Sample records for fourth membrane spanning

  1. Was Cheselden's One-Century-Long Otological Writings Concordant With His Time?

    PubMed

    Corrales, C Eduardo; Mudry, Albert

    2015-08-01

    William Cheselden's famous anatomical treatise spanned the entire 18th century period with its 15 editions. The aim of this study is to analyze the otological knowledge described in all these editions, to identify key 18th century otological advancements, and to study their concordance.In the first edition (1713), Cheselden notably mentioned four middle ear ossicles: malleus, incus, fourth ossicle, and stapes; four auditory muscles: "external tympani," "external oblique," tensor tympani, and stapedial; and a small opening in the tympanic membrane. In subsequent editions, minimal changes appeared, except for nomenclature changes and the proposal of an artificial opening of the tympanic membrane. Virtually no changes were performed up to the last edition (1806). All Cheselden's Editions confirm the uncertain presence of a fourth ossicle, the disputable presence of a tympanic membrane opening and the "usual" accepted presence of three muscles to the malleus. Key otologic advancements, not found in any of Cheselden's writings, were catherization of the Eustachian tube, presence of fluid in the inner ear, and the surgical opening of the mastoid.This study demonstrates that Cheselden, and his subsequent editors, were unaware of some important otologic developments that revolutionized the field of otology. Description of key advancements lacking in his treatise includes catherization of the Eustachian tube, the presence of fluid in the inner ear, and the surgical opening of the mastoid. Nevertheless, Cheselden is first in proposing to artificially open the tympanic membrane in humans.

  2. Scallop DMT functions as a Ca2+ transporter.

    PubMed

    Toyohara, Haruhiko; Yamamoto, Sayuri; Hosoi, Masatomi; Takagi, Masaya; Hayashi, Isao; Nakao, Kenji; Kaneko, Shuji

    2005-05-09

    We identified a DMT (divalent metal transporter) homologous protein that functions as a Ca(2+) transporter. Scallop DMT cDNA encodes a 539-amino-acid protein with 12 putative membrane-spanning domains and has a consensus transport motif in the fourth extracellular loop. Since its mRNA is significantly expressed in the gill and intestine, it is assumed that scallop DMT transports Ca(2+) from seawater by the gill and from food by the intestine. Scallop DMT lacks the iron-responsive element commonly found in iron-regulatory proteins, suggesting that it is free of the post-transcriptional regulation from intracellular Fe(2+) concentration. Scallop DMT distinctly functions as a Ca(2+) transporter unlike other DMTs, however, it also transports Fe(2+) and Cd(2+) similar to them.

  3. 15. MIDPANEL POINT CONNECTION, NORTH SIDE BETWEEN THIRD AND FOURTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. MID-PANEL POINT CONNECTION, NORTH SIDE BETWEEN THIRD AND FOURTH PANELS FROM WEST END OF TRUSS. NOTE NUMBERS STAMPED IN MEMBERS. - Riddle Bridge, Spanning Gasconada River, Dixon, Pulaski County, MO

  4. Modular assembly of synthetic proteins that span the plasma membrane in mammalian cells.

    PubMed

    Qudrat, Anam; Truong, Kevin

    2016-12-09

    To achieve synthetic control over how a cell responds to other cells or the extracellular environment, it is important to reliably engineer proteins that can traffic and span the plasma membrane. Using a modular approach to assemble proteins, we identified the minimum necessary components required to engineer such membrane-spanning proteins with predictable orientation in mammalian cells. While a transmembrane domain (TM) fused to the N-terminus of a protein is sufficient to traffic it to the endoplasmic reticulum (ER), an additional signal peptidase cleavage site downstream of this TM enhanced sorting out of the ER. Next, a second TM in the synthetic protein helped anchor and accumulate the membrane-spanning protein on the plasma membrane. The orientation of the components of the synthetic protein were determined through measuring intracellular Ca 2+ signaling using the R-GECO biosensor and through measuring extracellular quenching of yellow fluorescent protein variants by saturating acidic and salt conditions. This work forms the basis of engineering novel proteins that span the plasma membrane to potentially control intracellular responses to extracellular conditions.

  5. Thylakoid membrane landscape in the sixties: a tribute to Andrew Benson.

    PubMed

    Anderson, Jan M

    2007-05-01

    Prior to the 1960s, the model for the molecular structure of cell membranes consisted of a lipid bilayer held in place by a thin film of electrostatically-associated protein stretched over the bilayer surface: (the Danielli-Davson-Robertson "unit membrane" model). Andrew Benson, an expert in the lipids of chloroplast thylakoid membranes, questioned the relevance of the unit membrane model for biological membranes, especially for thylakoid membranes, instead of emphasizing evidence in favour of hydrophobic interactions of membrane lipids within complementary hydrophobic regions of membrane-spanning proteins. With Elliot Weier, Benson postulated a remarkable subunit lipoprotein monolayer model for thylakoids. Following the advent of freeze fracture microscopy and the fluid lipid-protein mosaic model by Singer and Nicolson, the subunits, membrane-spanning integral proteins, span a dynamic lipid bilayer. Now that high resolution X-ray structures of photosystems I and II are being revealed, the seminal contribution of Andrew Benson can be appreciated.

  6. Validating the food behavior questions from the elementary school SPAN questionnaire.

    PubMed

    Thiagarajah, Krisha; Fly, Alyce D; Hoelscher, Deanna M; Bai, Yeon; Lo, Kaman; Leone, Angela; Shertzer, Julie A

    2008-01-01

    The School Physical Activity and Nutrition (SPAN) questionnaire was developed as a surveillance instrument to measure physical activity, nutrition attitudes, and dietary and physical activity behaviors in children and adolescents. The SPAN questionnaire has 2 versions. This study was conducted to evaluate the validity of food consumption items from the elementary school version of the SPAN questionnaire. Validity was assessed by comparing food items selected on the questionnaire with food items reported from a single 24-hour recall covering the same reference period. 5 elementary schools in Indiana. Fourth-grade student volunteers (N = 121) from 5 elementary schools. Agreement between responses to SPAN questionnaire items and reference values obtained through 24-hour dietary recall. The agreement between the questionnaire and the 24-hour recall was measured using Spearman correlation, percentage agreement, and kappa statistic. Correlation between SPAN item responses and recall data ranged from .25 (bread and related products) to .67 (gravy). The percentage agreement ranged from 26% (bread and related products) to 90% (gravy). The kappa statistic varied from .06 (chocolate candy) to .60 (beans). Results from this study indicate that the SPAN questionnaire can be administered in the classroom quickly and easily to measure many previous day dietary behaviors of fourth graders. However, questions addressing consumption of "vegetables," "candy," and "snacks" need further investigation.

  7. Topology of transmembrane channel-like gene 1 protein.

    PubMed

    Labay, Valentina; Weichert, Rachel M; Makishima, Tomoko; Griffith, Andrew J

    2010-10-05

    Mutations of transmembrane channel-like gene 1 (TMC1) cause hearing loss in humans and mice. TMC1 is the founding member of a family of genes encoding proteins of unknown function that are predicted to contain multiple transmembrane domains. The goal of our study was to define the topology of mouse TMC1 expressed heterologously in tissue culture cells. TMC1 was retained in the endoplasmic reticulum (ER) membrane of five tissue culture cell lines that we tested. We used anti-TMC1 and anti-HA antibodies to probe the topologic orientation of three native epitopes and seven HA epitope tags along full-length TMC1 after selective or complete permeabilization of transfected cells with digitonin or Triton X-100, respectively. TMC1 was present within the ER as an integral membrane protein containing six transmembrane domains and cytosolic N- and C-termini. There is a large cytoplasmic loop, between the fourth and fifth transmembrane domains, with two highly conserved hydrophobic regions that might associate with or penetrate, but do not span, the plasma membrane. Our study is the first to demonstrate that TMC1 is a transmembrane protein. The topologic organization revealed by this study shares some features with that of the shaker-TRP superfamily of ion channels.

  8. Functional Architecture of the Cytoplasmic Entrance to the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore*

    PubMed Central

    El Hiani, Yassine; Linsdell, Paul

    2015-01-01

    As an ion channel, the cystic fibrosis transmembrane conductance regulator must form a continuous pathway for the movement of Cl− and other anions between the cytoplasm and the extracellular solution. Both the structure and the function of the membrane-spanning part of this pathway are well defined. In contrast, the structure of the pathway that connects the cytoplasm to the membrane-spanning regions is unknown, and functional roles for different parts of the protein forming this pathway have not been described. We used patch clamp recording and substituted cysteine accessibility mutagenesis to identify positively charged amino acid side chains that attract cytoplasmic Cl− ions to the inner mouth of the pore. Our results indicate that the side chains of Lys-190, Arg-248, Arg-303, Lys-370, Lys-1041, and Arg-1048, located in different intracellular loops of the protein, play important roles in the electrostatic attraction of Cl− ions. Mutation and covalent modification of these residues have charge-dependent effects on the rate of Cl− permeation, demonstrating their functional role in maximization of Cl− flux. Other nearby positively charged side chains were not involved in electrostatic interactions with Cl−. The location of these Cl−-attractive residues suggests that cytoplasmic Cl− ions enter the pore via a lateral portal located between the cytoplasmic extensions to the fourth and sixth transmembrane helices; a secondary, functionally less relevant portal might exist between the extensions to the 10th and 12th transmembrane helices. These results define the cytoplasmic mouth of the pore and show how it attracts Cl− ions from the cytoplasm. PMID:25944907

  9. Isolation and characterization of the hemichrome-stabilized membrane protein aggregates from sickle erythrocytes. Major site of autologous antibody binding.

    PubMed

    Kannan, R; Labotka, R; Low, P S

    1988-09-25

    Because the interaction of denatured hemoglobins (i.e. hemichromes) with the red cell membrane has been associated with several abnormalities commonly observed in hemichrome-containing erythrocytes, we have undertaken to isolate and characterize the hemichrome-rich membrane protein aggregates from sickle cells. The aggregates were isolated by two procedures: one at low ionic strength by centrifugation of detergent-solubilized spectrin-depleted inside-out vesicles, and the other at physiological ionic strength by detergent solubilization of whole cells followed by cytoskeletal disruption and centrifugation. The extensively washed aggregates obtained by both methods yielded similar results. These insoluble complexes were found to be highly cross-linked by predominantly intermolecular disulfide bonds; however, other nonreducible covalent linkages were also observed. Both in the presence and absence of reducing agents, the aggregate disintegrated when the hemichromes were removed by high ionic strength, suggesting that the aggregate depended heavily on the cohesive properties of the hemichromes for stability. Protein assays demonstrated that the aggregates comprised approximately 1.3% of the total membrane protein, roughly two-thirds of which appeared to be globin chains. Other major components identified in the aggregate were band 3, ankyrin, bands 4.1, 4.9, and 5, glycophorins A and B, and autologous IgG. Quantitative analysis of the IgG content demonstrated that three-fourths of the surface-bound IgG on washed sickle cells was clustered at these aggregate sites, representing an enrichment of approximately 250-fold over nonaggregated regions of the membrane. Since clustered cell surface IgG is thought to trigger removal of erythrocytes from circulation, the hemichrome-induced membrane reorganization at these aggregate sites may be an important cause of the greatly shortened life span of sickle cells.

  10. Beginning Inference in Fourth Grade: Exploring Variation in Measurement

    ERIC Educational Resources Information Center

    English, Lyn; Watson, Jane

    2013-01-01

    This paper addresses one of the foundational components of beginning interference, namely variation, with 5 classes of Year 4 students undertaking a measurement activity using scaled instruments in two contexts: all students measuring one person's arm span and recording the values obtained, and each student having his/her own arm span measured and…

  11. The value of the wechsler intelligence scale for children-fourth edition digit span as an embedded measure of effort: an investigation into children with dual diagnoses.

    PubMed

    Loughan, Ashlee R; Perna, Robert; Hertza, Jeremy

    2012-11-01

    The Test of Memory Malingering (TOMM) is a measure of test-taking effort which has traditionally been utilized with adults, but which more recently has demonstrated utility with children. The purpose of this study was to investigate whether the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) Digit Span, commonly used in neuropsychological evaluations, can also be functional as an embedded measure by detecting effort in children with dual diagnoses; a population yet to be investigated. Participants (n = 51) who completed neuropsychological evaluations including the TOMM, WISC-IV, Wisconsin Card Sorting Test, Children's Memory Scale, and Delis-Kaplan Executive Function System were divided into two groups: Optimal Effort and Suboptimal Effort, based on their TOMM Trial 2 scores. Digit Span findings suggest a useful scaled score of ≤4 resulted in optimal cutoff scores, yielding specificity of 91% and sensitivity of 43%. This study supports previous research that the WISC-IV Digit Span has good utility in determining optimal effort, even in children with dual diagnosis or comorbidities.

  12. Evidence for the recent origin of a bacterial protein-coding, overlapping orphan gene by evolutionary overprinting.

    PubMed

    Fellner, Lea; Simon, Svenja; Scherling, Christian; Witting, Michael; Schober, Steffen; Polte, Christine; Schmitt-Kopplin, Philippe; Keim, Daniel A; Scherer, Siegfried; Neuhaus, Klaus

    2015-12-18

    Gene duplication is believed to be the classical way to form novel genes, but overprinting may be an important alternative. Overprinting allows entirely novel proteins to evolve de novo, i.e., formerly non-coding open reading frames within functional genes become expressed. Only three cases have been described for Escherichia coli. Here, a fourth example is presented. RNA sequencing revealed an open reading frame weakly transcribed in cow dung, coding for 101 residues and embedded completely in the -2 reading frame of citC in enterohemorrhagic E. coli. This gene is designated novel overlapping gene, nog1. The promoter region fused to gfp exhibits specific activities and 5' rapid amplification of cDNA ends indicated the transcriptional start 40-bp upstream of the start codon. nog1 was strand-specifically arrested in translation by a nonsense mutation silent in citC. This Nog1-mutant showed a phenotype in competitive growth against wild type in the presence of MgCl2. Small differences in metabolite concentrations were also found. Bioinformatic analyses propose Nog1 to be inner membrane-bound and to possess at least one membrane-spanning domain. A phylogenetic analysis suggests that the orphan gene nog1 arose by overprinting after Escherichia/Shigella separated from the other γ-proteobacteria. Since nog1 is of recent origin, non-essential, short, weakly expressed and only marginally involved in E. coli's central metabolism, we propose that this gene is in an initial stage of evolution. While we present specific experimental evidence for the existence of a fourth overlapping gene in enterohemorrhagic E. coli, we believe that this may be an initial finding only and overlapping genes in bacteria may be more common than is currently assumed by microbiologists.

  13. Membrane-spanning lipids for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer

    PubMed Central

    Schwarzmann, Günter; Breiden, Bernadette; Sandhoff, Konrad

    2015-01-01

    A Förster resonance energy transfer-based fusion and transfer assay was developed to study, in model membranes, protein-mediated membrane fusion and intermembrane lipid transfer of fluorescent sphingolipid analogs. For this assay, it became necessary to apply labeled reporter molecules that are resistant to spontaneous as well as protein-mediated intermembrane transfer. The novelty of this assay is the use of nonextractable fluorescent membrane-spanning bipolar lipids. Starting from the tetraether lipid caldarchaeol, we synthesized fluorescent analogs with fluorophores at both polar ends. In addition, we synthesized radioactive glycosylated caldarchaeols. These labeled lipids were shown to stretch through bilayer membranes rather than to loop within a single lipid layer of liposomes. More important, the membrane-spanning lipids (MSLs) in contrast to phosphoglycerides proved to be nonextractable by proteins. We could show that the GM2 activator protein (GM2AP) is promiscuous with respect to glycero- and sphingolipid transfer. Saposin (Sap) B also transferred sphingolipids albeit with kinetics different from GM2AP. In addition, we could unambiguously show that the recombinant activator protein Sap C x His6 induced membrane fusion rather than intermembrane lipid transfer. These findings showed that these novel MSLs, in contrast with fluorescent phosphoglycerolipids, are well suited for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer. PMID:26269359

  14. Membrane-spanning α-helical barrels as tractable protein-design targets.

    PubMed

    Niitsu, Ai; Heal, Jack W; Fauland, Kerstin; Thomson, Andrew R; Woolfson, Derek N

    2017-08-05

    The rational ( de novo ) design of membrane-spanning proteins lags behind that for water-soluble globular proteins. This is due to gaps in our knowledge of membrane-protein structure, and experimental difficulties in studying such proteins compared to water-soluble counterparts. One limiting factor is the small number of experimentally determined three-dimensional structures for transmembrane proteins. By contrast, many tens of thousands of globular protein structures provide a rich source of 'scaffolds' for protein design, and the means to garner sequence-to-structure relationships to guide the design process. The α-helical coiled coil is a protein-structure element found in both globular and membrane proteins, where it cements a variety of helix-helix interactions and helical bundles. Our deep understanding of coiled coils has enabled a large number of successful de novo designs. For one class, the α-helical barrels-that is, symmetric bundles of five or more helices with central accessible channels-there are both water-soluble and membrane-spanning examples. Recent computational designs of water-soluble α-helical barrels with five to seven helices have advanced the design field considerably. Here we identify and classify analogous and more complicated membrane-spanning α-helical barrels from the Protein Data Bank. These provide tantalizing but tractable targets for protein engineering and de novo protein design.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'. © 2017 The Author(s).

  15. Functional Architecture of the Cytoplasmic Entrance to the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore.

    PubMed

    El Hiani, Yassine; Linsdell, Paul

    2015-06-19

    As an ion channel, the cystic fibrosis transmembrane conductance regulator must form a continuous pathway for the movement of Cl(-) and other anions between the cytoplasm and the extracellular solution. Both the structure and the function of the membrane-spanning part of this pathway are well defined. In contrast, the structure of the pathway that connects the cytoplasm to the membrane-spanning regions is unknown, and functional roles for different parts of the protein forming this pathway have not been described. We used patch clamp recording and substituted cysteine accessibility mutagenesis to identify positively charged amino acid side chains that attract cytoplasmic Cl(-) ions to the inner mouth of the pore. Our results indicate that the side chains of Lys-190, Arg-248, Arg-303, Lys-370, Lys-1041, and Arg-1048, located in different intracellular loops of the protein, play important roles in the electrostatic attraction of Cl(-) ions. Mutation and covalent modification of these residues have charge-dependent effects on the rate of Cl(-) permeation, demonstrating their functional role in maximization of Cl(-) flux. Other nearby positively charged side chains were not involved in electrostatic interactions with Cl(-). The location of these Cl(-)-attractive residues suggests that cytoplasmic Cl(-) ions enter the pore via a lateral portal located between the cytoplasmic extensions to the fourth and sixth transmembrane helices; a secondary, functionally less relevant portal might exist between the extensions to the 10th and 12th transmembrane helices. These results define the cytoplasmic mouth of the pore and show how it attracts Cl(-) ions from the cytoplasm. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Secretion Trap Tagging of Secreted and Membrane-Spanning Proteins Using Arabidopsis Gene Traps

    Treesearch

    Andrew T. Groover; Joseph R. Fontana; Juana M. Arroyo; Cristina Yordan; W. Richard McCombie; Robert A. Martienssen

    2003-01-01

    Secreted and membrane-spanning proteins play fundamental roles in plant development but pose challenges for genetic identification and characterization. We describe a "secretion trap" screen for gene trap insertions in genes encoding proteins routed through the secretory pathway. The gene trap transposon encodes a ß-glucuronidase reporter enzyme...

  17. Assessment of Protein Side-Chain Conformation Prediction Methods in Different Residue Environments

    PubMed Central

    Peterson, Lenna X.; Kang, Xuejiao; Kihara, Daisuke

    2016-01-01

    Computational prediction of side-chain conformation is an important component of protein structure prediction. Accurate side-chain prediction is crucial for practical applications of protein structure models that need atomic detailed resolution such as protein and ligand design. We evaluated the accuracy of eight side-chain prediction methods in reproducing the side-chain conformations of experimentally solved structures deposited to the Protein Data Bank. Prediction accuracy was evaluated for a total of four different structural environments (buried, surface, interface, and membrane-spanning) in three different protein types (monomeric, multimeric, and membrane). Overall, the highest accuracy was observed for buried residues in monomeric and multimeric proteins. Notably, side-chains at protein interfaces and membrane-spanning regions were better predicted than surface residues even though the methods did not all use multimeric and membrane proteins for training. Thus, we conclude that the current methods are as practically useful for modeling protein docking interfaces and membrane-spanning regions as for modeling monomers. PMID:24619909

  18. Membrane-spanning lipids for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer.

    PubMed

    Schwarzmann, Günter; Breiden, Bernadette; Sandhoff, Konrad

    2015-10-01

    A Förster resonance energy transfer-based fusion and transfer assay was developed to study, in model membranes, protein-mediated membrane fusion and intermembrane lipid transfer of fluorescent sphingolipid analogs. For this assay, it became necessary to apply labeled reporter molecules that are resistant to spontaneous as well as protein-mediated intermembrane transfer. The novelty of this assay is the use of nonextractable fluorescent membrane-spanning bipolar lipids. Starting from the tetraether lipid caldarchaeol, we synthesized fluorescent analogs with fluorophores at both polar ends. In addition, we synthesized radioactive glycosylated caldarchaeols. These labeled lipids were shown to stretch through bilayer membranes rather than to loop within a single lipid layer of liposomes. More important, the membrane-spanning lipids (MSLs) in contrast to phosphoglycerides proved to be nonextractable by proteins. We could show that the GM2 activator protein (GM2AP) is promiscuous with respect to glycero- and sphingolipid transfer. Saposin (Sap) B also transferred sphingolipids albeit with kinetics different from GM2AP. In addition, we could unambiguously show that the recombinant activator protein Sap C x His6 induced membrane fusion rather than intermembrane lipid transfer. These findings showed that these novel MSLs, in contrast with fluorescent phosphoglycerolipids, are well suited for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  19. Classifying Membrane Proteins in the Proteome by Using Artificial Neural Networks Based on the Preferential Parameters of Amino Acids

    NASA Astrophysics Data System (ADS)

    Bose, Subrata K.; Browne, Antony; Kazemian, Hassan; White, Kenneth

    Membrane proteins (MPs) are large set of biological macromolecules that play a fundamental role in physiology and pathophysiology for survival. From a pharma-economical perspective, though it is the fact that MPs constitute ˜75% of possible targets for novel drugs but MPs are one of the most understudied groups of proteins in biochemical research. This is mainly because of the technical difficulties of obtaining structural information about trans-membrane regions (these are small sequences that crossways the bilayer lipid membrane). It is quite useful to predict the location of transmembrane segments down the sequence, since these are the elementary structural building blocks defining their topology. There have been several attempts over the last 20 years to develop tools for predicting membrane-spanning regions but current tools are far away from achieving a considerable reliability in prediction. This study aims to exploit the knowledge and current understanding in the field of artificial neural networks (ANNs) in particular data representation through the development of a system to identify and predict membrane-spanning regions by analysing primary amino acids sequence. In this paper we present a novel neural network (NNs) architecture and algorithms for predicting membrane spanning regions from primary amino acids sequences by using their preference parameters.

  20. Stability and dynamics of membrane-spanning DNA nanopores

    NASA Astrophysics Data System (ADS)

    Maingi, Vishal; Burns, Jonathan R.; Uusitalo, Jaakko J.; Howorka, Stefan; Marrink, Siewert J.; Sansom, Mark S. P.

    2017-03-01

    Recently developed DNA-based analogues of membrane proteins have advanced synthetic biology. A fundamental question is how hydrophilic nanostructures reside in the hydrophobic environment of the membrane. Here, we use multiscale molecular dynamics (MD) simulations to explore the structure, stability and dynamics of an archetypical DNA nanotube inserted via a ring of membrane anchors into a phospholipid bilayer. Coarse-grained MD reveals that the lipids reorganize locally to interact closely with the membrane-spanning section of the DNA tube. Steered simulations along the bilayer normal establish the metastable nature of the inserted pore, yielding a force profile with barriers for membrane exit due to the membrane anchors. Atomistic, equilibrium simulations at two salt concentrations confirm the close packing of lipid around of the stably inserted DNA pore and its cation selectivity, while revealing localized structural fluctuations. The wide-ranging and detailed insight informs the design of next-generation DNA pores for synthetic biology or biomedicine.

  1. Fourth Ventriculostomy in Occlusion of the Foramen of Magendie Associated with Chiari Malformation and Syringomyelia

    PubMed Central

    Orakdogen, Metin; Emon, Selin Tural; Erdogan, Baris; Somay, Hakan

    2015-01-01

    We present four cases of hydrocephalus caused by occlusion of foramen of Magendie associated with Chiari Type I malformation and syringomyelia. The aim of this study is to evaluate the results of surgical treatment via fourth ventriculostomy with catheter from the fourth ventricle to the upper cervical subarachnoid space. Obstructive tetraventricular hydrocephalus due to occlusion of the foramina of Luschka and Magendie can be treated with cerebrospinal fluid shunting, opening the membranes with suboccipital craniotomy, placement of a catheter, endoscopic third ventriculostomy, and endoscopic fourth ventriculostomy. Our aim was to solve all the pathologies such as Chiari malformation, hydrocephalus, and syringomyelia in one approach. Thus, the treatment consisted of posterior fossa decompression and exploration. All the patients were treated with suboccipital craniectomy and C1 laminectomy with excision of the membrane obstructing the foramen of Magendie. Fourth ventriculostomy with cathetering from fourth ventricle to upper cervical subarachnoid space was performed. The postoperative period was uneventful in all the patients. Neurological status of all the patients improved. Tetraventricular hydrocephalus and syrinx were reduced in the control cranial magnetic resonance imaging. Complications such as infection and catheter migration were not observed during the follow-up period. Treatment with fourth ventriculostomy using a catheter from fourth ventricle to upper cervical subarachnoid space could be a treatment of choice in cases with hydrocephalus caused by occlusion of the foramina of Magendie, with associated Chiari Type I malformation and syringomyelia. PMID:28663969

  2. Parents' and Teachers' Perceptions of Abnormal Attention Span of Elementary School-Age Children.

    PubMed

    Segal-Triwitz, Yael; Kirchen, Louisa M; Shani Sherman, Tal; Levav, Miriam; Schonherz-Pine, Yael; Kushnir, Jonathan; Ariel, Raya; Gothelf, Doron

    2016-01-01

    To determine teacher and parental perception of minimal expected sustained attention span during various daily tasks among elementary school children. 54 parents and 47 teachers completed the attention span questionnaire (AtSQ) that was developed for this study. The AtSQ consists of 15 academic and leisure tasks that require a child's sustained attention. The study focused on third and fourth graders in Israel. There was a high degree of variability among teachers and parents in their responses to the AtSQ. The expected attention span of children as judged by parents was higher and more varied compared to teachers, and higher for girls than for boys. Our results indicate poor agreement in cutoff values for sustained attention span between teachers and parents and within each group.

  3. Fabrication of a single sub-micron pore spanning a single crystal (100) diamond membrane and impact on particle translocation [Particle translocation through a single crystal diamond pore fabricated by electron beam induced chemical etching

    DOE PAGES

    Webb, Jennifer R.; Martin, Aiden A.; Johnson, Robert P.; ...

    2017-06-21

    The fabrication of sub-micron pores in single crystal diamond membranes, which span the entirety of the membrane, is described for the first time, and the translocation properties of polymeric particles through the pore investigated. The pores are produced using a combination of laser micromachining to form the membrane and electron beam induced etching to form the pore. Single crystal diamond as the membrane material, has the advantages of chemical stability and durability, does not hydrate and swell, has outstanding electrical properties that facilitate fast, low noise current-time measurements and is optically transparent for combined optical-conductance sensing. The resulting pores aremore » characterized individually using both conductance measurements, employing a microcapillary electrochemical setup, and electron microscopy. Proof-of-concept experiments to sense charged polystyrene particles as they are electrophoretically driven through a single diamond pore are performed, and the impact of this new pore material on particle translocation is explored. As a result, these findings reveal the potential of diamond as a platform for pore-based sensing technologies and pave the way for the fabrication of single nanopores which span the entirety of a diamond membrane.« less

  4. Fabrication of a single sub-micron pore spanning a single crystal (100) diamond membrane and impact on particle translocation [Particle translocation through a single crystal diamond pore fabricated by electron beam induced chemical etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, Jennifer R.; Martin, Aiden A.; Johnson, Robert P.

    The fabrication of sub-micron pores in single crystal diamond membranes, which span the entirety of the membrane, is described for the first time, and the translocation properties of polymeric particles through the pore investigated. The pores are produced using a combination of laser micromachining to form the membrane and electron beam induced etching to form the pore. Single crystal diamond as the membrane material, has the advantages of chemical stability and durability, does not hydrate and swell, has outstanding electrical properties that facilitate fast, low noise current-time measurements and is optically transparent for combined optical-conductance sensing. The resulting pores aremore » characterized individually using both conductance measurements, employing a microcapillary electrochemical setup, and electron microscopy. Proof-of-concept experiments to sense charged polystyrene particles as they are electrophoretically driven through a single diamond pore are performed, and the impact of this new pore material on particle translocation is explored. As a result, these findings reveal the potential of diamond as a platform for pore-based sensing technologies and pave the way for the fabrication of single nanopores which span the entirety of a diamond membrane.« less

  5. Administration of Neuropsychological Tests Using Interactive Voice Response Technology in the Elderly: Validation and Limitations

    PubMed Central

    Miller, Delyana Ivanova; Talbot, Vincent; Gagnon, Michèle; Messier, Claude

    2013-01-01

    Interactive voice response (IVR) systems are computer programs, which interact with people to provide a number of services from business to health care. We examined the ability of an IVR system to administer and score a verbal fluency task (fruits) and the digit span forward and backward in 158 community dwelling people aged between 65 and 92 years of age (full scale IQ of 68–134). Only six participants could not complete all tasks mostly due to early technical problems in the study. Participants were also administered the Wechsler Intelligence Scale fourth edition (WAIS-IV) and Wechsler Memory Scale fourth edition subtests. The IVR system correctly recognized 90% of the fruits in the verbal fluency task and 93–95% of the number sequences in the digit span. The IVR system typically underestimated the performance of participants because of voice recognition errors. In the digit span, these errors led to the erroneous discontinuation of the test: however the correlation between IVR scoring and clinical scoring was still high (93–95%). The correlation between the IVR verbal fluency and the WAIS-IV Similarities subtest was 0.31. The correlation between the IVR digit span forward and backward and the in-person administration was 0.46. We discuss how valid and useful IVR systems are for neuropsychological testing in the elderly. PMID:23950755

  6. Accurate computational design of multipass transmembrane proteins.

    PubMed

    Lu, Peilong; Min, Duyoung; DiMaio, Frank; Wei, Kathy Y; Vahey, Michael D; Boyken, Scott E; Chen, Zibo; Fallas, Jorge A; Ueda, George; Sheffler, William; Mulligan, Vikram Khipple; Xu, Wenqing; Bowie, James U; Baker, David

    2018-03-02

    The computational design of transmembrane proteins with more than one membrane-spanning region remains a major challenge. We report the design of transmembrane monomers, homodimers, trimers, and tetramers with 76 to 215 residue subunits containing two to four membrane-spanning regions and up to 860 total residues that adopt the target oligomerization state in detergent solution. The designed proteins localize to the plasma membrane in bacteria and in mammalian cells, and magnetic tweezer unfolding experiments in the membrane indicate that they are very stable. Crystal structures of the designed dimer and tetramer-a rocket-shaped structure with a wide cytoplasmic base that funnels into eight transmembrane helices-are very close to the design models. Our results pave the way for the design of multispan membrane proteins with new functions. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. Health Span-Extending Activity of Human Amniotic Membrane- and Adipose Tissue-Derived Stem Cells in F344 Rats

    PubMed Central

    Kim, Dajeong; Kyung, Jangbeen; Park, Dongsun; Choi, Ehn-Kyoung; Kim, Kwang Sei; Shin, Kyungha; Lee, Hangyoung; Shin, Il Seob; Kang, Sung Keun

    2015-01-01

    Aging brings about the progressive decline in cognitive function and physical activity, along with losses of stem cell population and function. Although transplantation of muscle-derived stem/progenitor cells extended the health span and life span of progeria mice, such effects in normal animals were not confirmed. Human amniotic membrane-derived mesenchymal stem cells (AMMSCs) or adipose tissue-derived mesenchymal stem cells (ADMSCs) (1 × 106 cells per rat) were intravenously transplanted to 10-month-old male F344 rats once a month throughout their lives. Transplantation of AMMSCs and ADMSCs improved cognitive and physical functions of naturally aging rats, extending life span by 23.4% and 31.3%, respectively. The stem cell therapy increased the concentration of acetylcholine and recovered neurotrophic factors in the brain and muscles, leading to restoration of microtubule-associated protein 2, cholinergic and dopaminergic nervous systems, microvessels, muscle mass, and antioxidative capacity. The results indicate that repeated transplantation of AMMSCs and ADMSCs elongate both health span and life span, which could be a starting point for antiaging or rejuvenation effects of allogeneic or autologous stem cells with minimum immune rejection. Significance This study demonstrates that repeated treatment with stem cells in normal animals has antiaging potential, extending health span and life span. Because antiaging and prolonged life span are issues currently of interest, these results are significant for readers and investigators. PMID:26315571

  8. Exploration of malingering indices in the Wechsler Adult Intelligence Scale-Fourth Edition Digit Span subtest.

    PubMed

    Reese, Caitlin S; Suhr, Julie A; Riddle, Tara L

    2012-03-01

    Prior research shows that Digit Span is a useful embedded measure of malingering. However, the Wechsler Adult Intelligence Scale-IV (Wechsler, 2008) altered Digit Span in meaningful ways, necessitating another look at Digit Span as an embedded measure of malingering. Using a simulated malingerer design, we examined the predictive accuracy of existing Digit Span validity indices and explored whether patterns of performance utilizing the new version would provide additional evidence for malingering. Undergraduates with a history of mild head injury performed with best effort or simulated impaired cognition and were also compared with a large sample of non-head-injured controls. Previously established cutoffs for the age-corrected scaled score and Reliable Digit Span (RDS) performed similarly in the present samples. Patterns of RDS length using all three subscales of the new scale were different in malingerers when compared with both head-injured and non-head-injured controls. Two potential alternative RDS scores were introduced, which showed better sensitivity than the traditional RDS, while retaining specificity to malingering.

  9. Targeting of a Nicotiana plumbaginifolia H+ -ATPase to the plasma membrane is not by default and requires cytosolic structural determinants.

    PubMed

    Lefebvre, Benoit; Batoko, Henri; Duby, Geoffrey; Boutry, Marc

    2004-07-01

    The structural determinants involved in the targeting of multitransmembrane-span proteins to the plasma membrane (PM) remain poorly understood. The plasma membrane H+ -ATPase (PMA) from Nicotiana plumbaginifolia, a well-characterized 10 transmembrane-span enzyme, was used as a model to identify structural elements essential for targeting to the PM. When PMA2 and PMA4, representatives of the two main PMA subfamilies, were fused to green fluorescent protein (GFP), the chimeras were shown to be still functional and to be correctly and rapidly targeted to the PM in transgenic tobacco. By contrast, chimeric proteins containing various combinations of PMA transmembrane spanning domains accumulated in the Golgi apparatus and not in the PM and displayed slow traffic properties through the secretory pathway. Individual deletion of three of the four cytosolic domains did not prevent PM targeting, but deletion of the large loop or of its nucleotide binding domain resulted in GFP fluorescence accumulating exclusively in the endoplasmic reticulum. The results show that, at least for this polytopic protein, the PM is not the default pathway and that, in contrast with single-pass membrane proteins, cytosolic structural determinants are required for correct targeting.

  10. Targeting of a Nicotiana plumbaginifolia H+-ATPase to the Plasma Membrane Is Not by Default and Requires Cytosolic Structural Determinants

    PubMed Central

    Lefebvre, Benoit; Batoko, Henri; Duby, Geoffrey; Boutry, Marc

    2004-01-01

    The structural determinants involved in the targeting of multitransmembrane-span proteins to the plasma membrane (PM) remain poorly understood. The plasma membrane H+-ATPase (PMA) from Nicotiana plumbaginifolia, a well-characterized 10 transmembrane–span enzyme, was used as a model to identify structural elements essential for targeting to the PM. When PMA2 and PMA4, representatives of the two main PMA subfamilies, were fused to green fluorescent protein (GFP), the chimeras were shown to be still functional and to be correctly and rapidly targeted to the PM in transgenic tobacco. By contrast, chimeric proteins containing various combinations of PMA transmembrane spanning domains accumulated in the Golgi apparatus and not in the PM and displayed slow traffic properties through the secretory pathway. Individual deletion of three of the four cytosolic domains did not prevent PM targeting, but deletion of the large loop or of its nucleotide binding domain resulted in GFP fluorescence accumulating exclusively in the endoplasmic reticulum. The results show that, at least for this polytopic protein, the PM is not the default pathway and that, in contrast with single-pass membrane proteins, cytosolic structural determinants are required for correct targeting. PMID:15208389

  11. Properties investigation of sulfonated poly(ether ether ketone)/polyacrylonitrile acid-base blend membrane for vanadium redox flow battery application.

    PubMed

    Li, Zhaohua; Dai, Wenjing; Yu, Lihong; Liu, Le; Xi, Jingyu; Qiu, Xinping; Chen, Liquan

    2014-11-12

    Acid-base blend membrane prepared from sulfonated poly(ether ether ketone) (SPEEK) and polyacrylonitrile (PAN) was detailedly evaluated for vanadium redox flow battery (VRFB) application. SPEEK/PAN blend membrane exhibited dense and homogeneous cross-section morphology as scanning electron microscopy and energy-dispersive X-ray spectroscopy images show. The acid-base interaction of ionic cross-linking and hydrogen bonding between SPEEK and PAN could effectively reduce water uptake, swelling ratio, and vanadium ion permeability, and improve the performance and stability of blend membrane. Because of the good balance of proton conductivity and vanadium ion permeability, blend membrane with 20 wt % PAN (S/PAN-20%) showed higher Coulombic efficiency (96.2% vs 91.1%) and energy efficiency (83.5% vs 78.4%) than Nafion 117 membrane at current density of 80 mA cm(-2) when they were used in VRFB single cell. Besides, S/PAN-20% membrane kept a stable performance during 150 cycles at current density of 80 mA cm(-2) in the cycle life test. Hence the SPEEK/PAN acid-base blend membrane could be used as promising candidate for VRFB application.

  12. 1. View looking east from sand bar on west side ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View looking east from sand bar on west side of bridge, upstream in the bed of Sugar Creek. West elevation of the bridge - Vigo County Bridge No. 139, Spanning Sugar Creek at Seventy-fourth Place, Terre Haute, Vigo County, IN

  13. Teacher's Guide to Career Education; Project SPAN.

    ERIC Educational Resources Information Center

    Turpin, Jerry; Bell, Lorraine P.

    The teacher's guide is intended for use in conjunction with 15-minute instructional television lessons featuring occupational clusters (construction, communications and media, business and office, health, industrial, transportation, public and personal services, consumer and homemaking, marketing and distribution), for fourth, fifth, and sixth…

  14. Health Span-Extending Activity of Human Amniotic Membrane- and Adipose Tissue-Derived Stem Cells in F344 Rats.

    PubMed

    Kim, Dajeong; Kyung, Jangbeen; Park, Dongsun; Choi, Ehn-Kyoung; Kim, Kwang Sei; Shin, Kyungha; Lee, Hangyoung; Shin, Il Seob; Kang, Sung Keun; Ra, Jeong Chan; Kim, Yun-Bae

    2015-10-01

    Aging brings about the progressive decline in cognitive function and physical activity, along with losses of stem cell population and function. Although transplantation of muscle-derived stem/progenitor cells extended the health span and life span of progeria mice, such effects in normal animals were not confirmed. Human amniotic membrane-derived mesenchymal stem cells (AMMSCs) or adipose tissue-derived mesenchymal stem cells (ADMSCs) (1×10(6) cells per rat) were intravenously transplanted to 10-month-old male F344 rats once a month throughout their lives. Transplantation of AMMSCs and ADMSCs improved cognitive and physical functions of naturally aging rats, extending life span by 23.4% and 31.3%, respectively. The stem cell therapy increased the concentration of acetylcholine and recovered neurotrophic factors in the brain and muscles, leading to restoration of microtubule-associated protein 2, cholinergic and dopaminergic nervous systems, microvessels, muscle mass, and antioxidative capacity. The results indicate that repeated transplantation of AMMSCs and ADMSCs elongate both health span and life span, which could be a starting point for antiaging or rejuvenation effects of allogeneic or autologous stem cells with minimum immune rejection. This study demonstrates that repeated treatment with stem cells in normal animals has antiaging potential, extending health span and life span. Because antiaging and prolonged life span are issues currently of interest, these results are significant for readers and investigators. ©AlphaMed Press.

  15. Annexins in plasma membrane repair.

    PubMed

    Boye, Theresa Louise; Nylandsted, Jesper

    2016-10-01

    Disruption of the plasma membrane poses deadly threat to eukaryotic cells and survival requires a rapid membrane repair system. Recent evidence reveal various plasma membrane repair mechanisms, which are required for cells to cope with membrane lesions including membrane fusion and replacement strategies, remodeling of cortical actin cytoskeleton and vesicle wound patching. Members of the annexin protein family, which are Ca2+-triggered phospholipid-binding proteins emerge as important components of the plasma membrane repair system. Here, we discuss the mechanisms of plasma membrane repair involving annexins spanning from yeast to human cancer cells.

  16. Chlorine resistant desalination membranes based on directly sulfonated poly(arylene ether sulfone) copolymers

    DOEpatents

    McGrath, James E [Blacksburg, VA; Park, Ho Bum [Austin, TX; Freeman, Benny D [Austin, TX

    2011-10-04

    The present invention provides a membrane, kit, and method of making a hydrophilic-hydrophobic random copolymer membrane. The hydrophilic-hydrophobic random copolymer membrane includes a hydrophilic-hydrophobic random copolymer. The hydrophilic-hydrophobic random copolymer includes one or more hydrophilic monomers having a sulfonated polyarylsulfone monomer and a second monomer and one or more hydrophobic monomers having a non-sulfonated third monomer and a fourth monomer. The sulfonated polyarylsulfone monomer introduces a sulfonate into the hydrophilic-hydrophobic random copolymer prior to polymerization.

  17. 5. An environmental view, looking due east from the roadbed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. An environmental view, looking due east from the roadbed of the bridge. The downstream bed of Sugar Creek is prominent, flanked by pasture and woodlands - Vigo County Bridge No. 139, Spanning Sugar Creek at Seventy-fourth Place, Terre Haute, Vigo County, IN

  18. The preference of tryptophan for membrane interfaces: insights from N-methylation of tryptophans in gramicidin channels.

    PubMed

    Sun, Haiyan; Greathouse, Denise V; Andersen, Olaf S; Koeppe, Roger E

    2008-08-08

    To better understand the structural and functional roles of tryptophan at the membrane/water interface in membrane proteins, we examined the structural and functional consequences of Trp --> 1-methyl-tryptophan substitutions in membrane-spanning gramicidin A channels. Gramicidin A channels are miniproteins that are anchored to the interface by four Trps near the C terminus of each subunit in a membrane-spanning dimer. We masked the hydrogen bonding ability of individual or multiple Trps by 1-methylation of the indole ring and examined the structural and functional changes using circular dichroism spectroscopy, size exclusion chromatography, solid state (2)H NMR spectroscopy, and single channel analysis. N-Methylation causes distinct changes in the subunit conformational preference, channel-forming propensity, single channel conductance and lifetime, and average indole ring orientations within the membrane-spanning channels. The extent of the local ring dynamic wobble does not increase, and may decrease slightly, when the indole NH is replaced by the non-hydrogen-bonding and more bulky and hydrophobic N-CH(3) group. The changes in conformational preference, which are associated with a shift in the distribution of the aromatic residues across the bilayer, are similar to those observed previously with Trp --> Phe substitutions. We conclude that indole N-H hydrogen bonding is of major importance for the folding of gramicidin channels. The changes in ion permeability, however, are quite different for Trp --> Phe and Trp --> 1-methyl-tryptophan substitutions, indicating that the indole dipole moment and perhaps also ring size and are important for ion permeation through these channels.

  19. Histochemical study of lectin binding sites in fourth and fifth instar gypsy moth larval midgut epithelium

    Treesearch

    Algimantas P. Valaitis

    2011-01-01

    There is evidence that the gypsy moth, Lymantria dispar, midgut epithelial brush border membrane has membrane-bound glycoconjugates, such as BTR-270 and aminopeptidase N (APN), which function as high affinity binding sites (receptors) for the insecticidal proteins produced by Bacillus thuringiensis (Bt). As gypsy...

  20. Assembly and misassembly of cystic fibrosis transmembrane conductance regulator: folding defects caused by deletion of F508 occur before and after the calnexin-dependent association of membrane spanning domain (MSD) 1 and MSD2.

    PubMed

    Rosser, Meredith F N; Grove, Diane E; Chen, Liling; Cyr, Douglas M

    2008-11-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a polytopic membrane protein that functions as a Cl(-) channel and consists of two membrane spanning domains (MSDs), two cytosolic nucleotide binding domains (NBDs), and a cytosolic regulatory domain. Cytosolic 70-kDa heat shock protein (Hsp70), and endoplasmic reticulum-localized calnexin are chaperones that facilitate CFTR biogenesis. Hsp70 functions in both the cotranslational folding and posttranslational degradation of CFTR. Yet, the mechanism for calnexin action in folding and quality control of CFTR is not clear. Investigation of this question revealed that calnexin is not essential for CFTR or CFTRDeltaF508 degradation. We identified a dependence on calnexin for proper assembly of CFTR's membrane spanning domains. Interestingly, efficient folding of NBD2 was also found to be dependent upon calnexin binding to CFTR. Furthermore, we identified folding defects caused by deletion of F508 that occurred before and after the calnexin-dependent association of MSD1 and MSD2. Early folding defects are evident upon translation of the NBD1 and R-domain and are sensed by the RMA-1 ubiquitin ligase complex.

  1. 19. Photocopy of Illustration. Original in possession of Scranton City ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Photocopy of Illustration. Original in possession of Scranton City Archives. 'SANDERSON AVENUE BRIDGE.' Fourth Annual Report of the Department of Public Works, January 1, 1904 to January 1, 1905. Scranton, Pennsylvania, 1905. - Sanderson Avenue Bridge, Sanderson Avenue spanning Lackawanna River, Scranton, Lackawanna County, PA

  2. Separating attoliter-sized compartments using fluid pore-spanning lipid bilayers.

    PubMed

    Lazzara, Thomas D; Carnarius, Christian; Kocun, Marta; Janshoff, Andreas; Steinem, Claudia

    2011-09-27

    Anodic aluminum oxide (AAO) is a porous material having aligned cylindrical compartments with 55-60 nm diameter pores, and being several micrometers deep. A protocol was developed to generate pore-spanning fluid lipid bilayers separating the attoliter-sized compartments of the nanoporous material from the bulk solution, while preserving the optical transparency of the AAO. The AAO was selectively functionalized by silane chemistry to spread giant unilamellar vesicles (GUVs) resulting in large continuous membrane patches covering the pores. Formation of fluid single lipid bilayers through GUV rupture could be readily observed by fluorescence microscopy and further supported by conservation of membrane surface area, before and after GUV rupture. Fluorescence recovery after photobleaching gave low immobile fractions (5-15%) and lipid diffusion coefficients similar to those found for bilayers on silica. The entrapment of molecules within the porous underlying cylindrical compartments, as well as the exclusion of macromolecules from the nanopores, demonstrate the barrier function of the pore-spanning membranes and could be investigated in three-dimensions using confocal laser scanning fluorescence imaging. © 2011 American Chemical Society

  3. New insights into the targeting of a sub-set of tail-anchored proteins to the outer mitochondrial membrane

    USDA-ARS?s Scientific Manuscript database

    Tail-anchored (TA) proteins are a unique class of functionally diverse membrane proteins that are defined by their single C-terminal membrane-spanning domain and their ability to insert post-translationally into specific organelles with an Nout-Cin orientation. The molecular mechanisms by which TA p...

  4. 15. Detail looking west from the bridge roadbed, showing the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Detail looking west from the bridge roadbed, showing the face of the west parapet and demonstrating the ghosts of the form work. The coping was cast independent of the balusters. - Vigo County Bridge No. 139, Spanning Sugar Creek at Seventy-fourth Place, Terre Haute, Vigo County, IN

  5. Full membrane spanning self-assembled monolayers as model systems for UHV-based studies of cell-penetrating peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franz, Johannes; Graham, Daniel J.; Schmüser, Lars

    2015-03-01

    Biophysical studies of the interaction of peptides with model membranes provide a simple yet effective approach to understand the transport of peptides and peptide based drug carriers across the cell membrane. Therein, the authors discuss the use of self-assembled monolayers fabricated from the full membrane-spanning thiol (FMST) 3-((14-((4'-((5-methyl-1-phenyl-35-(phytanyl)oxy-6,9,12,15,18,21,24,27,30,33,37-undecaoxa-2,3-dithiahenpentacontan-51-yl)oxy)-[1,1'-biphenyl]-4-yl)oxy)tetradecyl)oxy)-2-(phytanyl)oxy glycerol for ultrahigh vacuum (UHV) based experiments. UHV-based methods such as electron spectroscopy and mass spectrometry can provide important information about how peptides bind and interact with membranes, especially with the hydrophobic core of a lipid bilayer. Moreover, near-edge x-ray absorption fine structure spectra and x-ray photoelectron spectroscopy (XPS) data showed thatmore » FMST forms UHV-stable and ordered films on gold. XPS and time of flight secondary ion mass spectrometry depth profiles indicated that a proline-rich amphipathic cell-penetrating peptide, known as sweet arrow peptide is located at the outer perimeter of the model membrane.« less

  6. Smart polymer brush nanostructures guide the self-assembly of pore-spanning lipid bilayers with integrated membrane proteins

    NASA Astrophysics Data System (ADS)

    Wilhelmina de Groot, G.; Demarche, Sophie; Santonicola, M. Gabriella; Tiefenauer, Louis; Vancso, G. Julius

    2014-01-01

    Nanopores in arrays on silicon chips are functionalized with pH-responsive poly(methacrylic acid) (PMAA) brushes and used as supports for pore-spanning lipid bilayers with integrated membrane proteins. Robust platforms are created by the covalent grafting of polymer brushes using surface-initiated atom transfer radical polymerization (ATRP), resulting in sensor chips that can be successfully reused over several assays. His-tagged proteins are selectively and reversibly bound to the nitrilotriacetic acid (NTA) functionalization of the PMAA brush, and consequently lipid bilayer membranes are formed. The enhanced membrane resistance as determined by electrochemical impedance spectroscopy and free diffusion of dyed lipids observed as fluorescence recovery after photobleaching confirmed the presence of lipid bilayers. Immobilization of the His-tagged membrane proteins on the NTA-modified PMAA brush near the pore edges is characterized by fluorescence microscopy. This system allows us to adjust the protein density in free-standing bilayers, which are stabilized by the polymer brush underneath. The potential application of the integrated platform for ion channel protein assays is demonstrated.

  7. Molecular devices: Caroviologens as an approach to molecular wires—synthesis and incorporation into vesicle membranes

    PubMed Central

    Arrhenius, Thomas S.; Blanchard-Desce, Mireille; Dvolaitzky, Maya; Lehn, Jean-Marie; Malthete, Jacques

    1986-01-01

    Molecular wires, which would allow electron flow to take place between different components, are important elements in the design of molecular devices. An approach to such species would be molecules possessing an electron-conducting conjugated chain, terminal electroactive polar groups, and a length sufficient to span a lipid membrane. To this end, bispyridinium polyenes of different lengths have been synthesized and their incorporation into the bilayer membrane of sodium dihexadecyl phosphate vesicles has been studied. Since they combine the features of carotenoids and of viologens, they may be termed caroviologens. Vesicles containing the caroviologen whose length approximately corresponds to the thickness of the sodium dihexadecyl phosphate bilayer display temperature-dependent changes of its absorption spectrum reflecting the gel → liquid-crystal phase transition of the membrane. The data agree with a structural model in which the caroviologens of sufficient length span the bilayer membrane, the pyridinium sites being close to the negatively charged outer and inner surfaces of the sodium dihexadecyl phosphate vesicles and the polyene chain crossing the lipidic interior of the membrane. These membranes may now be tested in processes in which the caroviologen would function as a continuous, transmembrane electron channel—i.e., as a molecular wire. Various further developments may be envisaged along these lines. PMID:16593731

  8. Space physics analysis network node directory (The Yellow Pages): Fourth edition

    NASA Technical Reports Server (NTRS)

    Peters, David J.; Sisson, Patricia L.; Green, James L.; Thomas, Valerie L.

    1989-01-01

    The Space Physics Analysis Network (SPAN) is a component of the global DECnet Internet, which has over 17,000 host computers. The growth of SPAN from its implementation in 1981 to its present size of well over 2,500 registered SPAN host computers, has created a need for users to acquire timely information about the network through a central source. The SPAN Network Information Center (SPAN-NIC) an online facility managed by the National Space Science Data Center (NSSDC) was developed to meet this need for SPAN-wide information. The remote node descriptive information in this document is not currently contained in the SPAN-NIC database, but will be incorporated in the near future. Access to this information is also available to non-DECnet users over a variety of networks such as Telenet, the NASA Packet Switched System (NPSS), and the TCP/IP Internet. This publication serves as the Yellow Pages for SPAN node information. The document also provides key information concerning other computer networks connected to SPAN, nodes associated with each SPAN routing center, science discipline nodes, contacts for primary SPAN nodes, and SPAN reference information. A section on DECnet Internetworking discusses SPAN connections with other wide-area DECnet networks (many with thousands of nodes each). Another section lists node names and their disciplines, countries, and institutions in the SPAN Network Information Center Online Data Base System. All remote sites connected to US-SPAN and European-SPAN (E-SPAN) are indexed. Also provided is information on the SPAN tail circuits, i.e., those remote nodes connected directly to a SPAN routing center, which is the local point of contact for resolving SPAN-related problems. Reference material is included for those who wish to know more about SPAN. Because of the rapid growth of SPAN, the SPAN Yellow Pages is reissued periodically.

  9. Residues in the membrane-spanning domain core modulate conformation and fusogenicity of the HIV-1 envelope glycoprotein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang Liang; Hunter, Eric, E-mail: eric.hunter2@emory.ed

    2010-09-01

    The membrane-spanning domain (MSD) of human immunodeficiency virus type I (HIV-1) envelope glycoprotein (Env) is critical for its biological activity. Initial studies have defined an almost invariant 'core' structure in the MSD and demonstrated that it is crucial for anchoring Env in the membrane and virus entry. We show here that amino acid substitutions in the MSD 'core' do not influence specific virus-cell attachment, nor CD4 receptor and CXCR4 coreceptor recognition by Env. However, substitutions within the MSD 'core' delayed the kinetics and reduced the efficiency of cell-cell fusion mediated by Env. Although we observed no evidence that membrane fusionmore » mediated by the MSD core mutants was arrested at a hemifusion stage, impaired Env fusogenicity was correlated with minor conformational changes in the V2, C1, and C5 regions in gp120 and the immunodominant loop in gp41. These changes could delay initiation of the conformational changes required in the fusion process.« less

  10. The proline-rich domain of TonB possesses an extended polyproline II-like conformation of sufficient length to span the periplasm of Gram-negative bacteria

    PubMed Central

    Köhler, Silvia Domingo; Weber, Annemarie; Howard, S Peter; Welte, Wolfram; Drescher, Malte

    2010-01-01

    TonB from Escherichia coli and its homologues are critical for the uptake of siderophores through the outer membrane of Gram-negative bacteria using chemiosmotic energy. When different models for the mechanism of TonB mediated energy transfer from the inner to the outer membrane are discussed, one of the key questions is whether TonB spans the periplasm. In this article, we use long range distance measurements by spin-label pulsed EPR (Double Electron–Electron Resonance, DEER) and CD spectroscopy to show that the proline-rich segment of TonB exists in a PPII-like conformation. The result implies that the proline-rich segment of TonB possesses a length of more than 15 nm, sufficient to span the periplasm of Gram-negative bacteria. PMID:20095050

  11. Involvement of Working Memory in Mental Multiplication in Chinese Elementary Students

    ERIC Educational Resources Information Center

    Liu, Ru-De; Ding, Yi; Xu, Le; Wang, Jia

    2017-01-01

    The authors' aim was to examine the relation between two-digit mental multiplication and working memory. In Study 1, involving 30 fifth-grade students, we used digit span backward as an abbreviated measure of working memory. In Study 2, involving 41 fourth-grade students, working memory comprised measures of phonological loop, visuospatial…

  12. 6. Looking west from the roadway on the bridge, this ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Looking west from the roadway on the bridge, this view portrays the more densely wooded terrain which is part of the environment surrounding Sugar Creek on the upstream side of the bridge - Vigo County Bridge No. 139, Spanning Sugar Creek at Seventy-fourth Place, Terre Haute, Vigo County, IN

  13. Low Permeable Hydrocarbon Polymer Electrolyte Membrane for Vanadium Redox Flow Battery.

    PubMed

    Jung, Ho-Young; Moon, Geon-O; Jung, Seunghun; Kim, Hee Tak; Kim, Sang-Chai; Roh, Sung-Hee

    2017-04-01

    Polymer electrolyte membrane (PEM) confirms the life span of vanadium redox flow battery (VRFB). Products from Dupont, Nafion membrane, is mainly used for PEM in VRFB. However, permeation of vanadium ion occurs because of Nafion’s high permeability. Therefore, the efficiency of VRFB decreases and the prices becomes higher, which hinders VRFB’s commercialization. In order to solve this problem, poly(phenylene oxide) (PPO) is sulfonated for the preparation of low-priced hydrocarbon polymer electrolyte membrane. sPPO membrane is characterized by fundamental properties and VRFB cell test.

  14. Derivation and Cross-Validation of Cutoff Scores for Patients With Schizophrenia Spectrum Disorders on WAIS-IV Digit Span-Based Performance Validity Measures.

    PubMed

    Glassmire, David M; Toofanian Ross, Parnian; Kinney, Dominique I; Nitch, Stephen R

    2016-06-01

    Two studies were conducted to identify and cross-validate cutoff scores on the Wechsler Adult Intelligence Scale-Fourth Edition Digit Span-based embedded performance validity (PV) measures for individuals with schizophrenia spectrum disorders. In Study 1, normative scores were identified on Digit Span-embedded PV measures among a sample of patients (n = 84) with schizophrenia spectrum diagnoses who had no known incentive to perform poorly and who put forth valid effort on external PV tests. Previously identified cutoff scores resulted in unacceptable false positive rates and lower cutoff scores were adopted to maintain specificity levels ≥90%. In Study 2, the revised cutoff scores were cross-validated within a sample of schizophrenia spectrum patients (n = 96) committed as incompetent to stand trial. Performance on Digit Span PV measures was significantly related to Full Scale IQ in both studies, indicating the need to consider the intellectual functioning of examinees with psychotic spectrum disorders when interpreting scores on Digit Span PV measures. © The Author(s) 2015.

  15. Aspects of nuclear envelope dynamics in mitotic cells.

    PubMed

    Burke, Brian; Shanahan, Catherine; Salina, Davide; Crisp, Melissa

    2005-01-01

    Major features of the nuclear envelope (NE) are a pair of inner and outer nuclear membranes (INM, ONM) spanned by nuclear pore complexes. While the composition of the ONM resembles that of the endoplasmic reticulum, the INM contains a unique spectrum of proteins. Localization of INM proteins involves a mechanism of selective retention whereby integral proteins are immobilized and concentrated by virtue of interactions with nuclear components. In the case of emerin, INM localization involves interaction with A-type lamins. Interactions between membrane proteins may also play a significant role in INM localization. This conclusion stems from studies on nesprins, a family of membrane proteins that feature a large cytoplasmic domain, a single C-terminal membrane-spanning domain and a small lumenal domain. The nesprin membrane anchor and lumenal (KASH) domains are related to the Drosophila Klarsicht protein. Evidence is emerging that this KASH region interacts with other NE proteins and may influence their distributions. Overexpression of GFP-KASH causes loss of emerin and LAP2 from the NE. This is not due to global reorganization of the NE since LAP1 as well as lamins and NPCs remain unaffected. Our results suggest that interactions between NE membrane components are far more extensive and complex than current models suggest.

  16. Accurate Prediction of Contact Numbers for Multi-Spanning Helical Membrane Proteins

    PubMed Central

    Li, Bian; Mendenhall, Jeffrey; Nguyen, Elizabeth Dong; Weiner, Brian E.; Fischer, Axel W.; Meiler, Jens

    2017-01-01

    Prediction of the three-dimensional (3D) structures of proteins by computational methods is acknowledged as an unsolved problem. Accurate prediction of important structural characteristics such as contact number is expected to accelerate the otherwise slow progress being made in the prediction of 3D structure of proteins. Here, we present a dropout neural network-based method, TMH-Expo, for predicting the contact number of transmembrane helix (TMH) residues from sequence. Neuronal dropout is a strategy where certain neurons of the network are excluded from back-propagation to prevent co-adaptation of hidden-layer neurons. By using neuronal dropout, overfitting was significantly reduced and performance was noticeably improved. For multi-spanning helical membrane proteins, TMH-Expo achieved a remarkable Pearson correlation coefficient of 0.69 between predicted and experimental values and a mean absolute error of only 1.68. In addition, among those membrane protein–membrane protein interface residues, 76.8% were correctly predicted. Mapping of predicted contact numbers onto structures indicates that contact numbers predicted by TMH-Expo reflect the exposure patterns of TMHs and reveal membrane protein–membrane protein interfaces, reinforcing the potential of predicted contact numbers to be used as restraints for 3D structure prediction and protein–protein docking. TMH-Expo can be accessed via a Web server at www.meilerlab.org. PMID:26804342

  17. Detection of suboptimal effort with symbol span: development of a new embedded index.

    PubMed

    Young, J Christopher; Caron, Joshua E; Baughman, Brandon C; Sawyer, R John

    2012-03-01

    Developing embedded indicators of suboptimal effort on objective neurocognitive testing is essential for detecting increasingly sophisticated forms of symptom feigning. The current study explored whether Symbol Span, a novel Wechsler Memory Scale-fourth edition measure of supraspan visual attention, could be used to discriminate adequate effort from suboptimal effort. Archival data were collected from 136 veterans classified into Poor Effort (n = 42) and Good Effort (n = 94) groups based on symptom validity test (SVT) performance. The Poor Effort group had significantly lower raw scores (p < .001) and age-corrected scaled scores (p < .001) than the Good Effort group on the Symbol Span test. A raw score cutoff of <14 produced 83% specificity and 50% sensitivity for detection of Poor Effort. Similarly, sensitivity was 52% and specificity was 84% when employing a cutoff of <7 for Age-Corrected Scale Score. Collectively, present results suggest that Symbol Span can effectively differentiate veterans with multiple failures on established free-standing and embedded SVTs.

  18. Near-atomic-resolution cryo-EM analysis of the Salmonella T3S injectisome basal body.

    PubMed

    Worrall, L J; Hong, C; Vuckovic, M; Deng, W; Bergeron, J R C; Majewski, D D; Huang, R K; Spreter, T; Finlay, B B; Yu, Z; Strynadka, N C J

    2016-12-14

    The type III secretion (T3S) injectisome is a specialized protein nanomachine that is critical for the pathogenicity of many Gram-negative bacteria, including purveyors of plague, typhoid fever, whooping cough, sexually transmitted infections and major nosocomial infections. This syringe-shaped 3.5-MDa macromolecular assembly spans both bacterial membranes and that of the infected host cell. The internal channel formed by the injectisome allows for the direct delivery of partially unfolded virulence effectors into the host cytoplasm. The structural foundation of the injectisome is the basal body, a molecular lock-nut structure composed predominantly of three proteins that form highly oligomerized concentric rings spanning the inner and outer membranes. Here we present the structure of the prototypical Salmonella enterica serovar Typhimurium pathogenicity island 1 basal body, determined using single-particle cryo-electron microscopy, with the inner-membrane-ring and outer-membrane-ring oligomers defined at 4.3 Å and 3.6 Å resolution, respectively. This work presents the first, to our knowledge, high-resolution structural characterization of the major components of the basal body in the assembled state, including that of the widespread class of outer-membrane portals known as secretins.

  19. 13. Looking north, from the southern approach to the bridge. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Looking north, from the southern approach to the bridge. The bridge deck, which is concrete with several patch coats of asphalt (now chiefly gravel and some turf), demonstrates a sharp gradient from the abutment to the bridge center line. - Vigo County Bridge No. 139, Spanning Sugar Creek at Seventy-fourth Place, Terre Haute, Vigo County, IN

  20. Conditions that allow for effective transfer of membrane proteins onto nitrocellulose membrane in Western blots.

    PubMed

    Abeyrathne, Priyanka D; Lam, Joseph S

    2007-04-01

    A major hurdle in characterizing bacterial membrane proteins by Western blotting is the ineffectiveness of transferring these proteins from sodium dodecyl sulfate -- polyacrylamide gel electrophoresis (SDS-PAGE) gel onto nitrocellulose membrane, using standard Western blot buffers and electrophoretic conditions. In this study, we compared a number of modified Western blotting buffers and arrived at a composition designated as the SDS-PAGE-Urea Lysis buffer. The use of this buffer and specific conditions allowed the reproducible transfer of highly hydrophobic bacterial membrane proteins with 2-12 transmembrane-spanning segments as well as soluble proteins onto nitrocellulose membranes. This method should be broadly applicable for immunochemical studies of other membrane proteins.

  1. Two translocating hydrophilic segments of a nascent chain span the ER membrane during multispanning protein topogenesis

    PubMed Central

    Kida, Yuichiro; Morimoto, Fumiko; Sakaguchi, Masao

    2007-01-01

    During protein integration into the endoplasmic reticulum, the N-terminal domain preceding the type I signal-anchor sequence is translocated through a translocon. By fusing a streptavidin-binding peptide tag to the N terminus, we created integration intermediates of multispanning membrane proteins. In a cell-free system, N-terminal domain (N-domain) translocation was arrested by streptavidin and resumed by biotin. Even when N-domain translocation was arrested, the second hydrophobic segment mediated translocation of the downstream hydrophilic segment. In one of the defined intermediates, two hydrophilic segments and two hydrophobic segments formed a transmembrane disposition in a productive state. Both of the translocating hydrophilic segments were crosslinked with a translocon subunit, Sec61α. We conclude that two translocating hydrophilic segment in a single membrane protein can span the membrane during multispanning topogenesis flanking the translocon. Furthermore, even after six successive hydrophobic segments entered the translocon, N-domain translocation could be induced to restart from an arrested state. These observations indicate the remarkably flexible nature of the translocon. PMID:18166653

  2. Evidence that the C-terminus of Human Presenilin 1 is Located in the Extra-cytoplasmic Space

    PubMed Central

    James Turner, R.

