Science.gov

Sample records for fourth family neutrinos

  1. Fourth standard model family neutrino at future linear colliders

    SciTech Connect

    Ciftci, A.K.; Ciftci, R.; Sultansoy, S.

    2005-09-01

    It is known that flavor democracy favors the existence of the fourth standard model (SM) family. In order to give nonzero masses for the first three-family fermions flavor democracy has to be slightly broken. A parametrization for democracy breaking, which gives the correct values for fundamental fermion masses and, at the same time, predicts quark and lepton Cabibbo-Kobayashi-Maskawa (CKM) matrices in a good agreement with the experimental data, is proposed. The pair productions of the fourth SM family Dirac ({nu}{sub 4}) and Majorana (N{sub 1}) neutrinos at future linear colliders with {radical}(s)=500 GeV, 1 TeV, and 3 TeV are considered. The cross section for the process e{sup +}e{sup -}{yields}{nu}{sub 4}{nu}{sub 4}(N{sub 1}N{sub 1}) and the branching ratios for possible decay modes of the both neutrinos are determined. The decays of the fourth family neutrinos into muon channels ({nu}{sub 4}(N{sub 1}){yields}{mu}{sup {+-}}W{sup {+-}}) provide cleanest signature at e{sup +}e{sup -} colliders. Meanwhile, in our parametrization this channel is dominant. W bosons produced in decays of the fourth family neutrinos will be seen in detector as either di-jets or isolated leptons. As an example, we consider the production of 200 GeV mass fourth family neutrinos at {radical}(s)=500 GeV linear colliders by taking into account di-muon plus four jet events as signatures.

  2. Dark Coulomb binding of heavy neutrinos of fourth family

    NASA Astrophysics Data System (ADS)

    Belotsky, K. M.; Esipova, E. A.; Khlopov, M. Yu.; Laletin, M. N.

    2015-11-01

    Direct dark matter searches put severe constraints on the weakly interacting massive particles (WIMPs). These constraints cause serious troubles for the model of stable neutrino of fourth generation with mass around 50GeV. Though the calculations of primordial abundance of these particles make them in the charge symmetric case a sparse subdominant component of the modern dark matter, their presence in the universe would exceed the current upper limits by several orders of the magnitude. However, if quarks and leptons of fourth generation possess their own Coulomb-like y-interaction, recombination of pairs of heavy neutrinos and antineutrinos and their annihilation in the “neutrinium” atoms can play important role in their cosmological evolution, reducing their modern abundance far below the experimental upper limits. The model of stable fourth generation assumes that the dominant part of dark matter is explained by excessive Ū antiquarks, forming (ŪŪŪ)-- charged clusters, bound with primordial helium in nuclear-interacting O-helium (OHe) dark atoms. The y charge conservation implies generation of the same excess of fourth generation neutrinos, potentially dangerous WIMP component of this scenario. We show that due to y-interaction recombination of fourth neutrinos with OHe hides these WIMPs from direct WIMP searches, leaving the negligible fraction of free neutrinos, what makes their existence compatible with the experimental constraints.

  3. Fourth lepton family is natural in technicolor

    SciTech Connect

    Frandsen, Mads T.; Masina, Isabella; Sannino, Francesco

    2010-02-01

    Imagine discovering a new fourth family of leptons at the Large Hadron Collider (LHC) but no signs of an associated fourth family of quarks. What would that imply? An intriguing possibility is that the new fermions needed to compensate for the new leptons gauge anomalies simultaneously address the big hierarchy problem of the standard model. A natural way to accomplish such a scenario is to have the Higgs itself be a composite of these new fermions. This is the setup we are going to investigate in this paper using as a template minimal walking technicolor. We analyze a general heavy neutrino mass structure with and without mixing with the standard model families. We also analyze the LHC potential to observe the fourth lepton family in tandem with the new composite Higgs dynamics. We finally introduce a model uniting the fourth lepton family and the technifermion sector at higher energies.

  4. Search for the fourth standard model family

    SciTech Connect

    Sahin, M.; Sultansoy, S.; Turkoz, S.

    2011-03-01

    Existence of the fourth family follows from the basics of the standard model (SM) and the actual mass spectrum of the third family fermions. We discuss possible manifestations of the fourth SM family at existing and future colliders. The LHC and Tevatron potentials to discover the fourth SM family have been compared. The scenario with dominance of the anomalous decay modes of the fourth-family quarks has been considered in detail.

  5. Bounding CKM Mixing with a Fourth Family

    SciTech Connect

    Chanowitz, Michael S.

    2009-04-22

    CKM mixing between third family quarks and a possible fourth family is constrained by global fits to the precision electroweak data. The dominant constraint is from nondecoupling oblique corrections rather than the vertex correction to Z {yields} {bar b}b used in previous analyses. The possibility of large mixing suggested by some recent analyses of FCNC processes is excluded, but 3-4 mixing of the same order as the Cabbibo mixing of the first two families is allowed.

  6. Proposed search for a fourth neutrino with a PBq antineutrino source.

    PubMed

    Cribier, Michel; Fechner, Maximilien; Lasserre, Thierry; Letourneau, Alain; Lhuillier, David; Mention, Guillaume; Franco, Davide; Kornoukhov, Vasily; Schönert, Stefan

    2011-11-11

    Several observed anomalies in neutrino oscillation data can be explained by a hypothetical fourth neutrino separated from the three standard neutrinos by a squared mass difference of a few eV(2). We show that this hypothesis can be tested with a PBq (ten kilocurie scale) (144)Ce or (106)Ru antineutrino beta source deployed at the center of a large low background liquid scintillator detector. In particular, the compact size of such a source could yield an energy-dependent oscillating pattern in event spatial distribution that would unambiguously determine neutrino mass differences and mixing angles.

  7. Cosmic ray electron and positron excesses from a fourth generation heavy Majorana neutrino

    SciTech Connect

    Masina, Isabella; Sannino, Francesco E-mail: sannino@cp3-origins.net

    2011-08-01

    Unexpected features in the energy spectra of cosmic rays electrons and positrons have been recently observed by PAMELA and Fermi-LAT satellite experiments, opening to the exciting possibility of an indirect manifestation of new physics. A TeV-scale fourth lepton family is a natural extension of the Standard Model leptonic sector (also linked to the hierarchy problem in Minimal Walking Technicolor models). The heavy Majorana neutrino of this setup mixes with Standard Model charged leptons through a weak charged current interaction. Here, we first study analytically the energy spectrum of the electrons and positrons originated in the heavy Majorana neutrino decay modes, also including polarization effects. We then compare the prediction of this model with the experimental data, exploiting both the standard direct method and our recently proposed Sum Rules method. We find that the decay modes involving the tau and/or the muon charged leptons as primary decay products fit well the PAMELA and Fermi-LAT lepton excesses while there is tension with respect to the antiproton to proton fraction constrained by PAMELA.

  8. Searching for the fourth family quarks through anomalous decays

    SciTech Connect

    Sahin, M.; Sultansoy, S.; Turkoz, S.

    2010-09-01

    The flavor democracy hypothesis predicts the existence of the fourth standard model family. Because of the high masses of the fourth family quarks, their anomalous decays could be dominant if certain criteria are met. This will drastically change the search strategy at hadron colliders. We show that the fourth standard model family down quarks with masses up to 400-450 GeV can be observed (or excluded) via anomalous decays by Tevatron.

  9. Leptonic mixing, family symmetries, and neutrino phenomenology

    SciTech Connect

    Medeiros Varzielas, I. de; Gonzalez Felipe, R.; Serodio, H.

    2011-02-01

    Tribimaximal leptonic mixing is a mass-independent mixing scheme consistent with the present solar and atmospheric neutrino data. By conveniently decomposing the effective neutrino mass matrix associated to it, we derive generic predictions in terms of the parameters governing the neutrino masses. We extend this phenomenological analysis to other mass-independent mixing schemes which are related to the tribimaximal form by a unitary transformation. We classify models that produce tribimaximal leptonic mixing through the group structure of their family symmetries in order to point out that there is often a direct connection between the group structure and the phenomenological analysis. The type of seesaw mechanism responsible for neutrino masses plays a role here, as it restricts the choices of family representations and affects the viability of leptogenesis. We also present a recipe to generalize a given tribimaximal model to an associated model with a different mass-independent mixing scheme, which preserves the connection between the group structure and phenomenology as in the original model. This procedure is explicitly illustrated by constructing toy models with the transpose tribimaximal, bimaximal, golden ratio, and hexagonal leptonic mixing patterns.

  10. Sensitivity to oscillation with a sterile fourth generation neutrino from ultralow threshold neutrino-nucleus coherent scattering

    NASA Astrophysics Data System (ADS)

    Dutta, Bhaskar; Gao, Yu; Kubik, Andrew; Mahapatra, Rupak; Mirabolfathi, Nader; Strigari, Louis E.; Walker, Joel W.

    2016-11-01

    We discuss prospects for probing short-range sterile neutrino oscillation using neutrino-nucleus coherent scattering with ultralow energy (˜10 - 100 eV ) recoil threshold cryogenic Ge detectors. The analysis is performed in the context of a specific and contemporary reactor-based experimental proposal, developed in cooperation with the Nuclear Science Center at Texas A&M University, and references developing technology based upon economical and scalable detector arrays. The baseline of the experiment is substantially shorter than existing measurements, as near as about 2 m from the reactor core, and is moreover variable, extending continuously up to a range of about 10 m. This proximity and variety combine to provide extraordinary sensitivity to a wide spectrum of oscillation scales, while facilitating the tidy cancellation of leading systematic uncertainties in the reactor source and environment. With 100 eV sensitivity, for exposures on the order of 200 kg .y , we project an estimated sensitivity to first and fourth neutrino oscillation with a mass gap Δ m2˜1 eV2 at an amplitude sin22 θ ˜10-1, or Δ m2˜0.2 eV2 at unit amplitude. Larger exposures, around 5000 kg .y , together with 10 eV sensitivity are capable of probing more than an additional order of magnitude in amplitude.

  11. Flavor changing neutral currents with a fourth family of quarks

    SciTech Connect

    Herrera, Johana A.; Benavides, Richard H.; Ponce, William A.

    2008-10-01

    For a model with a fourth family of quarks, new sources of flavor changing neutral currents are identified by confronting the unitary 4x4 quark mixing matrix with the experimental measured values of the familiar 3x3 quark mixing matrix. By imposing as experimental constraints the known bounds for the flavor changing neutral currents, the largest mixing of the known quarks with the fourth family ones is established. The predictions are: a value for |V{sub tb}| significantly different from unity, large rates for rare top decays as t{yields}c{gamma} and t{yields}cZ, the last one reachable at the Large Hadron Collider, and large rates for rare strange decays s{yields}d{gamma} and s{yields}dg, where g stands for the gluon field, both processes reachable at the existing B factories.

  12. Quasi-degenerate neutrinos from an abelian family symmetry

    SciTech Connect

    Binetruy, P. |; Lavignac, S.; Petcov, S. |; Ramond, P.

    1996-12-31

    The authors show that models with an abelian family symmetry which accounts for the observed hierarchies of masses and mixings in the quark sector may also accommodate quasi-degeneracies in the neutrino mass spectrum. Such approximate degeneracies are, in this context, associated with large mixing angles. The parameters of this class of models are constrained. The authors discuss their phenomenological implications for present and foreseen neutrino experiments.

  13. MSSM extension with a mirror fourth generation, neutrino magnetic moments, and CERN LHC signatures

    SciTech Connect

    Ibrahim, Tarek; Nath, Pran

    2008-10-01

    Recent analyses have shown that a sequential fourth generation can be consistent with precision electroweak data. We consider the possibility that the new generation could be a mirror generation with V+A rather than V-A interactions. Specifically we consider an extension of the minimal supersymmetric standard model with a light mirror generation. Implications of this extension are explored. One consequence is an enhancement of the {tau} neutrino magnetic moment by several orders of magnitude consistent with the current limits on the magnetic moment of the {tau}. The masses of the mirror generation arise due to electroweak symmetry breaking, and if a mirror generation exists its mass spectrum must lie below a TeV, and thus should be discovered at the LHC. Mirror particles and mirror sparticles produce many characteristic signatures which should be detectable at the LHC. Heavy Higgs boson decays into mirror particles and an analysis of the forward-backward asymmetries can distinguish a mirror generation from a sequential fourth generation. The validity of the model can thus be tested at the LHC. A model of the type discussed here could arise from a more unified structure such as grand unification or strings where a mirror generation escapes the survival hypothesis, i.e., a generation and a mirror generation do not tie up to acquire a mass of size M{sub GUT} or M{sub string} due to a symmetry, and thus remain massless down to the electroweak scale.

  14. Family Influence: Key to Fruit and Vegetable Consumption among Fourth- and Fifth-Grade Students

    ERIC Educational Resources Information Center

    Gross, Susan M.; Pollock, Elizabeth Davenport; Braun, Bonnie

    2010-01-01

    Objective: To assess social and familial environmental influences on fruit and vegetable (FV) consumption of fourth- and fifth-graders living in a culturally diverse, urban setting. Design: In 2006, students from 9 fourth- and fifth-grade classrooms from a public school in the Washington-Baltimore Metropolitan Region were recruited as part of the…

  15. Case Study of Fourth Grade Families and School Involvement

    ERIC Educational Resources Information Center

    Ugoala, Sandra Kay Womack

    2014-01-01

    Researchers and policy makers have established that family involvement is related to student academic performance. Family participation at a school in a southern state in the United States was declining after the third grade level, and educators at the school needed more information to address this problem. Self-efficacy and ecological theories of…

  16. Fourth SM family, breaking of mass democracy, and the CKM mixings

    NASA Astrophysics Data System (ADS)

    Atağ, S.; Çelikel, A.; Çiftçi, A. K.; Sultansoy, S.; Yılmaz, Ü. O.

    1996-11-01

    We consider the violation of the democratic mass matrix in the framework of the four-family standard model. Predictions of fourth-family fermion masses as well as quark and lepton CKM mixings are presented. Production and decay modes of new fermions are discussed.

  17. Fourth SM family, breaking of mass democracy, and the CKM mixings

    SciTech Connect

    Atag, S.; Celikel, A.; Ciftci, A.K.; Sultansoy, S. |; Yilmaz, U.O.

    1996-11-01

    We consider the violation of the democratic mass matrix in the framework of the four-family standard model. Predictions of fourth-family fermion masses as well as quark and lepton CKM mixings are presented. Production and decay modes of new fermions are discussed. {copyright} {ital 1996 The American Physical Society.}

  18. Family Outing Activities and Achievement among Fourth Graders in Compensatory Education Funded Schools.

    ERIC Educational Resources Information Center

    Griswold, Philip A.

    This study sought to identify the relationship between operationally-defined family outing activities and measures of achievement among fourth grade students from educationally disadvantaged backgrounds. The results, collected for four successive years from 1715 students in urban Los Angeles, indicated that: (1) participation in family activities…

  19. Neutrinos

    PubMed Central

    Besson, Dave; Cowen, Doug; Selen, Mats; Wiebusch, Christopher

    1999-01-01

    Neutrinos represent a new “window” to the Universe, spanning a large range of energy. We discuss the science of neutrino astrophysics and focus on two energy regimes. At “lower” energies (≈1 MeV), studies of neutrinos born inside the sun, or produced in interactions of cosmic rays with the atmosphere, have allowed the first incontrovertible evidence that neutrinos have mass. At energies typically one thousand to one million times higher, sources further than the sun (both within the Milky Way and beyond) are expected to produce a flux of particles that can be detected only through neutrinos. PMID:10588680

  20. Developing Cross-Cultural Competence: A Guide for Working with Children and Their Families. Fourth Edition

    ERIC Educational Resources Information Center

    Lynch, Eleanor W., Ed.; Hanson, Marci J., Ed.

    2011-01-01

    As the U.S. population grows more and more diverse, how can professionals who work with young children and families deliver the best services while honoring different customs, beliefs, and values? The answers are in the fourth edition of this bestselling textbook, fully revised to reflect nearly a decade of population changes and best practices in…

  1. Thinking beyond Measurement, Description and Judgment: Fourth Generation Evaluation in Family-Centered Pediatric Healthcare Organizations

    ERIC Educational Resources Information Center

    Moreau, Katherine Ann; Clarkin, Chantalle Louise

    2012-01-01

    Background: Although pediatric healthcare organizations have widely implemented the philosophy of family-centered care (FCC), evaluators and health professionals have not explored how to preserve the philosophy of FCC in evaluation processes. Purpose: To illustrate how fourth generation evaluation, in theory, could facilitate collaboration between…

  2. [Family dynamics in the caring context of adults on the fourth age].

    PubMed

    Polaro, Sandra Helena Isse; Gonçalves, Lucia Hisako Takase; Nassar, Silvia Modesto; Lopes, Márcia Maria Bragança; Ferreira, Viviane Ferraz; Monteiro, Hellen Karinna

    2013-01-01

    This study aimed to determine the pattern of family functioning on everyday care relationships of adults in the fourth age. This is a study of diagnostic-evaluative nature of adults with 80 or more years old who depend on care, and of their relatives as caregivers. The participants were selected among the registered patients of a Family Health Unit in a district in the suburbs of Belém-PA, Brazil. They were evaluated according to the dynamics of their family, and quality of life related health lifestyle. Most of the elderly rated their families with good functionality. However, data on the elderly and caregivers' quality of life and caregivers' life style only reached the median level, showing some difficulty in the family functioning system. It was concluded that the multiple results obtained through the assessments indicate some practical implications of care to the family unity and confirm the need for multidimensional assessment about the family intervention.

  3. Anomalous resonant production of the fourth-family up-type quarks at the LHC

    SciTech Connect

    Cakir, I. T.; Yildiz, H. Duran; Cakir, O.; Uenel, G.

    2009-11-01

    Considering the present limits on their masses from the Tevatron experiments, the fourth-family quarks are expected to have masses larger than the top quark. Because of their expected large masses, they could have different dynamics than the third-family quarks of the standard model. The resonant production of the fourth-family up-type quark t{sup '} has been studied via the anomalous production subprocess gq{sub i}{yields}t{sup '} (where q{sub i}=u, c) at the LHC, with center-of-mass energies of 10 TeV and 14 TeV. The signatures of such a process are discussed within the standard model decay modes. The sensitivity to the anomalous coupling {kappa}/{lambda}=0.1 TeV{sup -1} can be reached at {radical}(s)=10 TeV and L{sub int}=100 pb{sup -1}.

  4. Neutrinos

    NASA Astrophysics Data System (ADS)

    Winter, K.; Murdin, P.

    2000-11-01

    Neutrinos are electrically neutral ELEMENTARY PARTICLES which experience only the weak nuclear force and gravity. Their existence was introduced as a hypothesis by Wolfgang Pauli in 1930 to explain the apparent violation of energy conservation in radioactive beta decay. Chadwick had discovered in 1914 that the energy spectrum of electrons emitted in beta decay was not monoenergetic but continuous...

  5. Single Anomalous Production of the Fourth SM Family Leptons at Future e+e-, ep and pp Colliders

    SciTech Connect

    Ciftci, A. K.; Ciftci, R.; Karadeniz, H.; Sultansoy, S.; Yildiz, H. Duran

    2007-04-23

    Possible single productions of fourth SM family charged and neutral leptons via anomalous interactions at the future e+e-, ep, and pp colliders are studied. Signatures of such anomalous processes are argued at above colliders comparatively.

  6. Single Anomalous Production of the Fourth SM Family Quarks at Future e+e-, ep, and pp Colliders

    SciTech Connect

    Ciftci, A. K.; Ciftci, R.; Sultansoy, S.; Yildiz, H. Duran

    2007-04-23

    Possible single productions of fourth SM family u4 and d4 quarks via anomalous interactions at the e+e-, ep, and pp colliders are investigated. Signatures of such anomalous processes are discussed at above colliders comparatively.

  7. Anomalous single production of fourth family up-type quark associated with neutral gauge bosons at the LHC

    NASA Astrophysics Data System (ADS)

    Çakır, O.; Çakır, I. T.; Senol, A.; Tasci, A. T.

    2012-05-01

    The fourth family quarks are expected to have mass larger than the top quark considering the results from recent studies on the allowed parameter space. They could also have different dynamics than the quarks of three families of the standard model. The single production of the fourth family up-type quark t‧ is studied via the anomalous production process pp → t‧VX (where V = g, Z, γ) at the LHC with the center of mass energy of 7 and 14 TeV. The signatures of such process are discussed within both the SM and the anomalous decay modes of t‧ quarks. The sensitivity to anomalous coupling κ/Λ = 0.004 TeV-1 can be reached at \\sqrt{s}=14 TeV and Lint = 100 pb-1.

  8. Proceedings of the Fourth National Conference on Population/Family Planning Library and Information Services, Chapel Hill, N.C., May 6-7, 1971.

    ERIC Educational Resources Information Center

    Horowitz, Blanche, Ed.

    This report contains the proceedings of the Fourth National Conference on Population/Family Planning Library and Information Services held in Chapel Hill, North Carolina, May 6-7, 1971. Under the joint sponsorship of the Carolina Population Center and the U.S. Agency for International Development, this was the fourth in a series of annual…

  9. Literacy Discussions in Low-Income Families: The Effect of Parent Questions on Fourth Graders' Retellings

    ERIC Educational Resources Information Center

    Capotosto, Lauren; Kim, James S.

    2016-01-01

    This study examines the effects of four types of reading comprehension questions--immediate, non-immediate, summary, and unanswerable questions--that linguistically diverse and predominantly low-income parents asked their fourth graders on children's text retellings. One-hundred-twenty (N = 120) parent and child dyads participated in a home visit…

  10. The Creation of the Fourth Planet: Beginning Therapists and Supervisors Inducing Change in Families.

    ERIC Educational Resources Information Center

    Andolfi, Maurizio; And Others

    1993-01-01

    Contends that beginning therapists are not prepared to deal with complexity that families bring to therapeutic setting and have reductionistic approach to understanding what is occurring in family. Explores development of "therapeutic story" with goal of assisting beginning therapist in approaches that can be used to incorporate all…

  11. A Survey of Fourth-Year Medical Students' Decisions regarding Family Practice as a Career.

    ERIC Educational Resources Information Center

    Montano, Daniel E.; And Others

    1988-01-01

    The Fishbein Model of attitude formation was used as a framework for developing a questionnaire to measure students' attitudes toward a career in family practice and the social support students perceived they had for that career. Both the attitude and social support scales had excellent psychometric characteristics. (Author/MLW)

  12. A family of fourth-order entropy stable nonoscillatory spectral collocation schemes for the 1-D Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Yamaleev, Nail K.; Carpenter, Mark H.

    2017-02-01

    High-order numerical methods that satisfy a discrete analog of the entropy inequality are uncommon. Indeed, no proofs of nonlinear entropy stability currently exist for high-order weighted essentially nonoscillatory (WENO) finite volume or weak-form finite element methods. Herein, a new family of fourth-order WENO spectral collocation schemes is developed, that are nonlinearly entropy stable for the one-dimensional compressible Navier-Stokes equations. Individual spectral elements are coupled using penalty type interface conditions. The resulting entropy stable WENO spectral collocation scheme achieves design order accuracy, maintains the WENO stencil biasing properties across element interfaces, and satisfies the summation-by-parts (SBP) operator convention, thereby ensuring nonlinear entropy stability in a diagonal norm. Numerical results demonstrating accuracy and nonoscillatory properties of the new scheme are presented for the one-dimensional Euler and Navier-Stokes equations for both continuous and discontinuous compressible flows.

  13. Electromagnetic properties of massive neutrinos

    SciTech Connect

    Dobrynina, A. A. Mikheev, N. V.; Narynskaya, E. N.

    2013-10-15

    The vertex function for a virtual massive neutrino is calculated in the limit of soft real photons. A method based on employing the neutrino self-energy operator in a weak external electromagnetic field in the approximation linear in the field is developed in order to render this calculation of the vertex function convenient. It is shown that the electric charge and the electric dipole moment of the real neutrino are zero; only the magnetic moment is nonzero for massive neutrinos. A fourth-generation heavy neutrino of mass not less than half of the Z-boson mass is considered as a massive neutrino.

  14. LSND neutrino oscillation results

    SciTech Connect

    Louis, W.C.

    1996-06-01

    In the past several years, a number of experiments have searched for neutrino oscillations, where a neutrino of one type (say {bar {nu}}{sub {mu}}) spontaneously transforms into a neutrino of another type (say {bar {nu}}{sub e}). For this phenomenon to occur, neutrinos must be massive and the apparent conservation law of lepton families must be violated. In 1995 the LSND experiment published data showing candidate events that are consistent with {bar {nu}}{sub {mu}} oscillations. Additional data are reported here which provide stronger evidence for neutrino oscillations.

  15. Indirect search for the fourth genration of quarks and leptons

    NASA Astrophysics Data System (ADS)

    Bashiry, Vali

    2008-04-01

    It is known that the Standard Model (SM) does not predict the number of fermion families; N. The only restriction comes from the asymptotic freedom of QCD which requires the number of quarks to be less than 17 and, therefore, the number of SM families to be N⩽8. Before 1990 Šs, many authors published articles related to the extra SM families and their phenomenological consequences. In early 1990 Šs, the LEP data yields N is almost 3 where the neutral lepton mass for each family is less than half the mass of the Z boson. Generally, this result is interpreted as the exact value of N, since one assumes that the neutrinos must have very small masses. If we disregard this incorrect assumption, the LEP data does not exclude the existence of extra SM families with heavy neutrinos. Meanwhile, few papers arguing the existence of the fourth SM family have been publishing. These arguments are based on the Śflavor democracy Š hypothesis. The study of FCNC in B decays can indirectly shed light on the SM4 family in quark sector and LFV is a good candidate to indirect search for 4th generation of leptons.

  16. Neutrino Experiments

    SciTech Connect

    McKeown, R. D.

    2010-08-04

    Recent studies of neutrino oscillations have established the existence of finite neutrino masses and mixing between generations of neutrinos. The combined results from studies of atmospheric neutrinos, solar neutrinos, reactor antineutrinos and neutrinos produced at accelerators paint an intriguing picture that clearly requires modification of the standard model of particle physics. These results also provide clear motivation for future neutrino oscillation experiments as well as searches for direct neutrino mass and nuclear double-beta decay. I will discuss the program of new neutrino oscillation experiments aimed at completing our knowledge of the neutrino mixing matrix.

  17. Sterile Neutrino Search with MINOS

    SciTech Connect

    Devan, Alena V.

    2015-08-01

    MINOS, Main Injector Neutrino Oscillation Search, is a long-baseline neutrino oscillation experiment in the NuMI muon neutrino beam at the Fermi National Accelerator Laboratory in Batavia, IL. It consists of two detectors, a near detector positioned 1 km from the source of the beam and a far detector 734 km away in Minnesota. MINOS is primarily designed to observe muon neutrino disappearance resulting from three flavor oscillations. The Standard Model of Particle Physics predicts that neutrinos oscillate between three active flavors as they propagate through space. This means that a muon-type neutrino has a certain probability to later interact as a different type of neutrino. In the standard picture, the neutrino oscillation probabilities depend only on three neutrino flavors and two mass splittings, Δm2. An anomaly was observed by the LSND and MiniBooNE experiments that suggests the existence of a fourth, sterile neutrino flavor that does not interact through any of the known Standard Model interactions. Oscillations into a theoretical sterile flavor may be observed by a deficit in neutral current interactions in the MINOS detectors. A distortion in the charged current energy spectrum might also be visible if oscillations into the sterile flavor are driven by a large mass-squared difference, ms2 ~ 1 eV2. The results of the 2013 sterile neutrino search are presented here.

  18. Cosmic Neutrinos

    SciTech Connect

    Quigg, Chris; /Fermilab /CERN

    2008-02-01

    I recall the place of neutrinos in the electroweak theory and summarize what we know about neutrino mass and flavor change. I next review the essential characteristics expected for relic neutrinos and survey what we can say about the neutrino contribution to the dark matter of the Universe. Then I discuss the standard-model interactions of ultrahigh-energy neutrinos, paying attention to the consequences of neutrino oscillations, and illustrate a few topics of interest to neutrino observatories. I conclude with short comments on the remote possibility of detecting relic neutrinos through annihilations of ultrahigh-energy neutrinos at the Z resonance.

  19. Neutrino Oscillations with Reactor Neutrinos

    NASA Astrophysics Data System (ADS)

    Cabrera, Anatael

    2007-06-01

    Prospect measurements of neutrino oscillations with reactor neutrinos are reviewed in this document. The following items are described: neutrinos oscillations status, reactor neutrino experimental strategy, impact of uncertainties on the neutrino oscillation sensitivity and, finally, the experiments in the field. This is the synthesis of the talk delivered during the NOW2006 conference at Otranto (Italy) during September 2006.

  20. Supporting Low-Income Parents of Young Children: The Palm Beach County Family Study Fourth Annual Report

    ERIC Educational Resources Information Center

    Spielberger, Julie; Rich, Lauren; Winje, Carolyn; Scannell, Molly

    2010-01-01

    The Children's Services Council (CSC) of Palm Beach County funded Chapin Hall at the University of Chicago to conduct a 6-year longitudinal study to examine the use and effectiveness of an array of services in the county in promoting school readiness and school success and improving family functioning among children and families most in need of…

  1. Familial Aggregation of Metabolic Syndrome With Different Socio-Behavioral Characteristics: The Fourth Phase of Tehran Lipid and Glucose Study

    PubMed Central

    Zarkesh, Maryam; Asghari, Golaleh; Amiri, Parisa; Hosseinzadeh, Nima; Hedayati, Mehdi; Ghanbarian, Arash; Azizi, Fereidoun

    2016-01-01

    Background Since genetic and most environmental factors shape the context of families, some studies have been initiated to investigate the role of familial relationships in metabolic syndrome (MetS). Objectives To estimate the familial aggregation of MetS and its components by identifying both case and control probands among Tehranian adults with different socio-behavioral and reproductive characteristics. Patients and Methods This case-controlled/family-based study was conducted on 1,777 families (635 case probands) who participated in the Tehran Lipid and Glucose Study (TLGS). Socio-demographic and reproductive information including levels of education, marital status, occupation status, age at menarche, number of abortions, number of children, and lifestyle habits such as smoking, physical activity and regular diet were obtained from the TLGS data bank. Metabolic syndrome was defined according to the joint interim statement (JIS) criteria. To estimate the regression co-efficient for familial aggregation and environmental factors, the generalized estimation equation method was used. Results The risk of having MetS among family members for case versus control probands was 2.19 (95% CI: 1.68 - 2.84), which, after adjusting for potential confounders including age, sex, educational level, marital status, occupation, age at menarche and energy, soft drink and starchy vegetable intake, increased to 2.31 (95% CI: 1.81 - 2.94; P < 0.05). Compared to control probands, the risk of having MetS components increased significantly from OR = 1.28 for both high waist circumference (WC) and blood pressure (BP) to OR = 1.72 for high triglycerides in cases. Familial aggregation inherited from the father was significantly observed in all MetS components, from adjusted OR = 1.63 for hyperglycemia to adjusted OR = 2.69 for high WC, except for low HDL, after controlling for potential confounders. Conclusions Considering spouses and siblings, there was a higher risk for MetS components

  2. Neutrino Physics

    DOE R&D Accomplishments Database

    Lederman, L. M.

    1963-01-09

    The prediction and verification of the neutrino are reviewed, together with the V A theory for its interactions (particularly the difficulties with the apparent existence of two neutrinos and the high energy cross section). The Brookhaven experiment confirming the existence of two neutrinos and the cross section increase with momentum is then described, and future neutrino experiments are considered. (D.C.W.)

  3. Family and Community Studies (FACS) Fourth Interim Report, Phase I and Activities and Timelines for Phase II.

    ERIC Educational Resources Information Center

    Espinoza, Renato; And Others

    Discussed in this paper is a preliminary analysis of findings from data gathered during the first phase of a research project exploring the processes whereby the nature of the mother's occupation affects her family life, especially (1) her partnership in decisions about housework, child care and education and (2) the negotiation of the allocation…

  4. Neutrino physics

    SciTech Connect

    Harris, Deborah A.; /Fermilab

    2008-09-01

    The field of neutrino physics has expanded greatly in recent years with the discovery that neutrinos change flavor and therefore have mass. Although there are many neutrino physics results since the last DIS workshop, these proceedings concentrate on recent neutrino physics results that either add to or depend on the understanding of Deep Inelastic Scattering. They also describe the short and longer term future of neutrino DIS experiments.

  5. Long lived fourth generation and the Higgs

    NASA Astrophysics Data System (ADS)

    Keung, Wai-Yee; Schwaller, Pedro

    2011-06-01

    A chiral fourth generation is a simple and well motivated extension of the standard model, and has important consequences for Higgs phenomenology. Here we consider a scenario where the fourth generation neutrinos are long lived and have both a Dirac and Majorana mass term. Suchneutrinoscanbeaslightas40GeVandcanbethedominant decay mode of the Higgs boson for Higgs masses below the W-boson threshold. We study the effect of the Majorana mass term on the Higgs branching fractions and reevaluate the Tevatron constraints on the Higgs mass. We discuss the prospects for the LHC to detect the semi-invisible Higgs decays into fourth generation neutrino pairs. Under the assumption that the lightest fourth generation neutrino is stable, its thermal relic density can be up to 20% of the observed dark matter density in the universe. This is in agreement with current constraints on the spin dependent neutrino-neutron cross section, but can be probed by the next generation of dark matter direct detection experiments.

  6. Identification of a fourth ancient member of the IL-3/IL-5/GM-CSF cytokine family, KK34, in many mammals.

    PubMed

    Yamaguchi, Takuya; Schares, Susann; Fischer, Uwe; Dijkstra, Johannes M

    2016-12-01

    The related cytokine genes IL-3, IL-5 and GM-CSF map to the (extended) TH2 cytokine locus of the mammalian genome. For chicken an additional related cytokine gene, KK34, was reported downstream of the IL-3 plus GM-CSF cluster, but hitherto it was believed that mammalian genomes lack this gene. However, the present study identifies an intact orthologue of chicken KK34 gene in many mammals like cattle and pig, while remnants of KK34 can be found in human and mouse. Bovine KK34 was found to be transcribed, and its recombinant protein could induce STAT5 phosphorylation and proliferation of lymphocytes upon incubation with bovine PBMCs. This concludes that KK34 is a fourth functional cytokine of the IL-3/IL-5/GM-CSF/KK34-family (alias IL-5 family) in mammals. While analyzing KK34, the present study also made new identifications of cytokine genes in the extended TH2 cytokine loci for reptiles, birds and marsupials. This includes a hitherto unknown cytokine gene in birds and reptiles which we designated "IL-5famE". Other newly identified genes are KK34, GM-CSF(-like), IL-5, and IL-13 in reptiles, and IL-3 in marsupials.

  7. Neutrino oscillations refitted

    NASA Astrophysics Data System (ADS)

    Forero, D. V.; Tórtola, M.; Valle, J. W. F.

    2014-11-01

    Here, we update our previous global fit of neutrino oscillations by including the recent results that have appeared since the Neutrino 2012 conference. These include the measurements of reactor antineutrino disappearance reported by Daya Bay and RENO, together with latest T2K and MINOS data including both disappearance and appearance channels. We also include the revised results from the third solar phase of Super-Kamiokande, SK-III, as well as new solar results from the fourth phase of Super-Kamiokande, SK-IV. We find that the preferred global determination of the atmospheric angle θ23 is consistent with maximal mixing. We also determine the impact of the new data upon all the other neutrino oscillation parameters with an emphasis on the increasing sensitivity to the C P phase, thanks to the interplay between accelerator and reactor data. In the Appendix, we present the updated results obtained after the inclusion of new reactor data presented at the Neutrino 2014 conference. We discuss their impact on the global neutrino analysis.

  8. Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    von Feilitzsch, Franz; Lanfranchi, Jean-Côme; Wurm, Michael

    The neutrino was postulated by Wolfgang Pauli in the early 1930s, but could only be detected for the first time in the 1950s. Ever since scientists all around the world have worked on the detection and understanding of this particle which so scarcely interacts with matter. Depending on the origin and nature of the neutrino, various types of experiments have been developed and operated. In this entry, we will review neutrino detectors in terms of neutrino energy and associated detection technique as well as the scientific outcome of some selected examples. After a brief historical introduction, the detection of low-energy neutrinos originating from nuclear reactors or from the Earth is used to illustrate the principles and difficulties which are encountered in detecting neutrinos. In the context of solar neutrino spectroscopy, where the neutrino is used as a probe for astrophysics, three different types of neutrino detectors are presented - water Čerenkov, radiochemical, and liquid-scintillator detectors. Moving to higher neutrino energies, we discuss neutrinos produced by astrophysical sources and from accelerators. The entry concludes with an overview of a selection of future neutrino experiments and their scientific goals.

  9. Neutrino phenomenology

    DOE PAGES

    Coloma, Pilar

    2016-11-21

    Neutrino oscillations have demonstrated that neutrinos have mass and, by now, oscillation experiments have been able to determine most of the parameters in the leptonic mixing matrix with a very good accuracy. Nevertheless, there are still many open questions in the neutrino sector. As a result, I will briefly discuss some of these questions, pointing out possible experimental avenues to address them.

  10. Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Palazzo, Antonio

    2016-05-01

    Several anomalies recorded in short-baseline neutrino experiments suggest the possibility that the standard 3-flavor framework may be incomplete and point towards a manifestation of new physics. Light sterile neutrinos provide a credible solution to these puzzling results. Here, we present a concise review of the status of the neutrino oscillations within the 3+1 scheme, the minimal extension of the standard 3-flavor framework endowed with one sterile neutrino species. We emphasize the potential role of LBL experiments in the searches of CP violation related to sterile neutrinos and their complementarity with the SBL experiments.

  11. Sterile Neutrino Experiments I: Accelerator-based

    NASA Astrophysics Data System (ADS)

    Toups, Matthew

    2017-01-01

    The Standard Model is the theory that describes the fundamental constituents of matter and their interactions. Despite its great success, there still exists evidence for a wide range of phenomena, which lie outside the framework of the Standard Model. Among these, neutrino flavor oscillations hold great promise to bring insight to the field towards a theory that transcends the Standard Model. The discovery of light, sterile neutrinos that mix with the three active neutrino flavors and modify the standard three-neutrino oscillation probabilities in vacuum and matter would be a major breakthrough for the field and contribute to our overall understanding of neutrino mass and mixing. Current indications for light sterile neutrinos come from a variety of experiments reporting anomalies. The accelerator-based LSND and MiniBooNE experiments, for example, reported an excess of electron-type neutrinos over short baselines, which if interpreted as due to νμ ->νe (or νμ ->νe) oscillations, would imply the existence of a fourth light neutrino mass state. On the other hand, null results from other accelerator-based neutrino oscillation experiments searching for sterile neutrinos have put constraints on the possible existence of these particles. This talk will review the accelerator-based searches for light, sterile neutrinos as well as the prospects for confirming or refuting their existence in the coming years.

  12. Solar neutrinos and neutrino physics

    NASA Astrophysics Data System (ADS)

    Maltoni, Michele; Smirnov, Alexei Yu.

    2016-04-01

    Solar neutrino studies triggered and largely motivated the major developments in neutrino physics in the last 50 years. The theory of neutrino propagation in different media with matter and fields has been elaborated. It includes oscillations in vacuum and matter, resonance flavor conversion and resonance oscillations, spin and spin-flavor precession, etc. LMA MSW has been established as the true solution of the solar neutrino problem. Parameters θ_{12} and Δ m 2 21 have been measured; θ_{13} extracted from the solar data is in agreement with results from reactor experiments. Solar neutrino studies provide a sensitive way to test theory of neutrino oscillations and conversion. Characterized by long baseline, huge fluxes and low energies they are a powerful set-up to search for new physics beyond the standard 3 ν paradigm: new neutrino states, sterile neutrinos, non-standard neutrino interactions, effects of violation of fundamental symmetries, new dynamics of neutrino propagation, probes of space and time. These searches allow us to get stringent, and in some cases unique bounds on new physics. We summarize the results on physics of propagation, neutrino properties and physics beyond the standard model obtained from studies of solar neutrinos.

  13. Differences in various biochemical and clinical parameters with respect to family history of Non Communicable Diseases in fourth year MBBS students of Karachi, Pakistan

    PubMed Central

    Basit, Khalid Abdul; Fawwad, Asher; Munir, Muhammad Asadullah; Siddiqui, Iftikhar Ahmed; Siddiqui, Sidra; Basit, Abdul

    2015-01-01

    Objective: To observe the differences of various biochemical and clinical parameters with respect to Family History (FH) of Non-communicable Diseases (NCDs) in fourth year Bachelor of Medicine, Bachelor of Surgery (MBBS) students. Methods: This observational study was conducted at Baqai Institute of Diabetology & Endocrinology from December 2013 to January 2014. Total 50 medical students from Dow University of Health Sciences (DUHS) participated in the study. Statistical Package for Social Sciences (SPSS) version 13 was used to analyze the data. For cross tabulation and mean comparison z-test and t test were applied. Results: Out of 50 subjects, there were 26 (52%) females. Mean age of the study population was 21.56 ± 0.90 years. Mean serum cholesterol levels with positive FH of NCDs was significantly higher than negative FH of NCDs (p=0.005). Mean value of low density lipoprotein (LDL) of positive family history of NCDs was found higher than those with negative FH (p=0.006) being statistically significant. The insulin levels in subjects with positive FH of NCDs were higher than subjects with negative FH of NCDs (p=0.685). However, serum leptin and plasma renin showed no significant difference with the negative FH of NCDs being higher compared to positive FH of NCDs (p=0.068) and (p=0.884) respectively. However, Waist circumference, Body mass index and central obesity in subjects with positive FH of NCDs shows increasing trend but no statistically significant difference (p > 0.05) was observed. Conclusion: In our study of various biochemical and clinical parameters with respect to FH of NCDs, Serum Cholesterol and LDL levels were observed higher and statistically significant. PMID:26430439

  14. Neutrino factory

    DOE PAGES

    Bogomilov, M.; Matev, R.; Tsenov, R.; ...

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable ofmore » making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.« less

  15. Neutrino factory

    SciTech Connect

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; Kuno, Y.; Benedetto, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoini, S.; Martini, M.; Wildner, E.; Prior, G.; Blondel, A.; Karadzhow, Y.; Ellis, M.; Kyberd, P.; Bayes, R.; Laing, A.; Soler, F. J. P.; Alekou, A.; Apollonio, M.; Aslaninejad, M.; Bontoiu, C.; Jenner, L. J.; Kurup, A.; Long, K.; Pasternak, J.; Zarrebini, A.; Poslimski, J.; Blackmore, V.; Cobb, J.; Tunnell, C.; Andreopoulos, C.; Bennett, J. R.J.; Brooks, S.; Caretta, O.; Davenne, T.; Densham, C.; Edgecock, T. R.; Fitton, M.; Kelliher, D.; Loveridge, P.; McFarland, A.; Machida, S.; Prior, C.; Rees, G.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Booth, C.; Skoro, G.; Back, J. J.; Harrison, P.; Berg, J. S.; Fernow, R.; Gallardo, J. C.; Gupta, R.; Kirk, H.; Simos, N.; Stratakis, D.; Souchlas, N.; Witte, H.; Bross, A.; Geer, S.; Johnstone, C.; Makhov, N.; Neuffer, D.; Popovic, M.; Strait, J.; Striganov, S.; Morfín, J. G.; Wands, R.; Snopok, P.; Bagacz, S. A.; Morozov, V.; Roblin, Y.; Cline, D.; Ding, X.; Bromberg, C.; Hart, T.; Abrams, R. J.; Ankenbrandt, C. M.; Beard, K. B.; Cummings, M. A.C.; Flanagan, G.; Johnson, R. P.; Roberts, T. J.; Yoshikawa, C. Y.; Graves, V. B.; McDonald, K. T.; Coney, L.; Hanson, G.

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.

  16. Supernova Neutrinos

    SciTech Connect

    Cardall, Christian Y

    2007-01-01

    A nascent neutron star resulting from stellar collapse is a prodigious source of neutrinos of all flavors. While the most basic features of this neutrino emission can be estimated from simple considerations, the detailed simulation of the neutrinos' decoupling from the hot neutron star is not yet computationally tractable in its full glory, being a time-dependent six-dimensional transport problem. Nevertheless, supernova neutrino fluxes are of great interest in connection with the core-collapse supernova explosion mechanism and supernova nucleosynthesis, and as a potential probe of the supernova environment and of some of the neutrino mixing parameters that remain unknown; hence, a variety of approximate transport schemes have been used to obtain results with reduced dimensionality. However, none of these approximate schemes have addressed a recent challenge to the conventional wisdom that neutrino flavor mixing cannot impact the explosion mechanism or r-process nucleosynthesis.

  17. Solar Neutrinos

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Harmer, D. S.

    1964-12-01

    The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

  18. Neutrino mass from M theory SO(10)

    NASA Astrophysics Data System (ADS)

    Acharya, Bobby S.; Bożek, Krzysztof; Romão, Miguel Crispim; King, Stephen F.; Pongkitivanichkul, Chakrit

    2016-11-01

    We study the origin of neutrino mass from SO(10) arising from M Theory compactified on a G 2-manifold. This is linked to the problem of the breaking of the extra U(1) gauge group, in the SU(5) × U(1) subgroup of SO(10), which we show can achieved via a (generalised) Kolda-Martin mechanism. The resulting neutrino masses arise from a combination of the seesaw mechanism and induced R-parity breaking contributions. The rather complicated neutrino mass matrix is analysed for one neutrino family and it is shown how phenomenologically acceptable neutrino masses can emerge.

  19. Neutrino mass

    SciTech Connect

    Robertson, R.G.H.

    1992-01-01

    Despite intensive experimental work since the neutrino's existence was proposed by Pauli 60 years ago, and its first observation by Reines and Cowan almost 40 years ago, the neutrino's fundamental properties remain elusive. Among those properties are the masses of the three known flavors, properties under charge conjugation, parity and time-reversal, and static and dynamic electromagnetic moments. Mass is perhaps the most fundamental, as it constrains the other properties. The present status of the search for neutrino mass is briefly reviewed.

  20. Atmospheric neutrinos and discovery of neutrino oscillations

    PubMed Central

    Kajita, Takaaki

    2010-01-01

    Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations. PMID:20431258

  1. Atmospheric neutrinos and discovery of neutrino oscillations.

    PubMed

    Kajita, Takaaki

    2010-01-01

    Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations.

  2. Neutrino counting with the SLD at the Stanford Linear Collider

    SciTech Connect

    Band, H.; Bugg, W.; Chadwick, G.; Coyne, D.; Gyure, M.; Hertzbach, S.; Messner, R.; Mincer, A.; Mockett, P.; Nauenberg, U.

    1989-06-01

    One of the fundamental measurements to be made at the e/sup +/e/sup /minus// colliders, SLC and LEP, is the determination of the number of neutrino families produced in Z/sup 0/ boson decays. In the event that a fourth generation of light Dirac neutrinos exists, the experimental consequences at the Z/sup 0/ resonances are easily seen; the total width will be increased by 171 MeV over its three generation value, to be compared to the /approx/30 MeV precision that should be achievable once the systematic limit has been reached. A reasonable figure of merit for the precision of a neutrino counting measurement of 0.2 standard model generations corresponds to a Z/sup 0/ width measurement error of 35 MeV; close to the limit of anticipated experimental capability. In fact, it is highly desirable to achieve an even higher precision if possible, in order to distinguish potentially small effects due to exotic phenomena from beyond the Standard Model. This paper will address the issue of how to obtain the best measurement of the number of neutrino generations as a function of the size of the available sample of Z/sup 0/ decays. The results presented here were obtained by our study group in an attempt to understand the limitations of a realistic neutrino counting measurement with the SLD at the Stanford Linear Collider. However, many of our findings are general enough to be applicable to any e/sup +/e/sup /minus// detector designed to take data at the Z/sup 0/ resonance. 19 refs., 5 figs., 6 tabs.

  3. Low-energy sterile neutrinos: Theory

    NASA Astrophysics Data System (ADS)

    Palazzo, Antonio

    2013-04-01

    Several experimental anomalies seem to point towards the existence of light sterile neutrinos. We focus on the low-energy anomalous results (the so-called gallium and reactor anomalies), which indicate a non-zero admixture U of the electron neutrino with a fourth (mostly) sterile mass eigenstate ν4. We point out that solar sector data, in combination with the precision measurement of θ13, provide the constraint |<0.041 (90% C.L.), independent of the reactor flux determinations.

  4. Neutrino magnetohydrodynamics

    SciTech Connect

    Haas, Fernando; Pascoal, Kellen Alves; Mendonça, José Tito

    2016-01-15

    A new neutrino magnetohydrodynamics (NMHD) model is formulated, where the effects of the charged weak current on the electron-ion magnetohydrodynamic fluid are taken into account. The model incorporates in a systematic way the role of the Fermi neutrino weak force in magnetized plasmas. A fast neutrino-driven short wavelengths instability associated with the magnetosonic wave is derived. Such an instability should play a central role in strongly magnetized plasma as occurs in supernovae, where dense neutrino beams also exist. In addition, in the case of nonlinear or high frequency waves, the neutrino coupling is shown to be responsible for breaking the frozen-in magnetic field lines condition even in infinite conductivity plasmas. Simplified and ideal NMHD assumptions were adopted and analyzed in detail.

  5. Neutrino factories

    SciTech Connect

    Soler, F. J. P.

    2015-07-15

    The Neutrino Factory is a facility that produces neutrino beams with a well-defined flavour content and energy spectrum from the decay of intense, high-energy, stored muon beams to establish CP violation in the neutrino sector. The International Design Study for the Neutrino Factory (the IDS-NF) is providing a Reference Design Report (RDR) for the facility. The present design is optimised for the recent measurements of θ{sub 13}. The accelerator facility will deliver 10{sup 21} muon decays per year from 10 GeV stored muon beams. The straight sections of the storage ring point to a 100 kton Magnetised Iron Neutrino Detector (MIND) at a distance of 2000-2500 km from the source. The accuracy in the value of δ{sub CP} that a Neutrino Factory can achieve and the δ{sub CP} coverage is unrivalled by other future facilities. Staging scenarios for the Neutrino Factory deliver facilities that can carry out physics at each stage. In the context of Fermilab, such a scenario would imply in the first stage the construction of a small storage ring, nuSTORM, to carry out neutrino cross-section and sterile neutrino measurements and to perform a programme of 6D muon cooling R&D. The second stage is the construction of a 5 GeV Neutrino Factory (nuMAX) pointing to the Sanford Underground Research Facility at Homestake and the final stage would use many of the components of this facility to construct a Muon Collider, initially as a 126 GeV CM Higgs Factory, which may be upgraded to a multi-TeV Muon Collider if required.

  6. Neutrino '88. Proceedings.

    NASA Astrophysics Data System (ADS)

    Schneps, J.; Kafka, T.; Mann, W. A.; Nath, P.

    Contents: 1. Neutrino mass. 2. Neutrino oscillations. 3. Double beta decay. 4. Solar neutrinos. 5. Neutrinos from supernovae. 6. Neutrino interactions at accelerators. 7. New detectors for neutrino processes. 8. Neutrino interactions at accelerators II. 9. W, Z, and the standard model. 10. "Fred Reines at 70" Fest. 11. Nucleon decay, the standard model, and beyond. 12. Neutrinos: Earth, atmosphere, Sun, and galaxies. 13. Dark matter and cosmology. 14. Theoretical topics. 15. Future prospects.

  7. Computational Analysis of the Bugey Neutrino Oscillation Experiment

    NASA Astrophysics Data System (ADS)

    Yost, Mason

    2012-03-01

    The Bugey 3-Detector neutrino experiment attempted to place a limit on δm^21,2 and 2̂(2θ1,2) by calculating neutrino fluxes from a nuclear reactor. This experiment was unusual because it utilized data taken from three different distances from the neutrino source. The experiment concluded that neutrinos did not oscillate between flavors. However, this conclusion was later contradicted and overruled by data from more accurate neutrino oscillation experiments, and recent discoveries suggest that a fourth neutrino may exist. To help determine the plausibility of a four neutrino model we are reexamining data from the Bugey experiment. Although our attempts to recreate the original experimenter's results have yielded some success, we have not yet been able to fully recreate the original experimenters' results.

  8. Neutrino-atom collisions

    NASA Astrophysics Data System (ADS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2016-05-01

    Neutrino-atom scattering provides a sensitive tool for probing nonstandard interactions of massive neutrinos in laboratory measurements. The ionization channel of this collision process plays an important role in experiments searching for neutrino magnetic moments. We discuss some theoretical aspects of atomic ionization by massive neutrinos. We also outline possible manifestations of neutrino electromagnetic properties in coherent elastic neutrino-nucleus scattering.

  9. Neutrino Oscillations and the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Wark, David

    2001-04-01

    When the existence of the neutrino was almost apologetically first proposed by Wolfgang Pauli it was intended to explain the mysterious apparent absence of energy and momentum in beta decay. 70 years later the neutrino has indeed solved that mystery, but it has generated still more of its own. Are neutrinos massive? Is it possible to create a neutrino with its spin in the same direction as its momentum? What fraction of the mass of the Universe is made up of neutrinos? Are the flavour labels which we put on neutrinos, like electron and muon, really fixed or can they change? Why does no experiment see the predicted flux of neutrinos from the Sun? Why do there appear to be roughly equal numbers of muon and electron neutrinos created in our atmosphere, rather than the 2:1 ratio we would expect? Many of these questions were coupled when Bruno Pontecorvo first suggested that the shortfall in solar neutrino measurements were caused by neutrino oscillations - neutrinos spontaneously changing flavour as they travel from the Sun. 30 years later we still await definitive proof of that conjecture, and providing that proof is the reason for the Sudbury Neutrino Observatory. The talk will discuss the current state of neutrino oscillations studies, and show how the unique capabilities of the Sudbury Neutrino Observatory can provide definitive proof of whether neutrino oscillations are the long-sought answer to the solar neutrino problem.

