo; Vitale, Maria
2017-08-17
Typing of Toxoplasma gondii strains is important in epidemiological surveys, to understand the distribution and virulence of different clones of the parasite among human and animal populations. Stray dogs can be consider sentinel animals for contaminated environments playing an important but probably under- evaluated role in the epidemiology of T. gondii. We reported a rare case of acute toxoplasmosis in a stray dog due to clonal type I infection. The clonal type I, sporadic in Europe, is frequently associated with severe toxoplasmosis in humans and the control of its circulation is particularly relevant for public health. The symptomatology suggested a potential infection with the high similar parasite Neospora caninum but differential diagnosis showed that only T. gondii was involved highlighting the importance of multiple diagnostic methods beyond the clinical signs. A female stray dog approximately six-month of age presented muscular atrophy of the femoral region and hyperextension of hind limbs. Body condition score (BCS) was 20% below ideal weight, ribs had almost no fat and the sensor state was depressed. Haematological values were normal and the dog did not show any neurological abnormalities. Serological analysis showed a positive response for T. gondii immunoglobulin G (IgG) antibodies and exclude N. caninum infection. To confirm T. gondii infection, a muscle biopsy was performed and genomic DNA was extracted. PCR analysis resulted positive to T. gondii and strain genotyping reveals clonal type I infection. The dog recovered after 4 weeks of treatment with clindamycin hydrochloride and aquatic physiotherapy. Our study reports a rare and severe case of T. gondii clonal type I infection in a stray dog feeding in garbage containers. The data confirm the importance of an in vivo early diagnosis for toxoplasmosis in dog. Clinical signs are often related to specific T. gondii genotype and parasite genotyping is important in the epidemiological survey of toxoplasmosis in public health. The detection of parasitic DNA in the tissue could be an useful diagnostic method in facilitating early treatment of the disease, which is important for a timely clinical recovery.
Phenotypic plasticity and specialization in clonal versus non-clonal plants: A data synthesis
NASA Astrophysics Data System (ADS)
Fazlioglu, Fatih; Bonser, Stephen P.
2016-11-01
Reproductive strategies can be associated with ecological specialization and generalization. Clonal plants produce lineages adapted to the maternal habitat that can lead to specialization. However, clonal plants frequently display high phenotypic plasticity (e.g. clonal foraging for resources), factors linked to ecological generalization. Alternately, sexual reproduction can be associated with generalization via increasing genetic variation or specialization through rapid adaptive evolution. Moreover, specializing to high or low quality habitats can determine how phenotypic plasticity is expressed in plants. The specialization hypothesis predicts that specialization to good environments results in high performance trait plasticity and specialization to bad environments results in low performance trait plasticity. The interplay between reproductive strategies, phenotypic plasticity, and ecological specialization is important for understanding how plants adapt to variable environments. However, we currently have a poor understanding of these relationships. In this study, we addressed following questions: 1) Is there a relationship between phenotypic plasticity, specialization, and reproductive strategies in plants? 2) Do good habitat specialists express greater performance trait plasticity than bad habitat specialists? We searched the literature for studies examining plasticity for performance traits and functional traits in clonal and non-clonal plant species from different habitat types. We found that non-clonal (obligate sexual) plants expressed greater performance trait plasticity and functional trait plasticity than clonal plants. That is, non-clonal plants exhibited a specialist strategy where they perform well only in a limited range of habitats. Clonal plants expressed less performance loss across habitats and a more generalist strategy. In addition, specialization to good habitats did not result in greater performance trait plasticity. This result was contrary to the predictions of the specialization hypothesis. Overall, reproductive strategies are associated with ecological specialization or generalization through phenotypic plasticity. While specialization is common in plant populations, the evolution of specialization does not control the nature of phenotypic plasticity as predicted under the specialization hypothesis.
Clonal growth and plant species abundance
Herben, Tomáš; Nováková, Zuzana; Klimešová, Jitka
2014-01-01
Background and Aims Both regional and local plant abundances are driven by species' dispersal capacities and their abilities to exploit new habitats and persist there. These processes are affected by clonal growth, which is difficult to evaluate and compare across large numbers of species. This study assessed the influence of clonal reproduction on local and regional abundances of a large set of species and compared the predictive power of morphologically defined traits of clonal growth with data on actual clonal growth from a botanical garden. The role of clonal growth was compared with the effects of seed reproduction, habitat requirements and growth, proxied both by LHS (leaf–height–seed) traits and by actual performance in the botanical garden. Methods Morphological parameters of clonal growth, actual clonal reproduction in the garden and LHS traits (leaf-specific area – height – seed mass) were used as predictors of species abundance, both regional (number of species records in the Czech Republic) and local (mean species cover in vegetation records) for 836 perennial herbaceous species. Species differences in habitat requirements were accounted for by classifying the dataset by habitat type and also by using Ellenberg indicator values as covariates. Key Results After habitat differences were accounted for, clonal growth parameters explained an important part of variation in species abundance, both at regional and at local levels. At both levels, both greater vegetative growth in cultivation and greater lateral expansion trait values were correlated with higher abundance. Seed reproduction had weaker effects, being positive at the regional level and negative at the local level. Conclusions Morphologically defined traits are predictive of species abundance, and it is concluded that simultaneous investigation of several such traits can help develop hypotheses on specific processes (e.g. avoidance of self-competition, support of offspring) potentially underlying clonal growth effects on abundance. Garden performance parameters provide a practical approach to assessing the roles of clonal growth morphological traits (and LHS traits) for large sets of species. PMID:24482153
Cluster of Serogroup W135 Meningococci, Southeastern Florida, 2008–2009
Mejia-Echeverry, Alvaro; Fiorella, Paul; Leguen, Fermin; Livengood, John; Kay, Robyn; Hopkins, Richard
2010-01-01
Recently, 14 persons in southeastern Florida were identified with Neisseria meningitidis serogroup W135 invasive infections. All isolates tested had matching or near-matching pulsed-field gel electrophoresis patterns and belonged to the multilocus sequence type 11 clonal complex. The epidemiologic investigation suggested recent endemic transmission of this clonal complex in southeastern Florida. PMID:20031054
Clonal origins of Vibrio cholerae O1 El Tor strains, Papua New Guinea, 2009-2011.
Horwood, Paul F; Collins, Deirdre; Jonduo, Marinjho H; Rosewell, Alexander; Dutta, Samir R; Dagina, Rosheila; Ropa, Berry; Siba, Peter M; Greenhill, Andrew R
2011-11-01
We used multilocus sequence typing and variable number tandem repeat analysis to determine the clonal origins of Vibrio cholerae O1 El Tor strains from an outbreak of cholera that began in 2009 in Papua New Guinea. The epidemic is ongoing, and transmission risk is elevated within the Pacific region.
Wang, Xiaolong; Zhao, Wei; Li, Lin; You, Jian; Ni, Biao
2018-01-01
Four small oval populations and five large intensive populations of Rhododendron aureum growing at the alpine in Changbai Mountain (China) were studied in two types of habitat (in the tundra and in Betula ermanii forest). Identification and delimitation of genets were inferred from excavation in small populations and from amplified fragment length polymorphism (AFLP) markers by the standardized sampling design in large populations. Clonal architecture and clonal diversity were then estimated. For the four small populations, they were monoclonal, the spacer length (18.6 ± 5.6 in tundra, 29.7 ± 9.7 in Betula ermanii forest, P < 0.05) was shorter and branching intensity (136.7 ± 32.9 in tundra, 43.4 ± 12.3 in Betula ermanii forest, P < 0.05) was higher in the tundra than that in Betula ermanii forest. For the five large populations, they were composed of multiple genets with high level of clonal diversity (Simpson’s index D = 0.84, clonal richness R = 0.25, Fager's evenness E = 0.85); the spatial distribution of genets showed that the clonal growth strategy of R. aureum exhibits both guerilla and phalanx. Our results indicate that the clonal plasticity of R. aureum could enhance exploitation of resource heterogeneity and in turn greatly contribute to maintenance or improvement of fitness and the high clonal diversity of R. aureum increase the evolutionary rates to adapt the harsh alpine environment in Changbai Mountain. PMID:29746526
Xie, Xiu-Fang; Hu, Yu-Kun; Pan, Xu; Liu, Feng-Hong; Song, Yao-Bin; Dong, Ming
2016-01-01
Resource allocation to different functions is central in life-history theory. Plasticity of functional traits allows clonal plants to regulate their resource allocation to meet changing environments. In this study, biomass allocation traits of clonal plants were categorized into absolute biomass for vegetative growth vs. for reproduction, and their relative ratios based on a data set including 115 species and derived from 139 published literatures. We examined general pattern of biomass allocation of clonal plants in response to availabilities of resource (e.g., light, nutrients, and water) using phylogenetic meta-analysis. We also tested whether the pattern differed among clonal organ types (stolon vs. rhizome). Overall, we found that stoloniferous plants were more sensitive to light intensity than rhizomatous plants, preferentially allocating biomass to vegetative growth, aboveground part and clonal reproduction under shaded conditions. Under nutrient- and water-poor condition, rhizomatous plants were constrained more by ontogeny than by resource availability, preferentially allocating biomass to belowground part. Biomass allocation between belowground and aboveground part of clonal plants generally supported the optimal allocation theory. No general pattern of trade-off was found between growth and reproduction, and neither between sexual and clonal reproduction. Using phylogenetic meta-analysis can avoid possible confounding effects of phylogeny on the results. Our results shown the optimal allocation theory explained a general trend, which the clonal plants are able to plastically regulate their biomass allocation, to cope with changing resource availability, at least in stoloniferous and rhizomatous plants. PMID:27200071
Advances for Studying Clonal Evolution in Cancer
Raphael, Benjamin J.; Chen, Feng; Wendl, Michael C.
2013-01-01
The “clonal evolution” model of cancer emerged and “evolved” amid ongoing advances in technology, especially in recent years during which next generation sequencing instruments have provided ever higher resolution pictures of the genetic changes in cancer cells and heterogeneity in tumors. It has become increasingly clear that clonal evolution is not a single sequential process, but instead frequently involves simultaneous evolution of multiple subclones that co-exist because they are of similar fitness or are spatially separated. Co-evolution of subclones also occurs when they complement each other’s survival advantages. Recent studies have also shown that clonal evolution is highly heterogeneous: different individual tumors of the same type may undergo very different paths of clonal evolution. New methodological advancements, including deep digital sequencing of a mixed tumor population, single cell sequencing, and the development of more sophisticated computational tools, will continue to shape and reshape the models of clonal evolution. In turn, these will provide both an improved framework for the understanding of cancer progression and a guide for treatment strategies aimed at the elimination of all, rather than just some, of the cancer cells within a patient. PMID:23353056
Advances for studying clonal evolution in cancer.
Ding, Li; Raphael, Benjamin J; Chen, Feng; Wendl, Michael C
2013-11-01
The "clonal evolution" model of cancer emerged and "evolved" amid ongoing advances in technology, especially in recent years during which next generation sequencing instruments have provided ever higher resolution pictures of the genetic changes in cancer cells and heterogeneity in tumors. It has become increasingly clear that clonal evolution is not a single sequential process, but instead frequently involves simultaneous evolution of multiple subclones that co-exist because they are of similar fitness or are spatially separated. Co-evolution of subclones also occurs when they complement each other's survival advantages. Recent studies have also shown that clonal evolution is highly heterogeneous: different individual tumors of the same type may undergo very different paths of clonal evolution. New methodological advancements, including deep digital sequencing of a mixed tumor population, single cell sequencing, and the development of more sophisticated computational tools, will continue to shape and reshape the models of clonal evolution. In turn, these will provide both an improved framework for the understanding of cancer progression and a guide for treatment strategies aimed at the elimination of all, rather than just some, of the cancer cells within a patient. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Lavery, Danielle L; Martinez, Pierre; Gay, Laura J; Cereser, Biancastella; Novelli, Marco R; Rodriguez-Justo, Manuel; Meijer, Sybren L; Graham, Trevor A; McDonald, Stuart A C; Wright, Nicholas A; Jansen, Marnix
2016-06-01
Barrett's oesophagus commonly presents as a patchwork of columnar metaplasia with and without goblet cells in the distal oesophagus. The presence of metaplastic columnar epithelium with goblet cells on oesophageal biopsy is a marker of cancer progression risk, but it is unclear whether clonal expansion and progression in Barrett's oesophagus is exclusive to columnar epithelium with goblet cells. We developed a novel method to trace the clonal ancestry of an oesophageal adenocarcinoma across an entire Barrett's segment. Clonal expansions in Barrett's mucosa were identified using cytochrome c oxidase enzyme histochemistry. Somatic mutations were identified through mitochondrial DNA sequencing and single gland whole exome sequencing. By tracing the clonal origin of an oesophageal adenocarcinoma across an entire Barrett's segment through a combination of histopathological spatial mapping and clonal ordering, we find that this cancer developed from a premalignant clonal expansion in non-dysplastic ('cardia-type') columnar metaplasia without goblet cells. Our data demonstrate the premalignant potential of metaplastic columnar epithelium without goblet cells in the context of Barrett's oesophagus. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Recent Developments in Antibody-Based Assays for the Detection of Bacterial Toxins
Zhu, Kui; Dietrich, Richard; Didier, Andrea; Doyscher, Dominik; Märtlbauer, Erwin
2014-01-01
Considering the urgent demand for rapid and accurate determination of bacterial toxins and the recent promising developments in nanotechnology and microfluidics, this review summarizes new achievements of the past five years. Firstly, bacterial toxins will be categorized according to their antibody binding properties into low and high molecular weight compounds. Secondly, the types of antibodies and new techniques for producing antibodies are discussed, including poly- and mono-clonal antibodies, single-chain variable fragments (scFv), as well as heavy-chain and recombinant antibodies. Thirdly, the use of different nanomaterials, such as gold nanoparticles (AuNPs), magnetic nanoparticles (MNPs), quantum dots (QDs) and carbon nanomaterials (graphene and carbon nanotube), for labeling antibodies and toxins or for readout techniques will be summarized. Fourthly, microscale analysis or minimized devices, for example microfluidics or lab-on-a-chip (LOC), which have attracted increasing attention in combination with immunoassays for the robust detection or point-of-care testing (POCT), will be reviewed. Finally, some new materials and analytical strategies, which might be promising for analyzing toxins in the near future, will be shortly introduced. PMID:24732203
Chassain, Benoît; Lemée, Ludovic; Didi, Jennifer; Thiberge, Jean-Michel; Brisse, Sylvain; Pons, Jean-Louis
2012-01-01
Staphylococcus lugdunensis is recognized as one of the major pathogenic species within the genus Staphylococcus, even though it belongs to the coagulase-negative group. A multilocus sequence typing (MLST) scheme was developed to study the genetic relationships and population structure of 87 S. lugdunensis isolates from various clinical and geographic sources by DNA sequence analysis of seven housekeeping genes (aroE, dat, ddl, gmk, ldh, recA, and yqiL). The number of alleles ranged from four (gmk and ldh) to nine (yqiL). Allelic profiles allowed the definition of 20 different sequence types (STs) and five clonal complexes. The 20 STs lacked correlation with geographic source. Isolates recovered from hematogenic infections (blood or osteoarticular isolates) or from skin and soft tissue infections did not cluster in separate lineages. Penicillin-resistant isolates clustered mainly in one clonal complex, unlike glycopeptide-tolerant isolates, which did not constitute a distinct subpopulation within S. lugdunensis. Phylogenies from the sequences of the seven individual housekeeping genes were congruent, indicating a predominantly mutational evolution of these genes. Quantitative analysis of the linkages between alleles from the seven loci revealed a significant linkage disequilibrium, thus confirming a clonal population structure for S. lugdunensis. This first MLST scheme for S. lugdunensis provides a new tool for investigating the macroepidemiology and phylogeny of this unusually virulent coagulase-negative Staphylococcus. PMID:22785196
A Clonal Lineage of Fusarium oxysporum Circulates in the Tap Water of Different French Hospitals.
Edel-Hermann, Véronique; Sautour, Marc; Gautheron, Nadine; Laurent, Julie; Aho, Serge; Bonnin, Alain; Sixt, Nathalie; Hartemann, Philippe; Dalle, Frédéric; Steinberg, Christian
2016-11-01
Fusarium oxysporum is typically a soilborne fungus but can also be found in aquatic environments. In hospitals, water distribution systems may be reservoirs for the fungi responsible for nosocomial infections. F. oxysporum was previously detected in the water distribution systems of five French hospitals. Sixty-eight isolates from water representative of all hospital units that were previously sampled and characterized by translation elongation factor 1α sequence typing were subjected to microsatellite analysis and full-length ribosomal intergenic spacer (IGS) sequence typing. All but three isolates shared common microsatellite loci and a common two-locus sequence type (ST). This ST has an international geographical distribution in both the water networks of hospitals and among clinical isolates. The ST dominant in water was not detected among 300 isolates of F. oxysporum that originated from surrounding soils. Further characterization of 15 isolates by vegetative compatibility testing allowed us to conclude that a clonal lineage of F. oxysporum circulates in the tap water of the different hospitals. We demonstrated that a clonal lineage of Fusarium oxysporum inhabits the water distribution systems of several French hospitals. This clonal lineage, which appears to be particularly adapted to water networks, represents a potential risk for human infection and raises questions about its worldwide distribution. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Platell, Joanne L; Cobbold, Rowland N; Johnson, James R; Trott, Darren J
2010-09-01
To determine the phylogenetic group distribution and prevalence of three major globally disseminated clonal groups [clonal group A (CGA) and O15:K52:H1, associated with phylogenetic group D, and sequence type ST131, associated with phylogenetic group B2] among fluoroquinolone-resistant extra-intestinal Escherichia coli isolates from humans and companion animals in Australia. Clinical extra-intestinal fluoroquinolone-resistant E. coli isolates were obtained from humans (n = 582) and companion animals (n = 125), on Australia's east coast (October 2007-October 2009). Isolates were tested for susceptibility to seven antimicrobial agents, and for phylogenetic group, O type and clonal-group-specific single nucleotide polymorphisms by PCR. The fluoroquinolone-resistant isolates were typically resistant to multiple agents (median of four). Analysis revealed that clonal group ST131 accounted for a large subset of the human isolates (202/585, 35%), but for a much smaller proportion of the companion animal isolates (9/125, 7.2%; P
Yu, Ying; Hu, Weizhao; Wu, Beibei; Zhang, Peipei; Chen, Jianshun; Wang, Shuna; Fang, Weihuan
2011-11-01
Multilocus sequence typing (MLST) was used to examine the clonal relationship and genetic diversity of 71 Vibrio parahaemolyticus isolates from clinical and seafood-related sources in southeastern Chinese coast between 2002 and 2009. The tested isolates fell into 61 sequence types (STs). Of 17 clinical isolates, 7 belonged to ST3 of the pandemic clonal complex 3, with 3 strains isolated in 2002. Although there was no apparent clonal relationship found between clinical strains and those from seafood-related sources positive with pathogenic markers, there were clonal relationships between clinical strains from this study and those from environmental sources in other parts of China. Phylogenetic analysis showed that strains of 112 STs (61 STs from this study and 51 retrieved from PUBMLST database covering different continents) could be divided into four branches. The vast majority of our isolates and those from other countries were genetically diverse and clustered into two major branches of mixed distribution (of geographic origins and sample sources), whereas five STs representing six isolates split as two minor branches because of divergence of their recA genes, which had 80%-82% nucleotide identity to typical V. parahaemolyticus strains and 73.3%-76.9% identity to the CDS24 of a Vibrio sp. plasmid p23023, indicating that the recA gene might have recombined by lateral gene transfer. This was further supported by a high ratio of recombination to mutation (3.038) for recA. In conclusion, MLST with fully extractable database is a powerful system for analysis of clonal relationship for strains of a particular region in a national or global scale as well as between clinical and environmental or food-related strains.
Sabaawy, Hatem E
2013-11-18
The efficacy of targeted therapies in leukemias and solid tumors depends upon the accurate detection and sustained targeting of initial and evolving driver mutations and/or aberrations in cancer cells. Tumor clonal evolution of the diverse populations of cancer cells during cancer progression contributes to the longitudinal variations of clonal, morphological, anatomical, and molecular heterogeneity of tumors. Moreover, drug-resistant subclones present at initiation of therapy or emerging as a result of targeted therapies represent major challenges for achieving success of personalized therapies in providing meaningful improvement in cancer survival rates. Here, I briefly portray tumor cell clonal evolution at the cellular and molecular levels, and present the multiple types of genetic heterogeneity in tumors, with a focus on their impact on the implementation of personalized or precision cancer medicine.
Clonal Origins of Vibrio cholerae O1 El Tor Strains, Papua New Guinea, 2009–2011
Collins, Deirdre; Jonduo, Marinjho H.; Rosewell, Alexander; Dutta, Samir R.; Dagina, Rosheila; Ropa, Berry; Siba, Peter M.; Greenhill, Andrew R.
2011-01-01
We used multilocus sequence typing and variable number tandem repeat analysis to determine the clonal origins of Vibrio cholerae O1 El Tor strains from an outbreak of cholera that began in 2009 in Papua New Guinea. The epidemic is ongoing, and transmission risk is elevated within the Pacific region. PMID:22099099
Takahashi, Koichi; Wang, Feng; Kantarjian, Hagop; Doss, Denaha; Khanna, Kanhav; Thompson, Erika; Zhao, Li; Patel, Keyur; Neelapu, Sattva; Gumbs, Curtis; Bueso-Ramos, Carlos; DiNardo, Courtney D; Colla, Simona; Ravandi, Farhad; Zhang, Jianhua; Huang, Xuelin; Wu, Xifeng; Samaniego, Felipe; Garcia-Manero, Guillermo; Andrew Futreal, P.
2017-01-01
Background Therapy-related myeloid neoplasms (t-MNs) are often fatal secondary malignancies. Risk factors for t-MNs are not well understood. Recent studies suggested that individuals with clonal hematopoiesis have higher risk of developing hematological malignancies. We hypothesized that cancer patients with clonal hematopoiesis have increased risk of developing t-MNs. Methods We conducted a retrospective case-control study to compare the prevalence of clonal hematopoiesis between patients who developed t-MNs (cases) and who did not develop t-MNs (control). For cases, we studied14 patients with various types of cancers who developed t-MNs and whose paired samples of t-MN bone marrow (BM) and peripheral blood (PB) that were previously obtained at the time of primary cancer diagnosis were available. Fifty four patients with lymphoma who received combination chemotherapy and did not develop t-MNs after at least 5 years of follow up were studied as a control. We performed molecular barcode sequencing of 32 genes on the pre-treatment PB samples to detect clonal hematopoiesis. For the t-MN cases, we also performed targeted gene sequencing on t-MN BM samples and investigated clonal evolution from clonal hematopoiesis to t-MNs. To confirm association between clonal hematopoiesis and t-MN development, we also analyzed prevalence of clonal hematopoiesis in a separate cohort of 74 patients with lymphoma. All of these patients were treated under the prospective randomized trial of frontline chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) with or without melatonin and 5 (7%) of them had developed t-MNs. Findings In 14 patients with t-MNs, we detected pre-leukemic mutations in 10 of their prior PB samples (71%). In control, clonal hematopoiesis was detected in 17 patients (31%), and the cumulative incidence of t-MNs at 5 years was significantly higher in patients with clonal hematopoiesis (30% [95% CI: 16% – 51%] vs. 7% [95% CI: 2% – 21%], P = 0.016). In the separate cohort, 5 patients (7%) developed t-MNs and 4 (80%) of them had clonal hematopoiesis. The cumulative incidence of t-MNs at 10 years was significantly higher in patients with clonal hematopoiesis (29% [95% CI: 8%–53%] vs. 0% [95% CI: 0%–0%], P = 0.0009). Multivariate Fine and Gray model showed that having clonal hematopoiesis significantly increased the risk of t-MN development (HR = 13.7, P = 0.013). Interpretation Pre-leukemic clonal hematopoiesis is frequently detected in patients with t-MNs at the time of their primary cancer diagnosis and before patients were exposed to chemotherapy/radiation therapy. Detection of clonal hematopoiesis significantly increased the risk of t-MN development in patients with lymphoma. These data suggest potential approaches of screening clonal hematopoiesis in cancer patients to identify patients at risk of t-MNs and warrants a validation in prospective trial investigating a role of clonal hematopoiesis as a predictive marker for t-MNs. PMID:27923552
Leedham, S J; Preston, S L; McDonald, S A C; Elia, G; Bhandari, P; Poller, D; Harrison, R; Novelli, M R; Jankowski, J A; Wright, N A
2008-01-01
Objectives: Current models of clonal expansion in human Barrett’s oesophagus are based upon heterogenous, flow-purified biopsy analysis taken at multiple segment levels. Detection of identical mutation fingerprints from these biopsy samples led to the proposal that a mutated clone with a selective advantage can clonally expand to fill an entire Barrett’s segment at the expense of competing clones (selective sweep to fixation model). We aimed to assess clonality at a much higher resolution by microdissecting and genetically analysing individual crypts. The histogenesis of Barrett’s metaplasia and neo-squamous islands has never been demonstrated. We investigated the oesophageal gland squamous ducts as the source of both epithelial sub-types. Methods: Individual crypts across Barrett’s biopsy and oesophagectomy blocks were dissected. Determination of tumour suppressor gene loss of heterozygosity patterns, p16 and p53 point mutations were carried out on a crypt-by-crypt basis. Cases of contiguous neo-squamous islands and columnar metaplasia with oesophageal squamous ducts were identified. Tissues were isolated by laser capture microdissection and genetically analysed. Results: Individual crypt dissection revealed mutation patterns that were masked in whole biopsy analysis. Dissection across oesophagectomy specimens demonstrated marked clonal heterogeneity, with multiple independent clones present. We identified a p16 point mutation arising in the squamous epithelium of the oesophageal gland duct, which was also present in a contiguous metaplastic crypt, whereas neo-squamous islands arising from squamous ducts were wild-type with respect to surrounding Barrett’s dysplasia. Conclusions: By studying clonality at the crypt level we demonstrate that Barrett’s heterogeneity arises from multiple independent clones, in contrast to the selective sweep to fixation model of clonal expansion previously described. We suggest that the squamous gland ducts situated throughout the oesophagus are the source of a progenitor cell that may be susceptible to gene mutation resulting in conversion to Barrett’s metaplastic epithelium. Additionally, these data suggest that wild-type ducts may be the source of neo-squamous islands. PMID:18305067
Clonal growth and plant species abundance.
Herben, Tomáš; Nováková, Zuzana; Klimešová, Jitka
2014-08-01
Both regional and local plant abundances are driven by species' dispersal capacities and their abilities to exploit new habitats and persist there. These processes are affected by clonal growth, which is difficult to evaluate and compare across large numbers of species. This study assessed the influence of clonal reproduction on local and regional abundances of a large set of species and compared the predictive power of morphologically defined traits of clonal growth with data on actual clonal growth from a botanical garden. The role of clonal growth was compared with the effects of seed reproduction, habitat requirements and growth, proxied both by LHS (leaf-height-seed) traits and by actual performance in the botanical garden. Morphological parameters of clonal growth, actual clonal reproduction in the garden and LHS traits (leaf-specific area - height - seed mass) were used as predictors of species abundance, both regional (number of species records in the Czech Republic) and local (mean species cover in vegetation records) for 836 perennial herbaceous species. Species differences in habitat requirements were accounted for by classifying the dataset by habitat type and also by using Ellenberg indicator values as covariates. After habitat differences were accounted for, clonal growth parameters explained an important part of variation in species abundance, both at regional and at local levels. At both levels, both greater vegetative growth in cultivation and greater lateral expansion trait values were correlated with higher abundance. Seed reproduction had weaker effects, being positive at the regional level and negative at the local level. Morphologically defined traits are predictive of species abundance, and it is concluded that simultaneous investigation of several such traits can help develop hypotheses on specific processes (e.g. avoidance of self-competition, support of offspring) potentially underlying clonal growth effects on abundance. Garden performance parameters provide a practical approach to assessing the roles of clonal growth morphological traits (and LHS traits) for large sets of species. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The clonal and mutational evolution spectrum of primary triple-negative breast cancers.
Shah, Sohrab P; Roth, Andrew; Goya, Rodrigo; Oloumi, Arusha; Ha, Gavin; Zhao, Yongjun; Turashvili, Gulisa; Ding, Jiarui; Tse, Kane; Haffari, Gholamreza; Bashashati, Ali; Prentice, Leah M; Khattra, Jaswinder; Burleigh, Angela; Yap, Damian; Bernard, Virginie; McPherson, Andrew; Shumansky, Karey; Crisan, Anamaria; Giuliany, Ryan; Heravi-Moussavi, Alireza; Rosner, Jamie; Lai, Daniel; Birol, Inanc; Varhol, Richard; Tam, Angela; Dhalla, Noreen; Zeng, Thomas; Ma, Kevin; Chan, Simon K; Griffith, Malachi; Moradian, Annie; Cheng, S-W Grace; Morin, Gregg B; Watson, Peter; Gelmon, Karen; Chia, Stephen; Chin, Suet-Feung; Curtis, Christina; Rueda, Oscar M; Pharoah, Paul D; Damaraju, Sambasivarao; Mackey, John; Hoon, Kelly; Harkins, Timothy; Tadigotla, Vasisht; Sigaroudinia, Mahvash; Gascard, Philippe; Tlsty, Thea; Costello, Joseph F; Meyer, Irmtraud M; Eaves, Connie J; Wasserman, Wyeth W; Jones, Steven; Huntsman, David; Hirst, Martin; Caldas, Carlos; Marra, Marco A; Aparicio, Samuel
2012-04-04
Primary triple-negative breast cancers (TNBCs), a tumour type defined by lack of oestrogen receptor, progesterone receptor and ERBB2 gene amplification, represent approximately 16% of all breast cancers. Here we show in 104 TNBC cases that at the time of diagnosis these cancers exhibit a wide and continuous spectrum of genomic evolution, with some having only a handful of coding somatic aberrations in a few pathways, whereas others contain hundreds of coding somatic mutations. High-throughput RNA sequencing (RNA-seq) revealed that only approximately 36% of mutations are expressed. Using deep re-sequencing measurements of allelic abundance for 2,414 somatic mutations, we determine for the first time-to our knowledge-in an epithelial tumour subtype, the relative abundance of clonal frequencies among cases representative of the population. We show that TNBCs vary widely in their clonal frequencies at the time of diagnosis, with the basal subtype of TNBC showing more variation than non-basal TNBC. Although p53 (also known as TP53), PIK3CA and PTEN somatic mutations seem to be clonally dominant compared to other genes, in some tumours their clonal frequencies are incompatible with founder status. Mutations in cytoskeletal, cell shape and motility proteins occurred at lower clonal frequencies, suggesting that they occurred later during tumour progression. Taken together, our results show that understanding the biology and therapeutic responses of patients with TNBC will require the determination of individual tumour clonal genotypes.
Purification of Bone Marrow Clonal Cells from Patients with Myelodysplastic Syndrome via IGF-IR
He, Qi; Chang, Chun-Kang; Xu, Feng; Zhang, Qing-Xia; Shi, Wen-Hui; Li, Xiao
2015-01-01
Malignant clonal cells purification can greatly benefit basic and clinical studies in myelodysplastic syndrome (MDS). In this study, we investigated the potential of using type 1 insulin-like growth factor receptor (IGF-IR) as a marker for purification of malignant bone marrow clonal cells from patients with MDS. The average percentage of IGF-IR expression in CD34+ bone marrow cells among 15 normal controls was 4.5%, 70% of which also express the erythroid lineage marker CD235a. This indicates that IGF-IR mainly express in erythropoiesis. The expression of IGF-IR in CD34+ cells of 55 MDS patients was significantly higher than that of cells from the normal controls (54.0 vs. 4.5%). Based on the pattern of IGF-IR expression in MDS patients and normal controls, sorting of IGF-IR-positive and removal of CD235a-positive erythroid lineage cells with combination of FISH detection were performed on MDS samples with chromosomal abnormalities. The percentage of malignant clonal cells significantly increased after sorting. The enrichment effect was more significant in clonal cells with a previous percentage lower than 50%. This enrichment effect was present in samples from patients with +8, 5q-/-5, 20q-/-20 or 7q-/-7 chromosomal abnormalities. These data suggest that IGF-IR can be used as a marker for MDS bone marrow clonal cells and using flow cytometry for positive IGF-IR sorting may effectively purify MDS clonal cells. PMID:26469401
Radiation-induced transmissable chromosomal instability in haemopoietic stem cells
NASA Astrophysics Data System (ADS)
Kadhim, M. A.; Wright, E. G.
Heritable radiation-induced genetic alterations have long been assumed to be ``fixed'' within the first cell division. However, there is a growing body of evidence that a considerable fraction of cells surviving radiation exposure appear normal, but a variety of mutational changes arise in their progeny due to a transmissible genomic instability. In our investigations of G-banded metaphases, non-clonal cytogenetic aberrations, predominantly chromatid-type aberrations, have been observed in the clonal descendants of murine and human haemopoietic stem cells surviving low doses (~1 track per cell) of alpha-particle irradiations. The data are consistent with a transmissible genetic instability induced in a stem cell resulting in a diversity of chromosomal aberrations in its clonal progeny many cell divisions later. Recent studies have demonstrated that the instability phenotype persists in vivo and that the expression of chromosomal instability has a strong dependence on the genetic characteristics of the irradiated cell. At the time when cytogenetic aberrations are detected, an increased incidence of hprt mutations and apoptotic cells have been observed in the clonal descendants of alpha-irradiated murine haemopoietic stem cells. Thus, delayed chromosomal abnormalities, delayed cell death by apoptosis and late-arising specific gene mutations may reflect diverse consequences of radiation-induced genomic instability. The relationship, if any, between these effects is not established. Current studies suggest that expression of these delayed heritable effects is determined by the type of radiation exposure, type of cell and a variety of genetic factors.
Yamada, Aya; Kodo, Yukihiro; Murakami, Masaru; Kuroda, Masamichi; Aoki, Takao; Fujimoto, Takafumi; Arai, Katsutoshi
2015-11-01
In a few Japanese populations of the loach Misgurnus anguillicaudatus (Teleostei: Cobitidae), clonal diploid lineages produce unreduced diploid eggs that normally undergo gynogenetic reproduction; however the origin of these clones remains elusive. Here, we show the presence of two diverse clades, A and B, within this loach species from sequence analyses of two nuclear genes RAG1 (recombination activating gene 1) and IRBP2 (interphotoreceptor retinoid-binding protein, 2) and then demonstrate heterozygous genotypes fixed at the two loci as the evidence of the hybrid nature of clonal lineages. All the clonal individuals were identified by clone-specific mitochondrial DNA haplotypes, microsatellite genotypes, and random amplified polymorphic DNA fingerprints; they commonly showed two alleles, one from clade A and another from clade B, whereas other wild-type diploids possessed alleles from either clade A or B. However, we also found wild-type diploids with clone-specific mitochondrial DNA and nuclear genes from clade B. One possible explanation is an introgression of a clone-specific mitochondrial genome from clonal to these wild-type loaches. These individuals likely arose by a cross between haploid sperm from bisexual B clade males and haploid eggs with clone-specific mtDNA and clade B nuclear genome, produced by meiotic hybridogenesis (elimination of unmatched A genome followed by meiosis after preferential pairing between two matched B genomes) in clone-origin triploid individual (ABB). © 2015 Wiley Periodicals, Inc.
Prevalence and clonal analysis of Porphyromonas gingivalis in primary endodontic infections.
Siqueira, José F; Rôças, Isabela N; Silva, Marlei G
2008-11-01
This study investigated the prevalence of Porphyromonas gingivalis in 62 teeth with primary endodontic infections by using a species-specific 16S rRNA gene-based nested polymerase chain reaction assay. P. gingivalis isolates recovered from 2 infected root canals were also analyzed for clonal diversity by using arbitrarily primed PCR. Overall, P. gingivalis was found in 48% of the samples. This species was specifically detected in 36% of canals of teeth with chronic apical periodontitis, in 46% of the cases of acute apical periodontitis, and in 67% of acute apical abscesses. P. gingivalis was significantly more frequent in abscess aspirates than in canals of teeth with chronic apical periodontitis (P < .05). Typing of colonies retrieved from 2 infected canals revealed 2 clones per individual. These findings confirmed that P. gingivalis can be an important endodontic pathogen, mostly associated with acute abscesses, and demonstrated that different clonal types of this species can colonize the root canal in the same individual.
Infliximab Induces Clonal Expansion of γδ-T Cells in Crohn's Disease: A Predictor of Lymphoma Risk?
Kelsen, Jens; Dige, Anders; Schwindt, Heinrich; D'Amore, Francesco; Pedersen, Finn S.; Agnholt, Jørgen; Christensen, Lisbet A.; Dahlerup, Jens F.; Hvas, Christian L.
2011-01-01
Background Concominant with the widespread use of combined immunotherapy in the management of Crohn's disease (CD), the incidence of hepato-splenic gamma-delta (γδ)-T cell lymphoma has increased sharply in CD patients. Malignant transformation of lymphocytes is believed to be a multistep process resulting in the selection of malignant γδ-T cell clones. We hypothesised that repeated infusion of anti-TNF-α agents may induce clonal selection and that concurrent treatment with immunomodulators further predisposes patients to γδ-T cell expansion. Methodology/Principal Findings We investigated dynamic changes in the γδ-T cells of patient with CD following treatment with infliximab (Remicade®; n = 20) or adalimumab (Humira®; n = 26) using flow cytometry. In patients with a high γδ-T cell level, the γδ-T cells were assessed for clonality. Of these 46 CD patients, 35 had a γδ-T cells level (mean 1.6%) comparable to healthy individuals (mean 2.2%), and 11 CD patients (24%) exhibited an increased level of γδ-T cells (5–15%). In the 18 patients also receiving thiopurines or methotrexate, the average baseline γδ-T cell level was 4.4%. In three male CD patients with a high baseline value, the γδ-T cell population increased dramatically following infliximab therapy. A fourth male patient also on infliximab monotherapy presented with 20% γδ-T cells, which increased to 25% shortly after treatment and was 36% between infusions. Clonality studies revealed an oligoclonal γδ-T cell pattern with dominant γδ-T cell clones. In support of our clinical findings, in vitro experiments showed a dose-dependent proliferative effect of anti-TNF-α agents on γδ-T cells. Conclusion/Significance CD patients treated with immunomodulators had constitutively high levels of γδ-T cells. Infliximab exacerbated clonal γδ-T cell expansion in vivo and induced γδ-T cell proliferation in vitro. Overall, young, male CD patients with high baseline γδ-T cell levels may be at an increased risk of developing malignant γδ-T cell lymphomas following treatment with anti-TNF-α agents. PMID:21483853
Cutibacterium acnes molecular typing: time to standardize the method.
Dagnelie, M-A; Khammari, A; Dréno, B; Corvec, S
2018-03-12
The Gram-positive, anaerobic/aerotolerant bacterium Cutibacterium acnes is a commensal of healthy human skin; it is subdivided into six main phylogenetic groups or phylotypes: IA1, IA2, IB, IC, II and III. To decipher how far specific subgroups of C. acnes are involved in disease physiopathology, different molecular typing methods have been developed to identify these subgroups: i.e. phylotypes, clonal complexes, and types defined by single-locus sequence typing (SLST). However, as several molecular typing methods have been developed over the last decade, it has become a difficult task to compare the results from one article to another. Based on the scientific literature, the aim of this narrative review is to propose a standardized method to perform molecular typing of C. acnes, according to the degree of resolution needed (phylotypes, clonal complexes, or SLST types). We discuss the existing different typing methods from a critical point of view, emphasizing their advantages and drawbacks, and we identify the most frequently used methods. We propose a consensus algorithm according to the needed phylogeny resolution level. We first propose to use multiplex PCR for phylotype identification, MLST9 for clonal complex determination, and SLST for phylogeny investigation including numerous isolates. There is an obvious need to create a consensus about molecular typing methods for C. acnes. This standardization will facilitate the comparison of results between one article and another, and also the interpretation of clinical data. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Streptococcus mutans clonal variation revealed by multilocus sequence typing.
Nakano, Kazuhiko; Lapirattanakul, Jinthana; Nomura, Ryota; Nemoto, Hirotoshi; Alaluusua, Satu; Grönroos, Lisa; Vaara, Martti; Hamada, Shigeyuki; Ooshima, Takashi; Nakagawa, Ichiro
2007-08-01
Streptococcus mutans is the major pathogen of dental caries, a biofilm-dependent infectious disease, and occasionally causes infective endocarditis. S. mutans strains have been classified into four serotypes (c, e, f, and k). However, little is known about the S. mutans population, including the clonal relationships among strains of S. mutans, in relation to the particular clones that cause systemic diseases. To address this issue, we have developed a multilocus sequence typing (MLST) scheme for S. mutans. Eight housekeeping gene fragments were sequenced from each of 102 S. mutans isolates collected from the four serotypes in Japan and Finland. Between 14 and 23 alleles per locus were identified, allowing us theoretically to distinguish more than 1.2 x 10(10) sequence types. We identified 92 sequence types in these 102 isolates, indicating that S. mutans contains a diverse population. Whereas serotype c strains were widely distributed in the dendrogram, serotype e, f, and k strains were differentiated into clonal complexes. Therefore, we conclude that the ancestral strain of S. mutans was serotype c. No geographic specificity was identified. However, the distribution of the collagen-binding protein gene (cnm) and direct evidence of mother-to-child transmission were clearly evident. In conclusion, the superior discriminatory capacity of this MLST scheme for S. mutans may have important practical implications.
CRISPR-cas loci profiling of Cronobacter sakazakii pathovars.
Ogrodzki, Pauline; Forsythe, Stephen James
2016-12-01
Cronobacter sakazakii sequence types 1, 4, 8 and 12 are associated with outbreaks of neonatal meningitis and necrotizing enterocolitis infections. However clonality results in strains which are indistinguishable using conventional methods. This study investigated the use of clustered regularly interspaced short palindromic repeats (CRISPR)-cas loci profiling for epidemiological investigations. Seventy whole genomes of C. sakazakii strains from four clonal complexes which were widely distributed temporally, geographically and origin of source were profiled. All strains encoded the same type I-E subtype CRISPR-cas system with a total of 12 different CRISPR spacer arrays. This study demonstrated the greater discriminatory power of CRISPR spacer array profiling compared with multilocus sequence typing, which will be of use in source attribution during Cronobacter outbreak investigations.
Cristóvão, Filipe; Alonso, Carla Andrea; Igrejas, Gilberto; Sousa, Margarida; Silva, Vanessa; Pereira, José Eduardo; Lozano, Carmen; Cortés-Cortés, Gerardo; Torres, Carmen; Poeta, Patrícia
2017-03-01
The clonal diversity of extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli isolates from nine different species of wild animals from distinct regions of Portugal and Spain and their content in replicon plasmids were analyzed. Among the initial 53 ESBL-producing E. coli isolates that were studied (from previous studies), 28 were selected, corresponding to different animal origins with distinct ESBL types and pulsed-field gel electrophoresis (PFGE) patterns. These 28 isolates produced different ESBLs ascribed to the following families: CTX-M, SHV and TEM. The isolates were classified into three phylogenetic groups: B1 (n = 11), A (n = 10) and D (n = 7). The seven E. coli of phylogroup D were then typed by multilocus sequence typing and ascribed to four distinct sequence types: ST117, ST115, ST2001 and ST69. The clonal diversity and relationship between isolates was studied by PFGE. Lastly, the plasmids were analyzed according to their incompatibility group using the PCR-based-replicon-typing scheme. A great diversity of replicon types was identified, with up to five per isolate. Most of the CTX-M-1 and SHV-12 producing E. coli isolates carried IncI1 or IncN replicons. The diversity of ESBL-producing E. coli isolates in wild animals, which can be disseminated in the environment, emphasizes the environmental and health problems that we face nowadays. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Elhadidy, Mohamed; Arguello, Hector; Álvarez-Ordóñez, Avelino; Miller, William G; Duarte, Alexandra; Martiny, Delphine; Hallin, Marie; Vandenberg, Olivier; Dierick, Katelijne; Botteldoorn, Nadine
2018-06-20
Campylobacter jejuni is a zoonotic pathogen commonly associated with human gastroenteritis. Retail poultry meat is a major food-related transmission source of C. jejuni to humans. The present study investigated the genetic diversity, clonal relationship, and strain risk-analysis of 403 representative C. jejuni isolates from chicken broilers (n = 204) and sporadic cases of human diarrhea (n = 199) over a decade (2006-2015) in Belgium, using multilocus sequence typing (MLST), PCR binary typing (P-BIT), and identification of lipooligosaccharide (LOS) biosynthesis locus classes. A total of 123 distinct sequence types (STs), clustered in 28 clonal complexes (CCs) were assigned, including ten novel sequence types that were not previously documented in the international database. Sequence types ST-48, ST-21, ST-50, ST-45, ST-464, ST-2274, ST-572, ST-19, ST-257 and ST-42 were the most prevalent. Clonal complex 21 was the main clonal complex in isolates from humans and chickens. Among observed STs, a total of 35 STs that represent 72.2% (291/403) of the isolates were identified in both chicken and human isolates confirming considerable epidemiological relatedness; these 35 STs also clustered together in the most prevalent CCs. A majority of the isolates harbored sialylated LOS loci associated with potential neuropathic outcomes in humans. Although the concordance between MLST and P-BIT, determined by the adjusted Rand and Wallace coefficients, showed low congruence between both typing methods. The discriminatory power of P-BIT and MLST was similar, with Simpson's diversity indexes of 0.978 and 0.975, respectively. Furthermore, P-BIT could provide additional epidemiological information that would provide further insights regarding the potential association to human health from each strain. In addition, certain clones could be linked to specific clinical symptoms. Indeed, LOS class E was associated with less severe infections. Moreover, ST-572 was significantly associated with clinical infections occurring after travelling abroad. Ultimately, the data generated from this study will help to better understand the molecular epidemiology of C. jejuni infection. Copyright © 2018. Published by Elsevier B.V.
Surface antigens from Escherichia coli O2 and O78 strains of avian origin.
Dho-Moulin, M; van den Bosch, J F; Girardeau, J P; Brée, A; Barat, T; Lafont, J P
1990-01-01
Fimbriae from O2 and O78 virulent strains of avian Escherichia coli were compared with type 1A fimbriae with regard to the apparent molecular weights of their subunits and their antigenic relationships. Under static broth culture conditions, most O78 strains expressed fimbriae closely related to those of type 1A. Under the same culture conditions, another type of fimbriae, sharing some common properties with type 1A fimbriae, was observed only on O2 strains; however, these fimbriae differed from type 1A fimbriae in the apparent molecular weights of their subunits and in the expression of specific epitopes. They were called type 1-like fimbriae. Homologies in lipopolysaccharide and outer membrane protein profiles were also demonstrated among the strains expressing type 1-like fimbriae, which suggests the existence of a clonal relationship among O2:K1 avian E. coli strains. The O78 strains studied did not appear to be clonally related. Images PMID:1968434
Saukkoriipi, Annika; Bratcher, Holly B.; Bloigu, Aini; Juvonen, Raija; Silvennoinen-Kassinen, Sylvi; Peitso, Ari; Harju, Terttu; Vainio, Olli; Kuusi, Markku; Maiden, Martin C. J.; Leinonen, Maija; Käyhty, Helena; Toropainen, Maija
2012-01-01
The relationship between carriage and the development of invasive meningococcal disease is not fully understood. We investigated the changes in meningococcal carriage in 892 military recruits in Finland during a nonepidemic period (July 2004 to January 2006) and characterized all of the oropharyngeal meningococcal isolates obtained (n = 215) by using phenotypic (serogrouping and serotyping) and genotypic (porA typing and multilocus sequence typing) methods. For comparison, 84 invasive meningococcal disease strains isolated in Finland between January 2004 and February 2006 were also analyzed. The rate of meningococcal carriage was significantly higher at the end of military service than on arrival (18% versus 2.2%; P < 0.001). Seventy-four percent of serogroupable carriage isolates belonged to serogroup B, and 24% belonged to serogroup Y. Most carriage isolates belonged to the carriage-associated ST-60 clonal complex. However, 21.5% belonged to the hyperinvasive ST-41/44 clonal complex. Isolates belonging to the ST-23 clonal complex were cultured more often from oropharyngeal samples taken during the acute phase of respiratory infection than from samples taken at health examinations at the beginning and end of military service (odds ratio [OR], 6.7; 95% confidence interval [95% CI], 2.7 to 16.4). The ST-32 clonal complex was associated with meningococcal disease (OR, 17.8; 95% CI, 3.8 to 81.2), while the ST-60 clonal complex was associated with carriage (OR, 10.7; 95% CI, 3.3 to 35.2). These findings point to the importance of meningococcal vaccination for military recruits and also to the need for an efficacious vaccine against serogroup B isolates. PMID:22135261
Sun, Zhihong; Liu, Wenjun; Song, Yuqin; Xu, Haiyan; Yu, Jie; Bilige, Menghe; Zhang, Heping; Chen, Yongfu
2015-05-01
Lactobacillus helveticus is an economically important lactic acid bacterium used in industrial dairy fermentation. In the present study, the population structure of 245 isolates of L. helveticus from different naturally fermented dairy products in China and Mongolia were investigated using an multilocus sequence typing scheme with 11 housekeeping genes. A total of 108 sequence types were detected, which formed 8 clonal complexes and 27 singletons. Results from Structure, SplitsTree, and ClonalFrame software analyses demonstrated the presence of 3 subpopulations in the L. helveticus isolates used in our study, namely koumiss, kurut-tarag, and panmictic lineages. Most L. helveticus isolates from particular ecological origins had specific population structures. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Gélin, Pauline; Fauvelot, Cécile; Mehn, Vincent; Bureau, Sophie; Rouzé, Héloïse; Magalon, Hélène
2017-01-01
The scleractinian coral Pocillopora damicornis type β is known to present a mixed reproduction mode: through sexual reproduction, new genotypes are created, while asexual reproduction insures their propagation. In order to investigate the relative proportion of each reproduction mode in P. damicornis type β populations from Reunion Island, Indian Ocean, clonal propagation along the west coast was assessed through four sampling sites with increasing geographical distance between sites. Coral colonies were sampled either exhaustively, randomly or haphazardly within each site, and genotypic diversity was assessed using 13 microsatellite loci over a total of 510 P. damicornis type β determined a posteriori from their mtDNA haplotype (a 840 bp sequenced fragment of the Open Reading Frame). Overall, 47% of all the sampled colonies presented the same multi-locus genotype (MLG), a superclone, suggesting that asexual propagation is extremely important in Reunion Island. Within each site, numerous MLGs were shared by several colonies, suggesting local clonal propagation through fragmentation. Moreover, some of these MLGs were found to be shared among several sites located 40 km apart. While asexual reproduction by fragmentation seems unlikely over long distances, our results suggest a production of parthenogenetic larvae. Despite shared MLGs, two differentiated clusters were enclosed among populations of the west coast of Reunion Island, revealing the necessity to set up appropriate managing strategies at a local scale.
Mowlaboccus, Shakeel; Perkins, Timothy T.; Smith, Helen; Sloots, Theo; Tozer, Sarah; Prempeh, Lydia-Jessica; Tay, Chin Yen; Peters, Fanny; Speers, David; Keil, Anthony D.; Kahler, Charlene M.
2016-01-01
Neisseria meningitidis is the causative agent of invasive meningococcal disease (IMD). The BEXSERO® vaccine which is used to prevent serogroup B disease is composed of four sub-capsular protein antigens supplemented with an outer membrane vesicle. Since the sub-capsular protein antigens are variably expressed and antigenically variable amongst meningococcal isolates, vaccine coverage can be estimated by the meningococcal antigen typing system (MATS) which measures the propensity of the strain to be killed by vaccinated sera. Whole genome sequencing (WGS) which identifies the alleles of the antigens that may be recognised by the antibody response could represent, in future, an alternative estimate of coverage. In this study, WGS of 278 meningococcal isolates responsible for 62% of IMD in Western Australia from 2000–2014 were analysed for association of genetic lineage (sequence type [ST], clonal complex [cc]) with BEXSERO® antigen sequence type (BAST) and MATS to predict the annual vaccine coverage. A hyper-endemic period of IMD between 2000–05 was caused by cc41/44 with the major sequence type of ST-146 which was not predicted by MATS or BAST to be covered by the vaccine. An increase in serogroup diversity was observed between 2010–14 with the emergence of cc11 serogroup W in the adolescent population and cc23 serogroup Y in the elderly. BASTs were statistically associated with clonal complex although individual antigens underwent antigenic drift from the major type. BAST and MATS predicted an annual range of 44–91% vaccine coverage. Periods of low vaccine coverage in years post-2005 were not a result of the resurgence of cc41/44:ST-146 but were characterised by increased diversity of clonal complexes expressing BASTs which were not predicted by MATS to be covered by the vaccine. The driving force behind the diversity of the clonal complex and BAST during these periods of low vaccine coverage is unknown, but could be due to immune selection and inter-strain competition with carriage of non-disease causing meningococci. PMID:27355628
RAPD- and ERIC-Based Typing of Clinical and Environmental Pseudomonas aeruginosa Isolates.
Auda, Ibtesam Ghadban; Al-Kadmy, Israa M S; Kareem, Sawsan Mohammed; Lafta, Aliaa Khyuon; A'Affus, Mustafa Hussein Obeid; Khit, Ibrahim Abd Aloahd; Al Kheraif, Abdulaziz Abdullah; Divakar, Darshan Devang; Ramakrishnaiah, Ravikumar
2017-03-01
Pseudomonas aeruginosa is a major cause of nosocomial infection in children and adults, resulting in significant morbidity and mortality due to its ability to acquire drug resistance. The ability of P. aeruginosa in the environment to cause infection in individuals has been reported previously; henceforth, surveillance of the emergence and transmission of P. aeruginosa strains among patients is important for infection control in a clinical setup. Various gene-typing methods have been used for epidemiological typing of P. aeruginosa isolates for the purpose of surveillance. In this work, the suitability and comparability of two typing methods, enterobacterial repetitive intergenic consensus (ERIC)-PCR and random amplification of polymorphic DNA (RAPD)-PCR fingerprinting, were studied to characterize P. aeruginosa strains isolated from clinical and environmental sources. Forty-four clinical and environmental bacterial isolates of P. aeruginosa were collected between October 2015 and January 2016. DNA extraction, ERIC-PCR and RAPD-PCR, agarose gel electrophoresis, and phylogenetic analyses were carried using the unweighted pair-group method with mean. RAPD typing revealed less clonality among clinical isolates, whereas the ERIC method showed greater similarity in comparison with RAPD. Environmental isolates, however, showed greater similarity using RAPD compared with ERIC typing. With only a few exceptions, most clinical isolates were distinct from environmental isolates, irrespective of the typing method. In conclusion, both the RAPD and ERIC typing methods proved to be good tools in understanding clonal diversity. The results also suggest that there is no relationship between clinical and environmental isolates. The absence of clonality among the clinical isolates may indicate that most P. aeruginosa infection cases could be endemic and not epidemic and that endemic infections may be due to nonclonal strains of P. aeruginosa.
Suh, Ji-Yoeun; Son, Jun Seong; Chung, Doo Ryeon; Peck, Kyong Ran; Ko, Kwan Soo; Song, Jae-Hoon
2010-01-01
In vitro activities of colistin and other drugs were tested against 221 Klebsiella pneumoniae isolates that were collected between 2006 and 2007 in nine tertiary care South Korean hospitals from patients with bacteremia. The clonality of colistin-resistant K. pneumoniae (CRKP) isolates was assessed by multilocus sequence typing (MLST). We found that 15 isolates (6.8%) were resistant to colistin. MLST showed that CRKP isolates were nonclonal, with colistin resistance in K. pneumoniae occurring independently and not by clonal spreading.
Clonal success of piliated penicillin nonsusceptible pneumococci
Sjöström, K.; Blomberg, C.; Fernebro, J.; Dagerhamn, J.; Morfeldt, E.; Barocchi, M. A.; Browall, S.; Moschioni, M.; Andersson, M.; Henriques, F.; Albiger, B.; Rappuoli, Rino; Normark, S.; Henriques-Normark, B.
2007-01-01
Antibiotic resistance in pneumococci is due to the spread of strains belonging to a limited number of clones. The Spain9V-3 clone of sequence type (ST)156 is one of the most successful clones with reduced susceptibility to penicillin [pneumococci nonsusceptible to penicillin (PNSP)]. In Sweden during 2000–2003, a dramatic increase in the number of PNSP isolates was observed. Molecular characterization of these isolates showed that a single clone of sequence type ST156 increased from 40% to 80% of all serotype 14, thus causing the serotype expansion. Additionally, during the same time period, we examined the clonal composition of two serotypes 9V and 19F: all 9V and 20% of 19F isolates belonged to the clonal cluster of ST156, and overall ≈50% of all PNSP belonged to the ST156 clonal cluster. Moreover, microarray and PCR analysis showed that all ST156 isolates, irrespective of capsular type, carried the rlrA pilus islet. This islet was also found to be present in the penicillin-sensitive ST162 clone, which is believed to be the drug-susceptible ancestor of ST156. Competitive experiments between related ST156 serotype 19F strains confirmed that those containing the rlrA pilus islet were more successful in an animal model of carriage. We conclude that the pilus island is an important biological factor common to ST156 isolates and other successful PNSP clones. In Sweden, a country where the low antibiotic usage does not explain the spread of resistant strains, at least 70% of all PNSP isolates collected during year 2003 carried the pilus islet. PMID:17644611
Van der Bij, A K; Van der Zwan, D; Peirano, G; Severin, J A; Pitout, J D D; Van Westreenen, M; Goessens, W H F
2012-09-01
Recently, the first outbreak of clonally related VIM-2 metallo-β-lactamase (MBL)-producing Pseudomonas aeruginosa in a Dutch tertiary-care centre was described. Subsequently, a nationwide surveillance study was performed in 2010-2011, which identified the presence of VIM-2 MBL-producing P. aeruginosa in 11 different hospitals. Genotyping by multiple-locus variable-number tandem-repeat analysis (MLVA) showed that the majority of the 82 MBL-producing isolates found belonged to a single MLVA type (n = 70, 85%), identified as ST111 by multilocus sequence typing (MLST). As MBL-producing isolates cause serious infections that are difficult to treat, the presence of clonally related isolates in various hospitals throughout the Netherlands is of nationwide concern. © 2012 The Authors. Clinical Microbiology and Infection © 2012 European Society of Clinical Microbiology and Infectious Diseases.
Rodríguez-Martínez, Jose M; Fernández-Echauri, Pedro; Fernández-Cuenca, Felipe; Diaz de Alba, Paula; Briales, Alejandra; Pascual, Alvaro
2012-01-01
Extended-spectrum AmpC cephalosporinases (ESACs) have been reported in Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii. Here, we characterize a new AmpC variant presenting a broadened substrate activity towards fourth-generation cephalosporins, selected in vivo following cefepime treatment for Enterobacter aerogenes. Two consecutive clonally related isolates of E. aerogenes were evaluated. Screening for ESAC production was performed using plates containing 200 mg/L cloxacillin. MICs were determined by microdilution (CLSI guidelines). bla(AmpC) genes were cloned into a pCR-Blunt II-TOPO vector and expressed in Escherichia coli. The ampC genes were cloned into vector pGEX-6P-1 for protein purification. Isolate Ea595 was resistant to two fourth-generation cephalosporins, cefepime and cefpirome; using plates containing cloxacillin, susceptibility to ceftazidime and cefepime was restored, suggesting overproduction of the ESAC β-lactamase. Sequencing identified a new AmpC β-lactamase variant presenting one amino acid substitution, Val291Gly, inside the H-10 helix. Recombinant plasmids harbouring this ESAC β-lactamase conferred a broadened resistance profile to cefepime and cefpirome, with resistance levels increasing from 16- to 32-fold in E. coli. AmpC-Ea595 hydrolysed ceftazidime, cefepime and cefpirome at high levels, presenting a lower K(m) and enabling us to classify the enzyme as an ESAC. Homology modelling suggested that the size of the active site could have increased. We characterized an ESAC β-lactamase selected in vivo and conferring a high level of resistance to fourth-generation cephalosporins in E. aerogenes. The broadened spectrum was caused by a new modification to the H-10 helix, which modified the active site.
Sartor, Anna L.; Balkhy, Hanan H.; Walsh, Timothy R.; Al Johani, Sameera M.; AlJindan, Reem Y.; Alfaresi, Mubarak; Ibrahim, Emad; Al-Jardani, Amina; Al-Abri, Seif; Al Salman, Jameela; Dashti, Ali A.; Kutbi, Abdullah H.; Schlebusch, Sanmarié; Sidjabat, Hanna E.; Paterson, David L.
2014-01-01
The molecular epidemiology and mechanisms of resistance of carbapenem-resistant Enterobacteriaceae (CRE) were determined in hospitals in the countries of the Gulf Cooperation Council (GCC), namely, Saudi Arabia, United Arab Emirates, Oman, Qatar, Bahrain, and Kuwait. Isolates were subjected to PCR-based detection of antibiotic-resistant genes and repetitive sequence-based PCR (rep-PCR) assessments of clonality. Sixty-two isolates which screened positive for potential carbapenemase production were assessed, and 45 were found to produce carbapenemase. The most common carbapenemases were of the OXA-48 (35 isolates) and NDM (16 isolates) types; 6 isolates were found to coproduce the OXA-48 and NDM types. No KPC-type, VIM-type, or IMP-type producers were detected. Multiple clones were detected with seven clusters of clonally related Klebsiella pneumoniae. Awareness of CRE in GCC countries has important implications for controlling the spread of CRE in the Middle East and in hospitals accommodating patients transferred from the region. PMID:24637692
Multilocus Sequence Types of Campylobacter jejuni Isolates from Different Sources in Eastern China.
Zhang, Gong; Zhang, Xiaoyan; Hu, Yuanqing; Jiao, Xin-An; Huang, Jinlin
2015-09-01
Campylobacter jejuni is a major food-borne pathogen that causes human gastroenteritis in many developed countries. In our study, we applied multilocus sequence typing (MLST) technology to 167 C. jejuni isolates from diverse sources in Eastern China to examine their genetic diversity. MLST defined 94 sequence types (STs) belonging to 18 clonal complexes (CCs). Forty-five STs from 60 isolates (36%) and 22 alleles have not been previously documented in an international database. One hundred and two isolates, accounting for 61.1% of all isolates, belonged to eight clonal complexes. The eight major CCs were also the most common complexes from different sources. The most common ST type of isolates from human and food was ST-353. The dominant ST type in chicken and foods was ST-354. Among 21 STs that contained two or more different sources isolates, 15 STs contained human isolates and isolates from other sources, suggesting that potentially pathogenic strains are not restricted to specific lineages.
Pagliaccia, D; Pond, E; McKee, B; Douhan, G W
2013-01-01
Phytophthora root rot (PRR) of avocado (Persea americana), caused by Phytophthora cinnamomi, is the most serious disease of avocado worldwide. Previous studies have determined that this pathogen exhibits a primarily clonal reproductive mode but no population level studies have been conducted in the avocado-growing regions of California. Therefore, we used amplified fragment length polymorphism based on 22 polymorphic loci and mating type to investigate pathogen diversity from 138 isolates collected in 2009 to 2010 from 15 groves from the Northern and Southern avocado-growing regions. Additional isolates collected from avocado from 1966 to 2007 as well as isolates from other countries and hosts were also used for comparative purposes. Two distinct clades of A2 mating-type isolates from avocado were found based on neighbor joining analysis; one clade contained both newer and older collections from Northern and Southern California, whereas the other clade only contained isolates collected in 2009 and 2010 from Southern California. A third clade was also found that only contained A1 isolates from various hosts. Within the California population, a total of 16 genotypes were found with only one to four genotypes identified from any one location. The results indicate significant population structure in the California avocado P. cinnamomi population, low genotypic diversity consistent with asexual reproduction, potential evidence for the movement of clonal genotypes between the two growing regions, and a potential introduction of a new clonal lineage into Southern California.
Chattaway, Marie Anne; Day, Michaela; Mtwale, Julia; White, Emma; Rogers, James; Day, Martin; Powell, David; Ahmad, Marwa; Harris, Ross; Talukder, Kaisar Ali; Wain, John; Jenkins, Claire; Cravioto, Alejandro
2017-10-01
This study investigates the virulence and antimicrobial resistance in association with common clonal complexes (CCs) of enteroaggregative Escherichia coli (EAEC) isolated from Bangladesh. The aim was to determine whether specific CCs were more likely to be associated with putative virulence genes and/or antimicrobial resistance. The presence of 15 virulence genes (by PCR) and susceptibility to 18 antibiotics were determined for 151 EAEC isolated from cases and controls during an intestinal infectious disease study carried out between 2007-2011 in the rural setting of Mirzapur, Bangladesh (Kotloff KL, Blackwelder WC, Nasrin D, Nataro JP, Farag TH et al.Clin Infect Dis 2012;55:S232-S245). These data were then analysed in the context of previously determined serotypes and clonal complexes defined by multi-locus sequence typing. Overall there was no association between the presence of virulence or antimicrobial resistance genes in isolates of EAEC from cases versus controls. However, when stratified by clonal complex (CC) one CC associated with cases harboured more virulence factors (CC40) and one CC harboured more resistance genes (CC38) than the average. There was no direct link between the virulence gene content and antibiotic resistance. Strains within a single CC had variable virulence and resistance gene content indicating independent and multiple gene acquisitions over time. In Bangladesh, there are multiple clonal complexes of EAEC harbouring a variety of virulence and resistance genes. The emergence of two of the most successful clones appeared to be linked to either increased virulence (CC40) or antimicrobial resistance (CC38), but increased resistance and virulence were not found in the same clonal complexes.
USDA-ARS?s Scientific Manuscript database
Most Korean vineyards employed spur-pruning type modified-T trellis system. This produce system is suitable to spur-pruning type cultivars. But most European table grape is not adaptable to this produce system because their fruitfulness is sufficient to cane-pruning type system. Total 20 of fruit ch...
Bortolami, Alessio; Verin, Ranieri; Chantrey, Julian; Corrò, Michela; Ashpole, Ian; Lopez, Javier; Timofte, Dorina
2017-10-01
Little is known about the characteristics and diseases associated with methicillin-resistant Staphylococcus aureus (MRSA) in nondomestic animals. Four presumptive MRSA isolates, obtained from clinical (n = 3) and surveillance specimens (n = 1) from dwarf (Helogale parvula) and yellow mongooses (Cynictis penicillata) from a United Kingdom zoo, were analyzed by PCR for detection of mecA and mecC-mediated methicillin resistance, and virulence genes. Isolates were genotyped by multilocus sequence typing (MLST) and staphylococcal cassette chromosome mec (SCCmec) and spa sequence typing. Three isolates, obtained from the dwarf mongooses, carried mecA, tetK, and fexA resistance and virulence genes (icaA, icaD, and sec) and were typed to SCCmec IVa, spa type t899, and clonal complex (CC) 398. The fourth MRSA isolate, obtained from the femoral bone marrow of a yellow mongoose showing postmortem findings consistent with septicemia, carried mecC and was oxacillin/cefoxitin susceptible, when tested at 37°C but showed a characteristic MRSA susceptibility profile at 25°C ± 2°C. Furthermore, this isolate exhibited a different genetic background (SCCmecXI/t843/CC130) and had biofilm-associated genes (bap, icaA, and icaD) and tetK tetracycline resistance genes. This work describes the first isolation of livestock-associated MRSA CC398 from two zoo mongoose species where it was associated with both clinical disease and colonization, and the first isolation of mecC MRSA from a zoo species in the United Kingdom. Both reports highlight the potential for zoo species to act as reservoirs for these zoonotic agents.
[Clinical and biological prognostic factors in relapsed acute myeloid leukemia patients].
Yébenes-Ramírez, Manuel; Serrano, Josefina; Martínez-Losada, Carmen; Sánchez-García, Joaquín
2016-09-02
Acute myeloid leukemia (AML) is the most frequent type of acute leukemia in adults. Despite recent advances in the characterization of pathogenesis of AML, the cure rates are under 40%, being leukemia relapse the most common cause of treatment failure. Leukaemia relapse occurs due to clonal evolution or clonal escape. In this study, we aimed to analyze the clinical and biological factors influencing outcomes in patients with AML relapse. We included a total of 75 AML patients who experienced leukaemia relapse after achieving complete remission. We performed complete immunophenotyping and conventional karyotyping in bone marrow aspirates obtained at diagnosis and at leukemia relapse. Overall survival (OS) of the series was 3.7%±2.3, leukaemia progression being the most common cause of death. Patients relapsing before 12 months and those with adverse cytogenetic-molecular risk had statistically significant worse outcomes. A percentage of 52.5 of patients showed phenotypic changes and 50% cytogenetic changes at relapse. We did not find significant clinical factors predicting clonal evolution. The presence of clonal evolution at relapse did not have a significant impact on outcome. Patients with relapsed AML have a dismal prognosis, especially those with early relapse and adverse cytogenetic-molecular risk. Clonal evolution with phenotypic and cytogenetic changes occurred in half of the patients without predictive clinical factors or impact on outcome. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.
Choleva, Lukas; Musilova, Zuzana; Kohoutova-Sediva, Alena; Paces, Jan; Rab, Petr; Janko, Karel
2014-01-01
Distinguishing between hybrid introgression and incomplete lineage sorting causing incongruence among gene trees in that they exhibit topological differences requires application of statistical approaches that are based on biologically relevant models. Such study is especially challenging in hybrid systems, where usual vectors mediating interspecific gene transfers--hybrids with Mendelian heredity--are absent or unknown. Here we study a complex of hybridizing species, which are known to produce clonal hybrids, to discover how one of the species, Cobitis tanaitica, has achieved a pattern of mito-nuclear mosaic genome over the whole geographic range. We appplied three distinct methods, including the method using solely the information on gene tree topologies, and found that the contrasting mito-nuclear signal might not have resulted from the retention of ancestral polymorphism. Instead, we found two signs of hybridization events related to C. tanaitica; one concerning nuclear gene flow and the other suggested mitochondrial capture. Interestingly, clonal inheritance (gynogenesis) of contemporary hybrids prevents genomic introgressions and non-clonal hybrids are either absent or too rare to be detected among European Cobitis. Our analyses therefore suggest that introgressive hybridizations are rather old episodes, mediated by previously existing hybrids whose inheritance was not entirely clonal. Cobitis complex thus supports the view that the type of resulting hybrids depends on a level of genomic divergence between sexual species.
Jandova, Zuzana; Musilek, Martin; Vackova, Zuzana; Kozakova, Jana; Krizova, Pavla
2016-01-01
Background This study presents antigenic and genetic characteristics of Neisseria meningitidis strains recovered from invasive meningococcal disease (IMD) in the Czech Republic in 1971–2015. Material and Methods A total of 1970 isolates from IMD, referred to the National Reference Laboratory for Meningococcal Infections in 1971–2015, were studied. All isolates were identified and characterized by conventional biochemical and serological tests. Most isolates (82.5%) were characterized by multilocus sequence typing method. Results In the study period 1971–2015, the leading serogroup was B (52.4%), most often assigned to clonal complexes cc32, cc41/44, cc18, and cc269. A significant percentage of strains were of serogroup C (41.4%), with high clonal homogeneity due to hyperinvasive complex cc11, which played an important role in IMD in the Czech Republic in the mid-1990s. Serogroup Y isolates, mostly assigned to cc23, and isolates of clonally homogeneous serogroup W have also been recovered more often over the last years. Conclusion The incidence of IMD and distribution of serogroups and clonal complexes of N. meningitidis in the Czech Republic varied over time, as can be seen from the long-term monitoring, including molecular surveillance data. Data from the conventional and molecular IMD surveillance are helpful in refining the antimeningococcal vaccination strategy in the Czech Republic. PMID:27936105
Climent, Yanet; Yero, Daniel; Martinez, Isabel; Martín, Alejandro; Jolley, Keith A.; Sotolongo, Franklin; Maiden, Martin C. J.; Urwin, Rachel; Pajón, Rolando
2010-01-01
In response to epidemic levels of serogroup B meningococcal disease in Cuba during the 1980s, the VA-MENGOC-BC vaccine was developed and introduced into the National Infant Immunization Program in 1991. Since then the incidence of meningococcal disease in Cuba has returned to the low levels recorded before the epidemic. A total of 420 Neisseria meningitidis strains collected between 1983 and 2005 in Cuba were analyzed by multilocus sequence typing (MLST). The set of strains comprised 167 isolated from disease cases and 253 obtained from healthy carriers. By MLST analysis, 63 sequence types (STs) were identified, and 32 of these were reported to be a new ST. The Cuban isolates were associated with 12 clonal complexes; and the most common were ST-32 (246 isolates), ST-53 (86 isolates), and ST-41/44 (36 isolates). This study also showed that the application of VA-MENGOC-BC, the Cuban serogroup B and C vaccine, reduced the frequency and diversity of hypervirulent clonal complexes ST-32 (vaccine serogroup B type-strain) and ST-41/44 and also affected other lineages. Lineages ST-8 and ST-11 were no longer found during the postvaccination period. The vaccine also affected the genetic composition of the carrier-associated meningococcal isolates. The number of carrier isolates belonging to hypervirulent lineages decreased significantly after vaccination, and ST-53, a sequence type common in carriers, became the predominant ST. PMID:20042619
Verifying Parentage and Confirming Identity in Blackberry with a Fingerprinting Set
USDA-ARS?s Scientific Manuscript database
Parentage and identity confirmation is an important aspect of clonally propagated crops outcrossing. Potential errors resulting misidentification include off-type pollination events, labeling errors, or sports of clones. DNA fingerprinting sets are an excellent solution to quickly identify off-type ...
Suh, Ji-Yoeun; Son, Jun Seong; Chung, Doo Ryeon; Peck, Kyong Ran; Ko, Kwan Soo; Song, Jae-Hoon
2010-01-01
In vitro activities of colistin and other drugs were tested against 221 Klebsiella pneumoniae isolates that were collected between 2006 and 2007 in nine tertiary care South Korean hospitals from patients with bacteremia. The clonality of colistin-resistant K. pneumoniae (CRKP) isolates was assessed by multilocus sequence typing (MLST). We found that 15 isolates (6.8%) were resistant to colistin. MLST showed that CRKP isolates were nonclonal, with colistin resistance in K. pneumoniae occurring independently and not by clonal spreading. PMID:19752282
Clonal populations of amniotic cells by dilution and direct plating: evidence for hidden diversity.
Wilson, Patricia G; Devkota, Lorna; Payne, Tiffany; Crisp, Laddie; Winter, Allison; Wang, Zhan
2012-01-01
Fetal cells are widely considered a superior cell source for regenerative medicine; fetal cells show higher proliferative capacity and have undergone fewer replicative cycles that could generate spontaneous mutations. Fetal cells in amniotic fluid were among the first normal primary cells to be cultured ex vivo, but the undefined composition of amniotic fluid has hindered advance for regenerative applications. We first developed a highly efficient method to generate clonal populations by dilution of amniocentesis samples in media and direct plating without intervening refrigeration, centrifugation, or exposure of cells to the paracrine effects in mixed cell cultures. More than 40 clonal populations were recovered from 4 amniocentesis samples and representative clones were characterized by flow cytometry, conventional assays for differentiation potential, immunofluorescence imaging, and transcript analysis. The results revealed previously unreported diversity among stromal and epithelial cell types and identified unique cell types that could be lost or undetected in mixed cell populations. The differentiation potential of amniotic cells proved to be uncoupled from expression of definitive cell surface or cytoplasmic markers for stromal and epithelial cells. Evidence for diversity among stromal and epithelial cells in amniotic fluid bears on interpretations applied to molecular and functional tests of amniotic cell populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medina, D.; Oborn, C.J.; Li, M.L.
1987-09-01
The COMMA-D mammary cell line exhibits mammary-specific functional differentiation under appropriate conditions in cell culture. The cytologically heterogeneous COMMA-D parental line and the clonal lines DB-1, TA-5, and FA-1 derived from the COMMA-D parent were examined for similar properties of functional differentiation. In monolayer cell culture, the cell lines DB-1, TA-5, FA-1, and MA-4 were examined for expression of mammary-specific and epithelial-specific proteins by an indirect immunofluorescence assay. The clonal cell lines were relatively homogeneous in their respective staining properties and seemed to represent three subpopulations found in the heterogeneous parental COMMA-D lines. None of the four clonal lines appearedmore » to represent myoepithelial cells. The cell lines were examined for expression of {beta}-casein mRNA in the presence or absence of prolactin. The inducibility of {beta}-casein in the COMMA-D cell line was further enhanced by a reconstituted basement membrane preparation enriched in laminin, collagen IV, and proteoglycans. These results support the hypothesis that the functional response of inducible mammary cell populations is a result of interaction among hormones, multiple extracellular matrix components, and specific cell types.« less
Multilocus sequence type profiles of Bacillus cereus isolates from infant formula in China.
Yang, Yong; Yu, Xiaofeng; Zhan, Li; Chen, Jiancai; Zhang, Yunyi; Zhang, Junyan; Chen, Honghu; Zhang, Zheng; Zhang, Yanjun; Lu, Yiyu; Mei, Lingling
2017-04-01
Bacillus cereus sensu stricto is an opportunistic foodborne pathogen. The multilocus sequence type (MLST) of 74 B. cereus isolated from 513 non-random infant formula in China was analyzed. Of 64 sequence types (STs) detected, 50 STs and 6 alleles were newly found in PubMLST database. All isolates except for one singleton (ST-1049), were classified into 7 clonal complexes (CC) by BURST (n-4), in which CC1 with core ancestral clone ST-26 was the largest group including 86% isolates, and CC2, 3, 9, 10 and 13 were first reported in China. MLST profiles of the isolates from 8 infant formula brands were compared. It was found the brands might be potentially tracked by the variety of STs, such as ST-1049 of singleton and ST-1062 of isolate from goat milk source, though they could not be easily tracked just by clonal complex types of the isolates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Oshima, Koichi; Khiabanian, Hossein; da Silva-Almeida, Ana C.; Tzoneva, Gannie; Abate, Francesco; Ambesi-Impiombato, Alberto; Sanchez-Martin, Marta; Carpenter, Zachary; Penson, Alex; Perez-Garcia, Arianne; Eckert, Cornelia; Nicolas, Concepción; Balbin, Milagros; Sulis, Maria Luisa; Kato, Motohiro; Koh, Katsuyoshi; Paganin, Maddalena; Basso, Giuseppe; Gastier-Foster, Julie M.; Devidas, Meenakshi; Loh, Mignon L.; Kirschner-Schwabe, Renate; Palomero, Teresa; Rabadan, Raul; Ferrando, Adolfo A.