    2005-01-01

    The polytopic membrane protein presenilin 1 (PS1) is a component of the γ-secretase complex that is responsible for the intramembranous cleavage of a number of type I transmembrane proteins including the β-amyloid precursor protein (APP). Mutations of PS1, apparently leading to aberrant processing of APP, have been genetically linked to early-onset familial Alzheimer's disease. PS1 contains ten hydrophobic regions (HRs) sufficiently long to be α-helical membrane spanning segments. Most topology models for PS1 place its C-terminal ∼40 amino acids, which include the 10th HR, in the cytosolic space. However, several recent observations suggest that HR 10 may be integrated into the membrane and involved in the interaction between PS1 and APP. We have applied three independent methodologies to investigate the location of HR 10 and the extreme C-terminus of PS1. The results from these methods indicate that HR 10 spans the membrane and that the C-terminal amino acids of PS1 lie in the extra-cytoplasmic space. PMID:15843437

  3. Phylogenetic and bioinformatic analysis of gap junction-related proteins, innexins, pannexins and connexins.

    PubMed

    Fushiki, Daisuke; Hamada, Yasuo; Yoshimura, Ryoichi; Endo, Yasuhisa

    2010-04-01

    All multi-cellular animals, including hydra, insects and vertebrates, develop gap junctions, which communicate directly with neighboring cells. Gap junctions consist of protein families called connexins in vertebrates and innexins in invertebrates. Connexins and innexins have no homology in their amino acid sequence, but both are thought to have some similar characteristics, such as a tetra-membrane-spanning structure, formation of a channel by hexamer, and transmission of small molecules (e.g. ions) to neighboring cells. Pannexins were recently identified as a homolog of innexins in vertebrate genomes. Although pannexins are thought to share the function of intercellular communication with connexins and innexins, there is little information about the relationship among these three protein families of gap junctions. We phylgenetically and bioinformatically examined these protein families and other tetra-membrane-spanning proteins using a database and three analytical softwares. The clades formed by pannexin families do not belong to the species classification but do to paralogs of each member of pannexins. Amino acid sequences of pannexins are closely related to those of innexins but less to those of connexins. These data suggest that innexins and pannexins have a common origin, but the relationship between innexins/pannexins and connexins is as slight as that of other tetra-membrane-spanning members.

  4. Evolution of heliobacteria: implications for photosynthetic reaction center complexes

    NASA Technical Reports Server (NTRS)

    Vermaas, W. F.; Blankenship, R. E. (Principal Investigator)

    1994-01-01

    The evolutionary position of the heliobacteria, a group of green photosynthetic bacteria with a photosynthetic apparatus functionally resembling Photosystem I of plants and cyanobacteria, has been investigated with respect to the evolutionary relationship to Gram-positive bacteria and cyanobacteria. On the basis of 16S rRNA sequence analysis, the heliobacteria appear to be most closely related to Gram-positive bacteria, but also an evolutionary link to cyanobacteria is evident. Interestingly, a 46-residue domain including the putative sixth membrane-spanning region of the heliobacterial reaction center protein show rather strong similarity (33% identity and 72% similarity) to a region including the sixth membrane-spanning region of the CP47 protein, a chlorophyll-binding core antenna polypeptide of Photosystem II. The N-terminal half of the heliobacterial reaction center polypeptide shows a moderate sequence similarity (22% identity over 232 residues) with the CP47 protein, which is significantly more than the similarity with the Photosystem I core polypeptides in this region. An evolutionary model for photosynthetic reaction center complexes is discussed, in which an ancestral homodimeric reaction center protein (possibly resembling the heliobacterial reaction center protein) with 11 membrane-spanning regions per polypeptide has diverged to give rise to the core of Photosystem I, Photosystem II, and of the photosynthetic apparatus in green, purple, and heliobacteria.

  5. Measuring Working Memory With Digit Span and the Letter-Number Sequencing Subtests From the WAIS-IV: Too Low Manipulation Load and Risk for Underestimating Modality Effects.

    PubMed

    Egeland, Jens

    2015-01-01

    The Wechsler Adult Intelligence Scale (WAIS) is one of the most frequently used tests among psychologists. In the fourth edition of the test (WAIS-IV), the subtests Digit Span and Letter-Number Sequencing are expanded for better measurement of working memory (WM). However, it is not clear whether the new extended tasks contribute sufficient complexity to be sensitive measures of manipulation WM, nor do we know to what degree WM capacity differs between the visual and the auditory modality because the WAIS-IV only tests the auditory modality. Performance by a mixed sample of 226 patients referred for neuropsychological examination on the Digit Span and Letter-Number Sequencing subtests from the WAIS-IV and on Spatial Span from the Wechsler Memory Scale-Third Edition was analyzed in two confirmatory factor analyses to investigate whether a unitary WM model or divisions based on modality or level/complexity best fit the data. The modality model showed the best fit when analyzing summed scores for each task as well as scores for the longest span. The clinician is advised to apply tests with higher manipulation load and to consider testing visual span as well before drawing conclusions about impaired WM from the WAIS-IV.

  6. Reflective cracking control : interim report - fourth year.

    DOT National Transportation Integrated Search

    1999-07-01

    Reflective cracking has long been considered a major problem associated with asphalt : pavements. Several methods including milling, crack sealing and fabric membranes have : been used in an attempt to eliminate or delay the reflective cracking proce...

  7. Clashing Values: A Longitudinal, Exploratory Study of Student Beliefs about General Education, Vocationalism, and Transfer of Learning

    ERIC Educational Resources Information Center

    Driscoll, Dana Lynn

    2014-01-01

    One challenge with general education is the often- clashing goal of vocationalism, or educating for the purpose a specific careers or professions. Through a series of longitudinal interviews spanning a group of 14 students' second and fourth semesters at a public, regional research university, the author examines the intersection of beliefs and…

  8. 9. A photograph, looking southwest, from the sand bar on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. A photograph, looking southwest, from the sand bar on the east side of the bridge. This image shows the west abutment, including the mold marks which remained from the timber forms. Leaching and cracking are also visible along the arch ring. - Vigo County Bridge No. 139, Spanning Sugar Creek at Seventy-fourth Place, Terre Haute, Vigo County, IN

  9. Final Report on Third and Fourth Year Operations of the Alum Rock Voucher Project.

    ERIC Educational Resources Information Center

    Sequoia Inst., San Jose, CA.

    Covered in this report are the main events that occurred in the Alum Rock voucher project between July 1974 and January 1976. Measures considered to be functioning effectively at the beginning of this time span were the concepts of alternative education, open enrollment, programs that vary their capacity in response to parent demand within the…

  10. The Effect of Pressure on High- and Low-Working-Memory Students: An Elaboration of the Choking under Pressure Hypothesis

    ERIC Educational Resources Information Center

    Wang, Zuowei; Shah, Priti

    2014-01-01

    Sample: Fifty-three third and fourth graders from China participated in this study. Method: Participants' working memory (WM) was assessed by the Automated Operation Span task. Then, they solved mental addition problems of different types under low- and high-pressure conditions. Performance was analysed as a function of pressure condition, working…

  11. Not all transmembrane helices are born equal: Towards the extension of the sequence homology concept to membrane proteins

    PubMed Central

    2011-01-01

    Background Sequence homology considerations widely used to transfer functional annotation to uncharacterized protein sequences require special precautions in the case of non-globular sequence segments including membrane-spanning stretches composed of non-polar residues. Simple, quantitative criteria are desirable for identifying transmembrane helices (TMs) that must be included into or should be excluded from start sequence segments in similarity searches aimed at finding distant homologues. Results We found that there are two types of TMs in membrane-associated proteins. On the one hand, there are so-called simple TMs with elevated hydrophobicity, low sequence complexity and extraordinary enrichment in long aliphatic residues. They merely serve as membrane-anchoring device. In contrast, so-called complex TMs have lower hydrophobicity, higher sequence complexity and some functional residues. These TMs have additional roles besides membrane anchoring such as intra-membrane complex formation, ligand binding or a catalytic role. Simple and complex TMs can occur both in single- and multi-membrane-spanning proteins essentially in any type of topology. Whereas simple TMs have the potential to confuse searches for sequence homologues and to generate unrelated hits with seemingly convincing statistical significance, complex TMs contain essential evolutionary information. Conclusion For extending the homology concept onto membrane proteins, we provide a necessary quantitative criterion to distinguish simple TMs (and a sufficient criterion for complex TMs) in query sequences prior to their usage in homology searches based on assessment of hydrophobicity and sequence complexity of the TM sequence segments. Reviewers This article was reviewed by Shamil Sunyaev, L. Aravind and Arcady Mushegian. PMID:22024092

  12. Recovery of Ni Metal from Spent Catalyst with Emulsion Liquid Membrane Using Cyanex 272 as Extractant

    NASA Astrophysics Data System (ADS)

    Yuliusman; Huda, M.; Ramadhan, I. T.; Farry, A. R.; Wulandari, P. T.; Alfia, R.

    2018-03-01

    In this study was conducted to recover nickel metal from spent nickel catalyst resulting from hydrotreating process in petroleum industry. The nickel extraction study with the emulsion liquid membrane using Cyanex 272 as an extractant to extract and separate nickel from the feed phase solution. Feed phase solution was preapred from spent catalyst using sulphuric acid. Liquid membrane consists of a kerosene as diluent, a Span 80 as surfactant, a Cyanex 272 as carrier and sulphuric acid solutions have been used as the stripping solution. The important parameters governing the permeation of nickel and their effect on the separation process have been studied. These parameters are surfactant concentration, extractant concentration feed phase pH. The optimum conditions of the emulsion membrane making process is using 0.06 M Cyanex 272, 8% w/v SPAN 80, 0.05 M H2SO4, internal phase extractant / phase volume ratio: 1/1, and stirring speed 1150 rpm for 60 Minute that can produce emulsion membrane with stability level above 90% after 4 hours. In the extraction process with optimum condition pH 6 for feed phase, ratio of phase emulsion/phase of feed: 1/2, and stirring speed 175 rpm for 15 minutes with result 81.51% nickel was extracted.

  13. Protein diffusion in plant cell plasma membranes: the cell-wall corral.

    PubMed

    Martinière, Alexandre; Runions, John

    2013-01-01

    Studying protein diffusion informs us about how proteins interact with their environment. Work on protein diffusion over the last several decades has illustrated the complex nature of biological lipid bilayers. The plasma membrane contains an array of membrane-spanning proteins or proteins with peripheral membrane associations. Maintenance of plasma membrane microstructure can be via physical features that provide intrinsic ordering such as lipid microdomains, or from membrane-associated structures such as the cytoskeleton. Recent evidence indicates, that in the case of plant cells, the cell wall seems to be a major player in maintaining plasma membrane microstructure. This interconnection / interaction between cell-wall and plasma membrane proteins most likely plays an important role in signal transduction, cell growth, and cell physiological responses to the environment.

  14. A cataract-causing connexin 50 mutant is mislocalized to the ER due to loss of the fourth transmembrane domain and cytoplasmic domain.

    PubMed

    Somaraju Chalasani, Madhavi Latha; Muppirala, Madhavi; G Ponnam, Surya Prakash; Kannabiran, Chitra; Swarup, Ghanshyam

    2013-01-01

    Mutations in the eye lens gap junction protein connexin 50 cause cataract. Earlier we identified a frameshift mutant of connexin 50 (c.670insA; p.Thr203AsnfsX47) in a family with autosomal recessive cataract. The mutant protein is smaller and contains 46 aberrant amino acids at the C-terminus after amino acid 202. Here, we have analysed this frameshift mutant and observed that it localized to the endoplasmic reticulum (ER) but not in the plasma membrane. Moreover, overexpression of the mutant resulted in disintegration of the ER-Golgi intermediate compartment (ERGIC), reduction in the level of ERGIC-53 protein and breakdown of the Golgi in many cells. Overexpression of the frameshift mutant partially inhibited the transport of wild type connexin 50 to the plasma membrane. A deletion mutant lacking the aberrant sequence showed predominant localization in the ER and inhibited anterograde protein transport suggesting, therefore, that the aberrant sequence is not responsible for improper localization of the frameshift mutant. Further deletion analysis showed that the fourth transmembrane domain and a membrane proximal region (231-294 amino acids) of the cytoplasmic domain are needed for transport from the ER and localization to the plasma membrane. Our results show that a frameshift mutant of connexin 50 mislocalizes to the ER and causes disintegration of the ERGIC and Golgi. We have also identified a sequence of connexin 50 crucial for transport from the ER and localization to the plasma membrane.

  15. Closing the research to practice gap in children's mental health: structures, solutions, and strategies.

    PubMed

    Jensen, Peter S; Foster, Michael

    2010-03-01

    Failure to apply research on effective interventions spans all areas of medicine, including children's mental health services. This article examines the policy, structural, and economic problems in which this gap originates. We identify four steps to close this gap. First, the field should develop scientific measures of the research-practice gap. Second, payors should link incentives to outcomes-based performance measures. Third, providers and others should develop improved understanding and application of effective dissemination and business models. Fourth, efforts to link EBP to clinical practice should span patient/consumers, providers, practices, plans, and purchasers. The paper discusses each of these in turn and relates them to fundamental problems of service delivery.

  16. Global transformation of erythrocyte properties via engagement of an SH2-like sequence in band 3

    PubMed Central

    Turrini, Francesco M.; Li, Yen-Hsing; Low, Philip S.

    2016-01-01

    Src homology 2 (SH2) domains are composed of weakly conserved sequences of ∼100 aa that bind phosphotyrosines in signaling proteins and thereby mediate intra- and intermolecular protein–protein interactions. In exploring the mechanism whereby tyrosine phosphorylation of the erythrocyte anion transporter, band 3, triggers membrane destabilization, vesiculation, and fragmentation, we discovered a SH2 signature motif positioned between membrane-spanning helices 4 and 5. Evidence that this exposed cytoplasmic sequence contributes to a functional SH2-like domain is provided by observations that: (i) it contains the most conserved sequence of SH2 domains, GSFLVR; (ii) it binds the tyrosine phosphorylated cytoplasmic domain of band 3 (cdb3-PO4) with Kd = 14 nM; (iii) binding of cdb3-PO4 to erythrocyte membranes is inhibited both by antibodies against the SH2 signature sequence and dephosphorylation of cdb3-PO4; (iv) label transfer experiments demonstrate the covalent transfer of photoactivatable biotin from isolated cdb3-PO4 (but not cdb3) to band 3 in erythrocyte membranes; and (v) phosphorylation-induced binding of cdb3-PO4 to the membrane-spanning domain of band 3 in intact cells causes global changes in membrane properties, including (i) displacement of a glycolytic enzyme complex from the membrane, (ii) inhibition of anion transport, and (iii) rupture of the band 3–ankyrin bridge connecting the spectrin-based cytoskeleton to the membrane. Because SH2-like motifs are not retrieved by normal homology searches for SH2 domains, but can be found in many tyrosine kinase-regulated transport proteins using modified search programs, we suggest that related cases of membrane transport proteins containing similar motifs are widespread in nature where they participate in regulation of cell properties. PMID:27856737

  17. Global transformation of erythrocyte properties via engagement of an SH2-like sequence in band 3.

    PubMed

    Puchulu-Campanella, Estela; Turrini, Francesco M; Li, Yen-Hsing; Low, Philip S

    2016-11-29

    Src homology 2 (SH2) domains are composed of weakly conserved sequences of ∼100 aa that bind phosphotyrosines in signaling proteins and thereby mediate intra- and intermolecular protein-protein interactions. In exploring the mechanism whereby tyrosine phosphorylation of the erythrocyte anion transporter, band 3, triggers membrane destabilization, vesiculation, and fragmentation, we discovered a SH2 signature motif positioned between membrane-spanning helices 4 and 5. Evidence that this exposed cytoplasmic sequence contributes to a functional SH2-like domain is provided by observations that: (i) it contains the most conserved sequence of SH2 domains, GSFLVR; (ii) it binds the tyrosine phosphorylated cytoplasmic domain of band 3 (cdb3-PO 4 ) with K d = 14 nM; (iii) binding of cdb3-PO 4 to erythrocyte membranes is inhibited both by antibodies against the SH2 signature sequence and dephosphorylation of cdb3-PO 4 ; (iv) label transfer experiments demonstrate the covalent transfer of photoactivatable biotin from isolated cdb3-PO 4 (but not cdb3) to band 3 in erythrocyte membranes; and (v) phosphorylation-induced binding of cdb3-PO 4 to the membrane-spanning domain of band 3 in intact cells causes global changes in membrane properties, including (i) displacement of a glycolytic enzyme complex from the membrane, (ii) inhibition of anion transport, and (iii) rupture of the band 3-ankyrin bridge connecting the spectrin-based cytoskeleton to the membrane. Because SH2-like motifs are not retrieved by normal homology searches for SH2 domains, but can be found in many tyrosine kinase-regulated transport proteins using modified search programs, we suggest that related cases of membrane transport proteins containing similar motifs are widespread in nature where they participate in regulation of cell properties.

  18. Reconstitution of the protein insertion machinery of the mitochondrial inner membrane.

    PubMed Central

    Haucke, V; Schatz, G

    1997-01-01

    We have reconstituted the protein insertion machinery of the yeast mitochondrial inner membrane into proteoliposomes. The reconstituted proteoliposomes have a distinct morphology and protein composition and correctly insert the ADP/ATP carrier (AAC) and Tim23p, two multi-spanning integral proteins of the mitochondrial inner membrane. The reconstituted system requires a membrane potential, but not Tim44p or mhsp70, both of which are required for the ATP-driven translocation of proteins into the matrix. The protein insertion machinery can thus operate independently of the energy-transducing Tim44p-mhsp70 complex. PMID:9303300

  19. Non-newtonian enhancement of both stability and permeability of liquid membranes for detoxifying wastewater. Report for 1 July 1991-30 September 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skelland, A.H.P.

    1995-06-01

    Emulsion liquid membrane processes constitute an emerging separations technology with widespread applications, including wastewater purification. However, they currently remain excessively vulnerable to one of more of four major problems. The difficulties lie in developing liquid membranes that combine high levels of both stability and permeability with acceptably low levels of swelling and ease of subsequent demulsification for membrane and solute recovery. This work provides a new technique for simultaneously overcoming the first three problems, while identifying physical indications that the proposed solution may have little adverse effect upon the fourth problem (demulsification) and may even alleviate it. The responsiveness ofmore » both aliphatic and aromatic membranes to the new technique has been demonstrated.« less

  20. Membranes for nanometer-scale mass fast transport

    DOEpatents

    Bakajin, Olgica [San Leandro, CA; Holt, Jason [Berkeley, CA; Noy, Aleksandr [Belmont, CA; Park, Hyung Gyu [Oakland, CA

    2011-10-18

    Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  1. Protein Solvation in Membranes and at Water-Membrane Interfaces

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Chipot, Christophe; Wilson, Michael A.

    2002-01-01

    Different salvation properties of water and membranes mediate a host of biologically important processes, such as folding, insertion into a lipid bilayer, associations and functions of membrane proteins. These processes will be discussed in several examples involving synthetic and natural peptides. In particular, a mechanism by which a helical peptide becomes inserted into a model membrane will be described. Further, the molecular mechanism of recognition and association of protein helical segments in membranes will be discussed. These processes are crucial for proper functioning of a cell. A membrane-spanning domain of glycophorin A, which exists as a helical dimer, serves as the model system. For this system, the free energy of dissociation of the helices is being determined for both the wild type and a mutant, in which dimerization is disrupted.

  2. Altered Lipid Synthesis by Lack of Yeast Pah1 Phosphatidate Phosphatase Reduces Chronological Life Span*

    PubMed Central

    Park, Yeonhee; Han, Gil-Soo; Mileykovskaya, Eugenia; Garrett, Teresa A.; Carman, George M.

    2015-01-01

    In Saccharomyces cerevisiae, Pah1 phosphatidate phosphatase, which catalyzes the dephosphorylation of phosphatidate to yield diacylglycerol, plays a crucial role in the synthesis of the storage lipid triacylglycerol. This evolutionarily conserved enzyme also plays a negative regulatory role in controlling de novo membrane phospholipid synthesis through its consumption of phosphatidate. We found that the pah1Δ mutant was defective in the utilization of non-fermentable carbon sources but not in oxidative phosphorylation; the mutant did not exhibit major changes in oxygen consumption rate, mitochondrial membrane potential, F1F0-ATP synthase activity, or gross mitochondrial morphology. The pah1Δ mutant contained an almost normal complement of major mitochondrial phospholipids with some alterations in molecular species. Although oxidative phosphorylation was not compromised in the pah1Δ mutant, the cellular levels of ATP in quiescent cells were reduced by 2-fold, inversely correlating with a 4-fold increase in membrane phospholipids. In addition, the quiescent pah1Δ mutant cells had 3-fold higher levels of mitochondrial superoxide and cellular lipid hydroperoxides, had reduced activities of superoxide dismutase 2 and catalase, and were hypersensitive to hydrogen peroxide. Consequently, the pah1Δ mutant had a shortened chronological life span. In addition, the loss of Tsa1 thioredoxin peroxidase caused a synthetic growth defect with the pah1Δ mutation. The shortened chronological life span of the pah1Δ mutant along with its growth defect on non-fermentable carbon sources and hypersensitivity to hydrogen peroxide was suppressed by the loss of Dgk1 diacylglycerol kinase, indicating that the underpinning of pah1Δ mutant defects was the excess synthesis of membrane phospholipids. PMID:26338708

  3. Membrane topology analysis of Escherichia coli K-12 Mtr permease by alkaline phosphatase and beta-galactosidase fusions.

    PubMed

    Sarsero, J P; Pittard, A J

    1995-01-01

    The mtr gene of Escherichia coli K-12 encodes an inner membrane protein which is responsible for the active transport of trypotophan into the cell. It has been proposed that the Mtr permease has a novel structure consisting of 11 hydrophobic transmembrane spans, with a cytoplasmically disposed amino terminus and a carboxyl terminus located in the periplasmic space (J.P. Sarsero, P. J. Wookey, P. Gollnick, C. Yanofsky, and A.J. Pittard, J. Bacteriol. 173:3231-3234, 1991). The validity of this model was examined by the construction of fusion proteins between the Mtr permease and alkaline phosphatase or beta-galactosidase. In addition to the conventional methods, in which the reporter enzyme replaces a carboxyl-terminal portion of the membrane protein, the recently developed alkaline phosphatase sandwich fusion technique was utilized, in which alkaline phosphatase is inserted into an otherwise intact membrane protein. A cluster of alkaline phosphatase fusions to the carboxyl-terminal end of the Mtr permease exhibited high levels of alkaline phosphatase activity, giving support to the proposition of a periplasmically located carboxyl terminus. The majority of fusion proteins produced enzymatic activities which were in agreement with the positions of the fusion sites on the proposed topological model of the permease. The synthesis of a small cluster of hybrid proteins, whose enzymatic activity did not agree with the location of their fusion sites within putative transmembrane span VIII or the preceding periplasmic loop, was not detected by immunological techniques and did not necessitate modification of the proposed model in this region. Slight alterations may need to be made in the positioning of the carboxyl-terminal end of transmembrane span X.

  4. A Supercomplex Spanning the Inner and Outer Membranes Mediates the Biogenesis of β-Barrel Outer Membrane Proteins in Bacteria.

    PubMed

    Wang, Yan; Wang, Rui; Jin, Feng; Liu, Yang; Yu, Jiayu; Fu, Xinmiao; Chang, Zengyi

    2016-08-05

    β-barrel outer membrane proteins (OMPs) are ubiquitously present in Gram-negative bacteria, mitochondria and chloroplasts, and function in a variety of biological processes. The mechanism by which the hydrophobic nascent β-barrel OMPs are transported through the hydrophilic periplasmic space in bacterial cells remains elusive. Here, mainly via unnatural amino acid-mediated in vivo photo-crosslinking studies, we revealed that the primary periplasmic chaperone SurA interacts with nascent β-barrel OMPs largely via its N-domain but with β-barrel assembly machine protein BamA mainly via its satellite P2 domain, and that the nascent β-barrel OMPs interact with SurA via their N- and C-terminal regions. Additionally, via dual in vivo photo-crosslinking, we demonstrated the formation of a ternary complex involving β-barrel OMP, SurA, and BamA in cells. More importantly, we found that a supercomplex spanning the inner and outer membranes and involving the BamA, BamB, SurA, PpiD, SecY, SecE, and SecA proteins appears to exist in living cells, as revealed by a combined analyses of sucrose-gradient ultra-centrifugation, Blue native PAGE and mass spectrometry. We propose that this supercomplex integrates the translocation, transportation, and membrane insertion events for β-barrel OMP biogenesis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. A Supercomplex Spanning the Inner and Outer Membranes Mediates the Biogenesis of β-Barrel Outer Membrane Proteins in Bacteria*

    PubMed Central

    Wang, Yan; Wang, Rui; Jin, Feng; Liu, Yang; Yu, Jiayu; Fu, Xinmiao; Chang, Zengyi

    2016-01-01

    β-barrel outer membrane proteins (OMPs) are ubiquitously present in Gram-negative bacteria, mitochondria and chloroplasts, and function in a variety of biological processes. The mechanism by which the hydrophobic nascent β-barrel OMPs are transported through the hydrophilic periplasmic space in bacterial cells remains elusive. Here, mainly via unnatural amino acid-mediated in vivo photo-crosslinking studies, we revealed that the primary periplasmic chaperone SurA interacts with nascent β-barrel OMPs largely via its N-domain but with β-barrel assembly machine protein BamA mainly via its satellite P2 domain, and that the nascent β-barrel OMPs interact with SurA via their N- and C-terminal regions. Additionally, via dual in vivo photo-crosslinking, we demonstrated the formation of a ternary complex involving β-barrel OMP, SurA, and BamA in cells. More importantly, we found that a supercomplex spanning the inner and outer membranes and involving the BamA, BamB, SurA, PpiD, SecY, SecE, and SecA proteins appears to exist in living cells, as revealed by a combined analyses of sucrose-gradient ultra-centrifugation, Blue native PAGE and mass spectrometry. We propose that this supercomplex integrates the translocation, transportation, and membrane insertion events for β-barrel OMP biogenesis. PMID:27298319

  6. Malvinas: the Argentine Perspective of the Falkland’s Conflict

    DTIC Science & Technology

    2010-05-01

    monograph was defended by the degree candidate on April 19th 2010 and approved by the monograph director and reader named below. Approved by...Falklands to Britannia’s rule was demonstrated…”73 The British control of the Falklands spans three centuries and may well enter a fourth. While...in the Argentine narrative of the Malvinas history. The nineteenth century environment was very specific regarding international boundaries and the

  7. Membrane architectures for ion-channel switch-based electrochemical biosensors

    DOEpatents

    Sansinena, Jose-Maria; Redondo, Antonio; Swanson, Basil I.; Yee, Chanel Kitmon; Sapuri/Butti, Annapoorna R.; Parikh, Atul N.; Yang, Calvin

    2008-10-28

    The present invention is directed to a process of forming a bilayer lipid membrane structure by depositing an organic layer having a defined surface area onto an electrically conductive substrate, removing portions of said organic layer upon said electrically conductive substrate whereby selected portions of said organic layer are removed to form defined voids within said defined surface area of said organic layer and defined islands of organic layer upon said electrically conductive substrate, and, depositing a bilayer lipid membrane over the defined voids and defined islands of organic layer upon said substrate whereby aqueous reservoirs are formed between said electrically conductive substrate and said bilayer lipid membrane, said bilayer lipid membrane characterized as spanning across the defined voids between said defined islands. A lipid membrane structure is also described together with an array of such lipid membrane structure.

  8. Biomimetic membrane arrays on cast hydrogel supports.

    PubMed

    Roerdink Lander, Monique; Ibragimova, Sania; Rein, Christian; Vogel, Jörg; Stibius, Karin; Geschke, Oliver; Perry, Mark; Hélix-Nielsen, Claus

    2011-06-07

    Lipid bilayers are intrinsically fragile and require mechanical support in technical applications based on biomimetic membranes. Tethering the lipid bilayer membranes to solid substrates, either directly through covalent or ionic substrate-lipid links or indirectly on substrate-supported cushions, provides mechanical support but at the cost of small molecule transport through the membrane-support sandwich. To stabilize biomimetic membranes while allowing transport through a membrane-support sandwich, we have investigated the feasibility of using an ethylene tetrafluoroethylene (ETFE)/hydrogel sandwich as the support. The sandwich is realized as a perforated surface-treated ETFE film onto which a hydrogel composite support structure is cast. We report a simple method to prepare arrays of lipid bilayer membranes with low intrinsic electrical conductance on the highly permeable, self-supporting ETFE/hydrogel sandwiches. We demonstrate how the ETFE/hydrogel sandwich support promotes rapid self-thinning of lipid bilayers suitable for hosting membrane-spanning proteins.

  9. The Borrelia afzelii outer membrane protein BAPKO_0422 binds human factor-H and is predicted to form a membrane-spanning β-barrel

    PubMed Central

    Dyer, Adam; Brown, Gemma; Stejskal, Lenka; Laity, Peter R.; Bingham, Richard J.

    2015-01-01

    The deep evolutionary history of the Spirochetes places their branch point early in the evolution of the diderms, before the divergence of the present day Proteobacteria. As a spirochete, the morphology of the Borrelia cell envelope shares characteristics of both Gram-positive and Gram-negative bacteria. A thin layer of peptidoglycan, tightly associated with the cytoplasmic membrane, is surrounded by a more labile outer membrane (OM). This OM is rich in lipoproteins but with few known integral membrane proteins. The outer membrane protein A (OmpA) domain is an eight-stranded membrane-spanning β-barrel, highly conserved among the Proteobacteria but so far unknown in the Spirochetes. In the present work, we describe the identification of four novel OmpA-like β-barrels from Borrelia afzelii, the most common cause of erythema migrans (EM) rash in Europe. Structural characterization of one these proteins (BAPKO_0422) by SAXS and CD indicate a compact globular structure rich in β-strand consistent with a monomeric β-barrel. Ab initio molecular envelopes calculated from the scattering profile are consistent with homology models and demonstrate that BAPKO_0422 adopts a peanut shape with dimensions 25×45 Å (1 Å=0.1 nm). Deviations from the standard C-terminal signature sequence are apparent; in particular the C-terminal phenylalanine residue commonly found in Proteobacterial OM proteins is replaced by isoleucine/leucine or asparagine. BAPKO_0422 is demonstrated to bind human factor H (fH) and therefore may contribute to immune evasion by inhibition of the complement response. Encoded by chromosomal genes, these proteins are highly conserved between Borrelia subspecies and may be of diagnostic or therapeutic value. PMID:26181365

  10. Genetics Home Reference: osteoglophonic dysplasia

    MedlinePlus

    ... as cell division, regulation of cell growth and maturation, formation of blood vessels, wound healing, and embryonic development. In particular, they play a major role in skeletal development. The FGFR1 protein spans the cell membrane, ...

  11. Permeabilization assay for antimicrobial peptides based on pore-spanning lipid membranes on nanoporous alumina.

    PubMed

    Neubacher, Henrik; Mey, Ingo; Carnarius, Christian; Lazzara, Thomas D; Steinem, Claudia

    2014-04-29

    Screening tools to study antimicrobial peptides (AMPs) with the aim to optimize therapeutic delivery vectors require automated and parallelized sampling based on chip technology. Here, we present the development of a chip-based assay that allows for the investigation of the action of AMPs on planar lipid membranes in a time-resolved manner by fluorescence readout. Anodic aluminum oxide (AAO) composed of cylindrical pores with a diameter of 70 nm and a thickness of up to 10 μm was used as a support to generate pore-spanning lipid bilayers from giant unilamellar vesicle spreading, which resulted in large continuous membrane patches sealing the pores. Because AAO is optically transparent, fluid single lipid bilayers and the underlying pore cavities can be readily observed by three-dimensional confocal laser scanning microscopy (CLSM). To assay the membrane permeabilizing activity of the AMPs, the translocation of the water-soluble dyes into the AAO cavities and the fluorescence of the sulforhodamine 101 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanol-l-amine triethylammonium salt (Texas Red DHPE)-labeled lipid membrane were observed by CLSM in a time-resolved manner as a function of the AMP concentration. The effect of two different AMPs, magainin-2 and melittin, was investigated, showing that the concentrations required for membrane permeabilization and the kinetics of the dye entrance differ significantly. Our results are discussed in light of the proposed permeabilization models of the two AMPs. The presented data demonstrate the potential of this setup for the development of an on-chip screening platform for AMPs.

  12. Combining reflectometry and fluorescence microscopy: an assay for the investigation of leakage processes across lipid membranes.

    PubMed

    Stephan, Milena; Mey, Ingo; Steinem, Claudia; Janshoff, Andreas

    2014-02-04

    The passage of solutes across a lipid membrane plays a central role in many cellular processes. However, the investigation of transport processes remains a serious challenge in pharmaceutical research, particularly the transport of uncharged cargo. While translocation reactions of ions across cell membranes is commonly measured with the patch-clamp, an equally powerful screening method for the transport of uncharged compounds is still lacking. A combined setup for reflectometric interference spectroscopy (RIfS) and fluorescence microscopy measurements is presented that allows one to investigate the passive exchange of uncharged compounds across a free-standing membrane. Pore-spanning lipid membranes were prepared by spreading giant 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vesicles on porous anodic aluminum oxide (AAO) membranes, creating sealed attoliter-sized compartments. The time-resolved leakage of different dye molecules (pyranine and crystal violet) as well as avidin through melittin induced membrane pores and defects was investigated.

  13. Lateral release of proteins from the TOM complex into the outer membrane of mitochondria.

    PubMed

    Harner, Max; Neupert, Walter; Deponte, Marcel

    2011-07-15

    The TOM complex of the outer membrane of mitochondria is the entry gate for the vast majority of precursor proteins that are imported into the mitochondria. It is made up by receptors and a protein conducting channel. Although precursor proteins of all subcompartments of mitochondria use the TOM complex, it is not known whether its channel can only mediate passage across the outer membrane or also lateral release into the outer membrane. To study this, we have generated fusion proteins of GFP and Tim23 which are inserted into the inner membrane and, at the same time, are spanning either the TOM complex or are integrated into the outer membrane. Our results demonstrate that the TOM complex, depending on sequence determinants in the precursors, can act both as a protein conducting pore and as an insertase mediating lateral release into the outer membrane.

  14. Fourth Annual International Acquisitions Workshop: Access to Multiple Media Worldwide

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Topics discussed during the workshop include: (1) Multinational-Multiple media collections and activities spanning many countries; (2) Multiple media in North American trade and commerce; (3) African spotlight; (4) Europe-Multiple media in national libraries and services; (5) Scandinavian spotlight; (6) Internet update; (7) Multiple media in US federal agencies; (8) Open-source multiple media in US federal agencies; and (9) Multiple media at US federal technical agencies-NIST and NOAA.

  15. 10. View looking northwest from the sand bar on the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. View looking northwest from the sand bar on the east side of the bridge. This photograph of the northeast abutment shows cracks and efflorescence which as developed at the edge of the arch entrados. These effects show the thickness of the arch casting as it is contained by the spandrels and abutment. - Vigo County Bridge No. 139, Spanning Sugar Creek at Seventy-fourth Place, Terre Haute, Vigo County, IN

  16. Arabidopsis ARC6 coordinates the division machineries of the inner and outer chloroplast membranes through interaction with PDV2 in the intermembrane space.

    PubMed

    Glynn, Jonathan M; Froehlich, John E; Osteryoung, Katherine W

    2008-09-01

    Chloroplasts arose from a free-living cyanobacterial endosymbiont and divide by binary fission. Division involves the assembly and constriction of the endosymbiont-derived, tubulin-like FtsZ ring on the stromal surface of the inner envelope membrane and the host-derived, dynamin-like ARC5 ring on the cytosolic surface of the outer envelope membrane. Despite the identification of many proteins required for plastid division, the factors coordinating the internal and external division machineries are unknown. Here, we provide evidence that this coordination is mediated in Arabidopsis thaliana by an interaction between ARC6, an FtsZ assembly factor spanning the inner envelope membrane, and PDV2, an ARC5 recruitment factor spanning the outer envelope membrane. ARC6 and PDV2 interact via their C-terminal domains in the intermembrane space, consistent with their in vivo topologies. ARC6 acts upstream of PDV2 to localize PDV2 (and hence ARC5) to the division site. We present a model whereby ARC6 relays information on stromal FtsZ ring positioning through PDV2 to the chloroplast surface to specify the site of ARC5 recruitment. Because orthologs of ARC6 occur in land plants, green algae, and cyanobacteria but PDV2 occurs only in land plants, the connection between ARC6 and PDV2 represents the evolution of a plant-specific adaptation to coordinate the assembly and activity of the endosymbiont- and host-derived plastid division components.

  17. A Low-Cost and High-Performance Sulfonated Polyimide Proton-Conductive Membrane for Vanadium Redox Flow/Static Batteries.

    PubMed

    Li, Jinchao; Yuan, Xiaodong; Liu, Suqin; He, Zhen; Zhou, Zhi; Li, Aikui

    2017-09-27

    A novel side-chain-type fluorinated sulfonated polyimide (s-FSPI) membrane is synthesized for vanadium redox batteries (VRBs) by high-temperature polycondensation and grafting reactions. The s-FSPI membrane has a vanadium ion permeability that is over an order of magnitude lower and has a proton selectivity that is 6.8 times higher compared to those of the Nafion 115 membrane. The s-FSPI membrane possesses superior chemical stability compared to most of the linear sulfonated aromatic polymer membranes reported for VRBs. Also, the vanadium redox flow/static batteries (VRFB/VRSB) assembled with the s-FSPI membranes exhibit stable battery performance over 100- and 300-time charge-discharge cycling tests, respectively, with significantly higher battery efficiencies and lower self-discharge rates than those with the Nafion 115 membranes. The excellent physicochemical properties and VRB performance of the s-FSPI membrane could be attributed to the specifically designed molecular structure with the hydrophobic trifluoromethyl groups and flexible sulfoalkyl pendants being introduced on the main chains of the membrane. Moreover, the cost of the s-FSPI membrane is only one-fourth that of the commercial Nafion 115 membrane. This work opens up new possibilities for fabricating high-performance proton-conductive membranes at low costs for VRBs.

  18. Anthropometrics related to the performance of a sample of male swimmers.

    PubMed

    Perciavalle, Valentina; Di Corrado, Donatella; Scuto, Claudia; Perciavalle, Vincenzo; Coco, Marinella

    2014-06-01

    The main purpose of the present investigation of 21 elite male swimmers was to assess whether the Ape Index (the ratio between the individual's arm span and height) and/or the second-to-fourth digit length ratio (2D:4D), i.e., the ratio between the length of the second and the fourth fingers of the right hand, are associated with the performance of high-level swimmers, when mood and/or executive function are covaried. The results showed no statistically significant correlation between the Ape Index and 2D:4D ratio, performance, executive function, or mood. In contrast, statistically significant correlations were found between 2D:4D ratio and performance, executive function, and mood. Regressions indicated that 2D:4D ratio and not Ape Index is related to the performances of a sample of male swimmers.

  19. Membrane protein properties revealed through data-rich electrostatics calculations

    PubMed Central

    Guerriero, Christopher J.; Brodsky, Jeffrey L.; Grabe, Michael

    2015-01-01

    SUMMARY The electrostatic properties of membrane proteins often reveal many of their key biophysical characteristics, such as ion channel selectivity and the stability of charged membrane-spanning segments. The Poisson-Boltzmann (PB) equation is the gold standard for calculating protein electrostatics, and the software APBSmem enables the solution of the PB equation in the presence of a membrane. Here, we describe significant advances to APBSmem including: full automation of system setup, per-residue energy decomposition, incorporation of PDB2PQR, calculation of membrane induced pKa shifts, calculation of non-polar energies, and command-line scripting for large scale calculations. We highlight these new features with calculations carried out on a number of membrane proteins, including the recently solved structure of the ion channel TRPV1 and a large survey of 1,614 membrane proteins of known structure. This survey provides a comprehensive list of residues with large electrostatic penalties for being embedded in the membrane potentially revealing interesting functional information. PMID:26118532

  20. Membrane Protein Properties Revealed through Data-Rich Electrostatics Calculations.

    PubMed

    Marcoline, Frank V; Bethel, Neville; Guerriero, Christopher J; Brodsky, Jeffrey L; Grabe, Michael

    2015-08-04

    The electrostatic properties of membrane proteins often reveal many of their key biophysical characteristics, such as ion channel selectivity and the stability of charged membrane-spanning segments. The Poisson-Boltzmann (PB) equation is the gold standard for calculating protein electrostatics, and the software APBSmem enables the solution of the PB equation in the presence of a membrane. Here, we describe significant advances to APBSmem, including full automation of system setup, per-residue energy decomposition, incorporation of PDB2PQR, calculation of membrane-induced pKa shifts, calculation of non-polar energies, and command-line scripting for large-scale calculations. We highlight these new features with calculations carried out on a number of membrane proteins, including the recently solved structure of the ion channel TRPV1 and a large survey of 1,614 membrane proteins of known structure. This survey provides a comprehensive list of residues with large electrostatic penalties for being embedded in the membrane, potentially revealing interesting functional information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. High-throughput Isolation and Characterization of Untagged Membrane Protein Complexes: Outer Membrane Complexes of Desulfovibrio vulgaris

    PubMed Central

    2012-01-01

    Cell membranes represent the “front line” of cellular defense and the interface between a cell and its environment. To determine the range of proteins and protein complexes that are present in the cell membranes of a target organism, we have utilized a “tagless” process for the system-wide isolation and identification of native membrane protein complexes. As an initial subject for study, we have chosen the Gram-negative sulfate-reducing bacterium Desulfovibrio vulgaris. With this tagless methodology, we have identified about two-thirds of the outer membrane- associated proteins anticipated. Approximately three-fourths of these appear to form homomeric complexes. Statistical and machine-learning methods used to analyze data compiled over multiple experiments revealed networks of additional protein–protein interactions providing insight into heteromeric contacts made between proteins across this region of the cell. Taken together, these results establish a D. vulgaris outer membrane protein data set that will be essential for the detection and characterization of environment-driven changes in the outer membrane proteome and in the modeling of stress response pathways. The workflow utilized here should be effective for the global characterization of membrane protein complexes in a wide range of organisms. PMID:23098413

  2. Recent developments in membrane-based separations in biotechnology processes: review.

    PubMed

    Rathore, A S; Shirke, A

    2011-01-01

    Membrane-based separations are the most ubiquitous unit operations in biotech processes. There are several key reasons for this. First, they can be used with a large variety of applications including clarification, concentration, buffer exchange, purification, and sterilization. Second, they are available in a variety of formats, such as depth filtration, ultrafiltration, diafiltration, nanofiltration, reverse osmosis, and microfiltration. Third, they are simple to operate and are generally robust toward normal variations in feed material and operating parameters. Fourth, membrane-based separations typically require lower capital cost when compared to other processing options. As a result of these advantages, a typical biotech process has anywhere from 10 to 20 membrane-based separation steps. In this article we review the major developments that have occurred on this topic with a focus on developments in the last 5 years.

  3. Characteristics of Control Laws Tested on the Semi-Span Super-Sonic Transport (S4T) Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Christhilf, David M.; Moulin, Boris; Ritz, Erich; Chen, P. C.; Roughen, Kevin M.; Perry, Boyd

    2012-01-01

    The Semi-Span Supersonic Transport (S4T) is an aeroelastically scaled wind-tunnel model built to test active controls concepts for large flexible supersonic aircraft in the transonic flight regime. It is one of several models constructed in the 1990's as part of the High Speed Research (HSR) Program. Control laws were developed for the S4T by M4 Engineering, Inc. and by Zona Technologies, Inc. under NASA Research Announcement (NRA) contracts. The model was tested in the NASA-Langley Transonic Dynamics Tunnel (TDT) four times from 2007 to 2010. The first two tests were primarily for plant identification. The third entry was used for testing control laws for Ride Quality Enhancement, Gust Load Alleviation, and Flutter Suppression. Whereas the third entry only tested FS subcritically, the fourth test demonstrated closed-loop operation above the open-loop flutter boundary. The results of the third entry are reported elsewhere. This paper reports on flutter suppression results from the fourth wind-tunnel test. Flutter suppression is seen as a way to provide stability margins while flying at transonic flight conditions without penalizing the primary supersonic cruise design condition. An account is given for how Controller Performance Evaluation (CPE) singular value plots were interpreted with regard to progressing open- or closed-loop to higher dynamic pressures during testing.

  4. Elastic Properties of Pore-Spanning Apical Cell Membranes Derived from MDCK II Cells.

    PubMed

    Nehls, Stefan; Janshoff, Andreas

    2017-10-17

    The mechanical response of adherent, polarized cells to indentation is frequently attributed to the presence of an endogenous actin cortex attached to the inner leaflet of the plasma membrane. Here, we scrutinized the elastic properties of apical membranes separated from living cells and attached to a porous mesh in the absence of intracellular factors originating from the cytosol, organelles, the substrate, neighbors, and the nucleus. We found that a tension-based model describes the data very well providing essentially the prestress of the shell generated by adhesion of the apical membrane patches to the pore rim and the apparent area compressibility modulus, an intrinsic elastic modulus modulated by the surface excess stored in membrane reservoirs. Removal of membrane-associated proteins by proteases decreases the area compressibility modulus, whereas fixation and cross-linking of proteins with glutaraldehyde increases it. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Controlled membrane translocation provides a mechanism for signal transduction and amplification

    NASA Astrophysics Data System (ADS)

    Langton, Matthew J.; Keymeulen, Flore; Ciaccia, Maria; Williams, Nicholas H.; Hunter, Christopher A.

    2017-05-01

    Transmission and amplification of chemical signals across lipid bilayer membranes is of profound significance in many biological processes, from the development of multicellular organisms to information processing in the nervous system. In biology, membrane-spanning proteins are responsible for the transmission of chemical signals across membranes, and signal transduction is often associated with an amplified signalling cascade. The ability to reproduce such processes in artificial systems has potential applications in sensing, controlled drug delivery and communication between compartments in tissue-like constructs of synthetic vesicles. Here we describe a mechanism for transmitting a chemical signal across a membrane based on the controlled translocation of a synthetic molecular transducer from one side of a lipid bilayer membrane to the other. The controlled molecular motion has been coupled to the activation of a catalyst on the inside of a vesicle, which leads to a signal-amplification process analogous to the biological counterpart.

  6. Protein secretion and membrane insertion systems in gram-negative bacteria.

    PubMed

    Saier, Milton H

    2006-01-01

    In contrast to other organisms, gram-negative bacteria have evolved numerous systems for protein export. Eight types are known that mediate export across or insertion into the cytoplasmic membrane, while eight specifically mediate export across or insertion into the outer membrane. Three of the former secretory pathway (SP) systems, type I SP (ISP, ABC), IIISP (Fla/Path) and IVSP (Conj/Vir), can export proteins across both membranes in a single energy-coupled step. A fourth generalized mechanism for exporting proteins across the two-membrane envelope in two distinct steps (which we here refer to as type II secretory pathways [IISP]) utilizes either the general secretory pathway (GSP or Sec) or the twin-arginine targeting translocase for translocation across the inner membrane, and either the main terminal branch or one of several protein-specific export systems for translocation across the outer membrane. We here survey the various well-characterized protein translocation systems found in living organisms and then focus on the systems present in gram-negative bacteria. Comparisons between these systems suggest specific biogenic, mechanistic and evolutionary similarities as well as major differences.

  7. Reversible Lifting of Surface Supported Lipid Bilayers with a Membrane-Spanning Nonionic Triblock Copolymer

    DOE PAGES

    Hayden, Steven C.; Junghans, Ann; Majewski, Jaroslaw; ...

    2017-02-22

    Neutron reflectometry was used to monitor structural variations in surface supported DMPC bilayers induced by the addition of Triton X-100, a surfactant commonly used to aid solubilization of membrane proteins, and the co-addition of a membrane spanning non-ionic amphiphilic triblock copolymer, (PEO 117-PPO 47-PE O117, Pluronic F98). Surfactant addition causes slight compression of the bilayer thickness and the creation of a distinct EO layer that increases the hydrophilic layer proximal to the supporting substrate (i.e., a water and EO gap between the lipid bilayer and quartz) to 6.8 ± 0.4 Å. Addition of the triblock copolymer into the DMPC: Tritonmore » X-100 bilayer increases the complexity (broadens) the lipid phase transition, further compresses the bilayer, and continues to expand the proximal hydrophilic layer thickness. The observed structural changes are temperature dependent with transmembrane polymer insertion achieved at 37 °C leading to a compressed membrane thickness of 39.2 ± 0.2 Å and proximal gap of 45.2 ± 0.2 Å. Temperature driven exclusion of the polymer at 15 °C causes partitioning of the polymer into the proximal space generating a large hydrogel cushion 162 ± 16 Å thick. An intermediate gap width (10 – 27 Å) is achieved at room temperature (22 – 25 °C). The temperature-driven changes in the proximal hydrophilic gap dimensions are shown to be reversible but thermal history causes variation in magnitude. Temperature-driven changes in polymer association with a supported lipid bilayer offer a facile means to reversibly control both the membrane characteristics as well as the separation between membrane and solid substrate.« less

  8. Reversible Lifting of Surface Supported Lipid Bilayers with a Membrane-Spanning Nonionic Triblock Copolymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayden, Steven C.; Junghans, Ann; Majewski, Jaroslaw

    Neutron reflectometry was used to monitor structural variations in surface supported DMPC bilayers induced by the addition of Triton X-100, a surfactant commonly used to aid solubilization of membrane proteins, and the co-addition of a membrane spanning non-ionic amphiphilic triblock copolymer, (PEO 117-PPO 47-PE O117, Pluronic F98). Surfactant addition causes slight compression of the bilayer thickness and the creation of a distinct EO layer that increases the hydrophilic layer proximal to the supporting substrate (i.e., a water and EO gap between the lipid bilayer and quartz) to 6.8 ± 0.4 Å. Addition of the triblock copolymer into the DMPC: Tritonmore » X-100 bilayer increases the complexity (broadens) the lipid phase transition, further compresses the bilayer, and continues to expand the proximal hydrophilic layer thickness. The observed structural changes are temperature dependent with transmembrane polymer insertion achieved at 37 °C leading to a compressed membrane thickness of 39.2 ± 0.2 Å and proximal gap of 45.2 ± 0.2 Å. Temperature driven exclusion of the polymer at 15 °C causes partitioning of the polymer into the proximal space generating a large hydrogel cushion 162 ± 16 Å thick. An intermediate gap width (10 – 27 Å) is achieved at room temperature (22 – 25 °C). The temperature-driven changes in the proximal hydrophilic gap dimensions are shown to be reversible but thermal history causes variation in magnitude. Temperature-driven changes in polymer association with a supported lipid bilayer offer a facile means to reversibly control both the membrane characteristics as well as the separation between membrane and solid substrate.« less

  9. Functional interaction between the two halves of the photoreceptor-specific ATP binding cassette protein ABCR (ABCA4). Evidence for a non-exchangeable ADP in the first nucleotide binding domain.

    PubMed

    Ahn, Jinhi; Beharry, Seelochan; Molday, Laurie L; Molday, Robert S

    2003-10-10

    ABCR, also known as ABCA4, is a member of the superfamily of ATP binding cassette transporters that is believed to transport retinal or retinylidene-phosphatidylethanolamine across photoreceptor disk membranes. Mutations in the ABCR gene are responsible for Stargardt macular dystrophy and related retinal dystrophies that cause severe loss in vision. ABCR consists of two tandemly arranged halves each containing a membrane spanning segment followed by a large extracellular/lumen domain, a multi-spanning membrane domain, and a nucleotide binding domain (NBD). To define the role of each NBD, we examined the nucleotide binding and ATPase activities of the N and C halves of ABCR individually and co-expressed in COS-1 cells and derived from trypsin-cleaved ABCR in disk membranes. When disk membranes or membranes from co-transfected cells were photoaffinity labeled with 8-azido-ATP and 8-azido-ADP, only the NBD2 in the C-half bound and trapped the nucleotide. Co-expressed half-molecules displayed basal and retinal-stimulated ATPase activity similar to full-length ABCR. The individually expressed N-half displayed weak 8-azido-ATP labeling and low basal ATPase activity that was not stimulated by retinal, whereas the C-half did not bind ATP and exhibited little if any ATPase activity. Purified ABCR contained one tightly bound ADP, presumably in NBD1. Our results indicate that only NBD2 of ABCR binds and hydrolyzes ATP in the presence or absence of retinal. NBD1, containing a bound ADP, associates with NBD2 to play a crucial, non-catalytic role in ABCR function.

  10. Ankyrin binding activity shared by the neurofascin/L1/NrCAM family of nervous system cell adhesion molecules.

    PubMed

    Davis, J Q; Bennett, V

    1994-11-04

    Neurofascin, L1, NrCAM, NgCAM, and neuroglian are membrane-spanning cell adhesion molecules with conserved cytoplasmic domains that are believed to play important roles in development of the nervous system. This report presents biochemical evidence that the cytoplasmic domains of these molecules associate directly with ankyrins, a family of spectrin-binding proteins located on the cytoplasmic surface of specialized plasma membrane domains. Rat neurofascin and NrCAM together comprise over 0.5% of the membrane protein in adult brain tissue. Linkage of these ankyrin-binding cell adhesion molecules to spectrin-based structures may provide a major class of membrane-cytoskeletal connections in adult brain as well as earlier stages of development.

  11. Coarse grained study of pluronic F127: Comparison with shorter co-polymers in its interaction with lipid bilayers and self-aggregation in water

    NASA Astrophysics Data System (ADS)

    Wood, I.; Martini, M. F.; Albano, J. M. R.; Cuestas, M. L.; Mathet, V. L.; Pickholz, M.

    2016-04-01

    The aim of this work is to understand the interactions of the poloxamer Pluronic F127, with lipid bilayers and its ability to self-associate in an aqueous environment. Molecular dynamics simulations at the coarse-grain scale were performed to address the behavior of single Pluronic F127 and shorter poloxamers unimers in palmitoyl-oleoyl-phosphatidyl-choline model membranes. According to the initial conditions and the poly-ethylene oxide/poly-propylene oxide composition, in water phase the unimer chain collapses into a coil conformation or adopts an interphacial U-shaped - or membrane spanning - distribution. A combination of poly-propylene oxide length, and the poly-ethylene oxide ability to cover poly-propylene oxide, is determinant for the conformation adopted by the unimer in each phase. Results of the simulations showed molecular evidence of strong interaction between Pluronic F127 and model membranes both in stable U-shaped and span conformations. The knowledge of this interaction could contribute to improve drug permeation. Additionally, we investigated the aggregation of one hundred Pluronic F127 unimers in water forming a micelle-like structure, suitable to be used as drug delivery system models.

  12. Curvature-induced stiffening of a fish fin.

    PubMed

    Nguyen, Khoi; Yu, Ning; Bandi, Mahesh M; Venkadesan, Madhusudhan; Mandre, Shreyas

    2017-05-01

    How fish modulate their fin stiffness during locomotive manoeuvres remains unknown. We show that changing the fin's curvature modulates its stiffness. Modelling the fin as bendable bony rays held together by a membrane, we deduce that fin curvature is manifested as a misalignment of the principal bending axes between neighbouring rays. An external force causes neighbouring rays to bend and splay apart, and thus stretches the membrane. This coupling between bending the rays and stretching the membrane underlies the increase in stiffness. Using three-dimensional reconstruction of a mackerel ( Scomber japonicus ) pectoral fin for illustration, we calculate the range of stiffnesses this fin is expected to span by changing curvature. The three-dimensional reconstruction shows that, even in its geometrically flat state, a functional curvature is embedded within the fin microstructure owing to the morphology of individual rays. As the ability of a propulsive surface to transmit force to the surrounding fluid is limited by its stiffness, the fin curvature controls the coupling between the fish and its surrounding fluid. Thereby, our results provide mechanical underpinnings and morphological predictions for the hypothesis that the spanned range of fin stiffnesses correlates with the behaviour and the ecological niche of the fish. © 2017 The Author(s).

  13. Curvature-induced stiffening of a fish fin

    PubMed Central

    2017-01-01

    How fish modulate their fin stiffness during locomotive manoeuvres remains unknown. We show that changing the fin's curvature modulates its stiffness. Modelling the fin as bendable bony rays held together by a membrane, we deduce that fin curvature is manifested as a misalignment of the principal bending axes between neighbouring rays. An external force causes neighbouring rays to bend and splay apart, and thus stretches the membrane. This coupling between bending the rays and stretching the membrane underlies the increase in stiffness. Using three-dimensional reconstruction of a mackerel (Scomber japonicus) pectoral fin for illustration, we calculate the range of stiffnesses this fin is expected to span by changing curvature. The three-dimensional reconstruction shows that, even in its geometrically flat state, a functional curvature is embedded within the fin microstructure owing to the morphology of individual rays. As the ability of a propulsive surface to transmit force to the surrounding fluid is limited by its stiffness, the fin curvature controls the coupling between the fish and its surrounding fluid. Thereby, our results provide mechanical underpinnings and morphological predictions for the hypothesis that the spanned range of fin stiffnesses correlates with the behaviour and the ecological niche of the fish. PMID:28566508

  14. The Contribution of Verbal Working Memory to Deaf Children’s Oral and Written Production

    PubMed Central

    Arfé, Barbara; Rossi, Cristina; Sicoli, Silvia

    2015-01-01

    This study investigated the contribution of verbal working memory to the oral and written story production of deaf children. Participants were 29 severely to profoundly deaf children aged 8–13 years and 29 hearing controls, matched for grade level. The children narrated a picture story orally and in writing and performed a reading comprehension test, the Wechsler Intelligence Scale for Children-Fourth Edition forward digit span task, and a reading span task. Oral and written stories were analyzed at the microstructural (i.e., clause) and macrostructural (discourse) levels. Hearing children’s stories scored higher than deaf children’s at both levels. Verbal working memory skills contributed to deaf children’s oral and written production over and above age and reading comprehension skills. Verbal rehearsal skills (forward digit span) contributed significantly to deaf children’s ability to organize oral and written stories at the microstructural level; they also accounted for unique variance at the macrostructural level in writing. Written story production appeared to involve greater verbal working memory resources than oral story production. PMID:25802319

  15. Comparing minimum spanning trees of the Italian stock market using returns and volumes

    NASA Astrophysics Data System (ADS)

    Coletti, Paolo

    2016-12-01

    We have built the network of the top 100 Italian quoted companies in the decade 2001-2011 using four different methods, comparing the resulting minimum spanning trees for methods and industry sectors. Our starting method is based on Person's correlation of log-returns used by several other authors in the last decade. The second one is based on the correlation of symbolized log-returns, the third of log-returns and traded money and the fourth one uses a combination of log-returns with traded money. We show that some sectors correspond to the network's clusters while others are scattered, in particular the trading and apparel sectors. We analyze the different graph's measures for the four methods showing that the introduction of volumes induces larger distances and more homogeneous trees without big clusters.

  16. Viroporins, Examples of the Two-Stage Membrane Protein Folding Model.

    PubMed

    Martinez-Gil, Luis; Mingarro, Ismael

    2015-06-26

    Viroporins are small, α-helical, hydrophobic virus encoded proteins, engineered to form homo-oligomeric hydrophilic pores in the host membrane. Viroporins participate in multiple steps of the viral life cycle, from entry to budding. As any other membrane protein, viroporins have to find the way to bury their hydrophobic regions into the lipid bilayer. Once within the membrane, the hydrophobic helices of viroporins interact with each other to form higher ordered structures required to correctly perform their porating activities. This two-step process resembles the two-stage model proposed for membrane protein folding by Engelman and Poppot. In this review we use the membrane protein folding model as a leading thread to analyze the mechanism and forces behind the membrane insertion and folding of viroporins. We start by describing the transmembrane segment architecture of viroporins, including the number and sequence characteristics of their membrane-spanning domains. Next, we connect the differences found among viroporin families to their viral genome organization, and finalize focusing on the pathways used by viroporins in their way to the membrane and on the transmembrane helix-helix interactions required to achieve proper folding and assembly.

  17. Coarse-Grained Models for Protein-Cell Membrane Interactions

    PubMed Central

    Bradley, Ryan; Radhakrishnan, Ravi

    2015-01-01

    The physiological properties of biological soft matter are the product of collective interactions, which span many time and length scales. Recent computational modeling efforts have helped illuminate experiments that characterize the ways in which proteins modulate membrane physics. Linking these models across time and length scales in a multiscale model explains how atomistic information propagates to larger scales. This paper reviews continuum modeling and coarse-grained molecular dynamics methods, which connect atomistic simulations and single-molecule experiments with the observed microscopic or mesoscale properties of soft-matter systems essential to our understanding of cells, particularly those involved in sculpting and remodeling cell membranes. PMID:26613047

  18. Physics of smectic membranes

    NASA Astrophysics Data System (ADS)

    Pieranski, P.; Beliard, L.; Tournellec, J.-Ph.; Leoncini, X.; Furtlehner, C.; Dumoulin, H.; Riou, E.; Jouvin, B.; Fénerol, J.-P.; Palaric, Ph.; Heuving, J.; Cartier, B.; Kraus, I.

    1993-03-01

    Due to their layered structure, smectic liquid crystals can form membranes, similar to soap bubbles, that can be spanned on frames. Such smectic membranes have been used extensively as samples in many structural X-ray studies of smectic liquid crystals. In this context they have been considered as very convenient and highly perfect samples but little attention has been paid to the reasons for their existence and to the process of their formation. Our aim here is to address a first list of questions, which are the most urgent to answer. We will also describe experiments and models that have been conceived especially in order to understand the physics of these fascinating systems.

  19. Span of Control and Initiative: Is More, Less?

    DTIC Science & Technology

    1990-12-18

    Theory., (Homewood: Richard D. Irwin, 1976), pp. 36, 45; Andrew D. Szilagyi and Marc J. Wallace , Organizational Behavior al .Permane 3d ed. (Santa Monica...325; Koontz, p. 242; Koontz, ReagIMI pp. 219, 221; Litterer, p. 573; Moore, p. 1-44; Porter, p. 252; Szilagyi , p. 453. 40. Albers, pp. 155-156; Allen...Litterer, p. 562; Szilagyi , p. 453. 46. Ibid. 47. William S. Lind, "The Changing Face of War: Into the Fourth Generation," p. 2. 48. Schneider, p. 37. 49

  20. STS-117 Media Showcase

    NASA Image and Video Library

    2007-02-06

    In the Space Station Processing Facility, the S3/S4 integrated truss segment is on display for the media. The starboard 3/4 truss segment will launch aboard Space Shuttle Atlantis on mission STS-117, targeted for March 15. The element will be added to the 11-segment integrated truss structure, the station's backbone. The integrated truss structure eventually will span more than 300 feet. The S3/S4 truss has two large solar arrays and will provide one-fourth of the total power generation for the completed station.

  1. Toward a Fourth Generation of Disparities Research to Achieve Health Equity

    PubMed Central

    Thomas, Stephen B.; Quinn, Sandra Crouse; Butler, James; Fryer, Craig S.; Garza, Mary A.

    2011-01-01

    Achieving health equity, driven by the elimination of health disparities, is a goal of Healthy People 2020. In recent decades, the improvement in health status has been remarkable for the U.S. population as a whole. However, racial and ethnic minority populations continue to lag behind whites with a quality of life diminished by illness from preventable chronic diseases and a life span cut short by premature death. We examine a conceptual framework of three generations of health disparities research to understand (a) data trends, (b) factors driving disparities, and (c) solutions for closing the gap. We propose a new, fourth generation of research grounded in public health critical race praxis, utilizing comprehensive interventions to address race, racism, and structural inequalities and advancing evaluation methods to foster our ability to eliminate disparities. This new generation demands that we address the researcher’s own biases as part of the research process. PMID:21219164

  2. Adult manifestation of the Dandy-Walker syndrome. Report of two cases with review of the literature.

    PubMed

    Unsgaard, G; Sand, T; Støvring, J; Ringkjøb, R

    1987-01-01

    Two cases of Dandy-Walker syndrome that became manifest in adult life are reported. A review of the literature of Dandy-Walker syndrome revealed 13 additional cases with onset in adult life and three cases that could not be differentiated from arachnoid cysts. While shunting is the primary treatment in infantile Dandy-Walker, the usual treatment of adult Dandy-Walker has been excision of the membrane covering the enlarged fourth ventricle. The outcome of our two cases treated with membrane excision indicates that primary shunting should also be tried in adult Dandy-Walker.

  3. Observation of Pull-in Instability in Graphene Membranes under Interfacial Forces

    NASA Astrophysics Data System (ADS)

    Liu, Xinghui; Boddeti, Narasimha; Szpunar, Mariah; Wang, Luda; Rodriguez, Miguel; Long, Rong; Xiao, Jianliang; Dunn, Martin; Bunch, Scott; Jianliang Xiao'S Collaboration; Scott Bunch's Team; Martin Dunn's Team

    2014-03-01

    We present a unique experimental configuration that allows us to determine the interfacial forces on nearly parallel plates made from single and few layer graphene membranes. Our approach consists of using a pressure difference across a graphene membrane to bring the membrane to within ~ 10-20 nm above a circular post covered with SiOx or Au until a critical point is reached whereby the membrane snaps into adhesive contact with the post. Continuous measurements of the deforming membrane with an AFM coupled with a theoretical model allow us to deduce the magnitude of the interfacial forces between graphene and SiOx and graphene and Au. The nature of the interfacial forces at ~ 10 - 20 nm separations is consistent with an inverse fourth power distance dependence, implying that the interfacial forces are dominated by van der Waals interactions. Furthermore, the strength of the interactions is found to increase linearly with the number of graphene layers. The experimental approach can be applied to measure the strength of the interfacial forces for other emerging atomically thin two-dimensional materials.

  4. Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol.

    PubMed

    Maekawa, Masashi; Fairn, Gregory D

    2015-04-01

    Cholesterol is an essential component of metazoan cellular membranes and it helps to maintain the structural integrity and fluidity of the plasma membrane. Here, we developed a cholesterol biosensor, termed D4H, based on the fourth domain of Clostridium perfringens theta-toxin, which recognizes cholesterol in the cytosolic leaflet of the plasma membrane and organelles. The D4H probe disassociates from the plasma membrane upon cholesterol extraction and after perturbations in cellular cholesterol trafficking. When used in combination with a recombinant version of the biosensor, we show that plasmalemmal phosphatidylserine is essential for retaining cholesterol in the cytosolic leaflet of the plasma membrane. In vitro experiments reveal that 1-stearoy-2-oleoyl phosphatidylserine can induce phase separation in cholesterol-containing lipid bilayers and shield cholesterol from cholesterol oxidase. Finally, the altered transbilayer distribution of cholesterol causes flotillin-1 to relocalize to endocytic organelles. This probe should be useful in the future to study pools of cholesterol in the cytosolic leaflet of the plasma membrane and organelles. © 2015. Published by The Company of Biologists Ltd.