  10. Neutrino masses, neutrino oscillations, and cosmological implications

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1982-01-01

    Theoretical concepts and motivations for considering neutrinos having finite masses are discussed and the experimental situation on searches for neutrino masses and oscillations is summarized. The solar neutrino problem, reactor, deep mine and accelerator data, tri decay experiments and double beta-decay data are considered and cosmological implications and astrophysical data relating to neutrino masses are reviewed. The neutrino oscillation solution to the solar neutrino problem, the missing mass problem in galaxy halos and galaxy cluster galaxy formation and clustering, and radiative neutrino decay and the cosmic ultraviolet background radiation are examined.

  11. Supernova Neutrinos

    SciTech Connect

    Beacom, John

    2009-11-14

    Supernovae in our Galaxy probably occur about 3 times per century, though 90% of them are invisible optically because of obscuration by dust. However, present solar neutrino detectors are sensitive to core-collapse supernovae anywhere in our Galaxy, and would detect of order 10,000 events from a supernova at a distance of 10 kpc (roughly the distance to the Galactic center). I will describe how this data can be used to understand the supernova itself, as well as to test the properties of neutrinos.

  12. Family Child Care Calendar-Keeper[TM] 2001: A Record Keeping System Including Nutrition Information for Child Care Providers. Twenty-Fourth Edition.

    ERIC Educational Resources Information Center

    Beuch, Beth, Ed.; Beuch, Ethel, Ed.; Schloff, Pam, Ed.

    Noting that accurate recordkeeping for tax purposes is extremely important for family child care providers, this calendar provides a format for recording typical family child care expenses and other information. Included are the following: (1) monthly expense charts with categories matching Schedule C; (2) attendance and payment log; (3) payment…

  13. Rapid detection of mutations by conformation sensitive gel electrophoresis: Application to the identification of three new mutations in the type II procollagen gene and a fourth family with the Arg{sub 519}{yields}Cys base substitution

    SciTech Connect

    Williams, C.J.; Rock, M.; McCarron, S.

    1994-09-01

    Conformation sensitive gel electrophoresis (CSGE) detects differences as small as a single base mismatch in DNA heteroduplexes of polymerase chain reaction (PCR) products. The altered migration of heteroduplexes versus homoduplexes is resolved in a polyacrylamide-based gel electrophoresis system. The technique was used here to detect conformational changes in the type II procollagen gene (COL2A1) in patients with growth plate defects. PCR products which displayed heteroduplex species were directly sequenced and all revealed either base substitutions or base deletions. Three of the base substitutions resulted in the identification of new mutations. These include a Gly{sub 691}{yields}Arg substitution in a proband with hypochondrogenesis, a Gly{sub 975}{yields}Ser base substitution in a family with late-onset spondyloepiphyseal dysplasia (SEDT) and precocious osteoarthritis (POA), and a Gly{sub 988}{yields}Arg mutation in another patient with hypochondrogenesis. A fourth substitution was found to be the fourth example of an Arg{sub 519}{yields}Cys point mutation in a family with SEDT and POA. All mutations were confirmed by restriction site analysis. These results illustrate the utility of the CSGE method for the rapid detection of mutations in PCR products without the need for special equipment, primers or sample preparation.

  14. The solar neutrino problem.

    NASA Astrophysics Data System (ADS)

    Xu, Renxin; Luo, Xianhan

    1995-12-01

    The solar neutrino problem (SNP) is reviewed on the bases of neutrino physics, solar neutrino detection and standard solar model. It is interesting that the detected neutrino flux values of different solar neutrino detectors are lower than the values calculated by SMM in different degree. The studies on SNP in particle physics and in astrophysics are also discussed respectively.

  15. Is cosmology compatible with sterile neutrinos?

    SciTech Connect

    Dodelson, Scott; Melchiorri, Alessandro; Slosar, Anze; /Ljubljana U.

    2005-11-01

    By combining data from cosmic microwave background (CMB) experiments (including the recent BOOMERANG-2K2 results), large scale structure (LSS) and Lyman-{alpha} forest observations, we constrain the hypothesis of a fourth, sterile, massive neutrino. For the 3 massless + 1 massive neutrino case we bound the mass of the sterile neutrino to m{sub s} < 0.55eV at 95% c.l.. These results exclude at high significance the sterile neutrino hypothesis as an explanation of the LSND anomaly. We then generalize the analysis to account for active neutrino masses (which tightens the limit to m{sub s} < 0.51eV) and the possibility that the sterile abundance is not thermal. In the latter case, the constraints in the (mass, density) plane are non-trivial. For a mass of > 1eV or < 0.05eV the cosmological energy density in sterile neutrinos is always constrained to be {omega}{sub {nu}} < 0.005 at 95% c.l.. However, for a sterile neutrino mass of {approx} 0.25 eV, {omega}{sub {nu}} can be as large as 0.015.

  16. Neutrino masses and solar neutrinos

    SciTech Connect

    Wolfenstein, L.

    1992-11-01

    It has been pointed out by Bahcall and Bethe and others that all solar neutrino data can be explained by MSW oscillations with m({nu}{sub {mu}}) {approximately} 10{sup {minus}3} eV consistent with ideas grand unified theories (GUTS). There is a second possibility consistent with GUTS ideas with m({nu}{sub {tau}}) {approximately} 10{sup {minus}2} eV and m({nu} {sub {mu}}) {approximately} 10 {sup {minus}4} eV. The two cases can be distinguished by a measurement of the solar neutrinos from {sup {tau}}Be.

  17. Supernova neutrinos

    SciTech Connect

    John Beacom

    2003-01-23

    We propose that neutrino-proton elastic scattering, {nu} + p {yields} {nu} + p, can be used for the detection of supernova neutrinos. Though the proton recoil kinetic energy spectrum is soft, with T{sub p} {approx_equal} 2E{sub {nu}}{sup 2}/M{sub p}, and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from {bar {nu}}{sub e} + p {yields} e{sup +} + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum, which solves a long-standing problem of how to separately measure the total energy release and temperature of {nu}{sub {mu}}, {nu}{sub {tau}}, {bar {nu}}{sub {mu}}, and {bar {nu}}{sub {tau}}. The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos.

  18. Neutrino Interactions

    SciTech Connect

    Kamyshkov, Yuri; Handler, Thomas

    2016-10-24

    The neutrino group of the University of Tennessee, Knoxville was involved from 05/01/2013 to 04/30/2015 in the neutrino physics research funded by DOE-HEP grant DE-SC0009861. Contributions were made to the Double Chooz nuclear reactor experiment in France where second detector was commissioned during this period and final series of measurements has been started. Although Double Chooz was smaller experimental effort than competitive Daya Bay and RENO experiments, its several advantages make it valuable for understanding of systematic errors in measurements of neutrino oscillations. Double Chooz was the first experiment among competing three that produced initial result for neutrino angle θ13 measurement, giving other experiments the chance to improve measured value statistically. Graduate student Ben Rybolt defended his PhD thesis on the results of Double Chooz experiment in 2015. UT group has fulfilled all the construction and analysis commitments to Double Chooz experiment, and has withdrawn from the collaboration by the end of the mentioned period to start another experiment. Larger effort of UT neutrino group during this period was devoted to the participation in another DOE-HEP project - NOvA experiment. The 14,000-ton "FAR" neutrino detector was commissioned in northern Minnesota in 2014 together with 300-ton "NEAR" detector located at Fermilab. Following that, the physics measurement program has started when Fermilab accelerator complex produced the high-intensity neutrino beam propagating through Earth to detector in MInnessota. UT group contributed to NOvA detector construction and developments in several aspects. Our Research Associate Athanasios Hatzikoutelis was managing (Level 3 manager) the construction of the Detector Control System. This work was successfully accomplished in time with the commissioning of the detectors. Group was involved in the development of the on-line software and study of the signatures of the cosmic ray backgrounds

  19. Neutrino magnetic moment

    SciTech Connect

    Chang, D. . Dept. of Physics and Astronomy Fermi National Accelerator Lab., Batavia, IL ); Senjanovic, G. . Dept. of Theoretical Physics)

    1990-01-01

    We review attempts to achieve a large neutrino magnetic moment ({mu}{sub {nu}} {le} 10{sup {minus}11}{mu}{sub B}), while keeping neutrino light or massless. The application to the solar neutrino puzzle is discussed. 24 refs.

  20. Neutrinos: Theory and Phenomenology

    SciTech Connect

    Parke, Stephen

    2013-10-22

    The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.

  1. NEUTRINO FACTORIES - PHYSICS POTENTIALS.

    SciTech Connect

    PARSA,Z.

    2001-02-16

    The recent results from Super-Kamiokande atmospheric and solar neutrino observations opens a new era in neutrino physics and has sparked a considerable interest in the physics possibilities with a Neutrino Factory based on the muon storage ring. We present physics opportunities at a Neutrino Factory, and prospects of Neutrino oscillation experiments. Using the precisely known flavor composition of the beam, one could envision an extensive program to measure the neutrino oscillation mixing matrix, including possible CP violating effects. These and Neutrino Interaction Rates for examples of a Neutrino Factory at BNL (and FNAL) with detectors at Gran Sasso, SLAC and Sudan are also presented.

  2. Solar neutrinos.

    NASA Astrophysics Data System (ADS)

    Cremonesi, O.

    1993-12-01

    The main purpose of this paper is to review the progress made in the field of solar-neutrino physics with the results of the last-generation experiments together with the new perspectives suggested by the future projects. An elementary introduction to energy production mechanisms and stellar models is given. Neutrino properties and oscillations are discussed with particular interest in matter effects. Present experiments and future projects are reviewed. Particular attention is devoted to the compelling background and low-statistics problems. Finally, presently available results from running experiments are discussed, in the framework of the SNP. Some conclusions on the possibilities of the new proposed projects to actually slove the problem are also given.

  3. The Intermediate Neutrino Program

    SciTech Connect

    Adams, C.; et al.

    2015-03-23

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  4. Unique forbidden beta decays and neutrino mass

    SciTech Connect

    Dvornický, Rastislav; Šimkovic, Fedor

    2015-10-28

    The measurement of the electron energy spectrum in single β decays close to the endpoint provides a direct determination of the neutrino masses. The most sensitive experiments use β decays with low Q value, e.g. KATRIN (tritium) and MARE (rhenium). We present the theoretical spectral shape of electrons emitted in the first, second, and fourth unique forbidden β decays. Our findings show that the Kurie functions for these unique forbidden β transitions are linear in the limit of massless neutrinos like the Kurie function of the allowed β decay of tritium.

  5. Neutrino decay and solar neutrino seasonal effect

    NASA Astrophysics Data System (ADS)

    Picoreti, R.; Guzzo, M. M.; de Holanda, P. C.; Peres, O. L. G.

    2016-10-01

    We consider the possibility of solar neutrino decay as a sub-leading effect on their propagation between production and detection. Using current oscillation data, we set a new lower bound to the ν2 neutrino lifetime at τ2 /m2 ≥ 7.2 ×10-4s .eV-1 at 99% C.L. Also, we show how seasonal variations in the solar neutrino data can give interesting additional information about neutrino lifetime.

  6. Solar neutrino experiments and neutrino oscillations

    SciTech Connect

    Cleveland, B.T.; Davis, R. Jr.; Rowley, J.K.

    1981-01-01

    This report gives the results of the Brookhaven solar neutrino experiment that is based upon the neutrino capture reaction, /sup 37/Cl(..nu..,e/sup -/)/sup 37/Ar. The experiment was built in 1967 to test the theory of solar energy production, and it is well known that the neutrino capture rate in the detector is lower than that expected from theoretical models of the sun. The results will be compared to the current solar model calculations. One possible explanation of the low solar neutrino capture rate is that the neutrinos oscillate between two or more neutrino states, a topic of particular interest to this conference. This question is discussed in relation to the /sup 37/Cl experiment, and to other solar neutrino detectors that are capable of observing the lower energy neutrinos from the sun. A radiochemical solar neutrino detector located deep underground has a very low background and is capable of detecting the monoenergetic neutrinos from megacurie sources of radioisotopes that decay by electron capture. Experiments of this nature are described that are capable of testing for neutrino oscillations with a omicronm/sup 2/ as low as 0.2 eV/sup 2/ if there is maximum mixing between two neutrino states.

  7. Working Group Report: Neutrinos

    SciTech Connect

    de Gouvea, A.; Pitts, K.; Scholberg, K.; Zeller, G. P.

    2013-10-16

    This document represents the response of the Intensity Frontier Neutrino Working Group to the Snowmass charge. We summarize the current status of neutrino physics and identify many exciting future opportunities for studying the properties of neutrinos and for addressing important physics and astrophysics questions with neutrinos.

  8. Long Baseline Neutrino Oscillations

    SciTech Connect

    Rebel, Brian; /Fermilab

    2009-10-01

    There is compelling evidence for neutrino flavor change as neutrinos propagate. The evidence for this phenomenon has been provided by several experiments observing neutrinos that traverse distances of several hundred kilometers between production and detection. This review outlines the evidence for neutrino flavor change from such experiments and describes recent results in the field.

  9. Underground neutrino astronomy

    SciTech Connect

    Schramm, D.N.

    1983-02-01

    A review is made of possible astronomical neutrino sources detectable with underground facilities. Comments are made about solar neutrinos and gravitational-collapse neutrinos, and particular emphasis is placed on ultra-high-energy astronomical neutrino sources. An appendix mentions the exotic possibility of monopolonium.

  10. Neutrinos in Nuclear Physics

    SciTech Connect

    McKeown, Bob

    2015-06-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  11. The cosmic neutrino background

    NASA Technical Reports Server (NTRS)

    Dar, Arnon

    1991-01-01

    The cosmic neutrino background is expected to consist of relic neutrinos from the big bang, of neutrinos produced during nuclear burning in stars, of neutrinos released by gravitational stellar collapse, and of neutrinos produced by cosmic ray interactions with matter and radiation in the interstellar and intergalactic medium. Formation of baryonic dark matter in the early universe, matter-antimatter annihilation in a baryonic symmetric universe, and dark matter annihilation could have also contributed significantly to the cosmic neutrino background. The purpose of this paper is to review the properties of these cosmic neutrino backgrounds, the indirect evidence for their existence, and the prospects for their detection.

  12. Neutrino Masses and Mixing from Supersymmetric Inflation

    NASA Astrophysics Data System (ADS)

    Lazarides, G.

    A supersymmetric model based on a l-right symmetric gauge group is proposed where hybrid inflation, baryogenesis and neutrino oscillations are linked.This scheme, supplemented by a familiar ansatz for the neutrino Dirac masses and mixing of the two heaviest families and with the MSW resolution of the solar neutrino puzzle, implies that 1 eVmντ ≲ 9 eV. The mixing angle θμτ is predicted to lie in a narrow range which will be partially tested by the Chorus/Nomad experiment.

  13. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  14. Experimental Neutrino Physics: Final Report

    SciTech Connect

    Lane, Charles E.; Maricic, Jelena

    2012-09-05

    Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

  15. Neutrino mass, a status report

    SciTech Connect

    Robertson, R.G.H.

    1993-08-01

    Experimental approaches to neutrino mass include kinematic mass measurements, neutrino oscillation searches at rectors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indications that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing.

  16. Neutrino Physics at Fermilab

    ScienceCinema

    Saoulidou, Niki

    2016-07-12

    Neutrino oscillations provide the first evidence for physics beyond the Standard Model. I will briefly overview the neutrino "hi-story", describing key discoveries over the past decades that shaped our understanding of neutrinos and their behavior. Fermilab was, is and hopefully will be at the forefront of the accelerator neutrino experiments.  NuMI, the most powerful accelerator neutrino beam in the world has ushered us into the era of precise measurements. Its further upgrades may give a chance to tackle the remaining mysteries of the neutrino mass hierarchy and possible CP violation.

  17. Neutrinos and Supernovae

    SciTech Connect

    Meyer, Bradley S.

    2008-05-12

    Core-collapse supernovae are one of the few astrophysical environments in which neutrinos play a dominant role. Neutrinos emission is the means by which a newly-born neutron star formed in a core-collapse event cools. Neutrinos may play a significant role in causing the supernova explosion. Finally neutrinos may significantly affect the nucleosynthesis occurring in the layers of the exploding star that are eventually ejected into interstellar space. This paper reviews some interesting neutrino-nucleus processes that may occur in the cores of exploding massive stars and then discusses some effects neutrinos may have on explosive nucleosynthesis in supernovae.

  18. The history of neutrinos, 1930-1985. What have we learned about neutrinos? What have we learned using neutrinos?

    SciTech Connect

    Steinberger, J.

    2012-12-15

    An attempt to remember some of the main events which highlight the evolution of our knowledge of the neutrinos and their properties, the 'families' of particles, a few of the very interesting persons who contributed to this progress, as well as the contribution of neutrino beam experiments to the validation of the electro-weak and quantum-chromo-dynamic theories, and the structure of the nucleon. - Highlights: Black-Right-Pointing-Pointer Early history: continuity of {beta}-spectrum, Pauli letter, universal Fermi interaction. Black-Right-Pointing-Pointer Neutrino beams and the discovery of the muon neutrino. Black-Right-Pointing-Pointer Gargamelle, the discovery of the neutral current and the verification of the quark-gluon nature of the parton. Black-Right-Pointing-Pointer Deep inelastic scattering at higher energies: scaling, quantitative verification of QCD, structure functions.

  19. Solar Neutrino Problem

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Evans, J. C.; Cleveland, B. T.

    1978-04-28

    A summary of the results of the Brookhaven solar neutrino experiment is given and discussed in relation to solar model calculations. A review is given of the merits of various new solar neutrino detectors that were proposed.

  20. Supernova neutrino detection

    SciTech Connect

    Scholberg, K.

    2015-07-15

    In this presentation I summarize the main detection channels for neutrinos from core-collapse supernovae, and describe current status of and future prospects for supernova-neutrino-sensitive detectors worldwide.

  1. Leptogenesis with many neutrinos

    SciTech Connect

    Eisele, Marc-Thomas

    2008-02-15

    We consider leptogenesis in scenarios with many neutrino singlets. We find that the lower bound for the reheating temperature can be significantly relaxed with respect to the hierarchical three neutrino case. We further argue that the upper bound for the neutrino mass scale from leptogenesis gets significantly lifted in these scenarios. As a specific realization, we then discuss an extradimensional model, where the large number of neutrinos is provided by Kaluza-Klein excitations.

  2. Neutrino Oscillation Physics

    SciTech Connect

    Kayser, Boris

    2012-06-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures. Neutrinos and photons are by far the most abundant elementary particles in the universe. Thus, if we would like to comprehend the universe, we must understand the neutrinos. Of course, studying the neutrinos is challenging, since the only known forces through which these electrically-neutral leptons interact are the weak force and gravity. Consequently, interactions of neutrinos in a detector are very rare events, so that very large detectors and intense neutrino sources are needed to make experiments feasible. Nevertheless, we have confirmed that the weak interactions of neutrinos are correctly described by the Standard Model (SM) of elementary particle physics. Moreover, in the last 14 years, we have discovered that neutrinos have nonzero masses, and that leptons mix. These discoveries have been based on the observation that neutrinos can change from one 'flavor' to another - the phenomenon known as neutrino oscillation. We shall explain the physics of neutrino oscillation, deriving the probability of oscillation in a new way. We shall also provide a very brief guide to references that can be used to study some major neutrino-physics topics other than neutrino oscillation.

  3. Neutrino masses and mixings

    SciTech Connect

    Wolfenstein, L.

    1991-12-31

    Theoretical prejudices, cosmology, and neutrino oscillation experiments all suggest neutrino mass are far below present direct experimental limits. Four interesting scenarios and their implications are discussed: (1) a 17 keV {nu}{sub {tau}}, (2) a 30 ev {nu}{sub {tau}} making up the dark matter, (3) a 10{sup {minus}3} ev {nu}{sub {mu}} to solve the solar neutrino problem, and (4) a three-neutrino MSW solution.

  4. Search for fourth generation neutral heavy leptons

    SciTech Connect

    Abachi, S.; Abbott, B.; Abolins, M.; D0 Collaboration

    1995-07-01

    A search for fourth generation neutral heavy leptons ({nu}{sub 4}) in W decays was carried out the D0 detector at the Fermilab Tevatron at {radical}{bar s} = 1.8 TeV. The {nu}{sub 4} is assumed to be produced via mixing with the first generation neutrino only. We looked for a three electron final state event topology. The data used in this analysis represent 12.2 pb{sup {minus}1} taken during the 1992--1993 run. No candidates were found. We set a preliminary limit beyond the LEP limit for the considered mixing case on the {vert_bar}U{sub e4}{vert_bar}{sup 2} {minus} m{sub {nu}4} plane.

  5. First Direct Evidence for Matter Enhanced Neutrino Oscillation, Using Super-Kamiokande Solar Neutrino Data

    NASA Astrophysics Data System (ADS)

    Renshaw, Andrew Lee

    Super-Kamiokande-IV has proven to be the largest and most precise SK data set yet. The data from this fourth phase of SK are combined with data from the previous three phases to give an extracted solar neutrino flux between 4.0 and 19.5 MeV (recoil electron kinetic energy) as (2.37+/-0.015(stat.)+/-0.04(syst.)) x 106cm-2sec-1. The SK combined recoil electron energy spectrum slightly favors a distorted shape over a flat shape. Comparing the day and night solar neutrino interactions rates separately, SK measures the day/night asymmetry as (-4.2+/-1.2+/-0.8)%. A maximum likelihood fit to the amplitude of the expected solar zenith angle variation of the neutrino-electron elastic scattering rate in SK, results in a day/night asymmetry of (-3.2+/-1.1+/-0.5)%. These results give 2.8 and 2.7 sigma significance for a non-zero day/night asymmetry. This is not only the first evidence for the regeneration of electron type solar neutrinos as they travel through Earth's matter, but the first direct evidence for matter enhanced neutrino oscillation of any kind. SK solar neutrino data measures the solar mixing angle as sin2theta12 = 0.341+0.029/-0.025, and the solar neutrino mass squared splitting as Deltam2/21=(4.8 +1.8/-0.9) x 10-5 eV2. When these results are combined with data from other solar neutrino experiments and the KamLAND experiment, sin2theta12 = 0.304+/-0.013 and Deltam2/21 = (7.45 +0.20/-0.19) x 10-5 eV2 give the most precise measurements to date.

  6. Solar Neutrino Spectroscopy

    NASA Astrophysics Data System (ADS)

    Feilitzsch, F. v.

    1999-01-01

    Since the pioneering experiment of R. Davis et al., which started neutrino astronomy by measuring the solar neutrinos via the inverse beta decay reaction on 37Cl, all solar neutrino experiments find a considerably lower flux than expected by standard solar models. This finding is generally called the solar neutrino problem. Many attempts have been made to explain this result by altering the solar models, or assuming different nuclear cross sections for fusion processes assumed to be the energy sources in the sun. There have been performed numerous experiments recently to investigate the different possibilities to explain the solar neutrino problem. These experiments covered solar physics with helioseismology, nuclear cross section measurements, and solar neutrino experiments. Up to now no convincing explanation based on "standard" physics was suggested. However, assuming nonstandard neutrino properties, i.e. neutrino masses and mixing as expected in most extensions of the standard theory of elementary particle physics, natural solutions for the solar neutrino problem can be found. It appears that with this newly invented neutrino astronomy fundamental information on astrophysics as well as elementary particle physics are tested uniquely. In this contribution an attempt is made to review the situation of the neutrino astronomy for solar neutrino spectroscopy and discuss the future prospects in this field.

  7. Neutrino observations from the Sudbury Neutrino Observatory

    SciTech Connect

    Ahmad, Q.R.; Allen, R.C.; Andersen, T.C.; Anglin, J.D.; Barton,J.C.; Beier, E.W.; Bercovitch, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler,M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Buhler, G.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Clifford, E.T.H.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Doe, P.J.; Doucas, G.; Dragowsky,M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon, N.; Germani, J.V.; Gil, S.; Graham, K.; Grant, D.R.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime, A.; Hykawy, J.G.; Isaac,M.C.P.; Jagam, P.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Klein, J.R.; Knox, A.B.; Komar, R.J.; Kouzes, R.; Kutter,T.; Kyba, C.C.M.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Locke, W.; Luoma, S.; Lyon, J.; Majerus, S.; Mak, H.B.; Maneira, J.; Manor, J.; Marino, A.D.; McCauley, N.; McDonald,D.S.; McDonald, A.B.; McFarlane, K.; McGregor, G.; Meijer, R.; Mifflin,C.; Miller, G.G.; Milton, G.; Moffat, B.A.; Moorhead, M.; Nally, C.W.; Neubauer, M.S.; Newcomer, F.M.; Ng, H.S.; Noble, A.J.; Norman, E.B.; Novikov, V.M.; O'Neill, M.; Okada, C.E.; Ollerhead, R.W.; Omori, M.; Orrell, J.L.; Oser, S.M.; Poon, A.W.P.; Radcliffe, T.J.; Roberge, A.; Robertson, B.C.; Robertson, R.G.H.; Rosendahl, S.S.E.; Rowley, J.K.; Rusu, V.L.; Saettler, E.; Schaffer, K.K.; Schwendener,M.H.; Schulke, A.; Seifert, H.; Shatkay, M.; Simpson, J.J.; Sims, C.J.; et al.

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  8. Neutrino Observations from the Sudbury Neutrino Observatory

    DOE R&D Accomplishments Database

    Q. R. Ahmad, R. C. Allen, T. C. Andersen, J. D. Anglin, G. Bühler, J. C. Barton, E. W. Beier, M. Bercovitch, J. Bigu, S. Biller, R. A. Black, I. Blevis, R. J. Boardman, J. Boger, E. Bonvin, M. G. Boulay, M. G. Bowler, T. J. Bowles, S. J. Brice, M. C. Browne, T. V. Bullard, T. H. Burritt, K. Cameron, J. Cameron, Y. D. Chan, M. Chen, H. H. Chen, X. Chen, M. C. Chon, B. T. Cleveland, E. T. H. Clifford, J. H. M. Cowan, D. F. Cowen, G. A. Cox, Y. Dai, X. Dai, F. Dalnoki-Veress, W. F. Davidson, P. J. Doe, G. Doucas, M. R. Dragowsky, C. A. Duba, F. A. Duncan, J. Dunmore, E. D. Earle, S. R. Elliott, H. C. Evans, G. T. Ewan, J. Farine, H. Fergani, A. P. Ferraris, R. J. Ford, M. M. Fowler, K. Frame, E. D. Frank, W. Frati, J. V. Germani, S. Gil, A. Goldschmidt, D. R. Grant, R. L. Hahn, A. L. Hallin, E. D. Hallman, A. Hamer, A. A. Hamian, R. U. Haq, C. K. Hargrove, P. J. Harvey, R. Hazama, R. Heaton, K. M. Heeger, W. J. Heintzelman, J. Heise, R. L. Helmer, J. D. Hepburn, H. Heron, J. Hewett, A. Hime, M. Howe, J. G. Hykawy, M. C. P. Isaac, P. Jagam, N. A. Jelley, C. Jillings, G. Jonkmans, J. Karn, P. T. Keener, K. Kirch, J. R. Klein, A. B. Knox, R. J. Komar, R. Kouzes, T. Kutter, C. C. M. Kyba, J. Law, I. T. Lawson, M. Lay, H. W. Lee, K. T. Lesko, J. R. Leslie, I. Levine, W. Locke, M. M. Lowry, S. Luoma, J. Lyon, S. Majerus, H. B. Mak, A. D. Marino, N. McCauley, A. B. McDonald, D. S. McDonald, K. McFarlane, G. McGregor, W. McLatchie, R. Meijer Drees, H. Mes, C. Mifflin, G. G. Miller, G. Milton, B. A. Moffat, M. Moorhead, C. W. Nally, M. S. Neubauer, F. M. Newcomer, H. S. Ng, A. J. Noble, E. B. Norman, V. M. Novikov, M. O'Neill, C. E. Okada, R. W. Ollerhead, M. Omori, J. L. Orrell, S. M. Oser, A. W. P. Poon, T. J. Radcliffe, A. Roberge, B. C. Robertson, R. G. H. Robertson, J. K. Rowley, V. L. Rusu, E. Saettler, K. K. Schaffer, A. Schuelke, M. H. Schwendener, H. Seifert, M. Shatkay, J. J. Simpson, D. Sinclair, P. Skensved, A. R. Smith, M. W. E. Smith, N. Starinsky, T. D. Steiger, R. G. Stokstad, R. S. Storey, B. Sur, R. Tafirout, N. Tagg, N. W. Tanner, R. K. Taplin, M. Thorman, P. Thornewell, P. T. Trent, Y. I. Tserkovnyak, R. Van Berg, R. G. Van de Water, C. J. Virtue, C. E. Waltham, J.-X. Wang, D. L. Wark, N. West, J. B. Wilhelmy, J. F. Wilkerson, J. Wilson, P. Wittich, J. M. Wouters, and M. Yeh

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  9. Fourth goal of perinatal medicine.

    PubMed Central

    Ounsted, C; Roberts, J C; Gordon, M; Milligan, B

    1982-01-01

    Reduction in maternal mortality, infant mortality, and infant morbidity have been successively the goals of perinatal medicine. The fourth is to reduce bonding failure. In July 1978 a preventive service was started in the John Radcliffe Maternity Hospital. A twice-weekly round is made. Midwives refer families who cause them concern. In the first year the referral rate ws 20.5 per 1000 liveborn babies. The referred sample differed from the hospital population in terms of maternal psychiatric history, marital state and babies' admission to special care. The main reasons for referral were: doubt about parenting ability (27%), psychiatric history (15%), disturbed behaviour in hospital (14%), and diffuse social and medical problems (17%). Long-term care was needed for only 14% of families. At their first birthdays, six babies were placed away from their natural parents; the sample had had a slightly higher than expected admission rate to hospital; the distribution of weights did not differ from the expected; doctors and health visitors were still concerned about one-quarter of the families. Seven cases of screening failure were found among those not referred to our service, but only one was seriously abused. No child referred in the first year has been seriously neglected or abused. PMID:6802338

  10. Nucleosynthesis and Neutrinos

    SciTech Connect

    Kajino, Toshitaka

    2011-05-06

    Neutrinos play the critical roles in nucleosynthesis of light-to-heavy mass nuclei in core-collapse supernovae. We study the nucleosynthesis induced by neutrino interactions and find suitable average neutrino temperatures in order to explain the observed solar system abundances of several isotopes {sup 7}Li, {sup 11}B, {sup 138}La and {sup 180}Ta. These isotopes are predominantly synthesized by the supernova {nu}-process. We also study the neutrino oscillation effects on their abundances and propose a method to determine the unknown neutrino oscillation parameters, i.e. {theta}{sub 13} and mass hierarchy.

  11. DEEP UNDERGROUND NEUTRINO EXPERIMENT

    SciTech Connect

    Wilson, Robert J.

    2016-03-03

    The Deep Underground Neutrino Experiment (DUNE) collaboration will perform an experiment centered on accelerator-based long-baseline neutrino studies along with nucleon decay and topics in neutrino astrophysics. It will consist of a modular 40-kt (fiducial) mass liquid argon TPC detector located deep underground at the Sanford Underground Research Facility in South Dakota and a high-resolution near detector at Fermilab in Illinois. This conguration provides a 1300-km baseline in a megawatt-scale neutrino beam provided by the Fermilab- hosted international Long-Baseline Neutrino Facility.

  12. Mass determination of neutrinos

    NASA Technical Reports Server (NTRS)

    Chiu, Hong-Yee

    1988-01-01

    A time-energy correlation method has been developed to determine the signature of a nonzero neutrino mass in a small sample of neutrinos detected from a distant source. The method is applied to the Kamiokande II (Hirata et al., 1987) and IMB (Bionta et al., 1987) observations of neutrino bursts from SN 1987A. Using the Kamiokande II data, the neutrino rest mass is estimated at 2.8 + 2.0, - 1.4 eV and the initial neutrino pulse is found to be less than 0.3 sec full width, followed by an emission tail lasting at least 10 sec.

  13. Neutrinos from AGN

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes; White, Nicholas E. (Technical Monitor)

    2000-01-01

    The great penetrating power of neutrinos makes them ideal probe of astrophysical sites and conditions inaccessible to other forms of radiation. These are the centers of stars (collapsing or not) and the centers of Active Galactic Nuclei (AGN). It has been suggested that AGN presented a very promising source of high energy neutrinos, possibly detectable by underwater neutrino detectors. This paper reviews the evolution of ideas concerning the emission of neutrinos from AGN in view of the more recent developments in gamma-ray astronomy and their implications for the neutrino emission from these class of objects.

  14. Supernovae neutrino pasta interaction

    NASA Astrophysics Data System (ADS)

    Lin, Zidu; Horowitz, Charles; Caplan, Matthew; Berry, Donald; Roberts, Luke

    2017-01-01

    In core-collapse supernovae, the neutron rich matter is believed to have complex structures, such as spherical, slablike, and rodlike shapes. They are collectively called ``nuclear pasta''. Supernovae neutrinos may scatter coherently on the ``nuclear pasta'' since the wavelength of the supernovae neutrinos are comparable to the nuclear pasta scale. Consequently, the neutrino pasta scattering is important to understand the neutrino opacity in the supernovae. In this work we simulated the ``nuclear pasta'' at different temperatures and densities using our semi-classical molecular dynamics and calculated the corresponding static structure factor that describes ν-pasta scattering. We found the neutrino opacities are greatly modified when the ``pasta'' exist and may have influence on the supernovae neutrino flux and average energy. Our neutrino-pasta scattering effect can finally be involved in the current supernovae simulations and we present preliminary proto neutron star cooling simulations including our pasta opacities.

  15. Absolute neutrino mass scale

    NASA Astrophysics Data System (ADS)

    Capelli, Silvia; Di Bari, Pasquale

    2013-04-01

    Neutrino oscillation experiments firmly established non-vanishing neutrino masses, a result that can be regarded as a strong motivation to extend the Standard Model. In spite of being the lightest massive particles, neutrinos likely represent an important bridge to new physics at very high energies and offer new opportunities to address some of the current cosmological puzzles, such as the matter-antimatter asymmetry of the Universe and Dark Matter. In this context, the determination of the absolute neutrino mass scale is a key issue within modern High Energy Physics. The talks in this parallel session well describe the current exciting experimental activity aiming to determining the absolute neutrino mass scale and offer an overview of a few models beyond the Standard Model that have been proposed in order to explain the neutrino masses giving a prediction for the absolute neutrino mass scale and solving the cosmological puzzles.

  16. A New Neutrino Oscillation

    SciTech Connect

    Parke, Stephen J.; /Fermilab

    2011-07-01

    Starting in the late 1960s, neutrino detectors began to see signs that neutrinos, now known to come in the flavors electron ({nu}{sub e}), muon ({nu}{sub {mu}}), and tau ({nu}{sub {tau}}), could transform from one flavor to another. The findings implied that neutrinos must have mass, since massless particles travel at the speed of light and their clocks, so to speak, don't tick, thus they cannot change. What has since been discovered is that neutrinos oscillate at two distinct scales, 500 km/GeV and 15,000 km/GeV, which are defined by the baseline (L) of the experiment (the distance the neutrino travels) divided by the neutrino energy (E). Neutrinos of one flavor can oscillate into neutrinos of another flavor at both L/E scales, but the amplitude of these oscillations is different for the two scales and depends on the initial and final flavor of the neutrinos. The neutrino states that propogate unchanged in time, the mass eigenstates {nu}1, {nu}2, {nu}3, are quantum mechanical mixtures of the electron, muon, and tau neutrino flavors, and the fraction of each flavor in a given mass eigenstate is controlled by three mixing angles and a complex phase. Two of these mixing angles are known with reasonable precision. An upper bound exists for the third angle, called {theta}{sub 13}, which controls the size of the muon neutrino to electron neutrino oscillation at an L/E of 500 km/GeV. The phase is completely unknown. The existence of this phase has important implications for the asymmetry between matter and antimatter we observe in the universe today. Experiments around the world have steadily assembled this picture of neutrino oscillation, but evidence of muon neutrino to electron neutrino oscillation at 500 km/GeV has remained elusive. Now, a paper from the T2K (Tokai to Kamioka) experiment in Japan, reports the first possible observation of muon neutrinos oscillating into electron neutrinos at 500 km/GeV. They see 6 candidate signal events, above an expected background

  17. Collective neutrino oscillations in supernovae

    SciTech Connect

    Duan, Huaiyu

    2014-06-24

    In a dense neutrino medium neutrinos can experience collective flavor transformation through the neutrino-neutrino forward scattering. In this talk we present some basic features of collective neutrino flavor transformation in the context in core-collapse supernovae. We also give some qualitative arguments for why and when this interesting phenomenon may occur and how it may affect supernova nucleosynthesis.

  18. Short distance neutrino oscillations with Borexino

    NASA Astrophysics Data System (ADS)

    Caminata, A.; Agostini, M.; Altenmüller, K.; Appel, S.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Cavalcante, P.; Chepurnov, A.; Cribier, M.; D'Angelo, D.; Davini, S.; Derbin, A.; di Noto, L.; Durero, M.; Empl, A.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Göger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Houdy, Th.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jonquères, N.; Kaiser, M.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Lachenmaier, T.; Lasserre, T.; Laubenstein, M.; Lehnert, B.; Link, J.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Maneschg, W.; Marcocci, S.; Maricic, J.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Muratova, V.; Musenich, R.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Rossi, N.; Schönert, S.; Scola, L.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Veyssière, C.; Vivier, M.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Winter, J.; Wojcik, M.; Wurm, M.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2016-07-01

    The Borexino detector has convincingly shown its outstanding performances in the low energy, sub-MeV regime through its unprecedented accomplishments in the solar and geo-neutrinos detection. These performances make it the ideal tool to accomplish a state-of-the-art experiment able to test unambiguously the long-standing issue of the existence of a sterile neutrino, as suggested by the several anomalous results accumulated over the past two decades, i.e. the outputs of the LSND and Miniboone experiments, the results of the source calibration of the two Gallium solar neutrino experiments, and the recently hinted reactor anomaly. The SOX project will exploit two sources, based on Chromium and Cerium, respectively, which deployed under the experiment, in a location foreseen on purpose at the time of the construction of the detector, will emit two intense beams of neutrinos (Cr) and anti-neutrinos (Ce). Interacting in the active volume of the liquid scintillator, each beam would create an unmistakable spatial wave pattern in case of oscillation of the νe (or ν̅e) into the sterile state: such a pattern would be the smoking gun proving the existence of the new sterile member of the neutrino family. Otherwise, its absence will allow setting a very stringent limit on its existence.

  19. Neutrino physics with JUNO

    NASA Astrophysics Data System (ADS)

    An, Fengpeng; An, Guangpeng; An, Qi; Antonelli, Vito; Baussan, Eric; Beacom, John; Bezrukov, Leonid; Blyth, Simon; Brugnera, Riccardo; Buizza Avanzini, Margherita; Busto, Jose; Cabrera, Anatael; Cai, Hao; Cai, Xiao; Cammi, Antonio; Cao, Guofu; Cao, Jun; Chang, Yun; Chen, Shaomin; Chen, Shenjian; Chen, Yixue; Chiesa, Davide; Clemenza, Massimiliano; Clerbaux, Barbara; Conrad, Janet; D'Angelo, Davide; De Kerret, Hervé; Deng, Zhi; Deng, Ziyan; Ding, Yayun; Djurcic, Zelimir; Dornic, Damien; Dracos, Marcos; Drapier, Olivier; Dusini, Stefano; Dye, Stephen; Enqvist, Timo; Fan, Donghua; Fang, Jian; Favart, Laurent; Ford, Richard; Göger-Neff, Marianne; Gan, Haonan; Garfagnini, Alberto; Giammarchi, Marco; Gonchar, Maxim; Gong, Guanghua; Gong, Hui; Gonin, Michel; Grassi, Marco; Grewing, Christian; Guan, Mengyun; Guarino, Vic; Guo, Gang; Guo, Wanlei; Guo, Xin-Heng; Hagner, Caren; Han, Ran; He, Miao; Heng, Yuekun; Hsiung, Yee; Hu, Jun; Hu, Shouyang; Hu, Tao; Huang, Hanxiong; Huang, Xingtao; Huo, Lei; Ioannisian, Ara; Jeitler, Manfred; Ji, Xiangdong; Jiang, Xiaoshan; Jollet, Cécile; Kang, Li; Karagounis, Michael; Kazarian, Narine; Krumshteyn, Zinovy; Kruth, Andre; Kuusiniemi, Pasi; Lachenmaier, Tobias; Leitner, Rupert; Li, Chao; Li, Jiaxing; Li, Weidong; Li, Weiguo; Li, Xiaomei; Li, Xiaonan; Li, Yi; Li, Yufeng; Li, Zhi-Bing; Liang, Hao; Lin, Guey-Lin; Lin, Tao; Lin, Yen-Hsun; Ling, Jiajie; Lippi, Ivano; Liu, Dawei; Liu, Hongbang; Liu, Hu; Liu, Jianglai; Liu, Jianli; Liu, Jinchang; Liu, Qian; Liu, Shubin; Liu, Shulin; Lombardi, Paolo; Long, Yongbing; Lu, Haoqi; Lu, Jiashu; Lu, Jingbin; Lu, Junguang; Lubsandorzhiev, Bayarto; Ludhova, Livia; Luo, Shu; Lyashuk, Vladimir; Möllenberg, Randolph; Ma, Xubo; Mantovani, Fabio; Mao, Yajun; Mari, Stefano M.; McDonough, William F.; Meng, Guang; Meregaglia, Anselmo; Meroni, Emanuela; Mezzetto, Mauro; Miramonti, Lino; Mueller, Thomas; Naumov, Dmitry; Oberauer, Lothar; Ochoa-Ricoux, Juan Pedro; Olshevskiy, Alexander; Ortica, Fausto; Paoloni, Alessandro; Peng, Haiping; Peng, Jen-Chieh; Previtali, Ezio; Qi, Ming; Qian, Sen; Qian, Xin; Qian, Yongzhong; Qin, Zhonghua; Raffelt, Georg; Ranucci, Gioacchino; Ricci, Barbara; Robens, Markus; Romani, Aldo; Ruan, Xiangdong; Ruan, Xichao; Salamanna, Giuseppe; Shaevitz, Mike; Sinev, Valery; Sirignano, Chiara; Sisti, Monica; Smirnov, Oleg; Soiron, Michael; Stahl, Achim; Stanco, Luca; Steinmann, Jochen; Sun, Xilei; Sun, Yongjie; Taichenachev, Dmitriy; Tang, Jian; Tkachev, Igor; Trzaska, Wladyslaw; van Waasen, Stefan; Volpe, Cristina; Vorobel, Vit; Votano, Lucia; Wang, Chung-Hsiang; Wang, Guoli; Wang, Hao; Wang, Meng; Wang, Ruiguang; Wang, Siguang; Wang, Wei; Wang, Yi; Wang, Yi; Wang, Yifang; Wang, Zhe; Wang, Zheng; Wang, Zhigang; Wang, Zhimin; Wei, Wei; Wen, Liangjian; Wiebusch, Christopher; Wonsak, Björn; Wu, Qun; Wulz, Claudia-Elisabeth; Wurm, Michael; Xi, Yufei; Xia, Dongmei; Xie, Yuguang; Xing, Zhi-zhong; Xu, Jilei; Yan, Baojun; Yang, Changgen; Yang, Chaowen; Yang, Guang; Yang, Lei; Yang, Yifan; Yao, Yu; Yegin, Ugur; Yermia, Frédéric; You, Zhengyun; Yu, Boxiang; Yu, Chunxu; Yu, Zeyuan; Zavatarelli, Sandra; Zhan, Liang; Zhang, Chao; Zhang, Hong-Hao; Zhang, Jiawen; Zhang, Jingbo; Zhang, Qingmin; Zhang, Yu-Mei; Zhang, Zhenyu; Zhao, Zhenghua; Zheng, Yangheng; Zhong, Weili; Zhou, Guorong; Zhou, Jing; Zhou, Li; Zhou, Rong; Zhou, Shun; Zhou, Wenxiong; Zhou, Xiang; Zhou, Yeling; Zhou, Yufeng; Zou, Jiaheng

    2016-03-01

    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy (MH) as a primary physics goal. The excellent energy resolution and the large fiducial volume anticipated for the JUNO detector offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. In this document, we present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. Following an introduction summarizing the current status and open issues in neutrino physics, we discuss how the detection of antineutrinos generated by a cluster of nuclear power plants allows the determination of the neutrino MH at a 3-4σ significance with six years of running of JUNO. The measurement of antineutrino spectrum with excellent energy resolution will also lead to the precise determination of the neutrino oscillation parameters {{sin}}2{θ }12, {{Δ }}{m}212, and | {{Δ }}{m}{ee}2| to an accuracy of better than 1%, which will play a crucial role in the future unitarity test of the MNSP matrix. The JUNO detector is capable of observing not only antineutrinos from the power plants, but also neutrinos/antineutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, and solar neutrinos. As a result of JUNO's large size, excellent energy resolution, and vertex reconstruction capability, interesting new data on these topics can be collected. For example, a neutrino burst from a typical core-collapse supernova at a distance of 10 kpc would lead to ˜5000 inverse-beta-decay events and ˜2000 all-flavor neutrino-proton ES events in JUNO, which are of crucial importance for understanding the mechanism of supernova explosion and for exploring novel phenomena such as collective neutrino oscillations

  20. Cosmic neutrino cascades from secret neutrino interactions

    NASA Astrophysics Data System (ADS)

    Ng, Kenny C. Y.; Beacom, John F.

    2014-09-01

    The first detection of high-energy astrophysical neutrinos by IceCube provides new opportunities for tests of neutrino properties. The long baseline through the cosmic neutrino background (CνB) is particularly useful for directly testing secret neutrino interactions (νSI) that would cause neutrino-neutrino elastic scattering at a larger rate than the usual weak interactions. We show that IceCube can provide competitive sensitivity to νSI compared to other astrophysical and cosmological probes, which are complementary to laboratory tests. We study the spectral distortions caused by νSI with a large s-channel contribution, which can lead to a dip, bump, or cutoff on an initially smooth spectrum. Consequently, νSI may be an exotic solution for features seen in the IceCube energy spectrum. More conservatively, IceCube neutrino data could be used to set model-independent limits on νSI. Our phenomenological estimates provide guidance for more detailed calculations, comparisons to data, and model building.

  1. MINOS Sterile Neutrino Search

    SciTech Connect

    Koskinen, David Jason

    2009-02-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline accelerator neutrino experiment designed to measure properties of neutrino oscillation. Using a high intensity muon neutrino beam, produced by the Neutrinos at Main Injector (NuMI) complex at Fermilab, MINOS makes two measurements of neutrino interactions. The first measurement is made using the Near Detector situated at Fermilab and the second is made using the Far Detector located in the Soudan Underground laboratory in northern Minnesota. The primary goal of MINOS is to verify, and measure the properties of, neutrino oscillation between the two detectors using the v μ→ Vτ transition. A complementary measurement can be made to search for the existence of sterile neutrinos; an oft theorized, but experimentally unvalidated particle. The following thesis will show the results of a sterile neutrino search using MINOS RunI and RunII data totaling ~2.5 x 1020 protons on target. Due to the theoretical nature of sterile neutrinos, complete formalism that covers transition probabilities for the three known active states with the addition of a sterile state is also presented.

  2. Direct neutrino mass measurements

    NASA Astrophysics Data System (ADS)

    Thümmler, T.

    2011-07-01

    The determination of the neutrino rest mass plays an important role at the intersections of cosmology, particle physics and astroparticle physics. This topic is currently being addressed by two complementary approaches in laboratory experiments. Neutrinoless double beta decay experiments probe whether neutrinos are Majorana particles and determine an effective neutrino mass value. Single beta decay experiments such as KATRIN and MARE investigate the spectral shape of β-decay electrons close to their kinematic endpoint in order to determine the neutrino rest mass with a model-independent method. Owing to neutrino flavour mixing, the neutrino mass parameter appears as an average of all neutrino mass eigenstates contributing to the electron neutrino. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. Applying an ultra-luminous molecular windowless gaseous tritium source and an integrating high-resolution spectrometer of MAC-E filter type, it allows β-spectroscopy close to the T 2 end-point with unprecedented precision and will reach a sensitivity of 200 meV/ c 2 (90% C.L.) on the neutrino rest mass.

  3. Sudbury Neutrino Observatory

    SciTech Connect

    Beier, E.W.

    1992-03-01

    This document is a technical progress report on work performed at the University of Pennsylvania during the current year on the Sudbury Neutrino Observatory project. The motivation for the experiment is the measurement of neutrinos emitted by the sun. The Sudbury Neutrino Observatory (SNO) is a second generation dedicated solar neutrino experiment which will extend the results of our work with the Kamiokande II detector by measuring three reactions of neutrinos rather than the single reaction measured by the Kamiokande experiment. The collaborative project includes physicists from Canada, the United Kingdom, and the United States. Full funding for the construction of this facility was obtained in January 1990, and its construction is estimated to take five years. The motivation for the SNO experiment is to study the fundamental properties of neutrinos, in particular the mass and mixing parameters, which remain undetermined after decades of experiments in neutrino physics utilizing accelerators and reactors as sources of neutrinos. To continue the study of neutrino properties it is necessary to use the sun as a neutrino source. The long distance to the sun makes the search for neutrino mass sensitive to much smaller mass than can be studied with terrestrial sources. Furthermore, the matter density in the sun is sufficiently large to enhance the effects of small mixing between electron neutrinos and mu or tau neutrinos. This experiment, when combined with the results of the radiochemical {sup 37}Cl and {sup 71}Ga experiments and the Kamiokande II experiment, should extend our knowledge of these fundamental particles, and as a byproduct, improve our understanding of energy generation in the sun.

  4. Acquiring information about neutrino parameters by detecting supernova neutrinos

    SciTech Connect

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2010-08-01

    We consider the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein effects, the collective effects, and the Earth matter effects in the detection of type II supernova neutrinos on the Earth. It is found that the event number of supernova neutrinos depends on the neutrino mass hierarchy, the neutrino mixing angle {theta}{sub 13}, and neutrino masses. Therefore, we propose possible methods to identify the mass hierarchy and acquire information about {theta}{sub 13} and neutrino masses by detecting supernova neutrinos. We apply these methods to some current neutrino experiments.

  5. Neutrino - Link Between the Microcosmos and the Macrocosmos, a Study in Two Parts: (1) Theoretical - Look at the Tau Neutrino Mass and Other Quantum Electrodynamical Effects in Third Family Lepton Interactions and (2) Experimental - Astronomy in Hawai'i, the Short Prototype String of the Deep Underwater Muon and Neutrino Detector Project (hawaii)

    NASA Astrophysics Data System (ADS)

    Babson, John Freeman

    The nineteen eighties has been a time in which Cosmology and Particle Physics have come together. This dissertation reflects that trend. It does so in two ways. First, in Chapters 1 through 3, there is a theoretical investigation into some aspects of generational universality. The consequences of a third lepton, namely the tauon, and an associated tau neutrino, are explored in terms of phenomenology (mass and V-A consistency) that may shed insight into questions of neutrino mass and increased symmetry at higher energies. Second, in Chapters 4 through 11, there is an experimental investigation in the form of constructing and operating the first stage of the DUMAND (Deep Underwater Muon and Neutrino Detection) project which was a ship suspended muon and neutrino telescope called the SPS (Short Prototype String). This detector is of the water Cherenkov type and is the first time such an instrument has been successfully built and tested for use in the ocean. Chapters 6 through 10 are devoted to the detailed documentation of the parts of the SPS and its technology integration that I designed, prototyped, and debugged. In particular, a complete description is given to the command and control communications system of the string, the digital control electronics and associated software for the Optical, Calibration, and Power modules as well as the fast digitizing electronics or String Bottom Controller (SBC). This includes the development of a microcontroller language UHPS (Underwater Hawai'i Programming System). Finally, Chapter 11 is an analysis of SPS data in terms of ascertaining a purely statistically based downward traveling muon rate at a depth of 4.0 Km yielding (2.06 +/- 0.68) times 10^{-2 } Hz. Assuming a muon flux at 4.0 Km of 7 times 10^{-5 } m^{-2} s ^{-1} sr^ {-1} this corresponds to an effective area of Aeff = 3 +/- 1 times 10^2m^2. Additionally, the power index (n) of the cosine of the zenith angle of the downward traveling muons is found to be n = 5.3 which

  6. Impact of eV-mass sterile neutrinos on neutrino-driven supernova outflows

    SciTech Connect

    Tamborra, Irene; Raffelt, Georg G.; Hüdepohl, Lorenz; Janka, Hans-Thomas E-mail: raffelt@mpp.mpg.de E-mail: thj@mpa-garching.mpg.de

    2012-01-01

    Motivated by recent hints for sterile neutrinos from the reactor anomaly, we study active-sterile conversions in a three-flavor scenario (2 active + 1 sterile families) for three different representative times during the neutrino-cooling evolution of the proto-neutron star born in an electron-capture supernova. In our ''early model'' (0.5 s post bounce), the ν{sub e}-ν{sub s} MSW effect driven by Δm{sup 2} = 2.35eV{sup 2} is dominated by ordinary matter and leads to a complete ν{sub e}-ν{sub s} swap with little or no trace of collective flavor oscillations. In our ''intermediate'' (2.9 s p.b.) and ''late models'' (6.5 s p.b.), neutrinos themselves significantly modify the ν{sub e}-ν{sub s} matter effect, and, in particular in the late model, νν refraction strongly reduces the matter effect, largely suppressing the overall ν{sub e}-ν{sub s} MSW conversion. This phenomenon has not been reported in previous studies of active-sterile supernova neutrino oscillations. We always include the feedback effect on the electron fraction Y{sub e} due to neutrino oscillations. In all examples, Y{sub e} is reduced and therefore the presence of sterile neutrinos can affect the conditions for heavy-element formation in the supernova ejecta, even if probably not enabling the r-process in the investigated outflows of an electron-capture supernova. The impact of neutrino-neutrino refraction is strong but complicated, leaving open the possibility that with a more complete treatment, or for other supernova models, active-sterile neutrino oscillations could generate conditions suitable for the r-process.