2016-01-01
Although multiagent combination chemotherapy is curative in a significant fraction of childhood acute lymphoblastic leukemia (ALL) patients, 20% of cases relapse and most die because of chemorefractory disease. Here we used whole-exome and whole-genome sequencing to analyze the mutational landscape at relapse in pediatric ALL cases. These analyses identified numerous relapse-associated mutated genes intertwined in chemotherapy resistance-related protein complexes. In this context, RAS-MAPK pathway-activating mutations in the neuroblastoma RAS viral oncogene homolog (NRAS), kirsten rat sarcoma viral oncogene homolog (KRAS), and protein tyrosine phosphatase, nonreceptor type 11 (PTPN11) genes were present in 24 of 55 (44%) cases in our series. Interestingly, some leukemias showed retention or emergence of RAS mutant clones at relapse, whereas in others RAS mutant clones present at diagnosis were replaced by RAS wild-type populations, supporting a role for both positive and negative selection evolutionary pressures in clonal evolution of RAS-mutant leukemia. Consistently, functional dissection of mouse and human wild-type and mutant RAS isogenic leukemia cells demonstrated induction of methotrexate resistance but also improved the response to vincristine in mutant RAS-expressing lymphoblasts. These results highlight the central role of chemotherapy-driven selection as a central mechanism of leukemia clonal evolution in relapsed ALL, and demonstrate a previously unrecognized dual role of RAS mutations as drivers of both sensitivity and resistance to chemotherapy. PMID:27655895
Chattaway, Marie Anne; Day, Michaela; Mtwale, Julia; White, Emma; Rogers, James; Day, Martin; Powell, David; Ahmad, Marwa; Harris, Ross; Talukder, Kaisar Ali; Wain, John; Jenkins, Claire; Cravioto, Alejandro
2017-01-01
Purpose This study investigates the virulence and antimicrobial resistance in association with common clonal complexes (CCs) of enteroaggregative Escherichia coli (EAEC) isolated from Bangladesh. The aim was to determine whether specific CCs were more likely to be associated with putative virulence genes and/or antimicrobial resistance. Methodology The presence of 15 virulence genes (by PCR) and susceptibility to 18 antibiotics were determined for 151 EAEC isolated from cases and controls during an intestinal infectious disease study carried out between 2007–2011 in the rural setting of Mirzapur, Bangladesh (Kotloff KL, Blackwelder WC, Nasrin D, Nataro JP, Farag TH et al. Clin Infect Dis 2012;55:S232–S245). These data were then analysed in the context of previously determined serotypes and clonal complexes defined by multi-locus sequence typing. Results Overall there was no association between the presence of virulence or antimicrobial resistance genes in isolates of EAEC from cases versus controls. However, when stratified by clonal complex (CC) one CC associated with cases harboured more virulence factors (CC40) and one CC harboured more resistance genes (CC38) than the average. There was no direct link between the virulence gene content and antibiotic resistance. Strains within a single CC had variable virulence and resistance gene content indicating independent and multiple gene acquisitions over time. Conclusion In Bangladesh, there are multiple clonal complexes of EAEC harbouring a variety of virulence and resistance genes. The emergence of two of the most successful clones appeared to be linked to either increased virulence (CC40) or antimicrobial resistance (CC38), but increased resistance and virulence were not found in the same clonal complexes. PMID:28945190
Breast tumor heterogeneity: cancer stem cells or clonal evolution?
Campbell, Lauren L; Polyak, Kornelia
2007-10-01
Breast tumors are composed of a variety of cell types with distinct morphologies and behaviors. It is not clear how this tumor heterogeneity comes about. Two popular concepts that attempt to explain this are the cancer stem cell hypothesis and the clonal evolution model. Each of these ideas has been investigated for some time, leading to the accumulation of numerous findings that are used to support one or the other. Although the two views share some similarities, they are fundamentally different notions with very different clinical implications. Analysis of the research backing each concept, along with a review of the results of our recent study investigating putative breast cancer stem cells, suggests how the cancer stem cell hypothesis and the clonal evolution model may be involved in generating breast tumor heterogeneity. An understanding of this process will allow the development of more effective ways to treat and prevent breast cancer.
Hancock, Viktoria; Nielsen, Eva Møller; Krag, Louise; Engberg, Jørgen; Klemm, Per
2009-11-01
Urinary tract infections (UTIs) are one of the most common infectious diseases in humans and domestic animals such as pigs. The most frequent infectious agent in such infections is Escherichia coli. Virulence characteristics of E. coli UTI strains range from highly virulent pyelonephritis strains to relatively benign asymptomatic bacteriuria strains. Here we analyse a spectrum of porcine and human UTI E. coli strains with respect to their antibiotic resistance patterns and their phylogenetic groups, determined by multiplex PCR. The clonal profiles of the strains differed profoundly; whereas human strains predominantly belonged to clonal types B2 and D, these were not seen among the porcine strains, which all belonged to the E. coli clonal groups A and B1. Contrary to the human strains, the majority of the porcine strains were multidrug resistant. The distinct profiles of the porcine strains suggest selective pressure due to extensive antibiotic use.
Pancreatic Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells
Pelosi, Elvira; Castelli, Germana
2017-01-01
Pancreatic Ductal Adenocarcinoma (PDAC) is the fourth most common cause of cancer-related death and is the most lethal of common malignancies with a five-year survival rate of <10%. PDAC arises from different types of non-invasive precursor lesions: intraductal papillary mucinous neoplasms, mucinous cystic neoplasms and pancreatic intraepithelial neoplasia. The genetic landscape of PDAC is characterized by the presence of four frequently-mutated genes: KRAS, CDKN2A, TP53 and SMAD4. The development of mouse models of PDAC has greatly contributed to the understanding of the molecular and cellular mechanisms through which driver genes contribute to pancreatic cancer development. Particularly, oncogenic KRAS-driven genetically-engineered mouse models that phenotypically and genetically recapitulate human pancreatic cancer have clarified the mechanisms through which various mutated genes act in neoplasia induction and progression and have led to identifying the possible cellular origin of these neoplasias. Patient-derived xenografts are increasingly used for preclinical studies and for the development of personalized medicine strategies. The studies of the purification and characterization of pancreatic cancer stem cells have suggested that a minority cell population is responsible for initiation and maintenance of pancreatic adenocarcinomas. The study of these cells could contribute to the identification and clinical development of more efficacious drug treatments. PMID:29156578
Zowawi, Hosam M; Sartor, Anna L; Balkhy, Hanan H; Walsh, Timothy R; Al Johani, Sameera M; AlJindan, Reem Y; Alfaresi, Mubarak; Ibrahim, Emad; Al-Jardani, Amina; Al-Abri, Seif; Al Salman, Jameela; Dashti, Ali A; Kutbi, Abdullah H; Schlebusch, Sanmarié; Sidjabat, Hanna E; Paterson, David L
2014-06-01
The molecular epidemiology and mechanisms of resistance of carbapenem-resistant Enterobacteriaceae (CRE) were determined in hospitals in the countries of the Gulf Cooperation Council (GCC), namely, Saudi Arabia, United Arab Emirates, Oman, Qatar, Bahrain, and Kuwait. Isolates were subjected to PCR-based detection of antibiotic-resistant genes and repetitive sequence-based PCR (rep-PCR) assessments of clonality. Sixty-two isolates which screened positive for potential carbapenemase production were assessed, and 45 were found to produce carbapenemase. The most common carbapenemases were of the OXA-48 (35 isolates) and NDM (16 isolates) types; 6 isolates were found to coproduce the OXA-48 and NDM types. No KPC-type, VIM-type, or IMP-type producers were detected. Multiple clones were detected with seven clusters of clonally related Klebsiella pneumoniae. Awareness of CRE in GCC countries has important implications for controlling the spread of CRE in the Middle East and in hospitals accommodating patients transferred from the region. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Lincoln, D E; Couvet, D
1989-01-01
The carbon supply of peppermint plants was manipulated by growing clonal propagules under three carbon dioxide regimes (350, 500 and 650 μl l -1 ). Feeding by fourth instar caterpillars of Spodoptera eridania increased with elevated CO 2 hostplant regime, as well as with low leaf nitrogen content and by a high proportion of leaf volatile terpenoids. Leaf weight increased significantly with the increased carbon supply, but the amount of nitrogen per leaf did not change. The amount of volatile leaf mono-and sesquiterpenes increased proportionately with total leaf dry weight and hence was not influenced by CO 2 supply. These results are consistent with ecological hypotheses which assume that allocation to defense is closely regulated and not sensitive to carbon supply per se.
Shi, Yuhong; Azimzadeh, Pedram; Jamingal, Sarada; Wentworth, Shannon; Ferlitch, Janice; Koh, James; Balenga, Nariman; Olson, John A
2018-01-01
Parathyroid tumors are mostly considered monoclonal neoplasms, the rationale for focused parathyroidectomy in primary hyperparathyroidism. We reported that flow sorting parathyroid tumor cells and methylation-sensitive polymerase chain reaction (me-PCR) of polymorphic human androgen receptor gene and phosphoglycerate kinase gene alleles in deoxyribonucleic acid reveals that ≤35% of parathyroid tumors are polyclonal. We sought to confirm these findings and assess for clinical relevance. Parathyroid tumors from 286 female primary hyperparathyroidism patients were analyzed for clonal status. Tumor clonal status was compared with clinical variables and operative findings. Statistical analysis was performed and significance was established at P < .05. In the study, 176 (62%) patients were informative for human androgen receptor gene and/or phosphoglycerate kinase gene. Assignment of clonal status was made in 119 (68%) tumors, of which 64 (54%) were monoclonal and 55 (46%) were polyclonal. Comparison of tumor clonal status to clinical variables in patients with complete operative data (N = 82) showed that while clinical features were the same between tumor types, patients with polyclonal tumors more often had multiple gland disease (risk ratio 4.066, confidence interval, 1.016-16.26; P = .039) potentially missed at unilateral neck exploration. This work confirms that primary hyperparathyroidism is often the result of polyclonal tumors and that parathyroid tumor clonal status may be associated with multiple gland disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Carrasco, V; Rodríguez-Bertos, A; Rodríguez-Franco, F; Wise, A G; Maes, R; Mullaney, T; Kiupel, M
2015-07-01
Inflammatory bowel disease (IBD) and intestinal lymphoma are intestinal disorders in dogs, both causing similar chronic digestive signs, although with a different prognosis and different treatment requirements. Differentiation between these 2 conditions is based on histopathologic evaluation of intestinal biopsies. However, an accurate diagnosis is often difficult based on histology alone, especially when only endoscopic biopsies are available to differentiate IBD from enteropathy-associated T-cell lymphoma (EATL) type 2, a small cell lymphoma. The purpose of this study was to evaluate the utility of histopathology; immunohistochemistry (IHC) for CD3, CD20, and Ki-67; and polymerase chain reaction (PCR) for antigen receptor rearrangement (T-cell clonality) in the differential diagnosis of severe IBD vs intestinal lymphoma. Endoscopic biopsies from 32 dogs with severe IBD or intestinal lymphoma were evaluated. The original diagnosis was based on microscopic examination of hematoxylin and eosin (HE)-stained sections alone followed by a second evaluation using morphology in association with IHC for CD3 and CD20 and a third evaluation using PCR for clonality. Our results show that, in contrast to feline intestinal lymphomas, 6 of 8 canine small intestinal lymphomas were EATL type 1 (large cell) lymphomas. EATL type 2 was uncommon. Regardless, in dogs, intraepithelial lymphocytes were not an important diagnostic feature to differentiate IBD from EATL as confirmed by PCR. EATL type 1 had a significantly higher Ki-67 index than did EATL type 2 or IBD cases. Based on the results of this study, a stepwise diagnostic approach using histology as the first step, followed by immunophenotyping and determining the Ki67 index and finally PCR for clonality, improves the accuracy of distinguishing intestinal lymphoma from IBD in dogs. © The Author(s) 2014.
Díaz-Valderrama, J R; Aime, M C
2016-01-01
The cacao pathogen Moniliophthora roreri belongs to the mushroom-forming family Marasmiaceae, but it has never been observed to produce a fruiting body, which calls to question its capacity for sexual reproduction. In this study, we identified potential A (HD1 and HD2) and B (pheromone precursors and pheromone receptors) mating genes in M. roreri. A PCR-based method was subsequently devised to determine the mating type for a set of 47 isolates from across the geographic range of the fungus. We developed and generated an 11-marker microsatellite set and conducted association and linkage disequilibrium (standardized index of association, IAs) analyses. We also performed an ancestral reconstruction analysis to show that the ancestor of M. roreri is predicted to be heterothallic and tetrapolar, which together with sliding window analyses support that the A and B mating loci are likely unlinked and follow a tetrapolar organization within the genome. The A locus is composed of a pair of HD1 and HD2 genes, whereas the B locus consists of a paired pheromone precursor, Mr_Ph4, and receptor, STE3_Mr4. Two A and B alleles but only two mating types were identified. Association analyses divided isolates into two well-defined genetically distinct groups that correlate with their mating type; IAs values show high linkage disequilibrium as is expected in clonal reproduction. Interestingly, both mating types were found in South American isolates but only one mating type was found in Central American isolates, supporting a prior hypothesis of clonal dissemination throughout Central America after a single or very few introductions of the fungus from South America. PMID:26932308
Díaz-Valderrama, J R; Aime, M C
2016-06-01
The cacao pathogen Moniliophthora roreri belongs to the mushroom-forming family Marasmiaceae, but it has never been observed to produce a fruiting body, which calls to question its capacity for sexual reproduction. In this study, we identified potential A (HD1 and HD2) and B (pheromone precursors and pheromone receptors) mating genes in M. roreri. A PCR-based method was subsequently devised to determine the mating type for a set of 47 isolates from across the geographic range of the fungus. We developed and generated an 11-marker microsatellite set and conducted association and linkage disequilibrium (standardized index of association, IA(s)) analyses. We also performed an ancestral reconstruction analysis to show that the ancestor of M. roreri is predicted to be heterothallic and tetrapolar, which together with sliding window analyses support that the A and B mating loci are likely unlinked and follow a tetrapolar organization within the genome. The A locus is composed of a pair of HD1 and HD2 genes, whereas the B locus consists of a paired pheromone precursor, Mr_Ph4, and receptor, STE3_Mr4. Two A and B alleles but only two mating types were identified. Association analyses divided isolates into two well-defined genetically distinct groups that correlate with their mating type; IA(s) values show high linkage disequilibrium as is expected in clonal reproduction. Interestingly, both mating types were found in South American isolates but only one mating type was found in Central American isolates, supporting a prior hypothesis of clonal dissemination throughout Central America after a single or very few introductions of the fungus from South America.
Sá, André Luiz; Sampaio, Rafael V; da Costa Almeida, Nathália Nogueira; Sangalli, Juliano Rodrigues; Brito, Karynne Nazaré Lins; Bressan, Fabiana Fernandes; Rissino, Joirge Dores; do Socorro Damasceno Santos, Simone; Meirelles, Flavio Vieira; Ohashi, Otávio Mitio; Dos Santos Miranda, Moysés
2017-10-01
Somatic cell nuclear transfer (SCNT) success is partially hindered by the low epigenetic reprogramming efficiency of the donor cell. Previous studies suggest cellular heterogeneity among donor nuclei in regard to reprogramming potential, which precludes comparison among different strategies to increase cloning success. In this context, we evaluated the effect of using clonal cell populations (CPs) of bovine adult fibroblasts established by single-cell plating in SCNT. Different CPs were evaluated in regard to proliferation rate, senescence level, and chromosome stability, as well as for POU5F1 (POU class 5 homeobox 1) mRNA expression levels. In total, 9 of 24 CPs (37.5%) were successfully expanded in vitro up to the fourth passage and shown to proliferate following cryopreservation, at which time cell analyses were performed. The use of a CP with low senescence level, normal karyotype, and highest POU5F1 expression levels did not improve embryo development rates or quality following SCNT. As previously suggested, this study supports the notion that levels of POU5F1 expression in the donor nucleus do not impact the SCNT results. Notably, the single-cell seeding approach used herein to isolate CPs may be extended to the evaluation of additional predictor markers of reprogrammability success for SCNT in future experiments.
Pardos de la Gandara, Maria; Raygoza Garay, Juan Antonio; Mwangi, Michael; Tobin, Jonathan N.; Tsang, Amanda; Khalida, Chamanara; D'Orazio, Brianna; Kost, Rhonda G.; Leinberger-Jabari, Andrea; Coffran, Cameron; Evering, Teresa H.; Coller, Barry S.; Balachandra, Shirish; Urban, Tracie; Parola, Claude; Salvato, Scott; Jenks, Nancy; Wu, Daren; Burgess, Rhonda; Chung, Marilyn; de Lencastre, Herminia
2015-01-01
In November 2011, The Rockefeller University Center for Clinical and Translational Science (CCTS), the Laboratory of Microbiology and Infectious Diseases, and Clinical Directors Network (CDN) launched a research and learning collaborative project with six community health centers in the New York City metropolitan area to determine the nature (clonal type) of community-acquired Staphylococcus aureus strains causing skin and soft tissue infections (SSTIs). Between November 2011 and March 2013, wound and nasal samples from 129 patients with active SSTIs suspicious for S. aureus were collected and characterized by molecular typing techniques. In 63 of 129 patients, the skin wounds were infected by S. aureus: methicillin-resistant S. aureus (MRSA) was recovered from 39 wounds and methicillin-sensitive S. aureus (MSSA) was recovered from 24. Most—46 of the 63–wound isolates belonged to the CC8/Panton-Valentine leukocidin-positive (PVL+) group of S. aureus clone USA300: 34 of these strains were MRSA and 12 were MSSA. Of the 63 patients with S. aureus infections, 30 were also colonized by S. aureus in the nares: 16 of the colonizing isolates were MRSA, and 14 were MSSA, and the majority of the colonizing isolates belonged to the USA300 clonal group. In most cases (70%), the colonizing isolate belonged to the same clonal type as the strain involved with the infection. In three of the patients, the identity of invasive and colonizing MRSA isolates was further documented by whole-genome sequencing. PMID:26063853
USDA-ARS?s Scientific Manuscript database
Flavobacterium psychrophilum is an important pathogen of salmonids worldwide. Multilocus sequence typing (MLST) has identified a recombinogenic population structure from which emerged a few epidemic clonal complexes particularly threatening for salmonid aquaculture. To date, MLST genotypes for this ...
Evolutionary perspectives on clonal reproduction in vertebrate animals
Avise, John C.
2015-01-01
A synopsis is provided of different expressions of whole-animal vertebrate clonality (asexual organismal-level reproduction), both in the laboratory and in nature. For vertebrate taxa, such clonal phenomena include the following: human-mediated cloning via artificial nuclear transfer; intergenerational clonality in nature via parthenogenesis and gynogenesis; intergenerational hemiclonality via hybridogenesis and kleptogenesis; intragenerational clonality via polyembryony; and what in effect qualifies as clonal replication via self-fertilization and intense inbreeding by simultaneous hermaphrodites. Each of these clonal or quasi-clonal mechanisms is described, and its evolutionary genetic ramifications are addressed. By affording an atypical vantage on standard vertebrate reproduction, clonality offers fresh perspectives on the evolutionary and ecological significance of recombination-derived genetic variety. PMID:26195735
Clonal Integration Enhances the Performance of a Clonal Plant Species under Soil Alkalinity Stress
Sun, Juanjuan; Chen, Jishan; Zhang, Yingjun
2015-01-01
Clonal plants have been shown to successfully survive in stressful environments, including salinity stress, drought and depleted nutrients through clonal integration between original and subsequent ramets. However, relatively little is known about whether clonal integration can enhance the performance of clonal plants under alkalinity stress. We investigated the effect of clonal integration on the performance of a typical rhizomatous clonal plant, Leymus chinensis, using a factorial experimental design with four levels of alkalinity and two levels of rhizome connection treatments, connected (allowing integration) and severed (preventing integration). Clonal integration was estimated by comparing physiological and biomass features between the rhizome-connected and rhizome-severed treatments. We found that rhizome-connected treatment increased the biomass, height and leaf water potential of subsequent ramets at highly alkalinity treatments but did not affect them at low alkalinity treatments. However, rhizome-connected treatment decreased the root biomass of subsequent ramets and did not influence the photosynthetic rates of subsequent ramets. The biomass of original ramets was reduced by rhizome-connected treatment at the highest alkalinity level. These results suggest that clonal integration can increase the performance of clonal plants under alkalinity stress. Rhizome-connected plants showed dramatically increased survival of buds with negative effects on root weight, indicating that clonal integration influenced the resource allocation pattern of clonal plants. A cost-benefit analysis based on biomass measures showed that original and subsequent ramets significantly benefited from clonal integration in highly alkalinity stress, indicating that clonal integration is an important adaptive strategy by which clonal plants could survive in local alkalinity soil. PMID:25790352
Serotype IV Sequence Type 468 Group B Streptococcus Neonatal Invasive Disease, Minnesota, USA.
Teatero, Sarah; Ferrieri, Patricia; Fittipaldi, Nahuel
2016-11-01
To further understand the emergence of serotype IV group B Streptococcus (GBS) invasive disease, we used whole-genome sequencing to characterize 3 sequence type 468 strains isolated from neonates in Minnesota, USA. We found that strains of tetracycline-resistant sequence type 468 GBS have acquired virulence genes from a putative clonal complex 17 GBS donor by recombination.
de Oliveira, Júnior Mário Baltazar; de Almeida, Jonatas Campos; de Melo, Renata Pimentel Bandeira; de Barros, Luiz Daniel; Garcia, João Luis; Andrade, Müller Ribeiro; Porto, Wagnner José Nascimento; Regidor-Cerrillo, Javier; Ortega-Mora, Luis Miguel; Oliveira, Andréa Alice da Fonseca; Mota, Rinaldo Aparecido
2018-05-01
The purpose of this study was to perform genotypic characterization and to evaluate the virulence of Toxoplasma gondii obtained from aborted fetuses in an abortion outbreak in goats from northeastern Brazil. Brain samples from 32 fetuses were submitted to mouse bioassay for T. gondii isolation. Two isolates were obtained and subjected to genotypic characterization. Isolate virulence was evaluated using murine model in different doses (from 10 5 to 10 1 tachyzoites/mL). In genotyping, both isolates were classified as clonal lineage type II (genotype #1 ToxoDB) and showed to be virulent for mice. This is the first description of genotype #1 in cases of goat abortion, showing the circulation of virulent T. gondii isolate producing reproductive disorders in pregnant goat. Copyright © 2018 Elsevier Inc. All rights reserved.
Uemura, Makiko; Imataki, Osamu; Uchida, Shumpei; Nakayama-Imaohji, Haruyuki; Ohue, Yukiko; Matsuka, Harumi; Mori, Hatsune; Dobashi, Hiroaki; Kuwahara, Tomomi; Kadowaki, Norimitsu
2017-01-05
Extended-spectrum β-lactamase (ESBL)-producing bacteria are resistant to several types of antibiotics excluding carbapenems. A transmissibility of ESBL-producing Enterobacteriaceae would be depending on each bacterial property, however, that has not been elucidated in clinical setting. In this study, we attempted to identify the source of an outbreak of ESBL-producing bacteria in a medical oncology and immunology care unit. An ESBL-producing Enterobacteriaceae (ESBL-E) outbreak observed between July 2012 and August 2012 in Kagawa University Hospital was surveyed using various molecular microbiology techniques. We used Pulsed-field gel electrophoresis (PFGE), PCR-based ESBL gene typing, and direct sequence of ESBL gene as molecular microbiology typing method to distinguish each strain. The typical prevalence of ESBL-E isolation in the unit was 7.0 per month (1.7 per week). The prevalence of ESBL-E isolation during the target research period was 20.0 per month (5.0 per week). In total, 19 isolates (11 K. pneumoniae and 8 E. coli) were obtained from clinical samples, including four control strains (two each of both bacteria), that were physically different from those obtained from other inpatient units in our hospital. Pulsed-field gel electrophoresis (PFGE) for K. pneumoniae (digested by XbaI) produced similar patterns excluding one control strain. PCR classification of the ESBL gene for K. pneumoniae revealed that all strains other than the control strain carried SHV and CTX-M-9. This result was reconfirmed by direct DNA sequencing. Although the outbreak of K. pneumoniae was considered to be "clonal," PFGE and PCR classification of the ESBL genes for E. coli uncovered at least six different "non-clonal" strains possessing individual ESBL gene patterns. According to the result of an antibiogram, the pattern of antimicrobial susceptibility was more variable for K. pneumoniae than for E. coli. Typing by PFGE and ESBL gene PCR analysis is practical for discriminating various organisms. In our cohort, two outbreaks were concomitantly spread with different transmission strategies, namely clonal and non-clonal, in the same unit. This might represent clinical evidence that transmissibility differs according to the type of strain. We speculated that patient-to-patient transmission of ESBL-E occurred according to the properties of each individual strain.
Johnson, Timothy J; Thorsness, Jessica L; Anderson, Cole P; Lynne, Aaron M; Foley, Steven L; Han, Jing; Fricke, W Florian; McDermott, Patrick F; White, David G; Khatri, Mahesh; Stell, Adam L; Flores, Cristian; Singer, Randall S
2010-12-22
Salmonella enterica continues to be a significant cause of foodborne gastrointestinal illness in humans. A wide variety of Salmonella serovars have been isolated from production birds and from retail poultry meat. Recently, though, S. enterica subsp. enterica serovar Kentucky has emerged as one of the prominent Salmonella serovars isolated from broiler chickens. Recent work suggests that its emergence apparently coincides with its acquisition of a ColV virulence plasmid. In the present study, we examined 902 Salmonella isolates belonging to 59 different serovars for the presence of this plasmid. Of the serovars examined, the ColV plasmid was found only among isolates belonging to the serovars Kentucky (72.9%), Typhimurium (15.0%) and Heidelberg (1.7%). We demonstrated that a single PFGE clonal type of S. Kentucky harbors this plasmid, and acquisition of this plasmid by S. Kentucky significantly increased its ability to colonize the chicken cecum and cause extraintestinal disease. Comparison of the completed sequences of three ColV plasmids from S. Kentucky isolated from different geographical locales, timepoints and sources revealed a nearly identical genetic structure with few single nucleotide changes or insertions/deletions. Overall, it appears that the ColV plasmid was recently acquired by a single clonal type S. Kentucky and confers to its host enhanced colonization and fitness capabilities. Thus, the potential for horizontal gene transfer of virulence and fitness factors to Salmonella from other enteric bacteria exists in poultry, representing a potential human health hazard.
Galloway-Peña, Jessica R.; Nallapareddy, Sreedhar R.; Arias, Cesar A.; Eliopoulos, George M.; Murray, Barbara E.
2009-01-01
Background The Enterococcus faecium genogroup, referred to as clonal complex 17 (CC17), seems to possess multiple determinants that increase its ability to survive and cause disease in nosocomial environments. Methods Using 53 clinical and geographically diverse US E. faecium isolates dating from 1971 to 1994 we determined the multi-locus sequence type, the presence of 16 putative virulence genes (hylEfm, espEfm and fms genes), resistance to ampicillin (AMPR), vancomycin (VANR) and high-levels of gentamicin and streptomycin. Results Overall, 16 different sequence types (STs), mostly CC17 isolates, were identified in 9 different regions of the US. The earliest CC17 isolates were part of an outbreak in 1982 in Richmond, VA. Characteristics of CC17 isolates included increases in AMPR, the presence of hylEfm and espEfm, emergence of VANR and the presence of at least 13/14 fms genes. Eight out of forty-one of the early AMPR isolates, however, were not within CC17. Conclusions While not all early US AMPR isolates were clonally related, E. faecium CC17 isolates have been circulating in the US since at least 1982 and appear to have progressively acquired additional virulence and antibiotic resistance determinants, perhaps explaining the recent success of this species in the hospital environment. PMID:19821720
Bignone, Paola A; Krupa, Rachel A; West, Michael D; Larocca, David
2016-01-01
The ability of human pluripotent stem cells (hPS) to both self-renew and differentiate into virtually any cell type makes them a promising source of cells for cell-based regenerative therapies. However, stem cell identity, purity, and scalability remain formidable challenges that need to be overcome for translation of pluripotent stem cell research into clinical applications. Directed differentiation from hPS cells is inefficient and residual contamination with pluripotent cells that have the potential to form tumors remains problematic. The derivation of scalable (self-renewing) embryonic progenitor stem cell lines offers a solution because they are well defined and clonally pure. Clonally pure progenitor stem cell lines also provide a means for identifying cell surface targeting reagents that are useful for identification, tracking, and repeated derivation of the corresponding progenitor stem cell types from additional hPS cell sources. Such stem cell targeting reagents can then be applied to the manufacture of genetically diverse banks of human embryonic progenitor cell lines for drug screening, disease modeling, and cell therapy. Here we present methods to identify human embryonic progenitor stem cell targeting peptides by selection of phage display libraries on clonal embryonic progenitor cell lines and demonstrate their use for targeting quantum dots (Qdots) for stem cell labeling.
Clonal Populations of Amniotic Cells by Dilution and Direct Plating: Evidence for Hidden Diversity
Wilson, Patricia G.; Devkota, Lorna; Payne, Tiffany; Crisp, Laddie; Winter, Allison; Wang, Zhan
2012-01-01
Fetal cells are widely considered a superior cell source for regenerative medicine; fetal cells show higher proliferative capacity and have undergone fewer replicative cycles that could generate spontaneous mutations. Fetal cells in amniotic fluid were among the first normal primary cells to be cultured ex vivo, but the undefined composition of amniotic fluid has hindered advance for regenerative applications. We first developed a highly efficient method to generate clonal populations by dilution of amniocentesis samples in media and direct plating without intervening refrigeration, centrifugation, or exposure of cells to the paracrine effects in mixed cell cultures. More than 40 clonal populations were recovered from 4 amniocentesis samples and representative clones were characterized by flow cytometry, conventional assays for differentiation potential, immunofluorescence imaging, and transcript analysis. The results revealed previously unreported diversity among stromal and epithelial cell types and identified unique cell types that could be lost or undetected in mixed cell populations. The differentiation potential of amniotic cells proved to be uncoupled from expression of definitive cell surface or cytoplasmic markers for stromal and epithelial cells. Evidence for diversity among stromal and epithelial cells in amniotic fluid bears on interpretations applied to molecular and functional tests of amniotic cell populations. PMID:23024659
Panmictic and Clonal Evolution on a Single Patchy Resource Produces Polymorphic Foraging Guilds
Getz, Wayne M.; Salter, Richard; Lyons, Andrew J.; Sippl-Swezey, Nicolas
2015-01-01
We develop a stochastic, agent-based model to study how genetic traits and experiential changes in the state of agents and available resources influence individuals’ foraging and movement behaviors. These behaviors are manifest as decisions on when to stay and exploit a current resource patch or move to a particular neighboring patch, based on information of the resource qualities of the patches and the anticipated level of intraspecific competition within patches. We use a genetic algorithm approach and an individual’s biomass as a fitness surrogate to explore the foraging strategy diversity of evolving guilds under clonal versus hermaphroditic sexual reproduction. We first present the resource exploitation processes, movement on cellular arrays, and genetic algorithm components of the model. We then discuss their implementation on the Nova software platform. This platform seamlessly combines the dynamical systems modeling of consumer-resource interactions with agent-based modeling of individuals moving over a landscapes, using an architecture that lays transparent the following four hierarchical simulation levels: 1.) within-patch consumer-resource dynamics, 2.) within-generation movement and competition mitigation processes, 3.) across-generation evolutionary processes, and 4.) multiple runs to generate the statistics needed for comparative analyses. The focus of our analysis is on the question of how the biomass production efficiency and the diversity of guilds of foraging strategy types, exploiting resources over a patchy landscape, evolve under clonal versus random hermaphroditic sexual reproduction. Our results indicate greater biomass production efficiency under clonal reproduction only at higher population densities, and demonstrate that polymorphisms evolve and are maintained under random mating systems. The latter result questions the notion that some type of associative mating structure is needed to maintain genetic polymorphisms among individuals exploiting a common patchy resource on an otherwise spatially homogeneous landscape. PMID:26274613
Ali, Hayssam M; Salem, Mohamed Z M; El-Shikh, Mohamed S; Megeed, Ahmed Abdel; Alogaibi, Yahya A; Talea, Ibrahim Ahmed
2017-01-01
Multidrug-resistant (MDR) Acinetobacter baumannii infections are a great public health concern and demand continuous surveillance and antibiotic stewardship. Virulence traits and the pathogenicity of Acinetobacter are less studied compared with the molecular epidemiological and antibiotic resistance profile of this organism. In our present study, we investigated the primary characteristics contributing to the virulence of MDR A. baumannii isolates and compared them with avirulent isolates. A total of 32 well-characterized MDR A. baumannii clinical isolates and 22 avirulent isolates from a healthy individual were subjected to multilocus sequence typing and polymerase chain reaction (PCR) for a variety of biofilm-associated genes. Additionally, a number of in vitro tests were performed to determine virulence properties. Isolates were found to relate to six sequence types (STs) in which the dominant sequence was ST557 in clinical isolates, followed by ST195 and ST208. However, ST557 and ST222 were absent in avirulent isolates. All STs belonged to clonal complex 2 and clonal lineage 2, which is considered to be a universal clone. PCR analysis showed that most clinical isolates were positive for biofilm-forming genes, such as csu and bap, and also carried pga and ompA genes, which were less common in avirulent isolates. Biofilm formation, phospholipase C production, hemolytic activity, and acinetobactin production occurred significantly more frequently in clinical isolates compared with avirulent isolates. Though A. baumannii clonal lineages showed common virulence traits, they differed in virulent phenotype expression. These findings further support previous studies indicating that A. baumannii is a versatile pathogen with an ability to acquire iron and survive in iron-limiting conditions, highlighting the acinetobactin-mediated iron acquisition mechanisms involved in the pathogenesis of A. baumannii infections.
Sekirov, Inna; Croxen, Matthew A.; Ng, Corrinne; Azana, Robert; Chang, Yin; Mataseje, Laura; Boyd, David; Mangat, Chand; Mack, Benjamin; Tadros, Manal; Brodkin, Elizabeth; Kibsey, Pamela; Stefanovic, Aleksandra; Champagne, Sylvie; Mulvey, Michael R.
2015-01-01
Carbapenemase-producing organisms (CPOs) are a serious emerging problem for health care facilities worldwide. Owing to their resistance to most antimicrobial therapies, CPOs are difficult to treat and pose a challenge for infection prevention and control. Since 2010, lab-based surveillance for CPOs and PCR-based testing were implemented in British Columbia (BC), Canada. A review of CPOs in BC from 2008 to March 2014 was done to characterize the resistance mechanisms and possible clonal strain transmission and to compare pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and plasmid restriction fragment length polymorphism (RFLP) as molecular typing tools. During this study period, a total of 177 CPO cases were identified. Patient demographics and travel history were reviewed, and a descriptive analysis was carried out. PFGE profiles, MLST, and plasmid RFLP analysis for a subset of Escherichia coli, Klebsiella pneumoniae, and Enterobacter species isolates were obtained and analyzed. Our findings demonstrate that CPOs have been increasing in number in BC over time, from 1 isolate/year retrospectively identified in 2008 and 2009 to 82 isolates in 2013 and 30 isolates in the first quarter of 2014. Overall, K. pneumoniae isolates lack clonality, although some seemingly related clusters have been found. Plasmid analysis showed evidence of the spread of plasmids carrying carbapenemase-encoding genes between the examined isolates. Analysis of Enterobacter cloacae isolates revealed a more clonal nature of these CPOs in BC. The presence of related clusters provides evidence of interpatient organism transmission both within and between institutions. Although in our study, NDM-harboring E. cloacae isolates appeared to spread clonally, the spread of carbapenem resistance in K. pneumoniae seems to be plasmid mediated. PMID:26607987
Defining Clonal Color in Fluorescent Multi-Clonal Tracking
Wu, Juwell W.; Turcotte, Raphaël; Alt, Clemens; Runnels, Judith M.; Tsao, Hensin; Lin, Charles P.
2016-01-01
Clonal heterogeneity and selection underpin many biological processes including development and tumor progression. Combinatorial fluorescent protein expression in germline cells has proven its utility for tracking the formation and regeneration of different organ systems. Such cell populations encoded by combinatorial fluorescent proteins are also attractive tools for understanding clonal expansion and clonal competition in cancer. However, the assignment of clonal identity requires an analytical framework in which clonal markings can be parameterized and validated. Here we present a systematic and quantitative method for RGB analysis of fluorescent melanoma cancer clones. We then demonstrate refined clonal trackability of melanoma cells using this scheme. PMID:27073117
Wang, Yong-Jian; Müller-Schärer, Heinz; van Kleunen, Mark; Cai, Ai-Ming; Zhang, Ping; Yan, Rong; Dong, Bi-Cheng; Yu, Fei-Hai
2017-12-01
What confers invasive alien plants a competitive advantage over native plants remains open to debate. Many of the world's worst invasive alien plants are clonal and able to share resources within clones (clonal integration), particularly in heterogeneous environments. Here, we tested the hypothesis that clonal integration benefits invasive clonal plants more than natives and thus confers invasives a competitive advantage. We selected five congeneric and naturally co-occurring pairs of invasive alien and native clonal plants in China, and grew pairs of connected and disconnected ramets under heterogeneous light, soil nutrient and water conditions that are commonly encountered by alien plants during their invasion into new areas. Clonal integration increased biomass of all plants in all three heterogeneous resource environments. However, invasive plants benefited more from clonal integration than natives. Consequently, invasive plants produced more biomass than natives. Our results indicate that clonal integration may confer invasive alien clonal plants a competitive advantage over natives. Therefore, differences in the ability of clonal integration could potentially explain, at least partly, the invasion success of alien clonal plants in areas where resources are heterogeneously distributed. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
You, Wenhua; Fan, Shufeng; Yu, Dan; Xie, Dong; Liu, Chunhua
2014-01-01
Many notorious invasive plants are clonal, however, little is known about the different roles of clonal integration effects between invasive and native plants. Here, we hypothesize that clonal integration affect growth, photosynthetic performance, biomass allocation and thus competitive ability of invasive and native clonal plants, and invasive clonal plants benefit from clonal integration more than co-occurring native plants in heterogeneous habitats. To test these hypotheses, two stoloniferous clonal plants, Alternanthera philoxeroides (invasive), Jussiaea repens (native) were studied in China. The apical parts of both species were grown either with or without neighboring vegetation and the basal parts without competitors were in nutrient- rich or -poor habitats, with stolon connections were either severed or kept intact. Competition significantly reduced growth and photosynthetic performance of the apical ramets in both species, but not the biomass of neighboring vegetation. Without competition, clonal integration greatly improved the growth and photosynthetic performance of both species, especially when the basal parts were in nutrient-rich habitats. When grown with neighboring vegetation, growth of J. repens and photosynthetic performance of both species were significantly enhanced by clonal integration with the basal parts in both nutrient-rich and -poor habitats, while growth and relative neighbor effect (RNE) of A. philoxeroides were greatly improved by clonal integration only when the basal parts were in nutrient-rich habitats. Moreover, clonal integration increased A. philoxeroides's biomass allocation to roots without competition, but decreased it with competition, especially when the basal ramets were in nutrient-rich sections. Effects of clonal integration on biomass allocation of J. repens was similar to that of A. philoxeroides but with less significance. These results supported our hypothesis that invasive clonal plants A. philoxeroides benefits from clonal integration more than co-occurring native J. repens, suggesting that the invasiveness of A. philoxeroides may be closely related to clonal integration in heterogeneous environments.
You, Wenhua; Fan, Shufeng; Yu, Dan; Xie, Dong; Liu, Chunhua
2014-01-01
Many notorious invasive plants are clonal, however, little is known about the different roles of clonal integration effects between invasive and native plants. Here, we hypothesize that clonal integration affect growth, photosynthetic performance, biomass allocation and thus competitive ability of invasive and native clonal plants, and invasive clonal plants benefit from clonal integration more than co-occurring native plants in heterogeneous habitats. To test these hypotheses, two stoloniferous clonal plants, Alternanthera philoxeroides (invasive), Jussiaea repens (native) were studied in China. The apical parts of both species were grown either with or without neighboring vegetation and the basal parts without competitors were in nutrient- rich or -poor habitats, with stolon connections were either severed or kept intact. Competition significantly reduced growth and photosynthetic performance of the apical ramets in both species, but not the biomass of neighboring vegetation. Without competition, clonal integration greatly improved the growth and photosynthetic performance of both species, especially when the basal parts were in nutrient-rich habitats. When grown with neighboring vegetation, growth of J. repens and photosynthetic performance of both species were significantly enhanced by clonal integration with the basal parts in both nutrient-rich and -poor habitats, while growth and relative neighbor effect (RNE) of A. philoxeroides were greatly improved by clonal integration only when the basal parts were in nutrient-rich habitats. Moreover, clonal integration increased A. philoxeroides's biomass allocation to roots without competition, but decreased it with competition, especially when the basal ramets were in nutrient-rich sections. Effects of clonal integration on biomass allocation of J. repens was similar to that of A. philoxeroides but with less significance. These results supported our hypothesis that invasive clonal plants A. philoxeroides benefits from clonal integration more than co-occurring native J. repens, suggesting that the invasiveness of A. philoxeroides may be closely related to clonal integration in heterogeneous environments. PMID:24816849
[Multilocus Sequence Typing analysis of human Campylobacter coli in Granada (Spain)].
Carrillo-Ávila, J A; Sorlózano-Puerto, A; Pérez-Ruiz, M; Gutiérrez-Fernández, J
2016-12-01
Different subtypes of Campylobacter spp. have been associated with diarrhoea and a Multilocus Sequence Typing (MLST) method has been performed for subtyping. In the present work, MLST was used to analyse the genetic diversity of eight strains of Campylobacter coli. Nineteen genetic markers were amplified for MLST analysis: AnsB, DmsA, ggt, Cj1585c, CJJ81176-1367/1371, Tlp7, cj1321-cj1326, fucP, cj0178, cj0755/cfrA, ceuE, pldA, cstII, cstIII. After comparing the obtained sequences with the Campylobacter MLST database, the allele numbers, sequence types (STs) and clonal complexes (CCs) were assigned. The 8 C. coli isolates yielded 4 different STs belonging to 2 CCs. Seven isolates belong to ST-828 clonal complex and only one isolate belong to ST-21. Two samples came from the same patient, but were isolated in two different periods of time. MLST can be useful for taxonomic characterization of C. coli isolates.
Listeria monocytogenes sequence type 1 is predominant in ruminant rhombencephalitis
Dreyer, Margaux; Aguilar-Bultet, Lisandra; Rupp, Sebastian; Guldimann, Claudia; Stephan, Roger; Schock, Alexandra; Otter, Arthur; Schüpbach, Gertraud; Brisse, Sylvain; Lecuit, Marc; Frey, Joachim; Oevermann, Anna
2016-01-01
Listeria (L.) monocytogenes is an opportunistic pathogen causing life-threatening infections in diverse mammalian species including humans and ruminants. As little is known on the link between strains and clinicopathological phenotypes, we studied potential strain-associated virulence and organ tropism in L. monocytogenes isolates from well-defined ruminant cases of clinical infections and the farm environment. The phylogeny of isolates and their virulence-associated genes were analyzed by multilocus sequence typing (MLST) and sequence analysis of virulence-associated genes. Additionally, a panel of representative isolates was subjected to in vitro infection assays. Our data suggest the environmental exposure of ruminants to a broad range of strains and yet the strong association of sequence type (ST) 1 from clonal complex (CC) 1 with rhombencephalitis, suggesting increased neurotropism of ST1 in ruminants, which is possibly related to its hypervirulence. This study emphasizes the importance of considering clonal background of L. monocytogenes isolates in surveillance, epidemiological investigation and disease control. PMID:27848981
A Single-Cell Roadmap of Lineage Bifurcation in Human ESC Models of Embryonic Brain Development.
Yao, Zizhen; Mich, John K; Ku, Sherman; Menon, Vilas; Krostag, Anne-Rachel; Martinez, Refugio A; Furchtgott, Leon; Mulholland, Heather; Bort, Susan; Fuqua, Margaret A; Gregor, Ben W; Hodge, Rebecca D; Jayabalu, Anu; May, Ryan C; Melton, Samuel; Nelson, Angelique M; Ngo, N Kiet; Shapovalova, Nadiya V; Shehata, Soraya I; Smith, Michael W; Tait, Leah J; Thompson, Carol L; Thomsen, Elliot R; Ye, Chaoyang; Glass, Ian A; Kaykas, Ajamete; Yao, Shuyuan; Phillips, John W; Grimley, Joshua S; Levi, Boaz P; Wang, Yanling; Ramanathan, Sharad
2017-01-05
During human brain development, multiple signaling pathways generate diverse cell types with varied regional identities. Here, we integrate single-cell RNA sequencing and clonal analyses to reveal lineage trees and molecular signals underlying early forebrain and mid/hindbrain cell differentiation from human embryonic stem cells (hESCs). Clustering single-cell transcriptomic data identified 41 distinct populations of progenitor, neuronal, and non-neural cells across our differentiation time course. Comparisons with primary mouse and human gene expression data demonstrated rostral and caudal progenitor and neuronal identities from early brain development. Bayesian analyses inferred a unified cell-type lineage tree that bifurcates between cortical and mid/hindbrain cell types. Two methods of clonal analyses confirmed these findings and further revealed the importance of Wnt/β-catenin signaling in controlling this lineage decision. Together, these findings provide a rich transcriptome-based lineage map for studying human brain development and modeling developmental disorders. Copyright © 2017 Elsevier Inc. All rights reserved.
Human Staphylococcus aureus lineages among Zoological Park residents in Greece
Drougka, E.; Foka, A.; Posantzis, D.; Giormezis, N.; Anastassiou, E.D.; Petinaki, E.; Spiliopoulou, I.
2015-01-01
Staphylococcus aureus is a part of the microbiota flora in many animal species. The clonal spread of S. aureus among animals and personnel in a Zoological Park was investigated. Samples were collected from colonized and infected sites among 32 mammals, 11 birds and eight humans. The genes mecA, mecC, lukF/lukS-PV (encoding Panton-Valentine leukocidin, PVL) and tst (toxic shock syndrome toxin-1) were investigated by PCR. Clones were defined by Multilocus Sequence Typing (MLST), spa type and Pulsed-Field Gel Electrophoresis (PFGE). Seven S. aureus isolates were recovered from four animals and one from an employee. All were mecA, mecC and tst–negative, whereas, one carried the PVL genes and was isolated from an infected Squirrel monkey. Clonal analysis revealed the occurrence of seven STs, eight PFGE and five spa types including ones of human origin. Even though a variety of genotypes were identified among S. aureus strains colonizing zoo park residents, our results indicate that colonization with human lineages has indeed occurred. PMID:26623381
Chicha, Laurie; Jarrossay, David; Manz, Markus G
2004-12-06
Because of different cytokine responsiveness, surface receptor, and transcription factor expression, human CD11c(-) natural type I interferon-producing cells (IPCs) and CD11c(+) dendritic cells were thought to derive through lymphoid and myeloid hematopoietic developmental pathways, respectively. To directly test this hypothesis, we used an in vitro assay allowing simultaneous IPC, dendritic cell, and B cell development and we tested lymphoid and myeloid committed hematopoietic progenitor cells for their developmental capacity. Lymphoid and common myeloid and granulocyte/macrophage progenitors were capable of developing into both functional IPCs, expressing gene transcripts thought to be associated with lymphoid lineage development, and into dendritic cells. However, clonal progenitors for both populations were about fivefold more frequent within myeloid committed progenitor cells. Thus, in humans as in mice, natural IPC and dendritic cell development robustly segregates with myeloid differentiation. This would fit with natural interferon type I-producing cell and dendritic cell activity in innate immunity, the evolutionary older arm of the cellular immune system.
Multiplexing clonality: combining RGB marking and genetic barcoding
Cornils, Kerstin; Thielecke, Lars; Hüser, Svenja; Forgber, Michael; Thomaschewski, Michael; Kleist, Nadja; Hussein, Kais; Riecken, Kristoffer; Volz, Tassilo; Gerdes, Sebastian; Glauche, Ingmar; Dahl, Andreas; Dandri, Maura; Roeder, Ingo; Fehse, Boris
2014-01-01
RGB marking and DNA barcoding are two cutting-edge technologies in the field of clonal cell marking. To combine the virtues of both approaches, we equipped LeGO vectors encoding red, green or blue fluorescent proteins with complex DNA barcodes carrying color-specific signatures. For these vectors, we generated highly complex plasmid libraries that were used for the production of barcoded lentiviral vector particles. In proof-of-principle experiments, we used barcoded vectors for RGB marking of cell lines and primary murine hepatocytes. We applied single-cell polymerase chain reaction to decipher barcode signatures of individual RGB-marked cells expressing defined color hues. This enabled us to prove clonal identity of cells with one and the same RGB color. Also, we made use of barcoded vectors to investigate clonal development of leukemia induced by ectopic oncogene expression in murine hematopoietic cells. In conclusion, by combining RGB marking and DNA barcoding, we have established a novel technique for the unambiguous genetic marking of individual cells in the context of normal regeneration as well as malignant outgrowth. Moreover, the introduction of color-specific signatures in barcodes will facilitate studies on the impact of different variables (e.g. vector type, transgenes, culture conditions) in the context of competitive repopulation studies. PMID:24476916
Ahmed, Mohamed O; Baptiste, Keith E; Daw, Mohamed A; Elramalli, Asma K; Abouzeed, Yousef M; Petersen, Andreas
2017-09-01
The purpose of the study was to investigate the molecular characteristics of meticillin-resistant Staphylococcus aureus (MRSA) isolated from clinical sources in Tripoli, Libya. A total of 95 MRSA strains collected at the Tripoli medical Centre were investigated by spa typing and identification of the Panton-Valentine Leukocidin (pvl) genes. A total of 26 spa types were characterized and distributed among nine clonal complexes; CC5 (n=32), CC80 (n=18), CC8 (n=17) and CC22 (n=12) were the most prevalent clonal complexes. In total, 34% of the isolates were positive for PVL. This study demonstrated the presence of CA-MRSA and pvl positive strains in hospital settings and underlines the importance of using molecular typing to investigate the epidemiology of MRSA. Preventative measures and surveillance systems are needed to control and minimize the spread of MRSA in the Libyan health care system. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.
Prick, Janine; de Haan, Gerald; Green, Anthony R; Kent, David G
2014-10-01
Myeloproliferative neoplasms (MPNs) are clonal hematological diseases in which cells of the myelo-erythroid lineage are overproduced and patients are predisposed to leukemic transformation. Hematopoietic stem cells are the suspected disease-initiating cells, and these cells must acquire a clonal advantage relative to nonmutant hematopoietic stem cells to perpetuate disease. In 2005, several groups identified a single gain-of-function point mutation in JAK2 that associated with the majority of MPNs, and subsequent studies have led to a comprehensive understanding of the mutational landscape in MPNs. However, confusion still exists as to how a single genetic aberration can be associated with multiple distinct disease entities. Many explanations have been proposed, including JAK2V617F homozygosity, individual patient heterogeneity, and the differential regulation of downstream JAK2 signaling pathways. Several groups have made knock-in mouse models expressing JAK2V617F and have observed divergent phenotypes, each recapitulating some aspects of disease. Intriguingly, most of these models do not observe a strong hematopoietic stem cell self-renewal advantage compared with wild-type littermate controls, raising the question of how a clonal advantage is established in patients with MPNs. This review summarizes the current molecular understanding of MPNs and the diversity of disease phenotypes and proposes that the increased proliferation induced by JAK2V617F applies a selection pressure on the mutant clone that results in highly diverse clonal evolution in individuals. Copyright © 2014 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.
Monitoring the dynamics of clonal tumour evolution in vivo using secreted luciferases.
Charles, Joël P; Fuchs, Jeannette; Hefter, Mirjam; Vischedyk, Jonas B; Kleint, Maximilian; Vogiatzi, Fotini; Schäfer, Jonas A; Nist, Andrea; Timofeev, Oleg; Wanzel, Michael; Stiewe, Thorsten
2014-06-03
Tumours are heterogeneous cell populations that undergo clonal evolution during tumour progression, metastasis and response to therapy. Short hairpin RNAs (shRNAs) generate stable loss-of-function phenotypes and are versatile experimental tools to explore the contribution of individual genetic alterations to clonal evolution. In these experiments tumour cells carrying shRNAs are commonly tracked with fluorescent reporters. While this works well for cell culture studies and leukaemia mouse models, fluorescent reporters are poorly suited for animals with solid tumours--the most common tumour types in cancer patients. Here we develop a toolkit that uses secreted luciferases to track the fate of two different shRNA-expressing tumour cell clones competitively, both in vitro and in vivo. We demonstrate that secreted luciferase activities can be measured robustly in the blood stream of tumour-bearing mice to accurately quantify, in a minimally invasive manner, the dynamic evolution of two genetically distinct tumour subclones in preclinical mouse models of tumour development, metastasis and therapy.
Interfaces of Malignant and Immunologic Clonal Dynamics in Ovarian Cancer.
Zhang, Allen W; McPherson, Andrew; Milne, Katy; Kroeger, David R; Hamilton, Phineas T; Miranda, Alex; Funnell, Tyler; Little, Nicole; de Souza, Camila P E; Laan, Sonya; LeDoux, Stacey; Cochrane, Dawn R; Lim, Jamie L P; Yang, Winnie; Roth, Andrew; Smith, Maia A; Ho, Julie; Tse, Kane; Zeng, Thomas; Shlafman, Inna; Mayo, Michael R; Moore, Richard; Failmezger, Henrik; Heindl, Andreas; Wang, Yi Kan; Bashashati, Ali; Grewal, Diljot S; Brown, Scott D; Lai, Daniel; Wan, Adrian N C; Nielsen, Cydney B; Huebner, Curtis; Tessier-Cloutier, Basile; Anglesio, Michael S; Bouchard-Côté, Alexandre; Yuan, Yinyin; Wasserman, Wyeth W; Gilks, C Blake; Karnezis, Anthony N; Aparicio, Samuel; McAlpine, Jessica N; Huntsman, David G; Holt, Robert A; Nelson, Brad H; Shah, Sohrab P
2018-05-07
High-grade serous ovarian cancer (HGSC) exhibits extensive malignant clonal diversity with widespread but non-random patterns of disease dissemination. We investigated whether local immune microenvironment factors shape tumor progression properties at the interface of tumor-infiltrating lymphocytes (TILs) and cancer cells. Through multi-region study of 212 samples from 38 patients with whole-genome sequencing, immunohistochemistry, histologic image analysis, gene expression profiling, and T and B cell receptor sequencing, we identified three immunologic subtypes across samples and extensive within-patient diversity. Epithelial CD8+ TILs negatively associated with malignant diversity, reflecting immunological pruning of tumor clones inferred by neoantigen depletion, HLA I loss of heterozygosity, and spatial tracking between T cell and tumor clones. In addition, combinatorial prognostic effects of mutational processes and immune properties were observed, illuminating how specific genomic aberration types associate with immune response and impact survival. We conclude that within-patient spatial immune microenvironment variation shapes intraperitoneal malignant spread, provoking new evolutionary perspectives on HGSC clonal dispersion. Copyright © 2018 Elsevier Inc. All rights reserved.
Monitoring the dynamics of clonal tumour evolution in vivo using secreted luciferases
Charles, Joël P.; Fuchs, Jeannette; Hefter, Mirjam; Vischedyk, Jonas B.; Kleint, Maximilian; Vogiatzi, Fotini; Schäfer, Jonas A.; Nist, Andrea; Timofeev, Oleg; Wanzel, Michael; Stiewe, Thorsten
2014-01-01
Tumours are heterogeneous cell populations that undergo clonal evolution during tumour progression, metastasis and response to therapy. Short hairpin RNAs (shRNAs) generate stable loss-of-function phenotypes and are versatile experimental tools to explore the contribution of individual genetic alterations to clonal evolution. In these experiments tumour cells carrying shRNAs are commonly tracked with fluorescent reporters. While this works well for cell culture studies and leukaemia mouse models, fluorescent reporters are poorly suited for animals with solid tumours—the most common tumour types in cancer patients. Here we develop a toolkit that uses secreted luciferases to track the fate of two different shRNA-expressing tumour cell clones competitively, both in vitro and in vivo. We demonstrate that secreted luciferase activities can be measured robustly in the blood stream of tumour-bearing mice to accurately quantify, in a minimally invasive manner, the dynamic evolution of two genetically distinct tumour subclones in preclinical mouse models of tumour development, metastasis and therapy. PMID:24889111
Séne, Papa Diogoye; Park, Danny C.; Neafsey, Daniel E.; Schaffner, Stephen F.; Hamilton, Elizabeth J.; Lukens, Amanda K.; Van Tyne, Daria; Mboup, Souleymane; Sabeti, Pardis C.; Ndiaye, Daouda; Wirth, Dyann F.
2013-01-01
Using parasite genotyping tools, we screened patients with mild uncomplicated malaria seeking treatment at a clinic in Thiès, Senegal, from 2006 to 2011. We identified a growing frequency of infections caused by genetically identical parasite strains, coincident with increased deployment of malaria control interventions and decreased malaria deaths. Parasite genotypes in some cases persisted clonally across dry seasons. The increase in frequency of genetically identical parasite strains corresponded with decrease in the probability of multiple infections. Further, these observations support evidence of both clonal and epidemic population structures. These data provide the first evidence of a temporal correlation between the appearance of identical parasite types and increased malaria control efforts in Africa, which here included distribution of insecticide treated nets (ITNs), use of rapid diagnostic tests (RDTs) for malaria detection, and deployment of artemisinin combination therapy (ACT). Our results imply that genetic surveillance can be used to evaluate the effectiveness of disease control strategies and assist a rational global malaria eradication campaign. PMID:23593309
Ruan, Zhi; Yang, Ting; Shi, Xinyan; Kong, Yingying; Xie, Xinyou
2017-01-01
Ureaplasma spp. have gained increasing recognition as pathogens in both adult and neonatal patients with multiple clinical presentations. However, the clonality of this organism in the male population and infertile couples in China is largely unknown. In this study, 96 (53 U. parvum and 43 U. urealyticum) of 103 Ureaplasma spp. strains recovered from genital specimens from male patients and 15 pairs of infertile couples were analyzed using multilocus sequence typing (MLST)/expanded multilocus sequence typing (eMLST) schemes. A total of 39 sequence types (STs) and 53 expanded sequence types (eSTs) were identified, with three predominant STs (ST1, ST9 and ST22) and eSTs (eST16, eST41 and eST82). Moreover, phylogenetic analysis revealed two distinct clusters that were highly congruent with the taxonomic differences between the two Ureaplasma species. We found significant differences in the distributions of both clusters and sub-groups between the male and female patients (P < 0.001). Moreover, 66.7% and 40.0% of the male and female partners of the infertile couples tested positive for Ureaplasma spp. The present study also attained excellent agreement of the identification of both Ureaplasma species between paired urine and semen specimens from the male partners (k > 0.80). However, this concordance was observed only for the detection of U. urealyticum within the infertile couples. In conclusion, the distributions of the clusters and sub-groups significantly differed between the male and female patients. U. urealyticum is more likely to transmit between infertile couples and be associated with clinical manifestations by the specific epidemic clonal lineages. PMID:28859153
Ruan, Zhi; Yang, Ting; Shi, Xinyan; Kong, Yingying; Xie, Xinyou; Zhang, Jun
2017-01-01
Ureaplasma spp. have gained increasing recognition as pathogens in both adult and neonatal patients with multiple clinical presentations. However, the clonality of this organism in the male population and infertile couples in China is largely unknown. In this study, 96 (53 U. parvum and 43 U. urealyticum) of 103 Ureaplasma spp. strains recovered from genital specimens from male patients and 15 pairs of infertile couples were analyzed using multilocus sequence typing (MLST)/expanded multilocus sequence typing (eMLST) schemes. A total of 39 sequence types (STs) and 53 expanded sequence types (eSTs) were identified, with three predominant STs (ST1, ST9 and ST22) and eSTs (eST16, eST41 and eST82). Moreover, phylogenetic analysis revealed two distinct clusters that were highly congruent with the taxonomic differences between the two Ureaplasma species. We found significant differences in the distributions of both clusters and sub-groups between the male and female patients (P < 0.001). Moreover, 66.7% and 40.0% of the male and female partners of the infertile couples tested positive for Ureaplasma spp. The present study also attained excellent agreement of the identification of both Ureaplasma species between paired urine and semen specimens from the male partners (k > 0.80). However, this concordance was observed only for the detection of U. urealyticum within the infertile couples. In conclusion, the distributions of the clusters and sub-groups significantly differed between the male and female patients. U. urealyticum is more likely to transmit between infertile couples and be associated with clinical manifestations by the specific epidemic clonal lineages.
Hofling-Lima, Ana Luisa; Pignatari, Antonio C. C.
2014-01-01
Staphylococcus epidermidis is an abundant member of the microbiota of the human skin and wet mucosa, which is commonly associated with sight-threatening infections in eyes with predisposing factors. Ocular S. epidermidis has become notorious because of its capability to form biofilms on different ocular devices and due to the evolving rates of antimicrobial resistance. In this study, the molecular epidemiology of 30 ocular methicillin-resistant S. epidermidis (MRSE) isolates was assessed using multilocus sequence typing (MLST). Antimicrobial resistance, accessory gene-regulator and staphylococcal cassette chromosome mec (SCCmec) types, biofilm formation, and the occurrence of biofilm-associated genes were correlated with MLST clonal complexes. Sequence types (STs) frequently found in the hospital setting were rarely found in our collection. Overall, 12 different STs were detected with a predominance of ST59 (30%), ST5 and ST6 (13.3% each). Most of the isolates (93.3%) belonged to the clonal complex 2 (CC2) and grouped mainly within subcluster CC2-II (92.9%). Isolates grouped within this subcluster were frequently biofilm producers (92.3%) with a higher occurrence of the aap (84.5%) and bhp (46.1%) genes compared to icaA (19.2%). SCCmec type IV (53.8%) was predominant within CC2-II strains, while 38.4% were nontypeable. In addition, CC2-II strains were frequently multidrug resistant (80.7%) and demonstrated to be particularly resistant to ciprofloxacin (80.8%), ofloxacin (77%), azithromycin (61.5%), and gentamicin (57.7%). Our findings demonstrate the predominance of a particular MRSE cluster causing ocular infections, which was associated with high rates of antimicrobial resistance and particularly the carriage of biofilm-related genes coding for proteinaceous factors implicated in biofilm accumulation. PMID:24523473
Mahu, M; Pasmans, F; Vranckx, K; De Pauw, N; Vande Maele, L; Vyt, Philip; Vandersmissen, Tamara; Martel, A; Haesebrouck, F; Boyen, F
2017-08-01
Swine dysentery (SD) is an economically important disease for which antimicrobial treatment still occupies an important place to control outbreaks. However, acquired antimicrobial resistance is increasingly observed in Brachyspira hyodysenteriae. In this study, the Minimal Inhibitory Concentrations (MIC) of six antimicrobial compounds for 30 recent Belgian B. hyodysenteriae isolates were determined using a broth microdilution method. In addition, relevant regions of the 16S rRNA, 23S rRNA and the L3 protein encoding genes were sequenced to reveal mutations associated with acquired resistance. Finally, a phylogeny was reconstructed using minimal spanning tree analysis of multi locus sequence typing of the isolates. For lincomycin, doxycycline, tylosin and tylvalosin, at least 70% of the isolates did not belong to the wild-type population and were considered to have acquired resistance. For valnemulin and tiamulin, this was over 50%. In all isolates with acquired resistance to doxycycline, the G1058C mutation was present in their 16S rRNA gene. All isolates showing acquired resistance to lincomycin and both macrolides displayed the A2058T mutation in their 23S rRNA gene. Other mutations in this gene and the N148S mutation in the L3 protein were present in both wild-type isolates and isolates considered to have acquired resistance. Multi locus sequence analysis revealed a previously undescribed clonal complex, with 4 novel sequence types in which the majority of isolates showed acquired resistance to all tested antimicrobial products. In conclusion, acquired antimicrobial resistance is widespread among Belgian B. hyodysenteriae isolates. The emergence of multi-resistant clonal complexes can pose a threat to swine industry. Copyright © 2017 Elsevier B.V. All rights reserved.
Banerjee, Ritu; Johnston, Brian; Lohse, Christine; Chattopadhyay, Sujay; Tchesnokova, Veronika; Sokurenko, Evgeni V; Johnson, James R
2013-12-01
The clonal distribution of Escherichia coli across an unselected population in the current era of widespread antimicrobial resistance is incompletely defined. In this study, we used a newly described clonal typing strategy based on sequencing of fumC and fimH (i.e., CH typing) to infer multilocus sequence types (STs) for 299 consecutive, nonduplicate extraintestinal E. coli isolates from all cultures submitted to Olmsted County, MN, laboratories in February and March 2011 and then compared STs with epidemiological data. Forty-seven different STs were identified, most commonly ST131 (27%), ST95 (11%), ST73 (8%), ST127 (6%), and ST69 (5%). Isolates from these five STs comprised two-thirds of health care-associated (HA) isolates but only half of community-associated (CA) isolates. ST131 was represented overwhelmingly (88%) by a single recently expanded H30 subclone, which was the most extensively antimicrobial-resistant subclone overall and was especially predominant in HA infections and among adults >50 years old. In contrast, among patients 11 to 50 years old, ST69, -95, and -73 were more common. Because of the preponderance of the H30 subclone of ST131, ST diversity was lower among HA than CA isolates, and among antimicrobial-resistant than antimicrobial-susceptible isolates, which otherwise had similar ST distributions. In conclusion, in this U.S. Midwest region, the distribution and diversity of STs among extraintestinal E. coli clinical isolates vary by patient age, type of infection, and resistance phenotype. ST131 predominates among young children and the elderly, HA infections, and antimicrobial-resistant isolates, whereas other well-known pathogenic lineages are more common among adolescents and young adults, CA infections, and antimicrobial-susceptible isolates.
Fetsch, Alexandra; Roesler, Uwe; Kraushaar, Britta; Friese, Anika
2016-03-15
Methicillin-susceptible Staphylococcus (S.) aureus (MSSA) and methicillin-resistant S. aureus (MRSA) are colonizers of skin and mucosa. In humans, MSSA and MRSA compete for colonization space in the anterior nares of pig farmers; however, it was also shown that MSSA/MRSA co-colonization is common and one clone can be found rather than differing types of MSSA and MRSA. We investigated the colonization and clonality of both, MSSA and MRSA in pigs over a longer time. Eighteen sows were nasally sampled three times every ten weeks. Additionally, environmental samples were taken. Samples were investigated for MSSA and MRSA, respectively. The spa type was defined from up to five MRSA and MSSA isolates found per sample and sampling time; selected isolates were further investigated by microarray. Three sows (16.7%) were completely negative for MSSA and MRSA. Twelve pigs (66.7%) were irregularly positive for both, MSSA and MRSA over the time, whereas seven out of them (38.9%) were simultaneously colonized. CC398 (t034, t011) MRSA and CC9 (t337, t1430, and t13816) MSSA associated spa types were exclusively found. In 44.4% (n=8) of sows up to two different types of MSSA were present at the same time and sample. Strains of the same clonal lineage showed a high genetic identity despite their origin. Highly identic clones were present in sows and their environment. As conclusion, MSSA/MRSA may not exclude each other in the anterior nares of pigs. Pigs may also carry different clones at the same time. Copyright © 2016 Elsevier B.V. All rights reserved.
Pardos de la Gandara, Maria; Raygoza Garay, Juan Antonio; Mwangi, Michael; Tobin, Jonathan N; Tsang, Amanda; Khalida, Chamanara; D'Orazio, Brianna; Kost, Rhonda G; Leinberger-Jabari, Andrea; Coffran, Cameron; Evering, Teresa H; Coller, Barry S; Balachandra, Shirish; Urban, Tracie; Parola, Claude; Salvato, Scott; Jenks, Nancy; Wu, Daren; Burgess, Rhonda; Chung, Marilyn; de Lencastre, Herminia; Tomasz, Alexander
2015-08-01
In November 2011, The Rockefeller University Center for Clinical and Translational Science (CCTS), the Laboratory of Microbiology and Infectious Diseases, and Clinical Directors Network (CDN) launched a research and learning collaborative project with six community health centers in the New York City metropolitan area to determine the nature (clonal type) of community-acquired Staphylococcus aureus strains causing skin and soft tissue infections (SSTIs). Between November 2011 and March 2013, wound and nasal samples from 129 patients with active SSTIs suspicious for S. aureus were collected and characterized by molecular typing techniques. In 63 of 129 patients, the skin wounds were infected by S. aureus: methicillin-resistant S. aureus (MRSA) was recovered from 39 wounds and methicillin-sensitive S. aureus (MSSA) was recovered from 24. Most-46 of the 63-wound isolates belonged to the CC8/Panton-Valentine leukocidin-positive (PVL(+)) group of S. aureus clone USA300: 34 of these strains were MRSA and 12 were MSSA. Of the 63 patients with S. aureus infections, 30 were also colonized by S. aureus in the nares: 16 of the colonizing isolates were MRSA, and 14 were MSSA, and the majority of the colonizing isolates belonged to the USA300 clonal group. In most cases (70%), the colonizing isolate belonged to the same clonal type as the strain involved with the infection. In three of the patients, the identity of invasive and colonizing MRSA isolates was further documented by whole-genome sequencing. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Gaddis, Keith D; Zukin, Helen L; Dieterich, Inca A; Braker, Elizabeth; Sork, Victoria L
2014-06-01
The existence of monodominant forests on well-drained soils in tropical regions has been widely reported. Such forests most likely result from a combination of both ecological and evolutionary factors. Under conditions of high seed and seedling mortality, vegetative reproduction could create a reproductive advantage leading to forest dominance, and profoundly affect the distribution of genetic variation in a clonal species. We investigated these effects in a low diversity forest site in Northeastern Costa Rica dominated by the species Pentaclethra macroloba, which sprouts from the root mass of fallen trees and from snapped trunks. We examined the population structure of juvenile P. macroloba growing in different soil types and across an elevational gradient. Using seven molecular markers, we genotyped 173 juvenile P. macroloba from 18 plots (six plots in seasonally inundated swamps, and 12 plots in upland non-swamp) spanning 50-300m in elevation at La Selva Biological Station and the adjacent Reserva Ecológica Bijagual in Northeastern Costa Rica. We answered two specific questions: (1) How extensive is clonal reproduction? and (2) what is the distribution of genetic diversity and structure? We found that clonal reproduction occurred exclusively within inundated swamp areas. However, there was no significant difference between genetic diversity measures in swamp and non-swamp plots, which were both generally low when compared with other tropical forest species. Genetic structure was significant across all plots (F(ST) = -0.109). However, genetic structure among swamp plots (F(ST) = 0.128) was higher than among non-swamp upland plots (F(ST) = 0.093). Additionally, spatial autocorrelation among individuals within non-swamp upland plots was significant from the 25 to 100m spatial scale, but not within swamp plots. The degree of overall genetic structure we found in P. macroloba is high for a tropical forest tree. The incidence of clonal reproduction is a contributing factor in genetic differentiation, but the high structure among plots without clonal reproduction indicates that other factors contribute as well.
Shin, Seung Won; Jung, Myunghwan; Won, Ho Geun; Belaynehe, Kuastros Mekonnen; Yoon, In Joong; Yoo, Han Sang
2017-09-28
The rapid dissemination of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli has significantly contributed to public health hazard globally. A total of 281 E. coli strains recovered from pigs and chickens between 2009 and 2015 in South Korea were analyzed for ESBL production. ESBL phenotypes were recognized in 14 E. coli isolates; ten and three ESBLproducing isolates carried only bla CTX-M and bla CMY genes, respectively, and one isolate harbored both genes. The predominant CTX-M and CMY types were CTX-M-15 (n = 8) and CMY-2 (n = 3). We also detected ESBL-producing isolates harboring bla CTX-M-65 , bla CTX-M-14 , bla CMY-6 , bla DHA-1 , and bla TEM-1 genes. All ESBL-producing isolates showed resistance to the extent of the fourth generation cephalosporins, along with multidrug resistance. CTX-M-15- producing isolates showed higher MIC values than CTX-M-14- and CTX-M-65-producing isolates. The bla CTX-M and bla CMY genes have the potential to be transferable. The spreading of bla CMY and bla CTX-M genes was arbitrated mainly v ia F rep a nd I ncI1 plasmids. Our i solates showed clonal diversity in PFGE analysis. This is the first report of E. coli isolates carrying bla CMY-6 in chicken from South Korea. The emergence of CMY-6 ESBLs in a population of poultry suggests that extensive screening with long-term surveillance is necessary to prevent the dissemination of ESBL from chicken to human.
Molecular epidemiology of clonal diploids: a quick overview and a short DIY (do it yourself) notice.
De Meeûs, Thierry; Lehmann, Laurent; Balloux, François
2006-03-01
In this short review we report the basic notions needed for understanding the population genetics of clonal diploids. We focus on the consequences of clonality on the distribution of genetic diversity within individuals, between individuals and between populations. We then summarise how to detect clonality in mainly sexual populations, conversely, how to detect sexuality in mainly clonal populations and also how genetic differentiation between populations is affected by clonality in diploids. This information is then used for building recipes on how to analyse and interpret genetic polymorphism data in molecular epidemiology studies of clonal diploids.
Douhovnikoff, Vladimir; Hazelton, Eric L G
2014-09-01
• The characteristics of clonal growth that are advantageous in invasive plants can also result in native plants' ability to resist invasion. In Maine, we compared the clonal architecture and diversity of an invasive lineage (introduced Phragmites) and a noninvasive lineage (native Phragmites) present in much of North America. This study is the first on stand-scale diversity using a sample size and systematic spatial-sampling scheme adequate for characterizing clonal structure in Phragmites. Our questions included: (1) Does the structure and extent of clonal growth suggest that the potential for clonal growth contributes to the invasiveness of the introduced lineage? (2) Is clonal growth common in the native lineage, acting as a possible source of ecological resistance and resilience?• Microsatellite markers were used to measure clonal sizes, architecture, and diversity within each lineage in stands within four marshes in Maine.• Clonal diversity measures indicated that clonal growth was significantly greater in stands of the native lineage than in the introduced. While lineage was a consistent predictor of clonal diversity relative ranking, the marsh location was a much stronger predictor of the absolute range of these values.• Our results indicate an important role for clonal growth in the space consolidation of native Phragmites and could explain why the introduced lineage, with stronger competitive traits, has not replaced the native where they co-occur. These results with regard to clone size, size distributions, singleton occurrence, and clonal architecture provide some evidence for stand development that follows a genotypic initial floristics model. © 2014 Botanical Society of America, Inc.
USDA-ARS?s Scientific Manuscript database
Background: Cats are definitive hosts of Toxoplasma gondii and play an essential role in the epidemiology of this parasite. The study aims at clarifying whether cats are able to develop specific antibodies against different clonal types of T. gondii and to determine by serotyping the T. gondii clona...
Driskell, Ryan R; Juneja, Vikram R; Connelly, John T; Kretzschmar, Kai; Tan, David W -M; Watt, Fiona M
2012-01-01
In neonatal mouse skin, two types of dermal papilla (DP) are distinguished by Sox2 expression: CD133+Sox2+ DP are associated with guard/awl/auchene hairs, whereas CD133+Sox2− DP are associated with zigzag (ZZ) hairs. We describe a three-dimensional hydrogel culture system that supports clonal growth of CD133+Sox2+, CD133+Sox2−, and CD133−Sox2− (non-DP) neonatal dermal cells. All three cell populations formed spheres that expressed the DP markers alkaline phosphatase, α8 integrin, and CD133. Nevertheless, spheres formed by CD133− cells did not efficiently support hair follicle formation in skin reconstitution assays. In the presence of freshly isolated P2 dermal cells, CD133+Sox2+ and CD133+Sox2− spheres contributed to the DP of both AA and ZZ hairs. Hair type did not correlate with sphere size. Sox2 expression was maintained in culture, but not induced significantly in Sox2− cells in vitro or in vivo, suggesting that Sox2+ cells are a distinct cellular lineage. Although Sox2+ cells were least efficient at forming spheres, they had the greatest ability to contribute to DP and non-DP dermis in reconstituted skin. As the culture system supports clonal growth of DP cells and maintenance of distinct DP cell types, it will be useful for further analysis of intrinsic and extrinsic signals controlling DP function. PMID:22189784
Zhang, Ping; Zhou, Haijian; Diao, Baowei; Li, Fengjuan; Du, Pengcheng; Li, Jie; Kan, Biao; Morris, J Glenn; Wang, Duochun
2014-04-01
Vibrio cholerae serogroup O139 was first identified in 1992 in India and Bangladesh, in association with major epidemics of cholera in both countries; cases were noted shortly thereafter in China. We characterized 211 V. cholerae O139 isolates that were isolated at multiple sites in China between 1993 and 2012 from patients (n = 92) and the environment (n = 119). Among clinical isolates, 88 (95.7%) of 92 were toxigenic, compared with 47 (39.5%) of 119 environmental isolates. Toxigenic isolates carried the El Tor CTX prophage and toxin-coregulated pilus A gene (tcpA), as well as the Vibrio seventh pandemic island I (VSP-I) and VSP-II. Among a subset of 42 toxigenic isolates screened by multilocus sequence typing (MLST), all were in the same sequence type as a clinical isolate (MO45) from the original Indian outbreak. Nontoxigenic isolates, in contrast, generally lacked VSP-I and -II, and fell within 13 additional sequence types in two clonal complexes distinct from the toxigenic isolates. In further pulsed-field gel electrophoresis (PFGE) (with NotI digestion) studies, toxigenic isolates formed 60 pulsotypes clustered in one group, while the nontoxigenic isolates formed 43 pulsotypes which clustered into 3 different groups. Our data suggest that toxigenic O139 isolates from widely divergent geographic locations, while showing some diversity, have maintained a relatively tight clonal structure across a 20-year time span. Nontoxigenic isolates, in contrast, exhibited greater diversity, with multiple clonal lineages, than did their toxigenic counterparts.
Johnson, Timothy J.; Thorsness, Jessica L.; Anderson, Cole P.; Lynne, Aaron M.; Foley, Steven L.; Han, Jing; Fricke, W. Florian; McDermott, Patrick F.; White, David G.; Khatri, Mahesh; Stell, Adam L.; Flores, Cristian; Singer, Randall S.
2010-01-01
Salmonella enterica continues to be a significant cause of foodborne gastrointestinal illness in humans. A wide variety of Salmonella serovars have been isolated from production birds and from retail poultry meat. Recently, though, S. enterica subsp. enterica serovar Kentucky has emerged as one of the prominent Salmonella serovars isolated from broiler chickens. Recent work suggests that its emergence apparently coincides with its acquisition of a ColV virulence plasmid. In the present study, we examined 902 Salmonella isolates belonging to 59 different serovars for the presence of this plasmid. Of the serovars examined, the ColV plasmid was found only among isolates belonging to the serovars Kentucky (72.9%), Typhimurium (15.0%) and Heidelberg (1.7%). We demonstrated that a single PFGE clonal type of S. Kentucky harbors this plasmid, and acquisition of this plasmid by S. Kentucky significantly increased its ability to colonize the chicken cecum and cause extraintestinal disease. Comparison of the completed sequences of three ColV plasmids from S. Kentucky isolated from different geographical locales, timepoints and sources revealed a nearly identical genetic structure with few single nucleotide changes or insertions/deletions. Overall, it appears that the ColV plasmid was recently acquired by a single clonal type S. Kentucky and confers to its host enhanced colonization and fitness capabilities. Thus, the potential for horizontal gene transfer of virulence and fitness factors to Salmonella from other enteric bacteria exists in poultry, representing a potential human health hazard. PMID:21203520
Genetic variation among Staphylococcus aureus strains from Norwegian bulk milk.
Jørgensen, H J; Mørk, T; Caugant, D A; Kearns, A; Rørvik, L M
2005-12-01
Strains of Staphylococcus aureus obtained from bovine (n = 117) and caprine (n = 114) bulk milk were characterized and compared with S. aureus strains from raw-milk products (n = 27), bovine mastitis specimens (n = 9), and human blood cultures (n = 39). All isolates were typed by pulsed-field gel electrophoresis (PFGE). In addition, subsets of isolates were characterized using multilocus sequence typing (MLST), multiplex PCR (m-PCR) for genes encoding nine of the staphylococcal enterotoxins (SE), and the cloverleaf method for penicillin resistance. A variety of genotypes were observed, and greater genetic diversity was found among bovine than caprine bulk milk isolates. Certain genotypes, with a wide geographic distribution, were common to bovine and caprine bulk milk and may represent ruminant-specialized S. aureus. Isolates with genotypes indistinguishable from those of strains from ruminant mastitis were frequently found in bulk milk, and strains with genotypes indistinguishable from those from bulk milk were observed in raw-milk products. This indicates that S. aureus from infected udders may contaminate bulk milk and, subsequently, raw-milk products. Human blood culture isolates were diverse and differed from isolates from other sources. Genotyping by PFGE, MLST, and m-PCR for SE genes largely corresponded. In general, isolates with indistinguishable PFGE banding patterns had the same SE gene profile and isolates with identical SE gene profiles were placed together in PFGE clusters. Phylogenetic analyses agreed with the division of MLST sequence types into clonal complexes, and isolates within the same clonal complex had the same SE gene profile. Furthermore, isolates within PFGE clusters generally belonged to the same clonal complex.