  5. Nonlinear Shell Modeling of Thin Membranes with Emphasis on Structural Wrinkling

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; Sleight, David W.; Wang, John T.

    2003-01-01

    Thin solar sail membranes of very large span are being envisioned for near-term space missions. One major design issue that is inherent to these very flexible structures is the formation of wrinkling patterns. Structural wrinkles may deteriorate a solar sail's performance and, in certain cases, structural integrity. In this paper, a geometrically nonlinear, updated Lagrangian shell formulation is employed using the ABAQUS finite element code to simulate the formation of wrinkled deformations in thin-film membranes. The restrictive assumptions of true membranes, i.e. Tension Field theory (TF), are not invoked. Two effective modeling strategies are introduced to facilitate convergent solutions of wrinkled equilibrium states. Several numerical studies are carried out, and the results are compared with recent experimental data. Good agreement is observed between the numerical simulations and experimental data.

  6. High-performance, low-voltage electroosmotic pumps with molecularly thin silicon nanomembranes

    PubMed Central

    Snyder, Jessica L.; Getpreecharsawas, Jirachai; Fang, David Z.; Gaborski, Thomas R.; Striemer, Christopher C.; Fauchet, Philippe M.; Borkholder, David A.; McGrath, James L.

    2013-01-01

    We have developed electroosmotic pumps (EOPs) fabricated from 15-nm-thick porous nanocrystalline silicon (pnc-Si) membranes. Ultrathin pnc-Si membranes enable high electroosmotic flow per unit voltage. We demonstrate that electroosmosis theory compares well with the observed pnc-Si flow rates. We attribute the high flow rates to high electrical fields present across the 15-nm span of the membrane. Surface modifications, such as plasma oxidation or silanization, can influence the electroosmotic flow rates through pnc-Si membranes by alteration of the zeta potential of the material. A prototype EOP that uses pnc-Si membranes and Ag/AgCl electrodes was shown to pump microliter per minute-range flow through a 0.5-mm-diameter capillary tubing with as low as 250 mV of applied voltage. This silicon-based platform enables straightforward integration of low-voltage, on-chip EOPs into portable microfluidic devices with low back pressures. PMID:24167263

  7. An intracellular loop 2 amino acid residue determines differential binding of arrestin to the dopamine D2 and D3 receptors.

    PubMed

    Lan, Hongxiang; Teeter, Martha M; Gurevich, Vsevolod V; Neve, Kim A

    2009-01-01

    Dopamine D(2) and D(3) receptors are similar subtypes with distinct interactions with arrestins; the D(3) receptor mediates less agonist-induced translocation of arrestins than the D(2) receptor. The goals of this study were to compare nonphosphorylated arrestin-binding determinants in the second intracellular domain (IC2) of the D(2) and D(3) receptors to identify residues that contribute to the differential binding of arrestin to the subtypes. Arrestin 3 bound to glutathione transferase (GST) fusion proteins of the D(2) receptor IC2 more avidly than to the D(3) receptor IC2. Mutagenesis of the fusion proteins identified a residue at the C terminus of IC2, Lys149, that was important for the preferential binding of arrestin 3 to D(2)-IC2; arrestin binding to D(2)-IC2-K149C was greatly decreased compared with wild-type D(2)-IC2, whereas binding to the reciprocal mutant D(3)-IC2-C147K was enhanced compared with wild-type D(3)-IC2. Mutating this lysine in the full-length D(2) receptor to cysteine decreased the ability of the D(2) receptor to mediate agonist-induced arrestin 3 translocation to the membrane and decreased agonist-induced receptor internalization in human embryonic kidney 293 cells. The reciprocal mutation in the D(3) receptor increased receptor-mediated translocation of arrestin 3 without affecting agonist-induced receptor internalization. G protein-coupled receptor crystal structures suggest that Lys149, at the junction of IC2 and the fourth membrane-spanning helix, has intramolecular interactions that contribute to maintaining an inactive receptor state. It is suggested that the preferential agonist-induced binding of arrestin3 to the D(2) receptor over the D(3) receptor is due in part to Lys149, which could be exposed as a result of receptor activation.

  8. A new solution to emulsion liquid membrane problems by non-Newtonian conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skelland, A.H.P.; Meng, X.

    1996-02-01

    Surfactant-stabilized emulsion liquid membrane processes constitute an emerging separation technology that has repeatedly been shown to be highly suited for such diverse separation processes as metal recovery or removal from dilute aqueous solutions; separations in the food industry; removal of organic bases and acids from water; and separation of hydrocarbons. Emulsion liquid membrane separation processes remain excessively vulnerable to one or more of four major problems. Difficulties lie in developing liquid membranes that combine high levels of both stability and permeability with acceptably low levels of swelling and ease of subsequent demulsification for membrane and solute recovery. This article providesmore » a new technique for simultaneously overcoming the first three problems, while identifying physical indications that the proposed solution may have little adverse effect on the fourth problem (demulsification) and may even alleviate it. Numerous benefits of optimized conversion of the membrane phase into suitable non-Newtonian form are identified, their mechanisms outlined, and experimental verifications provided. These include increased stability, retained (or enhanced) permeability, reduced swelling, increased internal phase volume, and increased stirrer speeds. The highly favorable responsiveness of both aliphatic and aromatic membranes to the new technique is demonstrated.« less

  9. Biogenesis of a Mitochondrial Outer Membrane Protein in Trypanosoma brucei: TARGETING SIGNAL AND DEPENDENCE ON A UNIQUE BIOGENESIS FACTOR.

    PubMed

    Bruggisser, Julia; Käser, Sandro; Mani, Jan; Schneider, André

    2017-02-24

    The mitochondrial outer membrane (OM) contains single and multiple membrane-spanning proteins that need to contain signals that ensure correct targeting and insertion into the OM. The biogenesis of such proteins has so far essentially only been studied in yeast and related organisms. Here we show that POMP10, an OM protein of the early diverging protozoan Trypanosoma brucei , is signal-anchored. Transgenic cells expressing variants of POMP10 fused to GFP demonstrate that the N-terminal membrane-spanning domain flanked by a few positively charged or neutral residues is both necessary and sufficient for mitochondrial targeting. Carbonate extraction experiments indicate that although the presence of neutral instead of positively charged residues did not interfere with POMP10 localization, it weakened its interaction with the OM. Expression of GFP-tagged POMP10 in inducible RNAi cell lines shows that its mitochondrial localization depends on pATOM36 but does not require Sam50 or ATOM40, the trypanosomal analogue of the Tom40 import pore. pATOM36 is a kinetoplastid-specific OM protein that has previously been implicated in the assembly of OM proteins and in mitochondrial DNA inheritance. In summary, our results show that although the features of the targeting signal in signal-anchored proteins are widely conserved, the protein machinery that mediates their biogenesis is not. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Conversion of hydrophilic SiOC nanofibrous membrane to robust hydrophobic materials by introducing palladium

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Wan, Lynn Yuqin; Wang, Yingde; Ko, Frank

    2017-12-01

    Hydrophobic ceramic nanofibrous membranes have wide applications in the fields of high-temperature filters, oil/water separators, catalyst supports and membrane reactors, for their water repellency property, self-cleaning capability, good environmental stability and long life span. In this work, we fabricated an inherently hydrophobic ceramic nanofiber membrane without any surface modification through pyrolysis of electrospun polycarbosilane nanofibers. The hydrophobicity was introduced by the hierarchical microstructure formed on the surface of the nanofibers and the special surface composition by the addition of trace amounts of palladium. Furthermore, the flexible ceramic mats demonstrated robust chemical resistance properties with consistent hydrophobicity over the entire pH value range and effective water-in-oil emulsion separation performance. Interestingly, a highly cohesive force was found between water droplet and the ceramic membranes, suggesting their great potentials in micro-liquid transportation. This work provides a new route for adjusting the composition of ceramic surface and flexible, recyclable and multifunctional ceramic fibrous membranes for utilization in harsh environments.

  11. Acquisition of Co metal from spent lithium-ion battery using emulsion liquid membrane technology and emulsion stability test

    NASA Astrophysics Data System (ADS)

    Yuliusman; Wulandari, P. T.; Amiliana, R. A.; Huda, M.; Kusumadewi, F. A.

    2018-03-01

    Lithium-ion batteries are the most common type to be used as energy source in mobile phone. The amount of lithium-ion battery wastes is approximated by 200 – 500 ton/year. In one lithium-ion battery, there are 5 – 20% of cobalt metal, depend on the manufacturer. One of the way to recover a valuable metal from waste is leaching process then continued with extraction, which is the aim of this study. Spent lithium-ion batteries will be characterized with EDX and AAS, the result will show the amount of cobalt metal with form of LiCoO2 in the cathode. Hydrochloric acid concentration used is 4 M, temperature 80°C, and reaction time 1 hour. This study will discuss the emulsion stability test on emulsion liquid membrane. The purpose of emulsion stability test in this study was to determine optimum concentration of surfactant and extractant to produce a stable emulsion. Surfactant and extractant used were SPAN 80 and Cyanex 272 respectively with both concentrations varied. Membrane and feed phase ratios used in this experiment was 1 : 2. The optimum results of this study were SPAN 80 concentrations of 10% w/v and Cyanex 272 0.7 M.

  12. Molecular mechanisms of protein-cholesterol interactions in plasma membranes: Functional distinction between topological (tilted) and consensus (CARC/CRAC) domains.

    PubMed

    Fantini, Jacques; Di Scala, Coralie; Baier, Carlos J; Barrantes, Francisco J

    2016-09-01

    The molecular mechanisms that control the multiple possible modes of protein association with membrane cholesterol are remarkably convergent. These mechanisms, which include hydrogen bonding, CH-π stacking and dispersion forces, are used by a wide variety of extracellular proteins (e.g. microbial or amyloid) and membrane receptors. Virus fusion peptides penetrate the membrane of host cells with a tilted orientation that is compatible with a transient interaction with cholesterol; this tilted orientation is also characteristic of the process of insertion of amyloid proteins that subsequently form oligomeric pores in the plasma membrane of brain cells. Membrane receptors that are associated with cholesterol generally display linear consensus binding motifs (CARC and CRAC) characterized by a triad of basic (Lys/Arg), aromatic (Tyr/phe) and aliphatic (Leu/Val) amino acid residues. In some cases, the presence of both CARC and CRAC within the same membrane-spanning domain allows the simultaneous binding of two cholesterol molecules, one in each membrane leaflet. In this review the molecular basis and the functional significance of the different modes of protein-cholesterol interactions in plasma membranes are discussed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Lipid bilayer thickness determines cholesterol's location in model membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquardt, Drew; Heberle, Frederick A.; Greathouse, Denise V.

    Cholesterol is an essential biomolecule of animal cell membranes, and an important precursor for the biosynthesis of certain hormones and vitamins. It is also thought to play a key role in cell signaling processes associated with functional plasma membrane microdomains (domains enriched in cholesterol), commonly referred to as rafts. In all of these diverse biological phenomena, the transverse location of cholesterol in the membrane is almost certainly an important structural feature. Using a combination of neutron scattering and solid-state 2H NMR, we have determined the location and orientation of cholesterol in phosphatidylcholine (PC) model membranes having fatty acids of differentmore » lengths and degrees of unsaturation. The data establish that cholesterol reorients rapidly about the bilayer normal in all the membranes studied, but is tilted and forced to span the bilayer midplane in the very thin bilayers. The possibility that cholesterol lies flat in the middle of bilayers, including those made from PC lipids containing polyunsaturated fatty acids (PUFAs), is ruled out. Finally, these results support the notion that hydrophobic thickness is the primary determinant of cholesterol's location in membranes.« less

  14. Lipid bilayer thickness determines cholesterol's location in model membranes

    DOE PAGES

    Marquardt, Drew; Heberle, Frederick A.; Greathouse, Denise V.; ...

    2016-10-11

    Cholesterol is an essential biomolecule of animal cell membranes, and an important precursor for the biosynthesis of certain hormones and vitamins. It is also thought to play a key role in cell signaling processes associated with functional plasma membrane microdomains (domains enriched in cholesterol), commonly referred to as rafts. In all of these diverse biological phenomena, the transverse location of cholesterol in the membrane is almost certainly an important structural feature. Using a combination of neutron scattering and solid-state 2H NMR, we have determined the location and orientation of cholesterol in phosphatidylcholine (PC) model membranes having fatty acids of differentmore » lengths and degrees of unsaturation. The data establish that cholesterol reorients rapidly about the bilayer normal in all the membranes studied, but is tilted and forced to span the bilayer midplane in the very thin bilayers. The possibility that cholesterol lies flat in the middle of bilayers, including those made from PC lipids containing polyunsaturated fatty acids (PUFAs), is ruled out. Finally, these results support the notion that hydrophobic thickness is the primary determinant of cholesterol's location in membranes.« less

  15. Carbon Nanotubules: Building Blocks for Nanometer-Scale Engineering

    NASA Technical Reports Server (NTRS)

    Sinnott, Susan B.

    1999-01-01

    The proposed work consisted of two projects: the investigation of fluid permeation and diffusion through ultrafiltration membranes composed of carbon nanotubules and the design and study of molecular transistors composed of nanotubules. The progress made on each project is summarized and also discussion about additional projects, one of which is a continuation of work supported by another grant, is included. The first project was Liquid Interactions within a Nanotubule Membrane. The second was the design of nanometer-scale hydrocarbon electronic devices. The third was the investigation of Mechanical properties of Nanotubules and Nanotubule bundles. The fourth project was to investigate the growth mechanisms of Carbon Nanotubules.

  16. Organization of model helical peptides in lipid bilayers: insight into the behavior of single-span protein transmembrane domains.

    PubMed Central

    Sharpe, Simon; Barber, Kathryn R; Grant, Chris W M; Goodyear, David; Morrow, Michael R

    2002-01-01

    Selectively deuterated transmembrane peptides comprising alternating leucine-alanine subunits were examined in fluid bilayer membranes by solid-state nuclear magnetic resonance (NMR) spectroscopy in an effort to gain insight into the behavior of membrane proteins. Two groups of peptides were studied: 21-mers having a 17-amino-acid hydrophobic domain calculated to be close in length to the hydrophobic thickness of 1-palmitoyl-2-oleoyl phosphatidylcholine and 26-mers having a 22-amino-acid hydrophobic domain calculated to exceed the membrane hydrophobic thickness. (2)H NMR spectral features similar to ones observed for transmembrane peptides from single-span receptors of higher animal cells were identified which apparently correspond to effectively monomeric peptide. Spectral observations suggested significant distortion of the transmembrane alpha-helix, and/or potential for restriction of rotation about the tilted helix long axis for even simple peptides. Quadrupole splittings arising from the 26-mer were consistent with greater peptide "tilt" than were those of the analogous 21-mer. Quadrupole splittings associated with monomeric peptide were relatively insensitive to concentration and temperature over the range studied, indicating stable average conformations, and a well-ordered rotation axis. At high peptide concentration (6 mol% relative to phospholipid) it appeared that the peptide predicted to be longer than the membrane thickness had a particular tendency toward reversible peptide-peptide interactions occurring on a timescale comparable with or faster than approximately 10(-5) s. This interaction may be direct or lipid-mediated and was manifest as line broadening. Peptide rotational diffusion rates within the membrane, calculated from quadrupolar relaxation times, T(2e), were consistent with such interactions. In the case of the peptide predicted to be equal to the membrane thickness, at low peptide concentration spectral lineshape indicated the additional presence of a population of peptide having rotational motion that was restricted on a timescale of 10(-5) s. PMID:12080125

  17. Dynamic analysis and numerical experiments for balancing of the continuous single-disc and single-span rotor-bearing system

    NASA Astrophysics Data System (ADS)

    Wang, Aiming; Cheng, Xiaohan; Meng, Guoying; Xia, Yun; Wo, Lei; Wang, Ziyi

    2017-03-01

    Identification of rotor unbalance is critical for normal operation of rotating machinery. The single-disc and single-span rotor, as the most fundamental rotor-bearing system, has attracted research attention over a long time. In this paper, the continuous single-disc and single-span rotor is modeled as a homogeneous and elastic Euler-Bernoulli beam, and the forces applied by bearings and disc on the shaft are considered as point forces. A fourth-order non-homogeneous partial differential equation set with homogeneous boundary condition is solved for analytical solution, which expresses the unbalance response as a function of position, rotor unbalance and the stiffness and damping coefficients of bearings. Based on this analytical method, a novel Measurement Point Vector Method (MPVM) is proposed to identify rotor unbalance while operating. Only a measured unbalance response registered for four selected cross-sections of the rotor-shaft under steady-state operating conditions is needed when using the method. Numerical simulation shows that the detection error of the proposed method is very small when measurement error is negligible. The proposed method provides an efficient way for rotor balancing without test runs and external excitations.

  18. Immunogenicity and safety of measles-mumps-rubella and varicella vaccines coadministered with a fourth dose of Haemophilus influenzae type b and Neisseria meningitidis serogroups C and Y-tetanus toxoid conjugate vaccine in toddlers: a pooled analysis of randomized trials.

    PubMed

    Bryant, Kristina; McVernon, Jodie; Marchant, Colin; Nolan, Terry; Marshall, Gary; Richmond, Peter; Marshall, Helen; Nissen, Michael; Lambert, Stephen; Aris, Emmanuel; Mesaros, Narcisa; Miller, Jacqueline

    2012-08-01

    A pooled analysis was conducted of 1257 toddlers who received a fourth dose of Haemophilus influenzae type b-Neisseria meningitidis serogroups C and Y-tetanus toxoid conjugate vaccine (HibMenCY-TT) or Hib conjugate vaccine (Hib polysaccharide conjugated to N. meningitidis outer membrane protein) coadministered with measles-mumps-rubella (MMR) and varicella (VAR) vaccines (NCT00134719/NCT00289783). Noninferiority of immunological responses to MMR and VAR was demonstrated between groups and incidences of MMR- and VAR-specific solicited symptoms were similar, indicating that HibMenCY-TT can be coadministered with MMR and VAR.

  19. Hydrogen exchange kinetics in a membrane protein determined by sup 15 N NMR spectroscopy: Use of the INEPT (insensitive nucleus enhancement by polarization transfer) experiment to follow individual amides in detergent-solubilized M13 coat protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, G.D.; Sykes, B.D.

    The coat protein of the filamentous coliphage M13 is a 50-residue polypeptide which spans the inner membrane of the Escherichia coli host upon infection. Amide hydrogen exchange kinetics have been used to probe the structure and dynamics of M13 coat protein which has been solubilized in sodium dodecyl sulfate (SDS) micelles. In a previous {sup 1}H nuclear magnetic resonance (NMR) study, multiple exponential analysis of the unresolved amide proton envelope revealed the existence of two slow kinetic sets containing a total of about 30 protons. The slower set (15-20 amides) originates from the hydrophobic membrane-spanning region and exchanges at leastmore » 10{sup 5}-fold slower than the unstructured, non-H-bonded model polypeptide poly(DL-alanine). Herein the authors use {sup 15}N NMR spectroscopy of biosynthetically labeled coat protein to follow individual, assigned, slowly exchanging amides in or near the hydrophobic segment. The INEPT (insensitive nucleus enhancement by polarization transfer) experiments can be used to transfer magnetization to the {sup 15}N nucleus from a coupled proton; when {sup 15}N-labeled protonated protein is dissolved in {sup 2}H{sub 2}O, the INEPT signal disappears with time as the amide protons are replaced by solvent deuterons. Amide hydrogen exchange is catalyzed by both H{sup +} and OH{sup {minus}} ions. The time-dependent exchange-out experiment is suitable for slow exchange rates (k{sub ex}). The INEPT experiment was also adapted to measure some of the more rapidly exchanging amides in the coat protein using either saturation transfer from water or exchange effects on the polarization transfer step itself. The results of all of these experiments are consistent with previous models of the coat protein in which a stable segment extends from the hydrophobic membrane-spanning region through to the C-terminus, whereas the N-terminal region is undergoing more extensive dynamic fluctuations.« less

  20. Structure of the periplasmic adaptor protein from a major facilitator superfamily (MFS) multidrug efflux pump.

    PubMed

    Hinchliffe, Philip; Greene, Nicholas P; Paterson, Neil G; Crow, Allister; Hughes, Colin; Koronakis, Vassilis

    2014-08-25

    Periplasmic adaptor proteins are key components of bacterial tripartite efflux pumps. The 2.85 Å resolution structure of an MFS (major facilitator superfamily) pump adaptor, Aquifex aeolicus EmrA, shows linearly arranged α-helical coiled-coil, lipoyl, and β-barrel domains, but lacks the fourth membrane-proximal domain shown in other pumps to interact with the inner membrane transporter. The adaptor α-hairpin, which binds outer membrane TolC, is exceptionally long at 127 Å, and the β-barrel contains a conserved disordered loop. The structure extends the view of adaptors as flexible, modular components that mediate diverse pump assembly, and suggests that in MFS tripartite pumps a hexamer of adaptors could provide a periplasmic seal. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Evidence for glycoprotein transport into complex plastids.

    PubMed

    Peschke, Madeleine; Moog, Daniel; Klingl, Andreas; Maier, Uwe G; Hempel, Franziska

    2013-06-25

    Diatoms are microalgae that possess so-called "complex plastids," which evolved by secondary endosymbiosis and are surrounded by four membranes. Thus, in contrast to primary plastids, which are surrounded by only two membranes, nucleus-encoded proteins of complex plastids face additional barriers, i.e., during evolution, mechanisms had to evolve to transport preproteins across all four membranes. This study reveals that there exist glycoproteins not only in primary but also in complex plastids, making transport issues even more complicated, as most translocation machineries are not believed to be able to transport bulky proteins. We show that plastidal reporter proteins with artificial N-glycosylation sites are indeed glycosylated during transport into the complex plastid of the diatom Phaeodactylum tricornutum. Additionally, we identified five endogenous glycoproteins, which are transported into different compartments of the complex plastid. These proteins get N-glycosylated during transport across the outermost plastid membrane and thereafter are transported across the second, third, and fourth plastid membranes in the case of stromal proteins. The results of this study provide insights into the evolutionary pressure on translocation mechanisms and pose unique questions on the operating mode of well-known transport machineries like the translocons of the outer/inner chloroplast membranes (Toc/Tic).

  2. Novel compaction resistant and ductile nanocomposite nanofibrous microfiltration membranes.

    PubMed

    Homaeigohar, Seyed Shahin; Elbahri, Mady

    2012-04-15

    Despite promising filtration abilities, low mechanical properties of extraordinary porous electrospun nanofibrous membranes could be a major challenge in their industrial development. In addition, such kind of membranes are usually hydrophobic and non-wettable. To reinforce an electrospun nanofibrous membrane made of polyethersulfone (PES) mechanically and chemically (to improve wettability), zirconia nanoparticles as a novel nanofiller in membrane technology were added to the nanofibers. The compressive and tensile results obtained through nanoindentation and tensile tests, respectively, implied an optimum mechanical properties after incorporation of zirconia nanoparticles. Especially compaction resistance of the electrospun nanofibrous membranes improved significantly as long as no agglomeration of the nanoparticles occurred and the electrospun nanocomposite membranes showed a higher tensile properties without any brittleness i.e. a high ductility. Noteworthy, for the first time the compaction level was quantified through a nanoindentation test. In addition to obtaining a desired mechanical performance, the hydrophobicity declined. Combination of promising properties of optimum mechanical and surface chemical properties led to a considerably high water permeability also retention efficiency of the nanocomposite PES nanofibrous membranes. Such finding implies a longer life span and lower energy consumption for a water filtration process. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. How actin binds and assembles onto plasma membranes from Dictyostelium discoideum

    PubMed Central

    1988-01-01

    We have shown previously (Schwartz, M. A., and E. J. Luna. 1986. J. Cell Biol. 102: 2067-2075) that actin binds with positive cooperativity to plasma membranes from Dictyostelium discoideum. Actin is polymerized at the membrane surface even at concentrations well below the critical concentration for polymerization in solution. Low salt buffer that blocks actin polymerization in solution also prevents actin binding to membranes. To further explore the relationship between actin polymerization and binding to membranes, we prepared four chemically modified actins that appear to be incapable of polymerizing in solution. Three of these derivatives also lost their ability to bind to membranes. The fourth derivative (EF actin), in which histidine-40 is labeled with ethoxyformic anhydride, binds to membranes with reduced affinity. Binding curves exhibit positive cooperativity, and cross- linking experiments show that membrane-bound actin is multimeric. Thus, binding and polymerization are tightly coupled, and the ability of these membranes to polymerize actin is dramatically demonstrated. EF actin coassembles weakly with untreated actin in solution, but coassembles well on membranes. Binding by untreated actin and EF actin are mutually competitive, indicating that they bind to the same membrane sites. Hill plots indicate that an actin trimer is the minimum assembly state required for tight binding to membranes. The best explanation for our data is a model in which actin oligomers assemble by binding to clustered membrane sites with successive monomers on one side of the actin filament bound to the membrane. Individual binding affinities are expected to be low, but the overall actin-membrane avidity is high, due to multivalency. Our results imply that extracellular factors that cluster membrane proteins may create sites for the formation of actin nuclei and thus trigger actin polymerization in the cell. PMID:3392099

  4. Toward the fourth dimension of membrane protein structure: insight into dynamics from spin-labeling EPR spectroscopy.

    PubMed

    McHaourab, Hassane S; Steed, P Ryan; Kazmier, Kelli

    2011-11-09

    Trapping membrane proteins in the confines of a crystal lattice obscures dynamic modes essential for interconversion between multiple conformations in the functional cycle. Moreover, lattice forces could conspire with detergent solubilization to stabilize a minor conformer in an ensemble thus confounding mechanistic interpretation. Spin labeling in conjunction with electron paramagnetic resonance (EPR) spectroscopy offers an exquisite window into membrane protein dynamics in the native-like environment of a lipid bilayer. Systematic application of spin labeling and EPR identifies sequence-specific secondary structures, defines their topology and their packing in the tertiary fold. Long range distance measurements (60 Å-80 Å) between pairs of spin labels enable quantitative analysis of equilibrium dynamics and triggered conformational changes. This review highlights the contribution of spin labeling to bridging structure and mechanism. Efforts to develop methods for determining structures from EPR restraints and to increase sensitivity and throughput promise to expand spin labeling applications in membrane protein structural biology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Peptidoglycan-associated lipoprotein (Pal) of Gram-negative bacteria: function, structure, role in pathogenesis and potential application in immunoprophylaxis.

    PubMed

    Godlewska, Renata; Wiśniewska, Katarzyna; Pietras, Zbigniew; Jagusztyn-Krynicka, Elzbieta Katarzyna

    2009-09-01

    The protein Pal (peptidoglycan-associated lipoprotein) is anchored in the outer membrane (OM) of Gram-negative bacteria and interacts with Tol proteins. Tol-Pal proteins form two complexes: the first is composed of three inner membrane Tol proteins (TolA, TolQ and TolR); the second consists of the TolB and Pal proteins linked to the cell's OM. These complexes interact with one another forming a multiprotein membrane-spanning system. It has recently been demonstrated that Pal is essential for bacterial survival and pathogenesis, although its role in virulence has not been clearly defined. This review summarizes the available data concerning the structure and function of Pal and its role in pathogenesis.

  6. Optimization of methylene blue removal by stable emulsified liquid membrane using Plackett–Burman and Box–Behnken designs of experiments

    PubMed Central

    Djenouhat, Meriem; Bendebane, Farida; Bahloul, Lynda; Samar, Mohamed E. H.

    2018-01-01

    The stability of an emulsified liquid membrane composed of Span80 as a surfactant, D2EHPA as an extractant and sulfuric acid as an internal phase was first studied according to different diluents and many operating parameters using the Plackett–Burman design of experiments. Then the removal of methylene blue from an aqueous solution has been carried out using this emulsified liquid membrane at its stability conditions. The effects of operating parameters were analysed from the Box–Behnken design of experiments. The optimization of the extraction has been realized applying the response surface methodology and the results showed that the dye extraction yielding 98.72% was achieved at optimized conditions. PMID:29515841

  7. Characterization, cell-surface expression and ligand-binding properties of different truncated N-terminal extracellular domains of the ionotropic glutamate receptor subunit GluR1.

    PubMed

    McIlhinney, R A; Molnár, E

    1996-04-01

    To identify the location of the first transmembrane segment of the GluR1 glutamate receptor subunit artificial stop codons have been introduced into the N-terminal domain at amino acid positions 442, 510, and 563, namely just before and spanning the proposed first two transmembrane regions. The resultant truncated N-terminal fragments of GluR1, termed NT1, NT2, and NT3 respectively were expressed in Cos-7 cells and their cellular distribution and cell-surface expression analysed using an N-terminal antibody to GluR1. All of the fragments were fully glycosylated and were found to be associated with cell membranes but none was secreted. Differential extraction of the cell membranes indicated that both NT1 and NT2 behave as peripheral membrane proteins. In contrast NT3, like the full subunit, has integral membrane protein properties. Furthermore only NT3 is expressed at the cell surface as determined by immunofluorescence and cell-surface biotinylation. Protease protection assays indicated that only NT3 had a cytoplasmic tail. Binding studies using the selective ligand [(3)H]alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate ([(3)H]AMPA) demonstrated that NT3 does not bind ligand. Together these results indicate that the first transmembrane domain of the GluR1 subunit lies between residues 509 and 562, that the N-terminal domain alone cannot form a functional ligand-binding site and that this domain can be targeted to the cell surface provided that it has a transmembrane-spanning region.

  8. Architectures of Lipid Transport Systems for the Bacterial Outer Membrane.

    PubMed

    Ekiert, Damian C; Bhabha, Gira; Isom, Georgia L; Greenan, Garrett; Ovchinnikov, Sergey; Henderson, Ian R; Cox, Jeffery S; Vale, Ronald D

    2017-04-06

    How phospholipids are trafficked between the bacterial inner and outer membranes through the hydrophilic space of the periplasm is not known. We report that members of the mammalian cell entry (MCE) protein family form hexameric assemblies with a central channel capable of mediating lipid transport. The E. coli MCE protein, MlaD, forms a ring associated with an ABC transporter complex in the inner membrane. A soluble lipid-binding protein, MlaC, ferries lipids between MlaD and an outer membrane protein complex. In contrast, EM structures of two other E. coli MCE proteins show that YebT forms an elongated tube consisting of seven stacked MCE rings, and PqiB adopts a syringe-like architecture. Both YebT and PqiB create channels of sufficient length to span the periplasmic space. This work reveals diverse architectures of highly conserved protein-based channels implicated in the transport of lipids between the membranes of bacteria and some eukaryotic organelles. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Silicon-on-insulator based nanopore cavity arrays for lipid membrane investigation.

    PubMed

    Buchholz, K; Tinazli, A; Kleefen, A; Dorfner, D; Pedone, D; Rant, U; Tampé, R; Abstreiter, G; Tornow, M

    2008-11-05

    We present the fabrication and characterization of nanopore microcavities for the investigation of transport processes in suspended lipid membranes. The cavities are situated below the surface of silicon-on-insulator (SOI) substrates. Single cavities and large area arrays were prepared using high resolution electron-beam lithography in combination with reactive ion etching (RIE) and wet chemical sacrificial underetching. The locally separated compartments have a circular shape and allow the enclosure of picoliter volume aqueous solutions. They are sealed at their top by a 250 nm thin Si membrane featuring pores with diameters from 2 µm down to 220 nm. The Si surface exhibits excellent smoothness and homogeneity as verified by AFM analysis. As biophysical test system we deposited lipid membranes by vesicle fusion, and demonstrated their fluid-like properties by fluorescence recovery after photobleaching. As clearly indicated by AFM measurements in aqueous buffer solution, intact lipid membranes successfully spanned the pores. The nanopore cavity arrays have potential applications in diagnostics and pharmaceutical research on transmembrane proteins.

  10. Mutations in a signal sequence for the thylakoid membrane identify multiple protein transport pathways and nuclear suppressors

    PubMed Central

    1994-01-01

    The apparatus that permits protein translocation across the internal thylakoid membranes of chloroplasts is completely unknown, even though these membranes have been the subject of extensive biochemical analysis. We have used a genetic approach to characterize the translocation of Chlamydomonas cytochrome f, a chloroplast-encoded protein that spans the thylakoid once. Mutations in the hydrophobic core of the cytochrome f signal sequence inhibit the accumulation of cytochrome f, lead to an accumulation of precursor, and impair the ability of Chlamydomonas cells to grow photosynthetically. One hydrophobic core mutant also reduces the accumulation of other thylakoid membrane proteins, but not those that translocate completely across the membrane. These results suggest that the signal sequence of cytochrome f is required and is involved in one of multiple insertion pathways. Suppressors of two signal peptide mutations describe at least two nuclear genes whose products likely describe the translocation apparatus, and selected second-site chloroplast suppressors further define regions of the cytochrome f signal peptide. PMID:8034740

  11. New insight of hybrid membrane to degrade Congo red and Reactive yellow under sunlight.

    PubMed

    Rajeswari, A; Jackcina Stobel Christy, E; Pius, Anitha

    2018-02-01

    A study was carried out to investigate the degradation of organic contaminants (Congo red and Reactive yellow - 105) using cellulose acetate - polystyrene (CA-PS) membrane with and without ZnO impregnation. Scanning electron microscope (SEM), electron dispersive analysis of X-rays (EDAX), Fourier transform infrared spectrometer (FTIR), atomic force microscope (AFM) and thermogravimeric analysis (TG-DTA) analysis were carried out to characterize bare and ZnO impregnated CA-PS membranes. Membrane efficiency was also tested for pure water flux and antifouling performance. The modified membrane showed almost 85% water flux recovery. Blending of ZnO nanoparticles to CA-PS matrix could decrease membrane fouling and increase permeation quality of the membrane with above 90% of photocatalytic degradation efficiency for dyes. The rate of degradation of dyes was observed using UV-Vis spectrometer. Reusability of CA-PS-ZnO membrane was studied and no significant change was noted in the degradation efficiency until fourth cycle. Langmuir-Hinshelwood kinetic model well describes the photo degradation capacity and the degradation of dyes CR and RY - 105 exhibited pseudo-first order kinetics. The regression coefficient (R) of CR and RY - 105 found to be 0.99. The novelty of the prepared CA-PS-ZnO membrane is that it has better efficiency and high thermal stability than our previously reported material. Therefore, ZnO impregnated CA-PS membrane had proved to be an innovative alternative for the degradation of CR and RY - 105 dyes. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Structure elucidation of dimeric transmembrane domains of bitopic proteins.

    PubMed

    Bocharov, Eduard V; Volynsky, Pavel E; Pavlov, Konstantin V; Efremov, Roman G; Arseniev, Alexander S

    2010-01-01

    The interaction between transmembrane helices is of great interest because it directly determines biological activity of a membrane protein. Either destroying or enhancing such interactions can result in many diseases related to dysfunction of different tissues in human body. One much studied form of membrane proteins known as bitopic protein is a dimer containing two membrane-spanning helices associating laterally. Establishing structure-function relationship as well as rational design of new types of drugs targeting membrane proteins requires precise structural information about this class of objects. At present time, to investigate spatial structure and internal dynamics of such transmembrane helical dimers, several strategies were developed based mainly on a combination of NMR spectroscopy, optical spectroscopy, protein engineering and molecular modeling. These approaches were successfully applied to homo- and heterodimeric transmembrane fragments of several bitopic proteins, which play important roles in normal and in pathological conditions of human organism.

  13. De novo design of a transmembrane Zn²⁺-transporting four-helix bundle.

    PubMed

    Joh, Nathan H; Wang, Tuo; Bhate, Manasi P; Acharya, Rudresh; Wu, Yibing; Grabe, Michael; Hong, Mei; Grigoryan, Gevorg; DeGrado, William F

    2014-12-19

    The design of functional membrane proteins from first principles represents a grand challenge in chemistry and structural biology. Here, we report the design of a membrane-spanning, four-helical bundle that transports first-row transition metal ions Zn(2+) and Co(2+), but not Ca(2+), across membranes. The conduction path was designed to contain two di-metal binding sites that bind with negative cooperativity. X-ray crystallography and solid-state and solution nuclear magnetic resonance indicate that the overall helical bundle is formed from two tightly interacting pairs of helices, which form individual domains that interact weakly along a more dynamic interface. Vesicle flux experiments show that as Zn(2+) ions diffuse down their concentration gradients, protons are antiported. These experiments illustrate the feasibility of designing membrane proteins with predefined structural and dynamic properties. Copyright © 2014, American Association for the Advancement of Science.

  14. Plasmonic nanoantenna arrays for surface-enhanced Raman spectroscopy of lipid molecules embedded in a bilayer membrane.

    PubMed

    Kühler, Paul; Weber, Max; Lohmüller, Theobald

    2014-06-25

    We demonstrate a strategy for surface-enhanced Raman spectroscopy (SERS) of supported lipid membranes with arrays of plasmonic nanoantennas. Colloidal lithography refined with plasma etching is used to synthesize arrays of triangular shaped gold nanoparticles. Reducing the separation distance between the triangle tips leads to plasmonic coupling and to a strong enhancement of the electromagnetic field in the nanotriangle gap. As a result, the Raman scattering intensity of molecules that are located at this plasmonic "hot-spot" can be increased by several orders of magnitude. The nanoantenna array is then embedded with a supported phospholipid membrane which is fluid at room temperature and spans the antenna gap. This configuration offers the advantage that molecules that are mobile within the bilayer membrane can enter the "hot-spot" region via diffusion and can therefore be measured by SERS without static entrapment or adsorption of the molecules to the antenna itself.

  15. Reassessment and expansion, 1981-1991

    NASA Astrophysics Data System (ADS)

    Grey, J.

    In this, the fourth and final decade under consideration for the special issue of Acta Astronautica, an overview of the 10-year span is given rather than a congress-by-congress summary as was appropriate for the opening decades of the federation's existence. The decade was characterized by debate over the frequency of congresses, reassessment of committee structure, improved relations with COSPAR, increasing membership and administrative changes. The ten International Astronautical congresses held during the final decade of this history are listed below noting their sequential numbers, the cities and years in which they took place and their themes: XXXII—Rome, 1981: Space: Mankind's Fourth Environment XXXIII—Paris, 1982: Space 2000 XXXIV—Budapest, 1983: Cooperation in Space XXXV—Lausanne, 1984: Space Benefits for All Nations XXXVI—Stockholm, 1985: Peaceful Space and Global Problems of Mankind XXXVII—Innsbruck, 1986: Space: New Opportunities for All People XXXVIII—Brighton, 1987: Thirty years of Progress in Space XXXIX—Bangalore, 1988: Space and Humanity XL—Malaga-Torremolinos, 1989: The Next Forty Years in Space XLI—Dresden, 1990: Space for Peace and Progress

  16. Structural and Biophysical Analysis of BST-2/Tetherin Ectodomains Reveals an Evolutionary Conserved Design to Inhibit Virus Release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swiecki, M.; Allaire, M.; Scheaffer, S.

    2011-01-28

    BST-2/tetherin is a host antiviral molecule that functions to potently inhibit the release of enveloped viruses from infected cells. In return, viruses have evolved antagonists to this activity. BST-2 traps budding virions by using two separate membrane-anchoring regions that simultaneously incorporate into the host and viral membranes. Here, we detailed the structural and biophysical properties of the full-length BST-2 ectodomain, which spans the two membrane anchors. The 1.6-{angstrom} crystal structure of the complete mouse BST-2 ectodomain reveals an {approx}145-{angstrom} parallel dimer in an extended {alpha}-helix conformation that predominantly forms a coiled coil bridged by three intermolecular disulfides that are requiredmore » for stability. Sequence analysis in the context of the structure revealed an evolutionarily conserved design that destabilizes the coiled coil, resulting in a labile superstructure, as evidenced by solution x-ray scattering displaying bent conformations spanning 150 and 180 {angstrom} for the mouse and human BST-2 ectodomains, respectively. Additionally, crystal packing analysis revealed possible curvature-sensing tetrameric structures that may aid in proper placement of BST-2 during the genesis of viral progeny. Overall, this extended coiled-coil structure with inherent plasticity is undoubtedly necessary to accommodate the dynamics of viral budding while ensuring separation of the anchors.« less

  17. Invisible liposomes: refractive index matching with sucrose enables flow dichroism assessment of peptide orientation in lipid vesicle membrane.

    PubMed

    Ardhammar, Malin; Lincoln, Per; Nordén, Bengt

    2002-11-26

    Valuable information on protein-membrane organization may in principle be obtained from polarized-light absorption (linear dichroism, LD) measurement on shear-aligned lipid vesicle bilayers as model membranes. However, attempts to probe LD in the UV wavelength region (<250 nm) have so far failed because of strong polarized light scattering from the vesicles. Using sucrose to match the refractive index and suppress the light scattering of phosphatidylcholine vesicles, we have been able to detect LD bands also in the peptide-absorbing region (200-230 nm). The potential of refractive index matching in vesicle LD as a general method for studying membrane protein structure was investigated for the membrane pore-forming oligopeptide gramicidin incorporated into the liposome membranes. In the presence of sucrose, the LD signals arising from oriented tryptophan side chains as well as from n-->pi* and pi-->pi* transitions of the amide chromophore of the polypeptide backbone could be studied. The observation of a strongly negative LD for the first exciton transition ( approximately 204 nm) is consistent with a membrane-spanning orientation of two intertwined parallel gramicidin helices, as predicted by coupled-oscillator theory.

  18. Membrane homeoviscous adaptation in the piezo-hyperthermophilic archaeon Thermococcus barophilus.

    PubMed

    Cario, Anaïs; Grossi, Vincent; Schaeffer, Philippe; Oger, Philippe M

    2015-01-01

    The archaeon Thermococcus barophilus, one of the most extreme members of hyperthermophilic piezophiles known thus far, is able to grow at temperatures up to 103°C and pressures up to 80 MPa. We analyzed the membrane lipids of T. barophilus by high performance liquid chromatography-mass spectrometry as a function of pressure and temperature. In contrast to previous reports, we show that under optimal growth conditions (40 MPa, 85°C) the membrane spanning tetraether lipid GDGT-0 (sometimes called caldarchaeol) is a major membrane lipid of T. barophilus together with archaeol. Increasing pressure and decreasing temperature lead to an increase of the proportion of archaeol. Reversely, a higher proportion of GDGT-0 is observed under low pressure and high temperature conditions. Noticeably, pressure and temperature fluctuations also impact the level of unsaturation of apolar lipids having an irregular polyisoprenoid carbon skeleton (unsaturated lycopane derivatives), suggesting a structural role for these neutral lipids in the membrane of T. barophilus. Whether these apolar lipids insert in the membrane or not remains to be addressed. However, our results raise questions about the structure of the membrane in this archaeon and other Archaea harboring a mixture of di- and tetraether lipids.

  19. Membrane homeoviscous adaptation in the piezo-hyperthermophilic archaeon Thermococcus barophilus

    PubMed Central

    Cario, Anaïs; Grossi, Vincent; Schaeffer, Philippe; Oger, Philippe M.

    2015-01-01

    The archaeon Thermococcus barophilus, one of the most extreme members of hyperthermophilic piezophiles known thus far, is able to grow at temperatures up to 103°C and pressures up to 80 MPa. We analyzed the membrane lipids of T. barophilus by high performance liquid chromatography–mass spectrometry as a function of pressure and temperature. In contrast to previous reports, we show that under optimal growth conditions (40 MPa, 85°C) the membrane spanning tetraether lipid GDGT-0 (sometimes called caldarchaeol) is a major membrane lipid of T. barophilus together with archaeol. Increasing pressure and decreasing temperature lead to an increase of the proportion of archaeol. Reversely, a higher proportion of GDGT-0 is observed under low pressure and high temperature conditions. Noticeably, pressure and temperature fluctuations also impact the level of unsaturation of apolar lipids having an irregular polyisoprenoid carbon skeleton (unsaturated lycopane derivatives), suggesting a structural role for these neutral lipids in the membrane of T. barophilus. Whether these apolar lipids insert in the membrane or not remains to be addressed. However, our results raise questions about the structure of the membrane in this archaeon and other Archaea harboring a mixture of di- and tetraether lipids. PMID:26539180

  20. Diffusion in inhomogeneous polymer membranes

    NASA Astrophysics Data System (ADS)

    Kasargod, Sameer S.; Adib, Farhad; Neogi, P.

    1995-10-01

    The dual mode sorption solubility isotherms assume, and in instances Zimm-Lundberg analysis of the solubilities show, that glassy polymers are heterogeneous and that the distribution of the solute in the polymer is also inhomogeneous. Under some conditions, the heterogeneities cannot be represented as holes. A mathematical model describing diffusion in inhomogeneous polymer membranes is presented using Cahn and Hilliard's gradient theory. The fractional mass uptake is found to be proportional to the fourth root of time rather than the square root, predicted by Fickian diffusion. This type of diffusion is classified as pseudo-Fickian. The model is compared with one experimental result available. A negative value of the persistence factor is obtained and the results are interpreted.

  1. Membrane Transport Phenomena (MTP)

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1997-01-01

    The activities during the fourth semi-annual period of the MTP project have involved the completion of the Science Concept Review (SCR) presentation and peer review, continuation of analyses for the mass transfer coefficients measured from MTA experiment data, and development of the second generation (MTP-II) instrument. The SCR panel members were generated several recommendations for the MTP project recommendations are : Table 1 Summary of Primary SCR Panel Recommendations (1) Continue and refine development of mass transfer coefficient analyses (2) Refine and upgrade analytical modeling associated with the MTP experiment. (3) Increase resolution of measurements in proximity of the membrane interface. (4) Shift emphasis to measurement of coupled transport effects (i.e., development of MTP phase II experiment concept).

  2. Biochemical characteristics of thylakoid membranes in chloroplasts of dark-grown pine cotyledons.

    PubMed

    Shinohara, K; Murakami, A; Fujita, Y

    1992-01-01

    Japanese black pine (Pinus thunbergii) cotyledons were found to synthesize chlorophylls in complete darkness during germination, although the synthesis was not as great as that in the light. The compositions of thylakoid components in plastids of cotyledons grown in the dark and light were compared using sodium dodecyl sulfate-polyacrylamide gel electrophoresis patterns of polypeptides and spectroscopic determination of membrane redox components. All thylakoid membrane proteins found in preparations from light-grown cotyledons were also present in preparations from dark-grown cotyledons. However, levels of photosystem I, photosystem II, cytochrome b([ill])/f, and light-harvesting chlorophyll-protein complexes in dark-grown cotyledons were only one-fourth of those in light-grown cotyledons, on a fresh weight basis. These results suggest that the low abundance of thylakoid components in dark-grown cotyledons is associated with the limited supply of chlorophyll needed to assemble the two photosystem complexes and the light-harvesting chlorophyll-protein complex.

  3. Variations in leaf growth parameters within the tree structure of adult Coffea arabica in relation to seasonal growth, water availability and air carbon dioxide concentration.

    PubMed

    Rakocevic, Miroslava; Matsunaga, Fabio Takeshi

    2018-04-05

    Dynamics in branch and leaf growth parameters, such as the phyllochron, duration of leaf expansion, leaf life span and bud mortality, determine tree architecture and canopy foliage distribution. We aimed to estimate leaf growth parameters in adult Arabica coffee plants based on leaf supporter axis order and position along the vertical profile, considering their modifications related to seasonal growth, air [CO2] and water availability. Growth and mortality of leaves and terminal buds of adult Arabica coffee trees were followed in two independent field experiments in two sub-tropical climate regions of Brazil, Londrina-PR (Cfa) and Jaguariúna-SP (Cwa). In the Cwa climate, coffee trees were grown under a FACE (free air CO2 enrichment) facility, where half of those had been irrigated. Plants were observed at a 15-30 d frequency for 1 year. Leaf growth parameters were estimated on five axes orders and expressed as functions of accumulated thermal time (°Cd per leaf). The phyllochron and duration of leaf expansion increased with axis order, from the seond to the fourth. The phyllochron and life span during the reduced vegetative seasonal growth were greater than during active growth. It took more thermal time for leaves from the first- to fourth-order axes to expand their blades under irrigation compared with rainfed conditions. The compensation effects of high [CO2] for low water availability were observed on leaf retention on the second and third axes orders, and duration of leaf expansion on the first- and fourth-order axes. The second-degree polynomials modelled leaf growth parameter distribution in the vertical tree profile, and linear regressions modelled the proportion of terminal bud mortality. Leaf growth parameters in coffee plants were determined by axis order. The duration of leaf expansion contributed to phyllochron determination. Leaf growth parameters varied according the position of the axis supporter along the vertical profile, suggesting an effect of axes age and micro-environmental light modulations.

  4. Hydroxycarbamide-Induced Changes in E/beta Thalassemia Red Blood Cells

    PubMed Central

    Sylvia, Singer T.; Elliott, Vichinsky; Sandra, Larkin; Nancy, Olivieri; Nancy, Sweeters; Frans, Kuypers A.

    2010-01-01

    In thalassemia, fetal hemoglobin (HbF) augmentation with hydroxycarbamide (also known as hydroxyurea) is not always successful. The expected parallel effects on RBC membrane deformability, cell hydration and membrane phospholipid organization, all important for extending RBC life span and increasing Hb, have been infrequently examined. We analyzed these characteristics in 15 non-transfused E/β 0 thalassemia patients treated with HU (mean 10.2 months). Membrane deformability and cell hydration mildly improved in association with increased HbF levels approaching statistical significance (r = 0.51, p=0.06). All measures improved considerably splenectomized patients. These findings underscore the disappointing results of hydroxyurea treatment in clinical trials; and the importance of examining the effect on red cell characteristics for the development and understanding of HbF-enhancing agents. PMID:18821710

  5. Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization

    PubMed Central

    Roux, Kyle J.; Crisp, Melissa L.; Liu, Qian; Kim, Daein; Kozlov, Serguei; Stewart, Colin L.; Burke, Brian

    2009-01-01

    Nucleocytoplasmic coupling is mediated by outer nuclear membrane (ONM) nesprin proteins and inner nuclear membrane Sun proteins. Interactions spanning the perinuclear space create nesprin–Sun complexes connecting the cytoskeleton to nuclear components. A search for proteins displaying a conserved C-terminal sequence present in nesprins 1–3 identified nesprin 4 (Nesp4), a new member of this family. Nesp4 is a kinesin-1-binding protein that displays Sun-dependent localization to the ONM. Expression of Nesp4 is associated with dramatic changes in cellular organization involving relocation of the centrosome and Golgi apparatus relative to the nucleus. These effects can be accounted for entirely by Nesp4's kinesin-binding function. The implication is that Nesp4 may contribute to microtubule-dependent nuclear positioning. PMID:19164528

  6. Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization.

    PubMed

    Roux, Kyle J; Crisp, Melissa L; Liu, Qian; Kim, Daein; Kozlov, Serguei; Stewart, Colin L; Burke, Brian

    2009-02-17

    Nucleocytoplasmic coupling is mediated by outer nuclear membrane (ONM) nesprin proteins and inner nuclear membrane Sun proteins. Interactions spanning the perinuclear space create nesprin-Sun complexes connecting the cytoskeleton to nuclear components. A search for proteins displaying a conserved C-terminal sequence present in nesprins 1-3 identified nesprin 4 (Nesp4), a new member of this family. Nesp4 is a kinesin-1-binding protein that displays Sun-dependent localization to the ONM. Expression of Nesp4 is associated with dramatic changes in cellular organization involving relocation of the centrosome and Golgi apparatus relative to the nucleus. These effects can be accounted for entirely by Nesp4's kinesin-binding function. The implication is that Nesp4 may contribute to microtubule-dependent nuclear positioning.

  7. Bilayer-Spanning DNA Nanopores with Voltage-Switching between Open and Closed State

    PubMed Central

    2014-01-01

    Membrane-spanning nanopores from folded DNA are a recent example of biomimetic man-made nanostructures that can open up applications in biosensing, drug delivery, and nanofluidics. In this report, we generate a DNA nanopore based on the archetypal six-helix-bundle architecture and systematically characterize it via single-channel current recordings to address several fundamental scientific questions in this emerging field. We establish that the DNA pores exhibit two voltage-dependent conductance states. Low transmembrane voltages favor a stable high-conductance level, which corresponds to an unobstructed DNA pore. The expected inner width of the open channel is confirmed by measuring the conductance change as a function of poly(ethylene glycol) (PEG) size, whereby smaller PEGs are assumed to enter the pore. PEG sizing also clarifies that the main ion-conducting path runs through the membrane-spanning channel lumen as opposed to any proposed gap between the outer pore wall and the lipid bilayer. At higher voltages, the channel shows a main low-conductance state probably caused by electric-field-induced changes of the DNA pore in its conformation or orientation. This voltage-dependent switching between the open and closed states is observed with planar lipid bilayers as well as bilayers mounted on glass nanopipettes. These findings settle a discrepancy between two previously published conductances. By systematically exploring a large space of parameters and answering key questions, our report supports the development of DNA nanopores for nanobiotechnology. PMID:25338165

  8. Bilayer-spanning DNA nanopores with voltage-switching between open and closed state.

    PubMed

    Seifert, Astrid; Göpfrich, Kerstin; Burns, Jonathan R; Fertig, Niels; Keyser, Ulrich F; Howorka, Stefan

    2015-02-24

    Membrane-spanning nanopores from folded DNA are a recent example of biomimetic man-made nanostructures that can open up applications in biosensing, drug delivery, and nanofluidics. In this report, we generate a DNA nanopore based on the archetypal six-helix-bundle architecture and systematically characterize it via single-channel current recordings to address several fundamental scientific questions in this emerging field. We establish that the DNA pores exhibit two voltage-dependent conductance states. Low transmembrane voltages favor a stable high-conductance level, which corresponds to an unobstructed DNA pore. The expected inner width of the open channel is confirmed by measuring the conductance change as a function of poly(ethylene glycol) (PEG) size, whereby smaller PEGs are assumed to enter the pore. PEG sizing also clarifies that the main ion-conducting path runs through the membrane-spanning channel lumen as opposed to any proposed gap between the outer pore wall and the lipid bilayer. At higher voltages, the channel shows a main low-conductance state probably caused by electric-field-induced changes of the DNA pore in its conformation or orientation. This voltage-dependent switching between the open and closed states is observed with planar lipid bilayers as well as bilayers mounted on glass nanopipettes. These findings settle a discrepancy between two previously published conductances. By systematically exploring a large space of parameters and answering key questions, our report supports the development of DNA nanopores for nanobiotechnology.

  9. Length-Dependent Formation of Transmembrane Pores by 310-Helical α-Aminoisobutyric Acid Foldamers

    PubMed Central

    2015-01-01

    The synthetic biology toolbox lacks extendable and conformationally controllable yet easy-to-synthesize building blocks that are long enough to span membranes. To meet this need, an iterative synthesis of α-aminoisobutyric acid (Aib) oligomers was used to create a library of homologous rigid-rod 310-helical foldamers, which have incrementally increasing lengths and functionalizable N- and C-termini. This library was used to probe the inter-relationship of foldamer length, self-association strength, and ionophoric ability, which is poorly understood. Although foldamer self-association in nonpolar chloroform increased with length, with a ∼14-fold increase in dimerization constant from Aib6 to Aib11, ionophoric activity in bilayers showed a stronger length dependence, with the observed rate constant for Aib11 ∼70-fold greater than that of Aib6. The strongest ionophoric activity was observed for foldamers with >10 Aib residues, which have end-to-end distances greater than the hydrophobic width of the bilayers used (∼2.8 nm); X-ray crystallography showed that Aib11 is 2.93 nm long. These studies suggest that being long enough to span the membrane is more important for good ionophoric activity than strong self-association in the bilayer. Planar bilayer conductance measurements showed that Aib11 and Aib13, but not Aib7, could form pores. This pore-forming behavior is strong evidence that Aibm (m ≥ 10) building blocks can span bilayers. PMID:26699898

  10. Mixed mosaic membranes prepared by layer-by-layer assembly for ionic separations.

    PubMed

    Rajesh, Sahadevan; Yan, Yu; Chang, Hsueh-Chia; Gao, Haifeng; Phillip, William A

    2014-12-23

    Charge mosaic membranes, which possess distinct cationic and anionic domains that traverse the membrane thickness, are capable of selectively separating dissolved salts from similarly sized neutral solutes. Here, the generation of charge mosaic membranes using facile layer-by-layer assembly methodologies is reported. Polymeric nanotubes with pore walls lined by positively charged polyethylenimine moieties or negatively charged poly(styrenesulfonate) moieties were prepared via layer-by-layer assembly using track-etched membranes as sacrificial templates. Subsequently, both types of nanotubes were deposited on a porous support in order to produce mixed mosaic membranes. Scanning electron microscopy demonstrates that the facile deposition techniques implemented result in nanotubes that are vertically aligned without overlap between adjacent elements. Furthermore, the nanotubes span the thickness of the mixed mosaic membranes. The effects of this unique nanostructure are reflected in the transport characteristics of the mixed mosaic membranes. The hydraulic permeability of the mixed mosaic membranes in piezodialysis operations was 8 L m(-2) h(-1) bar(-1). Importantly, solute rejection experiments demonstrate that the mixed mosaic membranes are more permeable to ionic solutes than similarly sized neutral molecules. In particular, negative rejection of sodium chloride is observed (i.e., the concentration of NaCl in the solution that permeates through a mixed mosaic membrane is higher than in the initial feed solution). These properties illustrate the ability of mixed mosaic membranes to permeate dissolved ions selectively without violating electroneutrality and suggest their utility in ionic separations.

  11. Development of an automation technique for the establishment of functional lipid bilayer arrays

    NASA Astrophysics Data System (ADS)

    Hansen, J. S.; Perry, M.; Vogel, J.; Vissing, T.; Hansen, C. R.; Geschke, O.; Emnéus, J.; Nielsen, C. H.

    2009-02-01

    In the present work, a technique for establishing multiple black lipid membranes (BLMs) in arrays of micro structured ethylene tetrafluoroethylene (ETFE) films, and supported by a micro porous material was developed. Rectangular 8 × 8 arrays with apertures having diameters of 301 ± 5 µm were fabricated in ETFE Teflon film by laser ablation using a carbon dioxide laser. Multiple lipid membranes could be formed across the micro structured 8 × 8 array ETFE partitions. Success rates for the establishment of cellulose-supported BLMs across the multiple aperture arrays were above 95%. However, the time course of the membrane thinning process was found to vary considerably between multiple aperture bilayer experiments. An airbrush partition pretreatment technique was developed to increase the reproducibility of the multiple lipid bilayers formation during the time course from the establishment of the lipid membranes to the formation of bilayers. The results showed that multiple lipid bilayers could be reproducible formed across the airbrush-pretreated 8 × 8 rectangular arrays. The ionophoric peptide valinomycin was incorporated into established membrane arrays, resulting in ionic currents that could be effectively blocked by tetraethylammonium. This shows that functional bimolecular lipid membranes were established, and furthermore outlines that the established lipid membrane arrays could host functional membrane-spanning molecules.

  12. Stalk model of membrane fusion: solution of energy crisis.

    PubMed Central

    Kozlovsky, Yonathan; Kozlov, Michael M

    2002-01-01

    Membrane fusion proceeds via formation of intermediate nonbilayer structures. The stalk model of fusion intermediate is commonly recognized to account for the major phenomenology of the fusion process. However, in its current form, the stalk model poses a challenge. On one hand, it is able to describe qualitatively the modulation of the fusion reaction by the lipid composition of the membranes. On the other, it predicts very large values of the stalk energy, so that the related energy barrier for fusion cannot be overcome by membranes within a biologically reasonable span of time. We suggest a new structure for the fusion stalk, which resolves the energy crisis of the model. Our approach is based on a combined deformation of the stalk membrane including bending of the membrane surface and tilt of the hydrocarbon chains of lipid molecules. We demonstrate that the energy of the fusion stalk is a few times smaller than those predicted previously and the stalks are feasible in real systems. We account quantitatively for the experimental results on dependence of the fusion reaction on the lipid composition of different membrane monolayers. We analyze the dependence of the stalk energy on the distance between the fusing membranes and provide the experimentally testable predictions for the structural features of the stalk intermediates. PMID:11806930

  13. Relativistic parameters of senescence.

    PubMed

    Stathatos, Marios A

    2005-01-01

    The laws of biochemistry and biology are governed by parameters whose description in mathematical formulas is based on the three-dimensional space. It is a fact, however, that the life span of a cell and its specific functions, though limited, can be extended or diminished depending on the genetic code but also, on the natural pressure of the environment. The plasticity exhibited by a cellular system has been attributed to the change of the three-dimensional structure of the cell, with time being a simple measure of this change. The model of biological relativity proposed here, considers time as a flexible fourth dimension that corresponds directly to the inertial status of the cells. Two types of clocks are defined: the relativistic biological clock (RBC) and the mechanical clock (MC). In contrast to the MCs that show the astrological reference time, the time shown by the RBCs delay because it depends on cellular activity. The maximum and the expected life span of the cells and/or the organisms can be therefore relied on time transformation. One of the most important factors that can affect time flow is the energy that is produced during metabolic work. Based on this observation, RBCs can be constructed following series of theoretical experiments in order to assess biological time and life span changes.

  14. Functional Assessment of the Vanderbilt Multigrasp Myoelectric Hand: A Continuing Case Study

    PubMed Central

    Dalley, Skyler A.; Bennett, Daniel A.; Goldfarb, Michael

    2015-01-01

    This paper presents a case study involving the functional assessment of the Vanderbilt Multigrasp (VMG) hand prosthesis on a single transradial amputee subject. In particular, a transradial amputee subject performed the Southampton Hand Assessment Procedure (SHAP) using the hand prosthesis and multigrasp myoelectric controller in a series of experimental sessions occurring over a multi-week time span. The subject’s index of function (IoF) improved with each session, although essentially plateaued after the fourth session, resulting in a IoF score of 87, which compares favorably to SHAP scores published in previous studies. PMID:25571412

  15. Gene Duplication Leads to Altered Membrane Topology of a Cytochrome P450 Enzyme in Seed Plants

    PubMed Central

    Renault, Hugues; De Marothy, Minttu; Jonasson, Gabriella; Lara, Patricia; Nelson, David R.; Nilsson, IngMarie; André, François; von Heijne, Gunnar; Werck-Reichhart, Danièle

    2017-01-01

    Abstract Evolution of the phenolic metabolism was critical for the transition of plants from water to land. A cytochrome P450, CYP73, with cinnamate 4-hydroxylase (C4H) activity, catalyzes the first plant-specific and rate-limiting step in this pathway. The CYP73 gene is absent from green algae, and first detected in bryophytes. A CYP73 duplication occurred in the ancestor of seed plants and was retained in Taxaceae and most angiosperms. In spite of a clear divergence in primary sequence, both paralogs can fulfill comparable cinnamate hydroxylase roles both in vitro and in vivo. One of them seems dedicated to the biosynthesis of lignin precursors. Its N-terminus forms a single membrane spanning helix and its properties and length are highly constrained. The second is characterized by an elongated and variable N-terminus, reminiscent of ancestral CYP73s. Using as proxies the Brachypodium distachyon proteins, we show that the elongation of the N-terminus does not result in an altered subcellular localization, but in a distinct membrane topology. Insertion in the membrane of endoplasmic reticulum via a double-spanning open hairpin structure allows reorientation to the lumen of the catalytic domain of the protein. In agreement with participation to a different functional unit and supramolecular organization, the protein displays modified heme proximal surface. These data suggest the evolution of divergent C4H enzymes feeding different branches of the phenolic network in seed plants. It shows that specialization required for retention of gene duplicates may result from altered protein topology rather than change in enzyme activity. PMID:28505373

  16. Gene Duplication Leads to Altered Membrane Topology of a Cytochrome P450 Enzyme in Seed Plants.

    PubMed

    Renault, Hugues; De Marothy, Minttu; Jonasson, Gabriella; Lara, Patricia; Nelson, David R; Nilsson, IngMarie; André, François; von Heijne, Gunnar; Werck-Reichhart, Danièle

    2017-08-01

    Evolution of the phenolic metabolism was critical for the transition of plants from water to land. A cytochrome P450, CYP73, with cinnamate 4-hydroxylase (C4H) activity, catalyzes the first plant-specific and rate-limiting step in this pathway. The CYP73 gene is absent from green algae, and first detected in bryophytes. A CYP73 duplication occurred in the ancestor of seed plants and was retained in Taxaceae and most angiosperms. In spite of a clear divergence in primary sequence, both paralogs can fulfill comparable cinnamate hydroxylase roles both in vitro and in vivo. One of them seems dedicated to the biosynthesis of lignin precursors. Its N-terminus forms a single membrane spanning helix and its properties and length are highly constrained. The second is characterized by an elongated and variable N-terminus, reminiscent of ancestral CYP73s. Using as proxies the Brachypodium distachyon proteins, we show that the elongation of the N-terminus does not result in an altered subcellular localization, but in a distinct membrane topology. Insertion in the membrane of endoplasmic reticulum via a double-spanning open hairpin structure allows reorientation to the lumen of the catalytic domain of the protein. In agreement with participation to a different functional unit and supramolecular organization, the protein displays modified heme proximal surface. These data suggest the evolution of divergent C4H enzymes feeding different branches of the phenolic network in seed plants. It shows that specialization required for retention of gene duplicates may result from altered protein topology rather than change in enzyme activity. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Singlet oxygen Triplet Energy Transfer based imaging technology for mapping protein-protein proximity in intact cells

    PubMed Central

    To, Tsz-Leung; Fadul, Michael J.; Shu, Xiaokun

    2014-01-01

    Many cellular processes are carried out by large protein complexes that can span several tens of nanometers. Whereas Forster resonance energy transfer has a detection range of <10 nm, here we report the theoretical development and experimental demonstration of a new fluorescence imaging technology with a detection range of up to several tens of nanometers: singlet oxygen triplet energy transfer. We demonstrate that our method confirms the topology of a large protein complex in intact cells, which spans from the endoplasmic reticulum to the outer mitochondrial membrane and the matrix. This new method is thus suited for mapping protein proximity in large protein complexes. PMID:24905026

  18. Single-molecule investigation of the interactions between reconstituted planar lipid membranes and an analogue of the HP(2-20) antimicrobial peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mereuta, Loredana; Luchian, Tudor; Park, Yoonkyung

    2008-09-05

    In this study, we employed electrophysiology experiments carried out at the single-molecule level to study the mechanism of action of the HPA3 peptide, an analogue of the linear antimicrobial peptide, HP(2-20), isolated from the N-terminal region of the Helicobacter pylori ribosomal protein. Amplitude analysis of currents fluctuations induced by HPA3 peptide at various potentials in zwitterionic lipid membranes reveal the existence of reproducible conductive states in the stochastic behavior of such events, which directly supports the existence of transmembrane pores induced the peptide. From our data recorded both at the single-pore and macroscopic levels, we propose that the HPA3 poremore » formation is electrophoretically facilitated by trans-negative transmembrane potentials, and HPA3 peptides translocate into the trans monolayers after forming the pores. We present evidence according to which the decrease in the membrane dipole potential of a reconstituted lipid membranes leads to an augmentation of the membrane activity of HPA3 peptides, and propose that a lower electric dipole field of the interfacial region of the membrane caused by phloretin facilitates the surface-bound HPA3 peptides to break free from one leaflet of the membrane, insert into the membrane and contribute to pore formation spanning the entire thickness of the membrane.« less

  19. Physics of HIV

    NASA Astrophysics Data System (ADS)

    Tristram-Nagle, Stephanie

    2018-05-01

    This review summarizes over a decade of investigations into how membrane-binding proteins from the HIV-1 virus interact with lipid membrane mimics of various HIV and host T-cell membranes. The goal of the work was to characterize at the molecular level both the elastic and structural changes that occur due to HIV protein/membrane interactions, which could lead to new drugs to thwart the HIV virus. The main technique used to study these interactions is diffuse x-ray scattering, which yields the bending modulus, K C, as well as structural parameters such as membrane thickness, area/lipid and position of HIV peptides (parts of HIV proteins) in the membrane. Our methods also yield information about lipid chain order or disorder caused by the peptides. This review focuses on three stages of the HIV-1 life cycle: (1) infection, (2) Tat membrane transport, and (3) budding. In the infection stage, our lab studied three different parts of HIV-1 gp41 (glycoprotein 41 fusion protein): (1) FP23, the N-terminal 23 amino acids that interact non-specifically with the T-cell host membrane to cause fusion of two membranes, and its trimer version, (2) cholesterol recognition amino acid consensus sequence, on the membrane proximal external region near the membrane-spanning domain, and (3) lentiviral lytic peptide 2 on the cytoplasmic C-terminal tail. For Tat transport, we used membrane mimics of the T-cell nuclear membrane as well as simpler models that varied charge and negative curvature. For membrane budding, we varied the myristoylation of the MA31 peptide as well as the negatively charged lipid. These studies show that HIV peptides with different roles in the HIV life cycle affect differently the relevant membrane mimics. In addition, the membrane lipid composition plays an important role in the peptides’ effects.