  7. Solar neutrino detection

    SciTech Connect

    Miramonti, Lino

    2009-04-30

    More than 40 years ago, neutrinos where conceived as a way to test the validity of the solar models which tell us that stars are powered by nuclear fusion reactions. The first measurement of the neutrino flux, in 1968 in the Homestake mine in South Dakota, detected only one third of the expected value, originating what has been known as the Solar Neutrino Problem. Different experiments were built in order to understand the origin of this discrepancy. Now we know that neutrinos undergo oscillation phenomenon changing their nature traveling from the core of the Sun to our detectors. In the work the 40 year long saga of the neutrino detection is presented; from the first proposals to test the solar models to last real time measurements of the low energy part of the neutrino spectrum.

  8. Paradoxes of neutrino oscillations

    SciTech Connect

    Akhmedov, E. Kh.; Smirnov, A. Yu.

    2009-08-15

    Despite the theory of neutrino oscillations being rather old, some of its basic issues are still being debated in the literature. We discuss a number of such issues, including the relevance of the 'same energy' and 'same momentum' assumptions, the role of quantum-mechanical uncertainty relations in neutrino oscillations, the dependence of the coherence and localization conditions that ensure the observability of neutrino oscillations on neutrino energy and momentum uncertainties, the question of (in)dependence of the oscillation probabilities on the neutrino production and detection processes, and the applicability limits of the stationary-source approximation. We also develop a novel approach to calculation of the oscillation probability in the wave-packet approach, based on the summation/integration conventions different from the standard one, which allows a new insight into the 'same energy' vs. 'same momentum' problem. We also discuss a number of apparently paradoxical features of the theory of neutrino oscillations.

  9. Novel Ideas for Neutrino Beams

    SciTech Connect

    Peach, Ken

    2007-04-23

    Recent developments in neutrino physics, primarily the demonstration of neutrino oscillations in both atmospheric neutrinos and solar neutrinos, provide the first conclusive evidence for physics beyond the Standard Model of particle physics. The simplest phenomenology of neutrino oscillations, for three generations of neutrino, requires six parameters - two squared mass differences, 3 mixing angles and a complex phase that could, if not 0 or {pi}, contribute to the otherwise unexplained baryon asymmetry observed in the universe. Exploring the neutrino sector will require very intense beams of neutrinos, and will need novel solutions.

  10. Neutrino oscillation studies with reactors.

    PubMed

    Vogel, P; Wen, L J; Zhang, C

    2015-04-27

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  11. Neutrino oscillation studies with reactors

    DOE PAGES

    Vogel, P.; Wen, L.J.; Zhang, C.

    2015-04-27

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  12. Neutrino oscillation studies with reactors

    PubMed Central

    Vogel, P.; Wen, L.J.; Zhang, C.

    2015-01-01

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos. PMID:25913819

  13. Neutrinos in Cosmology

    SciTech Connect

    Wong, Yvonne Y. Y.

    2008-01-24

    I give an overview of the effects of neutrinos on cosmology, focussing in particular on the role played by neutrinos in the evolution of cosmological perturbations. I discuss how recent observations of the cosmic microwave background and the large-scale structure of galaxies can probe neutrino masses with greater precision than current laboratory experiments. I describe several new techniques that will be used to probe cosmology in the future.

  14. Neutrinos: Nature's Ghosts?

    ScienceCinema

    Lincoln, Don

    2016-07-12

    Dr. Don Lincoln introduces one of the most fascinating inhabitants of the subatomic realm: the neutrino. Neutrinos are ghosts of the microworld, almost not interacting at all. In this video, he describes some of their properties and how they were discovered. Studies of neutrinos are expected to be performed at many laboratories across the world and to form one of the cornerstones of the Fermilab research program for the next decade or more.

  15. High intensity neutrino beams

    SciTech Connect

    Ichikawa, A. K.

    2015-07-15

    High-intensity proton accelerator complex enabled long baseline neutrino oscillation experiments with a precisely controlled neutrino beam. The beam power so far achieved is a few hundred kW with enourmorous efforts of accelerator physicists and engineers. However, to fully understand the lepton mixing structure, MW-class accelerators are desired. We describe the current intensity-frontier high-energy proton accelerators, their plans to go beyond and technical challenges in the neutrino beamline facilities.

  16. Neutrinos: Nature's Ghosts?

    SciTech Connect

    Lincoln, Don

    2013-06-18

    Dr. Don Lincoln introduces one of the most fascinating inhabitants of the subatomic realm: the neutrino. Neutrinos are ghosts of the microworld, almost not interacting at all. In this video, he describes some of their properties and how they were discovered. Studies of neutrinos are expected to be performed at many laboratories across the world and to form one of the cornerstones of the Fermilab research program for the next decade or more.

  17. Neutrino-nucleus interactions

    SciTech Connect

    Gallagher, H.; Garvey, G.; Zeller, G.P.; /Fermilab

    2011-01-01

    The study of neutrino oscillations has necessitated a new generation of neutrino experiments that are exploring neutrino-nuclear scattering processes. We focus in particular on charged-current quasi-elastic scattering, a particularly important channel that has been extensively investigated both in the bubble-chamber era and by current experiments. Recent results have led to theoretical reexamination of this process. We review the standard picture of quasi-elastic scattering as developed in electron scattering, review and discuss experimental results, and discuss additional nuclear effects such as exchange currents and short-range correlations that may play a significant role in neutrino-nucleus scattering.

  18. Tests of neutrino stability

    NASA Astrophysics Data System (ADS)

    Bahcall, J. N.; Petcov, S. V.; Toshev, S.; Valle, J. W. F.

    1986-12-01

    A possible solution of the solar neutrino problem is that electron neutrinos decay in transit from the sun. The phenomenological consequences of this hypothesis for solar neutrino experiments with detectors of 2H, 40Ar, 71Ga, 98Mo, and electron-neutrino scattering are discussed. The postulated fast decay can occur in models of majoron type without violating laboratory, cosmological, or astrophysical constraints. Address after January 1st, 1987: Department de Física Teòrica, Universitat de Valencia, Burjassot, Valencia, Spain.

  19. Muons and neutrinos

    NASA Technical Reports Server (NTRS)

    Stanev, T.

    1986-01-01

    The first generation of large and precise detectors, some initially dedicated to search for nucleon decay has accumulated significant statistics on neutrinos and high-energy muons. A second generation of even better and bigger detectors are already in operation or in advanced construction stage. The present set of experimental data on muon groups and neutrinos is qualitatively better than several years ago and the expectations for the following years are high. Composition studies with underground muon groups, neutrino detection, and expected extraterrestrial neutrino fluxes are discussed.

  20. Solar atmosphere neutrino oscillations

    SciTech Connect

    Fogli, G.L.; Lisi, E.; Mirizzi, A.; Montanino, D.; Serpico, P.D.; /Fermilab

    2007-02-01

    The Sun is a source of high energy neutrinos (E > 10 GeV) produced by cosmic ray interactions in the solar atmosphere. We study the impact of three-flavor oscillations on the solar atmosphere neutrino fluxes observable at Earth. We find that peculiar matter oscillation effects in the Sun do exist, but are significantly suppressed by averaging over the production region and over the neutrino and antineutrino components. In particular, the relation between the neutrino fluxes at the Sun and at the Earth can be approximately expressed in terms of phase-averaged ''vacuum'' oscillations, dominated by a single mixing parameter (the angle {theta}{sub 23}).

  1. Kirschmann's Fourth Law.

    PubMed

    Bosten, J M; Mollon, J D

    2012-01-15

    Kirschmann's Fourth Law states that the magnitude of simultaneous color contrast increases with the saturation of the inducing surround, but that the rate of increase reduces as saturation increases. Others since Kirschmann have agreed and disagreed. Here we show that the form of the relationship between simultaneous color contrast and inducer saturation depends on the method of measurement. Functions were measured by four methods: (i) asymmetric matching with a black surround, (ii) asymmetric matching with a surround metameric to equal energy white, (iii) dichoptic matching, and (iv) nulling an induced sinusoidal modulation. Results from the asymmetric matching conditions agreed with Kirschmann, whereas results from nulling and from dichoptic matching showed a more linear increase in simultaneous contrast with the saturation of the inducer. We conclude that the method certainly affects the conclusions reached, and that there may not be any "fair" way of measuring simultaneous contrast.

  2. Symmetries, Large Leptonic Mixing and a Fourth Generation

    NASA Astrophysics Data System (ADS)

    Silva-Marcos, Joaquim I.

    2002-12-01

    We show that large leptonic mixing occurs most naturally in the framework of the Sandard Model just by adding a fourth generation. One can then construct a small Z4 discrete symmetry, instead of the large S4L × S4R, which requires that the neutrino as well as the charged lepton mass matrices be proportional to a 4 × 4 democratic mass matrix, where all entries are equal to unity. Without considering the see-saw mechanism, or other more elaborate extensions of the SM, and contrary to the case with only 3 generations, large leptonic mixing is obtained when the symmetry is broken.

  3. Neutrinos from collapsars

    NASA Astrophysics Data System (ADS)

    Vieyro, F. L.; Romero, G. E.; Peres, O. L. G.

    2013-10-01

    Context. Long gamma-ray bursts (GRBs) are associated with the gravitational collapse of very massive stars. The central engine of a GRB can collimate relativistic jets that propagate inside the stellar envelope. The shock waves produced when the jet disrupts the stellar surface are capable of accelerating particles up to very high energies. Aims: If the jet has hadronic content, neutrinos will be produced via charged pion decays. The main goal of this work is to estimate the neutrino emission produced in the region close to the surface of the star, taking pion and muon cooling into account, along with subtle effects arising from neutrino production in a highly magnetized medium. Methods: We estimate the maximum energies of the different kinds of particles and solve the coupled transport equations for each species. Once the particle distributions are known, we calculate the intensity of neutrinos. We study the different effects on the neutrinos that can change the relative weight of different flavors. In particular, we consider the effects of neutrino oscillations, and of neutrino spin precession caused by strong magnetic fields. Results: The expected neutrino signals from the shocks in the uncorking regions of Population III events is very weak, but the neutrino signal produced by Wolf-Rayet GRBs with z < 0.5 is not far from the level of the atmospheric background. Conclusions: The IceCube experiment does not have the sensitivity to detect neutrinos from the implosion of the earliest stars, but a number of high-energy neutrinos may be detected from nearby long GRBs. The cumulative signal should be detectable over several years (~10 yr) of integration with the full 86-string configuration.

  4. Eating Attitudes in Fourth-, Sixth-, and Eighth-Grade Girls.

    ERIC Educational Resources Information Center

    Rhyne-Winkler, Martha C.

    1994-01-01

    Examined eating attitudes of fourth-, sixth-, and eighth-grade girls (n=379) and relationship between those attitudes and achievement scores, school ability, absenteeism, family income, grade level, family size, age, height/weight ratio, diet history, weight satisfaction, appearance satisfaction, and school anxiety. Found that eating-disordered…

  5. High Energy Neutrinos with a Mediterranean Neutrino Telescope

    SciTech Connect

    Borriello, E.; Cuoco, A.; Mangano, G.; Miele, G.; Pastor, Sergio; Pisanti, O.; Serpico, Pasquale Dario; /Fermilab

    2007-09-01

    The high energy neutrino detection by a km{sup 3} Neutrino Telescope placed in the Mediterranean sea provides a unique tool to both determine the diffuse astrophysical neutrino flux and the neutrino nucleon cross section in the extreme kinematical region, which could unveil the presence of new physics. Here is performed a brief analysis of possible NEMO site performances.

  6. Extremely high energy cosmic neutrinos and relic neutrinos

    SciTech Connect

    Quigg, Chris; /Fermilab /CERN

    2006-03-01

    I review the essentials of ultrahigh-energy neutrino interactions, show how neutral-current detection and flavor tagging can enhance the scientific potential of neutrino telescopes, and sketch new studies on neutrino encounters with dark matter relics and on gravitational lensing of neutrinos.

  7. Cosmological Neutrino Mass Detection: The Best Probe of Neutrino Lifetime

    SciTech Connect

    Serpico, Pasquale D.

    2007-04-27

    Future cosmological data may be sensitive to the effects of a finite sum of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a cosmological detection of neutrino mass at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence, on neutrino secret interactions with (quasi)massless particles as in Majoron models. On the other hand, neutrino decay may provide a way out to explain a discrepancy < or approx. 0.1 eV between cosmic neutrino bounds and lab data.

  8. Cosmological neutrino mass detection: The Best probe of neutrino lifetime

    SciTech Connect

    Serpico, Pasquale D.; /Fermilab

    2007-01-01

    Future cosmological data may be sensitive to the effects of a finite sum of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a cosmological detection of neutrino mass at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence on neutrino secret interactions with (quasi-)massless particles as in majoron models. On the other hand, neutrino decay may provide a way-out to explain a discrepancy {approx}< 0.1 eV between cosmic neutrino bounds and Lab data.

  9. Muon and neutrino fluxes

    NASA Technical Reports Server (NTRS)

    Edwards, P. G.; Protheroe, R. J.

    1985-01-01

    The result of a new calculation of the atmospheric muon and neutrino fluxes and the energy spectrum of muon-neutrinos produced in individual extensive air showers (EAS) initiated by proton and gamma-ray primaries is reported. Also explained is the possibility of detecting atmospheric nu sub mu's due to gamma-rays from these sources.

  10. The Sudbury Neutrino Observatory

    SciTech Connect

    Hime, A.

    1996-09-01

    A report is given on the status of the Sudbury Neutrino Observatory, presently under construction in the Creighton nickel mine near Sudbury, Ontario in Canada. Focus is upon the technical factors involving a measurement of the charged-current and neutral-current interactions of solar neutrinos on deuterium.

  11. Neutrinos and dark matter

    SciTech Connect

    Ibarra, Alejandro

    2015-07-15

    Neutrinos could be key particles to unravel the nature of the dark matter of the Universe. On the one hand, sterile neutrinos in minimal extensions of the Standard Model are excellent dark matter candidates, producing potentially observable signals in the form of a line in the X-ray sky. On the other hand, the annihilation or the decay of dark matter particles produces, in many plausible dark matter scenarios, a neutrino flux that could be detected at neutrino telescopes, thus providing non-gravitational evidence for dark matter. More conservatively, the non-observation of a significant excess in the neutrino fluxes with respect to the expected astrophysical backgrounds can be used to constrain dark matter properties, such as the self-annihilation cross section, the scattering cross section with nucleons and the lifetime.

  12. Solar Neutrino Physics

    SciTech Connect

    Bowles, T.J.; Brice, S.J.; Esch, E.-I.; Fowler, M.M.; Goldschmidt, A.; Hime, A.; McGirt, F.; Miller, G.G.; Thornewell, P.M.; Wilhelmy, J.B.; Wouters, J.M.

    1999-07-15

    With its heavy water target, the Sudbury Neutrino Observatory (SNO) offers the unique opportunity to measure both the 8B flux of electron neutrinos from the Sun and, independently, the flux of all active neutrino species reaching the Earth. A model-independent test of the hypothesis that neutrino oscillations are responsible for the observed solar neutrino deficit can be made by comparing the charged-current (CC) and neutral-current (NC) rates. This LDRD proposal supported the research and development necessary for an assessment of backgrounds and performance of the SNO detector and the ability to extract the NC/CC-Ratio. Particular emphasis is put upon the criteria for deployment and signal extraction from a discrete NC detector array based upon ultra-low background 3He proportional counters.

  13. On neutrino flavor states

    NASA Astrophysics Data System (ADS)

    Ho, Chiu Man

    2012-12-01

    We review the issues associated with the construction of neutrino flavor states. We then provide a consistent proof that the flavor states are approximately well-defined only if neutrinos are ultra-relativistic or the mass differences are negligible compared to energy. However, we show that weak interactions can be consistently described by only neutrino mass eigenstates. Meanwhile, the second quantization of neutrino flavor fields generally has no physical relevance as their masses are indefinite. Therefore, the flavor states are not physical quantum states and they should simply be interpreted as definitions to denote specific linear combinations of mass eigenstates involved in weak interactions. We also briefly discuss the implication of this work for the mixing between active and heavy sterile neutrinos.

  14. Summary: Neutrinos and nonaccelerator physics

    SciTech Connect

    Hoffman, C.M.

    1991-01-01

    This paper contains brief synopsis of the following major topics discussed in the neutrino and nonaccelerator parallel sessions: dark matter; neutrino oscillations at accelerators and reactors; gamma-ray astronomy; double beta decay; solar neutrinos; and the possible existence of a 17-KeV neutrino. (LSP)

  15. Long-Baseline Neutrino Experiments

    SciTech Connect

    Diwan, M. V.; Galymov, V.; Qian, X.; Rubbia, A.

    2016-10-19

    We review long-baseline neutrino experiments in which neutrinos are detected after traversing macroscopic distances. Over such distances neutrinos have been found to oscillate among flavor states. Experiments with solar, atmospheric, reactor, and accelerator neutrinos have resulted in a coherent picture of neutrino masses and mixing of the three known flavor states. We will summarize the current best knowledge of neutrino parameters and phenomenology with our focus on the evolution of the experimental technique. We will proceed from the rst evidence produced by astrophysical neutrino sources to the current open questions and the goals of future research

  16. Astroparticle physics with solar neutrinos.

    PubMed

    Nakahata, Masayuki

    2011-01-01

    Solar neutrino experiments observed fluxes smaller than the expectations from the standard solar model. This discrepancy is known as the "solar neutrino problem". Flux measurements by Super-Kamiokande and SNO have demonstrated that the solar neutrino problem is due to neutrino oscillations. Combining the results of all solar neutrino experiments, parameters for solar neutrino oscillations are obtained. Correcting for the effect of neutrino oscillations, the observed neutrino fluxes are consistent with the prediction from the standard solar model. In this article, results of solar neutrino experiments are reviewed with detailed descriptions of what Kamiokande and Super-Kamiokande have contributed to the history of astroparticle physics with solar neutrino measurements. (Communicated by Toshimitsu Yamazaki, M.J.A.).

  17. Astroparticle physics with solar neutrinos

    PubMed Central

    NAKAHATA, Masayuki

    2011-01-01

    Solar neutrino experiments observed fluxes smaller than the expectations from the standard solar model. This discrepancy is known as the “solar neutrino problem”. Flux measurements by Super-Kamiokande and SNO have demonstrated that the solar neutrino problem is due to neutrino oscillations. Combining the results of all solar neutrino experiments, parameters for solar neutrino oscillations are obtained. Correcting for the effect of neutrino oscillations, the observed neutrino fluxes are consistent with the prediction from the standard solar model. In this article, results of solar neutrino experiments are reviewed with detailed descriptions of what Kamiokande and Super-Kamiokande have contributed to the history of astroparticle physics with solar neutrino measurements. PMID:21558758

  18. Neutrino-neutrino interactions in a supernova and their effect on neutrino flavor conversions

    SciTech Connect

    Dighe, Amol

    2011-11-23

    The neutrino-neutrino interactions inside a supernova core give rise to nonlinear collective effects that significantly influence the neutrino flavor conversions inside the star. I shall describe these interactions, the new oscillation phenomena they generate, and their effect on the neutrino fluxes arriving at the earth.

  19. Search for Majorana neutrinos in B- → π+ μ- μ- decays.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Bauer, T; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, C; Cenci, R; Charles, M; Charpentier, P; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dorosz, P; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, C; Falabella, A; Färber, C; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, P; Gianelle, A; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Y; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Hafkenscheid, T W; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Manzali, M; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, G; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Pessina, G; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reichert, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spinella, F; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2014-04-04

    A search for heavy Majorana neutrinos produced in the B- → π+ μ- μ- decay mode is performed using 3  fb(-1) of integrated luminosity collected with the LHCb detector in pp collisions at center-of-mass energies of 7 and 8 TeV at the LHC. Neutrinos with masses in the range 250 to 5000 MeV and lifetimes from zero to 1000 ps are probed. In the absence of a signal, upper limits are set on the branching fraction B(B- → π+ μ- μ-) as functions of neutrino mass and lifetime. These limits are on the order of 10(-9) for short neutrino lifetimes of 1 ps or less. Limits are also set on the coupling between the muon and a possible fourth-generation neutrino.

  20. Neutrino oscillation, finite self-mass and general Yang-Mills symmetry

    NASA Astrophysics Data System (ADS)

    Hsu, Jong-Ping

    2016-10-01

    The conservation of lepton number is assumed to be associated with a general Yang-Mills (gYM) symmetry. New transformations involve (Lorentz) vector gauge functions and characteristic phase functions, and they form a group. General Yang-Mills fields are associated with new fourth-order equations and linear potentials. Lepton self-masses turn out to be finite and proportional to the inverse of lepton masses, which implies that neutrinos should have nonzero masses. Thus, gYM symmetry could provide an understanding of neutrino oscillations and suggests that neutrinos with masses and very weak leptonic force may play a role in dark matter.

  1. Dynamics of neutrino lumps in growing neutrino quintessence

    NASA Astrophysics Data System (ADS)

    Casas, Santiago; Pettorino, Valeria; Wetterich, Christof

    2016-11-01

    We investigate the formation and dissipation of large-scale neutrino structures in cosmologies where the time evolution of dynamical dark energy is stopped by a growing neutrino mass. In models where the coupling between neutrinos and dark energy grows with the value of the scalar cosmon field, the evolution of neutrino lumps depends on the neutrino mass. For small masses the lumps form and dissolve periodically, leaving only a small backreaction of the neutrino structures on the cosmic evolution. This process heats the neutrinos to temperatures far above the photon temperature, such that neutrinos acquire again an almost relativistic equation of state. The present equation of state of the combined cosmon-neutrino fluid is very close to -1 . By contrast, for larger neutrino masses, the lumps become stable. The highly concentrated neutrino structures entail a large backreaction similar to the case of a constant neutrino-cosmon coupling. A present average neutrino mass of around 0.5 eV seems to be compatible with observations so far. For masses lower than this value, neutrino-induced gravitational potentials remain small, making the lumps difficult to detect.

  2. Neutrino mass and mixing with discrete symmetry.

    PubMed

    King, Stephen F; Luhn, Christoph

    2013-05-01

    This is a review paper about neutrino mass and mixing and flavour model building strategies based on discrete family symmetry. After a pedagogical introduction and overview of the whole of neutrino physics, we focus on the PMNS mixing matrix and the latest global fits following the Daya Bay and RENO experiments which measure the reactor angle. We then describe the simple bimaximal, tri-bimaximal and golden ratio patterns of lepton mixing and the deviations required for a non-zero reactor angle, with solar or atmospheric mixing sum rules resulting from charged lepton corrections or residual trimaximal mixing. The different types of see-saw mechanism are then reviewed as well as the sequential dominance mechanism. We then give a mini-review of finite group theory, which may be used as a discrete family symmetry broken by flavons either completely, or with different subgroups preserved in the neutrino and charged lepton sectors. These two approaches are then reviewed in detail in separate chapters including mechanisms for flavon vacuum alignment and different model building strategies that have been proposed to generate the reactor angle. We then briefly review grand unified theories (GUTs) and how they may be combined with discrete family symmetry to describe all quark and lepton masses and mixing. Finally, we discuss three model examples which combine an SU(5) GUT with the discrete family symmetries A₄, S₄ and Δ(96).

  3. Neutrinos: Nature's Identity Thieves?

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

  4. Submarine neutrino communication

    NASA Astrophysics Data System (ADS)

    Huber, Patrick

    2010-09-01

    We discuss the possibility to use a high energy neutrino beam from a muon storage ring to provide one way communication with a submerged submarine. Neutrino interactions produce muons which can be detected either, directly when they pass through the submarine or by their emission of Cerenkov light in sea water, which, in turn, can be exploited with sensitive photo detectors. Due to the very high neutrino flux from a muon storage ring, it is sufficient to mount either detection system directly onto the hull of the submersible. The achievable data transfer rates compare favorable with existing technologies and do allow for a communication at the usual speed and depth of submarines.

  5. Neutrinos: Nature's Identity Thieves?

    SciTech Connect

    Lincoln, Don

    2013-07-11

    The oscillation of neutrinos from one variety to another has long been suspected, but was confirmed only about 15 years ago. In order for these oscillations to occur, neutrinos must have a mass, no matter how slight. Since neutrinos have long been thought to be massless, in a very real way, this phenomena is a clear signal of physics beyond the known. In this video, Fermilab's Dr Don Lincoln explains how we know it occurs and hints at the rich experimental program at several international laboratories designed to understand this complex mystery.

  6. Atmospheric neutrino oscillations and tau neutrinos in ice

    SciTech Connect

    Giordano, Gerardo; Mocioiu, Irina; Mena, Olga

    2010-06-01

    The main goal of the IceCube Deep Core Array is to search for neutrinos of astrophysical origins. Atmospheric neutrinos are commonly considered as a background for these searches. We show here that cascade measurements in the Ice Cube Deep Core Array can provide strong evidence for tau neutrino appearance in atmospheric neutrino oscillations. Controlling systematic uncertainties will be the limiting factor in the analysis. A careful study of these tau neutrinos is crucial, since they constitute an irreducible background for astrophysical neutrino detection.

  7. Berry phase in neutrino oscillations

    SciTech Connect

    He Xiaogang; McKellar, Bruce H.J.; Zhang Yue

    2005-09-01

    We study the Berry phase in neutrino oscillations for both Dirac and Majorana neutrinos. In order to have a Berry phase, the neutrino oscillations must occur in a varying medium, the neutrino-background interactions must depend on at least two independent densities, and also there must be CP violation. If the neutrino interactions with matter are mediated only by the standard model W and Z boson exchanges, these conditions imply that there must be at least three generations of neutrinos. The CP violating Majorana phases do not play a role in generating a Berry phase. We show that a natural way to satisfy the conditions for the generation of a Berry phase is to have sterile neutrinos with active-sterile neutrino mixing, in which case at least two active and one sterile neutrinos are required. If there are additional new CP violating flavor changing interactions, it is also possible to have a nonzero Berry phase with just two generations.

  8. ICFA neutrino panel report

    SciTech Connect

    Long, K.

    2015-07-15

    In the summer of 2013 the International Committee on Future Accelerators (ICFA) established a Neutrino Panel with the mandate: <<neutrino-oscillation program and to promote international collaboration in the development of a neutrino factory as a future intense source of neutrinos for particle physics experiments. >>>In its first year the Panel organised a series of regional Town Meetings to collect input from the community and to receive reports from the regional planning exercises. The Panel distilled its findings and presented them in a report to ICFA [1]. In this contribution the formation and composition of the Panel are presented together with a summary of the Panel’s findings from the three Regional Town Meetings. The Panel’s initial conclusions are then articulated and the steps that the Panel seeks to take are outlined.

  9. ICFA neutrino panel report

    NASA Astrophysics Data System (ADS)

    Long, K.

    2015-07-01

    In the summer of 2013 the International Committee on Future Accelerators (ICFA) established a Neutrino Panel with the mandate: "To promote international cooperation in the development of the accelerator-based neutrino-oscillation program and to promote international collaboration in the development of a neutrino factory as a future intense source of neutrinos for particle physics experiments." In its first year the Panel organised a series of regional Town Meetings to collect input from the community and to receive reports from the regional planning exercises. The Panel distilled its findings and presented them in a report to ICFA [1]. In this contribution the formation and composition of the Panel are presented together with a summary of the Panel's findings from the three Regional Town Meetings. The Panel's initial conclusions are then articulated and the steps that the Panel seeks to take are outlined.

  10. Detecting the Neutrino

    NASA Astrophysics Data System (ADS)

    Arns, Robert G.

    In 1930 Wolfgang Pauli suggested that a new particle might be required to make sense of the radioactive-disintegration mode known as beta decay. This conjecture initially seemed impossible to verify since the new particle, which became known as the neutrino, was uncharged, had zero or small mass, and interacted only insignificantly with other matter. In 1951 Frederick Reines and Clyde L. Cowan, Jr., of the Los Alamos Scientific Laboratory undertook the difficult task of detecting the free neutrino by observing its inverse beta-decay interaction with matter. They succeeded in 1956. The neutrino was accepted rapidly as a fundamental particle despite discrepancies in reported details of the experiments and despite the absence of independent verification of the result. This paper describes the experiments, examines the nature of the discrepancies, and discusses the circumstances of the acceptance of the neutrino's detection by the physics community.

  11. WMAPping out neutrino masses

    SciTech Connect

    Pierce, Aaron; Murayama, Hitoshi

    2003-10-28

    Recent data from the Wilkinson Microwave Anisotropy Probe (WMAP) place important bounds on the neutrino sector. The precise determination of the baryon number in the universe puts a strong constraint on the number of relativistic species during Big-Bang Nucleosynthesis. WMAP data, when combined with the 2dF Galaxy Redshift Survey (2dFGRS), also directly constrain the absolute mass scale of neutrinos. These results impinge upon a neutrino oscillation interpretation of the result from the Liquid Scintillator Neutrino Detector (LSND).We also note that the Heidelberg-Moscow evidence for neutrinoless double beta decay is only consistent with the WMAP+2dFGRS data for the largest values of the nuclear matrix element.

  12. The Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Ewan, G. T.

    1992-04-01

    The Sudbury Neutrino Observatory (SNO) detector is a 1000 ton heavy water (D2O) Cherenkov detector designed to study neutrinos from the sun and other astrophysical sources. The use of heavy water allows both electron neutrinos and all other types of neutrinos to be observed by three complementary reactions. The detector will be sensitive to the electron neutrino flux and energy spectrum shape and to the total neutrino flux irrespective of neutrino type. These measurements will provide information on both vacuum neutrino oscillations and matter-enhanced oscillations, the MSW effect. In the event of a supernova it will be very sensitive to muon and tau neutrinos as well as the electron neutrinos emitted in the initial burst, enabling sensitive mass measurements as well as providing details of the physics of stellar collapse. On behalf of the Sudbury Neutrino Observatory (SNO) Collaboration : H.C . Evans, G.T . Ewan, H.W. Lee, J .R . Leslie, J .D. MacArthur, H .-B . Mak, A.B . McDonald, W. McLatchie, B.C . Robertson, B. Sur, P. Skensved (Queen's University) ; C.K . Hargrove, H. Mes, W.F. Davidson, D. Sinclair, 1 . Blevis, M. Shatkay (Centre for Research in Particle Physics) ; E.D. Earle, G.M. Milton, E. Bonvin, (Chalk River Laboratories); J .J . Simpson, P. Jagam, J . Law, J .-X . Wang (University of Guelph); E.D . Hallman, R.U. Haq (Laurentian University); A.L. Carter, D. Kessler, B.R . Hollebone (Carleton University); R. Schubank . C.E . Waltha m (University of British Columbia); R.T. Kouzes, M.M. Lowry, R.M. Key (Princeton University); E.W. Beier, W. Frati, M. Newcomer, R. Van Berg (University of Penn-sylvania), T.J . Bowles, P.J . Doe, S.R . Elliott, M.M. Fowler, R.G.H. Robertson, D.J . Vieira, J .B . Wilhelmy, J .F. Wilker-son, J .M. Wouters (Los Alamos National Laboratory) ; E. Norman, K. Lesko, A. Smith, R. Fulton, R. Stokstad (Lawrence Berkeley Laboratory), N.W. Tanner, N. JCIILY, P. Trent, J . Barton, D.L . Wark (University of Oxford).

  13. Cosmological and supernova neutrinos

    SciTech Connect

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Shibagaki, S.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Suzuki, T.

    2014-06-24

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  14. Cosmological and supernova neutrinos

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Shibagaki, S.; Suzuki, T.

    2014-06-01

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial 7Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and 7Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and 180Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ13 with predicted and observed supernova-produced abundance ratio 11B/7Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  15. Radiochemical solar neutrino experiments

    NASA Astrophysics Data System (ADS)

    Gavrin, V. N.; Cleveland, B. T.

    2011-12-01

    Radiochemical experiments have been crucial to solar neutrino research. Even today, they provide the only direct measurement of the rate of the proton-proton fusion reaction, p+p→d+e++νe, which generates most of the Sun's energy. We first give a little history of radiochemical solar neutrino experiments with emphasis on the gallium experiment SAGE - the only currently operating detector of this type. The combined result of all data from the Ga experiments is a capture rate of 67.6±3.7 SNU. For comparison to theory, we use the calculated flux at the Sun from a standard solar model, take into account neutrino propagation from the Sun to the Earth and the results of neutrino source experiments with Ga, and obtain 67.3-3.5+3.9 SNU. Using the data from all solar neutrino experiments we calculate an electron neutrino pp flux of ϕpp♁=(3.41-0.77+0.76)×1010/(cm-s), which agrees well with the prediction from a detailed solar model of ϕpp♁=(3.30-0.14+0.13)×1010/(cm-s). Four tests of the Ga experiments have been carried out with very intense reactor-produced neutrino sources and the ratio of observed to calculated rates is 0.88±0.05. One explanation for this unexpectedly low result is that the cross section for neutrino capture by the two lowest-lying excited states in 71Ge has been overestimated. We end with consideration of possible time variation in the Ga experiments and an enumeration of other possible radiochemical experiments that might have been.

  16. Neutrino Detectors: Challenges and Opportunities

    SciTech Connect

    Soler, F. J. P.

    2011-10-06

    This paper covers possible detector options suitable at future neutrino facilities, such as Neutrino Factories, Super Beams and Beta Beams. The Magnetised Iron Neutrino Detector (MIND), which is the baseline detector at a Neutrino Factory, will be described and a new analysis which improves the efficiency of this detector at low energies will be shown. Other detectors covered include the Totally Active Scintillating Detectors (TASD), particularly relevant for a low energy Neutrino Factory, emulsion detectors for tau detection, liquid argon detectors and megaton scale water Cherenkov detectors. Finally the requirements of near detectors for long-baseline neutrino experiments will be demonstrated.

  17. Neutrino Experiments: Hierarchy, CP, CPT

    NASA Astrophysics Data System (ADS)

    Gupta, Manmohan; Randhawa, Monika; Singh, Mandip

    We present an overview of our recent investigations regarding the prospects of ongoing neutrino experiments as well as future experiments in determining few of the most important unknowns in the field of neutrino physics, specifically the neutrino mass ordering and leptonic CP-violation phase. The effect of matter oscillations on the neutrino oscillation probabilities has been exploited in resolving the degeneracy between the neutrino mass ordering and the CP violation phase in the leptonic sector. Further, we estimate the extent of extrinsic CP and CPT violation in the experiments with superbeams as well as neutrino factories.

  18. Neutrinos beyond the Standard Model

    SciTech Connect

    Valle, J.W.F.

    1989-08-01

    I review some basic aspects of neutrino physics beyond the Standard Model such as neutrino mixing and neutrino non-orthogonality, universality and CP violation in the lepton sector, total lepton number and lepton flavor violation, etc.. These may lead to neutrino decays and oscillations, exotic weak decay processes, neutrinoless double /beta/ decay, etc.. Particle physics models are discussed where some of these processes can be sizable even in the absence of measurable neutrino masses. These may also substantially affect the propagation properties of solar and astrophysical neutrinos. 39 refs., 4 figs.

  19. Experimental High Energy Neutrino Astrophysics

    SciTech Connect

    Distefano, Carla

    2005-10-12

    Neutrinos are considered promising probes for high energy astrophysics. More than four decades after deep water Cerenkov technique was proposed to detect high energy neutrinos. Two detectors of this type are successfully taking data: BAIKAL and AMANDA. They have demonstrated the feasibility of the high energy neutrino detection and have set first constraints on TeV neutrino production astrophysical models. The quest for the construction of km3 size detectors have already started: in the South Pole, the IceCube neutrino telescope is under construction; the ANTARES, NEMO and NESTOR Collaborations are working towards the installation of a neutrino telescope in the Mediterranean Sea.

  20. Nonthermal cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Chen, Mu-Chun; Ratz, Michael; Trautner, Andreas

    2015-12-01

    We point out that, for Dirac neutrinos, in addition to the standard thermal cosmic neutrino background (C ν B ), there could also exist a nonthermal neutrino background with comparable number density. As the right-handed components are essentially decoupled from the thermal bath of standard model particles, relic neutrinos with a nonthermal distribution may exist until today. The relic density of the nonthermal (nt) background can be constrained by the usual observational bounds on the effective number of massless degrees of freedom Neff and can be as large as nν nt≲0.5 nγ. In particular, Neff can be larger than 3.046 in the absence of any exotic states. Nonthermal relic neutrinos constitute an irreducible contribution to the detection of the C ν B and, hence, may be discovered by future experiments such as PTOLEMY. We also present a scenario of chaotic inflation in which a nonthermal background can naturally be generated by inflationary preheating. The nonthermal relic neutrinos, thus, may constitute a novel window into the very early Universe.

  1. Measurable neutrino mass scale in A{sub 4}xSU(5)

    SciTech Connect

    Antusch, S.; Spinrath, M.; King, Stephen F.

    2011-01-01

    We propose a supersymmetric A{sub 4}xSU(5) model of quasidegenerate neutrinos which predicts the effective neutrino mass m{sub ee} relevant for neutrinoless double beta decay to be proportional to the neutrino mass scale, thereby allowing its determination approximately independently of unknown Majorana phases. Such a natural quasidegeneracy is achieved by using A{sub 4} family symmetry (as an example of a non-Abelian family symmetry with real triplet representations) to enforce a contribution to the neutrino mass matrix proportional to the identity. Tribimaximal neutrino mixing as well as quark CP violation with {alpha}{approx_equal}90 deg. d a leptonic CP phase {delta}{sub MNS{approx_equal}}90 deg. arise from the breaking of the A{sub 4} family symmetry by the vacuum expectation values of four 'flavon' fields pointing in specific postulated directions in flavor space.

  2. Core-collapse supernova neutrinos and neutrino properties

    SciTech Connect

    Gava, J.; Volpe, C.

    2008-08-29

    Core-collapse supernovae are powerful neutrino sources. The observation of a future (extra-)galactic supernova explosion or of the relic supernova neutrinos might provide important information on the supernova dynamics, on the supernova formation rate and on neutrino properties. One might learn more about unknown neutrino properties either from indirect effects in the supernova (e.g. on the explosion or on in the r-process) or from modifications of the neutrino time or energy distributions in a detector on Earth. Here we will discuss in particular possible effects of CP violation in the lepton sector. We will also mention the interest of future neutrino-nucleus interaction measurements for the precise knowledge of supernova neutrino detector response to electron neutrinos.

  3. Prospect for Relic Neutrino Searches

    NASA Astrophysics Data System (ADS)

    Gelmini, Graciela B.

    2006-03-01

    Neutrinos from the Big Bang are theoretically expected to be the most abundant particles in the Universe after the photons of the Cosmic Microwave Background (CMB). Unlike the relic photons, relic neutrinos have not so far been observed. The Cosmic Neutrino Background (CνB) is the oldest relic from the Big Bang, produced a few seconds after the Bang itself. Due to their impact in cosmology, relic neutrinos may be revealed indirectly in the near future through cosmological observations. In this talk we concentrate on other proposals, made in the last 30 years, to try to detect the CνB directly, either in laboratory searches (through tiny accelerations they produce on macroscopic targets) or through astrophysical observations (looking for absorption dips in the flux of Ultra-High Energy (UHE) neutrinos, due to the annihilation of these neutrinos with relic neutrinos at the Z-resonance). We concentrate mainly on the first possibility. We show that, given present bounds on neutrino masses, lepton number in the Universe and gravitational clustering of neutrinos, all expected laboratory effects of relic neutrinos are far from observability, awaiting future technological advances to reach the necessary sensitivity. The problem for astrophysical searches is that sources of UHE neutrinos at the extreme energies required may not exist. If they do exist, we could reveal the existence, and possibly the mass spectrum, of relic neutrinos, with detectors of UHE neutrinos (such as ANITA, Auger, EUSO, OWL, RICE and SalSA).

  4. Fourth Light at Paranal!

    NASA Astrophysics Data System (ADS)

    2000-09-01

    VLT YEPUN Joins ANTU, KUEYEN and MELIPAL It was a historical moment last night (September 3 - 4, 2000) in the VLT Control Room at the Paranal Observatory , after nearly 15 years of hard work. Finally, four teams of astronomers and engineers were sitting at the terminals - and each team with access to an 8.2-m telescope! From now on, the powerful "Paranal Quartet" will be observing night after night, with a combined mirror surface of more than 210 m 2. And beginning next year, some of them will be linked to form part of the unique VLT Interferometer with unparalleled sensitivity and image sharpness. YEPUN "First Light" Early in the evening, the fourth 8.2-m Unit Telescope, YEPUN , was pointed to the sky for the first time and successfully achieved "First Light". Following a few technical exposures, a series of "first light" photos was made of several astronomical objects with the VLT Test Camera. This instrument was also used for the three previous "First Light" events for ANTU ( May 1998 ), KUEYEN ( March 1999 ) and MELIPAL ( January 2000 ). These images served to evaluate provisionally the performance of the new telescope, mainly in terms of mechanical and optical quality. The ESO staff were very pleased with the results and pronounced YEPUN fit for the subsequent commissioning phase. When the name YEPUN was first given to the fourth VLT Unit Telescope, it was supposed to mean "Sirius" in the Mapuche language. However, doubts have since arisen about this translation and a detailed investigation now indicates that the correct meaning is "Venus" (as the Evening Star). For a detailed explanation, please consult the essay On the Meaning of "YEPUN" , now available at the ESO website. The first images At 21:39 hrs local time (01:39 UT), YEPUN was turned to point in the direction of a dense Milky Way field, near the border between the constellations Sagitta (The Arrow) and Aquila (The Eagle). A guide star was acquired and the active optics system quickly optimized the

  5. Tau neutrinos favored over sterile neutrinos in atmospheric muon neutrino oscillations.

    PubMed

    Fukuda, S; Fukuda, Y; Ishitsuka, M; Kajita, T; Kameda, J; Kaneyuki, K; Kobayashi, K; Koshio, Y; Miura, M; Moriyama, S; Nakahata, M; Nakayama, S; Obayashi, Y; Okada, A; Okumura, K; Sakurai, N; Shiozawa, M; Suzuki, Y; Takeuchi, H; Takeuchi, Y; Toshito, T; Totsuka, Y; Yamada, S; Earl, M; Habig, A; Kearns, E; Messier, M D; Scholberg, K; Stone, J L; Sulak, L R; Walter, C W; Goldhaber, M; Barszczak, T; Casper, D; Gajewski, W; Kropp, W R; Mine, S; Price, L R; Smy, M; Sobel, H W; Vagins, M R; Ganezer, K S; Keig, W E; Ellsworth, R W; Tasaka, S; Kibayashi, A; Learned, J G; Matsuno, S; Takemori, D

    2000-11-06

    The previously published atmospheric neutrino data did not distinguish whether muon neutrinos were oscillating into tau neutrinos or sterile neutrinos, as both hypotheses fit the data. Using data recorded in 1100 live days of the Super-Kamiokande detector, we use three complementary data samples to study the difference in zenith angle distribution due to neutral currents and matter effects. We find no evidence favoring sterile neutrinos, and reject the hypothesis at the 99% confidence level. On the other hand, we find that oscillation between muon and tau neutrinos suffices to explain all the results in hand.

  6. Topics in neutrino and gravitational astrophysics

    NASA Astrophysics Data System (ADS)

    Ratkovic, Sasa

    A wide range of astrophysical phenomena are significantly influenced by weak interaction processes that involve the emission or absorption of neutrinos in matter at high density and/or temperature. Examples include red giant stars, white dwarfs, neutron stars, type la and type II (core-collapse) supernovae, and accretion disks of gamma-ray bursters. Depending on the density and temperature of ambient matter, the emission of neutrinos is an important energy-loss mechanism, whereas their scattering and absorption serve to deposit energy into matter. Detailed neutrino transport in such environments is described by the Boltzmann transport equation; its solution requires the corresponding kernels in the source term. In this work the neutrino production and absorption kernels for the plasma and photo neutrino processes together with their differential and total rates are derived. Full information about the emitted neutrinos was retained by evaluating the squared matrix elements for this process which was hitherto bypassed in obtaining the total neutrino emissivities. Numerical results for various temperatures and densities are provided. Approximate analytical results helpful in understanding the qualitative behaviors in limiting situations are also given. Binary mergers involving black holes and neutron stars have been proposed as major sources of gravitational waves, r-process nucleosynthesis, and gamma ray bursters. In addition, they represent an important observable that could distinguish between normal and self-bound neutron stars. These two families of stars have distinctly different mass-radius relationships resulting from their equations of state. We show how these differences are revealed during their mergers. Our analysis is performed at increasing levels of approximation for the gravitational potential: (i) Newtonian potential, (ii) pseudo-GR potentials, and (iii) the second order post-Newtonian analysis. These potentials are employed to study both the

  7. No-neutrino double beta decay: more than one neutrino

    SciTech Connect

    Rosen, S.P.

    1983-01-01

    Interference effects between light and heavy Majorana neutrinos in the amplitude for no-neutrino double beta decay are discussed. The effects include an upper bound on the heavy neutrino mass, and an A dependence for the effective mass extracted from double beta decay. Thus the search for the no-neutrino decay mode should be pursued in several nuclei, and particularly in Ca/sup 48/, where the effective mass may be quite large.

  8. Symmetric Textures in SO(10) and Neutrinos

    NASA Astrophysics Data System (ADS)

    Chen, Mu-Chun; Mahanthappa, Kalyana T.

    2006-02-01

    A model based on SUSY SO(10) combined with SU(2) family symmetry is constructed. In contrast with the commonly used effective operator approach, 126-dim Higgs fields are utilized to construct the Yukawa sector. The symmetric mass textures arising from the l-right symmetry breaking chain of SO(10) give rise to very good predictions for quark and lepton masses and mixings and three angles of the unitarity triangle. In the neutrino sector, our predictions are in good agreement with results from atmospheric neutrino experiments. Our model gives rise to the LMA solution to the solar neutrino anomaly. The prediction for the |Ueν3| element in the MNS matrix is close to the sensitivity of current experiments; thus the validity of our model can be tested in the near future. We also investigate the correlation between the |Ueν3| element and tan2θ⊙ in a general two-zero neutrino mass texture.

  9. Massive neutrinos in the standard model and beyond

    NASA Astrophysics Data System (ADS)

    Thalapillil, Arun Madhav

    The generation of the fermion mass hierarchy in the standard model of particle physics is a long-standing puzzle. The recent discoveries from neutrino physics suggests that the mixing in the lepton sector is large compared to the quark mixings. To understand this asymmetry between the quark and lepton mixings is an important aim for particle physics. In this regard, two promising approaches from the theoretical side are grand unified theories and family symmetries. In the first part of my thesis we try to understand certain general features of grand unified theories with Abelian family symmetries by taking the simplest SU(5) grand unified theory as a prototype. We construct an SU(5) toy model with U(1) F ⊗Z'2 ⊗Z'' 2⊗Z''' 2 family symmetry that, in a natural way, duplicates the observed mass hierarchy and mixing matrices to lowest approximation. The system for generating the mass hierarchy is through a Froggatt-Nielsen type mechanism. One idea that we use in the model is that the quark and charged lepton sectors are hierarchical with small mixing angles while the light neutrino sector is democratic with larger mixing angles. We also discuss some of the difficulties in incorporating finer details into the model without making further assumptions or adding a large scalar sector. In the second part of my thesis, the interaction of high energy neutrinos with weak gravitational fields is explored. The form of the graviton-neutrino vertex is motivated from Lorentz and gauge invariance and the non-relativistic interpretations of the neutrino gravitational form factors are obtained. We comment on the renormalization conditions, the preservation of the weak equivalence principle and the definition of the neutrino mass radius. We associate the neutrino gravitational form factors with specific angular momentum states. Based on Feynman diagrams, spin-statistics, CP invariance and symmetries of the angular momentum states in the neutrino-graviton vertex, we deduce

  10. Atmospheric neutrinos in ice and measurement of neutrino oscillation parameters

    SciTech Connect

    Fernandez-Martinez, Enrique; Giordano, Gerardo; Mocioiu, Irina; Mena, Olga

    2010-11-01

    The main goal of the IceCube Deep Core array is to search for neutrinos of astrophysical origins. Atmospheric neutrinos are commonly considered as a background for these searches. We show that the very high statistics atmospheric neutrino data can be used to obtain precise measurements of the main oscillation parameters.

  11. Simulating nonlinear neutrino flavor evolution

    NASA Astrophysics Data System (ADS)

    Duan, H.; Fuller, G. M.; Carlson, J.

    2008-10-01

    We discuss a new kind of astrophysical transport problem: the coherent evolution of neutrino flavor in core collapse supernovae. Solution of this problem requires a numerical approach which can simulate accurately the quantum mechanical coupling of intersecting neutrino trajectories and the associated nonlinearity which characterizes neutrino flavor conversion. We describe here the two codes developed to attack this problem. We also describe the surprising phenomena revealed by these numerical calculations. Chief among these is that the nonlinearities in the problem can engineer neutrino flavor transformation which is dramatically different to that in standard Mikheyev Smirnov Wolfenstein treatments. This happens even though the neutrino mass-squared differences are measured to be small, and even when neutrino self-coupling is sub-dominant. Our numerical work has revealed potential signatures which, if detected in the neutrino burst from a Galactic core collapse event, could reveal heretofore unmeasurable properties of the neutrinos, such as the mass hierarchy and vacuum mixing angle θ13.

  12. Hadronization processes in neutrino interactions

    SciTech Connect

    Katori, Teppei; Mandalia, Shivesh

    2015-10-15

    Next generation neutrino oscillation experiments utilize details of hadronic final states to improve the precision of neutrino interaction measurements. The hadronic system was often neglected or poorly modelled in the past, but they have significant effects on high precision neutrino oscillation and cross-section measurements. Among the physics of hadronic systems in neutrino interactions, the hadronization model controls multiplicities and kinematics of final state hadrons from the primary interaction vertex. For relatively high invariant mass events, many neutrino experiments rely on the PYTHIA program. Here, we show a possible improvement of this process in neutrino event generators, by utilizing expertise from the HERMES experiment. Finally, we estimate the impact on the systematics of hadronization models for neutrino mass hierarchy analysis using atmospheric neutrinos such as the PINGU experiment.

  13. Sterile neutrinos at a Neutrino Factory

    SciTech Connect

    Lopez-Pavon, Jacobo

    2010-03-30

    We study the potential of a Neutrino Factory (NF) to constrain the parameters of the (3+1)-scheme with a O(1)eV{sup 2} largest mass square difference, considering two set-ups: a NF with 50 GeV (20 GeV) stored muons, with two detectors of the Hybrid-MIND type located at L = 3000(4000), 7500 km. We show that the best sensitivity to sterile neutrinos can be achieved through the nu{sub m}u->nu{sub m}u and the nu{sub m}u->nu{sub t}au channels which can constrain theta{sub 34}<=12 deg. (14 deg.) and theta{sub 24}<=7.5 deg. (8 deg.) with the 50 GeV (20 GeV) NF. We also study the CP-violation in this new context showing that the CP-asymmetries in the nu{sub m}u->nu{sub t}au channel can give us the chance to see a clear new CP-violation signal associated with the sterile neutrinos.

  14. Neutrino sea scope takes shape

    NASA Astrophysics Data System (ADS)

    Cartlidge, Edwin

    2016-03-01

    A consortium of European physicists building a vast neutrino detector on the floor of the Mediterranean Sea has unveiled the science it will carry out. The Cubic Kilometre Neutrino Telescope (KM3NeT) will use strings of radiation detectors arranged in a 3D network to measure the light emitted when neutrinos very occasionally interact with the surrounding sea water.

  15. Gravitational Lensing of Supernova Neutrinos

    SciTech Connect

    Mena, Olga; Mocioiu, Irina; Quigg, Chris; /Fermilab

    2006-10-01

    The black hole at the center of the galaxy is a powerful lens for supernova neutrinos. In the very special circumstance of a supernova near the extended line of sight from Earth to the galactic center, lensing could dramatically enhance the neutrino flux at Earth and stretch the neutrino pulse.

  16. Neutrinos from supernovae.

    NASA Astrophysics Data System (ADS)

    Burrows, A. S.

    First, the author presents a short history of supernova neutrino theory. Then, the theory of core collapse supernovae is reviewed. Because of the profound opacity to light of the dense core that experiences collapse, we "see" this core directly only through its neutrino signature. Every bump and wiggle echoes the internal convulsions of the event and can provide clues about both the supernova mechanism and the neutron star that remains. The author discusses the only neutrino observations of a supernova so far, SN 1987A. While the agreement with calculations has been gratifying, there remain, of course, plenty of outstanding issues in supernova theory to be tested. These are high-lighted throughout the text. Since neutrinos give us the only real access to the physics inside the collapse, it is important that observation of these particles continue. In an appendix the author describes some of the available or contemplated neutrino detectors capable of good time resolution and therefore of shedding light on supernova mechanisms.

  17. Neutrino fluctuat nec mercitur: are fossil neutrinos detectable

    SciTech Connect

    De Rujula, A

    1980-04-01

    A brief report is presented on the question whether light (few eV to approx. 100 eV) neutrinos left over from the big bang are detectable. The answer is perhaps. If the weak current of leptons, like those of quarks, are not diagonal in mass eigenstates, a neutrino will decay into a lighter neutrino and a monochromatic photon. The corresponding photon line may be detectable provided: neutrinos are heavy enough to participate in galaxy clustering and neutrino lifetimes are, as in some weak interaction models, short enough.