Genetic Variation among Staphylococcus aureus Strains from Norwegian Bulk Milk
Jørgensen, H. J.; Mørk, T.; Caugant, D. A.; Kearns, A.; Rørvik, L. M.
2005-01-01
Strains of Staphylococcus aureus obtained from bovine (n = 117) and caprine (n = 114) bulk milk were characterized and compared with S. aureus strains from raw-milk products (n = 27), bovine mastitis specimens (n = 9), and human blood cultures (n = 39). All isolates were typed by pulsed-field gel electrophoresis (PFGE). In addition, subsets of isolates were characterized using multilocus sequence typing (MLST), multiplex PCR (m-PCR) for genes encoding nine of the staphylococcal enterotoxins (SE), and the cloverleaf method for penicillin resistance. A variety of genotypes were observed, and greater genetic diversity was found among bovine than caprine bulk milk isolates. Certain genotypes, with a wide geographic distribution, were common to bovine and caprine bulk milk and may represent ruminant-specialized S. aureus. Isolates with genotypes indistinguishable from those of strains from ruminant mastitis were frequently found in bulk milk, and strains with genotypes indistinguishable from those from bulk milk were observed in raw-milk products. This indicates that S. aureus from infected udders may contaminate bulk milk and, subsequently, raw-milk products. Human blood culture isolates were diverse and differed from isolates from other sources. Genotyping by PFGE, MLST, and m-PCR for SE genes largely corresponded. In general, isolates with indistinguishable PFGE banding patterns had the same SE gene profile and isolates with identical SE gene profiles were placed together in PFGE clusters. Phylogenetic analyses agreed with the division of MLST sequence types into clonal complexes, and isolates within the same clonal complex had the same SE gene profile. Furthermore, isolates within PFGE clusters generally belonged to the same clonal complex. PMID:16332822
Mellmann, Alexander; Weniger, Thomas; Berssenbrügge, Christoph; Rothgänger, Jörg; Sammeth, Michael; Stoye, Jens; Harmsen, Dag
2007-10-29
For typing of Staphylococcus aureus, DNA sequencing of the repeat region of the protein A (spa) gene is a well established discriminatory method for outbreak investigations. Recently, it was hypothesized that this region also reflects long-term epidemiology. However, no automated and objective algorithm existed to cluster different repeat regions. In this study, the Based Upon Repeat Pattern (BURP) implementation that is a heuristic variant of the newly described EDSI algorithm was investigated to infer the clonal relatedness of different spa types. For calibration of BURP parameters, 400 representative S. aureus strains with different spa types were characterized by MLST and clustered using eBURST as "gold standard" for their phylogeny. Typing concordance analysis between eBURST and BURP clustering (spa-CC) were performed using all possible BURP parameters to determine their optimal combination. BURP was subsequently evaluated with a strain collection reflecting the breadth of diversity of S. aureus (JCM 2002; 40:4544). In total, the 400 strains exhibited 122 different MLST types. eBURST grouped them into 23 clonal complexes (CC; 354 isolates) and 33 singletons (46 isolates). BURP clustering of spa types using all possible parameter combinations and subsequent comparison with eBURST CCs resulted in concordances ranging from 8.2 to 96.2%. However, 96.2% concordance was reached only if spa types shorter than 8 repeats were excluded, which resulted in 37% excluded spa types. Therefore, the optimal combination of the BURP parameters was "exclude spa types shorter than 5 repeats" and "cluster spa types into spa-CC if cost distances are less than 4" exhibiting 95.3% concordance to eBURST. This algorithm identified 24 spa-CCs, 40 singletons, and excluded only 7.8% spa types. Analyzing the natural population with these parameters, the comparison of whole-genome micro-array groupings (at the level of 0.31 Pearson correlation index) and spa-CCs gave a concordance of 87.1%; BURP spa-CCs vs. manually grouped spa types resulted in 95.7% concordance. BURP is the first automated and objective tool to infer clonal relatedness from spa repeat regions. It is able to extract an evolutionary signal rather congruent to MLST and micro-array data.
Genotypic Diversity of Methicillin-Resistant Staphylococcus aureus Isolates in Korean Hospitals
Soo Ko, Kwan; Kim, Yeon-Sook; Song, Jae-Hoon; Yeom, Joon-Sup; Lee, Hyuck; Jung, Sook-In; Jeong, Doo-Ryun; Kim, Shin-Woo; Chang, Hyun-Ha; Ki, Hyun Kyun; Moon, Chisook; Oh, Won Sup; Peck, Kyong Ran; Lee, Nam Yong
2005-01-01
Ninety-six methicillin-resistant Staphylococcus aureus (MRSA) isolates from eight Korean hospitals were analyzed by multilocus sequence typing, SCCmec typing, and spa typing. The predominant genotype was ST5-MRSA-II of clonal complex 5, which was found in 36 isolates from six hospitals, but ST239-MRSA-III was also common. Overall, results showed a notable genotypic diversity of MRSA strains circulating in Korean hospitals. PMID:16048991
Genotypic diversity of methicillin-resistant Staphylococcus aureus isolates in Korean hospitals.
Soo Ko, Kwan; Kim, Yeon-Sook; Song, Jae-Hoon; Yeom, Joon-Sup; Lee, Hyuck; Jung, Sook-In; Jeong, Doo-Ryun; Kim, Shin-Woo; Chang, Hyun-Ha; Ki, Hyun Kyun; Moon, Chisook; Oh, Won Sup; Peck, Kyong Ran; Lee, Nam Yong
2005-08-01
Ninety-six methicillin-resistant Staphylococcus aureus (MRSA) isolates from eight Korean hospitals were analyzed by multilocus sequence typing, SCCmec typing, and spa typing. The predominant genotype was ST5-MRSA-II of clonal complex 5, which was found in 36 isolates from six hospitals, but ST239-MRSA-III was also common. Overall, results showed a notable genotypic diversity of MRSA strains circulating in Korean hospitals.
Ecological Consequences of Clonal Integration in Plants
Liu, Fenghong; Liu, Jian; Dong, Ming
2016-01-01
Clonal plants are widespread throughout the plant kingdom and dominate in diverse habitats. Spatiotemporal heterogeneity of environment is pervasive at multiple scales, even at scales relevant to individual plants. Clonal integration refers to resource translocation and information communication among the ramets of clonal plants. Due to clonal integration, clonal plant species possess a series of peculiar attributes: plasticity in response to local and non-local conditions, labor division with organ specialization for acquiring locally abundant resources, foraging behavior by selective placement of ramets in resource-rich microhabitats, and avoidance of intraclonal competition. Clonal integration has very profound ecological consequences for clonal plants. It allows them to efficiently cope with environmental heterogeneity, by alleviating local resource shortages, buffering environmental stresses and disturbances, influencing competitive ability, increasing invasiveness, and altering species composition and invasibility at the community level. In this paper, we present a comprehensive review of research on the ecological consequences of plant clonal integration based on a large body of literature. We also attempt to propose perspectives for future research. PMID:27446093
Sex-specific gene expression during asexual development of Neurospora crassa.
Wang, Zheng; Kin, Koryu; López-Giráldez, Francesc; Johannesson, Hanna; Townsend, Jeffrey P
2012-07-01
The impact of loci that determine sexual identity upon the asexual, dominant stage of fungal life history has been well studied. To investigate their impact, expression differences between strains of different mating type during asexual development were assayed, with RNA sampled from otherwise largely isogenic mat A and mat a strains of Neurospora crassa at early, middle, and late clonal stages of development. We observed significant differences in overall gene expression between mating types across clonal development, especially at late development stages. The expression levels of mating-type genes and pheromone genes were assayed by reverse transcription and quantitative PCR, revealing expression of pheromone and receptor genes in strains of both mating types in all development stages, and revealing that mating type (mat) genes were increasingly expressed over the course of asexual development. Interestingly, among differentially expressed genes, the mat A genotype more frequently exhibited a higher expression level than mat a, and demonstrated greater transcriptional regulatory dynamism. Significant up-regulation of expression was observed for many late light-responsive genes at late asexual development stages. Further investigation of the impact of light and the roles of light response genes in asexual development of both mating types are warranted. Copyright © 2012 Elsevier Inc. All rights reserved.
Petrelli, D; Di Luca, M C; Prenna, M; Bernaschi, P; Repetto, A; Vitali, L A
2014-02-01
We investigated the prevalence, genetics, and clonality of fluoroquinolone non-susceptible isolates of Streptococcus pyogenes in the central part of Italy. S. pyogenes strains (n = 197) were isolated during 2012 from patients with tonsillopharyngitis, skin, wound or invasive infections and screened for fluoroquinolone non-susceptibility (resistance to norfloxacin and levofloxacin minimum inhibitory concentration (MIC) = 2 mg/L) following EUCAST guidelines. First-step topoisomerase parC and gyrA substitutions were investigated using sequencing analysis. Clonality was determined by pulsed field gel electrophoresis (PFGE; SmaI digestion) and by emm typing. The fluoroquinolone non-susceptible phenotype was identified in 18 isolates (9.1 %) and correlated with mutations in parC, but not in gyrA, the most frequent leading to substitution of the serine at position 79 with an alanine. Most of the fluoroquinolone non-susceptible isolates belonged to the emm-type 6, even if other emm-types were also represented (emm75, emm89, and emm2). A significant level of association was measured between PFGE and both emm type and substitutions in parC. The prevalence of fluoroquinolone non-susceptible Streptococcus pyogenes isolates in Italy is of concern and, although the well-known emm type 6 is dominant, other types are appearing and spreading.
Detecting local establishment strategies of wild cherry (Prunus avium L.).
Höltken, Aki M; Gregorius, Hans-Rolf
2006-10-04
P. avium, a pioneer tree species that colonizes early forest successional stages, is assumed to require an effective strategy allowing stably repeatable rounds of local establishment, dispersal and local extinction. Consequently, the early replacement of cherry by climax tree species makes the establishment of several local generations very unlikely, especially in central European continuous cover forests. This has to be seen in connection with the mixed reproduction system involving asexual reproduction as a complementary adaptational strategy. Tests of the local establishment of wild cherry must therefore consider the possibility of first generation establishment via seedling recruitment potentially followed by an asexual generation (root suckering). Successful establishment can therefore be determined only among adult individuals with the option of detecting vegetative reproduction at these stages. To test the implied suggestion about local establishment strategies of wild cherry, nuclear microsatellites were used to analyse patterns of asexual propagation among adult stages that have been subjected to one of two major types of forest management. These management types, the historical "coppice with standards system" (CWS) and the "high forest system" (HFS), can be reasonably assumed to have affected the reproduction system of P. avium. Clear differences were found in the reproduction pattern between two stands representing the two forest management types: 1) Clonal propagation is observed in both management systems, but with a distinctly higher frequency in the CWS. Hence, sexual recruitment as a first local generation is followed by a second asexual generation in both, whereas in the CWS there is evidence for an additional clonal generation. 2) The estimation of amounts of clonal reproduction critically depends on the assumptions about multilocus gene associations. This is revealed by the application of newly developed methods of quantifying gene associations. 3) Haplotype diversities are higher in the CWS and found to be associated with a large degree of heterozygosity for the second largest clonal group. 4) Seed set was sparse over the last eight years of observation in the CWS stand. This study provides useful guidelines for more comprehensive investigations, particularly on the interrelationships between degrees of cloning and capacity of sexual reproduction, amounts of multilocus gene associations, effects of heterozygosity on cloning success, and sustainability of different forest management types.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abkowitz, J.L.; Ott, R.M.; Holly, R.D.
The number of hematopoietic stem cells necessary to support normal hematopoiesis is not known but may be small. If so, the depletion or damage of such cells could result in apparent clonal dominance. To test this hypothesis, dimethylbusulfan (2 to 4 mg/kg intravenously (IV) x 3) was given to cats heterozygous for the X-linked enzyme glucose-6-phosphate dehydrogenase (G-6-PD). These cats were the daughters of domestic X Geoffroy parents. After the initial drug-induced cytopenias (2 to 4 weeks), peripheral blood counts and the numbers of marrow progenitors detected in culture remained normal, although the percentages of erythroid burst-forming cells (BFU-E) andmore » granulocyte/macrophage colony-forming cells (CFU-GM) in DNA synthesis increased, as determined by the tritiated thymidine suicide technique. In three of six cats treated, a dominance of Geoffroy-type G-6-PD emerged among the progenitor cells, granulocytes, and RBCs. These skewed ratios of domestic to Geoffroy-type G-6-PD have persisted greater than 3 years. No changes in cell cycle kinetics or G-6-PD phenotypes were noted in similar studies in six control cats. These data suggest that clonal evolution may reflect the depletion or damage of normal stem cells and not only the preferential growth and dominance of neoplastic cells.« less
Recombination-Driven Genome Evolution and Stability of Bacterial Species.
Dixit, Purushottam D; Pang, Tin Yau; Maslov, Sergei
2017-09-01
While bacteria divide clonally, horizontal gene transfer followed by homologous recombination is now recognized as an important contributor to their evolution. However, the details of how the competition between clonality and recombination shapes genome diversity remains poorly understood. Using a computational model, we find two principal regimes in bacterial evolution and identify two composite parameters that dictate the evolutionary fate of bacterial species. In the divergent regime, characterized by either a low recombination frequency or strict barriers to recombination, cohesion due to recombination is not sufficient to overcome the mutational drift. As a consequence, the divergence between pairs of genomes in the population steadily increases in the course of their evolution. The species lacks genetic coherence with sexually isolated clonal subpopulations continuously formed and dissolved. In contrast, in the metastable regime, characterized by a high recombination frequency combined with low barriers to recombination, genomes continuously recombine with the rest of the population. The population remains genetically cohesive and temporally stable. Notably, the transition between these two regimes can be affected by relatively small changes in evolutionary parameters. Using the Multi Locus Sequence Typing (MLST) data, we classify a number of bacterial species to be either the divergent or the metastable type. Generalizations of our framework to include selection, ecologically structured populations, and horizontal gene transfer of nonhomologous regions are discussed as well. Copyright © 2017 by the Genetics Society of America.
Cunha, Marcos Paulo Vieira; Saidenberg, Andre Becker; Moreno, Andrea Micke; Ferreira, Antonio José Piantino; Vieira, Mônica Aparecida Midolli; Gomes, Tânia Aparecida Tardelli; Knöbl, Terezinha
2017-01-01
Extra-intestinal pathogenic Escherichia coli (ExPEC) represent an emerging pathogen, with pandemic strains increasingly involved in cases of urinary tract infections (UTIs), bacteremia, and meningitis. In addition to affecting humans, the avian pathotype of ExPEC, avian pathogenic E. coli (APEC), causes severe economic losses to the poultry industry. Several studies have revealed overlapping characteristics between APEC and human ExPEC, leading to the hypothesis of a zoonotic potential of poultry strains. However, the description of certain important pandemic clones, such as Sequence Type 73 (ST73), has not been reported in food sources. We characterized 27 temporally matched APEC strains from diverse poultry farms in Brazil belonging to the O6 serogroup because this serogroup is frequently described as a causal factor in UTI and septicemia in humans in Brazil and worldwide. The isolates were genotypically characterized by identifying ExPEC virulence factors, phylogenetically tested by phylogrouping and multilocus sequence type (MLST) analysis, and compared to determine their similarity employing the pulsed field gel electrophoresis (PFGE) technique. The strains harbored a large number of virulence determinants that are commonly described in uropathogenic E. coli (UPEC) and sepsis associated E. coli (SEPEC) strains and, to a lesser extent in neonatal meningitis associated E. coli (NMEC), such as pap (85%), sfa (100%), usp (100%), cnf1 (22%), kpsMTII (66%), hlyA (52%), and ibeA (4%). These isolates also yielded a low prevalence of some genes that are frequently described in APEC, such as iss (37%), tsh, ompT, and hlyF (8% each), and cvi/cva (0%). All strains were classified as part of the B2 phylogroup and sequence type 73 (ST73), with a cluster of 25 strains showing a clonal profile by PFGE. These results further suggest the zoonotic potential of some APEC clonal lineages and their possible role in the epidemiology of human ExPEC, in addition to providing the first description of the O6-B2-ST73 clonal group in poultry.
Enteroaggregative Escherichia coli O78:H10, the Cause of an Outbreak of Urinary Tract Infection
Scheutz, Flemming; Andersen, Rebecca L.; Menard, Megan; Boisen, Nadia; Johnston, Brian; Hansen, Dennis S.; Krogfelt, Karen A.; Nataro, James P.; Johnson, James R.
2012-01-01
In 1991, multiresistant Escherichia coli O78:H10 strains caused an outbreak of urinary tract infections in Copenhagen, Denmark. The phylogenetic origin, clonal background, and virulence characteristics of the outbreak isolates, and their relationship to nonoutbreak O78:H10 strains according to these traits and resistance profiles, are unknown. Accordingly, we extensively characterized 51 archived E. coli O78:H10 isolates (48 human isolates from seven countries, including 19 Copenhagen outbreak isolates, and 1 each of calf, avian, and unknown-source isolates), collected from 1956 through 2000. E. coli O78:H10 was clonally heterogeneous, comprising one dominant clonal group (61% of isolates, including all 19 outbreak isolates) from ST10 (phylogenetic group A) plus several minor clonal groups (phylogenetic groups A and D). All ST10 isolates, versus 25% of non-ST10 isolates, were identified by molecular methods as enteroaggregative E. coli (EAEC) (P < 0.001). Genes present in >90% of outbreak isolates included fimH (type 1 fimbriae; ubiquitous in E. coli); fyuA, traT, and iutA (associated with extraintestinal pathogenic E. coli [ExPEC]); and sat, pic, aatA, aggR, aggA, ORF61, aaiC, aap, and ORF3 (associated with EAEC). An outbreak isolate was lethal in a murine subcutaneous sepsis model and exhibited characteristic EAEC “stacked brick” adherence to cultured epithelial cells. Thus, the 1991 Copenhagen outbreak was caused by a tight, non-animal-associated subset within a broadly disseminated O78:H10 clonal group (ST10; phylogenetic group A), members of which exhibit both ExPEC and EAEC characteristics, whereas O78:H10 isolates overall are phylogenetically diverse. Whether ST10 O78:H10 EAEC strains are both uropathogenic and diarrheagenic warrants further investigation. PMID:22972830
Enteroaggregative Escherichia coli O78:H10, the cause of an outbreak of urinary tract infection.
Olesen, Bente; Scheutz, Flemming; Andersen, Rebecca L; Menard, Megan; Boisen, Nadia; Johnston, Brian; Hansen, Dennis S; Krogfelt, Karen A; Nataro, James P; Johnson, James R
2012-11-01
In 1991, multiresistant Escherichia coli O78:H10 strains caused an outbreak of urinary tract infections in Copenhagen, Denmark. The phylogenetic origin, clonal background, and virulence characteristics of the outbreak isolates, and their relationship to nonoutbreak O78:H10 strains according to these traits and resistance profiles, are unknown. Accordingly, we extensively characterized 51 archived E. coli O78:H10 isolates (48 human isolates from seven countries, including 19 Copenhagen outbreak isolates, and 1 each of calf, avian, and unknown-source isolates), collected from 1956 through 2000. E. coli O78:H10 was clonally heterogeneous, comprising one dominant clonal group (61% of isolates, including all 19 outbreak isolates) from ST10 (phylogenetic group A) plus several minor clonal groups (phylogenetic groups A and D). All ST10 isolates, versus 25% of non-ST10 isolates, were identified by molecular methods as enteroaggregative E. coli (EAEC) (P < 0.001). Genes present in >90% of outbreak isolates included fimH (type 1 fimbriae; ubiquitous in E. coli); fyuA, traT, and iutA (associated with extraintestinal pathogenic E. coli [ExPEC]); and sat, pic, aatA, aggR, aggA, ORF61, aaiC, aap, and ORF3 (associated with EAEC). An outbreak isolate was lethal in a murine subcutaneous sepsis model and exhibited characteristic EAEC "stacked brick" adherence to cultured epithelial cells. Thus, the 1991 Copenhagen outbreak was caused by a tight, non-animal-associated subset within a broadly disseminated O78:H10 clonal group (ST10; phylogenetic group A), members of which exhibit both ExPEC and EAEC characteristics, whereas O78:H10 isolates overall are phylogenetically diverse. Whether ST10 O78:H10 EAEC strains are both uropathogenic and diarrheagenic warrants further investigation.
Morganti, Marina; Scaltriti, Erika; Cozzolino, Paolo; Bolzoni, Luca; Casadei, Gabriele; Pierantoni, Marco; Foni, Emanuela
2015-01-01
The quantitative and qualitative patterns of environmental contamination by Listeria monocytogenes were investigated in the production chain of dry-cured Parma ham. Standard arrays of surfaces were sampled in processing facilities during a single visit per plant in the three compartments of the food chain, i.e., ham production (19 plants) and postproduction, which was divided into deboning (43 plants) and slicing (25 plants) steps. The numbers of sampled surfaces were 384 in ham production, with 25 positive for L. monocytogenes, and 1,084 in postproduction, with 83 positives. Statistical analysis of the prevalence of contaminated surfaces showed that in ham production, contamination was higher at the beginning of processing and declined significantly toward the end, while in postproduction, prevalence rose toward the end of processing. Prevalence was higher in the deboning facilities than in slicing facilities and was dependent on the type of surface (floor/drainage > clothing > equipment). The qualitative pattern of contamination was investigated through an analysis of the survey isolates and a set of isolates derived from routine monitoring, including longitudinal isolations. Pulsed-field gel electrophoresis (PFGE) and whole-genome single-nucleotide polymorphism (SNP) analysis revealed a remarkable clonality of L. monocytogenes within plants, with the detection of 16 plant-specific clones out of 17 establishments with multiple isolates. Repeated detections of clonal isolates >6 months apart were also observed. Six was the maximum number of between-isolate differences in core SNPs observed within these clones. Based on the same six-SNP threshold, three clusters of clonal isolates, shared by six establishments, were also identified. The spread of L. monocytogenes within and between plants, as indicated by its clonal behavior, is a matter of concern for the hygienic management of establishments. PMID:26590278
Aravindan, Sheeja; Natarajan, Mohan; Awasthi, Vibhudutta; Herman, Terence S; Aravindan, Natarajan
2013-01-01
Recently, we demonstrated that radiation (IR) instigates the occurrence of a NFκB-TNFα feedback cycle which sustains persistent NFκB activation in neuroblastoma (NB) cells and favors survival advantage and clonal expansion. Further, we reported that curcumin targets IR-induced survival signaling and NFκB dependent hTERT mediated clonal expansion in human NB cells. Herein, we investigated the efficacy of a novel synthetic monoketone, EF24, a curcumin analog in inhibiting persistent NFκB activation by disrupting the IR-induced NFκB-TNFα-NFκB feedback signaling in NB and subsequent mitigation of survival advantage and clonal expansion. EF24 profoundly suppressed the IR-induced NFκB-DNA binding activity/promoter activation and, maintained the NFκB repression by deterring NFκB-dependent TNFα transactivation/intercellular secretion in genetically varied human NB (SH-SY5Y, IMR-32, SK-PN-DW, MC-IXC and SK-N-MC) cell types. Further, EF24 completely suppressed IR-induced NFκB-TNFα cross-signaling dependent transactivation/translation of pro-survival IAP1, IAP2 and Survivin and subsequent cell survival. In corroboration, EF24 treatment maximally blocked IR-induced NFκB dependent hTERT transactivation/promoter activation, telomerase activation and consequent clonal expansion. EF24 displayed significant regulation of IR-induced feedback dependent NFκB and NFκB mediated survival signaling and complete regression of NB xenograft. Together, the results demonstrate for the first time that, novel synthetic monoketone EF24 potentiates radiotherapy and mitigates NB progression by selectively targeting IR-triggered NFκB-dependent TNFα-NFκB cross-signaling maintained NFκB mediated survival advantage and clonal expansion.
Aravindan, Sheeja; Natarajan, Mohan; Awasthi, Vibhudutta; Herman, Terence S.; Aravindan, Natarajan
2013-01-01
Recently, we demonstrated that radiation (IR) instigates the occurrence of a NFκB-TNFα feedback cycle which sustains persistent NFκB activation in neuroblastoma (NB) cells and favors survival advantage and clonal expansion. Further, we reported that curcumin targets IR-induced survival signaling and NFκB dependent hTERT mediated clonal expansion in human NB cells. Herein, we investigated the efficacy of a novel synthetic monoketone, EF24, a curcumin analog in inhibiting persistent NFκB activation by disrupting the IR-induced NFκB-TNFα-NFκB feedback signaling in NB and subsequent mitigation of survival advantage and clonal expansion. EF24 profoundly suppressed the IR-induced NFκB-DNA binding activity/promoter activation and, maintained the NFκB repression by deterring NFκB-dependent TNFα transactivation/intercellular secretion in genetically varied human NB (SH-SY5Y, IMR-32, SK–PN–DW, MC-IXC and SK–N-MC) cell types. Further, EF24 completely suppressed IR-induced NFκB-TNFα cross-signaling dependent transactivation/translation of pro-survival IAP1, IAP2 and Survivin and subsequent cell survival. In corroboration, EF24 treatment maximally blocked IR-induced NFκB dependent hTERT transactivation/promoter activation, telomerase activation and consequent clonal expansion. EF24 displayed significant regulation of IR-induced feedback dependent NFκB and NFκB mediated survival signaling and complete regression of NB xenograft. Together, the results demonstrate for the first time that, novel synthetic monoketone EF24 potentiates radiotherapy and mitigates NB progression by selectively targeting IR-triggered NFκB-dependent TNFα-NFκB cross-signaling maintained NFκB mediated survival advantage and clonal expansion. PMID:23967300
Yang, Yongchun; Liu, Yinglong; Ding, Yunlei; Yi, Li; Ma, Zhe; Fan, Hongjie; Lu, Chengping
2013-01-01
One hundred and two Streptococcus agalactiae (group B streptococcus [GBS]) isolates were collected from dairy cattle with subclinical mastitis in Eastern China during 2011. Clonal groups were established by multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE), respectively. Capsular polysaccharides (CPS), pilus and alpha-like-protein (Alp) family genes were also characterized by molecular techniques. MLST analysis revealed that these isolates were limited to three clonal groups and were clustered in six different lineages, i.e. ST (sequence type) 103, ST568, ST67, ST301, ST313 and ST570, of which ST568 and ST570 were new genotypes. PFGE analysis revealed this isolates were clustered in 27 PFGE types, of which, types 7, 8, 14, 15, 16, 18, 23 and 25 were the eight major types, comprising close to 70% (71/102) of all the isolates. The most prevalent sequence types were ST103 (58% isolates) and ST568 (31% isolates), comprising capsular genotype Ia isolates without any of the detected Alp genes, suggesting the appearance of novel genomic backgrounds of prevalent strains of bovine S. agalactiae. All the strains possessed the pilus island 2b (PI-2b) gene and the prevalent capsular genotypes were types Ia (89% isolates) and II (11% isolates), the conserved pilus type providing suitable data for the development of vaccines against mastitis caused by S. agalactiae. PMID:23874442
Invasive clonal plant species have a greater root-foraging plasticity than non-invasive ones.
Keser, Lidewij H; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark
2014-03-01
Clonality is frequently positively correlated with plant invasiveness, but which aspects of clonality make some clonal species more invasive than others is not known. Due to their spreading growth form, clonal plants are likely to experience spatial heterogeneity in nutrient availability. Plasticity in allocation of biomass to clonal growth organs and roots may allow these plants to forage for high-nutrient patches. We investigated whether this foraging response is stronger in species that have become invasive than in species that have not. We used six confamilial pairs of native European clonal plant species differing in invasion success in the USA. We grew all species in large pots under homogeneous or heterogeneous nutrient conditions in a greenhouse, and compared their nutrient-foraging response and performance. Neither invasive nor non-invasive species showed significant foraging responses to heterogeneity in clonal growth organ biomass or in aboveground biomass of clonal offspring. Invasive species had, however, a greater positive foraging response in terms of root and belowground biomass than non-invasive species. Invasive species also produced more total biomass. Our results suggest that the ability for strong root foraging is among the characteristics promoting invasiveness in clonal plants.
Saranathan, Rajagopalan; Vasanth, Vaidyanathan; Vasanth, Thamodharan; Shabareesh, Pidathala Raghavendra Venkata; Shashikala, P; Devi, Chandrakesan Sheela; Kalaivani, Ramakrishnan; Asir, Johny; Sudhakar, Pagal; Prashanth, K
2015-05-01
The molecular epidemiology and carbapenem resistance mechanisms of clinical isolates of Acinetobacter baumannii obtained from a south Indian tertiary care hospital were investigated by repetitive extragenic palindromic sequence PCR (REP-PCR) and multi-locus sequence typing (MLST). Analysis of resistant determinants was achieved by PCR screening for the presence of genes encoding OXA-carbapenemases, metallo-β-lactamases (MBLs) and efflux pumps. REP-PCR generated around eight clusters of high heterogeneity; of these, two major clusters (I and V) appeared to be clonal in origin. Analysis of representative isolates from different clusters by MLST revealed that most of the isolates belonged to sequence type 103 of CC103(B) . Second most prevalent ST belonged to clonal complex (CC) 92(B) which is also referred to as international clone II. Most of the isolates were multi-drug resistant, being susceptible only to polymyxin-B and newer quinolones. Class D β-lactamases such as blaOXA-51-like (100%), blaOXA-23-like (56.8%) and blaOXA-24-like (14.8%) were found to be predominant, followed by a class B β-lactamase, namely blaIMP-1 (40.7%); none of the isolates had blaOXA-58 like, blaNDM-1 or blaSIM-1 . Genes of efflux-pump adeABC were predominant, most of isolates being biofilm producers that were PCR-positive for autoinducer synthase gene (>94%). Carbapenem non-susceptible isolates were highly diverse and present throughout the hospital irrespective of type of ward or intensive care unit. Although previous reports have documented diverse resistant mechanisms in A. baumannii, production of MBL and OXA-type of carbapenamases were found to be the predominant mechanism(s) of carbapenem resistance identified in strains isolated from Southern India. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.
Diversification and Distribution of Ruminant Chlamydia abortus Clones Assessed by MLST and MLVA.
Siarkou, Victoria I; Vorimore, Fabien; Vicari, Nadia; Magnino, Simone; Rodolakis, Annie; Pannekoek, Yvonne; Sachse, Konrad; Longbottom, David; Laroucau, Karine
2015-01-01
Chlamydia abortus, an obligate intracellular bacterium, is the most common infectious cause of abortion in small ruminants worldwide and has zoonotic potential. We applied multilocus sequence typing (MLST) together with multiple-locus variable-number tandem repeat analysis (MLVA) to genotype 94 ruminant C. abortus strains, field isolates and samples collected from 1950 to 2011 in diverse geographic locations, with the aim of delineating C. abortus lineages and clones. MLST revealed the previously identified sequence types (STs) ST19, ST25, ST29 and ST30, plus ST86, a recently-assigned type on the Chlamydiales MLST website and ST87, a novel type harbouring the hemN_21 allele, whereas MLVA recognized seven types (MT1 to MT7). Minimum-spanning-tree analysis suggested that all STs but one (ST30) belonged to a single clonal complex, possibly reflecting the short evolutionary timescale over which the predicted ancestor (ST19) has diversified into three single-locus variants (ST86, ST87 and ST29) and further, through ST86 diversification, into one double-locus variant (ST25). ST descendants have probably arisen through a point mutation evolution mode. Interestingly, MLVA showed that in the ST19 population there was a greater genetic diversity than in other STs, most of which exhibited the same MT over time and geographical distribution. However, the evolutionary pathways of C. abortus STs seem to be diverse across geographic distances with individual STs restricted to particular geographic locations. The ST30 singleton clone displaying geographic specificity and represented by the Greek strains LLG and POS was effectively distinguished from the clonal complex lineage, supporting the notion that possibly two separate host adaptations and hence independent bottlenecks of C. abortus have occurred through time. The combination of MLST and MLVA assays provides an additional level of C. abortus discrimination and may prove useful for the investigation and surveillance of emergent C. abortus clonal populations.
Li, Yang; Chen, Jing-Song; Xue, Ge; Peng, Yuanying; Song, Hui-Xing
2018-07-01
Clonal integration plays an important role in clonal plant adapting to heterogeneous habitats. It was postulated that clonal integration could exhibit positive effects on nitrogen cycling in the rhizosphere of clonal plant subjected to heterogeneous light conditions. An in-situ experiment was conducted using clonal fragments of Phyllostachys bissetii with two successive ramets. Shading treatments were applied to offspring or mother ramets, respectively, whereas counterparts were treated to full sunlight. Rhizomes between two successive ramets were either severed or connected. Extracellular enzyme activities and nitrogen turnover were measured, as well as soil properties. Abundance of functional genes (archaeal or bacterial amoA, nifH) in the rhizosphere of shaded, offspring or mother ramets were determined using quantitative polymerase chain reaction. Carbon or nitrogen availabilities were significantly influenced by clonal integration in the rhizosphere of shaded ramets. Clonal integration significantly increased extracellular enzyme activities and abundance of functional genes in the rhizosphere of shaded ramets. When rhizomes were connected, higher nitrogen turnover (nitrogen mineralization or nitrification rates) was exhibited in the rhizosphere of shaded offspring ramets. However, nitrogen turnover was significantly decreased by clonal integration in the rhizosphere of shaded mother ramets. Path analysis indicated that nitrogen turnover in the rhizosphere of shaded, offspring or mother ramets were primarily driven by the response of soil microorganisms to dissolved organic carbon or nitrogen. This unique in-situ experiment provided insights into the mechanism of nutrient recycling mediated by clonal integration. It was suggested that effects of clonal integration on the rhizosphere microbial processes were dependent on direction of photosynthates transport in clonal plant subjected to heterogeneous light conditions. Copyright © 2018 Elsevier B.V. All rights reserved.
Disturbance Is an Important Driver of Clonal Richness in Tropical Seagrasses
McMahon, Kathryn M.; Evans, Richard D.; van Dijk, Kor-jent; Hernawan, Udhi; Kendrick, Gary A.; Lavery, Paul S.; Lowe, Ryan; Puotinen, Marji; Waycott, Michelle
2017-01-01
Clonality is common in many aquatic plant species, including seagrasses, where populations are maintained through a combination of asexual and sexual reproduction. One common measure used to describe the clonal structure of populations is clonal richness. Clonal richness is strongly dependent on the biological characteristics of the species, and how these interact with the environment but can also reflect evolutionary scale processes especially at the edge of species ranges. However, little is known about the spatial patterns and drivers of clonal richness in tropical seagrasses. This study assessed the spatial patterns of clonal richness in meadows of three tropical seagrass species, Thalassia hemprichii, Halodule uninervis, and Halophila ovalis, spanning a range of life-history strategies and spatial scales (2.5–4,711 km) in Indonesia and NW Australia. We further investigated the drivers of clonal richness using general additive mixed models for two of the species, H. uninervis and H. ovalis, over 8° latitude. No significant patterns were observed in clonal richness with latitude, yet disturbance combined with sea surface temperature strongly predicted spatial patterns of clonal richness. Sites with a high probability of cyclone disturbance had low clonal richness, whereas an intermediate probability of cyclone disturbance and the presence of dugong grazing combined with higher sea surface temperatures resulted in higher levels of clonal richness. We propose potential mechanisms for these patterns related to the recruitment and mortality rates of individuals as well as reproductive effort. Under a changing climate, increased severity of tropical cyclones and the decline in populations of mega-grazers have the potential to reduce clonal richness leading to less genetically diverse populations. PMID:29259609
Ikeda, Kazuhiko; Mason, Philip J.
2011-01-01
Overexpression of high mobility group AT-hook 2 (HMGA2) is found in a number of benign and malignant tumors, including the clonal PIGA− cells in 2 cases of paroxysmal nocturnal hemoglobinuria (PNH) and some myeloproliferative neoplasms (MPNs), and recently in hematopoietic cell clones resulting from gene therapy procedures. In nearly all these cases overexpression is because of deletions or translocations that remove the 3′ untranslated region (UTR) which contains binding sites for the regulatory micro RNA let-7. We were therefore interested in the effect of HMGA2 overexpression in hematopoietic tissues in transgenic mice (ΔHmga2 mice) carrying a 3′UTR-truncated Hmga2 cDNA. ΔHmga2 mice expressed increased levels of HMGA2 protein in various tissues including hematopoietic cells and showed proliferative hematopoiesis with increased numbers in all lineages of peripheral blood cells, hypercellular bone marrow (BM), splenomegaly with extramedullary erythropoiesis and erythropoietin-independent erythroid colony formation. ΔHmga2-derived BM cells had a growth advantage over wild-type cells in competitive repopulation and serial transplantation experiments. Thus overexpression of HMGA2 leads to proliferative hematopoiesis with clonal expansion at the stem cell and progenitor levels and may account for the clonal expansion in PNH and MPNs and in gene therapy patients after vector insertion disrupts the HMGA2 locus. PMID:21460244
Persinoti, Gabriela F.; Martinez, Diego A.; Li, Wenjun; Döğen, Aylin; Billmyre, R. Blake; Averette, Anna; Goldberg, Jonathan M.; Shea, Terrance; Young, Sarah; Zeng, Qiandong; Oliver, Brian G.; Barton, Richard; Metin, Banu; Hilmioğlu-Polat, Süleyha; Ilkit, Macit; Gräser, Yvonne; Martinez-Rossi, Nilce M.; White, Theodore C.; Heitman, Joseph; Cuomo, Christina A.
2018-01-01
Dermatophytes include fungal species that infect humans, as well as those that also infect other animals or only grow in the environment. The dermatophyte species Trichophyton rubrum is a frequent cause of skin infection in immunocompetent individuals. While members of the T. rubrum species complex have been further categorized based on various morphologies, their population structure and ability to undergo sexual reproduction are not well understood. In this study, we analyze a large set of T. rubrum and T. interdigitale isolates to examine mating types, evidence of mating, and genetic variation. We find that nearly all isolates of T. rubrum are of a single mating type, and that incubation with T. rubrum “morphotype” megninii isolates of the other mating type failed to induce sexual development. While the region around the mating type locus is characterized by a higher frequency of SNPs compared to other genomic regions, we find that the population is remarkably clonal, with highly conserved gene content, low levels of variation, and little evidence of recombination. These results support a model of recent transition to asexual growth when this species specialized to growth on human hosts. PMID:29467168
Pena, Hilda Fátima de Jesus; Evangelista, Camila Mariellen; Casagrande, Renata Assis; Biezus, Giovana; Wisser, Claudia Salete; Ferian, Paulo Eduardo; Moura, Anderson Barbosa de; Rolim, Veronica Machado; Driemeier, David; Oliveira, Solange; Alves, Bruna Farias; Gennari, Solange Maria; Traverso, Sandra Davi
2017-01-01
The objective of the study was to report on a fatal case of feline toxoplasmosis with coinfection with the feline leukemia virus (FeLV). A domestic cat (Felis silvestris catus) presented intense dyspnea and died three days later. In the necropsy, the lungs were firm, without collapse and with many white areas; moderate lymphadenomegaly and splenomegaly were also observed. The histopathological examination showed severe necrotic interstitial bronchopneumonia and mild necrotic hepatitis, associated with intralesional cysts and tachyzoites of Toxoplasma gondii that were positive by anti-T. gondii immunohistochemical (IHC) evaluation. The bone marrow showed chronic myeloid leukemia and the neoplastic cells were positive by anti-FeLV IHC evaluation. DNA extracted from lungs was positive for T. gondii by PCR targeting REP-529. T. gondii was characterized by PCR-RFLP and by the microsatellites technique. ToxoDB-PCR-RFLP #10, i.e. the archetypal type I, was identified. Microsatellite analysis showed that the strain was a variant of type I with two atypical alleles. This was the first time that a T. gondii clonal type I genotype was correlated with a case of acute toxoplasmosis in a host in Brazil.
Chicha, Laurie; Jarrossay, David; Manz, Markus G.
2004-01-01
Because of different cytokine responsiveness, surface receptor, and transcription factor expression, human CD11c− natural type I interferon–producing cells (IPCs) and CD11c+ dendritic cells were thought to derive through lymphoid and myeloid hematopoietic developmental pathways, respectively. To directly test this hypothesis, we used an in vitro assay allowing simultaneous IPC, dendritic cell, and B cell development and we tested lymphoid and myeloid committed hematopoietic progenitor cells for their developmental capacity. Lymphoid and common myeloid and granulocyte/macrophage progenitors were capable of developing into both functional IPCs, expressing gene transcripts thought to be associated with lymphoid lineage development, and into dendritic cells. However, clonal progenitors for both populations were about fivefold more frequent within myeloid committed progenitor cells. Thus, in humans as in mice, natural IPC and dendritic cell development robustly segregates with myeloid differentiation. This would fit with natural interferon type I–producing cell and dendritic cell activity in innate immunity, the evolutionary older arm of the cellular immune system. PMID:15557348
Ueda, Yutaka; Enomoto, Takayuki; Miyatake, Takashi; Shroyer, Kenneth R; Yoshizaki, Tatsuo; Kanao, Hiroyuki; Ueno, Yuko; Sun, Hongbo; Nakashima, Ryuichi; Yoshino, Kiyoshi; Kimura, Toshihiro; Haba, Tomoko; Wakasa, Kenichi; Murata, Yuji
2004-08-01
To elucidate the pathogenesis of vulvar carcinomas, we studied clonality and human papillomavirus (HPV) infection in vulvar epithelial diseases. Monoclonal composition was demonstrated in all 9 invasive tumors (squamous cell carcinoma [SCC], 6; basal cell carcinoma, 1; malignant melanoma, 2), 15 of 20 cases of vulvar intraepithelial neoplasia (VIN), 7 of 9 cases of Paget disease, 2 of 6 cases of lichen sclerosus (LS), and 2 of 3 cases of squamous cell hyperplasia (SCH); high-risk type HPV was revealed in 5 of 6 SCCs and 17 of 20 VINs. These observations might imply that a subset of cases of LS and SCH result from a neoplastic proliferation, similar to VINs but not related to infection with high-risk type HPV. In 1 case of SCC with concurrent VIN 3 in an adjacent lesion, both lesions showed the same pattern of X chromosome inactivation and the presence of HPV-16 in episomal and integrated forms, suggesting that monoclonal expansion triggered by high-risk type HPV integration is an early event for carcinogenesis of HPV-associated SCC.
Updating signal typing in voice: addition of type 4 signals.
Sprecher, Alicia; Olszewski, Aleksandra; Jiang, Jack J; Zhang, Yu
2010-06-01
The addition of a fourth type of voice to Titze's voice classification scheme is proposed. This fourth voice type is characterized by primarily stochastic noise behavior and is therefore unsuitable for both perturbation and correlation dimension analysis. Forty voice samples were classified into the proposed four types using narrowband spectrograms. Acoustic, perceptual, and correlation dimension analyses were completed for all voice samples. Perturbation measures tended to increase with voice type. Based on reliability cutoffs, the type 1 and type 2 voices were considered suitable for perturbation analysis. Measures of unreliability were higher for type 3 and 4 voices. Correlation dimension analyses increased significantly with signal type as indicated by a one-way analysis of variance. Notably, correlation dimension analysis could not quantify the type 4 voices. The proposed fourth voice type represents a subset of voices dominated by noise behavior. Current measures capable of evaluating type 4 voices provide only qualitative data (spectrograms, perceptual analysis, and an infinite correlation dimension). Type 4 voices are highly complex and the development of objective measures capable of analyzing these voices remains a topic of future investigation.
Du, Xue-Fei; Xiao, Meng; Liang, Hong-Yan; Sun, Zhe; Jiang, Yue-Hong; Chen, Guo-Yu; Meng, Xiao-Yu; Zou, Gui-Ling; Zhang, Li; Liu, Ya-Li; Zhang, Hui; Sun, Hong-Li; Jiang, Xiao-Feng; Xu, Ying-Chun
2014-01-01
Methicillin-resistant Staphylococcus aureus (MRSA) has become an important nosocomial pathogen, causing considerable morbidity and mortality. During the last 20 years, a variety of genotyping methods have been introduced for screening the prevalence of MRSA. In this study, we developed and evaluated an improved approach capillary gel electrophoresis based multilocus variable-number tandem-repeat fingerprinting (CGE/MLVF) for rapid MRSA typing. A total of 42 well-characterized strains and 116 non-repetitive clinical MRSA isolates collected from six hospitals in northeast China between 2009 and 2010 were tested. The results obtained by CGE/MLVF against clinical isolates were compared with traditional MLVF, spa typing, Multilocus sequence typing/staphylococcal cassette chromosome mec (MLST/SCCmec) and pulse field gel electrophoresis (PFGE). The discriminatory power estimated by Simpson’s index of diversity was 0.855 (28 types), 0.855 (28 patterns), 0.623 (11 types), 0.517 (8 types) and 0.854 (28 patterns) for CGE/MLVF, traditional MLVF, spa typing, MLST/SCCmec and PFGE, respectively. All methods tested showed a satisfied concordance in clonal complex level calculated by adjusted Rand’s coefficient. CGE/MLVF showed better reproducibility and accuracy than traditional MLVF and PFGE methods. In addition, the CGE/MLVF has potential to produce portable results. In conclusion, CGE/MLVF is a rapid and easy to use MRSA typing method with lower cost, good reproducibility and high discriminatory power for monitoring the outbreak and clonal spread of MRSA isolates. PMID:24406728
Morley, Laura; McNally, Alan; Paszkiewicz, Konrad; Corander, Jukka; Méric, Guillaume; Sheppard, Samuel K.; Blom, Jochen
2015-01-01
Campylobacter jejuni is a highly diverse species of bacteria commonly associated with infectious intestinal disease of humans and zoonotic carriage in poultry, cattle, pigs, and other animals. The species contains a large number of distinct clonal complexes that vary from host generalist lineages commonly found in poultry, livestock, and human disease cases to host-adapted specialized lineages primarily associated with livestock or poultry. Here, we present novel data on the ST403 clonal complex of C. jejuni, a lineage that has not been reported in avian hosts. Our data show that the lineage exhibits a distinctive pattern of intralineage recombination that is accompanied by the presence of lineage-specific restriction-modification systems. Furthermore, we show that the ST403 complex has undergone gene decay at a number of loci. Our data provide a putative link between the lack of association with avian hosts of C. jejuni ST403 and both gene gain and gene loss through nonsense mutations in coding sequences of genes, resulting in pseudogene formation. PMID:25795671
Jiang, Hai-Hai; Wang, Shu-Chao; Huang, Si-Yang; Zhao, Lei; Wang, Ze-Dong; Zhu, Xing-Quan; Liu, Quan
2016-02-01
Toxoplasma gondii is prevalent in humans and animals worldwide. The present study aimed to determine the genetic diversity of T. gondii isolates from pigs in Jilin province, northeastern China. A total of 100 DNA samples were extracted from the hilar lymph nodes of slaughtered pigs, and 9 (9.0%, 95% confidence interval: 3.4-14.6%) were detected positive for T. gondii B1 gene by a nested polymerase chain reaction (PCR). The positive DNA samples were typed at 11 genetic markers, including 10 nuclear loci (SAG1, 5'-SAG2, and 3'-SAG2, alternative SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, and PK1) and an apicoplast locus (Apico) using the multilocus PCR-restriction fragment length polymorphism technology. Only three isolates were completely typed at all loci, showing that they all belonged to the clonal type I. One isolate was typed at five loci, including 5' +3'-SAG2, SAG2, SAG3, GRA6, and L358, revealing the possible clonal type I. This is the first report of the genetic characterization of T. gondii isolates in pigs in Jilin province, northeastern China, which has implications for better understanding the population structure of T. gondii infection in China.
Platonov, A E; Mironov, K O; Iatsyshina, S B; Koroleva, I S; Platonova, O V; Gushchin, A E; Shipulin, G A
2003-01-01
Haemophilius influenzae, type b (Hib) bacteria, were genotyped by multilocus sequence typing (MLST) using 5 loci (adk, fucK, mdh, pgi, recA). 42 Moscow Hib strains (including 38 isolates form cerebrospinal fluid of children, who had purulent meningitis in 1999-2001, and 4 strains isolated from healthy carriers of Hib), as well as 2 strains from Yekaterinburg were studied. In MLST a strain is characterized, by alleles and their combinations (an allele profile) referred to also as sequence-type (ST). 9 Sts were identified within the Russian Hib bacteria: ST-1 was found in 25 strains (57%), ST-12 was found in 8 strains (18%), ST-11 was found in 4 strains (9%) and ST-15 was found in 2 strains (4.5%); all other STs strains (13, 14, 16, 17, 51) were found in isolated cases (2.3%). A comparison of allelic profiles and of nucleotide sequences showed that 93% of Russian isolates, i.e. strain with ST-1, 11, 12, 13, 15 and 17, belong to one and the same clonal complex. 2 isolates from Norway and Sweden from among 7 foreign Hib strains studied up to now can be described as belonging to the same clonal complex; 5 Hib strains were different from the Russian ones.
Phumthanakorn, Nathita; Fungwithaya, Punpichaya; Chanchaithong, Pattrarat; Prapasarakul, Nuvee
2018-06-01
This study aimed to detect and identify staphylococcal enterotoxin (SE) genes in methicillin-resistant Staphylococcus pseudintermedius (MRSP) strains from different sources, and to investigate the relationship between their sequence types (STs) and SE gene patterns. The profiles of 17 SE genes in 93 MRSP strains isolated from dogs (n=43), humans (n=18) and the environment (n=32) were detected by PCR. Multilocus sequence typing (MLST), SCCmec typing and pulsed-field gel electrophoresis (PFGE) were used to analyse the clonal relatedness between the molecular type and SE gene profiles.Results/Key findings. The human MRSP strains harboured the greatest number of SE genes (12/17; sea, sec, seg, sei, sek, sel, sem, sen, seo, sep, seq and tst-1) compared to those from dogs (5/17; sec, sel, sem, seq and tst-1) and environmental sources (3/17; sec, seq and tst-1). Using MLST and PFGE, different SE gene profiles were found within the same clonal type. We show that isolates of MRSP vary in their virulence gene profiles, depending on the source from which they have been isolated. This insight should encourage the development of appropriate monitoring and mitigation strategies to reduce the transmission of MRSP in veterinary hospitals and households.
Xie, Tian-peng; Zhang, Ge-fei; Zhao, Zhi-gang; Du, Guo-zhen; He, Gui-yong
2014-01-01
The relationship between sexual reproduction and clonal growth in clonal plants often shows up at the ramet level. However, only a few studies focus on the relationship at the genet level, which could finally account for evolution. The sexual reproduction and clonal growth of Ligularia virgaurea, a perennial herb widely distributed in the alpine grasslands of the Qinghai-Tibetan Plateau of China, were studied under different competition intensities and light conditions at the genet level through a potted experiment. The results showed that: (1) sexual reproduction did not depend on density or light, and increasing clonal growth with decreasing density and increasing light intensity indicated that intraspecific competition and light intensity may affect the clonal life history of L. virgaurea; (2) both sexual reproduction and clonal growth show a positive linear relationship with genet size under different densities and light conditions; (3) a threshold size is required for sexual reproduction and no evidence of a threshold size for clonal growth under different densities and light conditions; (4) light level affected the allocation of total biomass to clonal and sexual structures, with less allocation to clonal structures and more allocation to sexual structures in full sunlight than in shade; (5) light determined the onset of sexual reproduction, and the genets in the shade required a smaller threshold size for sexual reproduction to occur than the plants in full sunlight; and (6) no evidence was found of trade-offs between clonal growth and sexual reproduction under different densities and light conditions at the genet level, and the positive correlation between two reproductive modes indicated that these are two integrated processes. Clonal growth in this species may be viewed as a growth strategy that tends to maximize genet fitness. PMID:24683463
NASA Astrophysics Data System (ADS)
Pinzón, J. H.; Reyes-Bonilla, H.; Baums, I. B.; LaJeunesse, T. C.
2012-09-01
The contributions of sexual versus asexual reproduction are thought to play an important role in the abundance and ecological success of corals, especially in marginal habitats. Pocillopora corals are distributed throughout the Indo-Pacific and dominate shallow hard-bottom communities in the eastern Pacific where broad seasonal fluctuations in temperature and water turbidity create suboptimal conditions for reef community development. Previous work had revealed three genetic clades in the eastern Pacific that show little correspondence with colony morphology; the broad distribution of type 1 extends into the subtropical southern Gulf of California. Here we examine genetic and clonal structure of two type 1 communities separated by 10 km with microsatellite data. Samples were collected randomly in six 10 m radius circular plots (20 colonies per plot, 3 plots per site). Sites differed in their relative clonality because clonemates (ramets) from a single clone (genet) dominated a large portion (90.9 m long) of the protected leeward side of Gaviota Island (Number of genets/Number of samples = 0.35; observed Genotypic diversity/expected Genotypic diversity = 0.087), while an exposed community at the entrance to La Paz Bay, Punta Galeras, exhibited high genotypic diversity ( N g / N = 0.85; G o / G e = 0.714). Gene flow was unrestricted between sites indicating these communities comprised a single population. The relative proportion of asexual colonies found between community aggregations of Pocillopora in the Gulf of California differed significantly and suggests factors at local, not regional, scales affect these patterns. The possibility that heterogeneity in clonal structure is common throughout the eastern Pacific and across the west Indo-Pacific requires further study. Finally, since morphological variation in Pocillopora has been underappreciated and is in need of taxonomic revision, the use of a consistent field-sampling protocol and high-resolution makers will advance ecological research and aid in the conservation of these corals.
Caugant, Dominique A.; Kristiansen, Paul A.; Wang, Xin; Mayer, Leonard W.; Taha, Muhamed-Kheir; Ouédraogo, Rasmata; Kandolo, Denis; Bougoudogo, Flabou; Sow, Samba; Bonte, Laurence
2012-01-01
Background The serogroup A conjugate meningococcal vaccine, MenAfriVac, was introduced in mass vaccination campaigns in December 2010 in Burkina Faso, Mali and Niger. In the coming years, vaccination will be extended to other African countries at risk of epidemics. To document the molecular characteristics of disease-causing meningococcal strains circulating in the meningitis belt of Africa before vaccine introduction, the World Health Organization Collaborating Centers on Meningococci in Europe and United States established a common strain collection of 773 isolates from cases of invasive meningococcal disease collected between 2004 and 2010 from 13 sub-Saharan countries. Methodology All isolates were characterized by multilocus sequence typing, and 487 (62%) were also analyzed for genetic variation in the surface antigens PorA and FetA. Antibiotic susceptibility was tested for part of the collection. Principal Findings Only 19 sequence types (STs) belonging to 6 clonal complexes were revealed. ST-5 clonal complex dominated with 578 (74.8%) isolates. All ST-5 complex isolates were remarkably homogeneous in their PorA (P1.20,9) and FetA (F3-1) and characterized the serogroup A strains which have been responsible for most epidemics during this time period. Sixty-eight (8.8%) of the 773 isolates belonged to the ST-11 clonal complex which was mainly represented by serogroup W135, while an additional 38 (4.9%) W135 isolates belonged to the ST-175 complex. Forty-eight (6.2%) serogroup X isolates from West Africa belonged to the ST-181 complex, while serogroup X cases in Kenya and Uganda were caused by an unrelated clone, ST-5403. Serogroup X, ST-181, emerged in Burkina Faso before vaccine introduction. Conclusions In the seven years preceding introduction of a new serogroup A conjugate vaccine, serogroup A of the ST-5 clonal complex was identified as the predominant disease-causing strain. PMID:23029368
Dale, Julia; Price, Erin P; Hornstra, Heidie; Busch, Joseph D; Mayo, Mark; Godoy, Daniel; Wuthiekanun, Vanaporn; Baker, Anthony; Foster, Jeffrey T; Wagner, David M; Tuanyok, Apichai; Warner, Jeffrey; Spratt, Brian G; Peacock, Sharon J; Currie, Bart J; Keim, Paul; Pearson, Talima
2011-12-01
Rapid assignment of bacterial pathogens into predefined populations is an important first step for epidemiological tracking. For clonal species, a single allele can theoretically define a population. For non-clonal species such as Burkholderia pseudomallei, however, shared allelic states between distantly related isolates make it more difficult to identify population defining characteristics. Two distinct B. pseudomallei populations have been previously identified using multilocus sequence typing (MLST). These populations correlate with the major foci of endemicity (Australia and Southeast Asia). Here, we use multiple Bayesian approaches to evaluate the compositional robustness of these populations, and provide assignment results for MLST sequence types (STs). Our goal was to provide a reference for assigning STs to an established population without the need for further computational analyses. We also provide allele frequency results for each population to enable estimation of population assignment even when novel STs are discovered. The ability for humans and potentially contaminated goods to move rapidly across the globe complicates the task of identifying the source of an infection or outbreak. Population genetic dynamics of B. pseudomallei are particularly complicated relative to other bacterial pathogens, but the work here provides the ability for broad scale population assignment. As there is currently no independent empirical measure of successful population assignment, we provide comprehensive analytical details of our comparisons to enable the reader to evaluate the robustness of population designations and assignments as they pertain to individual research questions. Finer scale subdivision and verification of current population compositions will likely be possible with genotyping data that more comprehensively samples the genome. The approach used here may be valuable for other non-clonal pathogens that lack simple group-defining genetic characteristics and provides a rapid reference for epidemiologists wishing to track the origin of infection without the need to compile population data and learn population assignment algorithms.
Population structure of clinical Pseudomonas aeruginosa from West and Central African countries.
Cholley, Pascal; Ka, Roughyatou; Guyeux, Christophe; Thouverez, Michelle; Guessennd, Nathalie; Ghebremedhin, Beniam; Frank, Thierry; Bertrand, Xavier; Hocquet, Didier
2014-01-01
Pseudomonas aeruginosa (PA) has a non-clonal, epidemic population with a few widely distributed and frequently encountered sequence types (STs) called 'high-risk clusters'. Clinical P. aeruginosa (clinPA) has been studied in all inhabited continents excepted in Africa, where a very few isolates have been analyzed. Here, we characterized a collection of clinPA isolates from four countries of West and Central Africa. 184 non-redundant isolates of clinPA from hospitals of Senegal, Ivory Coast, Nigeria, and Central African Republic were genotyped by MLST. We assessed their resistance level to antibiotics by agar diffusion and identified the extended-spectrum β-lactamases (ESBLs) and metallo-β-lactamases (MBLs) by sequencing. The population structure of the species was determined by a nucleotide-based analysis of the entire PA MLST database and further localized on the phylogenetic tree (i) the sequence types (STs) of the present collection, (ii) the STs by continents, (iii) ESBL- and MBL-producing STs from the MLST database. We found 80 distinct STs, of which 24 had no relationship with any known STs. 'High-risk' international clonal complexes (CC155, CC244, CC235) were frequently found in West and Central Africa. The five VIM-2-producing isolates belonged to CC233 and CC244. GES-1 and GES-9 enzymes were produced by one CC235 and one ST1469 isolate, respectively. We showed the spread of 'high-risk' international clonal complexes, often described as multidrug-resistant on other continents, with a fully susceptible phenotype. The MBL- and ESBL-producing STs were scattered throughout the phylogenetic tree and our data suggest a poor association between a continent and a specific phylogroup. ESBL- and MBL-encoding genes are borne by both successful international clonal complexes and distinct local STs in clinPA of West and Central Africa. Furthermore, our data suggest that the spread of a ST could be either due to its antibiotic resistance or to features independent from the resistance to antibiotics.
Farwick, Nadine M; Klopfleisch, Robert; Gruber, Achim D; Weiss, Alexander Th A
2017-04-01
Objectives A hallmark of neoplasms is their origin from a single cell; that is, clonality. Many techniques have been developed in human medicine to utilise this feature of tumours for diagnostic purposes. One approach is X chromosome-linked clonality testing using polymorphisms of genes encoded by genes on the X chromosome. The aim of this study was to determine if the feline androgen receptor gene was suitable for X chromosome-linked clonality testing. Methods The feline androgen receptor gene was characterised and used to test clonality of feline lymphomas by PCR and polyacrylamide gel electrophoresis, using archival formalin-fixed, paraffin-embedded material. Results Clonality of the feline lymphomas under study was confirmed and the gene locus was shown to represent a suitable target in clonality testing. Conclusions and relevance Because there are some pitfalls of using X chromosome-linked clonality testing, further studies are necessary to establish this technique in the cat.
Aging, clonal hematopoiesis and preleukemia: not just bad luck?
Shlush, Liran I; Zandi, Sasan; Itzkovitz, Shalev; Schuh, Andre C
2015-11-01
Chronological human aging is associated with a number of changes in the hematopoietic system, occurring at many levels from stem to mature cells, and the marrow microenvironment as well. This review will focus mainly on the aging of hematopoietic stem and progenitor cells (HSPCs), and on the associated increases in the incidence of hematological malignancies. HSPCs manifest reduced function and acquire molecular changes with chronological aging. Furthermore, while for many years it has been known that the human hematopoietic system becomes increasingly clonal with chronological aging (clonal hematopoiesis), only in the last few years has it become clear that clonal hematopoiesis may result from the accumulation of preleukemic mutations in HSPCs. Such mutations confer a selective advantage that leads to clonal hematopoiesis, and that may occasionally result in the development of leukemia, and define the existence of both preleukemic stem cells, and of 'preleukemia' as a clinical entity. While it is well appreciated that clonal hematopoiesis is very common in the elderly, several questions remain unanswered: why and how does clonal hematopoiesis develop? How is clonal hematopoiesis related to the age-related changes observed in the hematopoietic system? And why do only some individuals with clonal hematopoiesis develop leukemia?
Allix-Béguec, Caroline; Wahl, Céline; Hanekom, Madeleine; Nikolayevskyy, Vladyslav; Drobniewski, Francis; Maeda, Shinji; Campos-Herrero, Isolina; Mokrousov, Igor; Niemann, Stefan; Kontsevaya, Irina; Rastogi, Nalin; Samper, Sofia; Sng, Li-Hwei; Warren, Robin M.
2014-01-01
Mycobacterium tuberculosis Beijing strains represent targets of special importance for molecular surveillance of tuberculosis (TB), especially because they are associated with spread of multidrug resistance in some world regions. Standard 24-locus mycobacterial interspersed repetitive-unit–variable-number tandem-repeat (MIRU-VNTR) typing lacks resolution power for accurately discriminating closely related clones that often compose Beijing strain populations. Therefore, we evaluated a set of 7 additional, hypervariable MIRU-VNTR loci for better resolution and tracing of such strains, using a collection of 535 Beijing isolates from six world regions where these strains are known to be prevalent. The typeability and interlaboratory reproducibility of these hypervariable loci were lower than those of the 24 standard loci. Three loci (2163a, 3155, and 3336) were excluded because of their redundant variability and/or more frequent noninterpretable results compared to the 4 other markers. The use of the remaining 4-locus set (1982, 3232, 3820, and 4120) increased the number of types by 52% (from 223 to 340) and reduced the clustering rate from 58.3 to 36.6%, when combined with the use of the standard 24-locus set. Known major clonal complexes/24-locus-based clusters were all subdivided, although the degree of subdivision varied depending on the complex. Only five single-locus variations were detected among the hypervariable loci of an additional panel of 92 isolates, representing 15 years of clonal spread of a single Beijing strain in a geographically restricted setting. On this calibrated basis, we propose this 4-locus set as a consensus for subtyping Beijing clonal complexes and clusters, after standard typing. PMID:24172154
Allix-Béguec, Caroline; Wahl, Céline; Hanekom, Madeleine; Nikolayevskyy, Vladyslav; Drobniewski, Francis; Maeda, Shinji; Campos-Herrero, Isolina; Mokrousov, Igor; Niemann, Stefan; Kontsevaya, Irina; Rastogi, Nalin; Samper, Sofia; Sng, Li-Hwei; Warren, Robin M; Supply, Philip
2014-01-01
Mycobacterium tuberculosis Beijing strains represent targets of special importance for molecular surveillance of tuberculosis (TB), especially because they are associated with spread of multidrug resistance in some world regions. Standard 24-locus mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing lacks resolution power for accurately discriminating closely related clones that often compose Beijing strain populations. Therefore, we evaluated a set of 7 additional, hypervariable MIRU-VNTR loci for better resolution and tracing of such strains, using a collection of 535 Beijing isolates from six world regions where these strains are known to be prevalent. The typeability and interlaboratory reproducibility of these hypervariable loci were lower than those of the 24 standard loci. Three loci (2163a, 3155, and 3336) were excluded because of their redundant variability and/or more frequent noninterpretable results compared to the 4 other markers. The use of the remaining 4-locus set (1982, 3232, 3820, and 4120) increased the number of types by 52% (from 223 to 340) and reduced the clustering rate from 58.3 to 36.6%, when combined with the use of the standard 24-locus set. Known major clonal complexes/24-locus-based clusters were all subdivided, although the degree of subdivision varied depending on the complex. Only five single-locus variations were detected among the hypervariable loci of an additional panel of 92 isolates, representing 15 years of clonal spread of a single Beijing strain in a geographically restricted setting. On this calibrated basis, we propose this 4-locus set as a consensus for subtyping Beijing clonal complexes and clusters, after standard typing.
Salazar, Clara Lina; Reyes, Catalina; Cienfuegos-Gallet, Astrid Vanessa; Best, Emma; Atehortua, Santiago; Sierra, Patricia; Correa, Margarita M; Fawley, Warren N; Paredes-Sabja, Daniel; Wilcox, Mark; Gonzalez, Angel
2018-01-01
We aimed to achieve a higher typing resolution within the three dominant Clostridium difficile ribotypes (591,106 and 002) circulating in Colombia. A total of 50 C. difficile isolates we had previously typed by PCR-ribotyping, representing the major three ribotypes circulating in Colombia, were analyzed. Twenty-seven isolates of ribotype 591, 12 of ribotype 106 and 11 of ribotype 002 were subtyped by multiple locus variable-number tandem-repeat analysis (MLVA). The presence of the PaLoc genes (tcdA/tcdB), toxin production in culture and antimicrobial susceptibility were also determined. From the total C. difficile ribotypes analyzed, 20 isolates (74%) of ribotype 591, nine (75%) of ribotype 106 and five (45.5%) of ribotype 002 were recovered from patients with Clostridium difficile infection (CDI). MLVA allowed us to recognize four and two different clonal complexes for ribotypes 591 and 002, respectively, having a summed tandem-repeat difference (STRD) <2, whereas none of the ribotype 106 isolates were grouped in a cluster or clonal complex having a STRD >10. Six ribotype 591 and three ribotype 002 isolates belonging to a defined clonal complex were isolated on the same week in two different hospitals. All ribotypes harbored either tcdA+/tcdB+ or tcdA-/tcdB+ PaLoc genes. Moreover, 94% of the isolates were positive for toxin in culture. All isolates were susceptible to vancomycin and metronidazole, while 75% to 100% of the isolates were resistant to clindamycin, and less than 14.8% of ribotype 591 isolates were resistant to moxifloxacina. No significant differences were found among ribotypes with respect to demographic and clinical patients' data; however, our results demonstrated a high molecular heterogeneity of C. difficile strains circulating in Colombia.
Salazar, Clara Lina; Reyes, Catalina; Cienfuegos-Gallet, Astrid Vanessa; Best, Emma; Atehortua, Santiago; Sierra, Patricia; Correa, Margarita M.; Fawley, Warren N.; Paredes-Sabja, Daniel; Wilcox, Mark
2018-01-01
We aimed to achieve a higher typing resolution within the three dominant Clostridium difficile ribotypes (591,106 and 002) circulating in Colombia. A total of 50 C. difficile isolates we had previously typed by PCR-ribotyping, representing the major three ribotypes circulating in Colombia, were analyzed. Twenty-seven isolates of ribotype 591, 12 of ribotype 106 and 11 of ribotype 002 were subtyped by multiple locus variable-number tandem-repeat analysis (MLVA). The presence of the PaLoc genes (tcdA/tcdB), toxin production in culture and antimicrobial susceptibility were also determined. From the total C. difficile ribotypes analyzed, 20 isolates (74%) of ribotype 591, nine (75%) of ribotype 106 and five (45.5%) of ribotype 002 were recovered from patients with Clostridium difficile infection (CDI). MLVA allowed us to recognize four and two different clonal complexes for ribotypes 591 and 002, respectively, having a summed tandem-repeat difference (STRD) <2, whereas none of the ribotype 106 isolates were grouped in a cluster or clonal complex having a STRD >10. Six ribotype 591 and three ribotype 002 isolates belonging to a defined clonal complex were isolated on the same week in two different hospitals. All ribotypes harbored either tcdA+/tcdB+ or tcdA-/tcdB+ PaLoc genes. Moreover, 94% of the isolates were positive for toxin in culture. All isolates were susceptible to vancomycin and metronidazole, while 75% to 100% of the isolates were resistant to clindamycin, and less than 14.8% of ribotype 591 isolates were resistant to moxifloxacina. No significant differences were found among ribotypes with respect to demographic and clinical patients’ data; however, our results demonstrated a high molecular heterogeneity of C. difficile strains circulating in Colombia. PMID:29649308
Molecular epidemiology of Methicillin-resistant Staphylococcus aureus in Africa: a systematic review
Abdulgader, Shima M.; Shittu, Adebayo O.; Nicol, Mark P.; Kaba, Mamadou
2015-01-01
Methicillin-resistant Staphylococcus aureus (MRSA) infections are a serious global problem, with considerable impact on patients and substantial health care costs. This systematic review provides an overview on the clonal diversity of MRSA, as well as the prevalence of Panton-Valentine leukocidin (PVL)-positive MRSA in Africa. A search on the molecular characterization of MRSA in Africa was conducted by two authors using predefined terms. We screened for articles published in English and French through to October 2014 from five electronic databases. A total of 57 eligible studies were identified. Thirty-four reports from 15 countries provided adequate genotyping data. CC5 is the predominant clonal complex in the healthcare setting in Africa. The hospital-associated MRSA ST239/ST241-III [3A] was identified in nine African countries. This clone was also described with SCCmec type IV [2B] in Algeria and Nigeria, and type V [5C] in Niger. In Africa, the European ST80-IV [2B] clone was limited to Algeria, Egypt and Tunisia. The clonal types ST22-IV [2B], ST36-II [2A], and ST612-IV [2B] were only reported in South Africa. No clear distinctions were observed between MRSA responsible for hospital and community infections. The community clones ST8-IV [2B] and ST88-IV [2B] were reported both in the hospital and community settings in Angola, Cameroon, Gabon, Ghana, Madagascar, Nigeria, and São Tomé and Príncipe. The proportion of PVL-positive MRSA carriage and/or infections ranged from 0.3 to 100% in humans. A number of pandemic clones were identified in Africa. Moreover, some MRSA clones are limited to specific countries or regions. We strongly advocate for more surveillance studies on MRSA in Africa. PMID:25983721
Chironna, Maria; Loconsole, Daniela; De Robertis, Anna Lisa; Morea, Anna; Scalini, Egidio; Quarto, Michele; Tafuri, Silvio; Germinario, Cinzia; Manzionna, Mariano
2016-03-01
Macrolide-resistant Mycoplasma pneumoniae (MR-MP) is an increasing problem worldwide. This study describes the clonal spread of a unique strain of MR-MP within a single family. On January 23, 2015, nasopharyngeal swabs and sputum samples were collected from the index case (a 9-year-old girl) in southern Italy. The patient had pneumonia and was initially treated with clarithromycin. MR-MP infection was suspected due to prolonged symptoms despite appropriate antibiotic therapy. Two further cases of pneumonia occurred in relatives (a 7-year-old cousin and the 36-year-old mother of the index case); therefore, respiratory samples were also collected from other family members. Sequence analysis identified mutations associated with resistance to macrolides. Both P1 major adhesion protein typing and multiple loci variable-number tandem repeat analysis (MLVA) typing were performed to assess the relatedness of the strains. The index case, the cousin, the mother, and another 4 family members (twin siblings of the index case, a 3-year-old cousin, and the grandmother) were positive for MR-MP. All strains harbored the mutation A2063G, had the same P1 subtype (1), and were MLVA (7/4/5/7/2) type Z. In addition, the index case's aunt (31 years of age and the probable source of infection) harbored an M pneumoniae strain with the same molecular profile; however, this strain was susceptible to macrolides. This cluster of MR-MP infection/carriage caused by a clonal strain suggests a high transmission rate within this family and highlights the need for increased awareness among clinicians regarding the circulation of MR-MP. Novel strategies for the treatment and prevention of M pneumoniae infections are required.
Opavski, Natasa; Gajic, Ina; Borek, Anna L; Obszańska, Katarzyna; Stanojevic, Maja; Lazarevic, Ivana; Ranin, Lazar; Sitkiewicz, Izabela; Mijac, Vera
2015-07-01
A steady increase in macrolide resistance in Streptococcus pyogenes, group A streptococci (GAS) was reported in Serbia during 2004-2009 (9.9%). However, there are no data on the molecular epidemiology of pharyngeal macrolide resistance GAS (MRGAS) isolates. Therefore, the aims of this first nationwide study were to examine the prevalence of macrolide resistance in Serbian GAS and to determine their resistance phenotypes, genotypes and clonal relationships. Overall 3893 non-duplicate pharyngeal S. pyogenes isolates from outpatients with GAS infection were collected throughout country during 2008 and 2009. Among 486 macrolide resistant pharyngeal isolates collected, 103 were further characterized. Macrolide resistance phenotypes and genotypes were determined by double-disk diffusion test and PCR, respectively. Strain relatedness was determined by emm typing, multilocus sequence typing (MLST), multilocus variable tandem repeat analysis (MLVA), phage profiling (PP) and virulence factor profiling (VFP). Overall, macrolide resistance among GAS isolates in Serbia was 12.5%. M phenotype was the most common (71.8%), followed by iMLS (18.4%) and cMLS (9.7%). Three clonal complexes--emm75/mefA/ST49, emm12/mefA/ST36 and emm77/ermA/tetO/ST63 comprised over 90% of the tested strains. Although MLVA, PP and VFP distinguished 10, 20 and 12 different patterns, respectively, cluster analysis disclosed only small differences between strains which belonged to the same emm/ST type. Our data indicate dominance of three major internationally widely disseminated macrolide resistant clones and a high genetic homogeneity among the Serbian MRGAS population. Continued surveillance of macrolide resistance and clonal composition in MRGAS in Serbia in future is necessary to determine stability of MRGAS clones and to guide therapy strategies. Copyright © 2015 Elsevier B.V. All rights reserved.
Kim, Young; Choi, Yoo Duk; Choi, Chan
2013-01-01
Background A clonality test for immunoglobulin (IG) and T cell receptor (TCR) is a useful adjunctive method for the diagnosis of lymphoproliferative diseases (LPDs). Recently, the BIOMED-2 multiplex polymerase chain reaction (PCR) assay has been established as a standard method for assessing the clonality of LPDs. We tested clonality in LPDs in Koreans using the BIOMED-2 multiplex PCR and compared the results with those obtained in European, Taiwanese, and Thai participants. We also evaluated the usefulness of the test as an ancillary method for diagnosing LPDs. Methods Two hundred and nineteen specimens embedded in paraffin, including 78 B cell lymphomas, 80 T cell lymphomas and 61 cases of reactive lymphadenitis, were used for the clonality test. Results Mature B cell malignancies showed 95.7% clonality for IG, 2.9% co-existing clonality, and 4.3% polyclonality. Mature T cell malignancies exhibited 83.8% clonality for TCR, 8.1% co-existing clonality, and 16.2% polyclonality. Reactive lymphadenitis showed 93.4% polyclonality for IG and TCR. The majority of our results were similar to those obtained in Europeans. However, the clonality for IGK of B cell malignancies and TCRG of T cell malignancies was lower in Koreans than Europeans. Conclusions The BIOMED-2 multiplex PCR assay was a useful adjunctive method for diagnosing LPDs. PMID:24255634
2014-01-01
Background Cell lines are often regarded as clonal, even though this simplifies what is known about mutagenesis, transformation and other processes that destabilize them over time. Monitoring these clonal dynamics is important for multiple areas of biomedical research, including stem cell and cancer biology. Tracking the contributions of individual cells to large populations, however, has been constrained by limitations in sensitivity and complexity. Results We utilize cellular barcoding methods to simultaneously track the clonal contributions of tens of thousands of cells. We demonstrate that even with optimal culturing conditions, common cell lines including HeLa, K562 and HEK-293 T exhibit ongoing clonal dynamics. Starting a population with a single clone diminishes but does not eradicate this phenomenon. Next, we compare lentiviral and zinc-finger nuclease barcode insertion approaches, finding that the zinc-finger nuclease protocol surprisingly results in reduced clonal diversity. We also document the expected reduction in clonal complexity when cells are challenged with genotoxic stress. Finally, we demonstrate that xenografts maintain clonal diversity to a greater extent than in vitro culturing of the human non-small-cell lung cancer cell line HCC827. Conclusions We demonstrate the feasibility of tracking and quantifying the clonal dynamics of entire cell populations within multiple cultured cell lines. Our results suggest that cell heterogeneity should be considered in the design and interpretation of in vitro culture experiments. Aside from clonal cell lines, we propose that cellular barcoding could prove valuable in modeling the clonal behavior of heterogeneous cell populations over time, including tumor populations treated with chemotherapeutic agents. PMID:24886633
Setchanova, Lena Petrova; Alexandrova, Alexandra; Dacheva, Daniela; Mitov, Ivan; Kaneva, Radka; Mitev, Vanio
2015-02-01
A pneumococcal conjugate vaccine (PCV10) was introduced in Bulgarian national immunization program since April 2010. Clonal composition based on pulsed-field gel electrophoresis and multilocus sequence typing genotyping of 52 serotype 19A Streptococcus pneumoniae isolates was analyzed. These were invasive and respiratory isolates collected between 1992 and 2013 from both children (78.8% <5 years) and adults with pneumococcal infections. Multidrug resistance was found in 82.7% of all 19A isolates. The most prevalent genotype (63.5%) among serotype 19A pneumococcal strains was the multidrug-resistant clonal complex CC230, which is a capsular switched variant of the Denmark(14)-32 (ST230) global clone. The most frequent sequence type (ST) was ST230 (48.1%) and together with four other closely related STs (15.4%), belonging to ST1611, ST276, ST7466, and ST2013, which were single- and double-locus variants; they were included in the main CC230. The disappearance of highly drug-resistant ST663 clone and emergence of new clones as CC320 and CC199 was also observed among the rest 19A isolates. A comparison of clonal composition between invasive and noninvasive isolates did not show a great genetic diversity among both kinds of isolates. Continuous surveillance of serotype 19A population following the introduction of PCV10 is essential to evaluate the impact of the vaccine on the epidemiology of this serotype.
Dissemination of the ST-103 clonal complex serogroup C meningococci in Salvador, Brazil.