  20. Concentration dependence of the cell membrane permeability to cryoprotectant and water and implications for design of methods for post-thaw washing of human erythrocytes.

    PubMed

    Lahmann, John M; Benson, James D; Higgins, Adam Z

    2018-02-01

    For more than fifty years the human red blood cell (RBC) has been a widely studied model for transmembrane mass transport. Existing literature spans myriad experimental designs with varying results and physiologic interpretations. In this review, we examine the kinetics and mechanisms of membrane transport in the context of RBC cryopreservation. We include a discussion of the pathways for water and glycerol permeation through the cell membrane and the implications for mathematical modeling of the membrane transport process. In particular, we examine the concentration dependence of water and glycerol transport and provide equations for estimating permeability parameters as a function of concentration based on a synthesis of literature data. This concentration-dependent transport model may allow for design of improved methods for post-thaw removal of glycerol from cryopreserved blood. More broadly, the consideration of the concentration dependence of membrane permeability parameters may be important for other cell types as well, especially for design of methods for equilibration with the highly concentrated solutions used for vitrification. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Optical microwell assay of membrane transport kinetics.

    PubMed

    Kiskin, Nikolai I; Siebrasse, Jan P; Peters, Reiner

    2003-10-01

    In optical single transporter recording, membranes are firmly attached to flat solid substrates containing small wells or test compartments (TC). Transport of fluorescent molecules through TC-spanning membrane patches is induced by solution change and recorded by confocal microscopy. Previously, track-etched membrane filters were used to create solid substrates containing populations of randomly distributed TCs. In this study the possibilities offered by orderly TC arrays as created by laser microdrilling were explored. A theoretical framework was developed taking the convolution of membrane transport, solution change, and diffusion into account. The optical properties of orderly TC arrays were studied and the kinetics of solution change measured. Export and import through the nuclear pore complex (NPC) was analyzed in isolated envelopes of Xenopus oocyte nuclei. In accordance with previous reports nuclear transport receptor NTF2, which binds directly to NPC proteins, was found to be translocated much faster than "inert" molecules of similar size. Unexpectedly, NXT1, a homolog of NTF2 reportedly unable to bind to NPC proteins directly, was translocated as fast as NTF2. Thus, microstructured TC arrays were shown to provide optical single transporter recording with a new basis.

  2. Design of synthetic jet actuator based on FSMA composite

    NASA Astrophysics Data System (ADS)

    Liang, Yuanchang; Kuga, Yasuo; Taya, Minoru

    2005-05-01

    An improved version of the membrane actuator has been designed and constructed based on our previous diaphragm actuator. It consists of ferromagnetic shape memory alloy composite (FSMA) diaphragm and an electromagnet system. The actuation mechanism of the membrane actuator is the hybrid mechanism that we proposed previously. The high momentum airflow will be produced by the oscillation of the circular FSMA composite diaphragm driven by electromagnets close to its resonance frequency. This membrane actuator is designed for the active flow control technology on airplane wings. The active flow control (AFC) technology has been studied and shown that it can help aircraft improve aerodynamic performance and jet noise reduction. AFC can be achieved by a synthetic jet actuator injecting high momentum air into the airflow at the appropriate locations on aircraft wings. Due to large force and martensitic transformation on the FSMA composite diaphragm, the membrane actuator can produce 190 m/s synthetic jets at 220 Hz. A series connection of several membrane actuators is proposed to construct a synthetic jet actuator package for distributing synthetic jet flow along the wing span.

  3. Detergent-dependent kinetics of truncated Plasmodium falciparum dihydroorotate dehydrogenase.

    PubMed

    Malmquist, Nicholas A; Baldwin, Jeffrey; Phillips, Margaret A

    2007-04-27

    The survival of the malaria parasite Plasmodium falciparum is dependent upon the de novo biosynthesis of pyrimidines. P. falciparum dihydroorotate dehydrogenase (PfDHODH) catalyzes the fourth step in this pathway in an FMN-dependent reaction. The full-length enzyme is associated with the inner mitochondrial membrane, where ubiquinone (CoQ) serves as the terminal electron acceptor. The lipophilic nature of the co-substrate suggests that electron transfer to CoQ occurs at the two-dimensional lipid-solution interface. Here we show that PfDHODH associates with liposomes even in the absence of the N-terminal transmembrane-spanning domain. The association of a series of ubiquinone substrates with detergent micelles was studied by isothermal titration calorimetry, and the data reveal that CoQ analogs with long decyl (CoQ(D)) or geranyl (CoQ(2)) tails partition into detergent micelles, whereas that with a short prenyl tail (CoQ(1)) remains in solution. PfDHODH-catalyzed reduction of CoQ(D) and CoQ(2), but not CoQ(1), is stimulated as detergent concentrations (Tween 80 or Triton X-100) are increased up to their critical micelle concentrations, beyond which activity declines. Steady-state kinetic data acquired for the reaction with CoQ(D) and CoQ(2) in substrate-detergent mixed micelles fit well to a surface dilution kinetic model. In contrast, the data for CoQ(1) as a substrate were well described by solution steady-state kinetics. Our results suggest that the partitioning of lipophilic ubiquinone analogues into detergent micelles needs to be an important consideration in the kinetic analysis of enzymes that utilize these substrates.

  4. Chemical synthesis of membrane proteins by the removable backbone modification method.

    PubMed

    Tang, Shan; Zuo, Chao; Huang, Dong-Liang; Cai, Xiao-Ying; Zhang, Long-Hua; Tian, Chang-Lin; Zheng, Ji-Shen; Liu, Lei

    2017-12-01

    Chemical synthesis can produce membrane proteins bearing specifically designed modifications (e.g., phosphorylation, isotope labeling) that are difficult to obtain through recombinant protein expression approaches. The resulting homogeneously modified synthetic membrane proteins are valuable tools for many advanced biochemical and biophysical studies. This protocol describes the chemical synthesis of membrane proteins by condensation of transmembrane peptide segments through native chemical ligation. To avoid common problems encountered due to the poor solubility of transmembrane peptides in almost any solvent, we describe an effective procedure for the chemical synthesis of membrane proteins through the removable-backbone modification (RBM) strategy. Two key steps of this protocol are: (i) installation of solubilizing Arg4-tagged RBM groups into the transmembrane peptides at any primary amino acid through Fmoc (9-fluorenylmethyloxycarbonyl) solid-phase peptide synthesis and (ii) native ligation of the full-length sequence, followed by removal of the RBM tags by TFA (trifluoroacetic acid) cocktails to afford the native protein. The installation of RBM groups is achieved by using 4-methoxy-5-nitrosalicyladehyde by reduction amination to incorporate an activated O-to-N acyl transfer auxiliary. The Arg4-tag-modified membrane-spanning peptide segments behave like water-soluble peptides to facilitate their purification, ligation and mass characterization.

  5. A mirror code for protein-cholesterol interactions in the two leaflets of biological membranes

    NASA Astrophysics Data System (ADS)

    Fantini, Jacques; di Scala, Coralie; Evans, Luke S.; Williamson, Philip T. F.; Barrantes, Francisco J.

    2016-02-01

    Cholesterol controls the activity of a wide range of membrane receptors through specific interactions and identifying cholesterol recognition motifs is therefore critical for understanding signaling receptor function. The membrane-spanning domains of the paradigm neurotransmitter receptor for acetylcholine (AChR) display a series of cholesterol consensus domains (referred to as “CARC”). Here we use a combination of molecular modeling, lipid monolayer/mutational approaches and NMR spectroscopy to study the binding of cholesterol to a synthetic CARC peptide. The CARC-cholesterol interaction is of high affinity, lipid-specific, concentration-dependent, and sensitive to single-point mutations. The CARC motif is generally located in the outer membrane leaflet and its reverse sequence CRAC in the inner one. Their simultaneous presence within the same transmembrane domain obeys a “mirror code” controlling protein-cholesterol interactions in the outer and inner membrane leaflets. Deciphering this code enabled us to elaborate guidelines for the detection of cholesterol-binding motifs in any membrane protein. Several representative examples of neurotransmitter receptors and ABC transporters with the dual CARC/CRAC motifs are presented. The biological significance and potential clinical applications of the mirror code are discussed.

  6. The shape of the transmembrane domain is a novel endocytosis signal for single-spanning membrane proteins.

    PubMed

    González Montoro, Ayelén; Bigliani, Gonzalo; Valdez Taubas, Javier

    2017-11-15

    Endocytosis is crucial for all cells as it allows them to incorporate material from the extracellular space and control the availability of transmembrane proteins at the plasma membrane. In yeast, endocytosis followed by recycling to the plasma membrane results in a polarised distribution of membrane proteins by a kinetic mechanism. Here, we report that increasing the volume of residues that constitute the exoplasmic half of the transmembrane domain (TMD) in the yeast SNARE Sso1, a type II membrane protein, results in its polarised distribution at the plasma membrane. Expression of this chimera in strains affected in either endocytosis or recycling revealed that this polarisation is achieved by endocytic cycling. A bioinformatics search of the Saccharomyces cerevisiae proteome identified several proteins with high-volume exoplasmic hemi-TMDs. Our experiments indicate that TMDs from these proteins can confer a polarised distribution to the Sso1 cytoplasmic domain, indicating that the shape of the TMD can act as a novel endocytosis and polarity signal in yeast . Additionally, a high-volume exoplasmic hemi-TMD can act as an endocytosis signal in a mammalian cell line. © 2017. Published by The Company of Biologists Ltd.

  7. A history of gap junction structure: hexagonal arrays to atomic resolution.

    PubMed

    Grosely, Rosslyn; Sorgen, Paul L

    2013-02-01

    Gap junctions are specialized membrane structures that provide an intercellular pathway for the propagation and/or amplification of signaling cascades responsible for impulse propagation, cell growth, and development. Prior to the identification of the proteins that comprise gap junctions, elucidation of channel structure began with initial observations of a hexagonal nexus connecting apposed cellular membranes. Concomitant with technological advancements spanning over 50 years, atomic resolution structures are now available detailing channel architecture and the cytoplasmic domains that have helped to define mechanisms governing the regulation of gap junctions. Highlighted in this review are the seminal structural studies that have led to our current understanding of gap junction biology.

  8. Construction of an amperometric ascorbate biosensor using epoxy resin membrane bound Lagenaria siceraria fruit ascorbate oxidase.

    PubMed

    Pundir, C S; Chauhan, Nidhi; Jyoti

    2011-06-01

    Ascorbate oxidase purified from Lagenaria siceraria fruit was immobilized onto epoxy resin "Araldite" membrane with 79.4% retention of initial activity of free enzyme. The biosensor showed optimum response within 15s at pH 5.8 and 35°C, which was directly proportional to ascorbate concentration ranging from 1-100μM. There was a good correlation (R(2) = 0.99) between serum ascorbic acid values by standard enzymic colorimetric method and the present method. The enzyme electrode was used for 200 times without considerable loss of activity during the span of 90 days when stored at 4°C.

  9. Dynamic multiprotein assemblies shape the spatial structure of cell signaling.

    PubMed

    Nussinov, Ruth; Jang, Hyunbum

    2014-01-01

    Cell signaling underlies critical cellular decisions. Coordination, efficiency as well as fail-safe mechanisms are key elements. How the cell ensures that these hallmarks are at play are important questions. Cell signaling is often viewed as taking place through discrete and cross-talking pathways; oftentimes these are modularized to emphasize distinct functions. While simple, convenient and clear, such models largely neglect the spatial structure of cell signaling; they also convey inter-modular (or inter-protein) spatial separation that may not exist. Here our thesis is that cell signaling is shaped by a network of multiprotein assemblies. While pre-organized, the assemblies and network are loose and dynamic. They contain transiently-associated multiprotein complexes which are often mediated by scaffolding proteins. They are also typically anchored in the membrane, and their continuum may span the cell. IQGAP1 scaffolding protein which binds proteins including Raf, calmodulin, Mek, Erk, actin, and tens more, with actin shaping B-cell (and likely other) membrane-anchored nanoclusters and allosterically polymerizing in dynamic cytoskeleton formation, and Raf anchoring in the membrane along with Ras, provides a striking example. The multivalent network of dynamic proteins and lipids, with specific interactions forming and breaking, can be viewed as endowing gel-like properties. Collectively, this reasons that efficient, productive and reliable cell signaling takes place primarily through transient, preorganized and cooperative protein-protein interactions spanning the cell rather than stochastic, diffusion-controlled processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Lead Research and Development Activity for DOE's High Temperature, Low Relative Humidity Membrane Program (Topic 2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James Fenton, PhD; Darlene Slattery, PhD; Nahid Mohajeri, PhD

    2012-09-05

    The Department of Energy’s High Temperature, Low Relative Humidity Membrane Program was begun in 2006 with the Florida Solar Energy Center (FSEC) as the lead organization. During the first three years of the program, FSEC was tasked with developing non-Nafion® proton exchange membranes with improved conductivity for fuel cells. Additionally, FSEC was responsible for developing protocols for the measurement of in-plane conductivity, providing conductivity measurements for the other funded teams, developing a method for through-plane conductivity and organizing and holding semiannual meetings of the High Temperature Membrane Working Group (HTMWG). The FSEC membrane research focused on the development of supportedmore » poly[perfluorosulfonic acid] (PFSA) – Teflon membranes and a hydrocarbon membrane, sulfonated poly(ether ether ketone). The fourth generation of the PFSA membrane (designated FSEC-4) came close to, but did not meet, the Go/No-Go milestone of 0.1 S/cm at 50% relative humidity at 120 °C. In-plane conductivity of membranes provided by the funded teams was measured and reported to the teams and DOE. Late in the third year of the program, DOE used this data and other factors to decide upon the teams to continue in the program. The teams that continued provided promising membranes to FSEC for development of membrane electrode assemblies (MEAs) that could be tested in an operating fuel cell. FSEC worked closely with each team to provide customized support. A logic flow chart was developed and discussed before MEA fabrication or any testing began. Of the five teams supported, by the end of the project, membranes from two of the teams were easily manufactured into MEAs and successfully characterized for performance. One of these teams exceeded performance targets, while the other requires further optimization. An additional team developed a membrane that shows great promise for significantly reducing membrane costs and increasing membrane lifetime.« less

  11. Integrated Structural Biology for α-Helical Membrane Protein Structure Determination.

    PubMed

    Xia, Yan; Fischer, Axel W; Teixeira, Pedro; Weiner, Brian; Meiler, Jens

    2018-04-03

    While great progress has been made, only 10% of the nearly 1,000 integral, α-helical, multi-span membrane protein families are represented by at least one experimentally determined structure in the PDB. Previously, we developed the algorithm BCL::MP-Fold, which samples the large conformational space of membrane proteins de novo by assembling predicted secondary structure elements guided by knowledge-based potentials. Here, we present a case study of rhodopsin fold determination by integrating sparse and/or low-resolution restraints from multiple experimental techniques including electron microscopy, electron paramagnetic resonance spectroscopy, and nuclear magnetic resonance spectroscopy. Simultaneous incorporation of orthogonal experimental restraints not only significantly improved the sampling accuracy but also allowed identification of the correct fold, which is demonstrated by a protein size-normalized transmembrane root-mean-square deviation as low as 1.2 Å. The protocol developed in this case study can be used for the determination of unknown membrane protein folds when limited experimental restraints are available. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Structure of a Type-1 Secretion System ABC Transporter.

    PubMed

    Morgan, Jacob L W; Acheson, Justin F; Zimmer, Jochen

    2017-03-07

    Type-1 secretion systems (T1SSs) represent a widespread mode of protein secretion across the cell envelope in Gram-negative bacteria. The T1SS is composed of an inner-membrane ABC transporter, a periplasmic membrane-fusion protein, and an outer-membrane porin. These three components assemble into a complex spanning both membranes and providing a conduit for the translocation of unfolded polypeptides. We show that ATP hydrolysis and assembly of the entire T1SS complex is necessary for protein secretion. Furthermore, we present a 3.15-Å crystal structure of AaPrtD, the ABC transporter found in the Aquifex aeolicus T1SS. The structure suggests a substrate entry window just above the transporter's nucleotide binding domains. In addition, highly kinked transmembrane helices, which frame a narrow channel not observed in canonical peptide transporters, are likely involved in substrate translocation. Overall, the AaPrtD structure supports a polypeptide transport mechanism distinct from alternating access. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Isotropic actomyosin dynamics promote organization of the apical cell cortex in epithelial cells.

    PubMed

    Klingner, Christoph; Cherian, Anoop V; Fels, Johannes; Diesinger, Philipp M; Aufschnaiter, Roland; Maghelli, Nicola; Keil, Thomas; Beck, Gisela; Tolić-Nørrelykke, Iva M; Bathe, Mark; Wedlich-Soldner, Roland

    2014-10-13

    Although cortical actin plays an important role in cellular mechanics and morphogenesis, there is surprisingly little information on cortex organization at the apical surface of cells. In this paper, we characterize organization and dynamics of microvilli (MV) and a previously unappreciated actomyosin network at the apical surface of Madin-Darby canine kidney cells. In contrast to short and static MV in confluent cells, the apical surfaces of nonconfluent epithelial cells (ECs) form highly dynamic protrusions, which are often oriented along the plane of the membrane. These dynamic MV exhibit complex and spatially correlated reorganization, which is dependent on myosin II activity. Surprisingly, myosin II is organized into an extensive network of filaments spanning the entire apical membrane in nonconfluent ECs. Dynamic MV, myosin filaments, and their associated actin filaments form an interconnected, prestressed network. Interestingly, this network regulates lateral mobility of apical membrane probes such as integrins or epidermal growth factor receptors, suggesting that coordinated actomyosin dynamics contributes to apical cell membrane organization. © 2014 Klingner et al.

  14. Cryo-EM structure of lysenin pore elucidates membrane insertion by an aerolysin family protein

    NASA Astrophysics Data System (ADS)

    Bokori-Brown, Monika; Martin, Thomas G.; Naylor, Claire E.; Basak, Ajit K.; Titball, Richard W.; Savva, Christos G.

    2016-04-01

    Lysenin from the coelomic fluid of the earthworm Eisenia fetida belongs to the aerolysin family of small β-pore-forming toxins (β-PFTs), some members of which are pathogenic to humans and animals. Despite efforts, a high-resolution structure of a channel for this family of proteins has been elusive and therefore the mechanism of activation and membrane insertion remains unclear. Here we determine the pore structure of lysenin by single particle cryo-EM, to 3.1 Å resolution. The nonameric assembly reveals a long β-barrel channel spanning the length of the complex that, unexpectedly, includes the two pre-insertion strands flanking the hypothetical membrane-insertion loop. Examination of other members of the aerolysin family reveals high structural preservation in this region, indicating that the membrane-insertion pathway in this family is conserved. For some toxins, proteolytic activation and pro-peptide removal will facilitate unfolding of the pre-insertion strands, allowing them to form the β-barrel of the channel.

  15. Structure and Function Study of HIV and Influenza Fusion Proteins

    NASA Astrophysics Data System (ADS)

    Liang, Shuang

    Human immunodeficiency virus (HIV) and influenza virus are membrane-enveloped viruses causing acquired immunodeficiency syndrome (AIDS) and flu. The initial step of HIV and influenza virus infection is fusion between viral and host cell membrane catalyzed by the viral fusion protein gp41 and hemagglutinin (HA) respectively. However, the structure of gp41 and HA as well as the infection mechanism are still not fully understood. This work addresses (1) full length gp41 ectodomain and TM domain structure and function and (2) IFP membrane location and IFP-membrane interaction. My studies of gp41 protein and IFP can provide better understanding of the membrane fusion mechanism and may aid development of anti-viral therapeutics and vaccine. The full length ectodomain and transmembrane domain of gp41 and shorter constructs were expressed, purified and solubilized at physiology conditions. The constructs adopt overall alpha helical structure in SDS and DPC detergents, and showed hyperthermostability with Tm > 90 °C. The oligomeric states of these proteins vary in different detergent buffer: predominant trimer for all constructs and some hexamer fraction for HM and HM_TM protein in SDS at pH 7.4; and mixtures of monomer, trimer, and higher-order oligomer protein in DPC at pH 4.0 and 7.4. Substantial protein-induced vesicle fusion was observed, including fusion of neutral vesicles at neutral pH, which are the conditions similar HIV/cell fusion. Vesicle fusion by a gp41 ectodomain construct has rarely been observed under these conditions, and is aided by inclusion of both the FP and TM, and by protein which is predominantly trimer rather than monomer. Current data was integrated with existing data, and a structural model was proposed. Secondary structure and conformation of IFP is a helix-turn-helix structure in membrane. However, there has been arguments about the IFP membrane location. 13C-2H REDOR solid-state NMR is used to solve this problem. The IFP adopts major alpha helical, minor beta strand secondary structure in PC/PG membrane. The alpha helical IFP's with respectively 13CO labeled Leu-2, Ala-7 and Gly-16 all show close contacts with the lipid acyl chain tail, suggesting IFP has strong interaction with the membrane. By screening the current IFP topology models, it either has a membrane-spanning confirmation, or it promotes lipid trail protrusion. IFP bounded lipid membrane structure was studied by paramagnetic relaxation enhancement (PRE) solid-state NMR to provide more information about the detailed IFP membrane location model. The T2 relaxation time and rate were measured for membrane with or without IFP and with or without Mn2+ . Based on the results, it is concluded that IFP does not promote lipid protrusion at both gel phase and liquid phase, which is evidenced by that the R2 difference with and without Mn2+ is smaller for IFP free membrane than IFP bounded membrane, meaning IFP does not induce a smaller average distance between lipid acyl chain and aqueous layer. By integrating these results, a IFP membrane spanning model was proposed, in which IFP N-terminal helix adopts a 45° angle with respect to membrane normal.

  16. Optimization of cyanide extraction from wastewater using emulsion liquid membrane system by response surface methodology.

    PubMed

    Xue, Juan Qin; Liu, Ni Na; Li, Guo Ping; Dang, Long Tao

    To solve the disposal problem of cyanide wastewater, removal of cyanide from wastewater using a water-in-oil emulsion type of emulsion liquid membrane (ELM) was studied in this work. Specifically, the effects of surfactant Span-80, carrier trioctylamine (TOA), stripping agent NaOH solution and the emulsion-to-external-phase-volume ratio on removal of cyanide were investigated. Removal of total cyanide was determined using the silver nitrate titration method. Regression analysis and optimization of the conditions were conducted using the Design-Expert software and response surface methodology (RSM). The actual cyanide removals and the removals predicted using RSM analysis were in close agreement, and the optimal conditions were determined to be as follows: the volume fraction of Span-80, 4% (v/v); the volume fraction of TOA, 4% (v/v); the concentration of NaOH, 1% (w/v); and the emulsion-to-external-phase volume ratio, 1:7. Under the optimum conditions, the removal of total cyanide was 95.07%, and the RSM predicted removal was 94.90%, with a small exception. The treatment of cyanide wastewater using an ELM is an effective technique for application in industry.

  17. Predicting the transmembrane secondary structure of ligand-gated ion channels.

    PubMed

    Bertaccini, E; Trudell, J R

    2002-06-01

    Recent mutational analyses of ligand-gated ion channels (LGICs) have demonstrated a plausible site of anesthetic action within their transmembrane domains. Although there is a consensus that the transmembrane domain is formed from four membrane-spanning segments, the secondary structure of these segments is not known. We utilized 10 state-of-the-art bioinformatics techniques to predict the transmembrane topology of the tetrameric regions within six members of the LGIC family that are relevant to anesthetic action. They are the human forms of the GABA alpha 1 receptor, the glycine alpha 1 receptor, the 5HT3 serotonin receptor, the nicotinic AChR alpha 4 and alpha 7 receptors and the Torpedo nAChR alpha 1 receptor. The algorithms utilized were HMMTOP, TMHMM, TMPred, PHDhtm, DAS, TMFinder, SOSUI, TMAP, MEMSAT and TOPPred2. The resulting predictions were superimposed on to a multiple sequence alignment of the six amino acid sequences created using the CLUSTAL W algorithm. There was a clear statistical consensus for the presence of four alpha helices in those regions experimentally thought to span the membrane. The consensus of 10 topology prediction techniques supports the hypothesis that the transmembrane subunits of the LGICs are tetrameric bundles of alpha helices.

  18. Regulation of Na+ channel inactivation by the DIII and DIV voltage-sensing domains.

    PubMed

    Hsu, Eric J; Zhu, Wandi; Schubert, Angela R; Voelker, Taylor; Varga, Zoltan; Silva, Jonathan R

    2017-03-06

    Functional eukaryotic voltage-gated Na + (Na V ) channels comprise four domains (DI-DIV), each containing six membrane-spanning segments (S1-S6). Voltage sensing is accomplished by the first four membrane-spanning segments (S1-S4), which together form a voltage-sensing domain (VSD). A critical Na V channel gating process, inactivation, has previously been linked to activation of the VSDs in DIII and DIV. Here, we probe this interaction by using voltage-clamp fluorometry to observe VSD kinetics in the presence of mutations at locations that have been shown to impair Na V channel inactivation. These locations include the DIII-DIV linker, the DIII S4-S5 linker, and the DIV S4-S5 linker. Our results show that, within the 10-ms timeframe of fast inactivation, the DIV-VSD is the primary regulator of inactivation. However, after longer 100-ms pulses, the DIII-DIV linker slows DIII-VSD deactivation, and the rate of DIII deactivation correlates strongly with the rate of recovery from inactivation. Our results imply that, over the course of an action potential, DIV-VSDs regulate the onset of fast inactivation while DIII-VSDs determine its recovery. © 2017 Hsu et al.

  19. Viruses and tetraspanins: lessons from single molecule approaches.

    PubMed

    Dahmane, Selma; Rubinstein, Eric; Milhiet, Pierre-Emmanuel

    2014-05-05

    Tetraspanins are four-span membrane proteins that are widely distributed in multi-cellular organisms and involved in several infectious diseases. They have the unique property to form a network of protein-protein interaction within the plasma membrane, due to the lateral associations with one another and with other membrane proteins. Tracking tetraspanins at the single molecule level using fluorescence microscopy has revealed the membrane behavior of the tetraspanins CD9 and CD81 in epithelial cell lines, providing a first dynamic view of this network. Single molecule tracking highlighted that these 2 proteins can freely diffuse within the plasma membrane but can also be trapped, permanently or transiently, in tetraspanin-enriched areas. More recently, a similar strategy has been used to investigate tetraspanin membrane behavior in the context of human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) infection. In this review we summarize the main results emphasizing the relationship in terms of membrane partitioning between tetraspanins, some of their partners such as Claudin-1 and EWI-2, and viral proteins during infection. These results will be analyzed in the context of other membrane microdomains, stressing the difference between raft and tetraspanin-enriched microdomains, but also in comparison with virus diffusion at the cell surface. New advanced single molecule techniques that could help to further explore tetraspanin assemblies will be also discussed.

  20. Ion transport through lipid bilayers by synthetic ionophores: modulation of activity and selectivity.

    PubMed

    De Riccardis, Francesco; Izzo, Irene; Montesarchio, Daniela; Tecilla, Paolo

    2013-12-17

    The ion-coupled processes that occur in the plasma membrane regulate the cell machineries in all the living organisms. The details of the chemical events that allow ion transport in biological systems remain elusive. However, investigations of the structure and function of natural and artificial transporters has led to increasing insights about the conductance mechanisms. Since the publication of the first successful artificial system by Tabushi and co-workers in 1982, synthetic chemists have designed and constructed a variety of chemically diverse and effective low molecular weight ionophores. Despite their relative structural simplicity, ionophores must satisfy several requirements. They must partition in the membrane, interact specifically with ions, shield them from the hydrocarbon core of the phospholipid bilayer, and transport ions from one side of the membrane to the other. All these attributes require amphipathic molecules in which the polar donor set used for ion recognition (usually oxygens for cations and hydrogen bond donors for anions) is arranged on a lipophilic organic scaffold. Playing with these two structural motifs, donor atoms and scaffolds, researchers have constructed a variety of different ionophores, and we describe a subset of interesting examples in this Account. Despite the ample structural diversity, structure/activity relationships studies reveal common features. Even when they include different hydrophilic moieties (oxyethylene chains, free hydroxyl, etc.) and scaffolds (steroid derivatives, neutral or polar macrocycles, etc.), amphipathic molecules, that cannot span the entire phospholipid bilayer, generate defects in the contact zone between the ionophore and the lipids and increase the permeability in the bulk membrane. Therefore, topologically complex structures that span the entire membrane are needed to elicit channel-like and ion selective behaviors. In particular the alternate-calix[4]arene macrocycle proved to be a versatile platform to obtain 3D-structures that can form unimolecular channels in membranes. In these systems, the selection of proper donor groups allows us to control the ion selectivity of the process. We can switch from cation to anion transport by substituting protonated amines for the oxygen donors. Large and stable tubular structures with nanometric sized transmembrane nanopores that provide ample internal space represent a different approach for the preparation of synthetic ion channels. We used the metal-mediated self-assembly of porphyrin ligands with Re(I) corners as a new method for producing to robust channel-like structures. Such structures can survive in the complex membrane environment and show interesting ionophoric behavior. In addition to the development of new design principles, the selective modification of the biological membrane permeability could lead to important developments in medicine and technology.

  1. The Charcot Marie Tooth disease protein LITAF is a zinc-binding monotopic membrane protein

    PubMed Central

    Qin, Wenxia; Wunderley, Lydia; Barrett, Anne L.; High, Stephen; Woodman, Philip G.

    2016-01-01

    LITAF (LPS-induced TNF-activating factor) is an endosome-associated integral membrane protein important for multivesicular body sorting. Several mutations in LITAF cause autosomal-dominant Charcot Marie Tooth disease type 1C. These mutations map to a highly conserved C-terminal region, termed the LITAF domain, which includes a 22 residue hydrophobic sequence and flanking cysteine-rich regions that contain peptide motifs found in zinc fingers. Although the LITAF domain is thought to be responsible for membrane integration, the membrane topology of LITAF has not been established. Here, we have investigated whether LITAF is a tail-anchored (TA) membrane-spanning protein or monotopic membrane protein. When translated in vitro, LITAF integrates poorly into ER-derived microsomes compared with Sec61β, a bona fide TA protein. Furthermore, introduction of N-linked glycosylation reporters shows that neither the N-terminal nor C-terminal domains of LITAF translocate into the ER lumen. Expression in cells of an LITAF construct containing C-terminal glycosylation sites confirms that LITAF is not a TA protein in cells. Finally, an immunofluorescence-based latency assay showed that both the N- and C-termini of LITAF are exposed to the cytoplasm. Recombinant LITAF contains 1 mol/mol zinc, while mutation of predicted zinc-binding residues disrupts LITAF membrane association. Hence, we conclude that LITAF is a monotopic membrane protein whose membrane integration is stabilised by a zinc finger. The related human protein, CDIP1 (cell death involved p53 target 1), displays identical membrane topology, suggesting that this mode of membrane integration is conserved in LITAF family proteins. PMID:27582497

  2. Physarum machines: encapsulating reaction-diffusion to compute spanning tree

    NASA Astrophysics Data System (ADS)

    Adamatzky, Andrew

    2007-12-01

    The Physarum machine is a biological computing device, which employs plasmodium of Physarum polycephalum as an unconventional computing substrate. A reaction-diffusion computer is a chemical computing device that computes by propagating diffusive or excitation wave fronts. Reaction-diffusion computers, despite being computationally universal machines, are unable to construct certain classes of proximity graphs without the assistance of an external computing device. I demonstrate that the problem can be solved if the reaction-diffusion system is enclosed in a membrane with few ‘growth points’, sites guiding the pattern propagation. Experimental approximation of spanning trees by P. polycephalum slime mold demonstrates the feasibility of the approach. Findings provided advance theory of reaction-diffusion computation by enriching it with ideas of slime mold computation.

  3. Identification of the components of a glycolytic enzyme metabolon on the human red blood cell membrane.

    PubMed

    Puchulu-Campanella, Estela; Chu, Haiyan; Anstee, David J; Galan, Jacob A; Tao, W Andy; Low, Philip S

    2013-01-11

    Glycolytic enzymes (GEs) have been shown to exist in multienzyme complexes on the inner surface of the human erythrocyte membrane. Because no protein other than band 3 has been found to interact with GEs, and because several GEs do not bind band 3, we decided to identify the additional membrane proteins that serve as docking sites for GE on the membrane. For this purpose, a method known as "label transfer" that employs a photoactivatable trifunctional cross-linking reagent to deliver a biotin from a derivatized GE to its binding partner on the membrane was used. Mass spectrometry analysis of membrane proteins that were biotinylated following rebinding and photoactivation of labeled GAPDH, aldolase, lactate dehydrogenase, and pyruvate kinase revealed not only the anticipated binding partner, band 3, but also the association of GEs with specific peptides in α- and β-spectrin, ankyrin, actin, p55, and protein 4.2. More importantly, the labeled GEs were also found to transfer biotin to other GEs in the complex, demonstrating for the first time that GEs also associate with each other in their membrane complexes. Surprisingly, a new GE binding site was repeatedly identified near the junction of the membrane-spanning and cytoplasmic domains of band 3, and this binding site was confirmed by direct binding studies. These results not only identify new components of the membrane-associated GE complexes but also provide molecular details on the specific peptides that form the interfacial contacts within each interaction.

  4. Identification of the Components of a Glycolytic Enzyme Metabolon on the Human Red Blood Cell Membrane*

    PubMed Central

    Puchulu-Campanella, Estela; Chu, Haiyan; Anstee, David J.; Galan, Jacob A.; Tao, W. Andy; Low, Philip S.

    2013-01-01

    Glycolytic enzymes (GEs) have been shown to exist in multienzyme complexes on the inner surface of the human erythrocyte membrane. Because no protein other than band 3 has been found to interact with GEs, and because several GEs do not bind band 3, we decided to identify the additional membrane proteins that serve as docking sites for GE on the membrane. For this purpose, a method known as “label transfer” that employs a photoactivatable trifunctional cross-linking reagent to deliver a biotin from a derivatized GE to its binding partner on the membrane was used. Mass spectrometry analysis of membrane proteins that were biotinylated following rebinding and photoactivation of labeled GAPDH, aldolase, lactate dehydrogenase, and pyruvate kinase revealed not only the anticipated binding partner, band 3, but also the association of GEs with specific peptides in α- and β-spectrin, ankyrin, actin, p55, and protein 4.2. More importantly, the labeled GEs were also found to transfer biotin to other GEs in the complex, demonstrating for the first time that GEs also associate with each other in their membrane complexes. Surprisingly, a new GE binding site was repeatedly identified near the junction of the membrane-spanning and cytoplasmic domains of band 3, and this binding site was confirmed by direct binding studies. These results not only identify new components of the membrane-associated GE complexes but also provide molecular details on the specific peptides that form the interfacial contacts within each interaction. PMID:23150667

  5. Detergent-associated solution conformations of helical and beta-barrel membrane proteins.

    PubMed

    Mo, Yiming; Lee, Byung-Kwon; Ankner, John F; Becker, Jeffrey M; Heller, William T

    2008-10-23

    Membrane proteins present major challenges for structural biology. In particular, the production of suitable crystals for high-resolution structural determination continues to be a significant roadblock for developing an atomic-level understanding of these vital cellular systems. The use of detergents for extracting membrane proteins from the native membrane for either crystallization or reconstitution into model lipid membranes for further study is assumed to leave the protein with the proper fold with a belt of detergent encompassing the membrane-spanning segments of the structure. Small-angle X-ray scattering was used to probe the detergent-associated solution conformations of three membrane proteins, namely bacteriorhodopsin (BR), the Ste2p G-protein coupled receptor from Saccharomyces cerevisiae, and the Escherichia coli porin OmpF. The results demonstrate that, contrary to the traditional model of a detergent-associated membrane protein, the helical proteins BR and Ste2p are not in the expected, compact conformation and associated with detergent micelles, while the beta-barrel OmpF is indeed embedded in a disk-like micelle in a properly folded state. The comparison provided by the BR and Ste2p, both members of the 7TM family of helical membrane proteins, further suggests that the interhelical interactions between the transmembrane helices of the two proteins differ, such that BR, like other rhodopsins, can properly refold to crystallize, while Ste2p continues to prove resistant to crystallization from an initially detergent-associated state.

  6. Detergent-associated Solution Conformations of Helical and Beta-barrel Membrane Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Yiming; Lee, Byung-Kwon; Ankner, John Francis

    2008-01-01

    Membrane proteins present major challenges for structural biology. In particular, the production of suitable crystals for high-resolution structural determination continues to be a significant roadblock for developing an atomic-level understanding of these vital cellular systems. The use of detergents for extracting membrane proteins from the native membrane for either crystallization or reconstitution into model lipid membranes for further study is assumed to leave the protein with the proper fold with a belt of detergent encompassing the membrane-spanning segments of the structure. Small-angle X-ray scattering was used to probe the detergent-associated solution conformations of three membrane proteins, namely bacteriorhodopsin (BR), themore » Ste2p G-protein coupled receptor from Saccharomyces cerevisiae, and the Escherichia coli porin OmpF. The results demonstrate that, contrary to the traditional model of a detergent-associated membrane protein, the helical proteins BR and Ste2p are not in the expected, compact conformation and associated with detergent micelles, while the ?-barrel OmpF is indeed embedded in a disk-like micelle in a properly folded state. The comparison provided by the BR and Ste2p, both members of the 7TM family of helical membrane proteins, further suggests that the interhelical interactions between the transmembrane helices of the two proteins differ, such that BR, like other rhodopsins, can properly refold to crystallize, while Ste2p continues to prove resistant to crystallization from an initially detergent-associated state.« less

  7. Negatively Charged Lipid Membranes Promote a Disorder-Order Transition in the Yersinia YscU Protein

    PubMed Central

    Weise, Christoph F.; Login, Frédéric H.; Ho, Oanh; Gröbner, Gerhard; Wolf-Watz, Hans; Wolf-Watz, Magnus

    2014-01-01

    The inner membrane of Gram-negative bacteria is negatively charged, rendering positively charged cytoplasmic proteins in close proximity likely candidates for protein-membrane interactions. YscU is a Yersinia pseudotuberculosis type III secretion system protein crucial for bacterial pathogenesis. The protein contains a highly conserved positively charged linker sequence that separates membrane-spanning and cytoplasmic (YscUC) domains. Although disordered in solution, inspection of the primary sequence of the linker reveals that positively charged residues are separated with a typical helical periodicity. Here, we demonstrate that the linker sequence of YscU undergoes a largely electrostatically driven coil-to-helix transition upon binding to negatively charged membrane interfaces. Using membrane-mimicking sodium dodecyl sulfate micelles, an NMR derived structural model reveals the induction of three helical segments in the linker. The overall linker placement in sodium dodecyl sulfate micelles was identified by NMR experiments including paramagnetic relaxation enhancements. Partitioning of individual residues agrees with their hydrophobicity and supports an interfacial positioning of the helices. Replacement of positively charged linker residues with alanine resulted in YscUC variants displaying attenuated membrane-binding affinities, suggesting that the membrane interaction depends on positive charges within the linker. In vivo experiments with bacteria expressing these YscU replacements resulted in phenotypes displaying significantly reduced effector protein secretion levels. Taken together, our data identify a previously unknown membrane-interacting surface of YscUC that, when perturbed by mutations, disrupts the function of the pathogenic machinery in Yersinia. PMID:25418176

  8. Negatively charged lipid membranes promote a disorder-order transition in the Yersinia YscU protein.

    PubMed

    Weise, Christoph F; Login, Frédéric H; Ho, Oanh; Gröbner, Gerhard; Wolf-Watz, Hans; Wolf-Watz, Magnus

    2014-10-21

    The inner membrane of Gram-negative bacteria is negatively charged, rendering positively charged cytoplasmic proteins in close proximity likely candidates for protein-membrane interactions. YscU is a Yersinia pseudotuberculosis type III secretion system protein crucial for bacterial pathogenesis. The protein contains a highly conserved positively charged linker sequence that separates membrane-spanning and cytoplasmic (YscUC) domains. Although disordered in solution, inspection of the primary sequence of the linker reveals that positively charged residues are separated with a typical helical periodicity. Here, we demonstrate that the linker sequence of YscU undergoes a largely electrostatically driven coil-to-helix transition upon binding to negatively charged membrane interfaces. Using membrane-mimicking sodium dodecyl sulfate micelles, an NMR derived structural model reveals the induction of three helical segments in the linker. The overall linker placement in sodium dodecyl sulfate micelles was identified by NMR experiments including paramagnetic relaxation enhancements. Partitioning of individual residues agrees with their hydrophobicity and supports an interfacial positioning of the helices. Replacement of positively charged linker residues with alanine resulted in YscUC variants displaying attenuated membrane-binding affinities, suggesting that the membrane interaction depends on positive charges within the linker. In vivo experiments with bacteria expressing these YscU replacements resulted in phenotypes displaying significantly reduced effector protein secretion levels. Taken together, our data identify a previously unknown membrane-interacting surface of YscUC that, when perturbed by mutations, disrupts the function of the pathogenic machinery in Yersinia.

  9. PASTA repeats of the protein kinase StkP interconnect cell constriction and separation of Streptococcus pneumoniae.

    PubMed

    Zucchini, Laure; Mercy, Chryslène; Garcia, Pierre Simon; Cluzel, Caroline; Gueguen-Chaignon, Virginie; Galisson, Frédéric; Freton, Céline; Guiral, Sébastien; Brochier-Armanet, Céline; Gouet, Patrice; Grangeasse, Christophe

    2018-02-01

    Eukaryotic-like serine/threonine kinases (eSTKs) with extracellular PASTA repeats are key membrane regulators of bacterial cell division. How PASTA repeats govern eSTK activation and function remains elusive. Using evolution- and structural-guided approaches combined with cell imaging, we disentangle the role of each PASTA repeat of the eSTK StkP from Streptococcus pneumoniae. While the three membrane-proximal PASTA repeats behave as interchangeable modules required for the activation of StkP independently of cell wall binding, they also control the septal cell wall thickness. In contrast, the fourth and membrane-distal PASTA repeat directs StkP localization at the division septum and encompasses a specific motif that is critical for final cell separation through interaction with the cell wall hydrolase LytB. We propose a model in which the extracellular four-PASTA domain of StkP plays a dual function in interconnecting the phosphorylation of StkP endogenous targets along with septal cell wall remodelling to allow cell division of the pneumococcus.

  10. Continuum kinetic modeling of the tokamak plasma edge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorf, M. A.; Dorr, M. R.; Hittinger, J. A.

    2016-05-15

    The first 4D (axisymmetric) high-order continuum gyrokinetic transport simulations that span the magnetic separatrix of a tokamak are presented. The modeling is performed with the COGENT code, which is distinguished by fourth-order finite-volume discretization combined with mapped multiblock grid technology to handle the strong anisotropy of plasma transport and the complex X-point divertor geometry with high accuracy. The calculations take into account the effects of fully nonlinear Fokker-Plank collisions, electrostatic potential variations, and anomalous radial transport. Topics discussed include: (a) ion orbit loss and the associated toroidal rotation and (b) edge plasma relaxation in the presence of anomalous radial transport.

  11. Photocopy of photograph (original print in collection of Gerald A. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original print in collection of Gerald A. Doyle, Phoenix) Photographer unknown, June 7, 1943 AERIAL VIEW OF THE YUMA CROSSING LOOKING WEST. THE 1924 SPRR BRIDGE AND THE OCEAN-TO-OCEAN HIGHWAY BRIDGE ARE AT THE BOTTOM OF THE IMAGE. THE SITE OF SPRR BRIDGES AT MADISON AVENUE IS MARKED BY THE REMNANTS OF TWO MID-STREAM BRIDGE PIERS. THE CIRCULAR FOUNDATION OF THE SWINGING SPAN OF THE STEEL BRIDGE IS ON THE SHORELINE AT THE LEFT OF THE SOUTH (LEFT) PIER. THE RIVER IS IN FLOOD STAGE. - Yuma Crossing, Riverfront Area, between Prison Hill & Fourth Avenue, Yuma, Yuma County, AZ

  12. Structure of the membrane domain of respiratory complex I.

    PubMed

    Efremov, Rouslan G; Sazanov, Leonid A

    2011-08-07

    Complex I is the first and largest enzyme of the respiratory chain, coupling electron transfer between NADH and ubiquinone to the translocation of four protons across the membrane. It has a central role in cellular energy production and has been implicated in many human neurodegenerative diseases. The L-shaped enzyme consists of hydrophilic and membrane domains. Previously, we determined the structure of the hydrophilic domain. Here we report the crystal structure of the Esherichia coli complex I membrane domain at 3.0 Å resolution. It includes six subunits, NuoL, NuoM, NuoN, NuoA, NuoJ and NuoK, with 55 transmembrane helices. The fold of the homologous antiporter-like subunits L, M and N is novel, with two inverted structural repeats of five transmembrane helices arranged, unusually, face-to-back. Each repeat includes a discontinuous transmembrane helix and forms half of a channel across the membrane. A network of conserved polar residues connects the two half-channels, completing the proton translocation pathway. Unexpectedly, lysines rather than carboxylate residues act as the main elements of the proton pump in these subunits. The fourth probable proton-translocation channel is at the interface of subunits N, K, J and A. The structure indicates that proton translocation in complex I, uniquely, involves coordinated conformational changes in six symmetrical structural elements.

  13. Biomechanics of the unique pterosaur pteroid

    PubMed Central

    Palmer, Colin; Dyke, Gareth J.

    2010-01-01

    Pterosaurs, flying reptiles from the Mesozoic, had wing membranes that were supported by their arm bones and a super-elongate fourth finger. Associated with the wing, pterosaurs also possessed a unique wrist bone—the pteroid—that functioned to support the forward part of the membrane in front of the leading edge, the propatagium. Pteroid shape varies across pterosaurs and reconstructions of its orientation vary (projecting anteriorly to the wing leading edge or medially, lying alongside it) and imply differences in the way that pterosaurs controlled their wings. Here we show, using biomechanical analysis and considerations of aerodynamic efficiency of a representative ornithocheirid pterosaur, that an anteriorly orientated pteroid is highly unlikely. Unless these pterosaurs only flew steadily and had very low body masses, their pteroids would have been likely to break if orientated anteriorly; the degree of movement required for a forward orientation would have introduced extreme membrane strains and required impractical tensioning in the propatagium membrane. This result can be generalized for other pterodactyloid pterosaurs because the resultant geometry of an anteriorly orientated pteroid would have reduced the aerodynamic performance of all wings and required the same impractical properties in the propatagium membrane. We demonstrate quantitatively that the more traditional reconstruction of a medially orientated pteroid was much more stable both structurally and aerodynamically, reflecting likely life position. PMID:20007183

  14. Identification of Key Interactions in the Initial Self-Assembly of Amylin in a Membrane Environment.

    PubMed

    Christensen, Mikkel; Skeby, Katrine K; Schiøtt, Birgit

    2017-09-12

    Islet amyloid polypeptide, also known as amylin, forms aggregates that reduce the amount of insulin-producing cells in patients with type II diabetes mellitus. Much remains unknown about the process of aggregation and cytotoxicity, but it is known that certain cell membrane components can alter the rate of aggregation. Using atomistic molecular dynamics simulations combined with the highly mobile membrane mimetic model incorporating enhanced sampling of lipid diffusion, we investigate interaction of amylin peptides with the membrane components as well as the self-assembly of amylin. Consistent with experimental evidence, we find that an initial membrane-bound α-helical state folds into stable β-sheet structures upon self-assembly. Our results suggest the following mechanism for the initial phase of amylin self-assembly. The peptides move around on the membrane with the positively charged N-terminus interacting with the negatively charged lipid headgroups. When the peptides start to interact, they partly unfold and break some of the contacts with the membrane. The initial interactions between the peptides are dominated by aromatic and hydrophobic interactions. Oligomers are formed showing both intra- and interpeptide β-sheets, initially with interactions mainly in the C-terminal domain of the peptides. Decreasing the pH to 5.5 is known to inhibit amyloid formation. At low pH, His18 is protonated, adding a fourth positive charge at the peptide. With His18 protonated, no oligomerization is observed in the simulations. The additional charge gives a strong midpoint anchoring of the peptides to negatively charged membrane components, and the peptides experience additional interpeptide repulsion, thereby preventing interactions.

  15. In vitro transport activity of the fully assembled MexAB-OprM efflux pump from Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Verchère, Alice; Dezi, Manuela; Adrien, Vladimir; Broutin, Isabelle; Picard, Martin

    2015-04-01

    Antibiotic resistance is a major public health issue and many bacteria responsible for human infections have now developed a variety of antibiotic resistance mechanisms. For instance, Pseudomonas aeruginosa, a disease-causing Gram-negative bacteria, is now resistant to almost every class of antibiotics. Much of this resistance is attributable to multidrug efflux pumps, which are tripartite membrane protein complexes that span both membranes and actively expel antibiotics. Here we report an in vitro procedure to monitor transport by the tripartite MexAB-OprM pump. By combining proteoliposomes containing the MexAB and OprM portions of the complex, we are able to assay energy-dependent substrate translocation in a system that mimics the dual-membrane architecture of Gram-negative bacteria. This assay facilitates the study of pump transport dynamics and could be used to screen pump inhibitors with potential clinical use in restoring therapeutic activity of old antibiotics.

  16. "Reagentless" flow injection determination of ammonia and urea using membrane separation and solid phase basification

    NASA Technical Reports Server (NTRS)

    Akse, J. R.; Thompson, J. O.; Sauer, R. L.; Atwater, J. E.

    1998-01-01

    Flow injection analysis instrumentation and methodology for the determination of ammonia and ammonium ions in an aqueous solution are described. Using in-line solid phase basification beds containing crystalline media. the speciation of ammoniacal nitrogen is shifted toward the un-ionized form. which diffuses in the gas phase across a hydrophobic microporous hollow fiber membrane into a pure-water-containing analytical stream. The two streams flow in a countercurrent configuration on opposite sides of the membrane. The neutral pH of the analytical stream promotes the formation of ammonium cations, which are detected using specific conductance. The methodology provides a lower limit of detection of 10 microgram/L and a dynamic concentration range spanning three orders of magnitude using a 315-microliters sample injection volume. Using immobilized urease to enzymatically promote the hydrolysis of urea to produce ammonia and carbon dioxide, the technique has been extended to the determination of urea.

  17. General Protein Diffusion Barriers create Compartments within Bacterial Cells

    PubMed Central

    Schlimpert, Susan; Klein, Eric A.; Briegel, Ariane; Hughes, Velocity; Kahnt, Jörg; Bolte, Kathrin; Maier, Uwe G.; Brun, Yves V.; Jensen, Grant J.; Gitai, Zemer; Thanbichler, Martin

    2013-01-01

    SUMMARY In eukaryotes, the differentiation of cellular extensions such as cilia or neuronal axons depends on the partitioning of proteins to distinct plasma membrane domains by specialized diffusion barriers. However, examples of this compartmentalization strategy are still missing for prokaryotes, although complex cellular architectures are widespread among this group of organisms. This study reveals the existence of a protein-mediated membrane diffusion barrier in the stalked bacterium Caulobacter crescentus. We show that the Caulobacter cell envelope is compartmentalized by macromolecular complexes that prevent the exchange of both membrane and soluble proteins between the polar stalk extension and the cell body. The barrier structures span the cross-sectional area of the stalk and comprise at least four proteins that assemble in a cell cycle-dependent manner. Their presence is critical for cellular fitness, as they minimize the effective cell volume, allowing faster adaptation to environmental changes that require de novo synthesis of envelope proteins. PMID:23201141

  18. Pore spanning lipid bilayers on silanised nanoporous alumina membranes

    NASA Astrophysics Data System (ADS)

    Md Jani, Abdul M.; Zhou, Jinwen; Nussio, Matthew R.; Losic, Dusan; Shapter, Joe G.; Voelcker, Nicolas H.

    2008-12-01

    The preparation of bilayer lipid membranes (BLMs) on solid surfaces is important for many studies probing various important biological phenomena including the cell barrier properties, ion-channels, biosensing, drug discovery and protein/ligand interactions. In this work we present new membrane platforms based on suspended BLMs on nanoporous anodic aluminium oxide (AAO) membranes. AAO membranes were prepared by electrochemical anodisation of aluminium foil in 0.3 M oxalic acid using a custom-built etching cell and applying voltage of 40 V, at 1oC. AAO membranes with controlled diameter of pores from 30 - 40 nm (top of membrane) and 60 -70 nm (bottom of membrane) were fabricated. Pore dimensions have been confirmed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). AAO membranes were chemically functionalised with 3-aminopropyltriethoxysilane (APTES). Confirmation of the APTES attachment to the AAO membrane was achieved by means of infrared spectroscopy, X-ray photoelectron spectroscopy and contact angle measurements. The Fourier transform infrared (FTIR) spectra of functionalised membranes show several peaks from 2800 to 3000 cm-1 which were assigned to symmetric and antisymmetric CH2 bands. XPS data of the membrane showed a distinct increase in C1s (285 eV), N1s (402 eV) and Si2p (102 eV) peaks after silanisation. The water contact angle of the functionalised membrane was 80o as compared to 20o for the untreated membrane. The formation of BLMs comprising dioleoyl-phosphatidylserine (DOPS) on APTESmodified AAO membranes was carried using the vesicle spreading technique. AFM imaging and force spectroscopy was used to characterise the structural and nanomechanical properties of the suspended membrane. This technique also confirmed the stability of bilayers on the nanoporous alumina support for several days. Fabricated suspended BLMs on nanoporous AAO hold promise for the construction of biomimetic membrane architectures with embedded transmembrane proteins.

  19. Functional and Evolutionary Analysis of the CASPARIAN STRIP MEMBRANE DOMAIN PROTEIN Family1[C][W

    PubMed Central

    Roppolo, Daniele; Boeckmann, Brigitte; Pfister, Alexandre; Boutet, Emmanuel; Rubio, Maria C.; Dénervaud-Tendon, Valérie; Vermeer, Joop E.M.; Gheyselinck, Jacqueline; Xenarios, Ioannis; Geldner, Niko

    2014-01-01

    CASPARIAN STRIP MEMBRANE DOMAIN PROTEINS (CASPs) are four-membrane-span proteins that mediate the deposition of Casparian strips in the endodermis by recruiting the lignin polymerization machinery. CASPs show high stability in their membrane domain, which presents all the hallmarks of a membrane scaffold. Here, we characterized the large family of CASP-like (CASPL) proteins. CASPLs were found in all major divisions of land plants as well as in green algae; homologs outside of the plant kingdom were identified as members of the MARVEL protein family. When ectopically expressed in the endodermis, most CASPLs were able to integrate the CASP membrane domain, which suggests that CASPLs share with CASPs the propensity to form transmembrane scaffolds. Extracellular loops are not necessary for generating the scaffold, since CASP1 was still able to localize correctly when either one of the extracellular loops was deleted. The CASP first extracellular loop was found conserved in euphyllophytes but absent in plants lacking Casparian strips, an observation that may contribute to the study of Casparian strip and root evolution. In Arabidopsis (Arabidopsis thaliana), CASPL showed specific expression in a variety of cell types, such as trichomes, abscission zone cells, peripheral root cap cells, and xylem pole pericycle cells. PMID:24920445

  20. Molecular Details of α-Synuclein Membrane Association Revealed by Neutrons and Photons

    PubMed Central

    Jiang, Zhiping; Hess, Sara K.; Heinrich, Frank; Lee, Jennifer C.

    2015-01-01

    α-Synuclein (α-syn) is an abundant neuronal protein associated with Parkinson’s disease that is disordered in solution, but exists in equilibrium between a bent- and an elongated-helix on negatively charged membranes. Here, neutron reflectometry (NR) and fluorescence spectroscopy were employed to uncover molecular details of the interaction between α-syn and two anionic lipids, phosphatidic acid (PA) and phosphatidylserine (PS). Both NR and site-specific Trp measurements indicate that penetration depth of α-syn is similar for either PA- or PS-containing membranes (~9–11 Å from bilayer center) even though there is a preference for α-syn binding to PA. However, closer examination of the individual Trp quenching profiles by brominated lipids reveal differences into local membrane interactions especially at position 39 where conformational heterogeneity was observed. The data also indicate that while W94 penetrates the bilayer as deeply as W4, W94 resides in a more polar surrounding. Taken together, we suggest the N- and C-terminal regions near positions 4 and 94 are anchored to the membrane, while the putative linker spanning residue 39 samples multiple conformations, which are sensitive to the chemical nature of the membrane surface. This flexibility may enable α-syn to bind diverse biomembranes in vivo. PMID:25790164

  1. Regulation Mechanism of the Lateral Diffusion of Band 3 in Erythrocyte Membranes by the Membrane Skeleton

    PubMed Central

    Tomishige, Michio; Sako, Yasushi; Kusumi, Akihiro

    1998-01-01

    Mechanisms that regulate the movement of a membrane spanning protein band 3 in erythrocyte ghosts were investigated at the level of a single or small groups of molecules using single particle tracking with an enhanced time resolution (0.22 ms). Two-thirds of band 3 undergo macroscopic diffusion: a band 3 molecule is temporarily corralled in a mesh of 110 nm in diameter, and hops to an adjacent mesh an average of every 350 ms. The rest (one-third) of band 3 exhibited oscillatory motion similar to that of spectrin, suggesting that these band 3 molecules are bound to spectrin. When the membrane skeletal network was dragged and deformed/translated using optical tweezers, band 3 molecules that were undergoing hop diffusion were displaced toward the same direction as the skeleton. Mild trypsin treatment of ghosts, which cleaves off the cytoplasmic portion of band 3 without affecting spectrin, actin, and protein 4.1, increased the intercompartmental hop rate of band 3 by a factor of 6, whereas it did not change the corral size and the microscopic diffusion rate within a corral. These results indicate that the cytoplasmic portion of band 3 collides with the membrane skeleton, which causes temporal confinement of band 3 inside a mesh of the membrane skeleton. PMID:9722611

  2. Functional and Evolutionary Analysis of the CASPARIAN STRIP MEMBRANE DOMAIN PROTEIN Family.

    PubMed

    Roppolo, Daniele; Boeckmann, Brigitte; Pfister, Alexandre; Boutet, Emmanuel; Rubio, Maria C; Dénervaud-Tendon, Valérie; Vermeer, Joop E M; Gheyselinck, Jacqueline; Xenarios, Ioannis; Geldner, Niko

    2014-08-01

    CASPARIAN STRIP MEMBRANE DOMAIN PROTEINS (CASPs) are four-membrane-span proteins that mediate the deposition of Casparian strips in the endodermis by recruiting the lignin polymerization machinery. CASPs show high stability in their membrane domain, which presents all the hallmarks of a membrane scaffold. Here, we characterized the large family of CASP-like (CASPL) proteins. CASPLs were found in all major divisions of land plants as well as in green algae; homologs outside of the plant kingdom were identified as members of the MARVEL protein family. When ectopically expressed in the endodermis, most CASPLs were able to integrate the CASP membrane domain, which suggests that CASPLs share with CASPs the propensity to form transmembrane scaffolds. Extracellular loops are not necessary for generating the scaffold, since CASP1 was still able to localize correctly when either one of the extracellular loops was deleted. The CASP first extracellular loop was found conserved in euphyllophytes but absent in plants lacking Casparian strips, an observation that may contribute to the study of Casparian strip and root evolution. In Arabidopsis (Arabidopsis thaliana), CASPL showed specific expression in a variety of cell types, such as trichomes, abscission zone cells, peripheral root cap cells, and xylem pole pericycle cells. © 2014 American Society of Plant Biologists. All Rights Reserved.

  3. Efficacy of cellulose triacetate dialyzer and polysulfone synthetic hemofilter for continuous venovenous hemofiltration in acute renal failure.

    PubMed

    Pichaiwong, Warangkana; Leelahavanichkul, Asada; Eiam-ong, Somchai

    2006-08-01

    To compare the clearance performances and biocompatibility between the modified cellulose membrane and the standard synthetic membrane in continuous renal replacement therapy (CRRT). Seventeen patients with acute renal failure (ARF) were treated with separated continuous veno venous hemofiltration (CVVH) system conducted with the pre-dilution mode. The modified cellulose used was a Sureflux150E (cellulose triacetate) and the standard synthetic membranes used was an AV-400. Blood and replacement flow rate were kept at 100 and 20 mL/min, respectively. Ultrafiltraion rate was 1,200 mL/hr. Samplings of blood and ultrafiltrate were collected at baseline, 2, 8, 16, and 24 hr. Patients in both methods could similarly tolerate CRRT with only minor complications. Sureflux 150E and AV-400 provided comparable values of sieving coefficients and clearances of small solutes. The albumin loss in ultrafiltrate by Sureflux 150E was greater than AV-400. The values of life span and biocompatability of both hemofilters were not different. Because of the excellent efficacy and the much cheaper cost, the modified cellulose membrane could be an appropriate alternative to standard synthetic membrane in CRRT.

  4. Cryo-EM structure of the gasdermin A3 membrane pore.

    PubMed

    Ruan, Jianbin; Xia, Shiyu; Liu, Xing; Lieberman, Judy; Wu, Hao

    2018-05-01

    Gasdermins mediate inflammatory cell death after cleavage by caspases or other, unknown enzymes. The cleaved N-terminal fragments bind to acidic membrane lipids to form pores, but the mechanism of pore formation remains unresolved. Here we present the cryo-electron microscopy structures of the 27-fold and 28-fold single-ring pores formed by the N-terminal fragment of mouse GSDMA3 (GSDMA3-NT) at 3.8 and 4.2 Å resolutions, and of a double-ring pore at 4.6 Å resolution. In the 27-fold pore, a 108-stranded anti-parallel β-barrel is formed by two β-hairpins from each subunit capped by a globular domain. We identify a positively charged helix that interacts with the acidic lipid cardiolipin. GSDMA3-NT undergoes radical conformational changes upon membrane insertion to form long, membrane-spanning β-strands. We also observe an unexpected additional symmetric ring of GSDMA3-NT subunits that does not insert into the membrane in the double-ring pore, which may represent a pre-pore state of GSDMA3-NT. These structures provide a basis that explains the activities of several mutant gasdermins, including defective mutants that are associated with cancer.

  5. Molecular Architecture of Plant Thylakoids under Physiological and Light Stress Conditions: A Study of Lipid–Light-Harvesting Complex II Model Membranes[C][W

    PubMed Central

    Janik, Ewa; Bednarska, Joanna; Zubik, Monika; Puzio, Michal; Luchowski, Rafal; Grudzinski, Wojciech; Mazur, Radoslaw; Garstka, Maciej; Maksymiec, Waldemar; Kulik, Andrzej; Dietler, Giovanni; Gruszecki, Wieslaw I.

    2013-01-01

    In this study, we analyzed multibilayer lipid-protein membranes composed of the photosynthetic light-harvesting complex II (LHCII; isolated from spinach [Spinacia oleracea]) and the plant lipids monogalcatosyldiacylglycerol and digalactosyldiacylglycerol. Two types of pigment-protein complexes were analyzed: those isolated from dark-adapted leaves (LHCII) and those from leaves preilluminated with high-intensity light (LHCII-HL). The LHCII-HL complexes were found to be partially phosphorylated and contained zeaxanthin. The results of the x-ray diffraction, infrared imaging microscopy, confocal laser scanning microscopy, and transmission electron microscopy revealed that lipid-LHCII membranes assemble into planar multibilayers, in contrast with the lipid-LHCII-HL membranes, which form less ordered structures. In both systems, the protein formed supramolecular structures. In the case of LHCII-HL, these structures spanned the multibilayer membranes and were perpendicular to the membrane plane, whereas in LHCII, the structures were lamellar and within the plane of the membranes. Lamellar aggregates of LHCII-HL have been shown, by fluorescence lifetime imaging microscopy, to be particularly active in excitation energy quenching. Both types of structures were stabilized by intermolecular hydrogen bonds. We conclude that the formation of trans-layer, rivet-like structures of LHCII is an important determinant underlying the spontaneous formation and stabilization of the thylakoid grana structures, since the lamellar aggregates are well suited to dissipate excess energy upon overexcitation. PMID:23898030

  6. Molecular architecture of plant thylakoids under physiological and light stress conditions: a study of lipid-light-harvesting complex II model membranes.