  18. Coherent neutrino-nucleus scattering and new neutrino interactions

    NASA Astrophysics Data System (ADS)

    Lindner, Manfred; Rodejohann, Werner; Xu, Xun-Jie

    2017-03-01

    We investigate the potential to probe new neutrino physics with future experiments measuring coherent neutrino-nucleus scattering. Experiments with high statistics should become feasible soon and allow to constrain parameters with unprecedented precision. Using a benchmark setup for a future experiment probing reactor neutrinos, we study the sensitivity on neutrino non-standard interactions and new exotic neutral currents (scalar, tensor, etc). Compared to Fermi interaction, percent and permille level strengths of the new interactions can be probed, superseding for some observables the limits from future neutrino oscillation experiments by up to two orders of magnitude.

  19. The neutrino signal at HALO: learning about the primary supernova neutrino fluxes and neutrino properties

    SciTech Connect

    Väänänen, Daavid; Volpe, Cristina E-mail: volpe@ipno.in2p3.fr

    2011-10-01

    Core-collapse supernova neutrinos undergo a variety of phenomena when they travel from the high neutrino density region and large matter densities to the Earth. We perform analytical calculations of the supernova neutrino fluxes including collective effects due to the neutrino-neutrino interactions, the Mikheev-Smirnov-Wolfenstein (MSW) effect due to the neutrino interactions with the background matter and decoherence of the wave packets as they propagate in space. We predict the numbers of one- and two-neutron charged and neutral-current electron-neutrino scattering on lead events. We show that, due to the energy thresholds, the ratios of one- to two-neutron events are sensitive to the pinching parameters of neutrino fluxes at the neutrinosphere, almost independently of the presently unknown neutrino properties. Besides, such events have an interesting sensitivity to the spectral split features that depend upon the presence/absence of energy equipartition among neutrino flavors. Our calculations show that a lead-based observatory like the Helium And Lead Observatory (HALO) has the potential to pin down important characteristics of the neutrino fluxes at the neutrinosphere, and provide us with information on the neutrino transport in the supernova core.

  20. Reactor Neutrino Spectra

    NASA Astrophysics Data System (ADS)

    Hayes, Anna C.; Vogel, Petr

    2016-10-01

    We present a review of the antineutrino spectra emitted from reactors. Knowledge of these spectra and their associated uncertainties is crucial for neutrino oscillation studies. The spectra used to date have been determined either by converting measured electron spectra to antineutrino spectra or by summing over all of the thousands of transitions that make up the spectra, using modern databases as input. The uncertainties in the subdominant corrections to β-decay plague both methods, and we provide estimates of these uncertainties. Improving on current knowledge of the antineutrino spectra from reactors will require new experiments. Such experiments would also address the so-called reactor neutrino anomaly and the possible origin of the shoulder observed in the antineutrino spectra measured in recent high-statistics reactor neutrino experiments.

  1. The Neutrino Telescope ANTARES

    NASA Astrophysics Data System (ADS)

    Hernández, Juan José

    Neutrinos can reveal a brand new Universe at high energies. The ANTARES collaboration [1] , formed in 1996, works towards the building and deployment of a neutrino telescope. This detector could observe and study high energy astrophysical sources such as X-ray binary systems, young supernova remnants or Active Galactic Nuclei and help to discover or set exclusion limits on some of the elementary particles and objects that have been put forward as candidates to fill the Universe (WIMPS, neutralinos, topological deffects, Q-balls, etc). A neutrino telescope will certainly open a new observational window and can shed light on the most energetic phenomena of the Universe. A review of the progress made by the ANTARES collaboration to achieve this goal is presented

  2. Atmospheric electron neutrinos in the MINOS far detector

    SciTech Connect

    Speakman, Benjamin Phillip

    2007-01-01

    Neutrinos produced as a result of cosmic-ray interactions in the earth's atmosphere offer a powerful probe into the nature of this three-membered family of low-mass, weakly-interacting particles. Ten years ago, the Super-Kamiokande Experiment has confirmed earlier indications that neutrinos undergo lepton-flavor oscillations during propagation, proving that they are massive contrary to the previous Standard Model assumptions. The Soudan Underground Laboratory, located in northern Minnesota, was host to the Soudan2 Experiment, which has made important contributions to atmospheric neutrino research. This same lab has more recently been host to the MINOS far detector, a neutrino detector which serves as the downstream element of an accelerator-based long-baseline neutrino-oscillation experiment. This thesis has examined 418.5 live days of atmospheric neutrino data (fiducial exposure of 4.18 kton-years) collected in the MINOS far detector prior to the activation of the NuMI neutrino beam, with a specific emphasis on the investigation of electron-type neutrino interactions. Atmospheric neutrino interaction candidates have been selected and separated into showering or track-like events. The showering sample consists of 89 observed events, while the track-like sample consists of 112 observed events. Based on the Bartol atmospheric neutrino flux model of Barr et al. plus a Monte Carlo (MC) simulation of interactions in the MINOS detector, the expected yields of showering and track-like events in the absence of neutrino oscillations are 88.0 ± 1.0 and 149.1 ± 1.0 respectively (where the uncertainties reflect only the limited MC statistics). Major systematic uncertainties, especially those associated with the flux model, are cancelled by forming a double ratio of these observed and expected yields: R$data\\atop{trk/shw}$/R$MC\\atop{trk/shw}$ = 0.74$+0.12\\atop{-1.0}$(stat.) ± 0.04 (syst.) This double ratio should be equal to unity in the absence of oscillations, and the

  3. Are neutrinos their own antiparticles?

    SciTech Connect

    Kayser, Boris; /Fermilab

    2009-03-01

    We explain the relationship between Majorana neutrinos, which are their own antiparticles, and Majorana neutrino masses. We point out that Majorana masses would make the neutrinos very distinctive particles, and explain why many theorists strongly suspect that neutrinos do have Majorana masses. The promising approach to confirming this suspicion is to seek neutrinoless double beta decay. We introduce a toy model that illustrates why this decay requires nonzero neutrino masses, even when there are both right-handed and left-handed weak currents.

  4. Solar Neutrinos. II. Experimental

    DOE R&D Accomplishments Database

    Davis, Raymond Jr.

    1964-01-01

    A method is described for observing solar neutrinos from the reaction Cl{sup 37}(nu,e{sup -})Ar{sup 37} in C{sub 2}Cl{sub 4}. Two 5 00-gal tanks of C{sub 2}Cl{sub 4} were placed in a limestone mine (1800 m.w.e.) and the resulting Ar{sup 37} activity induced by cosmic mesons( mu ) was measured to determine the necessary conditions for solar neutrino observations. (R.E.U.)

  5. Neutrino Detection Primer

    DTIC Science & Technology

    1988-03-01

    particle accelerators. They arise as decay products of pions, K- mesons , and other unstable particles produced in the primary collisions of high energy...34 \\ = GF • (1-9) Here h is Planck’s constant, c the velocity of light , G the weak 1-11 interaction constant, and F the flux of neutrinos to be detected...momentum of a body (a ferromagnet, 4-1 say), F the neutrino flux, h the reduced Planck constant, c the speed of light , one has for the torque on the

  6. The ANTARES neutrino telescope

    NASA Astrophysics Data System (ADS)

    Distefano, Carla

    The ANTARES collaboration has completed in 2008 the construction of an underwater high-energy neutrino telescope in the Mediterranean Sea, located 40 km off the French coast at a depth of 2500 m. The detector consists of 885 optical modules, which are distributed in 12 detector lines, various calibration systems and devices for environmental measurements. With an instrumented volume of about 0.05 km3, ANTARES is the largest Cherenkov neutrino detector currently operating in the Northern hemisphere. A general overview on the ANTARES telescope is given. The preliminary results from the various physics analyses on the collected data will be presented.

  7. Experimental data on solar neutrinos

    NASA Astrophysics Data System (ADS)

    Ludhova, Livia

    2016-04-01

    Neutrino physics continues to be a very active research field, full of opened fundamental questions reaching even beyond the Standard Model of elementary particles and towards a possible new physics. Solar neutrinos have played a fundamental historical role in the discovery of the phenomenon of neutrino oscillations and thus non-zero neutrino mass. Even today, the study of solar neutrinos provides an important insight both into the neutrino as well as into the stellar and solar physics. In this section we give an overview of the most important solar-neutrino measurements from the historical ones up to the most recent ones. We cover the results from the experiments using radio-chemic (Homestake, SAGE, GNO, GALLEX), water Cherenkov (Kamiokande, Super-Kamiokande, SNO), and the liquid-scintillator (Borexino, KamLAND) detection techniques.

  8. Neutrino flux predictions for cross section measurements

    SciTech Connect

    Hartz, Mark

    2015-05-15

    Experiments that measure neutrino interaction cross sections using accelerator neutrino sources require a prediction of the neutrino flux to extract the interaction cross section from the measured neutrino interaction rate. This article summarizes methods of estimating the neutrino flux using in-situ and ex-situ measurements. The application of these methods by current and recent experiments is discussed.

  9. Teaching Literacy in Fourth Grade

    ERIC Educational Resources Information Center

    Johnson, Denise

    2008-01-01

    Fourth grade is an important year for literacy learning. Having left the primary grades behind, students must grapple with more demanding texts and content material. Effective, motivating instruction can help them succeed. This book helps teachers create an energized and organized learning environment in which all students can improve their…

  10. Anti-neutrino imprint in solar neutrino flare

    NASA Astrophysics Data System (ADS)

    Fargion, D.

    2006-10-01

    A future neutrino detector at megaton mass might enlarge the neutrino telescope thresholds revealing cosmic supernova background and largest solar flares (SFs) neutrinos. Indeed the solar energetic (Ep>100 MeV) flare particles (protons, α), while scattering among themselves on solar corona atmosphere must produce prompt charged pions, whose chain decays are source of a solar (electron muon) neutrino 'flare' (at tens or hundreds MeV energy). These brief (minutes) neutrino 'bursts' at largest flare peak may overcome by three to five orders of magnitude the steady atmospheric neutrino noise on the Earth, possibly leading to their detection above detection thresholds (in a full mixed three flavour state). Moreover the birth of anti-neutrinos at a few tens of MeV very clearly flares above a null thermal 'hep' anti-neutrino solar background and also above a tiny supernova relic and atmospheric noise. The largest prompt solar anti-neutrino 'burst' may be well detected in future Super Kamikande (gadolinium implemented) anti-neutrino \\bar\

  11. Long Baseline Neutrino Experiments

    NASA Astrophysics Data System (ADS)

    Mezzetto, Mauro

    2016-05-01

    Following the discovery of neutrino oscillations by the Super-Kamiokande collaboration, recently awarded with the Nobel Prize, two generations of long baseline experiments had been setup to further study neutrino oscillations. The first generation experiments, K2K in Japan, Minos in the States and Opera in Europe, focused in confirming the Super-Kamiokande result, improving the precision with which oscillation parameters had been measured and demonstrating the ντ appearance process. Second generation experiments, T2K in Japan and very recently NOνA in the States, went further, being optimized to look for genuine three neutrino phenomena like non-zero values of θ13 and first glimpses to leptonic CP violation (LCPV) and neutrino mass ordering (NMO). The discovery of leptonic CP violation will require third generation setups, at the moment two strong proposals are ongoing, Dune in the States and Hyper-Kamiokande in Japan. This review will focus a little more in these future initiatives.

  12. Supernovae and neutrinos

    SciTech Connect

    John F. Beacom

    2002-09-19

    A long-standing problem in supernova physics is how to measure the total energy and temperature of {nu}{sub {mu}}, {nu}{sub {tau}}, {bar {nu}}{sub {mu}}, and {bar {nu}}{sub {tau}}. While of the highest importance, this is very difficult because these flavors only have neutral-current detector interactions. We propose that neutrino-proton elastic scattering, {nu} + p {yields} {nu} + p, can be used for the detection of supernova neutrinos in scintillator detectors. It should be emphasized immediately that the dominant signal is on free protons. Though the proton recoil kinetic energy spectrum is soft, with T{sub p} {approx_equal} 2E{sub {nu}}{sup 2}/M{sub p}, and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from {bar {nu}}{sub e} + p {yields} e{sup +} + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum. The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos.

  13. Stochastic neutrino mixing mechanism

    NASA Astrophysics Data System (ADS)

    Guzzo, M. M.; de Holanda, P. C.; Peres, O. L. G.; Zavanin, E. M.

    2013-05-01

    We propose a mechanism which provides an explanation of the Gallium and antineutrino reactor anomalies. Differently from original Pontecorvo’s hypothesis, this mechanism is based on the phenomenological assumption in which the admixture of neutrino mass eigenstates in the moments of neutrino creation and detection can assume different configurations around the admixture parametrized by the usual values of the mixing angles θ12, θ23, and θ13. For simplicity, we assume a Gaussian distribution for the mixing angles in such a way that the average value of this distribution is given by the usual values of the mixing angles, and the width of the Gaussian is denoted by α. We show that the proposed mechanism provides a possible explanation for very short-baseline neutrino disappearance, necessary to accommodate Gallium and antineutrino reactor anomalies, which is not allowed in usual neutrino oscillations based on Pontecorvo’s original hypotheses. We also can describe high-energy oscillation experiments, like LSND, Fermi, and NuTeV, assuming a weakly energy dependent width parameter, α(E), that nicely fits all experimental results.

  14. Precision Solar Neutrino Measurements with the Sudbury Neutrino Observatory

    SciTech Connect

    Oblath, Noah

    2007-10-26

    The Sudbury Neutrino Observatory (SNO) is the first experiment to measure the total flux of active, high-energy neutrinos from the sun. Results from SNO have solved the long-standing 'Solar Neutrino Problem' by demonstrating that neutrinos change flavor. SNO measured the total neutrino flux with the neutral-current interaction of solar neutrinos with 1000 tonnes of D{sub 2}O. In the first two phases of the experiment we detected the neutron from that interaction by capture on deuterium and capture on chlorine, respectively. In the third phase an array of {sup 3}He proportional counters was deployed in the detector. This allows a measurement of the neutral-current neutrons that is independent of the Cherenkov light detected by the PMT array. We are currently developing a unique, detailed simulation of the current pulses from the proportional-counter array that will be used to help distinguish signal and background pulses.

  15. Toroidal magnetized iron neutrino detector for a neutrino factory

    SciTech Connect

    Bross, A.; Wands, R.; Bayes, R.; Laing, A.; Soler, F. J. P.; Cervera Villanueva, A.; Ghosh, T.; Gómez Cadenas, J. J.; Hernández, P.; Martín-Albo, J.; Burguet-Castell, J.

    2013-08-01

    A neutrino factory has unparalleled physics reach for the discovery and measurement of CP violation in the neutrino sector. A far detector for a neutrino factory must have good charge identification with excellent background rejection and a large mass. An elegant solution is to construct a magnetized iron neutrino detector (MIND) along the lines of MINOS, where iron plates provide a toroidal magnetic field and scintillator planes provide 3D space points. In this report, the current status of a simulation of a toroidal MIND for a neutrino factory is discussed in light of the recent measurements of large $\\theta_{13}$. The response and performance using the 10 GeV neutrino factory configuration are presented. It is shown that this setup has equivalent $\\delta_{CP}$ reach to a MIND with a dipole field and is sensitive to the discovery of CP violation over 85% of the values of $\\delta_{CP}$.

  16. Pseudo-dirac neutrinos: a challenge for neutrino telescopes.

    PubMed

    Beacom, John F; Bell, Nicole F; Hooper, Dan; Learned, John G; Pakvasa, Sandip; Weiler, Thomas J

    2004-01-09

    Neutrinos may be pseudo-Dirac states, such that each generation is actually composed of two maximally mixed Majorana neutrinos separated by a tiny mass difference. The usual active neutrino oscillation phenomenology would be unaltered if the pseudo-Dirac splittings are deltam(2) less, similar 10(-12) eV(2); in addition, neutrinoless double beta decay would be highly suppressed. However, it may be possible to distinguish pseudo-Dirac from Dirac neutrinos using high-energy astrophysical neutrinos. By measuring flavor ratios as a function of L/E, mass-squared differences down to deltam(2) approximately 10(-18) eV(2) can be reached. We comment on the possibility of probing cosmological parameters with neutrinos.

  17. Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Capone, A.; Cârloganu, C.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fehn, K.; Fermani, P.; Ferri, M.; Ferry, S.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatà, S.; Gay, P.; Geyer, K.; Giacomelli, G.; Giordano, V.; Gleixner, A.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Hallewell, G.; Hamal, M.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Meli, A.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Petrovic, J.; Piattelli, P.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Trovato, A.; Vallage, B.; Vallée, C.; van Elewyck, V.; Vecchi, M.; Vernin, P.; Visser, E.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.; ANTARES Collaboration

    2012-08-01

    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximal mixing, a mass difference of Δ m322 = (3.1 ± 0.9) ṡ10-3eV2 is obtained, in good agreement with the world average value.

  18. Overview of Neutrino Mixing Models and Their Mixing Angle Predictions

    SciTech Connect

    Albright, Carl H.

    2009-11-01

    An overview of neutrino-mixing models is presented with emphasis on the types of horizontal flavor and vertical family symmetries that have been invoked. Distributions for the mixing angles of many models are displayed. Ways to differentiate among the models and to narrow the list of viable models are discussed.

  19. Brief introduction of the neutrino event generators

    SciTech Connect

    Hayato, Yoshinari

    2015-05-15

    The neutrino interaction simulation programs (event generators) play an important role in the neutrino experiments. This article briefly explains what is the neutrino event generator and how it works.

  20. On the Detection of the Free Neutrino

    DOE R&D Accomplishments Database

    Reines, F.; Cowan, C. L., Jr.

    1953-08-06

    The experiment previously proposed [to Detect the Free Neutrino] has been initiated, with a Hanford pile as a neutrino source. It appears probable that neutrino detection has been accomplished, and confirmatory work is in progress. (K.S.)

  1. Neutrino Physics and Astrophysics with the Antares Neutrino Telescope

    NASA Astrophysics Data System (ADS)

    Spurio, M.

    2015-01-01

    The ANTARES detector is currently the largest operating neutrino telescope in the Northern Hemisphere. Its scientific target is the detection of ultra-high energy cosmic neutrinos through measurement of Cherenkov radiation from neutrino-induced charged leptons. Here, an overview of the results of various analyses will be given, in particular for the searches of point-like sources and the opportunities for multi-messenger astronomy.

  2. Probing Neutrino Properties with Long-Baseline Neutrino Beams

    SciTech Connect

    Marino, Alysia

    2015-06-29

    This final report on an Early Career Award grant began in April 15, 2010 and concluded on April 14, 2015. Alysia Marino's research is focussed on making precise measurements of neutrino properties using intense accelerator-generated neutrino beams. As a part of this grant, she is collaborating on the Tokai-to-Kamioka (T2K) long-baseline neutrino experiment, currently taking data in Japan, and on the Deep Underground Neutrino Experiment (DUNE) design effort for a future Long-Baseline Neutrino Facility (LBNF) in the US. She is also a member of the NA61/SHINE particle production experiment at CERN, but as that effort is supported by other funds, it will not be discussed further here. T2K was designed to search for the disappearance of muon neutrinosμ) and the appearance of electron neutrinose), using a beam of muon neutrino beam that travels 295 km across Japan towards the Super-Kamiokande detector. In 2011 T2K first reported indications of νe appearance, a previously unobserved mode of neutrino oscillations. In the past year, T2K has published a combined analysis of νμ disappearance and νe appearance, and began collecting taking data with a beam of anti-neutrinos, instead of neutrinos, to search for hints of violation of the CP symmetry of the universe. The proposed DUNE experiment has similar physics goals to T2K, but will be much more sensitive due to its more massive detectors and new higher-intensity neutrino beam. This effort will be very high-priority particle physics project in the US over the next decade.

  3. The fourth generation in supergravity

    NASA Astrophysics Data System (ADS)

    Enqvist, K.; Nanopoulos, D. V.; Zwirner, F.

    1985-12-01

    We consider model-independent constraints on the fourth-generation fermion masses and the magnitude of the D-term contribution to the scalar masses. We find that the ratio of vacuum expectation values is limited to the range 1/5 <~ ν2/ν 1 <~ 4.5. We compute the mass spectrum in the class of models where the only source of soft supersymmetry breaking is the gaugino mass m1/2. The lightest charged scalar turns out to be the fourth-generation slepton, which may be ligth enough to be pair-produced at LEP. The present PETRA bound on new charged particles implies that m1/2 >~ 150 GeV. A general feature of the four-generation models is thus a heavy spectrum of sparticles. On leave from International School for Advanced Studies, Trieste, and Istituto Nazionale di Fisica Nucleare, Padua, Italy.

  4. Fourth-generation storage rings

    SciTech Connect

    Galayda, J. N.

    1999-11-16

    It seems clear that a linac-driven free-electron laser is the accepted prototype of a fourth-generation facility. This raises two questions: can a storage ring-based light source join the fourth generation? Has the storage ring evolved to its highest level of performance as a synchrotrons light source? The answer to the second question is clearly no. The author thinks the answer to the first question is unimportant. While the concept of generations has been useful in motivating thought and effort towards new light source concepts, the variety of light sources and their performance characteristics can no longer be usefully summed up by assignment of a ''generation'' number.

  5. Fourth Aircraft Interior Noise Workshop

    NASA Technical Reports Server (NTRS)

    Stephens, David G. (Compiler)

    1992-01-01

    The fourth in a series of NASA/SAE Interior Noise Workshops was held on May 19 and 20, 1992. The theme of the workshop was new technology and applications for aircraft noise with emphasis on source noise prediction; cabin noise prediction; cabin noise control, including active and passive methods; and cabin interior noise procedures. This report is a compilation of the presentations made at the meeting which addressed the above issues.

  6. Higgs production through sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Cazzato, Eros; Fischer, Oliver

    2016-10-01

    In scenarios with sterile (right-handed) neutrinos with an approximate “lepton-number-like” symmetry, the heavy neutrinos (the mass eigenstates) can have masses around the electroweak scale and couple to the Higgs boson with, in principle, unsuppressed Yukawa couplings, while the smallness of the light neutrinos’ masses is guaranteed by the approximate symmetry. The on-shell production of the heavy neutrinos at lepton colliders, together with their subsequent decays into a light neutrino and a Higgs boson, constitutes a resonant contribution to the Higgs production mechanism. This resonant mono-Higgs production mechanism can contribute significantly to the mono-Higgs observables at future lepton colliders. A dedicated search for the heavy neutrinos in this channel exhibits sensitivities for the electron neutrino Yukawa coupling as small as ˜ 5 × 10-3. Furthermore, the sensitivity is enhanced for higher center-of-mass energies, when identical integrated luminosities are considered.

  7. Unparticle physics and neutrino phenomenology

    SciTech Connect

    Barranco, J.; Bolanos, A.; Miranda, O. G.; Moura, C. A.; Rashba, T. I.

    2009-04-01

    We have constrained unparticle interactions with neutrinos and electrons using available data on neutrino-electron elastic scattering and the four CERN LEP experiments data on mono photon production. We have found that, for neutrino-electron elastic scattering, the MUNU experiment gives better constraints than previous reported limits in the region d>1.5. The results are compared with the current astrophysical limits, pointing out the cases where these limits may or may not apply. We also discuss the sensitivity of future experiments to unparticle physics. In particular, we show that the measurement of coherent reactor neutrino scattering off nuclei could provide a good sensitivity to the couplings of unparticle interaction with neutrinos and quarks. We also discuss the case of future neutrino-electron experiments as well as the International Linear Collider.

  8. Solar neutrino experiments: An update

    SciTech Connect

    Hahn, R.L.

    1993-12-31

    The situation in solar neutrino physics has changed drastically in the past few years, so that now there are four neutrino experiments in operation, using different methods to look at different regions of the solar neutrino energy spectrum. These experiments are the radiochemical {sup 37}Cl Homestake detector, the realtime Kamiokande detector, and the different forms of radiochemical {sup 71}Ga detectors used in the GALLEX and SAGE projects. It is noteworthy that all of these experiments report a deficit of observed neutrinos relative to the predictions of standard solar models (although in the case of the gallium detectors, the statistical errors are still relatively large). This paper reviews the basic principles of operation of these neutrino detectors, reports their latest results and discusses some theoretical interpretations. The progress of three realtime neutrino detectors that are currently under construction, SuperKamiok, SNO and Borexino, is also discussed.

  9. Neutrino Non-standard Interactions

    NASA Astrophysics Data System (ADS)

    Girardelli, David; Guzzo, Marcelo

    The quantum neutrino oscillation phenomenon is not perfectly described by the actual standard physics models. Experimental results of different neutrino sources like reactors, accelerators and supernovae, indicate a non-negligible flux error if compared to the predicted theoretical models. This work aims to propose different non-standard neutrino in- teractions and predict LBNE potential in analyze it. That approach could give a better understanding of the quantum neutrino oscillation phenomenon. As an example, we can use the weak leptonic number violation that generate new interactions that is not possible using the Standard Model. This violation is directly related with a change in the Flavor neutrino Hamiltonian and consequently connected with the quantum neutrino oscillation.

  10. Search for a Light Sterile Neutrino at Daya Bay

    NASA Astrophysics Data System (ADS)

    An, F. P.; Balantekin, A. B.; Band, H. R.; Beriguete, W.; Bishai, M.; Blyth, S.; Butorov, I.; Cao, G. F.; Cao, J.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chasman, C.; Chen, H.; Chen, Q. Y.; Chen, S. M.; Chen, X.; Chen, X.; Chen, Y. X.; Chen, Y.; Cheng, Y. P.; Cherwinka, J. J.; Chu, M. C.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, Y. Y.; Diwan, M. V.; Draeger, E.; Du, X. F.; Dwyer, D. A.; Edwards, W. R.; Ely, S. R.; Fu, J. Y.; Ge, L. Q.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guan, M. Y.; Guo, X. H.; Hackenburg, R. W.; Han, G. H.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Hinrichs, P.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, L. M.; Hu, L. J.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H.; Huang, X. T.; Huber, P.; Hussain, G.; Isvan, Z.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiang, H. J.; Jiao, J. B.; Johnson, R. A.; Kang, L.; Kettell, S. H.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lai, W. C.; Lau, K.; Lebanowski, L.; Lee, J.; Lei, R. T.; Leitner, R.; Leung, A.; Leung, J. K. C.; Lewis, C. A.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, W. D.; Li, X. N.; Li, X. Q.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, P. Y.; Lin, S. K.; Lin, Y. C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, H.; Liu, J. L.; Liu, J. C.; Liu, S. S.; Liu, Y. B.; Lu, C.; Lu, H. Q.; Luk, K. B.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; McDonald, K. T.; McFarlane, M. C.; McKeown, R. D.; Meng, Y.; Mitchell, I.; Monari Kebwaro, J.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Nemchenok, I.; Ngai, H. Y.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevski, A.; Patton, S.; Pec, V.; Peng, J. C.; Piilonen, L. E.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, B.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Shao, B. B.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tam, Y. H.; Tang, X.; Themann, H.; Tsang, K. V.; Tsang, R. H. M.; Tull, C. E.; Tung, Y. C.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, L. S.; Wang, L. Y.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, W. W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Webber, D. M.; Wei, H. Y.; Wei, Y. D.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, Q.; Xia, D. M.; Xia, J. K.; Xia, X.; Xing, Z. Z.; Xu, J. Y.; Xu, J. L.; Xu, J.; Xu, Y.; Xue, T.; Yan, J.; Yang, C. C.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Yeh, M.; Yeh, Y. S.; Young, B. L.; Yu, G. Y.; Yu, J. Y.; Yu, Z. Y.; Zang, S. L.; Zeng, B.; Zhan, L.; Zhang, C.; Zhang, F. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, Q.; Zhang, S. H.; Zhang, Y. C.; Zhang, Y. M.; Zhang, Y. H.; Zhang, Y. X.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y.; Zhao, Y. B.; Zheng, L.; Zhong, W. L.; Zhou, L.; Zhou, Z. Y.; Zhuang, H. L.; Zou, J. H.; Daya Bay Collaboration

    2014-10-01

    A search for light sterile neutrino mixing was performed with the first 217 days of data from the Daya Bay Reactor Antineutrino Experiment. The experiment's unique configuration of multiple baselines from six 2.9 GWth nuclear reactors to six antineutrino detectors deployed in two near (effective baselines 512 m and 561 m) and one far (1579 m) underground experimental halls makes it possible to test for oscillations to a fourth (sterile) neutrino in the 10-3 eV2<|Δm412|<0.3 eV2 range. The relative spectral distortion due to the disappearance of electron antineutrinos was found to be consistent with that of the three-flavor oscillation model. The derived limits on sin22θ14 cover the 10-3 eV2≲|Δm412|≲0.1 eV2 region, which was largely unexplored.

  11. Search for a light sterile neutrino at Daya Bay.

    PubMed

    An, F P; Balantekin, A B; Band, H R; Beriguete, W; Bishai, M; Blyth, S; Butorov, I; Cao, G F; Cao, J; Chan, Y L; Chang, J F; Chang, L C; Chang, Y; Chasman, C; Chen, H; Chen, Q Y; Chen, S M; Chen, X; Chen, X; Chen, Y X; Chen, Y; Cheng, Y P; Cherwinka, J J; Chu, M C; Cummings, J P; de Arcos, J; Deng, Z Y; Ding, Y Y; Diwan, M V; Draeger, E; Du, X F; Dwyer, D A; Edwards, W R; Ely, S R; Fu, J Y; Ge, L Q; Gill, R; Gonchar, M; Gong, G H; Gong, H; Grassi, M; Gu, W Q; Guan, M Y; Guo, X H; Hackenburg, R W; Han, G H; Hans, S; He, M; Heeger, K M; Heng, Y K; Hinrichs, P; Hor, Y K; Hsiung, Y B; Hu, B Z; Hu, L M; Hu, L J; Hu, T; Hu, W; Huang, E C; Huang, H; Huang, X T; Huber, P; Hussain, G; Isvan, Z; Jaffe, D E; Jaffke, P; Jen, K L; Jetter, S; Ji, X P; Ji, X L; Jiang, H J; Jiao, J B; Johnson, R A; Kang, L; Kettell, S H; Kramer, M; Kwan, K K; Kwok, M W; Kwok, T; Lai, W C; Lau, K; Lebanowski, L; Lee, J; Lei, R T; Leitner, R; Leung, A; Leung, J K C; Lewis, C A; Li, D J; Li, F; Li, G S; Li, Q J; Li, W D; Li, X N; Li, X Q; Li, Y F; Li, Z B; Liang, H; Lin, C J; Lin, G L; Lin, P Y; Lin, S K; Lin, Y C; Ling, J J; Link, J M; Littenberg, L; Littlejohn, B R; Liu, D W; Liu, H; Liu, J L; Liu, J C; Liu, S S; Liu, Y B; Lu, C; Lu, H Q; Luk, K B; Ma, Q M; Ma, X Y; Ma, X B; Ma, Y Q; McDonald, K T; McFarlane, M C; McKeown, R D; Meng, Y; Mitchell, I; Monari Kebwaro, J; Nakajima, Y; Napolitano, J; Naumov, D; Naumova, E; Nemchenok, I; Ngai, H Y; Ning, Z; Ochoa-Ricoux, J P; Olshevski, A; Patton, S; Pec, V; Peng, J C; Piilonen, L E; Pinsky, L; Pun, C S J; Qi, F Z; Qi, M; Qian, X; Raper, N; Ren, B; Ren, J; Rosero, R; Roskovec, B; Ruan, X C; Shao, B B; Steiner, H; Sun, G X; Sun, J L; Tam, Y H; Tang, X; Themann, H; Tsang, K V; Tsang, R H M; Tull, C E; Tung, Y C; Viren, B; Vorobel, V; Wang, C H; Wang, L S; Wang, L Y; Wang, M; Wang, N Y; Wang, R G; Wang, W; Wang, W W; Wang, X; Wang, Y F; Wang, Z; Wang, Z; Wang, Z M; Webber, D M; Wei, H Y; Wei, Y D; Wen, L J; Whisnant, K; White, C G; Whitehead, L; Wise, T; Wong, H L H; Wong, S C F; Worcester, E; Wu, Q; Xia, D M; Xia, J K; Xia, X; Xing, Z Z; Xu, J Y; Xu, J L; Xu, J; Xu, Y; Xue, T; Yan, J; Yang, C C; Yang, L; Yang, M S; Yang, M T; Ye, M; Yeh, M; Yeh, Y S; Young, B L; Yu, G Y; Yu, J Y; Yu, Z Y; Zang, S L; Zeng, B; Zhan, L; Zhang, C; Zhang, F H; Zhang, J W; Zhang, Q M; Zhang, Q; Zhang, S H; Zhang, Y C; Zhang, Y M; Zhang, Y H; Zhang, Y X; Zhang, Z J; Zhang, Z Y; Zhang, Z P; Zhao, J; Zhao, Q W; Zhao, Y; Zhao, Y B; Zheng, L; Zhong, W L; Zhou, L; Zhou, Z Y; Zhuang, H L; Zou, J H

    2014-10-03

    A search for light sterile neutrino mixing was performed with the first 217 days of data from the Daya Bay Reactor Antineutrino Experiment. The experiment's unique configuration of multiple baselines from six 2.9 GW(th) nuclear reactors to six antineutrino detectors deployed in two near (effective baselines 512 m and 561 m) and one far (1579 m) underground experimental halls makes it possible to test for oscillations to a fourth (sterile) neutrino in the 10(-3) eV(2)<|Δm(41)(2) |< 0.3 eV(2) range. The relative spectral distortion due to the disappearance of electron antineutrinos was found to be consistent with that of the three-flavor oscillation model. The derived limits on sin(2) 2θ(14) cover the 10(-3) eV(2) ≲ |Δm(41)(2)| ≲ 0.1 eV(2) region, which was largely unexplored.

  12. Astrophysical and cosmological constraints to neutrino properties

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Schramm, David N.; Turner, Michael S.

    1989-01-01

    The astrophysical and cosmological constraints on neutrino properties (masses, lifetimes, numbers of flavors, etc.) are reviewed. The freeze out of neutrinos in the early Universe are discussed and then the cosmological limits on masses for stable neutrinos are derived. The freeze out argument coupled with observational limits is then used to constrain decaying neutrinos as well. The limits to neutrino properties which follow from SN1987A are then reviewed. The constraint from the big bang nucleosynthesis on the number of neutrino flavors is also considered. Astrophysical constraints on neutrino-mixing as well as future observations of relevance to neutrino physics are briefly discussed.

  13. Advancements in Solar Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Miramonti, Lino; Antonelli, Vito

    2013-03-01

    We review the results of solar neutrino physics, with particular attention to the data obtained and the analyses performed in the last decades, which were determinant to solve the solar neutrino problem (SNP), proving that neutrinos are massive and oscillating particles and contributing to refine the solar models. We also discuss the perspectives of the presently running experiments in this sector and of the ones planned for the near future and the impact they can have on elementary particle physics and astrophysics.

  14. Muon colliders and neutrino factories

    SciTech Connect

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  15. Sterile neutrinos: fact or fiction?

    NASA Astrophysics Data System (ADS)

    Huber, Patrick

    2017-01-01

    In this talk I will critically review some of the anomalies which in combination could point to the existence of a eV-scale sterile neutrino. Each of these anomalies is well below the 5 sigma level individually and may have explanations besides sterile neutrinos. At the same time each anomaly requires a separate explanation if it is not caused by a sterile neutrino. To further complicate the gpicture, some data sets are in mutual disagreement.

  16. Quantum coherence of relic neutrinos.

    PubMed

    Fuller, George M; Kishimoto, Chad T

    2009-05-22

    We argue that in at least a portion of the history of the Universe the relic background neutrinos are spatially extended, coherent superpositions of mass states. We show that an appropriate quantum mechanical treatment affects the neutrino mass values derived from cosmological data. The coherence scale of these neutrino flavor wave packets can be an appreciable fraction of the causal horizon size, raising the possibility of spacetime curvature-induced decoherence.

  17. Muon Colliders and Neutrino Factories

    SciTech Connect

    Geer, Steve; /Fermilab

    2009-11-01

    Over the past decade, there has been significant progress in developing the concepts and technologies needed to produce, capture, and accelerate {Omicron}(10{sup 21}) muons per year. These developments have paved the way for a new type of neutrino source (neutrino factory) and a new type of very high energy lepton-antilepton collider (muon collider). This article reviews the motivation, design, and research and development for future neutrino factories and muon colliders.

  18. Nonstandard neutrino interactions in supernovae

    NASA Astrophysics Data System (ADS)

    Stapleford, Charles J.; Väänänen, Daavid J.; Kneller, James P.; McLaughlin, Gail C.; Shapiro, Brandon T.

    2016-11-01

    Nonstandard interactions (NSI) of neutrinos with matter can significantly alter neutrino flavor evolution in supernovae with the potential to impact explosion dynamics, nucleosynthesis, and the neutrinos signal. In this paper, we explore, both numerically and analytically, the landscape of neutrino flavor transformation effects in supernovae due to NSI and find a new, heretofore unseen transformation processes can occur. These new transformations can take place with NSI strengths well below current experimental limits. Within a broad swath of NSI parameter space, we observe symmetric and standard matter-neutrino resonances for supernovae neutrinos, a transformation effect previously only seen in compact object merger scenarios; in another region of the parameter space we find the NSI can induce neutrino collective effects in scenarios where none would appear with only the standard case of neutrino oscillation physics; and in a third region the NSI can lead to the disappearance of the high density Mikheyev-Smirnov-Wolfenstein resonance. Using a variety of analytical tools, we are able to describe quantitatively the numerical results allowing us to partition the NSI parameter according to the transformation processes observed. Our results indicate nonstandard interactions of supernova neutrinos provide a sensitive probe of beyond the Standard Model physics complementary to present and future terrestrial experiments.

  19. High-energy neutrino astrophysics

    NASA Astrophysics Data System (ADS)

    Halzen, Francis

    2017-03-01

    The chargeless, weakly interacting neutrinos are ideal astronomical messengers as they travel through space without scattering, absorption or deflection. But this weak interaction also makes them notoriously di cult to detect, leading to neutrino observatories requiring large-scale detectors. A few years ago, the IceCube experiment discovered neutrinos originating beyond the Sun with energies bracketed by those of the highest energy gamma rays and cosmic rays. I discuss how these high-energy neutrinos can be detected and what they can tell us about the origins of cosmic rays and about dark matter.

  20. Neutrino helicity asymmetries in leptogenesis

    SciTech Connect

    Bento, Luis; Santos, Francisco C.

    2005-05-01

    It is pointed out that the heavy singlet neutrinos characteristic of leptogenesis develop asymmetries in the abundances of the two helicity states as a result of the same mechanism that generates asymmetries in the standard lepton sector. Neutrinos and standard leptons interchange asymmetries in collisions with each other. It is shown that an appropriate quantum number, B-L{sup '}, combining baryon, lepton and neutrino asymmetries, is not violated as fast as the standard B-L. This suppresses the washout effects relevant for the derivation of the final baryon asymmetry. One presents detailed calculations for the period of neutrino thermal production in the framework of the singlet seesaw mechanism.

  1. Supernova neutrinos and explosive nucleosynthesis

    SciTech Connect

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Shibagaki, S.; Mathews, G. J.; Nakamura, K.; Suzuki, T.

    2014-05-09

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and θ{sub 13}, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements {sup 11}B and {sup 7}Li encapsulated in the presolar grains. Combining the recent experimental constraints on θ{sub 13}, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  2. Magnus approximation in neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Acero, Mario A.; Aguilar-Arevalo, Alexis A.; D'Olivo, J. C.

    2011-04-01

    Oscillations between active and sterile neutrinos remain as an open possibility to explain some anomalous experimental observations. In a four-neutrino (three active plus one sterile) mixing scheme, we use the Magnus expansion of the evolution operator to study the evolution of neutrino flavor amplitudes within the Earth. We apply this formalism to calculate the transition probabilities from active to sterile neutrinos with energies of the order of a few GeV, taking into account the matter effect for a varying terrestrial density.

  3. A gauge model for right handed neutrinos as dark matter

    NASA Astrophysics Data System (ADS)

    Hernández-Pinto, R. J.; Pérez-Lorenzana, A.

    2008-07-01

    We suggest a simple extension of the electroweak group, SU(2)L×U(1)Y×U(1)B-L, where the breaking of U(1)B-L symmetry provides masses for right handed neutrinos, N, at an acceptable range for them to be Dark Matter (DM). We study the contributions to Mo/ller and Bhabha scattering due to B-L neutral boson to constrain its gauge coupling. We analize N decay rates to determine the number of families that should be considered as DM candidates. The decoupling temperature between active and sterile neutrinos is also calculated.

  4. Probing neutrino nature at Borexino detector with chromium neutrino source

    NASA Astrophysics Data System (ADS)

    Sobków, W.; Błaut, A.

    2016-10-01

    In this paper, we indicate a possibility of utilizing the intense chromium source (˜ 370 PBq) in probing the neutrino nature in low energy neutrino experiments with the ultra-low threshold and background real-time Borexino detector located near the source (˜ 8 m). We analyse the elastic scattering of electron neutrinos (Dirac or Majorana, respectively) on the unpolarised electrons in the relativistic neutrino limit. We assume that the incoming neutrino beam is the superposition of left-right chiral states produced by the chromium source. Left chiral neutrinos may be detected by the standard V - A and non-standard scalar S_L, pseudoscalar P_L, tensor T_L interactions, while right chiral ones partake only in the exotic V + A and S_R, P_R, T_R interactions. Our model-independent study is carried out for the flavour (current) neutrino eigenstates. We compute the expected event number for the standard V-A interaction of the left chiral neutrinos using the current experimental values of standard couplings and in the case of left-right chiral superposition. We show that the significant decrement in the event number due to the interference terms between the standard and exotic interactions for the Majorana neutrinos may appear. We also demonstrate how the presence of the exotic couplings affects the energy spectrum of outgoing electrons, both for the Dirac and Majorana cases. The 90~% C.L. sensitivity contours in the planes of corresponding exotic couplings are found. The presence of interferences in the Majorana case gives the stronger constraints than for the Dirac neutrinos, even if the neutrino source is placed outside the detector.

  5. Prospecting with neutrinos

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    One of the latest attempts to explore the interface between physics and geophysics is the extravagant scheme of Alvaro De Rújula, Sheldon Glashow, Robert Wilson, and Georges Charpak, to be published in Physics Reports. In what these theoretical and experimental physicists described recently as “our mad project” (Physics Today, August 1983), a high-energy neutrino beam is to be used as a geophysical prospecting tool.The beam would be able to look for oil, natural gas, and high-atomic-number metal ores, and it would be able to profile the vertical density distribution of the earth. De Rújula et al. come to this project from the world of big physics machines, so it is natural to expect that the “Geotron,” the field instrument to supply and focus the neutrino beam, is to be big also.

  6. Gravity triggered neutrino condensates

    SciTech Connect

    Barenboim, Gabriela

    2010-11-01

    In this work we use the Schwinger-Dyson equations to study the possibility that an enhanced gravitational attraction triggers the formation of a right-handed neutrino condensate, inducing dynamical symmetry breaking and generating a Majorana mass for the right-handed neutrino at a scale appropriate for the seesaw mechanism. The composite field formed by the condensate phase could drive an early epoch of inflation. We find that to the lowest order, the theory does not allow dynamical symmetry breaking. Nevertheless, thanks to the large number of matter fields in the model, the suppression by additional powers in G of higher order terms can be compensated, boosting them up to their lowest order counterparts. This way chiral symmetry can be broken dynamically and the infrared mass generated turns out to be in the expected range for a successful seesaw scenario.

  7. The Enigmatic Neutrino

    NASA Astrophysics Data System (ADS)

    Lincoln, Don; Miceli, Tia

    2015-09-01

    Through a century of work, physicists have refined a model to describe all fundamental particles, the forces they share, and their interactions on a microscopic scale. This masterpiece of science is called the Standard Model. While this theory is incredibly powerful, we know of at least one particle that exhibits behaviors that are outside of its scope and remain unexplained. These particles are called neutrinos and they are the enigmatic ghosts of the quantum world. Interacting only via the weak nuclear force, literally billions of them pass through you undetected every second. While we understand that particular spooky behavior, we do not understand in any fundamental way how it is that neutrinos can literally change their identity, much as if a house cat could turn into a lion and then a tiger before transitioning back into a house cat again.

  8. Birth of Neutrino Astrophysics

    SciTech Connect

    2010-05-07

    Based mainly on the results of two experiments, KamiokaNDE and Super-KamiokaNDE, the birth of neutrino astrophysics will be described. At the end, the result of the third generation Kamioka experiment, KamLAND, will be discussed together with the future possibilities.Organiser(s): Daniel Treille / EP DivisionNote: * Tea & coffee will be served at 16:00 hrs. Please note unusual day.

  9. Experimental Neutrino Physics

    ScienceCinema

    Walter, Chris [Duke University, Durham, North Carolina, United States

    2016-07-12

    In this talk, I will review how a set of experiments in the last decade has given us our current understanding of neutrino properties.  I will show how experiments in the last year or two have clarified this picture, and will discuss how new experiments about to start will address remaining questions.  I will particularly emphasize the relationship between various experimental techniques.

  10. Neutrinos and flavor symmetries

    SciTech Connect

    Tanimoto, Morimitsu

    2015-07-15

    We discuss the recent progress of flavor models with the non-Abelian discrete symmetry in the lepton sector focusing on the θ{sub 13} and CP violating phase. In both direct approach and indirect approach of the flavor symmetry, the non-vanishing θ{sub 13} is predictable. The flavor symmetry with the generalised CP symmetry can also predicts the CP violating phase. We show the phenomenological analyses of neutrino mixing for the typical flavor models.

  11. Birth of Neutrino Astrophysics

    ScienceCinema

    None

    2016-07-12

    Based mainly on the results of two experiments, KamiokaNDE and Super-KamiokaNDE, the birth of neutrino astrophysics will be described. At the end, the result of the third generation Kamioka experiment, KamLAND, will be discussed together with the future possibilities.Organiser(s): Daniel Treille / EP DivisionNote: * Tea & coffee will be served at 16:00 hrs. Please note unusual day.

  12. Natural Neutrino Dark Energy

    SciTech Connect

    Gurwich, Ilya

    2010-06-23

    1 construct a general description for neutrino dark energy models, that do not require exotic particles or strange couplings. With the help of the above, this class of models is reduced to a single function with several constraints. It is shown that these models lead to some concrete predictions that can be verified (or disproved) within the next decade, using results from PLANK, EUCLID and JDEM.

  13. Neutrino sector with Majorana mass terms and Friedberg-Lee symmetry

    NASA Astrophysics Data System (ADS)

    Jarlskog, C.

    2008-04-01

    We examine a recently proposed symmetry/condition by Friedberg and Lee in a framework where three right-handed neutrinos are added to the spectrum of the three-family minimal standard model. It is found that the right-handed neutrinos are very special, with respect to this symmetry. In the symmetry limit the neutrinos are massless, which could possibly be a hint about why they are light. Imposed as a condition and not as a full symmetry, we find that one of the three right-handed neutrinos simply decouples (has only gravitational interactions) and one of the interacting neutrinos is massless. The possible relation of the model to the seesaw mechanism is briefly discussed.

  14. Radiative neutrino mass model with degenerate right-handed neutrinos

    NASA Astrophysics Data System (ADS)

    Kashiwase, Shoichi; Suematsu, Daijiro

    2016-03-01

    The radiative neutrino mass model can relate neutrino masses and dark matter at a TeV scale. If we apply this model to thermal leptogenesis, we need to consider resonant leptogenesis at that scale. It requires both finely degenerate masses for the right-handed neutrinos and a tiny neutrino Yukawa coupling. We propose an extension of the model with a U(1) gauge symmetry, in which these conditions are shown to be simultaneously realized through a TeV scale symmetry breaking. Moreover, this extension can bring about a small quartic scalar coupling between the Higgs doublet scalar and an inert doublet scalar which characterizes the radiative neutrino mass generation. It also is the origin of the Z_2 symmetry which guarantees the stability of dark matter. Several assumptions which are independently supposed in the original model are closely connected through this extension.

  15. Neutrino mass and mixing: Summary of the neutrino sessions

    SciTech Connect

    Bowles, T.J.

    1993-01-01

    A great deal of experimental and theoretical effort is underway to use neutrinos as a probe for Physics Beyond the Standard Model. Most of these efforts center on the questions of the possible existence of non zero neutrino mass and mixing. Sessions at the Moriond conferences have dealt with these questions at most of the meetings during the last several years and this year was no exception. Presentations covering most of the current and planned research in this field were presented and discussed. Although there is, at present, no definitive evidence for a non zero neutrino mass and mixing, several unresolved problems (in particular solar neutrinos) do seem to be indicating the likely existence of new neutrino properties. It is likely that before the end of this decade, efforts now being initiated will be able to determine whether or not the hints we are now seeing are really due to new physics.

  16. Measurement of neutrino flux from neutrino-electron elastic scattering

    SciTech Connect

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman,; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.

    2016-06-10

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently, a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ~10% due to uncertainties in hadron production and focusing. We also isolated a sample of 135±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Finally, our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

  17. Measurement of neutrino flux from neutrino-electron elastic scattering

    DOE PAGES

    Park, J.; Aliaga, L.; Altinok, O.; ...

    2016-06-10

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently, a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ~10% due to uncertainties in hadron production and focusing. We also isolated a sample of 135±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9%more » to 6%. Finally, our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.« less

  18. Measurement of neutrino flux from neutrino-electron elastic scattering

    NASA Astrophysics Data System (ADS)

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Miner ν A Collaboration

    2016-06-01

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ˜10 % due to uncertainties in hadron production and focusing. We have isolated a sample of 135 ±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

  19. Higgs phenomenology in warped extra dimensions with a fourth generation

    SciTech Connect

    Frank, Mariana; Korutlu, Beste; Toharia, Manuel

    2011-10-01

    We study a warped extra-dimension scenario where the standard model fields lie in the bulk, with the addition of a fourth family of fermions. We concentrate on the flavor structure of the Higgs couplings with fermions in the flavor anarchy ansatz. Even without a fourth family, these couplings will be generically misaligned with respect to the standard model fermion mass matrices. The presence of the fourth family typically enhances the misalignment effects and we show that one should expect them to be highly nonsymmetrical in the (34) intergenerational mixing. The radiative corrections from the new fermions and their flavor-violating couplings to the Higgs affect negligibly known experimental precision measurements such as the oblique parameters and Z{yields}bb or Z{yields}{mu}{sup +}{mu}{sup -}. On the other hand, {Delta}F=1, 2 processes, mediated by tree-level Higgs exchange, as well as radiative corrections to b{yields}s{gamma} and {mu}{yields}e{gamma} put some generic pressure on the allowed size of the flavor-violating couplings. But more importantly, these couplings will alter the Higgs decay patterns as well as those of the new fermions, and produce very interesting new signals associated to Higgs phenomenology in high energy colliders. These signals might become very important indirect signals for these type of models as they would be present even when the KK mass scale is high and no heavy KK particle is discovered.

  20. Is There a Massive Neutrino?

    ERIC Educational Resources Information Center

    Selvin, Paul

    1991-01-01

    Discussed is the question of whether "heavy" neutrinos really do exist based on the evidence supplied by four research groups. The implications of its existence on the disciplines of particle physics, astrophsyics, and cosmology are discussed. Background information on the different types of neutrinos is provided. (KR)

  1. Neutrino cross-sections: Experiments

    SciTech Connect

    Sánchez, F.

    2015-07-15

    Neutrino-nucleus cross-sections are as of today the main source of systematic errors for oscillation experiments together with neutrino flux uncertainties. Despite recent experimental and theoretical developments, future experiments require even higher precisions in their search of CP violation. We will review the experimental status and explore possible future developments required by next generation of experiments.

  2. Neutrino Scattering from 12C

    NASA Astrophysics Data System (ADS)

    Hayes, Anna

    2017-01-01

    Neutrino scattering cross-sections from 12C, which have been measure for pion decay-at-rest and pion decay-in-flight neutrino energies, are difficult to reproduce theoretically. In this talk I discuss the physics issues involved and show the importance of a proper treatment of the conservation of the vector current.

  3. Neutrino Flavor Identification in SALSA

    NASA Astrophysics Data System (ADS)

    Miočinović, Predrag

    The proposed Saltdome Shower Array (SalSA) experiment will detect coherent Cherenkov radio signals from high-energy neutrino interactions in a naturally occurring salt dome. By identifying the number and the angular profile of radio emissions in any given event, distinction can be made between charged-current (CC) and neutral-current (NC) neutrino interactions. Additionally, the flavor of the neutrino can be identified in the case of charged-current interactions. Preliminary results for nominal GZK neutrino flux indicate that ~25% of all events can be correctly identified as coming from charged-current interactions of νμ's or ντ's. These charged-current initiated events can further be separated by the flavor of the original neutrino, either νμ's or ντ's.

  4. Oscillations of solar atmosphere neutrinos

    SciTech Connect

    Fogli, G. L.; Lisi, E.; Mirizzi, A.; Montanino, D.; Serpico, P. D.

    2006-11-01

    The Sun is a source of high-energy neutrinos (E(greater-or-similar sign)10 GeV) produced by cosmic ray interactions in the solar atmosphere. We study the impact of three-flavor oscillations (in vacuum and in matter) on solar atmosphere neutrinos, and calculate their observable fluxes at Earth, as well as their event rates in a kilometer-scale detector in water or ice. We find that peculiar three-flavor oscillation effects in matter, which can occur in the energy range probed by solar atmosphere neutrinos, are significantly suppressed by averaging over the production region and over the neutrino and antineutrino components. In particular, we find that the relation between the neutrino fluxes at the Sun and at the Earth can be approximately expressed in terms of phase-averaged vacuum oscillations, dominated by a single mixing parameter (the angle {theta}{sub 23})

  5. Solar Neutrinos with Exotic Scattering

    NASA Astrophysics Data System (ADS)

    Pulido, João

    The possibility of unconventional neutrino scattering in the Sun via flavor changing neutral currents as a possible source of the solar neutrino deficit is investigated. If the effect is really significant, a resonant process will occur. Taking into account the neutrino deficit reported by the solar neutrino experiments (Kamiokande II, SAGE Gallex), one finds Δ2m21 = (0.6-1.4) × 10-5 eV2 with no vacuum mixing and 0.16 ≤ fex ≤ 0.34 where fex is the lepton violating coupling. Our understanding of the neutrino phenomenon in the Sun may be improved through accuracy improvements in experiments measuring νee- elastic scattering or others searching for exotic lepton decays.