Cordeiro, Soraia Machado; Cardoso, Cristiane Wanderley; de Araújo, Lorena Galvão; Ribeiro, Luis Eduardo; Azevedo, Jailton; Silva, Rita de Cassia Vilasboas; Dos Reis, Mitermayer Galvão; Ko, Albert Icksang; Reis, Joice Neves
2018-01-01
Invasive meningococcal disease (IMD) is a major public health problem worldwide. An epidemic of serogroup C (NmC) IMD occurred in 2010 in the city of Salvador. In this study, we describe the antigenic and genetic characterization of meningococcal isolates collected from meningitis cases in Salvador from 2001 to 2012. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were performed for the analysis of IMD isolates. A total of 733 cases were identified, and the serogroup was determined for 391 (53.0%) of these. Most cases were caused by NmC (53%) or B (47%). The most prevalent strains were B:4,7:P1.19,15 (32.9%; 129/391) and C:23:P1.14-6 (28.6%; 112/391). Based on PFGE/MLST analysis, 71.3% (77/108 PFGE-tested isolates) clustered as two clones of sequence type ST-3779 and ST-3780, both belonging to the ST-103 clonal complex. ST-3779 has been detected in Salvador since 1996 and together with ST-3780 became predominant after 2005. There was a predominance of C:23:P1.14-6, ST-3779/3780 in Salvador during the period of 2007-2012, establishing a major clonal lineage, which remained in the community for a long time; this has serious implications for public health, particularly in terms of prevention and control strategies of IMD. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Lill, Georgia R.; Shaw, Kit; Carbonaro-Sarracino, Denise A.; Davila, Alejandra; Sokolic, Robert; Candotti, Fabio; Pellegrini, Matteo
2017-01-01
Retroviral gene therapy has proved efficacious for multiple genetic diseases of the hematopoietic system, but roughly half of clinical gene therapy trial protocols using gammaretroviral vectors have reported leukemias in some of the patients treated. In dramatic contrast, 39 adenosine deaminase–deficient severe combined immunodeficiency (ADA-SCID) patients have been treated with 4 distinct gammaretroviral vectors without oncogenic consequence. We investigated clonal dynamics and diversity in a cohort of 15 ADA-SCID children treated with gammaretroviral vectors and found clear evidence of genotoxicity, indicated by numerous common integration sites near proto-oncogenes and by increased abundance of clones with integrations near MECOM and LMO2. These clones showed stable behavior over multiple years and never expanded to the point of dominance or dysplasia. One patient developed a benign clonal dominance that could not be attributed to insertional mutagenesis and instead likely resulted from expansion of a transduced natural killer clone in response to chronic Epstein-Barr virus viremia. Clonal diversity and T-cell repertoire, measured by vector integration site sequencing and T-cell receptor β-chain rearrangement sequencing, correlated significantly with the amount of busulfan preconditioning delivered to patients and to CD34+ cell dose. These data, in combination with results of other ADA-SCID gene therapy trials, suggest that disease background may be a crucial factor in leukemogenic potential of retroviral gene therapy and underscore the importance of cytoreductive conditioning in this type of gene therapy approach. PMID:28351939
Flores-Treviño, Samantha; Gutiérrez-Ferman, Jessica Lizzeth; Morfín-Otero, Rayo; Rodríguez-Noriega, Eduardo; Estrada-Rivadeneyra, Diego; Rivas-Morales, Catalina; Llaca-Díaz, Jorge M; Camacho-Ortíz, Adrián; Mendoza-Olazarán, Soraya; Garza-González, Elvira
2014-11-01
Stenotrophomonas maltophilia is an important multidrug-resistant nosocomial pathogen associated with high mortality. Our aim was to examine antimicrobial susceptibility, biofilm production and clonal relatedness of clinical isolates of S. maltophilia. S. maltophilia isolates were collected between 2006 and 2013 from two tertiary care hospitals in Mexico. Antimicrobial susceptibility was evaluated by the broth microdilution method. PCR was used to determine the presence of β-lactamase genes L1 and L2. Biofilm formation was assessed with crystal violet staining. Clonal relatedness was determined by PFGE. Among the 119 collected S. maltophilia isolates, 73 (61.3%) were from the respiratory tract. Resistance levels exceeded 75% for imipenem, meropenem, ampicillin, aztreonam, gentamicin and tobramycin. Resistance to trimethoprim-sulfamethoxazole was 32.8%. L1 and L2 genes were detected in 77.1% (91/118) and 66.9% (79/118) of isolates, respectively. All S. maltophilia strains were able to produce biofilms. Strains were classified as weak (47.9%, 57/119), moderate (38.7%, 46/119), or strong (13.4%, 16/119) biofilm producers. A total of 89 distinct PFGE types were identified and 21.6% (22/102) of the isolates were distributed in nine clusters. This is the first study in Mexico to reveal characteristics of clinical isolates of S. maltophilia. Clonal diversity data indicate low cross-transmission of S. maltophilia in a hospital setting. The high antibiotic resistance underscores the need for continuous surveillance of S. maltophilia in hospital settings in Mexico. © 2014 The Authors.
Clonal evolution and tumor-initiating cells: New dimensions in cancer patient treatment.
Apostoli, Anthony J; Ailles, Laurie
2016-01-01
Human cancer is not a uniform disease but a plethora of disparate tumor types and subtypes. The differences that exist between individual tumors (intertumoral heterogeneity) present a significant roadblock to the eradication of cancer. It has also become increasingly clear that variations across individual tumors (intratumoral heterogeneity) have important implications to cancer progression and treatment efficacy. Therefore, in order to improve patient care and develop novel chemotherapeutics, the evolving tumor landscape needs to be further explored. Next-generation sequencing (NGS) technologies are revolutionizing the cancer research arena by providing state-of-the-art, high-speed methods of genome sequencing at single-nucleotide resolution, thus enabling an unprecedented detection of tumor-specific genetic abnormalities. These anomalies can be quantified to reveal specific frequencies of DNA alterations that correspond to distinct clonal populations within a given tumor. As such, NGS approaches have also been utilized to explore the heterogeneous landscape of patient tumors as well as to match metastatic and/or recurrent growths and patient-derived engrafts. By sequencing in this manner--through time so to speak--cancer researchers can track shifting clonal populations, make important inferences about tumor evolution and potentially identify tumor subclones that could be viably targeted. This exciting new territory has important implications for the competing clonal evolution and cancer stem cell models of tumor heterogeneity, and also offers a new dimension for cancer treatment and profound hope for patients in the coming years.
Cooper, Aaron R; Lill, Georgia R; Shaw, Kit; Carbonaro-Sarracino, Denise A; Davila, Alejandra; Sokolic, Robert; Candotti, Fabio; Pellegrini, Matteo; Kohn, Donald B
2017-05-11
Retroviral gene therapy has proved efficacious for multiple genetic diseases of the hematopoietic system, but roughly half of clinical gene therapy trial protocols using gammaretroviral vectors have reported leukemias in some of the patients treated. In dramatic contrast, 39 adenosine deaminase-deficient severe combined immunodeficiency (ADA-SCID) patients have been treated with 4 distinct gammaretroviral vectors without oncogenic consequence. We investigated clonal dynamics and diversity in a cohort of 15 ADA-SCID children treated with gammaretroviral vectors and found clear evidence of genotoxicity, indicated by numerous common integration sites near proto-oncogenes and by increased abundance of clones with integrations near MECOM and LMO2 These clones showed stable behavior over multiple years and never expanded to the point of dominance or dysplasia. One patient developed a benign clonal dominance that could not be attributed to insertional mutagenesis and instead likely resulted from expansion of a transduced natural killer clone in response to chronic Epstein-Barr virus viremia. Clonal diversity and T-cell repertoire, measured by vector integration site sequencing and T-cell receptor β-chain rearrangement sequencing, correlated significantly with the amount of busulfan preconditioning delivered to patients and to CD34 + cell dose. These data, in combination with results of other ADA-SCID gene therapy trials, suggest that disease background may be a crucial factor in leukemogenic potential of retroviral gene therapy and underscore the importance of cytoreductive conditioning in this type of gene therapy approach.
Landman, W J M; Buter, G J; Dijkman, R; van Eck, J H H
2014-01-01
Escherichia coli colonies isolated from the bone marrow of fresh dead hens of laying flocks with the E. coli peritonitis syndrome (EPS) were genotyped using pulsed-field gel electrophoresis (PFGE). Typing is important from an epidemiological point of view and also if the use of autogenous (auto)vaccines is considered. Birds with EPS originated from one house of each of three layer farms and one broiler breeder farm. Farms were considered as separate epidemiological units. In total, six flocks were examined including two successive flocks of one layer farm and the broiler breeder farm. E. coli colonies (one per bird) from nine to 16 hens of each flock were genotyped. The clonality of E. coli within birds was studied using five colonies of each of nine to 14 birds per flock. E. coli genotypes, which totalled 15, differed between farms and flocks except for two successive layer flocks that shared three genotypes. One to five genotypes were found per flock with one or two genotypes dominating each outbreak. Within hens, E. coli bacteria were always clonal. Colonies of the same PFGE type always had the same multilocus sequence type. However, four PFGE types shared sequence type 95. Neither PFGE types nor multilocus sequence types were unambiguously related to avian pathogenic E. coli from EPS. In cases where persistence of E. coli strains associated with EPS is found to occur frequently, routine genotyping to select strains for autovaccines should be considered.
Léglise, M C; Rivière, D; Brière, J
1990-01-01
We present a cytogenetic clonal evolution that correlates morphological and immunological shifts in a case of a patient with a t(4;11) (q21;q23) acute leukemia. We take this opportunity to review 146 cases reported so far, with special reference to morphology, immunophenotyping, cytogenetics, clinical characteristics and evolution. Particular features are underlined, and prognosis, leukemic stem cell origin, chromosomal breakpoints and genes involved are discussed. A relationship between this type of leukemia and exposure to carcinogens is suggested by a high rate of secondary leukemia in adults and a high frequency in newborns and infants.
Holtfreter, Silva; Grumann, Dorothee; Balau, Veronika; Barwich, Annette; Kolata, Julia; Goehler, André; Weiss, Stefan; Holtfreter, Birte; Bauerfeind, Stephanie S.; Döring, Paula; Friebe, Erika; Haasler, Nicole; Henselin, Kristin; Kühn, Katrin; Nowotny, Sophie; Radke, Dörte; Schulz, Katrin; Schulz, Sebastian R.; Trübe, Patricia; Vu, Chi Hai; Walther, Birgit; Westphal, Susanne; Cuny, Christiane; Witte, Wolfgang; Völzke, Henry; Grabe, Hans Jörgen; Kocher, Thomas; Steinmetz, Ivo
2016-01-01
Population-based studies on Staphylococcus aureus nasal colonization are scarce. We examined the prevalence, resistance, and molecular diversity of S. aureus in the general population in Northeast Germany. Nasal swabs were obtained from 3,891 adults in the large-scale population-based Study of Health in Pomerania (SHIP-TREND). Isolates were characterized using spa genotyping, as well as antibiotic resistance and virulence gene profiling. We observed an S. aureus prevalence of 27.2%. Nasal S. aureus carriage was associated with male sex and inversely correlated with age. Methicillin-resistant S. aureus (MRSA) accounted for 0.95% of the colonizing S. aureus strains. MRSA carriage was associated with frequent visits to hospitals, nursing homes, or retirement homes within the previous 24 months. All MRSA strains were resistant to multiple antibiotics. Most MRSA isolates belonged to the pandemic European hospital-acquired MRSA sequence type 22 (HA-MRSA-ST22) lineage. We also detected one livestock-associated MRSA ST398 (LA-MRSA-ST398) isolate, as well as six livestock-associated methicillin-susceptible S. aureus (LA-MSSA) isolates (clonal complex 1 [CC1], CC97, and CC398). spa typing revealed a diverse but also highly clonal S. aureus population structure. We identified a total of 357 spa types, which were grouped into 30 CCs or sequence types. The major seven CCs (CC30, CC45, CC15, CC8, CC7, CC22, and CC25) included 75% of all isolates. Virulence gene patterns were strongly linked to the clonal background. In conclusion, MSSA and MRSA prevalences and the molecular diversity of S. aureus in Northeast Germany are consistent with those of other European countries. The detection of HA-MRSA and LA-MRSA within the general population indicates possible transmission from hospitals and livestock, respectively, and should be closely monitored. PMID:27605711
Forsythe, Stephen J; Dickins, Benjamin; Jolley, Keith A
2014-12-16
Following the association of Cronobacter spp. to several publicized fatal outbreaks in neonatal intensive care units of meningitis and necrotising enterocolitis, the World Health Organization (WHO) in 2004 requested the establishment of a molecular typing scheme to enable the international control of the organism. This paper presents the application of Next Generation Sequencing (NGS) to Cronobacter which has led to the establishment of the Cronobacter PubMLST genome and sequence definition database (http://pubmlst.org/cronobacter/) containing over 1000 isolates with metadata along with the recognition of specific clonal lineages linked to neonatal meningitis and adult infections Whole genome sequencing and multilocus sequence typing (MLST) has supports the formal recognition of the genus Cronobacter composed of seven species to replace the former single species Enterobacter sakazakii. Applying the 7-loci MLST scheme to 1007 strains revealed 298 definable sequence types, yet only C. sakazakii clonal complex 4 (CC4) was principally associated with neonatal meningitis. This clonal lineage has been confirmed using ribosomal-MLST (51-loci) and whole genome-MLST (1865 loci) to analyse 107 whole genomes via the Cronobacter PubMLST database. This database has enabled the retrospective analysis of historic cases and outbreaks following re-identification of those strains. The Cronobacter PubMLST database offers a central, open access, reliable sequence-based repository for researchers. It has the capacity to create new analysis schemes 'on the fly', and to integrate metadata (source, geographic distribution, clinical presentation). It is also expandable and adaptable to changes in taxonomy, and able to support the development of reliable detection methods of use to industry and regulatory authorities. Therefore it meets the WHO (2004) request for the establishment of a typing scheme for this emergent bacterial pathogen. Whole genome sequencing has additionally shown a range of potential virulence and environmental fitness traits which may account for the association of C. sakazakii CC4 pathogenicity, and propensity for neonatal CNS.
Recent advances in understanding clonal haematopoiesis in aplastic anaemia
Stanley, Natasha; Olson, Timothy S.; Babushok, Daria V.
2016-01-01
Summary Acquired aplastic anaemia (AA) is an immune-mediated bone marrow failure disorder inextricably linked to clonal haematopoiesis. The majority of AA patients have somatic mutations and/or structural chromosomal abnormalities detected as early as at diagnosis. In contrast to other conditions linked to clonal haematopoiesis, the clonal signature of AA reflects its immune pathophysiology. The most common alterations are clonal expansions of cells lacking glycophosphotidylinositol-anchored proteins, loss of human leucocyte antigen alleles, and mutations in BCOR/BCORL1, ASXL1 and DNMT3A. Here, we present the current knowledge of clonal haematopoiesis in AA as it relates to aging, inherited bone marrow failure, and the grey-zone overlap of AA and myelodysplastic syndrome (MDS). We conclude by discussing the significance of clonal haematopoiesis both for improved diagnosis of AA, as well as for a more precise, personalized approach to prognostication of outcomes and therapy choices. PMID:28107566
Recent advances in understanding clonal haematopoiesis in aplastic anaemia.
Stanley, Natasha; Olson, Timothy S; Babushok, Daria V
2017-05-01
Acquired aplastic anaemia (AA) is an immune-mediated bone marrow failure disorder inextricably linked to clonal haematopoiesis. The majority of AA patients have somatic mutations and/or structural chromosomal abnormalities detected as early as at diagnosis. In contrast to other conditions linked to clonal haematopoiesis, the clonal signature of AA reflects its immune pathophysiology. The most common alterations are clonal expansions of cells lacking glycophosphotidylinositol-anchored proteins, loss of human leucocyte antigen alleles, and mutations in BCOR/BCORL1, ASXL1 and DNMT3A. Here, we present the current knowledge of clonal haematopoiesis in AA as it relates to aging, inherited bone marrow failure, and the grey-zone overlap of AA and myelodysplastic syndrome (MDS). We conclude by discussing the significance of clonal haematopoiesis both for improved diagnosis of AA, as well as for a more precise, personalized approach to prognostication of outcomes and therapy choices. © 2017 John Wiley & Sons Ltd.
Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity.
Marusyk, Andriy; Tabassum, Doris P; Altrock, Philipp M; Almendro, Vanessa; Michor, Franziska; Polyak, Kornelia
2014-10-02
Cancers arise through a process of somatic evolution that can result in substantial sub-clonal heterogeneity within tumours. The mechanisms responsible for the coexistence of distinct sub-clones and the biological consequences of this coexistence remain poorly understood. Here we used a mouse xenograft model to investigate the impact of sub-clonal heterogeneity on tumour phenotypes and the competitive expansion of individual clones. We found that tumour growth can be driven by a minor cell subpopulation, which enhances the proliferation of all cells within a tumour by overcoming environmental constraints and yet can be outcompeted by faster proliferating competitors, resulting in tumour collapse. We developed a mathematical modelling framework to identify the rules underlying the generation of intra-tumour clonal heterogeneity. We found that non-cell-autonomous driving of tumour growth, together with clonal interference, stabilizes sub-clonal heterogeneity, thereby enabling inter-clonal interactions that can lead to new phenotypic traits.
Clonality Testing in Veterinary Medicine: A Review With Diagnostic Guidelines.
Keller, S M; Vernau, W; Moore, P F
2016-07-01
The accurate distinction of reactive and neoplastic lymphoid proliferations can present challenges. Given the different prognoses and treatment strategies, a correct diagnosis is crucial. Molecular clonality assays assess rearranged lymphocyte antigen receptor gene diversity and can help differentiate reactive from neoplastic lymphoid proliferations. Molecular clonality assays are commonly used to assess atypical, mixed, or mature lymphoid proliferations; small tissue fragments that lack architecture; and fluid samples. In addition, clonality testing can be utilized to track neoplastic clones over time or across anatomic sites. Molecular clonality assays are not stand-alone tests but useful adjuncts that follow clinical, morphologic, and immunophenotypic assessment. Even though clonality testing provides valuable information in a variety of situations, the complexities and pitfalls of this method, as well as its dependency on the experience of the interpreter, are often understated. In addition, a lack of standardized terminology, laboratory practices, and interpretational guidelines hinders the reproducibility of clonality testing across laboratories in veterinary medicine. The objectives of this review are twofold. First, the review is intended to familiarize the diagnostic pathologist or interested clinician with the concepts, potential pitfalls, and limitations of clonality testing. Second, the review strives to provide a basis for future harmonization of clonality testing in veterinary medicine by providing diagnostic guidelines. © The Author(s) 2016.
Choleva, Lukáš; Janko, Karel; De Gelas, Koen; Bohlen, Jörg; Šlechtová, Věra; Rábová, Marie; Ráb, Petr
2012-07-01
Because most clonal vertebrates have hybrid genomic constitutions, tight linkages are assumed among hybridization, clonality, and polyploidy. However, predictions about how these processes mechanistically relate during the switch from sexual to clonal reproduction have not been validated. Therefore, we performed a crossing experiment to test the hypothesis that interspecific hybridization per se initiated clonal diploid and triploid spined loaches (Cobitis) and their gynogenetic reproduction. We reared two F1 families resulting from the crossing of 14 pairs of two sexual species, and found their diploid hybrid constitution and a 1:1 sex ratio. While males were infertile, females produced unreduced nonrecombinant eggs (100%). Synthetic triploid females and males (96.3%) resulted in each of nine backcrossed families from eggs of synthesized diploid F1s fertilized by haploid sperm from sexual males. Five individuals (3.7%) from one backcross family were genetically identical to the somatic cells of the mother and originated via gynogenesis; the sperm of the sexual male only triggered clonal development of the egg. Our reconstruction of the evolutionary route from sexuality to clonality and polyploidy in these fish shows that clonality and gynogenesis may have been directly triggered by interspecific hybridization and that polyploidy is a consequence, not a cause, of clonality. © 2012 The Author(s).
Bárcena, Paloma; Jara-Acevedo, María; Tabernero, María Dolores; López, Antonio; Sánchez, María Luz; García-Montero, Andrés C.; Muñoz-García, Noemí; Vidriales, María Belén; Paiva, Artur; Lecrevisse, Quentin; Lima, Margarida; Langerak, Anton W.; Böttcher, Sebastian; van Dongen, Jacques J.M.
2015-01-01
Currently, the lack of a universal and specific marker of clonality hampers the diagnosis and classification of chronic expansions of natural killer (NK) cells. Here we investigated the utility of flow cytometric detection of aberrant/altered NK-cell phenotypes as a surrogate marker for clonality, in the diagnostic work-up of chronic lymphoproliferative disorders of NK cells (CLPD-NK). For this purpose, a large panel of markers was evaluated by multiparametric flow cytometry on peripheral blood (PB) CD56low NK cells from 60 patients, including 23 subjects with predefined clonal (n = 9) and polyclonal (n = 14) CD56low NK-cell expansions, and 37 with CLPD-NK of undetermined clonality; also, PB samples from 10 healthy adults were included. Clonality was established using the human androgen receptor (HUMARA) assay. Clonal NK cells were found to show decreased expression of CD7, CD11b and CD38, and higher CD2, CD94 and HLADR levels vs. normal NK cells, together with a restricted repertoire of expression of the CD158a, CD158b and CD161 killer-associated receptors. In turn, NK cells from both clonal and polyclonal CLPD-NK showed similar/overlapping phenotypic profiles, except for high and more homogeneous expression of CD94 and HLADR, which was restricted to clonal CLPD-NK. We conclude that the CD94hi/HLADR+ phenotypic profile proved to be a useful surrogate marker for NK-cell clonality. PMID:26556869
Natural and Chemotherapy-Induced Clonal Evolution of Tumors.
Ibragimova, M K; Tsyganov, M M; Litviakov, N V
2017-04-01
Evolution and natural selection of tumoral clones in the process of transformation and the following carcinogenesis can be called natural clonal evolution. Its main driving factors are internal: genetic instability initiated by driver mutations and microenvironment, which enables selective pressure while forming the environment for cell transformation and their survival. We present our overview of contemporary research dealing with mechanisms of carcinogenesis in different localizations from precancerous pathologies to metastasis and relapse. It shows that natural clonal evolution establishes intratumoral heterogeneity and enables tumor progression. Tumors of monoclonal origin are of low-level intratumoral heterogeneity in the initial stages, and this increases with the size of the tumor. Tumors of polyclonal origin are of extremely high-level intratumoral heterogeneity in the initial stages and become more homogeneous when larger due to clonal expansion. In cases of chemotherapy-induced clonal evolution of a tumor, chemotherapy becomes the leading factor in treatment. The latest research shows that the impact of chemotherapy can radically increase the speed of clonal evolution and lead to new malignant and resistant clones that cause tumor metastasis. Another option of chemotherapy-induced clonal evolution is formation of a new dominant clone from a clone that was minor in the initial tumor and obtained free space due to elimination of sensitive clones by chemotherapy. As a result, in ~20% of cases, chemotherapy can stimulate metastasis and relapse of tumors due to clonal evolution. The conclusion of the overview formulates approaches to tumor treatment based on clonal evolution: in particular, precision therapy, prediction of metastasis stimulation in patients treated with chemotherapy, methods of genetic evaluation of chemotherapy efficiency and clonal-oriented treatment, and approaches to manipulating the clonal evolution of tumors are presented.
ClonEvol: clonal ordering and visualization in cancer sequencing.
Dang, H X; White, B S; Foltz, S M; Miller, C A; Luo, J; Fields, R C; Maher, C A
2017-12-01
Reconstruction of clonal evolution is critical for understanding tumor progression and implementing personalized therapies. This is often done by clustering somatic variants based on their cellular prevalence estimated via bulk tumor sequencing of multiple samples. The clusters, consisting of the clonal marker variants, are then ordered based on their estimated cellular prevalence to reconstruct clonal evolution trees, a process referred to as 'clonal ordering'. However, cellular prevalence estimate is confounded by statistical variability and errors in sequencing/data analysis, and therefore inhibits accurate reconstruction of the clonal evolution. This problem is further complicated by intra- and inter-tumor heterogeneity. Furthermore, the field lacks a comprehensive visualization tool to facilitate the interpretation of complex clonal relationships. To address these challenges we developed ClonEvol, a unified software tool for clonal ordering, visualization, and interpretation. ClonEvol uses a bootstrap resampling technique to estimate the cellular fraction of the clones and probabilistically models the clonal ordering constraints to account for statistical variability. The bootstrapping allows identification of the sample founding- and sub-clones, thus enabling interpretation of clonal seeding. ClonEvol automates the generation of multiple widely used visualizations for reconstructing and interpreting clonal evolution. ClonEvol outperformed three of the state of the art tools (LICHeE, Canopy and PhyloWGS) for clonal evolution inference, showing more robust error tolerance and producing more accurate trees in a simulation. Building upon multiple recent publications that utilized ClonEvol to study metastasis and drug resistance in solid cancers, here we show that ClonEvol rediscovered relapsed subclones in two published acute myeloid leukemia patients. Furthermore, we demonstrated that through noninvasive monitoring ClonEvol recapitulated the emerging subclones throughout metastatic progression observed in the tumors of a published breast cancer patient. ClonEvol has broad applicability for longitudinal monitoring of clonal populations in tumor biopsies, or noninvasively, to guide precision medicine. ClonEvol is written in R and is available at https://github.com/ChrisMaherLab/ClonEvol. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Sloot, Rosa; Borgdorff, Martien W.; de Beer, Jessica L.; van Ingen, Jakko; Supply, Philip
2013-01-01
The population structure of 3,776 Mycobacterium tuberculosis isolates was determined using variable-number tandem-repeat (VNTR) typing. The degree of clonality was so high that a more relaxed definition of clustering cannot be applied. Among recent immigrants with non-Euro-American isolates, transmission is overestimated if based on identical VNTR patterns. PMID:23658260
Claus, Heike; Jördens, Markus S; Kriz, Pavla; Musilek, Martin; Jarva, Hanna; Pawlik, Marie-Christin; Meri, Seppo; Vogel, Ulrich
2012-01-05
The investigational multicomponent meningococcus serogroup B vaccine (4CMenB) targets the antigenetically variable population of serogroup B meningococci. Forty-one strains of capsule null locus (cnl) meningococci, which are frequent among healthy carriers, were selected from nine sequence types (ST), which belong to four clonal complexes (cc), and three countries. They were antigen sequence typed and analyzed for antigen expression to predict whether these strains harbor the genes and express the four vaccine antigens of 4CMenB as measured by the meningococcal antigen typing system (MATS). The PorA variant used in the vaccine was not found. The nadA gene was absent in all but one strain, which did not express the antigen in vitro. Only strains of clonal complex ST-198 harbored a factor H binding protein (FHBP) allele of the cross-reactive variant 1 family which is included in the vaccine. All these strains expressed the antigen. Five variants of the Neisserial heparin binding antigen (NHBA) gene were identified. Expression of NHBA was observed in all strains with highest levels in ST-198 cc and ST-845. The data suggest a potential impact of 4CMenB immunization at least on cnl meningococci of the ST-198 cc and ST-845. Copyright © 2011 Elsevier Ltd. All rights reserved.
Genetic diversity and antibiotic susceptibility of Staphylococcus aureus isolates from wild boars.
Seinige, D; Von Altrock, A; Kehrenberg, C
2017-10-01
We here report the occurrence of S. aureus in wild boars and characterize isolates genotypically and phenotypically in order to get knowledge about the occurrence of clonal lineages and genotypes in free-living wild animals. Forty-one S. aureus isolates obtained from 111 wild boars hunted in Lower Saxony, Germany, were investigated and compared to human and livestock isolates. The S. aureus belonged to multilocus sequence types ST1, ST7, ST30, ST133, ST425, ST804, ST890 and to the new ST3237, ST3238, ST3255 and ST3369. The livestock associated CC398-MRSA lineage, however, was not found. In addition to well-known spa types, the new types t14999, t15000, t15001 and t15002 were detected. Macrorestriction analysis revealed a variety of different SmaI fragment patterns. Most isolates were susceptible to all antimicrobials tested, including methicillin, and resistance was detected only to ampicillin, penicillin and erythromycin. PCR analysis confirmed the presence of staphylococcal enterotoxin genes (seh) in all t127-ST1 isolates. A high degree of genetic diversity was detected with many spa types and clonal lineages previously reported in humans and livestock animals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Velazquez-Meza, M. E.; Aires de Sousa, M.; Echaniz-Aviles, G.; Solórzano-Santos, F.; Miranda-Novales, G.; Silva-Sanchez, J.; de Lencastre, H.
2004-01-01
Between 1997 and 2000 a single multidrug-susceptible methicillin-resistant Staphylococcus aureus clone, M (sequence type 30 [ST30]-staphylococcal cassette chromosome mec [SCCmec] type IV), was present in a pediatric hospital in Mexico City, Mexico. In 2001 the international multidrug-resistant New York-Japan clone (ST5-SCCmec type II) was introduced into the hospital, completely replacing clone M by 2002. PMID:15297554
Pardos de la Gandara, Maria; Curry, Marie; Berger, Judith; Burstein, David; Della-Latta, Phyllis; Kopetz, Virgina; Quale, John; Spitzer, Eric; Tan, Rexie; Urban, Carl; Wang, Guiqing; Whittier, Susan; de Lencastre, Herminia; Tomasz, Alexander
2016-01-01
A surveillance study in 1996 identified the USA100 clone (ST5/SCCmecII)-also known as the "New York/Japan" clone-as the most prevalent MRSA causing infections in 12 New York City hospitals. Here we update the epidemiology of MRSA in seven of the same hospitals eighteen years later in 2013/14. Most of the current MRSA isolates (78 of 121) belonged to the MRSA clone USA300 (CC8/SCCmecIV) but the USA100 clone-dominant in the 1996 survey-still remained the second most frequent MRSA (25 of the 121 isolates) causing 32% of blood stream infections. The USA300 clone was most common in skin and soft tissue infections (SSTIs) and was associated with 84.5% of SSTIs compared to 5% caused by the USA100 clone. Our data indicate that by 2013/14, the USA300 clone replaced the New York/Japan clone as the most frequent cause of MRSA infections in hospitals in Metropolitan New York. In parallel with this shift in the clonal type of MRSA, there was also a striking change in the types of MRSA infections from 1996 to 2014.
Diagnostic Applications of Next Generation Sequencing in Immunogenetics and Molecular Oncology
Grumbt, Barbara; Eck, Sebastian H.; Hinrichsen, Tanja; Hirv, Kaimo
2013-01-01
Summary With the introduction of the next generation sequencing (NGS) technologies, remarkable new diagnostic applications have been established in daily routine. Implementation of NGS is challenging in clinical diagnostics, but definite advantages and new diagnostic possibilities make the switch to the technology inevitable. In addition to the higher sequencing capacity, clonal sequencing of single molecules, multiplexing of samples, higher diagnostic sensitivity, workflow miniaturization, and cost benefits are some of the valuable features of the technology. After the recent advances, NGS emerged as a proven alternative for classical Sanger sequencing in the typing of human leukocyte antigens (HLA). By virtue of the clonal amplification of single DNA molecules ambiguous typing results can be avoided. Simultaneously, a higher sample throughput can be achieved by tagging of DNA molecules with multiplex identifiers and pooling of PCR products before sequencing. In our experience, up to 380 samples can be typed for HLA-A, -B, and -DRB1 in high-resolution during every sequencing run. In molecular oncology, NGS shows a markedly increased sensitivity in comparison to the conventional Sanger sequencing and is developing to the standard diagnostic tool in detection of somatic mutations in cancer cells with great impact on personalized treatment of patients. PMID:23922545
Morganti, Marina; Scaltriti, Erika; Cozzolino, Paolo; Bolzoni, Luca; Casadei, Gabriele; Pierantoni, Marco; Foni, Emanuela; Pongolini, Stefano
2016-02-01
The quantitative and qualitative patterns of environmental contamination by Listeria monocytogenes were investigated in the production chain of dry-cured Parma ham. Standard arrays of surfaces were sampled in processing facilities during a single visit per plant in the three compartments of the food chain, i.e., ham production (19 plants) and postproduction, which was divided into deboning (43 plants) and slicing (25 plants) steps. The numbers of sampled surfaces were 384 in ham production, with 25 positive for L. monocytogenes, and 1,084 in postproduction, with 83 positives. Statistical analysis of the prevalence of contaminated surfaces showed that in ham production, contamination was higher at the beginning of processing and declined significantly toward the end, while in postproduction, prevalence rose toward the end of processing. Prevalence was higher in the deboning facilities than in slicing facilities and was dependent on the type of surface (floor/drainage > clothing > equipment). The qualitative pattern of contamination was investigated through an analysis of the survey isolates and a set of isolates derived from routine monitoring, including longitudinal isolations. Pulsed-field gel electrophoresis (PFGE) and whole-genome single-nucleotide polymorphism (SNP) analysis revealed a remarkable clonality of L. monocytogenes within plants, with the detection of 16 plant-specific clones out of 17 establishments with multiple isolates. Repeated detections of clonal isolates >6 months apart were also observed. Six was the maximum number of between-isolate differences in core SNPs observed within these clones. Based on the same six-SNP threshold, three clusters of clonal isolates, shared by six establishments, were also identified. The spread of L. monocytogenes within and between plants, as indicated by its clonal behavior, is a matter of concern for the hygienic management of establishments. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
NetF-producing Clostridium perfringens: Clonality and plasmid pathogenicity loci analysis.
Mehdizadeh Gohari, Iman; Kropinski, Andrew M; Weese, Scott J; Whitehead, Ashley E; Parreira, Valeria R; Boerlin, Patrick; Prescott, John F
2017-04-01
Clostridium perfringens is an important cause of foal necrotizing enteritis and canine acute hemorrhagic diarrhea. A major virulence determinant of the strains associated with these diseases appears to be a beta-sheet pore-forming toxin, NetF, encoded within a pathogenicity locus (NetF locus) on a large tcp-conjugative plasmid. Strains producing NetF also produce the putative toxin NetE, encoded within the same pathogenicity locus, as well as CPE enterotoxin and CPB2 on a second plasmid, and sometimes the putative toxin NetG within a pathogenicity locus (NetG locus) on another separate large conjugative plasmid. Previous genome sequences of two netF-positive C. perfringens showed that they both shared three similar plasmids, including the NetF/NetE and CPE/CPB2 toxins-encoding plasmids mentioned above and a putative bacteriocin-encoding plasmid. The main purpose of this study was to determine whether all NetF-producing strains share this common plasmid profile and whether their distinct NetF and CPE pathogenicity loci are conserved. To answer this question, 15 equine and 15 canine netF-positive isolates of C. perfringens were sequenced using Illumina Hiseq2000 technology. In addition, the clonal relationships among the NetF-producing strains were evaluated by core genome multilocus sequence typing (cgMLST). The data obtained showed that all NetF-producing strains have a common plasmid profile and that the defined pathogenicity loci on the plasmids are conserved in all these strains. cgMLST analysis showed that the NetF-producing C. perfringens strains belong to two distinct clonal complexes. The pNetG plasmid was absent from isolates of one of the clonal complexes, and there were minor but consistent differences in the NetF/NetE and CPE/CPB2 plasmids between the two clonal complexes. Copyright © 2017 Elsevier B.V. All rights reserved.
Staphylococcus aureus from the German general population is highly diverse.
Becker, Karsten; Schaumburg, Frieder; Fegeler, Christian; Friedrich, Alexander W; Köck, Robin
2017-01-01
This prospective cohort study evaluates colonization dynamics and molecular characteristics of methicillin-susceptible and - resistant Staphylococcus aureus (MSSA/MRSA) in a German general population. Nasal swabs of 1878 non-hospitalized adults were screened for S. aureus. Participants were screened thrice in intervals of 6-8 months. Isolates were characterized by spa and agr typing, mecA and mecC possession, respectively, and PCRs targeting virulence factors. 40.9% of all participants carried S. aureus at least once while 0.7% of the participants carried MRSA (mainly spa t011). MSSA isolates (n=1359) were associated with 331 different spa types; t084 (7.7%), t091 (6.1%) and t012 (71, 5.2%) were predominant. Of 206 participants carrying S. aureus at all three sampling time points, 14.1% carried the same spa type continuously; 5.3% carried different spa types with similar repeat patterns, but 80.6% carried S. aureus with unrelated spa types. MSSA isolates frequently harboured genes encoding enterotoxins (sec: 16.6%, seg: 63.1%, sei: 64.5%) and toxic shock syndrome toxin (tst: 17.5%), but rarely Panton-Valentine leukocidin (lukS-PV/lukF-PV: 0.2%). MSSA colonizing human nares in the community are clonally highly diverse. Among those constantly carrying S. aureus, clonal lineages changed over time. The proportion of persistent S. aureus carriers was lower than reported elsewhere. Copyright © 2016 Elsevier GmbH. All rights reserved.
ERIC Educational Resources Information Center
Lewin, Roger
1981-01-01
Describes recent research by Edward Steele appearing to support the Lamarckian theory of inheritance. Steele suggests that a mutant somatic cell favored by the environment will undergo clonal expansion. Altered genetic materials from these cells is then picked up by C-type viruses and inserted into the germ line genome. (CS)
Microsatellite alterations as clonal markers for the detection of human cancer.
Mao, L; Lee, D J; Tockman, M S; Erozan, Y S; Askin, F; Sidransky, D
1994-01-01
Microsatellite instability has been reported to be an important feature of tumors from hereditary nonpolyposis colorectal carcinoma (HNPCC) patients. The recent discovery of genetic instability in small cell lung carcinoma, a neoplasm not associated with HNPCC, led us to investigate the possible presence of microsatellite alterations in other tumor types. We examined 52 microsatellite repeat sequences in the DNA of normal and tumor pairs from 100 head and neck, bladder, and lung cancer patients by the polymerase chain reaction. Although alterations were rare in dinucleotide repeats, larger (tri- or tetranucleotide) repeats were found to be more prone to expansion or deletion. We screened 100 tumors with a panel of nine tri- and tetranucleotide repeat markers and identified 26 (26%) that displayed alterations in at least one locus. This observation prompted us to examine the possibility of using microsatellite alterations as markers to detect clonal tumor-derived cell populations in pathologic samples. The identical microsatellite alterations detected in the primary tumors were successfully identified in corresponding urine, sputum, and surgical margins from affected patients. This study demonstrates that appropriately selected microsatellite loci are commonly altered in many cancers and can serve as clonal markers for their detection. Images PMID:7937908
Boswihi, Samar S.; Udo, Edet E.; Al-Sweih, Noura
2016-01-01
Background As the epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) is constantly changing globally, determining the prevailing MRSA clones in a local healthcare facility is important for better management of infections. This study investigated clonal composition and distribution of MRSA isolates in Kuwait’s hospitals using a combination of molecular typing methods. Materials and Methods In total, 400 non-repeat MRSA isolates were obtained between 1992 and 2010 in 13 public hospitals and were characterized using antibiogram, SCCmec typing, spa typing, and multilocus-sequence typing. Clonal assignment and detection of virulence factors and antibiotic resistance genes were performed by DNA microarray. Results The isolates were resistant to kanamycin (74.2%), erythromycin (69.5%), tetracycline (66.7%), gentamicin (61%), ciprofloxacin, (61%), fusidic acid (53.5%), clindamycin (41.5%), high-level mupirocin resistance (5.2%) and carried aphA3, aacA-aphD, ermA, ermC, mupA, tetK, tetM, fusC and far1. Molecular typing revealed 31 different MRSA clones consisting of ST239-MRSA-III (52.2%), ST22-MRSA-IV (9.2%), ST80-MRSA-IV (7.5%), ST5-MRSA-II/IV/V/VI (6.5%), ST30-MRSA-IV (3.5%), ST241-MRSA-III (2.7%), ST6-MRSA-IV (2.2%), ST36-MRSA-II (2%) and ST772-MRSA-V (1.75%). The isolates differed in the carriage of genes for enterotoxins, Panton–Valentine leukocidin (PVL), toxic shock syndrome toxin (tst-1), arginine catabolic mobile element (ACME) and exfoliative toxins. The number of clones increased from one (ST239-III-t037) in 1992 to 30 in 2010 including ST8-IV-t008 [PVL+] [ACME+] (USA300), ST772-V (Bengal Bay clone) and ST2816 identified for the first time in Kuwait. Conclusion The study revealed that the MRSA isolates belonged to diverse clones that changed in numbers and diversity overtime. Although ST239-MRSA-III, a healthcare-associated clone remained the dominant MRSA clone overtime, the newly emerged clones consisted mostly of community-associated. PMID:27631623
Harastani, Houda H.; Tokajian, Sima T.
2014-01-01
Background The emergence of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA) has caused a change in MRSA epidemiology worldwide. In the Middle East, the persistent spread of CA-MRSA isolates that were associated with multilocus sequence type (MLST) clonal complex 80 and with staphylococcal cassette chromosome mec (SCCmec) type IV (CC80-MRSA-IV), calls for novel approaches for infection control that would limit its spread. Methodology/Principal Findings In this study, the epidemiology of CC80-MRSA-IV was investigated in Jordan and Lebanon retrospectively covering the period from 2000 to 2011. Ninety-four S. aureus isolates, 63 (67%) collected from Lebanon and 31 (33%) collected from Jordan were included in this study. More than half of the isolates (56%) were associated with skin and soft tissue infections (SSTIs), and 73 (78%) were Panton-Valentine Leukocidin (PVL) positive. Majority of the isolates (84%) carried the gene for exofoliative toxin d (etd), 19% had the Toxic Shock Syndrome Toxin-1 gene (tst), and seven isolates from Jordan had a rare combination being positive for both tst and PVL genes. spa typing showed the prevalence of type t044 (85%) and pulsed-field gel electrophoresis (PFGE) recognized 21 different patterns. Antimicrobial susceptibility testing showed the prevalence (36%) of a unique resistant profile, which included resistance to streptomycin, kanamycin, and fusidic acid (SKF profile). Conclusions The genetic diversity among the CC80 isolates observed in this study poses an additional challenge to infection control of CA-MRSA epidemics. CA-MRSA related to ST80 in the Middle East was distinguished in this study from the ones described in other countries. Genetic diversity observed, which may be due to mutations and differences in the antibiotic regimens between countries may have led to the development of heterogeneous strains. Hence, it is difficult to maintain “the European CA-MRSA clone” as a uniform clone and it is better to designate as CC80-MRSA-IV isolates. PMID:25078407
Zhang, Linsheng; Znoyko, Iya; Costa, Luciano J; Conlin, Laura K; Daber, Robert D; Self, Sally E; Wolff, Daynna J
2011-12-01
Chronic lymphocytic leukemia (CLL) is a clinically heterogeneous disease. The methods currently used for monitoring CLL and determining conditions for treatment are limited in their ability to predict disease progression, patient survival, and response to therapy. Although clonal diversity and the acquisition of new chromosomal abnormalities during the disease course (clonal evolution) have been associated with disease progression, their prognostic potential has been underappreciated because cytogenetic and fluorescence in situ hybridization (FISH) studies have a restricted ability to detect genomic abnormalities and clonal evolution. We hypothesized that whole genome analysis using high resolution single nucleotide polymorphism (SNP) microarrays would be useful to detect diversity and infer clonal evolution to offer prognostic information. In this study, we used the Infinium Omni1 BeadChip (Illumina, San Diego, CA) array for the analysis of genetic variation and percent mosaicism in 25 non-selected CLL patients to explore the prognostic value of the assessment of clonal diversity in patients with CLL. We calculated the percentage of mosaicism for each abnormality by applying a mathematical algorithm to the genotype frequency data and by manual determination using the Simulated DNA Copy Number (SiDCoN) tool, which was developed from a computer model of mosaicism. At least one genetic abnormality was identified in each case, and the SNP data was 98% concordant with FISH results. Clonal diversity, defined as the presence of two or more genetic abnormalities with differing percentages of mosaicism, was observed in 12 patients (48%), and the diversity correlated with the disease stage. Clonal diversity was present in most cases of advanced disease (Rai stages III and IV) or those with previous treatment, whereas 9 of 13 patients without detected clonal diversity were asymptomatic or clinically stable. In conclusion, SNP microarray studies with simultaneous evaluation of genomic alterations and mosaic distribution of clones can be used to assess apparent clonal evolution via analysis of clonal diversity. Since clonal evolution in CLL is strongly correlated with disease progression, whole genome SNP microarray analysis provides a new comprehensive and reliable prognostic tool for CLL patients. Copyright © 2011 Elsevier Inc. All rights reserved.
Protection, pathogenesis and phenotypic plasticity in Plasmodium falciparum malaria.
Roberts, D J; Biggs, B A; Brown, G; Newbold, C I
1993-08-01
Why does Plasmodium falciparum cause severe illness in some but not all infections? How is clinical immunity acquired? These questions have intrigued investigators since the clinical epidemiology of malaria was first described. The search for answers to both questions has highlighted the changes that take place at the surface of infected red blood cells during the last half of the erythrocytic cycle. These changes specify the antigenic and adhesive or cytoadherence phenotypes for the infected cell. Now the antigenic and adhesive phenotypes appear to be linked and together undergo clonal variation. In this article David Roberts, Beverley-Ann Biggs, Graham Brown and Christopher Newbold explain how clonal phenotypic variation and the linkage between adhesive and antigenic types contribute to our understanding of naturally acquired immunity and of pathogenesis of severe malaria.
Demographic consequences of greater clonal than sexual reproduction in Dicentra canadensis.
Lin, Chia-Hua; Miriti, Maria N; Goodell, Karen
2016-06-01
Clonality is a widespread life history trait in flowering plants that may be essential for population persistence, especially in environments where sexual reproduction is unpredictable. Frequent clonal reproduction, however, could hinder sexual reproduction by spatially aggregating ramets that compete with seedlings and reduce inter-genet pollination. Nevertheless, the role of clonality in relation to variable sexual reproduction in population dynamics is often overlooked. We combined population matrix models and pollination experiments to compare the demographic contributions of clonal and sexual reproduction in three Dicentra canadensis populations, one in a well-forested landscape and two in isolated forest remnants. We constructed stage-based transition matrices from 3 years of census data to evaluate annual population growth rates, λ. We used loop analysis to evaluate the relative contribution of different reproductive pathways to λ. Despite strong temporal and spatial variation in seed set, populations generally showed stable growth rates. Although we detected some pollen limitation of seed set, manipulative pollination treatments did not affect population growth rates. Clonal reproduction contributed significantly more than sexual reproduction to population growth in the forest remnants. Only at the well-forested site did sexual reproduction contribute as much as clonal reproduction to population growth. Flowering plants were more likely to transition to a smaller size class with reduced reproductive potential in the following year than similarly sized nonflowering plants, suggesting energy trade-offs between sexual and clonal reproduction at the individual level. Seed production had negligible effects on growth and tuber production of individual plants. Our results demonstrate that clonal reproduction is vital for population persistence in a system where sexual reproduction is unpredictable. The bias toward clonality may be driven by low fitness returns for resource investment in sexual reproduction at the individual level. However, chronic failure in sexual reproduction may exacerbate the imbalance between sexual and clonal reproduction and eventually lead to irreversible loss of sex in the population.
Luo, F-L; Xing, Y-P; Wei, G-W; Li, C-Y; Yu, F-H
2017-11-01
Cadmium (Cd) is a hazardous environmental pollutant with high toxicity to plants, which has been detected in many wetlands. Clonal integration (resource translocation) between connected ramets of clonal plants can increase their tolerance to stress. We hypothesised that clonal integration facilitates spread of amphibious clonal plants from terrestrial to Cd-contaminated aquatic habitats. The spread of an amphibious grass Paspalum paspaloides was simulated by growing basal older ramets in uncontaminated soil connected (allowing integration) or not connected (preventing integration) to apical younger ramets of the same fragments in Cd-contaminated water. Cd contamination of apical ramets of P. paspaloides markedly decreased growth and photosynthetic capacity of the apical ramets without connection to the basal ramets, but did not decrease these properties with connection. Cd contamination did not affect growth of the basal ramets without connection to the apical ramets, but Cd contamination of 4 and 12 mg·l -1 significantly increased growth with connection. Consequently, clonal integration increased growth of the apical ramets, basal ramets and whole clones when the apical ramets were grown in Cd-contaminated water of 4 and 12 mg·l -1 . Cd was detected in the basal ramets with connection to the apical ramets, suggesting Cd could be translocated due to clonal integration. Clonal integration, most likely through translocation of photosynthates, can support P. paspaloides to spread from terrestrial to Cd-contaminated aquatic habitats. Amphibious clonal plants with a high ability for clonal integration are particularly useful for re-vegetation of degraded aquatic habitats caused by Cd contamination. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
Geremew, Addisie; Stiers, Iris; Sierens, Tim; Kefalew, Alemayehu; Triest, Ludwig
2018-01-01
Land degradation and soil erosion in the upper catchments of tropical lakes fringed by papyrus vegetation can result in a sediment load gradient from land to lakeward. Understanding the dynamics of clonal modules (ramets and genets) and growth strategies of plants on such a gradient in both space and time is critical for exploring a species adaptation and processes regulating population structure and differentiation. We assessed the spatial and temporal dynamics in clonal growth, diversity, and structure of an emergent macrophyte, Cyperus papyrus (papyrus), in response to two contrasting sedimentation regimes by combining morphological traits and genotype data using 20 microsatellite markers. A total of 636 ramets from six permanent plots (18 x 30 m) in three Ethiopian papyrus swamps, each with discrete sedimentation regimes (high vs. low) were sampled for two years. We found that ramets under the high sedimentation regime (HSR) were significantly clumped and denser than the sparse and spreading ramets under the low sedimentation regime (LSR). The HSR resulted in significantly different ramets with short culm height and girth diameter as compared to the LSR. These results indicated that C. papyrus ameliorates the effect of sedimentation by shifting clonal growth strategy from guerrilla (in LSR) to phalanx (in HSR). Clonal richness, size, dominance, and clonal subrange differed significantly between sediment regimes and studied time periods. Each swamp under HSR revealed a significantly high clonal richness (R = 0.80) as compared to the LSR (R = 0.48). Such discrepancy in clonal richness reflected the occurrence of initial and repeated seedling recruitment strategies as a response to different sedimentation regimes. Overall, our spatial and short-term temporal observations highlighted that HSR enhances clonal richness and decreases clonal subrange owing to repeated seedling recruitment and genets turnover.
Stiers, Iris; Sierens, Tim; Kefalew, Alemayehu; Triest, Ludwig
2018-01-01
Land degradation and soil erosion in the upper catchments of tropical lakes fringed by papyrus vegetation can result in a sediment load gradient from land to lakeward. Understanding the dynamics of clonal modules (ramets and genets) and growth strategies of plants on such a gradient in both space and time is critical for exploring a species adaptation and processes regulating population structure and differentiation. We assessed the spatial and temporal dynamics in clonal growth, diversity, and structure of an emergent macrophyte, Cyperus papyrus (papyrus), in response to two contrasting sedimentation regimes by combining morphological traits and genotype data using 20 microsatellite markers. A total of 636 ramets from six permanent plots (18 x 30 m) in three Ethiopian papyrus swamps, each with discrete sedimentation regimes (high vs. low) were sampled for two years. We found that ramets under the high sedimentation regime (HSR) were significantly clumped and denser than the sparse and spreading ramets under the low sedimentation regime (LSR). The HSR resulted in significantly different ramets with short culm height and girth diameter as compared to the LSR. These results indicated that C. papyrus ameliorates the effect of sedimentation by shifting clonal growth strategy from guerrilla (in LSR) to phalanx (in HSR). Clonal richness, size, dominance, and clonal subrange differed significantly between sediment regimes and studied time periods. Each swamp under HSR revealed a significantly high clonal richness (R = 0.80) as compared to the LSR (R = 0.48). Such discrepancy in clonal richness reflected the occurrence of initial and repeated seedling recruitment strategies as a response to different sedimentation regimes. Overall, our spatial and short-term temporal observations highlighted that HSR enhances clonal richness and decreases clonal subrange owing to repeated seedling recruitment and genets turnover. PMID:29338034
Orakdogen, Metin; Emon, Selin Tural; Erdogan, Baris; Somay, Hakan
2015-01-01
We present four cases of hydrocephalus caused by occlusion of foramen of Magendie associated with Chiari Type I malformation and syringomyelia. The aim of this study is to evaluate the results of surgical treatment via fourth ventriculostomy with catheter from the fourth ventricle to the upper cervical subarachnoid space. Obstructive tetraventricular hydrocephalus due to occlusion of the foramina of Luschka and Magendie can be treated with cerebrospinal fluid shunting, opening the membranes with suboccipital craniotomy, placement of a catheter, endoscopic third ventriculostomy, and endoscopic fourth ventriculostomy. Our aim was to solve all the pathologies such as Chiari malformation, hydrocephalus, and syringomyelia in one approach. Thus, the treatment consisted of posterior fossa decompression and exploration. All the patients were treated with suboccipital craniectomy and C1 laminectomy with excision of the membrane obstructing the foramen of Magendie. Fourth ventriculostomy with cathetering from fourth ventricle to upper cervical subarachnoid space was performed. The postoperative period was uneventful in all the patients. Neurological status of all the patients improved. Tetraventricular hydrocephalus and syrinx were reduced in the control cranial magnetic resonance imaging. Complications such as infection and catheter migration were not observed during the follow-up period. Treatment with fourth ventriculostomy using a catheter from fourth ventricle to upper cervical subarachnoid space could be a treatment of choice in cases with hydrocephalus caused by occlusion of the foramina of Magendie, with associated Chiari Type I malformation and syringomyelia. PMID:28663969
Goswami, Rashmi S; Patel, Keyur P; Singh, Rajesh R; Meric-Bernstam, Funda; Kopetz, E Scott; Subbiah, Vivek; Alvarez, Ricardo H; Davies, Michael A; Jabbar, Kausar J; Roy-Chowdhuri, Sinchita; Lazar, Alexander J; Medeiros, L Jeffrey; Broaddus, Russell R; Luthra, Rajyalakshmi; Routbort, Mark J
2015-06-01
We used a clinical next-generation sequencing (NGS) hotspot mutation panel to investigate clonal evolution in paired primary and metastatic tumors. A total of 265 primary and metastatic tumor pairs were sequenced using a 46-gene cancer mutation panel capable of detecting one or more single-nucleotide variants as well as small insertions/deletions. Mutations were tabulated together with tumor type and percentage, mutational variant frequency, time interval between onset of primary tumor and metastasis, and neoadjuvant therapy status. Of note, 227 of 265 (85.7%) tumor metastasis pairs showed identical mutation calls. Of the tumor pairs with identical mutation calls, 160 (60.4%) possessed defining somatic mutation signatures and 67 (25.3%) did not exhibit any somatic mutations. There were 38 (14.3%) cases that showed at least one novel mutation call between the primary and metastasis. Metastases were almost two times more likely to show novel mutations (n = 20, 7.5%) than primary tumors (n = 12, 4.5%). TP53 was the most common additionally mutated gene in metastatic lesions, followed by PIK3CA and SMAD4. PIK3CA mutations were more often associated with metastasis in colon carcinoma samples. Clinical NGS hotspot panels can be useful in analyzing clonal evolution within tumors as well as in determining subclonal mutations that can expand in future metastases. PIK3CA, SMAD4, and TP53 are most often involved in clonal divergence, providing potential targets that may help guide the clinical management of tumor progression or metastases. ©2015 American Association for Cancer Research.
Gong, Li; Wei, Long-Xiao; Huang, Gao-Sheng; Zhang, Wen-Dong; Wang, Lu; Zhu, Shao-Jun; Han, Xiu-Juan; Yao, Li; Lan, Miao; Li, Yan-Hong; Zhang, Wei
2013-08-19
Extranodal natural killer (NK)/T-cell lymphoma, nasal type, is an uncommon lymphoma associated with the Epstein-Barr virus (EBV). It most commonly involves the nasal cavity and upper respiratory tract. Primary pulmonary NK/T cell lymphoma is extremely rare. If a patient with a NK or T-cell tumor has an unusual reaction to treatment or an unusual prognosis, it is wise to differentiate NK from T-cell tumors. The clinicopathologic characteristics, immunophenotype, EBV in situ hybridization, and T cell receptor (TCR) gene rearrangement of primary pulmonary NK cell lymphoma from a 73-year-old Chinese woman were investigated and the clonal status was determined using female X-chromosomal inactivation mosaicism and polymorphisms at the phosphoglycerate kinase (PGK) gene. The lesion showed the typical histopathologic characteristics and immunohistochemical features of NK/T cell lymphoma. However, the sample was negative for TCR gene rearrangement. A clonality assay demonstrated that the lesion was monoclonal. It is concluded that this is the first recorded case of genuine primary pulmonary NK cell lymphoma. The purpose of the present work is to recommend that pathologists carefully investigate the whole lesion to reduce the likelihood that primary pulmonary NK cell lymphoma will be misdiagnosed as an infectious lesion. In addition, TCR gene rearrangement and clonal analysis, which is based on female X-chromosomal inactivation mosaicism and polymorphisms at PGK and androgen receptor (AR) loci, were found to play important roles in differentiating NK cell lymphoma from T cell lymphoma. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5205300349457729.
Akilov, Oleg E.; Pillai, Raju K.; Grandinetti, Lisa M.; Kant, Jeffrey A.; Geskin, Larisa
2012-01-01
Background In patients with a history of nodal anaplastic large-cell lymphoma (ALCL), differentiation of type C lymphomatoid papulosis from cutaneous involvement of systemic ALCL may be challenging because the 2 entities may exhibit identical histologic features. Although metastatic ALCL generally carries the same clone as the primary lymphoma, expression of a distinct clone likely represents a distinct process. Observations A 54-year-old white man had a history of anaplastic lymphoma kinase 1–negative ALCL in the right inguinal lymph node 6 years ago. A complete response was achieved after 6 cycles of CHOP (cyclophosphamide, doxorubicin, vincristine [Oncovin], and prednisone administered in 21-day cycles) and radiation therapy. After 3½ years, the patient observed waxing and waning papules and nodules. Examination of the biopsy specimen revealed a dense CD30+ lymphocytic infiltrate; no evidence of systemic malignancy was evident on positron emission tomography. Although clinically the presentation was consistent with lymphomatoid papulosis, metastatic ALCL had to be excluded. Polymerase chain reaction analysis with T-cell receptor γ-chain gene rearrangement (TCR-γR) was performed on the original lymph node and new skin lesions. Results of the TCR-γR analysis were positive for clonality in both lesions. However, separate clonal processes were identified. The identification of distinct clones supported the clinical impression of lymphomatoid papulosis. Conclusion Polymerase chain reaction analysis of TCR-γR is a useful method for distinguishing different clonal processes and is recommended when differentiation of primary and secondary lymphoproliferative disorders is required. PMID:21844453
Clonal population of adult stem cells: life span and differentiation potential.
Seruya, Mitchel; Shah, Anup; Pedrotty, Dawn; du Laney, Tracey; Melgiri, Ryan; McKee, J Andrew; Young, Henry E; Niklason, Laura E
2004-01-01
Adult stem cells derived from bone marrow, connective tissue, and solid organs can exhibit a range of differentiation potentials. Some controversy exists regarding the classification of mesenchymal stem cells as bona fide stem cells, which is in part derived from the limited ability to propagate true clonal populations of precursor cells. We isolated putative mesenchymal stem cells from the connective tissue of an adult rat (rMSC), and generated clonal populations via three rounds of dilutional cloning. The replicative potential of the clonal rMSC line far exceeded Hayflick's limit of 50-70 population doublings. The high capacity for self-renewal in vitro correlated with telomerase activity, as demonstrated by telomerase repeat amplification protocol (TRAP) assay. Exposure to nonspecific differentiation culture medium revealed multilineage differentiation potential of rMSC clones. Immunostaining confirmed the appearance of mesodermal phenotypes, including adipocytes possessing lipid-rich vacuoles, chondrocytes depositing pericellular type II collagen, and skeletal myoblasts expressing MyoD1. Importantly, the spectrum of differentiation capability was sustained through repeated passaging. Furthermore, serum-free conditions that led to high-efficiency smooth muscle differentiation were identified. rMSCs plated on collagen IV-coated surfaces and exposed to transforming growth factor-beta1 (TGF-beta1) differentiated into a homogeneous population expressing alpha-actin and calponin. Hence, clonogenic analysis confirmed the presence of a putative MSC population derived from the connective tissue of rat skeletal muscle. The ability to differentiate into a smooth muscle cell (SMC) phenotype, combined with a high proliferative capacity, make such a connective tissue-derived MSC population ideal for applications in vascular tissue construction.
Markovska, Rumyana; Stoeva, Temenuga; Schneider, Ines; Boyanova, Lyudmila; Popova, Valentina; Dacheva, Daniela; Kaneva, Radka; Bauernfeind, Adolf; Mitev, Vanyo; Mitov, Ivan
2015-10-01
A total of 36 consecutive clinical and two fecal-screening carbapenem-resistant Klebsiella pneumoniae isolates from two Bulgarian university hospitals (Varna and Pleven) were investigated. Susceptibility testing, conjugation experiments, and plasmid replicon typing were carried out. Beta-lactamases were characterized by isoelectric focusing, PCR, and sequencing. Clonal relatedness was investigated by RAPD and multilocus sequence typing (MLST). Most of the isolates demonstrated multidrug resistance profile. Amikacin and tigecycline retained good activity with susceptibility rates of 95 and 87%, respectively. The resistance rate to colistin was 63%. Six RAPD- and MLST-types were identified: the dominating MLST-type was ST15 (27 isolates), followed by ST76 (six isolates), and ST1350 (two isolates). ST101, ST258, and ST151 were detected once. All except one of the K. pneumoniae produced KPC-2, mostly in combination with CTX-M-15, while for one isolate (ST101) the enzymes OXA-48 and CTX-M-14 were found. All KPC-2-producing transconjugants revealed the presence of IncFII plasmid. The OXA-48- and CTX-M-14-producing isolate showed the presence of L/M replicon type. The dissemination of KPC-2-producing K.pneumoniae in Bulgaria is mainly due to the sustained spread of successful ST15 clone and to a lesser extent of ST76 clone. This is the first report of OXA-48 producing ST101 K. pneumoniae in Bulgaria. © 2015 APMIS. Published by John Wiley & Sons Ltd.
Sartor, Anna L.; Sidjabat, Hanna E.; Balkhy, Hanan H.; Walsh, Timothy R.; Al Johani, Sameera M.; AlJindan, Reem Y.; Alfaresi, Mubarak; Ibrahim, Emad; Al-Jardani, Amina; Al Salman, Jameela; Dashti, Ali A.; Johani, Khalid; Paterson, David L.
2015-01-01
The molecular epidemiology and mechanisms of resistance of carbapenem-resistant Acinetobacter baumannii (CRAB) were determined in hospitals in the states of the Cooperation Council for the Arab States of the Gulf (Gulf Cooperation Council [GCC]), namely, Saudi Arabia, United Arab Emirates, Oman, Qatar, Bahrain, and Kuwait. Isolates were subjected to PCR-based detection of antibiotic resistance genes and repetitive sequence-based PCR (rep-PCR) assessments of clonality. Selected isolates were subjected to multilocus sequence typing (MLST). We investigated 117 isolates resistant to carbapenem antibiotics (either imipenem or meropenem). All isolates were positive for OXA-51. The most common carbapenemases were the OXA-23-type, found in 107 isolates, followed by OXA-40-type (OXA-24-type), found in 5 isolates; 3 isolates carried the ISAba1 element upstream of blaOXA-51-type. No OXA-58-type, NDM-type, VIM-type, or IMP-type producers were detected. Multiple clones were detected with 16 clusters of clonally related CRAB. Some clusters involved hospitals in different states. MLST analysis of 15 representative isolates from different clusters identified seven different sequence types (ST195, ST208, ST229, ST436, ST450, ST452, and ST499), as well as three novel STs. The vast majority (84%) of the isolates in this study were associated with health care exposure. Awareness of multidrug-resistant organisms in GCC states has important implications for optimizing infection control practices; establishing antimicrobial stewardship programs within hospital, community, and agricultural settings; and emphasizing the need for establishing regional active surveillance systems. This will help to control the spread of CRAB in the Middle East and in hospitals accommodating transferred patients from this region. PMID:25568439
Zowawi, Hosam M; Sartor, Anna L; Sidjabat, Hanna E; Balkhy, Hanan H; Walsh, Timothy R; Al Johani, Sameera M; AlJindan, Reem Y; Alfaresi, Mubarak; Ibrahim, Emad; Al-Jardani, Amina; Al Salman, Jameela; Dashti, Ali A; Johani, Khalid; Paterson, David L
2015-03-01
The molecular epidemiology and mechanisms of resistance of carbapenem-resistant Acinetobacter baumannii (CRAB) were determined in hospitals in the states of the Cooperation Council for the Arab States of the Gulf (Gulf Cooperation Council [GCC]), namely, Saudi Arabia, United Arab Emirates, Oman, Qatar, Bahrain, and Kuwait. Isolates were subjected to PCR-based detection of antibiotic resistance genes and repetitive sequence-based PCR (rep-PCR) assessments of clonality. Selected isolates were subjected to multilocus sequence typing (MLST). We investigated 117 isolates resistant to carbapenem antibiotics (either imipenem or meropenem). All isolates were positive for OXA-51. The most common carbapenemases were the OXA-23-type, found in 107 isolates, followed by OXA-40-type (OXA-24-type), found in 5 isolates; 3 isolates carried the ISAba1 element upstream of blaOXA-51-type. No OXA-58-type, NDM-type, VIM-type, or IMP-type producers were detected. Multiple clones were detected with 16 clusters of clonally related CRAB. Some clusters involved hospitals in different states. MLST analysis of 15 representative isolates from different clusters identified seven different sequence types (ST195, ST208, ST229, ST436, ST450, ST452, and ST499), as well as three novel STs. The vast majority (84%) of the isolates in this study were associated with health care exposure. Awareness of multidrug-resistant organisms in GCC states has important implications for optimizing infection control practices; establishing antimicrobial stewardship programs within hospital, community, and agricultural settings; and emphasizing the need for establishing regional active surveillance systems. This will help to control the spread of CRAB in the Middle East and in hospitals accommodating transferred patients from this region. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Uwingabiye, Jean; Lemnouer, Abdelhay; Roca, Ignasi; Alouane, Tarek; Frikh, Mohammed; Belefquih, Bouchra; Bssaibis, Fatna; Maleb, Adil; Benlahlou, Yassine; Kassouati, Jalal; Doghmi, Nawfal; Bait, Abdelouahed; Haimeur, Charki; Louzi, Lhoussain; Ibrahimi, Azeddine; Vila, Jordi; Elouennass, Mostafa
2017-01-01
Carbapenem-resistant Acinetobacter baumannii has recently been defined by the World Health Organization as a critical pathogen. The aim of this study was to compare clonal diversity and carbapenemase-encoding genes of A. baumannii isolates collected from colonized or infected patients and hospital environment in two intensive care units (ICUs) in Morocco. The patient and environmental sampling was carried out in the medical and surgical ICUs of Mohammed V Military teaching hospital from March to August 2015. All A. baumannii isolates recovered from clinical and environmental samples, were identified using routine microbiological techniques and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Antimicrobial susceptibility testing was performed using disc diffusion method. The carbapenemase-encoding genes were screened for by PCR. Clonal relatedness was analyzed by digestion of the DNA with low frequency restriction enzymes and pulsed field gel electrophoresis (PFGE) and the multi locus sequence typing (MLST) was performed on two selected isolates from two major pulsotypes. A total of 83 multidrug-resistant A. baumannii isolates were collected: 47 clinical isolates and 36 environmental isolates. All isolates were positive for the bla OXA51-like and bla OXA23-like genes. The coexistence of bla NDM-1 /bla OXA-23-like and bla OXA 24-like /bla OXA-23-like were detected in 27 (32.5%) and 2 (2.4%) of A. baumannii isolates, respectively. The environmental samples and the fecally-colonized patients were significantly identified ( p < 0.05) as the most common sites of isolation of NDM-1-harboring isolates. PFGE grouped all isolates into 9 distinct clusters with two major groups (0007 and 0008) containing up to 59% of the isolates. The pulsotype 0008 corresponds to sequence type (ST) 195 while pulsotype 0007 corresponds to ST 1089.The genetic similarity between the clinical and environmental isolates was observed in 80/83 = 96.4% of all isolates, belonging to 7 pulsotypes. This study shows that the clonal spread of environmental A. baumannii isolates is related to that of clinical isolates recovered from colonized or infected patients, being both associated with a high prevalence of the bla OXA23-like and bla NDM-1 genes. These findings emphasize the need for prioritizing the bio-cleaning of the hospital environment to control and prevent the dissemination of A. baumannii clonal lineages.
Honsa, Erin; Fricke, Thomas; Stephens, Alex J; Ko, Danny; Kong, Fanrong; Gilbert, Gwendolyn L; Huygens, Flavia; Giffard, Philip M
2008-08-19
Streptococcus agalactiae (Group B Streptococcus (GBS)) is an important human pathogen, particularly of newborns. Emerging evidence for a relationship between genotype and virulence has accentuated the need for efficient and well-defined typing methods. The objective of this study was to develop a single nucleotide polymorphism (SNP) based method for assigning GBS isolates to multilocus sequence typing (MLST)-defined clonal complexes. It was found that a SNP set derived from the MLST database on the basis of maximization of Simpsons Index of Diversity provided poor resolution and did not define groups concordant with the population structure as defined by eBURST analysis of the MLST database. This was interpreted as being a consequence of low diversity and high frequency horizontal gene transfer. Accordingly, a different approach to SNP identification was developed. This entailed use of the "Not-N" bioinformatic algorithm that identifies SNPs diagnostic for groups of known sequence variants, together with an empirical process of SNP testing. This yielded a four member SNP set that divides GBS into 10 groups that are concordant with the population structure. A fifth SNP was identified that increased the sensitivity for the clinically significant clonal complex 17 to 100%. Kinetic PCR methods for the interrogation of these SNPs were developed, and used to genotype 116 well characterized isolates. A five SNP method for dividing GBS into biologically valid groups has been developed. These SNPs are ideal for high throughput surveillance activities, and combining with more rapidly evolving loci when additional resolution is required.
Honsa, Erin; Fricke, Thomas; Stephens, Alex J; Ko, Danny; Kong, Fanrong; Gilbert, Gwendolyn L; Huygens, Flavia; Giffard, Philip M
2008-01-01
Background Streptococcus agalactiae (Group B Streptococcus (GBS)) is an important human pathogen, particularly of newborns. Emerging evidence for a relationship between genotype and virulence has accentuated the need for efficient and well-defined typing methods. The objective of this study was to develop a single nucleotide polymorphism (SNP) based method for assigning GBS isolates to multilocus sequence typing (MLST)-defined clonal complexes. Results It was found that a SNP set derived from the MLST database on the basis of maximisation of Simpsons Index of Diversity provided poor resolution and did not define groups concordant with the population structure as defined by eBURST analysis of the MLST database. This was interpreted as being a consequence of low diversity and high frequency horizontal gene transfer. Accordingly, a different approach to SNP identification was developed. This entailed use of the "Not-N" bioinformatic algorithm that identifies SNPs diagnostic for groups of known sequence variants, together with an empirical process of SNP testing. This yielded a four member SNP set that divides GBS into 10 groups that are concordant with the population structure. A fifth SNP was identified that increased the sensitivity for the clinically significant clonal complex 17 to 100%. Kinetic PCR methods for the interrogation of these SNPs were developed, and used to genotype 116 well characterized isolates. Conclusion A five SNP method for dividing GBS into biologically valid groups has been developed. These SNPs are ideal for high throughput surveillance activities, and combining with more rapidly evolving loci when additional resolution is required. PMID:18710585
Mencia-Trinchant, Nuria; Hu, Yang; Alas, Maria Antonina; Ali, Fatima; Wouters, Bas J; Lee, Sangmin; Ritchie, Ellen K; Desai, Pinkal; Guzman, Monica L; Roboz, Gail J; Hassane, Duane C
2017-07-01
The presence of minimal residual disease (MRD) is widely recognized as a powerful predictor of therapeutic outcome in acute myeloid leukemia (AML), but methods of measurement and quantification of MRD in AML are not yet standardized in clinical practice. There is an urgent, unmet need for robust and sensitive assays that can be readily adopted as real-time tools for disease monitoring. NPM1 frameshift mutations are an established MRD marker present in half of patients with cytogenetically normal AML. However, detection is complicated by the existence of hundreds of potential frameshift insertions, clonal heterogeneity, and absence of sequence information when the NPM1 mutation is identified using capillary electrophoresis. Thus, some patients are ineligible for NPM1 MRD monitoring. Furthermore, a subset of patients with NPM1-mutated AML will have false-negative MRD results because of clonal evolution. To simplify and improve MRD testing for NPM1, we present a novel digital PCR technique composed of massively multiplex pools of insertion-specific primers that selectively detect mutated but not wild-type NPM1. By measuring reaction end points using digital PCR technology, the resulting single assay enables sensitive and specific quantification of most NPM1 exon 12 mutations in a manner that is robust to clonal heterogeneity, does not require NPM1 sequence information, and obviates the need for maintenance of hundreds of type-specific assays and associated plasmid standards. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Detecting truly clonal alterations from multi-region profiling of tumours
Werner, Benjamin; Traulsen, Arne; Sottoriva, Andrea; Dingli, David
2017-01-01
Modern cancer therapies aim at targeting tumour-specific alterations, such as mutations or neo-antigens, and maximal treatment efficacy requires that targeted alterations are present in all tumour cells. Currently, treatment decisions are based on one or a few samples per tumour, creating uncertainty on whether alterations found in those samples are actually present in all tumour cells. The probability of classifying clonal versus sub-clonal alterations from multi-region profiling of tumours depends on the earliest phylogenetic branching event during tumour growth. By analysing 181 samples from 10 renal carcinoma and 11 colorectal cancers we demonstrate that the information gain from additional sampling falls onto a simple universal curve. We found that in colorectal cancers, 30% of alterations identified as clonal with one biopsy proved sub-clonal when 8 samples were considered. The probability to overestimate clonal alterations fell below 1% in 7/11 patients with 8 samples per tumour. In renal cell carcinoma, 8 samples reduced the list of clonal alterations by 40% with respect to a single biopsy. The probability to overestimate clonal alterations remained as high as 92% in 7/10 renal cancer patients. Furthermore, treatment was associated with more unbalanced tumour phylogenetic trees, suggesting the need of denser sampling of tumours at relapse. PMID:28344344
Wang, Yong-Jian; Bai, Yun-Fei; Zeng, Shi-Qi; Yao, Bin; Wang, Wen; Luo, Fang-Li
2016-07-21
Spatial patchiness and temporal variability in water availability are common in nature under global climate change, which can remarkably influence adaptive responses of clonal plants, i.e. clonal integration (translocating resources between connected ramets). However, little is known about the effects of spatial patchiness and temporal heterogeneity in water on growth and clonal integration between congeneric invasive and native Hydrocotyle species. In a greenhouse experiment, we subjected severed or no severed (intact) fragments of Hydrocotyle vulgaris, a highly invasive species in China, and its co-existing, native congener H. sibthorpioides to different spatial patchiness (homogeneous and patchy) and temporal interval (low and high interval) in water supply. Clonal integration had significant positive effects on growth of both species. In the homogeneous water conditions, clonal integration greatly improved the growth in fragments of both species under low interval in water. However, in the patchy water conditions, clonal integration significantly increased growth in both ramets and fragments of H. vulgaris under high interval in water. Therefore, spatial patchiness and temporal interval in water altered the effects of clonal integration of both species, especially for H. vulgaris. The adaptation of H. vulgaris might lead to invasive growth and potential spread under the global water variability.
Detecting truly clonal alterations from multi-region profiling of tumours
NASA Astrophysics Data System (ADS)
Werner, Benjamin; Traulsen, Arne; Sottoriva, Andrea; Dingli, David
2017-03-01
Modern cancer therapies aim at targeting tumour-specific alterations, such as mutations or neo-antigens, and maximal treatment efficacy requires that targeted alterations are present in all tumour cells. Currently, treatment decisions are based on one or a few samples per tumour, creating uncertainty on whether alterations found in those samples are actually present in all tumour cells. The probability of classifying clonal versus sub-clonal alterations from multi-region profiling of tumours depends on the earliest phylogenetic branching event during tumour growth. By analysing 181 samples from 10 renal carcinoma and 11 colorectal cancers we demonstrate that the information gain from additional sampling falls onto a simple universal curve. We found that in colorectal cancers, 30% of alterations identified as clonal with one biopsy proved sub-clonal when 8 samples were considered. The probability to overestimate clonal alterations fell below 1% in 7/11 patients with 8 samples per tumour. In renal cell carcinoma, 8 samples reduced the list of clonal alterations by 40% with respect to a single biopsy. The probability to overestimate clonal alterations remained as high as 92% in 7/10 renal cancer patients. Furthermore, treatment was associated with more unbalanced tumour phylogenetic trees, suggesting the need of denser sampling of tumours at relapse.
Effects of Clonal Reproduction on Evolutionary Lag and Evolutionary Rescue.
Orive, Maria E; Barfield, Michael; Fernandez, Carlos; Holt, Robert D
2017-10-01
Evolutionary lag-the difference between mean and optimal phenotype in the current environment-is of keen interest in light of rapid environmental change. Many ecologically important organisms have life histories that include stage structure and both sexual and clonal reproduction, yet how stage structure and clonality interplay to govern a population's rate of evolution and evolutionary lag is unknown. Effects of clonal reproduction on mean phenotype partition into two portions: one that is phenotype dependent, and another that is genotype dependent. This partitioning is governed by the association between the nonadditive genetic plus random environmental component of phenotype of clonal offspring and their parents. While clonality slows phenotypic evolution toward an optimum, it can dramatically increase population survival after a sudden step change in optimal phenotype. Increased adult survival slows phenotypic evolution but facilitates population survival after a step change; this positive effect can, however, be lost given survival-fecundity trade-offs. Simulations indicate that the benefits of increased clonality under environmental change greatly depend on the nature of that change: increasing population persistence under a step change while decreasing population persistence under a continuous linear change requiring de novo variation. The impact of clonality on the probability of persistence for species in a changing world is thus inexorably linked to the temporal texture of the change they experience.
Clonal sets of a binary relation
NASA Astrophysics Data System (ADS)
Zedam, Lemnaouar; Pérez-Fernández, Raúl; Bouremel, Hassane; De Baets, Bernard
2018-05-01
In a recent paper, we have introduced the notion of clone relation of a given binary relation. Intuitively, two elements are said to be "clones" if they are related in the same way w.r.t. every other element. In this paper, we generalize this notion from pairs of elements to sets of elements of any cardinality, resulting in the introduction of clonal sets. We investigate the most important properties of clonal sets, paying particular attention to the introduction of the clonal closure operator, to the analysis of the (lattice) structure of the set of clonal sets and to a distance metric expressing how close two elements are to being clones.
ERIC Educational Resources Information Center
Dufner, Hillrey A.; Alexander, Patricia A.
The differential effects of two different types of problem-solving training on the problem-solving abilities of gifted fourth graders were studied. Two successive classes of gifted fourth graders from Weslaco Independent School District (Texas) were pretested with the Coloured Progressive Matrices (CPM) and Thinking Creatively With Pictures…
ERIC Educational Resources Information Center
White, Kevin N.