    PubMed

    Janik, Ewa; Bednarska, Joanna; Zubik, Monika; Puzio, Michal; Luchowski, Rafal; Grudzinski, Wojciech; Mazur, Radoslaw; Garstka, Maciej; Maksymiec, Waldemar; Kulik, Andrzej; Dietler, Giovanni; Gruszecki, Wieslaw I

    2013-06-01

    In this study, we analyzed multibilayer lipid-protein membranes composed of the photosynthetic light-harvesting complex II (LHCII; isolated from spinach [Spinacia oleracea]) and the plant lipids monogalcatosyldiacylglycerol and digalactosyldiacylglycerol. Two types of pigment-protein complexes were analyzed: those isolated from dark-adapted leaves (LHCII) and those from leaves preilluminated with high-intensity light (LHCII-HL). The LHCII-HL complexes were found to be partially phosphorylated and contained zeaxanthin. The results of the x-ray diffraction, infrared imaging microscopy, confocal laser scanning microscopy, and transmission electron microscopy revealed that lipid-LHCII membranes assemble into planar multibilayers, in contrast with the lipid-LHCII-HL membranes, which form less ordered structures. In both systems, the protein formed supramolecular structures. In the case of LHCII-HL, these structures spanned the multibilayer membranes and were perpendicular to the membrane plane, whereas in LHCII, the structures were lamellar and within the plane of the membranes. Lamellar aggregates of LHCII-HL have been shown, by fluorescence lifetime imaging microscopy, to be particularly active in excitation energy quenching. Both types of structures were stabilized by intermolecular hydrogen bonds. We conclude that the formation of trans-layer, rivet-like structures of LHCII is an important determinant underlying the spontaneous formation and stabilization of the thylakoid grana structures, since the lamellar aggregates are well suited to dissipate excess energy upon overexcitation.

  7. Reconstituted TOM core complex and Tim9/Tim10 complex of mitochondria are sufficient for translocation of the ADP/ATP carrier across membranes.

    PubMed

    Vasiljev, Andreja; Ahting, Uwe; Nargang, Frank E; Go, Nancy E; Habib, Shukry J; Kozany, Christian; Panneels, Valérie; Sinning, Irmgard; Prokisch, Holger; Neupert, Walter; Nussberger, Stephan; Rapaport, Doron

    2004-03-01

    Precursor proteins of the solute carrier family and of channel forming Tim components are imported into mitochondria in two main steps. First, they are translocated through the TOM complex in the outer membrane, a process assisted by the Tim9/Tim10 complex. They are passed on to the TIM22 complex, which facilitates their insertion into the inner membrane. In the present study, we have analyzed the function of the Tim9/Tim10 complex in the translocation of substrates across the outer membrane of mitochondria. The purified TOM core complex was reconstituted into lipid vesicles in which purified Tim9/Tim10 complex was entrapped. The precursor of the ADP/ATP carrier (AAC) was found to be translocated across the membrane of such lipid vesicles. Thus, these components are sufficient for translocation of AAC precursor across the outer membrane. Peptide libraries covering various substrate proteins were used to identify segments that are bound by Tim9/Tim10 complex upon translocation through the TOM complex. The patterns of binding sites on the substrate proteins suggest a mechanism by which portions of membrane-spanning segments together with flanking hydrophilic segments are recognized and bound by the Tim9/Tim10 complex as they emerge from the TOM complex into the intermembrane space.

  8. Sexing of chicken eggs by fluorescence and Raman spectroscopy through the shell membrane

    PubMed Central

    Preusse, Grit; Schnabel, Christian; Bartels, Thomas; Cramer, Kerstin; Krautwald-Junghanns, Maria-Elisabeth; Koch, Edmund; Steiner, Gerald

    2018-01-01

    In order to provide an alternative to day-old chick culling in the layer hatcheries, a noninvasive method for egg sexing is required at an early stage of incubation before onset of embryo sensitivity. Fluorescence and Raman spectroscopy of blood offers the potential for precise and contactless in ovo sex determination of the domestic chicken (Gallus gallus f. dom.) eggs already during the fourth incubation day. However, such kind of optical spectroscopy requires a window in the egg shell, is thus invasive to the embryo and leads to decreased hatching rates. Here, we show that near infrared Raman and fluorescence spectroscopy can be performed on perfused extraembryonic vessels while leaving the inner egg shell membrane intact. Sparing the shell membrane makes the measurement minimally invasive, so that the sexing procedure does not affect hatching rates. We analyze the effect of the membrane above the vessels on fluorescence signal intensity and on Raman spectrum of blood, and propose a correction method to compensate for it. After compensation, we attain a correct sexing rate above 90% by applying supervised classification of spectra. Therefore, this approach offers the best premises towards practical deployment in the hatcheries. PMID:29474445

  9. Lamellar ichthyosis in a female neonate without a collodion membrane.

    PubMed

    Chao, Kevin; Aleshin, Maria; Goldstein, Zachary; Worswick, Scott; Hogeling, Marcia

    2018-02-15

    The term, autosomal recessive congenital ichthyosis (ARCI), describes a group of rare genetic skin diseases of cornification involving hyperkeratotic scaling at birth. The defective skin barrier function may lead to dehydration, body temperature instability, and high susceptibility to infections. In most cases of ARCI, neonates are born with a collodion membrane covering the body, often presenting with ectropion and eclabium. We report a premature female neonate presenting with hyperkeratotic scaling at birth without a collodion membrane. She was managed with placement in a humidified isolette, prophylactic antibiotics, dilute bleach baths, petrolatum ointment, and artificial eye drops. By the fourth week of life, there was marked improvement in her skin with the large, brown, plate-like scales on the trunk and extremities becoming lighter in color and finer in appearance. The ichthyosis genetic panel showed mutations in the ABCA12 gene resulting in the lamellar ichthyosis phenotype of ARCI. Our literature review revealed at least 28 patients with ARCI who were not born as collodion babies. Although collodion babies are a hallmark of most ARCI cases, clinicians should be aware of neonates with ARCI born without a collodion membrane and expedite appropriate workup and treatment.

  10. The influenza virus neuraminidase protein transmembrane and head domains have coevolved.

    PubMed

    da Silva, Diogo V; Nordholm, Johan; Dou, Dan; Wang, Hao; Rossman, Jeremy S; Daniels, Robert

    2015-01-15

    Transmembrane domains (TMDs) from single-spanning membrane proteins are commonly viewed as membrane anchors for functional domains. Influenza virus neuraminidase (NA) exemplifies this concept, as it retains enzymatic function upon proteolytic release from the membrane. However, the subtype 1 NA TMDs have become increasingly more polar in human strains since 1918, which suggests that selection pressure exists on this domain. Here, we investigated the N1 TMD-head domain relationship by exchanging a prototypical "old" TMD (1933) with a "recent" (2009), more polar TMD and an engineered hydrophobic TMD. Each exchange altered the TMD association, decreased the NA folding efficiency, and significantly reduced viral budding and replication at 37°C compared to at 33°C, at which NA folds more efficiently. Passaging the chimera viruses at 37°C restored the NA folding efficiency, viral budding, and infectivity by selecting for NA TMD mutations that correspond with their polar or hydrophobic assembly properties. These results demonstrate that single-spanning membrane protein TMDs can influence distal domain folding, as well as membrane-related processes, and suggest the NA TMD in H1N1 viruses has become more polar to maintain compatibility with the evolving enzymatic head domain. The neuraminidase (NA) protein from influenza A viruses (IAVs) functions to promote viral release and is one of the major surface antigens. The receptor-destroying activity in NA resides in the distal head domain that is linked to the viral membrane by an N-terminal hydrophobic transmembrane domain (TMD). Over the last century, the subtype 1 NA TMDs (N1) in human H1N1 viruses have become increasingly more polar, and the head domains have changed to alter their antigenicity. Here, we provide the first evidence that an "old" N1 head domain from 1933 is incompatible with a "recent" (2009), more polar N1 TMD sequence and that, during viral replication, the head domain drives the selection of TMD mutations. These mutations modify the intrinsic TMD assembly to restore the head domain folding compatibility and the resultant budding deficiency. This likely explains why the N1 TMDs have become more polar and suggests the N1 TMD and head domain have coevolved. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Proline kink angle distributions for GWALP23 in lipid bilayers of different thicknesses.

    PubMed

    Rankenberg, Johanna M; Vostrikov, Vitaly V; DuVall, Christopher D; Greathouse, Denise V; Koeppe, Roger E; Grant, Christopher V; Opella, Stanley J

    2012-05-01

    By using selected (2)H and (15)N labels, we have examined the influence of a central proline residue on the properties of a defined peptide that spans lipid bilayer membranes by solid-state nuclear magnetic resonance (NMR) spectroscopy. For this purpose, GWALP23 (acetyl-GGALW(5)LALALALALALALW(19)LAGA-ethanolamide) is a suitable model peptide that employs, for the purpose of interfacial anchoring, only one tryptophan residue on either end of a central α-helical core sequence. Because of its systematic behavior in lipid bilayer membranes of differing thicknesses [Vostrikov, V. V., et al. (2010) J. Biol. Chem. 285, 31723-31730], we utilize GWALP23 as a well-characterized framework for introducing guest residues within a transmembrane sequence; for example, a central proline yields acetyl-GGALW(5)LALALAP(12)ALALALW(19)LAGA-ethanolamide. We synthesized GWALP23-P12 with specifically placed (2)H and (15)N labels for solid-state NMR spectroscopy and examined the peptide orientation and segmental tilt in oriented DMPC lipid bilayer membranes using combined (2)H GALA and (15)N-(1)H high-resolution separated local field methods. In DMPC bilayer membranes, the peptide segments N-terminal and C-terminal to the proline are both tilted substantially with respect to the bilayer normal, by ~34 ± 5° and 29 ± 5°, respectively. While the tilt increases for both segments when proline is present, the range and extent of the individual segment motions are comparable to or smaller than those of the entire GWALP23 peptide in bilayer membranes. In DMPC, the proline induces a kink of ~30 ± 5°, with an apparent helix unwinding or "swivel" angle of ~70°. In DLPC and DOPC, on the basis of (2)H NMR data only, the kink angle and swivel angle probability distributions overlap those of DMPC, yet the most probable kink angle appears to be somewhat smaller than in DMPC. As has been described for GWALP23 itself, the C-terminal helix ends before Ala(21) in the phospholipids DMPC and DLPC yet remains intact through Ala(21) in DOPC. The dynamics of bilayer-incorporated, membrane-spanning GWALP23 and GWALP23-P12 are less extensive than those observed for WALP family peptides that have more than two interfacial Trp residues.

  12. Proline Kink Angle Distributions for GWALP23 in Lipid Bilayers of Different Thickness†

    PubMed Central

    Rankenberg, Johanna M.; Vostrikov, Vitaly V.; DuVall, Christopher D.; Greathouse, Denise V.; Koeppe, Roger E.; Grant, Christopher V.; Opella, Stanley J.

    2013-01-01

    By using selected 2H and 15N labels, we have examined the influence of a central proline residue upon the properties of a defined peptide that spans lipid bilayer membranes by solid-state NMR spectroscopy. For this purpose, GWALP23 (acetyl-GGALW5LALALALALALALW19LAGA-ethanolamide) is a suitable model peptide that employs—for the purpose of interfacial anchoring—only one tryptophan residue on either end of a central alpha-helical core sequence. Because of its systematic behavior in lipid bilayer membranes of differing thickness (see J. Biol. Chem. 285, 31723), we utilize GWALP23 as a well-characterized framework for introducing guest residues within a transmembrane sequence; for example, a central proline yields acetyl-GGALW5LALALAP12ALALALW19LAGA-ethanolamide. We synthesized the GWALP23-P12 with specifically placed 2H and 15N labels for solid-state NMR spectroscopy, and examined the peptide orientation and segmental tilt in oriented DMPC lipid bilayer membranes using combined (2H)-GALA and (15N-1H) high resolution separated local field methods. In DMPC bilayer membranes, the peptide segments N-terminal and C-terminal to the proline are both tilted substantially with respect to the bilayer normal, by about 34° and 29° (± 5°), respectively. While the tilt increases for both segments when proline is present, the range and extent of the individual segment motions are comparable or less than those of the entire GWALP23 peptide in bilayer membranes. In DMPC, the proline induces a kink of about 30° (± 5°), with an apparent helix unwinding or “swivel” angle of about 70°. In DLPC and DOPC, based on 2H NMR data only, the kink angle and swivel angle probability distributions overlap those of DMPC, yet the most probable kink angle appears somewhat smaller than in DMPC. As has been described for GWALP23 itself, the C-terminal helix ends before Ala-21 in the phospholipids DMPC and DLPC, yet remains intact through Ala-21 in DOPC. The dynamics of bilayer-incorporated, membrane-spanning GWALP23 and GWALP23-P12 are less extensive than observed for WALP-family peptides that have more than two interfacial Trp residues. PMID:22489564

  13. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes.

    PubMed

    Geise, Geoffrey M; Cassady, Harrison J; Paul, Donald R; Logan, Bruce E; Hickner, Michael A

    2014-10-21

    Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The charge density and polarizability of the co-ions also appeared to influence permselectivity leading to ion-specific effects; co-ions that are charge dense and have low polarizability tended to result in high membrane permselectivity.

  14. Anatomic and physiologic changes of the aging kidney.

    PubMed

    Karam, Zeina; Tuazon, Jennifer

    2013-08-01

    Aging is associated with structural and functional changes in the kidney. Structural changes include glomerulosclerosis, thickening of the basement membrane, increase in mesangial matrix, tubulointerstitial fibrosis and arteriosclerosis. Glomerular filtration rate is maintained until the fourth decade of life, after which it declines. Parallel reductions in renal blood flow occur with redistribution of blood flow from the cortex to the medulla. Other functional changes include an increase in glomerular basement permeability and decreased ability to dilute or concentrate urine. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Theater of Operations Construction in the Desert. A Handbook of Lessons Learned in the Middle East. Phase I.

    DTIC Science & Technology

    1981-01-01

    moves great amounts of hot, dry air, it severely dehydrates the desert environment. In addition, the wind always carries fine soil particles which abrade...membrane hydrolysis . Manufacturers recommend that feed stream flows not be lower than three-fourths of the nominal design flow. Possible solutions: 1...undergo accelerated decomposition /aging when stored in high desert heat. This is complicated by the fa~t that many of the tests were designed to be

  16. NMR conformational studies of micelle-bound orexin-B: a neuropeptide involved in the sleep/awake cycle and feeding regulation.

    PubMed

    Miskolzie, Mark; Lucyk, Scott; Kotovych, George

    2003-12-01

    The preferred conformation of orexin-B, an orphan G-protein coupled receptor agonist (the human sequence is RSGPPGLQGRLQRLLQASGNHAAGILTM-NH(2)) has been determined by (1)H and (13)C 2D NMR spectroscopy and molecular modeling. Orexin-B has been implicated in sleep-wakefulness and feeding regulation. The membrane mimetic, sodium dodecylsulphate-d(25) (SDS), was used to mimic a physiological environment for the peptide. The secondary structure of orexin-B in SDS consists of two helical sections; helix I spans Leu(7) to Ser(18) and helix II spans Ala(22) to Leu(26). Helices I and II are believed to be involved in membrane binding, as is supported by the results of the spin label studies with 5-doxylstearic acid. Lee et al. (Eur. J. Biochem. 266, 831-839 (1999)) determined the [Phe(1)]-orexin-B conformation in water solution by NMR and showed that helix II extends from Ala(23) to Met(28). The C-terminal dipeptide, Thr(27)-Met(28), is unstructured is SDS, whereas in water it forms the end of helix II. The lack of apparent structure for Thr(27)-Met(28) in SDS allows the dipeptide to have conformational freedom to interact with the receptor. The conformation of orexin-B can now be used to explain the Ala substitution mutagenesis experiments and the D-amino acid substitution experiments (S. Asahi et al., Bioorg. Med. Chem. Lett. 13, 111-113, 2003). Asahi et al. have shown that Ala substitution from Gly(24) to Met(28) or D-amino acid substitution from Ala(23) to Met(28) causes a significant reduction in the potency of orexin-B for both OX(1)R and OX(2)R receptors. We postulate that helix II is involved in membrane recognition, and its binding to the membrane is essential for Thr(27)-Met(28) to adopt the correct receptor-binding conformation.

  17. Amino acid residues in the GerAB protein important in the function and assembly of the alanine spore germination receptor of Bacillus subtilis 168.

    PubMed

    Cooper, Gareth R; Moir, Anne

    2011-05-01

    The paradigm gerA operon is required for endospore germination in response to c-alanine as the sole germinant, and the three protein products, GerAA, GerAB, and GerAC are predicted to form a receptor complex in the spore inner membrane. GerAB shows homology to the amino acid-polyamine-organocation (APC) family of single-component transporters and is predicted to be an integral membrane protein with 10 membrane-spanning helices. Site-directed mutations were introduced into the gerAB gene at its natural location on the chromosome. Alterations to some charged or potential helix-breaking residues within membrane spans affected receptor function dramatically. In some cases, this is likely to reflect the complete loss of the GerA receptor complex, as judged by the absence of the germinant receptor protein GerAC, which suggests that the altered GerAB protein itself may be unstable or that the altered structure destabilizes the complex. Mutants that have a null phenotype for Instituto de Biotecnología de León, INBIOTEC, Parque Científico de León, Av. Real, 1, 24006 León, Spain-alanine germination but retain GerAC protein at near-normal levels are more likely to define amino acid residues of functional, rather than structural, importance. Single-amino-acid substitutions in each of the GerAB and GerAA proteins can prevent incorporation of GerAC protein into the spore; this provides strong evidence that the proteins within a specific receptor interact and that these interactions are required for receptor assembly. The lipoprotein nature of the GerAC receptor subunit is also important; an amino acid change in the prelipoprotein signal sequence in the gerAC1 mutant results in the absence of GerAC protein from the spore.

  18. Resveratrol induces mitochondrial dysfunction and decreases chronological life span of Saccharomyces cerevisiae in a glucose-dependent manner.

    PubMed

    Ramos-Gomez, Minerva; Olivares-Marin, Ivanna Karina; Canizal-García, Melina; González-Hernández, Juan Carlos; Nava, Gerardo M; Madrigal-Perez, Luis Alberto

    2017-06-01

    A broad range of health benefits have been attributed to resveratrol (RSV) supplementation in mammalian systems, including the increases in longevity. Nonetheless, despite the growing number of studies performed with RSV, the molecular mechanism by which it acts still remains unknown. Recently, it has been proposed that inhibition of the oxidative phosphorylation activity is the principal mechanism of RSV action. This mechanism suggests that RSV might induce mitochondrial dysfunction resulting in oxidative damage to cells with a concomitant decrease of cell viability and cellular life span. To prove this hypothesis, the chronological life span (CLS) of Saccharomyces cerevisiae was studied as it is accepted as an important model of oxidative damage and aging. In addition, oxygen consumption, mitochondrial membrane potential, and hydrogen peroxide (H 2 O 2 ) release were measured in order to determine the extent of mitochondrial dysfunction. The results demonstrated that the supplementation of S. cerevisiae cultures with 100 μM RSV decreased CLS in a glucose-dependent manner. At high-level glucose, RSV supplementation increased oxygen consumption during the exponential phase yeast cultures, but inhibited it in chronologically aged yeast cultures. However, at low-level glucose, oxygen consumption was inhibited in yeast cultures in the exponential phase as well as in chronologically aged cultures. Furthermore, RSV supplementation promoted the polarization of the mitochondrial membrane in both cultures. Finally, RSV decreased the release of H 2 O 2 with high-level glucose and increased it at low-level glucose. Altogether, this data supports the hypothesis that RSV supplementation decreases CLS as a result of mitochondrial dysfunction and this phenotype occurs in a glucose-dependent manner.

  19. Microencapsulation by Membrane Emulsification of Biophenols Recovered from Olive Mill Wastewaters

    PubMed Central

    Piacentini, Emma; Poerio, Teresa; Bazzarelli, Fabio; Giorno, Lidietta

    2016-01-01

    Biophenols are highly prized for their free radical scavenging and antioxidant activities. Olive mill wastewaters (OMWWs) are rich in biophenols. For this reason, there is a growing interest in the recovery and valorization of these compounds. Applications for the encapsulation have increased in the food industry as well as the pharmaceutical and cosmetic fields, among others. Advancements in micro-fabrication methods are needed to design new functional particles with target properties in terms of size, size distribution, and functional activity. This paper describes the use of the membrane emulsification method for the fine-tuning of microparticle production with biofunctional activity. In particular, in this pioneering work, membrane emulsification has been used as an advanced method for biophenols encapsulation. Catechol has been used as a biophenol model, while a biophenols mixture recovered from OMWWs were used as a real matrix. Water-in-oil emulsions with droplet sizes approximately 2.3 times the membrane pore diameter, a distribution span of 0.33, and high encapsulation efficiency (98% ± 1% and 92% ± 3%, for catechol and biophenols, respectively) were produced. The release of biophenols was also investigated. PMID:27171115

  20. Can membrane-bound carotenoid pigment zeaxanthin carry out a transmembrane proton transfer?

    PubMed

    Kupisz, Kamila; Sujak, Agnieszka; Patyra, Magdalena; Trebacz, Kazimierz; Gruszecki, Wiesław I

    2008-10-01

    Polar carotenoid pigment zeaxanthin (beta,beta-carotene-3,3'-diol) incorporated into planar lipid membranes formed with diphytanoyl phosphatidylcholine increases the specific electric resistance of the membrane from ca. 4 to 13 x 10(7) Omega cm2 (at 5 mol% zeaxanthin with respect to lipid). Such an observation is consistent with the well known effect of polar carotenoids in decreasing fluidity and structural stabilization of lipid bilayers. Zeaxanthin incorporated into the lipid membrane at 1 mol% has very small effect on the overall membrane resistance but facilitates equilibration of the transmembrane proton gradient, as demonstrated with the application of the H+-sensitive antimony electrodes. Relatively low changes in the electrical potential suggest that the equilibration process may be associated with a symport/antiport activity or with a transmembrane transfer of the molecules of acid. UV-Vis linear dichroism analysis of multibilayer formed with the same lipid-carotenoid system shows that the transition dipole moment of the pigment molecules forms a mean angle of 21 degrees with respect to the axis normal to the plane of the membrane. This means that zeaxanthin spans the membrane and tends to have its two hydroxyl groups anchored in the opposite polar zones of the membrane. Detailed FTIR analysis of beta-carotene and zeaxanthin indicates that the polyene chain of carotenoids is able to form weak hydrogen bonds with water molecules. Possible molecular mechanisms responsible for proton transport by polyenes are discussed, including direct involvement of the polyene chain in proton transfer and indirect effect of the pigment on physical properties of the membrane.

  1. Meiotic chromatin diminution in a vertebrate, the holocephalan fish Hydrolagus collie (Chondrichthyes, Holocephali).

    PubMed

    Stanley, H P; Kasinsky, H E; Bols, N C

    1984-01-01

    A histochemical, microdensitometric, and electron microscopic study of testes of the ratfish Hydrolagus colliei shows that an instance of the rare phenomenon of germ line chromatin diminution occurs in this vertebrate species. In primary spermatocytes at metaphase I a spherical mass of heterochromatin accumulates at one side of the metaphase plate. At anaphase I the heterochromatic mass is left in the equatorial cytoplasm and is passed into one of the two secondary spermatocytes formed during cytokinesis. As nuclear membranes are being restored, a double membrane envelope is also formed around the heterochromatic mass, which is then termed the 'chromatin diminution body' (CDB). At second meiotic division the CDB is included in the cytoplasm of one of the four spermatids and retained there, apparently unchanged, until mid-spermiogenesis. At that time the CDB becomes adherent to the spermatid plasma membrane and is pinched off from the spermatid by a process of apocrine exocytosis, taking a layer of spermatid plasma membrane along with it. Simultaneously this tri-membrane CDB is taken into the adjacent Sertoli cell by endocytosis, thereby acquiring a fourth membrane layer, a part of the Sertoli cell plasma membrane. The CDBs are subsequently phagocytized, possibly first fusing with dense, multilaminate bodies in the Sertoli cell cytoplasm. The CDB chromatin mass is strongly positive with the Feulgen method for DNA and the alkaline fast green method for histones. Microdensitometric analysis shows that the discarded chromatin amounts to about 10% of the diploid nuclear content and that it appears to be part of the normal diploid complement rather than DNA amplified during meiosis.

  2. The Influence of Fatty Acid Methyl Esters (FAMEs) in the Biochemistry and the Na(+)/K(+)-ATPase Activity of Culex quinquefasciatus Larvae.

    PubMed

    Silva, Lilian N D; Ribeiro-Neto, José A; Valadares, Jéssica M M; Costa, Mariana M; Lima, Luciana A R S; Grillo, Luciano A M; Cortes, Vanessa F; Santos, Herica L; Alves, Stênio N; Barbosa, Leandro A

    2016-08-01

    Culex quinquefasciatus is the main vector of lymphatic filariasis and combating this insect is of great importance to public health. There are reports of insects that are resistant to the products currently used to control this vector, and therefore, the search for new products has increased. In the present study, we have evaluated the effects of fatty acid methyl esters (FAMEs) that showed larvicidal activity against C. quinquefasciatus, on glucose, total protein, and triacylglycerol contents and Na(+)/K(+)-ATPase activity in mosquito larvae. The exposure of the fourth instar larvae to the compounds caused a decrease in the total protein content and an increase in the activity of the Na(+)/K(+)-ATPase. Furthermore, the direct effect of FAMEs on cell membrane was assessed on purified pig kidney Na(+)/K(+)-ATPase membranes, erythrocyte ghost membranes, and larvae membrane preparation. No modifications on total phospholipids and cholesterol content were found after FAMEs 20 min treatment on larvae membrane preparation, but only 360 µg/mL FAME 2 was able to decrease total phospholipid of erythrocyte ghost membrane. Moreover, only 60 and 360 µg/mL FAME 3 caused an activation of purified Na(+)/K(+)-ATPase, that was an opposite effect of FAMEs treatment in larvae membrane preparation, and caused an inhibition of the pump activity. These data together suggest that maybe FAMEs can modulate the Na(+)/K(+)-ATPase on intact larvae for such mechanisms and not for a direct effect, one time that the direct effect of FAMEs in membrane preparation decreased the activity of Na(+)/K(+)-ATPase. The biochemical changes caused by the compounds were significant and may negatively influence the development and survival of C. quinquefasciatus larvae.

  3. Continuum kinetic modeling of the tokamak plasma edge

    DOE PAGES

    Dorf, M. A.; Dorr, M.; Rognlien, T.; ...

    2016-03-10

    In this study, the first 4D (axisymmetric) high-order continuum gyrokinetic transport simulations that span the magnetic separatrix of a tokamak are presented. The modeling is performed with the COGENT code, which is distinguished by fourth-order finite-volume discretization combined with mapped multiblock grid technology to handle the strong anisotropy of plasmatransport and the complex X-point divertor geometry with high accuracy. The calculations take into account the effects of fully nonlinear Fokker-Plank collisions, electrostatic potential variations, and anomalous radial transport. Topics discussed include: (a) ion orbit loss and the associated toroidal rotation and (b) edge plasma relaxation in the presence of anomalousmore » radial transport.« less

  4. Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks.

    PubMed

    Shelley, M J; Tao, L

    2001-01-01

    To avoid the numerical errors associated with resetting the potential following a spike in simulations of integrate-and-fire neuronal networks, Hansel et al. and Shelley independently developed a modified time-stepping method. Their particular scheme consists of second-order Runge-Kutta time-stepping, a linear interpolant to find spike times, and a recalibration of postspike potential using the spike times. Here we show analytically that such a scheme is second order, discuss the conditions under which efficient, higher-order algorithms can be constructed to treat resets, and develop a modified fourth-order scheme. To support our analysis, we simulate a system of integrate-and-fire conductance-based point neurons with all-to-all coupling. For six-digit accuracy, our modified Runge-Kutta fourth-order scheme needs a time-step of Delta(t) = 0.5 x 10(-3) seconds, whereas to achieve comparable accuracy using a recalibrated second-order or a first-order algorithm requires time-steps of 10(-5) seconds or 10(-9) seconds, respectively. Furthermore, since the cortico-cortical conductances in standard integrate-and-fire neuronal networks do not depend on the value of the membrane potential, we can attain fourth-order accuracy with computational costs normally associated with second-order schemes.

  5. Hydrocephalus secondary to obstruction of the lateral apertures in two dogs.

    PubMed

    Kent, M; Glass, E N; Haley, A C; Shaikh, L S; Sequel, M; Blas-Machado, U; Bishop, T M; Holmes, S P; Platt, S R

    2016-11-01

    Traditionally, hydrocephalus is divided into communicating or non-communicating (obstructive) based on the identification of a blockage of cerebrospinal fluid (CSF) flow through the ventricular system. Hydrocephalus ex vacuo refers to ventricular enlargement as a consequence of neuroparenchymal loss. Hydrocephalus related to obstruction of the lateral apertures of the fourth ventricles has rarely been described. The clinicopathologic findings in two dogs with hydrocephalus secondary to obstruction of the lateral apertures of the fourth ventricle are reported. Signs were associated with a caudal cervical spinal cord lesion in one dog and a caudal brain stem lesion in the other dog. Magnetic resonance imaging (MRI) disclosed dilation of the ventricular system, including the lateral recesses of the fourth ventricle. In one dog, postmortem ventriculography confirmed obstruction of the lateral apertures. Microscopic changes were identified in the choroid plexus in both dogs, yet a definitive cause of the obstructions was not identified. The MRI findings in both dogs are similar to membranous occlusion of the lateral and median apertures in human patients. MRI detection of dilation of the entire ventricular system in the absence of an identifiable cause should prompt consideration of an obstruction of the lateral apertures. In future cases, therapeutic interventions aimed at re-establishing CSF flow or ventriculoperitoneal catheterisation should be considered. © 2016 Australian Veterinary Association.

  6. PDB_TM: selection and membrane localization of transmembrane proteins in the protein data bank.

    PubMed

    Tusnády, Gábor E; Dosztányi, Zsuzsanna; Simon, István

    2005-01-01

    PDB_TM is a database for transmembrane proteins with known structures. It aims to collect all transmembrane proteins that are deposited in the protein structure database (PDB) and to determine their membrane-spanning regions. These assignments are based on the TMDET algorithm, which uses only structural information to locate the most likely position of the lipid bilayer and to distinguish between transmembrane and globular proteins. This algorithm was applied to all PDB entries and the results were collected in the PDB_TM database. By using TMDET algorithm, the PDB_TM database can be automatically updated every week, keeping it synchronized with the latest PDB updates. The PDB_TM database is available at http://www.enzim.hu/PDB_TM.

  7. Toward a fourth-generation x-ray source.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monction, D. E.

    1999-05-19

    The field of synchrotron radiation research has grown rapidly over the last 25 years due to both the push of the accelerator and magnet technology that produces the x-ray beams and the pull of the extraordinary scientific research that is possible with them. Three successive generations of synchrotrons radiation facilities have resulted in beam brilliances 11 to 12 orders of magnitude greater than the standard laboratory x-ray tube. However, greater advances can be easily imagined given the fact that x-ray beams from present-day facilities do not exhibit the coherence or time structure so familiar with the optical laser. Theoretical workmore » over the last ten years or so has pointed to the possibility of generating hard x-ray beams with laser-like characteristics. The concept is based on self-amplified spontaneous emission (SASE) in flee-electron lasers. A major facility of this type based upon a superconducting linac could produce a cost-effective facility that spans wave-lengths from the ultraviolet to the hard x-ray regime, simultaneously servicing large numbers experimenters from a wide range of disciplines. As with each past generation of synchrotrons facilities, immense new scientific opportunities would result from fourth-generation sources.« less

  8. High bisphenol A (BPA) concentration in the maternal, but not fetal, compartment increases the risk of spontaneous preterm delivery.

    PubMed

    Behnia, Faranak; Peltier, Morgan; Getahun, Darios; Watson, Cheryl; Saade, George; Menon, Ramkumar

    2016-11-01

    The objective of this study is to determine if BPA exposure, as measured by maternal plasma (MP) and amniotic fluid (AF) BPA concentrations is associated with an increased risk of spontaneous preterm birth (PTB) and preterm premature rupture of membranes (pPROM). In this nested case-control study, MP samples from women in term labor (n = 30), preterm labor that ended with preterm delivery (n = 25), or who had pPROM (n = 30) and amniotic fluid samples from term labor (n= 45), preterm labor (n = 60), and pPROM (n = 35) were assayed for BPA by enzyme immunoassay. BPA was detectible in 100% of MP and AF samples. Women with MP BPA concentrations in the fourth quartile were at increased risk of PTB (cOR = 4.12, 95% CI = 1.32-12.87; aOR = 4.78, 95% CI = 1.14-20) but not pPROM. High (fourth quartile) AF BPA values also tended to increase the risk of pPROM (cOR = 2.47, 95% CI = 0.96-6.37) but results were not statistically significant. Increased BPA concentration is associated with an increased risk for PTB or pPROM depending on the maternal-fetal compartment(s) affected. High MP plasma BPA concentrations are associated with PTB with intact membranes but high AF BPA concentrations may weakly be associated with pPROM.

  9. Investigating Hydrophilic Pores in Model Lipid Bilayers using Molecular Simulations: Correlating Bilayer Properties with Pore Formation Thermodynamics

    PubMed Central

    Hu, Yuan; Sinha, Sudipta Kumar

    2015-01-01

    Cell-penetrating and antimicrobial peptides show remarkable ability to translocate across physiological membranes. Along with factors such as electric potential induced-perturbations of membrane structure and surface tension effects, experiments invoke pore-like membrane configurations during the solute transfer process into vesicles and cells. The initiation and formation of pores are associated with a non-trivial free energy cost, thus necessitating consideration of the factors associated with pore formation and attendant free energetics. Due to experimental and modeling challenges related to the long timescales of the translocation process, we use umbrella-sampling molecular dynamics simulations with a lipid-density based order parameter to investigate membrane pore-formation free energy employing Martini coarse-grained models. We investigate structure and thermodynamic features of the pore in 18 lipids spanning a range of head-groups, charge states, acyl chain lengths and saturation. We probe the dependence of pore-formation barriers on area per lipid, lipid bilayer thickness, membrane bending rigidities in three different lipid classes. The pore formation free energy in pure bilayers and peptide translocating scenarios are significantly coupled with bilayer thickness. Thicker bilayers require more reversible work to create pores. Pore formation free energy is higher in peptide-lipid systems relative to the peptide-free lipid systems due to penalties to maintain solvation of charged hydrophilic solutes within the membrane environment. PMID:25614183

  10. Actions of Steroids: New Neurotransmitters

    PubMed Central

    Cornil, Charlotte A.; Mittelman-Smith, Melinda A.; Rainville, Jennifer R.; Remage-Healey, Luke; Sinchak, Kevin; Micevych, Paul E.

    2016-01-01

    Over the past two decades, the classical understanding of steroid action has been updated to include rapid, membrane-initiated, neurotransmitter-like functions. While steroids were known to function on very short time spans to induce physiological and behavioral changes, the mechanisms by which these changes occur are now becoming more clear. In avian systems, rapid estradiol effects can be mediated via local alterations in aromatase activity, which precisely regulates the temporal and spatial availability of estrogens. Acute regulation of brain-derived estrogens has been shown to rapidly affect sensorimotor function and sexual motivation in birds. In rodents, estrogens and progesterone are critical for reproduction, including preovulatory events and female sexual receptivity. Membrane progesterone receptor as well as classical progesterone receptor trafficked to the membrane mediate reproductive-related hypothalamic physiology, via second messenger systems with dopamine-induced cell signals. In addition to these relatively rapid actions, estrogen membrane-initiated signaling elicits changes in morphology. In the arcuate nucleus of the hypothalamus, these changes are needed for lordosis behavior. Recent evidence also demonstrates that membrane glucocorticoid receptor is present in numerous cell types and species, including mammals. Further, membrane glucocorticoid receptor influences glucocorticoid receptor translocation to the nucleus effecting transcriptional activity. The studies presented here underscore the evidence that steroids behave like neurotransmitters to regulate CNS functions. In the future, we hope to fully characterize steroid receptor-specific functions in the brain. PMID:27911748

  11. Investigating Hydrophilic Pores in Model Lipid Bilayers Using Molecular Simulations: Correlating Bilayer Properties with Pore-Formation Thermodynamics.

    PubMed

    Hu, Yuan; Sinha, Sudipta Kumar; Patel, Sandeep

    2015-06-23

    Cell-penetrating and antimicrobial peptides show a remarkable ability to translocate across physiological membranes. Along with factors such as electric-potential-induced perturbations of membrane structure and surface tension effects, experiments invoke porelike membrane configurations during the solute transfer process into vesicles and cells. The initiation and formation of pores are associated with a nontrivial free-energy cost, thus necessitating a consideration of the factors associated with pore formation and the attendant free energies. Because of experimental and modeling challenges related to the long time scales of the translocation process, we use umbrella sampling molecular dynamics simulations with a lipid-density-based order parameter to investigate membrane-pore-formation free energy employing Martini coarse-grained models. We investigate structure and thermodynamic features of the pore in 18 lipids spanning a range of headgroups, charge states, acyl chain lengths, and saturation. We probe the dependence of pore-formation barriers on the area per lipid, lipid bilayer thickness, and membrane bending rigidities in three different lipid classes. The pore-formation free energy in pure bilayers and peptide translocating scenarios are significantly coupled with bilayer thickness. Thicker bilayers require more reversible work to create pores. The pore-formation free energy is higher in peptide-lipid systems than in peptide-free lipid systems due to penalties to maintain the solvation of charged hydrophilic solutes within the membrane environment.

  12. First integrals of the axisymmetric shape equation of lipid membranes

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Heng; McDargh, Zachary; Tu, Zhan-Chun

    2018-03-01

    The shape equation of lipid membranes is a fourth-order partial differential equation. Under the axisymmetric condition, this equation was transformed into a second-order ordinary differential equation (ODE) by Zheng and Liu (Phys. Rev. E 48 2856 (1993)). Here we try to further reduce this second-order ODE to a first-order ODE. First, we invert the usual process of variational calculus, that is, we construct a Lagrangian for which the ODE is the corresponding Euler–Lagrange equation. Then, we seek symmetries of this Lagrangian according to the Noether theorem. Under a certain restriction on Lie groups of the shape equation, we find that the first integral only exists when the shape equation is identical to the Willmore equation, in which case the symmetry leading to the first integral is scale invariance. We also obtain the mechanical interpretation of the first integral by using the membrane stress tensor. Project supported by the National Natural Science Foundation of China (Grant No. 11274046) and the National Science Foundation of the United States (Grant No. 1515007).

  13. Sensing charges of the Ciona intestinalis voltage-sensing phosphatase.

    PubMed

    Villalba-Galea, Carlos A; Frezza, Ludivine; Sandtner, Walter; Bezanilla, Francisco

    2013-11-01

    Voltage control over enzymatic activity in voltage-sensitive phosphatases (VSPs) is conferred by a voltage-sensing domain (VSD) located in the N terminus. These VSDs are constituted by four putative transmembrane segments (S1 to S4) resembling those found in voltage-gated ion channels. The putative fourth segment (S4) of the VSD contains positive residues that likely function as voltage-sensing elements. To study in detail how these residues sense the plasma membrane potential, we have focused on five arginines in the S4 segment of the Ciona intestinalis VSP (Ci-VSP). After implementing a histidine scan, here we show that four arginine-to-histidine mutants, namely R223H to R232H, mediate voltage-dependent proton translocation across the membrane, indicating that these residues transit through the hydrophobic core of Ci-VSP as a function of the membrane potential. These observations indicate that the charges carried by these residues are sensing charges. Furthermore, our results also show that the electrical field in VSPs is focused in a narrow hydrophobic region that separates the extracellular and intracellular space and constitutes the energy barrier for charge crossing.

  14. Factor VIII organisation on nanodiscs with different lipid composition.

    PubMed

    Grushin, Kirill; Miller, Jaimy; Dalm, Daniela; Stoilova-McPhie, Svetla

    2015-04-01

    Nanodiscs (ND) are lipid bilayer membrane patches held by amphiphilic scaffolding proteins (MSP) of ~10 nm in diameter. Nanodiscs have been developed as lipid nanoplatforms for structural and functional studies of membrane and membrane associated proteins. Their size and monodispersity have rendered them unique for electron microscopy (EM) and single particle analysis studies of proteins and complexes either spanning or associated to the ND membrane. Binding of blood coagulation factors and complexes, such as the Factor VIII (FVIII) and the Factor VIIIa - Factor IXa (intrinsic tenase) complex to the negatively charged activated platelet membrane is required for normal haemostasis. In this study we present our work on optimising ND, specifically designed to bind FVIII at close to physiological conditions. The binding of FVIII to the negatively charged ND rich in phosphatidylserine (PS) was followed by electron microscopy at three different PS compositions and two different membrane scaffolding protein (MSP1D1) to lipid ratios. Our results show that the ND with highest PS content (80 %) and lowest MSP1D1 to lipid ratio (1:47) are the most suitable for structure determination of the membrane-bound FVIII by single particle EM. Our preliminary FVIII 3D reconstruction as bound to PS containing ND demonstrates the suitability of the optimised ND for structural studies by EM. Further assembly of the activated FVIII form (FVIIIa) and the whole FVIIIa-FIXa complex on ND, followed by EM and single particle reconstruction will help to identify the protein-protein and protein-membrane interfaces critical for the intrinsic tenase complex assembly and function.

  15. Dissection of the Role of the Stable Signal Peptide of the Arenavirus Envelope Glycoprotein in Membrane Fusion

    PubMed Central

    Messina, Emily L.; York, Joanne

    2012-01-01

    The arenavirus envelope glycoprotein (GPC) retains a stable signal peptide (SSP) as an essential subunit in the mature complex. The 58-amino-acid residue SSP comprises two membrane-spanning hydrophobic regions separated by a short ectodomain loop that interacts with the G2 fusion subunit to promote pH-dependent membrane fusion. Small-molecule compounds that target this unique SSP-G2 interaction prevent arenavirus entry and infection. The interaction between SSP and G2 is sensitive to the phylogenetic distance between New World (Junín) and Old World (Lassa) arenaviruses. For example, heterotypic GPC complexes are unable to support virion entry. In this report, we demonstrate that the hybrid GPC complexes are properly assembled, proteolytically cleaved, and transported to the cell surface but are specifically defective in their membrane fusion activity. Chimeric SSP constructs reveal that this incompatibility is localized to the first transmembrane segment of SSP (TM1). Genetic changes in TM1 also affect sensitivity to small-molecule fusion inhibitors, generating resistance in some cases and inhibitor dependence in others. Our studies suggest that interactions of SSP TM1 with the transmembrane domain of G2 may be important for GPC-mediated membrane fusion and its inhibition. PMID:22438561

  16. Gas-liquid interfacial plasmas producing reactive species for cell membrane permeabilization

    PubMed Central

    Kaneko, Toshiro; Sasaki, Shota; Takashima, Keisuke; Kanzaki, Makoto

    2017-01-01

    Gas-liquid interfacial atmospheric-pressure plasma jets (GLI-APPJ) are used medically for plasma-induced cell-membrane permeabilization. In an attempt to identify the dominant factors induced by GLI-APPJ responsible for enhancing cell-membrane permeability, the concentration and distribution of plasma-produced reactive species in the gas and liquid phase regions are measured. These reactive species are classified in terms of their life-span: long-lived (e.g., H2O2), short-lived (e.g., O2•−), and extremely-short-lived (e.g., •OH). The concentration of plasma-produced •OHaq in the liquid phase region decreases with an increase in solution thickness (<1 mm), and plasma-induced cell-membrane permeabilization is found to decay markedly as the thickness of the solution increases. Furthermore, the horizontally center-localized distribution of •OHaq, resulting from the center-peaked distribution of •OH in the gas phase region, corresponds with the distribution of the permeabilized cells upon APPJ irradiation, whereas the overall plasma-produced oxidizing species such as H2O2aq in solution exhibit a doughnut-shaped horizontal distribution. These results suggest that •OHaq is likely one of the dominant factors responsible for plasma-induced cell-membrane permeabilization. PMID:28163376

  17. Gas-liquid interfacial plasmas producing reactive species for cell membrane permeabilization.

    PubMed

    Kaneko, Toshiro; Sasaki, Shota; Takashima, Keisuke; Kanzaki, Makoto

    2017-01-01

    Gas-liquid interfacial atmospheric-pressure plasma jets (GLI-APPJ) are used medically for plasma-induced cell-membrane permeabilization. In an attempt to identify the dominant factors induced by GLI-APPJ responsible for enhancing cell-membrane permeability, the concentration and distribution of plasma-produced reactive species in the gas and liquid phase regions are measured. These reactive species are classified in terms of their life-span: long-lived (e.g., H 2 O 2 ), short-lived (e.g., O 2 •- ), and extremely-short-lived (e.g., • OH). The concentration of plasma-produced • OH aq in the liquid phase region decreases with an increase in solution thickness (<1 mm), and plasma-induced cell-membrane permeabilization is found to decay markedly as the thickness of the solution increases. Furthermore, the horizontally center-localized distribution of • OH aq , resulting from the center-peaked distribution of • OH in the gas phase region, corresponds with the distribution of the permeabilized cells upon APPJ irradiation, whereas the overall plasma-produced oxidizing species such as H 2 O 2aq in solution exhibit a doughnut-shaped horizontal distribution. These results suggest that • OH aq is likely one of the dominant factors responsible for plasma-induced cell-membrane permeabilization.

  18. A Circular Dichroism Reference Database for Membrane Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace,B.; Wien, F.; Stone, T.

    2006-01-01

    Membrane proteins are a major product of most genomes and the target of a large number of current pharmaceuticals, yet little information exists on their structures because of the difficulty of crystallising them; hence for the most part they have been excluded from structural genomics programme targets. Furthermore, even methods such as circular dichroism (CD) spectroscopy which seek to define secondary structure have not been fully exploited because of technical limitations to their interpretation for membrane embedded proteins. Empirical analyses of circular dichroism (CD) spectra are valuable for providing information on secondary structures of proteins. However, the accuracy of themore » results depends on the appropriateness of the reference databases used in the analyses. Membrane proteins have different spectral characteristics than do soluble proteins as a result of the low dielectric constants of membrane bilayers relative to those of aqueous solutions (Chen & Wallace (1997) Biophys. Chem. 65:65-74). To date, no CD reference database exists exclusively for the analysis of membrane proteins, and hence empirical analyses based on current reference databases derived from soluble proteins are not adequate for accurate analyses of membrane protein secondary structures (Wallace et al (2003) Prot. Sci. 12:875-884). We have therefore created a new reference database of CD spectra of integral membrane proteins whose crystal structures have been determined. To date it contains more than 20 proteins, and spans the range of secondary structures from mostly helical to mostly sheet proteins. This reference database should enable more accurate secondary structure determinations of membrane embedded proteins and will become one of the reference database options in the CD calculation server DICHROWEB (Whitmore & Wallace (2004) NAR 32:W668-673).« less

  19. Influence of oligomerization state on the structural properties of invasion plasmid antigen B from Shigella flexneri in the presence and absence of phospholipid membranes.

    PubMed

    Adam, Philip R; Dickenson, Nicholas E; Greenwood, Jamie C; Picking, Wendy L; Picking, William D

    2014-11-01

    Shigella flexneri causes bacillary dysentery, an important cause of mortality among children in the developing world. Shigella secretes effector proteins via its type III secretion system (T3SS) to promote bacterial uptake into human colonic epithelial cells. The T3SS basal body spans the bacterial cell envelope anchoring a surface-exposed needle. A pentamer of invasion plasmid antigen D lies at the nascent needle tip and invasion plasmid antigen B (IpaB) is recruited into the needle tip complex on exposure to bile salts. From here, IpaB forms a translocon pore in the host cell membrane. Although the mechanism by which IpaB inserts into the membrane is unknown, it was recently shown that recombinant IpaB can exist as either a monomer or tetramer. Both of these forms of IpaB associate with membranes, however, only the tetramer forms pores in liposomes. To reveal differences between these membrane-binding events, Cys mutations were introduced throughout IpaB, allowing site-specific fluorescence labeling. Fluorescence quenching was used to determine the influence of oligomerization and/or membrane association on the accessibility of different IpaB regions to small solutes. The data show that the hydrophobic region of tetrameric IpaB is more accessible to solvent relative to the monomer. The hydrophobic region appears to promote membrane interaction for both forms of IpaB, however, more of the hydrophobic region is protected from solvent for the tetramer after membrane association. Limited proteolysis demonstrated that changes in IpaB's oligomeric state may determine the manner by which it associates with phospholipid membranes and the subsequent outcome of this association. © 2014 Wiley Periodicals, Inc.

  20. In situ structural analysis of the Yersinia enterocolitica injectisome

    PubMed Central

    Kudryashev, Mikhail; Stenta, Marco; Schmelz, Stefan; Amstutz, Marlise; Wiesand, Ulrich; Castaño-Díez, Daniel; Degiacomi, Matteo T; Münnich, Stefan; Bleck, Christopher KE; Kowal, Julia; Diepold, Andreas; Heinz, Dirk W; Dal Peraro, Matteo; Cornelis, Guy R; Stahlberg, Henning

    2013-01-01

    Injectisomes are multi-protein transmembrane machines allowing pathogenic bacteria to inject effector proteins into eukaryotic host cells, a process called type III secretion. Here we present the first three-dimensional structure of Yersinia enterocolitica and Shigella flexneri injectisomes in situ and the first structural analysis of the Yersinia injectisome. Unexpectedly, basal bodies of injectisomes inside the bacterial cells showed length variations of 20%. The in situ structures of the Y. enterocolitica and S. flexneri injectisomes had similar dimensions and were significantly longer than the isolated structures of related injectisomes. The crystal structure of the inner membrane injectisome component YscD appeared elongated compared to a homologous protein, and molecular dynamics simulations documented its elongation elasticity. The ring-shaped secretin YscC at the outer membrane was stretched by 30–40% in situ, compared to its isolated liposome-embedded conformation. We suggest that elasticity is critical for some two-membrane spanning protein complexes to cope with variations in the intermembrane distance. DOI: http://dx.doi.org/10.7554/eLife.00792.001 PMID:23908767

  1. Structure-property relationships in a series of diglycerol tetraether model lipids and their lyotropic assemblies: the effect of branching topology and chirality.

    PubMed

    Markowski, Thomas; Drescher, Simon; Meister, Annette; Blume, Alfred; Dobner, Bodo

    2014-06-14

    Three novel diglycerol tetraether lipids with one membrane-spanning chain have been synthesized. These lipids contain only two or four racemic methyl branches at selected positions of the hydrophobic chains in contrast to natural lipids from archaebacterial membranes with an isoprenoid substitution pattern. The insertion of the methyl moieties was realized starting from either (RS)-citronellyl bromide or the inexpensive methyl malonic acid ethyl ester. For chain elongation the Cu-catalysed Grignard coupling reaction was used. The preparation of diglycerol tetraethers was either performed by condensing suitable blocked monoglycerol diethers by Grubbs metathesis or by reaction of the transmembrane C32-chain with blocked glycerols followed by further alkylation steps. Finally, we could show that the resulting lipids can form closed lipid vesicles comparable to the optically pure counterparts. Therefore, these much simpler lipids compared to the natural lipids from archaebacterial membranes are also suitable for preparation of stable tailored liposomes.

  2. Border control: selectivity of chloroplast protein import and regulation at the TOC-complex

    PubMed Central

    Demarsy, Emilie; Lakshmanan, Ashok M.; Kessler, Felix

    2014-01-01

    Plants have evolved complex and sophisticated molecular mechanisms to regulate their development and adapt to their surrounding environment. Particularly the development of their specific organelles, chloroplasts and other plastid-types, is finely tuned in accordance with the metabolic needs of the cell. The normal development and functioning of plastids require import of particular subsets of nuclear encoded proteins. Most preproteins contain a cleavable sequence at their N terminal (transit peptide) serving as a signal for targeting to the organelle and recognition by the translocation machinery TOC–TIC (translocon of outer membrane complex–translocon of inner membrane complex) spanning the dual membrane envelope. The plastid proteome needs constant remodeling in response to developmental and environmental factors. Therefore selective regulation of preprotein import plays a crucial role in plant development. In this review we describe the diversity of transit peptides and TOC receptor complexes, and summarize the current knowledge and potential directions for future research concerning regulation of the different Toc isoforms. PMID:25278954

  3. Border control: selectivity of chloroplast protein import and regulation at the TOC-complex.

    PubMed

    Demarsy, Emilie; Lakshmanan, Ashok M; Kessler, Felix

    2014-01-01

    Plants have evolved complex and sophisticated molecular mechanisms to regulate their development and adapt to their surrounding environment. Particularly the development of their specific organelles, chloroplasts and other plastid-types, is finely tuned in accordance with the metabolic needs of the cell. The normal development and functioning of plastids require import of particular subsets of nuclear encoded proteins. Most preproteins contain a cleavable sequence at their N terminal (transit peptide) serving as a signal for targeting to the organelle and recognition by the translocation machinery TOC-TIC (translocon of outer membrane complex-translocon of inner membrane complex) spanning the dual membrane envelope. The plastid proteome needs constant remodeling in response to developmental and environmental factors. Therefore selective regulation of preprotein import plays a crucial role in plant development. In this review we describe the diversity of transit peptides and TOC receptor complexes, and summarize the current knowledge and potential directions for future research concerning regulation of the different Toc isoforms.

  4. Early Steps in Autophagy Depend on Direct Phosphorylation of Atg9 by the Atg1 Kinase

    PubMed Central

    Papinski, Daniel; Schuschnig, Martina; Reiter, Wolfgang; Wilhelm, Larissa; Barnes, Christopher A.; Maiolica, Alessio; Hansmann, Isabella; Pfaffenwimmer, Thaddaeus; Kijanska, Monika; Stoffel, Ingrid; Lee, Sung Sik; Brezovich, Andrea; Lou, Jane Hua; Turk, Benjamin E.; Aebersold, Ruedi; Ammerer, Gustav; Peter, Matthias; Kraft, Claudine

    2014-01-01

    Summary Bulk degradation of cytoplasmic material is mediated by a highly conserved intracellular trafficking pathway termed autophagy. This pathway is characterized by the formation of double-membrane vesicles termed autophagosomes engulfing the substrate and transporting it to the vacuole/lysosome for breakdown and recycling. The Atg1/ULK1 kinase is essential for this process; however, little is known about its targets and the means by which it controls autophagy. Here we have screened for Atg1 kinase substrates using consensus peptide arrays and identified three components of the autophagy machinery. The multimembrane-spanning protein Atg9 is a direct target of this kinase essential for autophagy. Phosphorylated Atg9 is then required for the efficient recruitment of Atg8 and Atg18 to the site of autophagosome formation and subsequent expansion of the isolation membrane, a prerequisite for a functioning autophagy pathway. These findings show that the Atg1 kinase acts early in autophagy by regulating the outgrowth of autophagosomal membranes. PMID:24440502

  5. Perfringolysin O: The Underrated Clostridium perfringens Toxin?

    PubMed Central

    Verherstraeten, Stefanie; Goossens, Evy; Valgaeren, Bonnie; Pardon, Bart; Timbermont, Leen; Haesebrouck, Freddy; Ducatelle, Richard; Deprez, Piet; Wade, Kristin R.; Tweten, Rodney; Van Immerseel, Filip

    2015-01-01

    The anaerobic bacterium Clostridium perfringens expresses multiple toxins that promote disease development in both humans and animals. One such toxin is perfringolysin O (PFO, classically referred to as θ toxin), a pore-forming cholesterol-dependent cytolysin (CDC). PFO is secreted as a water-soluble monomer that recognizes and binds membranes via cholesterol. Membrane-bound monomers undergo structural changes that culminate in the formation of an oligomerized prepore complex on the membrane surface. The prepore then undergoes conversion into the bilayer-spanning pore measuring approximately 250–300 Å in diameter. PFO is expressed in nearly all identified C. perfringens strains and harbors interesting traits that suggest a potential undefined role for PFO in disease development. Research has demonstrated a role for PFO in gas gangrene progression and bovine necrohemorrhagic enteritis, but there is limited data available to determine if PFO also functions in additional disease presentations caused by C. perfringens. This review summarizes the known structural and functional characteristics of PFO, while highlighting recent insights into the potential contributions of PFO to disease pathogenesis. PMID:26008232

  6. Perfringolysin O: The Underrated Clostridium perfringens Toxin?

    PubMed

    Verherstraeten, Stefanie; Goossens, Evy; Valgaeren, Bonnie; Pardon, Bart; Timbermont, Leen; Haesebrouck, Freddy; Ducatelle, Richard; Deprez, Piet; Wade, Kristin R; Tweten, Rodney; Van Immerseel, Filip

    2015-05-14

    The anaerobic bacterium Clostridium perfringens expresses multiple toxins that promote disease development in both humans and animals. One such toxin is perfringolysin O (PFO, classically referred to as θ toxin), a pore-forming cholesterol-dependent cytolysin (CDC). PFO is secreted as a water-soluble monomer that recognizes and binds membranes via cholesterol. Membrane-bound monomers undergo structural changes that culminate in the formation of an oligomerized prepore complex on the membrane surface. The prepore then undergoes conversion into the bilayer-spanning pore measuring approximately 250-300 Å in diameter. PFO is expressed in nearly all identified C. perfringens strains and harbors interesting traits that suggest a potential undefined role for PFO in disease development. Research has demonstrated a role for PFO in gas gangrene progression and bovine necrohemorrhagic enteritis, but there is limited data available to determine if PFO also functions in additional disease presentations caused by C. perfringens. This review summarizes the known structural and functional characteristics of PFO, while highlighting recent insights into the potential contributions of PFO to disease pathogenesis.

  7. Architecture and permeability of post-cytokinesis plasmodesmata lacking cytoplasmic sleeves.

    PubMed

    Nicolas, William J; Grison, Magali S; Trépout, Sylvain; Gaston, Amélia; Fouché, Mathieu; Cordelières, Fabrice P; Oparka, Karl; Tilsner, Jens; Brocard, Lysiane; Bayer, Emmanuelle M

    2017-06-12

    Plasmodesmata are remarkable cellular machines responsible for the controlled exchange of proteins, small RNAs and signalling molecules between cells. They are lined by the plasma membrane (PM), contain a strand of tubular endoplasmic reticulum (ER), and the space between these two membranes is thought to control plasmodesmata permeability. Here, we have reconstructed plasmodesmata three-dimensional (3D) ultrastructure with an unprecedented level of 3D information using electron tomography. We show that within plasmodesmata, ER-PM contact sites undergo substantial remodelling events during cell differentiation. Instead of being open pores, post-cytokinesis plasmodesmata present such intimate ER-PM contact along the entire length of the pores that no intermembrane gap is visible. Later on, during cell expansion, the plasmodesmata pore widens and the two membranes separate, leaving a cytosolic sleeve spanned by tethers whose presence correlates with the appearance of the intermembrane gap. Surprisingly, the post-cytokinesis plasmodesmata allow diffusion of macromolecules despite the apparent lack of an open cytoplasmic sleeve, forcing the reassessment of the mechanisms that control plant cell-cell communication.

  8. LINCing complex functions at the nuclear envelope

    PubMed Central

    Rothballer, Andrea; Schwartz, Thomas U.; Kutay, Ulrike

    2013-01-01

    Linker of nucleoskeleton and cytoskeleton (LINC) complexes span the double membrane of the nuclear envelope (NE) and physically connect nuclear structures to cytoskeletal elements. LINC complexes are envisioned as force transducers in the NE, which facilitate processes like nuclear anchorage and migration, or chromosome movements. The complexes are built from members of two evolutionary conserved families of transmembrane (TM) proteins, the SUN (Sad1/UNC-84) domain proteins in the inner nuclear membrane (INM) and the KASH (Klarsicht/ANC-1/SYNE homology) domain proteins in the outer nuclear membrane (ONM). In the lumen of the NE, the SUN and KASH domains engage in an intimate assembly to jointly form a NE bridge. Detailed insights into the molecular architecture and atomic structure of LINC complexes have recently revealed the molecular basis of nucleo-cytoskeletal coupling. They bear important implications for LINC complex function and suggest new potential and as yet unexplored roles, which the complexes may play in the cell. PMID:23324460

  9. Nucleotide sequence of the Saccharomyces cerevisiae PUT4 proline-permease-encoding gene: similarities between CAN1, HIP1 and PUT4 permeases.

    PubMed

    Vandenbol, M; Jauniaux, J C; Grenson, M

    1989-11-15

    The complete nucleotide (nt) sequence of the PUT4 gene, whose product is required for high-affinity proline active transport in the yeast Saccharomyces cerevisiae, is presented. The sequence contains a single long open reading frame of 1881 nt, encoding a polypeptide with a calculated Mr of 68,795. The predicted protein is strongly hydrophobic and exhibits six potential glycosylation sites. Its hydropathy profile suggests the presence of twelve membrane-spanning regions flanked by hydrophilic N- and C-terminal domains. The N terminus does not resemble signal sequences found in secreted proteins. These features are characteristic of integral membrane proteins catalyzing translocation of ligands across cellular membranes. Protein sequence comparisons indicate strong resemblance to the arginine and histidine permeases of S. cerevisiae, but no marked sequence similarity to the proline permease of Escherichia coli or to other known prokaryotic or eukaryotic transport proteins. The strong similarity between the three yeast amino acid permeases suggests a common ancestor for the three proteins.

  10. Identification of a fourth locus (EVR4) for familial exudative vitreoretinopathy (FEVR).

    PubMed

    Toomes, Carmel; Downey, Louise M; Bottomley, Helen M; Scott, Sheila; Woodruff, Geoffrey; Trembath, Richard C; Inglehearn, Chris F

    2004-01-15

    Familial exudative vitreoretinopathy (FEVR) is a genetically heterogeneous inherited blinding disorder of the retinal vascular system. To date three loci have been mapped: EVR1 on chromosome 11q, EVR2 on chromosome Xp, and EVR3 on chromosome 11p. The gene underlying EVR3 remains unidentified whilst the EVR2 gene, which encodes the Norrie disease protein (NDP), was identified over a decade ago. More recently, FZD4, the gene that encodes the Wnt receptor Frizzled-4, was identified as the mutated gene at the EVR1 locus. The purpose of this study was to screen FZD4 in a large family previously proven to be linked to the EVR1 locus. PCR products were generated using genomic DNA from affected family members with primers designed to amplify the coding sequence of FZD4. The PCR products were screened for mutations by direct sequencing. Genotyping was performed in all available family members using fluorescently labeled microsatellite markers from chromosome 11q. Sequencing of the EVR1 gene, FZD4, in this family identified no mutation. To investigate this family further we performed high-resolution genotyping with markers spanning chromosome 11q. Haplotype analysis excluded FZD4 as the mutated gene in this family and identified a candidate region approximately 10 cM centromeric to EVR1. This new FEVR locus is flanked by markers D11S1368 (centromeric) and D11S937 (telomeric) and spans approximately 15 cM. High-resolution genotyping and haplotype analysis excluded FZD4 as the defective gene in a family previously linked to the EVR1 locus. The results indicate that the gene mutated in this family lies centromeric to the EVR1 gene, FZD4, and is also genetically distinct from the EVR3 locus. This new locus has been designated EVR4 and is the fourth FEVR locus to be described.

  11. The ancient claudin Dni2 facilitates yeast cell fusion by compartmentalizing Dni1 into a membrane subdomain.

    PubMed

    Curto, M-Ángeles; Moro, Sandra; Yanguas, Francisco; Gutiérrez-González, Carmen; Valdivieso, M-Henar

    2018-05-01

    Dni1 and Dni2 facilitate cell fusion during mating. Here, we show that these proteins are interdependent for their localization in a plasma membrane subdomain, which we have termed the mating fusion domain. Dni1 compartmentation in the domain is required for cell fusion. The contribution of actin, sterol-dependent membrane organization, and Dni2 to this compartmentation was analysed, and the results showed that Dni2 plays the most relevant role in the process. In turn, the Dni2 exit from the endoplasmic reticulum depends on Dni1. These proteins share the presence of a cysteine motif in their first extracellular loop related to the claudin GLWxxC(8-10 aa)C signature motif. Structure-function analyses show that mutating each Dni1 conserved cysteine has mild effects, and that only simultaneous elimination of several cysteines leads to a mating defect. On the contrary, eliminating each single cysteine and the C-terminal tail in Dni2 abrogates Dni1 compartmentation and cell fusion. Sequence alignments show that claudin trans-membrane helixes bear small-XXX-small motifs at conserved positions. The fourth Dni2 trans-membrane helix tends to form homo-oligomers in Escherichia plasma membrane, and two concatenated small-XXX-small motifs are required for efficient oligomerization and for Dni2 export from the yeast endoplasmic reticulum. Together, our results strongly suggest that Dni2 is an ancient claudin that blocks Dni1 diffusion from the intercellular region where two plasma membranes are in close proximity, and that this function is required for Dni1 to facilitate cell fusion.

  12. Cognitive remediation therapy (CRT) benefits more to patients with schizophrenia with low initial memory performances.

    PubMed

    Pillet, Benoit; Morvan, Yannick; Todd, Aurelia; Franck, Nicolas; Duboc, Chloé; Grosz, Aimé; Launay, Corinne; Demily, Caroline; Gaillard, Raphaël; Krebs, Marie-Odile; Amado, Isabelle

    2015-01-01

    Cognitive deficits in schizophrenia mainly affect memory, attention and executive functions. Cognitive remediation is a technique derived from neuropsychology, which aims to improve or compensate for these deficits. Working memory, verbal learning, and executive functions are crucial factors for functional outcome. Our purpose was to assess the impact of the cognitive remediation therapy (CRT) program on cognitive difficulties in patients with schizophrenia, especially on working memory, verbal memory, and cognitive flexibility. We collected data from clinical and neuropsychological assessments in 24 patients suffering from schizophrenia (Diagnostic and Statistical Manual of mental Disorders-Fourth Edition, DSM-IV) who followed a 3-month (CRT) program. Verbal and visuo-spatial working memory, verbal memory, and cognitive flexibility were assessed before and after CRT. The Wilcoxon test showed significant improvements on the backward digit span, on the visual working memory span, on verbal memory and on flexibility. Cognitive improvement was substantial when baseline performance was low, independently from clinical benefit. CRT is effective on crucial cognitive domains and provides a huge benefit for patients having low baseline performance. Such cognitive amelioration appears highly promising for improving the outcome in cognitively impaired patients.

  13. Computational modeling of mediator oxidation by oxygen in an amperometric glucose biosensor.

    PubMed

    Simelevičius, Dainius; Petrauskas, Karolis; Baronas, Romas; Razumienė, Julija

    2014-02-07

    In this paper, an amperometric glucose biosensor is modeled numerically. The model is based on non-stationary reaction-diffusion type equations. The model consists of four layers. An enzyme layer lies directly on a working electrode surface. The enzyme layer is attached to an electrode by a polyvinyl alcohol (PVA) coated terylene membrane. This membrane is modeled as a PVA layer and a terylene layer, which have different diffusivities. The fourth layer of the model is the diffusion layer, which is modeled using the Nernst approach. The system of partial differential equations is solved numerically using the finite difference technique. The operation of the biosensor was analyzed computationally with special emphasis on the biosensor response sensitivity to oxygen when the experiment was carried out in aerobic conditions. Particularly, numerical experiments show that the overall biosensor response sensitivity to oxygen is insignificant. The simulation results qualitatively explain and confirm the experimentally observed biosensor behavior.