  6. Review of Low Energy Neutrinos

    NASA Astrophysics Data System (ADS)

    Vergados, J. D.

    2007-04-01

    Some issues regarding low energy neutrinos are reviewed. We focus on three aspects i)We show that by employing very low energy (a few keV) electron neutrinos, neutrino disappearance oscillations can be investigated by detecting recoiling electrons with low threshold spherical gaseous TPC's. In such an experiment, which is sensitive to the small mixing angle θ13, the novel feature is that the oscillation length is so small that the full oscillation takes place inside the detector. Thus one can determine accurately all the oscillation parameters and, in particular, measure or set a good limit on θ13. ii) Low threshold gaseous TPC detectors can also be used in detecting nuclear recoils by exploiting the neutral current interaction. Thus these robust and stable detectors can be employed in supernova neutrino detection. iii) The lepton violating neutrinoless double decay is investigated focusing on how the absolute neutrino mass can be extracted from the data.

  7. Challenges Confronting Superluminal Neutrino Models

    NASA Astrophysics Data System (ADS)

    Evslin, Jarah

    2012-12-01

    This talk opens the CosPA2011 session on OPERA's superluminal neutrino claim. I summarize relevant observations and constraints from OPERA, MINOS, ICARUS, KamLAND, IceCube and LEP as well as observations of SN1987A. I selectively review some models of neutrino superluminality which have been proposed since OPERA's announcement, focusing on a neutrino dark energy model. Powerful theoretical constraints on these models arise from Cohen-Glashow bremsstrahlung and from phase space requirements for the initial neutrino production. I discuss these constraints and how they might be evaded in models in which the maximum velocities of both neutrinos and charged leptons are equal but only superluminal inside of a dense medium.

  8. The KATRIN Neutrino Mass Experiment

    NASA Astrophysics Data System (ADS)

    Parno, Diana; Katrin Collaboration

    2017-01-01

    While neutrino oscillation experiments have demonstrated that the particles have non-zero mass, the absolute neutrino mass scale is still unknown. The Karlsruhe Tritium Neutrino experiment (KATRIN) is designed to improve on previous laboratory limits by an order of magnitude, probing the effective neutrino mass with a sensitivity approaching 0.2 eV at 90% confidence via the kinematics of tritium beta decay. At the same time, KATRIN has the potential to scan for sterile neutrinos at eV and keV scales. After years of preparation, all major components are now on site and commissioning is underway. I will report on the current status of the experiment, including recent results and preparations for the introduction of tritium later this year. US participation in KATRIN is supported by the U.S. Department of Energy Office of Science, Office of Nuclear Physics under Award Number DE-FG02-97ER41020.

  9. Neutrinos Get Under Your Skin

    SciTech Connect

    Kayser, Boris

    2005-08-30

    The enigmatic neutrinos are among the most abundant of the tiny particles that make up our universe. They are a billion times more abundant than the particles of which the earth and we humans are made. Thus, to understand the universe, we must understand the neutrinos. Moving ghostlike, almost invisibly, through matter, these particles are very hard to pin down and study. However, dramatic progress has recently been made. In this lecture, the neutrinos will be introduced. Their behavior, so different from that of everyday objects, will be explained, and recent discoveries will be described. The open questions about neutrinos, forthcoming attempts to answer these questions, and the role of neutrinos in shaping the universe and making human life possible, will all be explained.

  10. Neutrino Cross Sections at Solar Energies

    NASA Astrophysics Data System (ADS)

    Strigari, Louis

    2017-01-01

    I will review neutrino nucleus cross section measurements and uncertainties for energies applicable to solar neutrinos. I will discuss how these cross sections are important for interpreting solar neutrino experimental data, and highlight the most important neutrino-nucleus interactions that will be relevant for forthcoming dark matter direct detection experiments. NSF PHY-1522717.

  11. Neutrino mass models and CP violation

    SciTech Connect

    Joshipura, Anjan S.

    2011-10-06

    Theoretical ideas on the origin of (a) neutrino masses (b) neutrino mass hierarchies and (c) leptonic mixing angles are reviewed. Topics discussed include (1) symmetries of neutrino mass matrix and their origin (2) ways to understand the observed patterns of leptonic mixing angles and (3)unified description of neutrino masses and mixing angles in grand unified theories.

  12. Theory and phenomenology of supernova neutrinos

    SciTech Connect

    Lunardini, Cecilia

    2015-07-15

    The theory and phenomenology of supernova neutrinos is reviewed, with focus on the most recent advancements on the neutrino flux predicted by supernova numerical models, on neutrino oscillations inside the star and in the Earth, and on the physics of the diffuse supernova neutrino background. Future directions of research are briefly summarized.

  13. Can one distinguish τ-neutrinos from antineutrinos in neutral-current pion production processes?

    NASA Astrophysics Data System (ADS)

    Hernández, E.; Nieves, J.; Valverde, M.

    2007-04-01

    A potential way to distinguish τ-neutrinos from antineutrinos, below the τ-production threshold, but above the pion production one, is presented. It is based on the different behavior of the neutral-current pion production off the nucleon, depending on whether it is induced by neutrinos or antineutrinos. This procedure for distinguishing τ-neutrinos from antineutrinos neither relies on any nuclear model, nor it is affected by any nuclear effect (distortion of the outgoing nucleon waves, etc.). We show that neutrino-antineutrino asymmetries occur both in the totally integrated cross sections and in the pion azimuthal differential distributions. To define the asymmetries for the latter distributions we just rely on Lorentz-invariance. All these asymmetries are independent of the lepton family and can be experimentally measured by using electron or muon neutrinos, due to the lepton family universality of the neutral-current neutrino interaction. Nevertheless and to estimate their size, we have also used the chiral model of [E. Hernández, J. Nieves, M. Valverde, arxiv:hep-ph/0701149] at intermediate energies. Results are really significant since the differences between neutrino and antineutrino induced reactions are always large in all physical channels.

  14. Particle Astrophysics with Cosmic Neutrinos

    NASA Astrophysics Data System (ADS)

    Kheirandish, Ali

    IceCube's discovery of cosmic neutrinos offers a unique view of our universe and provides powerful insights into some of the most energetic and enigmatic objects in the cosmos. Cosmic neutrinos reveal an unobstructed view at wavelengths where the universe is opaque to photons. The existence of the cosmic-neutrino flux has challenged our understanding of the universe. It is somewhat counterintuitive that the most surprising property of the observed flux is its magnitude. An immediate inference from the large neutrino flux observed by IceCube, which is predominantly extragalactic in origin, is that the total energy density of neutrinos in the high-energy universe is similar to that of photons. The matching energy densities of the extragalactic gamma-ray flux detected by Fermi and the high-energy neutrino flux measured by IceCube suggest the possibility of a common origin. Therefore, rather than detecting some exotic sources, it looks more likely that IceCube observes the same universe as astronomers do. The finding implies that a large fraction of the energy in the non-thermal universe originates in hadronic processes, indicating a larger level than previously thought. The focus of this dissertation is on identifying the sources of high-energy cosmic neutrinos observed in IceCube. Moreover, with the lack of confirmation to date of any source (type of sources) as the dominant contributor to the observed neutrino flux, we have studied prospects for observing different sources in IceCube by considering both transient and steady sources in the sky. Finally, we introduce new techniques to study the strength of neutrino dark matter interactions with the properties of high-energy cosmic neutrinos.

  15. Long-baseline Neutrino Oscillation at DUNE

    NASA Astrophysics Data System (ADS)

    Worcester, Elizabeth; DUNE Collaboration Collaboration

    2017-01-01

    The Deep Underground Neutrino Experiment (DUNE) is a long-baseline neutrino oscillation experiment with primary physics goals of determining the neutrino mass hierarchy and measuring δc P with sufficient sensitivity to discover CP violation in neutrino oscillation. CP violation sensitivity in DUNE requires careful understanding of systematic uncertainty, with contributions expected from uncertainties in the neutrino flux, neutrino interactions, and detector effects. In this presentation, we will describe the expected sensitivity of DUNE to long-baseline neutrino oscillation parameters, how various aspects of the experimental design contribute to that sensitivity, and the planned strategy for constraining systematic uncertainty in these measurements.

  16. Muon Neutrino Disappearance Measurement at MINOS+

    NASA Astrophysics Data System (ADS)

    Carroll, Thomas; Minos+ Collaboration

    2017-01-01

    The MINOS experiment ran from 2003 until 2012 and produced some of the best precision measurements of the atmospheric neutrino oscillation parameters Δm322 and θ23 using muon neutrino disappearance of beam and atmospheric neutrinos and electron neutrino appearance of beam neutrinos. The MINOS+ experiment succeeded MINOS in September 2013. For almost three years MINOS+ collected data from the Medium Energy NuMI neutrino beam at Fermilab. Results of the muon neutrino disappearance analysis from the first two years of MINOS+ data will be presented. These results will be compared to and combined with the MINOS measurement.

  17. ANTARES deep sea neutrino telescope results

    SciTech Connect

    Mangano, Salvatore; Collaboration: ANTARES Collaboration

    2014-01-01

    The ANTARES experiment is currently the largest underwater neutrino telescope in the Northern Hemisphere. It is taking high quality data since 2007. Its main scientific goal is to search for high energy neutrinos that are expected from the acceleration of cosmic rays from astrophysical sources. This contribution reviews the status of the detector and presents several analyses carried out on atmospheric muons and neutrinos. For example it shows the results from the measurement of atmospheric muon neutrino spectrum and of atmospheric neutrino oscillation parameters as well as searches for neutrinos from steady cosmic point-like sources, for neutrinos from gamma ray bursts and for relativistic magnetic monopoles.

  18. Implications of Neutrino Oscillations on the Dark-Matter World

    NASA Astrophysics Data System (ADS)

    Hwang, W.-Y. Pauchy

    2014-01-01

    According to my own belief that "The God wouldn't create a world that is so boring that a particle knows only the very feeble weak interaction.", maybe we underestimate the roles of neutrinos. We note that right-handed neutrinos play no roles, or don't exist, in the minimal Standard Model. We discuss the language to write down an extended Standard Model - using renormalizable quantum field theory as the language; to start with a certain set of basic units under a certain gauge group; in fact, to use the three right-handed neutrinos to initiate the family gauge group SUf (3). Specifically we use the left-handed and right-handed spinors to form the basic units together with SUc (3) × SUL (2) × U (1) × SUf (3) as the gauge group. The dark-matter SUf (3) world couples with the lepton world, but not with the quark world. Amazingly enough, the space of the Standard-Model Higgs Φ (1 , 2), the family Higgs triplet Φ(3, 1), and the neutral part of the mixed family Higgs Φ0 (3 , 2) undergoes the spontaneous symmetry breaking, i.e. the Standard-Model Higgs mechanism and the "project-out" family Higgs mechanism, to give rise to the weak bosons W± and Z0, one Standard-Model Higgs, the eight massive family gauge bosons, and the remaining four massive neutral family Higgs particles, and nothing more. Thus, the roles of neutrinos in this extended Standard Model are extremely interesting in connection with the dark-matter world.

  19. The solar-neutrino problem, 1995.

    NASA Astrophysics Data System (ADS)

    Berezinsky, V.

    1995-12-01

    The status of the solar-neutrino problem (SNP), as is seen in 1995, is reviewed. Basically, there are two principal solutions to the SNP: (i) with standard neutrino (neutrino of SM of electroweak interactions) and (ii) with non-standard neutrino (neutrino beyond the SM). Actually, one can distinguish three solar-neutrino problems: the deficit of 8B neutrinos, the deficit of 7Be neutrinos and the HOMESTAKE/KAMIOKANDE conflict. The first problem probably can be solved with small correlated changes of nuclear cross-sections and the change of the central temperature of the Sun. The deficit of 7Be neutrinos looks like the key problem. The HOMESTAKE/KAMIOKANDE conflict strongly disfavours or excludes the standard neutrino (nuclear/astrophysical solution to the SNP). MSW conversion gives a most plausible explanation to the SNP.

  20. Collective neutrino oscillations in turbulent backgrounds

    SciTech Connect

    Reid, Giles; Adams, Jenni; Seunarine, Suruj

    2011-10-15

    Using a Kolmogorov turbulence model, we investigate the effects of fluctuations in matter and neutrino density in the region near a supernova core on the flavor oscillations of neutrinos emitted in the core collapse in a single-angle, two-flavor approximation. Deviation from a smooth background neutrino density causes significant alterations in the final flavor state of the neutrino ensemble after 400 km, but even very large fluctuations in the matter density do not strongly affect the state of the neutrinos after the collective phase. In both cases, there is a strong effect on the neutrino flavor evolution at intermediate radii, with the flavor evolution becoming much more chaotic. The effect of fluctuations also depends strongly on the initial neutrino spectra. We conclude that the true neutrino fluxes arriving at Earth from core-collapse supernova could differ considerably from predictions of neutrino fluxes based on approximate models with smoothly decreasing matter and neutrino densities.

  1. Neutrinos and duality

    SciTech Connect

    Lalakulich, O.; Leitner, T.; Buss, O.; Mosel, U.; Praet, Ch.; Jachowicz, N.; Ryckebusch, J.

    2009-11-25

    A phenomenological study of Bloom-Gilman duality is performed in electron and neutrino scattering on nuclei. In the resonance region the structure functions are calculated within the phenomenological models of Ghent and Giessen groups, where only the resonance contribution is taken into account, and the background one is neglected. Structure functions F{sub 2} in the resonance region are compared with the DIS ones, extracted directly from the experimental data. The results show, that within the models considered the Bloom-Gilman duality does not work well for nuclei: the integrated strength in the resonance region is considerably lower than in the DIS one.

  2. Sterile Neutrinos in Cold Climates

    SciTech Connect

    Jones, Benjamin J.P.

    2015-09-01

    Measurements of neutrino oscillations at short baselines contain an intriguing set of experimental anomalies that may be suggestive of new physics such as the existence of sterile neutrinos. This three-part thesis presents research directed towards understanding these anomalies and searching for sterile neutrino oscillations. Part I contains a theoretical discussion of neutrino coherence properties. The open-quantum-system picture of neutrino beams, which allows a rigorous prediction of coherence distances for accelerator neutrinos, is presented. Validity of the standard treatment of active and sterile neutrino oscillations at short baselines is verified, and non-standard coherence loss effects at longer baselines are predicted. Part II concerns liquid argon detector development for the MicroBooNE experiment, which will search for short-baseline oscillations in the Booster Neutrino Beam at Fermilab. Topics include characterization and installation of the MicroBooNE optical system; test-stand measurements of liquid argon optical properties with dissolved impurities; optimization of wavelength-shifting coatings for liquid argon scintillation light detection; testing and deployment of high-voltage surge arrestors to protect TPC field cages; and software development for optical and TPC simulation and reconstruction. Part III presents a search for sterile neutrinos using the IceCube neutrino telescope, which has collected a large sample of atmospheric-neutrino-induced events in the 1-10 TeV energy range. Sterile neutrinos would modify the detected neutrino flux shape via MSW-resonant oscillations. Following a careful treatment of systematic uncertainties in the sample, no evidence for MSW-resonant oscillations is observed, and exclusion limits on 3+1 model parameter space are derived. Under the mixing assumptions made, the 90% confidence level exclusion limit extends to sin224 ≤ 0.02 at m2 ~ 0.3 eV2, and the LSND and Mini

  3. Models of neutrino mass, mixing and CP violation

    NASA Astrophysics Data System (ADS)

    King, Stephen F.

    2015-12-01

    In this topical review we argue that neutrino mass and mixing data motivates extending the Standard Model (SM) to include a non-Abelian discrete flavour symmetry in order to accurately predict the large leptonic mixing angles and {C}{P} violation. We begin with an overview of the SM puzzles, followed by a description of some classic lepton mixing patterns. Lepton mixing may be regarded as a deviation from tri-bimaximal mixing, with charged lepton corrections leading to solar mixing sum rules, or tri-maximal lepton mixing leading to atmospheric mixing rules. We survey neutrino mass models, using a roadmap based on the open questions in neutrino physics. We then focus on the seesaw mechanism with right-handed neutrinos, where sequential dominance (SD) can account for large lepton mixing angles and {C}{P} violation, with precise predictions emerging from constrained SD (CSD). We define the flavour problem and discuss progress towards a theory of favour using GUTs and discrete family symmetry. We classify models as direct, semidirect or indirect, according to the relation between the Klein symmetry of the mass matrices and the discrete family symmetry, in all cases focussing on spontaneous {C}{P} violation. Finally we give two examples of realistic and highly predictive indirect models with CSD, namely an A to Z of flavour with Pati-Salam and a fairly complete A 4 × SU(5) SUSY GUT of flavour, where both models have interesting implications for leptogenesis.

  4. Analyzing Atmospheric Neutrino Oscillations

    SciTech Connect

    Escamilla, J.; Ernst, D. J.; Latimer, D. C.

    2007-10-26

    We provide a pedagogic derivation of the formula needed to analyze atmospheric data and then derive, for the subset of the data that are fully-contained events, an analysis tool that is quantitative and numerically efficient. Results for the full set of neutrino oscillation data are then presented. We find the following preliminary results: 1.) the sub-dominant approximation provides reasonable values for the best fit parameters for {delta}{sub 32}, {theta}{sub 23}, and {theta}{sub 13} but does not quantitatively provide the errors for these three parameters; 2.) the size of the MSW effect is suppressed in the sub-dominant approximation; 3.) the MSW effect reduces somewhat the extracted error for {delta}{sub 32}, more so for {theta}{sub 23} and {theta}{sub 13}; 4.) atmospheric data alone constrains the allowed values of {theta}{sub 13} only in the sub-dominant approximation, the full three neutrino calculations requires CHOOZ to get a clean constraint; 5.) the linear in {theta}{sub 13} terms are not negligible; and 6.) the minimum value of {theta}{sub 13} is found to be negative, but at a statistically insignificant level.

  5. LSND neutrino oscillation results

    SciTech Connect

    Louis, W.C.; LSND Collaboration

    1996-10-01

    The LSND (Liquid Scintillator Neutrino Detector) experiment at Los Alamos has conducted a search for muon antineutrino {r_arrow} electron antineutrino oscillations using muon neutrinos from antimuon decay at rest. The electron antineutrinos are detected via the reaction electron antineutrino + proton {r_arrow} positron + neutron, correlated with the 2.2-MeV gamma from neutron + proton {r_arrow} deuteron + gamma. The use of tight cuts to identify positron events with correlated gamma rays yields 22 events with positron energy between 36 and 60 MeV and only 4.6 {+-} 0.6 background events. The probability that this excess is due entirely to a statistical fluctuation is 4.1 {times} 10{sup -8}. A chi-squared fit to the entire positron sample results in a total excess of 51.8 {sup +18.7}{sub -16.9} {+-} 8.0 events with positron energy between 20 and 60 MeV. If attributed to muon antineutrino {r_arrow} electron antineutrino oscillations, this corresponds to an oscillation probability (averaged over the experimental energy and spatial acceptance) of (0.31 {+-} 0.12 {+-} 0.05){percent}. 10 refs., 7 figs., 1 tab.

  6. Report on solar neutrino experiments

    SciTech Connect

    Davis, R. Jr.; Cleveland, B.T.; Rowley, J.K.

    1984-01-01

    A summary is given of the status of solar neutrino research that includes results of the Brookhaven chlorine detector, a discussion of the development of the gallium, bromine, and lithium radiochemical detectors, and some proposals for direct counting detectors. The gallium and bromine radiochemical detectors are developed and are capable of giving critical information of interest about neutrino physics and the fusion reactions in the interior of the sun. A plan for building these detectors is outlined and a rough cost estimate is given. A review is given of the plans in the Soviet Union in solar neutrino research.

  7. Neutrino interactions in neutron matter

    NASA Astrophysics Data System (ADS)

    Cipollone, Andrea

    2012-12-01

    Neutrino flow is the dominant mechanism of energy transfer in the latest stages of supernovae explosions and in compact stars. The Standard Model of particle physics and accelerator data, provide a satisfactory description of neutrino physics in vacuum up to TeV scale. Nevertheless modeling the dynamics of neutrino interaction in the nuclear environment involves severe difficulties. This thesis in mainly aimed at obtaining the weak response of infinite matter, using both the Correlated Basis Function theory and Landau Theory of Fermi liquid to take into account properly nucleon-nucleon hard core potential and long range correlation (quasi-particle, collective modes, ecc.)

  8. Supernova neutrino nucleosynthesis of light elements with neutrino oscillations.

    PubMed

    Yoshida, Takashi; Kajino, Toshitaka; Yokomakura, Hidekazu; Kimura, Keiichi; Takamura, Akira; Hartmann, Dieter H

    2006-03-10

    Light element synthesis in supernovae through neutrino-nucleus interactions, i.e., the v process, is affected by neutrino oscillations in the supernova environment. There is a resonance of 13-mixing in the O/C layer, which increases the rates of charged-current -process reactions in the outer He-rich layer. The yields of 7Li and 11B increase by about a factor of 1.9 and 1.3, respectively, for a normal mass hierarchy and an adiabatic 13-mixing resonance, compared to those without neutrino oscillations. In the case of an inverted mass hierarchy and a nonadiabatic 13-mixing resonance, the increase in the 7Li and 11B yields is much smaller. Observations of the 7Li/11B ratio in stars showing signs of supernova enrichment could thus provide a unique test of neutrino oscillations and constrain their parameters and the mass hierarchy.

  9. Probing neutrino flavor transition mechanism with ultrahigh energy astrophysical neutrinos

    NASA Astrophysics Data System (ADS)

    Lai, Kwang-Chang; Lin, Guey-Lin; Liu, Tsung-Che

    2014-02-01

    Observation of ultrahigh energy astrophysical neutrinos and identification of their flavors have been proposed for future neutrino telescopes. The flavor ratio of astrophysical neutrinos observed on the Earth depends on both the initial flavor ratio at the source and flavor transitions taking place during propagations of these neutrinos. The flavor transition mechanisms are well classified with our model-independent parametrization. We find that a new parameter R ≡ϕe/(ϕμ+ϕτ) can probe directly the flavor transition in the framework of our model-independent parametrization, without the assumption of the νμ-ντ symmetry. A few flavor-transition models are employed to test our parametrization with this new observable. The observational constraints on flavor transition mechanisms by the new observable are discussed through our model-independent parametrization.

  10. Third ventriculostomy and fourth ventricle outlets obstruction.

    PubMed

    Ferrer, Enrique; de Notaris, Matteo

    2013-02-01

    A dilated fourth ventricle due to outlet obstruction is a clinical-radiologic entity with symptoms similar to those of a posterior fossa space-occupying lesion. Indeed, blockage of the foramina of Luschka and Magendie and of the aqueduct results in a "trapped" fourth ventricle. Continued cerebrospinal fluid (CSF) production within the fourth ventricle leads to cystic dilatation of the fourth ventricle. We could not, until now, understand the phenomenon, mainly on exploring endoscopically the permeability of the whole aqueduct. In adults, we call this condition the functional trapped fourth ventricle because in none of our cases have we found physical obstruction of CSF flow. Third ventricle-fourth ventriculostomy is by far the most frequently used technique for cannulation of the aqueduct in a trapped fourth ventricle. In our reported cases, we have introduced a silicone tube stent from below after accessing the fourth ventricle through a small suboccipital craniectomy, ascending it on the aqueduct in order to reach the third ventricle. Management of this infrequently isolated fourth ventricle, but communicated with the rest of ventricular system, remains a challenge for neurosurgeons. Lack of knowledge of the pathophysiology makes it difficult to treat a problem that we do not understand.

  11. Evidence for neutrino oscillations in the Sudbury Neutrino Observatory

    SciTech Connect

    Marino, Alysia Diane

    2004-01-01

    The Sudbury Neutrino Observatory (SNO) is a large-volume heavy water Cerenkov detector designed to resolve the solar neutrino problem. SNO observes charged-current interactions with electron neutrinos, neutral-current interactions with all active neutrinos, and elastic-scattering interactions primarily with electron neutrinos with some sensitivity to other flavors. This dissertation presents an analysis of the solar neutrino flux observed in SNO in the second phase of operation, while ~2 tonnes of salt (NaCl) were dissolved in the heavy water. The dataset here represents 391 live days of data. Only the events above a visible energy threshold of 5.5 MeV and inside a fiducial volume within 550 cm of the center of the detector are studied. The neutrino flux observed via the charged-current interaction is [1.71 ± 0.065(stat.)±$0.065\\atop{0.068}$(sys.)±0.02(theor.)] x 106cm-2s-1, via the elastic-scattering interaction is [2.21±0.22(stat.)±$0.12\\atop{0.11}$(sys.)±0.01(theor.)] x 106cm-2s-1, and via the neutral-current interaction is [5.05±0.23(stat.)±$0.31\\atop{0.37}$(sys.)±0.06(theor.)] x 106cm-2s-1. The electron-only flux seen via the charged-current interaction is more than 7σ below the total active flux seen via the neutral-current interaction, providing strong evidence that neutrinos are undergoing flavor transformation as they travel from the core of the Sun to the Earth. The most likely origin of the flavor transformation is matter-induced flavor oscillation.

  12. The many aspects of neutrino physics

    SciTech Connect

    Frieman, J.A.

    1992-01-01

    In mid-November, over seventy physicists gathered at Fermilab for an informal workshop on the Many Aspects of Neutrino Physics, which dovetailed with and also helped lay the groundwork for the succeeding more narrowly focused conference on Long Baseline Neutrino Oscillations. The workshop indeed covered many of the interrelated aspects of neutrino physics: 17 keV neutrinos (experiments, theoretical models, and astrophysical constraints), neutrino properties (double beta decay experiments, neutrino magnetic moments), neutrinos from/as weakly interacting massive particles (WIMPs) in cosmology and astrophysics, atmospheric neutrinos, and solar neutrinos. In the following, I provide a brief and thoroughly biased account of only some of the many interesting developments discussed at the workshop.

  13. Fourth-order 2N-storage Runge-Kutta schemes

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Kennedy, Christopher A.

    1994-01-01

    A family of five-stage fourth-order Runge-Kutta schemes is derived; these schemes required only two storage locations. A particular scheme is identified that has desirable efficiency characteristics for hyperbolic and parabolic initial (boundary) value problems. This scheme is competitive with the classical fourth-order method (high-storage) and is considerably more efficient and accurate than existing third-order low-storage schemes.

  14. Majorana neutrinos and magnetic fields

    NASA Astrophysics Data System (ADS)

    Schechter, J.; Valle, J. W. F.

    1981-10-01

    It is stressed that if neutrinos are massive they are probably of "Majorana" type. This implies that their magnetic-moment form factor vanishes identically so that the previously discussed phenomenon of spin rotation in a magnetic field would not appear to take place. We point out that Majorana neutrinos can, however, have transition moments. This enables an inhomogeneous magnetic field to rotate both spin and "flavor" of a neutrino. In this case the spin rotation changes particle to antiparticle. The spin-flavor-rotation effect is worked out in detail. We also discuss the parametrization and calculation of the electromagnetic form factors of Majorana neutrinos. Our discussion takes into account the somewhat unusual quantum theory of massive Majorana particles.

  15. Group velocity of neutrino waves

    NASA Astrophysics Data System (ADS)

    Indumathi, D.; Kaul, Romesh K.; Murthy, M. V. N.; Rajasekaran, G.

    2012-03-01

    We follow up on the analysis of Mecozzi and Bellini (arxiv:arXiv:1110.1253v1) where they showed, in principle, the possibility of superluminal propagation of neutrinos, as indicated by the recent OPERA result. We refine the analysis by introducing wave packets for the superposition of energy eigenstates and discuss the implications of their results with realistic values for the mixing and mass parameters in a full three neutrino mixing scenario. Our analysis shows the possibility of superluminal propagation of neutrino flavour in a very narrow range of neutrino parameter space. Simultaneously this reduces the number of observable events drastically. Therefore, the OPERA result cannot be explained in this frame-work.

  16. Direct measurements of neutrino mass

    SciTech Connect

    Robertson, R.G.H.

    1991-01-01

    Some recent developments in the experimental search for neutrino mass are discussed. New data from Los Alamos on the electron neutrino mass as measured in tritium beta decay give an upper limit of 9.3 eV at the 95% confidence level. This result is not consistent with the long-standing ITEP result of 26(5) eV within a model-independent'' range of 17 to 40 eV. It now appears that the electron neutrino is not sufficiently massive to close the universe by itself. Hime and Jelley report finding new evidence for a 17-keV neutrino in the {Beta} decay of {sup 35}S and {sup 63}Ni. Many other experiments are being reported and the situation is still unresolved. 56 refs., 1 fig., 3 tabs.

  17. Fourth international radiopharmaceutical dosimetry symposium

    SciTech Connect

    Schlafke-Stelson, A.T.; Watson, E.E.

    1986-04-01

    The focus of the Fourth International Radiopharmaceutical Dosimetry Symposium was to explore the impact of current developments in nuclear medicine on absorbed dose calculations. This book contains the proceedings of the meeting including the edited discussion that followed the presentations. Topics that were addressed included the dosimetry associated with radiolabeled monoclonal antibodies and blood elements, ultrashort-lived radionuclides, and positron emitters. Some specific areas of discussion were variations in absorbed dose as a result of alterations in the kinetics, the influence of radioactive contaminants on dose, dose in children and in the fetus, available instrumentation and techniques for collecting the kinetic data needed for dose calculation, dosimetry requirements for the review and approval of new radiopharmaceuticals, and a comparison of the effect on the thyroid of internal versus external irradiation. New models for the urinary blader, skeleton including the active marrow, and the blood were presented. Several papers dealt with the validity of traditional ''average-organ'' dose estimates to express the dose from particulate radiation that has a short range in tissue. These problems are particularly important in the use of monoclonal antibodies and agents used to measure intracellular functions. These proceedings have been published to provide a resource volume for anyone interested in the calculation of absorbed radiation dose.

  18. The experimental status of neutrino masses and mixings

    SciTech Connect

    Robertson, R.G.H.

    1992-01-01

    We review the current status of experimental knowledge about neutrinos derived from kinematic mass measurements, neutrino oscillation searches at reactors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indications that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing.

  19. Neutrino mass and mixing, and non-accelerator experiments

    SciTech Connect

    Robertson, R.G.H.

    1992-01-01

    We review the current status of experimental knowledge about neutrinos derived from kinematic mass measurements, neutrino oscillation searches at reactors and accelerators, solar neutrinos, atmospheric neutrinos, and single and double beta decay. The solar neutrino results yield fairly strong and consistent indication that neutrino oscillations are occurring. Other evidence for new physics is less consistent and convincing.

  20. The Latest Neutrino Oscillation Results from Super-Kamiokande

    SciTech Connect

    Sobel, Henry W.

    2006-02-08

    Super-Kamiokande is the world's largest water Cherenkov detector, with a net mass of 50,000 tons. The scientific goals of the experiment include searches for proton decays, and studies of neutrinos from various sources. In this paper we review some of the latest results from our neutrino oscillations studies using atmospheric neutrinos, solar neutrinos and neutrinos from the KEK neutrino beam.

  1. 40 years of neutrino physics

    NASA Astrophysics Data System (ADS)

    Reines, Frederick

    Wolfgang Pauli and Enrico Fermi pioneered the hypothesis and characteristics of the weak interaction and the elementary particle called the neutrino. Since its discovery some forty years ago the neutrino has been shown to be a fundamental constituent of matter with a surprisingly rich, and in very many ways unexpected, set of characteristics ranging from basic roles in the generation of energy in the sun to supernovæ.

  2. Proposed geological solar neutrino measurement

    SciTech Connect

    Cowan, G.A.; Haxton, W.C.

    1982-01-01

    It may be possible to measure the boron-8 solar neutrino flux, averaged over the past several million years, from the concentration of technetium-98 in molybdenum-rich ore. This geochemical experiment could provide the first test of nonstandard solar models that suggest a relation between the chlorine-37 solar neutrino puzzle and the most recent glacial epoch. The necessary conditions for achieving a meaningful measurement are identified and discussed.

  3. Solar Neutrinos: Status and Prospects

    NASA Astrophysics Data System (ADS)

    Haxton, W. C.; Hamish Robertson, R. G.; Serenelli, Aldo M.

    2013-08-01

    We describe the current status of solar neutrino measurements and of the theory—both neutrino physics and solar astrophysics—employed in interpreting measurements. Important recent developments include Super-Kamiokande's determination of the ν-e elastic scattering rate for 8B neutrinos to 3%; the latest Sudbury Neutrino Observatory (SNO) global analysis in which the inclusion of low-energy data from SNO I and II significantly narrowed the range of allowed values for the neutrino mixing angle θ12; Borexino results for both the 7Be and proton-electron-proton (pep) neutrino fluxes, the first direct measurements constraining the rate of proton-proton (pp) I and pp II burning in the Sun; global reanalyses of solar neutrino data that take into account new reactor results on θ13; a new decadal evaluation of the nuclear physics of the pp chain and CNO cycle defining best values and uncertainties in the nuclear microphysics input to solar models; recognition of an emerging discrepancy between two tests of solar metallicity, helioseismological mappings of the sound speed in the solar interior, and analyses of the metal photoabsorption lines based on our best current description of the Sun's photosphere; a new round of standard solar model calculations optimized to agree either with helioseismology or with the new photospheric analysis; and, motivated by the solar abundance problem, the development of nonstandard, accreting solar models, in order to investigate possible consequences of the metal segregation that occurred in the proto-solar disk. We review this progress and describe how new experiments such as SNO+ could help us further exploit neutrinos as a unique probe of stellar interiors.

  4. Probing supernova physics with neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Minakata, H.

    2002-08-01

    We point out that solar neutrino oscillations with large mixing angle as evidenced in current solar neutrino data have a strong impact on strategies for diagnosing collapse-driven supernova (SN) through neutrino observations. Such oscillations induce a significant deformation of the energy spectra of neutrinos, thereby allowing us to obtain otherwise inaccessible features of SN neutrino spectra. We demonstrate that one can determine temperatures and luminosities of non-electron flavor neutrinos by observing bar{nu}_{e} from galactic SN in massive water Cherenkov detectors by the charged current reactions on protons.

  5. Status of non-standard neutrino interactions.

    PubMed

    Ohlsson, Tommy

    2013-04-01

    The phenomenon of neutrino oscillations has been established as the leading mechanism behind neutrino flavor transitions, providing solid experimental evidence that neutrinos are massive and lepton flavors are mixed. Here we review sub-leading effects in neutrino flavor transitions known as non-standard neutrino interactions (NSIs), which is currently the most explored description for effects beyond the standard paradigm of neutrino oscillations. In particular, we report on the phenomenology of NSIs and their experimental and phenomenological bounds as well as an outlook for future sensitivity and discovery reach.

  6. On LBNE neutrino flux systematic uncertainties

    SciTech Connect

    Lebrun, Paul L. G.; Hylen, James; Marchionni, Alberto; Fields, Laura; Bashyal, Amit; Park, Seongtae; Watson, Blake

    2015-10-15

    The systematic uncertainties in the neutrino flux of the Long-Baseline Neutrino Experiment, due to alignment uncertanties and tolerances of the neutrino beamline components, are estimated. In particular residual systematics are evaluated in the determination of the neutrino flux at the far detector, assuming that the experiment will be equipped with a near detector with the same target material of the far detector, thereby canceling most of the uncertainties from hadroproduction and neutrino cross sections. This calculation is based on a detailed Geant4-based model of the neutrino beam line that includes the target, two focusing horns, the decay pipe and ancillary items, such as shielding.

  7. Neutrino scattering and flavor transformation in supernovae.

    PubMed

    Cherry, John F; Carlson, J; Friedland, Alexander; Fuller, George M; Vlasenko, Alexey

    2012-06-29

    We argue that the small fraction of neutrinos that undergo direction-changing scattering outside of the neutrinosphere could have significant influence on neutrino flavor transformation in core-collapse supernova environments. We show that the standard treatment for collective neutrino flavor transformation is adequate at late times but could be inadequate in early epochs of core-collapse supernovae, where the potentials that govern neutrino flavor evolution are affected by the scattered neutrinos. Taking account of this effect, and the way it couples to entropy and composition, will require a new approach in neutrino flavor transformation modeling.

  8. Families Around the World. The Japanese Family. Teacher's Resource Unit.

    ERIC Educational Resources Information Center

    Minnesota Univ., Minneapolis. Project Social Studies Curriculum Center.

    The resource unit prepared for grade one is the fourth in a series on the theme of Families Around the World. For this study of the Japanese family, background material is presented for the teacher describing the site of Suye Mura, family structure, basic physical needs, a typical day, socialization, communication, village life today, and the…

  9. Neutrinos and Beyond

    SciTech Connect

    Huber, Patrick

    2016-09-16

    Scientifically, this grant supported the further development and maintenance of GLoBES, which serves as standard tool for all long-baseline oscillation experiments, including DUNE. A strong focus was on the oscillation physics in long-baseline experiments including the difficult issues of optimization and systematics as well as search for new physics. Sterile neutrinos at the eV-scale, their phenomenological implications and possibilities to test their existence represented another major topic. In particular, we have performed the to-date most accurate computation of the antineutrino spectrum resulting from fissions in a nuclear reactor. In synergy with this research area we also explored potential applications to nuclear non-proliferation safeguards.

  10. Extraterrestrial high energy neutrino fluxes

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1979-01-01

    Using the most recent cosmic ray spectra up to 2x10 to the 20th power eV, production spectra of high energy neutrinos from cosmic ray interactions with interstellar gas and extragalactic interactions of ultrahigh energy cosmic rays with 3K universal background photons are presented and discussed. Estimates of the fluxes from cosmic diffuse sources and the nearby quasar 3C273 are made using the generic relationship between secondary neutrinos and gammas and using recent gamma ray satellite data. These gamma ray data provide important upper limits on cosmological neutrinos. Quantitative estimates of the observability of high energy neutrinos from the inner galaxy and 3C273 above atmospheric background for a DUMAND type detector are discussed in the context of the Weinberg-Salam model with sq sin theta omega = 0.2 and including the atmospheric background from the decay of charmed mesons. Constraints on cosmological high energy neutrino production models are also discussed. It appears that important high energy neutrino astronomy may be possible with DUMAND, but very long observing times are required.

  11. Voids in massive neutrino cosmologies

    SciTech Connect

    Massara, Elena; Villaescusa-Navarro, Francisco; Viel, Matteo; Sutter, P.M. E-mail: villaescusa@oats.inaf.it E-mail: sutter@oats.inaf.it

    2015-11-01

    Cosmic voids are a promising environment to characterize neutrino-induced effects on the large-scale distribution of matter in the universe. We perform a comprehensive numerical study of the statistical properties of voids, identified both in the matter and galaxy distributions, in massive and massless neutrino cosmologies. The matter density field is obtained by running several independent N-body simulations with cold dark matter and neutrino particles, while the galaxy catalogs are modeled by populating the dark matter halos in simulations via a halo occupation distribution (HOD) model to reproduce the clustering properties observed by the Sloan Digital Sky Survey (SDSS) II Data Release 7. We focus on the impact of massive neutrinos on the following void statistical properties: number density, ellipticities, two-point statistics, density and velocity profiles. Considering the matter density field, we find that voids in massive neutrino cosmologies are less evolved than those in the corresponding massless neutrinos case: there is a larger number of small voids and a smaller number of large ones, their profiles are less evacuated, and they present a lower wall at the edge. Moreover, the degeneracy between σ{sub 8} and Ω{sub ν} is broken when looking at void properties. In terms of the galaxy density field, we find that differences among cosmologies are difficult to detect because of the small number of galaxy voids in the simulations. Differences are instead present when looking at the matter density and velocity profiles around these voids.

  12. Neutrino mass from triton decay

    NASA Astrophysics Data System (ADS)

    Weinheimer, Christian

    2006-07-01

    Since the discovery of neutrino flavor oscillation in different fields and by many different experiments we believe that neutrinos have non-vanishing masses in contrast to their current description within the Standard Model of particle physics. However, the absolute values of the neutrino masses, which are as important for particle physics as they are for cosmology and astrophysics, cannot be determined by oscillation experiments alone. There are a few ways to determine the neutrino mass scale, but the only model-independent method is the investigation of the electron energy spectrum of a β decay near its endpoint with tritium being the ideal isotope for the classical spectrometer set-up. The tritium β decay experiments at Mainz and Troitsk have recently been finished. At Mainz all relevant systematic uncertainties have been investigated by dedicated experiments yielding an upper limit of m(ν)<2.3eV/c (90% C.L.). The new Karlsruhe Tritium Neutrino Experiment (KATRIN) will enhance the sensitivity on the neutrino mass by an ultra-precise measurement of the tritium β decay spectrum near the endpoint by another order of magnitude down to 0.2 eV/c2 by using a very strong windowless gaseous molecular tritium source and a huge ultra-high resolution electrostatic spectrometer of MAC-E-Filter type. The recent achievements in test experiments show, that this very challenging experiment is feasible.

  13. High-energy neutrino astronomy

    NASA Astrophysics Data System (ADS)

    Montaruli, Teresa

    2012-07-01

    Neutrino astronomy, conceptually conceived four decades ago, has entered an exciting phase for providing results on the quest for the sources of the observed highest energy particles. IceCube and ANTARES are now completed and are scanning in space and time possible signals of high energy neutrinos indicating the existence of such sources. DeepCore, inside IceCube, is a playground for vetoed neutrino measurement with better potential below 1 TeV. A larger and denser detector is now being discussed. ARA, now in test phase, will be composed by radio stations that could cover up to ~ 100 km2 and aims at the highest energy region of cosmogenic neutrinos. The non observation of cosmic events is on one side a source of disappointment, on the other it represents by itself an important result. If seen in the context of a multi-messenger science, the combination of photon and cosmic ray experiment results brings invaluable information. The experimental upper bounds of the cubic-kilometer telescope IceCube are now below the theoretical upper bounds for extragalactic fluxes of neutrinos from optically thin sources. These are responsible for accelerating the extragalactic cosmic rays. Such limits constrain the role of gamma-ray bursts, described by the fireball picture, as sources of ultra-high energy cosmic rays. Neutrino telescopes are exciting running multi-task experiments that produce astrophysics and particle physics results some of which have been illustrated at this conference and are summarized in this report.

  14. Career Development Intervention in Fourth Grade.

    ERIC Educational Resources Information Center

    Dobson, Ruth

    This paper contains a unit of six career awareness lessons for use by elementary guidance counselors with fourth grade students. Prepared to be used with fourth graders in a middle class small community elementary school in Wisconsin, the unit is based on developmental needs that have been identified for this age group. It is intended to be both…

  15. Osteoblastic meningioma of the fourth ventricle.

    PubMed

    Johnson, M D; Tulipan, N; Whetsell, W O

    1989-04-01

    Meningiomas of the fourth ventricle are rare neoplasms. Only meningothelial and fibroblastic subtypes, purportedly arising from the tela choroidea, have been described. In this report we describe clinical, neuroradiological and pathological findings in a 52-year-old man with mild hydrocephalus produced by a large, calcified, osteoblastic meningioma of the fourth ventricle.

  16. Atmospheric Neutrinos in the MINOS Far Detector

    SciTech Connect

    Howcroft, Caius Leo Frederick

    2004-12-01

    The phenomenon of flavour oscillations of neutrinos created in the atmosphere was first reported by the Super-Kamiokande collaboration in 1998 and since then has been confirmed by Soudan 2 and MACRO. The MINOS Far Detector is the first magnetized neutrino detector able to study atmospheric neutrino oscillations. Although it was designed to detect neutrinos from the NuMI beam, it provides a unique opportunity to measure the oscillation parameters for neutrinos and anti-neutrinos independently. The MINOS Far Detector was completed in August 2003 and since then has collected 2.52 kton-years of atmospheric data. Atmospheric neutrino interactions contained within the volume of the detector are separated from the dominant background from cosmic ray muons. Thirty seven events are selected with an estimated background contamination of less than 10%. Using the detector's magnetic field, 17 neutrino events and 6 anti-neutrino events are identified, 14 events have ambiguous charge. The neutrino oscillation parameters for vμ and $\\bar{v}$μ are studied using a maximum likelihood analysis. The measurement does not place constraining limits on the neutrino oscillation parameters due to the limited statistics of the data set analysed. However, this thesis represents the first observation of charge separated atmospheric neutrino interactions. It also details the techniques developed to perform atmospheric neutrino analyses in the MINOS Far Detector.

  17. Neutrino factories: realization and physics potential

    SciTech Connect

    Geer, S.; Zisman, M.S.; /LBL, Berkeley

    2006-12-01

    Neutrino Factories offer an exciting option for the long-term neutrino physics program. This new type of neutrino facility will provide beams with unique properties. Low systematic uncertainties at a Neutrino Factory, together with a unique and precisely known neutrino flavor content, will enable neutrino oscillation measurements to be made with unprecedented sensitivity and precision. Over recent years, the resulting neutrino factory physics potential has been discussed extensively in the literature. In addition, over the last six years the R&D necessary to realize a Neutrino Factory has been progressing, and has developed into a significant international activity. It is expected that, within about five more years, the initial phase of this R&D program will be complete and, if the community chooses to build this new type of neutrino source within the following decade, neutrino factory technology will be ready for the final R&D phase prior to construction. In this paper (1) an overview is given of the technical ingredients needed for a Neutrino Factory, (2) beam properties are described, (3) the resulting neutrino oscillation physics potential is summarized, (4) a more detailed description is given for one representative Neutrino Factory design, and (5) the ongoing R&D program is summarized, and future plans briefly described.

  18. Physics prospects of the Jinping neutrino experiment

    NASA Astrophysics Data System (ADS)

    Beacom, John F.; Chen, Shaomin; Cheng, Jianping; Doustimotlagh, Sayed N.; Gao, Yuanning; Gong, Guanghua; Gong, Hui; Guo, Lei; Han, Ran; He, Hong-Jian; Huang, Xingtao; Li, Jianmin; Li, Jin; Li, Mohan; Li, Xueqian; Liao, Wei; Lin, Guey-Lin; Liu, Zuowei; McDonough, William; Šrámek, Ondřej; Tang, Jian; Wan, Linyan; Wang, Yuanqing; Wang, Zhe; Wang, Zongyi; Wei, Hanyu; Xi, Yufei; Xu, Ye; Xu, Xun-Jie; Yang, Zhenwei; Yao, Chunfa; Yeh, Minfang; Yue, Qian; Zhang, Liming; Zhang, Yang; Zhao, Zhihong; Zheng, Yangheng; Zhou, Xiang; Zhu, Xianglei; Zuber, Kai

    2017-02-01

    The China Jinping Underground Laboratory (CJPL), which has the lowest cosmic-ray muon flux and the lowest reactor neutrino flux of any laboratory, is ideal to carry out low-energy neutrino experiments. With two detectors and a total fiducial mass of 2000 tons for solar neutrino physics (equivalently, 3000 tons for geo-neutrino and supernova neutrino physics), the Jinping neutrino experiment will have the potential to identify the neutrinos from the CNO fusion cycles of the Sun, to cover the transition phase for the solar neutrino oscillation from vacuum to matter mixing, and to measure the geo-neutrino flux, including the Th/U ratio. These goals can be fulfilled with mature existing techniques. Efforts on increasing the target mass with multi-modular neutrino detectors and on developing the slow liquid scintillator will increase the Jinping discovery potential in the study of solar neutrinos, geo-neutrinos, supernova neutrinos, and dark matter. Supported by the National Natural Science Foundation of China (11235006, 11475093, 11135009, 11375065, 11505301, and 11620101004), the Tsinghua University Initiative Scientific Research Program (20121088035, 20131089288, and 20151080432), the Key Laboratory of Particle & Radiation Imaging (Tsinghua University), the CAS Center for Excellence in Particle Physics (CCEPP), U.S. National Science Foundation Grant PHY-1404311 (Beacom), and U.S. Department of Energy under contract DE-AC02-98CH10886 (Yeh).

  19. THE DOMINANCE OF NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Murphy, Jeremiah W.; Dolence, Joshua C.; Burrows, Adam E-mail: jdolence@astro.princeton.edu

    2013-07-01

    Multi-dimensional instabilities have become an important ingredient in core-collapse supernova (CCSN) theory. Therefore, it is necessary to understand the driving mechanism of the dominant instability. We compare our parameterized three-dimensional CCSN simulations with other buoyancy-driven simulations and propose scaling relations for neutrino-driven convection. Through these comparisons, we infer that buoyancy-driven convection dominates post-shock turbulence in our simulations. In support of this inference, we present four major results. First, the convective fluxes and kinetic energies in the neutrino-heated region are consistent with expectations of buoyancy-driven convection. Second, the convective flux is positive where buoyancy actively drives convection, and the radial and tangential components of the kinetic energy are in rough equipartition (i.e., K{sub r} {approx} K{sub {theta}} + K{sub {phi}}). Both results are natural consequences of buoyancy-driven convection, and are commonly observed in simulations of convection. Third, buoyant driving is balanced by turbulent dissipation. Fourth, the convective luminosity and turbulent dissipation scale with the driving neutrino power. In all, these four results suggest that in neutrino-driven explosions, the multi-dimensional motions are consistent with neutrino-driven convection.

  20. Precise Measurements of Oscillation Parameters and Search for a Light Sterile Neutrino at Daya Bay

    NASA Astrophysics Data System (ADS)

    Wong, Hin Lok Henoch; Daya Bay Collaboration

    2017-01-01

    The Daya Bay Reactor Neutrino Experiment is designed to precisely measure the neutrino oscillation parameter θ13, via the relative comparison of antineutrino rates and energy spectra at different baselines. The experiment's unique configuration of multiple baselines from six 2.9 GWth nuclear reactors serving as intense νe sources to eight functionally identical detectors deployed in two near (effective baselines 500 m and 600 m) and one far ( 1600 m) underground experimental halls also makes it possible to look for oscillations with a fourth (sterile) neutrino in the 10-3 eV2 < | Δm412 | < 0 . 3 eV2 range. In this talk, I will present Daya Bay's latest results. A three-flavor oscillation model analysis based on 1230 days of data has yielded the most precise determination of the flavour-mixing angle sin2 2θ13 and the neutrino mass-squared difference Δm322 . In addition, the search for a light sterile neutrino using 621 days of data did not show a significant preference towards a four-flavor oscillation model. The resulting limits on sin2 2θ14 constitute the world's best in most of the sub-eV mass region.

  1. Neutrino-Electron Scattering in MINERvA for Constraining the NuMI Neutrino Flux

    SciTech Connect

    Park, Jaewon

    2013-01-01

    Neutrino-electron elastic scattering is used as a reference process to constrain the neutrino flux at the Main Injector (NuMI) beam observed by the MINERvA experiment. Prediction of the neutrino flux at accelerator experiments from other methods has a large uncertainty, and this uncertainty degrades measurements of neutrino oscillations and neutrino cross-sections. Neutrino-electron elastic scattering is a rare process, but its cross-section is precisely known. With a sample corresponding to $3.5\\times10^{20}$ protons on target in the NuMI low-energy neutrino beam, a sample of $120$ $\

  2. Los Alamos Science, Number 25 -- 1997: Celebrating the Neutrino

    DOE R&D Accomplishments Database

    Cooper, N. G. ed.

    1997-01-01

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

  3. Los Alamos Science, Number 25 -- 1997: Celebrating the neutrino

    SciTech Connect

    Cooper, N.G.

    1997-12-31

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

  4. Neutrinos and cosmology: a lifetime relationship

    SciTech Connect

    Serpico, Pasquale D.; /Fermilab

    2008-06-01

    We consider the example of neutrino decays to illustrate the profound relation between laboratory neutrino physics and cosmology. Two case studies are presented: In the first one, we show how the high precision cosmic microwave background spectral data collected by the FIRAS instrument on board of COBE, when combined with Lab data, have greatly changed bounds on the radiative neutrino lifetime. In the second case, we speculate on the consequence for neutrino physics of the cosmological detection of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a detection at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence on some models of neutrino secret interactions.

  5. Precision Studies at the Neutrino Frontier

    NASA Astrophysics Data System (ADS)

    Heeger, Karsten M.

    2013-04-01

    Neutrinos were proposed as a remedy to explain nuclear beta decay and are now essential in our understanding of the Universe. Neutrinos determine the abundance of light elements, are critical to supernova explosions, and may hold the key to understanding the matter-antimatter asymmetry. Studies of neutrinos from the Sun and nuclear reactors have confirmed the prediction of solar models and provided evidence for neutrino flavor oscillation. The observation of neutrino oscillation is amongst the major discoveries and demands that we make the first significant revision of the Standard Model. The search for neutrinoless double beta decay is the only experimental approach to probing the Majorana nature of neutrinos and will provide insight into the fundamental nature of neutrino mass. I will review Stuart Freedman's contributions to neutrino physics and in advancing the field to precision measurements.

  6. Probing Neutrino Hierarchy and Chirality via Wakes.

    PubMed

    Zhu, Hong-Ming; Pen, Ue-Li; Chen, Xuelei; Inman, Derek

    2016-04-08

    The relic neutrinos are expected to acquire a bulk relative velocity with respect to the dark matter at low redshifts, and neutrino wakes are expected to develop downstream of the dark matter halos. We propose a method of measuring the neutrino mass based on this mechanism. This neutrino wake will cause a dipole distortion of the galaxy-galaxy lensing pattern. This effect could be detected by combining upcoming lensing surveys with a low redshift galaxy survey or a 21 cm intensity mapping survey, which can map the neutrino flow field. The data obtained with LSST and Euclid should enable us to make a positive detection if the three neutrino masses are quasidegenerate with each neutrino mass of ∼0.1  eV, and a future high precision 21 cm lensing survey would allow the normal hierarchy and inverted hierarchy cases to be distinguished, and even the right-handed Dirac neutrinos may be detectable.