2007-01-01
Many students in a fourth grade classroom at Logan Elementary School are expressing numerous types of negative behaviors, are not motivated to learn, and do not stay on-task. In an effort to change these students, an action research study was conducted that implemented background music in the classroom. There were ten fourth grade students who…
Population Structure of Clinical Pseudomonas aeruginosa from West and Central African Countries
Cholley, Pascal; Ka, Roughyatou; Guyeux, Christophe; Thouverez, Michelle; Guessennd, Nathalie; Ghebremedhin, Beniam; Frank, Thierry; Bertrand, Xavier; Hocquet, Didier
2014-01-01
Background Pseudomonas aeruginosa (PA) has a non-clonal, epidemic population with a few widely distributed and frequently encountered sequence types (STs) called ‘high-risk clusters’. Clinical P. aeruginosa (clinPA) has been studied in all inhabited continents excepted in Africa, where a very few isolates have been analyzed. Here, we characterized a collection of clinPA isolates from four countries of West and Central Africa. Methodology 184 non-redundant isolates of clinPA from hospitals of Senegal, Ivory Coast, Nigeria, and Central African Republic were genotyped by MLST. We assessed their resistance level to antibiotics by agar diffusion and identified the extended-spectrum β-lactamases (ESBLs) and metallo-β-lactamases (MBLs) by sequencing. The population structure of the species was determined by a nucleotide-based analysis of the entire PA MLST database and further localized on the phylogenetic tree (i) the sequence types (STs) of the present collection, (ii) the STs by continents, (iii) ESBL- and MBL-producing STs from the MLST database. Principal Findings We found 80 distinct STs, of which 24 had no relationship with any known STs. ‘High-risk’ international clonal complexes (CC155, CC244, CC235) were frequently found in West and Central Africa. The five VIM-2-producing isolates belonged to CC233 and CC244. GES-1 and GES-9 enzymes were produced by one CC235 and one ST1469 isolate, respectively. We showed the spread of ‘high-risk’ international clonal complexes, often described as multidrug-resistant on other continents, with a fully susceptible phenotype. The MBL- and ESBL-producing STs were scattered throughout the phylogenetic tree and our data suggest a poor association between a continent and a specific phylogroup. Conclusions ESBL- and MBL-encoding genes are borne by both successful international clonal complexes and distinct local STs in clinPA of West and Central Africa. Furthermore, our data suggest that the spread of a ST could be either due to its antibiotic resistance or to features independent from the resistance to antibiotics. PMID:25187957
There is incomplete understanding of genetic heterogeneity and clonal evolution during cancer progression. Here we use deep whole-exome sequencing to describe the clonal architecture and evolution of 20 pediatric B-acute lymphoblastic leukaemias from diagnosis to relapse. We show that clonal diversity is comparable at diagnosis and relapse and clonal survival from diagnosis to relapse is not associated with mutation burden.
Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade
McGranahan, Nicholas; Furness, Andrew J. S.; Rosenthal, Rachel; Ramskov, Sofie; Lyngaa, Rikke; Saini, Sunil Kumar; Jamal-Hanjani, Mariam; Wilson, Gareth A.; Birkbak, Nicolai J.; Hiley, Crispin T.; Watkins, Thomas B. K.; Shafi, Seema; Murugaesu, Nirupa; Mitter, Richard; Akarca, Ayse U.; Linares, Joseph; Marafioti, Teresa; Henry, Jake Y.; Van Allen, Eliezer M.; Miao, Diana; Schilling, Bastian; Schadendorf, Dirk; Garraway, Levi A.; Makarov, Vladimir; Rizvi, Naiyer A.; Snyder, Alexandra; Hellmann, Matthew D.; Merghoub, Taha; Wolchok, Jedd D.; Shukla, Sachet A.; Wu, Catherine J.; Peggs, Karl S.; Chan, Timothy A.; Hadrup, Sine R.; Quezada, Sergio A.; Swanton, Charles
2016-01-01
As tumors grow, they acquire mutations, some of which create neoantigens that influence the response of patients to immune checkpoint inhibitors. We explored the impact of neoantigen intratumor heterogeneity (ITH) on antitumor immunity. Through integrated analysis of ITH and neoantigen burden, we demonstrate a relationship between clonal neoantigen burden and overall survival in primary lung adenocarcinomas. CD8+ tumor-infiltrating lymphocytes reactive to clonal neoantigens were identified in early-stage non–small cell lung cancer and expressed high levels of PD-1. Sensitivity to PD-1 and CTLA-4 blockade in patients with advanced NSCLC and melanoma was enhanced in tumors enriched for clonal neoantigens. T cells recognizing clonal neoantigens were detectable in patients with durable clinical benefit. Cytotoxic chemotherapy–induced subclonal neoantigens, contributing to an increased mutational load, were enriched in certain poor responders. These data suggest that neoantigen heterogeneity may influence immune surveillance and support therapeutic developments targeting clonal neoantigens. PMID:26940869
Kin Recognition in a Clonal Fish, Poecilia formosa
Makowicz, Amber M.; Tiedemann, Ralph; Schlupp, Ingo
2016-01-01
Relatedness strongly influences social behaviors in a wide variety of species. For most species, the highest typical degree of relatedness is between full siblings with 50% shared genes. However, this is poorly understood in species with unusually high relatedness between individuals: clonal organisms. Although there has been some investigation into clonal invertebrates and yeast, nothing is known about kin selection in clonal vertebrates. We show that a clonal fish, the Amazon molly (Poecilia formosa), can distinguish between different clonal lineages, associating with genetically identical, sister clones, and use multiple sensory modalities. Also, they scale their aggressive behaviors according to the relatedness to other females: they are more aggressive to non-related clones. Our results demonstrate that even in species with very small genetic differences between individuals, kin recognition can be adaptive. Their discriminatory abilities and regulation of costly behaviors provides a powerful example of natural selection in species with limited genetic diversity. PMID:27483372
Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq
Ramsköld, Daniel; Deng, Qiaolin; Johnsson, Per; Michaëlsson, Jakob; Frisén, Jonas; Sandberg, Rickard
2016-01-01
Cellular heterogeneity can emerge from the expression of only one parental allele. However, it has remained controversial whether, or to what degree, random monoallelic expression of autosomal genes (aRME) is mitotically inherited (clonal) or stochastic (dynamic) in somatic cells, particularly in vivo. Here, we used allele-sensitive single-cell RNA-seq on clonal primary mouse fibroblasts and in vivo human CD8+ T-cells to dissect clonal and dynamic monoallelic expression patterns. Dynamic aRME affected a considerable portion of the cells’ transcriptomes, with levels dependent on the cells’ transcriptional activity. Importantly, clonal aRME was detected but was surprisingly scarce (<1% of genes) and affected mainly the most low-expressed genes. Consequently, the overwhelming portion of aRME occurs transiently within individual cells and patterns of aRME are thus primarily scattered throughout somatic cell populations rather than, as previously hypothesized, confined to patches of clonally related cells. PMID:27668657
Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq.
Reinius, Björn; Mold, Jeff E; Ramsköld, Daniel; Deng, Qiaolin; Johnsson, Per; Michaëlsson, Jakob; Frisén, Jonas; Sandberg, Rickard
2016-11-01
Cellular heterogeneity can emerge from the expression of only one parental allele. However, it has remained controversial whether, or to what degree, random monoallelic expression of autosomal genes (aRME) is mitotically inherited (clonal) or stochastic (dynamic) in somatic cells, particularly in vivo. Here we used allele-sensitive single-cell RNA-seq on clonal primary mouse fibroblasts and freshly isolated human CD8 + T cells to dissect clonal and dynamic monoallelic expression patterns. Dynamic aRME affected a considerable portion of the cells' transcriptomes, with levels dependent on the cells' transcriptional activity. Notably, clonal aRME was detected, but it was surprisingly scarce (<1% of genes) and mainly affected the most weakly expressed genes. Consequently, the overwhelming majority of aRME occurs transiently within individual cells, and patterns of aRME are thus primarily scattered throughout somatic cell populations rather than, as previously hypothesized, confined to patches of clonally related cells.
Ostrovnaya, Irina; Seshan, Venkatraman E; Olshen, Adam B; Begg, Colin B
2011-06-15
If a cancer patient develops multiple tumors, it is sometimes impossible to determine whether these tumors are independent or clonal based solely on pathological characteristics. Investigators have studied how to improve this diagnostic challenge by comparing the presence of loss of heterozygosity (LOH) at selected genetic locations of tumor samples, or by comparing genomewide copy number array profiles. We have previously developed statistical methodology to compare such genomic profiles for an evidence of clonality. We assembled the software for these tests in a new R package called 'Clonality'. For LOH profiles, the package contains significance tests. The analysis of copy number profiles includes a likelihood ratio statistic and reference distribution, as well as an option to produce various plots that summarize the results. Bioconductor (http://bioconductor.org/packages/release/bioc/html/Clonality.html) and http://www.mskcc.org/mskcc/html/13287.cfm.
Insights in Anaphylaxis and Clonal Mast Cell Disorders.
González-de-Olano, David; Álvarez-Twose, Iván
2017-01-01
The prevalence of anaphylaxis among patients with clonal mast cell disorders (MCD) is clearly higher comparing to the general population. Due to a lower frequency of symptoms outside of acute episodes, clonal MCD in the absence of skin lesions might sometimes be difficult to identify which may lead to underdiagnosis, and anaphylaxis is commonly the presenting symptom in these patients. Although the release of mast cell (MC) mediators upon MC activation might present with a wide variety of symptoms, particular clinical features typically characterize MC mediator release episodes in patients with clonal MCD without skin involvement. Final diagnosis requires a bone marrow study, and it is recommended that this should be done in reference centers. In this article, we address the main triggers for anaphylaxis, risk factors, clinical presentation, diagnosis, and management of patients with MC activation syndromes (MCASs), with special emphasis on clonal MCAS [systemic mastocytosis and mono(clonal) MC activations syndromes].
Insights in Anaphylaxis and Clonal Mast Cell Disorders
González-de-Olano, David; Álvarez-Twose, Iván
2017-01-01
The prevalence of anaphylaxis among patients with clonal mast cell disorders (MCD) is clearly higher comparing to the general population. Due to a lower frequency of symptoms outside of acute episodes, clonal MCD in the absence of skin lesions might sometimes be difficult to identify which may lead to underdiagnosis, and anaphylaxis is commonly the presenting symptom in these patients. Although the release of mast cell (MC) mediators upon MC activation might present with a wide variety of symptoms, particular clinical features typically characterize MC mediator release episodes in patients with clonal MCD without skin involvement. Final diagnosis requires a bone marrow study, and it is recommended that this should be done in reference centers. In this article, we address the main triggers for anaphylaxis, risk factors, clinical presentation, diagnosis, and management of patients with MC activation syndromes (MCASs), with special emphasis on clonal MCAS [systemic mastocytosis and mono(clonal) MC activations syndromes]. PMID:28740494
Outbreak of Vibrio parahaemolyticus Sequence Type 120, Peru, 2009.
Gonzalez-Escalona, Narjol; Gavilan, Ronnie G; Toro, Magaly; Zamudio, Maria L; Martinez-Urtaza, Jaime
2016-07-01
In 2009, an outbreak of Vibrio parahaemolyticus occurred in Piura, Cajamarca, Lambayeque, and Lima, Peru. Whole-genome sequencing of clinical and environmental samples from the outbreak revealed a new V. parahaemolyticus clone. All the isolates identified belonged to a single clonal complex described exclusively in Asia before its emergence in Peru.
Outbreak of Vibrio parahaemolyticus Sequence Type 120, Peru, 2009
Gonzalez-Escalona, Narjol; Gavilan, Ronnie G.; Toro, Magaly; Zamudio, Maria L.
2016-01-01
In 2009, an outbreak of Vibrio parahaemolyticus occurred in Piura, Cajamarca, Lambayeque, and Lima, Peru. Whole-genome sequencing of clinical and environmental samples from the outbreak revealed a new V. parahaemolyticus clone. All the isolates identified belonged to a single clonal complex described exclusively in Asia before its emergence in Peru. PMID:27315090
Kusters, J G; van Leeuwen, W B; Maquelin, K; Blok, H E M; Willemse, H F M; de Graaf-Miltenburg, L A M; Fluit, A C; Troelstra, A
2016-01-01
DNA-based techniques are frequently used to confirm the relatedness of putative outbreak isolates. These techniques often lack the discriminatory power when analyzing closely related microbes such as E. coli. Here the value of Raman spectroscopy as a typing tool for E. coli in a clinical setting was retrospectively evaluated.
USDA-ARS?s Scientific Manuscript database
Recent work has shown that Fusarium species and genotypes most commonly associated with human infections, particularly of the cornea (mycotic keratitis), are the same as those most commonly isolated from plumbing systems. The species most dominant in plumbing biofilms is Fusarium keratoplasticum, a ...
Matsuyama, T; Fukuda, Y; Sakai, T; Tanimoto, N; Nakanishi, M; Nakamura, Y; Takano, T; Nakayasu, C
2017-08-01
Bacterial haemolytic jaundice caused by Ichthyobacterium seriolicida has been responsible for mortality in farmed yellowtail, Seriola quinqueradiata, in western Japan since the 1980s. In this study, polymorphic analysis of I. seriolicida was performed using three molecular methods: amplified fragment length polymorphism (AFLP) analysis, multilocus sequence typing (MLST) and multiple-locus variable-number tandem repeat analysis (MLVA). Twenty-eight isolates were analysed using AFLP, while 31 isolates were examined by MLST and MLVA. No polymorphisms were identified by AFLP analysis using EcoRI and MseI, or by MLST of internal fragments of eight housekeeping genes. However, MLVA revealed variation in repeat numbers of three elements, allowing separation of the isolates into 16 sequence types. The unweighted pair group method using arithmetic averages cluster analysis of the MLVA data identified four major clusters, and all isolates belonged to clonal complexes. It is likely that I. seriolicida populations share a common ancestor, which may be a recently introduced strain. © 2016 John Wiley & Sons Ltd.
Genotyping of clinical and environmental multidrug resistant Enterococcus faecium strains.
Shokoohizadeh, Leili; Mobarez, Ashraf Mohabati; Alebouyeh, Masoud; Zali, Mohammad Reza; Ranjbar, Reza
2017-01-01
Multidrug resistant (MDR) Enterococcus faecium is a nosocomial pathogen and clonal complex 17 (CC17) is the main genetic subpopulation of E. faecium in hospitals worldwide. There has thus far been no report of major E. faecium clones in Iranian hospitals. The present study analyzed strains of MDR E. faecium obtained from patients and the Intensive Care Unit environments using pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) to determine the antibiotic resistance patterns and genetic features of the dominant. clones of E. faecium. PFGE and MLST analysis revealed the presence of 17and 15 different subtypes, respectively. Of these, 18 (86%) isolates belonged toCC17. Most strains in this clonal complex harbored the esp gene and exhibited resistance to vancomycin, teicoplanin, ampicillin, ciprofloxacin, gentamicin, and erythromycin. The MLST results revealed 12 new sequence types (ST) for the first time. Approximately 50% of the STs were associated with ST203. Detection of E. faecium strains belonging to CC17 on medical equipment and in clinical specimens verified the circulation of high-risk MDR clones among the patients and in hospital environments in Iran.
Guo, Qinglan; Mustapha, Mustapha M.; Chen, Mingliang; Qu, Di; Zhang, Xi; Harrison, Lee H.
2018-01-01
The expansion of hypervirulent sequence type 4821 clonal complex (CC4821) lineage Neisseria meningitidis bacteria has led to a shift in meningococcal disease epidemiology in China, from serogroup A (MenA) to MenC. Knowledge of the evolution and genetic origin of the emergent MenC strains is limited. In this study, we subjected 76 CC4821 isolates collected across China during 1972–1977 and 2005–2013 to phylogenetic analysis, traditional genotyping, or both. We show that successive recombination events within genes encoding surface antigens and acquisition of quinolone resistance mutations possibly played a role in the emergence of CC4821 as an epidemic clone in China. MenC and MenB CC4821 strains have spread across China and have been detected in several countries in different continents. Capsular switches involving serogroups B and C occurred among epidemic strains, raising concerns regarding possible increases in MenB disease, given that vaccines in use in China do not protect against MenB. PMID:29553310
Rosette-forming glioneuronal tumor of the fourth ventricle.
Preusser, Matthias; Dietrich, Wolfgang; Czech, Thomas; Prayer, Daniela; Budka, Herbert; Hainfellner, Johannes A
2003-11-01
Rosette-forming glioneuronal tumor (RGNT) of the fourth ventricle has been reported recently as a novel type of primary CNS neoplasm. We present the case of a 35-year-old male patient with RGNT of the fourth ventricle. The tumor was found incidentally; the patient did not suffer from any neurological symptoms. The tumor mass involved the caudal cerebellar vermis, filled the fourth ventricle and protruded into the caudal part of the mesencephalic aquaeduct. Smaller tumor nodules were visible in the adjacent right cerebellar hemisphere. Histologically, prominent neurocytic rosettes with synaptophysin expression were embedded in a glial tumor component resembling pilocytic astrocytoma. Clinicopathological features of our case closely resemble those reported in the original description. Thus, our case confirms RGNT as a new distinct type of primary CNS neoplasm. Due to its distinct features, adoption of RGNT as a new entity into the WHO classification of tumors should be considered.
Reimer, Aleisha; Verghese, Bindhu; Lok, Mei; Ziegler, Jennifer; Farber, Jeffrey; Pagotto, Franco; Graham, Morag; Nadon, Celine A.
2012-01-01
Human listeriosis outbreaks in Canada have been predominantly caused by serotype 1/2a isolates with highly similar pulsed-field gel electrophoresis (PFGE) patterns. Multilocus sequence typing (MLST) and multi-virulence-locus sequence typing (MVLST) each identified a diverse population of Listeria monocytogenes isolates, and within that, both methods had congruent subtypes that substantiated a predominant clone (clonal complex 8; virulence type 59; proposed epidemic clone 5 [ECV]) that has been causing human illness across Canada for more than 2 decades. PMID:22337989
Takahashi, Koichi; Wang, Feng; Kantarjian, Hagop; Doss, Denaha; Khanna, Kanhav; Thompson, Erika; Zhao, Li; Patel, Keyur; Neelapu, Sattva; Gumbs, Curtis; Bueso-Ramos, Carlos; DiNardo, Courtney D; Colla, Simona; Ravandi, Farhad; Zhang, Jianhua; Huang, Xuelin; Wu, Xifeng; Samaniego, Felipe; Garcia-Manero, Guillermo; Futreal, P Andrew
2017-01-01
Therapy-related myeloid neoplasms are secondary malignancies that are often fatal, but their risk factors are not well understood. Evidence suggests that individuals with clonal haemopoiesis have increased risk of developing haematological malignancies. We aimed to identify whether patients with cancer who have clonal haemopoiesis are at an increased risk of developing therapy-related myeloid neoplasms. We did this retrospective case-control study to compare the prevalence of clonal haemopoiesis between patients treated for cancer who later developed therapy-related myeloid neoplasms (cases) and patients who did not develop these neoplasms (controls). All patients in both case and control groups were treated at MD Anderson Cancer Center (Houston, TX, USA) from 1997 to 2015. We used the institutional medical database to locate these patients. Patients were included as cases if they were treated for a primary cancer, subsequently developed therapy-related myeloid neoplasms, and had available paired samples of bone marrow from the time of therapy-related myeloid neoplasm diagnosis and peripheral blood from the time of primary cancer diagnosis. Patients were eligible for inclusion as age-matched controls if they were treated for lymphoma, received combination chemotherapy, and did not develop therapy-related myeloid neoplasms after at least 5 years of follow-up. We used molecular barcode sequencing of 32 genes on the pretreatment peripheral blood samples to detect clonal haemopoiesis. For cases, we also used targeted gene sequencing on bone marrow samples and investigated clonal evolution from clonal haemopoiesis to the development of therapy-related myeloid neoplasms. To further clarify the association between clonal haemopoiesis and therapy-related myeloid neoplasm development, we also analysed the prevalence of clonal haemopoiesis in an external cohort of patients with lymphoma who were treated in a randomised trial of front-line chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisone, with or without melatonin. This trial was done at MD Anderson Cancer Center between 1999 and 2001 (protocol number 98-009). We identified 14 cases and 54 controls. Of the 14 cases, we detected clonal haemopoiesis in the peripheral blood samples of ten (71%) patients. We detected clonal haemopoiesis in 17 (31%) of the 54 controls. The cumulative incidence of therapy-related myeloid neoplasms in both cases and controls at 5 years was significantly higher in patients with clonal haemopoiesis (30%, 95% CI 16-51) than in those without (7%, 2-21; p=0·016). In the external cohort, five (7%) of 74 patients developed therapy-related myeloid neoplasms, of whom four (80%) had clonal haemopoiesis; 11 (16%) of 69 patients who did not develop therapy-related myeloid neoplasms had clonal haemopoiesis. In the external cohort, the cumulative incidence of therapy-related myeloid neoplasms at 10 years was significantly higher in patients with clonal haemopoiesis (29%, 95% CI 8-53) than in those without (0%, 0-0; p=0·0009). In a multivariate Fine and Gray model based on the external cohort, the presence of clonal haemopoiesis significantly increased the risk of therapy-related myeloid neoplasm development (hazard ratio 13·7, 95% CI 1·7-108·7; p=0·013). Preleukaemic clonal haemopoiesis is common in patients with therapy-related myeloid neoplasms at the time of their primary cancer diagnosis and before they have been exposed to treatment. Our results suggest that clonal haemopoiesis could be used as a predictive marker to identify patients with cancer who are at risk of developing therapy-related myeloid neoplasms. A prospective trial to validate this concept is warranted. Cancer Prevention Research Institute of Texas, Red and Charline McCombs Institute for the Early Detection and Treatment of Cancer, NIH through MD Anderson Cancer Center Support Grant, and the MD Anderson MDS & AML Moon Shots Program. Copyright © 2017 Elsevier Ltd. All rights reserved.
Greaves, Mel; Maley, Carlo C.
2012-01-01
Cancers evolve by a reiterative process of clonal expansion, genetic diversification and clonal selection within the adaptive landscapes of tissue ecosystems. The dynamics are complex with highly variable patterns of genetic diversity and resultant clonal architecture. Therapeutic intervention may decimate cancer clones, and erode their habitats, but inadvertently provides potent selective pressure for the expansion of resistant variants. The inherently Darwinian character of cancer lies at the heart of therapeutic failure but perhaps also holds the key to more effective control. PMID:22258609
Bianchi, Giada; Ghobrial, Irene M
Clonal heterogeneity and clonal evolution have emerged as critical concepts in the field of oncology over the past four decades, largely thanks to the implementation of novel technologies such as comparative genomic hybridization, whole genome/exome sequencing and epigenetic analysis. Along with the identification of cancer stem cells in the majority of neoplasia, the recognition of intertumor and intratumor variability has provided a novel perspective to understand the mechanisms behind tumor evolution and its implication in terms of treatment failure and cancer relapse or recurrence. First hypothesized over two decades ago, clonal heterogeneity and clonal evolution have been confirmed in multiple myeloma (MM), an incurable cancer of plasma cells, almost universally preceded by a pre-malignant conditioned named monoclonal gammopathy of undetermined significance (MGUS). The genetic events and molecular mechanisms underlying such evolution have been difficult to dissect. Moreover, while a role for the bone marrow microenvironment in supporting MM cell survival, proliferation and drug-resistance has been well established, whether it is directly involved in driving evolution from MGUS to MM is at present unclear. We present in this review a historical excursus on the concepts of clonal heterogeneity and clonal evolution in MM with a special emphasis on their role in the progression from MGUS to MM; the contribution of the microenvironment; and the clinical implications in terms of resistance to treatment and disease relapse/recurrence.
Bianchi, Giada; Ghobrial, Irene M.
2015-01-01
Clonal heterogeneity and clonal evolution have emerged as critical concepts in the field of oncology over the past four decades, largely thanks to the implementation of novel technologies such as comparative genomic hybridization, whole genome/exome sequencing and epigenetic analysis. Along with the identification of cancer stem cells in the majority of neoplasia, the recognition of intertumor and intratumor variability has provided a novel perspective to understand the mechanisms behind tumor evolution and its implication in terms of treatment failure and cancer relapse or recurrence. First hypothesized over two decades ago, clonal heterogeneity and clonal evolution have been confirmed in multiple myeloma (MM), an incurable cancer of plasma cells, almost universally preceded by a pre-malignant conditioned named monoclonal gammopathy of undetermined significance (MGUS). The genetic events and molecular mechanisms underlying such evolution have been difficult to dissect. Moreover, while a role for the bone marrow microenvironment in supporting MM cell survival, proliferation and drug-resistance has been well established, whether it is directly involved in driving evolution from MGUS to MM is at present unclear. We present in this review a historical excursus on the concepts of clonal heterogeneity and clonal evolution in MM with a special emphasis on their role in the progression from MGUS to MM; the contribution of the microenvironment; and the clinical implications in terms of resistance to treatment and disease relapse/recurrence. PMID:25705146
Guinoiseau, Thibault; Moreau, Alain; Hohnadel, Guillaume; Ngo-Giang-Huong, Nicole; Brulard, Celine; Vourc'h, Patrick; Goudeau, Alain; Gaudy-Graffin, Catherine
2017-01-01
Hepatitis C virus (HCV) evolves rapidly in a single host and circulates as a quasispecies wich is a complex mixture of genetically distinct virus's but closely related namely variants. To identify intra-individual diversity and investigate their functional properties in vitro, it is necessary to define their quasispecies composition and isolate the HCV variants. This is possible using single genome amplification (SGA). This technique, based on serially diluted cDNA to amplify a single cDNA molecule (clonal amplicon), has already been used to determine individual HCV diversity. In these studies, positive PCR reactions from SGA were directly sequenced using Sanger technology. The detection of non-clonal amplicons is necessary for excluding them to facilitate further functional analysis. Here, we compared Next Generation Sequencing (NGS) with De Novo assembly and Sanger sequencing for their ability to distinguish clonal and non-clonal amplicons after SGA on one plasma specimen. All amplicons (n = 42) classified as clonal by NGS were also classified as clonal by Sanger sequencing. No double peaks were seen on electropherograms for non-clonal amplicons with position-specific nucleotide variation below 15% by NGS. Altogether, NGS circumvented many of the difficulties encountered when using Sanger sequencing after SGA and is an appropriate tool to reliability select clonal amplicons for further functional studies.
Guinoiseau, Thibault; Moreau, Alain; Hohnadel, Guillaume; Ngo-Giang-Huong, Nicole; Brulard, Celine; Vourc’h, Patrick; Goudeau, Alain; Gaudy-Graffin, Catherine
2017-01-01
Hepatitis C virus (HCV) evolves rapidly in a single host and circulates as a quasispecies wich is a complex mixture of genetically distinct virus’s but closely related namely variants. To identify intra-individual diversity and investigate their functional properties in vitro, it is necessary to define their quasispecies composition and isolate the HCV variants. This is possible using single genome amplification (SGA). This technique, based on serially diluted cDNA to amplify a single cDNA molecule (clonal amplicon), has already been used to determine individual HCV diversity. In these studies, positive PCR reactions from SGA were directly sequenced using Sanger technology. The detection of non-clonal amplicons is necessary for excluding them to facilitate further functional analysis. Here, we compared Next Generation Sequencing (NGS) with De Novo assembly and Sanger sequencing for their ability to distinguish clonal and non-clonal amplicons after SGA on one plasma specimen. All amplicons (n = 42) classified as clonal by NGS were also classified as clonal by Sanger sequencing. No double peaks were seen on electropherograms for non-clonal amplicons with position-specific nucleotide variation below 15% by NGS. Altogether, NGS circumvented many of the difficulties encountered when using Sanger sequencing after SGA and is an appropriate tool to reliability select clonal amplicons for further functional studies. PMID:28362878
Ye, Duo; Liu, Guofang; Song, Yao-Bin; Cornwell, William K; Dong, Ming; Cornelissen, Johannes H C
2016-06-01
The clonal strategy should be relatively important in stressful environments (i.e. of low resource availability or harsh climate), e.g. in cold habitats. However, our understanding of the distribution pattern of clonality along environmental gradients is still far from universal. The weakness and inconsistency of overall clonality-climate relationships across taxa, as reported in previous studies, may be due to different phylogenetic lineages having fundamental differences in functional traits other than clonality determining their climate response. Thus, in this study we compared the clonality-climate relationships along a latitudinal gradient within and between different lineages at several taxonomic levels, including four major angiosperm lineages (Magnoliidae, Monocotyledoneae, Superrosidae and Superasteridae), orders and families. To this aim we used a species clonality dataset for 4015 vascular plant species in 545 terrestrial communities across China. Our results revealed clear predictive patterns of clonality proportion in relation to environmental gradients for the predominant representatives of each of the taxonomic levels above, but the relationships differed in shape and strength between the 4 major angiosperm lineages, between the 12 orders and between the 12 families. These different relationships canceled out one another when all lineages at a certain taxonomic level were pooled. Our findings highlight the importance of explicitly accounting for the functional or taxonomic scale for studying variation in plant ecological strategy across environmental gradients.
The clonal origin and clonal evolution of epithelial tumours
Garcia, Sergio Britto; Novelli, Marco; Wright, Nicholas A
2000-01-01
While the origin of tumours, whether from one cell or many, has been a source of fascination for experimental oncologists for some time, in recent years there has been a veritable explosion of information about the clonal architecture of tumours and their antecedents, stimulated, in the main, by the ready accessibility of new molecular techniques. While most of these new results have apparently confirmed the monoclonal origin of human epithelial (and other) tumours, there are a significant number of studies in which this conclusion just cannot be made. Moreover, analysis of many articles show that the potential impact of such considerations as patch size and clonal evolution on determinations of clonality have largely been ignored, with the result that a number of these studies are confounded. However, the clonal architecture of preneoplastic lesions provide some interesting insights — many lesions which might have been hitherto regarded as hyperplasias are apparently clonal in derivation. If this is indeed true, it calls into some question our hopeful corollary that a monoclonal origin presages a neoplastic habitus. Finally, it is clear, for many reasons, that methods of analysis which involve the disaggregation of tissues, albeit microdissected, are far from ideal and we should be putting more effort into techniques where the clonal architecture of normal tissues, preneoplastic and preinvasive lesions and their derivative tumours can be directly visualized in situ. PMID:10762440
Van Drunen, Wendy E; van Kleunen, Mark; Dorken, Marcel E
2015-07-21
Clonality is a pervasive feature of sessile organisms, but this form of asexual reproduction is thought to interfere with sexual fitness via the movement of gametes among the modules that comprise the clone. This within-clone movement of gametes is expected to reduce sexual fitness via mate limitation of male reproductive success and, in some cases, via the production of highly inbred (i.e., self-fertilized) offspring. However, clonality also results in the spatial expansion of the genetic individual (i.e., genet), and this should decrease distances gametes and sexually produced offspring must travel to avoid competing with other gametes and offspring from the same clone. The extent to which any negative effects of clonality on mating success might be offset by the positive effects of spatial expansion is poorly understood. Here, we develop spatially explicit models in which fitness was determined by the success of genets through their male and female sex functions. Our results indicate that clonality serves to increase sexual fitness when it is associated with the outward expansion of the genet. Our models further reveal that the main fitness benefit of clonal expansion might occur through the dispersal of offspring over a wider area compared with nonclonal phenotypes. We conclude that, instead of interfering with sexual reproduction, clonal expansion should often serve to enhance sexual fitness.
Giannopoulos, Lambros; Papaparaskevas, Joseph; Refene, Eirini; Daikos, Georgios; Stavrianeas, Nikolaos; Tsakris, Athanassios
2015-02-01
Molecular typing data on antimicrobial-resistant Propionibacterium strains are limited in the literature. We examined antimicrobial resistance profiles and the underlying resistance mechanisms in Propionibacterium spp. isolates recovered from patients with moderate to severe acne vulgaris in Greece. The clonallity of the resistant Propionibacterium acnes isolates was also investigated. Propionibacterium spp. isolates were detected using Tryptone-Yeast Extract-Glucose (TYG) agar plates supplemented with 4% furazolidone. Erythromycin, clindamycin, vancomycin, penicillin, co-trimoxazole, doxycycline, minocycline and ciprofloxacin MICs were determined using the gradient strip method. Erythromycin, clindamycin and tetracycline mechanisms of resistance were determined using PCR and sequencing of the domain V of 23S rRNA and 16S rRNA, as well as the presence of the ermX gene. Typing was performed using the multi locus sequence typing (MLST) methodology. Seventy nine isolates from 76 patients were collected. Twenty-three isolates (29.1%) exhibited resistance to erythromycin and clindamycin, while two additional isolates (2.5%) were resistant only to erythromycin. Resistance to tetracycline was not detected. The underlying molecular mechanisms were point mutations A2059G and A2058G. MLST typing of the P. acnes resistant isolates revealed that lineage type IA1 (ST-1, 3 and 52) prevailed (12/18; 66.7%), whilst lineage type IA2 (ST-2 and 22) accounted for five more isolates (27.8%). Susceptible isolates were more evenly distributed between ST types. Propionibacterium spp. from moderate to severe acne vulgaris in Greece are frequently resistant to erythromycin/clindamycin but not to tetracyclines, mainly due to the point mutations A2059G and A2058G. P. acnes resistant isolates were more clonally related than susceptible ones and belonged to a limited number of MLST types. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nakano, V; Ignacio, A; Llanco, L; Bueris, V; Sircili, M P; Avila-Campos, M J
2017-04-01
Clostridium perfringens is an anaerobic bacterium ubiquitous in various environments, especially in soil and the gastrointestinal tract of healthy humans and animals. In this study, multilocus sequence typing protocol was used to investigate genotypic relationships among 40 C. perfringens strains isolated from humans and broiler chicken with necrotic enteritis [NE]. The results indicated a few clonal populations, mainly observed in human strains, with 32.5% of all strains associated with one of three clonal complexes and 30 sequences types. The CC-1 cluster showed an interesting and unexpected result because it contained seven strains [six from animals and one of human origin]. Detection assays for toxin genes tpeL and netB were also performed. The netB gene was only observed in 7.5% of the strains from healthy human. The toxin gene tpeL was detected in 22.5% of the C. perfringens strains isolated from three individuals and in six broilers with NE. Our study describes the role of some C. perfringens strains of human origin acting as reservoirs of virulence genes and sources of infection. In addition, the strains of human and animal origin were found to be genetically distinct but phylogenetically close, and the human strains showed more diversity than the animal strains. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ben Said, Meriam; Abbassi, Mohamed Salah; Gómez, Paula; Ruiz-Ripa, Laura; Sghaier, Senda; Ibrahim, Chourouk; Torres, Carmen; Hassen, Abdennaceur
2017-08-01
The objective was to characterize Staphylococcus aureus isolated from two wastewater treatment plants (WWTPs) located in Tunis City (Tunisia), during the period 2014-2015. Genetic lineages, antibiotic resistance mechanisms and virulence factors were determined for the recovered isolates. S. aureus isolates were recovered from 12 of the 62 wastewater samples tested (19.35%), and one isolate/sample was characterized, all of them being methicillin-susceptible (MSSA). Six spa types (t587, t674, t224, t127, t701 and t1534) were found among the 12 isolates, and the spa-t587, associated with the new sequence type ST3245, was the most predominant one (7 isolates). The remaining isolates were assigned to five clonal complexes (CC5, CC97, CC1, CC6 and CC522) according to the sequence-type determined and/or the spa-type detected. S. aureus isolates were ascribed to agrI (n = 3), agrII (n = 7) and agrIII (n = 1); however, one isolate was non-typeable. S. aureus showed resistance to (number of isolates): penicillin (12), erythromycin (7), tetracycline (one) and clindamycin (one). Among the virulence factors investigated, only one isolate harboured the tst gene, encoding the TSST-1 (toxic shock syndrome toxin 1). Despite the low number of studied isolates, the present study reports the occurrence of both human- and animal-associated S. aureus clonal complexes in WWTPs in Tunisia.
Jones, Meghan; Octavia, Sophie; Lammers, Geraldine; Heller, Jane; Lan, Ruiting
2017-05-01
Shiga toxin producing Escherichia coli O157:H7 (STEC O157) is naturally found in the gastrointestinal tract of cattle and can cause severe disease in humans. There is limited understanding of the population dynamics and microevolution of STEC O157 at herd level. In this study, isolates from a closed beef herd of 23 cows were used to examine the population turnover in the herd. Of the nine STEC O157 clades previously described, clade 7 was found in 162 of the 169 isolates typed. Multiple locus variable number tandem repeat analysis (MLVA) differentiated 169 isolates into 33 unique MLVA types. Five predominant MLVA types were evident with most of the remaining types containing only a single isolate. MLVA data suggest that over time clonal replacement occurred within the herd. Genome sequencing of 18 selected isolates found that the isolates were divided into four lineages, representing four different 'clones' in the herd. Genome data confirmed clonal replacement over time and provided evidence of cross transmission of strains between cows. The findings enhanced our understanding of the population dynamics of STEC O157 in its natural host that will help developing effective control measures to prevent the spread of the pathogen to the human population. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Hower, Suzanne; Phillips, Matthew C; Brodsky, Micah; Dameron, Adrienne; Tamargo, Manuel A; Salazar, Norma C; Jackson, Charlene R; Barrett, John B; Davidson, Maureen; Davis, Johnnie; Mukherjee, Sampa; Ewing, Ruth Y; Gidley, Maribeth L; Sinigalliano, Christopher D; Johns, Lisa; Johnson, Frank E; Adebanjo, Olufunmilola; Plano, Lisa R W
2013-05-01
In May of 2011, a live mass stranding of 26 short-finned pilot whales (Globicephala macrorhynchus) occurred in the lower Florida Keys. Five surviving whales were transferred from the original stranding site to a nearby marine mammal rehabilitation facility where they were constantly attended to by a team of volunteers. Bacteria cultured during the routine clinical care of the whales and necropsy of a deceased whale included methicillin-sensitive and methicillin-resistant Staphylococcus aureus (MSSA and MRSA). In order to investigate potential sources or reservoirs of MSSA and MRSA, samples were obtained from human volunteers, whales, seawater, and sand from multiple sites at the facility, nearby recreational beaches, and a canal. Samples were collected on 3 days. The second collection day was 2 weeks after the first, and the third collection day was 2 months after the last animal was removed from the facility. MRSA and MSSA were isolated on each day from the facility when animals and volunteers were present. MSSA was found at an adjacent beach on all three collection days. Isolates were characterized by utilizing a combination of quantitative real-time PCR to determine the presence of mecA and genes associated with virulence, staphylococcal protein A typing, staphylococcal cassette chromosome mec typing, multilocus sequence typing, and pulsed field gel electrophoresis (PFGE). Using these methods, clonally related MRSA were isolated from multiple environmental locations as well as from humans and animals. Non-identical but genetically similar MSSA and MRSA were also identified from distinct sources within this sample pool. PFGE indicated that the majority of MRSA isolates were clonally related to the prototype human strain USA300. These studies support the notion that S. aureus may be shed into an environment by humans or pilot whales and subsequently colonize or infect exposed new hosts.
Ramo, Ana; Monteagudo, Luis V; Del Cacho, Emilio; Sánchez-Acedo, Caridad; Quílez, Joaquín
2016-01-01
A multilocus fragment typing approach including eleven variable-number tandem-repeat (VNTR) loci and the GP60 gene was used to investigate the intra-farm and intra-host genetic diversity of Cryptosporidium parvum in sheep farms in a confined area in northeastern Spain. Genomic DNA samples of 113 C. parvum isolates from diarrheic pre-weaned lambs collected in 49 meat-type sheep farms were analyzed. Loci exhibited various degrees of polymorphism, the finding of 7-9 alleles in the four most variable and discriminatory markers (ML2, Cgd6_5400, Cgd6_3940, and GP60) being remarkable. The combination of alleles at the twelve loci identified a total of 74 multilocus subtypes (MLTs) and provided a Hunter-Gaston discriminatory index of 0.988 (95% CI, 0.979-0.996). The finding that most MLTs (n = 64) were unique to individual farms evidenced that cryptosporidial infection is mainly transmitted within sheep flocks, with herd-to-herd transmission playing a secondary role. Limited intra- host variability was found, since only five isolates were genotypically mixed. In contrast, a significant intra-farm genetic diversity was seen, with the presence of multiple MLTs on more than a half of the farms (28/46), suggesting frequent mutations or genetic exchange through recombination. Comparison with a previous study in calves in northern Spain using the same 12-loci typing approach showed differences in the identity of major alleles at most loci, with a single MLT being shared between lambs and calves. Analysis of evolutionary descent by the algorithm eBURST indicated a high degree of genetic divergence, with over 41% MLTs appearing as singletons along with a high number of clonal complexes, most of them linking only two MLTs. Bayesian Structure analysis and F statistics also revealed the genetic remoteness of most C. parvum isolates and no ancestral population size was chosen. Linkage analysis evidenced a prevalent pattern of clonality within the parasite population.
Seo, Mi-Ran; Kim, Jieun; Lee, Yangsoon; Lim, Dong-Gyun; Pai, Hyunjoo
2018-05-01
Clostridium difficile infection (CDI) is a major healthcare-associated infection. The aim of this study was to investigate the genetic relatedness of the endemic C. difficile PCR ribotype 018 strains in an institution and changes to their characteristics during a five-year period. A total of 207 isolates from inpatients at Hanyang University Hospital from 2009 to 2013 were analysed using multilocus variable-number tandem-repeat analysis (MLVA). Minimum inhibitory concentrations (MICs) of several antibiotics were determined. In total, 204 (98.6%) were genetically related, with a summed tandem-repeat distance (STRD) ≤ 10. Minimum-spanning-tree analysis identified 78 MLVA types, categorized into six clonal complexes (CCs). The largest cluster, CC-I, included 51 MLVA types from 148 isolates (71.5%) and the second largest cluster, CC-II, included 10 MLVA types from 36 isolates (17.4%). Resistance rates for antibiotics were: clindamycin (CLI), 97.6%; moxifloxacin (MXF), 98.6%; vancomycin (VAN), 1.4%; and rifaximin (RFX), 8.2%. All isolates were susceptible to piperacillin/tazobactam (TZP) and metronidazole (MTZ). Comparing the MICs of antibiotics for the isolates each year from 2009 to 2013, MICs of antibiotics that promote CDI, such as CLI, MXF, TZP and RFX, increased over the five-year period (P-value by Kruskal-Wallis test: < 0.0001, <0.0001, <0.0001, and <0.0001 respectively); however, MICs of VAN or MTZ, antibiotics for treatment of CDI, did not increase or decreased over the same time period (P-value by Kruskal-Wallis test: 0.166, <0.0001). C. difficile RT018 isolates in a tertiary hospital over a five-year period presented a close clonal relationship. MICs of antibiotics promoting CDI increased with this clonal expansion. Copyright © 2018 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Pescarmona, E; Pignoloni, P; Mauro, F R; Cerretti, R; Anselmo, A P; Mandelli, F; Baroni, C D
2000-08-01
We report the immunohistological, molecular and clinical findings in four patients affected by B-cell chronic lymphocytic leukaemia (CLL) who developed "Richter's syndrome with Hodgkin's disease (HD) features" or "CLL with Hodgkin's transformation", all characterised by the presence of typical Hodgkin/Reed-Sternberg (H/RS) cells in lymph node biopsies. In three cases the nodal involvement by CLL was demonstrated both by the presence of a predominant background of CD5/CD19/CD23+ small lymphocytes and an IgH monoclonal rearrangement revealed by PCR analysis. Conversely, in the remaining case there was neither immunohistological nor molecular evidence of lymph node involvement by CLL. In all four cases H/RS cells were Epstein-Barr virus (EBV) latent membrane protein (LMP-1) positive. These findings suggest that the presence of H/RS cells in the first three patients, who had CLL/HD nodal involvement, might be related to transformation or clonal evolution of CLL cells in H/RS cells, which is in keeping with use of the term "CLL with Hodgkin's transformation". In the fourth case a de novo HD may be postulated, representing a second malignancy presumably not clonally related to CLL. In all cases a key pathogenetic role of EBV is suggested by the expression of LMP-1 in H/RS cells. Our findings indicate that the presence of typical H/RS cells in lymph node biopsies in CLL patients may reflect a heterogeneous pathogenetic background. The different clinico-pathologic settings should be taken into consideration because of their possible implications for patients' treatment and prognosis.
McDonald, Thomas O; Michor, Franziska
2017-07-15
SIApopr (Simulating Infinite-Allele populations) is an R package to simulate time-homogeneous and inhomogeneous stochastic branching processes under a very flexible set of assumptions using the speed of C ++. The software simulates clonal evolution with the emergence of driver and passenger mutations under the infinite-allele assumption. The software is an application of the Gillespie Stochastic Simulation Algorithm expanded to a large number of cell types and scenarios, with the intention of allowing users to easily modify existing models or create their own. SIApopr is available as an R library on Github ( https://github.com/olliemcdonald/siapopr ). Supplementary data are available at Bioinformatics online. michor@jimmy.harvard.edu. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Tracking Genomic Cancer Evolution for Precision Medicine: The Lung TRACERx Study
Jamal-Hanjani, Mariam; Hackshaw, Alan; Ngai, Yenting; Shaw, Jacqueline; Dive, Caroline; Quezada, Sergio; Middleton, Gary; de Bruin, Elza; Le Quesne, John; Shafi, Seema; Falzon, Mary; Horswell, Stuart; Blackhall, Fiona; Khan, Iftekhar; Janes, Sam; Nicolson, Marianne; Lawrence, David; Forster, Martin; Fennell, Dean; Lee, Siow-Ming; Lester, Jason; Kerr, Keith; Muller, Salli; Iles, Natasha; Smith, Sean; Murugaesu, Nirupa; Mitter, Richard; Salm, Max; Stuart, Aengus; Matthews, Nik; Adams, Haydn; Ahmad, Tanya; Attanoos, Richard; Bennett, Jonathan; Birkbak, Nicolai Juul; Booton, Richard; Brady, Ged; Buchan, Keith; Capitano, Arrigo; Chetty, Mahendran; Cobbold, Mark; Crosbie, Philip; Davies, Helen; Denison, Alan; Djearman, Madhav; Goldman, Jacki; Haswell, Tom; Joseph, Leena; Kornaszewska, Malgorzata; Krebs, Matthew; Langman, Gerald; MacKenzie, Mairead; Millar, Joy; Morgan, Bruno; Naidu, Babu; Nonaka, Daisuke; Peggs, Karl; Pritchard, Catrin; Remmen, Hardy; Rowan, Andrew; Shah, Rajesh; Smith, Elaine; Summers, Yvonne; Taylor, Magali; Veeriah, Selvaraju; Waller, David; Wilcox, Ben; Wilcox, Maggie; Woolhouse, Ian; McGranahan, Nicholas; Swanton, Charles
2014-01-01
The importance of intratumour genetic and functional heterogeneity is increasingly recognised as a driver of cancer progression and survival outcome. Understanding how tumour clonal heterogeneity impacts upon therapeutic outcome, however, is still an area of unmet clinical and scientific need. TRACERx (TRAcking non-small cell lung Cancer Evolution through therapy [Rx]), a prospective study of patients with primary non-small cell lung cancer (NSCLC), aims to define the evolutionary trajectories of lung cancer in both space and time through multiregion and longitudinal tumour sampling and genetic analysis. By following cancers from diagnosis to relapse, tracking the evolutionary trajectories of tumours in relation to therapeutic interventions, and determining the impact of clonal heterogeneity on clinical outcomes, TRACERx may help to identify novel therapeutic targets for NSCLC and may also serve as a model applicable to other cancer types. PMID:25003521
Knudsen, Gitte M; Nielsen, Jesper Boye; Marvig, Rasmus L; Ng, Yin; Worning, Peder; Westh, Henrik; Gram, Lone
2017-08-01
Whole genome sequencing is increasing used in epidemiology, e.g. for tracing outbreaks of food-borne diseases. This requires in-depth understanding of pathogen emergence, persistence and genomic diversity along the food production chain including in food processing plants. We sequenced the genomes of 80 isolates of Listeria monocytogenes sampled from Danish food processing plants over a time-period of 20 years, and analysed the sequences together with 10 public available reference genomes to advance our understanding of interplant and intraplant genomic diversity of L. monocytogenes. Except for three persisting sequence types (ST) based on Multi Locus Sequence Typing being ST7, ST8 and ST121, long-term persistence of clonal groups was limited, and new clones were introduced continuously, potentially from raw materials. No particular gene could be linked to the persistence phenotype. Using time-based phylogenetic analyses of the persistent STs, we estimate the L. monocytogenes evolutionary rate to be 0.18-0.35 single nucleotide polymorphisms/year, suggesting that the persistent STs emerged approximately 100 years ago, which correlates with the onset of industrialization and globalization of the food market. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Ingram, Wendy Marie; Goodrich, Leeanne M; Robey, Ellen A; Eisen, Michael B
2013-01-01
Toxoplasma gondii chronic infection in rodent secondary hosts has been reported to lead to a loss of innate, hard-wired fear toward cats, its primary host. However the generality of this response across T. gondii strains and the underlying mechanism for this pathogen-mediated behavioral change remain unknown. To begin exploring these questions, we evaluated the effects of infection with two previously uninvestigated isolates from the three major North American clonal lineages of T. gondii, Type III and an attenuated strain of Type I. Using an hour-long open field activity assay optimized for this purpose, we measured mouse aversion toward predator and non-predator urines. We show that loss of innate aversion of cat urine is a general trait caused by infection with any of the three major clonal lineages of parasite. Surprisingly, we found that infection with the attenuated Type I parasite results in sustained loss of aversion at times post infection when neither parasite nor ongoing brain inflammation were detectable. This suggests that T. gondii-mediated interruption of mouse innate aversion toward cat urine may occur during early acute infection in a permanent manner, not requiring persistence of parasite cysts or continuing brain inflammation.
von Götz, Franz; Häussler, Susanne; Jordan, Doris; Saravanamuthu, Senthil Selvan; Wehmhöner, Dirk; Strüßmann, André; Lauber, Joerg; Attree, Ina; Buer, Jan; Tümmler, Burkhard; Steinmetz, Ivo
2004-01-01
The heterogeneous environment of the lung of the cystic fibrosis (CF) patient gives rise to Pseudomonas aeruginosa small colony variants (SCVs) with increased antibiotic resistance, autoaggregative growth behavior, and an enhanced ability to form biofilms. In this study, oligonucleotide DNA microarrays were used to perform a genome-wide expression study of autoaggregative and highly adherent P. aeruginosa SCV 20265 isolated from a CF patient's lung in comparison with its clonal wild type and a revertant generated in vitro from the SCV population. Most strikingly, SCV 20265 showed a pronounced upregulation of the type III protein secretion system (TTSS) and the respective effector proteins. This differential expression was shown to be biologically meaningful, as SCV 20265 and other hyperpiliated and autoaggregative SCVs with increased TTSS expression were significantly more cytotoxic for macrophages in vitro and were more virulent in a mouse model of respiratory tract infection than the wild type. The observed cytotoxicity and virulence of SCV 20265 required exsA, an important transcriptional activator of the TTSS. Thus, the prevailing assumption that P. aeruginosa is subject to selection towards reduced cytotoxicity and attenuated virulence during chronic CF lung infection might not apply to all clonal variants. PMID:15175297
Enforced Clonality Confers a Fitness Advantage
Martínková, Jana; Klimešová, Jitka
2016-01-01
In largely clonal plants, splitting of a maternal plant into potentially independent plants (ramets) is usually spontaneous; however, such fragmentation also occurs in otherwise non-clonal species due to application of external force. This process might play an important yet largely overlooked role for otherwise non-clonal plants by providing a mechanism to regenerate after disturbance. Here, in a 5-year garden experiment on two short-lived, otherwise non-clonal species, Barbarea vulgaris and Barbarea stricta, we compared the fitness of plants fragmented by simulated disturbance (“enforced ramets”) both with plants that contemporaneously originate in seed and with individuals unscathed by the disturbance event. Because the ability to regrow from fragments is related to plant age and stored reserves, we compared the effects of disturbance applied during three different ontogenetic stages of the plants. In B. vulgaris, enforced ramet fitness was higher than the measured fitness values of both uninjured plants and plants established from seed after the disturbance. This advantage decreased with increasing plant age at the time of fragmentation. In B. stricta, enforced ramet fitness was lower than or similar to fitness of uninjured plants and plants grown from seed. Our results likely reflect the habitat preferences of the study species, as B. vulgaris occurs in anthropogenic, disturbed habitats where body fragmentation is more probable and enforced clonality thus more advantageous than in the more natural habitats preferred by B. stricta. Generalizing from our results, we see that increased fitness yielded by enforced clonality would confer an evolutionary advantage in the face of disturbance, especially in habitats where a seed bank has not been formed, e.g., during invasion or colonization. Our results thus imply that enforced clonality should be taken into account when studying population dynamics and life strategies of otherwise non-clonal species in disturbed habitats. PMID:26858732
Xu, Cheng-Yuan; Schooler, Shon S; Van Klinken, Rieks D
2012-01-01
In contrast to seeds, high sensitivity of vegetative fragments to unfavourable environments may limit the expansion of clonal invasive plants. However, clonal integration promotes the establishment of propagules in less suitable habitats and may facilitate the expansion of clonal invaders into intact native communities. Here, we examine the influence of clonal integration on the morphology and growth of ramets in two invasive plants, Alternanthera philoxeroides and Phyla canescens, under varying light conditions. In a greenhouse experiment, branches, connected ramets and severed ramets of the same mother plant were exposed under full sun and 85% shade and their morphological and growth responses were assessed. The influence of clonal integration on the light reaction norm (connection×light interaction) of daughter ramets was species-specific. For A. philoxeroides, clonal integration evened out the light response (total biomass, leaf mass per area, and stem number, diameter and length) displayed in severed ramets, but these connection×light interactions were largely absent for P. canescens. Nevertheless, for both species, clonal integration overwhelmed light effect in promoting the growth of juvenile ramets during early development. Also, vertical growth, as an apparent shade acclimation response, was more prevalent in severed ramets than in connected ramets. Finally, unrooted branches displayed smaller organ size and slower growth than connected ramets, but the pattern of light reaction was similar, suggesting mother plants invest in daughter ramets prior to their own branches. Clonal integration modifies light reaction norms of morphological and growth traits in a species-specific manner for A. philoxeroides and P. canescens, but it improves the establishment of juvenile ramets of both species in light-limiting environments by promoting their growth during early development. This factor may be partially responsible for their ability to successfully colonize native plant communities.
Becheler, Ronan; Cassone, Anne-Laure; Noel, Philippe; Mouchel, Olivier; Morrison, Cheryl L.; Arnaud-Haond, Sophie
2017-01-01
Sampling in the deep sea is a technical challenge, which has hindered the acquisition of robust datasets that are necessary to determine the fine-grained biological patterns and processes that may shape genetic diversity. Estimates of the extent of clonality in deep-sea species, despite the importance of clonality in shaping the local dynamics and evolutionary trajectories, have been largely obscured by such limitations. Cold-water coral reefs along European margins are formed mainly by two reef-building species, Lophelia pertusa and Madrepora oculata. Here we present a fine-grained analysis of the genotypic and genetic composition of reefs occurring in the Bay of Biscay, based on an innovative deep-sea sampling protocol. This strategy was designed to be standardized, random, and allowed the georeferencing of all sampled colonies. Clonal lineages discriminated through their Multi-Locus Genotypes (MLG) at 6–7 microsatellite markers could thus be mapped to assess the level of clonality and the spatial spread of clonal lineages. High values of clonal richness were observed for both species across all sites suggesting a limited occurrence of clonality, which likely originated through fragmentation. Additionally, spatial autocorrelation analysis underlined the possible occurrence of fine-grained genetic structure in several populations of both L. pertusa and M. oculata. The two cold-water coral species examined had contrasting patterns of connectivity among canyons, with among-canyon genetic structuring detected in M. oculata, whereas L. pertusa was panmictic at the canyon scale. This study exemplifies that a standardized, random and georeferenced sampling strategy, while challenging, can be applied in the deep sea, and associated benefits outlined here include improved estimates of fine grained patterns of clonality and dispersal that are comparable across sites and among species.
You, Wen-Hua; Han, Cui-Min; Fang, Long-Xiang; Du, Dao-Lin
2016-01-01
Many notorious invasive plants are clonal, spreading mainly by vegetative propagules. Propagule pressure (the number of propagules) may affect the establishment, growth, and thus invasion success of these clonal plants, and such effects may also depend on habitat conditions. To understand how propagule pressure, habitat conditions and clonal integration affect the establishment and growth of the invasive clonal plants, an 8-week greenhouse with an invasive clonal plant, Alternanthera philoxeroides was conducted. High (five fragments) or low (one fragment) propagule pressure was established either in bare soil (open habitat) or dense native vegetation of Jussiaea repens (vegetative habitat), with the stolon connections either severed from or connected to the relatively older ramets. High propagule pressure greatly increased the establishment and growth of A. philoxeroides, especially when it grew in vegetative habitats. Surprisingly, high propagule pressure significantly reduced the growth of individual plants of A. philoxeroides in open habitats, whereas it did not affect the individual growth in vegetative habitats. A shift in the intraspecific interaction on A. philoxeroides from competition in open habitats to facilitation in vegetative habitats may be the main reason. Moreover, clonal integration significantly improved the growth of A. philoxeroides only in open habitats, especially with low propagule pressure, whereas it had no effects on the growth and competitive ability of A. philoxeroides in vegetative habitats, suggesting that clonal integration may be of most important for A. philoxeroides to explore new open space and spread. These findings suggest that propagule pressure may be crucial for the invasion success of A. philoxeroides, and such an effect also depends on habitat conditions.
NASA Astrophysics Data System (ADS)
Becheler, Ronan; Cassone, Anne-Laure; Noël, Philippe; Mouchel, Olivier; Morrison, Cheryl L.; Arnaud-Haond, Sophie
2017-11-01
Sampling in the deep sea is a technical challenge, which has hindered the acquisition of robust datasets that are necessary to determine the fine-grained biological patterns and processes that may shape genetic diversity. Estimates of the extent of clonality in deep-sea species, despite the importance of clonality in shaping the local dynamics and evolutionary trajectories, have been largely obscured by such limitations. Cold-water coral reefs along European margins are formed mainly by two reef-building species, Lophelia pertusa and Madrepora oculata. Here we present a fine-grained analysis of the genotypic and genetic composition of reefs occurring in the Bay of Biscay, based on an innovative deep-sea sampling protocol. This strategy was designed to be standardized, random, and allowed the georeferencing of all sampled colonies. Clonal lineages discriminated through their Multi-Locus Genotypes (MLG) at 6-7 microsatellite markers could thus be mapped to assess the level of clonality and the spatial spread of clonal lineages. High values of clonal richness were observed for both species across all sites suggesting a limited occurrence of clonality, which likely originated through fragmentation. Additionally, spatial autocorrelation analysis underlined the possible occurrence of fine-grained genetic structure in several populations of both L. pertusa and M. oculata. The two cold-water coral species examined had contrasting patterns of connectivity among canyons, with among-canyon genetic structuring detected in M. oculata, whereas L. pertusa was panmictic at the canyon scale. This study exemplifies that a standardized, random and georeferenced sampling strategy, while challenging, can be applied in the deep sea, and associated benefits outlined here include improved estimates of fine grained patterns of clonality and dispersal that are comparable across sites and among species.
Khankhet, Jordan; Vanderwolf, Karen J.; McAlpine, Donald F.; McBurney, Scott; Overy, David P.; Slavic, Durda; Xu, Jianping
2014-01-01
Pseudogymnoascus destructans is the causative agent of an emerging infectious disease that threatens populations of several North American bat species. The fungal disease was first observed in 2006 and has since caused the death of nearly six million bats. The disease, commonly known as white-nose syndrome, is characterized by a cutaneous infection with P. destructans causing erosions and ulcers in the skin of nose, ears and/or wings of bats. Previous studies based on sequences from eight loci have found that isolates of P. destructans from bats in the US all belong to one multilocus genotype. Using the same multilocus sequence typing method, we found that isolates from eastern and central Canada also had the same genotype as those from the US, consistent with the clonal expansion of P. destructans into Canada. However, our PCR fingerprinting revealed that among the 112 North American isolates we analyzed, three, all from Canada, showed minor genetic variation. Furthermore, we found significant variations among isolates in mycelial growth rate; the production of mycelial exudates; and pigment production and diffusion into agar media. These phenotypic differences were influenced by culture medium and incubation temperature, indicating significant variation in environmental condition - dependent phenotypic expression among isolates of the clonal P. destructans genotype in North America. PMID:25122221
Khankhet, Jordan; Vanderwolf, Karen J; McAlpine, Donald F; McBurney, Scott; Overy, David P; Slavic, Durda; Xu, Jianping
2014-01-01
Pseudogymnoascus destructans is the causative agent of an emerging infectious disease that threatens populations of several North American bat species. The fungal disease was first observed in 2006 and has since caused the death of nearly six million bats. The disease, commonly known as white-nose syndrome, is characterized by a cutaneous infection with P. destructans causing erosions and ulcers in the skin of nose, ears and/or wings of bats. Previous studies based on sequences from eight loci have found that isolates of P. destructans from bats in the US all belong to one multilocus genotype. Using the same multilocus sequence typing method, we found that isolates from eastern and central Canada also had the same genotype as those from the US, consistent with the clonal expansion of P. destructans into Canada. However, our PCR fingerprinting revealed that among the 112 North American isolates we analyzed, three, all from Canada, showed minor genetic variation. Furthermore, we found significant variations among isolates in mycelial growth rate; the production of mycelial exudates; and pigment production and diffusion into agar media. These phenotypic differences were influenced by culture medium and incubation temperature, indicating significant variation in environmental condition--dependent phenotypic expression among isolates of the clonal P. destructans genotype in North America.
Hanghøj, Kristian Ebbesen; Andersen, Kaj Scherz; Boomsma, Jacobus J.
2016-01-01
How differentiation between cell types evolved is a fundamental question in biology, but few studies have explored single-gene phenotypes that mediate first steps towards division of labour with selective advantage for groups of cells. Here, we show that differential expression of the FLO11 gene produces stable fractions of Flo11+ and Flo11− cells in clonal Saccharomyces cerevisiae biofilm colonies on medium with intermediate viscosity. Differentiated Flo11+/− colonies, consisting of adhesive and non-adhesive cells, obtain a fourfold growth advantage over undifferentiated colonies by overgrowing glucose resources before depleting them, rather than depleting them while they grow as undifferentiated Flo11− colonies do. Flo11+/− colonies maintain their structure and differentiated state by switching non-adhesive cells to adhesive cells with predictable probability. Mixtures of Flo11+ and Flo11− cells from mutant strains that are unable to use this epigenetic switch mechanism produced neither integrated colonies nor growth advantages, so the condition-dependent selective advantages of differentiated FLO11 expression can only be reaped by clone-mate cells. Our results show that selection for cell differentiation in clonal eukaryotes can evolve before the establishment of obligate undifferentiated multicellularity, and without necessarily leading to more advanced organizational complexity. PMID:27807261
Escherichia coli ST131, an Intriguing Clonal Group
Bertrand, Xavier; Madec, Jean-Yves
2014-01-01
SUMMARY In 2008, a previously unknown Escherichia coli clonal group, sequence type 131 (ST131), was identified on three continents. Today, ST131 is the predominant E. coli lineage among extraintestinal pathogenic E. coli (ExPEC) isolates worldwide. Retrospective studies have suggested that it may originally have risen to prominence as early as 2003. Unlike other classical group B2 ExPEC isolates, ST131 isolates are commonly reported to produce extended-spectrum β-lactamases, such as CTX-M-15, and almost all are resistant to fluoroquinolones. Moreover, ST131 E. coli isolates are considered to be truly pathogenic, due to the spectrum of infections they cause in both community and hospital settings and the large number of virulence-associated genes they contain. ST131 isolates therefore seem to contradict the widely held view that high levels of antimicrobial resistance are necessarily associated with a fitness cost leading to a decrease in pathogenesis. Six years after the first description of E. coli ST131, this review outlines the principal traits of ST131 clonal group isolates, based on the growing body of published data, and highlights what is currently known and what we need to find out to provide public health authorities with better information to help combat ST131. PMID:24982321
Tissue-specific and time-dependent clonal expansion of ENU-induced mutant cells in gpt delta mice.
Nakayama, Takafumi; Sawai, Tomoko; Masuda, Ikuko; Kaneko, Shinya; Yamauchi, Kazumi; Blyth, Benjamin J; Shimada, Yoshiya; Tachibana, Akira; Kakinuma, Shizuko
2017-10-01
DNA mutations play a crucial role in the origins of cancer, and the clonal expansion of mutant cells is one of the fundamental steps in multistage carcinogenesis. In this study, we correlated tumor incidence in B6C3F1 mice during the period after exposure to N-ethyl-N-nitrosourea (ENU) with the persistence of ENU-induced mutant clones in transgenic gpt delta B6C3F1 mice. The induced gpt mutations afforded no selective advantage in the mouse cells and could be distinguished by a mutational spectrum that is characteristic of ENU treatment. The gpt mutations were passengers of the mutant cell of origin and its daughter cells and thus could be used as neutral markers of clones that arose and persisted in the tissues. Female B6C3F1 mice exposed for 1 month to 200 ppm ENU in the drinking water developed early thymic lymphomas and late liver and lung tumors. To assay gpt mutations, we sampled the thymus, liver, lung, and small intestine of female gpt delta mice at 3 days, 4 weeks, and 8 weeks after the end of ENU exposure. Our results reveal that, in all four tissues, the ENU-induced gpt mutations persisted for weeks after the end of mutagen exposure. Clonal expansion of mutant cells was observed in the thymus and small intestine, with the thymus showing larger clone sizes. These results indicate that the clearance of mutant cells and the potential for clonal expansion during normal tissue growth depends on tissue type and that these factors may affect the sensitivity of different tissues to carcinogenesis. Environ. Mol. Mutagen. 58:592-606, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
del Amo, Eva; Esteva, Cristina; Hernandez-Bou, Susanna; Galles, Carmen; Navarro, Marian; Sauca, Goretti; Diaz, Alvaro; Gassiot, Paula; Marti, Carmina; Larrosa, Nieves; Ciruela, Pilar; Jane, Mireia; Sá-Leão, Raquel; Muñoz-Almagro, Carmen
2016-01-01
The aim of this study was to study the serotypes and clonal diversity of pneumococci causing invasive pneumococcal disease in Catalonia, Spain, in the era of 13-valent pneumococcal conjugate vaccine (PCV13). In our region, this vaccine is only available in the private market and it is estimated a PCV13 vaccine coverage around 55% in children. A total of 1551 pneumococcal invasive isolates received between 2010 and 2013 in the Molecular Microbiology Department at Hospital Sant Joan de Déu, Barcelona, were included. Fifty-two serotypes and 249 clonal types—defined by MLST—were identified. The most common serotypes were serotype 1 (n = 182; 11.7%), 3 (n = 145; 9.3%), 19A (n = 137; 8.8%) and 7F (n = 122; 7.9%). Serotype 14 was the third most frequent serotype in children < 2 years (15 of 159 isolates). PCV7 serotypes maintained their proportion along the period of study, 16.6% in 2010 to 13.4% in 2013, whereas there was a significant proportional decrease in PCV13 serotypes, 65.3% in 2010 to 48.9% in 2013 (p<0.01). This decrease was mainly attributable to serotypes 19A and 7F. Serotype 12F achieved the third position in 2013 (n = 22, 6.4%). The most frequent clonal types found were ST306 (n = 154, 9.9%), ST191 (n = 111, 7.2%), ST989 (n = 85, 5.5%) and ST180 (n = 80, 5.2%). Despite their decrease, PCV13 serotypes continue to be a major cause of disease in Spain. These results emphasize the need for complete PCV13 vaccination. PMID:26953887
Clonal architecture of secondary acute myeloid leukemia defined by single-cell sequencing.
Hughes, Andrew E O; Magrini, Vincent; Demeter, Ryan; Miller, Christopher A; Fulton, Robert; Fulton, Lucinda L; Eades, William C; Elliott, Kevin; Heath, Sharon; Westervelt, Peter; Ding, Li; Conrad, Donald F; White, Brian S; Shao, Jin; Link, Daniel C; DiPersio, John F; Mardis, Elaine R; Wilson, Richard K; Ley, Timothy J; Walter, Matthew J; Graubert, Timothy A
2014-07-01
Next-generation sequencing has been used to infer the clonality of heterogeneous tumor samples. These analyses yield specific predictions-the population frequency of individual clones, their genetic composition, and their evolutionary relationships-which we set out to test by sequencing individual cells from three subjects diagnosed with secondary acute myeloid leukemia, each of whom had been previously characterized by whole genome sequencing of unfractionated tumor samples. Single-cell mutation profiling strongly supported the clonal architecture implied by the analysis of bulk material. In addition, it resolved the clonal assignment of single nucleotide variants that had been initially ambiguous and identified areas of previously unappreciated complexity. Accordingly, we find that many of the key assumptions underlying the analysis of tumor clonality by deep sequencing of unfractionated material are valid. Furthermore, we illustrate a single-cell sequencing strategy for interrogating the clonal relationships among known variants that is cost-effective, scalable, and adaptable to the analysis of both hematopoietic and solid tumors, or any heterogeneous population of cells.
Athey, Taryn B. T.; Teatero, Sarah; Sieswerda, Lee E.; Gubbay, Jonathan B.; Marchand-Austin, Alex; Li, Aimin; Wasserscheid, Jessica; Dewar, Ken; McGeer, Allison; Williams, David
2015-01-01
An outbreak of type emm59 invasive group A Streptococcus (iGAS) disease was declared in 2008 in Thunder Bay District, Northwestern Ontario, 2 years after a countrywide emm59 epidemic was recognized in Canada. Despite a declining number of emm59 infections since 2010, numerous cases of iGAS disease continue to be reported in the area. We collected clinical information on all iGAS cases recorded in Thunder Bay District from 2008 to 2013. We also emm typed and sequenced the genomes of all available strains isolated from 2011 to 2013 from iGAS infections and from severe cases of soft tissue infections. We used whole-genome sequencing data to investigate the population structure of GAS strains of the most frequently isolated emm types. We report an increased incidence of iGAS in Thunder Bay compared to the metropolitan area of Toronto/Peel and the province of Ontario. Illicit drug use, alcohol abuse, homelessness, and hepatitis C infection were underlying diseases or conditions that might have predisposed patients to iGAS disease. Most cases were caused by clonal strains of skin or generalist emm types (i.e., emm82, emm87, emm101, emm4, emm83, and emm114) uncommonly seen in other areas of the province. We observed rapid waxing and waning of emm types causing disease and their replacement by other emm types associated with the same tissue tropisms. Thus, iGAS disease in Thunder Bay District predominantly affects a select population of disadvantaged persons and is caused by clonally related strains of a few skin and generalist emm types less commonly associated with iGAS in other areas of Ontario. PMID:26491184
Athey, Taryn B T; Teatero, Sarah; Sieswerda, Lee E; Gubbay, Jonathan B; Marchand-Austin, Alex; Li, Aimin; Wasserscheid, Jessica; Dewar, Ken; McGeer, Allison; Williams, David; Fittipaldi, Nahuel
2016-01-01
An outbreak of type emm59 invasive group A Streptococcus (iGAS) disease was declared in 2008 in Thunder Bay District, Northwestern Ontario, 2 years after a countrywide emm59 epidemic was recognized in Canada. Despite a declining number of emm59 infections since 2010, numerous cases of iGAS disease continue to be reported in the area. We collected clinical information on all iGAS cases recorded in Thunder Bay District from 2008 to 2013. We also emm typed and sequenced the genomes of all available strains isolated from 2011 to 2013 from iGAS infections and from severe cases of soft tissue infections. We used whole-genome sequencing data to investigate the population structure of GAS strains of the most frequently isolated emm types. We report an increased incidence of iGAS in Thunder Bay compared to the metropolitan area of Toronto/Peel and the province of Ontario. Illicit drug use, alcohol abuse, homelessness, and hepatitis C infection were underlying diseases or conditions that might have predisposed patients to iGAS disease. Most cases were caused by clonal strains of skin or generalist emm types (i.e., emm82, emm87, emm101, emm4, emm83, and emm114) uncommonly seen in other areas of the province. We observed rapid waxing and waning of emm types causing disease and their replacement by other emm types associated with the same tissue tropisms. Thus, iGAS disease in Thunder Bay District predominantly affects a select population of disadvantaged persons and is caused by clonally related strains of a few skin and generalist emm types less commonly associated with iGAS in other areas of Ontario. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Park, Kyung-Hwa; Greenwood-Quaintance, Kerryl E; Uhl, James R; Cunningham, Scott A; Chia, Nicholas; Jeraldo, Patricio R; Sampathkumar, Priya; Nelson, Heidi; Patel, Robin
2017-01-01
Staphylococcus aureus is a leading cause of bacteremia in hospitalized patients. Whether or not S. aureus bacteremia (SAB) is associated with clonality, implicating potential nosocomial transmission, has not, however, been investigated. Herein, we examined the epidemiology of SAB using whole genome sequencing (WGS). 152 SAB isolates collected over the course of 2015 at a single large Minnesota medical center were studied. Staphylococcus protein A (spa) typing was performed by PCR/Sanger sequencing; multilocus sequence typing (MLST) and core genome MLST (cgMLST) were determined by WGS. Forty-eight isolates (32%) were methicillin-resistant S. aureus (MRSA). The isolates encompassed 66 spa types, clustered into 11 spa clonal complexes (CCs) and 10 singleton types. 88% of 48 MRSA isolates belonged to spa CC-002 or -008. Methicillin-susceptible S. aureus (MSSA) isolates were more genotypically diverse, with 61% distributed across four spa CCs (CC-002, CC-012, CC-008 and CC-084). By MLST, there was 31 sequence types (STs), including 18 divided into 6 CCs and 13 singleton STs. Amongst MSSA isolates, the common MLST clones were CC5 (23%), CC30 (19%), CC8 (15%) and CC15 (11%). Common MRSA clones were CC5 (67%) and CC8 (25%); there were no MRSA isolates in CC45 or CC30. By cgMLST analysis, there were 9 allelic differences between two isolates, with the remaining 150 isolates differing from each other by over 40 alleles. The two isolates were retroactively epidemiologically linked by medical record review. Overall, cgMLST analysis resulted in higher resolution epidemiological typing than did multilocus sequence or spa typing.
Effects of complex life cycles on genetic diversity: cyclical parthenogenesis.
Rouger, R; Reichel, K; Malrieu, F; Masson, J P; Stoeckel, S
2016-11-01
Neutral patterns of population genetic diversity in species with complex life cycles are difficult to anticipate. Cyclical parthenogenesis (CP), in which organisms undergo several rounds of clonal reproduction followed by a sexual event, is one such life cycle. Many species, including crop pests (aphids), human parasites (trematodes) or models used in evolutionary science (Daphnia), are cyclical parthenogens. It is therefore crucial to understand the impact of such a life cycle on neutral genetic diversity. In this paper, we describe distributions of genetic diversity under conditions of CP with various clonal phase lengths. Using a Markov chain model of CP for a single locus and individual-based simulations for two loci, our analysis first demonstrates that strong departures from full sexuality are observed after only a few generations of clonality. The convergence towards predictions made under conditions of full clonality during the clonal phase depends on the balance between mutations and genetic drift. Second, the sexual event of CP usually resets the genetic diversity at a single locus towards predictions made under full sexuality. However, this single recombination event is insufficient to reshuffle gametic phases towards full-sexuality predictions. Finally, for similar levels of clonality, CP and acyclic partial clonality (wherein a fixed proportion of individuals are clonally produced within each generation) differentially affect the distribution of genetic diversity. Overall, this work provides solid predictions of neutral genetic diversity that may serve as a null model in detecting the action of common evolutionary or demographic processes in cyclical parthenogens (for example, selection or bottlenecks).
Saffari, Fereshteh; Monsen, Tor; Karmostaji, Afsaneh; Azimabad, Fahimeh Bahadori; Widerström, Micael
2017-11-01
Infections associated with Acinetobacter baumannii represent an increasing threat in healthcare settings. Therefore, we investigated the epidemiological relationship between clinical isolates of A. baumannii obtained from patients in a university hospital in Bandar Abbas in southern Iran. Sixty-four consecutive non-duplicate clinical isolates collected during 2014-2015 were subjected to susceptibility testing, clonal relationship analysis using PFGE, multilocus variable-number tandem-repeat analysis (MLVA) and multilocus sequence typing (MLST), and examined for the presence of carbapenemases and integrons. Almost all A. baumannii isolates were extensively drug-resistant (XDR; 98 %) and carried an OXA carbapenemase gene (blaOXA-23-like; 98 %) and class 1 integrons (48 %). PFGE and MLST analysis identified three major genotypes, all belonging to clonal complex 92 (CC92): sequence type 848 (ST848) (n=23), ST451 (n=16) and ST195 (n=8). CC92 has previously been documented in the hospital setting in northern Iran, and ST195 has been reported in Arab States of the Persian Gulf. These data suggest national and global transmission of A. baumannii CC92. This report demonstrates the occurrence and potential spread of closely related XDR genotypes of A. baumannii CC92 within a university hospital in southern Iran. These genotypes were found in the majority of the investigated isolates, showed high prevalence of blaOXA-23 and integron class 1, and were associated with stay in the intensive care unit. Very few treatment options remain for healthcare-adapted XDR A. baumannii, and hence effective measures are desperately needed to reduce the spread of these strains and resultant infections in the healthcare setting.
Comparative Analysis of the Orphan CRISPR2 Locus in 242 Enterococcus faecalis Strains
Hullahalli, Karthik; Rodrigues, Marinelle; Schmidt, Brendan D.; Li, Xiang; Bhardwaj, Pooja; Palmer, Kelli L.
2015-01-01
Clustered, Regularly Interspaced Short Palindromic Repeats and their associated Cas proteins (CRISPR-Cas) provide prokaryotes with a mechanism for defense against mobile genetic elements (MGEs). A CRISPR locus is a molecular memory of MGE encounters. It contains an array of short sequences, called spacers, that generally have sequence identity to MGEs. Three different CRISPR loci have been identified among strains of the opportunistic pathogen Enterococcus faecalis. CRISPR1 and CRISPR3 are associated with the cas genes necessary for blocking MGEs, but these loci are present in only a subset of E. faecalis strains. The orphan CRISPR2 lacks cas genes and is ubiquitous in E. faecalis, although its spacer content varies from strain to strain. Because CRISPR2 is a variable locus occurring in all E. faecalis, comparative analysis of CRISPR2 sequences may provide information about the clonality of E. faecalis strains. We examined CRISPR2 sequences from 228 E. faecalis genomes in relationship to subspecies phylogenetic lineages (sequence types; STs) determined by multilocus sequence typing (MLST), and to a genome phylogeny generated for a representative 71 genomes. We found that specific CRISPR2 sequences are associated with specific STs and with specific branches on the genome tree. To explore possible applications of CRISPR2 analysis, we evaluated 14 E. faecalis bloodstream isolates using CRISPR2 analysis and MLST. CRISPR2 analysis identified two groups of clonal strains among the 14 isolates, an assessment that was confirmed by MLST. CRISPR2 analysis was also used to accurately predict the ST of a subset of isolates. We conclude that CRISPR2 analysis, while not a replacement for MLST, is an inexpensive method to assess clonality among E. faecalis isolates, and can be used in conjunction with MLST to identify recombination events occurring between STs. PMID:26398194
Chaillou, Stéphane; Lucquin, Isabelle; Najjari, Afef; Zagorec, Monique; Champomier-Vergès, Marie-Christine
2013-01-01
Lactobacillus sakei plays a major role in meat fermentation and in the preservation of fresh meat. The large diversity of L. sakei strains represents a valuable and exploitable asset in the development of a variety of industrial applications; however, an efficient method to identify and classify these strains has yet to be developed. In this study, we used multilocus sequence typing (MLST) to analyze the polymorphism and allelic distribution of eight loci within an L. sakei population of 232 strains collected worldwide. Within this population, we identified 116 unique sequence types with an average pairwise nucleotide diversity per site (π) of 0.13%. Results from Structure, goeBurst, and ClonalFrame software analyses demonstrated that the L. sakei population analyzed here is derived from three ancestral lineages, each of which shows evidence of a unique evolutionary history influenced by independent selection scenarios. However, the signature of selective events in the contemporary population of isolates was somewhat masked by the pervasive phenomenon of homologous recombination. Our results demonstrate that lineage 1 is a completely panmictic subpopulation in which alleles have been continually redistributed through the process of intra-lineage recombination. In contrast, lineage 2 was characterized by a high degree of clonality. Lineage 3, the earliest-diverging branch in the genealogy, showed evidence of both clonality and recombination. These evolutionary histories strongly indicate that the three lineages may correspond to distinct ecotypes, likely linked or specialized to different environmental reservoirs. The MLST scheme developed in this study represents an easy and straightforward tool that can be used to further analyze the population dynamics of L. sakei strains in food products. PMID:24069179
Chaillou, Stéphane; Lucquin, Isabelle; Najjari, Afef; Zagorec, Monique; Champomier-Vergès, Marie-Christine
2013-01-01
Lactobacillus sakei plays a major role in meat fermentation and in the preservation of fresh meat. The large diversity of L. sakei strains represents a valuable and exploitable asset in the development of a variety of industrial applications; however, an efficient method to identify and classify these strains has yet to be developed. In this study, we used multilocus sequence typing (MLST) to analyze the polymorphism and allelic distribution of eight loci within an L. sakei population of 232 strains collected worldwide. Within this population, we identified 116 unique sequence types with an average pairwise nucleotide diversity per site (π) of 0.13%. Results from Structure, goeBurst, and ClonalFrame software analyses demonstrated that the L. sakei population analyzed here is derived from three ancestral lineages, each of which shows evidence of a unique evolutionary history influenced by independent selection scenarios. However, the signature of selective events in the contemporary population of isolates was somewhat masked by the pervasive phenomenon of homologous recombination. Our results demonstrate that lineage 1 is a completely panmictic subpopulation in which alleles have been continually redistributed through the process of intra-lineage recombination. In contrast, lineage 2 was characterized by a high degree of clonality. Lineage 3, the earliest-diverging branch in the genealogy, showed evidence of both clonality and recombination. These evolutionary histories strongly indicate that the three lineages may correspond to distinct ecotypes, likely linked or specialized to different environmental reservoirs. The MLST scheme developed in this study represents an easy and straightforward tool that can be used to further analyze the population dynamics of L. sakei strains in food products.