  14. Computational Modeling of Mediator Oxidation by Oxygen in an Amperometric Glucose Biosensor

    PubMed Central

    Šimelevičius, Dainius; Petrauskas, Karolis; Baronas, Romas; Julija, Razumienė

    2014-01-01

    In this paper, an amperometric glucose biosensor is modeled numerically. The model is based on non-stationary reaction-diffusion type equations. The model consists of four layers. An enzyme layer lies directly on a working electrode surface. The enzyme layer is attached to an electrode by a polyvinyl alcohol (PVA) coated terylene membrane. This membrane is modeled as a PVA layer and a terylene layer, which have different diffusivities. The fourth layer of the model is the diffusion layer, which is modeled using the Nernst approach. The system of partial differential equations is solved numerically using the finite difference technique. The operation of the biosensor was analyzed computationally with special emphasis on the biosensor response sensitivity to oxygen when the experiment was carried out in aerobic conditions. Particularly, numerical experiments show that the overall biosensor response sensitivity to oxygen is insignificant. The simulation results qualitatively explain and confirm the experimentally observed biosensor behavior. PMID:24514882

  15. Crystallographic studies of the anthrax lethal toxin. Final report, 1 July 1994-31 December 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick, C.A.

    1997-01-01

    Protective Antigen (PA) is the central component of the three-part protein toxin secreted by Bacillus anthraces, the organism responsible for anthrax. Following proteolytic activation on the host cell surface, PA forms a membrane-inserting heptamer that translocates the toxic enzymes into the cytosol. We have solved the crystal structure of monomeric PA at 2.1 A resolution and the water-soluble heptamer at 4.5 A resolution. The monomer is organized mainly into antiparallel b-sheets and has four domains: an N-terminal domain containing two calcium ions; a heptamerization domain containing a large flexible loop implicated in membrane insertion; a small domain of unknown function;more » and a C-terminal receptor-binding domain. Removal of a 20 kDa fragment from the N-terminal domain permits assembly of the heptamer, a ring-shaped structure with a negatively charged lumen, and exposes a large hydrophobic surface for binding the toxic enzymes. We present a model of pH-dependent membrane insertion involving formation of a porin-like membrane-spanning b barrel. These studies greatly enhance current understanding of the mechanism of anthrax intoxication, and will be useful in the design of recombinant anthrax vaccines.« less

  16. Topology of membrane proteins-predictions, limitations and variations.

    PubMed

    Tsirigos, Konstantinos D; Govindarajan, Sudha; Bassot, Claudio; Västermark, Åke; Lamb, John; Shu, Nanjiang; Elofsson, Arne

    2017-10-26

    Transmembrane proteins perform a variety of important biological functions necessary for the survival and growth of the cells. Membrane proteins are built up by transmembrane segments that span the lipid bilayer. The segments can either be in the form of hydrophobic alpha-helices or beta-sheets which create a barrel. A fundamental aspect of the structure of transmembrane proteins is the membrane topology, that is, the number of transmembrane segments, their position in the protein sequence and their orientation in the membrane. Along these lines, many predictive algorithms for the prediction of the topology of alpha-helical and beta-barrel transmembrane proteins exist. The newest algorithms obtain an accuracy close to 80% both for alpha-helical and beta-barrel transmembrane proteins. However, lately it has been shown that the simplified picture presented when describing a protein family by its topology is limited. To demonstrate this, we highlight examples where the topology is either not conserved in a protein superfamily or where the structure cannot be described solely by the topology of a protein. The prediction of these non-standard features from sequence alone was not successful until the recent revolutionary progress in 3D-structure prediction of proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Solution Structure of Homology Region (HR) Domain of Type II Secretion System*

    PubMed Central

    Gu, Shuang; Kelly, Geoff; Wang, Xiaohui; Frenkiel, Tom; Shevchik, Vladimir E.; Pickersgill, Richard W.

    2012-01-01

    The type II secretion system of Gram-negative bacteria is important for bacterial pathogenesis and survival; it is composed of 12 mostly multimeric core proteins, which build a sophisticated secretion machine spanning both bacterial membranes. OutC is the core component of the inner membrane subcomplex thought to be involved in both recognition of substrate and interaction with the outer membrane secretin OutD. Here, we report the solution structure of the HR domain of OutC and explore its interaction with the secretin. The HR domain adopts a β-sandwich-like fold consisting of two β-sheets each composed of three anti-parallel β-strands. This structure is strikingly similar to the periplasmic region of PilP, an inner membrane lipoprotein from the type IV pilus system highlighting the common evolutionary origin of these two systems and showing that all the core components of the type II secretion system have a structural or sequence ortholog within the type IV pili system. The HR domain is shown to interact with the N0 domain of the secretin. The importance of this interaction is explored in the context of the functional secretion system. PMID:22253442

  18. KCNE Regulation of K+ Channel Trafficking – a Sisyphean Task?

    PubMed Central

    Kanda, Vikram A.; Abbott, Geoffrey W.

    2012-01-01

    Voltage-gated potassium (Kv) channels shape the action potentials of excitable cells and regulate membrane potential and ion homeostasis in excitable and non-excitable cells. With 40 known members in the human genome and a variety of homomeric and heteromeric pore-forming α subunit interactions, post-translational modifications, cellular locations, and expression patterns, the functional repertoire of the Kv α subunit family is monumental. This versatility is amplified by a host of interacting proteins, including the single membrane-spanning KCNE ancillary subunits. Here, examining both the secretory and the endocytic pathways, we review recent findings illustrating the surprising virtuosity of the KCNE proteins in orchestrating not just the function, but also the composition, diaspora and retrieval of channels formed by their Kv α subunit partners. PMID:22754540

  19. Attention Span, Anxiety and Benzodiazepine Receptors

    DTIC Science & Technology

    1991-02-26

    response experiments , membranes were washed five times prior to freezing, and various concentrations of GABA were added to the incubation medium immediately...Similar results are obtained in the experiments where the animals were treated with 4 mg/kg/day of Ro 15-1788 for 14 days (data not shown). The highest...vehicle-treated or Ro 1S-l788-treated ra:ts (4 mg/kg/day for 14 days in drinking water), sacrificed 72 hours after drug withdrawal. EXPERIMENT Emax

  20. The pore-lining region of shaker voltage-gated potassium channels: comparison of beta-barrel and alpha-helix bundle models.

    PubMed Central

    Kerr, I D; Sansom, M S

    1997-01-01

    Although there is a large body of site-directed mutagenesis data that identify the pore-lining sequence of the voltage-gated potassium channel, the structure of this region remains unknown. We have interpreted the available biochemical data as a set of topological and orientational restraints and employed these restraints to produce molecular models of the potassium channel pore region, H5. The H5 sequence has been modeled either as a tetramer of membrane-spanning beta-hairpins, thus producing an eight-stranded beta-barrel, or as a tetramer of incompletely membrane-spanning alpha-helical hairpins, thus producing an eight-staved alpha-helix bundle. In total, restraints-directed modeling has produced 40 different configurations of the beta-barrel model, each configuration comprising an ensemble of 20 structures, and 24 different configurations of the alpha-helix bundle model, each comprising an ensemble of 24 structures. Thus, over 1300 model structures for H5 have been generated. Configurations have been ranked on the basis of their predicted pore properties and on the extent of their agreement with the biochemical data. This ranking is employed to identify particular configurations of H5 that may be explored further as models of the pore-lining region of the voltage-gated potassium channel pore. Images FIGURE 7 FIGURE 12 PMID:9251779

  1. Differences in collagen distribution of healthy and regenerated periodontium. Histomorphometric study in dogs.

    PubMed

    Souza, Sérgio L S; Macedo, Guilherme O; Silveira E Souza, Adriana M M; Taba, Mário; Novaes, Arthur B; Oliver, Constance; Jamur, Maria C; Correa, Vani M A

    2013-10-01

    Previous studies have shown that there is a relationship between periodontal disease and the distribution of collagen fibers. This study evaluated the distribution of collagen types I and III in regenerated bone and periodontal ligament, comparing them to the tissues near the regenerated area and to the healthy periodontium. In the third (P3) and fourth (P4) mandibular premolars of 5 healthy mongrel dogs, bilaterally, buccal class 2 furcation lesions were surgically created and chronified for 3 weeks. After that, full flaps were elevated and expanded polytetrafluoroethylene (e-PTFE) membranes were adapted, sutured and recovered by the flaps. Two weeks after surgery, two membranes on the same side were removed and the other membranes were removed four weeks after surgery. The dogs were euthanized at 12 weeks following placement of the e-PTFE membranes. P3 and P4 teeth as well as the second premolars (healthy control teeth) and their periodontal tissues were removed and histologically processed for Collagen Quantification (COLQ). The amount of type III collagen was higher in native bone compared to the regenerated area. For periodontal ligament, COLQ for type I collagen showed statistically significant differences (Tukeys's Multiple Comparison, p⟨0.05) between the regenerated groups and the control group. These differences were not found for type III COLQ. There are significant differences in collagen distribution among the regenerated, native and control tissues. Membrane removal 2 or 4 weeks postoperatively did not influence the collagen composition.

  2. Full-scale Wind-tunnel Research on Tail Buffeting and Wing-fuselage Interference of a Low-wing Monoplane

    NASA Technical Reports Server (NTRS)

    Hood, Manley J; White, James A

    1933-01-01

    Some preliminary results of full scale wind tunnel testing to determine the best means of reducing the tail buffeting and wing-fuselage interference of a low-wing monoplane are given. Data indicating the effects of an engine cowling, fillets, auxiliary airfoils of short span, reflexes trailing edge, propeller slipstream, and various combinations of these features are included. The best all-round results were obtained by the use of fillets together with the National Advisory Committee for Aeronautics (NACA) cowling. This combination reduced the tail buffeting oscillations to one-fourth of their original amplitudes, increased the maximum lift 11 percent, decreased the minimum drag 9 percent, and increased the maximum ratio of lift to drag 19 percent.

  3. The Escherichia coli Lpt transenvelope protein complex for lipopolysaccharide export is assembled via conserved structurally homologous domains.

    PubMed

    Villa, Riccardo; Martorana, Alessandra M; Okuda, Suguru; Gourlay, Louise J; Nardini, Marco; Sperandeo, Paola; Dehò, Gianni; Bolognesi, Martino; Kahne, Daniel; Polissi, Alessandra

    2013-03-01

    Lipopolysaccharide is a major glycolipid component in the outer leaflet of the outer membrane (OM), a peculiar permeability barrier of Gram-negative bacteria that prevents many toxic compounds from entering the cell. Lipopolysaccharide transport (Lpt) across the periplasmic space and its assembly at the Escherichia coli cell surface are carried out by a transenvelope complex of seven essential Lpt proteins spanning the inner membrane (LptBCFG), the periplasm (LptA), and the OM (LptDE), which appears to operate as a unique machinery. LptC is an essential inner membrane-anchored protein with a large periplasm-protruding domain. LptC binds the inner membrane LptBFG ABC transporter and interacts with the periplasmic protein LptA. However, its role in lipopolysaccharide transport is unclear. Here we show that LptC lacking the transmembrane region is viable and can bind the LptBFG inner membrane complex; thus, the essential LptC functions are located in the periplasmic domain. In addition, we characterize two previously described inactive single mutations at two conserved glycines (G56V and G153R, respectively) of the LptC periplasmic domain, showing that neither mutant is able to assemble the transenvelope machinery. However, while LptCG56V failed to copurify any Lpt component, LptCG153R was able to interact with the inner membrane protein complex LptBFG. Overall, our data further support the model whereby the bridge connecting the inner and outer membranes would be based on the conserved structurally homologous jellyroll domain shared by five out of the seven Lpt components.

  4. Lipid-Mediated Regulation of Embedded Receptor Kinases via Parallel Allosteric Relays.

    PubMed

    Ghosh, Madhubrata; Wang, Loo Chien; Ramesh, Ranita; Morgan, Leslie K; Kenney, Linda J; Anand, Ganesh S

    2017-02-28

    Membrane-anchored receptors are essential cellular signaling elements for stimulus sensing, propagation, and transmission inside cells. However, the contributions of lipid interactions to the function and dynamics of embedded receptor kinases have not been described in detail. In this study, we used amide hydrogen/deuterium exchange mass spectrometry, a sensitive biophysical approach, to probe the dynamics of a membrane-embedded receptor kinase, EnvZ, together with functional assays to describe the role of lipids in receptor kinase function. Our results reveal that lipids play an important role in regulating receptor function through interactions with transmembrane segments, as well as through peripheral interactions with nonembedded domains. Specifically, the lipid membrane allosterically modulates the activity of the embedded kinase by altering the dynamics of a glycine-rich motif that is critical for phosphotransfer from ATP. This allostery in EnvZ is independent of membrane composition and involves direct interactions with transmembrane and periplasmic segments, as well as peripheral interactions with nonembedded domains of the protein. In the absence of the membrane-spanning regions, lipid allostery is propagated entirely through peripheral interactions. Whereas lipid allostery impacts the phosphotransferase function of the kinase, extracellular stimulus recognition is mediated via a four-helix bundle subdomain located in the cytoplasm, which functions as the osmosensing core through osmolality-dependent helical stabilization. Our findings emphasize the functional modularity in a membrane-embedded kinase, separated into membrane association, phosphotransferase function, and stimulus recognition. These components are integrated through long-range communication relays, with lipids playing an essential role in regulation. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. The Escherichia coli Lpt Transenvelope Protein Complex for Lipopolysaccharide Export Is Assembled via Conserved Structurally Homologous Domains

    PubMed Central

    Villa, Riccardo; Martorana, Alessandra M.; Okuda, Suguru; Gourlay, Louise J.; Nardini, Marco; Sperandeo, Paola; Dehò, Gianni; Bolognesi, Martino; Kahne, Daniel

    2013-01-01

    Lipopolysaccharide is a major glycolipid component in the outer leaflet of the outer membrane (OM), a peculiar permeability barrier of Gram-negative bacteria that prevents many toxic compounds from entering the cell. Lipopolysaccharide transport (Lpt) across the periplasmic space and its assembly at the Escherichia coli cell surface are carried out by a transenvelope complex of seven essential Lpt proteins spanning the inner membrane (LptBCFG), the periplasm (LptA), and the OM (LptDE), which appears to operate as a unique machinery. LptC is an essential inner membrane-anchored protein with a large periplasm-protruding domain. LptC binds the inner membrane LptBFG ABC transporter and interacts with the periplasmic protein LptA. However, its role in lipopolysaccharide transport is unclear. Here we show that LptC lacking the transmembrane region is viable and can bind the LptBFG inner membrane complex; thus, the essential LptC functions are located in the periplasmic domain. In addition, we characterize two previously described inactive single mutations at two conserved glycines (G56V and G153R, respectively) of the LptC periplasmic domain, showing that neither mutant is able to assemble the transenvelope machinery. However, while LptCG56V failed to copurify any Lpt component, LptCG153R was able to interact with the inner membrane protein complex LptBFG. Overall, our data further support the model whereby the bridge connecting the inner and outer membranes would be based on the conserved structurally homologous jellyroll domain shared by five out of the seven Lpt components. PMID:23292770

  6. Laboratory and in vivo transport characterization of hollow fiber membranes and adjacent scar tissue that forms following their implantation in the central nervous system

    NASA Astrophysics Data System (ADS)

    Bridge, Michael John

    Hollow fiber membrane (HFM) cell encapsulation devices use a semipermeable membrane to physically immunoisolate transplanted secretory cells from host tissues and high molecular weight solutes. Advantages inherent to macroencapsulation technology have led to extensive research towards their utilization for treating a wide range of disorders including a number of neurodegenerative diseases and diabetes. Although feasibility studies have already established the therapeutic potential of macroencapsulation technology, a common observation among these and later studies is diminishing therapeutic efficacy over a span of a few weeks following implantation of devices. Progress towards fulfilling the therapeutic potential of this technology initially recognized by investigators has potentially been hampered by inadequate diffusive transport characterization of membranes employed in studies. In addition, the potential effects of host tissue responses following central nervous system (CNS) implantation of these devices is completely unknown. To address these issues a membrane characterization instrument capable of efficiently characterizing the diffusive and convective transport properties of individual HFM segments, such as they are used in devices, was developed. The instrument was then employed to study the effects of ethanol exposure, a common sterilization method, on PAN-PVC membranes commonly used in CNS implantation macro encapsulation device studies. Lastly, the solute diffusivity properties of tissue that forms adjacent to the membranes of brain implanted transcranial access devices were investigated. Coinciding with this investigation was the development of a novel technique for examining the solute diffusivity properties in the extracellular spaces of CNS tissue.

  7. Influence of Oligomerization State on the Structural Properties of Invasion Plasmid Antigen B (IpaB) from Shigella flexneri in the Presence and Absence of Phospholipid Membranes†

    PubMed Central

    Adam, Philip R.; Dickenson, Nicholas E.; Greenwood, Jamie C.; Picking, Wendy L.; Picking, William D.

    2014-01-01

    Shigella flexneri causes bacillary dysentery, an important cause of mortality among children in the developing world. Shigella secretes effector proteins via its type III secretion system (T3SS) to promote bacterial uptake into human colonic epithelial cells. The T3SS basal body spans the bacterial cell envelope anchoring a surface-exposed needle. A pentamer of invasion plasmid antigen D (IpaD) lies at the nascent needle tip and IpaB is recruited into the needle tip complex upon exposure to bile salts. From here, IpaB forms a translocon pore in the host cell membrane. Although the mechanism by which IpaB inserts into the membrane is unknown, it was recently shown that recombinant IpaB can exist as either a monomer or tetramer. Both of these forms of IpaB associate with membranes, however, only the tetramer forms pores in liposomes. To reveal differences between these membrane-binding events, Cys mutations were introduced throughout IpaB, allowing site-specific fluorescence labeling. Fluorescence quenching was used to determine the influence of oligomerization and/or membrane association on the accessibility of different IpaB regions to small solutes. The data show that the hydrophobic region of tetrameric IpaB is more accessible to solvent relative to the monomer. The hydrophobic region appears to promote membrane interaction for both forms of IpaB, however, more of the hydrophobic region is protected from solvent for the tetramer after membrane association. Limited proteolysis demonstrated that changes in IpaB’s oligomeric state may determine the manner by which it associates with phospholipid membranes and the subsequent outcome of this association. PMID:25103195

  8. Peptide:lipid ratio and membrane surface charge determine the mechanism of action of the antimicrobial peptide BP100. Conformational and functional studies.

    PubMed

    Manzini, Mariana C; Perez, Katia R; Riske, Karin A; Bozelli, José C; Santos, Talita L; da Silva, Marcia A; Saraiva, Greice K V; Politi, Mario J; Valente, Ana P; Almeida, Fábio C L; Chaimovich, Hernan; Rodrigues, Magali A; Bemquerer, Marcelo P; Schreier, Shirley; Cuccovia, Iolanda M

    2014-07-01

    The cecropin-melittin hybrid antimicrobial peptide BP100 (H-KKLFKKILKYL-NH2) is selective for Gram-negative bacteria, negatively charged membranes, and weakly hemolytic. We studied BP100 conformational and functional properties upon interaction with large unilamellar vesicles, LUVs, and giant unilamellar vesicles, GUVs, containing variable proportions of phosphatidylcholine (PC) and negatively charged phosphatidylglycerol (PG). CD and NMR spectra showed that upon binding to PG-containing LUVs BP100 acquires α-helical conformation, the helix spanning residues 3-11. Theoretical analyses indicated that the helix is amphipathic and surface-seeking. CD and dynamic light scattering data evinced peptide and/or vesicle aggregation, modulated by peptide:lipid ratio and PG content. BP100 decreased the absolute value of the zeta potential (ζ) of LUVs with low PG contents; for higher PG, binding was analyzed as an ion-exchange process. At high salt, BP100-induced LUVS leakage requires higher peptide concentration, indicating that both electrostatic and hydrophobic interactions contribute to peptide binding. While a gradual release took place at low peptide:lipid ratios, instantaneous loss occurred at high ratios, suggesting vesicle disruption. Optical microscopy of GUVs confirmed BP100-promoted disruption of negatively charged membranes. The mechanism of action of BP100 is determined by both peptide:lipid ratio and negatively charged lipid content. While gradual release results from membrane perturbation by a small number of peptide molecules giving rise to changes in acyl chain packing, lipid clustering (leading to membrane defects), and/or membrane thinning, membrane disruption results from a sequence of events - large-scale peptide and lipid clustering, giving rise to peptide-lipid patches that eventually would leave the membrane in a carpet-like mechanism. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Precise detection of pH inside large unilamellar vesicles using membrane-impermeable dendritic porphyrin-based nanoprobes.

    PubMed

    Leiding, Thom; Górecki, Kamil; Kjellman, Tomas; Vinogradov, Sergei A; Hägerhäll, Cecilia; Arsköld, Sindra Peterson

    2009-05-15

    Accurate real-time measurements of proton concentration gradients are pivotal to mechanistic studies of proton translocation by membrane-bound enzymes. Here we report a detailed characterization of the pH-sensitive fluorescent nanoprobe Glu(3), which is well suited for pH measurements in microcompartmentalized biological systems. The probe is a polyglutamic porphyrin dendrimer in which multiple carboxylate termini ensure its high water solubility and prevent its diffusion across phospholipid membranes. The probe's pK is in the physiological pH range, and its protonation can be followed ratiometrically by absorbance or fluorescence in the ultraviolet-visible spectral region. The usefulness of the probe was enhanced by using a semiautomatic titration system coupled to a charge-coupled device (CCD) spectrometer, enabling fast and accurate titrations and full spectral coverage of the system at millisecond time resolution. The probe's pK was measured in bulk solutions as well as inside large unilamellar vesicles in the presence of physiologically relevant ions. Glu(3) was found to be completely membrane impermeable, and its distinct spectroscopic features permit pH measurements inside closed membrane vesicles, enabling quantitative mechanistic studies of membrane-spanning proteins. Performance of the probe was demonstrated by monitoring the rate of proton leakage through the phospholipid bilayer in large vesicles with and without the uncoupler gramicidin present. Overall, as a probe for biological proton translocation measurements, Glu(3) was found to be superior to the commercially available pH indicators.

  10. Preparation of Nanoemulsions by Premix Membrane Emulsification: Which Parameters Have a Significant Influence on the Resulting Particle Size?

    PubMed

    Gehrmann, Sandra; Bunjes, Heike

    2017-08-01

    Oil-in-water emulsions with particle sizes smaller than 200 nm are interesting carrier systems for poorly water-soluble drugs. Such emulsions can be produced by premix membrane emulsification. In this study, it was systematically investigated which process and formulation parameters have a strong influence on the resulting quality of a triglyceride emulsion. The influence of the pre-emulsion quality and the emulsifier concentration was examined. Also a design of experiments (DoE) approach was carried out: variables included were emulsifier (poloxamer 188, Tween 80, and sucrose laurate [SL]), flow rate, cycle number, and membrane material (polyester, nylon, cellulose acetate, and aluminum oxide; pore sizes, 200 nm), and responses were d 50 value and span for particle size and distribution width. The quality of the pre-emulsion had no influence on the quality of the nanoemulsion after 5 extrusion cycles. The DoE evaluation indicated that an increase in flow rate was of minor importance, whereas an increase in cycle number had a strong impact on the decrease of particle size. The very hydrophilic alumina membrane in combination with the emulsifier which caused the lowest interfacial tension (SL) was the most suitable combination. However, in general, the favorable emulsifier was membrane dependent. Even smaller particle sizes (∼100 nm) could be achieved by using an alumina membrane with smaller pore sizes (100 nm). Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. Asymmetric distribution of charged lipids between the leaflets of a vesicle bilayer induced by melittin and alamethicin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Shuo; Heller, William T

    2011-01-01

    Cellular membranes are complex mixtures of lipids, proteins, and other small molecules that provide functional, dynamic barriers between the cell and its environment, as well as between environments within the cell. The lipid composition of the membrane is highly specific and controlled in terms of both content and lipid localization. The membrane structure results from the complex interplay between the wide varieties of molecules present. Here, small-angle neutron scattering and selective deuterium labeling were used to probe the impact of the membrane-active peptides melittin and alamethicin on the structure of lipid bilayers composed of a mixture of the lipids dimyristoylmore » phosphatidylglycerol (DMPG) and chain-perdeuterated dimyristoyl phosphatidylcholine (DMPC). We found that both peptides enriched the outer leaflet of the bilayer with the negatively charged DMPG, creating an asymmetric distribution of lipids. The level of enrichment is peptide concentration-dependent and is stronger for melittin than it is for alamethicin. The enrichment between the inner and outer bilayer leaflets occurs at very low peptide concentrations and increases with peptide concentration, including when the peptide adopts a membrane-spanning, pore-forming state. The results suggest that these membrane-active peptides may have a secondary stressful effect on target cells at low concentrations that results from a disruption of the lipid distribution between the inner and outer leaflets of the bilayer that is independent of the formation of transmembrane pores.« less

  12. Structural Elucidation of the Cell-Penetrating Penetratin Peptide in Model Membranes at the Atomic Level: Probing Hydrophobic Interactions in the Blood-Brain Barrier.

    PubMed

    Bera, Swapna; Kar, Rajiv K; Mondal, Susanta; Pahan, Kalipada; Bhunia, Anirban

    2016-09-06

    Cell-penetrating peptides (CPPs) have shown promise in nonpermeable therapeutic drug delivery, because of their ability to transport a variety of cargo molecules across the cell membranes and their noncytotoxicity. Drosophila antennapedia homeodomain-derived CPP penetratin (RQIKIWFQNRRMKWKK), being rich in positively charged residues, has been increasingly used as a potential drug carrier for various purposes. Penetratin can breach the tight endothelial network known as the blood-brain barrier (BBB), permitting treatment of several neurodegenerative maladies, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. However, a detailed structural understanding of penetratin and its mechanism of action is lacking. This study defines structural features of the penetratin-derived peptide, DK17 (DRQIKIWFQNRRMKWKK), in several model membranes and describes a membrane-induced conformational transition of the DK17 peptide in these environments. A series of biophysical experiments, including high-resolution nuclear magnetic resonance spectroscopy, provides the three-dimensional structure of DK17 in different membranes mimicking the BBB or total brain lipid extract. Molecular dynamics simulations support the experimental results showing preferential binding of DK17 to particular lipids at atomic resolution. The peptide conserves the structure of the subdomain spanning residues Ile6-Arg11, despite considerable conformational variation in different membrane models. In vivo data suggest that the wild type, not a mutated sequence, enters the central nervous system. Together, these data highlight important structural and functional attributes of DK17 that could be utilized in drug delivery for neurodegenerative disorders.

  13. Concise Review: Plasma and Nuclear Membranes Convey Mechanical Information to Regulate Mesenchymal Stem Cell Lineage.

    PubMed

    Uzer, Gunes; Fuchs, Robyn K; Rubin, Janet; Thompson, William R

    2016-06-01

    Numerous factors including chemical, hormonal, spatial, and physical cues determine stem cell fate. While the regulation of stem cell differentiation by soluble factors is well-characterized, the role of mechanical force in the determination of lineage fate is just beginning to be understood. Investigation of the role of force on cell function has largely focused on "outside-in" signaling, initiated at the plasma membrane. When interfaced with the extracellular matrix, the cell uses integral membrane proteins, such as those found in focal adhesion complexes to translate force into biochemical signals. Akin to these outside-in connections, the internal cytoskeleton is physically linked to the nucleus, via proteins that span the nuclear membrane. Although structurally and biochemically distinct, these two forms of mechanical coupling influence stem cell lineage fate and, when disrupted, often lead to disease. Here we provide an overview of how mechanical coupling occurs at the plasma and nuclear membranes. We also discuss the role of force on stem cell differentiation, with focus on the biochemical signals generated at the cell membrane and the nucleus, and how those signals influence various diseases. While the interaction of stem cells with their physical environment and how they respond to force is complex, an understanding of the mechanical regulation of these cells is critical in the design of novel therapeutics to combat diseases associated with aging, cancer, and osteoporosis. Stem Cells 2016;34:1455-1463. © 2016 AlphaMed Press.

  14. Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model.

    PubMed

    Spaide, Richard F; Curcio, Christine A

    2011-09-01

    To evaluate the validity of commonly used anatomical designations for the four hyperreflective outer retinal bands seen in current-generation optical coherence tomography, a scale model of outer retinal morphology was created using published information for direct comparison with optical coherence tomography scans. Articles and books concerning histology of the outer retina from 1900 until 2009 were evaluated, and data were used to create a scale model drawing. Boundaries between outer retinal tissue compartments described by the model were compared with intensity variations of representative spectral-domain optical coherence tomography scans using longitudinal reflectance profiles to determine the region of origin of the hyperreflective outer retinal bands. This analysis showed a high likelihood that the spectral-domain optical coherence tomography bands attributed to the external limiting membrane (the first, innermost band) and to the retinal pigment epithelium (the fourth, outermost band) are correctly attributed. Comparative analysis showed that the second band, often attributed to the boundary between inner and outer segments of the photoreceptors, actually aligns with the ellipsoid portion of the inner segments. The third band corresponded to an ensheathment of the cone outer segments by apical processes of the retinal pigment epithelium in a structure known as the contact cylinder. Anatomical attributions and subsequent pathophysiologic assessments pertaining to the second and third outer retinal hyperreflective bands may not be correct. This analysis has identified testable hypotheses for the actual correlates of the second and third bands. Nonretinal pigment epithelium contributions to the fourth band (e.g., Bruch membrane) remain to be determined.

  15. Good Holders, Bad Shufflers: An Examination of Working Memory Processes and Modalities in Children with and without Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Simone, Ashley N; Bédard, Anne-Claude V; Marks, David J; Halperin, Jeffrey M

    2016-01-01

    The aim of this study was to examine working memory (WM) modalities (visual-spatial and auditory-verbal) and processes (maintenance and manipulation) in children with and without attention-deficit/hyperactivity disorder (ADHD). The sample consisted of 63 8-year-old children with ADHD and an age- and sex-matched non-ADHD comparison group (N=51). Auditory-verbal and visual-spatial WM were assessed using the Digit Span and Spatial Span subtests from the Wechsler Intelligence Scale for Children Integrated - Fourth Edition. WM maintenance and manipulation were assessed via forward and backward span indices, respectively. Data were analyzed using a 3-way Group (ADHD vs. non-ADHD)×Modality (Auditory-Verbal vs. Visual-Spatial)×Condition (Forward vs. Backward) Analysis of Variance (ANOVA). Secondary analyses examined differences between Combined and Predominantly Inattentive ADHD presentations. Significant Group×Condition (p=.02) and Group×Modality (p=.03) interactions indicated differentially poorer performance by those with ADHD on backward relative to forward and visual-spatial relative to auditory-verbal tasks, respectively. The 3-way interaction was not significant. Analyses targeting ADHD presentations yielded a significant Group×Condition interaction (p=.009) such that children with ADHD-Predominantly Inattentive Presentation performed differentially poorer on backward relative to forward tasks compared to the children with ADHD-Combined Presentation. Findings indicate a specific pattern of WM weaknesses (i.e., WM manipulation and visual-spatial tasks) for children with ADHD. Furthermore, differential patterns of WM performance were found for children with ADHD-Predominantly Inattentive versus Combined Presentations. (JINS, 2016, 22, 1-11).

  16. Folding and insertion thermodynamics of the transmembrane WALP peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bereau, Tristan, E-mail: bereau@mpip-mainz.mpg.de; Bennett, W. F. Drew; Pfaendtner, Jim

    The anchor of most integral membrane proteins consists of one or several helices spanning the lipid bilayer. The WALP peptide, GWW(LA){sub n} (L)WWA, is a common model helix to study the fundamentals of protein insertion and folding, as well as helix-helix association in the membrane. Its structural properties have been illuminated in a large number of experimental and simulation studies. In this combined coarse-grained and atomistic simulation study, we probe the thermodynamics of a single WALP peptide, focusing on both the insertion across the water-membrane interface, as well as folding in both water and a membrane. The potential of meanmore » force characterizing the peptide’s insertion into the membrane shows qualitatively similar behavior across peptides and three force fields. However, the Martini force field exhibits a pronounced secondary minimum for an adsorbed interfacial state, which may even become the global minimum—in contrast to both atomistic simulations and the alternative PLUM force field. Even though the two coarse-grained models reproduce the free energy of insertion of individual amino acids side chains, they both underestimate its corresponding value for the full peptide (as compared with atomistic simulations), hinting at cooperative physics beyond the residue level. Folding of WALP in the two environments indicates the helix as the most stable structure, though with different relative stabilities and chain-length dependence.« less

  17. Folding and insertion thermodynamics of the transmembrane WALP peptide

    NASA Astrophysics Data System (ADS)

    Bereau, Tristan; Bennett, W. F. Drew; Pfaendtner, Jim; Deserno, Markus; Karttunen, Mikko

    2015-12-01

    The anchor of most integral membrane proteins consists of one or several helices spanning the lipid bilayer. The WALP peptide, GWW(LA)n (L)WWA, is a common model helix to study the fundamentals of protein insertion and folding, as well as helix-helix association in the membrane. Its structural properties have been illuminated in a large number of experimental and simulation studies. In this combined coarse-grained and atomistic simulation study, we probe the thermodynamics of a single WALP peptide, focusing on both the insertion across the water-membrane interface, as well as folding in both water and a membrane. The potential of mean force characterizing the peptide's insertion into the membrane shows qualitatively similar behavior across peptides and three force fields. However, the Martini force field exhibits a pronounced secondary minimum for an adsorbed interfacial state, which may even become the global minimum—in contrast to both atomistic simulations and the alternative PLUM force field. Even though the two coarse-grained models reproduce the free energy of insertion of individual amino acids side chains, they both underestimate its corresponding value for the full peptide (as compared with atomistic simulations), hinting at cooperative physics beyond the residue level. Folding of WALP in the two environments indicates the helix as the most stable structure, though with different relative stabilities and chain-length dependence.

  18. Fine-tuning the hydrophobicity of a mitochondria-targeted antioxidant.

    PubMed

    Asin-Cayuela, Jordi; Manas, Abdul-Rahman B; James, Andrew M; Smith, Robin A J; Murphy, Michael P

    2004-07-30

    The mitochondria-targeted antioxidant MitoQ comprises a ubiquinol moiety covalently attached through an aliphatic carbon chain to the lipophilic triphenylphosphonium cation. This cation drives the membrane potential-dependent accumulation of MitoQ into mitochondria, enabling the ubiquinol antioxidant to prevent mitochondrial oxidative damage far more effectively than untargeted antioxidants. We sought to fine-tune the hydrophobicity of MitoQ so as to control the extent of its membrane binding and penetration into the phospholipid bilayer, and thereby regulate its partitioning between the membrane and aqueous phases within mitochondria and cells. To do this, MitoQ variants with 3, 5, 10 and 15 carbon aliphatic chains were synthesised. These molecules had a wide range of hydrophobicities with octan-1-ol/phosphate buffered saline partition coefficients from 2.8 to 20000. All MitoQ variants were accumulated into mitochondria driven by the membrane potential, but their binding to phospholipid bilayers varied from negligible for MitoQ3 to essentially total for MitoQ15. Despite the span of hydrophobicites, all MitoQ variants were effective antioxidants. Therefore, it is possible to fine-tune the degree of membrane association of MitoQ and other mitochondria targeted compounds, without losing antioxidant efficacy. This indicates how the uptake and distribution of mitochondria-targeted compounds within mitochondria and cells can be controlled, thereby facilitating investigations of mitochondrial oxidative damage.

  19. Gibbs motif sampling: detection of bacterial outer membrane protein repeats.

    PubMed Central

    Neuwald, A. F.; Liu, J. S.; Lawrence, C. E.

    1995-01-01

    The detection and alignment of locally conserved regions (motifs) in multiple sequences can provide insight into protein structure, function, and evolution. A new Gibbs sampling algorithm is described that detects motif-encoding regions in sequences and optimally partitions them into distinct motif models; this is illustrated using a set of immunoglobulin fold proteins. When applied to sequences sharing a single motif, the sampler can be used to classify motif regions into related submodels, as is illustrated using helix-turn-helix DNA-binding proteins. Other statistically based procedures are described for searching a database for sequences matching motifs found by the sampler. When applied to a set of 32 very distantly related bacterial integral outer membrane proteins, the sampler revealed that they share a subtle, repetitive motif. Although BLAST (Altschul SF et al., 1990, J Mol Biol 215:403-410) fails to detect significant pairwise similarity between any of the sequences, the repeats present in these outer membrane proteins, taken as a whole, are highly significant (based on a generally applicable statistical test for motifs described here). Analysis of bacterial porins with known trimeric beta-barrel structure and related proteins reveals a similar repetitive motif corresponding to alternating membrane-spanning beta-strands. These beta-strands occur on the membrane interface (as opposed to the trimeric interface) of the beta-barrel. The broad conservation and structural location of these repeats suggests that they play important functional roles. PMID:8520488

  20. The Facilitative Effect of Transcranial Direct Current Stimulation on Visuospatial Working Memory in Patients with Diabetic Polyneuropathy: A Pre–post Sham-Controlled Study

    PubMed Central

    Wu, Yi-Jen; Tseng, Philip; Huang, Han-Wei; Hu, Jon-Fan; Juan, Chi-Hung; Hsu, Kuei-Sen; Lin, Chou-Ching

    2016-01-01

    Diabetes mellitus can lead to diabetic polyneuropathy (DPN) and cognitive deficits that manifest as peripheral and central neuropathy, respectively. In this study we investigated the relationship between visuospatial working memory (VSWM) capacity and DPN severity, and attempted to improve VSWM in DPN patients via the use of transcranial direct current stimulation (tDCS). Sixteen DPN patients and 16 age- and education-matched healthy control subjects received Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) and Montreal Cognitive Assessment (MOCA) for baseline cognitive assessment. A forward- and backward-recall computerized Corsi block tapping task (CBT), both with and without a concurrent motor interference task was used to measure VSWM capacity. Each DPN patient underwent a pre-treatment CBT, followed by tDCS or sham treatment, then a post-treatment CBT on two separate days. We found that although patients with severe DPN (Dyck’s grade 2a or 2b) showed comparable general intelligence scores on WAIS-IV as their age- and education-matched healthy counterparts, they nonetheless showed mild cognitive impairment (MCI) on MOCA and working memory deficit on digit-span test of WAIS-IV. Furthermore, patients’ peripheral nerve conduction velocity (NCV) was positively correlated with their VSWM span in the most difficult CBT condition that involved backward-recall with motor interference such that patients with worse NCV also had lower VSWM span. Most importantly, anodal tDCS over the right DLPFC was able to improve low-performing patients’ VSWM span to be on par with the high-performers, thereby eliminating the correlation between NCV and VSWM. In summary, these findings suggest that (1) MCI and severe peripheral neuropathy can coexist with unequal severity in diabetic patients, (2) the positive correlation of VSWM and NCV suggests a link between peripheral and central neuropathies, and (3) anodal tDCS over the right DLPFC can improve DPN patients’ VSWM, particularly for the low-performing patients. PMID:27733822

  1. Molecular Characterization of Human MUC16 (CA125) in Breast Cancer

    DTIC Science & Technology

    2012-02-01

    times, several SEA (for Sea - urchin Sperm protein, Enterokinase, and Agrin) modules near the membrane spanning region, a transmembrane region (TM) and...last SEA domain at a site other than the earlier predicted site. This will help us in accurately defining the role of MUC16CT in breast cancer...and enriched on the chromatin in a cytoplasmic tail dependent manner. Besides, I have shown that it is the last SEA domain where cleavage of MUC16

  2. 40Ar/39Ar geochronology and geochemical reconnaissance of the Eocene Lowland Creek volcanic field, west-central Montana

    USGS Publications Warehouse

    Dudas, F.O.; Ispolatov, V.O.; Harlan, S.S.; Snee, L.W.

    2010-01-01

    We report geochronological and geochemical data for the calc-alkalic Lowland Creek volcanic field (LCVF) in westcentral Montana. 40Ar/ 39Ar age determinations show that the LCVF was active from 52.9 to 48.6 Ma, with tuff-forming eruptions at 52.9 ?? 0.14 and 51.8 ?? 0.14 Ma. These dates span the age range of vigorous Eocene igneous activity in the Kamloops-Absaroka-Challis belt. The LCVF evolved upward from basal rhyolites (SiO 2>71 wt%) to dacites and andesites (SiO 2 > 62 wt%). Compositional change parallels a transition from early explosive volcanism to late effusive activity. Four geochemical components can be detected in the rocks. A component with 206Pb/204Pb < 16.5 and epsilon;Nd near-15 is predominant in anhydrous, two-pyroxene dacites; hydrous rhyolites, rhyodacites, and dacites with epsilon;Nd below-10 are dominated by a second component; hydrous rocks with 206Pb/ 204Pb > 18.3 and epsilon;Nd>-9 contain a third component; and an andesite with low Nd content and epsilon;Nd near-9 probably contains a fourth component. The first three components probably derive from the lower and middle crust, whereas the fourth is probably from the lithospheric mantle. ?? 2010 by The University of Chicago.

  3. Roofing research and standards development: Fourth volume. ASTM special technical publication 1349

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, T.J.; Rossiter, W.J. Jr.

    1999-07-01

    As the roofing industry has stabilized, a broad variety of roof systems have found general acceptance by the building owners, architects, engineers, contractors, and others who select and install roofs. These roof systems include those based on conventional built-up membranes using glass and synthetic reinforcements, synthetic polymeric membranes using elastomers and thermoplastics, polymer-modified membranes, and sprayed polyurethane foam. ASTM Committee D8 on Roofing, Waterproofing, and Bituminous Materials has contributed significantly in many important ways to the roofing community's stabilization including issuing standard specifications to assist consumers in the selection and use of these systems. This is not surprising, as itmore » has always been among the purpose of D8 to provide standards to assist in the selection and use of low-sloped and steep roofing. The Committee's scope includes development of standards associated with application, inspection, maintenance, and analyses. Some of the issues facing the roofing community today--for example, enhanced system durability, better methods of material characterization, environmental impact, recycling of materials and systems, industry conversation to the S.I. system metric--readily fall within D8's scope. The availability of sound standard can contribute to the resolution of many of these issues.« less

  4. Sensing charges of the Ciona intestinalis voltage-sensing phosphatase

    PubMed Central

    Frezza, Ludivine; Sandtner, Walter

    2013-01-01

    Voltage control over enzymatic activity in voltage-sensitive phosphatases (VSPs) is conferred by a voltage-sensing domain (VSD) located in the N terminus. These VSDs are constituted by four putative transmembrane segments (S1 to S4) resembling those found in voltage-gated ion channels. The putative fourth segment (S4) of the VSD contains positive residues that likely function as voltage-sensing elements. To study in detail how these residues sense the plasma membrane potential, we have focused on five arginines in the S4 segment of the Ciona intestinalis VSP (Ci-VSP). After implementing a histidine scan, here we show that four arginine-to-histidine mutants, namely R223H to R232H, mediate voltage-dependent proton translocation across the membrane, indicating that these residues transit through the hydrophobic core of Ci-VSP as a function of the membrane potential. These observations indicate that the charges carried by these residues are sensing charges. Furthermore, our results also show that the electrical field in VSPs is focused in a narrow hydrophobic region that separates the extracellular and intracellular space and constitutes the energy barrier for charge crossing. PMID:24127524

  5. The structure of the lipid-embedded potassium channel voltage sensor determined by double-electron–electron resonance spectroscopy

    PubMed Central

    Vamvouka, Magdalini; Cieslak, John; Van Eps, Ned; Hubbell, Wayne; Gross, Adrian

    2008-01-01

    A four-pulse electron paramagnetic resonance experiment was used to measure long-range inter-subunit distances in reconstituted KvAP, a voltage-dependent potassium (Kv) channel. The measurements have allowed us to reach the following five conclusions about the native structure of the voltage sensor of KvAP. First, the S1 helix of the voltage sensor engages in a helix packing interaction with the pore domain. Second, the crystallographically observed antiparallel helix-turn-helix motif of the voltage-sensing paddle is retained in the membrane-embedded voltage sensor. Third, the paddle is oriented in such a way as to expose one face to the pore domain and the opposite face to the membrane. Fourth, the paddle and the pore domain appear to be separated by a gap that is sufficiently wide for lipids to penetrate between the two domains. Fifth, the critical voltage-sensing arginine residues on the paddle appear to be lipid exposed. These results demonstrate the importance of the membrane for the native structure of Kv channels, suggest that lipids are an integral part of their native structure, and place the voltage-sensing machinery into a complex lipid environment near the pore domain. PMID:18287283

  6. Site-directed fluorescence labeling reveals a revised N-terminal membrane topology and functional periplasmic residues in the Escherichia coli cell division protein FtsK.

    PubMed

    Berezuk, Alison M; Goodyear, Mara; Khursigara, Cezar M

    2014-08-22

    In Escherichia coli, FtsK is a large integral membrane protein that coordinates chromosome segregation and cell division. The N-terminal domain of FtsK (FtsKN) is essential for division, and the C terminus (FtsKC) is a well characterized DNA translocase. Although the function of FtsKN is unknown, it is suggested that FtsK acts as a checkpoint to ensure DNA is properly segregated before septation. This may occur through modulation of protein interactions between FtsKN and other division proteins in both the periplasm and cytoplasm; thus, a clear understanding of how FtsKN is positioned in the membrane is required to characterize these interactions. The membrane topology of FtsKN was initially determined using site-directed reporter fusions; however, questions regarding this topology persist. Here, we report a revised membrane topology generated by site-directed fluorescence labeling. The revised topology confirms the presence of four transmembrane segments and reveals a newly identified periplasmic loop between the third and fourth transmembrane domains. Within this loop, four residues were identified that, when mutated, resulted in the appearance of cellular voids. High resolution transmission electron microscopy of these voids showed asymmetric division of the cytoplasm in the absence of outer membrane invagination or visible cell wall ingrowth. This uncoupling reveals a novel role for FtsK in linking cell envelope septation events and yields further evidence for FtsK as a critical checkpoint of cell division. The revised topology of FtsKN also provides an important platform for future studies on essential interactions required for this process. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Mapping the membrane-aqueous border for the voltage-sensing domain of a potassium channel.

    PubMed

    Neale, Edward J; Rong, Honglin; Cockcroft, Christopher J; Sivaprasadarao, Asipu

    2007-12-28

    Voltage-sensing domains (VSDs) play diverse roles in biology. As integral components, they can detect changes in the membrane potential of a cell and couple these changes to activity of ion channels and enzymes. As independent proteins, homologues of the VSD can function as voltage-dependent proton channels. To sense voltage changes, the positively charged fourth transmembrane segment, S4, must move across the energetically unfavorable hydrophobic core of the bilayer, which presents a barrier to movement of both charged species and protons. To reduce the barrier to S4 movement, it has been suggested that aqueous crevices may penetrate the protein, reducing the extent of total movement. To investigate this hypothesis in a system containing fully functional channels in a native environment with an intact membrane potential, we have determined the contour of the membrane-aqueous border of the VSD of KvAP in Escherichia coli by examining the chemical accessibility of introduced cysteines. The results revealed the contour of the membrane-aqueous border of the VSD in its activated conformation. The water-inaccessible regions of S1 and S2 correspond to the standard width of the membrane bilayer (~28 A), but those of S3 and S4 are considerably shorter (> or = 40%), consistent with aqueous crevices pervading both the extracellular and intracellular ends. One face of S3b and the entire S3a were water-accessible, reducing the water-inaccessible region of S3 to just 10 residues, significantly shorter than for S4. The results suggest a key role for S3 in reducing the distance S4 needs to move to elicit gating.

  8. GLUT4-containing vesicles are released from membranes by phospholipase D cleavage of a GPI anchor.

    PubMed

    Kristiansen, Søren; Richter, Erik A

    2002-08-01

    We have previously developed a cell-free assay from rat skeletal muscle that displayed in vitro glucose transporter 4 (GLUT4) transfer from large to small membrane structures by the addition of a cytosolic protein fraction. By combining protein fractionation and the in vitro GLUT4 transfer assay, we have purified a glycosylphosphatidylinositol (GPI) phospholipase D (PLD) that induces transfer of GLUT4 from small to large membranes. The in vitro GLUT4 transfer was activated and inhibited by suramin and 1,10-phenanthroline (an activator and an inhibitor of GPI-PLD activity, respectively). Furthermore, upon purification of the GLUT4 transporter protein, the protein displayed an elution profile in which the molecular mass was related to the charge, suggesting the presence or absence of phosphate. Second, by photoaffinity labeling of the purified GLUT4 with 3-(trifluoromethyl)-3-(m-[(125)I]iodopenyl)diazirine, both labeled phosphatidylethanolamine and fatty acids (constituents of a GPI link) were recovered. Third, by using phase transition of Triton X-114, the purified GLUT4 was found to be partly detergent resistant, which is a known characteristic of GPI-linked proteins. Fourth, the purified GLUT4 protein was recognized by an antibody raised specifically against GPI links. In conclusion, GLUT4-containing vesicles may be released from a membrane compartment by action of a GPI-PLD.

  9. A major mutation of KIF21A associated with congenital fibrosis of the extraocular muscles type 1 (CFEOM1) enhances translocation of Kank1 to the membrane.

    PubMed

    Kakinuma, Naoto; Kiyama, Ryoiti

    2009-09-04

    Congenital fibrosis of the extraocular muscles type 1 (CFEOM1) is associated with heterozygous mutations in the KIF21A gene, including a major (R954W) and a minor (M947T) mutation. Kank1, which regulates actin polymerization, cell migration and neurite outgrowth, interacted with the third and fourth coiled-coil domains of KIF21A protein at its ankyrin-repeat domain. While both KIF21A(R954W) and KIF21A(M947T) enhanced the formation of a heterodimer with the wild type, KIF21A(WT), these mutants also enhanced the interaction with Kank1. Knockdown of KIF21A resulted in Kank1 predominantly occurring in the cytosolic fraction, while KIF21A(WT) slightly enhanced the translocation of Kank1 to the membrane fraction. Moreover, KIF21A(R954W) significantly enhanced the translocation of Kank1 to the membrane fraction. These results suggest that KIF21A regulates the distribution of Kank1 and that KIF21A mutations associated with CFEOM1 enhanced the accumulation of Kank1 in the membrane fraction. This might cause an abrogation of neuronal development in cases of CFEOM1 through over-regulation of actin polymerization by Kank1.

  10. /sup 3/H)forskolin. Direct photoaffinity labeling of the erythrocyte D-glucose transporter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanahan, M.F.; Morris, D.P.; Edwards, B.M.

    1987-05-05

    Irradiation of erythrocyte ghosts in the presence of (/sup 3/H)forskolin resulted in a concentration-dependent, covalent incorporation of radiolabel into several of the major membrane protein bands. Most of the incorporation occurred in four regions of the gel. Peak 1 (216 kDa) was a sharp peak near the top of the gel in the region corresponding to spectrin. Peak 2 appeared to be associated with band 3 (89 kDa), while a third peak occurred around the position of band 4.2 (76 kDa). The fourth region of labeling was a broad area between 43-75 kDa which corresponds to the region of themore » glucose transporter. Forskolin labeling of this region was inhibited by cytochalasin B and D-glucose, but not L-glucose. Extraction of extrinsic membrane proteins resulted in a loss of radiolabeled protein from the 216- and 76-kDa regions. Treatment of membranes labeled with either cytochalasin B or forskolin with endo-beta-galactosidase resulted in identical shifts of the 43 to 75-kDa peaks to 42 kDa. Similarly, trypsinization of membranes photolabeled with either cytochalasin B or forskolin resulted in the generation of a 17-kDa radiolabeled fragment in both cases. Photoincorporation of (/sup 3/H)cytochalasin B into the glucose transporter was blocked in a concentration-dependent manner by unlabeled forskolin.« less

  11. Loss of the clock protein PER2 shortens the erythrocyte life span in mice.

    PubMed

    Sun, Qi; Zhao, Yue; Yang, Yunxia; Yang, Xiao; Li, Minghui; Xu, Xi; Wen, Dan; Wang, Junsong; Zhang, Jianfa

    2017-07-28

    Cell proliferation and release from the bone marrow have been demonstrated to be controlled by circadian rhythms in both humans and mice. However, it is unclear whether local circadian clocks in the bone marrow influence physiological functions and life span of erythrocytes. Here, we report that loss of the clock gene Per2 significantly decreased erythrocyte life span. Mice deficient in Per2 were more susceptible to acute stresses in the erythrocytes, becoming severely anemic upon phenylhydrazine, osmotic, and H 2 O 2 challenges. 1 H NMR-based metabolomics analysis revealed that the Per2 depletion causes significant changes in metabolic profiles of erythrocytes, including increased lactate and decreased ATP levels compared with wild-type mice. The lower ATP levels were associated with hyperfunction of Na + /K + -ATPase activity in Per2 -null erythrocytes, and inhibition of Na + /K + -ATPase activity by ouabain efficiently rescued ATP levels. Per2 -null mice displayed increased levels of Na + /K + -ATPase α1 (ATP1A1) in the erythrocyte membrane, and transfection of Per2 cDNA into the erythroleukemic cell line TF-1 inhibited Atp1a1 expression. Furthermore, we observed that PER2 regulates Atp1a1 transcription through interacting with trans-acting transcription factor 1 (SP1). Our findings reveal that Per2 function in the bone marrow is required for the regulation of life span in circulating erythrocytes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Fabrication and Performance of MEMS-Based Pressure Sensor Packages Using Patterned Ultra-Thick Photoresists

    PubMed Central

    Chen, Lung-Tai; Chang, Jin-Sheng; Hsu, Chung-Yi; Cheng, Wood-Hi

    2009-01-01

    A novel plastic packaging of a piezoresistive pressure sensor using a patterned ultra-thick photoresist is experimentally and theoretically investigated. Two pressure sensor packages of the sacrifice-replacement and dam-ring type were used in this study. The characteristics of the packaged pressure sensors were investigated by using a finite-element (FE) model and experimental measurements. The results show that the thermal signal drift of the packaged pressure sensor with a small sensing-channel opening or with a thin silicon membrane for the dam-ring approach had a high packaging induced thermal stress, leading to a high temperature coefficient of span (TCO) response of −0.19% span/°C. The results also show that the thermal signal drift of the packaged pressure sensors with a large sensing-channel opening for sacrifice-replacement approach significantly reduced packaging induced thermal stress, and hence a low TCO response of −0.065% span/°C. However, the packaged pressure sensors of both the sacrifice-replacement and dam-ring type still met the specification −0.2% span/°C of the unpackaged pressure sensor. In addition, the size of proposed packages was 4 × 4 × 1.5 mm3 which was about seven times less than the commercialized packages. With the same packaging requirement, the proposed packaging approaches may provide an adequate solution for use in other open-cavity sensors, such as gas sensors, image sensors, and humidity sensors. PMID:22454580

  13. Structural characterization of agonist and antagonist-bound acetylcholine-binding protein from Aplysia californica.

    PubMed

    Hansen, Scott B; Sulzenbacher, Gerlind; Huxford, Tom; Marchot, Pascale; Bourne, Yves; Taylor, Palmer

    2006-01-01

    Nicotinic acetylcholine receptors (nAChRs) are well-characterized allosteric transmembrane proteins involved in the rapid gating of ions elicited by ACh. These receptors belong to the Cys-loop superfamily of ligand-gated ion channels, which also includes GABAA and GABAC, 5-HT3, and glycine receptors. The nAChRs are homo- or heteromeric pentamers of structurally related subunits that encompass an extracellular N-terminal ligand-binding domain, four transmembrane-spanning regions that form the ion channel, and an extended intracellular region between spans 3 and 4. Ligand binding triggers conformational changes that are transmitted to the transmembrane-spanning region, leading to gating and changes in membrane potential. The four transmembrane spans on each of the five subunits create a substantial region of hydrophobicity that precludes facile crystallization of this protein. However the freshwater snail, Lymnaea stagnalis, produces a soluble homopentameric protein, termed the ACh-binding protein (AChBP), which binds ACh (Smit et al., 2001). Its structure was determined recently (Brejc et al., 2001) at high resolution, revealing the structural scaffold for nAChR, and has become a functional and structural surrogate of the nAChR ligand-binding domain. We have characterized an AChBP from Aplysia californica and determined distinct ligand-binding properties when compared to those of L. stagnalis, including ligand specificity for the nAChR alpha7 subtype-specific alpha-conotoxin ImI (Hansen et al., 2004).

  14. Evaluation of sterol transport from the endoplasmic reticulum to mitochondria using mitochondrially targeted bacterial sterol acyltransferase in Saccharomyces cerevisiae.

    PubMed

    Tian, Siqi; Ohta, Akinori; Horiuchi, Hiroyuki; Fukuda, Ryouichi

    2015-01-01

    To elucidate the mechanism of interorganelle sterol transport, a system to evaluate sterol transport from the endoplasmic reticulum (ER) to the mitochondria was constructed. A bacterial glycerophospholipid: cholesterol acyltransferase fused with a mitochondria-targeting sequence and a membrane-spanning domain of the mitochondrial inner membrane protein Pet100 and enhanced green fluorescent protein was expressed in a Saccharomyces cerevisiae mutant deleted for ARE1 and ARE2 encoding acyl-CoA:sterol acyltransferases. Microscopic observation and subcellular fractionation suggested that this fusion protein, which was named mito-SatA-EGFP, was localized in the mitochondria. Steryl esters were synthesized in the mutant expressing mito-SatA-EGFP. This system will be applicable for evaluations of sterol transport from the ER to the mitochondria in yeast by examining sterol esterification in the mitochondria.

  15. Fluid flow electrophoresis in space

    NASA Technical Reports Server (NTRS)

    Griffin, R. N.

    1975-01-01

    Four areas relating to free-flow electrophoresis in space were investigated. The first was the degree of improvement over earthbound operations that might be expected. The second area of investigation covered the problems in developing a flowing buffer electrophoresis apparatus. The third area of investigation was the problem of testing on the ground equipment designed for use in space. The fourth area of investigation was the improvement to be expected in space for purification of biologicals. The results of some ground-based experiments are described. Other studies included cooling requirements in space, fluid sealing techniques, and measurement of voltage drop across membranes.

  16. When a transmembrane channel isn't, or how biophysics and biochemistry (mis)communicate.

    PubMed

    Reviakine, Ilya

    2018-02-12

    Annexins are a family of soluble proteins that bind to acidic phospholipids such as phosphatidylserine in a calcium-dependent manner. The archetypical member of the annexin family is annexin A5. For many years, its function remained unknown despite the availability of a high-resolution structure. This, combined with the observations of specific ion conductance in annexin-bound membranes, fueled speculations about the possible membrane-spanning forms of annexins that functioned as ion channels. The channel hypothesis remained controversial and did not gather sufficient evidence to become accepted. Yet, it continues to draw attention as a framework for interpreting indirect (e.g., biochemical) data. The goal of the mini-review is to examine the data on annexin-lipid interactions from the last ~30 years from the point of view of the controversy between the two lines of inquiry: the well-characterized peripheral assembly of the annexins at membranes vs. their putative transmembrane insertion. In particular, the potential role of lipid rearrangements induced by annexin binding is highlighted. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Entrapped cells-based-anaerobic membrane bioreactor treating domestic wastewater: Performances, fouling, and bacterial community structure.

    PubMed

    Juntawang, Chaipon; Rongsayamanont, Chaiwat; Khan, Eakalak

    2017-11-01

    A laboratory scale study on treatment performances and fouling of entrapped cells-based-anaerobic membrane bioreactor (E-AnMBR) in comparison with suspended cells-based-bioreactor (S-AnMBR) treating domestic wastewater was conducted. The difference between E-AnMBR and S-AnMBR was the uses of cells entrapped in phosphorylated polyvinyl alcohol versus planktonic cells. Bulk organic removal efficiencies by the two AnMBRs were comparable. Lower concentrations of suspended biomass, bound extracellular polymeric substances and soluble microbial products in E-AnMBR resulted in less fouling compared to S-AnMBR. S-AnMBR provided 7 days of operation time versus 11 days for E-AnMBR before chemical cleaning was required. The less frequent chemical cleaning potentially leads to a longer membrane life-span for E-AnMBR compared to S-AnMBR. Phyla Proteobacteria, Chloroflexi, Bacteroidetes and Acidobacteria were dominant in cake sludge from both AnMBRs but their abundances were different between the two AnMBRs, suggesting influence of cell entrapment on the bacteria community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Structure-function analysis of myomaker domains required for myoblast fusion.

    PubMed

    Millay, Douglas P; Gamage, Dilani G; Quinn, Malgorzata E; Min, Yi-Li; Mitani, Yasuyuki; Bassel-Duby, Rhonda; Olson, Eric N

    2016-02-23

    During skeletal muscle development, myoblasts fuse to form multinucleated myofibers. Myomaker [Transmembrane protein 8c (TMEM8c)] is a muscle-specific protein that is essential for myoblast fusion and sufficient to promote fusion of fibroblasts with muscle cells; however, the structure and biochemical properties of this membrane protein have not been explored. Here, we used CRISPR/Cas9 mutagenesis to disrupt myomaker expression in the C2C12 muscle cell line, which resulted in complete blockade to fusion. To define the functional domains of myomaker required to direct fusion, we established a heterologous cell-cell fusion system, in which fibroblasts expressing mutant versions of myomaker were mixed with WT myoblasts. Our data indicate that the majority of myomaker is embedded in the plasma membrane with seven membrane-spanning regions and a required intracellular C-terminal tail. We show that myomaker function is conserved in other mammalian orthologs; however, related family members (TMEM8a and TMEM8b) do not exhibit fusogenic activity. These findings represent an important step toward deciphering the cellular components and mechanisms that control myoblast fusion and muscle formation.

  19. The three-dimensional structure of aquaporin-1

    NASA Astrophysics Data System (ADS)

    Walz, Thomas; Hirai, Teruhisa; Murata, Kazuyoshi; Heymann, J. Bernard; Mitsuoka, Kaoru; Fujiyoshi, Yoshinori; Smith, Barbara L.; Agre, Peter; Engel, Andreas

    1997-06-01

    The entry and exit of water from cells is a fundamental process of life. Recognition of the high water permeability of red blood cells led to the proposal that specialized water pores exist in the plasma membrane. Expression in Xenopus oocytes and functional studies of an erythrocyte integral membrane protein of relative molecular mass 28,000, identified it as the mercury-sensitive water channel, aquaporin-1 (AQP1). Many related proteins, all belonging to the major intrinsic protein (MIP) family, are found throughout nature. AQP1 is a homotetramer containing four independent aqueous channels. When reconstituted into lipid bilayers, the protein forms two-dimensional lattices with a unit cell containing two tetramers in opposite orientation. Here we present the three-dimensional structure of AQP1 determined at 6Å resolution by cryo-electron microscopy. Each AQP1 monomer has six tilted, bilayer-spanning α-helices which form a right-handed bundle surrounding a central density. These results, together with functional studies, provide a model that identifies the aqueous pore in the AQP1 molecule and indicates the organization of the tetrameric complex in the membrane.

  20. A Multiscale Approach to Modelling Drug Metabolism by Membrane-Bound Cytochrome P450 Enzymes

    PubMed Central

    Sansom, Mark S. P.; Mulholland, Adrian J.

    2014-01-01

    Cytochrome P450 enzymes are found in all life forms. P450s play an important role in drug metabolism, and have potential uses as biocatalysts. Human P450s are membrane-bound proteins. However, the interactions between P450s and their membrane environment are not well-understood. To date, all P450 crystal structures have been obtained from engineered proteins, from which the transmembrane helix was absent. A significant number of computational studies have been performed on P450s, but the majority of these have been performed on the solubilised forms of P450s. Here we present a multiscale approach for modelling P450s, spanning from coarse-grained and atomistic molecular dynamics simulations to reaction modelling using hybrid quantum mechanics/molecular mechanics (QM/MM) methods. To our knowledge, this is the first application of such an integrated multiscale approach to modelling of a membrane-bound enzyme. We have applied this protocol to a key human P450 involved in drug metabolism: CYP3A4. A biologically realistic model of CYP3A4, complete with its transmembrane helix and a membrane, has been constructed and characterised. The dynamics of this complex have been studied, and the oxidation of the anticoagulant R-warfarin has been modelled in the active site. Calculations have also been performed on the soluble form of the enzyme in aqueous solution. Important differences are observed between the membrane and solution systems, most notably for the gating residues and channels that control access to the active site. The protocol that we describe here is applicable to other membrane-bound enzymes. PMID:25033460

  1. Kinetic control of TolC recruitment by multidrug efflux complexes.

    PubMed

    Tikhonova, Elena B; Dastidar, Vishakha; Rybenkov, Valentin V; Zgurskaya, Helen I

    2009-09-22

    In Gram-negative pathogens, multidrug efflux pumps that provide clinically significant levels of antibiotic resistance function as three-component complexes. They are composed of the inner membrane transporters belonging to one of three superfamilies of proteins, RND, ABC, or MF; periplasmic proteins belonging to the membrane fusion protein (MFP) family; and outer membrane channels exemplified by the Escherichia coli TolC. The three-component complexes span the entire two-membrane envelope of Gram-negative bacteria and expel toxic molecules from the cytoplasmic membrane to the medium. The architecture of these complexes is expected to vary significantly because of the structural diversity of the inner membrane transporters. How the three-component pumps are assembled, their architecture, and their dynamics remain unclear. In this study, we reconstituted interactions and compared binding kinetics of the E. coli TolC with AcrA, MacA, and EmrA, the periplasmic MFPs that function in multidrug efflux with transporters from the RND, ABC, and MF superfamilies, respectively. By using surface plasmon resonance, we demonstrate that TolC interactions with MFPs are highly dynamic and sensitive to pH. The affinity of TolC to MFPs decreases in the order MacA > EmrA > AcrA. We further show that MFPs are prone to oligomerization, but differ dramatically from each other in oligomerization kinetics and stability of oligomers. The propensity of MFPs to oligomerize correlates with the stability of MFP-TolC complexes and structural features of inner membrane transporters. We propose that recruitment of TolC by various MFPs is determined not only by kinetics of MFP-TolC interactions but also by oligomerization kinetics of MFPs and pH.