  7. Neutrino masses, mixing, moments, and matter

    SciTech Connect

    Marciano, W.J.

    1988-01-01

    The present status of neutrino masses, mixing, and electromagnetic moments is surveyed. Potential enhancements of neutrino oscillations, decay, and spin-flavor precession due to their interactions with matter are described.

  8. Observation of Electron Neutrino Appearance in a Muon Neutrino Beam

    NASA Astrophysics Data System (ADS)

    Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Floetotto, L.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Gaudin, A.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Lamont, I.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Licciardi, C.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Owen, R. A.; Oyama, Y.; Palladino, V.; Paolone, V.; Payne, D.; Pearce, G. F.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L. J.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2014-02-01

    The T2K experiment has observed electron neutrino appearance in a muon neutrino beam produced 295 km from the Super-Kamiokande detector with a peak energy of 0.6 GeV. A total of 28 electron neutrino events were detected with an energy distribution consistent with an appearance signal, corresponding to a significance of 7.3σ when compared to 4.92±0.55 expected background events. In the Pontecorvo-Maki-Nakagawa-Sakata mixing model, the electron neutrino appearance signal depends on several parameters including three mixing angles θ12, θ23, θ13, a mass difference Δm322 and a CP violating phase δCP. In this neutrino oscillation scenario, assuming |Δm322|=2.4×10-3 eV2, sin2θ23=0.5, and Δm322>0 (Δm322<0), a best-fit value of sin22θ13=0.140-0.032+0.038 (0.170-0.037+0.045) is obtained at δCP=0. When combining the result with the current best knowledge of oscillation parameters including the world average value of θ13 from reactor experiments, some values of δCP are disfavored at the 90% C.L.

  9. The solar neutrino problem and the neutrino magnetic moment

    NASA Astrophysics Data System (ADS)

    Pulido, João

    1992-02-01

    The physics of the proposed solution to the solar neutrino puzzle based on the neutrino magnetic moment is reviewed. The magnetic moment transition mechanism from active to sterile neutrinos can be either resonant or non-resonant and its kinship to matter enhanced oscillations is shown. The transition probability in the adiabatic approximation is calculated and the limits to adiabaticity are discussed. The full probability incorporating both the adiabatic and non-adiabatic regimes is derived using the Landau-Zener approximation for the non-adiabatic regimes. The available experimental data from the three existing solar neutrino experiments (Davis, Kamiokande II and SAGE) are compared with the results of the theory. From this comparison one can predict for the flavour square mass difference Δ2m21 = (0.5-1.5) x 10-8eV2 and for the magnetic moment μ > (6-7) × 10-12 μB. The uncertainties in the solar magnetic field are considerable and the ansatz used takes a value of 10 5 G along the solar core and the radiation zone, decreasing then linearly along the convection zone. A change in B by one or two orders of magnitude has the main effect of modifying the lower bound on μ by the same proportion, while leaving Δ2m21 practically unaltered. An anticorrelation between neutrino flux and solar activity, although consistent with the theory, cannot be clearly predicted.

  10. Observation of electron neutrino appearance in a muon neutrino beam.

    PubMed

    Abe, K; Adam, J; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Ariga, T; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Bentham, S W; Berardi, V; Berger, B E; Berkman, S; Bertram, I; Bhadra, S; Blaszczyk, F D M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Caravaca Rodríguez, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dufour, F; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery, S; Ereditato, A; Escudero, L; Finch, A J; Floetotto, L; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Gaudin, A; Giffin, S; Giganti, C; Gilje, K; Goeldi, D; Golan, T; Gomez-Cadenas, J J; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Ives, S J; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Jo, J H; Jonsson, P; Jung, C K; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; Kisiel, J; Kitching, P; Kobayashi, T; Koch, L; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koseki, K; Koshio, Y; Kreslo, I; Kropp, W; Kubo, H; Kudenko, Y; Kumaratunga, S; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Lamont, I; Laveder, M; Lawe, M; Lazos, M; Lee, K P; Licciardi, C; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Ludovici, L; Macaire, M; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Maruyama, T; Marzec, J; Mathie, E L; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Metelko, C; Mezzetto, M; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Monfregola, L; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nagasaki, T; Nakadaira, T; Nakahata, M; Nakai, T; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Naples, D; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Owen, R A; Oyama, Y; Palladino, V; Paolone, V; Payne, D; Pearce, G F; Perevozchikov, O; Perkin, J D; Petrov, Y; Pickard, L J; Pinzon Guerra, E S; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Retiere, F; Robert, A; Rodrigues, P A; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smith, R J; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Szeglowski, T; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Ueno, K; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Zmuda, J

    2014-02-14

    The T2K experiment has observed electron neutrino appearance in a muon neutrino beam produced 295 km from the Super-Kamiokande detector with a peak energy of 0.6 GeV. A total of 28 electron neutrino events were detected with an energy distribution consistent with an appearance signal, corresponding to a significance of 7.3σ when compared to 4.92±0.55 expected background events. In the Pontecorvo-Maki-Nakagawa-Sakata mixing model, the electron neutrino appearance signal depends on several parameters including three mixing angles θ12, θ23, θ13, a mass difference Δm(32)(2) and a CP violating phase δ(CP). In this neutrino oscillation scenario, assuming |Δm(32)(2)|=2.4×10(-3)  eV(2), sin(2)θ(23)=0.5, and Δm322>0 (Δm(32)(2)<0), a best-fit value of sin(2)2θ(13)=0.140(-0.032)(+0.038) (0.170(-0.037)(+0.045)) is obtained at δ(CP)=0. When combining the result with the current best knowledge of oscillation parameters including the world average value of θ(13) from reactor experiments, some values of δ(CP) are disfavored at the 90% C.L.

  11. Evidence of electron neutrino appearance in a muon neutrino beam

    NASA Astrophysics Data System (ADS)

    Abe, K.; Abgrall, N.; Aihara, H.; Akiri, T.; Albert, J. B.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Beznosko, D.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Boyd, S.; Brailsford, D.; Bravar, A.; Bronner, C.; Brook-Roberge, D. G.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Curioni, A.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; Day, M.; de André, J. P. A. M.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Dobson, J.; Drapier, O.; Duboyski, T.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Dziomba, M.; Emery, S.; Ereditato, A.; Escudero, L.; Finch, A. J.; Frank, E.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A.; Galymov, V.; Gaudin, A.; Giffin, S.; Giganti, C.; Gilje, K.; Golan, T.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Joo, K. K.; Jung, C. K.; Kaboth, A.; Kaji, H.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khanam, F.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J. Y.; Kim, J.; Kim, S. B.; Kirby, B.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Kogan, G.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kowalik, K.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Laing, A.; Laveder, M.; Lawe, M.; Lazos, M.; Lee, K. P.; Licciardi, C.; Lim, I. T.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, G. D.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marchionni, A.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Masliah, P.; Mathie, E. L.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCauley, N.; McFarland, K. S.; McGrew, C.; McLachlan, T.; Messina, M.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakajima, K.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nicholls, T. C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Obayashi, Y.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Otani, M.; Owen, R. A.; Oyama, Y.; Pac, M. Y.; Palladino, V.; Paolone, V.; Payne, D.; Pearce, G. F.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pinzon Guerra, E. S.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Robert, A.; Rodrigues, P. A.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Scantamburlo, E.; Scholberg, K.; Schwehr, J.; Scott, M.; Scully, D. I.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shibata, M.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Szeptycka, M.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. A.; Tanaka, M. M.; Tanaka, M.; Taylor, I. J.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Zalewska, A.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.

    2013-08-01

    The T2K Collaboration reports evidence for electron neutrino appearance at the atmospheric mass splitting, |Δm322|≈2.4×10-3eV2. An excess of electron neutrino interactions over background is observed from a muon neutrino beam with a peak energy of 0.6 GeV at the Super-Kamiokande (SK) detector 295 km from the beam’s origin. Signal and background predictions are constrained by data from near detectors located 280 m from the neutrino production target. We observe 11 electron neutrino candidate events at the SK detector when a background of 3.3±0.4(syst) events is expected. The background-only hypothesis is rejected with a p value of 0.0009 (3.1σ), and a fit assuming νμ→νe oscillations with sin⁡22θ23=1, δCP=0 and |Δm322|=2.4×10-3eV2 yields sin⁡22θ13=0.088-0.039+0.049(stat+syst).

  12. Neutrino properties and fundamental symmetries

    SciTech Connect

    Bowles, T.J.

    1996-07-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). There are two components to this work. The first is a development of a new detection scheme for neutrinos. The observed deficit of neutrinos from the Sun may be due to either a lack of understanding of physical processes in the Sun or may be due to neutrinos oscillating from one type to another during their transit from the Sun to the Earth. The Sudbury Neutrino Observatory (SNO) is designed to use a water Cerenkov detector employing one thousand tonnes of heavy water to resolve this question. The ability to distinguish muon and tau neutrinos from electron neutrinos is crucial in order to carry out a model-independent test of neutrino oscillations. We describe a developmental exploration of a novel technique to do this using {sup 3}He proportional counters. Such a method offers considerable advantages over the initially proposed method of using Cerenkov light from capture on NaCl in the SNO. The second component of this work is an exploration of optimal detector geometry for a time-reversal invariance experiment. The question of why time moves only in the forward direction is one of the most puzzling problems in modern physics. We know from particle physics measurements of the decay of kaons that there is a charge-parity symmetry that is violated in nature, implying time-reversal invariance violation. Yet, we do not understand the origin of the violation of this symmetry. To promote such an understanding, we are developing concepts and prototype apparatus for a new, highly sensitive technique to search for time-reversal-invariance violation in the beta decay of the free neutron. The optimized detector geometry is seven times more sensitive than that in previous experiments. 15 refs.

  13. Sterile neutrinos in the early universe

    SciTech Connect

    Malaney, R.A. ); Fuller, G.M. . Dept. of Physics)

    1990-11-14

    We discuss the role played by right-handed sterile neutrinos in the early universe. We show how well known {sup 4}He constraint on the number of relativistic degrees of freedom at early times limits the equilibration of the right handed neutrino sea with the background plasma. We discuss how this allows interesting constraints to be placed on neutrino properties. In particular, a new limit on the Dirac mass of the neutrino is presented. 12 refs.

  14. Current and future liquid argon neutrino experiments

    SciTech Connect

    Karagiorgi, Georgia S.

    2015-05-15

    The liquid argon time projection chamber (LArTPC) detector technology provides an opportunity for precision neutrino oscillation measurements, neutrino cross section measurements, and searches for rare processes, such as SuperNova neutrino detection. These proceedings review current and future LArTPC neutrino experiments. Particular focus is paid to the ICARUS, MicroBooNE, LAr1, 2-LArTPC at CERN-SPS, LBNE, and 100 kton at Okinoshima experiments.

  15. Minimal supergravity scalar neutrino dark matter and inverse seesaw neutrino masses.

    PubMed

    Arina, C; Bazzocchi, F; Fornengo, N; Romao, J C; Valle, J W F

    2008-10-17

    We show that within the inverse seesaw mechanism for generating neutrino masses, minimal supergravity naturally provides the scalar neutrino as the lightest superparticle. We also demonstrate that such schemes naturally reconcile the small neutrino masses with the correct relic scalar neutrino dark matter abundance and accessible direct detection rates in nuclear recoil experiments. This way, inverse seesaw minimal supergravity offers a common solution to the generation of the neutrino mass and to the origin of dark matter.

  16. Fourth order wave equations with nonlinear strain and source terms

    NASA Astrophysics Data System (ADS)

    Liu, Yacheng; Xu, Runzhang

    2007-07-01

    In this paper we study the initial boundary value problem for fourth order wave equations with nonlinear strain and source terms. First we introduce a family of potential wells and prove the invariance of some sets and vacuum isolating of solutions. Then we obtain a threshold result of global existence and nonexistence. Finally we discuss the global existence of solutions for the problem with critical initial condition I(u0)[greater-or-equal, slanted]0, E(0)=d. So the Esquivel-Avila's results are generalized and improved.

  17. Research in Neutrino Physics

    SciTech Connect

    Busenitz, Jerome

    2014-09-30

    We describe here the recent activities of our two groups over the first year of this award (effectively November 2010 through January 2012) and our proposed activities and associated budgets for the coming grant year. Both of our groups are collaborating on the Double Chooz reactor neutrino experiment and are playing major roles in calibration and analysis. A major milestone was reached recently: the collaboration obtained the first result on the search for θ13 based on 100 days of data from the far detector. Our data indicates that θ13 is not zero; specifically the best fit of the neutrino oscillation hypothesis to our data gives sin2(2θ13) = 0.086 ± 0.041 (stat) ± 0.030 (syst). The null oscillation hypothesis is excluded at the 94.6% C.L. This result has been submitted to Physical Review Letters. As we continue to take data with the far detector in the coming year, in parallel with completing the construction of the near lab and installing the near detector, we expect the precision of our measurement to improve as we gather significantly more statistics, gain better control of backgrounds through use of partial power data and improved event selection, and better understand the detector energy scale and detection efficiency from calibration data. With both detectors taking data starting in the second half of 2013, we expect to further drive down the uncertainty on our measurement of sin2(2θ13) to less than 0.02. Stancu’s group is also collaborating on the MiniBooNE experiment. Data taking is scheduled to continue through April, by which time 1.18 × 1021 POT is projected. The UA group is playing a leading role in the measurement of antineutrino cross sections, which should be the subject of a publication later this year as well as of Ranjan Dharmapalan’s Ph.D. thesis, which he is expected to defend by the end of this year. It is time to begin working on projects which will

  18. Review of direct neutrino mass experiments

    SciTech Connect

    Dragoun, O.

    2015-10-28

    Advantages and drawbacks of the kinematic methods of the neutrino mass determination are discussed. The meaning of the effective neutrino mass, resulting from measurements of the endpoint region of β-spectra is clarified. Current experimental constraints on the mass of active as well as sterile neutrinos are presented. Several new experiments are briefly outlined.

  19. Multipole expansion method for supernova neutrino oscillations

    SciTech Connect

    Duan, Huaiyu; Shalgar, Shashank E-mail: shashankshalgar@unm.edu

    2014-10-01

    We demonstrate a multipole expansion method to calculate collective neutrino oscillations in supernovae using the neutrino bulb model. We show that it is much more efficient to solve multi-angle neutrino oscillations in multipole basis than in angle basis. The multipole expansion method also provides interesting insights into multi-angle calculations that were accomplished previously in angle basis.

  20. THE SEARCH FOR MASSIVE NEUTRINOS - Short Contribution

    NASA Astrophysics Data System (ADS)

    Kirsten, T.

    Double beta decay (DBD) has the potential to distinguish whether neutrinos are Majorana or Dirac particles. However, neutrinoless DBD (in violation of lepton number conservation) has not yet been observed. From the respective upper limits, limits on the neutrino restmass can be deduced if the neutrino is of Majorana type.

  1. Thermodynamic Laws of Neutrino and Photon Emission.

    ERIC Educational Resources Information Center

    Walsh, P. J.; Gallo, C. F.

    1980-01-01

    Compares neutrino and photon emissions, develops the thermodynamic blackbody laws of neutrino emission analogous to laws governing photon emission, points out that combined radiation from a "true blackbody" consists of both photon and neutrino emissions of comparable magnitude, and speculates upon the existence of blackbody neutrino…

  2. Neutrinos as Probes of Lorentz Invariance

    DOE PAGES

    Díaz, Jorge S.

    2014-01-01

    Neutrinos can be used to search for deviations from exact Lorentz invariance. The worldwide experimental program in neutrino physics makes these particles a remarkable tool to search for a variety of signals that could reveal minute relativity violations. This paper reviews the generic experimental signatures of the breakdown of Lorentz symmetry in the neutrino sector.

  3. The Renaissance of Neutrino Interaction Physics

    SciTech Connect

    Gallagher, Hugh R.

    2009-12-17

    The advent of high intensity neutrino beams for neutrino oscillation experiments has produced a resurgence of interest in neutrino interaction physics. Recent experiments have been revisiting topics not studied since the bubble chamber era, and are exploring many interesting questions at the boundaries of particle and nuclear physics.

  4. Short-BaseLine Electron Neutrino Disappearance

    NASA Astrophysics Data System (ADS)

    Giunti, Carlo; Laveder, Marco

    2011-08-01

    We analyzed the electron neutrino data of the Gallium radioactive source experiments and the electron antineutrino data of the reactor Bugey and Chooz experiments in terms of neutrino oscillations. We found a hint of a CPT-violating asymmetry of the effective neutrino and antineutrino mixing angles.

  5. Nonadiabatic three-neutrino oscillations in matter

    SciTech Connect

    DOlivo, J.C.; Oteo, J.A.

    1996-07-01

    Oscillations of three neutrinos in matter are analyzed by using the Magnus expansion for the time-evolution operator. We derive a simple expression for the electron-neutrino survival probability which is applied to the examination of the effect of a third neutrino on the nonadiabatic flavor transformations. {copyright} {ital 1996 The American Physical Society.}

  6. ARA testbed template based UHE neutrino search

    NASA Astrophysics Data System (ADS)

    Prohira, Steven

    2014-03-01

    The Askaryan Radio Array (ARA) is an in-ice Antarctic neutrino detector deployed near the South Pole. ARA is designed to detect ultra high energy (UHE) neutrinos in the range of 0.1-10 EeV. Data from the ARA testbed, deployed in the 2010-2011 season, is used for a template based neutrino search. Askaryan Radio Array.

  7. Adult Education and Family Literacy Reform Act. Hearing on S. 797 Authorizing Funds for Fiscal Years 1996 through 2005 to Improve and Reform Literacy Services for Adults and Families, before the Subcommittee on Education, Arts and Humanities of the Committee on Labor and Human Resources. United States Senate, One Hundred Fourth Congress, First Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Committee on Labor and Human Resources.

    This Congressional hearing discussed the issue of reform of adult education and family literacy legislation. Testimony includes oral and written statements of U.S. senators and individuals representing the following: U.S. Department of Education; National Institute for Literacy; Dallas Can! Academy, Dallas, Texas; Pima County Adult Education,…

  8. Neutrino mass hierarchy and octant determination with atmospheric neutrinos.

    PubMed

    Barger, Vernon; Gandhi, Raj; Ghoshal, Pomita; Goswami, Srubabati; Marfatia, Danny; Prakash, Suprabh; Raut, Sushant K; Sankar, S Uma

    2012-08-31

    The recent discovery by the Daya-Bay and RENO experiments, that θ(13) is nonzero and relatively large, significantly impacts existing experiments and the planning of future facilities. In many scenarios, the nonzero value of θ(13) implies that θ(23) is likely to be different from π/4. Additionally, large detectors will be sensitive to matter effects on the oscillations of atmospheric neutrinos, making it possible to determine the neutrino mass hierarchy and the octant of θ(23). We show that a 50 kT magnetized liquid argon neutrino detector can ascertain the mass hierarchy with a significance larger than 4σ with moderate exposure times, and the octant at the level of 2-3σ with greater exposure.

  9. Chromium-51 calibrating neutrino source

    SciTech Connect

    Demchenko, N.F.; Karasev, V.I.; Karelin, E.A.

    1993-12-31

    The problem for measurement of the sun neutrino flux is resolved at the specially made Baksansk neutrino telescope and calls for calibration of registration system. For this a man made neutrino source is required with the known yield of particles and intensity comparable with the intensity of the measured subject. The most suitable radionuclide for production of this source is chromium-51 the radionuclide decay of which is accompanied with neutrino radiation. At the Research Institute of Atomic Reactors (in Dimitrovgrad) the production technology is developed as well as the closed chromium-51 neutrino source is made of 4 x 10{sup 5} Ci activity. The parts of active source made in the form of core of metallic isotope-enriched chromium were irradiated in the high flux neutron trap of the SM-2 reactor. The sources were subsequently assembled at the shield cells with remote equipment application. The source was certificated as a special form radioactive material. Due to low half-life of chromium-51 (T 1/2 - 27 hours) all the operations on assembly, certification and delivery of source to the Baksansk Laboratory were performed at the earliest possible date (less than 3 days).

  10. Solar neutrinos: Interpretation of results

    NASA Astrophysics Data System (ADS)

    Smirnov, A. Yu.

    2003-04-01

    Recent SNO results give strong evidence that the solar neutrinos undergo flavor conversion. The main issue now is the identification of the mechanism of conversion. The LMA MSW solution with Δm2 = (5-7)·10 -5 eV 2, tan 2≡ = 0.35-0.45 looks rather plausible: it fits well the experimental data and our new theoretical prejudices. In the LMA case, KamLAND should see (0.5 - 0.7) reduced signal. VAC-QVO and LOW are accepted at about 3δ-level. The SMA solution is practically excluded. No sub-leading effects produced by Ue3 and admixture of sterile neutrino have been found. The fit becomes worse with an increase of Ue3 (for LMA) and a νs admixture. Still a (30 - 50)% presence of the sterile neutrino is allowed. Solutions based on the neutrino spin-flip in the magnetic fields of the Sun as well as on non-standard neutrino interactions give a good fit of the data. If KamLAND confirms LMA MSW, the spin-flip and non-standard interactions can be considered (and will be searched for) as sub-leading effects.

  11. Neutrino-Induced Meson Productions

    NASA Astrophysics Data System (ADS)

    Nakamura, Satoshi X.

    We develop a dynamical coupled-channels (DCC) model for neutrino-nucleon reactions in the resonance region, by extending the DCC model that we have previously developed through an analysis of π N,γ N to π N,η N,KΛ ,KΣ reaction data for W ≤ 2.1 GeV. We analyze electron-induced reaction data for both proton and neutron targets to determine the vector current form factors up to Q2 ≤ 3.0 (GeV/c)2. Axial-current matrix elements are derived in accordance with the Partially Conserved Axial Current (PCAC) relation to the πN interactions of the DCC model. As a result, we can uniquely determine the interference pattern between resonant and non-resonant amplitudes. Our calculated cross sections for neutrino-induced single-pion productions are compared with available data, and are found to be in reasonable agreement with the data. We also calculate the double-pion production cross sections in the resonance region, for the first time, with relevant resonance contributions and channel couplings. The result is compared with the double-pion production data. For a future development of a neutrino-nucleus reaction model and/or a neutrino event generator for analyses of neutrino experiments, the DCC model presented here can give a useful input.

  12. GRB neutrino search with MAGIC

    SciTech Connect

    Becker, Julia K.; Rhode, Wolfgang; Gaug, Markus

    2008-05-22

    The Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescope was designed for the detection of photon sources > or approx. 50 GeV. The measurement of highly-inclined air showers renders possible the search for high-energy neutrinos, too. Only neutrinos can traverse the Earth without interaction, and therefore, events close to the horizon can be identified as neutrino-induced rather than photon-induced or hadronic events. In this paper, Swift-XRT-detected GRBs with given spectral information are used in order to calculate the potential neutrino energy spectrum from prompt and afterglow emission for each individual GRB. The event rate in MAGIC is estimated assuming that the GRB happens within the field of view of MAGIC. A sample of 568 long GRBs as detected by BATSE is used to compare the detection rates with 163 Swift-detected bursts. BATSE has properties similar to the Gamma-ray Burst Monitor (GBM) on board of GLAST. Therefore the estimated rates give an estimate for the possibilities of neutrino detection with MAGIC from GLAST-triggered bursts.

  13. Muon neutrino disappearance at MINOS

    SciTech Connect

    Armstrong, R

    2009-08-01

    A strong case has been made by several experiments that neutrinos oscillate, although important questions remain as to the mechanisms and precise values of the parameters. In the standard picture, two parameters describe the nature of how the neutrinos oscillate: the mass-squared difference between states and the mixing angle. The purpose of this thesis is to use data from the MINOS experiment to precisely measure the parameters associated with oscillations first observed in studies of atmospheric neutrinos. MINOS utilizes two similar detectors to observe the oscillatory nature of neutrinos. The Near Detector, located 1 km from the source, observes the unoscillated energy spectrum while the Far Detector, located 735 km away, is positioned to see the oscillation signal. Using the data in the Near Detector, a prediction of the expected neutrino spectrum at the Far Detector assuming no oscillations is made. By comparing this prediction with the MINOS data, the atmospheric mixing parameters are measured to be Δm322 = 2.45+0.12-0.12 x 10-3 eV2 and sin232) = 1.00-0.04+0.00 (> 0.90 at 90% confidence level).

  14. LSND neutrino oscillation results

    SciTech Connect

    Louis, W.C.; LSND Collaboration

    1997-06-01

    The LSND experiment at Los Alamos has conducted searches for {anti {nu}}{sub {mu}} {r_arrow} {anti {nu}}{sub e} oscillations using {anti {nu}}{sub {mu}} from U{sup +} decay at rest and for {nu}{sub {mu}} {r_arrow} {nu}{sub e} oscillations using {nu}{sub {mu}} from {pi}{sup +} decay in flight. For the {anti {nu}}{sub {mu}} {r_arrow} {anti {nu}}{sub e} search, a total excess of 51.8{sub {minus}16.9}{sup +18.7} {+-} 8.0 events is observed with e{sup +} energy between 20 and 60 MeV, while for the {nu}{sub {mu}} {r_arrow} {nu}{sub e} search, a total excess of 18.1 {+-} 6.6 {+-} 4.0 events is observed with e{sup {minus}} energy between 60 and 200 MeV. If attributed to neutrino oscillations, these excesses correspond to oscillation probabilities (averaged over the experimental energies and spatial acceptances) of (0.31 {+-} 0.12 {+-} 0.05)% and (0.26 {+-} 0.10 {+-} 0.05)%, respectively.

  15. The Low Energy Neutrino Factory

    SciTech Connect

    Bross, Alan; Geer, Steve; Ellis, Malcolm; Fernandez Martinez, Enrique; Li, Tracey; Pascoli, Silvia; Mena, Olga

    2010-03-30

    We show that a low energy neutrino factory with a baseline of 1300 km and muon energy of 4.5 GeV has an excellent physics reach. The results of our optimisation studies demonstrate that such a setup can have remarkable sensitivity to theta{sub 13} and delta for sin{sup 2}(2theta{sub 13})>10{sup -4}, and to the mass hierarchy for sin{sup 2}(2theta{sub 13})>10{sup -3}. We also illustrate the power of the unique combination of golden and platinum channels accessible to the low energy neutrino factory. We have considered both a 20 kton totally active scintillating detector and a 100 kton liquid argon detector as possible detector technologies, finding that a liquid argon detector with very good background rejection can produce sensitivity to theta{sub 13} and delta with that of the International Design Study neutrino factory.

  16. Recent developments in neutrino physics

    SciTech Connect

    Garvey, G.T.

    1991-01-01

    I shall attempt to summarize recent developments in the experimental situation in neutrino physics. The paper will deal with recent results, drawing on either published work or research that has been presented in preprint form, as there is an adequate supply of interesting and controversial data restricting oneself to these generally more reliable sources. The discussion of the theoretical implication of these experimental results will be presented in the following paper by Boris Kayser. The topics to be covered in this presentation are: direct measurements of {bar {nu}}{sub e} mass via beta endpoint studies; status of solar neutrino observations; status of 17-keV neutrino'' reports; and the use of {nu}p elastic scattering to determine the strange quark'' content of the proton. 2 refs., 15 figs., 9 tabs.

  17. Neutrino-axion-dilaton interconnection

    NASA Astrophysics Data System (ADS)

    Bertolini, Stefano; Di Luzio, Luca; Kolešová, Helena; Malinský, Michal; Vasquez, Juan Carlos

    2016-01-01

    We show that a recently proposed framework that provides a simple connection between Majorana neutrinos and an invisible axion in minimal scalar extensions of the standard electroweak model can be naturally embedded in a classically scale-invariant setup. The explicit breaking of the scale invariance à la Coleman-Weinberg generates the Peccei-Quinn and electroweak scales. The spontaneous breaking of the chiral U (1 )PQ triggers the generation of neutrino masses via Type-II seesaw and, at the same time, provides a dynamical solution to the strong C P problem as well as the axion as a dark matter candidate. The electroweak and neutrino mass scales are obtained via a technically natural ultraweak limit of the singlet scalar interactions. Accordingly, a realistic and perturbatively stable scalar spectrum, possibly in the reach of the LHC, is naturally obtained. A very light pseudodilaton characterizes such a setting. The vacuum stability of the extended setup is discussed.

  18. Decaying neutrinos in galaxy clusters

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Splinter, Randall J.; Persic, Massimo; Salucci, Paolo

    1993-01-01

    The DM profile in clusters of galaxies was studied and simulated using the Harrison-Zel'dovich spectrum of density fluctuations, and an amplitude previously derived from numerical simulations and in agreement with microwave background fluctuations. Neutrino DM densities, with this amplitude normalization cluster, are comparable to observed cluster DM values. It was concluded that given this normalization, the cluster DM should be al least largely composed of neutrinos. The constraint of Davidson et al., who argued that the failure to detect uv photons from the dark matter (DM) in cluster A665 excludes the decaying neutrino hypothesis, could be somewhat weakened by the presence of baryonic DM; but it cannot be eliminated given our assumptions.

  19. Decaying neutrinos in galaxy clusters

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Splinter, Randall J.; Persic, Massimo; Salucci, Paolo

    1994-01-01

    Davidsen et al. (1991) have argued that the failure to detect UV photons from the dark matter (DM) in cluster A665 excludes the decaying neutrino hypothesis. Sciama et al. (1993) argued that because of high central concentration the DM in that cluster must be baryonic. We study the DM profile in clusters of galaxies simulated using the Harrison-Zel'dovich spectrum of density fluctuations, and an amplitude previously derived from numerical simulations (Melott 1984b; Anninos et al. 1991) and in agreement with microwave background fluctuations (Smoot et al. 1992). We find that with this amplitude normalization cluster neutrino DM densities are comparable to observed cluster DM values. We conclude that given this normalization, the cluster DM should be at least largely composed of neutrinos. The constraint of Davidsen et al. can be somewhat weakened by the presence of baryonic DM; but it cannot be eliminated given our assumptions.

  20. Model of neutrino effective masses

    SciTech Connect

    Dinh Nguyen Dinh; Nguyen Thi Hong Van; Nguyen Anh Ky; Phi Quang Van

    2006-10-01

    It is shown that an effective (nonrenormalizable) coupling of lepton multiplets to scalar triplets in the 331 model with sterile/exotic neutrinos, can be a good way for generating neutrino masses of different types. The method is simple and avoids radiative/loop calculations which, sometimes, are long and complicated. Basing on some astrophysical arguments it is also stated that the scale of SU(3){sub L} symmetry breaking is at TeV scale, in agreement with earlier investigations. Or equivalently, starting from this symmetry breaking scale we could have sterile/exotic neutrinos with mass of a few keV's which could be used to explain several astrophysical and cosmological puzzles, such as the dark matter, the fast motion of the observed pulsars, the re-ionization of the Universe, etc.

  1. Stimulated neutrino transformation through turbulence

    DOE PAGES

    Patton, Kelly M.; Kneller, James P.; McLaughlin, Gail C.

    2014-04-30

    We derive an analytical solution for the flavor evolution of a neutrino through a turbulent density profile which is found to accurately predict the amplitude and transition wavelength of numerical solutions on a case-by-case basis. The evolution is seen to strongly depend upon those Fourier modes in the turbulence which are approximately the same as the splitting between neutrino eigenvalues. Transitions are strongly enhanced by those Fourier modes in the turbulence which are approximately the same as the splitting between neutrino eigenvalues. Lastly, we also find a suppression of transitions due to the long wavelength modes when the ratio ofmore » their amplitude and the wavenumber is of order, or greater than, the first root of the Bessel function J0.« less

  2. Status of neutrino mass experiments

    SciTech Connect

    Fackler, O.

    1985-12-01

    In 1980 two experiments ignited a fertile field of research the determination of the neutrino masses. Subsequently, over 35 experiments using a variety of techniques have probed or are probing this question. Primarily I will discuss electron antineutrino (hereafter referred to as neutrino) mass experiments. However, let me begin in Section I to discuss astronomical and terrestrial observations which motivated these experiments. In Section II, I will quote limits from muon and tau mass determinations. These limits are more thoroughly discussed in other papers. I will continue by describing the four approaches used to measure the electron neutrino mass. In Section III, tritium beta decay mass determinations will be reviewed. This section includes a general summary of previous experimental results, and discussion of the major ongoing experiments. Section IV offers concluding remarks. 24 refs., 24 figs.

  3. Stimulated neutrino transformation through turbulence

    SciTech Connect

    Patton, Kelly M.; Kneller, James P.; McLaughlin, Gail C.

    2014-04-30

    We derive an analytical solution for the flavor evolution of a neutrino through a turbulent density profile which is found to accurately predict the amplitude and transition wavelength of numerical solutions on a case-by-case basis. The evolution is seen to strongly depend upon those Fourier modes in the turbulence which are approximately the same as the splitting between neutrino eigenvalues. Transitions are strongly enhanced by those Fourier modes in the turbulence which are approximately the same as the splitting between neutrino eigenvalues. Lastly, we also find a suppression of transitions due to the long wavelength modes when the ratio of their amplitude and the wavenumber is of order, or greater than, the first root of the Bessel function J0.

  4. Neutrino Physics at DPF 2013

    SciTech Connect

    Harris, Deborah A.

    2013-10-25

    The field of neutrino physics was covered at DPF 2013 in 32 talks, including three on theoretical advances and the remainder on experiments that spanned at least 17 different detectors. This summary of those talks cannot do justice to the wealth of information presented, but will provide links to other material where possible. There were allso two plenary session contributions on neutrino physics at this meeting: the current status of what we know about neutrino (oscillation) physics was outlined by Huber, and the next steps in long baseline oscillation expeirments were described by Fleming. This article covers a subset of the topics discussed at the meeting, with emphasis given to those talks that showed data or new results.

  5. Experimental Constraints on Neutrino Spectra Following Fission

    NASA Astrophysics Data System (ADS)

    Napolitano, Jim; Daya Bay Collaboration

    2016-09-01

    We discuss new initiatives to constrain predictions of fission neutrino spectra from nuclear reactors. These predictions are germane to the understanding of reactor flux anomalies; are needed to reduce systematic uncertainty in neutrino oscillation spectra; and inform searches for the diffuse supernova neutrino background. The initiatives include a search for very high- Q beta decay components to the neutrino spectrum from the Daya Bay power plant; plans for a measurement of the β- spectrum from 252Cf fission products; and precision measurements of the 235U fission neutrino spectrum from PROSPECT and other very short baseline reactor experiments.

  6. Renormalization group running of neutrino parameters.

    PubMed

    Ohlsson, Tommy; Zhou, Shun

    2014-10-17

    Neutrinos are the most elusive particles in our Universe. They have masses at least one million times smaller than the electron mass, carry no electric charge and very weakly interact with other particles, meaning that they are rarely captured in terrestrial detectors. Tremendous efforts in the past two decades have revealed that neutrinos can transform from one type to another as a consequence of neutrino oscillations--a quantum mechanical effect over macroscopic distances--yet the origin of neutrino masses remains puzzling. The physical evolution of neutrino parameters with respect to energy scale may help elucidate the mechanism for their mass generation.

  7. Investigating CPT Conservation in Sterile Neutrino Fits

    NASA Astrophysics Data System (ADS)

    Ignarra, Christina

    2010-02-01

    We investigate compatibility between neutrino and antineutrino short-baseline oscillation experiments under a two-neutrino oscillation hypothesis due to a sterile neutrino at δm^2˜1 eV^2. We explore the preliminary MINOS antineutrino disappearance results as well as antineutrino oscillation results from LSND, MiniBooNE, KARMEN, Bugey, and Chooz, and neutrino oscillation results from NOMAD, MiniBooNE, CCFR84, and CDHS. We find that a combined fit of the antineutrino data yields a high chi-squared probability, while the global fit including neutrino and antineutrino data yields high incompatibility. CPT-violating fits within this scenario are also explored. )

  8. Sterile neutrinos at the CNGS

    NASA Astrophysics Data System (ADS)

    Donini, Andrea; Maltoni, Michele; Meloni, Davide; Migliozzi, Pasquale; Terranova, Francesco

    2007-12-01

    We study the potential of the CNGS beam in constraining the parameter space of a model with one sterile neutrino separated from three active ones by an Script O(eV2) mass-squared difference, Δ mSBL2. We perform our analysis using the OPERA detector as a reference (our analysis can be upgraded including a detailed simulation of the ICARUS detector). We point out that the channel with the largest potential to constrain the sterile neutrino parameter space at the CNGS beam is νμ→ντ. The reason for that is twofold: first, the active-sterile mixing angle that governs this oscillation is the less constrained by present experiments; second, this is the signal for which both OPERA and ICARUS have been designed, and thus benefits from an extremely low background. In our analysis we also took into account νμ→νe oscillations. We find that the CNGS potential to look for sterile neutrinos is limited with nominal intensity of the beam, but it is significantly enhanced with a factor 2 to 10 increase in the neutrino flux. Data from both channels allow us, in this case, to constrain further the four-neutrino model parameter space. Our results hold for any value of Δ mSBL2gtrsim0.1 eV2, i.e. when oscillations driven by this mass-squared difference are averaged. We have also checked that the bound on θ13 that can be put at the CNGS is not affected by the possible existence of sterile neutrinos.

  9. ν-K0 Analogy, Dirac-Majorana Neutrino Duality and the Neutrino Oscillations

    NASA Astrophysics Data System (ADS)

    Lipmanov, E. M.

    The intent of this paper is to convey a new primary physical idea of a Dirac-Majorana neutrino duality in relation to the topical problem of neutrino oscillations. In view of the new atmospheric, solar and the LSND neutrino oscillation data, the Pontecorvo ν - K0 oscillation analogy is generalized to the notion of neutrino duality with substantially different physical meaning ascribed to the long-baseline and the short-baseline neutrino oscillations. At the level of CP-invariance, the suggestion of dual neutrino properties defines the symmetric two-mixing-angle form of the widely discussed four-neutrino (2 +2)-mixing scheme, as a result of the lepton charge conservation selection rule and a minimum of two Dirac neutrino fields. With neutrino duality, the two-doublet structure of the Majorana neutrino mass spectrum is a vestige of the two-Dirac-neutrino origin. The fine neutrino mass doublet structure is natural because it is produced by a lepton charge symmetry violating perturbation on a zero-approximation system of two twofold mass-degenerate Dirac neutrino-antineutrino pairs. A set of inferences related to the neutrino oscillation phenomenology in vacuum is considered.

  10. Muon Colliders and Neutrino Factories

    SciTech Connect

    Kaplan, Daniel M.

    2015-05-29

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  11. Neutrino Oscillations: Eighty Years in Review

    NASA Astrophysics Data System (ADS)

    Bowers, Rebecca Lyn

    In order to discuss neutrino oscillations, it is necessary to have knowledge of the developments in the field spanning the last eighty years. The existence of the neutrino was posited by Wolfgang Pauli in 1930 to account for the mass defect in beta decay, and to this day physicists are still endeavoring to answer fundamental questions about this enigmatic particle. The scope of this thesis includes a historical background of neutrino physics and a discussion of neutrinos and the Standard Model; subsequent to this is a discussion of the Solar Neutrino Problem, which provided the impetus for the proposal of neutrino oscillations. Bolstering the theory of neutrino oscillations (which is developed in the body of this thesis) are neutrino detector experiments and their results; these include the Homestake experiment, SNO, Kamiokande and Super-Kamiokande, MINOS, and Double-Chooz. We also include relevant derivations, most particularly of the quantum mechanics of neutrino oscillations as treated in the wave packet formalism. We have amassed here the principle theories and experimental results -- a mere tip of the iceberg -- that have brought us to our current understanding of neutrino oscillations. We have also studied the quantum mechanics of neutrino oscillations and developed for ourselves the wave packet formalism describing the phenomenon.

  12. Atmospheric neutrinos observed in underground detectors

    NASA Technical Reports Server (NTRS)

    Gaisser, T. K.; Stanev, T.

    1985-01-01

    Atmospheric neutrinos are produced when the primary cosmic ray beam hits the atmosphere and initiates atmospheric cascades. Secondary mesons decay and give rise to neutrinos. The neutrino production was calculated and compared with the neutrino fluxes detected in underground detectors. Contained neutrino events are characterized by observation of an interaction within the fiducial volume of the detector when the incoming particle is not observed. Both the neutrino flux and the containment requirement restrict the energy of the neutrinos observed in contained interactions to less than several GeV. Neutrinos interact with the rock surrounding the detector but only muon neutrino interactions can be observed, as the electron energy is dissipated too fast in the rock. The direction of the neutrino is preserved in the interaction and at energies above 1 TeV the angular resolution is restricted by the scattering of the muon in the rock. The muon rate reflects the neutrino spectrum above some threshold energy, determined by the detector efficiency for muons.

  13. Neutrino radiation hazards: A paper tiger

    SciTech Connect

    Cossairt, J.D.; Grossman, N.L.; Marshall, E.T.

    1996-09-01

    Neutrinos are present in the natural environment due to terrestrial, solar, and cosmic sources and are also produced at accelerators both incidentally and intentionally as part of physics research programs. Progress in fundamental physics research has led to the creation of beams of neutrinos of ever-increasing intensity and/or energy. The large size and cost associated with these beams attracts, and indeed requires, public interest, support, and some understanding of the `exotic` particles produced, including the neutrinos. Furthermore, the very word neutrino (`little neutral one`, as coined by Enrico Fermi) can lead to public concern due to confusion with `neutron`, a word widely associated with radiological hazards. Adding to such possible concerns is a recent assertion, widely publicized, that neutrinos from astronomical events may have led to the extinction of some biological species. Presented here are methods for conservatively estimating the dose equivalent due to neutrinos as well as an assessment of the possible role of neutrinos in biological extinction processes. It is found that neutrinos produced by the sun and modern particle accelerators produce inconsequential dose equivalent rates. Examining recent calculations concerning neutrinos incident upon the earth due to stellar collapse, it is concluded that it is highly unlikely that these neutrinos caused the mass extinctions of species found in the paleontological record. Neutrino radiation hazards are, then, truly a `paper tiger`. 14 refs., 1 fig., 1 tab.

  14. Neutrino Cross Sections at Supernova Energies

    NASA Astrophysics Data System (ADS)

    Scholberg, Kate

    2017-01-01

    Neutrinos with energies between a few and a few tens of MeV are relevant for a number of physics topics. Notably, this is the energy range corresponding to emission of neutrinos from supernovae. In addition, it is relevant for studies of solar, reactor and atmospheric neutrinos, as well as for physics using accelerator-produced neutrinos from pions or radioactive nuclei decaying at rest. Surprisingly, with the exception of interactions on electrons and protons, the interactions of neutrinos with matter in this energy range are quite poorly understood, both theoretically and experimentally. This talk will describe neutrino physics and astrophysics in the supernova-neutrino energy range, the state of knowledge of cross sections on relevant nuclei, and initiatives for experimental measurements.

  15. Recent results of the ANTARES neutrino telescope

    SciTech Connect

    Hernández-Rey, Juan José

    2015-07-15

    The latest results from the ANTARES Neutrino Telescope are reported. Limits on a high energy neutrino diffuse flux have been set using for the first time both muon–track and showering events. The results for point sources obtained by ANTARES are also shown. These are the most stringent limits for the southern sky for neutrino energies below 100 TeV. Constraints on the nature of the cluster of neutrino events near the Galactic Centre observed by IceCube are also reported. In particular, ANTARES data excludes a single point–like neutrino source as the origin of this cluster. Looking for neutrinos coming from the Sun or the centre of the Galaxy, very competitive limits are set by the ANTARES data to the flux of neutrinos produced by self-annihilation of weakly interacting massive particles.

  16. An ''archaeological'' quest for galactic supernova neutrinos

    SciTech Connect

    Lazauskas, Rimantas; Volpe, Cristina E-mail: Cecilia.Lunardini@asu.edu

    2009-04-15

    We explore the possibility to observe the effects of electron neutrinos from past galactic supernovae, through a geochemical measurement of the amount of Technetium 97 produced by neutrino-induced reactions in a Molybdenum ore. The calculations we present take into account the recent advances in our knowledge of neutrino interactions, of neutrino oscillations inside a supernova, of the solar neutrino flux at Earth and of possible failed supernovae. The predicted Technetium 97 abundance is of the order of 10{sup 7} atoms per 10 kilotons of ore, which is close to the current geochemical experimental sensitivity. Of this, {approx} 10-20% is from supernovae. Considering the comparable size of uncertainties, more precision in the modeling of neutrino fluxes as well as of neutrino cross sections is required for a meaningful measurement.

  17. Analysis of the solar neutrino data

    NASA Astrophysics Data System (ADS)

    Peña-Garay, C.

    2003-05-01

    We analyse the solar neutrino data (pre-SNO) in the framework of two-neutrino, three-neutrino and four-neutrino schemes. We discuss the status of the different regimes that remain allowed (LMA, SMA and LOW-QVO). The solar and the atmospheric data are in good agreement with the CHOOZ data showing a preference for small θ13, where the stronger bound comes from the CHOOZ data. Also, we discuss the oscillations to active and sterile neutrinos in a unified picture: four-neutrino oscillations. Using the predictions for the next solar neutrino experiment, SNO, we discuss the questions that could be solved in the different frameworks. The data will be able to disfavour some of the solar regimes and also will be able to prove (or disprove) the 2+2 scenarios.

  18. Cosmological and Astrophysical Implications of Sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Abazajian, Kevork

    2014-03-01

    Cosmology has entered an even more precision-driven epoch, with many of the basic parameters of cosmology being known to the few-percent level. However, some unresolved tensions remain between large scale structure measures of cosmology and primary cosmic microwave background measures. This may indicate new physics in the neutrino sector, since neutrinos are the second most abundant particle in the Universe, and the least quantified. New neutrino physics may include extra (sterile) species of neutrinos, massive neutrinos, or both. I will review the status of these measures as well as the prospects for the resolution of the tension(s). Neutrinos also play a dominant energetics role in Type II supernova explosions, and the presence of new neutrino physics also has implications for supernova physics, which I will also review. Supported in part by the NSF CAREER Program.

  19. Reconciling Neutrino Oscillations with SO(10) Leptogenesis

    NASA Astrophysics Data System (ADS)

    Nezri, Emmanuel; Orloff, Jean

    We study the link between neutrino oscillations and leptogenesis in the minimal framework assuming an SO(10) see-saw mechanism with 3 families. The solar and atmospheric data then generically induce a large mass-hierarchy and a small mixing between the lightest right-handed neutrinos, which fails to produce sufficient lepton asymmetry by 5 orders of magnitudes at least. This conclusion can only be evaded in the case of solar vacuum oscillations and for a very specific value of the mixing sin2 2θe3 = 0.1, which interestingly lies at the boundary of the CHOOZ exclusion region, but should be accessible to future long baseline experiments.

  20. Primordial nucleosynthesis and neutrino physics

    NASA Astrophysics Data System (ADS)

    Smith, Christel Johanna

    We study primordial nucleosynthesis abundance yields for assumed ranges of cosmological lepton numbers, sterile neutrino mass-squared differences and active-sterile vacuum mixing angles. We fix the baryon-to-photon ratio at the value derived from the cosmic microwave background (CMB) data and then calculate the deviation of the 2 H, 4 He, and 7 Li abundance yields from those expected in the zero lepton number(s), no-new-neutrino-physics case. We conclude that high precision (< 5% error) measurements of the primordial 2 H abundance from, e.g., QSO absorption line observations coupled with high precision (< 1% error) baryon density measurements from the CMB could have the power to either: (1) reveal or rule out the existence of a light sterile neutrino if the sign of the cosmological lepton number is known; or (2) place strong constraints on lepton numbers, sterile neutrino mixing properties and resonance sweep physics. Similar conclusions would hold if the primordial 4 He abundance could be determined to better than 10%. We have performed new Big Bang Nucleosynthesis calculations which employ arbitrarily-specified, time-dependent neutrino and antineutrino distribution functions for each of up to four neutrino flavors. We self-consistently couple these distributions to the thermodynamics, the expansion rate and scale factor-time/temperature relationship, as well as to all relevant weak, electromagnetic, and strong nuclear reaction processes in the early universe. With this approach, we can treat any scenario in which neutrino or antineutrino spectral distortion might arise. These scenarios might include, for example, decaying particles, active-sterile neutrino oscillations, and active-active neutrino oscillations in the presence of significant lepton numbers. Our calculations allow lepton numbers and sterile neutrinos to be constrained with observationally-determined primordial helium and deuterium abundances. We have modified a standard BBN code to perform these

  1. Neutrino oscillations: From a historical perspective to the present status

    NASA Astrophysics Data System (ADS)

    Bilenky, S.

    2016-07-01

    The history of neutrino mixing and oscillations is briefly presented. Basics of neutrino mixing and oscillations and convenient formalism of neutrino oscillations in vacuum are given. The role of neutrino in the Standard Model and the Weinberg mechanism of the generation of the Majorana neutrino masses are discussed.

  2. Neutrino oscillations: from an historical perspective to the present status

    NASA Astrophysics Data System (ADS)

    Bilenky, S.

    2016-05-01

    The history of neutrino mixing and oscillations is briefly presented. Basics of neutrino mixing and oscillations and convenient formalism of neutrino oscillations in vacuum is given. The role of neutrino in the Standard Model and the Weinberg mechanism of the generation of the Majorana neutrino masses are discussed.

  3. Constraining the HEP solar neutrino and diffuse supernova neutrino background fluxes with the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Mastbaum, Andrew T.

    The Sudbury Neutrino Observatory has demonstrated that the apparent deficit in solar neutrinos observed on Earth is due to matter-enhanced flavor transitions, and provided precision measurements of the relevant oscillation parameters. The low backgrounds and large, spectral charged-current nue-d cross section that enabled these measurements also give SNO unique sensitivity to two yet-unobserved neutrino signals of great interest: the hep solar neutrino flux and the diffuse supernova neutrino background (DSNB). This work presents a joint analysis of all three running configurations of the SNO experiment in order to improve constraints on the hep and DSNB nue fluxes. The crucial uncertainties in the energy response and atmospheric neutrino background, as well as the event selection criteria, are reevaluated. Two analysis approaches are taken, a single-bin counting analysis (hep and DSNB) and multidimensional signal extraction fit (hep), using a random sample representing 1/3 of the total SNO data. These searches are the most sensitive to date for these important signals, and will improve further when the full dataset is analyzed. The SNO+ liquid scintillator experiment is a successor to SNO primarily concerned with a search for neutrinoless double-beta decay (0nubetabeta) in 130Te. The modifications to the SNO detector in preparation for SNO+ and an analysis of the 0nubetabeta sensitivity of this upcoming experiment will also be presented in this work. SNO+ will be the first experiment to load Te into liquid scintillator, and is expected to achieve world-class sensitivity in an initial phase commencing in 2017, with significantly improved sensitivity in an upgraded configuration to follow using much higher Te target mass.

  4. Electromagnetic properties of massive neutrinos in low-energy elastic neutrino-electron scattering

    NASA Astrophysics Data System (ADS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2017-03-01

    A thorough account of electromagnetic interactions of massive neutrinos in the theoretical formulation of low-energy elastic neutrino-electron scattering is given. The formalism of neutrino charge, magnetic, electric, and anapole form factors defined as matrices in the mass basis is employed under the assumption of three-neutrino mixing. The flavor change of neutrinos traveling from the source to the detector is taken into account and the role of the source-detector distance is inspected. The effects of neutrino flavor-transition millicharges and charge radii in the scattering experiments are pointed out.

  5. MOON for symmetry studies of neutrinos by double beta decays and neutrino nuclear responses

    NASA Astrophysics Data System (ADS)

    Ejiri, H.

    2010-11-01

    Neutrino-less double beta decays (0νββ) are used for high sensitivity studies of symmetry properties of neutrinos such as the Majorana nature of neutrinos, the absolute mass scale, the CP at the lepton sector, and others. Neutrino nuclear responses (0νββ nuclear matrix elements) are crucial for extracting these neutrino properties from 0νββ experiments. This is a brief report of the present status of MOON (spectroscopic 0νββ experiment) with the ν-mass sensitivity of 100-30 meV, and experimental ways to study the neutrino nuclear responses.

  6. Heavy bino dark matter and collider signals in the MSSM with vectorlike fourth-generation particles

    NASA Astrophysics Data System (ADS)

    Abdullah, Mohammad; Feng, Jonathan L.; Iwamoto, Sho; Lillard, Benjamin

    2016-11-01

    MSSM4G models, in which the minimal supersymmetric standard model is extended to include vectorlike copies of standard model particles, are promising possibilities for weak-scale supersymmetry. In particular, two models, called QUE and QDEE, realize the major virtues of supersymmetry (naturalness consistent with the 125 GeV Higgs boson, gauge coupling unification, and thermal relic neutralino dark matter) without the need for fine-tuned relations between particle masses. We determine the implications of these models for dark matter and collider searches. The QUE and QDEE models revive the possibility of heavy bino dark matter with mass in the range 300-700 GeV, which is not usually considered. Dark matter direct detection cross sections are typically below current limits, but are naturally expected above the neutrino floor and may be seen at next-generation experiments. Indirect detection prospects are bright at the Cherenkov Telescope Array, provided the fourth-generation leptons have mass above 350 GeV or decay to taus. In a completely complementary way, discovery prospects at the LHC are dim if the fourth-generation leptons are heavy or decay to taus, but are bright for fourth-generation leptons with masses below 350 GeV that decay either to electrons or to muons. We conclude that the combined set of direct detection, CTA, and LHC experiments will discover or exclude these MSSM4G models in the coming few years, assuming the Milky Way has an Einasto dark matter profile.

  7. Neutrino physics: A theoretical perspective

    SciTech Connect

    Marciano, W.J.

    1987-04-01

    Experimental measurements of sin/sup 2/theta/sub W/ are surveyed. They are shown to test electroweak unification at the quantum loop level and constrain new physics beyond the standard model. Neutrino oscillations are also examined in the framework of 3 generation mixing. Searches for nu/sub ..mu../ ..-->.. nu/sub tau/ oscillation at aceelerator facilities are advocated.