2013-01-01
Background Enterococcus faecium has recently emerged as a multidrug-resistant nosocomial pathogen involved in outbreaks worldwide. A high rate of resistance to different antibiotics has been associated with virulent clonal complex 17 isolates carrying the esp and hyl genes and the purK1 allele. Results Twelve clinical vancomycin-resistant Enterococcus faecium (VREF) isolates were obtained from pediatric patients at the Hospital Infantil de México Federico Gómez (HIMFG). Among these VREF isolates, 58.3% (7/12) were recovered from urine, while 41.7% (5/12) were recovered from the bloodstream. The VREF isolates showed a 100% rate of resistance to ampicillin, amoxicillin-clavulanate, ciprofloxacin, clindamycin, chloramphenicol, streptomycin, gentamicin, rifampicin, erythromycin and teicoplanin. In addition, 16.7% (2/12) of the isolates were resistant to linezolid, and 66.7% (8/12) were resistant to tetracycline and doxycycline. PCR analysis revealed the presence of the vanA gene in all 12 VREF isolates, esp in 83.3% (10/12) of the isolates and hyl in 50% (6/12) of the isolates. Phylogenetic analysis via molecular typing was performed using pulsed-field gel electrophoresis (PFGE) and demonstrated 44% similarity among the VREF isolates. MLST analysis identified four different sequence types (ST412, ST757, ST203 and ST612). Conclusion This study provides the first report of multidrug-resistant VREF isolates belonging to clonal complex 17 from a tertiary care center in Mexico City. Multidrug resistance and genetic determinants of virulence confer advantages among VREF in the colonization of their host. Therefore, the prevention and control of the spread of nosocomial infections caused by VREF is crucial for identifying new emergent subclones that could be challenging to treat in subsequent years. PMID:24330424
Molecular Analysis of Mixed Endometrial Carcinomas Shows Clonality in Most Cases.
Köbel, Martin; Meng, Bo; Hoang, Lien N; Almadani, Noorah; Li, Xiaodong; Soslow, Robert A; Gilks, C Blake; Lee, Cheng-Han
2016-02-01
Mixed endometrial carcinoma refers to a tumor that comprises 2 or more distinct histotypes. We studied 18 mixed-type endometrial carcinomas-11 mixed serous and low-grade endometrioid carcinomas (SC/EC), 5 mixed clear cell and low-grade ECs (CCC/EC), and 2 mixed CCC and SCs (CCC/SC), using targeted next-generation sequencing and immunohistochemistry to compare the molecular profiles of the different histotypes present in each case. In 16 of 18 cases there was molecular evidence that both components shared a clonal origin. Eight cases (6 EC/SC, 1 EC/CCC, and 1 SC/CCC) showed an SC molecular profile that was the same in both components. Five cases (3 CCC/EC and 2 SC/EC) showed a shared endometrioid molecular profile and identical mismatch-repair protein deficiency in both components. A single SC/EC case harbored the same POLE exonuclease domain mutation in both components. One SC/CCC and 1 EC/CCC case showed both shared and unique molecular features in the 2 histotype components, suggesting early molecular divergence from a common clonal origin. In 2 cases, there were no shared molecular features, and these appear to be biologically unrelated synchronous tumors. Overall, these results show that the different histologic components in mixed endometrial carcinomas typically share the same molecular aberrations. Mixed endometrial carcinomas most commonly occur through morphologic mimicry, whereby tumors with serous-type molecular profile show morphologic features of EC or CCC, or through underlying deficiency in DNA nucleotide repair, with resulting rapid accrual of mutations and intratumoral phenotypic heterogeneity. Less commonly, mixed endometrial carcinomas are the result of early molecular divergence from a common progenitor clone or are synchronous biologically unrelated tumors (collision tumors).
Molecular analysis of mixed endometrial carcinomas shows clonality in most cases
Hoang, Lien N.; Almadani, Noorah; Li, Xiaodong; Soslow, Robert A; Gilks, C. Blake; Lee, Cheng-Han
2016-01-01
Mixed endometrial carcinoma refers to a tumor that is comprised of two or more distinct histotypes. We studied 18 mixed-type endometrial carcinomas - 11 mixed serous and low-grade endometrioid carcinomas (SC/EC), 5 mixed clear cell and low-grade endometrioid carcinomas (CCC/EC), and 2 mixed clear cell and serous carcinoma (CCC/SC), using targeted next generation sequencing and immunohistochemistry to compare the molecular profiles of the different histotypes present in each case. In 16 of 18 cases there was molecular evidence that both components shared a clonal origin. Eight cases (6 EC/SC, 1 EC/CCC and 1 SC/CCC) showed a serous carcinoma molecular profile that was the same in both components. Five cases (3 CCC/EC and 2 SC/EC) showed a shared endometrioid molecular profile and identical mismatch repair protein (MMR) deficiency in both components. A single SC/EC case harbored the same POLE exonuclease domain mutation in both components. One SC/CCC and one EC/CCC case showed both shared and unique molecular features in the two histotype components, suggesting early molecular divergence from a common clonal origin. In two cases, there were no shared molecular features and these appear to be biologically unrelated synchronous tumors. Overall, these results show that the different histologic components in mixed endometrial carcinomas typically share the same molecular aberrations. Mixed endometrial carcinomas most commonly occur through morphological mimicry, whereby tumors with serous-type molecular profile show morphological features of endometrioid or clear cell carcinoma, or through underlying deficiency in DNA nucleotide repair, with resulting rapid accrual of mutations and intratumoral phenotypic heterogeneity. Less commonly, mixed endometrial carcinomas are the result of early molecular divergence from a common progenitor clone or are synchronous biologically unrelated tumors (collision tumors). PMID:26492180
Takahashi, Takashi; Fujita, Tomohiro; Shibayama, Akiyoshi; Tsuyuki, Yuzo; Yoshida, Haruno
2017-07-01
Streptococcus dysgalactiae subsp. equisimilis (SDSE; a β-hemolytic streptococcus of human or animal origin) infections are emerging worldwide. We evaluated the clonal distribution of complement-mediated cell lysis-like gene (sicG) among SDSE isolates from three central prefectures of Japan. Group G/C β-hemolytic streptococci were collected from three institutions from April 2014 to March 2016. Fifty-five strains (52 from humans and three from animals) were identified as SDSE on the basis of 16S rRNA sequencing data.; they were obtained from 25 sterile (blood, joint fluid, and cerebrospinal fluid) and 30 non-sterile (skin-, respiratory tract-, and genitourinary tract-origin) samples. emm genotyping, multilocus sequence typing, sicG amplification/sequencing, and random amplified polymorphic DNA (RAPD) analysis of sicG-positive strains were performed. sicG was detected in 30.9% of the isolates (16 human and one canine) and the genes from the 16 human samples (blood, 10; open pus, 3; sputum, 2; throat swab, 1) and one canine sample (open pus) showed the same sequence pattern. All sicG-harboring isolates belonged to clonal complex (CC) 17, and the most prevalent emm type was stG6792 (82.4%). There was a significant association between sicG presence and the development of skin/soft tissue infections. CC17 isolates with sicG could be divided into three subtypes by RAPD analysis. CC17 SDSE harboring sicG might have spread into three closely-related prefectures in central Japan during 2014-2016. Clonal analysis of isolates from other areas might be needed to monitor potentially virulent strains in humans and animals. © The Korean Society for Laboratory Medicine
Shoja, Saeed; Ansari, Maryam; Faridi, Forogh; Azad, Mohsen; Davoodian, Parivash; Javadpour, Sedigheh; Farahani, Abbas; Mobarrez, Banafsheh Douzandeh; Karmostaji, Afsaneh
2018-05-01
The spread of carbapenem-resistant Klebsiella pneumoniae especially bla NDM-1 -carrying isolates is a great concern worldwide. In this study we describe the molecular basis of carbapenem-resistant K. pneumoniae in three teaching hospitals at Bandar Abbas, south of Iran. A total of 170 nonduplicate clinical isolates of K. pneumoniae were investigated. Antimicrobial susceptibility test was performed by disc diffusion method. PCR was carried out for detection of carbapenemase (bla KPC , bla IMP , bla VIM , bla NDM , bla SPM , bla OXA-48 , and bla OXA-181 ) and extended-spectrum β-lactamase (bla CTX-M , bla SHV , bla TEM , bla VEB , bla GES , and bla PER ). Clonal relatedness of bla NDM-1 -positive isolates was evaluated by multilocus sequence typing (MLST). Tigecycline was the most effective antimicrobial agent with 96.5% susceptibility. In addition, 6.5% of the isolates were carbapenem resistant. Bla NDM-1 was identified in four isolates (isolate A-D) and all of them were multidrug-resistant. MLST revealed that bla NDM-1 -positive isolates were clonally related and belonged to two distinct clonal complexes, including sequence type (ST) 13 and ST 392. In addition to bla NDM-1, isolate A coharbored bla SHV-11 , bla CTX-M-15 , and bla TEM-1 , isolate B harbored bla SHV-11 and bla CTX-M-15 , and isolates C and D contained both bla SHV-1 and bla CTX-M-15 . Our results indicate that NDM-1-producing K. pneumoniae ST 13 and ST 392 are disseminated in our region. Moreover, one of our major concerns is that these isolates may be more prevalent in the near future. Tracking and urgent intervention is necessary for control and prevention of these resistant isolates.
Eastern cottonwood clonal mixing study: intergenotypic competition effects
G. Sam Foster; R.J. Rousseau; W.L Nance
1998-01-01
Intergenotypic competition of seven clones of eastern cottonwood (Populus deltoides) was evaluated in a replacement series experiment. A partial diallel competition design was used to choose pairs (binary sets) of clones for plot type treatments. Two separate treatments were established for each pair of clones, namely (1) 75 percent clone A: 25 percent clone B and (2)...
Risk factors for Clostridium difficile infection in a hepatology ward.
Vanjak, Dominique; Girault, Guillaume; Branger, Catherine; Rufat, Pierre; Valla, Dominique-Charles; Fantin, Bruno
2007-02-01
During 2001, Clostridium difficile infection was observed in 23 patients hospitalized in a hepatology ward (attack rate, 0.9%). Since strain typing ruled out a clonal dissemination, we performed a case-control study. In addition to antibiotic use as a risk factor, the C. difficile infection rate was higher among patients with autoimmune hepatitis (P<.01).
USDA-ARS?s Scientific Manuscript database
Campylobacter jejuni is a zoonotic pathogen commonly associated with human gastroenteritis. Retail poultry meat is a major food-related transmission source of C. jejuni to humans. The present study investigated the genetic diversity, clonal relationship, and strain risk-ranking of 403 representativ...
First Isolate of KPC-2-Producing Klebsiella pneumonaie Sequence Type 23 from the Americas
Cejas, Daniela; Fernández Canigia, Liliana; Rincón Cruz, Giovanna; Elena, Alan X.; Maldonado, Ivana; Gutkind, Gabriel O.
2014-01-01
KPC-2-producing Klebsiella pneumoniae isolates mainly correspond to clonal complex 258 (CC258); however, we describe KPC-2-producing K. pneumoniae isolates belonging to invasive sequence type 23 (ST23). KPC-2 has scarcely been reported to occur in ST23, and this report describes the first isolation of this pathogen in the Americas. Acquisition of resistant markers in virulent clones could mark an evolutionary step toward the establishment of these clones as major nosocomial pathogens. PMID:25031447
Connerton, Phillippa; Wain, John; Hien, Tran T.; Ali, Tahir; Parry, Christopher; Chinh, Nguyen T.; Vinh, Ha; Ho, Vo A.; Diep, To S.; Day, Nicholas P. J.; White, Nicholas J.; Dougan, Gordon; Farrar, Jeremy J.
2000-01-01
Multidrug-resistant Salmonella enterica serotype Typhi isolates from four outbreaks of typhoid fever in southern Vietnam between 1993 and 1997 were compared. Pulsed-field gel electrophoresis, bacteriophage and plasmid typing, and antibiotic susceptibilities showed that independent outbreaks of multidrug-resistant typhoid fever in southern Vietnam are caused by single bacterial strains. However, different outbreaks do not derive from the clonal expansion of a single multidrug-resistant serotype Typhi strain. PMID:10655411
Controlled growth of larger heterojunction interface area for organic photosensitive devices
Yang, Fan [Somerset, NJ; Forrest, Stephen R [Ann Arbor, MI
2009-12-29
An optoelectronic device and a method of fabricating a photosensitive optoelectronic device includes depositing a first organic semiconductor material on a first electrode to form a continuous first layer having protrusions, a side of the first layer opposite the first electrode having a surface area at least three times greater than an underlying lateral cross-sectional area; depositing a second organic semiconductor material directly on the first layer to form a discontinuous second layer, portions of the first layer remaining exposed; depositing a third organic semiconductor material directly on the second layer to form a discontinuous third layer, portions of at least the second layer remaining exposed; depositing a fourth organic semiconductor material on the third layer to form a continuous fourth layer, filling any exposed gaps and recesses in the first, second, and third layers; and depositing a second electrode on the fourth layer, wherein at least one of the first electrode and the second electrode is transparent, and the first and third organic semiconductor materials are both of a donor-type or an acceptor-type relative to second and fourth organic semiconductor materials, which are of the other material type.
Clonal propagation of eucalyptus in Brazilian nurseries
Ken McNabb; Natal Goncalves; Jose Goncalves
2002-01-01
Brazil has established extensive Eucalyptus plantations to support a growing forest products industry. During the past 25 years, the country has been a pioneer in developing clonal propagation systems to regenerate these highly productive plantations. Original clonal selections optimized disease resistance, coppicing ability, and volume growth, while recent priorities...
Virulence, sporulation, and elicitin production in three clonal lineages of Phytophthora ramorum
USDA-ARS?s Scientific Manuscript database
Phytophthora ramorum populations are clonal and consist of three lineages. Recent studies have shown that the clonal lineages may have varying degrees of aggressiveness on some host species, such as Quercus rubra. In this study, we examined virulence, sporulation and elicitin production of five P. ...
USDA-ARS?s Scientific Manuscript database
Phytophthora infestans, the cause of the devastating late blight disease of potato and tomato, exhibits a clonal reproductive lifestyle in North America. Phenotypes such as fungicide sensitivity and host preference are conserved among individuals within clonal lineages, while substantial phenotypic ...
Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality
USDA-ARS?s Scientific Manuscript database
To gain a detailed understanding of how plant microbes evolve and adapt to hosts, pesticides, and other factors, knowledge of the population dynamics and evolutionary history of populations is crucial. Plant pathogen populations are often clonal or partially clonal which requires different analytica...
Chromosome aberrations of clonal origin are present in astronauts' blood lymphocytes.
George, K; Durante, M; Willingham, V; Cucinotta, F A
2004-01-01
Radiation-induced chromosome translocations remain in peripheral blood cells over many years, and can potentially be used to measure retrospective doses or prolonged low-dose rate exposures. However, several recent studies have indicated that some individuals possess clones of cells with balanced chromosome abnormalities, which can result in an overestimation of damage and, therefore, influence the accuracy of dose calculations. We carefully examined the patterns of chromosome damage found in the blood lymphocytes of twelve astronauts, and also applied statistical methods to screen for the presence of potential clones. Cells with clonal aberrations were identified in three of the twelve individuals. These clonal cells were present in samples collected both before and after space flight, and yields are higher than previously reported for healthy individuals in this age range (40-52 years of age). The frequency of clonal damage appears to be even greater in chromosomes prematurely condensed in interphase, when compared with equivalent analysis in metaphase cells. The individuals with clonal aberrations were followed-up over several months and the yields of all clones decreased during this period. Since clonal aberrations may be associated with increased risk of tumorigenesis, it is important to accurately identify cells containing clonal rearrangements for risk assessment as well as biodosimetry. Copyright 2003 S. Karger AG, Basel
Chromosome aberrations of clonal origin are present in astronauts' blood lymphocytes
NASA Technical Reports Server (NTRS)
George, K.; Durante, M.; Willingham, V.; Cucinotta, F. A.
2004-01-01
Radiation-induced chromosome translocations remain in peripheral blood cells over many years, and can potentially be used to measure retrospective doses or prolonged low-dose rate exposures. However, several recent studies have indicated that some individuals possess clones of cells with balanced chromosome abnormalities, which can result in an overestimation of damage and, therefore, influence the accuracy of dose calculations. We carefully examined the patterns of chromosome damage found in the blood lymphocytes of twelve astronauts, and also applied statistical methods to screen for the presence of potential clones. Cells with clonal aberrations were identified in three of the twelve individuals. These clonal cells were present in samples collected both before and after space flight, and yields are higher than previously reported for healthy individuals in this age range (40-52 years of age). The frequency of clonal damage appears to be even greater in chromosomes prematurely condensed in interphase, when compared with equivalent analysis in metaphase cells. The individuals with clonal aberrations were followed-up over several months and the yields of all clones decreased during this period. Since clonal aberrations may be associated with increased risk of tumorigenesis, it is important to accurately identify cells containing clonal rearrangements for risk assessment as well as biodosimetry. Copyright 2003 S. Karger AG, Basel.
Thompson, Stacey Lee; Bérubé, Yanik; Bruneau, Anne; Ritland, Kermit
2008-10-01
Asexual reproduction has the potential to promote population structuring through matings between clones as well as through limited dispersal of related progeny. Here we present an application of three-gene identity coefficients that tests whether clonal reproduction promotes inbreeding and spatial relatedness within populations. With this method, the first two genes are sampled to estimate pairwise relatedness or inbreeding, whereas the third gene is sampled from either a clone or a sexually derived individual. If three-gene coefficients are significantly greater for clones than nonclones, then clonality contributes excessively to genetic structure. First, we describe an estimator of three-gene identity and briefly evaluate its properties. We then use this estimator to test the effect of clonality on the genetic structure within populations of yellow-cedar (Callitropsis nootkatensis) using a molecular marker survey. Five microsatellite loci were genotyped for 485 trees sampled from nine populations. Our three-gene analyses show that clonal ramets promote inbreeding and spatial structure in most populations. Among-population correlations between clonal extent and genetic structure generally support these trends, yet with less statistical significance. Clones appear to contribute to genetic structure through the limited dispersal of offspring from replicated ramets of the same clonal genet, whereas this structure is likely maintained by mating among these relatives.
Ramonaite, Sigita; Tamuleviciene, Egle; Alter, Thomas; Kasnauskyte, Neringa; Malakauskas, Mindaugas
2017-06-15
Campylobacter (C.) jejuni is the leading cause of human campylobacteriosis worldwide. We performed a molecular epidemiological study to investigate the genetic relationship among C. jejuni strains isolated from human diarrhoeal patients, broiler products and dairy cattle in Lithuania. The C. jejuni isolates from human clinical cases, dairy cattle and broiler products were genotyped using multilocus sequence typing (MLST). Allele numbers for each housekeeping gene, sequence type (ST), and clonal complex (CC) were assigned by submitting the DNA sequences to the C. jejuni MLST database ( http://pubmlst.org/campylobacter ). Based on the obtained sequence data of the housekeeping genes a phylogenetic analysis of the strains was performed and a minimum spanning tree (MST) was calculated. Among the 262 C. jejuni strains (consisting of 43 strains isolated from dairy cattle, 102 strains isolated from broiler products and 117 clinical human C. jejuni strains), 82 different MLST sequence types and 22 clonal complexes were identified. Clonal complexes CC21 and CC353 predominated among the C. jejuni strains. On ST-level, five sequence types (ST-5, ST-21, ST-50, ST-464 and ST-6410) were dominating and these five STs accounted for 35.9% (n = 94) of our isolates. In addition, 51 (19.5%) C. jejuni strains representing 27 (32.9%) STs were reported for the first time in the PubMLST database ( http://pubmlst.org/campylobacter ). The highest Czekanowski index or proportional similarity index (PSI) was calculated for C. jejuni strains isolated from human campylobacteriosis cases and broiler products (PSI = 0.32) suggesting a strong link between broiler strains and human cases. The PSI of dairy cattle and human samples was lower (PSI = 0.11), suggesting a weaker link between bovine strains and human cases. The calculated Simpson's index of all C. jejuni isolates showed a high genetic diversity (D = 0.96). Our results suggest that broiler products are the most important source of human campylobacteriosis in Lithuania. The study provides information on MLST type distribution and genetic relatedness of C. jejuni strains from humans, broiler products and dairy cattle in Lithuania for the first time, enabling a better understanding of the transmission pathways of C. jejuni in this country.
Pathogenesis and Consequences of Uniparental Disomy in Cancer
Makishima, Hideki; Maciejewski, Jaroslaw P.
2012-01-01
Systematic application of new genome-wide single nucleotide polymorphism arrays has demonstrated that somatically acquired regions of loss of heterozygosity (LOH) without changes in copy number frequently occur in many types of cancer. Until recently, the ubiquity of this type of chromosomal defect had remained unrecognized as it cannot be detected using routine cytogenetic technologies. Random and recurrent patterns of copy-neutral LOH, also referred to as uniparental disomy (UPD), can be found in specific cancer types and probably contribute to clonal outgrowth owing to various mechanisms. In this review we explore the types, topography, genesis, pathophysiological consequences and clinical implications of UPD. PMID:21518781
Didi, Jennifer; Lemée, Ludovic; Gibert, Laure; Pons, Jean-Louis
2014-01-01
Staphylococcus lugdunensis is an emergent virulent coagulase-negative staphylococcus responsible for severe infections similar to those caused by Staphylococcus aureus. To understand its potentially pathogenic capacity and have further detailed knowledge of the molecular traits of this organism, 93 isolates from various geographic origins were analyzed by multi-virulence-locus sequence typing (MVLST), targeting seven known or putative virulence-associated loci (atlLR2, atlLR3, hlb, isdJ, SLUG_09050, SLUG_16930, and vwbl). The polymorphisms of the putative virulence-associated loci were moderate and comparable to those of the housekeeping genes analyzed by multilocus sequence typing (MLST). However, the MVLST scheme generated 43 virulence types (VTs) compared to 20 sequence types (STs) based on MLST, indicating that MVLST was significantly more discriminating (Simpson's index [D], 0.943). No hypervirulent lineage or cluster specific to carriage strains was defined. The results of multilocus sequence analysis of known and putative virulence-associated loci are consistent with a clonal population structure for S. lugdunensis, suggesting a coevolution of these genes with housekeeping genes. Indeed, the nonsynonymous to synonymous evolutionary substitutions (dN/dS) ratio, the Tajima's D test, and Single-likelihood ancestor counting (SLAC) analysis suggest that all virulence-associated loci were under negative selection, even atlLR2 (AtlL protein) and SLUG_16930 (FbpA homologue), for which the dN/dS ratios were higher. In addition, this analysis of virulence-associated loci allowed us to propose a trilocus sequence typing scheme based on the intragenic regions of atlLR3, isdJ, and SLUG_16930, which is more discriminant than MLST for studying short-term epidemiology and further characterizing the lineages of the rare but highly pathogenic S. lugdunensis. PMID:25078912
Epidemiology and emm types of invasive group A streptococcal infections in Finland, 2008-2013.
Smit, P W; Lindholm, L; Lyytikäinen, O; Jalava, J; Pätäri-Sampo, A; Vuopio, J
2015-10-01
Invasive Streptococcus pyogenes (group A streptococcus, GAS) infections are a major global cause of morbidity and mortality. We analysed the surveillance data on invasive GAS and the microbiological characteristics of corresponding isolates to assess the incidence and emm type distribution of invasive GAS infections in Finland. Cases defined as patients with isolations of blood and cerebrospinal fluid S. pyogenes are mandatorily notified to the National Infectious Disease Registry and sent to the national reference laboratory for emm typing. Antimicrobial data were collected through the network including all clinical microbiology laboratories. Pulsed-field gel electrophoresis (PFGE) analysis was performed to assess clonality. In total, 1165 cases of invasive GAS were reported in Finland during 2008-2013; the median age was 52 years (range, 0-100) and 54% were male. The overall day 7 case fatality rate was 5.1% (59 cases). The average annual incidence was 3.6 cases per 100,000 population. A total of 1122 invasive GAS isolates (96%) were analysed by emm typing; 72 different emm types were identified, of which emm28 (297 isolates, 26%), emm89 (193 isolates, 12%) and emm1 (132 isolates, 12%) were the most common types. During 2008-2013, an increase of erythromycin resistance (1.9% to 8.7%) and clindamycin (0.9% to 9.2%) was observed. This resistance increase was in parallel with the introduction of a novel clone emm33 into Finland. The overall incidence of invasive GAS infections remained stable over the study period in Finland. We identified clonal spread of macrolide-resistant invasive emm33 GAS type, highlighting the importance of molecular surveillance.
Song, Minghui; Shi, Chunlei; Xu, Xuebing; Shi, Xianming
2016-11-01
The enterotoxin gene cluster (egc) has been proposed to contribute to the Staphylococcus aureus colonization, which highlights the need to evaluate genetic diversity and virulence gene profiles of the egc-positive population. Here, a total of 43 egc-positive isolates (16.2%) were identified from 266 S. aureus isolates that were obtained from various food and clinical specimens in Shanghai. Seven different egc profiles were found based on the polymerase chain reaction (PCR) result for egc genes. Then, these 43 egc-positive isolates were further typed by multilocus sequence typing, pulsed-field gel electrophoresis (PFGE), multiple-locus variable-number tandem-repeat analysis (MLVA), and accessory gene regulatory (agr) typing. It showed that the 43 egc-positive isolates displayed 17 sequence types, 28 PFGE patterns, 29 MLVA types, and 4 agr types, respectively. Among them, the dominant clonal lineage was CC5-agr II (48.84%). Thirty toxin and 20 adhesion-associated genes were detected by PCR in egc-positive isolates. Notably, invasive toxin genes showed a high prevalence, such as 76.7% for Panton-Valentine leukocidin encoding genes, 27.9% for sec, and 23.3% for tsst-1. Most of the examined adhesion-associated genes were found to be conserved (76.7-100%), whereas the fnbB gene was only found in 8 (18.6%) isolates. In addition, 33 toxin gene profiles and 13 adhesion gene profiles were identified, respectively. Our results imply that isolates belonging to the same clonal lineage harbored similar adhesion gene profiles but diverse toxin gene profiles. Overall, the high prevalence of invasive virulence genes increases the potential risk of egc-positive isolates in S. aureus infection.
Humphries, Adam; Cereser, Biancastella; Gay, Laura J.; Miller, Daniel S. J.; Das, Bibek; Gutteridge, Alice; Elia, George; Nye, Emma; Jeffery, Rosemary; Poulsom, Richard; Novelli, Marco R.; Rodriguez-Justo, Manuel; McDonald, Stuart A. C.; Wright, Nicholas A.; Graham, Trevor A.
2013-01-01
The genetic and morphological development of colorectal cancer is a paradigm for tumorigenesis. However, the dynamics of clonal evolution underpinning carcinogenesis remain poorly understood. Here we identify multipotential stem cells within human colorectal adenomas and use methylation patterns of nonexpressed genes to characterize clonal evolution. Numerous individual crypts from six colonic adenomas and a hyperplastic polyp were microdissected and characterized for genetic lesions. Clones deficient in cytochrome c oxidase (CCO−) were identified by histochemical staining followed by mtDNA sequencing. Topographical maps of clone locations were constructed using a combination of these data. Multilineage differentiation within clones was demonstrated by immunofluorescence. Methylation patterns of adenomatous crypts were determined by clonal bisulphite sequencing; methylation pattern diversity was compared with a mathematical model to infer to clonal dynamics. Individual adenomatous crypts were clonal for mtDNA mutations and contained both mucin-secreting and neuroendocrine cells, demonstrating that the crypt contained a multipotent stem cell. The intracrypt methylation pattern was consistent with the crypts containing multiple competing stem cells. Adenomas were epigenetically diverse populations, suggesting that they were relatively mitotically old populations. Intratumor clones typically showed less diversity in methylation pattern than the tumor as a whole. Mathematical modeling suggested that recent clonal sweeps encompassing the whole adenoma had not occurred. Adenomatous crypts within human tumors contain actively dividing stem cells. Adenomas appeared to be relatively mitotically old populations, pocketed with occasional newly generated subclones that were the result of recent rapid clonal expansion. Relative stasis and occasional rapid subclone growth may characterize colorectal tumorigenesis. PMID:23766371
Humphries, Adam; Cereser, Biancastella; Gay, Laura J; Miller, Daniel S J; Das, Bibek; Gutteridge, Alice; Elia, George; Nye, Emma; Jeffery, Rosemary; Poulsom, Richard; Novelli, Marco R; Rodriguez-Justo, Manuel; McDonald, Stuart A C; Wright, Nicholas A; Graham, Trevor A
2013-07-02
The genetic and morphological development of colorectal cancer is a paradigm for tumorigenesis. However, the dynamics of clonal evolution underpinning carcinogenesis remain poorly understood. Here we identify multipotential stem cells within human colorectal adenomas and use methylation patterns of nonexpressed genes to characterize clonal evolution. Numerous individual crypts from six colonic adenomas and a hyperplastic polyp were microdissected and characterized for genetic lesions. Clones deficient in cytochrome c oxidase (CCO(-)) were identified by histochemical staining followed by mtDNA sequencing. Topographical maps of clone locations were constructed using a combination of these data. Multilineage differentiation within clones was demonstrated by immunofluorescence. Methylation patterns of adenomatous crypts were determined by clonal bisulphite sequencing; methylation pattern diversity was compared with a mathematical model to infer to clonal dynamics. Individual adenomatous crypts were clonal for mtDNA mutations and contained both mucin-secreting and neuroendocrine cells, demonstrating that the crypt contained a multipotent stem cell. The intracrypt methylation pattern was consistent with the crypts containing multiple competing stem cells. Adenomas were epigenetically diverse populations, suggesting that they were relatively mitotically old populations. Intratumor clones typically showed less diversity in methylation pattern than the tumor as a whole. Mathematical modeling suggested that recent clonal sweeps encompassing the whole adenoma had not occurred. Adenomatous crypts within human tumors contain actively dividing stem cells. Adenomas appeared to be relatively mitotically old populations, pocketed with occasional newly generated subclones that were the result of recent rapid clonal expansion. Relative stasis and occasional rapid subclone growth may characterize colorectal tumorigenesis.
Effects of complex life cycles on genetic diversity: cyclical parthenogenesis
Rouger, R; Reichel, K; Malrieu, F; Masson, J P; Stoeckel, S
2016-01-01
Neutral patterns of population genetic diversity in species with complex life cycles are difficult to anticipate. Cyclical parthenogenesis (CP), in which organisms undergo several rounds of clonal reproduction followed by a sexual event, is one such life cycle. Many species, including crop pests (aphids), human parasites (trematodes) or models used in evolutionary science (Daphnia), are cyclical parthenogens. It is therefore crucial to understand the impact of such a life cycle on neutral genetic diversity. In this paper, we describe distributions of genetic diversity under conditions of CP with various clonal phase lengths. Using a Markov chain model of CP for a single locus and individual-based simulations for two loci, our analysis first demonstrates that strong departures from full sexuality are observed after only a few generations of clonality. The convergence towards predictions made under conditions of full clonality during the clonal phase depends on the balance between mutations and genetic drift. Second, the sexual event of CP usually resets the genetic diversity at a single locus towards predictions made under full sexuality. However, this single recombination event is insufficient to reshuffle gametic phases towards full-sexuality predictions. Finally, for similar levels of clonality, CP and acyclic partial clonality (wherein a fixed proportion of individuals are clonally produced within each generation) differentially affect the distribution of genetic diversity. Overall, this work provides solid predictions of neutral genetic diversity that may serve as a null model in detecting the action of common evolutionary or demographic processes in cyclical parthenogens (for example, selection or bottlenecks). PMID:27436524
2013-09-30
HPMM. For these minerals, kaolinite and smectite , the corresponding shear speed estimates are 13 m/s and 0.25 m/s. The third and fourth columns of...representative value for each parameter in two clay minerals, kaolinite and smectite , which are the most common types in marine mud. These values produce...13 m/s for kaolinite and 0.25 m/s for smectite . The third column shows typical ranges of values for h, L, and χ in the two clay types. The fourth
Neisseria meningitidis; clones, carriage, and disease.
Read, R C
2014-05-01
Neisseria meningitidis, the cause of meningococcal disease, has been the subject of sophisticated molecular epidemiological investigation as a consequence of the significant public health threat posed by this organism. The use of multilocus sequence typing and whole genome sequencing classifies the organism into clonal complexes. Extensive phenotypic, genotypic and epidemiological information is available on the PubMLST website. The human nasopharynx is the sole ecological niche of this species, and carrier isolates show extensive genetic diversity as compared with hyperinvasive lineages. Horizontal gene exchange and recombinant events within the meningococcal genome during residence in the human nasopharynx result in antigenic diversity even within clonal complexes, so that individual clones may express, for example, more than one capsular polysaccharide (serogroup). Successful clones are capable of wide global dissemination, and may be associated with explosive epidemics of invasive disease. © 2014 The Author Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.
Clonal Occurrence of Salmonella Weltevreden in Cultured Shrimp in the Mekong Delta, Vietnam
Noor Uddin, Gazi Md.; Larsen, Marianne Halberg; Barco, Lisa; Minh Phu, Tran; Dalsgaard, Anders
2015-01-01
This study investigated the occurrence, serovar and antimicrobial resistance of Salmonella spp. in shrimp samples from intensive and extensive farms located in three different provinces in the Mekong Delta, Vietnam. Shrimp from 11 of the 48 farms all contained S. Weltevreden, except for one farm yielding S. Agona, with no difference in Salmonella occurrence between the two production systems. Pulsed field gel electrophoresis (PFGE) of S. Weltevreden showed closely related XbaI pulse types, suggesting a clonal relationship despite the farms and shrimp samples being epidemiologically unrelated. S. Weltevreden was susceptible to most antimicrobials tested, with a few strains being resistant to florfenicol, chloramphenicol, sulfamethoxazole or trimethoprim. Future studies of the ecology of S. Weltevreden should establish if this serovar may survive better and even multiply in warm-water shrimp farm environments compared to other Salmonella serovars. PMID:26222547
Clonal Spread in Second Growth Stands of Coast Redwood, Sequoia sempervirens
Vladimir Douhovnikoff; Richard S. Dodd
2007-01-01
Coast redwood (Sequoia sempervirens) is one of the rare conifers to reproduce successfully through clonal spread. The importance of this mode of reproduction in stand development is largely unknown. Understanding the importance of clonal spread and the spatial structure of clones is crucial for stand management strategies that would aim to maximize...
Growth and stem form quality of clonal Pinus taeda following fertilization in the Virginia Piedmont
Jeremy P. Stovall; Colleen A. Carlson; John R. Seiler; Thomas R. Fox
2013-01-01
Clonal forestry offers the opportunity to increase yields, enhance uniformity, and improve wood characteristics. Intensive silvicultural practices, including fertilization, will be required to capture the full growth potential of clonal plantations. However, variation in nutrient use efficiency that exists among clones could affect growth responses. Our research...
GACD: Integrated Software for Genetic Analysis in Clonal F1 and Double Cross Populations.
Zhang, Luyan; Meng, Lei; Wu, Wencheng; Wang, Jiankang
2015-01-01
Clonal species are common among plants. Clonal F1 progenies are derived from the hybridization between 2 heterozygous clones. In self- and cross-pollinated species, double crosses can be made from 4 inbred lines. A clonal F1 population can be viewed as a double cross population when the linkage phase is determined. The software package GACD (Genetic Analysis of Clonal F1 and Double cross) is freely available public software, capable of building high-density linkage maps and mapping quantitative trait loci (QTL) in clonal F1 and double cross populations. Three functionalities are integrated in GACD version 1.0: binning of redundant markers (BIN); linkage map construction (CDM); and QTL mapping (CDQ). Output of BIN can be directly used as input of CDM. After adding the phenotypic data, the output of CDM can be used as input of CDQ. Thus, GACD acts as a pipeline for genetic analysis. GACD and example datasets are freely available from www.isbreeding.net. © The American Genetic Association. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Diagnostic value of immunoglobulin κ light chain gene rearrangement analysis in B-cell lymphomas.
Kokovic, Ira; Jezersek Novakovic, Barbara; Novakovic, Srdjan
2015-03-01
Analysis of the immunoglobulin κ light chain (IGK) gene is an alternative method for B-cell clonality assessment in the diagnosis of mature B-cell proliferations in which the detection of clonal immunoglobulin heavy chain (IGH) gene rearrangements fails. The aim of the present study was to evaluate the added value of standardized BIOMED-2 assay for the detection of clonal IGK gene rearrangements in the diagnostic setting of suspected B-cell lymphomas. With this purpose, 92 specimens from 80 patients with the final diagnosis of mature B-cell lymphoma (37 specimens), mature T-cell lymphoma (26 specimens) and reactive lymphoid proliferation (29 specimens) were analyzed for B-cell clonality. B-cell clonality analysis was performed using the BIOMED-2 IGH and IGK gene clonality assays. The determined sensitivity of the IGK assay was 67.6%, while the determined sensitivity of the IGH assay was 75.7%. The sensitivity of combined IGH+IGK assay was 81.1%. The determined specificity of the IGK assay was 96.2% in the group of T-cell lymphomas and 96.6% in the group of reactive lesions. The determined specificity of the IGH assay was 84.6% in the group of lymphomas and 86.2% in the group of reactive lesions. The comparison of GeneScan (GS) and heteroduplex pretreatment-polyacrylamide gel electrophoresis (HD-PAGE) methods for the analysis of IGK gene rearrangements showed a higher efficacy of GS analysis in a series of 27 B-cell lymphomas analyzed by both methods. In the present study, we demonstrated that by applying the combined IGH+IGK clonality assay the overall detection rate of B-cell clonality was increased by 5.4%. Thus, we confirmed the added value of the standardized BIOMED-2 IGK assay for assessment of B-cell clonality in suspected B-cell lymphomas with inconclusive clinical and cyto/histological diagnosis.
The maintenance of sex: Ronald Fisher meets the Red Queen.
Green, David; Mason, Chris
2013-08-21
Sex in higher diploids carries a two-fold cost of males that should reduce its fitness relative to cloning, and result in its extinction. Instead, sex is widespread and clonal species face early obsolescence. One possible reason is that sex is an adaptation that allows organisms to respond more effectively to endless changes in their environment. The purpose of this study was to model mutation and selection in a diploid organism in an evolving environment and ascertain their support for sex. We used a computational approach to model finite populations where a haploid environment subjects a diploid host to endlessly evolving change. Evolution in both populations is primarily through adoption of novel advantageous mutations within a large allele space. Sex outcompetes cloning by two complementary mechanisms. First, sexual diploids adopt advantageous homozygous mutations more rapidly than clonal ones under conditions of lag load (the gap between the actual adaptation of the diploid population and its theoretical optimum). This rate advantage can offset the higher fecundity of cloning. Second, a relative advantage to sex emerges where populations are significantly polymorphic, because clonal polymorphism runs the risk of clonal interference caused by selection on numerous lines of similar adaptation. This interference extends allele lifetime and reduces the rate of adaptation. Sex abolishes the interference, making selection faster and elevating population fitness. Differences in adaptation between sexual and clonal populations increase markedly with the number of loci under selection, the rate of mutation in the host, and a rapidly evolving environment. Clonal interference in these circumstances leads to conditions where the greater fecundity of clones is unable to offset their poor adaptation. Sexual and clonal populations then either co-exist, or sex emerges as the more stable evolutionary strategy. Sex can out-compete clones in a rapidly evolving environment, such as that characterized by pathogens, where clonal interference reduces the adaptation of clonal populations and clones adopt advantageous mutations more slowly. Since all organisms carry parasitic loads, the model is of potentially general applicability.
Longevity of clonal plants: why it matters and how to measure it
de Witte, Lucienne C.; Stöcklin, Jürg
2010-01-01
Background Species' life-history and population dynamics are strongly shaped by the longevity of individuals, but life span is one of the least accessible demographic traits, particularly in clonal plants. Continuous vegetative reproduction of genets enables persistence despite low or no sexual reproduction, affecting genet turnover rates and population stability. Therefore, the longevity of clonal plants is of considerable biological interest, but remains relatively poorly known. Scope Here, we critically review the present knowledge on the longevity of clonal plants and discuss its importance for population persistence. Direct life-span measurements such as growth-ring analysis in woody plants are relatively easy to take, although, for many clonal plants, these methods are not adequate due to the variable growth pattern of ramets and difficult genet identification. Recently, indirect methods have been introduced in which genet size and annual shoot increments are used to estimate genet age. These methods, often based on molecular techniques, allow the investigation of genet size and age structure of whole populations, a crucial issue for understanding their viability and persistence. However, indirect estimates of clonal longevity are impeded because the process of ageing in clonal plants is still poorly understood and because their size and age are not always well correlated. Alternative estimators for genet life span such as somatic mutations have recently been suggested. Conclusions Empirical knowledge on the longevity of clonal species has increased considerably in the last few years. Maximum age estimates are an indicator of population persistence, but are not sufficient to evaluate turnover rates and the ability of long-lived clonal plants to enhance community stability and ecosystem resilience. In order to understand the dynamics of populations it will be necessary to measure genet size and age structure, not only life spans of single individuals, and to use such data for modelling of genet dynamics. PMID:20880935
Regulation of the Prostate Cancer Tumor Microenvironment
2016-04-01
adenocarcinomas than wild-type controls at 30 weeks of age. Analysis of tumor infiltrating cells revealed increased infiltration of macrophage lineage...angiogenesis and proliferation2. Conversely, inflammation can trigger the infiltration of cytotoxic immune effector cells, resulting in the production of...clonal CD8+ T cells3. However, the contribution of the tumor infiltrating lymphocytes (TILs) to prostate cancer development, growth, and metastasis
Methicillin-Resistant Staphylococcus aureus ST398 from Human Patients, Upper Austria
Metz-Gercek, Sigrid; Mittermayer, Helmut
2009-01-01
Methicillin-resistant Staphylococcus aureus (MRSA) clonal type ST398 is usually associated with animals. We examined 1,098 confirmed MRSA samples from human patients and found that 21 were MRSA ST398. Most (16) patients were farmers. Increasing prevalence from 1.3% (2006) to 2.5% (2008) shows emergence of MRSA ST398 in humans in Austria. PMID:19402964
Finto Antony; Laurence Schimleck; Lewis Jordan; Benjamin Hornsby; Joseph Dahlen; Richard Daniels; Alexander Clark; Luis Apiolaza; Dudley Huber
2013-01-01
The use of clonal varieties in forestry offers great potential to improve growth traits (quantity) and wood properties (quality) of loblolly pine (Pinus taeda L.). Loblolly pine trees established via somatic embryogenesis (clones), full-sib zygotic crosses, and half-sib zygotic open-pollinated families were sampled to identify variation in growth and wood properties...
Keller, Judith I; Shriver, W Gregory
2014-01-01
Campylobacter jejuni is responsible for the majority of bacterial foodborne gastroenteritis in the US, usually due to the consumption of undercooked poultry. Research on which avian species transmit the bacterium is limited, especially in the US. We sampled wild birds in three families-Anatidae, Scolopacidae, and Laridae-in eastern North America to determine the prevalence and specific strains of Campylobacter. The overall prevalence of Campylobacter spp. was 9.2% for all wild birds sampled (n = 781). Campylobacter jejuni was the most prevalent species (8.1%), while Campylobacter coli and Campylobacter lari prevalence estimates were low (1.4% and 0.3%, respectively). We used multilocus sequence typing PCR specific to C. jejuni to characterize clonal complexes and sequence types isolated from wild bird samples and detected 13 novel sequence types, along with a clonal complex previously only associated with human disease (ST-658). Wild birds share an increasing amount of habitat with humans as more landscapes become fragmented and developed for human needs. Wild birds are and will remain an important aspect of public health due to their ability to carry and disperse emerging zoonotic pathogens or their arthropod vectors. As basic information such as prevalence is limited or lacking from a majority of wild birds in the US, this study provides further insight into Campylobacter epidemiology, host preference, and strain characterization of C. jejuni.
Population genetics of the wild yeast Saccharomyces paradoxus.
Johnson, Louise J; Koufopanou, Vassiliki; Goddard, Matthew R; Hetherington, Richard; Schäfer, Stefanie M; Burt, Austin
2004-01-01
Saccharomyces paradoxus is the closest known relative of the well-known S. cerevisiae and an attractive model organism for population genetic and genomic studies. Here we characterize a set of 28 wild isolates from a 10-km(2) sampling area in southern England. All 28 isolates are homothallic (capable of mating-type switching) and wild type with respect to nutrient requirements. Nine wild isolates and two lab strains of S. paradoxus were surveyed for sequence variation at six loci totaling 7 kb, and all 28 wild isolates were then genotyped at seven polymorphic loci. These data were used to calculate nucleotide diversity and number of segregating sites in S. paradoxus and to investigate geographic differentiation, population structure, and linkage disequilibrium. Synonymous site diversity is approximately 0.3%. Extensive incompatibilities between gene genealogies indicate frequent recombination between unlinked loci, but there is no evidence of recombination within genes. Some localized clonal growth is apparent. The frequency of outcrossing relative to inbreeding is estimated at 1.1% on the basis of heterozygosity. Thus, all three modes of reproduction known in the lab (clonal replication, inbreeding, and outcrossing) have been important in molding genetic variation in this species. PMID:15020405
Caugant, D A; Zollinger, W D; Mocca, L F; Frasch, C E; Whittam, T S; Frøholm, L O; Selander, R K
1987-01-01
Two hundred and thirty-four strains of Neisseria meningitidis, including 94 serotype 2a, 111 serotype 2b, and 19 serotype 2c isolates, together with 10 isolates that were serotyped as 2 with polyvalent antiserum but did not react with monoclonal antibodies, were characterized by the electrophoretic mobilities of 15 metabolic enzymes. Of these enzymes, 14 were polymorphic, and 56 distinctive combinations of alleles at the enzyme loci (electrophoretic types) were identified, among which the mean genetic diversity per locus was 0.413, or about 75% of that recorded for the species N. meningitidis as a whole. Mean genetic diversity among electrophoretic types of the same serotype (2a, 2b, or 2c) was, however, on average, less than half the total species diversity, and no multilocus genotypes were shared between isolates of the different serotypes, which belong to distinctive clonal lineages. Recent temporal changes in the frequencies of recovery of pathogenic strains of serotypes 2a and 2b in South Africa and North America resulted from clone replacement in these populations rather than evolutionary modification of the serotype protein of the initially dominant clones. PMID:3106223
Mitochondrial depolarization in yeast zygotes inhibits clonal expansion of selfish mtDNA.
Karavaeva, Iuliia E; Golyshev, Sergey A; Smirnova, Ekaterina A; Sokolov, Svyatoslav S; Severin, Fedor F; Knorre, Dmitry A
2017-04-01
Non-identical copies of mitochondrial DNA (mtDNA) compete with each other within a cell and the ultimate variant of mtDNA present depends on their relative replication rates. Using yeast Saccharomyces cerevisiae cells as a model, we studied the effects of mitochondrial inhibitors on the competition between wild-type mtDNA and mutant selfish mtDNA in heteroplasmic zygotes. We found that decreasing mitochondrial transmembrane potential by adding uncouplers or valinomycin changes the competition outcomes in favor of the wild-type mtDNA. This effect was significantly lower in cells with disrupted mitochondria fission or repression of the autophagy-related genes ATG8 , ATG32 or ATG33 , implying that heteroplasmic zygotes activate mitochondrial degradation in response to the depolarization. Moreover, the rate of mitochondrially targeted GFP turnover was higher in zygotes treated with uncoupler than in haploid cells or untreated zygotes. Finally, we showed that vacuoles of zygotes with uncoupler-activated autophagy contained DNA. Taken together, our data demonstrate that mitochondrial depolarization inhibits clonal expansion of selfish mtDNA and this effect depends on mitochondrial fission and autophagy. These observations suggest an activation of mitochondria quality control mechanisms in heteroplasmic yeast zygotes. © 2017. Published by The Company of Biologists Ltd.
Clonal dominance among T-lymphocyte infiltrates in arthritis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stamenkovic, I.; Stegagno, M.; Wright, K.A.
1988-02-01
Synovial membranes in patients with rheumatoid arthritis as well as other types of chronic destructive inflammatory arthritis contain infiltrates of activated T lymphocytes that probably contribute to the pathogenesis of the disease. In an effort to elucidate the nature of these infiltrates, interleukin 2 (IL-2)-responsive T lymphocytes were grown out of synovial fragments from 14 patients undergoing surgery for advanced destructive inflammatory joint disease. Eleven of the samples examined were from patients with classical rheumatoid arthritis, while three others were obtained from individuals with clinical osteoarthritis. Southern blot analysis of T-cell receptor (TCR) ..beta..-chain genes in 13 of 14 culturesmore » showed distinct rearrangements, indicating that each culture was characterized by the predominance of a limited number of clones. T-cell populations from peripheral blood stimulated with a variety of activators and expanded with IL-2 did not demonstrate evidence of similar clonality in long-term culture. These results suggest that a limited number of activated T-cell clones predominate at the site of tissue injury in rheumatoid synovial membranes as well as in other types of destructive inflammatory joint disease. Further characterization of these T-cell clones may aid our understanding of the pathogenesis of these rheumatic disorders.« less
Clonal Dominance among T-Lymphocyte Infiltrates in Arthritis
NASA Astrophysics Data System (ADS)
Stamenkovic, Ivan; Stegagno, Michele; Wright, Kathryn A.; Krane, Stephen M.; Amento, Edward P.; Colvin, Robert B.; Duquesnoy, Rene J.; Kurnick, James T.
1988-02-01
Synovial membranes in patients with rheumatoid arthritis as well as other types of chronic destructive inflammatory arthritis contain infiltrates of activated T lymphocytes that probably contribute to the pathogenesis of the disease. In an effort to elucidate the nature of these infiltrates, interleukin 2 (IL-2)-responsive T lymphocytes were grown out of synovial fragments from 14 patients undergoing surgery for advanced destructive inflammatory joint disease. Eleven of the samples examined were from patients with classical rheumatoid arthritis, while three others were obtained from individuals with clinical osteoarthritis. Southern blot analysis of T-cell receptor (TCR) β -chain genes in 13 of 14 cultures showed distinct rearrangements, indicating that each culture was characterized by the predominance of a limited number of clones. T-cell populations from peripheral blood stimulated with a variety of activators and expanded with IL-2 did not demonstrate evidence of similar clonality in long-term culture. These results suggest that a limited number of activated T-cell clones predominate at the site of tissue injury in rheumatoid synovial membranes as well as in other types of destructive inflammatory joint disease. Further characterization of these T-cell clones may aid our understanding of the pathogenesis of these rheumatic disorders.
Jenderny, Jutta; Goldmann, Claudia; Thede, Rebekka; Ebrecht, Monika; Korioth, Frank
2014-01-01
There are only a few cytogenetic analysis (CA) studies that directly compare the novel cultivation technique using immunostimulatory CpG-oligonucleotide DSP30/interleukin-2 (DSP30/IL2) with other culture methods. Therefore, parallel cultures of peripheral blood of 129 chronic lymphocytic leukemia (CLL) patients were set up in unstimulated cultures, in the presence of pokeweed medium (PWM), and with DSP30/IL2. Furthermore, CA results were compared with data obtained by FISH. Clonal aberrations were observed by CA in 6% of the cases in unstimulated cultures, in 27% of the cases with PWM, and in 40% of the cases with DSP30/IL2. Some clonal aberrations were detected by CA only with one culture method. Using 3 different culture methods, clonal aberrations were detected in 41% of the cases by CA and in 71% of the cases by FISH. Altogether, 78% of the cases exhibited clonal aberrations discovered by CA and FISH. Also, CA detected clonal aberrations not targeted by FISH in 7% of the cases, and FISH identified clonal aberrations not detected by CA in 36% of the cases. Our study demonstrates that the combined use of CA with different culture methods together with FISH increases our knowledge of the genetic complexity and heterogeneity in CLL pathogenesis. © 2014 S. Karger AG, Basel.
Evolution of Tumor Clones in Adult Acute Lymphoblastic Leukemia.
Smirnova, S Yu; Sidorova, Yu V; Ryzhikova, N V; Sychevskaya, K A; Parovichnikova, E N; Sudarikov, A B
2016-01-01
Clonal instability of a tumor cell population in acute lymphoblastic leukemia (ALL) may complicate the monitoring of a minimal residual disease (MRD) by means of patient-specific targets identified at the disease onset. Most of the data concerning the possible instability of rearranged clonal TCR and IG genes during disease recurrence were obtained for ALL in children. The appropriate features of adult ALL, which are known to differ from those of childhood ALL in certain biological characteristics and prognosis, remain insufficiently studied. The aim of this study was to assess the stability of IG and TCR gene rearrangements in adult ALL. Rearrangements were identified according to the BIOMED-2 protocol (PCR followed by fragment analysis). Mismatch in clonal rearrangements at onset and relapse was identified in 83% of patients, indicating clonal instability during treatment. Clonal evolution and diversity of IG and TCR gene rearrangements may be one of the tumor progression mechanisms. New rearrangements may emerge due to residual VDJ-recombinase activity in tumor cells. Also, many clonal IG and TCR gene rearrangements may be present at different levels at a diagnosis, but less abundant clones may be "invisible" due to limited detection sensitivity. Later, major clones may disappear in the course of chemotherapy, while others may proliferate. Investigation of clonal evolution and heterogeneity in ALL and their impact on the treatment efficacy will contribute to the identification of new prognostic factors and the development of therapeutic approaches.
Ye, Xue-Hua; Zhang, Ya-Lin; Liu, Zhi-Lan; Gao, Shu-Qin; Song, Yao-Bin; Liu, Feng-Hong; Dong, Ming
2016-01-01
Resources such as water taken up by plants can be released into soils through hydraulic redistribution and can also be translocated by clonal integration within a plant clonal network. We hypothesized that the resources from one (donor) microsite could be translocated within a clonal network, released into different (recipient) microsites and subsequently used by neighbor plants in the recipient microsite. To test these hypotheses, we conducted two experiments in which connected and disconnected ramet pairs of Potentilla anserina were grown under both homogeneous and heterogeneous water regimes, with seedlings of Artemisia ordosica as neighbors. The isotopes [(15)N] and deuterium were used to trace the translocation of nitrogen and water, respectively, within the clonal network. The water and nitrogen taken up by P. anserina ramets in the donor microsite were translocated into the connected ramets in the recipient microsites. Most notably, portions of the translocated water and nitrogen were released into the recipient microsite and were used by the neighboring A. ordosica, which increased growth of the neighboring A. ordosica significantly. Therefore, our hypotheses were supported, and plant clonal integration mediated the horizontal hydraulic redistribution of resources, thus benefiting neighboring plants. Such a plant clonal integration-mediated resource redistribution in horizontal space may have substantial effects on the interspecific relations and composition of the community and consequently on ecosystem processes.
Characterisation of Phytophthora capsici isolates from black pepper in Vietnam.
Truong, Nguyen V; Liew, Edward C Y; Burgess, Lester W
2010-01-01
Phytophthora foot rot of black pepper caused by Phytophthora capsici is a major disease of black pepper (Piper nigrum) throughout Vietnam. To understand the population structure of P. capsici, a large collection of P. capsici isolates from black pepper was studied on the basis of mating type, random amplified microsatellites (RAMS) and repetitive extragenic palindromic (REP) fingerprinting. Two mating types A1 and A2 were detected in four provinces in two climatic regions, with A1:A2 ratios ranging from 1:3 to 1:5. In several instances A1 and A2 mating types were found to co-exist in the same farm or black pepper pole, suggesting the potential for sexual reproduction of P. capsici in the field in Vietnam although its contribution to disease epidemics is uncertain. RAMS and REP DNA fingerprinting analysis of 118 isolates of P. capsici from black pepper showed that the population was genetically more diverse where two mating types were found, although the overall genetic diversity was low with most of the isolates belonging to one clonal group. The implication of these findings is discussed. The low diversity among isolates suggests that the P. capsici population may have originated from a single source. There was no genetic differentiation of isolates from different climatic regions. In addition to the large clonal group, several isolates with unique RAMS/REP phenotypes were also detected. Most of these unique phenotypes belonged to the minority A1 mating type. This may have significant implications for a gradual increase in overall genetic diversity.
Miller, Ruth R.; Walker, A. Sarah; Godwin, Heather; Fung, Rowena; Votintseva, Antonina; Bowden, Rory; Mant, David; Peto, Timothy E.A.; Crook, Derrick W.; Knox, Kyle
2014-01-01
Summary Background Staphylococcus aureus nasal carriage increases infection risk. However, few studies have investigated S. aureus acquisition/loss over >1 year, and fewer still used molecular typing. Methods 1123 adults attending five Oxfordshire general practices had nasal swabs taken. 571 were re-swabbed after one month then every two months for median two years. All S. aureus isolates were spa-typed. Risk factors were collected from interviews and medical records. Results 32% carried S. aureus at recruitment (<1% MRSA). Rates of spa-type acquisition were similar in participants S. aureus positive (1.4%/month) and negative (1.8%/month, P = 0.13) at recruitment. Rates were faster in those carrying clonal complex (CC)15 (adjusted (a)P = 0.03) or CC8 (including USA300) (aP = 0.001) at recruitment versus other CCs. 157/274 (57%) participants S. aureus positive at recruitment returning ≥12 swabs carried S. aureus consistently, of whom 135 carried the same spa-type. CC22 (including EMRSA-15) was more prevalent in long-term than intermittent spa-type carriers (aP = 0.03). Antibiotics transiently reduced carriage, but no other modifiable risk factors were found. Conclusions Both transient and longer-term carriage exist; however, the approximately constant rates of S. aureus gain and loss suggest that ‘never’ or truly ‘persistent’ carriage are rare. Long-term carriage varies by strain, offering new explanations for the success of certain S. aureus clones. PMID:24393651
Huang, Jinhu; Shang, Kexin; Kashif, Jam; Wang, Liping
2015-05-01
Acquiring antibiotic resistance genes may change an organism's genetic characteristics and the effect of antibiotics, resulting in a rapid transmission of microbial pathogens. The objectives of this experiment were to identify the features of Streptococcus suis (S. suis) isolated from three pig farms in China which are geographically isolated. Among the isolates, 56.52% were sequence type 7 (ST7), followed by ST1 (26.09%), indicating that ST7 prevails in China, as revealed by multi-locus sequence typing (MLST). Statistical analysis indicated an association between geography, sequence types and antibiotic resistance genotypes. 66.67% of the isolates in Sichuan province presented a (ermB(-) + mefA(-) + tetO(-) + tetM(-)) + ST7 type. The tetM(+) +ST7 type was the most prevalent in Jiangsu province, whereas the strains from Hebei province had a phenotype ermB(+) +tetO(+) +ST1 (63.64%). Pulsed-field gel electrophoresis (PGFE) pattern A2 with 100% similarity reflected the clonal dissemination between Sichuan and Jiangsu provinces. Strains carrying or not carrying antibiotic resistance genes presented different PFGE patterns in Hebei province. ST7 is widespread in many regions of China and a clonal dissemination occurred between Sichuan and Jiangsu provinces in diseased pigs. However, ST1 strains with macrolide and tetracycline resistance (ermB(+) +tetO(+) +ST1) isolated from a farm in Hebei province demonstrated that the genetic diversity was contributed by horizontal acquiring of ermB and tetO carrying elements. © 2014 Society of Chemical Industry.
Ferreira-Paim, Kennio; Andrade-Silva, Leonardo; Fonseca, Fernanda M.; Ferreira, Thatiana B.; Mora, Delio J.; Andrade-Silva, Juliana; Khan, Aziza; Dao, Aiken; Reis, Eduardo C.; Almeida, Margarete T. G.; Maltos, Andre; Junior, Virmondes R.; Trilles, Luciana; Rickerts, Volker; Chindamporn, Ariya; Sykes, Jane E.; Cogliati, Massimo; Nielsen, Kirsten; Boekhout, Teun; Fisher, Matthew; Kwon-Chung, June; Engelthaler, David M.; Lazéra, Marcia; Meyer, Wieland; Silva-Vergara, Mario L.
2017-01-01
Cryptococcosis is an important fungal infection in immunocompromised individuals, especially those infected with HIV. In Brazil, despite the free availability of antiretroviral therapy (ART) in the public health system, the mortality rate due to Cryptococcus neoformans meningitis is still high. To obtain a more detailed picture of the population genetic structure of this species in southeast Brazil, we studied 108 clinical isolates from 101 patients and 35 environmental isolates. Among the patients, 59% had a fatal outcome mainly in HIV-positive male patients. All the isolates were found to be C. neoformans var. grubii major molecular type VNI and mating type locus alpha. Twelve were identified as diploid by flow cytometry, being homozygous (AαAα) for the mating type and by PCR screening of the STE20, GPA1, and PAK1 genes. Using the ISHAM consensus multilocus sequence typing (MLST) scheme, 13 sequence types (ST) were identified, with one being newly described. ST93 was identified from 81 (75%) of the clinical isolates, while ST77 and ST93 were identified from 19 (54%) and 10 (29%) environmental isolates, respectively. The southeastern Brazilian isolates had an overwhelming clonal population structure. When compared with populations from different continents based on data extracted from the ISHAM-MLST database (mlst.mycologylab.org) they showed less genetic variability. Two main clusters within C. neoformans var. grubii VNI were identified that diverged from VNB around 0.58 to 4.8 million years ago. PMID:28099434
USDA-ARS?s Scientific Manuscript database
Phytophthora ramorum, the causal agent of sudden oak death and ramorum blight, is known to exist as three distinct clonal lineages based on a range of molecular marker systems. However, in the recent literature there exists no consensus on naming of lineages. Here we name clonal lineages of P. ramor...
Novel immortal human cell lines reveal subpopulations in the nucleus pulposus
2014-01-01
Introduction Relatively little is known about cellular subpopulations in the mature nucleus pulposus (NP). Detailed understanding of the ontogenetic, cellular and molecular characteristics of functional intervertebral disc (IVD) cell populations is pivotal to the successful development of cell replacement therapies and IVD regeneration. In this study, we aimed to investigate whether phenotypically distinct clonal cell lines representing different subpopulations in the human NP could be generated using immortalization strategies. Methods Nondegenerate healthy disc material (age range, 8 to 15 years) was obtained as surplus surgical material. Early passage NP monolayer cell cultures were initially characterized using a recently established NP marker set. NP cells were immortalized by simian virus 40 large T antigen (SV40LTag) and human telomerase reverse transcriptase expression. Immortalized cells were clonally expanded and characterized based on collagen type I, collagen type II, α1 (COL2A1), and SRY-box 9 (SOX9) protein expression profiles, as well as on expression of a subset of established in vivo NP cell lineage markers. Results A total of 54 immortal clones were generated. Profiling of a set of novel NP markers (CD24, CA12, PAX1, PTN, FOXF1 and KRT19 mRNA) in a representative set of subclones substantiated successful immortalization of multiple cellular subpopulations from primary isolates and confirmed their NP origin and/or phenotype. We were able to identify two predominant clonal NP subtypes based on their morphological characteristics and their ability to induce SOX9 and COL2A1 under conventional differentiation conditions. In addition, cluster of differentiation 24 (CD24)–negative NP responder clones formed spheroid structures in various culture systems, suggesting the preservation of a more immature phenotype compared to CD24-positive nonresponder clones. Conclusions Here we report the generation of clonal NP cell lines from nondegenerate human IVD tissue and present a detailed characterization of NP cellular subpopulations. Differential cell surface marker expression and divergent responses to differentiation conditions suggest that the NP subtypes may correspond to distinct maturation stages and represent distinct NP cell subpopulations. Hence, we provide evidence that the immortalization strategy that we applied is capable of detecting cell heterogeneity in the NP. Our cell lines yield novel insights into NP biology and provide promising new tools for studies of IVD development, cell function and disease. PMID:24972717
Novel immortal human cell lines reveal subpopulations in the nucleus pulposus.
van den Akker, Guus G H; Surtel, Don A M; Cremers, Andy; Rodrigues-Pinto, Ricardo; Richardson, Stephen M; Hoyland, Judith A; van Rhijn, Lodewijk W; Welting, Tim J M; Voncken, Jan Willem
2014-06-27
Relatively little is known about cellular subpopulations in the mature nucleus pulposus (NP). Detailed understanding of the ontogenetic, cellular and molecular characteristics of functional intervertebral disc (IVD) cell populations is pivotal to the successful development of cell replacement therapies and IVD regeneration. In this study, we aimed to investigate whether phenotypically distinct clonal cell lines representing different subpopulations in the human NP could be generated using immortalization strategies. Nondegenerate healthy disc material (age range, 8 to 15 years) was obtained as surplus surgical material. Early passage NP monolayer cell cultures were initially characterized using a recently established NP marker set. NP cells were immortalized by simian virus 40 large T antigen (SV40LTag) and human telomerase reverse transcriptase expression. Immortalized cells were clonally expanded and characterized based on collagen type I, collagen type II, α1 (COL2A1), and SRY-box 9 (SOX9) protein expression profiles, as well as on expression of a subset of established in vivo NP cell lineage markers. A total of 54 immortal clones were generated. Profiling of a set of novel NP markers (CD24, CA12, PAX1, PTN, FOXF1 and KRT19 mRNA) in a representative set of subclones substantiated successful immortalization of multiple cellular subpopulations from primary isolates and confirmed their NP origin and/or phenotype. We were able to identify two predominant clonal NP subtypes based on their morphological characteristics and their ability to induce SOX9 and COL2A1 under conventional differentiation conditions. In addition, cluster of differentiation 24 (CD24)-negative NP responder clones formed spheroid structures in various culture systems, suggesting the preservation of a more immature phenotype compared to CD24-positive nonresponder clones. Here we report the generation of clonal NP cell lines from nondegenerate human IVD tissue and present a detailed characterization of NP cellular subpopulations. Differential cell surface marker expression and divergent responses to differentiation conditions suggest that the NP subtypes may correspond to distinct maturation stages and represent distinct NP cell subpopulations. Hence, we provide evidence that the immortalization strategy that we applied is capable of detecting cell heterogeneity in the NP. Our cell lines yield novel insights into NP biology and provide promising new tools for studies of IVD development, cell function and disease.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-24
... Third-Grade National Collection, Fourth-Grade Recruitment, and Fifth-Grade Tracking AGENCY: Department...-Grade Recruitment, and Fifth-Grade Tracking. OMB Control Number: 1850-0790. Type of Review: Revision of...) recruitment for the spring 2015 fourth-grade data collection, and (3) tracking students for the spring 2016...
Pérez-Lago, L; Palacios, J J; Herranz, M; Ruiz Serrano, M J; Bouza, E; García-de-Viedma, D
2015-02-01
The analysis of microevolution events, its functional relevance and impact on molecular epidemiology strategies, constitutes one of the most challenging aspects of the study of clonal complexity in infection by Mycobacterium tuberculosis. In this study, we retrospectively evaluated whether two improved sampling schemes could provide access to the clonal complexity that is undetected by the current standards (analysis of one isolate from one sputum). We evaluated in 48 patients the analysis by mycobacterial interspersed repetitive unit-variable number tandem repeat of M. tuberculosis isolates cultured from bronchial aspirate (BAS) or bronchoalveolar lavage (BAL) and, in another 16 cases, the analysis of a higher number of isolates from independent sputum samples. Analysis of the isolates from BAS/BAL specimens revealed clonal complexity in a very high proportion of cases (5/48); in most of these cases, complexity was not detected when the isolates from sputum samples were analysed. Systematic analysis of isolates from multiple sputum samples also improved the detection of clonal complexity. We found coexisting clonal variants in two of 16 cases that would have gone undetected in the analysis of the isolate from a single sputum specimen. Our results suggest that analysis of isolates from BAS/BAL specimens is highly efficient for recording the true clonal composition of M. tuberculosis in the lungs. When these samples are not available, we recommend increasing the number of isolates from independent sputum specimens, because they might not harbour the same pool of bacteria. Our data suggest that the degree of clonal complexity in tuberculosis has been underestimated because of the deficiencies inherent in a simplified procedure. Copyright © 2014 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Jiang, Yanwen; Nie, Kui; Redmond, David; Melnick, Ari M; Tam, Wayne; Elemento, Olivier
2015-12-28
Understanding tumor clonality is critical to understanding the mechanisms involved in tumorigenesis and disease progression. In addition, understanding the clonal composition changes that occur within a tumor in response to certain micro-environment or treatments may lead to the design of more sophisticated and effective approaches to eradicate tumor cells. However, tracking tumor clonal sub-populations has been challenging due to the lack of distinguishable markers. To address this problem, a VDJ-seq protocol was created to trace the clonal evolution patterns of diffuse large B cell lymphoma (DLBCL) relapse by exploiting VDJ recombination and somatic hypermutation (SHM), two unique features of B cell lymphomas. In this protocol, Next-Generation sequencing (NGS) libraries with indexing potential were constructed from amplified rearranged immunoglobulin heavy chain (IgH) VDJ region from pairs of primary diagnosis and relapse DLBCL samples. On average more than half million VDJ sequences per sample were obtained after sequencing, which contain both VDJ rearrangement and SHM information. In addition, customized bioinformatics pipelines were developed to fully utilize sequence information for the characterization of IgH-VDJ repertoire within these samples. Furthermore, the pipeline allows the reconstruction and comparison of the clonal architecture of individual tumors, which enables the examination of the clonal heterogeneity within the diagnosis tumors and deduction of clonal evolution patterns between diagnosis and relapse tumor pairs. When applying this analysis to several diagnosis-relapse pairs, we uncovered key evidence that multiple distinctive tumor evolutionary patterns could lead to DLBCL relapse. Additionally, this approach can be expanded into other clinical aspects, such as identification of minimal residual disease, monitoring relapse progress and treatment response, and investigation of immune repertoires in non-lymphoma contexts.
Alvarez-Twose, I; González-de-Olano, D; Sánchez-Muñoz, L; Matito, A; Jara-Acevedo, M; Teodosio, C; García-Montero, A; Morgado, J M; Orfao, A; Escribano, L
2012-01-01
A variable percentage of patients with systemic mast cell (MC) activation symptoms meet criteria for systemic mastocytosis (SM). We prospectively evaluated the clinical utility of the REMA score versus serum baseline tryptase (sBt) levels for predicting MC clonality and SM in 158 patients with systemic MC activation symptoms in the absence of mastocytosis in the skin (MIS). World Health Organization criteria for SM were applied in all cases. MC clonality was defined as the presence of KIT-mutated MC or by a clonal HUMARA test. The REMA score consisted of the assignment of positive or negative points as follows: male (+1), female (-1), sBt <15 μg/l (-1) or >25 μg/l (+2), presence (-2) or absence (+1) of pruritus, hives or angioedema and presence (+3) of presyncope or syncope. Efficiency of the REMA score for predicting MC clonality and SM was assessed by receiver operating characteristic (ROC) curve analyses and compared to those obtained by means of sBt levels alone. Molecular studies revealed the presence of clonal MC in 68/80 SM cases and in 11/78 patients who did not meet the criteria for SM. ROC curve analyses confirmed the greater sensitivity and a similar specificity of the REMA score versus sBt levels (84 vs. 59% and 74 vs. 70% for MC clonality and 87 vs. 62% and 73 vs. 71% for SM, respectively). Our results confirm the clinical utility of the REMA score to predict MC clonality and SM in patients suffering from systemic MC activation symptoms without MIS. Copyright © 2011 S. Karger AG, Basel.
Ma, Anlun; Jiang, Li; Song, Lijun; Hu, Yanxin; Dun, Hao; Daloze, Pierre; Yu, Yonglin; Jiang, Jianyuan; Zafarullah, Muhammad; Chen, Huifang
2013-07-01
Articular cartilage defects are commonly associated with trauma, inflammation and osteoarthritis. Mesenchymal stem cell (MSC)-based therapy is a promising novel approach for repairing articular cartilage. Direct intra-articular injection of uncommitted MSCs does not regenerate high-quality cartilage. This study explored utilization of a new three-dimensional, selected chondrogenic clonal MSC-loaded monkey acellular dermal matrix (MSC-ADM) scaffold to repair damaged cartilage in an experimental model of knee joint cartilage defect in Cynomolgus monkeys. MSCs were characterized for cell size, cell yield, phenotypes, proliferation and chondrogenic differentiation capacity. Chondrogenic differentiation assays were performed at different MSC passages by sulfated glycosaminoglycans (sGAG), collagen, and fluorescence activated cell sorter (FACS) analysis. Selected chondrogenic clonal MSCs were seeded onto ADM scaffold with the sandwich model and MSC-loaded ADM grafts were analyzed by confocal microscopy and scanning electron microscopy. Cartilage defects were treated with normal saline, clonal MSCs and clonal MSC-ADM grafts, respectively. The clinical parameters, and histological and immunohistochemical examinations were evaluated at weeks 8, 16, 24 post-treatment, respectively. Polyclonal and clonal MSCs could differentiate into the chondrogenic lineage after stimulation with suitable chondrogenic factors. They expressed mesenchymal markers and were negative for hematopoietic markers. Articular cartilage defects were considerably improved and repaired by selected chondrogenic clonal MSC-based treatment, particularly, in MSC-ADM-treated group. The histological scores in MSC-ADM-treated group were consistently higher than those of other groups. Our results suggest that selected chondrogenic clonal MSC-loaded ADM grafts could improve the cartilage lesions in Cynomolgus monkey model, which may be applicable for repairing similar human cartilage defects. Copyright © 2013 Elsevier B.V. All rights reserved.
T-cell stimuli independently sum to regulate an inherited clonal division fate
Marchingo, J. M.; Prevedello, G.; Kan, A.; Heinzel, S.; Hodgkin, P. D.; Duffy, K. R.
2016-01-01
In the presence of antigen and costimulation, T cells undergo a characteristic response of expansion, cessation and contraction. Previous studies have revealed that population-level reproducibility is a consequence of multiple clones exhibiting considerable disparity in burst size, highlighting the requirement for single-cell information in understanding T-cell fate regulation. Here we show that individual T-cell clones resulting from controlled stimulation in vitro are strongly lineage imprinted with highly correlated expansion fates. Progeny from clonal families cease dividing in the same or adjacent generations, with inter-clonal variation producing burst-size diversity. The effects of costimulatory signals on individual clones sum together with stochastic independence; therefore, the net effect across multiple clones produces consistent, but heterogeneous population responses. These data demonstrate that substantial clonal heterogeneity arises through differences in experience of clonal progenitors, either through stochastic antigen interaction or by differences in initial receptor sensitivities. PMID:27869196
Murtaza, Muhammed; Dawson, Sarah-Jane; Pogrebniak, Katherine; Rueda, Oscar M.; Provenzano, Elena; Grant, John; Chin, Suet-Feung; Tsui, Dana W. Y.; Marass, Francesco; Gale, Davina; Ali, H. Raza; Shah, Pankti; Contente-Cuomo, Tania; Farahani, Hossein; Shumansky, Karey; Kingsbury, Zoya; Humphray, Sean; Bentley, David; Shah, Sohrab P.; Wallis, Matthew; Rosenfeld, Nitzan; Caldas, Carlos
2015-01-01
Circulating tumour DNA analysis can be used to track tumour burden and analyse cancer genomes non-invasively but the extent to which it represents metastatic heterogeneity is unknown. Here we follow a patient with metastatic ER-positive and HER2-positive breast cancer receiving two lines of targeted therapy over 3 years. We characterize genomic architecture and infer clonal evolution in eight tumour biopsies and nine plasma samples collected over 1,193 days of clinical follow-up using exome and targeted amplicon sequencing. Mutation levels in the plasma samples reflect the clonal hierarchy inferred from sequencing of tumour biopsies. Serial changes in circulating levels of sub-clonal private mutations correlate with different treatment responses between metastatic sites. This comparison of biopsy and plasma samples in a single patient with metastatic breast cancer shows that circulating tumour DNA can allow real-time sampling of multifocal clonal evolution. PMID:26530965
An atlas of B-cell clonal distribution in the human body.
Meng, Wenzhao; Zhang, Bochao; Schwartz, Gregory W; Rosenfeld, Aaron M; Ren, Daqiu; Thome, Joseph J C; Carpenter, Dustin J; Matsuoka, Nobuhide; Lerner, Harvey; Friedman, Amy L; Granot, Tomer; Farber, Donna L; Shlomchik, Mark J; Hershberg, Uri; Luning Prak, Eline T
2017-09-01
B-cell responses result in clonal expansion, and can occur in a variety of tissues. To define how B-cell clones are distributed in the body, we sequenced 933,427 B-cell clonal lineages and mapped them to eight different anatomic compartments in six human organ donors. We show that large B-cell clones partition into two broad networks-one spans the blood, bone marrow, spleen and lung, while the other is restricted to tissues within the gastrointestinal (GI) tract (jejunum, ileum and colon). Notably, GI tract clones display extensive sharing of sequence variants among different portions of the tract and have higher frequencies of somatic hypermutation, suggesting extensive and serial rounds of clonal expansion and selection. Our findings provide an anatomic atlas of B-cell clonal lineages, their properties and tissue connections. This resource serves as a foundation for studies of tissue-based immunity, including vaccine responses, infections, autoimmunity and cancer.
Clonal evolution of chemotherapy-resistant urothelial carcinoma.