  2. A multiscale approach to modelling drug metabolism by membrane-bound cytochrome P450 enzymes.

    PubMed

    Lonsdale, Richard; Rouse, Sarah L; Sansom, Mark S P; Mulholland, Adrian J

    2014-07-01

    Cytochrome P450 enzymes are found in all life forms. P450s play an important role in drug metabolism, and have potential uses as biocatalysts. Human P450s are membrane-bound proteins. However, the interactions between P450s and their membrane environment are not well-understood. To date, all P450 crystal structures have been obtained from engineered proteins, from which the transmembrane helix was absent. A significant number of computational studies have been performed on P450s, but the majority of these have been performed on the solubilised forms of P450s. Here we present a multiscale approach for modelling P450s, spanning from coarse-grained and atomistic molecular dynamics simulations to reaction modelling using hybrid quantum mechanics/molecular mechanics (QM/MM) methods. To our knowledge, this is the first application of such an integrated multiscale approach to modelling of a membrane-bound enzyme. We have applied this protocol to a key human P450 involved in drug metabolism: CYP3A4. A biologically realistic model of CYP3A4, complete with its transmembrane helix and a membrane, has been constructed and characterised. The dynamics of this complex have been studied, and the oxidation of the anticoagulant R-warfarin has been modelled in the active site. Calculations have also been performed on the soluble form of the enzyme in aqueous solution. Important differences are observed between the membrane and solution systems, most notably for the gating residues and channels that control access to the active site. The protocol that we describe here is applicable to other membrane-bound enzymes.

  3. Use of molecular dynamics to assess the biophysiological role of hydroxyl groups in glycerol dyalkyl glycerol teraethers

    NASA Astrophysics Data System (ADS)

    Huguet, Carme; Costenaro, Lionel; Fietz, Susanne; Daura, Xavier

    2015-04-01

    The cell membrane of some Archaea is constituted by lipids that span the whole membrane width and contain two alkyl chains bound by two glycerol groups (glycerol dyalkyl glycerol teraethers or GDGTs). These lipids confer stability to the membrane in mesophile to extremophile environments. Besides the more frequently studied isoprenoid archaeal lipids, both mono- and dihydroxy-GDGTs (OH-GDGT) have been recently reported to occur in marine sediments (1). OH-GDGTs contain up to two cyclopentane moieties and have been identified in both core and intact forms. In 2013, a correlation between OH-GDGTs and temperature was reported, with higher relative OH-GDGT abundances at high latitudes (2,3). The physiological function of the hydroxyl group in a GDGT is not yet known, but given the field results, it could be linked to an adaptation of the membrane to changes in temperature. For hydroxydiether lipid cores in methanogenic bacteria, it has been postulated that the hydroxyl group may alter the cell membrane properties: either extending the polar head group region or creating a hydrophilic pocket (4). It has also been suggested that the hydroxylation of the biphytany (l) moiety may result in enhanced membrane rigidity (1). To improve our understanding of the effect of the hydroxylation on physical properties of membranes, we performed molecular-dynamics simulations of GDGT membranes presenting and lacking these additional OH groups. This is an approach with a great development potential in the archaea lipid field, especially in relation to proxy validation. Our results indicate that the addition of an OH increases the membrane fluidity, thus providing an advantage in cold environments. We also observe a widening of the polar head group area, which could enhance transport. 1. Liu et al. 2012, GCA 2. Huguet et al. 2013, Org. Geochem 3. Fietz et al. 2013 4. Sprott et al. 1990. J. Biol. Chem. 265, 13735-13740.

  4. A novel technique to study pore-forming peptides in a natural membrane.

    PubMed

    Vedovato, Natascia; Rispoli, Giorgio

    2007-09-01

    The biophysical characteristics and the pore formation dynamics of synthetic or naturally occurring peptides forming membrane-spanning channels were investigated by using isolated photoreceptor rod outer segments (OS) recorded in whole-cell configuration. Once blocking the two OS endogenous conductances (the cGMP channels by light and the Na(+):Ca(2+),K(+) exchanger by removing one of the transported ion species from both sides of the membrane, i.e. K(+), Na(+) or Ca(2+)), the OS membrane resistance (R ( m )) was typically larger than 1 GOmega in the presence of 1 mM external Ca(2+). Therefore, any exogenous current could be studied down to the single channel level. The peptides were applied to (and removed from) the extracellular OS side in approximately 50 ms with a computer-controlled microperfusion system, in which every perfusion parameter, as the rate of solution flow, the temporal sequence of solution changes or the number of automatic, self-washing cycles were controlled by a user-friendly interface. This technique was then used to determine the biophysical properties and the pore formation dynamics of antibiotic peptaibols, as the native alamethicin mixture, the synthesized major component of the neutral fraction (F50/5) of alamethicin, and the synthetic trichogin GA IV.

  5. Quantifying Contributions to Transport in Ionic Polymers Across Multiple Length Scales

    NASA Astrophysics Data System (ADS)

    Madsen, Louis

    Self-organized polymer membranes conduct mobile species (ions, water, alcohols, etc.) according to a hierarchy of structural motifs that span sub-nm to >10 μm in length scale. In order to comprehensively understand such materials, our group combines multiple types of NMR dynamics and transport measurements (spectroscopy, diffusometry, relaxometry, imaging) with structural information from scattering and microscopy as well as with theories of porous media,1 electrolytic transport, and oriented matter.2 In this presentation, I will discuss quantitative separation of the phenomena that govern transport in polymer membranes, from intermolecular interactions (<= 2 nm),3 to locally ordered polymer nanochannels (a few to 10s of nm),2 to larger polymer domain structures (10s of nm and larger).1 Using this multi-scale information, we seek to give informed feedback on the design of polymer membranes for use in, e . g . , efficient batteries, fuel cells, and mechanical actuators. References: [1] J. Hou, J. Li, D. Mountz, M. Hull, and L. A. Madsen. Journal of Membrane Science448, 292-298 (2013). [2] J. Li, J. K. Park, R. B. Moore, and L. A. Madsen. Nature Materials 10, 507-511 (2011). [3] M. D. Lingwood, Z. Zhang, B. E. Kidd, K. B. McCreary, J. Hou, and L. A. Madsen. Chemical Communications 49, 4283 - 4285 (2013).

  6. Computer Modeling of the Earliest Cellular Structures and Functions

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Chipot, Christophe; Schweighofer, Karl

    2000-01-01

    In the absence of extinct or extant record of protocells (the earliest ancestors of contemporary cells). the most direct way to test our understanding of the origin of cellular life is to construct laboratory models of protocells. Such efforts are currently underway in the NASA Astrobiology Program. They are accompanied by computational studies aimed at explaining self-organization of simple molecules into ordered structures and developing designs for molecules that perform proto-cellular functions. Many of these functions, such as import of nutrients, capture and storage of energy. and response to changes in the environment are carried out by proteins bound to membrane< We will discuss a series of large-scale, molecular-level computer simulations which demonstrate (a) how small proteins (peptides) organize themselves into ordered structures at water-membrane interfaces and insert into membranes, (b) how these peptides aggregate to form membrane-spanning structures (eg. channels), and (c) by what mechanisms such aggregates perform essential proto-cellular functions, such as proton transport of protons across cell walls, a key step in cellular bioenergetics. The simulations were performed using the molecular dynamics method, in which Newton's equations of motion for each item in the system are solved iteratively. The problems of interest required simulations on multi-nanosecond time scales, which corresponded to 10(exp 6)-10(exp 8) time steps.

  7. The erythrocyte osmotic resistance test as screening tool for cholesterol-related lysosomal storage diseases.

    PubMed

    López de Frutos, Laura; Cebolla, Jorge J; Irún, Pilar; Köhler, Ralf; Giraldo, Pilar

    2018-05-01

    Erythrocyte volume regulation and membrane elasticity are essential for adaptation to osmotic and mechanical stress, and life span. Here, we evaluated whether defective cholesterol trafficking caused by the rare lysosomal storages diseases (LSDs), Niemann-Pick type C (NPC) and Lysosomal acid lipase (LAL) deficiency (LALD) impairs these properties. Moreover, we tested whether measurements of cholesterol membrane content and osmotic resistance serve as a screening test for these LSDs. Patients were genotyped for mutations in NPC1, NPC2, or LIPA genes. We measured LSD plasma biomarkers and LAL activity. Red blood cells (RBC) membrane cholesterol content was evaluated in 73 subjects. Osmotic resistance tests (ORT) were conducted in 121 blood samples from LSD suspected patients and controls. We did not find statistically significant differences between RBC cholesterol content between subjects and controls. However, the ORT, particularly at 0.49% (w/v) hypotonic sodium chloride solution, revealed a significant higher osmotic resistance in LSDs patients than in controls. We established a cut-off value of ≤51% of haemolysis with sensibility and specificity values of 80% and 70%, respectively. NPC and LALD do not alter cholesterol content in the RBC membrane but increase osmotic resistance. Therefore, ORT serves as screening test for the studied LSDs. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Presence of aquaporin and V-ATPase on the contractile vacuole of Amoeba proteus.

    PubMed

    Nishihara, Eri; Yokota, Etsuo; Tazaki, Akira; Orii, Hidefumi; Katsuhara, Maki; Kataoka, Kensuke; Igarashi, Hisako; Moriyama, Yoshinori; Shimmen, Teruo; Sonobe, Seiji

    2008-03-01

    The results of water permeability measurements suggest the presence of an AQP (aquaporin) in the membrane of the CV (contractile vacuole) in Amoeba proteus [Nishihara, Shimmen and Sonobe (2004) Cell Struct. Funct. 29, 85-90]. In the present study, we cloned an AQP gene from A. proteus [ApAQP (A. proteus AQP)] that encodes a 295-amino-acid protein. The protein has six putative TMs (transmembrane domains) and two NPA (Asn-Pro-Ala) motifs, which are conserved among various AQPs and are thought to be involved in the formation of water channels that span the lipid bilayer. Using Xenopus oocytes, we have demonstrated that the ApAQP protein product can function as a water channel. Immunofluorescence microscopy with anti-ApAQP antibody revealed that ApAQP is detected on the CV membrane and on the vesicles around the CV. The presence of V-ATPase (vacuolar H+-ATPase) on the vesicle membrane around the CV was also detected. Our data on ApAQP allow us to provide the first informed explanation of the high water permeability of the CV membrane in amoeba. Moreover, the results suggest that vesicles possessing V-ATPase are involved in generating an osmotic gradient. Based on our findings, we propose a new hypothesis for the mechanism of CV function.

  9. Boosting the signal: Endothelial inward rectifier K+ channels.

    PubMed

    Jackson, William F

    2017-04-01

    Endothelial cells express a diverse array of ion channels including members of the strong inward rectifier family composed of K IR 2 subunits. These two-membrane spanning domain channels are modulated by their lipid environment, and exist in macromolecular signaling complexes with receptors, protein kinases and other ion channels. Inward rectifier K + channel (K IR ) currents display a region of negative slope conductance at membrane potentials positive to the K + equilibrium potential that allows outward current through the channels to be activated by membrane hyperpolarization, permitting K IR to amplify hyperpolarization induced by other K + channels and ion transporters. Increases in extracellular K + concentration activate K IR allowing them to sense extracellular K + concentration and transduce this change into membrane hyperpolarization. These properties position K IR to participate in the mechanism of action of hyperpolarizing vasodilators and contribute to cell-cell conduction of hyperpolarization along the wall of microvessels. The expression of K IR in capillaries in electrically active tissues may allow K IR to sense extracellular K + , contributing to functional hyperemia. Understanding the regulation of expression and function of microvascular endothelial K IR will improve our understanding of the control of blood flow in the microcirculation in health and disease and may provide new targets for the development of therapeutics in the future. © 2016 John Wiley & Sons Ltd.

  10. Targeting Membrane-Bound Viral RNA Synthesis Reveals Potent Inhibition of Diverse Coronaviruses Including the Middle East Respiratory Syndrome Virus

    PubMed Central

    Bergström, Tomas; Kann, Nina; Adamiak, Beata; Hannoun, Charles; Kindler, Eveline; Jónsdóttir, Hulda R.; Muth, Doreen; Kint, Joeri; Forlenza, Maria; Müller, Marcel A.; Drosten, Christian; Thiel, Volker; Trybala, Edward

    2014-01-01

    Coronaviruses raise serious concerns as emerging zoonotic viruses without specific antiviral drugs available. Here we screened a collection of 16671 diverse compounds for anti-human coronavirus 229E activity and identified an inhibitor, designated K22, that specifically targets membrane-bound coronaviral RNA synthesis. K22 exerts most potent antiviral activity after virus entry during an early step of the viral life cycle. Specifically, the formation of double membrane vesicles (DMVs), a hallmark of coronavirus replication, was greatly impaired upon K22 treatment accompanied by near-complete inhibition of viral RNA synthesis. K22-resistant viruses contained substitutions in non-structural protein 6 (nsp6), a membrane-spanning integral component of the viral replication complex implicated in DMV formation, corroborating that K22 targets membrane bound viral RNA synthesis. Besides K22 resistance, the nsp6 mutants induced a reduced number of DMVs, displayed decreased specific infectivity, while RNA synthesis was not affected. Importantly, K22 inhibits a broad range of coronaviruses, including Middle East respiratory syndrome coronavirus (MERS–CoV), and efficient inhibition was achieved in primary human epithelia cultures representing the entry port of human coronavirus infection. Collectively, this study proposes an evolutionary conserved step in the life cycle of positive-stranded RNA viruses, the recruitment of cellular membranes for viral replication, as vulnerable and, most importantly, druggable target for antiviral intervention. We expect this mode of action to serve as a paradigm for the development of potent antiviral drugs to combat many animal and human virus infections. PMID:24874215

  11. VITRECTOMY FOR INTERMEDIATE AGE-RELATED MACULAR DEGENERATION ASSOCIATED WITH TANGENTIAL VITREOMACULAR TRACTION: A CLINICOPATHOLOGIC CORRELATION.

    PubMed

    Ziada, Jean; Hagenau, Felix; Compera, Denise; Wolf, Armin; Scheler, Renate; Schaumberger, Markus M; Priglinger, Siegfried G; Schumann, Ricarda G

    2018-03-01

    To describe the morphologic characteristics of the vitreomacular interface in intermediate age-related macular degeneration associated with tangential traction due to premacular membrane formation and to correlate with optical coherence tomography (OCT) findings and clinical data. Premacular membrane specimens were removed sequentially with the internal limiting membrane from 27 eyes of 26 patients with intermediate age-related macular degeneration during standard vitrectomy. Specimens were processed for immunocytochemical staining of epiretinal cells and extracellular matrix components. Ultrastructural analysis was performed using transmission electron microscopy. Spectral domain optical coherence tomography images and patient charts were evaluated in retrospect. Immunocytochemistry revealed hyalocytes and myofibroblasts as predominant cell types. Ultrastructural analysis demonstrated evidence of vitreoschisis in all eyes. Myofibroblasts with contractile properties were observed to span between folds of the internal limiting membrane and vitreous cortex collagen. Retinal pigment epithelial cells or inflammatory cells were not detected. Mean visual acuity (Snellen) showed significant improvement from 20/72 ± 20/36 to 20/41 ± 20/32 (P < 0.001) after a mean follow-up period of 19 months (median, 17 months). During this period, none of the eyes required anti-vascular endothelial growth factor therapy. Fibrocellular premacular proliferation in intermediate age-related macular degeneration predominantly consists of vitreous collagen, hyalocytes, and myofibroblasts with contractile properties. Vitreoschisis and vitreous-derived cells appear to play an important role in traction formation of this subgroup of eyes. In patients with intermediate age-related macular degeneration and contractile premacular membrane, release of traction by vitrectomy with internal limiting membrane peeling results in significantly functional and anatomical improvement.

  12. Coverage by land, sea, and airplane surveys, 1900-1967.

    NASA Technical Reports Server (NTRS)

    Fabiano, E.; Cain, S. J.

    1971-01-01

    The worldwide coverage of the earth by land, sea, and aircraft magnetic surveys since the beginning of the 20th century is shown on three world maps for surface surveys spanning the periods of 1900-1930, 1930-1955, and 1955-1967, respectively, on a fourth map for ship-towed magnetometer surveys performed after 1956, and on a fifth map for 1953-1966 airborne survey data. The technique used, involving a position plotting of each measurement with a microfilm plotter, results in the appearance of heavily surveyed regions as completely darkened areas. The coverage includes measurements at about 100,000 land stations, airborne measurements at over 90,000 points, and marine measurements at over 25,000 points. The marine measurements cover over 1,000,000 km of trackline.

  13. Note: A flexible light emitting diode-based broadband transient-absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Gottlieb, Sean M.; Corley, Scott C.; Madsen, Dorte; Larsen, Delmar S.

    2012-05-01

    This Note presents a simple and flexible ns-to-ms transient absorption spectrometer based on pulsed light emitting diode (LED) technology that can be incorporated into existing ultrafast transient absorption spectrometers or operate as a stand-alone instrument with fixed-wavelength laser sources. The LED probe pulses from this instrument exhibit excellent stability (˜0.5%) and are capable of producing high signal-to-noise long-time (>100 ns) transient absorption signals either in a broadband multiplexed (spanning 250 nm) or in tunable narrowband (20 ns) operation. The utility of the instrument is demonstrated by measuring the photoinduced ns-to-ms photodynamics of the red/green absorbing fourth GMP phosphodiesterase/adenylyl cyclase/FhlA domain of the NpR6012 locus of the nitrogen-fixing cyanobacterium Nostoc punctiforme.

  14. Investigating the Biosynthesis of Membrane-spanning Lipids Using Model Strains of Acidobacteria

    NASA Astrophysics Data System (ADS)

    Bradley, A. S.; Chubiz, L. M.

    2016-12-01

    Glycerol dialkyl glycerol tetraethers (GDGTs), deriving from the membrane-spanning lipids of microbes, are detected in a wide range of environments including marine and lacustrine waters, sediments, and in terrestrial soils. In sediments and soils, ratios of various GDGT structures form the basis of the TEX86 proxy based on isoprenoidal GDGTs derived from archaea, and the MBT/CBT proxy based on bacterial-derived branched GDGTs (brGDGTs), which is influenced by both temperature and pH. While the relationships of the proxy values to environmental variables have been empirically calibrated, much uncertainty remains in understanding genetic and physiological factors that affect the production of these lipid structures by microbes. In this study we compare two model bacterial strains - Edaphobacter aggregans WGB-1 , which has been previously demonstrated to produce brGDGTs (Damsté et al 2011) and Edaphobacter modestus JBG-1 (a non-brGDGT producer) to gain traction into understanding brGDGT production. We have sequenced each genome, facilitating comparisons that can be used to computationally generate hypotheses for genes involved in brGDGT biosynthesis. We will also report the results of initial experiments conducted to understand how the lipid profiles of each strain vary as a function of growth phase. Through a combination of genetic approaches and physiolotical experiments, we aim to bring new understanding to brGDGTs and how proxies derived from these lipids relate to environmental variables. Damsté et al. 2011 AEM 77: 4147

  15. Developmental gains in visuospatial memory predict gains in mathematics achievement.

    PubMed

    Li, Yaoran; Geary, David C

    2013-01-01

    Visuospatial competencies are related to performance in mathematical domains in adulthood, but are not consistently related to mathematics achievement in children. We confirmed the latter for first graders and demonstrated that children who show above average first-to-fifth grade gains in visuospatial memory have an advantage over other children in mathematics. The study involved the assessment of the mathematics and reading achievement of 177 children in kindergarten to fifth grade, inclusive, and their working memory capacity and processing speed in first and fifth grade. Intelligence was assessed in first grade and their second to fourth grade teachers reported on their in-class attentive behavior. Developmental gains in visuospatial memory span (d = 2.4) were larger than gains in the capacity of the central executive (d = 1.6) that in turn were larger than gains in phonological memory span (d = 1.1). First to fifth grade gains in visuospatial memory and in speed of numeral processing predicted end of fifth grade mathematics achievement, as did first grade central executive scores, intelligence, and in-class attentive behavior. The results suggest there are important individual differences in the rate of growth of visuospatial memory during childhood and that these differences become increasingly important for mathematics learning.

  16. The span of correlations in dolphin whistle sequences

    NASA Astrophysics Data System (ADS)

    Ferrer-i-Cancho, Ramon; McCowan, Brenda

    2012-06-01

    Long-range correlations are found in symbolic sequences from human language, music and DNA. Determining the span of correlations in dolphin whistle sequences is crucial for shedding light on their communicative complexity. Dolphin whistles share various statistical properties with human words, i.e. Zipf's law for word frequencies (namely that the probability of the ith most frequent word of a text is about i-α) and a parallel of the tendency of more frequent words to have more meanings. The finding of Zipf's law for word frequencies in dolphin whistles has been the topic of an intense debate on its implications. One of the major arguments against the relevance of Zipf's law in dolphin whistles is that it is not possible to distinguish the outcome of a die-rolling experiment from that of a linguistic or communicative source producing Zipf's law for word frequencies. Here we show that statistically significant whistle-whistle correlations extend back to the second previous whistle in the sequence, using a global randomization test, and to the fourth previous whistle, using a local randomization test. None of these correlations are expected by a die-rolling experiment and other simple explanations of Zipf's law for word frequencies, such as Simon's model, that produce sequences of unpredictable elements.

  17. Developmental Gains in Visuospatial Memory Predict Gains in Mathematics Achievement

    PubMed Central

    Li, Yaoran; Geary, David C.

    2013-01-01

    Visuospatial competencies are related to performance in mathematical domains in adulthood, but are not consistently related to mathematics achievement in children. We confirmed the latter for first graders and demonstrated that children who show above average first-to-fifth grade gains in visuospatial memory have an advantage over other children in mathematics. The study involved the assessment of the mathematics and reading achievement of 177 children in kindergarten to fifth grade, inclusive, and their working memory capacity and processing speed in first and fifth grade. Intelligence was assessed in first grade and their second to fourth grade teachers reported on their in-class attentive behavior. Developmental gains in visuospatial memory span (d = 2.4) were larger than gains in the capacity of the central executive (d = 1.6) that in turn were larger than gains in phonological memory span (d = 1.1). First to fifth grade gains in visuospatial memory and in speed of numeral processing predicted end of fifth grade mathematics achievement, as did first grade central executive scores, intelligence, and in-class attentive behavior. The results suggest there are important individual differences in the rate of growth of visuospatial memory during childhood and that these differences become increasingly important for mathematics learning. PMID:23936154

  18. Glycosylation of the severe acute respiratory syndrome coronavirus triple-spanning membrane proteins 3a and M.

    PubMed

    Oostra, M; de Haan, C A M; de Groot, R J; Rottier, P J M

    2006-03-01

    The severe acute respiratory syndrome coronavirus (SARS-CoV) open reading frame 3a protein has recently been shown to be a structural protein. The protein is encoded by one of the so-called group-specific genes and has no sequence homology with any of the known structural or group-specific proteins of coronaviruses. It does, however, have several similarities to the coronavirus M proteins; (i) they are triple membrane spanning with the same topology, (ii) they have similar intracellular localizations (predominantly Golgi), (iii) both are viral structural proteins, and (iv) they appear to interact with the E and S proteins, as well as with each other. The M protein plays a crucial role in coronavirus assembly and is glycosylated in all coronaviruses, either by N-linked or by O-linked oligosaccharides. The conserved glycosylation of the coronavirus M proteins and the resemblance of the 3a protein to them led us to investigate the glycosylation of these two SARS-CoV membrane proteins. The proteins were expressed separately using the vaccinia virus T7 expression system, followed by metabolic labeling. Pulse-chase analysis showed that both proteins were modified, although in different ways. While the M protein acquired cotranslationally oligosaccharides that could be removed by PNGaseF, the 3a protein acquired its modifications posttranslationally, and they were not sensitive to the N-glycosidase enzyme. The SARS-CoV 3a protein, however, was demonstrated to contain sialic acids, indicating the presence of oligosaccharides. O-glycosylation of the 3a protein was indeed confirmed using an in situ O-glycosylation assay of endoplasmic reticulum-retained mutants. In addition, we showed that substitution of serine and threonine residues in the ectodomain of the 3a protein abolished the addition of the O-linked sugars. Thus, the SARS-CoV 3a protein is an O-glycosylated glycoprotein, like the group 2 coronavirus M proteins but unlike the SARS-CoV M protein, which is N glycosylated.

  19. Gastric acid secretion: activation and inhibition.

    PubMed Central

    Sachs, G.; Prinz, C.; Loo, D.; Bamberg, K.; Besancon, M.; Shin, J. M.

    1994-01-01

    Peripheral regulation of gastric acid secretion is initiated by the release of gastrin from the G cell. Gastrin then stimulates the cholecystokinin-B receptor on the enterochromaffin-like cell beginning a calcium signaling cascade. An exocytotic release of histamine follows with concomitant activation of a C1- current. The released histamine begins the H2-receptor mediated sequence of events in the parietal cell, which results in activation of the gastric H+/K+ - ATPase. This enzyme is the final common pathway of acid secretion. The H+/K+ - ATPase is composed of two subunits: the larger alpha-subunit couples ion transport to hydrolysis of ATP, the smaller beta-subunit is required for appropriate assembly of the holoenzyme. Both the membrane and extracytoplasmic domain contain the ion transport pathway, and therefore, this region is the target for the antisecretory drugs of the post-H2 era. The 100 kDa alpha-subunit has probably 10 membrane spanning segments with, therefore, five extracytoplasmic loops. The 35 kDA beta-subunit has a single membrane spanning segment, and most of this protein is extracytoplasmic with the six or seven N glycosylation consensus sequences occupied. Omeprazole is an acid-accumulated, acid-activated, prodrug that binds covalently to two cysteine residues at positions 813 (or 822) and 892, accessible from the acidic face of the pump. Lansoprazole binds to cys321, 813 (or 822) and 892; pantoprazole binds to cys813 and 822. The common binding site for these drugs (cys813 or 822) is responsible for the inhibition of acid transport. Covalent inhibition of the acid pump improves control of acid secretion, but since the effective half life of the inhibition in man is about 48 hr, full inhibition of acid secretion, perhaps necessary for eradication of Helicobacter pylori in combination with a single antibiotic, will require prolongation of the effect of this class of drug. PMID:7502535

  20. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery.

    PubMed

    El Zaafarany, Ghada M; Awad, Gehanne A S; Holayel, Samar M; Mortada, Nahed D

    2010-09-15

    Transfersomes are highly efficient edge activator (EA)-based ultraflexible vesicles capable of, non-invasively, trespassing skin by virtue of their high, self-optimizing deformability. This investigation presents different approaches for the optimization of Transfersomes for enhanced transepidermal delivery of Diclofenac sodium (DS). Different methods of preparation, drug and lipid concentrations and vesicle compositions were employed, resulting in ultraflexible vesicles with diverse membrane characteristics. Evaluation of Transfersomes was implemented in terms of their shapes, sizes, entrapment efficiencies (EE%), relative deformabilities and in vitro skin permeation. Transfersomes prepared with 95:5% (w/w) (PC:EA) ratio showed highest EE% (Span 85>Span 80>Na cholate>Na deoxycholate>Tween 80). Whereas, those prepared using 85:15% (w/w) ratio showed highest deformability (Tween 80 was superior to bile salts and spans). Transfersomes were proved significantly superior in terms of, the amount of drug deposited in the skin and the amount permeated, with an enhancement ratio of 2.45, when compared to a marketed product. The study proved that the type and concentration of EA, as well as, the method of preparation had great influences on the properties of Transfersomes. Hence, optimized Transfersomes can significantly increase transepidermal flux and prolong the release of DS, when applied non-occlusively. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Effect of Sodium Fluoride Ingestion on Malondialdehyde Concentration and the Activity of Antioxidant Enzymes in Rat Erythrocytes

    PubMed Central

    Morales-González, José A.; Gutiérrez-Salinas, José; García-Ortiz, Liliana; del Carmen Chima-Galán, María; Madrigal-Santillán, Eduardo; Esquivel-Soto, Jaime; Esquivel-Chirino, César; González-Rubio, Manuel García-Luna y

    2010-01-01

    Fluoride intoxication has been shown to produce diverse deleterious metabolic alterations within the cell. To determine the effects of sodium fluoride (NaF) treatment on malondialdehyde (MDA) levels and on the activity of antioxidant enzymes in rat erythrocytes, Male Wistar rats were treated with 50 ppm of NaF or were untreated as controls. Erythrocytes were obtained from rats sacrificed weekly for up to eight weeks and the concentration of MDA in erythrocyte membrane was determined. In addition, the activity of the enzymes superoxide, dismutase, catalase, and glutathione peroxidase were determined. Treatment with NaF produces an increase in the concentration of malondialdehyde in the erythrocyte membrane only after the eight weeks of treatment. On the other hand, antioxidant enzyme activity was observed to increase after the fourth week of NaF treatment. In conclusion, intake of NaF produces alterations in the erythrocyte of the male rat, which indicates induction of oxidative stress. PMID:20640162

  2. Polymorphic Fibrillation of the Destabilized Fourth Fasciclin-1 Domain Mutant A546T of the Transforming Growth Factor-β-induced Protein (TGFBIp) Occurs through Multiple Pathways with Different Oligomeric Intermediates*

    PubMed Central

    Andreasen, Maria; Nielsen, Søren B.; Runager, Kasper; Christiansen, Gunna; Nielsen, Niels Chr.; Enghild, Jan J.; Otzen, Daniel E.

    2012-01-01

    Mutations in the transforming growth factor β-induced protein (TGFBIp) are linked to the development of corneal dystrophies in which abnormal protein deposition in the cornea leads to a loss of corneal transparency and ultimately blindness. Different mutations give rise to phenotypically distinct corneal dystrophies. Most mutations are located in the fourth fasciclin-1 domain (FAS1–4). The amino acid substitution A546T in the FAS1–4 domain is linked to the development of lattice corneal dystrophy with amyloid deposits in the superficial and deep stroma, classifying it as an amyloid disease. Here we provide a detailed description of the fibrillation of the isolated FAS1–4 domain carrying the A546T substitution. The A546T substitution leads to a significant destabilization of FAS1–4 and induces a partially folded structure with increased surface exposure of hydrophobic patches. The mutation also leads to two distinct fibril morphologies. Long straight fibrils composed of pure β-sheet structure are formed at lower concentrations, whereas short and curly fibrils containing a mixture of α-helical and β-sheet structures are formed at higher concentrations. The formation of short and curly fibrils is preceded by the formation of a small number of oligomeric species with high membrane permeabilization potential and rapid fibril formation. The long straight fibrils are formed more slowly and through progressively bigger oligomers that lose their membrane permeabilization potential as fibrillation proceeds beyond the lag phase. These different fibril classes and associated biochemical differences may lead to different clinical symptoms associated with the mutation. PMID:22893702

  3. Subcellular distribution of raffinose oligosaccharides and other metabolites in summer and winter leaves of Ajuga reptans (Lamiaceae).

    PubMed

    Findling, Sarah; Zanger, Klaus; Krueger, Stephan; Lohaus, Gertrud

    2015-01-01

    In Ajuga reptans, raffinose oligosaccharides accumulated during winter. Stachyose, verbascose, and higher RFO oligomers were exclusively found in the vacuole whereas one-fourth of raffinose was localized in the stroma. The evergreen labiate Ajuga reptans L. can grow at low temperature. The carbohydrate metabolism changes during the cold phase, e.g., raffinose family oligosaccharides (RFOs) accumulate. Additionally, A. reptans translocates RFOs in the phloem. In the present study, subcellular concentrations of metabolites were studied in summer and winter leaves of A. reptans to gain further insight into regulatory instances involved in the cold acclimation process and into the function of RFOs. Subcellular metabolite concentrations were determined by non-aqueous fractionation. Volumes of the subcellular compartments of summer and winter leaves were analyzed by morphometric measurements. The metabolite content varied strongly between summer and winter leaves. Soluble metabolites increased up to tenfold during winter whereas the starch content was decreased. In winter leaves, the subcellular distribution showed a shift of carbohydrates from cytoplasm to vacuole and chloroplast. Despite this, the metabolite concentration was higher in all compartments in winter leaves compared to summer leaves because of the much higher total metabolite content in winter leaves. The different oligosaccharides did show different compartmentations. Stachyose, verbascose, and higher RFO oligomers were almost exclusively found in the vacuole whereas one-fourth of raffinose was localized in the stroma. Apparently, the subcellular distribution of the RFOs differs because they fulfill different functions in plant metabolism during winter. Raffinose might function in protecting chloroplast membranes during freezing, whereas higher RFO oligomers may exert protective effects on vacuolar membranes. In addition, the high content of RFOs in winter leaves may also result from reduced consumption of assimilates.

  4. The membrane bound bacterial lipocalin Blc is a functional dimer with binding preference for lysophospholipids

    PubMed Central

    Campanacci, Valérie; Bishop, Russell E.; Blangy, Stéphanie; Tegoni, Mariella; Cambillau, Christian

    2016-01-01

    Lipocalins, a widespread multifunctional family of small proteins (15–25 kDa) have been first described in eukaryotes and more recently in Gram-negative bacteria. Bacterial lipocalins belonging to class I are outer membrane lipoproteins, among which Blc from E. coli is the better studied. Blc is expressed under conditions of starvation and high osmolarity, conditions known to exert stress on the cell envelope. The structure of Blc that we have previously solved (V. Campanacci, D. Nurizzo, S. Spinelli, C. Valencia, M. Tegoni, C. Cambillau, FEBS Lett. 562 (2004) 183–188.) suggested its possible role in binding fatty acids or phospholipids. Both physiological and structural data on Blc, therefore, point to a role in storage or transport of lipids necessary for membrane maintenance. In order to further document this hypothesis for Blc function, we have performed binding studies using fluorescence quenching experiments. Our results indicate that dimeric Blc binds fatty acids and phospholipids in a micromolar Kd range. The crystal structure of Blc with vaccenic acid, an unsaturated C18 fatty acid, reveals that the binding site spans across the Blc dimer, opposite to its membrane anchored face. An exposed unfilled pocket seemingly suited to bind a polar group attached to the fatty acid prompted us to investigate lyso-phospholipids, which were found to bind in a nanomolar Kd range. We discuss these findings in terms of a potential role for Blc in the metabolism of lysophospholipids generated in the bacterial outer membrane. PMID:16920109

  5. The Earliest Ion Channels in Protocellular Membranes

    NASA Technical Reports Server (NTRS)

    Mijajlovic, Milan; Pohorille, Andrew; Wilson, Michael; Wei, Chenyu

    2010-01-01

    Cellular membranes with their hydrophobic interior are virtually impermeable to ions. Bulk of ion transport through them is enabled through ion channels. Ion channels of contemporary cells are complex protein molecules which span the membrane creating a cylindrical pore filled with water. Protocells, which are widely regarded as precursors to modern cells, had similarly impermeable membranes, but the set of proteins in their disposal was much simpler and more limited. We have been, therefore, exploring an idea that the first ion channels in protocellular membranes were formed by much smaller peptide molecules that could spontaneously selfassemble into short-lived cylindrical bundles in a membrane. Earlier studies have shown that a group of peptides known as peptaibols is capable of forming ion channels in lipid bilayers when they are exposed to an electric field. Peptaibols are small, non-genetically encoded peptides produced by some fungi as a part of their system of defense against bacteria. They are usually only 14-20 residues long, which is just enough to span the membrane. Their sequence is characterized by the presence of non-standard amino acids which, interestingly, are also expected to have existed on the early earth. In particular, the presence of 2-aminoisobutyric acid (AIB) gives peptaibols strong helix forming propensities. Association of the helices inside membranes leads to the formation of cylindrical bundles, typically containing 4 to 10 monomers. Although peptaibols are excellent candidates for models of the earliest ion channels their structures, which are stabilized only by van der Waals forces and occasional hydrogen bonds between neighboring helices, are not very stable. Although it might properly reflect protobiological reality, it is also a major obstacle in studying channel behavior. For this reason we focused on two members of the peptaibol family, trichotoxin and antiamoebin, which are characterized by a single conductance level. This indicates that their structures are unique and stable. In addition, it is also believed that the trichotoxin channel displays some selectivity between potassium and chloride ions. This makes trichotoxin and antiamoebin ideal models of the earliest ion channels that could provide insight into the origins of ion conductance and selectivity. In the absence of crystal structure of the trichotoxin and antiamoebin channels, we propose their molecular models based on experimentally determined number of monomers forming the bundles. We use molecular dynamics simulations to validate the models in terms of their conductance and selectivity. On the basis of our simulations we show that the emergence of channels built of small, alpha-helical peptides was protobiologically plausible and did not require highly specific amino acid sequences, which is a convenient evolutionary trait. Despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. To this end, we will discuss how the amino acid sequence and structure of primitive channels give rise to the phenomena of ionic conductance and selectivity across the earliest cell walls, which were essential functions for the emergence and early evolution of protocells. Furthermore, we will argue that even though architectures of membrane proteins are not nearly as diverse as those of water-soluble proteins, they are sufficiently flexible to adapt readily to the functional demands arising during evolution.

  6. The earliest ion channels in protocellular membranes

    NASA Astrophysics Data System (ADS)

    Mijajlovic, Milan; Pohorille, Andrew; Wilson, Michael; Wei, Chenyu

    Cellular membranes with their hydrophobic interior are virtually impermeable to ions. Bulk of ion transport through them is enabled through ion channels. Ion channels of contemporary cells are complex protein molecules which span the membrane creating a cylindrical pore filled with water. Protocells, which are widely regarded as precursors to modern cells, had similarly impermeable membranes, but the set of proteins in their disposal was much simpler and more limited. We have been, therefore, exploring an idea that the first ion channels in protocellular membranes were formed by much smaller peptide molecules that could spontaneously self-assemble into short-lived cylindrical bundles in a membrane. Earlier studies have shown that a group of peptides known as peptaibols is capable of forming ion channels in lipid bilayers when they are exposed to an electric field. Peptaibols are small, non-genetically encoded peptides produced by some fungi as a part of their system of defense against bacteria. They are usually only 14-20 residues long, which is just enough to span the membrane. Their sequence is characterized by the presence of non-standard amino acids which, interestingly, are also expected to have existed on the early earth. In particular, the presence of 2-aminoisobutyric acid (AIB) gives peptaibols strong helix forming propensities. Association of the helices inside membranes leads to the formation of cylindrical bundles, typically containing 4 to 10 monomers. Although peptaibols are excellent candidates for models of the earliest ion channels their struc-tures, which are stabilized only by van der Waals forces and occasional hydrogen bonds between neighboring helices, are not very stable. Although it might properly reflect protobiological real-ity, it is also a major obstacle in studying channel behavior. For this reason we focused on two members of the peptaibol family, trichotoxin and antiamoebin, which are characterized by a single conductance level. This indicates that their structures are unique and stable. In addition, it is also believed that the trichotoxin channel displays some selectivity between potassium and chloride ions. This makes trichotoxin and antiamoebin ideal models of the earliest ion channels that could provide insight into the origins of ion conductance and selectivity. In the absence of crystal structure of the trichotoxin and antiamoebin channels, we propose their molecular models based on experimentally determined number of monomers forming the bundles. We use molecular dynamics simulations to validate the models in terms of their conductance and selectivity. On the basis of our simulations we show that the emergence of channels built of small, α-helical peptides was protobiologically plausible and did not require highly specific amino acid sequences, which is a convenient evolutionary trait. Despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. To this end, we will discuss how the amino acid sequence and structure of primitive channels give rise to the phenomena of ionic conductance and selectivity across the earliest cell walls, which were essential functions for the emergence and early evolution of protocells. Furthermore, we will argue that even though architectures of membrane proteins are not nearly as diverse as those of water-soluble proteins, they are sufficiently flexible to adapt readily to the functional demands arising during evolution.

  7. Complex biomembrane mimetics on the sub-nanometer scale

    DOE PAGES

    Heberle, Frederick A.; Pabst, Georg

    2017-07-17

    Biomimetic lipid vesicles are indispensable tools for gaining insight into the biophysics of cell physiology on the molecular level. The level of complexity of these model systems has steadily increased, and now spans from domain forming lipid mixtures to asymmetric lipid bilayers. We review recent progress in the development and application of elastic neutron and X-ray scattering techniques for studying these systems in situ and under physiologically relevant conditions on the nanometer to sub-nanometer length scales. Particularly we focus on: (i) structural details of coexisting liquid-ordered and liquid-disordered domains, including their thickness and lipid packing mismatch as a function ofmore » a size transition from nanoscopic to macroscopic domains; (ii) membrane-mediated protein partitioning into lipid domains; (iii) the role of the aqueous medium in tuning interactions between membranes and domains; and (iv) leaflet specific structure in asymmetric bilayers and passive lipid flip-flop.« less

  8. Structure of the Get3 targeting factor in complex with its membrane protein cargo

    DOE PAGES

    Mateja, Agnieszka; Paduch, Marcin; Chang, Hsin-Yang; ...

    2015-03-06

    Tail-anchored (TA) proteins are a physiologically important class of membrane proteins targeted to the endoplasmic reticulum by the conserved guided-entry of TA proteins (GET) pathway. During transit, their hydrophobic transmembrane domains (TMDs) are chaperoned by the cytosolic targeting factor Get3, but the molecular nature of the functional Get3-TA protein targeting complex remains unknown. In this paper, we reconstituted the physiologic assembly pathway for a functional targeting complex and showed that it comprises a TA protein bound to a Get3 homodimer. Crystal structures of Get3 bound to different TA proteins showed an α-helical TMD occupying a hydrophobic groove that spans themore » Get3 homodimer. Finally, our data elucidate the mechanism of TA protein recognition and shielding by Get3 and suggest general principles of hydrophobic domain chaperoning by cellular targeting factors.« less

  9. Complex biomembrane mimetics on the sub-nanometer scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heberle, Frederick A.; Pabst, Georg

    Biomimetic lipid vesicles are indispensable tools for gaining insight into the biophysics of cell physiology on the molecular level. The level of complexity of these model systems has steadily increased, and now spans from domain forming lipid mixtures to asymmetric lipid bilayers. We review recent progress in the development and application of elastic neutron and X-ray scattering techniques for studying these systems in situ and under physiologically relevant conditions on the nanometer to sub-nanometer length scales. Particularly we focus on: (i) structural details of coexisting liquid-ordered and liquid-disordered domains, including their thickness and lipid packing mismatch as a function ofmore » a size transition from nanoscopic to macroscopic domains; (ii) membrane-mediated protein partitioning into lipid domains; (iii) the role of the aqueous medium in tuning interactions between membranes and domains; and (iv) leaflet specific structure in asymmetric bilayers and passive lipid flip-flop.« less

  10. Establishment and characterization of a goat synovial membrane cell line susceptible to small ruminant lentivirus infection.

    PubMed

    Rolland, Morgane; Chauvineau, Cécile; Valas, Stephen; Mamoun, Robert Z; Perrin, Gérard

    2004-06-15

    Primary goat synovial membrane (GSM) cells are widely used to study small ruminant lentiviruses (SRLV), i.e. maedi visna virus (MVV) and caprine arthritis-encephalitis virus (CAEV), but their limited life-span of 15-20 passages in vitro is problematic. Here, we report that ectopic expression of the catalytic subunit of human telomerase (hTERT) was sufficient to immortalize primary GSM cells. Cultures of hTERT-transfected GSM cells have been passaged for 2 years without showing any phenotypic difference from the original primary GSM cells. The hTERT-transfected cells continued to grow beyond a population doubling number of 250, while no net telomere lengthening was observed for these cells. Moreover, the immortalized GSM cells were susceptible to infection by both CAEV and MVV and were able to propagate theses viruses. Such cell line provides a useful source of standard and robust cells for both research and veterinary purposes.

  11. Nucleocytoplasmic Transport: A Paradigm for Molecular Logistics in Artificial Systems.

    PubMed

    Vujica, Suncica; Zelmer, Christina; Panatala, Radhakrishnan; Lim, Roderick Y H

    2016-01-01

    Artificial organelles, molecular factories and nanoreactors are membrane-bound systems envisaged to exhibit cell-like functionality. These constitute liposomes, polymersomes or hybrid lipo-polymersomes that display different membrane-spanning channels and/or enclose molecular modules. To achieve more complex functionality, an artificial organelle should ideally sustain a continuous influx of essential macromolecular modules (i.e. cargoes) and metabolites against an outflow of reaction products. This would benefit from the incorporation of selective nanopores as well as specific trafficking factors that facilitate cargo selectivity, translocation efficiency, and directionality. Towards this goal, we describe how proteinaceous cargoes are transported between the nucleus and cytoplasm by nuclear pore complexes and the biological trafficking machinery in living cells (i.e. nucleocytoplasmic transport). On this basis, we discuss how biomimetic control may be implemented to selectively import, compartmentalize and accumulate diverse macromolecular modules against concentration gradients in artificial organelles.

  12. The FapF amyloid secretion transporter possesses an atypical asymmetric coiled coil.

    PubMed

    Rouse, Sarah L; Stylianou, Fisentzos; Grace Wu, H Y; Berry, Jamie-Lee; Sewell, Lee; Morgan, R Marc L; Sauerwein, Andrea C; Matthews, Steve

    2018-06-07

    Gram-negative bacteria possess specialised biogenesis machineries that facilitate the export of amyloid subunits, the fibres of which are key components of their biofilm matrix. The secretion of bacterial functional amyloid requires a specialised outer-membrane protein channel through which unfolded amyloid substrates are translocated. We previously reported the crystal structure of the membrane-spanning domain of the amyloid subunit transporter FapF from Pseudomonas. However, the structure of the periplasmic domain, which is essential for amyloid transport, is yet to be determined. Here, we present the crystal structure of the N-terminal periplasmic domain at 1.8 Å resolution. This domain forms a novel asymmetric trimeric coiled-coil that possesses a single buried tyrosine residue as well as a extensive hydrogen-bonding network within a glutamine layer. This new structural insight allows us to understand this newly described functional amyloid secretion system in greater detail. Copyright © 2018. Published by Elsevier Ltd.

  13. Outer nuclear membrane protein Kuduk modulates the LINC complex and nuclear envelope architecture

    PubMed Central

    Ding, Zhao-Ying; Huang, Yu-Cheng; Lee, Myong-Chol; Tseng, Min-Jen; Chi, Ya-Hui

    2017-01-01

    Linker of nucleoskeleton and cytoskeleton (LINC) complexes spanning the nuclear envelope (NE) contribute to nucleocytoskeletal force transduction. A few NE proteins have been found to regulate the LINC complex. In this study, we identify one, Kuduk (Kud), which can reside at the outer nuclear membrane and is required for the development of Drosophila melanogaster ovarian follicles and NE morphology of myonuclei. Kud associates with LINC complex components in an evolutionarily conserved manner. Loss of Kud increases the level but impairs functioning of the LINC complex. Overexpression of Kud suppresses NE targeting of cytoskeleton-free LINC complexes. Thus, Kud acts as a quality control mechanism for LINC-mediated nucleocytoskeletal connections. Genetic data indicate that Kud also functions independently of the LINC complex. Overexpression of the human orthologue TMEM258 in Drosophila proved functional conservation. These findings expand our understanding of the regulation of LINC complexes and NE architecture. PMID:28716842

  14. Advances of blood cell-based drug delivery systems.

    PubMed

    Sun, Yanan; Su, Jing; Liu, Geyi; Chen, Jianjun; Zhang, Xiumei; Zhang, Ran; Jiang, Minhan; Qiu, Mingfeng

    2017-01-01

    Blood cells, including erythrocytes, leukocytes and platelets are used as drug carriers in a wide range of applications. They have many unique advantages such as long life-span in circulation (especially erythrocytes), target release capacities (especially platelets), and natural adhesive properties (leukocytes and platelets). These properties make blood cell based delivery systems, as well as their membrane-derived carriers, far superior to other drug delivery systems. Despite the advantages, the further development of blood cell-based delivery systems was hindered by limitations in the source, storage, and mass production. To overcome these problems, synthetic biomaterials that mimic blood cell and nanocrystallization of blood cells have been developed and may represent the future direction for blood cell membrane-based delivery systems. In this paper, we review recent progress of the rising blood cell-based drug delivery systems, and also discuss their challenges and future tendency of development. Copyright © 2016. Published by Elsevier B.V.

  15. First Solar Power Sail Demonstration by IKAROS

    NASA Astrophysics Data System (ADS)

    Mori, Osamu; Sawada, Hirotaka; Funase, Ryu; Morimoto, Mutsuko; Endo, Tatsuya; Yamamoto, Takayuki; Tsuda, Yuichi; Kawakatsu, Yasuhiro; Kawaguchi, Jun'ichiro; Miyazaki, Yasuyuki; Shirasawa, Yoji; Demonstration Team; Solar Sail Working Group, Ikaros

    The Japan Aerospace Exploration Agency (JAXA) will make the world's first solar power sail craft demonstration of photon propulsion and thin film solar power generation during its interplanetary cruise by IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun). The spacecraft deploys and spans a membrane of 20 meters in diameter taking the advantage of the spin centrifugal force. The spacecraft weighs approximately 310kg, launched together with the agency's Venus Climate Orbiter, AKATSUKI in May 2010. This will be the first actual solar sail flying an interplanetary voyage.

  16. Tumour-derived exosomes as a signature of pancreatic cancer - liquid biopsies as indicators of tumour progression.

    PubMed

    Nuzhat, Zarin; Kinhal, Vyjayanthi; Sharma, Shayna; Rice, Gregory E; Joshi, Virendra; Salomon, Carlos

    2017-03-07

    Pancreatic cancer is the fourth most common cause of death due to cancer in the world. It is known to have a poor prognosis, mostly because early stages of the disease are generally asymptomatic. Progress in pancreatic cancer research has been slow, leaving several fundamental questions pertaining to diagnosis and treatment unanswered. Recent studies highlight the putative utility of tissue-specific vesicles (i.e. extracellular vesicles) in the diagnosis of disease onset and treatment monitoring in pancreatic cancer. Extracellular vesicles are membrane-limited structures derived from the cell membrane. They contain specific molecules including proteins, mRNA, microRNAs and non-coding RNAs that are secreted in the extracellular space. Extracellular vesicles can be classified according to their size and/or origin into microvesicles (~150-1000 nm) and exosomes (~40-120 nm). Microvesicles are released by budding from the plasmatic membrane, whereas exosomes are released via the endocytic pathway by fusion of multivesicular bodies with the plasmatic membrane. This endosomal origin means that exosomes contain an abundance of cell-specific biomolecules which may act as a 'fingerprint' of the cell of origin. In this review, we discuss our current knowledge in the diagnosis and treatment of pancreatic cancer, particularly the potential role of EVs in these facets of disease management. In particular, we suggest that as exosomes contain cellular protein and RNA molecules in a cell type-specific manner, they may provide extensive information about the signature of the tumour and pancreatic cancer progression.

  17. Structural Diversity of Arthropod Biophotonic Nanostructures Spans Amphiphilic Phase-Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saranathan, Vinod Kumar; Seago, Ainsley E.; Sandy, Alec

    2015-05-04

    Many organisms, especially arthropods, produce vivid interference colors using diverse mesoscopic (100-350 nm) integumentary biophotonic nanostructures that are increasingly being investigated for technological applications. Despite a century of interest, precise structural knowledge of many biophotonic nanostructures and the mechanisms controlling their development remain tentative, when such knowledge can open novel biomimetic routes to facilely self-assemble tunable, multifunctional materials. Here, we use synchrotron small-angle X-ray scattering and electron microscopy to characterize the photonic nanostructure of 140 integumentary scales and setae from ~127 species of terrestrial arthropods in 85 genera from 5 orders. We report a rich nanostructural diversity, including triply periodicmore » bicontinuous networks, close-packed spheres, inverse columnar, perforated lamellar, and disordered spongelike morphologies, commonly observed as stable phases of amphiphilic surfactants, block copolymer, and lyotropic lipid-water systems. Diverse arthropod lineages appear to have independently evolved to utilize the self-assembly of infolding lipid-bilayer membranes to develop biophotonic nanostructures that span the phase-space of amphiphilic morphologies, but at optical length scales.« less

  18. Experimentally validated quantitative linear model for the device physics of elastomeric microfluidic valves

    NASA Astrophysics Data System (ADS)

    Kartalov, Emil P.; Scherer, Axel; Quake, Stephen R.; Taylor, Clive R.; Anderson, W. French

    2007-03-01

    A systematic experimental study and theoretical modeling of the device physics of polydimethylsiloxane "pushdown" microfluidic valves are presented. The phase space is charted by 1587 dimension combinations and encompasses 45-295μm lateral dimensions, 16-39μm membrane thickness, and 1-28psi closing pressure. Three linear models are developed and tested against the empirical data, and then combined into a fourth-power-polynomial superposition. The experimentally validated final model offers a useful quantitative prediction for a valve's properties as a function of its dimensions. Typical valves (80-150μm width) are shown to behave like thin springs.

  19. IHC-TM connect-disconnect in relation to sensitization and masking of a HF-tone burst by a LF tone. IV.

    PubMed

    Crane, H D

    1982-05-01

    Evidence continues to accumulate that although the outer hair cells (OHCs) of the cochlea are firmly bonded to the tectorial membrane (TM), the inner hair cells (IHCS) are not. This is the fourth in a series of papers that explores how the idea of a set of disconnected hair cells that "impact" the TM is consistent with psychophysical data. The paper extends the exploration to the masking of high-frequency (HF) tone bursts by low-frequency (LF) tones and shows that the model can explain the important features of these complex data.

  20. Germline variant FGFR4  p.G388R exposes a membrane-proximal STAT3 binding site.

    PubMed

    Ulaganathan, Vijay K; Sperl, Bianca; Rapp, Ulf R; Ullrich, Axel

    2015-12-24

    Variant rs351855-G/A is a commonly occurring single-nucleotide polymorphism of coding regions in exon 9 of the fibroblast growth factor receptor FGFR4 (CD334) gene (c.1162G>A). It results in an amino-acid change at codon 388 from glycine to arginine (p.Gly388Arg) in the transmembrane domain of the receptor. Despite compelling genetic evidence for the association of this common variant with cancers of the bone, breast, colon, prostate, skin, lung, head and neck, as well as soft-tissue sarcomas and non-Hodgkin lymphoma, the underlying biological mechanism has remained elusive. Here we show that substitution of the conserved glycine 388 residue to a charged arginine residue alters the transmembrane spanning segment and exposes a membrane-proximal cytoplasmic signal transducer and activator of transcription 3 (STAT3) binding site Y(390)-(P)XXQ(393). We demonstrate that such membrane-proximal STAT3 binding motifs in the germline of type I membrane receptors enhance STAT3 tyrosine phosphorylation by recruiting STAT3 proteins to the inner cell membrane. Remarkably, such germline variants frequently co-localize with somatic mutations in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. Using Fgfr4 single nucleotide polymorphism knock-in mice and transgenic mouse models for breast and lung cancers, we validate the enhanced STAT3 signalling induced by the FGFR4 Arg388-variant in vivo. Thus, our findings elucidate the molecular mechanism behind the genetic association of rs351855 with accelerated cancer progression and suggest that germline variants of cell-surface molecules that recruit STAT3 to the inner cell membrane are a significant risk for cancer prognosis and disease progression.

  1. The nature of information, required for export and sorting, present within the outer membrane protein OmpA of Escherichia coli K-12.

    PubMed

    Freudl, R; Schwarz, H; Klose, M; Movva, N R; Henning, U

    1985-12-16

    Information, in addition to that provided by signal sequences, for translocation across the plasma membrane is thought to be present in exported proteins of Escherichia coli. Such information must also exist for the localization of such proteins. To determine the nature of this information, overlapping inframe deletions have been constructed in the ompA gene which codes for a 325-residue major outer membrane protein. In addition, one deletion, encoding only the NH2-terminal part of the protein up to residue 160, was prepared. The location of each product was determined by immunoelectron microscopy. Proteins missing residues 4-45, 43-84, 46-227, 86-227 or 160-325 of the mature protein were all efficiently translocated across the plasma membrane. The first two proteins were found in the outer membrane, the others in the periplasmic space. It has been proposed that export and sorting signals consist of relatively small amino acid sequences near the NH2 terminus of an outer membrane protein. On the basis of sequence homologies it has also been suggested that such proteins possess a common sorting signal. The locations of the partially deleted proteins described here show that a unique export signal does not exist in the OmpA protein. The proposed common sorting signal spans residues 1-14 of OmpA. Since this region is not essential for routing the protein, the existence of a common sorting signal is doubtful. It is suggested that information both for export (if existent) and localization lies within protein conformation which for the former process should be present repeatedly in the polypeptide.

  2. Verb Aspect and the Activation of Event Knowledge

    PubMed Central

    Ferretti, Todd R.; Kutas, Marta; McRae, Ken

    2011-01-01

    The authors show that verb aspect influences the activation of event knowledge with 4 novel results. First, common locations of events (e.g., arena) are primed following verbs with imperfective aspect (e.g., was skating) but not verbs with perfect aspect (e.g., had skated). Second, people generate more locative prepositional phrases as completions to sentence fragments with imperfective than those with perfect aspect. Third, the amplitude of the N400 component to location nouns varies as a function of aspect and typicality, being smallest for imperfective sentences with highly expected locations and largest for imperfective sentences with less expected locations. Fourth, the amplitude of a sustained frontal negativity spanning prepositional phrases is larger following perfect than following imperfective aspect. Taken together, these findings suggest a dynamic interplay between event knowledge and the linguistic stream. PMID:17201561

  3. Uncertainty quantification of US Southwest climate from IPCC projections.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boslough, Mark Bruce Elrick

    2011-01-01

    The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) made extensive use of coordinated simulations by 18 international modeling groups using a variety of coupled general circulation models (GCMs) with different numerics, algorithms, resolutions, physics models, and parameterizations. These simulations span the 20th century and provide forecasts for various carbon emissions scenarios in the 21st century. All the output from this panoply of models is made available to researchers on an archive maintained by the Program for Climate Model Diagnosis and Intercomparison (PCMDI) at LLNL. I have downloaded this data and completed the first steps toward a statisticalmore » analysis of these ensembles for the US Southwest. This constitutes the final report for a late start LDRD project. Complete analysis will be the subject of a forthcoming report.« less

  4. Osteitis--an under-recognised association with seronegative spondyloarthropathy?

    PubMed

    Stebbings, S; Highton, J; Doyle, T C; Jeffery, A K

    1997-12-12

    To emphasise osteitis as a feature of the spondyloarthritides. We describe four cases spanning a spectrum of the spondyloarthritides in which osteitis was a feature. One patient had psoriatic arthritis with palmar-plantar pustular psoriasis and extensive osteitis involving the tibia and fibula. This case provides a link with two cases with SAPHO syndrome (synovitis, acne, pustulosis hyperostosis, osteitis) who had palmar-plantar pustulosis and osteitis. Many now argue that this syndrome is a form of spondyloarthritis. The fourth case, which was of particular interest to us, had enteric reactive arthritis and scintigraphic changes strongly suggesting the presence of osteitis of individual bones in the wrist. We propose that these four cases demonstrate that osteitis may be another feature common to the spondyloarthritides and SAPHO. Awareness of this may facilitate better documentation of this feature of the disease.

  5. The Exact Solution for Linear Thermoelastic Axisymmetric Deformations of Generally Laminated Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Schultz, Marc R.

    2012-01-01

    A detailed exact solution is presented for laminated-composite circular cylinders with general wall construction and that undergo axisymmetric deformations. The overall solution is formulated in a general, systematic way and is based on the solution of a single fourth-order, nonhomogeneous ordinary differential equation with constant coefficients in which the radial displacement is the dependent variable. Moreover, the effects of general anisotropy are included and positive-definiteness of the strain energy is used to define uniquely the form of the basis functions spanning the solution space of the ordinary differential equation. Loading conditions are considered that include axisymmetric edge loads, surface tractions, and temperature fields. Likewise, all possible axisymmetric boundary conditions are considered. Results are presented for five examples that demonstrate a wide range of behavior for specially orthotropic and fully anisotropic cylinders.

  6. Gap junction turnover is achieved by the internalization of small endocytic double-membrane vesicles.

    PubMed

    Falk, Matthias M; Baker, Susan M; Gumpert, Anna M; Segretain, Dominique; Buckheit, Robert W

    2009-07-01

    Double-membrane-spanning gap junction (GJ) channels cluster into two-dimensional arrays, termed plaques, to provide direct cell-to-cell communication. GJ plaques often contain circular, channel-free domains ( approximately 0.05-0.5 mum in diameter) identified >30 y ago and termed nonjunctional membrane (NM) domains. We show, by expressing the GJ protein connexin43 (Cx43) tagged with green fluorescent protein, or the novel photoconvertible fluorescent protein Dendra2, that NM domains appear to be remnants generated by the internalization of small GJ channel clusters that bud over time from central plaque areas. Channel clusters internalized within seconds forming endocytic double-membrane GJ vesicles ( approximately 0.18-0.27 mum in diameter) that were degraded by lysosomal pathways. Surprisingly, NM domains were not repopulated by surrounding channels and instead remained mobile, fused with each other, and were expelled at plaque edges. Quantification of internalized, photoconverted Cx43-Dendra2 vesicles indicated a GJ half-life of 2.6 h that falls within the estimated half-life of 1-5 h reported for GJs. Together with previous publications that revealed continuous accrual of newly synthesized channels along plaque edges and simultaneous removal of channels from plaque centers, our data suggest how the known dynamic channel replenishment of functional GJ plaques can be achieved. Our observations may have implications for the process of endocytic vesicle budding in general.

  7. Coupling of the nucleus and cytoplasm

    PubMed Central

    Crisp, Melissa; Liu, Qian; Roux, Kyle; Rattner, J.B.; Shanahan, Catherine; Burke, Brian; Stahl, Phillip D.; Hodzic, Didier

    2006-01-01

    The nuclear envelope defines the barrier between the nucleus and cytoplasm and features inner and outer membranes separated by a perinuclear space (PNS). The inner nuclear membrane contains specific integral proteins that include Sun1 and Sun2. Although the outer nuclear membrane (ONM) is continuous with the endoplasmic reticulum, it is nevertheless enriched in several integral membrane proteins, including nesprin 2 Giant (nesp2G), an 800-kD protein featuring an NH2-terminal actin-binding domain. A recent study (Padmakumar, V.C., T. Libotte, W. Lu, H. Zaim, S. Abraham, A.A. Noegel, J. Gotzmann, R. Foisner, and I. Karakesisoglou. 2005. J. Cell Sci. 118:3419–3430) has shown that localization of nesp2G to the ONM is dependent upon an interaction with Sun1. In this study, we confirm and extend these results by demonstrating that both Sun1 and Sun2 contribute to nesp2G localization. Codepletion of both of these proteins in HeLa cells leads to the loss of ONM-associated nesp2G, as does overexpression of the Sun1 lumenal domain. Both treatments result in the expansion of the PNS. These data, together with those of Padmakumar et al. (2005), support a model in which Sun proteins tether nesprins in the ONM via interactions spanning the PNS. In this way, Sun proteins and nesprins form a complex that links the nucleoskeleton and cytoskeleton (the LINC complex). PMID:16380439

  8. Flk prevents premature secretion of the anti-σ factor FlgM into the periplasm

    PubMed Central

    Aldridge, Phillip; Karlinsey, Joyce E.; Becker, Eric; Chevance, Fabienne F.V.; Hughes, Kelly T.

    2012-01-01

    Summary The flk locus of Salmonella typhimurium was identified as a regulator of flagellar gene expression in strains defective in P- and l-ring formation. Flk acts as a regulator of flagellar gene expression by modulating the protein levels of the anti-σ28 factor FlgM. Evidence is presented which suggests that Flk is a cytoplasmic-facing protein anchored to the inner membrane by a single, C-terminal transmembrane-spanning domain (TMS). The specific amino acid sequence of the TMS is not essential for Flk activity, but membrane anchoring is essential. Membrane fractionation and visualization of protein fusions of green fluorescent protein derivatives to Flk suggested that the Flk protein is present in the membrane as punctate spots in number that are much greater than the number of flagellar basal structures. The turnover of the anti-σ28 factor FlgM was increased in flk mutant strains. Using FlgM–β-lactamase fusions we show the increased turnover of FlgM in flk null mutations is due to FlgM secretion into the periplasm where it is degraded. Our data suggest that Flk inhibits FlgM secretion by acting as a braking system for the flagellar-associated type III secretion system. A model is presented to explain a role for Flk in flagellar assembly and gene regulatory processes. PMID:16629666

  9. Computational modeling of membrane proteins

    PubMed Central

    Leman, Julia Koehler; Ulmschneider, Martin B.; Gray, Jeffrey J.

    2014-01-01

    The determination of membrane protein (MP) structures has always trailed that of soluble proteins due to difficulties in their overexpression, reconstitution into membrane mimetics, and subsequent structure determination. The percentage of MP structures in the protein databank (PDB) has been at a constant 1-2% for the last decade. In contrast, over half of all drugs target MPs, only highlighting how little we understand about drug-specific effects in the human body. To reduce this gap, researchers have attempted to predict structural features of MPs even before the first structure was experimentally elucidated. In this review, we present current computational methods to predict MP structure, starting with secondary structure prediction, prediction of trans-membrane spans, and topology. Even though these methods generate reliable predictions, challenges such as predicting kinks or precise beginnings and ends of secondary structure elements are still waiting to be addressed. We describe recent developments in the prediction of 3D structures of both α-helical MPs as well as β-barrels using comparative modeling techniques, de novo methods, and molecular dynamics (MD) simulations. The increase of MP structures has (1) facilitated comparative modeling due to availability of more and better templates, and (2) improved the statistics for knowledge-based scoring functions. Moreover, de novo methods have benefitted from the use of correlated mutations as restraints. Finally, we outline current advances that will likely shape the field in the forthcoming decade. PMID:25355688

  10. pH-induced conformational changes of AcrA, the membrane fusion protein of Escherichia coli multidrug efflux system.

    PubMed

    Ip, Hermia; Stratton, Kelly; Zgurskaya, Helen; Liu, Jun

    2003-12-12

    The multidrug efflux system AcrA-AcrB-TolC of Escherichia coli expels a wide range of drugs directly into the external medium from the bacterial cell. The mechanism of the efflux process is not fully understood. Of an elongated shape, AcrA is thought to span the periplasmic space coordinating the concerted operation of the inner and outer membrane proteins AcrB and TolC. In this study, we used site-directed spin labeling (SDSL) EPR (electron paramagnetic resonance) spectroscopy to investigate the molecular conformations of AcrA in solution. Ten AcrA mutants, each with an alanine to cysteine substitution, were engineered, purified, and labeled with a nitroxide spin label. EPR analysis of spin-labeled AcrA variants indicates that the side chain mobilities are consistent with the predicted secondary structure of AcrA. We further demonstrated that acidic pH induces oligomerization and conformational change of AcrA, and that the structural changes are reversible. These results suggest that the mechanism of action of AcrA in drug efflux is similar to the viral membrane fusion proteins, and that AcrA actively mediates the efflux of substrates.