  8. Youth at Risk: A Prevention Resource for Counselors, Teachers, and Parents. Fourth Edition.

    ERIC Educational Resources Information Center

    Capuzzi, David, Ed.; Gross, Douglas R., Ed.

    The fourth revision of this text offers both tested prevention strategies for work with diverse at-risk populations and counseling techniques that address the complexities of destructive behavior from individual, family, school, and community perspectives. Drawing on the wisdom of 24 experts, this book provides concrete advice for creating and…

  9. Oscillation properties of active and sterile neutrinos and neutrino anomalies at short distances

    NASA Astrophysics Data System (ADS)

    Khruschov, V. V.; Fomichev, S. V.; Titov, O. A.

    2016-09-01

    A generalized phenomenological (3 + 2 + 1) model featuring three active and three sterile neutrinos that is intended for calculating oscillation properties of neutrinos for the case of a normal activeneutrino mass hierarchy and a large splitting between the mass of one sterile neutrino and the masses of the other two sterile neutrinos is considered. A new parametrization and a specific form of the general mixing matrix are proposed for active and sterile neutrinos with allowance for possible CP violation in the lepton sector, and test values are chosen for the neutrino masses and mixing parameters. The probabilities for the transitions between different neutrino flavors are calculated, and graphs representing the probabilities for the disappearance of muon neutrinos/antineutrinos and the appearance of electron neutrinos/antineutrinos in a beam of muon neutrinos/antineutrinos versus the distance from the neutrino source for various values of admissible model parameters at neutrino energies not higher than 50 MeV, as well as versus the ratio of this distance to the neutrino energy, are plotted. It is shown that the short-distance accelerator anomaly in neutrino data (LNSD anomaly) can be explained in the case of a specific mixing matrix for active and sterile neutrinos (which belongs to the a 2 type) at the chosen parameter values. The same applies to the short-distance reactor and gallium anomalies. The theoretical results obtained in the present study can be used to interpret and predict the results of ground-based neutrino experiments aimed at searches for sterile neutrinos, as well as to analyze some astrophysical observational data.

  10. Neutrino radiography of the Earth with the IceCube Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Hoshina, K.; Tanaka, H.

    2012-12-01

    Probing interior structures of the Earth with neutrinos has been discussed for more than 30 years. Unlike muons, neutrinos are chargeless particles and have very small cross-sections. They normally penetrate the Earth without any interaction, and from the rare interactions that do occur we obtain information on the density profile of the Earth's interior. Since this method is independent of any geophysical models, it has been expected to complement indirect physical methods such as seismic wave propagation analysis. However, the elusive characteristic of neutrinos poses a challenge for detecting them at experimental sites. To compensate for the small interaction cross-section, one needs a large volume neutrino detector. In the spring of 2011, IceCube, the world's largest neutrino observatory, was completed within deep glacial ice at the South Pole. IceCube is designed to detect Cherenkov light emitted by secondary charged particles generated from high-energy neutrinos. The primary mission of IceCube is to discover the origin of cosmic neutrinos. Toward that end, detailed studies of the atmospheric neutrino background have been performed in the last six years. Using these atmospheric neutrino events, we started a practical application of "neutrino radiography" which used to be known as "neutrino absorption tomography." In this talk we present a review of neutrino radiography including history from past decades and recent progress with the IceCube Neutrino Observatory.lt;img border=0 src="images/P23D-03_B.jpg">

  11. Neutrino signals from dark matter

    NASA Astrophysics Data System (ADS)

    Erkoca, Arif Emre

    Large-scale neutrino telescopes will be powerful tools to observe multitude of mysterious phenomena happening in the Universe. The dark matter puzzle is listed as one of them. In this study, indirect detection of dark matter via neutrino signals is presented. The upward muon, the contained muon and the hadronic shower fluxes are calculated, assuming annihilation/decay of the dark matter in the core of the astrophysical objects and in the Galactic center. Direct neutrino production and secondary neutrino production from the decay of Standard Model particles produced in the annihilation/decay of dark matter are studied. The results are contrasted to the ones previously obtained in the literature, illustrating the importance of properly treating muon propagation and energy loss for the upward muon flux. The dependence of the dark matter signals on the density profile, the dark matter mass and the detector threshold are discussed. Different dark matter models (gravitino, Kaluza-Klein and leptophilic) which can account for recent observations of some indirect searches are analyzed regarding their detection in the kilometer size neutrino detectors in the near future. Muon and shower rates and the minimum observation times in order to reach 2sigma detection significance are evaluated, with the result suggesting that the optimum cone half angles chosen about the Galactic center are about 10° (50°) for the muon (shower) events. A detailed analysis shows that for the annihilating dark matter models such as the leptophilic and Kaluza-Klein models, upward and contained muon as well as showers yield promising signals for dark matter detection in just a few years of observation, whereas for decaying dark matter models, the same observation times can only be reached with showers. The analytical results for the final fluxes are also obtained as well as parametric forms for the muon and shower fluxes for the dark matter models considered in this study.

  12. Reionization in sterile neutrino cosmologies

    NASA Astrophysics Data System (ADS)

    Bose, Sownak; Frenk, Carlos S.; Hou, Jun; Lacey, Cedric G.; Lovell, Mark R.

    2016-12-01

    We investigate the process of reionization in a model in which the dark matter is a warm elementary particle such as a sterile neutrino. We focus on models that are consistent with the dark matter decay interpretation of the recently detected line at 3.5 keV in the X-ray spectra of galaxies and clusters. In warm dark matter models, the primordial spectrum of density perturbations has a cut-off on the scale of dwarf galaxies. Structure formation therefore begins later than in the standard cold dark matter (CDM) model and very few objects form below the cut-off mass scale. To calculate the number of ionizing photons, we use the Durham semi-analytic model of galaxy formation, GALFORM. We find that even the most extreme 7 keV sterile neutrino we consider is able to reionize the Universe early enough to be compatible with the bounds on the epoch of reionization from Planck. This, perhaps surprising, result arises from the rapid build-up of high redshift galaxies in the sterile neutrino models which is also reflected in a faster evolution of their far-UV luminosity function between 10 > z > 7 than in CDM. The dominant sources of ionizing photons are systematically more massive in the sterile neutrino models than in CDM. As a consistency check on the models, we calculate the present-day luminosity function of satellites of Milky Way-like galaxies. When the satellites recently discovered in the Dark Energy Survey are taken into account, strong constraints are placed on viable sterile neutrino models.

  13. Relic neutrino decoupling with flavour oscillations revisited

    SciTech Connect

    Salas, Pablo F. de; Pastor, Sergio

    2016-07-28

    We study the decoupling process of neutrinos in the early universe in the presence of three-flavour oscillations. The evolution of the neutrino spectra is found by solving the corresponding momentum-dependent kinetic equations for the neutrino density matrix, including for the first time the proper collision integrals for both diagonal and off-diagonal elements. This improved calculation modifies the evolution of the off-diagonal elements of the neutrino density matrix and changes the deviation from equilibrium of the frozen neutrino spectra. However, it does not vary the contribution of neutrinos to the cosmological energy density in the form of radiation, usually expressed in terms of the effective number of neutrinos, N{sub eff}. We find a value of N{sub eff}=3.045, in agreement with previous theoretical calculations and consistent with the latest analysis of Planck data. This result does not depend on the ordering of neutrino masses. We also consider the effect of non-standard neutrino-electron interactions (NSI), predicted in many theoretical models where neutrinos acquire mass. For two sets of NSI parameters allowed by present data, we find that N{sub eff} can be reduced down to 3.040 or enhanced up to 3.059.

  14. Coronal Neutrino Emission in Hypercritical Accretion Flows

    NASA Astrophysics Data System (ADS)

    Kawabata, R.; Mineshige, S.; Kawanaka, N.

    2008-03-01

    Hypercritical accretion flows onto stellar mass black holes (BHs) are commonly believed to be as a promising model of central engines of gamma-ray bursts (GRBs). In this model a certain fraction of the gravitational binding energy of accreting matter is deposited to the energy of relativistic jets via neutrino annihilation and/or magnetic fields. However, some recent studies have indicated that the energy deposition rate by neutrino annihilation is somewhat smaller than that needed to power a GRB. To overcome this difficulty, Ramirez-Ruiz and Socrates proposed that high-energy neutrinos from the hot corona above the accretion disk might enhance the efficiency of the energy deposition. We elucidate the disk corona model in the context of hypercritical accretion flows. From the energy balance in the disk and the corona, we can calculate the disk and coronal temperature, Td and Tc, and neutrino spectra, taking into account the neutrino cooling processes by neutrino-electron scatterings and neutrino pair productions. The calculated neutrino spectra consist of two peaks: one by the neutrino emission from the disk and the other by that from the corona. We find that the disk corona can enhance the efficiency of energy release but only by a factor of 1.5 or so, unless the height of the corona is very small, Hll r. This is because the neutrino emission is very sensitive to the temperature of the emitting region, and then the ratio Tc/Td cannot be very large.

  15. Relic neutrino decoupling with flavour oscillations revisited

    NASA Astrophysics Data System (ADS)

    de Salas, Pablo F.; Pastor, Sergio

    2016-07-01

    We study the decoupling process of neutrinos in the early universe in the presence of three-flavour oscillations. The evolution of the neutrino spectra is found by solving the corresponding momentum-dependent kinetic equations for the neutrino density matrix, including for the first time the proper collision integrals for both diagonal and off-diagonal elements. This improved calculation modifies the evolution of the off-diagonal elements of the neutrino density matrix and changes the deviation from equilibrium of the frozen neutrino spectra. However, it does not vary the contribution of neutrinos to the cosmological energy density in the form of radiation, usually expressed in terms of the effective number of neutrinos, Neff. We find a value of Neff = 3.045, in agreement with previous theoretical calculations and consistent with the latest analysis of Planck data. This result does not depend on the ordering of neutrino masses. We also consider the effect of non-standard neutrino-electron interactions (NSI), predicted in many theoretical models where neutrinos acquire mass. For two sets of NSI parameters allowed by present data, we find that Neff can be reduced down to 3.040 or enhanced up to 3.059.

  16. Probing the Absolute Mass Scale of Neutrinos

    SciTech Connect

    Prof. Joseph A. Formaggio

    2011-10-12

    The experimental efforts of the Neutrino Physics Group at MIT center primarily around the exploration of neutrino mass and its significance within the context of nuclear physics, particle physics, and cosmology. The group has played a prominent role in the Sudbury Neutrino Observatory, a neutrino experiment dedicated to measure neutrino oscillations from 8B neutrinos created in the sun. The group is now focusing its efforts in the measurement of the neutrino mass directly via the use of tritium beta decay. The MIT group has primary responsibilities in the Karlsruhe Tritium Neutrino mass experiment, expected to begin data taking by 2013. Specifically, the MIT group is responsible for the design and development of the global Monte Carlo framework to be used by the KATRIN collaboration, as well as responsibilities directly associated with the construction of the focal plane detector. In addition, the MIT group is sponsoring a new research endeavor for neutrino mass measurements, known as Project 8, to push beyond the limitations of current neutrino mass experiments.

  17. Neutrino footprint in large scale structure

    NASA Astrophysics Data System (ADS)

    Garay, Carlos Peña; Verde, Licia; Jimenez, Raul

    2017-03-01

    Recent constrains on the sum of neutrino masses inferred by analyzing cosmological data, show that detecting a non-zero neutrino mass is within reach of forthcoming cosmological surveys. Such a measurement will imply a direct determination of the absolute neutrino mass scale. Physically, the measurement relies on constraining the shape of the matter power spectrum below the neutrino free streaming scale: massive neutrinos erase power at these scales. However, detection of a lack of small-scale power from cosmological data could also be due to a host of other effects. It is therefore of paramount importance to validate neutrinos as the source of power suppression at small scales. We show that, independent on hierarchy, neutrinos always show a footprint on large, linear scales; the exact location and properties are fully specified by the measured power suppression (an astrophysical measurement) and atmospheric neutrinos mass splitting (a neutrino oscillation experiment measurement). This feature cannot be easily mimicked by systematic uncertainties in the cosmological data analysis or modifications in the cosmological model. Therefore the measurement of such a feature, up to 1% relative change in the power spectrum for extreme differences in the mass eigenstates mass ratios, is a smoking gun for confirming the determination of the absolute neutrino mass scale from cosmological observations. It also demonstrates the synergy between astrophysics and particle physics experiments.

  18. Neutrinos as the messengers of CPT violation

    NASA Astrophysics Data System (ADS)

    Borissov, Liubomir Anguelov

    CPT violation has the potential to explain all three existing neutrino oscillation signals without enlarging the neutrino sector. CPT violation in the Dirac mass terms of the three neutrino flavors preserves Lorentz invariance, but generates in dependent masses for neutrinos and antineutrinos. This specific signature can be motivated by braneworld scenarios with extra dimensions, where neutrinos are the natural messengers for Standard Model physics of CPT violation in the bulk. A simple model of maximal CPT violation is sufficient to explain the exisiting neutrino data, while accommodating the recent results from the KamLAND experiment and making dramatic predictions for the ongoing MiniBooNE experiment. In addition, the model fits the existing SuperKamiokande data, at least as well as the standard atmospheric neutrino oscillation models. Another attractive feature of the presented model is that it provides a new promising mechanism for baryogenesis, which obviates two of the three Sakharov conditions necessary to generate the baryon asymmetry of the universe. CPT-violating scenarios can give new insights about the possible nature of neutrinos. Majorana neutrino masses are still allowed, but in general, there are no longer Majorana neutrinos in the conventional sense. However, CPT-violating models still have interesting consequences for neutrinoless double beta decay. Compared to the usual case, while the larger mass scale (from LSND) may appear, a greater degree of suppression can also occur.

  19. John Bahcall and the Solar Neutrino Problem

    NASA Astrophysics Data System (ADS)

    Bahcall, Neta

    2016-03-01

    ``I feel like dancing'', cheered John Bahcall upon hearing the exciting news from the SNO experiment in 2001. The results confirmed, with remarkable accuracy, John's 40-year effort to predict the rate of neutrinos from the Sun based on sophisticated Solar models. What began in 1962 by John Bahcall and Ray Davis as a pioneering project to test and confirm how the Sun shines, quickly turned into a four-decade-long mystery of the `Solar Neutrino Problem': John's models predicted a higher rate of neutrinos than detected by Davis and follow-up experiments. Was the theory of the Sun wrong? Were John's calculations in error? Were the neutrino experiments wrong? John worked tirelessly to understand the physics behind the Solar Neutrino Problem; he led the efforts to greatly increase the accurately of the solar model, to understand its seismology and neutrino fluxes, to use the neutrino fluxes as a test for new physics, and to advocate for important new experiments. It slowly became clear that none of the then discussed possibilities --- error in the Solar model or neutrino experiments --- was the culprit. The SNO results revealed that John's calculations, and hence the theory of the Solar model, have been correct all along. Comparison of the data with John's theory demanded new physics --- neutrino oscillations. The Solar Neutrino saga is one of the most amazing scientific stories of the century: exploring a simple question of `How the Sun Shines?' led to the discovery of new physics. John's theoretical calculations are an integral part of this journey; they provide the foundation for the Solar Neutrino Problem, for confirming how the Sun shines, and for the need of neutrino oscillations. His tenacious persistence, dedication, enthusiasm and love for the project, and his leadership and advocacy of neutrino physics over many decades are a remarkable story of scientific triumph. I know John is smiling today.

  20. FIRST NEUTRINO POINT-SOURCE RESULTS FROM THE 22-STRING ICECUBE DETECTOR

    SciTech Connect

    IceCube Collaboration; Klein, Spencer

    2009-05-14

    We present new results of searches for neutrino point sources in the northern sky, using data recorded in 2007-08 with 22 strings of the IceCube detector (approximately one-fourth of the planned total) and 275.7 days of livetime. The final sample of 5114 neutrino candidate events agrees well with the expected background of atmospheric muon neutrinos and a small component of atmospheric muons. No evidence of a point source is found, with the most significant excess of events in the sky at 2.2 {sigma} after accounting for all trials. The average upper limit over the northern sky for point sources of muon-neutrinos with E{sup -2} spectrum is E{sup 2} {Phi}{sub {nu}{sub {mu}}} < 1.4 x 10{sup -1} TeV cm{sup -2}s{sup -1}, in the energy range from 3 TeV to 3 PeV, improving the previous best average upper limit by the AMANDA-II detector by a factor of two.

  1. Resurrection of large lepton number asymmetries from neutrino flavor oscillations

    NASA Astrophysics Data System (ADS)

    Barenboim, Gabriela; Kinney, William H.; Park, Wan-Il

    2017-02-01

    We numerically solve the evolution equations of neutrino three-flavor density matrices, and show that, even if neutrino oscillations mix neutrino flavors, large lepton number asymmetries are still allowed in certain limits by big bang nucleosynthesis.

  2. Neutrino-2008: Where are we? Where are we going?

    NASA Astrophysics Data System (ADS)

    Smirnov, Alexei Yu

    2008-11-01

    Our present knowledge of neutrinos can be summarized in terms of the 'standard neutrino scenario'. Phenomenology of this scenario as well as attempts to uncover physics behind neutrino mass and mixing are described. Goals of future studies include complete reconstruction of the neutrino mass and flavor spectrum, further test of the standard scenario and search for new physics beyond it. Developments of new experimental techniques may lead to construction of new neutrino detectors from table-top to multi-Megaton scales which will open new horizons in the field. With detection of neutrino bursts from the Galactic supernova and high energy cosmic neutrinos neutrino astrophysics will enter qualitatively new phase. Neutrinos and LHC (and future colliders), neutrino astronomy, neutrino structure of the Universe, and probably, neutrino technologies will be among leading topics of research.

  3. Supernovae, neutrino rest mass, and the middle-energy neutrino background in the universe

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Seidov, Z. F.

    Neutrinos emitted during the formation of the neutron stars and black holes form, together with relict microwave radiation and relict neutrinos, a background for the present universe. The energy of the kind of neutrino emitted in neutron star formation, at 3-30 MeV, is much greater than that of relict neutrinos and much smaller than that of the cosmic ray neutrinos; they are accordingly designated 'middle energy neutrinos' (MENs). It is presently shown that the MEN background's density, at 2-10 x 10 to the -33rd gm/cu cm, is greater than the density of relict microwave radiation and less than the density of matter. The MEN spectra presently calculated yield 0.002 to 0.008 solar neutrino units in the solar chlorine-argon detector. Possible neutrino rest mass effects are discussed for the cases of expanding universe propagation and MEN background spatial structure.

  4. Right-handed neutrinos at CERN LHC and the mechanism of neutrino mass generation

    SciTech Connect

    Kersten, Joern; Smirnov, Alexei Yu.

    2007-10-01

    We consider the possibility to detect right-handed neutrinos, which are mostly singlets of the standard model gauge group, at future accelerators. Substantial mixing of these neutrinos with the active neutrinos requires a cancellation of different contributions to the light neutrino mass matrix at the level of 10{sup -8}. We discuss possible symmetries behind this cancellation and argue that for three right-handed neutrinos they always lead to conservation of total lepton number. Light neutrino masses can be generated by small perturbations violating these symmetries. In the most general case, LHC physics and the mechanism of neutrino mass generation are essentially decoupled; with additional assumptions, correlations can appear between collider observables and features of the neutrino mass matrix.

  5. The modified correlation mass method for detecting neutrino mass from astrophysical neutrino bursts

    NASA Technical Reports Server (NTRS)

    Chan, Kwing L.; Chiu, Hong-Yee; Kondo, Yoji

    1989-01-01

    A modified correlation mass method for calculating the value of a possible neutrino mass from neutrino bursts of astrophysical origin is proposed which can more sensitively detect small neutrino masses than previous methods. Application of the method to the neutrinos detected from SN 1987 A yields a value of 3.6 + or - 0.3 eV for the neutrino mass energy with a confidence level of 97 percent. Assuming a neutrino mass of 3.6 eV, and transforming all of the detected neutrino events back to the point of emission, it is shown that bursts are composed of a short initial pulse (which lasts for about 0.1 sec and contains 30-40 percent of the total neutrinos) and an extended emission lasting for about 10 sec.

  6. Constraints on the relic neutrino abundance and implications for cosmological neutrino mass limits

    SciTech Connect

    Bell, Nicole F.; /Fermilab

    2004-01-01

    The authors examine a mechanism which can lead to flavor transformation of neutrino-antineutrino asymmetries in the early universe, a process which is unavoidable when the neutrino mixing angles are large. This sets the best limit on the lepton number of the universe, and hence on the relic neutrino abundance. They also consider the consequences for the relic neutrino abundance if extra neutrino interactions are allowed, e.g., the coupling of the neutrinos to a light (compared to m{sub {nu}}) boson. For a wide range of couplings not excluded by other considerations, the relic neutrinos would annihilate to bosons at late times, and thus make a negligible contribution to the matter density today. This mechanism evades the neutrino mass limits arising from large scale structure.

  7. Fourth branchial pouch sinus: diagnosis and treatment.

    PubMed

    Rosenfeld, R M; Biller, H F

    1991-07-01

    The fourth branchial pouch sinus (FBPS) is a rare translaryngeal anomaly with diverse manifestations, including neonatal stridor and recurrent deep neck infection. Review of the world literature reveals 23 reports of sinuses consistent with fourth pouch origin. We present two additional cases, including the only example of a right-sided FBPS. Retrograde excision, beginning at the piriform apex, ensures complete removal of the tract and protection of the recurrent nerve. The posterior border of the thyroid ala must be resected or retracted for adequate exposure. Failure to remove the translaryngeal portion of the tract almost guarantees recurrence.

  8. The Fourth (A)ATSR Data Reprocessing

    NASA Astrophysics Data System (ADS)

    Goryl, Philippe; Cocevar, Pauline; Done, Fay; Aatsr Quality Working Group

    2016-08-01

    This paper aims to inform users of the upcoming Fourth Reprocessing of ATSR-1, ATSR-2 and AATSR data. The main objective of the Fourth Reprocessing is to generate (A)ATSR Level 1B data products in a similar format to SLSTR products from Sentinel-3. In this way, users can easily access the 20-year dataset from the ERS and ENVISAT (A)ATSR missions and carry the analysis forward into the Sentinel era. In addition to the product format change, the dataset will build on the improvements implemented in the Third Reprocessing, and will contain further improvements and enhancements, as described below.

  9. BEAMING NEUTRINOS AND ANTI-NEUTRINOS ACROSS THE EARTH TO DISENTANGLE NEUTRINO MIXING PARAMETERS

    SciTech Connect

    Fargion, Daniele; D'Armiento, Daniele; Paggi, Paolo; Desiati, Paolo E-mail: paolo.desiati@icecube.wisc.edu

    2012-10-10

    A result from MINOS seemed to indicate that the mass splitting and mixing angle of anti-neutrinos is different from that of neutrinos, suggesting a charge-parity-time (CPT) violation in the lepton sector. However, more recent MINOS data reduced the {nu}{sub {mu}}-{nu}-bar{sub {mu}} differences leading to a narrow discrepancy nearly compatible with no CPT violation. However, the last few years of OPERA activity on the appearance of a tau lepton (one unique event) still has not been probed and more tools may be required to disentangle a list of parameters ({mu}-{tau} flavor mixing, tau appearance, any eventual CPT violation, {theta}{sub 13} angle value, and any hierarchy neutrino mass). Atmospheric anisotropy in muon neutrino spectra in the DeepCore, at ten to tens of GeV (unpublished), can hardly reveal asymmetry in the eventual {nu}{sub {mu}}-{nu}-bar{sub {mu}} oscillation parameters. Here we considered how the longest baseline neutrino oscillation available, crossing most of Earth's diameter, may improve the measurement and at best disentangle any hypothetical CPT violation occurring between the earliest (2010) and the present (2012) MINOS bounds (with 6{sigma} a year), while testing {tau} and even the appearance of {tau}-bar at the highest rate. The {nu}{sub {mu}} and {nu}-bar{sub {mu}} disappearance correlated with the tau appearance is considered for those events at the largest distances. We thus propose a beam of {nu}{sub {mu}} and {nu}-bar{sub {mu}} crossing through the Earth, within an OPERA-like experiment from CERN (or Fermilab), in the direction of the IceCube-DeepCore {nu} detector at the South Pole. The ideal energy lies at 21 GeV to test the disappearance or (for any tiny CPT violation) the partial {nu}-bar{sub {mu}} appearance. Such a tuned detection experiment may lead to a strong signature of {tau} or {tau}-bar generation even within its neutral current noise background events: nearly one {tau}-bar or two {tau} a day. The tau appearance signal is

  10. Dynamical collective calculation of supernova neutrino signals.

    PubMed

    Gava, Jérôme; Kneller, James; Volpe, Cristina; McLaughlin, G C

    2009-08-14

    We present the first calculations with three flavors of collective and shock wave effects for neutrino propagation in core-collapse supernovae using hydrodynamical density profiles and the S matrix formalism. We explore the interplay between the neutrino-neutrino interaction and the effects of multiple resonances upon the time signal of positrons in supernova observatories. A specific signature is found for the inverted hierarchy and a large third neutrino mixing angle and we predict, in this case, a dearth of lower energy positrons in Cherenkov detectors midway through the neutrino signal and the simultaneous revelation of valuable information about the original fluxes. We show that this feature is also observable with current generation neutrino detectors at the level of several sigmas.

  11. High Energy Neutrinos from the Fermi Bubbles

    NASA Astrophysics Data System (ADS)

    Razzaque, Soebur; Lunardini, Cecilia

    2012-03-01

    Recent discovery of two gamma-ray emitting bubble-shaped structures (Fermi Bubbles) at the Galactic center opens up a possibility to detect high-energy neutrinos from them as well, if the observed gamma rays have hadronic origin. This new predicted Galactic neutrino flux is hard, following gamma-ray data, compared to the atmospheric neutrino flux and can be detected with a kilometer scale neutrino telescope in the northern hemisphere, such as the planned KM3NeT, above 20-50 TeV. IceCube Neutrino Observatory at the South pole can also provide interesting constraints on the flux model. A detection or exclusion of this neutrino flux can discriminate between a leptonic or hadronic origin of the gamma-rays, as well as bring unique information on the activities at the Galactic center.

  12. Annual modulation of cosmic relic neutrinos

    NASA Astrophysics Data System (ADS)

    Safdi, Benjamin R.; Lisanti, Mariangela; Spitz, Joshua; Formaggio, Joseph A.

    2014-08-01

    The cosmic neutrino background (CνB), produced about one second after the big bang, permeates the Universe today. New technological advancements make neutrino capture on beta-decaying nuclei (NCB) a clear path forward towards the detection of the CνB. We show that gravitational focusing by the Sun causes the expected neutrino capture rate to modulate annually. The amplitude and phase of the modulation depend on the phase-space distribution of the local neutrino background, which is perturbed by structure formation. These results also apply to searches for sterile neutrinos at NCB experiments. Gravitational focusing is the only source of modulation for neutrino capture experiments, in contrast to dark-matter direct-detection searches where the Earth's time-dependent velocity relative to the Sun also plays a role.

  13. Measuring anisotropies in the cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Lisanti, Mariangela; Safdi, Benjamin R.; Tully, Christopher G.

    2014-10-01

    Neutrino capture on tritium has emerged as a promising method for detecting the cosmic neutrino background (C ν B ). We show that relic neutrinos are captured most readily when their spin vectors are antialigned with the polarization axis of the tritium nuclei and when they approach along the direction of polarization. As a result, C ν B observatories may measure anisotropies in the cosmic neutrino velocity and spin distributions by polarizing the tritium targets. A small dipole anisotropy in the C ν B is expected due to the peculiar velocity of the lab frame with respect to the cosmic frame and due to late-time gravitational effects. The PTOLEMY experiment, a tritium observatory currently under construction, should observe a nearly isotropic background. This would serve as a strong test of the cosmological origin of a potential signal. The polarized-target measurements may also constrain nonstandard neutrino interactions that would induce larger anisotropies and help discriminate between Majorana versus Dirac neutrinos.

  14. Neutrino astrophysics with Hyper-Kamiokande

    NASA Astrophysics Data System (ADS)

    Yano, Takatomi; Hyper-Kamiokande proto Collaboration

    2016-05-01

    Hyper-Kamiokande (Hyper-K) is a proposed next generation underground large water Cherenkov detector. The detector consists of 1 Mt pure water tank with surrounding 99,000 newly developed photo sensors, providing fiducial volume of 0.56 Mt. The energies, positions and directions of charged particles produced by neutrino interactions are detected using its Cherenkov light in water. Our detector will be located at deep underground to reduce the cosmic muon flux and its spallation products, which is a dominant background at the low energy analysis. Hyper-K will play a considerable role in the next neutrino physics frontier, even in the neutrino astrophysics. The detection with large statistics of astrophysical neutrons, i.e., solar neutrino, supernova burst neutrino and supernova relic neutrino, will be remarkable information for both of particle physics and astrophysics.

  15. Recent results from the ANTARES neutrino telescope

    SciTech Connect

    Eberl, Thomas; Collaboration: ANTARES Collaboration

    2014-11-18

    The ANTARES detector, located in the deep sea 40 km off the French coast, is the largest neutrino telescope in the northern hemisphere. It consists of an array of 885 photomultipliers detecting the Cherenkov light induced by charged leptons created in neutrino interactions in and around the detector. The main goal of ANTARES is to search for astrophysical neutrinos in the TeV-PeV range. This comprises searches for a diffuse cosmic neutrino flux and for fluxes from possible galactic and extragalactic sources of neutrinos. The search program also includes multi-messenger analyses based on time and/or space coincidences with other cosmic probes. The ANTARES detector is sensitive to a wide range of other phenomena, from atmospheric neutrino oscillations to dark matter annihilation or potential exotics such as nuclearites and magnetic monopoles.

  16. Search for Sterile Neutrinos Mixing with Muon Neutrinos in MINOS

    NASA Astrophysics Data System (ADS)

    Adamson, P.; Anghel, I.; Aurisano, A.; Barr, G.; Bishai, M.; Blake, A.; Bock, G. J.; Bogert, D.; Cao, S. V.; Carroll, T. J.; Castromonte, C. M.; Chen, R.; Childress, S.; Coelho, J. A. B.; Corwin, L.; Cronin-Hennessy, D.; de Jong, J. K.; de Rijck, S.; Devan, A. V.; Devenish, N. E.; Diwan, M. V.; Escobar, C. O.; Evans, J. J.; Falk, E.; Feldman, G. J.; Flanagan, W.; Frohne, M. V.; Gabrielyan, M.; Gallagher, H. R.; Germani, S.; Gomes, R. A.; Goodman, M. C.; Gouffon, P.; Graf, N.; Gran, R.; Grzelak, K.; Habig, A.; Hahn, S. R.; Hartnell, J.; Hatcher, R.; Holin, A.; Huang, J.; Hylen, J.; Irwin, G. M.; Isvan, Z.; James, C.; Jensen, D.; Kafka, T.; Kasahara, S. M. S.; Koizumi, G.; Kordosky, M.; Kreymer, A.; Lang, K.; Ling, J.; Litchfield, P. J.; Lucas, P.; Mann, W. A.; Marshak, M. L.; Mayer, N.; McGivern, C.; Medeiros, M. M.; Mehdiyev, R.; Meier, J. R.; Messier, M. D.; Miller, W. H.; Mishra, S. R.; Moed Sher, S.; Moore, C. D.; Mualem, L.; Musser, J.; Naples, D.; Nelson, J. K.; Newman, H. B.; Nichol, R. J.; Nowak, J. A.; O'Connor, J.; Orchanian, M.; Pahlka, R. B.; Paley, J.; Patterson, R. B.; Pawloski, G.; Perch, A.; Pfützner, M. M.; Phan, D. D.; Phan-Budd, S.; Plunkett, R. K.; Poonthottathil, N.; Qiu, X.; Radovic, A.; Rebel, B.; Rosenfeld, C.; Rubin, H. A.; Sail, P.; Sanchez, M. C.; Schneps, J.; Schreckenberger, A.; Schreiner, P.; Sharma, R.; Sousa, A.; Tagg, N.; Talaga, R. L.; Thomas, J.; Thomson, M. A.; Tian, X.; Timmons, A.; Todd, J.; Tognini, S. C.; Toner, R.; Torretta, D.; Tzanakos, G.; Urheim, J.; Vahle, P.; Viren, B.; Weber, A.; Webb, R. C.; White, C.; Whitehead, L.; Whitehead, L. H.; Wojcicki, S. G.; Zwaska, R.; Minos Collaboration

    2016-10-01

    We report results of a search for oscillations involving a light sterile neutrino over distances of 1.04 and 735 km in a νμ-dominated beam with a peak energy of 3 GeV. The data, from an exposure of 10.56 ×1 020 protons on target, are analyzed using a phenomenological model with one sterile neutrino. We constrain the mixing parameters θ24 and Δ m412 and set limits on parameters of the four-dimensional Pontecorvo-Maki-Nakagawa-Sakata matrix, |Uμ 4|2 and |Uτ 4|2, under the assumption that mixing between νe and νs is negligible (|Ue 4|2=0 ). No evidence for νμ→νs transitions is found and we set a world-leading limit on θ24 for values of Δ m412 ≲1 eV2 .

  17. Measurement of nuclear effects in neutrino interactions with minimal dependence on neutrino energy

    NASA Astrophysics Data System (ADS)

    Lu, X.-G.; Pickering, L.; Dolan, S.; Barr, G.; Coplowe, D.; Uchida, Y.; Wark, D.; Wascko, M. O.; Weber, A.; Yuan, T.

    2016-07-01

    We present a phenomenological study of nuclear effects in neutrino charged-current interactions, using transverse kinematic imbalances in exclusive measurements. Novel observables with minimal dependence on neutrino energy are proposed to study quasielastic scattering and especially resonance production. They should be able to provide direct constraints on nuclear effects in neutrino- and antineutrino-nucleus interactions.

  18. Search for sterile neutrino oscillations in muon neutrino disappearance at MINOS/MINOS+

    NASA Astrophysics Data System (ADS)

    Todd, Jacob; Minos+ Collaboration

    2017-01-01

    A wide variety of neutrino oscillation phenomena are well-described by the standard three-flavour neutrino model, but some anomalies exist. The LSND and MiniBooNE experiments have measured electron antineutrino appearance in excess of standard oscillation predictions, which points to the possibility of a sterile neutrino with higher mass than the presently known states. MINOS, a two-detector, long-baseline neutrino oscillation experiment, was optimized for the measurement of muon neutrino disappearance in the NuMI neutrino beam. A sterile neutrino responsible for the LSND and MiniBooNE excesses would cause distortions in the charged current and neutral current MINOS spectra, which permits the search for sterile neutrinos at MINOS. In close collaboration with the Daya Bay reactor neutrino experiment, MINOS has placed strong constraints on the sterile neutrino parameter space for a model with one additional sterile neutrino. Further, the extension of data collection with MINOS+, which samples the NuMI beam in a medium energy configuration, markedly increases the sensitivity of the combined MINOS and MINOS+ sample to a 3+1-flavour sterile neutrino model.

  19. Low-energy neutrino-nucleus interactions and beta-beam neutrino

    SciTech Connect

    Jachowicz, N.; Pandey, V.

    2015-05-15

    We present an overview of neutrino-nucleus scattering at low energies with cross sections obtained within a continuum random phase approximation (CRPA) formalism. We highlight potential applications of beta-beam neutrino experiments for neutrino astrophysics. Our calculations are compared with MiniBooNe data at intermediate energies.

  20. Measuring neutrino oscillation parameters using $\

    SciTech Connect

    Backhouse, Christopher James

    2011-01-01

    MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters (Δmatm2 and sin2atm). The oscillation signal consists of an energy-dependent deficit of vμ interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the vμ-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters of the vμ-disappearance analysis, incorporating this new estimator were: Δm2 = 2.32-0.08+0.12 x 10-3 eV2, sin 2 2θ > 0.90 (90% C.L.). A similar analysis, using data from a period of running where the NuMI beam was operated in a configuration producing a predominantly $\\bar{v}$μ beam, yielded somewhat different best-fit parameters Δ$\\bar{m}${sup 2} = (3.36-0.40+0.46(stat.) ± 0.06(syst.)) x 10-3eV2, sin2 2$\\bar{θ}$ = 0.86-0.12_0.11

  1. Detection of extended galactic sources with an underwater neutrino telescope

    SciTech Connect

    Leisos, A.; Tsirigotis, A. G.; Tzamarias, S. E.; Lenis, D.

    2014-11-18

    In this study we investigate the discovery capability of a Very Large Volume Neutrino Telescope to Galactic extended sources. We focus on the brightest HESS gamma rays sources which are considered also as very high energy neutrino emitters. We use the unbinned method taking into account both the spatial and the energy distribution of high energy neutrinos and we investigate parts of the Galactic plane where nearby potential neutrino emitters form neutrino source clusters. Neutrino source clusters as well as isolated neutrino sources are combined to estimate the observation period for 5 sigma discovery of neutrino signals from these objects.

  2. Maximal atmospheric neutrino mixing in an SU(5) model

    NASA Astrophysics Data System (ADS)

    Grimus, W.; Lavoura, L.

    2003-05-01

    We show that maximal atmospheric and large solar neutrino mixing can be implemented in SU(5) gauge theories, by making use of the U(1) F symmetry associated with a suitably defined family number F, together with a Z2 symmetry which does not commute with F. U(1) F is softly broken by the mass terms of the right-handed neutrino singlets, which are responsible for the seesaw mechanism; in additio n, U(1) F is also spontaneously broken at the electroweak scale. In our scenario, lepton mixing stems exclusively from the right-handed-neutrino Majorana mass matrix, whereas the CKM matrix originates solely in the up-type-quark sector. We show that, despite the non-supersymmetric character of our model, unification of the gauge couplings can be achieved at a scale 1016 GeV < m U < 1019 GeV; indeed, we have found a particula r solution to this problem which yields results almost identical to the ones of the minimal supersymmetric standard model.

  3. Prospects for neutrino spin coherence in supernovae

    NASA Astrophysics Data System (ADS)

    Tian, James Y.; Patwardhan, Amol V.; Fuller, George M.

    2017-03-01

    We present neutrino bulb model simulations of Majorana neutrino coherent spin transformation (i.e., neutrino-antineutrino transformation), coupled to neutrino flavor evolution, for conditions corresponding to the neutronization burst epoch of an oxygen-neon-magnesium core collapse supernova. Significant neutrino spin transformation in, for example, the neutronization burst could alter the fluences of neutrinos and antineutrinos in a way which is potentially detectable for a Galactic core collapse supernova. Our calculations for the first time incorporate geometric dilution in the spin evolution of the neutrinos and combine two-flavor and three-flavor evolution with spin mixing physics. We find that significant spin transformations can occur, but only with a large neutrino luminosity and an electron fraction (Ye) profile which facilitates adiabatic conditions for the spin-channel resonance. Using our adopted parameters of neutrino energy spectra, luminosity, density and Ye profiles, our calculations require an unrealistically large neutrino rest mass to sustain the spin transformation. It is an open question whether examining different density profiles or incorporating other sources of nonlinear feedback, such as Ye feedback, could mitigate this need. We find that spin transformations are not sensitive to the flavor structure of neutrinos; i.e., the spin transformations occur regardless of whether we simulate two- or three-flavor transformations. In the two-flavor case, spin transformations were insensitive to the choice of solar or atmospheric mass-squared splitting as well as the choice of the Majorana phase. Importantly, our three-flavor simulations, as well as our two-flavor simulations done with the atmospheric mass-squared splitting, show that the inclusion of spin degrees of freedom can significantly and qualitatively alter neutrino flavor evolution.

  4. Constraining neutrino decays with CMBR data

    NASA Astrophysics Data System (ADS)

    Hannestad, Steen

    1998-07-01

    The decay of massive neutrinos to final states containing only invisible particles is poorly constrained experimentally. In this letter we describe the constraints that can be put on neutrino mass and lifetime using CMBR measurements. We find that very tight lifetime limits on neutrinos in the mass range 10 eV - 100 keV can be derived using CMBR data from upcoming satellite measurements.

  5. A study of neutrino oscillations in MINOS

    SciTech Connect

    Raufer, Tobias Martin

    2007-01-01

    MINOS is a long-baseline neutrino oscillations experiment located at Fermi National Accelerator Laboratory (FNAL), USA. It makes use of the NuMI neutrino beamline and two functionally identical detectors located at distances of ~1km and ~735km from the neutrino production target respectively. The Near Detector measures the composition and energy spectrum of the neutrino beam with high precision while the Far Detector looks for evidence of neutrino oscillations. This thesis presents work conducted in two distinct areas of the MINOS experiment: analysis of neutral current and charged current interactions. While charged current events are only sensitive to muon neutrino disappearance, neutral current events can be used to distinguish oscillations into sterile neutrinos from those involving only active neutrino species. A complete, preliminary neutral current study is performed on simulated data. This is followed by a more detailed investigation of neutral current neutrino interactions in the MINOS Near Detector. A procedure identifying neutral current interactions and rejecting backgrounds due to reconstruction failures is developed. Two distinct event classification methods are investigated. The selected neutral current events in the Near Detector are used to extract corrections to the neutral current cross-section in the MINOS Monte Carlo simulation as a function of energy. The resulting correction factors are consistent with unity. The main MINOS charged current neutrino disappearance analysis is described. We present the Monte Carlo tuning procedure, event selection, extrapolation from Near to Far Detector and fit for neutrino oscillations. Systematic errors on this measurement are evaluated and discussed in detail. The data are consistent with neutrino oscillations with the following parameters: 2.74 $+0.44\\atop{-0.26}$ x 10-3 eV2 and sin2(2θ23) > 0.87 at 68% confidence level.

  6. MINERνA neutrino detector calibration

    SciTech Connect

    Patrick, Cheryl

    2015-05-15

    MINERνA is a neutrino scattering experiment that uses Fermilab’s NuMI beamline. Its goal is to measure cross-sections for neutrino scattering from different nuclei. Precise knowledge of these cross-sections is vital for current and future neutrino oscillation experiments. In order to measure these values to a high degree of accuracy, it is essential that the detector be carefully calibrated. Here, we describe in-situ calibration and cross-checks.

  7. Neutrinos from Pre-Collapse Stars

    NASA Astrophysics Data System (ADS)

    Misch, G. Wendell; Fuller, George M.

    We show that in order to make realistic predictions of the nuclear neutrino spectra from pre-collapse stellar cores, one must properly account for nuclear structure effects; often, the dominant nuclear transitions involve excited states, sometimes in both parent and daughter nuclei. We show that the standard technique of producing a neutrino energy spectrum by using a single effective transition structured to fit published neutrino production rates and energy losses will not accurately capture important spectral features.

  8. ANTARES: The first undersea neutrino telescope

    NASA Astrophysics Data System (ADS)

    Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; Ameli, F.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Arnaud, K.; Aslanides, E.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Becherini, Y.; Beltramelli, J.; Bersani, A.; Bertin, V.; Beurthey, S.; Biagi, S.; Bigongiari, C.; Billault, M.; Blaes, R.; Bogazzi, C.; de Botton, N.; Bou-Cabo, M.; Boudahef, B.; Bouwhuis, M. C.; Brown, A. M.; Brunner, J.; Busto, J.; Caillat, L.; Calzas, A.; Camarena, F.; Capone, A.; Caponetto, L.; Cârloganu, C.; Carminati, G.; Carmona, E.; Carr, J.; Carton, P. H.; Cassano, B.; Castorina, E.; Cecchini, S.; Ceres, A.; Chaleil, Th.; Charvis, Ph.; Chauchot, P.; Chiarusi, T.; Circella, M.; Compère, C.; Coniglione, R.; Coppolani, X.; Cosquer, A.; Costantini, H.; Cottini, N.; Coyle, P.; Cuneo, S.; Curtil, C.; D'Amato, C.; Damy, G.; van Dantzig, R.; de Bonis, G.; Decock, G.; Decowski, M. P.; Dekeyser, I.; Delagnes, E.; Desages-Ardellier, F.; Deschamps, A.; Destelle, J.-J.; di Maria, F.; Dinkespiler, B.; Distefano, C.; Dominique, J.-L.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drogou, J.-F.; Drouhin, D.; Druillole, F.; Durand, D.; Durand, R.; Eberl, T.; Emanuele, U.; Engelen, J. J.; Ernenwein, J.-P.; Escoffier, S.; Falchini, E.; Favard, S.; Fehr, F.; Feinstein, F.; Ferri, M.; Ferry, S.; Fiorello, C.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatá, S.; Galeotti, S.; Gay, P.; Gensolen, F.; Giacomelli, G.; Gojak, C.; Gómez-González, J. P.; Goret, Ph.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartmann, B.; Heijboer, A. J.; Heine, E.; Hello, Y.; Henry, S.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hogenbirk, J.; Hsu, C. C.; Hubbard, J. R.; Jaquet, M.; Jaspers, M.; de Jong, M.; Jourde, D.; Kadler, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Karg, T.; Karkar, S.; Karolak, M.; Katz, U.; Keller, P.; Kestener, P.; Kok, E.; Kok, H.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Kruijer, A.; Kuch, S.; Kulikovskiy, V.; Lachartre, D.; Lafoux, H.; Lagier, P.; Lahmann, R.; Lahonde-Hamdoun, C.; Lamare, P.; Lambard, G.; Languillat, J.-C.; Larosa, G.; Lavalle, J.; Le Guen, Y.; Le Provost, H.; Levansuu, A.; Lefèvre, D.; Legou, T.; Lelaizant, G.; Lévéque, C.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Lyashuk, V.; Magnier, P.; Mangano, S.; Marcel, A.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Masullo, R.; Mazéas, F.; Mazure, A.; Meli, A.; Melissas, M.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Neff, M.; Niess, V.; Nooren, G. J. L.; Oberski, J. E. J.; Olivetto, C.; Palanque-Delabrouille, N.; Palioselitis, D.; Papaleo, R.; Păvălaş, G. E.; Payet, K.; Payre, P.; Peek, H.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Piret, Y.; Poinsignon, J.; Popa, V.; Pradier, T.; Presani, E.; Prono, G.; Racca, C.; Raia, G.; van Randwijk, J.; Real, D.; Reed, C.; Réthoré, F.; Rewiersma, P.; Riccobene, G.; Richardt, C.; Richter, R.; Ricol, J. S.; Rigaud, V.; Roca, V.; Roensch, K.; Rolin, J.-F.; Rostovtsev, A.; Rottura, A.; Roux, J.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Salomon, K.; Sapienza, P.; Schmitt, F.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Sciliberto, D.; Shanidze, R.; Shirokov, E.; Simeone, F.; Sottoriva, A.; Spies, A.; Spona, T.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Streeb, K.; Sulak, L.; Taiuti, M.; Tamburini, C.; Tao, C.; Tasca, L.; Terreni, G.; Tezier, D.; Toscano, S.; Urbano, F.; Valdy, P.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Venekamp, G.; Verlaat, B.; Vernin, P.; Virique, E.; de Vries, G.; van Wijk, R.; Wijnker, G.; Wobbe, G.; de Wolf, E.; Yakovenko, Y.; Yepes, H.; Zaborov, D.; Zaccone, H.; Zornoza, J. D.; Zúñiga, J.

    2011-11-01

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given.

  9. Children, Play, and Development. Fourth Edition

    ERIC Educational Resources Information Center

    Hughes, Fergus P.

    2010-01-01

    Children, Play, and Development, Fourth Edition, discusses the relationship of play to the physical, social, intellectual, and emotional growth of the child. Author Fergus P. Hughes focuses on the historical, sociocultural, and ethological context of play; the role of development in play; and the wide range of theories that provide a framework for…

  10. Reading Aloud to Fourth Grade Students.

    ERIC Educational Resources Information Center

    Forte, Frances

    A study determined if regular listening to oral reading by the teacher affected fourth-grade students' level of comprehension. Subjects were 47 students from an elementary school in central New Jersey. Twenty-five students were read to for 30 minutes daily for 8 weeks in addition to their regular classroom reading instruction. The remaining 22…

  11. The Fourth Domain of Educational Objectives: Induction.

    ERIC Educational Resources Information Center

    Holleman, Wes

    1985-01-01

    Tests the claim to comprehensiveness of Bloom's taxonomy of educational objectives by analyzing educational objectives of some freshmen orientation programs and those connected with human developmental tasks. It is concluded that the taxonomy should be enlarged with a fourth domain: actual induction into tasks for which students are being…

  12. Singapore: The Fourth Way in Action?

    ERIC Educational Resources Information Center

    Hargreaves, Andy

    2012-01-01

    This article has two main objectives. It first outlines the first three waves of change termed by Hargreaves and Shirley (The Fourth Way: The inspiring future for educational change. Thousand Oaks, CA: Corwin Press, "2009") as the First, Second and Third Way that defined global educational policy and practice since the 1960s. It then…

  13. The Fourth Basic: Computer Skills. Final Report.

    ERIC Educational Resources Information Center

    Hardin County Board of Education, Elizabethtown, KY.

    Traditionally, the fundamental goal of all American education has been to provide students with adequate competencies in reading, writing, and mathematics. A year-long project, conducted at three high schools in Hardin County, Kentucky, provided for the development of a fourth basic: computer skills. Through this project, computer skills were…

  14. Sex Differences in Cognitive Abilities. Fourth Edition

    ERIC Educational Resources Information Center

    Halpern, Diane F.

    2011-01-01

    The fourth edition of "Sex Differences in Cognitive Abilities" critically examines the breadth of research on this complex and controversial topic, with the principal aim of helping the reader to understand where sex differences are found--and where they are not. Since the publication of the third edition, there have been many exciting and…

  15. Literature for Today's Young Adults. Fourth Edition.

    ERIC Educational Resources Information Center

    Nilsen, Alleen Pace; Donelson, Kenneth L.

    Designed to help teachers open young minds to literature, this book presents criteria for evaluating books in all genres and their suggested classroom uses, an examination of hotly debated topics, and an overview of the significance of young adult literature. The fourth edition of the book features 30 boxed inserts containing essays by some of the…

  16. "Researching" with Third- and Fourth-Graders.

    ERIC Educational Resources Information Center

    Liston, Barbara

    1970-01-01

    In order to instill in children the skills which will be basic to their school experience, words implying a process (such as "hemp,""parasite," and "vanilla") may be "researched" by third and fourth graders through the use of a dictionary, an encyclopedia, a supplementary book on the subject, and an interview with an adult. The child makes a…

  17. Vocabulary Strategies for a Fourth Grade Classroom

    ERIC Educational Resources Information Center

    Howell, Gina

    2012-01-01

    For this project I worked with twelve of my fourth grade students from a local school in the southwestern part of Stokes County, North Carolina on increasing their vocabulary skills through the development and implementation of seven vocabulary strategies. During the Literature Review I came across the following seven strategies: Prediction;…

  18. Fourth Graders Do Write About Their Problems.

    ERIC Educational Resources Information Center

    Biberstine, Richard D.

    1968-01-01

    The question of whether or not intermediate grade children write about their problems was the focus of an investigation conducted among 363 fourth grade students. Children were requested to respond to a paragraph concerning change in the world by writing a compostion answering how and what they would change if they had the power. Findings showed…

  19. Gamma-ray limits on neutrino lines

    SciTech Connect

    Queiroz, Farinaldo S.; Yaguna, Carlos E.; Weniger, Christoph

    2016-05-23

    Monochromatic neutrinos from dark matter annihilations (χχ→νν-bar) are always produced in association with a gamma-ray spectrum generated by electroweak bremsstrahlung. Consequently, these neutrino lines can be searched for not only with neutrino detectors but also indirectly with gamma-ray telescopes. Here, we derive limits on the dark matter annihilation cross section into neutrinos based on recent Fermi-LAT and HESS data. We find that, for dark matter masses above 200 GeV, gamma-ray data actually set the most stringent constraints on neutrino lines from dark matter annihilation and, therefore, an upper bound on the dark matter total annihilation cross section. In addition, we point out that gamma-ray telescopes, unlike neutrino detectors, have the potential to distinguish the flavor of the final state neutrino. Our results indicate that we have already entered into a new era where gamma-ray telescopes are more sensitive than neutrino detectors to neutrino lines from dark matter annihilation.

  20. Helicity oscillations of Dirac and Majorana neutrinos

    NASA Astrophysics Data System (ADS)

    Dobrynina, Alexandra; Kartavtsev, Alexander; Raffelt, Georg

    2016-06-01

    The helicity of a Dirac neutrino with mass m evolves under the influence of a B field because it has a magnetic dipole moment proportional to m . Moreover, it was recently shown that a polarized or anisotropic medium engenders the same effect for both Dirac and Majorana neutrinos. Because a B field polarizes a background medium, it instigates helicity oscillations even for Majorana neutrinos unless the medium is symmetric between matter and antimatter. Motivated by these observations, we review the impact of a B field and of an anisotropic or polarized medium on helicity oscillations for Dirac and Majorana neutrinos from the common perspective of in-medium dispersion.

  1. Very low-energy neutrino interactions

    SciTech Connect

    Suzuki, Toshio

    2015-05-15

    Neutrino-nucleus reaction cross sections are now evaluated rather accurately by shell-model (SM) or SM+RPA calculations based on recent advances in nuclear structure studies. Due to these achievements, reliable constraints on super-nova neutrino temperatures as well as neutrino oscillation parameters become possible. Supernova neutrino tempeatures are constrained from abundances of elements obtained by using new ν-nucleus reaction cross sections. A possibility of constructing supernova neutrino spectrum from beta-beam measurements is pointed out. Neutrino mass hierarchy and mixing angle θ{sub 13} can be determined from abundance ratio of {sup 7}Li/{sup 11}B, which is sensitive to the MSW matter oscillation effects in supernova explosions. Inverted mass hierarchy is shown to be statistically more favored based on a recent analysis of presolar grains. Effects of neutrino-neutrino interactions are also shown to play important roles in r-process nucleosynthesis. Importance and possibilities of direct measurements of ν-induced cross sections on {sup 40}Ar and {sup 208}Pb are discussed for future supernova neutrino detections. Recent calculations of the cross sections for ν-{sup 40}Ar are presented. The need for new theoretical evaluations of the cross sections for ν-{sup 208}Pb is pointed out. Challenges to experiments on coherent elastic scattering are presented.