Faltas, Bishoy M; Prandi, Davide; Tagawa, Scott T; Molina, Ana M; Nanus, David M; Sternberg, Cora; Rosenberg, Jonathan; Mosquera, Juan Miguel; Robinson, Brian; Elemento, Olivier; Sboner, Andrea; Beltran, Himisha; Demichelis, Francesca; Rubin, Mark A
2016-12-01
Chemotherapy-resistant urothelial carcinoma has no uniformly curative therapy. Understanding how selective pressure from chemotherapy directs the evolution of urothelial carcinoma and shapes its clonal architecture is a central biological question with clinical implications. To address this question, we performed whole-exome sequencing and clonality analysis of 72 urothelial carcinoma samples, including 16 matched sets of primary and advanced tumors prospectively collected before and after chemotherapy. Our analysis provided several insights: (i) chemotherapy-treated urothelial carcinoma is characterized by intra-patient mutational heterogeneity, and the majority of mutations are not shared; (ii) both branching evolution and metastatic spread are very early events in the natural history of urothelial carcinoma; (iii) chemotherapy-treated urothelial carcinoma is enriched with clonal mutations involving L1 cell adhesion molecule (L1CAM) and integrin signaling pathways; and (iv) APOBEC-induced mutagenesis is clonally enriched in chemotherapy-treated urothelial carcinoma and continues to shape the evolution of urothelial carcinoma throughout its lifetime.
Murtaza, Muhammed; Dawson, Sarah-Jane; Pogrebniak, Katherine; Rueda, Oscar M; Provenzano, Elena; Grant, John; Chin, Suet-Feung; Tsui, Dana W Y; Marass, Francesco; Gale, Davina; Ali, H Raza; Shah, Pankti; Contente-Cuomo, Tania; Farahani, Hossein; Shumansky, Karey; Kingsbury, Zoya; Humphray, Sean; Bentley, David; Shah, Sohrab P; Wallis, Matthew; Rosenfeld, Nitzan; Caldas, Carlos
2015-11-04
Circulating tumour DNA analysis can be used to track tumour burden and analyse cancer genomes non-invasively but the extent to which it represents metastatic heterogeneity is unknown. Here we follow a patient with metastatic ER-positive and HER2-positive breast cancer receiving two lines of targeted therapy over 3 years. We characterize genomic architecture and infer clonal evolution in eight tumour biopsies and nine plasma samples collected over 1,193 days of clinical follow-up using exome and targeted amplicon sequencing. Mutation levels in the plasma samples reflect the clonal hierarchy inferred from sequencing of tumour biopsies. Serial changes in circulating levels of sub-clonal private mutations correlate with different treatment responses between metastatic sites. This comparison of biopsy and plasma samples in a single patient with metastatic breast cancer shows that circulating tumour DNA can allow real-time sampling of multifocal clonal evolution.
Clonal Evolution of Chemotherapy-resistant Urothelial Carcinoma
Faltas, Bishoy M.; Prandi, Davide; Tagawa, Scott T.; Molina, Ana M.; Nanus, David M.; Sternberg, Cora; Rosenberg, Jonathan; Mosquera, Juan Miguel; Robinson, Brian; Elemento, Olivier; Sboner, Andrea; Beltran, Himisha; Demichelis, Francesca; Rubin, Mark A.
2017-01-01
Chemotherapy-resistant urothelial carcinoma (UC) has no uniformly curative therapy. Understanding how selective pressure from chemotherapy directs UC’s evolution and shapes its clonal architecture is a central biological question with clinical implications. To address this question, we performed whole-exome sequencing and clonality analysis of 72 UCs including 16 matched sets of primary and advanced tumors prospectively collected before and after chemotherapy. Our analysis provided several insights: (i) chemotherapy-treated UC is characterized by intra-patient mutational heterogeneity and the majority of mutations are not shared, (ii) both branching evolution and metastatic spread are very early events in the natural history of UC; (iii) chemotherapy-treated UC is enriched with clonal mutations involving L1-cell adhesion molecule (L1CAM) and integrin signaling pathways; (iv) APOBEC induced-mutagenesis is clonally-enriched in chemotherapy-treated UC and continues to shape UC’s evolution throughout its lifetime. PMID:27749842
Epigenetic Memory as a Basis for Intelligent Behavior in Clonal Plants.
Latzel, Vít; Rendina González, Alejandra P; Rosenthal, Jonathan
2016-01-01
Environmentally induced epigenetic change enables plants to remember past environmental interactions. If this memory capability is exploited to prepare plants for future challenges, it can provide a basis for highly sophisticated behavior, considered intelligent by some. Against the backdrop of an overview of plant intelligence, we hypothesize: (1) that the capability of plants to engage in such intelligent behavior increases with the additional level of complexity afforded by clonality, and; (2) that more faithful inheritance of epigenetic information in clonal plants, in conjunction with information exchange and coordination between connected ramets, is likely to enable especially advanced intelligent behavior in this group. We therefore further hypothesize that this behavior provides ecological and evolutionary advantages to clonal plants, possibly explaining, at least in part, their widespread success. Finally, we suggest avenues of inquiry to enable assessing intelligent behavior and the role of epigenetic memory in clonal species.
Ma, Hansong; Voelz, Kerstin; Ren, Ping; Carter, Dee A.; Chaturvedi, Vishnu; Bildfell, Robert J.; May, Robin C.; Heitman, Joseph
2010-01-01
Cryptococcus gattii causes life-threatening disease in otherwise healthy hosts and to a lesser extent in immunocompromised hosts. The highest incidence for this disease is on Vancouver Island, Canada, where an outbreak is expanding into neighboring regions including mainland British Columbia and the United States. This outbreak is caused predominantly by C. gattii molecular type VGII, specifically VGIIa/major. In addition, a novel genotype, VGIIc, has emerged in Oregon and is now a major source of illness in the region. Through molecular epidemiology and population analysis of MLST and VNTR markers, we show that the VGIIc group is clonal and hypothesize it arose recently. The VGIIa/IIc outbreak lineages are sexually fertile and studies support ongoing recombination in the global VGII population. This illustrates two hallmarks of emerging outbreaks: high clonality and the emergence of novel genotypes via recombination. In macrophage and murine infections, the novel VGIIc genotype and VGIIa/major isolates from the United States are highly virulent compared to similar non-outbreak VGIIa/major-related isolates. Combined MLST-VNTR analysis distinguishes clonal expansion of the VGIIa/major outbreak genotype from related but distinguishable less-virulent genotypes isolated from other geographic regions. Our evidence documents emerging hypervirulent genotypes in the United States that may expand further and provides insight into the possible molecular and geographic origins of the outbreak. PMID:20421942
Wardal, Ewa; Markowska, Katarzyna; Żabicka, Dorota; Wróblewska, Marta; Giemza, Małgorzata; Mik, Ewa; Połowniak-Pracka, Hanna; Woźniak, Agnieszka; Hryniewicz, Waleria; Sadowy, Ewa
2014-01-01
Vancomycin-resistant Enterococcus faecium represents a growing threat in hospital-acquired infections. Two outbreaks of this pathogen from neighboring Warsaw hospitals have been analyzed in this study. Pulsed-field gel electrophoresis (PFGE) of SmaI-digested DNA, multilocus VNTR analysis (MLVA), and multilocus sequence typing (MLST) revealed a clonal variability of isolates which belonged to three main lineages (17, 18, and 78) of nosocomial E. faecium. All isolates were multidrug resistant and carried several resistance, virulence, and plasmid-specific genes. Almost all isolates shared the same variant of Tn1546 transposon, characterized by the presence of insertion sequence ISEf1 and a point mutation in the vanA gene. In the majority of cases, this transposon was located on 50 kb or 100 kb pRUM-related plasmids, which lacked, however, the axe-txe toxin-antitoxin genes. 100 kb plasmid was easily transferred by conjugation and was found in various clonal backgrounds in both institutions, while 50 kb plasmid was not transferable and occurred solely in MT159/ST78 strains that disseminated clonally in one institution. Although molecular data indicated the spread of VRE between two institutions or a potential common source of this alert pathogen, epidemiological investigations did not reveal the possible route by which outbreak strains disseminated. PMID:25003118
Sternberg, Hal; Kidd, Jennifer; Murai, James T; Jiang, Jianjie; Rinon, Ariel; Erickson, Isaac E; Funk, Walter D; Wang, Qian; Chapman, Karen B; Vangsness, C Thomas; West, Michael D
2013-03-01
The transcriptomes of seven diverse clonal human embryonic progenitor cell lines with chondrogenic potential were compared with that of bone marrow-derived mesenchymal stem cells (MSCs). The cell lines 4D20.8, 7PEND24, 7SMOO32, E15, MEL2, SK11 and SM30 were compared with MSCs using immunohistochemical methods, gene expression microarrays and quantitative real-time PCR. In the undifferentiated progenitor state, each line displayed unique combinations of site-specific markers, including AJAP1, ALDH1A2, BMP5, BARX1, HAND2, HOXB2, LHX1, LHX8, PITX1, TBX15 and ZIC2, but none of the lines expressed the MSC marker CD74. The lines showed diverse responses when differentiated in the presence of combinations of TGF-β3, BMP2, 4, 6 and 7 and GDF5, with the lines 4D20.8, SK11, SM30 and MEL2 showing osteogenic markers in some differentiation conditions. The line 7PEND24 showed evidence of regenerating articular cartilage and, in some conditions, markers of tendon differentiation. The scalability of site-specific clonal human embryonic stem cell-derived embryonic progenitor cell lines may provide novel models for the study of differentiation and methods for preparing purified and identified cells types for use in therapy.
Zhang, Ji; Vehkala, Minna; Välimäki, Niko; Hakkinen, Marjaana; Hänninen, Marja-Liisa; Roasto, Mati; Mäesaar, Mihkel; Taboada, Eduardo; Barker, Dillon; Garofolo, Giuliano; Cammà, Cesare; Di Giannatale, Elisabetta; Corander, Jukka; Rossi, Mirko
2016-01-01
The decreased costs of genome sequencing have increased the capability to apply whole-genome sequencing to epidemiological surveillance of zoonotic Campylobacter jejuni. However, knowledge of the genetic diversity of this bacteria is vital for inferring relatedness between epidemiologically linked isolates and a necessary prerequisite for correct application of this methodology. To address this issue in C. jejuni we investigated the spatial and temporal signals in the genomes of a major clonal complex and generalist lineage, ST-45 CC, by analysing the population structure and genealogy as well as applying genome-wide association analysis of 340 isolates from across Europe collected over a wide time range. The occurrence and strength of the geographical signal varied between sublineages and followed the clonal frame when present, while no evidence of a temporal signal was found. Certain sublineages of ST-45 formed discrete and genetically isolated clades containing isolates with extremely similar genomes regardless of time and location of sampling. Based on a separate data set, these monomorphic genotypes represent successful C. jejuni clones, possibly spread around the globe by rapid animal (migrating birds), food or human movement. In addition, we observed an incongruence between the genealogy of the strains and multilocus sequence typing (MLST), challenging the existing clonal complex definition and the use of whole-genome gene-by-gene hierarchical nomenclature schemes for C. jejuni. PMID:28348829
Qin, Xiaohua; Yang, Yang; Hu, Fupin; Zhu, Demei
2014-02-01
Carbapenems are first-line agents for the treatment of serious nosocomial infections caused by multidrug-resistant Enterobacteriaceae. However, resistance to carbapenems has increased dramatically among Enterobacteriaceae in our hospital. In this study, we report clonal dissemination caused by carbapenem-resistant Enterobacter aerogenes (CREA). In 2011, CREA was identified from 12 patients admitted to the neurosurgical ward. All 12 clinical isolates were non-susceptible to cefotaxime, ceftazidime, cefoxitin, ertapenem, imipenem or meropenem. All isolates carried the gene encoding Klebsiella pneumoniae carbapenemase-2 (KPC-2), except for the isolate E4. However, a remarkably lower expression level of the porin OmpF was detected in the non-KPC-2-producing isolate E4 on SDS-PAGE compared with the carbapenem-susceptible isolate. Epidemiological and molecular investigations showed that a single E. aerogenes strain (PFGE type A), including seven KPC-2-producing clinical isolates, was primarily responsible for the first isolation and subsequent dissemination. In a case-control study, we identified risk factors for infection/colonization with CREA. Mechanical ventilation, the changing of sickbeds and previous use of broad-spectrum antibiotics were identified as potential risk factors. Our findings suggest that further studies should focus on judicious use of available antibiotics, implementation of active antibiotic resistance surveillance and strict implementation of infection-control measures to avoid the rapid spread or clonal dissemination caused by carbapenem-resistant Enterobacteriaceae in healthcare facilities.
Lee, Ji-Young; Hong, Yoon-Kyoung; Lee, Haejeong; Ko, Kwan Soo
2017-01-01
We investigated the prevalence and clonal distribution of imipenem-nonsusceptible Enterobacter clinical isolates from hospitals in Korea and the contributions of various mechanisms to imipenem nonsusceptibility. The in vitro antimicrobial susceptibility to imipenem of 357 non-duplicated Enterobacter isolates obtained from eight geographically distant tertiary care hospitals in Korea was evaluated. Imipenem-nonsusceptible Enterobacter isolates were genotyped. Additionally, β-lactamase genes were screened using PCR, and the expression of efflux pump and porin genes was investigated using quantitative RT-PCR. A total of 31 isolates (8.7%) were not susceptible to imipenem. Clonal diversity of 17 imipenem-nonsusceptible E. cloacae isolates was demonstrated by multilocus sequence typing. Fourteen imipenem-nonsusceptible E. aerogenes isolates were found to be distantly genetically related by an ERIC-PCR analysis. Expression levels of porin ompD and ompK35 genes were decreased in all imipenem-nonsusceptible E. cloacae and E. aerogenes isolates. However, only two isolates were found positive for bla IMP and bla VIM genes, and expression of the efflux pump gene, acrB, was not associated with reduced imipenem susceptibility. Imipenem resistance seems to have occurred independently in most of the imipenem-nonsusceptible isolates in this study, and decreased porin expression was found to be the main mechanism underlying this reduced susceptibility to imipenem. Copyright © 2016 Elsevier Inc. All rights reserved.
López-Pérez, Mario; Gonzaga, Aitor; Rodriguez-Valera, Francisco
2013-01-01
We have compared genomes of Alteromonas macleodii “deep ecotype” isolates from two deep Mediterranean sites and two surface samples from the Aegean and the English Channel. A total of nine different genomes were analyzed. They belong to five clonal frames (CFs) that differ among them by approximately 30,000 single-nucleotide polymorphisms (SNPs) over their core genomes. Two of the CFs contain three strains each with nearly identical genomes (∼100 SNPs over the core genome). One of the CFs had representatives that were isolated from samples taken more than 1,000 km away, 2,500 m deeper, and 5 years apart. These data mark the longest proven persistence of a CF in nature (outside of clinical settings). We have found evidence for frequent recombination events between or within CFs and even with the distantly related A. macleodii surface ecotype. The different CFs had different flexible genomic islands. They can be classified into two groups; one type is additive, that is, containing different numbers of gene cassettes, and is very variable in short time periods (they often varied even within a single CF). The other type was more stable and produced the complete replacement of a genomic fragment by another with different genes. Although this type was more conserved within each CF, we found examples of recombination among distantly related CFs including English Channel and Mediterranean isolates. PMID:23729633
Markovska, Rumyana; Schneider, Ines; Keuleyan, Emma; Ivanova, Dobrinka; Lesseva, Magdalena; Stoeva, Temenuga; Sredkova, Mariya; Bauernfeind, Adolf; Mitov, Ivan
2017-04-01
The aim of this study was to analyze the beta-lactamases and the molecular epidemiology of 19 clinically significant isolates of Proteus mirabilis with decreased susceptibility to imipenem, which have been collected from seven hospitals, located in different Bulgarian towns (Sofia, Varna, and Pleven). The isolates were obtained from blood, urine, tracheal and wound specimens. One additional isolate from hospital environment was included. Susceptibility testing, conjugation experiments, and plasmid replicon typing were carried out. Beta-lactamases were characterized by isoelectric focusing, PCR, and sequencing. Clonal relatedness was investigated by RAPD and PFGE. Integron mapping was performed by PCR and sequencing. All isolates showed a multidrug-resistance profile, but remained susceptible to piperacillin/tazobactam, cefepime, meropenem, and fosfomycin. They produced identical beta-lactamases, namely: TEM-1, VIM-1, and CMY-99. PCR mapping revealed that the bla VIM-1 gene was part of a class 1 integron that additionally included the aac(6')-I, dhfrA1, and ant(3″)-Ia genes. In addition, 17 of the isolates carried the armA gene. Conjugation experiments and plasmid replicon typing were unsuccessful. The isolates were clonally related according to RAPD and PFGE typing. This study reveals the nationwide distribution of a multidrug-resistant P. mirabilis clone producing VIM-1 and CMY-99 along with the presence of different aminoglycoside resistance mechanisms.
García-Alvarez, Andrés; Fernández-Garayzábal, José Francisco; Chaves, Fernando; Pinto, Chris; Cid, Dolores
2018-06-01
This study investigated the genetic characteristics of 121 ovine Mannheimia haemolytica isolates from lungs with (n = 75) and without pneumonic lesions (n = 46) using multilocus sequence typing (MLST), virulence-associated gene typing and pulsed-field gel electrophoresis (PFGE). Twelve STs were identified with most isolates (81%) belonged to ST16, ST28 and ST8. Analysis of the M. haemolytica MLST Database indicate a wide distribution of these genotypes in small ruminants, never reported in bovine isolates. This could suggest the adaptation of certain genetic lineages of M. haemolytica to small ruminants. e-BURST analysis grouped most STs into three clonal complexes (CC2, CC8 and CC28), consistent with a clonal population structure of M. haemolytica. Virulence-associated gene typing identified five virulence profiles in 64% and 65.1% of the M. haemolytica isolates from lungs with and without pneumonic lesions, respectively. These data suggest that M. haemolytica isolates from the lungs with and without pneumonic lesions are genetically homogeneous. By PGFE analysis a high level of genetic diversity was observed not only within isolates from lungs without pneumonic lesions but also among isolates from pneumonic lesions (GD 0.69 and GD 0.66, respectively; P > 0.05). These results indicate that multiple strains of M. haemolytica may be associated with individual cases of pneumonia in sheep. Copyright © 2018 Elsevier B.V. All rights reserved.
Telomere erosion in NF1 tumorigenesis.
Jones, Rhiannon E; Grimstead, Julia W; Sedani, Ashni; Baird, Duncan; Upadhyaya, Meena
2017-06-20
Neurofibromatosis type 1 (NF1; MIM# 162200) is a familial cancer syndrome that affects 1 in 3,500 individuals worldwide and is inherited in an autosomal dominant fashion. Malignant Peripheral Nerve Sheath Tumors (MPNSTs) represent a significant cause of morbidity and mortality in NF1 and currently there is no treatment or definite prognostic biomarkers for these tumors. Telomere shortening has been documented in numerous tumor types. Short dysfunctional telomeres are capable of fusion and it is considered that the ensuing genomic instability may facilitate clonal evolution and the progression to malignancy. To evaluate the potential role of telomere dysfunction in NF1-associated tumors, we undertook a comparative analysis of telomere length in samples derived from 10 cutaneous and 10 diffused plexiform neurofibromas, and 19 MPNSTs. Telomere length was determined using high-resolution Single Telomere Length Analysis (STELA). The mean Xp/Yp telomere length detected in MPNSTs, at 3.282 kb, was significantly shorter than that observed in both plexiform neurofibromas (5.793 kb; [p = 0.0006]) and cutaneous neurofibromas (6.141 kb; [p = 0.0007]). The telomere length distributions of MPNSTs were within the length-ranges in which telomere fusion is detected and that confer a poor prognosis in other tumor types. These data indicate that telomere length may play a role in driving genomic instability and clonal progression in NF1-associated MPNSTs.
Tsang, Raymond S W; Ahmad, Tauqeer; Tyler, Shaun; Lefebvre, Brigitte; Deeks, Shelley L; Gilca, Rodica; Hoang, Linda; Tyrrell, Gregory; Van Caeseele, Paul; Van Domselaar, Gary; Jamieson, Frances B
2018-04-01
This study was performed to analyze the Canadian invasive serogroup W Neisseria meningitidis (MenW) sequence type 11 (ST-11) clonal complex (CC) isolates by whole genome typing and to compare Canadian isolates with similar isolates from elsewhere. Whole genome typing of 30 MenW ST-11 CC, 20 meningococcal group C (MenC) ST-11 CC, and 31 MenW ST-22 CC isolates was performed on the Bacterial Isolate Genome Sequence database platform. Canadian MenW ST-11 CC isolates were compared with the 2000 MenW Hajj outbreak strain, as well as with MenW ST-11 CC from other countries. Whole genome typing showed that the Canadian MenW ST-11 CC isolates were distinct from the traditional MenW ST-22 CC; they were not capsule-switched contemporary MenC strains that incorporated MenW capsules. While some recent MenW disease cases in Canada were caused by MenW ST-11 CC isolates showing relatedness to the 2000 MenW Hajj strain, many were non-Hajj isolates similar to current MenW ST-11 isolates found globally. Geographical and temporal variations in genotypes and surface protein antigen genes were found among the MenW ST-11 CC isolates. The current MenW ST-11 isolates did not arise by capsule switching from contemporary MenC ST-11 isolates. Both the Hajj-related and non-Hajj MenW ST-11 CC strains were associated with invasive meningococcal disease in Canada. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ogrodzki, Pauline; Forsythe, Stephen J.
2017-01-01
The Cronobacter genus is composed of seven species, within which a number of pathovars have been described. The most notable infections by Cronobacter spp. are of infants through the consumption of contaminated infant formula. The description of the genus has greatly improved in recent years through DNA sequencing techniques, and this has led to a robust means of identification. However some species are highly clonal and this limits the ability to discriminate between unrelated strains by some methods of genotyping. This article updates the application of three genotyping methods across the Cronobacter genus. The three genotyping methods were multilocus sequence typing (MLST), capsular profiling of the K-antigen and colanic acid (CA) biosynthesis regions, and CRISPR-cas array profiling. A total of 1654 MLST profiled and 286 whole genome sequenced strains, available by open access at the PubMLST Cronobacter database, were used this analysis. The predominance of C. sakazakii and C. malonaticus in clinical infections was confirmed. The majority of clinical strains being in the C. sakazakii clonal complexes (CC) 1 and 4, sequence types (ST) 8 and 12 and C. malonaticus ST7. The capsular profile K2:CA2, previously proposed as being strongly associated with C. sakazakii and C. malonaticus isolates from severe neonatal infections, was also found in C. turicensis, C. dublinensis and C. universalis. The majority of CRISPR-cas types across the genus was the I-E (Ecoli) type. Some strains of C. dublinensis and C. muytjensii encoded the I-F (Ypseudo) type, and others lacked the cas gene loci. The significance of the expanding profiling will be of benefit to researchers as well as governmental and industrial risk assessors. PMID:29033918
Abou Shady, Hala M; Bakr, Alaa Eldin A; Hashad, Mahmoud E; Alzohairy, Mohammad A
2015-01-01
Epidemiological and molecular data on community acquired methicillin resistant Staphylococcus aureus (CA-MRSA) are still scarce in both Egypt and Saudi Arabia. There is almost no data regarding methicillin resistant Staphylococcus aureus (MRSA) prevalence in both countries. This study was conducted to investigate the prevalence and molecular epidemiology of S. aureus and MRSA nasal carriage among outpatients attending primary health care centers in two big cities in both countries. A total of 206 nasal swabs were obtained, 103 swabs from each country. S. aureus isolates were characterized by antibiotic susceptibility, presence of mecA and PVL genes, SCCmec-typing and spa typing, the corresponding Multi locus sequence typing clonal complex was assigned for each spa type based on Ridom StaphType database. MRSA was detected in 32% of the Egyptian outpatients while it was found in 25% of the Saudi Arabian outpatients. All MRSA isolates belonged to SCCmec type V and IVa, where some isolates in Saudi Arabia remained nontypeable. Surprisingly PVL(+) isolates were low in frequency: 15% of MRSA Egyptian isolates and 12% of MRSA isolates in Saudi Arabia. Two novel spa types were detected t11839 in Egypt, and t11841 in Saudi Arabia. We found 8 spa types among 20 isolates from Egypt, and 12 spa types out of 15 isolates from Saudi Arabia. Only two spa types t008 and t223 coexisted in both countries. Four clonal complexes (CC5, CC8, CC22, and CC80) were identified in both Egypt and Saudi Arabia. However, the data collected lacked a representation of isolates from different parts of each country as only one health center from each country was included, it still partially illustrates the CA-MRSA situation in both countries. In conclusion a set of control measures is required to prevent further increase in MRSA prevalence. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.
Virulence, sporulation, and elicitin production in three clonal lineages of Phytophthora ramorum
Daniel Manter; Everett Hansen; Jennifer. Parke
2010-01-01
Phytophthora ramorum populations are clonal and consist of three clonal lineages: EU1 is the only lineage found in Europe with a few isolated nursery infections in the USA; NA1 is associated with natural infestations in California and Oregon as well as some nursery infections in North America, and NA2 has a limited distribution and has only...
USDA-ARS?s Scientific Manuscript database
In clonally propagated crops, non-additive genetic effects can be effectively exploited by the identification of superior genetic individuals as varieties. Cassava (Manihot esculenta Crantz) is a clonally propagated staple food crop that feeds hundreds of millions. We quantified the amount and natur...
Wang, N; Yu, F-H; Li, P-X; He, W-M; Liu, J; Yu, G-L; Song, Y-B; Dong, M
2009-05-01
Effects of clonal integration on land plants have been extensively studied, but little is known about the role in amphibious plants that expand from terrestrial to aquatic conditions. We simulated expansion from terrestrial to aquatic habitats in the amphibious stoloniferous alien invasive alligator weed (Alternanthera philoxeroides) by growing basal ramets of clonal fragments in soils connected (allowing integration) or disconnected (preventing integration) to the apical ramets of the same fragments submerged in water to a depth of 0, 5, 10 or 15 cm. Clonal integration significantly increased growth and clonal reproduction of the apical ramets, but decreased both of these characteristics in basal ramets. Consequently, integration did not affect the performance of whole clonal fragments. We propose that alligator weed possesses a double-edged mechanism during population expansion: apical ramets in aquatic habitats can increase growth through connected basal parts in terrestrial habitats; however, once stolon connections with apical ramets are lost by external disturbance, the basal ramets in terrestrial habitats increase stolon and ramet production for rapid spreading. This may contribute greatly to the invasiveness of alligator weed and also make it very adaptable to habitats with heavy disturbance and/or highly heterogeneous resource supply.
Cost of resistance to trematodes in freshwater snail populations with low clonal diversity.
Dagan, Yael; Kosman, Evsey; Ben-Ami, Frida
2017-12-13
The persistence of high genetic variability in natural populations garners considerable interest among ecologists and evolutionary biologists. One proposed hypothesis for the maintenance of high levels of genetic diversity relies on frequency-dependent selection imposed by parasites on host populations (Red Queen hypothesis). A complementary hypothesis suggests that a trade-off between fitness costs associated with tolerance to stress factors and fitness costs associated with resistance to parasites is responsible for the maintenance of host genetic diversity. The present study investigated whether host resistance to parasites is traded off with tolerance to environmental stress factors (high/low temperatures, high salinity), by comparing populations of the freshwater snail Melanoides tuberculata with low vs. high clonal diversity. Since polyclonal populations were found to be more parasitized than populations with low clonal diversity, we expected them to be tolerant to environmental stress factors. We found that clonal diversity explained most of the variation in snail survival under high temperature, thereby suggesting that tolerance to high temperatures of clonally diverse populations is higher than that of populations with low clonal diversity. Our results suggest that resistance to parasites may come at a cost of reduced tolerance to certain environmental stress factors.
Leslie, James F.; Vrijenhoek, Robert C.
1978-01-01
Theoretical considerations suggest that a high load of deleterious mutations should accumulate in asexual genomes. An ideal system for testing this hypothesis occurs in the hybrid all-female fish Poeciliopsis monacha-lucida. The hybrid genotype is retained between generations by an oogenetic process that transmits only a nonrecombinant haploid monacha genome to their ova. The hybrid genotype is re-established in nature by fertilization of these monacha eggs with sperm from a sexual species, P. lucida. The unique reproductive mechanism of these hybrids allows the genetic dissection of the clonal monacha genome by forced matings with males of P. monacha. The resultant F1 hybrids and their backcross progeny were examined to determine the amount and kinds of genetic changes that might have occurred in two clonal monacha genomes.—Using six allozyme markers, four similar linkage groups were identified in each clonal genome. Segregation and assortment at these loci revealed no apparent differences between monacha genomes from sexually and clonally reproducing species. Mortality of F1 and backcross progeny revealed differences between the two clonal genomes, suggesting that deleterious genes may accumulate in genomes sheltered from recombination. PMID:17248875
Comparison of students from private and public schools on the spelling performance.
Silva, Nathane Sanches Marques; Crenitte, Patrícia Abreu Pinheiro
2015-01-01
To compare the spelling ability of schoolchildren from the fourth to sixth grades of the elementary schools in the private and public schools of Bauru, São Paulo, and to verify whether errors are overcome as studies progress and the hierarchy of errors as to how often they occur. A dictation was applied to 384 schoolchildren: 206 from the private schools: 74 were at the fourth grade, 65 at the fifth grade, and 67 at the sixth grade; and 178 from the public schools; 56 at the fourth grade, 63 at the fifth grade, and 59 at the sixth grade of elementary school. Student's t test was used. In comparison of total spelling errors score, difference was found among the fourth and sixth grades of the private and public schools. Spelling errors decreased as education progressed, and those related to language irregularities were more common. Spelling ability and performance of students from the private and public schools are not similar in the fourth and sixth grades, but it is in the fifth grade. Spelling errors are gradually overcome as education progresses; however, this overcome rate was considerable between the fourth and fifth grades in the public schools. Decrease in the types of spelling errors follows a hierarchy of categories: phoneme/grapheme conversion, simple contextual rules, complex contextual rules, and language irregularities. Finally, the most common type of spelling error found was that related to language irregularities.
Sakamoto, Yuma; Masaki, Ayako; Aoyama, Satsuki; Han, Shusen; Saida, Kosuke; Fujii, Kana; Takino, Hisashi; Murase, Takayuki; Iida, Shinsuke; Inagaki, Hiroshi
2017-09-01
The BIOMED-2 PCR protocol for targeting the IGH gene is widely employed for detecting clonality in B-cell malignancies. Unfortunately, the detection of clonality with this method is not very sensitive when paraffin sections are used as a DNA source. To increase the sensitivity, we devised a semi-nested modification of a JH consensus primer. The clonality detection rates of three assays were compared: the standard BIOMED-2, BIOMED-2 assay followed by BIOMED-2 re-amplification, and BIOMED-2 assay followed by semi-nested BIOMED-2. We tested more than 100 cases using paraffin-embedded tissues of various B-cell lymphomas, and found that the clonality detection rates with the above three assays were 63.9%, 79.6%, and 88.0%, respectively. While BIOMED-2 re-amplification was significantly more sensitive than the standard BIOMED-2, the semi-nested BIOMED-2 was significantly more sensitive than both the standard BIOMED-2 and BIOMED-2 re-amplification. An increase in sensitivity was observed in all lymphoma subtypes examined. In conclusion, tumor clonality may be detected in nearly 90% of B-cell lymphoma cases with semi-nested BIOMED-2. This ancillary assay may be useful when the standard BIOMED-2 fails to detect clonality in histopathologically suspected B-cell lymphomas. © 2017 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.
IMP-29, a Novel IMP-Type Metallo-β-Lactamase in Pseudomonas aeruginosa
Jeannot, Katy; Poirel, Laurent; Robert-Nicoud, Marjorie; Cholley, Pascal; Nordmann, Patrice
2012-01-01
Analysis of two clonally related multiresistant Pseudomonas aeruginosa isolates led to the identification of a novel IMP-type metallo-β-lactamase. IMP-29 was significantly different from the other IMP variants (the closest variant being IMP-5 with 93% amino acid identity). The blaIMP-29 gene cassette was carried by a class 1 integron in strain 10.298, while in strain 10.266 it was located in a rearranged DNA region on a 30-kb conjugative plasmid. Biochemical analysis confirmed that IMP-29 efficiently hydrolyzed carbapenems. PMID:22290960
First isolate of KPC-2-producing Klebsiella pneumonaie sequence type 23 from the Americas.
Cejas, Daniela; Fernández Canigia, Liliana; Rincón Cruz, Giovanna; Elena, Alan X; Maldonado, Ivana; Gutkind, Gabriel O; Radice, Marcela A
2014-09-01
KPC-2-producing Klebsiella pneumoniae isolates mainly correspond to clonal complex 258 (CC258); however, we describe KPC-2-producing K. pneumoniae isolates belonging to invasive sequence type 23 (ST23). KPC-2 has scarcely been reported to occur in ST23, and this report describes the first isolation of this pathogen in the Americas. Acquisition of resistant markers in virulent clones could mark an evolutionary step toward the establishment of these clones as major nosocomial pathogens. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
USDA-ARS?s Scientific Manuscript database
Most T. gondii strains in North America and Europe belong to three archetypal clonal lineages including the Type I, II and III but, isolates from Brazil are highly diverse. Here, we analyzed 164 T. gondii isolates from three countries in Central America (Guatemala, Nicaragua, Costa Rica), from one c...
Clonal expansion of the Belgian Phytophthora ramorum populations based on new microsatellite markers
A. Vercauteren; I. De Dobbelaere; N. J. Grünwald; P. Bonants; E. Van Bockstaele; M. Maes; K. Heungens
2010-01-01
Co-existence of both mating types A1 and A2 within the EU1 lineage of Phytophthora ramorum has only been observed in Belgium, which begs the question whether sexual reproduction is occurring. A collection of 411 Belgian P. ramorum isolates was established during a 7-year survey. Our main objectives were genetic characterization of this population to test for sexual...
USDA-ARS?s Scientific Manuscript database
The objectives of the present cross sectional study were to estimate the prevalence and to isolate and genotype Toxoplasma gondii in free range chickens from Grenada, West Indies. Using the modified agglutination test, antibodies to T. gondii were found in 39 (26.9%) of 145 free-range chickens with ...
Pires, João; Kuenzli, Esther; Kasraian, Sara; Tinguely, Regula; Furrer, Hansjakob; Hilty, Markus; Hatz, Christoph; Endimiani, Andrea
2016-01-01
We aimed to assess the intestinal colonization dynamics by multiple extended-spectrum cephalosporin-resistant Enterobacteriaceae (ESC-R-Ent) clones in Swiss travelers to India, a country with high prevalence of these multidrug-resistant pathogens. Fifteen healthy volunteers (HVs) colonized with ESC-R-Ent after traveling to India who provided stools before, after, and at 3- and 6-month follow-up are presented in this study. Stools were enriched in a LB broth containing 3 mg/L cefuroxime and plated in standard selective media (BLSE, ChromID ESBL, Supercarba) to detect carbapenem- and/or ESC-R-Ent. At least 5 Enterobacteriaceae colonies were analyzed for each stool provided. All strains underwent phenotypic tests (MICs in microdilution) and molecular typing to define bla genes (microarray, PCR/sequencing), clonality (MLST, rep-PCR), and plasmid content. While only three HVs were colonized before the trip, all participants had positive stools after returning, but the colonization rate decreased during the follow-up period (i.e., six HVs were still colonized at both 3 and 6 months). More importantly, polyclonal acquisition (median of 2 clones, range 1–5) was identified at return in all HVs. The majority of the Escherichia coli isolates belonged to phylogenetic groups A and B1 and to high diverse non-epidemic sequence types (STs); however, 15% of them belonged to clonal complex 10 and mainly possessed blaCTX−M−15 genes. F family plasmids were constantly found (~80%) in the recovered ESC-R-Ent. Our results indicate a possible polyclonal acquisition of the ESC-R-Ent via food-chain and/or through an environmental exposure. For some HVs, prolonged colonization in the follow-up period was observed due to clonal persistence or presence of the same plasmid replicon types in a new bacterial host. Travel medicine practitioners, clinicians, and clinical microbiologists who are facing the returning travelers and their samples for different reasons should be aware of this important phenomenon, so that better infection control measures, treatment strategies, and diagnostic tests can be adopted. PMID:27462305
Volkert, Sarah; Kohlmann, Alexander; Schnittger, Susanne; Kern, Wolfgang; Haferlach, Torsten; Haferlach, Claudia
2014-05-01
We analyzed 1,200 patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) harboring a 5q deletion in order to clarify whether the type of 5q loss is associated with other biological markers and prognosis. We investigated all patients by chromosome banding analysis, FISH with a probe for EGR1 (5q31) and, if necessary, to resolve complex karyotypes with 24-color-FISH. Moreover, 420 patients were analyzed for mutations in the TP53 gene. The patient cohort was subdivided based on type of 5q loss: Patients with interstitial deletions and patients with 5q loss due to unbalanced rearrangements or monosomy 5. Loss of the long arm of chromosome 5 due to an unbalanced rearrangement occurred more often in AML (286/627; 45.6%) than MDS (188/573; 32.8%; P < 0.001). In both entities, patients with 5q loss due to unbalanced translocations showed complex karyotypes more frequently (MDS: 179/188; 95.2% vs. 124/385; 32.2%; P < 0.001; AML: 274/286; 95.8% vs. 256/341; 75.1%; P < 0.001). Moreover, in MDS unbalanced 5q translocations were associated with clonal evolution (109/188; 58.0% vs. 124/385; 32.2%; P < 0.001), mutation of TP53 (64/67; 95.5% vs. 40/120; 40.0%; P < 0.001), and shorter survival (15.3 months vs. not reached; P < 0.001). In MDS, complex karyotype was an independent adverse prognostic factor (HR = 5.34; P = 0.032), whereas in AML presence of TP53 mutations was the strongest adverse prognostic factor (HR = 2.21; P = 0.026). In conclusion, in AML and MDS, loss of the long arm of chromosome 5 due to unbalanced translocations is associated with complex karyotype and in MDS, moreover, with clonal evolution, mutations in the TP53 gene and adverse prognosis. Copyright © 2014 Wiley Periodicals, Inc.
Elhadidy, Mohamed; Miller, William G; Arguello, Hector; Álvarez-Ordóñez, Avelino; Duarte, Alexandra; Dierick, Katelijne; Botteldoorn, Nadine
2018-01-01
Human campylobacteriosis is the leading food-borne zoonosis in industrialized countries. This study characterized the clonal population structure, antimicrobial resistance profiles and occurrence of antimicrobial resistance determinants of a set of Campylobacter jejuni strains isolated from broiler carcasses in Belgium. Minimum inhibitory concentrations (MICs) against five commonly-used antibiotics (ciprofloxacin, nalidixic acid, tetracycline, gentamicin, and erythromycin) were determined for 204 C. jejuni isolates. More than half of the isolates were resistant to ciprofloxacin or nalidixic acid. In contrast, a lower percentage of screened isolates were resistant to gentamicin or erythromycin. C. jejuni isolates resistant to ciprofloxacin and/or nalidixic acid were screened for the substitution T86I in the quinolone resistance determining region (QRDR) of the gyrA gene, while C. jejuni isolates resistant to tetracycline were screened for the presence of the tet(O) gene. These resistance determinants were observed in most but not all resistant isolates. Regarding resistance to erythromycin, different mutations occurred in diverse genetic loci, including mutations in the 23S rRNA gene, the rplD and rplV ribosomal genes, and the intergenic region between cmeR and cmeABC . Interestingly, and contrary to previous reports, the A2075G transition mutation in the 23S rRNA gene was only found in one strain displaying a high level of resistance to erythromycin. Ultimately, molecular typing by multilocus sequence typing revealed that two sequence types (ST-824 and ST-2274) were associated to quinolones resistance by the presence of mutations in the gene gyrA ( p = 0.01). In addition, ST-2274 was linked to the CIP-NAL-TET-AMR multidrug resistant phenotype. In contrast, clonal complex CC-45 was linked to increased susceptibility to the tested antibiotics. The results obtained in this study provide better understanding of the phenotypic and the molecular basis of antibiotic resistance in C. jejuni , unraveling some the mechanisms which confer antimicrobial resistance and particular clones associated to the carriage and spread of resistance genes.
Schneider, Sarah C; Tinguely, Regula; Droz, Sara; Hilty, Markus; Donà, Valentina; Bodmer, Thomas; Endimiani, Andrea
2015-10-01
Antibiotic resistance in Ureaplasma urealyticum/Ureaplasma parvum and Mycoplasma hominis is an issue of increasing importance. However, data regarding the susceptibility and, more importantly, the clonality of these organisms are limited. We analyzed 140 genital samples obtained in Bern, Switzerland, in 2014. Identification and antimicrobial susceptibility tests were performed by using the Mycoplasma IST 2 kit and sequencing of 16S rRNA genes. MICs for ciprofloxacin and azithromycin were obtained in broth microdilution assays. Clonality was analyzed with PCR-based subtyping and multilocus sequence typing (MLST), whereas quinolone resistance and macrolide resistance were studied by sequencing gyrA, gyrB, parC, and parE genes, as well as 23S rRNA genes and genes encoding L4/L22 ribosomal proteins. A total of 103 samples were confirmed as positive for U. urealyticum/U. parvum, whereas 21 were positive for both U. urealyticum/U. parvum and M. hominis. According to the IST 2 kit, the rates of nonsusceptibility were highest for ciprofloxacin (19.4%) and ofloxacin (9.7%), whereas low rates were observed for clarithromycin (4.9%), erythromycin (1.9%), and azithromycin (1%). However, inconsistent results between microdilution and IST 2 kit assays were recorded. Various sequence types (STs) observed previously in China (ST1, ST2, ST4, ST9, ST22, and ST47), as well as eight novel lineages, were detected. Only some quinolone-resistant isolates had amino acid substitutions in ParC (Ser83Leu in U. parvum of serovar 6) and ParE (Val417Thr in U. parvum of serovar 1 and the novel Thr417Val substitution in U. urealyticum). Isolates with mutations in 23S rRNA or substitutions in L4/L22 were not detected. This is the first study analyzing the susceptibility of U. urealyticum/U. parvum isolates in Switzerland and the clonality outside China. Resistance rates were low compared to those in other countries. We hypothesize that some hyperepidemic STs spread worldwide via sexual intercourse. Large combined microbiological and clinical studies should address this important issue. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Schneider, Sarah C.; Tinguely, Regula; Droz, Sara; Hilty, Markus; Donà, Valentina; Bodmer, Thomas
2015-01-01
Antibiotic resistance in Ureaplasma urealyticum/Ureaplasma parvum and Mycoplasma hominis is an issue of increasing importance. However, data regarding the susceptibility and, more importantly, the clonality of these organisms are limited. We analyzed 140 genital samples obtained in Bern, Switzerland, in 2014. Identification and antimicrobial susceptibility tests were performed by using the Mycoplasma IST 2 kit and sequencing of 16S rRNA genes. MICs for ciprofloxacin and azithromycin were obtained in broth microdilution assays. Clonality was analyzed with PCR-based subtyping and multilocus sequence typing (MLST), whereas quinolone resistance and macrolide resistance were studied by sequencing gyrA, gyrB, parC, and parE genes, as well as 23S rRNA genes and genes encoding L4/L22 ribosomal proteins. A total of 103 samples were confirmed as positive for U. urealyticum/U. parvum, whereas 21 were positive for both U. urealyticum/U. parvum and M. hominis. According to the IST 2 kit, the rates of nonsusceptibility were highest for ciprofloxacin (19.4%) and ofloxacin (9.7%), whereas low rates were observed for clarithromycin (4.9%), erythromycin (1.9%), and azithromycin (1%). However, inconsistent results between microdilution and IST 2 kit assays were recorded. Various sequence types (STs) observed previously in China (ST1, ST2, ST4, ST9, ST22, and ST47), as well as eight novel lineages, were detected. Only some quinolone-resistant isolates had amino acid substitutions in ParC (Ser83Leu in U. parvum of serovar 6) and ParE (Val417Thr in U. parvum of serovar 1 and the novel Thr417Val substitution in U. urealyticum). Isolates with mutations in 23S rRNA or substitutions in L4/L22 were not detected. This is the first study analyzing the susceptibility of U. urealyticum/U. parvum isolates in Switzerland and the clonality outside China. Resistance rates were low compared to those in other countries. We hypothesize that some hyperepidemic STs spread worldwide via sexual intercourse. Large combined microbiological and clinical studies should address this important issue. PMID:26195516
Ramo, Ana; Monteagudo, Luis V.; Del Cacho, Emilio; Sánchez-Acedo, Caridad
2016-01-01
A multilocus fragment typing approach including eleven variable-number tandem-repeat (VNTR) loci and the GP60 gene was used to investigate the intra-farm and intra-host genetic diversity of Cryptosporidium parvum in sheep farms in a confined area in northeastern Spain. Genomic DNA samples of 113 C. parvum isolates from diarrheic pre-weaned lambs collected in 49 meat-type sheep farms were analyzed. Loci exhibited various degrees of polymorphism, the finding of 7–9 alleles in the four most variable and discriminatory markers (ML2, Cgd6_5400, Cgd6_3940, and GP60) being remarkable. The combination of alleles at the twelve loci identified a total of 74 multilocus subtypes (MLTs) and provided a Hunter-Gaston discriminatory index of 0.988 (95% CI, 0.979−0.996). The finding that most MLTs (n = 64) were unique to individual farms evidenced that cryptosporidial infection is mainly transmitted within sheep flocks, with herd-to-herd transmission playing a secondary role. Limited intra- host variability was found, since only five isolates were genotypically mixed. In contrast, a significant intra-farm genetic diversity was seen, with the presence of multiple MLTs on more than a half of the farms (28/46), suggesting frequent mutations or genetic exchange through recombination. Comparison with a previous study in calves in northern Spain using the same 12-loci typing approach showed differences in the identity of major alleles at most loci, with a single MLT being shared between lambs and calves. Analysis of evolutionary descent by the algorithm eBURST indicated a high degree of genetic divergence, with over 41% MLTs appearing as singletons along with a high number of clonal complexes, most of them linking only two MLTs. Bayesian Structure analysis and F statistics also revealed the genetic remoteness of most C. parvum isolates and no ancestral population size was chosen. Linkage analysis evidenced a prevalent pattern of clonality within the parasite population. PMID:27176718
Johnson, James R; Johnston, Brian; Thuras, Paul; Launer, Bryn; Sokurenko, Evgeni V; Miller, Loren G
2016-01-01
The H 30 strain of Escherichia coli sequence type 131 (ST131- H 30) is a recently emerged, globally disseminated lineage associated with fluoroquinolone resistance and, via its H 30Rx subclone, the CTX-M-15 extended-spectrum beta-lactamase (ESBL). Here, we studied the clonal background and resistance characteristics of 109 consecutive recent E. coli clinical isolates (2015) and 41 historical ESBL-producing E. coli blood isolates (2004 to 2011) from a public tertiary care center in California with a rising prevalence of ESBL-producing E. coli isolates. Among the 2015 isolates, ST131, which was represented mainly by ST131- H 30, was the most common clonal lineage (23% overall). ST131- H 30 accounted for 47% (8/17) of ESBL-producing, 47% (14/30) of fluoroquinolone-resistant, and 33% (11/33) of multidrug-resistant isolates. ST131- H 30 also accounted for 53% (8/14) of dually fluoroquinolone-resistant, ESBL-producing isolates, with the remaining 47% comprised of diverse clonal groups that contributed a single isolate each. ST131- H 30Rx, with CTX-M-15, was the major ESBL producer (6/8) among ST131- H 30 isolates. ST131- H 30 and H 30Rx also dominated (46% and 37%, respectively) among the historical ESBL-producing isolates (2004 to 2011), without significant temporal shifts in relative prevalence. Thus, this medical center's recently emerging ESBL-producing E. coli strains, although multiclonal, are dominated by ST131- H 30 and H 30Rx, which are the only clonally expanded fluoroquinolone-resistant, ESBL-producing lineages. Measures to rapidly and effectively detect, treat, and control these highly successful lineages are needed. IMPORTANCE The ever-rising prevalence of resistance to first-line antibiotics among clinical Escherichia coli isolates leads to worse clinical outcomes and higher health care costs, thereby creating a need to discover its basis so that effective interventions can be developed. We found that the H 30 subset within E. coli sequence type 131 (ST131- H 30) is currently, and has been since at least 2004, the main E. coli lineage contributing to key resistance phenotypes-including extended-spectrum-beta-lactamase (ESBL) production, fluoroquinolone resistance, multidrug resistance, and dual ESBL production-plus-fluoroquinolone resistance-at a United States tertiary care center with a rising prevalence of ESBL-producing E. coli isolates. This identifies ST131- H 30 as a target for diagnostic tests and preventive measures designed to curb the emergence of multidrug-resistant E. coli isolates and/or to blunt its clinical impact.
PyClone: statistical inference of clonal population structure in cancer.
Roth, Andrew; Khattra, Jaswinder; Yap, Damian; Wan, Adrian; Laks, Emma; Biele, Justina; Ha, Gavin; Aparicio, Samuel; Bouchard-Côté, Alexandre; Shah, Sohrab P
2014-04-01
We introduce PyClone, a statistical model for inference of clonal population structures in cancers. PyClone is a Bayesian clustering method for grouping sets of deeply sequenced somatic mutations into putative clonal clusters while estimating their cellular prevalences and accounting for allelic imbalances introduced by segmental copy-number changes and normal-cell contamination. Single-cell sequencing validation demonstrates PyClone's accuracy.
Steven A. Knowe; G. Sam Foster; Randall J. Rousseau; Warren L Nance
1998-01-01
Data from an eastern cottonwood clonal mixing study in Mississippi and Kentucky, USA, were used to test the effects of planting locations and genetics (clonal proportions) on height-age and height-d.b.h. functions. Planting locations, which accounted for 5.6 percent of the variation in observed dominant height growth (p = 0.0001), were more important than clonal...
N.J. Grünwald; E.M. Goss; K. Ivors; M. Garbelotto; F.N. Martin; S. Prospero; E. Hansen; P.J.M. Bonants; R.C. Hamelin; G. Chastagner; S. Werres; D.M. Rizzo; G. Abad; P. Beales; G.J. Bilodeau; C.L. Blomquist; C. Brasier; S.C. Brière; A. Chandelier; J.M. Davidson; S. Denman; M. Elliott; S.J. Frankel; E.M. Goheen; H. de Gruyter; K. Heungens; D. James; A. Kanaskie; M.G. McWilliams; W. Man in ' t Veld; E. Moralejo; N.K. Osterbauer; M.E. Palm; J.L. Parke; A.M. Perez Sierra; S.F. Shamoun; N. Shishkoff; P.W. Tooley; A.M. Vettraino; J. Webber; T.L. Widmer
2009-01-01
Phytophthora ramorum, the causal agent of sudden oak death and ramorum blight, is known to exist as three distinct clonal lineages which can only be distinguished by performing molecular marker-based analyses. However, in the recent literature there exists no consensus on naming of these lineages. Here we propose a system for naming clonal lineages of P. ramorum based...
Wiedmeier, Julia Erin; Kato, Catherine; Zhang, Zhenzhen; Lee, Hyunjung; Dunlap, Jennifer; Nutt, Eric; Rattray, Rogan; McKay, Sarah; Eide, Christopher; Press, Richard; Mori, Motomi; Druker, Brian; Dao, Kim-Hien
2016-09-01
Recent large cohort studies revealed that healthy older individuals harbor somatic mutations that increase their risk for hematologic malignancy and all-cause cardiovascular deaths. The majority of these mutations are in chromatin and epigenetic regulatory genes (CERGs). CERGs play a key role in regulation of DNA methylation (DNMT3A and TET2) and histone function (ASXL1) and in clonal proliferation of hematopoietic stem cells. We hypothesize that older women manifesting clonal hematopoiesis, defined here as a functional phenomenon in which a hematopoietic stem cell has acquired a survival and proliferative advantage, harbor a higher frequency of somatic mutations in CERGs. The human androgen receptor gene (HUMARA) assay was used in our study to detect the presence of nonrandom X inactivation in women, a marker for clonal hematopoiesis. In our pilot study, we tested 127 blood samples from women ≥65 years old without a history of invasive cancer or hematologic malignancies. Applying stringent qualitative criteria, we found that 26% displayed clonal hematopoiesis; 52.8% displayed polyclonal hematopoiesis; and 21.3% had indeterminate patterns (too close to call by qualitative assessment). Using Illumina MiSeq next-generation sequencing, we identified somatic mutations in CERGs in 15.2% of subjects displaying clonal hematopoiesis (three ASXL1 and two DNMT3A mutations with an average variant allele frequency of 15.7%, range: 6.3%-23.3%). In a more limited sequencing analysis, we evaluated the frequency of ASXL1 mutations by Sanger sequencing and found mutations in 9.7% of the clonal samples and 0% of the polyclonal samples. By comparing several recent studies (with some caveats as described), we determined the fold enrichment of detecting CERG mutations by using the HUMARA assay as a functional screen for clonal hematopoiesis. We conclude that a functional assay of clonal hematopoiesis is enriching for older women with somatic mutations in CERGs, particularly for ASXL1 and TET2 mutations and less so for DNMT3A mutations. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.
Yu, Jie; Sun, Zhihong; Liu, Wenjun; Xi, Xiaoxia; Song, Yuqin; Xu, Haiyan; Lv, Qiang; Bao, Qiuhua; Menghe, Bilige; Sun, Tiansong
2015-10-26
Streptococcus thermophilus is a major dairy starter used for manufacturing of dairy products. In the present study, we developed a multilocus sequence typing (MLST) scheme for this important food bacterium. Sequences of 10 housekeeping genes (carB, clpX, dnaA, murC, murE, pepN, pepX, pyrG, recA, and rpoB) were obtained for 239 S. thermophilus strains, which were isolated from home-made fermented dairy foods in 18 different regions of Mongolia and China. All 10 genes of S. thermophilus were sequenced, aligned, and defined sequence types (STs) using the BioNumerics Software. The nucleotide diversity was calculated by START v2.0. The population structure, phylogenetic relationships and the role of recombination were inferred using ClonalFrame v1.2, SplitsTree 4.0 and Structure v2.3. The 239 S. thermophilus isolates and 18 reference strains could be assigned into 119 different STs, which could be further separated into 16 clonal complexes (CCs) and 38 singletons. Among the 10 loci, a total of 132 polymorphic sites were detected. The standardized index of association (IAS=0.0916), split-decomposition and ρ/θ (relative frequency of occurrence of recombination and mutation) and r/m value (relative impact of recombination and mutation in the diversification) confirms that recombination may have occurred, but it occurred at a low frequency in these 10 loci. Phylogenetic trees indicated that there were five lineages in the S. thermophilus isolates used in our study. MSTree and ClonalFrame tree analyses suggest that the evolution of S. thermophilus isolates have little relationship with geographic locality, but revealed no association with the types of fermented dairy product. Phylogenetic analysis of 36 whole genome strains (18 S. thermophilus, 2 S. vestibularis and 16 S. salivarius strains) indicated that our MLST scheme could clearly separate three closely related species within the salivarius group and is suitable for analyzing the population structure of the other two species in the salivarius group. Our newly developed MLST scheme improved the understanding on the genetic diversity and population structure of the S. thermophilus, as well as provided useful information for further studies on the genotyping and evolutionary research for S. thermophilus strains with global diversity.
Novel type of VanB2 teicoplanin-resistant hospital-associated Enterococcus faecium.
Santona, Antonella; Paglietti, Bianca; Al-Qahtani, Ahmed A; Bohol, Marie Fe F; Senok, Abiola; Deligios, Massimo; Rubino, Salvatore; Al-Ahdal, Mohammed N
2014-08-01
Seven high-risk clones of vancomycin-resistant Enterococcus faecium (VREF) belonging to clonal complex 17 were identified using multilocus sequence typing (MLST) among clinical isolates from Saudi Arabia. Among these isolates, a new hospital-associated sequence type (ST795), VanB(2)-type teicoplanin-resistant strain was detected. Its unusual phenotype resulted from a new combination of mutations in the ddl, vanS and vanW genes, which confirmed the trend of evolution in VanB-type resistance. Furthermore, characteristics of adaptation and persistence in the hospital environment of ST795 were emphasised by the presence of genes and clusters recognised to be specific for hospital-associated VREF. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
NASA Astrophysics Data System (ADS)
Çakır, O.; Çakır, I. T.; Senol, A.; Tasci, A. T.
2012-05-01
The fourth family quarks are expected to have mass larger than the top quark considering the results from recent studies on the allowed parameter space. They could also have different dynamics than the quarks of three families of the standard model. The single production of the fourth family up-type quark t‧ is studied via the anomalous production process pp → t‧VX (where V = g, Z, γ) at the LHC with the center of mass energy of 7 and 14 TeV. The signatures of such process are discussed within both the SM and the anomalous decay modes of t‧ quarks. The sensitivity to anomalous coupling κ/Λ = 0.004 TeV-1 can be reached at \\sqrt{s}=14 TeV and Lint = 100 pb-1.
Depuydt, Christophe E; Thys, Sofie; Beert, Johan; Jonckheere, Jef; Salembier, Geert; Bogers, Johannes J
2016-11-01
Persistent high-risk human papillomavirus (HPV) infection is strongly associated with development of high-grade cervical intraepithelial neoplasia or cancer (CIN3+). In single type infections, serial type-specific viral-load measurements predict the natural history of the infection. In infections with multiple HPV-types, the individual type-specific viral-load profile could distinguish progressing HPV-infections from regressing infections. A case-cohort natural history study was established using samples from untreated women with multiple HPV-infections who developed CIN3+ (n = 57) or cleared infections (n = 88). Enriched cell pellet from liquid based cytology samples were subjected to a clinically validated real-time qPCR-assay (18 HPV-types). Using serial type-specific viral-load measurements (≥3) we calculated HPV-specific slopes and coefficient of determination (R(2) ) by linear regression. For each woman slopes and R(2) were used to calculate which HPV-induced processes were ongoing (progression, regression, serial transient, transient). In transient infections with multiple HPV-types, each single HPV-type generated similar increasing (0.27copies/cell/day) and decreasing (-0.27copies/cell/day) viral-load slopes. In CIN3+, at least one of the HPV-types had a clonal progressive course (R(2) ≥ 0.85; 0.0025copies/cell/day). In selected CIN3+ cases (n = 6), immunostaining detecting type-specific HPV 16, 31, 33, 58 and 67 RNA showed an even staining in clonal populations (CIN3+), whereas in transient virion-producing infections the RNA-staining was less in the basal layer compared to the upper layer where cells were ready to desquamate and release newly-formed virions. RNA-hybridization patterns matched the calculated ongoing processes measured by R(2) and slope in serial type-specific viral-load measurements preceding the biopsy. In women with multiple HPV-types, serial type-specific viral-load measurements predict the natural history of the different HPV-types and elucidates HPV-genotype attribution. © 2016 UICC.
Clonality in myeloproliferative disorders: Analysis by means of polymerase chain reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilliland, D.G.; Blanchard, K.L.; Levy, J.
1991-08-01
The myeloproliferative syndromes are acquired disorders of hematopoiesis that provide insights into the transition from somatic cell mutation to neoplasia. The clonal origin of specific blood cells can be assessed in patients with X chromosome-linked polymorphisms, taking advantage of random inactivation of the X chromosome. The authors have adapted the PCR for determination of clonality on as few as 100 cells, including individual colonies grown in culture. Amplifying a polymorphic portion of the X chromosome-linked phosphoglycerate kinase (PGK) gene after selective digestion of the active X chromosome with a methylation-sensitive restriction enzyme gave results fully concordant with standard Southern blottingmore » of DNA samples form normal (polyclonal) polymorphonuclear cells (PMN) as well as clonal PMN from patients with myelodysplastic syndrome and polycythemia vera (PCV). They have used this technique to demonstrate heterogeneity of lineage involvement in patients with PCV. The same clinical phenotype may arise from clonal proliferation of different hematopoietic progenitors.« less
Clonal Outbreak of Plasmodium falciparum Infection in Eastern Panama
Obaldia, Nicanor; Baro, Nicholas K.; Calzada, Jose E.; Santamaria, Ana M.; Daniels, Rachel; Wong, Wesley; Chang, Hsiao-Han; Hamilton, Elizabeth J.; Arevalo-Herrera, Myriam; Herrera, Socrates; Wirth, Dyann F.; Hartl, Daniel L.; Marti, Matthias; Volkman, Sarah K.
2015-01-01
Identifying the source of resurgent parasites is paramount to a strategic, successful intervention for malaria elimination. Although the malaria incidence in Panama is low, a recent outbreak resulted in a 6-fold increase in reported cases. We hypothesized that parasites sampled from this epidemic might be related and exhibit a clonal population structure. We tested the genetic relatedness of parasites, using informative single-nucleotide polymorphisms and drug resistance loci. We found that parasites were clustered into 3 clonal subpopulations and were related to parasites from Colombia. Two clusters of Panamanian parasites shared identical drug resistance haplotypes, and all clusters shared a chloroquine-resistance genotype matching the pfcrt haplotype of Colombian origin. Our findings suggest these resurgent parasite populations are highly clonal and that the high clonality likely resulted from epidemic expansion of imported or vestigial cases. Malaria outbreak investigations that use genetic tools can illuminate potential sources of epidemic malaria and guide strategies to prevent further resurgence in areas where malaria has been eliminated. PMID:25336725
Pfaff, Florian; Müller, Thomas; Freuling, Conrad M; Fehlner-Gardiner, Christine; Nadin-Davis, Susan; Robardet, Emmanuelle; Cliquet, Florence; Vuta, Vlad; Hostnik, Peter; Mettenleiter, Thomas C; Beer, Martin; Höper, Dirk
2018-02-10
Live-attenuated rabies virus strains such as those derived from the field isolate Street Alabama Dufferin (SAD) have been used extensively and very effectively as oral rabies vaccines for the control of fox rabies in both Europe and Canada. Although these vaccines are safe, some cases of vaccine-derived rabies have been detected during rabies surveillance accompanying these campaigns. In recent analysis it was shown that some commercial SAD vaccines consist of diverse viral populations, rather than clonal genotypes. For cases of vaccine-derived rabies, only consensus sequence data have been available to date and information concerning their population diversity was thus lacking. In our study, we used high-throughput sequencing to analyze 11 cases of vaccine-derived rabies, and compared their viral population diversity to the related oral rabies vaccines using pairwise Manhattan distances. This extensive deep sequencing analysis of vaccine-derived rabies cases observed during oral vaccination programs provided deeper insights into the effect of accidental in vivo replication of genetically diverse vaccine strains in the central nervous system of target and non-target species under field conditions. The viral population in vaccine-derived cases appeared to be clonal in contrast to their parental vaccines. The change from a state of high population diversity present in the vaccine batches to a clonal genotype in the affected animal may indicate the presence of a strong bottleneck during infection. In conclusion, it is very likely that these few cases are the consequence of host factors and not the result of the selection of a more virulent genotype. Furthermore, this type of vaccine-derived rabies leads to the selection of clonal genotypes and the selected variants were genetically very similar to potent SAD vaccines that have undergone a history of in vitro selection. Copyright © 2018. Published by Elsevier Ltd.
Fan, Baoli; McHugh, Allen David; Guo, Shujiang; Ma, Quanlin; Zhang, Jianhui; Zhang, Xiaojuan; Zhang, Weixing; Du, Juan; Yu, Qiushi; Zhao, Changming
2018-03-01
Calligonum mongolicum is a successful pioneer shrub to combat desertification, which is widely used for vegetation restoration in the desert regions of northwest China. In order to reveal the limitations to natural regeneration of C. mongolicum by asexual and sexual reproduction, following the process of sand dune stabilization, we assessed clonal shoots, seedling emergence, soil seed bank density, and soil physical characteristics in mobile and stabilized sand dunes. Controlled field and pot experiments were also conducted to assess germination and seedling emergence in different dune soil types and seed burial depths. The population density of mature C. mongolicum was significantly different after sand dune stabilization. Juvenile density of C. mongolicm was much lower in stabilized sand dunes than mobile sand dune. There was no significant difference in soil seed bank density at three soil depths between mobile and stabilized sand dunes, while the emergence of seedlings in stabilized dunes was much lower than emergence in mobile dunes. There was no clonal propagation found in stabilized dunes, and very few C. mongolicum seedlings were established on stabilized sand dunes. Soil clay and silt content, air-filled porosity, and soil surface compaction were significantly changed from mobile sand dune to stabilized dunes. Seedling emergence of C. mongolicm was highly dependent on soil physical condition. These results indicated that changes in soil physical condition limited clonal propagation and seedling emergence of C. mongolicum in stabilized sand dunes. Seed bank density was not a limiting factor; however, poor seedling establishment limited C. mongolicum's further natural regeneration in stabilized sand dunes. Therefore, clonal propagation may be the most important mode for population expansion in mobile sand dunes. As a pioneer species C. mongolicum is well adapted to propagate in mobile sand dune conditions, it appears unlikely to survive naturally in stabilized sand dune plantations.
Clonal Evaluation of Prostate Cancer by ERG/SPINK1 Status to Improve Prognosis Prediction
2017-12-01
meaning that most men with prostate cancer have multiple, genetically distinct cancers. Pathologists cannot assess clonality by routine microscopic...Hence, in this proposal we utilized dual ERG/SPINK1 immunohistochemistry (IHC)—as a readout of clonal, mutually exclusive molecular subtypes—to assess...multiclonal (also referred to as multifocal), meaning that more than 80% of men with prostate cancer actually have multiple, genetically distinct
NASA Technical Reports Server (NTRS)
Zhang, Jun; Ge, Lixin; Kouatchou, Jules
2000-01-01
A new fourth order compact difference scheme for the three dimensional convection diffusion equation with variable coefficients is presented. The novelty of this new difference scheme is that it Only requires 15 grid points and that it can be decoupled with two colors. The entire computational grid can be updated in two parallel subsweeps with the Gauss-Seidel type iterative method. This is compared with the known 19 point fourth order compact differenCe scheme which requires four colors to decouple the computational grid. Numerical results, with multigrid methods implemented on a shared memory parallel computer, are presented to compare the 15 point and the 19 point fourth order compact schemes.
Khan, Asis; Miller, Natalie; Roos, David S.; Dubey, J. P.; Ajzenberg, Daniel; Dardé, Marie Laure; Ajioka, James W.; Rosenthal, Benjamin; Sibley, L. David
2011-01-01
ABSTRACT Toxoplasma gondii is a common parasite of animals that also causes a zoonotic infection in humans. Previous studies have revealed a strongly clonal population structure that is shared between North America and Europe, while South American strains show greater genetic diversity and evidence of sexual recombination. The common inheritance of a monomorphic version of chromosome Ia (referred to as ChrIa*) among three clonal lineages from North America and Europe suggests that inheritance of this chromosome might underlie their recent clonal expansion. To further examine the diversity and distribution of ChrIa, we have analyzed additional strains with greater geographic diversity. Our findings reveal that the same haplotype of ChrIa* is found in the clonal lineages from North America and Europe and in older lineages in South America, where sexual recombination is more common. Although lineages from all three continents harbor the same conserved ChrIa* haplotype, strains from North America and Europe are genetically separate from those in South America, and these respective geographic regions show limited evidence of recent mixing. Genome-wide, array-based profiling of polymorphisms provided evidence for an ancestral flow from particular older southern lineages that gave rise to the clonal lineages now dominant in the north. Collectively, these data indicate that ChrIa* is widespread among nonclonal strains in South America and has more recently been associated with clonal expansion of specific lineages in North America and Europe. These findings have significant implications for the spread of genetic loci influencing transmission and virulence in pathogen populations. PMID:22068979
Han, Shusen; Masaki, Ayako; Sakamoto, Yuma; Takino, Hisashi; Murase, Takayuki; Iida, Shinsuke; Inagaki, Hiroshi
2018-05-01
The BIOMED-2 PCR protocols targeting IGH and IGK genes may be useful for detecting clonality in Hodgkin lymphoma (HL). The clonality detection rates, however, have not been very high with these methods using paraffin-embedded tumor sections. We previously described the usefulness of the semi-nested BIOMED-2 IGH assay in B-cell malignancies. In this study, we devised a novel semi-nested BIOMED-2 IGK assay. Employing 58 cases of classical HL, we carried out the standard BIOMED-2, BIOMED-2 followed by BIOMED-2 re-amplification, and BIOMED-2 followed by semi-nested BIOMED-2, all targeting IGH and IGK, using paraffin-embedded tissues. In both IGH and IGK assays, semi-nested assays yielded significantly higher clonality detection rates than the standard assays and re-amplification assays. Clonality was detected in 13/58 (22.4%) classical HL cases using the standard IGH/IGK assays while it was detected in 38/58 (65.5%) cases using semi-nested IGH/IGK assays. The detection rates were not associated with the HL subtypes, CD30-positive cell density, CD20-positive cell density, or Epstein-Barr virus (EBV) positivity. In conclusion, tumor clonality was detected in nearly two-thirds of classical HL cases using semi-nested BIOMED-2 IGH/IGK assays using paraffin tumor sections. These semi-nested assays may be useful when the standard IGH/IGK assays fail to detect clonality in histopathologically suspected HLs. © 2018 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.
Ribera, Jordi; Zamora, Lurdes; Juncà, Jordi; Rodríguez, Inés; Marcé, Silvia; Cabezón, Marta; Millá, Fuensanta
2013-07-25
In up to 5-15% of studies of lymphoproliferative disorders (LPD) flow cytometry (FCM) or immunomorphologic methods cannot discriminate malignant from reactive processes. The aim of this work was to determine the usefulness of PCR for solving these diagnostic uncertainties. We analyzed IGH and TCRγ genes by PCR in 106 samples with inconclusive FCM results. A clonal result was registered in 36/106 studies, with a LPD being confirmed in 27 (75%) of these cases. Specifically, 9/9 IGH clonal and 16/25 TCRγ clonal results were finally diagnosed with LPD. Additionally, 2 clonal TCRγ samples with suspicion of undefined LPD were finally diagnosed with T LPD. Although polyclonal results were obtained in 47 of the cases studied (38 IGH and 9 TCRγ), hematologic neoplasms were diagnosed in 4/38 IGH polyclonal and in 1/9 TCRγ polyclonal studies. There were also 14 PCR polyclonal results (4 IGH, 10 TCRγ), albeit non-conclusive. Of these, 2/4 were eventually diagnosed with B-cell lymphoma and 3/10 with T-cell LPD. In 8 IGH samples the results of PCR techniques were non-informative but in 3/8 cases a B lymphoma was finally confirmed. We concluded that PCR is a useful technique to identify LPD when FCM is inconclusive. A PCR clonal B result is indicative of malignancy but IGH polyclonal and non-conclusive results do not exclude lymphoid neoplasms. Interpretation of T-cell clonality should be based on all the available clinical and analytical data. © 2013 Clinical Cytometry Society. Copyright © 2013 Clinical Cytometry Society.
Extensive clonal spread and extreme longevity in saw palmetto, a foundation clonal plant.
Takahashi, Mizuki K; Horner, Liana M; Kubota, Toshiro; Keller, Nathan A; Abrahamson, Warren G
2011-09-01
The lack of effective tools has hampered out ability to assess the size, growth and ages of clonal plants. With Serenoa repens (saw palmetto) as a model, we introduce a novel analytical framework that integrates DNA fingerprinting and mathematical modelling to simulate growth and estimate ages of clonal plants. We also demonstrate the application of such life-history information of clonal plants to provide insight into management plans. Serenoa is an ecologically important foundation species in many Southeastern United States ecosystems; yet, many land managers consider Serenoa a troublesome invasive plant. Accordingly, management plans have been developed to reduce or eliminate Serenoa with little understanding of its life history. Using Amplified Fragment Length Polymorphisms, we genotyped 263 Serenoa and 134 Sabal etonia (a sympatric non-clonal palmetto) samples collected from a 20 × 20 m study plot in Florida scrub. Sabal samples were used to assign small field-unidentifiable palmettos to Serenoa or Sabal and also as a negative control for clone detection. We then mathematically modelled clonal networks to estimate genet ages. Our results suggest that Serenoa predominantly propagate via vegetative sprouts and 10,000-year-old genets may be common, while showing no evidence of clone formation by Sabal. The results of this and our previous studies suggest that: (i) Serenoa has been part of scrub associations for thousands of years, (ii) Serenoa invasion are unlikely and (ii) once Serenoa is eliminated from local communities, its restoration will be difficult. Reevaluation of the current management tools and plans is an urgent task. © 2011 Blackwell Publishing Ltd.
Clonal analysis reveals a common origin between nonsomite-derived neck muscles and heart myocardium
Lescroart, Fabienne; Hamou, Wissam; Francou, Alexandre; Théveniau-Ruissy, Magali; Kelly, Robert G.; Buckingham, Margaret
2015-01-01
Neck muscles constitute a transition zone between somite-derived skeletal muscles of the trunk and limbs, and muscles of the head, which derive from cranial mesoderm. The trapezius and sternocleidomastoid neck muscles are formed from progenitor cells that have expressed markers of cranial pharyngeal mesoderm, whereas other muscles in the neck arise from Pax3-expressing cells in the somites. Mef2c-AHF-Cre genetic tracing experiments and Tbx1 mutant analysis show that nonsomitic neck muscles share a gene regulatory network with cardiac progenitor cells in pharyngeal mesoderm of the second heart field (SHF) and branchial arch-derived head muscles. Retrospective clonal analysis shows that this group of neck muscles includes laryngeal muscles and a component of the splenius muscle, of mixed somitic and nonsomitic origin. We demonstrate that the trapezius muscle group is clonally related to myocardium at the venous pole of the heart, which derives from the posterior SHF. The left clonal sublineage includes myocardium of the pulmonary trunk at the arterial pole of the heart. Although muscles derived from the first and second branchial arches also share a clonal relationship with different SHF-derived parts of the heart, neck muscles are clonally distinct from these muscles and define a third clonal population of common skeletal and cardiac muscle progenitor cells within cardiopharyngeal mesoderm. By linking neck muscle and heart development, our findings highlight the importance of cardiopharyngeal mesoderm in the evolution of the vertebrate heart and neck and in the pathophysiology of human congenital disease. PMID:25605943
Clonal analysis reveals a common origin between nonsomite-derived neck muscles and heart myocardium.
Lescroart, Fabienne; Hamou, Wissam; Francou, Alexandre; Théveniau-Ruissy, Magali; Kelly, Robert G; Buckingham, Margaret
2015-02-03
Neck muscles constitute a transition zone between somite-derived skeletal muscles of the trunk and limbs, and muscles of the head, which derive from cranial mesoderm. The trapezius and sternocleidomastoid neck muscles are formed from progenitor cells that have expressed markers of cranial pharyngeal mesoderm, whereas other muscles in the neck arise from Pax3-expressing cells in the somites. Mef2c-AHF-Cre genetic tracing experiments and Tbx1 mutant analysis show that nonsomitic neck muscles share a gene regulatory network with cardiac progenitor cells in pharyngeal mesoderm of the second heart field (SHF) and branchial arch-derived head muscles. Retrospective clonal analysis shows that this group of neck muscles includes laryngeal muscles and a component of the splenius muscle, of mixed somitic and nonsomitic origin. We demonstrate that the trapezius muscle group is clonally related to myocardium at the venous pole of the heart, which derives from the posterior SHF. The left clonal sublineage includes myocardium of the pulmonary trunk at the arterial pole of the heart. Although muscles derived from the first and second branchial arches also share a clonal relationship with different SHF-derived parts of the heart, neck muscles are clonally distinct from these muscles and define a third clonal population of common skeletal and cardiac muscle progenitor cells within cardiopharyngeal mesoderm. By linking neck muscle and heart development, our findings highlight the importance of cardiopharyngeal mesoderm in the evolution of the vertebrate heart and neck and in the pathophysiology of human congenital disease.
Bills, John W; Roalson, Eric H; Busch, Jeremiah W; Eidesen, Pernille B
2015-07-01
• Sexual reproduction often requires more energy and time than clonal reproduction. In marginal arctic conditions, species that can reproduce both sexually and clonally dominate. Plants with this capacity may thrive because they can alter reproduction depending on environmental conditions. Bistorta vivipara is a circumpolar herb that predominately reproduces clonally, but certain environmental conditions promote higher investment in flowers (and possible sexual reproduction). Despite largely reproducing clonally, the herb has high levels of genetic variation, and the processes underlying this paradoxical pattern of variation remain unclear. Here we identified environmental factors associated with sexual investment and examined whether sexual reproduction is associated with higher levels of genetic variation.• We sampled 20 populations of B. vivipara across the high Arctic archipelago of Svalbard. In each population, we measured reproductive traits, environmental variables, and collected samples for genetic analyses. These samples permitted hypotheses to be tested regarding sexual investment and ecological and genetic correlates.• Increased soil nitrogen and organic matter content and decreased elevation were positively associated with investment in flowers. Increased investment in flowers significantly correlated with more genotypes per population. Linkage disequilibrium was consistent with predominant clonality, but several populations showed higher genetic variation and lower differentiation than expected. There was no geographical genetic structure.• In B. vivipara, sexual investment is positively associated with habitat quality. Bistorta vivipara predominantly reproduces clonally, but occasional outcrossing, efficient clonal reproduction, and dispersal by bulbils can explain the considerable genetic variation and weak genetic structure in B. vivipara. © 2015 Botanical Society of America, Inc.
James, Elizabeth A.; McDougall, Keith L.
2014-01-01
Background and Aims The association of clonality, polyploidy and reduced fecundity has been identified as an extinction risk for clonal plants. Compromised sexual reproduction limits both their ability to adapt to new conditions and their capacity to disperse to more favourable environments. Grevillea renwickiana is a prostrate, putatively sterile shrub reliant on asexual reproduction. Dispersal is most likely limited by the rate of clonal expansion via rhizomes. The nine localized populations constituting this species provide an opportunity to examine the extent of clonality and spatial genotypic diversity to evaluate its evolutionary prospects. Methods Ten microsatellite loci were used to compare genetic and genotypic diversity across all sites with more intensive sampling at four locations (n = 185). The spatial distribution of genotypes and chloroplast DNA haplotypes based on the trnQ–rps16 intergenic spacer region were compared. Chromosome counts provided a basis for examining genetic profiles inconsistent with diploidy. Key Results Microsatellite analysis identified 46 multilocus genotypes (MLGs) in eight multilocus clonal lineages (MLLs). MLLs are not shared among sites, with two exceptions. Spatial autocorrelation was significant to 1·6 km. Genotypic richness ranged from 0 to 0·33. Somatic mutation is likely to contribute to minor variation between MLGs within clonal lineages. The eight chloroplast haplotypes identified were correlated with eight MLLs defined by ordination and generally restricted to single populations. Triploidy is the most likely reason for tri-allelic patterns. Conclusions Grevillea renwickiana comprises few genetic individuals. Sterility has most likely been induced by triploidy. Extensive lateral suckering in long-lived sterile clones facilitates the accumulation of somatic mutations, which contribute to the measured genetic diversity. Genetic conservation value may not be a function of population size. Despite facing evolutionary stagnation, sterile clonal species can play a vital role in mitigating ecological instability as floras respond to rapid environmental change. PMID:24737718
Butin, M; Rasigade, J-P; Martins-Simões, P; Meugnier, H; Lemriss, H; Goering, R V; Kearns, A; Deighton, M A; Denis, O; Ibrahimi, A; Claris, O; Vandenesch, F; Picaud, J-C; Laurent, F
2016-01-01
Nosocomial late-onset sepsis represents a frequent cause of morbidity and mortality in preterm neonates. The Staphylococcus capitis clone NRCS-A has been previously described as an emerging cause of nosocomial bacteraemia in French neonatal intensive-care units (NICUs). In this study, we aimed to explore the possible unrecognized dissemination of this clone on a larger geographical scale. One hundred methicillin-resistant S. capitis strains isolated from neonates (n = 86) and adult patients (n = 14) between 2000 and 2013 in four different countries (France, Belgium, the UK, and Australia) were analysed with SmaI pulsed-field gel electrophoresis (PFGE) and dru typing. The vast majority of NICU strains showed the NRCS-A pulsotype and the dt11c type (96%). We then randomly selected 14 isolates (from neonates, n = 12, three per country; from adult patients, n = 2), considered to be a subset of representative isolates, and performed further molecular typing (SacII PFGE, SCCmec typing, and multilocus sequence typing-like analysis), confirming the clonality of the S. capitis strains isolated from neonates, despite their distant geographical origin. Whole genome single-nucleotide polymorphism-based phylogenetic analysis of five NICU isolates (from the different countries) attested to high genetic relatedness within the NRCS-A clone. Finally, all of the NRCS-A strains showed multidrug resistance (e.g. methicillin and aminoglycoside resistance, and decreased vancomycin susceptibility), with potential therapeutic implications for infected neonates. In conclusion, this study represents the first report of clonal dissemination of methicillin-resistant coagulase-negative Staphylococcus clone on a large geographical scale. Questions remain regarding the origin and means of international spread, and the reasons for this clone's apparent predilection for neonates. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Schader, Susan M; Colby-Germinario, Susan P; Schachter, Jordana R; Xu, Hongtao; Wainberg, Mark A
2011-08-24
To evaluate the candidate antiretroviral microbicide compounds, dapivirine (DAP) and tenofovir (TFV), alone and in combination against the transmission of wild-type and nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant HIV-1 from different subtypes. We determined single-drug efficacy of the RTIs, DAP and TFV, against subtype B and non-B wild-type and NNRTI-resistant HIV-1 in vitro. To assess breadth of activity, compounds were tested alone and in combination against wild-type and NNRTI-resistant subtype C primary HIV-1 isolates and complimentary clonal HIV-1 from subtypes B, C and CRF02_AG to control for viral variation. Early infection was quantified by counting light units emitted from TZM-bl cells less than 48-h postinfection. Combination ratios were based on drug inhibitory concentrations (IC(50)s) and combined effects were determined by calculating combination indices. Both candidate microbicide antiretrovirals demonstrated potent anti-NNRTI-resistant HIV-1 activity in vitro, albeit the combination protected better than the single-drug treatments. Of particular interest, the DAP with TFV combination exhibited synergy (50% combination index, CI(50) = 0.567) against subtype C NNRTI-resistant HIV-1, whereas additivity (CI(50) = 0.987) was observed against the wild-type counterpart from the same patient. The effect was not compounded by the presence of subdominant viral fractions, as experiments using complimentary clonal subtype C wild-type (CI(50) = 0.968) and NNRTI-resistant (CI(50) = 0.672) HIV-1, in lieu of the patient quasispecies, gave similar results. This study supports the notion that antiretroviral drug combinations may retain antiviral activity against some drug-resistant HIV-1 despite subtype classification and quasispecies diversity.
Calvez, Ségolène; Fournel, Catherine; Douet, Diane-Gaëlle; Daniel, Patrick
2015-06-23
Yersinia ruckeri is a pathogen that has an impact on aquaculture worldwide. The disease caused by this bacterial species, yersiniosis or redmouth disease, generates substantial economic losses due to the associated mortality and veterinary costs. For predicting outbreaks and improving control strategies, it is important to characterize the population structure of the bacteria. The phenotypic and genetic homogeneities described previously indicate a clonal population structure as observed in other fish bacteria. In this study, the pulsed-field gel electrophoresis (PFGE) and multi locus sequence typing (MLST) methods were used to describe a population of isolates from outbreaks on French fish farms. For the PFGE analysis, two enzymes (NotI and AscI) were used separately and together. Results from combining the enzymes showed the great homogeneity of the outbreak population with a similarity > 80.0% but a high variability within the cluster (cut-off value = 80.0%) with a total of 43 pulsotypes described and an index of diversity = 0.93. The dominant pulsotypes described with NotI (PtN4 and PtN7) have already been described in other European countries (Finland, Germany, Denmark, Spain and Italy). The MLST approach showed two dominant sequence types (ST31 and ST36), an epidemic structure of the French Y. ruckeri population and a preferentially clonal evolution for rainbow trout isolates. Our results point to multiple types of selection pressure on the Y. ruckeri population attributable to geographical origin, ecological niche specialization and movements of farmed fish.
ERIC Educational Resources Information Center
Hao, Shiqi; Johnson, Robert L.
2013-01-01
This study, through multilevel analyses of the data of four English-speaking nations (i.e., Canada, England, New Zealand and the United States) from the Progress in International Reading Literacy Study (PIRLS) 2001 database, investigated the relationship between teachers' uses of various types of classroom assessments and their fourth-graders'…
ERIC Educational Resources Information Center
Capotosto, Lauren; Kim, James S.
2016-01-01
This study examines the effects of four types of reading comprehension questions--immediate, non-immediate, summary, and unanswerable questions--that linguistically diverse and predominantly low-income parents asked their fourth graders on children's text retellings. One-hundred-twenty (N = 120) parent and child dyads participated in a home visit…
Second and Fourth Graders' Copying Ability: From Graphical to Linguistic Processing
ERIC Educational Resources Information Center
Grabowski, Joachim; Weinzierl, Christian; Schmitt, Markus
2010-01-01
Particularly in primary school, good performance on copy tasks is an important working technique. With respect to writing skills, copying is a very basic process on which more complex writing abilities are based. We studied the copying ability of second and fourth graders across four types of symbols which vary with respect to their semantic and…
ERIC Educational Resources Information Center
Schumacher, Robin F.; Malone, Amelia S.
2017-01-01
The goal of this study was to describe fraction-calculation errors among fourth-grade students and to determine whether error patterns differed as a function of problem type (addition vs. subtraction; like vs. unlike denominators), orientation (horizontal vs. vertical), or mathematics-achievement status (low-, average-, or high-achieving). We…
Martínez-Herrero, M C; Garijo-Toledo, M M; Liebhart, D; Ganas, P; Martínez-Díaz, R A; Ponce-Gordo, F; Carrero-Ruiz, A; Hess, M; Gómez-Muñoz, M T
2017-11-01
Extensive diversity has been described within the avian oropharyngeal trichomonad complex in recent years. In this study we developed clonal cultures from four isolates selected by their different ITS1/5.8S/ITS2 (ITS) genotype and their association with gross lesions of avian trichomonosis. Isolates were obtained from an adult racing pigeon and a nestling of Eurasian eagle owl with macroscopic lesions, and from a juvenile wood pigeon and an European turtle dove without clinical signs. Multi-locus sequence typing analysis of the ITS, small subunit of ribosomal rRNA (SSUrRNA) and Fe-hydrogenase (Fe-hyd) genes together with a morphological study by optical and scanning electron microscopy was performed. No significant differences in the structures were observed with scanning electron microscopy. However, the genetic characterisation revealed novel sequence types for the SSUrRNA region and Fe-hyd gene. Two clones were identified as Trichomonas gallinae in the MLST analysis, but the clones from the racing pigeon and European turtle dove showed higher similarity with Trichomonas tenax and Trichomonas canistomae than with T. gallinae at their ITS region, respectively. SSUrRNA sequences grouped all the clones in a clade that includes T. gallinae, T. tenax and T. canistomae. Further diversity was detected within the Fe-hyd locus, with a clear separation from T. gallinae of the clones obtained from the racing pigeon and the European turtle dove. In addition, morphometric comparison by optical microscopy with clonal cultures of T. gallinae revealed significant statistical differences on axostyle projection length in the clone from the European turtle dove. Morphometric and genetic data indicate that possible new species within the Trichomonas genus were detected. Taking in consideration the diversity in Trichomonas species present in the oral cavity of birds, a proper genetic analysis is highly recommended when outbreaks occur. Copyright © 2017 Elsevier B.V. All rights reserved.
Sanou, Adama; Tarnagda, Zekiba; Kanyala, Estelle; Zingué, Dezemon; Nouctara, Moumini; Ganamé, Zakaria; Combary, Adjima; Hien, Hervé; Dembele, Mathurin; Kabore, Antoinette; Meda, Nicolas; Van de Perre, Philippe; Neveu, Dorine; Bañuls, Anne Laure; Godreuil, Sylvain
2014-10-01
In sub-Saharan Africa, bovine tuberculosis (bTB) is a potential hazard for animals and humans health. The goal of this study was to improve our understanding of bTB epidemiology in Burkina Faso and especially Mycobacterium bovis transmission within and between the bovine and human populations. Twenty six M. bovis strains were isolated from 101 cattle carcasses with suspected bTB lesions during routine meat inspections at the Bobo Dioulasso and Ouagadougou slaughterhouses. In addition, 7 M. bovis strains were isolated from 576 patients with pulmonary tuberculosis. Spoligotyping, RDAf1 deletion and MIRU-VNTR typing were used for strains genotyping. The isolation of M. bovis strains was confirmed by spoligotyping and 12 spoligotype signatures were detected. Together, the spoligotyping and MIRU-VNTR data allowed grouping the 33 M. bovis isolates in seven clusters including isolates exclusively from cattle (5) or humans (1) or from both (1). Moreover, these data (genetic analyses and phenetic tree) showed that the M. bovis isolates belonged to the African 1 (Af1) clonal complex (81.8%) and the putative African 5 (Af5) clonal complex (18.2%), in agreement with the results of RDAf1 deletion typing. This is the first detailed molecular characterization of M. bovis strains from humans and cattle in Burkina Faso. The distribution of the two Af1 and putative Af5 clonal complexes is comparable to what has been reported in neighbouring countries. Furthermore, the strain genetic profiles suggest that M. bovis circulates across the borders and that the Burkina Faso strains originate from different countries, but have a country-specific evolution. The genetic characterization suggests that, currently, M. bovis transmission occurs mainly between cattle, occasionally between cattle and humans and potentially between humans. This study emphasizes the bTB risk in cattle but also in humans and the difficulty to set up proper disease control strategies in Burkina Faso.
Heymans, Raymond; Bruisten, Sylvia M.; Golparian, Daniel; Unemo, Magnus; de Vries, Henry J. C.
2012-01-01
From 2006 to 2008, Neisseria gonorrhoeae isolates were identified with decreased susceptibility to the extended-spectrum cephalosporin (ESC) cefotaxime among visitors of the Amsterdam sexually transmitted infections (STI) clinic, the Netherlands. Spread, clonality, and characteristics of 202 isolates were examined using antibiograms, conventional penA mosaic gene PCR, and N. gonorrhoeae multiple-locus variable-number tandem repeat analysis (NG-MLVA). A strictly defined subset was further characterized by N. gonorrhoeae multiantigen sequence typing (NG-MAST) and sequencing of ESC resistance determinants (penA, mtrR, and porB1b). Seventy-four N. gonorrhoeae isolates with a cefotaxime MIC of >0.125 μg/ml (group A), 54 with a cefotaxime MIC of 0.125 μg/ml (group B), and a control group of 74 with a cefotaxime MIC of <0.125 μg/ml (group C) were included. Fifty-three clonally related penA mosaic-positive isolates (penicillin-binding protein 2 type XXXIV) were identified in group A (n = 47 isolates; 64%) and B (n = 6 isolates; 11%). The 53 penA mosaic-positive isolates were predominantly NG-MAST ST1407 (87%) and contained an mtrR promoter A deletion (98%) and porB1b alterations G101K/A102N. All were assigned to the same NG-MLVA cluster that comprised in total 56 isolates. A correlation was found between decreased cefotaxime susceptibility and ST1407 that was highly prevalent among visitors of the Amsterdam STI clinic. The rapid spread of this strain, which also has been identified in many other countries, might be facilitated by high-risk sexual behavior and should be monitored closely to identify potential treatment failure. Quality-assured surveillance of ESC susceptibility on the national and international levels and exploration of new drugs and/or strategies for treatment of gonorrhea are crucial. PMID:22214779
Aguilar-Rodea, Pamela; Zúñiga, Gerardo; Rodríguez-Espino, Benjamín Antonio; Olivares Cervantes, Alma Lidia; Gamiño Arroyo, Ana Estela; Moreno-Espinosa, Sarbelio; de la Rosa Zamboni, Daniela; López Martínez, Briceida; Castellanos-Cruz, María del Carmen; Parra-Ortega, Israel; Jiménez Rojas, Verónica Leticia; Vigueras Galindo, Juan Carlos; Velázquez-Guadarrama, Norma
2017-01-01
Several microorganisms produce nosocomial infections (NIs), among which Pseudomonas aeruginosa stands out as an opportunist pathogen with the capacity to develop multiresistance to first-choice antibiotics. From 2007 to 2013, forty-six NIs produced by P. aeruginosa were detected at a pediatric tertiary care hospital in Mexico with a significant mortality rate (17.39%). All isolates (n = 58/46 patients) were characterized by evaluating their response to several antibiotics as panresistant (PDR), extensively resistant (XDR), multiresistant (MDR) or sensitive (S). In addition, all isolates were typified through multilocus sequencing of seven genes: acsA, aroE, guaA, mutL, nuoD, ppsA and trpE. Furthermore, to establish the genetic relationships among these isolates, we carried out a phylogenetic inference analysis using maximum likelihood to construct a phylogenetic network. To assess evolutionary parameters, recombination was evaluated using the PHI test, and the ratio of nonsynonymous to synonymous substitutions was determined. Two of the strains were PDR (ST1725); 42 were XDR; four were MDR; and ten were S. Twenty-one new sequence types were detected. Thirty-three strains exhibited novel sequence type ST1725. The ratio of nonsynonym to synonym substitutions was 1:1 considering all genes. Phylogenetic analysis showed that the genetic relationship of the PDR, XDR and MDR strains was mainly clonal; however, the PHI test and the phylogenetic network suggest that recombination events occurred to produce a non-clonal population. This study aimed not only to determine the genetic diversity of clinical P. aeruginosa but also to provide a warning regarding the identification and spreading of clone ST1725, its ability to cause outbreaks with high mortality rates, and to remain in the hospital environment for over seven years. These characteristics highlight the need to identify clonal outbreaks, especially where high resistance to most antibiotics is observed, and control measures are needed. This study also represents the first report of the PDR ST1725. PMID:28253282
Shimizu, Wataru; Kayama, Shizuo; Kouda, Shuntaro; Ogura, Yoshitoshi; Kobayashi, Kanao; Shigemoto, Norifumi; Shimada, Norimitsu; Yano, Raita; Hisatsune, Junzo; Kato, Fuminori; Hayashi, Tetsuya; Sueda, Taijiro; Ohge, Hiroki
2015-01-01
A 9-year surveillance for multidrug-resistant (MDR) Pseudomonas aeruginosa in the Hiroshima region showed that the number of isolates harboring the metallo-β-lactamase gene blaIMP-1 abruptly increased after 2004, recorded the highest peak in 2006, and showed a tendency to decline afterwards, indicating a history of an epidemic. PCR mapping of the variable regions of the integrons showed that this epidemic was caused by the clonal persistence and propagation of an MDR P. aeruginosa strain harboring the blaIMP-1 gene and an aminoglycoside 6′-N-acetyltransferase gene, aac(6′)-Iae in a class I integron (In113), whose integrase gene intl1 was disrupted by an IS26 insertion. Sequence analysis of the representative strain PA058447 resistance element containing the In113-derived gene cassette array showed that the element forms an IS26 transposon embedded in the chromosome. It has a Tn21 backbone and is composed of two segments sandwiched by three IS26s. In Japan, clonal nationwide expansion of an MDR P. aeruginosa NCGM2.S1 harboring chromosomally encoded In113 with intact intl1 is reported. Multilocus sequence typing and genomic comparison strongly suggest that PA058447 and NCGM2.S1 belong to the same clonal lineage. Moreover, the structures of the resistance element in the two strains are very similar, but the sites of insertion into the chromosome are different. Based on tagging information of the IS26 present in both resistance elements, we suggest that the MDR P. aeruginosa clone causing the epidemic in Hiroshima for the past 9 years originated from a common ancestor genome of PA058447 and NCGM2.S1 through an IS26 insertion into intl1 of In113 and through IS26-mediated genomic rearrangements. PMID:25712351
Tomasini, Nicolás; Lauthier, Juan José; Ayala, Francisco José; Tibayrenc, Michel; Diosque, Patricio
2014-01-01
The model of predominant clonal evolution (PCE) proposed for micropathogens does not state that genetic exchange is totally absent, but rather, that it is too rare to break the prevalent PCE pattern. However, the actual impact of this “residual” genetic exchange should be evaluated. Multilocus Sequence Typing (MLST) is an excellent tool to explore the problem. Here, we compared online available MLST datasets for seven eukaryotic microbial pathogens: Trypanosoma cruzi, the Fusarium solani complex, Aspergillus fumigatus, Blastocystis subtype 3, the Leishmania donovani complex, Candida albicans and Candida glabrata. We first analyzed phylogenetic relationships among genotypes within each dataset. Then, we examined different measures of branch support and incongruence among loci as signs of genetic structure and levels of past recombination. The analyses allow us to identify three types of genetic structure. The first was characterized by trees with well-supported branches and low levels of incongruence suggesting well-structured populations and PCE. This was the case for the T. cruzi and F. solani datasets. The second genetic structure, represented by Blastocystis spp., A. fumigatus and the L. donovani complex datasets, showed trees with weakly-supported branches but low levels of incongruence among loci, whereby genetic structuration was not clearly defined by MLST. Finally, trees showing weakly-supported branches and high levels of incongruence among loci were observed for Candida species, suggesting that genetic exchange has a higher evolutionary impact in these mainly clonal yeast species. Furthermore, simulations showed that MLST may fail to show right clustering in population datasets even in the absence of genetic exchange. In conclusion, these results make it possible to infer variable impacts of genetic exchange in populations of predominantly clonal micro-pathogens. Moreover, our results reveal different problems of MLST to determine the genetic structure in these organisms that should be considered. PMID:25054834
Pollett, S.; Miller, S.; Hindler, J.; Uslan, D.; Carvalho, M.
2014-01-01
Carbapenem-resistant Enterobacteriaceae (CRE) are a concern for health care in the United States but remain relatively uncommon in California. We describe the phenotype, clonality, and carbapenemase-encoding genes present in CRE isolated from patients at a Californian tertiary health care system. CRE for this study were identified by evaluating the antibiograms of Enterobacteriaceae isolated in the UCLA Health System from 2011 to 2013 for isolates that were not susceptible to meropenem and/or imipenem. The identification of these isolates was subsequently confirmed by matrix-associated laser desorption ionization–time of flight, and broth microdilution tests were repeated to confirm the CRE phenotype. Real-time PCR for blaKPC, blaSME, blaIMP, blaNDM-1, blaVIM, and blaOXA-48 was performed. Clonality was assessed by repetitive sequence-based PCR (repPCR) and multilocus sequence typing (MLST). Of 15,839 nonduplicate clinical Enterobacteriaceae isolates, 115 (0.73%) met the study definition for CRE. This number increased from 0.5% (44/8165) in the first half of the study to 0.9% (71/7674) in the second (P = 0.004). The most common CRE species were Klebsiella pneumoniae, Enterobacter aerogenes, and Escherichia coli. A carbapenemase-encoding gene was found in 81.7% (94/115) of CRE and included blaKPC (78.3%), blaNDM-1 (0.9%), and blaSME (2.6%). The majority of blaKPC genes were in K. pneumoniae isolates, which fell into 14 clonal groups on typing. blaKPC was identified in more than one species of CRE cultured from the same patient in four cases. Three blaSME-carrying Serratia marcescens isolates and one blaNDM-1 carrying Providencia rettgeri isolate were detected. CRE are increasing in California, and carbapenemases, particularly KPC, are a common mechanism for carbapenem resistance in this region. PMID:25210072
Santos, Barbara A; Oliveira, Jéssica S; Cardoso, Nayara T; Barbosa, André V; Superti, Silvana V; Teixeira, Lúcia M; Neves, Felipe P G
2017-11-01
Cancer and hematological malignancies constitute major comorbidities in enterococcal infections, but little is known about the characteristics of enterococci affecting cancer patients. The aim of this study was to characterize 132 enterococcal clinical isolates obtained from cancer patients attending a Cancer Reference Center in Brazil between April 2013 and March 2014. Susceptibility to 17 antimicrobial agents was assessed by disk diffusion method. Resistance and virulence genes were investigated by PCR. Multilocus sequence typing (MLST) was performed for selected Enterococcus faecalis and Enterococcus faecium isolates. The predominant species was E. faecalis (108 isolates), followed by E. faecium (18), Enterococcus gallinarum (3), Enterococcus avium (2) and Enterococcus durans (1). Multidrug-resistant (MDR) isolates made up 44.7%, but all isolates were susceptible to fosfomycin, linezolid and glycopeptides. The most prevalent genes associated with erythromycin- and tetracycline-non susceptible isolates were erm(B) (47/71; 66.2%) and tet(M) (24/68; 35.3%), respectively. High-level resistance (HLR) to gentamicin was found in 22 (16.7%) isolates and 13 (59.1%) of them carried the aac(6')-Ie-aph(2″)-Ia gene. HLR to streptomycin was detected in 34 (25.8%) isolates, of which 15 (44.1%) isolates had the ant(6')-Ia gene. The most common virulence genes were gelE (48.9%), esp (30.5%) and asa1 (29.8%). MLST performed for 26 E. faecalis isolates revealed 18 different sequence-types (STs), with seven corresponding to novel STs (625, 626, 627, 628, 629, 630, and 635). On the other hand, nine of 10 E. faecium isolates analyzed by MLST belonged to a single clonal complex, comprised of mostly ST412, which emerged worldwide after mid-2000s, but also two novel STs (963 and 964). We detected major globally disseminated E. faecalis and E. faecium clonal complexes along with novel closely related STs, indicating the fitness and continuous evolution of these hospital-adapted lineages. Copyright © 2017 Elsevier B.V. All rights reserved.
Yanat, Betitera; Dali Yahia, Radia; Yazi, Leila; Machuca, Jesús; Díaz-De-Alba, Paula; Touati, Abdelaziz; Pascual, Álvaro; Rodríguez-Martínez, José-Manuel
2017-06-01
QepA is a plasmid-mediated quinolone resistance determinant of low prevalence described worldwide, mainly in Enterobacteriaceae. This study describes, for the first time in Algeria, two clonally related, QepA-producing Escherichia coli clinical isolates positive for CTX-M-15. The clonal spread of these multidrug-resistant isolates is a major public health concern.
Hosoi, Hiroki; Sonoki, Takashi; Murata, Shogo; Mushino, Toshiki; Kuriyama, Kodai; Nishikawa, Akinori; Hanaoka, Nobuyoshi; Ohshima, Koichi; Imadome, Ken-Ichi; Nakakuma, Hideki
2015-01-01
A 30-year-old woman was diagnosed with severe infectious mononucleosis (IM). The Epstein-Barr virus (EBV) had infected both CD19- and CD8-positive cells, and clonal proliferation of EBV-infected cells and T-cells was detected. Although we suspected malignant lymphoma, her condition improved following immunosuppressive therapy. A similar case was recently reported; therefore, this case is the second case of IM with EBV-infected CD8-positive cells and clonal proliferation of EBV-infected cells. Our results demonstrate that the clonal proliferation of EBV-infected cells is not always an indication for chemotherapy in the primary infection phase and that monitoring the EBV viral load is useful for therapeutic decision-making.
Prevalent genotypes of Toxoplasma gondii in pregnant women and patients from Crete and Cyprus.
Messaritakis, Ippokratis; Detsika, Maria; Koliou, Maria; Sifakis, Stavros; Antoniou, Maria
2008-08-01
Molecular genotyping has been used to characterize Toxoplasma gondii strains into the three clonal lineages known as types I, II, and III. To characterize T. gondii strains from Greece and Cyprus, polymerase chain reaction-restriction fragment length polymorphism analysis on the GRA6 gene was performed directly on 20 clinical samples from 18 humans (11 pregnant women, six patients with lymphadenopathy, and one patient positive for human immunodeficiency virus) and two rats. Characterization of T. gondii types was performed after digestion of amplified products with Mse I. The 20 strains were characterized as type II (20%) and type III (80%). Of these strains, 19 originated from the island of Crete (4 strains type II and 15 strains type III), and 1 from the island of Cyprus (type III). Although both type II and type III strains were found, type III was the most prevalent in Crete.
Dissecting social cell biology and tumors using Drosophila genetics.
Pastor-Pareja, José Carlos; Xu, Tian
2013-01-01
Cancer was seen for a long time as a strictly cell-autonomous process in which oncogenes and tumor-suppressor mutations drive clonal cell expansions. Research in the past decade, however, paints a more integrative picture of communication and interplay between neighboring cells in tissues. It is increasingly clear as well that tumors, far from being homogenous lumps of cells, consist of different cell types that function together as complex tissue-level communities. The repertoire of interactive cell behaviors and the quantity of cellular players involved call for a social cell biology that investigates these interactions. Research into this social cell biology is critical for understanding development of normal and tumoral tissues. Such complex social cell biology interactions can be parsed in Drosophila. Techniques in Drosophila for analysis of gene function and clonal behavior allow us to generate tumors and dissect their complex interactive biology with cellular resolution. Here, we review recent Drosophila research aimed at understanding tissue-level biology and social cell interactions in tumors, highlighting the principles these studies reveal.
Mixed epithelial and stromal tumor of the middle ear: The first case report.
Michal, Michael; Skálová, Alena; Kazakov, Dmitry V; Pecková, Květoslava; Heidenreich, Filip; Grossmann, Petr; Michal, Michal
2017-03-01
We report a tumor arising in the middle ear of a 65-year-old female patient that was composed of an ovarian-type stroma (OS) and an epithelial component. The tumor consisted of irregular, polypoid masses containing multiple variably sized cystic spaces, which were invariably surrounded by the OS. The cystic spaces were lined by flat, cuboidal, or columnar epithelial cells, in most parts showing mucinous differentiation. The epithelial lining of the cysts strongly expressed cytokeratins AE1-3, CK7, CK8, CK18, CK19, EMA, and S100 protein. The stroma expressed CD34 and smooth muscle actin. No cytological atypia or mitoses were present, and the proliferative activity was less than 1% in both components. The clonality analysis proved the clonal nature of the neoplasm. We believe that this tumor is a new member in the family of neoplasms containing the OS, and therefore we propose the term mixed epithelial and stromal tumor of the middle ear. Copyright © 2017 Elsevier Inc. All rights reserved.
Symplasmata are a clonal, conditional, and reversible type of bacterial multicellularity
Tecon, Robin; Leveau, Johan H. J.
2016-08-18
Microorganisms are capable of remarkable social behaviours, such as forming transient multicellular assemblages with properties and adaptive abilities exceeding those of individual cells. Here, we report on the formation and structure of genets known as symplasmata produced by Pantoea eucalypti bacteria. Each symplasmatum develops clonally and stochastically from a single bacterium into a membrane-delimited, capsule-embedded cluster of progeny cells and with a frequency that depends on temperature, pH, and nutrient availability. Transposon mutagenesis identified several gene products required for symplasmata formation, including master regulator LrhA, replication inhibitor CspD, polysaccharide transporter RfbX3, and autoinducer synthase PhzI. We also show that bacteriamore » inside symplasmata are shaped irregularly with punctuated cell-to-cell contacts, metabolically responsive to environmental stimuli, dispersal-ready, and transcriptionally reprogrammed to anticipate multiple alternative futures in terms of carbon source availability. In conclusion, the structured and conditionable nature of symplasmata offers exciting prospects towards a mechanistic understanding of multicellular behaviours and their ecological significance.« less
Genomic Definition of Hypervirulent and Multidrug-Resistant Klebsiella pneumoniae Clonal Groups
Bialek-Davenet, Suzanne; Criscuolo, Alexis; Ailloud, Florent; Passet, Virginie; Jones, Louis; Delannoy-Vieillard, Anne-Sophie; Garin, Benoit; Le Hello, Simon; Arlet, Guillaume; Nicolas-Chanoine, Marie-Hélène; Decré, Dominique
2014-01-01
Multidrug-resistant and highly virulent Klebsiella pneumoniae isolates are emerging, but the clonal groups (CGs) corresponding to these high-risk strains have remained imprecisely defined. We aimed to identify K. pneumoniae CGs on the basis of genome-wide sequence variation and to provide a simple bioinformatics tool to extract virulence and resistance gene data from genomic data. We sequenced 48 K. pneumoniae isolates, mostly of serotypes K1 and K2, and compared the genomes with 119 publicly available genomes. A total of 694 highly conserved genes were included in a core-genome multilocus sequence typing scheme, and cluster analysis of the data enabled precise definition of globally distributed hypervirulent and multidrug-resistant CGs. In addition, we created a freely accessible database, BIGSdb-Kp, to enable rapid extraction of medically and epidemiologically relevant information from genomic sequences of K. pneumoniae. Although drug-resistant and virulent K. pneumoniae populations were largely nonoverlapping, isolates with combined virulence and resistance features were detected. PMID:25341126
Non-cell-autonomous effects yield lower clonal diversity in expanding tumors.
Tissot, Tazzio; Thomas, Frédéric; Roche, Benjamin
2017-09-11
Recent cancer research has investigated the possibility that non-cell-autonomous (NCA) driving tumor growth can support clonal diversity (CD). Indeed, mutations can affect the phenotypes not only of their carriers ("cell-autonomous", CA effects), but also sometimes of other cells (NCA effects). However, models that have investigated this phenomenon have only considered a restricted number of clones. Here, we designed an individual-based model of tumor evolution, where clones grow and mutate to yield new clones, among which a given frequency have NCA effects on other clones' growth. Unlike previously observed for smaller assemblages, most of our simulations yield lower CD with high frequency of mutations with NCA effects. Owing to NCA effects increasing competition in the tumor, clones being already dominant are more likely to stay dominant, and emergent clones not to thrive. These results may help personalized medicine to predict intratumor heterogeneity across different cancer types for which frequency of NCA effects could be quantified.
Global distribution and epidemiologic associations of Escherichia coli clonal group A, 1998-2007.
Johnson, James R; Menard, Megan E; Lauderdale, Tsai-Ling; Kosmidis, Chris; Gordon, David; Collignon, Peter; Maslow, Joel N; Andrasević, Arjana Tambić; Kuskowski, Michael A
2011-11-01
Escherichia coli clonal group A (CGA) was first reported in 2001 as an emerging multidrug-resistant extraintestinal pathogen. Because CGA has considerable implications for public health, we examined the trends of its global distribution, clinical associations, and temporal prevalence for the years 1998-2007. We characterized 2,210 E. coli extraintestinal clinical isolates from 32 centers on 6 continents by CGA status for comparison with trimethoprim/sulfamethoxazole (TMP/SMZ) phenotype, specimen type, inpatient/outpatient source, and adult/child host; we adjusted for clustering by center. CGA prevalence varied greatly by center and continent, was strongly associated with TMP/SMZ resistance but not with other epidemiologic variables, and exhibited no temporal prevalence trend. Our findings indicate that CGA is a prominent, primarily TMP/SMZ-resistant extraintestinal pathogen concentrated within the Western world, with considerable pathogenic versatility. The stable prevalence of CGA over time suggests full emergence by the late 1990s, followed by variable endemicity worldwide as an antimicrobial drug-resistant public health threat.
Population structure of Streptococcus oralis
Do, Thuy; Jolley, Keith A.; Maiden, Martin C. J.; Gilbert, Steven C.; Clark, Douglas; Wade, William G.; Beighton, David
2009-01-01
Streptococcus oralis is a member of the normal human oral microbiota, capable of opportunistic pathogenicity; like related oral streptococci, it exhibits appreciable phenotypic and genetic variation. A multilocus sequence typing (MLST) scheme for S. oralis was developed and the resultant data analysed to examine the population structure of the species. Analysis of 113 isolates, confirmed as belonging to the S. oralis/mitis group by 16S rRNA gene sequencing, characterized the population as highly diverse and undergoing inter- and intra-species recombination with a probable clonal complex structure. ClonalFrame analysis of these S. oralis isolates along with examples of Streptococcus pneumoniae, Streptococcus mitis and Streptococcus pseudopneumoniae grouped the named species into distinct, coherent populations and did not support the clustering of S. pseudopneumoniae with S. mitis as reported previously using distance-based methods. Analysis of the individual loci suggested that this discrepancy was due to the possible hybrid nature of S. pseudopneumoniae. The data are available on the public MLST website (http://pubmlst.org/soralis/). PMID:19423627
Kretz, Cecilia B; Retchless, Adam C; Sidikou, Fati; Issaka, Bassira; Ousmane, Sani; Schwartz, Stephanie; Tate, Ashley H; Pana, Assimawè; Njanpop-Lafourcade, Berthe-Marie; Nzeyimana, Innocent; Nse, Ricardo Obama; Deghmane, Ala-Eddine; Hong, Eva; Brynildsrud, Ola Brønstad; Novak, Ryan T; Meyer, Sarah A; Oukem-Boyer, Odile Ouwe Missi; Ronveaux, Olivier; Caugant, Dominique A; Taha, Muhamed-Kheir; Wang, Xin
2016-10-01
In 2015, Niger reported the largest epidemic of Neisseria meningitidis serogroup C (NmC) meningitis in sub-Saharan Africa. The NmC epidemic coincided with serogroup W (NmW) cases during the epidemic season, resulting in a total of 9,367 meningococcal cases through June 2015. To clarify the phylogenetic association, genetic evolution, and antibiotic determinants of the meningococcal strains in Niger, we sequenced the genomes of 102 isolates from this epidemic, comprising 81 NmC and 21 NmW isolates. The genomes of 82 isolates were completed, and all 102 were included in the analysis. All NmC isolates had sequence type 10217, which caused the outbreaks in Nigeria during 2013-2014 and for which a clonal complex has not yet been defined. The NmC isolates from Niger were substantially different from other NmC isolates collected globally. All NmW isolates belonged to clonal complex 11 and were closely related to the isolates causing recent outbreaks in Africa.
Rafiei, Vahideh; Banihashemi, Ziaeddin; Bautista-Jalon, Laura S; Del Mar Jiménez-Gasco, Maria; Turgeon, B Gillian; Milgroom, Michael G
2018-06-01
Verticillium dahliae is a plant pathogenic fungus that reproduces asexually and its population structure is highly clonal. In the present study, 78 V. dahliae isolates from Iran were genotyped for mating type, single nucleotide polymorphisms (SNPs), and microsatellites to assign them to clonal lineages and to determine population genetic structure in Iran. The mating type of all isolates was MAT1-2. Based on neighbor-joining analysis and minimum spanning networks constructed from SNPs and microsatellite genotypes, respectively, all but four isolates were assigned to lineage 2B 824 ; four isolates were assigned to lineage 4B. The inferred coalescent genealogy of isolates in lineage 2B 824 showed a clear divergence into two clades that corresponded to geographic origin and host. Haplotypes of cotton and pistachio isolates sampled from central Iran were in one clade, and those of isolates from Prunus spp. sampled from northwestern Iran were in the other. The strong divergence in haplotypes between the two clades suggests that there were at least two separate introductions of lineage 2B 824 to different parts of Iran. Given the history of cotton and pistachio cultivation and Verticillium wilt in Iran, these results are consistent with the hypothesis that cotton was historically a likely source inoculum causing Verticillium wilt in pistachio.
Schouls, Leo M.; van der Heide, Han G. J.; Vauterin, Luc; Vauterin, Paul; Mooi, Frits R.
2004-01-01
Bordetella pertussis, the causative agent of whooping cough, has remained endemic in The Netherlands despite extensive nationwide vaccination since 1953. In the 1990s, several epidemic periods have resulted in many cases of pertussis. We have proposed that strain variation has played a major role in the upsurges of this disease in The Netherlands. Therefore, molecular characterization of strains is important in identifying the causes of pertussis epidemiology. For this reason, we have developed a multiple-locus variable-number tandem repeat analysis (MLVA) typing system for B. pertussis. By combining the MLVA profile with the allelic profile based on multiple-antigen sequence typing, we were able to further differentiate strains. The relationships between the various genotypes were visualized by constructing a minimum spanning tree. MLVA of Dutch strains of B. pertussis revealed that the genotypes of the strains isolated in the prevaccination period were diverse and clearly distinct from the strains isolated in the 1990s. Furthermore, there was a decrease in diversity in the strains from the late 1990s, with a remarkable clonal expansion that coincided with the epidemic periods. Using this genotyping, we have been able to show that B. pertussis is much more dynamic than expected. PMID:15292152
Chen, Chih-Ming; Ke, Se-Chin; Li, Chia-Ru; Wu, Ying-Chen; Chen, Ter-Hsin; Lai, Chih-Ho; Wu, Xin-Xia; Wu, Lii-Tzu
2017-10-01
Multidrug-resistant Escherichia coli can contaminate food meat during processing and cause human infection. Phenotypic and genotypic characterization of the antimicrobial resistance were conducted for 45 multidrug-resistant E. coli isolates from 208 samples of beef carcasses. The mechanisms of resistance were evaluated using polymerase chain reaction and sequencing methods, and the clonal relationship among isolates was evaluated using multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Different variants of bla, tet, flo, dfrA, and aadA genes were detected in most of the strains resistant to β-lactam, tetracycline, chloramphenicol, sulfonamides, and aminoglycosides, respectively. Extended-spectrum β-lactamase (ESBL)-producing E. coli was found in 42.2% of the 45 E. coli isolates and the most commonly detected ESBL genotypes were CTX-M group 1 and 9. Class 1 integrons with nine different arrangements of gene cassettes were present in 28 of 45 E. coli isolates. Twenty-nine PFGE groups and 24 MLST types were identified in their clonal structure. This study revealed that E. coli isolates from beef contained high diversity of antimicrobial resistance genes, integrons, and genotypes. These results highlighted the role of beef meat as a potential source for multidrug-resistant E. coli strains and the need for controlling beef safety.
Ko, Kwan Soo; Yeom, Joon-Sup; Lee, Mi Young; Peck, Kyong Ran
2008-01-01
In this study, we investigated the molecular characteristics of extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae isolates that were recovered from an outbreak in a Korean hospital. A new multilocus sequence typing (MLST) scheme for K. pneumoniae based on five housekeeping genes was developed and was evaluated for 43 ESBL-producing isolates from an outbreak as well as 38 surveillance isolates from Korea and also a reference strain. Overall, a total of 37 sequence types (STs) and six clonal complexes (CCs) were identified among the 82 K. pneumoniae isolates. The result of MLST analysis was concordant with that of pulsedfield gel electrophoresis. Most of the outbreak isolates belonged to a certain clone (ST2), and they produced SHV-1 and CTX-M14 enzymes, which was a different feature from that of the K. pneumoniae isolates from other Korean hospitals (ST20 and SHV-12). We also found a different distribution of CCs between ESBL-producing and -nonproducing K. pneumoniae isolates. The MLST method we developed in this study could provide unambiguous and well-resolved data for the epidemiologic study of K. pneumoniae. The outbreak isolates showed different molecular characteristics from the other K. pneumoniae isolates from other Korean hospitals. PMID:18303199
Core Vocabulary in Written Personal Narratives of School-Age Children
Wood, Carla; Appleget, Allyssa; Hart, Sara
2016-01-01
This study aimed to describe core words of written personal narratives to inform the implementation of AAC supports for literacy instruction. Investigators analyzed lexical diversity, frequency of specific word use and types of words that made up 70% of the total words used in 211 written narrative samples from children in first grade (n =94) and fourth grade (n=117). Across grades 191 different words made up 70% of the total words used in the 211 written narrative samples. The top 50 words were comprised of content words (64%) and function words (36%). Grade differences were noted in diversity and types of words, including differences in the number of words comprising the core (132 words for children in first grade and 207 for fourth grade) and a higher proportion of abstract nouns for children in fourth grade based on the 200 most frequently occurring words for each grade. PMID:27559987
Heyny-von Haussen, Roland; Klingel, Karin; Riegel, Werner; Kandolf, Reinhard; Mall, Gerhard
2006-07-01
Posttransplant lymphoproliferative disorders (PTLDs) are lymphoid proliferations or lymphomas that develop as a consequence of immunosuppression after solid organ or bone marrow transplantation and are mostly associated with an Epstein-Barr virus infection. The morphologic categories include different types of benign and malignant lymphoid proliferations. The majority of PTLDs is of B-cell origin with clonal rearrangements of the immunoglobulin genes. The PTLDs in solid organ transplants are reported to be either of host or of donor origin. Donor-related PTLDs frequently involve the allograft. We report a case of a 52-year-old woman recipient who developed simultaneously PTLDs in several organs 5 month after receiving a sex-mismatched renal and pancreas allograft. Immunosuppression regimen comprised antithymocyte globulin, tacrolimus, mycophenolate mofetil, and steroids. Pathologic features appeared as polymorphic PTLDs in the renal allograft, liver, and central nervous system (CNS). Molecular genetic studies revealed different clonal immunoglobulin heavy chain gene rearrangements in all 3 organs as determined by polymerase chain reaction (PCR). Epstein-Barr virus were detected by nested PCR and in situ hybridization in all 3 tumors. The PTLDs in liver and CNS were of host origin whereas the allograft kidney PTLD was found to originate from the male donor as shown by the simultaneous detection of female and male sex chromosomes by PCR and fluorescence in situ hybridization. The recipient died in consequence of the CNS involvement, after intracerebral hemorrhage with uncal and tonsillar herniation.
Bouchami, Ons; de Lencastre, Herminia; Miragaia, Maria
2016-01-01
Staphylococcus haemolyticus is one of the most common pathogens associated with medical-device related infections, but its molecular epidemiology is poorly explored. In the current study, we aimed to better understand the genetic mechanisms contributing to S. haemolyticus diversity in the hospital environment and their impact on the population structure and clinical relevant phenotypic traits. The analysis of a representative S. haemolyticus collection by multilocus sequence typing (MLST) has identified a single highly prevalent and diverse genetic lineage of nosocomial S. haemolyticus clonal complex (CC) 29 accounting for 91% of the collection of isolates disseminated worldwide. The examination of the sequence changes at MLST loci during clonal diversification showed that recombination had a higher impact than mutation in shaping the S. haemolyticus population. Also, we ascertained that another mechanism contributing significantly to clonal diversification and adaptation was mediated by insertion sequence (IS) elements. We found that all nosocomial S. haemolyticus, belonging to different STs, were rich in IS1272 copies, as determined by Southern hybridization of macrorestriction patterns. In particular, we observed that the chromosome of a S. haemolyticus strain within CC29 was highly unstable during serial growth in vitro which paralleled with IS1272 transposition events and changes in clinically relevant phenotypic traits namely, mannitol fermentation, susceptibility to beta-lactams, biofilm formation and hemolysis. Our results suggest that recombination and IS transposition might be a strategy of adaptation, evolution and pathogenicity of the major S. haemolyticus prevalent lineage in the hospital environment.
Bouchami, Ons; de Lencastre, Herminia; Miragaia, Maria
2016-01-01
Staphylococcus haemolyticus is one of the most common pathogens associated with medical-device related infections, but its molecular epidemiology is poorly explored. In the current study, we aimed to better understand the genetic mechanisms contributing to S. haemolyticus diversity in the hospital environment and their impact on the population structure and clinical relevant phenotypic traits. The analysis of a representative S. haemolyticus collection by multilocus sequence typing (MLST) has identified a single highly prevalent and diverse genetic lineage of nosocomial S. haemolyticus clonal complex (CC) 29 accounting for 91% of the collection of isolates disseminated worldwide. The examination of the sequence changes at MLST loci during clonal diversification showed that recombination had a higher impact than mutation in shaping the S. haemolyticus population. Also, we ascertained that another mechanism contributing significantly to clonal diversification and adaptation was mediated by insertion sequence (IS) elements. We found that all nosocomial S. haemolyticus, belonging to different STs, were rich in IS1272 copies, as determined by Southern hybridization of macrorestriction patterns. In particular, we observed that the chromosome of a S. haemolyticus strain within CC29 was highly unstable during serial growth in vitro which paralleled with IS1272 transposition events and changes in clinically relevant phenotypic traits namely, mannitol fermentation, susceptibility to beta-lactams, biofilm formation and hemolysis. Our results suggest that recombination and IS transposition might be a strategy of adaptation, evolution and pathogenicity of the major S. haemolyticus prevalent lineage in the hospital environment. PMID:27249649
Quintero-Galvis, Julian F; Paleo-López, Rocío; Solano-Iguaran, Jaiber J; Poupin, María Josefina; Ledger, Thomas; Gaitan-Espitia, Juan Diego; Antoł, Andrzej; Travisano, Michael; Nespolo, Roberto F
2018-05-01
There have been over 25 independent unicellular to multicellular evolutionary transitions, which have been transformational in the complexity of life. All of these transitions likely occurred in communities numerically dominated by unicellular organisms, mostly bacteria. Hence, it is reasonable to expect that bacteria were involved in generating the ecological conditions that promoted the stability and proliferation of the first multicellular forms as protective units. In this study, we addressed this problem by analyzing the occurrence of multicellularity in an experimental phylogeny of yeasts ( Sacharomyces cerevisiae ) a model organism that is unicellular but can generate multicellular clusters under some conditions. We exposed a single ancestral population to periodic divergences, coevolving with a cocktail of environmental bacteria that were inoculated to the environment of the ancestor, and compared to a control (no bacteria). We quantified culturable microorganisms to the level of genera, finding up to 20 taxa (all bacteria) that competed with the yeasts during diversification. After 600 generations of coevolution, the yeasts produced two types of multicellular clusters: clonal and aggregative. Whereas clonal clusters were present in both treatments, aggregative clusters were only present under the bacteria treatment and showed significant phylogenetic signal. However, clonal clusters showed different properties if bacteria were present as follows: They were more abundant and significantly smaller than in the control. These results indicate that bacteria are important modulators of the occurrence of multicellularity, providing support to the idea that they generated the ecological conditions-promoting multicellularity.
Melamed, Anat; Laydon, Daniel J.; Gillet, Nicolas A.; Tanaka, Yuetsu; Taylor, Graham P.; Bangham, Charles R. M.
2013-01-01
The regulation of proviral latency is a central problem in retrovirology. We postulate that the genomic integration site of human T lymphotropic virus type 1 (HTLV-1) determines the pattern of expression of the provirus, which in turn determines the abundance and pathogenic potential of infected T cell clones in vivo. We recently developed a high-throughput method for the genome-wide amplification, identification and quantification of proviral integration sites. Here, we used this protocol to test two hypotheses. First, that binding sites for transcription factors and chromatin remodelling factors in the genome flanking the proviral integration site of HTLV-1 are associated with integration targeting, spontaneous proviral expression, and in vivo clonal abundance. Second, that the transcriptional orientation of the HTLV-1 provirus relative to that of the nearest host gene determines spontaneous proviral expression and in vivo clonal abundance. Integration targeting was strongly associated with the presence of a binding site for specific host transcription factors, especially STAT1 and p53. The presence of the chromatin remodelling factors BRG1 and INI1 and certain host transcription factors either upstream or downstream of the provirus was associated respectively with silencing or spontaneous expression of the provirus. Cells expressing HTLV-1 Tax protein were significantly more frequent in clones of low abundance in vivo. We conclude that transcriptional interference and chromatin remodelling are critical determinants of proviral latency in natural HTLV-1 infection. PMID:23555266
Antimicrobial Susceptibility and Clonality of Clinical Ureaplasma Isolates in the United States
Fernández, Javier; Karau, Melissa J.; Cunningham, Scott A.; Greenwood-Quaintance, Kerryl E.
2016-01-01
Ureaplasma urealyticum and Ureaplasma parvum are pathogens involved in urogenital tract and intrauterine infections and also in systemic diseases in newborns and immunosuppressed patients. There is limited information on the antimicrobial susceptibility and clonality of these species. In this study, we report the susceptibility of 250 contemporary isolates of Ureaplasma (202 U. parvum and 48 U. urealyticum isolates) recovered at Mayo Clinic, Rochester, MN. MICs of doxycycline, azithromycin, ciprofloxacin, tetracycline, erythromycin, and levofloxacin were determined by broth microdilution, with MICS of the last three interpreted according to CLSI guidelines. Levofloxacin resistance was found in 6.4% and 5.2% of U. parvum and U. urealyticum isolates, respectively, while 27.2% and 68.8% of isolates, respectively, showed ciprofloxacin MICs of ≥4 μg/ml. The resistance mechanism of levofloxacin-resistant isolates was due to mutations in parC, with the Ser83Leu substitution being most frequent, followed by Glu87Lys. No macrolide resistance was found among the 250 isolates studied; a single U. parvum isolate was tetracycline resistant. tet(M) was found in 10 U. parvum isolates, including the single tetracycline-resistant isolate, as well as in 9 isolates which had low tetracycline and doxycycline MICs. Multilocus sequence typing (MLST) performed on a selection of 46 isolates showed high diversity within the clinical Ureaplasma isolates studied, regardless of antimicrobial susceptibility. The present work extends previous knowledge regarding susceptibility to antimicrobial agents, resistance mechanisms, and clonality of Ureaplasma species in the United States. PMID:27246773
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanakura, Y.; Thompson, H.; Nakano, T.
1988-09-01
Mouse peritoneal mast cells (PMC) express a connective tissue-type mast cell (CTMC) phenotype, including reactivity with the heparin-binding fluorescent dye berberine sulfate and incorporation of (35S) sulfate predominantly into heparin proteoglycans. When PMC purified to greater than 99% purity were cultured in methylcellulose with IL-3 and IL-4, approximately 25% of the PMC formed colonies, all of which contained both berberine sulfate-positive and berberine sulfate-negative mast cells. When these mast cells were transferred to suspension culture, they generated populations that were 100% berberine sulfate-negative, a characteristic similar to that of mucosal mast cells (MMC), and that synthesized predominantly chondroitin sulfate (35S)more » proteoglycans. When ''MMC-like'' cultured mast cells derived from WBB6F1-+/+ PMC were injected into the peritoneal cavities of mast cell-deficient WBB6F1-W/Wv mice, the adoptively transferred mast cell population became 100% berberine sulfate-positive. In methylcellulose culture, these ''second generation PMC'' formed clonal colonies containing both berberine sulfate-positive and berberine sulfate-negative cells, but exhibited significantly less proliferative ability than did normal +/+ PMC. Thus, clonal mast cell populations initially derived from single PMC exhibited multiple and bidirectional alterations between CTMC-like and MMC-like phenotypes. However, this process was associated with a progressive diminution of the mast cells' proliferative ability.« less
Schönfeld, Kurt; Sahm, Christiane; Zhang, Congcong; Naundorf, Sonja; Brendel, Christian; Odendahl, Marcus; Nowakowska, Paulina; Bönig, Halvard; Köhl, Ulrike; Kloess, Stephan; Köhler, Sylvia; Holtgreve-Grez, Heidi; Jauch, Anna; Schmidt, Manfred; Schubert, Ralf; Kühlcke, Klaus; Seifried, Erhard; Klingemann, Hans G; Rieger, Michael A; Tonn, Torsten; Grez, Manuel; Wels, Winfried S
2015-01-01
Natural killer (NK) cells are an important effector cell type for adoptive cancer immunotherapy. Similar to T cells, NK cells can be modified to express chimeric antigen receptors (CARs) to enhance antitumor activity, but experience with CAR-engineered NK cells and their clinical development is still limited. Here, we redirected continuously expanding and clinically usable established human NK-92 cells to the tumor-associated ErbB2 (HER2) antigen. Following GMP-compliant procedures, we generated a stable clonal cell line expressing a humanized CAR based on ErbB2-specific antibody FRP5 harboring CD28 and CD3ζ signaling domains (CAR 5.28.z). These NK-92/5.28.z cells efficiently lysed ErbB2-expressing tumor cells in vitro and exhibited serial target cell killing. Specific recognition of tumor cells and antitumor activity were retained in vivo, resulting in selective enrichment of NK-92/5.28.z cells in orthotopic breast carcinoma xenografts, and reduction of pulmonary metastasis in a renal cell carcinoma model, respectively. γ-irradiation as a potential safety measure for clinical application prevented NK cell replication, while antitumor activity was preserved. Our data demonstrate that it is feasible to engineer CAR-expressing NK cells as a clonal, molecularly and functionally well-defined and continuously expandable cell therapeutic agent, and suggest NK-92/5.28.z cells as a promising candidate for use in adoptive cancer immunotherapy. PMID:25373520
Becker, Karsten; Ballhausen, Britta; Kahl, Barbara C; Köck, Robin
2017-02-01
In the past decade, livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) strains in particular of the clonal complex (CC) 398 have emerged in many parts of the world especially in areas with a high density of pig farming. In those regions, farmworkers and other individuals with professional contact to livestock are very frequently colonized with LA-MRSA. These persons are the presumably source for LA-MRSA transmission to household members and other parts of the human population. Altogether, colonization and/or infection of these individuals lead to the introduction of LA-MRSA into hospitals and other healthcare facilities. Since LA-MRSA CC398 have been found to be specifically adapted to their animal hosts in terms of the equipment with virulence factors, their pathogenicity to human patients is a matter of debate with first reports about clinical cases. Meanwhile, case reports, case series and few studies have demonstrated the capability of LA-MRSA to cause all types of infections attributed to S. aureus in general including fatal courses. Human infections observed comprise e.g. bacteremia, pneumonia, osteomyelitis, endocarditis and many manifestations of skin and soft tissue infections. However, inpatients affected by MRSA CC398 generally show different demographic (e.g. younger, shorter length of hospital stay) and clinical characteristics (e.g. less severe complications) which may explain or at least contribute to a lower disease burden of LA-MRSA compared to other MRSA clonal lineages. Copyright © 2015 Elsevier B.V. All rights reserved.
Halabi, Mohamad Adnan; Jaccard, Arnaud; Moulinas, Rémi; Bahri, Racha; Al Mouhammad, Hazar; Mammari, Nour; Feuillard, Jean; Ranger-Rogez, Sylvie
2016-08-15
Extranodal natural killer/T-cell lymphomas (NK/TL), rare in Europe, are Epstein-Barr virus (EBV) associated lymphomas with poor outcomes. Here, we determined the virus type and analyzed the EBV latent membrane protein-1 (LMP1) gene sequence in NK/TL from French patients. Six clones of viral LMP1 were sequenced by Sanger technology in blood from 13 patients before treatment with an l-asparaginase based regimen and, for 8 of them, throughout the treatment. Blood LMP1 sequences from 21 patients without any known malignancy were tested as controls. EBV Type A was identified for 11/13 patients and for all controls. Before treatment, a clonal LMP1 gene containing a 30 bp deletion (del30) was found in 46.1% of NK/TL and only in 4.8% of controls. Treatment was less effective in these patients who died more rapidly than the others. Patients with a deleted strain evolving toward a wild-type strain during treatment reached complete remission. The LMP1 gene was sequenced by highly sensitive next-generation sequencing technology in five NK/TL nasopharyngeal biopsies, two of them originating from the previous patients. Del30 was present in 100% of the biopsies; two viruses at least coexisted in three biopsies. These results suggest that del30 may be associated with poor prognosis NK/TL and that strain evolution could be used as a potential marker to monitor treatment. © 2016 UICC.
Yu, Zhenhua; Li, Ao; Wang, Minghui
2017-03-15
Copy number alterations (CNA) and loss of heterozygosity (LOH) represent a large proportion of genetic structural variations of cancer genomes. These aberrations are continuously accumulated during the procedure of clonal evolution and patterned by phylogenetic branching. This invariably results in the emergence of multiple cell populations with distinct complement of mutational landscapes in tumor sample. With the advent of next-generation sequencing technology, inference of subclonal populations has become one of the focused interests in cancer-associated studies, and is usually based on the assessment of combinations of somatic single-nucleotide variations (SNV), CNA and LOH. However, cancer samples often have several inherent issues, such as contamination of normal stroma, tumor aneuploidy and intra-tumor heterogeneity. Addressing these critical issues is imperative for accurate profiling of clonal architecture. We present CLImAT-HET, a computational method designed for capturing clonal diversity in the CNA/LOH dimensions by taking into account the intra-tumor heterogeneity issue, in the case where a reference or matched normal sample is absent. The algorithm quantitatively represents the clonal identification problem using a factorial hidden Markov model, and takes an integrated analysis of read counts and allele frequency data. It is able to infer subclonal CNA and LOH events as well as the fraction of cells harboring each event. The results on simulated datasets indicate that CLImAT-HET has high power to identify CNA/LOH segments, it achieves an average accuracy of 0.87. It can also accurately infer proportion of each clonal population with an overall Pearson correlation coefficient of 0.99 and a mean absolute error of 0.02. CLImAT-HET shows significant advantages when compared with other existing methods. Application of CLImAT-HET to 5 primary triple negative breast cancer samples demonstrates its ability to capture clonal diversity in the CAN/LOH dimensions. It detects two clonal populations in one sample, and three clonal populations in one other sample. CLImAT-HET, a novel algorithm is introduced to infer CNA/LOH segments from heterogeneous tumor samples. We demonstrate CLImAT-HET's ability to accurately recover clonal compositions using tumor WGS data without a match normal sample.
Hartmann, Luise; Stephenson, Christine F; Verkamp, Stephanie R; Johnson, Krystal R; Burnworth, Bettina; Hammock, Kelle; Brodersen, Lisa Eidenschink; de Baca, Monica E; Wells, Denise A; Loken, Michael R; Zehentner, Barbara K
2014-12-01
Array comparative genomic hybridization (aCGH) has become a powerful tool for analyzing hematopoietic neoplasms and identifying genome-wide copy number changes in a single assay. aCGH also has superior resolution compared with fluorescence in situ hybridization (FISH) or conventional cytogenetics. Integration of single nucleotide polymorphism (SNP) probes with microarray analysis allows additional identification of acquired uniparental disomy, a copy neutral aberration with known potential to contribute to tumor pathogenesis. However, a limitation of microarray analysis has been the inability to detect clonal heterogeneity in a sample. This study comprised 16 samples (acute myeloid leukemia, myelodysplastic syndrome, chronic lymphocytic leukemia, plasma cell neoplasm) with complex cytogenetic features and evidence of clonal evolution. We used an integrated manual peak reassignment approach combining analysis of aCGH and SNP microarray data for characterization of subclonal abnormalities. We compared array findings with results obtained from conventional cytogenetic and FISH studies. Clonal heterogeneity was detected in 13 of 16 samples by microarray on the basis of log2 values. Use of the manual peak reassignment analysis approach improved resolution of the sample's clonal composition and genetic heterogeneity in 10 of 13 (77%) patients. Moreover, in 3 patients, clonal disease progression was revealed by array analysis that was not evident by cytogenetic or FISH studies. Genetic abnormalities originating from separate clonal subpopulations can be identified and further characterized by combining aCGH and SNP hybridization results from 1 integrated microarray chip by use of the manual peak reassignment technique. Its clinical utility in comparison to conventional cytogenetic or FISH studies is demonstrated. © 2014 American Association for Clinical Chemistry.
Lin, Hui-Feng; Alpert, Peter; Zhang, Qian; Yu, Fei-Hai
2018-03-15
Physiological integration of connected ramets of clonal plants can increase clonal performance when ramets grow in contrasting microenvironments within a habitat. In amphibious clonal species, integration of ramets in different habitats, terrestrial and aquatic, is possible. This may increase performance of amphibious clones, especially under eutrophic conditions. To test this, clonal fragments consisting of two ramets of the amphibious, perennial, climbing herb Ipomoea aquatica connected by a stem were placed such that the proximal ramet was rooted in a simulated riparian community of four other species, while the distal ramet extended into a simulated aquatic habitat with open water and sediment. The connection between ramets was either left intact or severed, and 0, 5, or 25mg N L -1 was added to the aquatic habitat to simulate different degrees of eutrophication. Without added N, fragments in which the original ramets were left connected accumulated two times more total mass than fragments in which the ramets were disconnected from one another. The positive effect of connection increased two-fold with increasing N. These results were consistent with the hypotheses that physiological integration between connected terrestrial and aquatic ramets can increase clonal performance in plants and that this effect can be greater when the aquatic ramet is richer in nutrients. Connection reduced root to shoot ratio in terrestrial ramets, but increased it in aquatic ones, suggesting that physiological integration induced a division of labor in which terrestrial ramets specialized for light acquisition and aquatic ramets specialized for acquisition of nutrients. This provides the first report of increase in clonal performance and induction of division of labor due to physiological integration between ramets in different habitats. Copyright © 2017 Elsevier B.V. All rights reserved.
Xu, Liang; Zhou, Zhen-Feng
2016-01-01
Physiological integration can enhance the performance of clonal plants in aquatic and terrestrial heterogeneous habitats and associated ecotones. Similar to nutrients, pollutants may be transported among connected ramets via physiological integration. Few studies have examined the expansion of amphibious clonal plants from terrestrial to aquatic environments, particularly when the local water supply is polluted with heavy metals. A greenhouse experiment was conducted using the amphibious plant Alternanthera philoxeroides to determine whether Cu can spread among clonal plants and examine the corresponding effects of this pollution on the expansion of clonal plants in aquatic-terrestrial ecotones. Ramets from the same clonal fragments were rooted in unpolluted soil and polluted water at five different levels. The responses of the ramets in terrestrial and aquatic habitats were quantified via traits associated with growth, morphology and Cu accumulation. The results indicated that ramets in soil and water significantly differed in nearly all of these traits. The expansion of populations from terrestrial to polluted aquatic habitats was facilitated by stem elongation rather than new ramet production. The accumulated Cu in polluted ramets can be horizontally transported to other ramets in soil via connected stolons. In terms of clonal growth patterns, variations in Cu pollution intensity were negatively correlated with variations in the morphological and growth traits of ramets in polluted aquatic habitats and unpolluted soil. We concluded that Cu ions are distributed among the clones and accumulated in different ramet tissues in heterogeneous habitats. Therefore, we suggest that Cu pollution of aquatic-terrestrial ecotones, especially at high levels, can affect the growth and expansion of the whole clones because Cu ions are shared between integrated ramets.
Acuna-Hidalgo, Rocio; Sengul, Hilal; Steehouwer, Marloes; van de Vorst, Maartje; Vermeulen, Sita H; Kiemeney, Lambertus A L M; Veltman, Joris A; Gilissen, Christian; Hoischen, Alexander
2017-07-06
Clonal hematopoiesis results from somatic mutations in hematopoietic stem cells, which give an advantage to mutant cells, driving their clonal expansion and potentially leading to leukemia. The acquisition of clonal hematopoiesis-driver mutations (CHDMs) occurs with normal aging and these mutations have been detected in more than 10% of individuals ≥65 years. We aimed to examine the prevalence and characteristics of CHDMs throughout adult life. We developed a targeted re-sequencing assay combining high-throughput with ultra-high sensitivity based on single-molecule molecular inversion probes (smMIPs). Using smMIPs, we screened more than 100 loci for CHDMs in more than 2,000 blood DNA samples from population controls between 20 and 69 years of age. Loci screened included 40 regions known to drive clonal hematopoiesis when mutated and 64 novel candidate loci. We identified 224 somatic mutations throughout our cohort, of which 216 were coding mutations in known driver genes (DNMT3A, JAK2, GNAS, TET2, and ASXL1), including 196 point mutations and 20 indels. Our assay's improved sensitivity allowed us to detect mutations with variant allele frequencies as low as 0.001. CHDMs were identified in more than 20% of individuals 60 to 69 years of age and in 3% of individuals 20 to 29 years of age, approximately double the previously reported prevalence despite screening a limited set of loci. Our findings support the occurrence of clonal hematopoiesis-associated mutations as a widespread mechanism linked with aging, suggesting that mosaicism as a result of clonal evolution of cells harboring somatic mutations is a universal mechanism occurring at all ages in healthy humans. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
The human urothelium consists of multiple clonal units, each maintained by a stem cell.
Gaisa, Nadine T; Graham, Trevor A; McDonald, Stuart A C; Cañadillas-Lopez, Sagrario; Poulsom, Richard; Heidenreich, Axel; Jakse, Gerhard; Tadrous, Paul J; Knuechel, Ruth; Wright, Nicholas A
2011-10-01
Little is known about the clonal architecture of human urothelium. It is likely that urothelial stem cells reside within the basal epithelial layer, yet lineage tracing from a single stem cell as a means to show the presence of a urothelial stem cell has never been performed. Here, we identify clonally related cell areas within human bladder mucosa in order to visualize epithelial fields maintained by a single founder/stem cell. Sixteen frozen cystectomy specimens were serially sectioned. Patches of cells deficient for the mitochondrially encoded enzyme cytochrome c oxidase (CCO) were identified using dual-colour enzyme histochemistry. To show that these patches represent clonal proliferations, small CCO-proficient and -deficient areas were individually laser-capture microdissected and the entire mitochondrial genome (mtDNA) in each area was PCR amplified and sequenced to identify mtDNA mutations. Immunohistochemistry was performed for the different cell layers of the urothelium and adjacent mesenchyme. CCO-deficient patches could be observed in normal urothelium of all cystectomy specimens. The two-dimensional length of these negative patches varied from 2-3 cells (about 30 µm) to 4.7 mm. Each cell area within a CCO-deficient patch contained an identical somatic mtDNA mutation, indicating that the patch was a clonal unit. Patches contained all the mature cell differentiation stages present in the urothelium, suggesting the presence of a stem cell. Our results demonstrate that the normal mucosa of human bladder contains stem cell-derived clonal units that actively replenish the urothelium during ageing. The size of the clonal unit attributable to each stem cell was broadly distributed, suggesting replacement of one stem cell clone by another. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Araki, Kiwako S; Kubo, Takuya; Kudoh, Hiroshi
2017-01-01
In sessile organisms such as plants, spatial genetic structures of populations show long-lasting patterns. These structures have been analyzed across diverse taxa to understand the processes that determine the genetic makeup of organismal populations. For many sessile organisms that mainly propagate via clonal spread, epigenetic status can vary between clonal individuals in the absence of genetic changes. However, fewer previous studies have explored the epigenetic properties in comparison to the genetic properties of natural plant populations. Here, we report the simultaneous evaluation of the spatial structure of genetic and epigenetic variation in a natural population of the clonal plant Cardamine leucantha. We applied a hierarchical Bayesian model to evaluate the effects of membership of a genet (a group of individuals clonally derived from a single seed) and vegetation cover on the epigenetic variation between ramets (clonal plants that are physiologically independent individuals). We sampled 332 ramets in a 20 m × 20 m study plot that contained 137 genets (identified using eight SSR markers). We detected epigenetic variation in DNA methylation at 24 methylation-sensitive amplified fragment length polymorphism (MS-AFLP) loci. There were significant genet effects at all 24 MS-AFLP loci in the distribution of subepiloci. Vegetation cover had no statistically significant effect on variation in the majority of MS-AFLP loci. The spatial aggregation of epigenetic variation is therefore largely explained by the aggregation of ramets that belong to the same genets. By applying hierarchical Bayesian analyses, we successfully identified a number of genet-specific changes in epigenetic status within a natural plant population in a complex context, where genotypes and environmental factors are unevenly distributed. This finding suggests that it requires further studies on the spatial epigenetic structure of natural populations of diverse organisms, particularly for sessile clonal species.
Zhou, Yizhou; Shaw, David; Lam, Cynthia; Tsukuda, Joni; Yim, Mandy; Tang, Danming; Louie, Salina; Laird, Michael W; Snedecor, Brad; Misaghi, Shahram
2017-09-23
Establishing that a cell line was derived from a single cell progenitor and defined as clonally-derived for the production of clinical and commercial therapeutic protein drugs has been the subject of increased emphasis in cell line development (CLD). Several regulatory agencies have expressed that the prospective probability of clonality for CHO cell lines is assumed to follow the Poisson distribution based on the input cell count. The probability of obtaining monoclonal progenitors based on the Poisson distribution of all cells suggests that one round of limiting dilution may not be sufficient to assure the resulting cell lines are clonally-derived. We experimentally analyzed clonal derivatives originating from single cell cloning (SCC) via one round of limiting dilution, following our standard legacy cell line development practice. Two cell populations with stably integrated DNA spacers were mixed and subjected to SCC via limiting dilution. Cells were cultured in the presence of selection agent, screened, and ranked based on product titer. Post-SCC, the growing cell lines were screened by PCR analysis for the presence of identifying spacers. We observed that the percentage of nonclonal populations was below 9%, which is considerably lower than the determined probability based on the Poisson distribution of all cells. These results were further confirmed using fluorescence imaging of clonal derivatives originating from SCC via limiting dilution of mixed cell populations expressing GFP or RFP. Our results demonstrate that in the presence of selection agent, the Poisson distribution of all cells clearly underestimates the probability of obtaining clonally-derived cell lines. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 2017. © 2017 American Institute of Chemical Engineers.
Zhou, Zhen-Feng
2016-01-01
Physiological integration can enhance the performance of clonal plants in aquatic and terrestrial heterogeneous habitats and associated ecotones. Similar to nutrients, pollutants may be transported among connected ramets via physiological integration. Few studies have examined the expansion of amphibious clonal plants from terrestrial to aquatic environments, particularly when the local water supply is polluted with heavy metals. A greenhouse experiment was conducted using the amphibious plant Alternanthera philoxeroides to determine whether Cu can spread among clonal plants and examine the corresponding effects of this pollution on the expansion of clonal plants in aquatic-terrestrial ecotones. Ramets from the same clonal fragments were rooted in unpolluted soil and polluted water at five different levels. The responses of the ramets in terrestrial and aquatic habitats were quantified via traits associated with growth, morphology and Cu accumulation. The results indicated that ramets in soil and water significantly differed in nearly all of these traits. The expansion of populations from terrestrial to polluted aquatic habitats was facilitated by stem elongation rather than new ramet production. The accumulated Cu in polluted ramets can be horizontally transported to other ramets in soil via connected stolons. In terms of clonal growth patterns, variations in Cu pollution intensity were negatively correlated with variations in the morphological and growth traits of ramets in polluted aquatic habitats and unpolluted soil. We concluded that Cu ions are distributed among the clones and accumulated in different ramet tissues in heterogeneous habitats. Therefore, we suggest that Cu pollution of aquatic-terrestrial ecotones, especially at high levels, can affect the growth and expansion of the whole clones because Cu ions are shared between integrated ramets. PMID:27736932
Didi, Jennifer; Lemée, Ludovic; Gibert, Laure; Pons, Jean-Louis; Pestel-Caron, Martine
2014-10-01
Staphylococcus lugdunensis is an emergent virulent coagulase-negative staphylococcus responsible for severe infections similar to those caused by Staphylococcus aureus. To understand its potentially pathogenic capacity and have further detailed knowledge of the molecular traits of this organism, 93 isolates from various geographic origins were analyzed by multi-virulence-locus sequence typing (MVLST), targeting seven known or putative virulence-associated loci (atlLR2, atlLR3, hlb, isdJ, SLUG_09050, SLUG_16930, and vwbl). The polymorphisms of the putative virulence-associated loci were moderate and comparable to those of the housekeeping genes analyzed by multilocus sequence typing (MLST). However, the MVLST scheme generated 43 virulence types (VTs) compared to 20 sequence types (STs) based on MLST, indicating that MVLST was significantly more discriminating (Simpson's index [D], 0.943). No hypervirulent lineage or cluster specific to carriage strains was defined. The results of multilocus sequence analysis of known and putative virulence-associated loci are consistent with a clonal population structure for S. lugdunensis, suggesting a coevolution of these genes with housekeeping genes. Indeed, the nonsynonymous to synonymous evolutionary substitutions (dN/dS) ratio, the Tajima's D test, and Single-likelihood ancestor counting (SLAC) analysis suggest that all virulence-associated loci were under negative selection, even atlLR2 (AtlL protein) and SLUG_16930 (FbpA homologue), for which the dN/dS ratios were higher. In addition, this analysis of virulence-associated loci allowed us to propose a trilocus sequence typing scheme based on the intragenic regions of atlLR3, isdJ, and SLUG_16930, which is more discriminant than MLST for studying short-term epidemiology and further characterizing the lineages of the rare but highly pathogenic S. lugdunensis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
USDA-ARS?s Scientific Manuscript database
The populations of the potato and tomato late blight pathogen, Phytophthora infestans, in the US are well known for emerging repeatedly as novel clonal lineages. These successions of dominant clones have historically been named US1-US24, in order of appearance, since their first characterization usi...
Clonal origins and parallel evolution of regionally synchronous colorectal adenoma and carcinoma.
Kim, Tae-Min; An, Chang Hyeok; Rhee, Je-Keun; Jung, Seung-Hyun; Lee, Sung Hak; Baek, In-Pyo; Kim, Min Sung; Lee, Sug Hyung; Chung, Yeun-Jun
2015-09-29
Although the colorectal adenoma-to-carcinoma sequence represents a classical cancer progression model, the evolution of the mutational landscape underlying this model is not fully understood. In this study, we analyzed eight synchronous pairs of colorectal high-grade adenomas and carcinomas, four microsatellite-unstable (MSU) and four-stable (MSS) pairs, using whole-exome sequencing. In the MSU adenoma-carcinoma pairs, we observed no subclonal mutations in adenomas that became fixed in paired carcinomas, suggesting a 'parallel' evolution of synchronous adenoma-to-carcinoma, rather than a 'stepwise' evolution. The abundance of indel (in MSU and MSS pairs) and microsatellite instability (in MSU pairs) was noted in the later adenoma- or carcinoma-specific mutations, indicating that the mutational processes and functional constraints operative in early and late colorectal carcinogenesis are different. All MSU cases exhibited clonal, truncating mutations in ACVR2A, TGFBR2, and DNA mismatch repair genes, but none were present in APC or KRAS. In three MSS pairs, both APC and KRAS mutations were identified as both early and clonal events, often accompanying clonal copy number changes. An MSS case uniquely exhibited clonal ERBB2 amplification, followed by APC and TP53 mutations as carcinoma-specific events. Along with the previously unrecognized clonal origins of synchronous colorectal adenoma-carcinoma pairs, our study revealed that the preferred sequence of mutational events during colorectal carcinogenesis can be context-dependent.
Zhong, Feng-Luan; Zhang, Hong-Yu; Zhang, Qian; Feng, Jia; Zhang, Wen-Li; Xu, Lei; Xu, Hai-Chan; Wen, Juan-Juan; Meng, Qing-Xiang
2017-12-01
To explore the lymphocytic clonal expansion in adult patients with Epstein-Barr virus-associated lymphoproliferative diseases (EBV+LPD), and to investigate the experimental methods for EBV+LPD cells so as to provide a more objective measure for the diagnosis, classification and prognosis in the early stage of this disease. Peripheral blood samples from 5 patients with EBV+LPD, 4 patients with adult infectious mononucleosis(IM) as negative control and 3 patients with acute NK-cell leukemia(ANKL) as positive control were collected. Prior to immunochemotherapy, viral loads and clonality were analysed by flow cytometry (FCM), T cell receptor gene rearrangement (TCR) was detected by real-time polymerase chain reaction (RT-PCR), and diversity of EB virus terminal repeat (EBV-TR) was detected by Southern blot. FCM showed only 1 case with clonal TCRVβ in 5 patients with EBV+LPD, TCR clonal expansion could be detected both in patients with IM(4 of 4) and 4 patients with EBV+LPD(4 of 5), Out of patients with EBV+LPD, 1 patient displayed a monoclonal band and 2 patients showed oligoclonal bands when detecting EBV-TR by southen blot. Detecting the diversity of EBV-TR by Southern blot may be the most objective way to reflex clonal transformation of EBV+LPD, which is of great benefit to the diagnosis, classification and prognosis in the early stage of this disease.
Emergence of Clonal Hematopoiesis in the Majority of Patients with Acquired Aplastic Anemia
Babushok, Daria V.; Perdigones, Nieves; Perin, Juan C.; Olson, Timothy S.; Ye, Wenda; Roth, Jacquelyn J.; Lind, Curt; Cattier, Carine; Li, Yimei; Hartung, Helge; Paessler, Michele E.; Frank, Dale M.; Xie, Hongbo M.; Cross, Shanna; Cockroft, Joshua D.; Podsakoff, Gregory M.; Monos, Dimitrios; Biegel, Jaclyn A.; Mason, Philip J.; Bessler, Monica
2015-01-01
Acquired aplastic anemia (aAA) is a non-malignant disease caused by autoimmune destruction of early hematopoietic cells. Clonal hematopoiesis is a late complication, seen in 20–25% of older patients. We hypothesized that clonal hematopoiesis in aAA is a more general phenomenon, which can arise early in disease even in younger patients. To evaluate clonal hematopoiesis in aAA, we used comparative whole exome sequencing of paired bone marrow and skin in 22 patients. We found somatic mutations in sixteen patients (72.7%) with a median disease duration of 1 year; twelve (66.7%) were patients with pediatriconset aAA. Fifty-eight mutations in 51 unique genes were primarily in pathways of immunity and transcriptional regulation. Most frequently mutated was PIGA, with 7 mutations. Only two mutations were in genes recurrently-mutated in MDS. Two patients had oligoclonal loss of HLA alleles, linking immune escape to clone emergence. Two patients had activating mutations in key signaling pathways (STAT5B(p.N642H), CAMK2G(p.T306M)). Our results suggest that clonal hematopoiesis in aAA is common, with two mechanisms emerging― immune escape and increased proliferation. Our findings expand conceptual understanding of this non-neoplastic blood disorder. Future prospective studies of clonal hematopoiesis in aAA will be critical for understanding outcomes, and for designing personalized treatment strategies. PMID:25800665
Aldosterone induces clonal β-cell failure through glucocorticoid receptor
Chen, Fang; Liu, Jia; Wang, Yanyang; Wu, Tijun; Shan, Wei; Zhu, Yunxia; Han, Xiao
2015-01-01
Aldosterone excess causes insulin resistance in peripheral tissues and directly impairs the function of clonal β-cell. The aim of this study was to investigate the molecular mechanisms involved in the aldosterone-induced impairment of clonal β-cells. As expected, aldosterone induced apoptosis and β-cell dysfunction, including impairment of insulin synthesis and secretion, which were reversed by Glucocorticoid receptor (GR) antagonists or GR-specific siRNA. However, mineralocorticoid receptor (MR) antagonists or MR-specific siRNA had no effect on impairment of clonal β-cells induced by aldosterone. Besides, aldosterone significantly decreased expression and activity of MafA, while activated JNK and p38 MAPK in a GR-dependent manner. In addition, JNK inhibitors (SP600125) and/or p38 inhibitors (SB203580) could abolish the effect of aldosterone on MafA expression and activity. Importantly, overexpression of JNK1 or p38 reversed the protective effect of a GR antagonist on the decrease of MafA expression and activity. Furthermore, aldosterone inhibits MafA expression at the transcriptional and post-transcriptional level through activation of JNK and p38, respectively. Consequently, overexpression of MafA increased synthesis and secretion of insulin, and decreased apoptosis in clonal β-cells exposed to aldosterone. These findings identified aldosterone as an inducer of clonal β-cell failure that operates through the GR-MAPK-MafA signaling pathway. PMID:26287126
Baldwin, Sarah J; Husband, Brian C
2013-04-01
Clonal reproduction is associated with the incidence of polyploidy in flowering plants. This pattern may arise through selection for increased clonality in polyploids compared to diploids to reduce mixed-ploidy mating. Here, we test whether clonal reproduction is greater in tetraploid than diploid populations of the mixed-ploidy plant, Chamerion angustifolium, through an analysis of the size and spatial distribution of clones in natural populations using AFLP genotyping and a comparison of root bud production in a greenhouse study. Natural tetraploid populations (N = 5) had significantly more AFLP genotypes (x¯ = 10.8) than diploid populations (x¯ = 6.0). Tetraploid populations tended to have fewer ramets per genotype and fewer genotypes with >1 ramet. In a spatial autocorrelation analysis, ramets within genotypes were more spatially aggregated in diploid populations than in tetraploid populations. In the greenhouse, tetraploids allocated 90.4% more dry mass to root buds than diploids, but tetraploids produced no more root buds and 44% fewer root buds per unit root mass than diploids. Our results indicate that clonal reproduction is significant in most populations, but tetraploid populations are not more clonal than diploids, nor are their clones more spatially aggregated. As a result, tetraploids may be less sheltered from mixed-ploidy mating and diploids more exposed to inbreeding, the balance of which could influence the establishment of tetraploids in diploid populations. © 2013 Blackwell Publishing Ltd.