  2. The Status of Sterile Neutrino Dark Matter

    NASA Astrophysics Data System (ADS)

    Horiuchi, Shunsaku

    2017-01-01

    The sterile neutrino is a particle dark matter candidate with a host of observable signatures that is close to being fully tested. I will first review the implications for structure formation, comparing predictions of sterile neutrino cosmologies against observations. I will then review analyses of X-rays from dark matter concentrations in search of mono-energetic photons predicted from sterile neutrino dark matter decays. Structure formation and X-rays offer important complementary probes, and I will highlight the recent rapid progress in testing the sterile neutrino parameter space. I will also discuss implications of analyses leading to the detection of X-ray lines from clusters of galaxies and Andromeda.

  3. Neutrino emission from nearby supernova progenitors

    NASA Astrophysics Data System (ADS)

    Yoshida, Takashi; Takahashi, Koh; Umeda, Hideyuki

    2016-05-01

    Neutrinos have an important role for energy loss process during advanced evolution of massive stars. Although the luminosity and average energy of neutrinos during the Si burning are much smaller than those of supernova neutrinos, these neutrinos are expected to be detected by the liquid scintillation neutrino detector KamLAND if a supernova explosion occurs at the distance of ~100 parsec. We investigate the neutrino emission from massive stars during advanced evolution. We calculate the evolution of the energy spectra of neutrinos produced through electron-positron pair-annihilation in the supernova progenitors with the initial mass of 12, 15, and 20 M ⊙ during the Si burning and core-collapse stages. The neutrino emission rate increases from ~ 1050 s-1 to ~ 1052 s-1. The average energy of electron-antineutrinos is about 1.25 MeV during the Si burning and gradually increases until the core-collapse. For one week before the supernova explosion, the KamLAND detector is expected to observe 12-24 and 6-13 v¯e events in the normal and inverted mass hierarchies, respectively, if a supernova explosion of a 12-20 M ⊙ star occurs at the distance of 200 parsec, corresponding to the distance to Betelgeuse. Observations of neutrinos from SN progenitors have a possibility to constrain the core structure and the evolution just before the core collapse of massive stars.

  4. Boltzmann hierarchy for interacting neutrinos I: formalism

    SciTech Connect

    Oldengott, Isabel M.; Rampf, Cornelius; Wong, Yvonne Y.Y. E-mail: cornelius.rampf@port.ac.uk

    2015-04-01

    Starting from the collisional Boltzmann equation, we derive for the first time and from first principles the Boltzmann hierarchy for neutrinos including interactions with a scalar particle. Such interactions appear, for example, in majoron-like models of neutrino mass generation. We study two limits of the scalar mass: (i) An extremely massive scalar whose only role is to mediate an effective 4-fermion neutrino-neutrino interaction, and (ii) a massless scalar that can be produced in abundance and thus demands its own Boltzmann hierarchy. In contrast to, e.g., the first-order Boltzmann hierarchy for Thomson-scattering photons, our interacting neutrino/scalar Boltzmann hierarchies contain additional momentum-dependent collision terms arising from a non-negligible energy transfer in the neutrino-neutrino and neutrino-scalar interactions. This necessitates that we track each momentum mode of the phase space distributions individually, even if the particles were massless. Comparing our hierarchy with the commonly used (c{sub eff}{sup 2},c{sub vis}{sup 2})-parameterisation, we find no formal correspondence between the two approaches, which raises the question of whether the latter parameterisation even has an interpretation in terms of particle scattering. Lastly, although we have invoked majoron-like models as a motivation for our study, our treatment is in fact generally applicable to all scenarios in which the neutrino and/or other ultrarelativistic fermions interact with scalar particles.

  5. Neutrinos and large-scale structure

    SciTech Connect

    Eisenstein, Daniel J.

    2015-07-15

    I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos.

  6. From super beams to neutrino factories

    SciTech Connect

    Bross, Alan; /Fermilab

    2009-11-01

    The Neutrino Factory, which produces an extremely intense source of flavor-tagged neutrinos from muon decays in a storage ring, arguably gives the best physics reach for CP violation, as well as virtually all parameters in the neutrino oscillation parameter space. I will briefly describe the physics capabilities of the baseline Neutrino Factory as compared to other possible future facilities ({beta}-beam and super-beam facilities), give an overview of the accelerator complex and describe in detail the current international R&D program.

  7. Massive Dirac neutrinos and SN 1987A

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Gandhi, Raj; Turner, Michael S.

    1992-01-01

    The wrong-helicity states of a Dirac neutrino can provide an important cooling mechanism for young neutron stars. Based on numerical models of the early cooling of the neutron star associated with SN 1987A which self-consistently incorporate wrong-helicity neutrino emission, it is argued that a Dirac neutrino of mass greater than 30 keV (25 keV if it is degenerate) leads to shortening of the neutrino burst that is inconsistent with the Irvine-Michigan-Brookhaven and Kamiokande II data. If pions are as abundant as nucleons in the cores of neutron stars, the present limit improves to 15 keV.

  8. Low-energy Neutrino Astronomy in LENA

    NASA Astrophysics Data System (ADS)

    Wurm, M.; Bick, D.; Enqvist, T.; Hellgartner, D.; Kaiser, M.; Loo, K. K.; Lorenz, S.; Meloni, M.; Meyer, M.; Möllenberg, R.; Oberauer, L.; Soiron, M.; Smirnov, M.; Trzaska, W. H.; Wonsak, B.

    LENA (Low Energy Neutrino Astronomy) is a proposed next-generation neutrino detector based on 50 kilotons of liquid scintillator. The low detection threshold, good energy resolution and excellent background rejection inherent to the liquid-scintillator detectors make LENA a versatile observatory for low-energy neutrinos from astrophysical and terrestrial sources. In the framework of the European LAGUNA-LBNO design study, LENA is also considered as far detector for a very-long baseline neutrino beam from CERN to Pyhäsalmi (Finland). The present contribution gives an overview LENA's broad research program, highlighting the unique capabilities of liquid scintillator for the detection of low-energy neutrinos from astrophysical sources. In particular, it will focus on the precision measurement of the solar neutrino spectrum: The search for time modulations in the 7Be neutrino flux, the determination of the electron neutrino survival probability in the low-energy region of the 8B spectrum and the favorable detection conditions for neutrinos from the CNO fusion cycle.

  9. Search for Neutrinos from the Sun

    DOE R&D Accomplishments Database

    Davis, Raymond Jr.

    1968-09-01

    A solar neutrino detection system has been built to observe the neutrino radiation from the sun. The detector uses 3,900,000 liters of tetrachloroethylene as the neutrino capturing medium. Argon is removed from the liquid by sweeping with helium gas, and counted in a small low level proportional counter. The recovery efficiency of the system was tested with Ar{sup 36} by the isotope dilution method, and also with Ar{sup 37} produced in the liquid by fast neutrons. These tests demonstrate that Ar{sup 37} produced in the liquid by neutrino capture can be removed with a 95 percent efficiency by the procedure used.

  10. The ANTARES telescope neutrino alert system

    NASA Astrophysics Data System (ADS)

    Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatà, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2012-03-01

    The ANTARES telescope has the capability to detect neutrinos produced in astrophysical transient sources. Potential sources include gamma-ray bursts, core collapse supernovae, and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a new detection method based on coincident observations of neutrinos and optical signals has been developed. A fast online muon track reconstruction is used to trigger a network of small automatic optical telescopes. Such alerts are generated for special events, such as two or more neutrinos, coincident in time and direction, or single neutrinos of very high energy.

  11. Low Temperature Detectors for Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Nucciotti, A.

    2014-09-01

    Recent years have witnessed many exciting breakthroughs in neutrino physics. The detection of neutrino oscillations has proved that neutrinos are massive particles but the assessment of their absolute mass scale is still an outstanding challenge in today particle physics and cosmology. Due to their abundance as big-bang relics, massive neutrinos strongly affect the large-scale structure and dynamics of the universe. In addition, the knowledge of the scale of neutrino masses, together with their hierarchy pattern, is invaluable to clarify the origin of fermion masses beyond the Higgs mechanism. The mass hierarchy is not the only missing piece in the puzzle. Theories of neutrino mass generation call into play Majorana neutrinos and there are experimental observations pointing to the existence of sterile neutrinos in addition to the three ones weakly interacting. Since low temperature detectors were first proposed for neutrino physics experiments in 1984, there have been impressive technical progresses: today this technique offers the high energy resolution and scalability required for leading edges and competitive experiments addressing the still open questions.

  12. Welcome to pandoraviruses at the 'Fourth TRUC' club.

    PubMed

    Sharma, Vikas; Colson, Philippe; Chabrol, Olivier; Scheid, Patrick; Pontarotti, Pierre; Raoult, Didier

    2015-01-01

    Nucleocytoplasmic large DNA viruses, or representatives of the proposed order Megavirales, belong to families of giant viruses that infect a broad range of eukaryotic hosts. Megaviruses have been previously described to comprise a fourth monophylogenetic TRUC (things resisting uncompleted classification) together with cellular domains in the universal tree of life. Recently described pandoraviruses have large (1.9-2.5 MB) and highly divergent genomes. In the present study, we updated the classification of pandoraviruses and other reported giant viruses. Phylogenetic trees were constructed based on six informational genes. Hierarchical clustering was performed based on a set of informational genes from Megavirales members and cellular organisms. Homologous sequences were selected from cellular organisms using TimeTree software, comprising comprehensive, and representative sets of members from Bacteria, Archaea, and Eukarya. Phylogenetic analyses based on three conserved core genes clustered pandoraviruses with phycodnaviruses, exhibiting their close relatedness. Additionally, hierarchical clustering analyses based on informational genes grouped pandoraviruses with Megavirales members as a super group distinct from cellular organisms. Thus, the analyses based on core conserved genes revealed that pandoraviruses are new genuine members of the 'Fourth TRUC' club, encompassing distinct life forms compared with cellular organisms.

  13. Welcome to pandoraviruses at the ‘Fourth TRUC’ club

    PubMed Central

    Sharma, Vikas; Colson, Philippe; Chabrol, Olivier; Scheid, Patrick; Pontarotti, Pierre; Raoult, Didier

    2015-01-01

    Nucleocytoplasmic large DNA viruses, or representatives of the proposed order Megavirales, belong to families of giant viruses that infect a broad range of eukaryotic hosts. Megaviruses have been previously described to comprise a fourth monophylogenetic TRUC (things resisting uncompleted classification) together with cellular domains in the universal tree of life. Recently described pandoraviruses have large (1.9–2.5 MB) and highly divergent genomes. In the present study, we updated the classification of pandoraviruses and other reported giant viruses. Phylogenetic trees were constructed based on six informational genes. Hierarchical clustering was performed based on a set of informational genes from Megavirales members and cellular organisms. Homologous sequences were selected from cellular organisms using TimeTree software, comprising comprehensive, and representative sets of members from Bacteria, Archaea, and Eukarya. Phylogenetic analyses based on three conserved core genes clustered pandoraviruses with phycodnaviruses, exhibiting their close relatedness. Additionally, hierarchical clustering analyses based on informational genes grouped pandoraviruses with Megavirales members as a super group distinct from cellular organisms. Thus, the analyses based on core conserved genes revealed that pandoraviruses are new genuine members of the ‘Fourth TRUC’ club, encompassing distinct life forms compared with cellular organisms. PMID:26042093

  14. Neutrino induced coherent pion production

    SciTech Connect

    Hernandez, E.; Nieves, J.; Valverde, M.; Vicente-Vacas, M. J.

    2010-03-30

    We discuss different parameterizations of the C{sub 5}{sup A}(q{sup 2}) NDELTA form factor, fitted to the old Argonne bubble chamber data for pion production by neutrinos, and we use coherent pion production to test their low q{sup 2} behavior. We find moderate effects that will be difficult to observe with the accuracy of present experiments. We also discuss the use of the Rein-Sehgal model for low energy coherent pion production. By comparison to a microscopic calculation, we show the weaknesses some of the approximations in that model that lead to very large cross sections as well as to the wrong shapes for differential ones. Finally we show that models based on the partial conservation of the axial current hypothesis are not fully reliable for differential cross sections that depend on the angle formed by the pion and the incident neutrino.

  15. The GALLEX solar neutrino experiment

    SciTech Connect

    Hahn, R.L.

    1992-01-01

    The recently published GALLEX result, 83 [plus minus] 19 (stat.) [plus minus]8 (syst.) SNU (10[sigma]), was obtained from data accumulated from 14 solar runs (with counting done to May, 1992). This value, while 2 standard deviations below the predictions of solar models, provided the first direct evidence for solar pp neutrinos. The signature for neutrino capture in the aqueous gallium-chloride detector was the observation of the characteristic energy spectrum (K and L X rays/Auger electrons), decaying with the half-life of the chemically isolated radioactive product, [sup 71]Ge. By adding to the data set 1 more solar run plus 4 additional months of counting (to September, 1992), an updated value of the GALLEX production rate was obtained, which, interestingly, does not differ perceptibly from our published value.

  16. The Bugey 3 neutrino detector

    NASA Astrophysics Data System (ADS)

    Abbes, M.; Achkar, B.; Ait-Boubker, S.; Aleksan, R.; Avenier, M.; Bagieu, G.; Ballansat, J.; Barnoux, Ch.; Bazzoli, R.; Berger, J.; Bermond, M.; Besson, P.; Billault, M.; Boucher, J.; Bouchez, J.; Bouriant, M.; Brissot, R.; Camberlin, B.; Cavaignac, J. F.; Charvin, Ph.; Collot, J.; Commerçon, A.; Cousinou, M.-C.; Cussonneau, J. P.; Daguin-Moynot, G.; Declais, Y.; Desanlis, Th.; Dubois, J.-M.; Dufour, Y.; Farrache, G.; Favier, J.; Gally, Y.; Garciaz, F.; Giacobone, L.; Guerre-Chaley, B.; Jobez, J.-P.; Jourde, D.; Kajfasz, E.; de Kerret, H.; Koang, D. H.; Lefièvre, B.; Léon, F.; Lesquoy, E.; Mallet, J.; Menthe, A.; Metref, A.; Mullié, J.; Nagy, E.; Obolensky, M.; Ollive, P.; Oriboni, A.; Pessard, H.; Pierre, F.; Poinsignon, J.; Potheau, R.; Provasi, R.; Stutz, A.; Thion, J.; Thomas, J.-F.; Wuthrick, J. P.

    1996-02-01

    The Bugey 3 experiment, designed to measure oscillations of reactor neutrinos, has used 3 identical detection modules, each of 600 liters, filled with a new 6Li-loaded liquid scintillator. These modules were located in two shielding bunkers, respectively 15 and 40 m away from the reactor core. We describe here the mechanical characteristics of these modules, their shielding, the associated electronics, the trigger, the acquisition systems, the calibration and monitoring of these detectors, and the Monte Carlo simulations of their response to particles. We conclude on the overall performance of this new detection technique which has allowed the recording of 120000 neutrino interactions with good neutron efficiency (49%), low background (2.5 evts/hr) and good energy resolution (4% at 4.4 MeV).

  17. CPT Tests: Kaon vs neutrinos

    SciTech Connect

    Murayama, Hitoshi

    2003-07-09

    CPT violation has an impressive limit in the neutral kaon system |m(K{sup 0})-m({bar K}{sup 0})| < 10{sup -18} m{sub K} = 0.50 x 10{sup -18} GeV. However, if viewed as a constraint on the mass-squared, the bound appears weak, |m{sup 2}(K{sup 0})-m{sup 2}({bar K}{sup 0})| < 0.25 eV{sup 2}. the authors point out that neutrino oscillation offers better limits on CPT violation in this case. The comparison of solar and rector neutrino results puts the best limit on CPT violation by far, |{Delta}m{sub {nu}}{sup 2}-{Delta}m{sub {rho}}{sup 2}| < 1.3 x 10{sup -3} eV{sup 2} (90% CL).

  18. Gallium and Reactor Neutrino Anomalies

    NASA Astrophysics Data System (ADS)

    Acero, M. A.; Giunti, C.; Laveder, M.

    2009-03-01

    The observed deficit in the Gallium radioactive source experiments may be interpreted as a possible indication of active-sterile ν mixing. In the effective framework of two-neutrino mixing we obtain sin2ϑ≳0.03 and Δm≳0.1 eV. The compatibility of this result with the data of the Bugey reactor ν disappearance experiments is studied. It is found that the Bugey data present a hint of neutrino oscillations with 0.02≲sin2ϑ≲0.08 and Δm≈1.8 eV, which is compatible with the Gallium allowed region of the mixing parameters. This hint persists in the combined analysis of Gallium, Bugey, and Chooz data.

  19. Length Invisibilization of Tachyonic Neutrinos

    NASA Astrophysics Data System (ADS)

    Estakhr, Ahmad Reza

    2016-09-01

    Faster than the speed of light particle such as tachyonic neutrino due to its superluminal nature disapper and is undetectable. L = iΩ-1Lo where, i =√{ - 1 } is imaginary Number, Ω = 1 /√{βs2 - 1 } is Estakhr's Omega factor, L is the Superluminal Length, Lo is the proper length, βs =Vs / c > 1 is superluminal speed parameter, Vs is Superluminal velocity and c is speed of light.

  20. First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope

    SciTech Connect

    2013-03-01

    A search for neutrino-induced muons in correlation with a selection of 40 gamma-ray bursts that occurred in 2007 has been performed with the ANTARES neutrino telescope. During that period, the detector consisted of 5 detection lines. The ANTARES neutrino telescope is sensitive to TeV–PeV neutrinos that are predicted from gamma-ray bursts. No events were found in correlation with the prompt photon emission of the gamma-ray bursts and upper limits have been placed on the flux and fluence of neutrinos for different models.

  1. A 17 keV neutrino and large magnetic moment solution of the solar neutrino puzzle

    NASA Astrophysics Data System (ADS)

    Akhmedov, E. Kh.; Senjanovic, G.; Tao, Zhijian; Berezhiani, Z. G.

    1992-08-01

    Zee-type models with Majorons naturally incorporate the 17 keV neutrino but in their minimal version fail to simultaneously solve the solar neutrino puzzle. If there is a sterile neutrino state, a particularly simple solution is found to the solar neutrino problem, which besides nu(sub 17) predicts a light Zeldovich-Konopinski-Mahmoud neutrino nu(sub light) = nu(sub e) + nu(sub mu)(sup c) with a magnetic moment being easily as large as 10(exp -11)(mu)(sub B) through the Barr-Freire-Zee mechanism.

  2. 17 keV neutrino and large magnetic moment solution of the solar neutrino puzzle

    NASA Astrophysics Data System (ADS)

    Akhmedov, Eugeni Kh.; Berezhiani, Zurab G.; Senjanović, Goran; Tao, Zhijian

    1993-01-01

    Zee-type models with majorons naturally incorporate the 17 keV neutrino but in their minimal version fail to simultaneously solve the solar neutrino puzzle. If there is a sterile neutrino state, we find a particularly simple solution to the solar neutrino problem, which besides ν17 predicts a light Zeldovich-Konopinski-Mahmoud neutrino νlight = νe + νcμ with a magnetic moment being easily as large as 10 -11μB through the Barr-Freire-Zee mechanism.

  3. Velocity-induced neutrino oscillation and its possible implications for long baseline neutrinos

    NASA Astrophysics Data System (ADS)

    Banik, Amit Dutta; Majumdar, Debasish

    2015-12-01

    If the three types of active neutrinos possess different maximum attainable velocities and the neutrino eigenstates in the velocity basis are different from those in the flavor (and mass) basis, then this will induce a flavor oscillation in addition to the normal mass-flavor oscillation. Here we study such an oscillation scenario in three neutrino framework including also the matter effect and apply our results to demonstrate its consequences for long baseline (LBL) neutrinos. We also predict the possible signatures in terms of yields in a possible LBL neutrino experiment.

  4. Evidence for neutrino mass: A decade of discovery

    SciTech Connect

    Heeger, Karsten M.

    2004-12-08

    Neutrino mass and mixing are amongst the major discoveries of recent years. From the observation of flavor change in solar and atmospheric neutrino experiments to the measurements of neutrino mixing with terrestrial neutrinos, recent experiments have provided consistent and compelling evidence for the mixing of massive neutrinos. The discoveries at Super-Kamiokande, SNO, and KamLAND have solved the long-standing solar neutrino problem and demand that we make the first significant revision of the Standard Model in decades. Searches for neutrinoless double-beta decay probe the particle nature of neutrinos and continue to place limits on the effective mass of the neutrino. Possible signs of neutrinoless double-beta decay will stimulate neutrino mass searches in the next decade and beyond. I review the recent discoveries in neutrino physics and the current evidence for massive neutrinos.

  5. The Neutrino: A Better Understanding Through Astrophysics: Final Report

    SciTech Connect

    Kneller, James P.

    2016-10-12

    The final report for the award "The Neutrino: A Better Understanding Through Astrophysics" is given. The goals of the work were the following: to construct new theoretical approaches to the problem of neutrino propagation in media including where neutrino-neutrino interactions are important; to pioneer the use of new approaches, including super-scattering operators, for the evolution of neutrino thermal and statistical ensembles; to implement these new approaches in computer codes to study neutrino evolution in supernovae and other hot, dense environments; to increase the realism of simulated signals of a Galactic supernovae neutrino burst in current and future neutrino detectors; to study the simulated signals to determine the ability to extract information on the missing neutrino mixing parameters and the dynamics of the supernova explosion; and to study sterile neutrinos and non-standard interactions of neutrinos in supernovae and their effect upon the signal. Accomplishments made in these areas are described.

  6. Neutrino lighthouse at Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Bai, Y.; Barger, A. J.; Barger, V.; Lu, R.; Peterson, A. D.; Salvado, J.

    2014-09-01

    We investigate whether a subset of high-energy events observed by IceCube may be due to neutrinos from Sagittarius A*. We check both spatial and temporal coincidences of IceCube events with other transient activities of Sagittarius A*. Among the seven IceCube shower events nearest to the Galactic center, we have found that event 25 has a time very close to (around three hours after) the brightest x-ray flare of Sagittarius A* observed by the Chandra X-ray Observatory with a p-value of 0.9%. Furthermore, two of the seven events occurred within one day of each other (there is a 1.6% probability that this would occur for a random distribution in time). Thus, the determination that some IceCube events occur at similar times as x-ray flares and others occur in a burst could be the smoking gun that Sagittarius A* is a point source of very-high-energy neutrinos. We point out that if IceCube Galactic center neutrino events originate from charged pion decays, then TeV gamma rays should come from neutral pion decays at a similar rate. We show that the CTA, HAWC, H.E.S.S. and VERITAS experiments should be sensitive enough to test this.

  7. Neutrino telescopes in the World

    SciTech Connect

    Ernenwein, J.-P.

    2007-01-12

    Neutrino astronomy has rapidly developed these last years, being the only way to get specific and reliable information about astrophysical objects still poorly understood.Currently two neutrino telescopes are operational in the World: BAIKAL, in the lake of the same name in Siberia, and AMANDA, in the ices of the South Pole. Two telescopes of the same type are under construction in the Mediterranean Sea: ANTARES and NESTOR. All these telescopes belong to a first generation, with an instrumented volume smaller or equal to 0.02 km3. Also in the Mediterranean Sea, the NEMO project is just in its stag phase, within the framework of a cubic kilometer size neutrino telescope study. Lastly, the ICECUBE detector, with a volume reaching about 1 km3, is under construction on the site of AMANDA experiment, while an extension of the BAIKAL detector toward km3 is under study. We will present here the characteristics of these experiments, as well as the results of their observations.

  8. A note on superluminal neutrinos

    NASA Astrophysics Data System (ADS)

    Cutolo, A.

    2012-05-01

    Although characterized by a possible experimental error, the first results of the Opera experiment at CERN have opened up a hot discussion on the possibility of superluminal neutrinos already observed in some space events. In particular, Cohen and Glashow (CG) have considered it simply an error justifying their position on the basis of the bremsstrahlung of electron-positron pairs. In this paper, we would like to discuss this position also in view of the recent derivation of the superluminal limit as a consequence of the classical causality principle. Even if the final answer is related only to the review of all the experimental results, we believe that neutral particles (neutrinos, photons, etc.) might exhibit superluminal behavior also in view of the fact that the analysis performed by Cohen and Glashow does not contain any absolute limit, like that present in the case of the Cherenkov effect in vacuum, which is absolutely impossible, as its violation would require an infinite energy amount. CG conclusions are not in contrast with superluminal neutrinos, which, in turn, are fully compatible with the theoretical analysis reported as well.

  9. Antarctic radio Askaryan neutrino telescopes

    NASA Astrophysics Data System (ADS)

    Connolly, Amy

    2012-03-01

    There are strong motivations for a detectable flux of ultra-high energy (UHE) cosmic neutrinos above 10^17-18 eV. Neutrinos in this regime are expected from interactions between the highest energy cosmic rays and cosmic microwave background photons, and can also originate from the UHE sources themselves. Radio Cerenkov technique is the most promising technique for instrumenting a detection volume large enough to detect the low expected fluxes. The RICE experiment pioneered the radio Cerenkov technique with antennas deployed along strings of the AMANDA experiment deep in the South Pole ice. New radio arrays being deployed in the Antarctic ice are designed to measure dozens of these unique cosmic messengers to exploit the rich particle physics and astrophysical information that they carry. I will discuss the status and results from initial deployments of the Askaryan Radio Array (ARA) near the South Pole, and the ARIANNA array on the Ross Ice Shelf. I will also describe how these experiments could measure neutrino-nucleon cross sections at energies that exceed those probed by the LHC.

  10. Summary of the Fourth AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Rider, Ben; Zickuhr, Tom; Levy, David W.; Brodersen, Olaf P.; Eisfeld, Bernhard; Crippa, Simone; Wahls, Richard A.; Morrison, Joseph H.; Mavriplis, Dimitri J.; Murayama, Mitcuhiro

    2010-01-01

    Results from the Fourth AIAA Drag Prediction Workshop (DPW-IV) are summarized. The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-body-horizontal-tail configurations that are representative of transonic transport air- craft. Numerical calculations are performed using industry-relevant test cases that include lift- specific flight conditions, trimmed drag polars, downwash variations, dragrises and Reynolds- number effects. Drag, lift and pitching moment predictions from numerous Reynolds-Averaged Navier-Stokes computational fluid dynamics methods are presented. Solutions are performed on structured, unstructured and hybrid grid systems. The structured-grid sets include point- matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, prismatic, and hexahedral elements. Effort is made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body-horizontal families are comprised of a coarse, medium and fine grid; an optional extra-fine grid augments several of the grid families. These mesh sequences are utilized to determine asymptotic grid-convergence characteristics of the solution sets, and to estimate grid-converged absolute drag levels of the wing-body-horizontal configuration using Richardson extrapolation.

  11. Relic right-handed Dirac neutrinos and implications for detection of cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Zhang, Jue; Zhou, Shun

    2016-02-01

    It remains to be determined experimentally if massive neutrinos are Majorana or Dirac particles. In this connection, it has been recently suggested that the detection of cosmic neutrino background of left-handed neutrinos νL and right-handed antineutrinos ν‾R in future experiments of neutrino capture on beta-decaying nuclei (e.g., νe +3H →3He +e- for the PTOLEMY experiment) is likely to distinguish between Majorana and Dirac neutrinos, since the capture rate is twice larger in the former case. In this paper, we investigate the possible impact of right-handed neutrinos on the capture rate, assuming that massive neutrinos are Dirac particles and both right-handed neutrinos νR and left-handed antineutrinos ν‾L can be efficiently produced in the early Universe. It turns out that the capture rate can be enhanced at most by 28% due to the presence of relic νR and ν‾L with a total number density of 95 cm-3, which should be compared to the number density 336 cm-3 of cosmic neutrino background. The enhancement has actually been limited by the latest cosmological and astrophysical bounds on the effective number of neutrino generations Neff =3.14-0.43+0.44 at the 95% confidence level. For illustration, two possible scenarios have been proposed for thermal production of right-handed neutrinos in the early Universe.

  12. New neutrino physics and the altered shapes of solar neutrino spectra

    NASA Astrophysics Data System (ADS)

    Lopes, Ilídio

    2017-01-01

    Neutrinos coming from the Sun's core have been measured with high precision, and fundamental neutrino oscillation parameters have been determined with good accuracy. In this work, we estimate the impact that a new neutrino physics model, the so-called generalized Mikheyev-Smirnov-Wolfenstein (MSW) oscillation mechanism, has on the shape of some of leading solar neutrino spectra, some of which will be partially tested by the next generation of solar neutrino experiments. In these calculations, we use a high-precision standard solar model in good agreement with helioseismology data. We found that the neutrino spectra of the different solar nuclear reactions of the pp chains and carbon-nitrogen-oxygen cycle have quite distinct sensitivities to the new neutrino physics. The He P and 8B neutrino spectra are the ones in which their shapes are more affected when neutrinos interact with quarks in addition to electrons. The shapes of the 15O and 17F neutrino spectra are also modified, although in these cases the impact is much smaller. Finally, the impact in the shapes of the P P and 13N neutrino spectra is practically negligible.

  13. Prospects for using coherent elastic neutrino-nucleus scattering to measure the nuclear neutron form factor

    NASA Astrophysics Data System (ADS)

    Patton, Kelly; McLaughlin, Gail; Scholberg, Kate; Engel, Jon; Schunck, Nicolas

    2017-01-01

    Coherent elastic neutrino-nucleus scattering is a potential probe of nuclear neutron form factors. We show that the neutron root-mean-square (RMS) radius can be measured with tonne-scale detectors of argon, germanium, or xenon. In addition, the fourth moment of the neutron distribution can be studied experimentally using this method. The impacts of both detector size and detector shape uncertainty on such a measurement were considered. The important limiting factor was found to be the detector shape uncertainty. In order to measure the neutron RMS radius to 5%, comparable to current experimental uncertainties, the detector shape uncertainty needs to be known to 1% or better.

  14. Neutrino mass hierarchy and stepwise spectral swapping of supernova neutrino flavors.

    PubMed

    Duan, Huaiyu; Fuller, George M; Carlson, J; Qian, Yong-Zhong

    2007-12-14

    We examine a phenomenon recently predicted by numerical simulations of supernova neutrino flavor evolution: the swapping of supernova nu(e) and nu(mu,tau) energy spectra below (above) energy E(C) for the normal (inverted) neutrino mass hierarchy. We present the results of large-scale numerical calculations which show that in the normal neutrino mass hierarchy case, E(C) decreases as the assumed effective 2x2 vacuum nu(e)<==>nu(mu,tau) mixing angle (approximately theta13) is decreased. In contrast, these calculations indicate that E(C) is essentially independent of the vacuum mixing angle in the inverted neutrino mass hierarchy case. With a good neutrino signal from a future galactic supernova, the above results could be used to determine the neutrino mass hierarchy even if theta13 is too small to be measured by terrestrial neutrino oscillation experiments.

  15. Neutrino transition magnetic moments within the non-standard neutrino-nucleus interactions

    NASA Astrophysics Data System (ADS)

    Papoulias, D. K.; Kosmas, T. S.

    2015-07-01

    Tensorial non-standard neutrino interactions are studied through a combined analysis of nuclear structure calculations and a sensitivity χ2-type of neutrino events expected to be measured at the COHERENT experiment, recently planned to operate at the Spallation Neutron Source (Oak Ridge). Potential sizeable predictions on transition neutrino magnetic moments and other electromagnetic parameters, such as neutrino milli-charges, are also addressed. The non-standard neutrino-nucleus processes, explored from nuclear physics perspectives within the context of quasi-particle random phase approximation, are exploited in order to estimate the expected number of events originating from vector and tensor exotic interactions for the case of reactor neutrinos, studied with TEXONO and GEMMA neutrino detectors.

  16. Observation of high energy atmospheric neutrinos with antarctic muon and neutrino detector array

    SciTech Connect

    Ahrens, J.; Andres, E.; Bai, X.; Barouch, G.; Barwick, S.W.; Bay, R.C.; Becka, T.; Becker, K.-H.; Bertrand, D.; Binon, F.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Bouhali, O.; Boyce, M.M.; Carius, S.; Chen, A.; Chirkin, D.; Conrad, J.; Cooley, J.; Costa, C.G.S.; Cowen, D.F.; Dalberg, E.; De Clercq, C.; DeYoung, T.; Desiati, P.; Dewulf, J.-P.; Doksus, P.; Edsjo, J.; Ekstrom, P.; Feser, T.; Frere, J.-M.; Gaisser, T.K.; Gaug, M.; Goldschmidt, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Hardtke, R.; Hauschildt, T.; Hellwig, M.; Heukenkamp, H.; Hill, G.C.; Hulth, P.O.; Hundertmark, S.; Jacobsen, J.; Karle, A.; Kim, J.; Koci, B.; Kopke, L.; Kowalski, M.; Lamoureux, J.I.; Leich, H.; Leuthold, M.; Lindahl, P.; Liubarsky, I.; Loaiza, P.; Lowder, D.M.; Madsen, J.; Marciniewski, P.; Matis, H.S.; McParland, C.P.; Miller, T.C.; Minaeva, Y.; Miocinovic, P.; Mock, P.C.; Morse, R.; Neunhoffer, T.; Niessen, P.; Nygren, D.R.; Ogelman, H.; Olbrechts, Ph.; Perez de los Heros, C.; Pohl, A.C.; Porrata, R.; Price, P.B.; Przybylski, G.T.; Rawlins, K.; Reed, C.; Rhode, W.; Ribordy, M.; Richter, S.; Rodriguez Martino, J.; Romenesko, P.; Ross, D.; Sander, H.-G.; Schmidt, T.; Schneider, D.; Schwarz, R.; Silvestri, A.; Solarz, M.; Spiczak, G.M.; Spiering, C.; Starinsky, N.; Steele, D.; Steffen, P.; Stokstad, R.G.; Streicher, O.; Sudhoff, P.; Sulanke, K.-H.; Taboada, I.; Thollander, L.; Thon, T.; Tilav, S.; Vander Donckt, M.; Walck, C.; Weinheimer, C.; Wiebusch, C.H.; Wiedeman, C.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S.

    2002-05-07

    The Antarctic Muon and Neutrino Detector Array (AMANDA) began collecting data with ten strings in 1997. Results from the first year of operation are presented. Neutrinos coming through the Earth from the Northern Hemisphere are identified by secondary muons moving upward through the array. Cosmic rays in the atmosphere generate a background of downward moving muons, which are about 10{sup 6} times more abundant than the upward moving muons. Over 130 days of exposure, we observed a total of about 300 neutrino events. In the same period, a background of 1.05 x 10{sup 9} cosmic ray muon events was recorded. The observed neutrino flux is consistent with atmospheric neutrino predictions. Monte Carlo simulations indicate that 90 percent of these events lie in the energy range 66 GeV to 3.4 TeV. The observation of atmospheric neutrinos consistent with expectations establishes AMANDA-B10 as a working neutrino telescope.

  17. Neutrino fluxes from a core-collapse supernova in a model with three sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Yudin, A. V.; Nadyozhin, D. K.; Khruschov, V. V.; Fomichev, S. V.

    2016-12-01

    The characteristics of the gravitational collapse of a supernova and the fluxes of active and sterile neutrinos produced during the formation of its protoneutron core have been calculated numerically. The relative yields of active and sterile neutrinos in corematter with different degrees of neutronization have been calculated for various input parameters and various initial conditions. A significant increase in the fraction of sterile neutrinos produced in superdense core matter at the resonant degree of neutronization has been confirmed. The contributions of sterile neutrinos to the collapse dynamics and the total flux of neutrinos produced during collapse have been shown to be relatively small. The total luminosity of sterile neutrinos is considerably lower than the luminosity of electron neutrinos, but their spectrum is considerably harder at high energies.

  18. A model for pseudo-Dirac neutrinos: leptogenesis and ultra-high energy neutrinos

    NASA Astrophysics Data System (ADS)

    Ahn, Y. H.; Kang, Sin Kyu; Kim, C. S.

    2016-10-01

    We propose a model where sterile neutrinos are introduced to make light neutrinos to be pseudo-Dirac particles. It is shown how tiny mass splitting necessary for realizing pseudo-Dirac neutrinos can be achieved. Within the model, we show how leptogenesis can be successfully generated. Motivated by the recent observation of very high energy neutrino events at IceCube, we study a possibility to observe the effects of the pseudo-Dirac property of neutrinos by performing astronomical-scale baseline experiments to uncover the oscillation effects of very tiny mass splitting. We also discuss future prospect to observe the effects of the pseudo-Dirac property of neutrinos at high energy neutrino experiments.

  19. Neutrino Processes in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kolomeitsev, E. E.; Voskresensky, D. N.

    2010-10-01

    The aim of these lectures is to introduce basic processes responsible for cooling of neutron stars and to show how to calculate the neutrino production rate in dense strongly interacting nuclear medium. The formalism is presented that treats on equal footing one-nucleon and multiple-nucleon processes and reactions with virtual bosonic modes and condensates. We demonstrate that neutrino emission from dense hadronic component in neutron stars is subject of strong modifications due to collective effects in the nuclear matter. With the most important in-medium processes incorporated in the cooling code an overall agreement with available soft X ray data can be easily achieved. With these findings the so-called “standard” and “non-standard” cooling scenarios are replaced by one general “nuclear medium cooling scenario” which relates slow and rapid neutron star coolings to the star masses (interior densities). The lectures are split in four parts. Part I: After short introduction to the neutron star cooling problem we show how to calculate neutrino reaction rates of the most efficient one-nucleon and two-nucleon processes. No medium effects are taken into account in this instance. The effects of a possible nucleon pairing are discussed. We demonstrate that the data on neutron star cooling cannot be described without inclusion of medium effects. It motivates an assumption that masses of the neutron stars are different and that neutrino reaction rates should be strongly density dependent. Part II: We introduce the Green’s function diagram technique for systems in and out of equilibrium and the optical theorem formalism. The latter allows to perform calculations of production rates with full Green’s functions including all off-mass-shell effects. We demonstrate how this formalism works within the quasiparticle approximation. Part III: The basic concepts of the nuclear Fermi liquid approach are introduced. We show how strong interaction effects can be

  20. Search for sterile neutrino mixing in the muon neutrino to tau neutrino appearance channel with the OPERA detector

    NASA Astrophysics Data System (ADS)

    Di Crescenzo, A.; OPERA Collaboration

    2016-05-01

    The OPERA experiment observed ν μ → ν τ oscillations in the atmospheric sector. To this purpose the hybrid OPERA detector was exposed to the CERN Neutrinos to Gran Sasso beam from 2008 to 2012, at a distance of 730 km from the neutrino source. Charged-current interactions of ν τ were searched for through the identification of τ lepton decay topologies. The five observed ν τ interactions are consistent with the expected number of events in the standard three neutrino framework. Based on this result, new limits on the mixing parameters of a massive sterile neutrino may be set. Preliminary results of the analysis performed in the 3+1 neutrino framework are here presented.

  1. Confronting the stochastic neutrino mixing mechanism with the sterile neutrino hypothesis as a solution to the short baseline neutrino anomalies

    NASA Astrophysics Data System (ADS)

    Zavanin, E. M.; Guzzo, M. M.; de Holanda, P. C.; Peres, O. L. G.

    2015-06-01

    We compare the solutions to the short baseline neutrino anomaly based on oscillations to sterile neutrinos and the stochastic neutrino mixing mechanism (SNMM) through an analysis of the present neutrino data. The SNMM suggests worse fits than a 3 +1 sterile neutrino model, although it cannot be discarded by present data. We propose an experiment to distinguish between both solutions, based on placing a 8Li source inside a 5 kton-yr detector (like SNO). We studied the sensitivity of such an experiment, which makes it possible to discriminate within 2 σ the SNMM from the 3 +1 sterile hypothesis for some particular values of the relevant parameters in 5 kton-yr of running.

  2. The "fourth dimension" of gene transcription.

    PubMed

    O'Malley, Bert W

    2009-05-01

    The three dimensions of space provide our relationship to position on the earth, but the fourth dimension of time has an equally profound influence on our lives. Everything from light and sound to weather and biology operate on the principle of measurable temporal periodicity. Consequently, a wide variety of time clocks affect all aspects of our existence. The annual (and biannual) cycles of activity, metabolism, and mating, the monthly physiological clocks of women and men, and the 24-h diurnal rhythms of humans are prime examples. Should it be surprising to us that the fourth dimension also impinges upon gene expression and that the genome itself is regulated by the fastest running of all biological clocks? Recent evidence substantiates the existence of such a ubiquitin-dependent transcriptional clock that is based upon the activation and destruction of transcriptional coactivators.

  3. Fourth-generation photovoltaic concentrator system development

    SciTech Connect

    O`Neill, M.J.; McDanal, A.J.

    1995-10-01

    In 1991, under a contract with Sandia for the Concentrator Initiative, the ENTECH team initiated the design and development of a fourth-generation concentrator module. In 1992, Sandia also contracted with ENTECH to develop a new control and drive system for the ENTECH array. This report documents the design and development work performed under both contracts. Manufacturing processes for the new module were developed at the same time under a complementary PVMaT contract with the National Renewable Energy Laboratory. Two 100-kW power plants were deployed in 1995 in Texas using the newly developed fourth-generation concentrator technology, one at the CSW Solar Park near Ft. Davis and one at TUE Energy Park in Dallas. Technology developed under the Sandia contracts has made a successful transition from the laboratory to the production line to the field.

  4. Horizon thermodynamics in fourth-order gravity

    NASA Astrophysics Data System (ADS)

    Ma, Meng-Sen

    2017-03-01

    In the framework of horizon thermodynamics, the field equations of Einstein gravity and some other second-order gravities can be rewritten as the thermodynamic identity: dE = TdS - PdV. However, in order to construct the horizon thermodynamics in higher-order gravity, we have to simplify the field equations firstly. In this paper, we study the fourth-order gravity and convert it to second-order gravity via a so-called ;Legendre transformation; at the cost of introducing two other fields besides the metric field. With this simplified theory, we implement the conventional procedure in the construction of the horizon thermodynamics in 3 and 4 dimensional spacetime. We find that the field equations in the fourth-order gravity can also be written as the thermodynamic identity. Moreover, we can use this approach to derive the same black hole mass as that by other methods.

  5. Variations in the Solar Neutrino Flux

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Cleveland, B. T.; Rowley, J. K.

    1987-08-02

    Observations are reported from the chlorine solar neutrino detector in the Homestake Gold Mine, South Dakota, USA. They extend from 1970 to 1985 and yield an average neutrino capture rate of 2.1 +- 0.3 SNU. The results from 1977 to 1985 show an anti-correlation with the solar activity cycle, and an apparent increased rate during large solar flares.

  6. Right-handed neutrino magnetic moments

    SciTech Connect

    Aparici, Alberto; Santamaria, Arcadi; Kim, Kyungwook; Wudka, Jose

    2009-07-01

    We discuss the phenomenology of the most general effective Lagrangian, up to operators of dimension five, built with standard model fields and interactions including right-handed neutrinos. In particular, we find there is a dimension five electroweak moment operator of right-handed neutrinos, not discussed previously in the literature, which could have interesting phenomenological consequences.

  7. Application of Reactor Antineutrinos: Neutrinos for Peace

    NASA Astrophysics Data System (ADS)

    Suekane, F.

    2013-02-01

    In nuclear reactors, 239Pu are produced along with burn-up of nuclear fuel. 239Pu is subject of safeguard controls since it is an explosive component of nuclear weapon. International Atomic Energy Agency (IAEA) is watching undeclared operation of reactors to prevent illegal production and removal of 239Pu. In operating reactors, a huge numbers of anti electron neutrinos (ν) are produced. Neutrino flux is approximately proportional to the operating power of reactor in short term and long term decrease of the neutrino flux per thermal power is proportional to the amount of 239Pu produced. Thus rector ν's carry direct and real time information useful for the safeguard purposes. Since ν can not be hidden, it could be an ideal medium to monitor the reactor operation. IAEA seeks for novel technologies which enhance their ability and reactor neutrino monitoring is listed as one of such candidates. Currently neutrino physicists are performing R&D of small reactor neutrino detectors to use specifically for the safeguard use in response to the IAEA interest. In this proceedings of the neutrino2012 conference, possibilities of such reactor neutrinos application and current world-wide R&D status are described.

  8. Overview and Status of Experimental Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Stancu, Ion

    2002-10-01

    Seventy years after the existence of the neutrino has been postulated by Wolfgang Pauli, these elusive particles remain surrounded by mystery. One of the most fundamental questions about neutrinos is whether they have an identically vanishing mass, as assumed by the Standard Model, or not. Direct measurements have proven to be extremely difficult to perform, and have yielded so far only upper limits. However, if neutrino flavour oscillations do happen, this would automatically imply that at least one of the three neutrinos (the electron, muon or tau neutrino) must have a non-zero mass. The present experimental data indicate that both the solar and atmospheric neutrino deficits can be explained by the phenomenon of neutrino oscillations, while the positive signal reported by the accelerator-based LSND experiment remains to be verified by an independent measurement (MiniBooNE). This talk reviews the current status of the neutrino oscillations experiments, experiments which are quite likely to produce results with significant consequences for both the Standard Model and Cosmology.

  9. Dark Matter Density from Heavy Neutrino Decays

    NASA Astrophysics Data System (ADS)

    Saadat, Hassan; Rostampour, Malihe

    2012-10-01

    As we know the heavy neutrino decays is a successful model for describing dark matter and also is origin of the universe entropy. In this paper we use heavy neutrino decays to calculate time-dependent dark matter density. In that case we use observational data to fixing our solutions.

  10. ICECUBE NEUTRINOS AND LORENTZ INVARIANCE VIOLATION

    SciTech Connect

    Amelino-Camelia, Giovanni; Guetta, D.; Piran, Tsvi

    2015-06-20

    The IceCube neutrino telescope has found so far no evidence of gamma-ray burst (GRB) neutrinos. We here notice that these results assume the same travel times from source to telescope for neutrinos and photons, an assumption that is challenged by some much-studied pictures of spacetime quantization. We briefly review previous results suggesting that limits on quantum-spacetime effects obtained for photons might not be applicable to neutrinos, and we then observe that the outcome of GRB-neutrino searches could depend strongly on whether one allows for neutrinos to be affected by the minute effects of Lorentz invariance violation (LIV) predicted by some relevant quantum-spacetime models. We discuss some relevant issues using as an illustrative example three neutrinos that were detected by IceCube in good spatial coincidence with GRBs, but hours before the corresponding gamma rays. In general, this could happen if the earlier arrival reflects quantum-spacetime-induced LIV, but, as we stress, some consistency criteria must be enforced in order to properly test such a hypothesis. Our analysis sets the stage for future GRB-neutrino searches that could systematically test the possibility of quantum-spacetime-induced LIV.

  11. Neutrino mixing and oscillations in astrophysical environments

    SciTech Connect

    Balantekin, A. B.

    2014-05-02

    A brief review of the current status of neutrino mixing and oscillations in astrophysical environments, with particular emphasis on the Sun and core-collapse supernovae, is given. Implications of the existence of sterile states which mix with the active neutrinos are discussed.

  12. Why Are Neutrinos Light? -- An Alternative

    SciTech Connect

    Hall, Lawrence J.; Oliver, Steven J.

    2004-09-23

    We review the recent proposal that neutrinos are light because their masses are proportional to a low scale, f, of lepton flavor symmetry breaking. This mechanism is testable because the resulting pseudo-Goldstone bosons, of mass m_G, couple strongly with the neutrinos, affecting the acoustic oscillations during the eV era of the early universe that generate the peaks in the CMB radiation. Characteristic signals result over a very wide range of (f, m_G) because of a change in the total relativistic energy density and because the neutrinos scatter rather than free-stream. Thermodynamics allows a precise calculation of the signal, so that observations would not only confirm the late-time neutrino mass mechanism, but could also determine whether the neutrino spectrum is degenerate, inverted or hierarchical and whether the neutrinos are Dirac or Majorana. The flavor symmetries could also give light sterile states. If the masses of the sterile neutrinos turn on after the MeV era, the LSND oscillations can be explained without upsetting big bang nucleosynthesis, and, since the sterile states decay to lighter neutrinos and pseudo-Goldstones, without giving too much hot dark matter.

  13. CPand t violation in neutrino oscillations

    SciTech Connect

    Hisakazu Minakata; Hiroshi Nunokawa; Stephen Parke

    2003-09-18

    In this short lecture, we discuss some basic phenomenological aspects of CP and T violation in neutrino oscillation. Using CP/T trajectory diagrams in the bi-probability space, we try to sketch out some essential features of the interplay between the effect of CP/T violating phase and that of the matter in neutrino oscillation.

  14. Variations on supersymmetry breaking and neutrino spectra

    SciTech Connect

    Borzumati, F.; Hamaguchi, K.; Nomura, Y.; Yanagida, T.

    2000-12-11

    The problem of generating light neutrinos within supersymmetric models is discussed. It is shown that the hierarchy of scales induced by supersymmetry breaking can give rise to suppression factors of the correct order of magnitude to produce experimentally allowed neutrino spectra.

  15. Predictivity of neutrino mass sum rules

    NASA Astrophysics Data System (ADS)

    Gehrlein, Julia; Merle, Alexander; Spinrath, Martin

    2016-11-01

    Correlations between light neutrino observables are arguably the strongest predictions of lepton flavor models based on (discrete) symmetries, except for the very few cases which unambiguously predict the full set of leptonic mixing angles. A subclass of these correlations is neutrino mass sum rules, which connect the three (complex) light neutrino mass eigenvalues among each other. This connection constrains both the light neutrino mass scale and the Majorana phases, so that mass sum rules generically lead to a nonzero value of the lightest neutrino mass and to distinct predictions for the effective mass probed in neutrinoless double beta decay. However, in nearly all cases known, the neutrino mass sum rules are not exact and receive corrections from various sources. We introduce a formalism to handle these corrections perturbatively in a model-independent manner, which overcomes issues present in earlier approaches. Our ansatz allows us to quantify the modification of the predictions derived from neutrino mass sum rules. We show that, in most cases, the predictions are fairly stable: while small quantitative changes can appear, they are generally rather mild. We therefore establish the predictivity of neutrino mass sum rules on a level far more general than previously known.

  16. The neutrino portal to new physics

    SciTech Connect

    Ma, Ernest

    2014-06-24

    Neutrinos may have interactions beyond those of the standard model. They may be responsible for neutrino mass and provide a link to other fundamental issues of particle physics such as dark matter. A brief incomplete survey of some of the theoretical ideas along this direction is offered.

  17. Goldstone bosons as fractional cosmic neutrinos.

    PubMed

    Weinberg, Steven

    2013-06-14

    It is suggested that Goldstone bosons may be masquerading as fractional cosmic neutrinos, contributing about 0.39 to what is reported as the effective number of neutrino types in the era before recombination. The broken symmetry associated with these Goldstone bosons is further speculated to be the conservation of the particles of dark matter.

  18. Radiative neutrino mass, dark matter, and leptogenesis

    SciTech Connect

    Gu Peihong; Sarkar, Utpal

    2008-05-15

    We propose an extension of the standard model, in which neutrinos are Dirac particles and their tiny masses originate from a one-loop radiative diagram. The new fields required by the neutrino mass generation also accommodate the explanation for the matter-antimatter asymmetry and dark matter in the Universe.

  19. PINGU sensitivity to neutrino mass hierarchy

    SciTech Connect

    Groß, Andreas; Collaboration: IceCube-PINGU Collaboration

    2014-11-18

    Determination of the neutrino mass hierarchy (NMH) is among the most fundamental questions in particle physics. Recent measurements of 1) a large mixing angle between the first and the third neutrino mass eigenstates and 2) the first observation of atmospheric neutrino oscillations at tens of GeV with neutrino telescopes, open the intriguing new possibility to exploit matter effects in neutrino oscillation to determine the neutrino mass hierarchy. A further extension of IceCube/DeepCore called PINGU (Precision IceCube Next Generation Upgrade) has been recently envisioned with the ultimate goal to measure neutrino mass hierarchy. PINGU would consist of additional IceCube-like strings of detectors deployed in the deepest and cleanest ice in the center of IceCube. More densely deployed instrumentation would provide a threshold substantially below 10 GeV and enhance the sensitivity to the mass hierarchy signal in atmospheric neutrinos. Here we discuss an estimate of the PINGU sensitivity to the mass hierarchy determined using an approximation with an Asimov dataset and an oscillation parameter fit.

  20. Low energy neutrinos in Super-Kamiokande

    NASA Astrophysics Data System (ADS)

    Sekiya, Hiroyuki

    2016-05-01

    Super-Kamiokande (SK), a 50 kton water Cherenkov detector, observes 8B solar neutrinos via neutrino-electron elastic scattering. The analysis threshold was successfully lowered to 3.5 MeV (recoil electron kinetic energy) in SK-IV. To date SK has observed solar neutrinos for 18 years. An analysis regarding possible correlations between the solar neutrino flux and the 11 year solar activity cycle is shown. With large statistics, SK searches for distortions of the solar neutrino energy spectrum caused by the MSW resonance in the core of the sun. SK also searches for a day/night solar neutrino flux asymmetry induced by the matter in the Earth. The Super-Kamiokande Gd (SK-Gd) project is the upgrade of the SK detector via the addition of water-soluble gadolinium (Gd) salt. This modification will enable it to efficiently identify low energy anti-neutrinos. SK-Gd will pursue low energy physics currently inaccessible to SK due to backgrounds. The most important will be the world’s first observation of the diffuse supernova neutrino background. The main R&D program towards SK-Gd is EG ADS: a 200 ton, fully instrumented tank built in a new cavern in the Kamioka mine.