  11. The lipid habitats of neurotransmitter receptors in brain.

    PubMed

    Borroni, María Virginia; Vallés, Ana Sofía; Barrantes, Francisco J

    2016-11-01

    Neurotransmitter receptors, the macromolecules specialized in decoding the chemical signals encrypted in the chemical signaling mechanism in the nervous system, occur either at the somatic cell surface of chemically excitable cells or at specialized subcellular structures, the synapses. Synapses have lipid compositions distinct from the rest of the cell membrane, suggesting that neurotransmitter receptors and their scaffolding and adaptor protein partners require specific lipid habitats for optimal operation. In this review we discuss some paradigmatic cases of neurotransmitter receptor-lipid interactions, highlighting the chemical nature of the intervening lipid species and providing examples of the receptor mechanisms affected by interaction with lipids. The focus is on the effects of cholesterol, glycerophospholipids and covalent fatty acid acylation on neurotransmitter receptors. We also briefly discuss the role of lipid phase states involving lateral heterogeneities of the host membrane known to modulate membrane transport, protein sorting and signaling. Modulation of neurotransmitter receptors by lipids occurs at multiple levels, affecting a wide span of activities including their trafficking, sorting, stability, residence lifetime at the cell surface, endocytosis, and recycling, among other important functional properties at the synapse. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. STEAP: A prostate-specific cell-surface antigen highly expressed in human prostate tumors

    PubMed Central

    Hubert, Rene S.; Vivanco, Igor; Chen, Emily; Rastegar, Shiva; Leong, Kahan; Mitchell, Steve C.; Madraswala, Rashida; Zhou, Yanhong; Kuo, James; Raitano, Arthur B.; Jakobovits, Aya; Saffran, Douglas C.; Afar, Daniel E. H.

    1999-01-01

    In search of novel genes expressed in metastatic prostate cancer, we subtracted cDNA isolated from benign prostatic hypertrophic tissue from cDNA isolated from a prostate cancer xenograft model that mimics advanced disease. One novel gene that is highly expressed in advanced prostate cancer encodes a 339-amino acid protein with six potential membrane-spanning regions flanked by hydrophilic amino- and carboxyl-terminal domains. This structure suggests a potential function as a channel or transporter protein. This gene, named STEAP for six-transmembrane epithelial antigen of the prostate, is expressed predominantly in human prostate tissue and is up-regulated in multiple cancer cell lines, including prostate, bladder, colon, ovarian, and Ewing sarcoma. Immunohistochemical analysis of clinical specimens demonstrates significant STEAP expression at the cell–cell junctions of the secretory epithelium of prostate and prostate cancer cells. Little to no staining was detected at the plasma membranes of normal, nonprostate human tissues, except for bladder tissue, which expressed low levels of STEAP at the cell membrane. Protein analysis located STEAP at the cell surface of prostate-cancer cell lines. Our results support STEAP as a cell-surface tumor-antigen target for prostate cancer therapy and diagnostic imaging. PMID:10588738

  13. A tonoplast intrinsic protein in Gardenia jasminoides

    NASA Astrophysics Data System (ADS)

    Gao, Lan; Li, Hao-Ming

    2017-08-01

    Physiological and molecular studies proved that plasma membrane intrinsic proteins (PIPs) and tonoplast intrinsic proteins (TIPs) subfamily of aquaporins play key functions in plant water homeostasis. Five specialized subgroups (TIP1-5) of TIPs have been found in higher plants, in which the TIP1 and TIP2 isoforms are the largest arbitrary groups. TIPs have high water-transport activity than PIPs, some TIPs can transport other small molecule such as urea, ammonia, hydrogen peroxide, and carbon dioxide. In this work, the structure of the putative tonoplast aquaporin from Gardenia jasminoides (GjTIP) was analyzed. Its transcript level has increased during fruit maturation. A phylogenetic analysis indicates that the protein belongs to TIP1 subfamily. A three-dimensional model structure of GjTIP was built based on crystal structure of an ammonia-permeable AtTIP2-1 from Arabidopsis thaliana. The model structure displayed as a homo-tetramer, each monomer has six trans-membrane and two half-membrane-spanning α helices. The data suggests that the GjTIP has tendency to be a mixed function aquaporin, might involve in water, urea and hydrogen peroxide transport, and the gating machanism founded in some AQPs involving pH and phosphorylation response have not been proved in GjTIP.

  14. Automated segmentation of oral mucosa from wide-field OCT images (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Goldan, Ryan N.; Lee, Anthony M. D.; Cahill, Lucas; Liu, Kelly; MacAulay, Calum; Poh, Catherine F.; Lane, Pierre

    2016-03-01

    Optical Coherence Tomography (OCT) can discriminate morphological tissue features important for oral cancer detection such as the presence or absence of basement membrane and epithelial thickness. We previously reported an OCT system employing a rotary-pullback catheter capable of in vivo, rapid, wide-field (up to 90 x 2.5mm2) imaging in the oral cavity. Due to the size and complexity of these OCT data sets, rapid automated image processing software that immediately displays important tissue features is required to facilitate prompt bed-side clinical decisions. We present an automated segmentation algorithm capable of detecting the epithelial surface and basement membrane in 3D OCT images of the oral cavity. The algorithm was trained using volumetric OCT data acquired in vivo from a variety of tissue types and histology-confirmed pathologies spanning normal through cancer (8 sites, 21 patients). The algorithm was validated using a second dataset of similar size and tissue diversity. We demonstrate application of the algorithm to an entire OCT volume to map epithelial thickness, and detection of the basement membrane, over the tissue surface. These maps may be clinically useful for delineating pre-surgical tumor margins, or for biopsy site guidance.

  15. Mechanisms and significance of eryptosis.

    PubMed

    Lang, Florian; Lang, Karl S; Lang, Philipp A; Huber, Stephan M; Wieder, Thomas

    2006-01-01

    Suicidal death of erythrocytes (eryptosis) is characterized by cell shrinkage, membrane blebbing, activation of proteases, and phosphatidylserine exposure at the outer membrane leaflet. Exposed phosphatidylserine is recognized by macrophages that engulf and degrade the affected cells. Eryptosis is triggered by erythrocyte injury after several stressors, including oxidative stress. Besides caspase activation after oxidative stress, two signaling pathways converge to trigger eryptosis: (a) formation of prostaglandin E(2) leads to activation of Ca(2+)-permeable cation channels, and (b) the phospholipase A(2)-mediated release of platelet-activating factor activates a sphingomyelinase, leading to formation of ceramide. Increased cytosolic Ca(2+) activity and enhanced ceramide levels lead to membrane scrambling with subsequent phosphatidylserine exposure. Moreover, Ca(2+) activates Ca(2+)-sensitive K(2+) channels, leading to cellular KCl loss and cell shrinkage. In addition, Ca(2+) stimulates the protease calpain, resulting in degradation of the cytoskeleton. Eryptosis is inhibited by erythropoietin, which thus extends the life span of circulating erythrocytes. Eryptosis may be a mechanism of defective erythrocytes to escape hemolysis. Conversely, excessive eryptosis favors the development of anemia. Conditions with excessive eryptosis include iron deficiency, lead or mercury intoxication, sickle cell anemia, thalassemia, glucose 6- phosphate dehydrogenase deficiency, malaria, and infection with hemolysin-forming pathogens.

  16. Protein-releasing conductive anodized alumina membranes for nerve-interface materials.

    PubMed

    Altuntas, Sevde; Buyukserin, Fatih; Haider, Ali; Altinok, Buket; Biyikli, Necmi; Aslim, Belma

    2016-10-01

    Nanoporous anodized alumina membranes (AAMs) have numerous biomedical applications spanning from biosensors to controlled drug delivery and implant coatings. Although the use of AAM as an alternative bone implant surface has been successful, its potential as a neural implant coating remains unclear. Here, we introduce conductive and nerve growth factor-releasing AAM substrates that not only provide the native nanoporous morphology for cell adhesion, but also induce neural differentiation. We recently reported the fabrication of such conductive membranes by coating AAMs with a thin C layer. In this study, we investigated the influence of electrical stimulus, surface topography, and chemistry on cell adhesion, neurite extension, and density by using PC 12 pheochromocytoma cells in a custom-made glass microwell setup. The conductive AAMs showed enhanced neurite extension and generation with the electrical stimulus, but cell adhesion on these substrates was poorer compared to the naked AAMs. The latter nanoporous material presents chemical and topographical features for superior neuronal cell adhesion, but, more importantly, when loaded with nerve growth factor, it can provide neurite extension similar to an electrically stimulated CAAM counterpart. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A New Emulsion Liquid Membrane Based on a Palm Oil for the Extraction of Heavy Metals

    PubMed Central

    Björkegren, Sanna; Fassihi Karimi, Rose; Martinelli, Anna; Jayakumar, Natesan Subramanian; Hashim, Mohd Ali

    2015-01-01

    The extraction efficiency of hexavalent chromium, Cr(VI), from water has been investigated using a vegetable oil based emulsion liquid membrane (ELM) technique. The main purpose of this study was to create a novel ELM formulation by choosing a more environmentally friendly and non-toxic diluent such as palm oil. The membrane phase so formulated includes the mobile carrier tri-n-octylmethylammonium chloride (TOMAC), to facilitate the metal transport, and the hydrophilic surfactant Tween 80 to facilitate the dispersion of the ELM phase in the aqueous solution. Span 80 is used as surfactant and butanol as co-surfactant. Our results demonstrate that this novel ELM formulation, using the vegetable palm oil as diluent, is useful for the removal of hexavalent chromium with an efficiency of over 99% and is thus competitive with the already existing, yet less environmentally friendly, ELM formulations. This result was achieved with an optimal concentration of 0.1 M NaOH as stripping agent and an external phase pH of 0.5. Different water qualities have also been investigated showing that the type of water (deionized, distilled, or tap water) does not significantly influence the extraction rate. PMID:25915191

  18. Enhanced Electro-Static Modulation of Ionic Diffusion through Carbon Nanotube Membranes by Diazonium Grafting Chemistry

    PubMed Central

    Majumder, Mainak; Keis, Karin; Zhan, Xin; Meadows, Corey; Cole, Jeggan

    2013-01-01

    A membrane structure consisting of an aligned array of open ended carbon nanotubes (~ 7 nm i.d.) spanning across an inert polymer matrix allows the diffusive transport of aqueous ionic species through CNT cores. The plasma oxidation process that opens CNTs tips inherently introduces carboxylic acid groups at the CNT tips, which allows for a limited amount of chemical functional at the CNT pore entrance. However for numerous applications, it is important to increase the density of carboxylic acid groups at the pore entrance for effective separation processes. Aqueous diazonium based electro-chemistry significantly increases the functional density of carboxylic acid groups. pH dependent dye adsorption-desorption and interfacial capacitance measurements indicate ~ 5–6 times increase in functional density. To further control the spatial location of the functional chemistry, a fast flowing inert liquid column inside the CNT core is found to restrict the diazonium grafting to the CNT tips only. This is confirmed by the increased flux of positively charged Ru(bi-py)3+2 with anionic functionality. The electrostatic enhancement of ion diffusion is readily screened in 0.1(M) electrolyte solution consistent with the membrane pore geometry and increased functional density. PMID:25132719

  19. The Structure of a Conserved Domain of TamB Reveals a Hydrophobic β Taco Fold.

    PubMed

    Josts, Inokentijs; Stubenrauch, Christopher James; Vadlamani, Grishma; Mosbahi, Khedidja; Walker, Daniel; Lithgow, Trevor; Grinter, Rhys

    2017-12-05

    The translocation and assembly module (TAM) plays a role in the transport and insertion of proteins into the bacterial outer membrane. TamB, a component of this system spans the periplasmic space to engage with its partner protein TamA. Despite efforts to characterize the TAM, the structure and mechanism of action of TamB remained enigmatic. Here we present the crystal structure of TamB amino acids 963-1,138. This region represents half of the conserved DUF490 domain, the defining feature of TamB. TamB 963-1138 consists of a concave, taco-shaped β sheet with a hydrophobic interior. This β taco structure is of dimensions capable of accommodating and shielding the hydrophobic side of an amphipathic β strand, potentially allowing TamB to chaperone nascent membrane proteins from the aqueous environment. In addition, sequence analysis suggests that the structure of TamB 963-1138 is shared by a large portion of TamB. This architecture could allow TamB to act as a conduit for membrane proteins. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy.

    PubMed

    Minetti, C; Sotgia, F; Bruno, C; Scartezzini, P; Broda, P; Bado, M; Masetti, E; Mazzocco, M; Egeo, A; Donati, M A; Volonte, D; Galbiati, F; Cordone, G; Bricarelli, F D; Lisanti, M P; Zara, F

    1998-04-01

    Limb-girdle muscular dystrophy (LGMD) is a clinically and genetically heterogeneous group of myopathies, including autosomal dominant and recessive forms. To date, two autosomal dominant forms have been recognized: LGMD1A, linked to chromosome 5q, and LGMD1B, associated with cardiac defects and linked to chromosome 1q11-21. Here we describe eight patients from two different families with a new form of autosomal dominant LGMD, which we propose to call LGMD1C, associated with a severe deficiency of caveolin-3 in muscle fibres. Caveolin-3 (or M-caveolin) is the muscle-specific form of the caveolin protein family, which also includes caveolin-1 and -2. Caveolins are the principal protein components of caveolae (50-100 nm invaginations found in most cell types) which represent appendages or sub-compartments of plasma membranes. We localized the human caveolin-3 gene (CAV3) to chromosome 3p25 and identified two mutations in the gene: a missense mutation in the membrane-spanning region and a micro-deletion in the scaffolding domain. These mutations may interfere with caveolin-3 oligomerization and disrupt caveolae formation at the muscle cell plasma membrane.

  1. Bengt Liliequist: life and accomplishments of a true renaissance man.

    PubMed

    Connor, David E; Nanda, Anil

    2017-02-01

    In the 1970s, the membrane of Liliequist became the accepted name for a small band of arachnoid membrane separating the interpeduncular and chiasmatic cisterns, making it one of the most recent of the universally accepted medical eponyms. The story of its discovery, however, cannot be told without a thorough understanding of the man responsible and his contribution to the growth of a specialty. Bengt Liliequist lived during what many would consider the Golden Age of neuroradiology. With his colleagues at the Serafimer Hospital in Stockholm, he helped set the standard for appropriate imaging of the CNS and contributed to more accurate localization of intracerebral as well as spinal lesions. The pneumoencephalographic discovery of the membrane that was to bear his name serves merely as a starting point for a career that spanned five decades and included the defense of two separate doctoral theses, the last of which occurred after his 80th birthday. Although the recognition of neuroradiology as a subspecialty did not occur in his home country of Sweden until after his retirement, and technological progress saw the obsolescence of the procedure that he had mastered, Dr. Liliequist's accomplishments and his contributions to the current understanding of neuroanatomy merit our continued praise.

  2. VX-809 corrects folding defects in cystic fibrosis transmembrane conductance regulator protein through action on membrane-spanning domain 1

    PubMed Central

    Ren, Hong Yu; Grove, Diane E.; De La Rosa, Oxana; Houck, Scott A.; Sopha, Pattarawut; Van Goor, Fredrick; Hoffman, Beth J.; Cyr, Douglas M.

    2013-01-01

    Cystic fibrosis (CF) is a fatal genetic disorder associated with defective hydration of lung airways due to the loss of chloride transport through the CF transmembrane conductance regulator protein (CFTR). CFTR contains two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs), and a regulatory domain, and its channel assembly requires multiple interdomain contacts. The most common CF-causing mutation, F508del, occurs in NBD1 and results in misfolding and premature degradation of F508del-CFTR. VX-809 is an investigational CFTR corrector that partially restores CFTR function in people who are homozygous for F508del-CFTR. To identify the folding defect(s) in F508del-CFTR that must be repaired to treat CF, we explored the mechanism of VX-809 action. VX-809 stabilized an N-terminal domain in CFTR that contains only MSD1 and efficaciously restored function to CFTR forms that have missense mutations in MSD1. The action of VX-809 on MSD1 appears to suppress folding defects in F508del-CFTR by enhancing interactions among the NBD1, MSD1, and MSD2 domains. The ability of VX-809 to correct F508del-CFTR is enhanced when combined with mutations that improve F508del-NBD1 interaction with MSD2. These data suggest that the use of VX-809 in combination with an additional CFTR corrector that suppresses folding defects downstream of MSD1 may further enhance CFTR function in people with F508del-CFTR. PMID:23924900

  3. VX-809 corrects folding defects in cystic fibrosis transmembrane conductance regulator protein through action on membrane-spanning domain 1.

    PubMed

    Ren, Hong Yu; Grove, Diane E; De La Rosa, Oxana; Houck, Scott A; Sopha, Pattarawut; Van Goor, Fredrick; Hoffman, Beth J; Cyr, Douglas M

    2013-10-01

    Cystic fibrosis (CF) is a fatal genetic disorder associated with defective hydration of lung airways due to the loss of chloride transport through the CF transmembrane conductance regulator protein (CFTR). CFTR contains two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs), and a regulatory domain, and its channel assembly requires multiple interdomain contacts. The most common CF-causing mutation, F508del, occurs in NBD1 and results in misfolding and premature degradation of F508del-CFTR. VX-809 is an investigational CFTR corrector that partially restores CFTR function in people who are homozygous for F508del-CFTR. To identify the folding defect(s) in F508del-CFTR that must be repaired to treat CF, we explored the mechanism of VX-809 action. VX-809 stabilized an N-terminal domain in CFTR that contains only MSD1 and efficaciously restored function to CFTR forms that have missense mutations in MSD1. The action of VX-809 on MSD1 appears to suppress folding defects in F508del-CFTR by enhancing interactions among the NBD1, MSD1, and MSD2 domains. The ability of VX-809 to correct F508del-CFTR is enhanced when combined with mutations that improve F508del-NBD1 interaction with MSD2. These data suggest that the use of VX-809 in combination with an additional CFTR corrector that suppresses folding defects downstream of MSD1 may further enhance CFTR function in people with F508del-CFTR.

  4. Three new species of Trimma (Pisces; Gobioidei) from Indonesia.

    PubMed

    Winterbottom, Richard; Erdmann, Mark V; Cahyani, N K Dita

    2014-07-18

    Three new species of Trimma are described from various localities in Indonesia. All three can be readily identified from their live, freshly collected, or preserved colouration. Trimma meranyx n. sp. is further distinguished from other species by the possession of 8-9 scales in the predorsal midline, up to three rows of (usually) cycloid scales on the opercle, two scales at the posterodorsal border of the cheek, a very slightly elongate second dorsal spine which only just reaches the spine or anterior rays of the second dorsal fin, unbranched pectoral fin rays, a fifth pelvic fin ray that branches once and is 64-85% the length of the fourth ray, and a full basal membrane connecting the inner branches of the two fifth pelvic rays. The dark red (live) or black posterior half of the caudal peduncle with large white spots straddling the dorsal and ventral midlines just anterior to the first procurrent caudal fin rays is the diagnostic colour character. The species is known from North Sulawesi, West Papua (Raja Ampat and Fakfak), and the south-eastern tip of Papua New Guinea, with possible records from the Philippines and Vanuatu. Trimma pajama n. sp. has 6 scales in the predorsal midline, two ctenoid scales along the dorsal margin of the opercle, a slightly elongate second dorsal spine reaching posteriorly to the base of the spine or first ray of the second dorsal fin, unbranched pectoral fin rays, a fifth pelvic ray with a single branch point and which is 58-72% the length of the fourth ray, and a full basal membrane connecting the inner branches of the two fifth pelvic rays. The live, freshly collected and preserved colour pattern of alternating dark and light stripes on the head and most of the body (except the posterior half of the caudal peduncle) is diagnostic. It is currently known from West Papua (Raja Ampat and Fakfak) and the southern tip of Papua New Guinea, with possible records from Kalimantan (Indonesia), Palau, the Hermit Is (Papua New Guinea) and the Solomon Islands. Trimma zurae n. sp. has 8-9 scales in the predorsal midline, usually a single row of cycloid scales along the upper border of the opercle, 11 anterior and 9 posterior transverse scale rows, no elongated spines in the first dorsal fin, 9 dorsal and 8 anal fin rays, the middle rays of the pectoral fin branched, a single branch in the fifth pelvic fin ray which is 65-76% the length of the fourth ray and a reduced basal membrane of < 20% the length of the fifth ray. The eye-diameter sized black ocellated spot between the first to fifth spines of the first dorsal fin is diagnostic, as are the pupil-diameter sized orange spots on the nape, opercle and posterodorsal part of the cheek. It is currently known only from a single locality just west of Manado, Sulawesi. 

  5. Force Spectroscopy Reveals the Effect of Different Ions in the Nanomechanical Behavior of Phospholipid Model Membranes: The Case of Potassium Cation

    PubMed Central

    Redondo-Morata, Lorena; Oncins, Gerard; Sanz, Fausto

    2012-01-01

    How do metal cations affect the stability and structure of phospholipid bilayers? What role does ion binding play in the insertion of proteins and the overall mechanical stability of biological membranes? Investigators have used different theoretical and microscopic approaches to study the mechanical properties of lipid bilayers. Although they are crucial for such studies, molecular-dynamics simulations cannot yet span the complexity of biological membranes. In addition, there are still some experimental difficulties when it comes to testing the ion binding to lipid bilayers in an accurate way. Hence, there is a need to establish a new approach from the perspective of the nanometric scale, where most of the specific molecular phenomena take place. Atomic force microscopy has become an essential tool for examining the structure and behavior of lipid bilayers. In this work, we used force spectroscopy to quantitatively characterize nanomechanical resistance as a function of the electrolyte composition by means of a reliable molecular fingerprint that reveals itself as a repetitive jump in the approaching force curve. By systematically probing a set of bilayers of different composition immersed in electrolytes composed of a variety of monovalent and divalent metal cations, we were able to obtain a wealth of information showing that each ion makes an independent and important contribution to the gross mechanical resistance and its plastic properties. This work addresses the need to assess the effects of different ions on the structure of phospholipid membranes, and opens new avenues for characterizing the (nano)mechanical stability of membranes. PMID:22225799

  6. Molecular Dynamics of a Water-Lipid Bilayer Interface

    NASA Technical Reports Server (NTRS)

    Wilson, Michael A.; Pohorille, Andrew

    1994-01-01

    We present results of molecular dynamics simulations of a glycerol 1-monooleate bilayer in water. The total length of analyzed trajectories is 5ns. The calculated width of the bilayer agrees well with the experimentally measured value. The interior of the membrane is in a highly disordered fluid state. Atomic density profile, orientational and conformational distribution functions, and order parameters indicate that disorder increases toward the center of the bilayer. Analysis of out-of-plane thermal fluctuations of the bilayer surfaces occurring at the time scale of the present calculations reveals that the distribution of modes agrees with predictions of the capillary wave model. Fluctuations of both bilayer surfaces are uncorrelated, yielding Gaussian distribution of instantaneous widths of the membrane. Fluctuations of the width produce transient thinning defects in the bilayer which occasionally span almost half of the membrane. The leading mechanism of these fluctuations is the orientational and conformational motion of head groups rather than vertical motion of the whole molecules. Water considerably penetrates the head group region of the bilayer but not its hydrocarbon core. The total net excess dipole moment of the interfacial water points toward the aqueous phase, but the water polarization profile is non-monotonic. Both water and head groups significantly contribute to the surface potential across the interface. The calculated sign of the surface potential is in agreement with that from experimental measurements, but the value is markedly overestimated. The structural and electrical properties of the water-bilayer system are discussed in relation to membrane functions, in particular transport of ions and nonelectrolytes across membranes.

  7. Domain-swapping analysis of FtsI, FtsL, and FtsQ, bitopic membrane proteins essential for cell division in Escherichia coli.

    PubMed Central

    Guzman, L M; Weiss, D S; Beckwith, J

    1997-01-01

    FtsI, FtsL, and FtsQ are three membrane proteins required for assembly of the division septum in the bacterium Escherichia coli. Cells lacking any of these three proteins form long, aseptate filaments that eventually lyse. FtsI, FtsL, and FtsQ are not homologous but have similar overall structures: a small cytoplasmic domain, a single membrane-spanning segment (MSS), and a large periplasmic domain that probably encodes the primary functional activities of these proteins. The periplasmic domain of FtsI catalyzes transpeptidation and is involved in the synthesis of septal peptidoglycan. The precise functions of FtsL and FtsQ are not known. To ask whether the cytoplasmic domain and MSS of each protein serve only as a membrane anchor or have instead a more sophisticated function, we have used molecular genetic techniques to swap these domains among the three Fts proteins and one membrane protein not involved in cell division, MalF. In the cases of FtsI and FtsL, replacement of the cytoplasmic domain and/or MSS resulted in the loss of the ability to support cell division. For FtsQ, MSS swaps supported cell division but cytoplasmic domain swaps did not. We discuss several potential interpretations of these results, including that the essential domains of FtsI, FtsL, and FtsQ have a role in regulating the localization and/or activity of these proteins to ensure that septum formation occurs at the right place in the cell and at the right time during the division cycle. PMID:9260951

  8. Underlying skills of oral and silent reading.

    PubMed

    van den Boer, Madelon; van Bergen, Elsje; de Jong, Peter F

    2014-12-01

    Many studies have examined reading and reading development. The majority of these studies, however, focused on oral reading rather than on the more dominant silent reading mode. Similarly, it is common practice to assess oral reading abilities rather than silent reading abilities in schools and in diagnosis of reading impairments. More important, insights gained through examinations of oral reading tend to be generalized to silent reading. In the current study, we examined whether such generalizations are justified. We directly compared oral and silent reading fluency by examining whether these reading modes relate to the same underlying skills. In total, 132 fourth graders read words, sentences, and text orally, and 123 classmates read the same material silently. As underlying skills, we considered phonological awareness, rapid naming, and visual attention span. All skills correlated significantly with both reading modes. Phonological awareness contributed equally to oral and silent reading. Rapid naming, however, correlated more strongly with oral reading than with silent reading. Visual attention span correlated equally strongly with both reading modes but showed a significant unique contribution only to silent reading. In short, we showed that oral and silent reading indeed are fairly similar reading modes, based on the relations with reading-related cognitive skills. However, we also found differences that warrant caution in generalizing findings across reading modes. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Experimental Study of an On-board Fuel Tank Inerting System

    NASA Astrophysics Data System (ADS)

    Wu, Fei; Lin, Guiping; Zeng, Yu; Pan, Rui; Sun, Haoyang

    2017-03-01

    A simulated aircraft fuel tank inerting system was established and experiments were conducted to investigate the performance of the system. The system uses hollow fiber membrane which is widely used in aircraft as the air separation device and a simplified 20% scale multi compartment fuel tank as the inerting object. Experiments were carried out to investigate the influences of different operating parameters on the inerting effectiveness of the system, including NEA (nitrogen-enriched air) flow rate, NEA oxygen concentration, NEA distribution, pressure of bleeding air and fuel load of the tank. Results showed that for the multi compartment fuel tank, concentrated flow washing inerting would cause great differences throughout the distribution of oxygen concentration in the fuel tank, and inerting dead zone would exist. The inerting effectiveness was greatly improved and the ullage oxygen concentration of the tank would reduce to 12% successfully when NEA entered three compartments evenly. The time span of a complete inerting process reduced obviously with increasing NEA flow rate and decreasing NEA concentration, but the trend became weaker gradually. However, the reduction of NEA concentration will decrease the utilization efficiency of the bleeding air. In addition, the time span can also be reduced by raising the pressure of bleeding air, which will improve the bleeding air utilization efficiency at the same time. The time span decreases linearly as the fuel load increases.

  10. Reversible binding kinetics of a cytoskeletal protein at the erythrocyte submembrane.

    PubMed Central

    Stout, A. L.; Axelrod, D.

    1994-01-01

    Reversible binding among components of the cellular submembrane cytoskeleton and reversible binding of some of these components with the plasma membrane likely play a role in nonelastic morphological changes and mechanoplastic properties of cells. However, relatively few studies have been devoted to investigating directly the kinetic aspects of the interactions of individual components of the membrane skeleton with the membrane. The experiments described here investigated whether one component of the erythrocyte membrane cytoskeleton, protein 4.1, binds to its sites on the membrane reversibly and if so, whether the different 4.1-binding sites display distinct kinetic behavior. Protein 4.1 is known to stabilize the membrane and to mediate the attachment of spectrin filaments to the membrane. Protein 4.1 previously has been shown to bind to integral membrane proteins band 3, glycophorin C, and to negatively charged phospholipids. To examine the kinetic rates of dissociation of carboxymethyl fluorescein-labeled 4.1 (CF-4.1) to the cytofacial surface of erythrocyte membrane, a special preparation of hemolyzed erythrocyte ghosts was used, in which the ghosts became flattened on a glass surface and exposed their cytofacial surfaces to the solution through a membrane rip in a distinctive characteristic pattern. This preparation was examined by the microscopy technique of total internal reflection/fluorescence recovery after photobleaching (TIR/FRAP). Four different treatments were employed to help identify which membrane binding sites gave rise to the multiplicity of observed kinetic rates. The first treatment, the control, stripped off the native spectrin, actin, 4.1, and ankyrin. About 60% of the CF-4.1 bound to this control binded irreversibly (dissociation time > 20 min), but the remaining approximately 40% binded reversibly with a range of residency times averaging approximately 3 s. The second treatment subjected these stripped membranes to trypsin, which presumably removed most of the band 3. CF-4.1 binded significantly less to these trypsinized membranes and most of the decrease was a loss of the irreversibly binding sites. The third treatment simply preserved the native 4.1 and ankyrin. CF-4.1 binded less to this sample too, and the loss involved both the irreversible and reversible sites. The fourth treatment blocked the gycophorin C sites on the native 4.1-stripped membranes with an antibody. CF-4.1 again binded less to this sample than to a nonimmune serum control, and almost all of the decrease is a loss of irreversible sites. These rest suggest that 1) protein 4.1 binds to membrane or submembrane sites at least in part reversibly ; 2) the most reversible sites are probably not proteinaceous and not glycophorin C, but possibly are phospholipids (especially phosphatidylserine); and 3) TIWRFRAP can successfully examine the fast reversible dynamics of cytoskeletal components binding to biological membranes. Images FIGURE 2 FIGURE 3 FIGURE 4 PMID:7811947

  11. Tumour-derived exosomes as a signature of pancreatic cancer - liquid biopsies as indicators of tumour progression

    PubMed Central

    Nuzhat, Zarin; Kinhal, Vyjayanthi; Sharma, Shayna; Rice, Gregory E.; Joshi, Virendra; Salomon, Carlos

    2017-01-01

    Pancreatic cancer is the fourth most common cause of death due to cancer in the world. It is known to have a poor prognosis, mostly because early stages of the disease are generally asymptomatic. Progress in pancreatic cancer research has been slow, leaving several fundamental questions pertaining to diagnosis and treatment unanswered. Recent studies highlight the putative utility of tissue-specific vesicles (i.e. extracellular vesicles) in the diagnosis of disease onset and treatment monitoring in pancreatic cancer. Extracellular vesicles are membrane-limited structures derived from the cell membrane. They contain specific molecules including proteins, mRNA, microRNAs and non-coding RNAs that are secreted in the extracellular space. Extracellular vesicles can be classified according to their size and/or origin into microvesicles (∼150-1000 nm) and exosomes (∼40-120 nm). Microvesicles are released by budding from the plasmatic membrane, whereas exosomes are released via the endocytic pathway by fusion of multivesicular bodies with the plasmatic membrane. This endosomal origin means that exosomes contain an abundance of cell-specific biomolecules which may act as a fingerprint of the cell of origin. In this review, we discuss our current knowledge in the diagnosis and treatment of pancreatic cancer, particularly the potential role of EVs in these facets of disease management. In particular, we suggest that as exosomes contain cellular protein and RNA molecules in a cell type-specific manner, they may provide extensive information about the signature of the tumour and pancreatic cancer progression. PMID:27999198

  12. Transparent Metal-Organic Framework/Polymer Mixed Matrix Membranes as Water Vapor Barriers.

    PubMed

    Bae, Youn Jue; Cho, Eun Seon; Qiu, Fen; Sun, Daniel T; Williams, Teresa E; Urban, Jeffrey J; Queen, Wendy L

    2016-04-27

    Preventing the permeation of reactive molecules into electronic devices or photovoltaic modules is of great importance to ensure their life span and reliability. This work is focused on the formation of highly functioning barrier films based on nanocrystals (NCs) of a water-scavenging metal-organic framework (MOF) and a hydrophobic cyclic olefin copolymer (COC) to overcome the current limitations. Water vapor transmission rates (WVTR) of the films reveal a 10-fold enhancement in the WVTR compared to the substrate while maintaining outstanding transparency over most of the visible and solar spectrum, a necessary condition for integration with optoelectronic devices.

  13. Oligoalanine helical callipers for cell penetration.

    PubMed

    Pazo, Marta; Juanes, Marisa; Lostalé-Seijo, Irene; Montenegro, Javier

    2018-06-04

    Even for short peptides that are enriched in basic amino acids, the large chemical space that can be spanned by combinations of natural amino acids hinders the rational design of cell penetrating peptides. We here report on short oligoalanine scaffolds for the fine-tuning of peptide helicity in different media and the study of cell penetrating properties. This strategy allowed the extraction of the structure/activity features required for maximal membrane interaction and cellular penetration at minimal toxicity. These results confirmed oligoalanine helical callipers as optimal scaffolds for the rational design and the identification of cell penetrating peptides.

  14. Mechanics of coupling proton movements to c-ring rotation in ATP synthase.

    PubMed

    Fillingame, Robert H; Angevine, Christine M; Dmitriev, Oleg Y

    2003-11-27

    F1F0 ATP synthases generate ATP by a rotary catalytic mechanism in which H+ transport is coupled to rotation of an oligomeric ring of c subunits extending through the membrane. Protons bind to and then are released from the aspartyl-61 residue of subunit c at the center of the membrane. Subunit a of the F0 sector is thought to provide proton access channels to and from aspartyl-61. Here, we summarize new information on the structural organization of Escherichia coli subunit a and the mapping of aqueous-accessible residues in the second, fourth and fifth transmembrane helices (TMHs). Aqueous-accessible regions of these helices extend to both the cytoplasmic and periplasmic surface. We propose that aTMH4 rotates to alternately expose the periplasmic or cytoplasmic half-channels to aspartyl-61 of subunit c during the proton transport cycle. The concerted rotation of interacting helices in subunit a and subunit c is proposed to be the mechanical force driving rotation of the c-rotor, using a mechanism akin to meshed gears.

  15. Roles of Ca(v) channels and AHNAK1 in T cells: the beauty and the beast.

    PubMed

    Matza, Didi; Flavell, Richard A

    2009-09-01

    T lymphocytes require Ca2+ entry though the plasma membrane for their activation and function. Recently, several routes for Ca2+ entry through the T-cell plasma membrane after activation have been described. These include calcium release-activated channels (CRAC), transient receptor potential (TRP) channels, and inositol-1,4,5-trisphosphate receptors (IP3Rs). Herein we review the emergence of a fourth new route for Ca2+ entry, composed of Ca(v) channels (also known as L-type voltage-gated calcium channels) and the scaffold protein AHNAK1 (AHNAK/desmoyokin). Both helper (CD4+) and killer (CD8+) T cells express high levels of Ca(v)1 alpha1 subunits (alpha1S, alpha1C, alpha1D, and alpha1F) and AHNAK1 after their differentiation and require these molecules for Ca2+ entry during an immune response. In this article, we describe the observations and open questions that ultimately suggest the involvement of multiple consecutive routes for Ca2+ entry into lymphocytes, one of which may be mediated by Ca(v) channels and AHNAK1.

  16. Cemento-ossifying fibroma of mandible: An unusual case report and review of literature.

    PubMed

    Mohapatra, Mounabati; Banushree, C S; Nagarajan, K; Pati, Debashish

    2015-01-01

    The term ossifying fibroma (OF) has recently been included under fibro-osseous lesions. Cemento-OF (COF) is a benign neoplasm that arises from the periodontal membrane which contains multipotential cells that are capable of forming cementum, lamellar bone and fibrous tissue. These tumors occur in the third and fourth decades of life with a predilection for women. The mandible is more commonly involved than the maxilla. This lesion has caused considerable controversy regarding the use of terminology, origin and diagnostic criteria. This article describes an unusual case of COF presenting as unilocular lytic lesion of mandible in a 38-year-old male patient with review of literature.

  17. Cemento-ossifying fibroma of mandible: An unusual case report and review of literature

    PubMed Central

    Mohapatra, Mounabati; Banushree, CS; Nagarajan, K; Pati, Debashish

    2015-01-01

    The term ossifying fibroma (OF) has recently been included under fibro-osseous lesions. Cemento-OF (COF) is a benign neoplasm that arises from the periodontal membrane which contains multipotential cells that are capable of forming cementum, lamellar bone and fibrous tissue. These tumors occur in the third and fourth decades of life with a predilection for women. The mandible is more commonly involved than the maxilla. This lesion has caused considerable controversy regarding the use of terminology, origin and diagnostic criteria. This article describes an unusual case of COF presenting as unilocular lytic lesion of mandible in a 38-year-old male patient with review of literature. PMID:26980975

  18. Diffusion tensor analysis with invariant gradients and rotation tangents.

    PubMed

    Kindlmann, Gordon; Ennis, Daniel B; Whitaker, Ross T; Westin, Carl-Fredrik

    2007-11-01

    Guided by empirically established connections between clinically important tissue properties and diffusion tensor parameters, we introduce a framework for decomposing variations in diffusion tensors into changes in shape and orientation. Tensor shape and orientation both have three degrees-of-freedom, spanned by invariant gradients and rotation tangents, respectively. As an initial demonstration of the framework, we create a tunable measure of tensor difference that can selectively respond to shape and orientation. Second, to analyze the spatial gradient in a tensor volume (a third-order tensor), our framework generates edge strength measures that can discriminate between different neuroanatomical boundaries, as well as creating a novel detector of white matter tracts that are adjacent yet distinctly oriented. Finally, we apply the framework to decompose the fourth-order diffusion covariance tensor into individual and aggregate measures of shape and orientation covariance, including a direct approximation for the variance of tensor invariants such as fractional anisotropy.

  19. Student Misconceptions About Astronomy and the Best Order of Teaching Astronomical Concepts

    NASA Astrophysics Data System (ADS)

    Favia, Andrej; Comins, N. F.; Thorpe, G.

    2013-01-01

    My (Andrej Favia) Ph.D. thesis involves quantifying the "difficulty" of unlearning common astronomy misconceptions. I do this by applying factor analysis and Item Response Theory (IRT) to a retrospective inventory of when, or if, college students dispelled the misconceptions under consideration. Our inventory covers 235 misconceptions identified over the span of 10 years of teaching the college astronomy lecture course at the Universe of Maine by NFC. The analysis yields logical groupings of topics (e.g., teach one planet at a time rather than use comparative planetology) and the "order of difficulty" of the associated topics. We have results for about one fourth of the inventory, and our results show that there are concepts of different difficulties, which suggest that they should be presented in different orders. We also find that the order of teaching concepts is sometimes different for high school and college level courses.

  20. Segmented Subduction Across the Juan De Fuca Plate: Challenges in Imaging with an Amphibious Array

    NASA Astrophysics Data System (ADS)

    Hawley, W. B.; Allen, R. M.

    2014-12-01

    The Cascadia Initiative (CI) is an amphibious array spanning the Juan de Fuca plate from formation at the ridge to the destruction of the slab in the mantle beneath western North America. This ambitions project has occupied over 300 onshore and offshore sites, providing an unprecedented opportunity to understand the dynamics of oceanic plates. The CI project is now in its fourth and final year of deployment. Here we present constraints on the structure of the Juan de Fuca plate and its interaction with western North America. We identify segmentation along the Cascadia subduction zone that can be traced back onto the Juan de Fuca plate prior to subduction. These results give insight into the life cycle of oceanic plates, from their creation at a mid-ocean ridge to their subduction and subsequent recycling into the mantle.

  1. A novel underwater dam crack detection and classification approach based on sonar images

    PubMed Central

    Shi, Pengfei; Fan, Xinnan; Ni, Jianjun; Khan, Zubair; Li, Min

    2017-01-01

    Underwater dam crack detection and classification based on sonar images is a challenging task because underwater environments are complex and because cracks are quite random and diverse in nature. Furthermore, obtainable sonar images are of low resolution. To address these problems, a novel underwater dam crack detection and classification approach based on sonar imagery is proposed. First, the sonar images are divided into image blocks. Second, a clustering analysis of a 3-D feature space is used to obtain the crack fragments. Third, the crack fragments are connected using an improved tensor voting method. Fourth, a minimum spanning tree is used to obtain the crack curve. Finally, an improved evidence theory combined with fuzzy rule reasoning is proposed to classify the cracks. Experimental results show that the proposed approach is able to detect underwater dam cracks and classify them accurately and effectively under complex underwater environments. PMID:28640925

  2. A novel underwater dam crack detection and classification approach based on sonar images.

    PubMed

    Shi, Pengfei; Fan, Xinnan; Ni, Jianjun; Khan, Zubair; Li, Min

    2017-01-01

    Underwater dam crack detection and classification based on sonar images is a challenging task because underwater environments are complex and because cracks are quite random and diverse in nature. Furthermore, obtainable sonar images are of low resolution. To address these problems, a novel underwater dam crack detection and classification approach based on sonar imagery is proposed. First, the sonar images are divided into image blocks. Second, a clustering analysis of a 3-D feature space is used to obtain the crack fragments. Third, the crack fragments are connected using an improved tensor voting method. Fourth, a minimum spanning tree is used to obtain the crack curve. Finally, an improved evidence theory combined with fuzzy rule reasoning is proposed to classify the cracks. Experimental results show that the proposed approach is able to detect underwater dam cracks and classify them accurately and effectively under complex underwater environments.

  3. Molecular insights into the biology of Greater Sage-Grouse

    USGS Publications Warehouse

    Oyler-McCance, Sara J.; Quinn, Thomas W.

    2011-01-01

    Recent research on Greater Sage-Grouse (Centrocercus urophasianus) genetics has revealed some important findings. First, multiple paternity in broods is more prevalent than previously thought, and leks do not comprise kin groups. Second, the Greater Sage-Grouse is genetically distinct from the congeneric Gunnison sage-grouse (C. minimus). Third, the Lyon-Mono population in the Mono Basin, spanning the border between Nevada and California, has unique genetic characteristics. Fourth, the previous delineation of western (C. u. phaios) and eastern Greater Sage-Grouse (C. u. urophasianus) is not supported genetically. Fifth, two isolated populations in Washington show indications that genetic diversity has been lost due to population declines and isolation. This chapter examines the use of molecular genetics to understand the biology of Greater Sage-Grouse for the conservation and management of this species and put it into the context of avian ecology based on selected molecular studies.

  4. First-grade classroom behavior: its short- and long-term consequences for school performance.

    PubMed

    Alexander, K L; Entwisle, D R; Dauber, S L

    1993-06-01

    Effects of children's classroom behavior on school performance over a 4-year period are examined for a large, representative panel of beginning first graders. Scales developed from homeroom teachers' ratings of children in the spring of their first, second, and fourth years of school are used to predict spring marks in reading and math and spring scores on verbal and quantitative subtests from the CAT battery. The teachers' ratings cluster in three domains: Interest-Participation (I-P), Cooperation-Compliance (C-C), and Attention Span-Restlessness (A-R). The I-P and A-R ratings, but not C-C ratings, affect test score gains in first grade and marks in all 3 years. Behavior ratings from Year 1 also affect Year 2 and Year 4 performance, with indications that effects are understated over single-year periods. The importance of assessing classroom behavior in a longitudinal framework that allows for lagged and cumulative effects is discussed.

  5. Theoretical Study of Molecular Transport Through a Permeabilized Cell Membrane in a Microchannel.

    PubMed

    Mahboubi, Masoumeh; Movahed, Saeid; Hosseini Abardeh, Reza; Hoshyargar, Vahid

    2017-06-01

    A two-dimensional model is developed to study the molecular transport into an immersed cell in a microchannel and to investigate the effects of finite boundary (a cell is suspended in a microchannel), amplitude of electric pulse, and geometrical parameter (microchannel height and size of electrodes) on cell uptake. Embedded electrodes on the walls of the microchannel generate the required electric pulse to permeabilize the cell membrane, pass the ions through the membrane, and transport them into the cell. The shape of electric pulses is square with the time span of 6 ms; their intensities are in the range of 2.2, 2.4, 2.6, 3 V. Numerical simulations have been performed to comprehensively investigate the molecular uptake into the cell. The obtained results of the current study demonstrate that calcium ions enter the cell from the anodic side (the side near positive electrode); after a while, the cell faces depletion of the calcium ions on a positive electrode-facing side within the microchannel; the duration of depletion depends on the amplitude of electric pulse and geometry that lasts from microseconds to milliseconds. By keeping geometrical parameters and time span constant, increment of a pulse intensity enhances molecular uptake and rate of propagation inside the cell. If a ratio of electrode size to cell diameter is larger than 1, the transported amount of Ca 2+ into the cell, as well as the rate of propagation, will be significantly increased. By increasing the height of the microchannel, the rate of uptake is decreased. In an infinite domain, the peak concentration becomes constant after reaching the maximum value; this value depends on the intra-extracellular conductivity and diffusion coefficient of interior and exterior domains of the cell. In comparison, the maximum concentration is changed by geometrical parameters in the microchannel. After reaching the maximum value, the peak concentration reduces due to the depletion of Ca 2+ ions within the microchannel. Electrophoretic velocity has a significant effect on the cell uptake.

  6. Structure of the MacAB-TolC ABC-type tripartite multidrug efflux pump

    PubMed Central

    Llabrés, Salomé; Neuberger, Arthur; Blaza, James N.; Bai, Xiao-chen; Okada, Ui; Murakami, Satoshi; van Veen, Hendrik W.; Zachariae, Ulrich; Scheres, Sjors H.W.; Luisi, Ben F.

    2017-01-01

    The MacA-MacB-TolC assembly of Escherichia coli is a transmembrane machine that spans the cell envelope and actively extrudes substrates, including macrolide antibiotics and polypeptide virulence factors. These transport processes are energized by the ATPase MacB, a member of the ATP-binding cassette (ABC) superfamily. We present an electron cryo-microscopy structure of the ABC-type tripartite assembly at near-atomic resolution. A hexamer of the periplasmic protein MacA bridges between a TolC trimer in the outer membrane and a MacB dimer in the inner membrane, generating a quaternary structure with a central channel for substrate translocation. A gating ring found in MacA is proposed to act as a one-way valve in substrate transport. The MacB structure features an atypical transmembrane domain (TMD) with a closely packed dimer interface and a periplasmic opening that is the likely portal for substrate entry from the periplasm, with subsequent displacement through an allosteric transport mechanism. PMID:28504659

  7. Joachim kohn (1912-1987) and the origin of cellulose acetate electrophoresis.

    PubMed

    Rocco, Richard M

    2005-10-01

    The year 2006 marks the 50th anniversary of the discovery of cellulose acetate (CA) electrophoresis by Joachim Kohn, a pathologist at Queen Mary's Hospital in Roehampton, London. During a career in pathology that began in 1950 and spanned 37 years, Kohn published more than 50 papers in clinical laboratory medicine. He was the first to report the use of CA microbiology filters as solid supports for zone electrophoresis and the separation of hemoglobin phenotypes on CA membranes. Kohn also invented a new electrophoresis chamber and an 8-position stamp applicator especially for use with CA membranes. Beginning in 1957, Kohn pioneered the development of CA techniques for immunoelectrophoresis, counter immunoelectrophoresis, radial immunodiffusion, protein blotting, and immunofixation. He also designed a transport dressing for burn patients and was the first person to describe the use of an enzyme-based dipstick for measuring fingerstick blood glucose concentrations. This short review highlights Kohn's discovery of CA electrophoresis and his contributions to the development of this procedure.

  8. Aligned carbon nanotube based ultrasonic microtransducers for durability monitoring in civil engineering.

    PubMed

    Lebental, B; Chainais, P; Chenevier, P; Chevalier, N; Delevoye, E; Fabbri, J-M; Nicoletti, S; Renaux, P; Ghis, A

    2011-09-30

    Structural health monitoring of porous materials such as concrete is becoming a major component in our resource-limited economy, as it conditions durable exploitation of existing facilities. Durability in porous materials depends on nanoscale features which need to be monitored in situ with nanometric resolution. To address this problem, we put forward an approach based on the development of a new nanosensor, namely a capacitive micrometric ultrasonic transducer whose vibrating membrane is made of aligned single-walled carbon nanotubes (SWNT). Such sensors are meant to be embedded in large numbers within a porous material in order to provide information on its durability by monitoring in situ neighboring individual micropores. In the present paper, we report on the feasibility of the key building block of the proposed sensor: we have fabricated well-aligned, ultra-thin, dense SWNT membranes that show above-nanometer amplitudes of vibration over a large range of frequencies spanning from 100 kHz to 5 MHz.

  9. Studies on H-Translocating ATPases in Plants of Varying Resistance to Salinity : I. Salinity during Growth Modulates the Proton Pump in the Halophyte Atriplex nummularia.

    PubMed

    Braun, Y; Hassidim, M; Lerner, H R; Reinhold, L

    1986-08-01

    Membrane vesicles were isolated from the roots of the halophyte Atriplex nummularia Lindl. H(+)-translocating Mg(2+)-ATPase activity was manifested by the establishment of a positive membrane potential (measured as SCN(-) accumulation); and also by the establishment of a transmembrane pH gradient (measured by quinacrine fluorescence quenching). H(+)-translocation was highly specific to ATP and was stable to oligomycin. Growing the plants in the presence of 400 millimolar NaCl doubled the proton-translocating activity per milligram of membrane protein and otherwise modulated it in the following ways. First, the flat pH profile observed in non-salt-grown plants was transformed to one showing a peak at about pH 6.2. Second, the lag effect observed at low ATP concentration in curves relating SCN(-) accumulation to ATP concentration was abolished; the concave curvature shown in the double reciprocal plot was diminished. Third, sensitivity to K-2 (N-morpholino)ethanesulfonic acid stimulation was shown in salt-grown plants (about 40% stimulation) but was absent in non-salt-grown plants. Fourth, the KCl concentration bringing about 50% dissipation of ATP-dependent SCN(-) accumulation was 20 millimolar for salt-grown plants and 50 millimolar for non-salt-grown plants. Vanadate sensitivity was shown in both cases. No clear NO(3) (-) inhibition was observed.

  10. Studies on H+-Translocating ATPases in Plants of Varying Resistance to Salinity 1

    PubMed Central

    Braun, Yael; Hassidim, Miriam; Lerner, Henri R.; Reinhold, Leonora

    1986-01-01

    Membrane vesicles were isolated from the roots of the halophyte Atriplex nummularia Lindl. H+-translocating Mg2+-ATPase activity was manifested by the establishment of a positive membrane potential (measured as SCN− accumulation); and also by the establishment of a transmembrane pH gradient (measured by quinacrine fluorescence quenching). H+-translocation was highly specific to ATP and was stable to oligomycin. Growing the plants in the presence of 400 millimolar NaCl doubled the proton-translocating activity per milligram of membrane protein and otherwise modulated it in the following ways. First, the flat pH profile observed in non-salt-grown plants was transformed to one showing a peak at about pH 6.2. Second, the lag effect observed at low ATP concentration in curves relating SCN− accumulation to ATP concentration was abolished; the concave curvature shown in the double reciprocal plot was diminished. Third, sensitivity to K-2 (N-morpholino)ethanesulfonic acid stimulation was shown in salt-grown plants (about 40% stimulation) but was absent in non-salt-grown plants. Fourth, the KCl concentration bringing about 50% dissipation of ATP-dependent SCN− accumulation was 20 millimolar for salt-grown plants and 50 millimolar for non-salt-grown plants. Vanadate sensitivity was shown in both cases. No clear NO3− inhibition was observed. Images Fig. 3 PMID:16664942

  11. Electroporation of DC-3F cells is a dual process.

    PubMed

    Wegner, Lars H; Frey, Wolfgang; Silve, Aude

    2015-04-07

    Treatment of biological material by pulsed electric fields is a versatile technique in biotechnology and biomedicine used, for example, in delivering DNA into cells (transfection), ablation of tumors, and food processing. Field exposure is associated with a membrane permeability increase usually ascribed to electroporation, i.e., formation of aqueous membrane pores. Knowledge of the underlying processes at the membrane level is predominantly built on theoretical considerations and molecular dynamics (MD) simulations. However, experimental data needed to monitor these processes with sufficient temporal resolution are scarce. The whole-cell patch-clamp technique was employed to investigate the effect of millisecond pulsed electric fields on DC-3F cells. Cellular membrane permeabilization was monitored by a conductance increase. For the first time, to our knowledge, it could be established experimentally that electroporation consists of two clearly separate processes: a rapid membrane poration (transient electroporation) that occurs while the membrane is depolarized or hyperpolarized to voltages beyond so-called threshold potentials (here, +201 mV and -231 mV, respectively) and is reversible within ∼100 ms after the pulse, and a long-term, or persistent, permeabilization covering the whole voltage range. The latter prevailed after the pulse for at least 40 min, the postpulse time span tested experimentally. With mildly depolarizing or hyperpolarizing pulses just above threshold potentials, the two processes could be separated, since persistent (but not transient) permeabilization required repetitive pulse exposure. Conductance increased stepwise and gradually with depolarizing and hyperpolarizing pulses, respectively. Persistent permeabilization could also be elicited by single depolarizing/hyperpolarizing pulses of very high field strength. Experimental measurements of propidium iodide uptake provided evidence of a real membrane phenomenon, rather than a mere patch-clamp artifact. In short, the response of DC-3F cells to strong pulsed electric fields was separated into a transient electroporation and a persistent permeabilization. The latter dominates postpulse membrane properties but to date has not been addressed by electroporation theory or MD simulations. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Novel Tonoplast Transporters Identified Using a Proteomic Approach with Vacuoles Isolated from Cauliflower Buds1[W][OA

    PubMed Central

    Schmidt, Ulrike G.; Endler, Anne; Schelbert, Silvia; Brunner, Arco; Schnell, Magali; Neuhaus, H. Ekkehard; Marty-Mazars, Daniéle; Marty, Francis; Baginsky, Sacha; Martinoia, Enrico

    2007-01-01

    Young meristematic plant cells contain a large number of small vacuoles, while the largest part of the vacuome in mature cells is composed by a large central vacuole, occupying 80% to 90% of the cell volume. Thus far, only a limited number of vacuolar membrane proteins have been identified and characterized. The proteomic approach is a powerful tool to identify new vacuolar membrane proteins. To analyze vacuoles from growing tissues we isolated vacuoles from cauliflower (Brassica oleracea) buds, which are constituted by a large amount of small cells but also contain cells in expansion as well as fully expanded cells. Here we show that using purified cauliflower vacuoles and different extraction procedures such as saline, NaOH, acetone, and chloroform/methanol and analyzing the data against the Arabidopsis (Arabidopsis thaliana) database 102 cauliflower integral proteins and 214 peripheral proteins could be identified. The vacuolar pyrophosphatase was the most prominent protein. From the 102 identified proteins 45 proteins were already described. Nine of these, corresponding to 46% of peptides detected, are known vacuolar proteins. We identified 57 proteins (55.9%) containing at least one membrane spanning domain with unknown subcellular localization. A comparison of the newly identified proteins with expression profiles from in silico data revealed that most of them are highly expressed in young, developing tissues. To verify whether the newly identified proteins were indeed localized in the vacuole we constructed and expressed green fluorescence protein fusion proteins for five putative vacuolar membrane proteins exhibiting three to 11 transmembrane domains. Four of them, a putative organic cation transporter, a nodulin N21 family protein, a membrane protein of unknown function, and a senescence related membrane protein were localized in the vacuolar membrane, while a white-brown ATP-binding cassette transporter homolog was shown to reside in the plasma membrane. These results demonstrate that proteomic analysis of highly purified vacuoles from specific tissues allows the identification of new vacuolar proteins and provides an additional view of tonoplastic proteins. PMID:17660356

  13. Densely packed beta-structure at the protein-lipid interface of porin is revealed by high-resolution cryo-electron microscopy.

    PubMed

    Sass, H J; Büldt, G; Beckmann, E; Zemlin, F; van Heel, M; Zeitler, E; Rosenbusch, J P; Dorset, D L; Massalski, A

    1989-09-05

    Porin is an integral membrane protein that forms channels across the outer membrane of Escherichia coli. Electron microscopic studies of negatively stained two-dimensional porin crystals have shown three stain accumulations per porin trimer, revealing the locations of pores spanning the membrane. In this study, reconstituted porin lattices embedded in glucose were investigated using the low-dose technique on a cryo-electron microscope equipped with a helium-cooled superconducting objective lens. The specimen temperature was maintained at 5 K to yield an improved microscopic and specimen stability. Under these conditions, we obtained for the first time electron diffraction patterns from porin lattices to a resolution of 3.2 A and images showing optical diffraction up to a resolution of 4.9 A. Applying correlation averaging techniques to the digitized micrographs, we were able to reconstruct projected images of the porin trimer to a resolution of up to 3.5 A. In the final projection maps, amplitudes from electron diffraction and phases from these images were combined. The predominant feature is a high-density narrow band (about 6 A in thickness) that delineates the outer perimeter of the trimer. Since the molecule consists of almost exclusively beta-sheet structure, as revealed by spectroscopic data, we conclude that this band is a cylindrical beta-pleated sheet crossing the membrane nearly perpendicularly to its plane. Another intriguing finding is a low-density area (about 70 A2) situated in the centre of the trimer.

  14. Orthogonal functionalization of nanoporous substrates: control of 3D surface functionality.

    PubMed

    Lazzara, Thomas D; Kliesch, Torben-Tobias; Janshoff, Andreas; Steinem, Claudia

    2011-04-01

    Anodic aluminum oxide (AAO) membranes with aligned, cylindrical, nonintersecting pores were selectively functionalized in order to create dual-functionality substrates with different pore-rim and pore-interior surface functionalities, using silane chemistry. We used a two-step process involving an evaporated thin gold film to protect the underlying surface functionality of the pore rims. Subsequent treatment with oxygen plasma of the modified AAO membrane removed the unprotected organic functional groups, i.e., the pore-interior surface. After gold removal, the substrate became optically transparent, and displayed two distinct surface functionalities, one at the pore-rim surface and another at the pore-interior surface. We achieved a selective hydrophobic functionalization with dodecyl-trichlorosilane of either the pore rims or the pore interiors. The deposition of planar lipid membranes on the functionalized areas by addition of small unilamellar vesicles occurred in a predetermined fashion. Small unilamellar vesicles only ruptured upon contact with the hydrophobic substrate regions forming solid supported hybrid bilayers. In addition, pore-rim functionalization with dodecyl-trichlorosilane allowed the formation of pore-spanning hybrid lipid membranes as a result of giant unilamellar vesicle rupture. Confocal laser scanning microscopy was employed to identify the selective spatial localization of the adsorbed fluorescently labeled lipids. The corresponding increase in the AAO refractive index due to lipid adsorption on the hydrophobic regions was monitored by optical waveguide spectroscopy. This simple orthogonal functionalization route is a promising method to control the three-dimensional surface functionality of nanoporous films. © 2011 American Chemical Society

  15. Molecular dynamics simulations on PGLa using NMR orientational constraints.

    PubMed

    Sternberg, Ulrich; Witter, Raiker

    2015-11-01

    NMR data obtained by solid state NMR from anisotropic samples are used as orientational constraints in molecular dynamics simulations for determining the structure and dynamics of the PGLa peptide within a membrane environment. For the simulation the recently developed molecular dynamics with orientational constraints technique (MDOC) is used. This method introduces orientation dependent pseudo-forces into the COSMOS-NMR force field. Acting during a molecular dynamics simulation these forces drive molecular rotations, re-orientations and folding in such a way that the motional time-averages of the tensorial NMR properties are consistent with the experimentally measured NMR parameters. This MDOC strategy does not depend on the initial choice of atomic coordinates, and is in principle suitable for any flexible and mobile kind of molecule; and it is of course possible to account for flexible parts of peptides or their side-chains. MDOC has been applied to the antimicrobial peptide PGLa and a related dimer model. With these simulations it was possible to reproduce most NMR parameters within the experimental error bounds. The alignment, conformation and order parameters of the membrane-bound molecule and its dimer were directly derived with MDOC from the NMR data. Furthermore, this new approach yielded for the first time the distribution of segmental orientations with respect to the membrane and the order parameter tensors of the dimer systems. It was demonstrated the deuterium splittings measured at the peptide to lipid ratio of 1/50 are consistent with a membrane spanning orientation of the peptide.

  16. Membrane Disruption Mechanism of a Prion Peptide (106-126) Investigated by Atomic Force Microscopy, Raman and Electron Paramagnetic Resonance Spectroscopy.

    PubMed

    Pan, Jianjun; Sahoo, Prasana K; Dalzini, Annalisa; Hayati, Zahra; Aryal, Chinta M; Teng, Peng; Cai, Jianfeng; Rodriguez Gutierrez, Humberto; Song, Likai

    2017-05-18

    A fragment of the human prion protein spanning residues 106-126 (PrP106-126) recapitulates many essential properties of the disease-causing protein such as amyloidogenicity and cytotoxicity. PrP106-126 has an amphipathic characteristic that resembles many antimicrobial peptides (AMPs). Therefore, the toxic effect of PrP106-126 could arise from a direct association of monomeric peptides with the membrane matrix. Several experimental approaches are employed to scrutinize the impacts of monomeric PrP106-126 on model lipid membranes. Porous defects in planar bilayers are observed by using solution atomic force microscopy. Adding cholesterol does not impede defect formation. A force spectroscopy experiment shows that PrP106-126 reduces Young's modulus of planar lipid bilayers. We use Raman microspectroscopy to study the effect of PrP106-126 on lipid atomic vibrational dynamics. For phosphatidylcholine lipids, PrP106-126 disorders the intrachain conformation, while the interchain interaction is not altered; for phosphatidylethanolamine lipids, PrP106-126 increases the interchain interaction, while the intrachain conformational order remains similar. We explain the observed differences by considering different modes of peptide insertion. Finally, electron paramagnetic resonance spectroscopy shows that PrP106-126 progressively decreases the orientational order of lipid acyl chains in magnetically aligned bicelles. Together, our experimental data support the proposition that monomeric PrP106-126 can disrupt lipid membranes by using similar mechanisms found in AMPs.

  17. Membrane Disruption Mechanism of a Prion Peptide (106-126) Investigated by Atomic Force Microscopy, Raman and Electron Paramagnetic Resonance Spectroscopy

    PubMed Central

    Pan, Jianjun; Sahoo, Prasana K.; Dalzini, Annalisa; Hayati, Zahra; Aryal, Chinta M.; Teng, Peng; Cai, Jianfeng; Gutierrez, Humberto Rodriguez; Song, Likai

    2018-01-01

    A fragment of the human prion protein spanning residues 106-126 (PrP106-126) recapitulates many essential properties of the disease-causing protein such as amyloidogenicity and cytotoxicity. PrP106-126 has an amphipathic characteristic that resembles many antimicrobial peptides (AMPs). Therefore, the toxic effect of PrP106-126 could arise from a direct association of monomeric peptides with membrane matrix. Several experimental approaches are employed to scrutinize the impacts of monomeric PrP106-126 on model lipid membranes. Porous defects in planar bilayers are observed by using solution atomic force microscopy. Adding cholesterol does not impede defect formation. Force spectroscopy experiment shows that PrP106-126 reduces Young’s modulus of planar lipid bilayers. We use Raman microspectroscopy to study the effect of PrP106-126 on lipid vibrational dynamics. For phosphatidylcholine lipids, PrP106-126 disorders the intra-chain conformation, while the inter-chain interaction is not altered; for phosphatidylethanolamine lipids, PrP106-126 increases the inter-chain interaction, while the intra-chain conformational order remains similar. We explain the observed differences by considering different modes of peptide insertion. Finally, electron paramagnetic resonance spectroscopy shows that PrP106-126 progressively decreases the orientational order of lipid acyl chains in magnetically aligned bicelles. Together, our experimental data support the proposition that monomeric PrP106-126 can disrupt lipid membranes by using similar mechanisms found in AMPs. PMID:28459565

  18. Coupling of the nucleus and cytoplasm: role of the LINC complex.

    PubMed

    Crisp, Melissa; Liu, Qian; Roux, Kyle; Rattner, J B; Shanahan, Catherine; Burke, Brian; Stahl, Phillip D; Hodzic, Didier

    2006-01-02

    The nuclear envelope defines the barrier between the nucleus and cytoplasm and features inner and outer membranes separated by a perinuclear space (PNS). The inner nuclear membrane contains specific integral proteins that include Sun1 and Sun2. Although the outer nuclear membrane (ONM) is continuous with the endoplasmic reticulum, it is nevertheless enriched in several integral membrane proteins, including nesprin 2 Giant (nesp2G), an 800-kD protein featuring an NH(2)-terminal actin-binding domain. A recent study (Padmakumar, V.C., T. Libotte, W. Lu, H. Zaim, S. Abraham, A.A. Noegel, J. Gotzmann, R. Foisner, and I. Karakesisoglou. 2005. J. Cell Sci. 118:3419-3430) has shown that localization of nesp2G to the ONM is dependent upon an interaction with Sun1. In this study, we confirm and extend these results by demonstrating that both Sun1 and Sun2 contribute to nesp2G localization. Codepletion of both of these proteins in HeLa cells leads to the loss of ONM-associated nesp2G, as does overexpression of the Sun1 lumenal domain. Both treatments result in the expansion of the PNS. These data, together with those of Padmakumar et al. (2005), support a model in which Sun proteins tether nesprins in the ONM via interactions spanning the PNS. In this way, Sun proteins and nesprins form a complex that links the nucleoskeleton and cytoskeleton (the LINC complex).

  19. Nuclear localization of Klotho in brain: an anti-aging protein

    PubMed Central

    German, Dwight C.; Khobahy, Ida; Pastor, Johanne; Kuro-o, Makoto; Liu, Xinran

    2011-01-01

    Klotho is a putative age-suppressing gene whose over-expression in mice results in extension of life span. The klotho gene encodes a single-pass transmembrane protein whose extracellular domain is shed and released into blood, urine, and cerebrospinal fluid, potentially functioning as a humoral factor. The extracellular domain of Klotho has an activity that increases the expression of anti-oxidant enzymes and confers resistance to oxidative stress in cultured cells and in whole animals. The transmembrane form of the Klotho protein directly binds to multiple fibroblast growth factor receptors and modifies their ligand affinity and specificity. The purpose of the present study was to determine the precise cellular localization of Klotho in the mouse brain. Using light microscopic immunohistochemical methods, we found the highest levels of Klotho immunoreactivity in two brain regions: the choroid plexus, and cerebellar Purkinje cells. In the choroid plexus cells, Klotho was found not only on the plasma membrane but also in large amounts near the nuclear membrane. Likewise, in the Purkinje cell Klotho was found throughout the cell including dendrites, axon and soma with large amounts near the nuclear membrane. Using immunoelectron microscopy, we found Klotho in the cell membrane, but the highest concentration was localized in the peripheral portion of the nucleus and the nucleolus in both cell types. This new finding suggests that in addition to Klotho being secreted from cells in brain, it also has a nuclear function. PMID:22245317

  20. The Topology Prediction of Membrane Proteins: A Web-Based Tutorial.

    PubMed

    Kandemir-Cavas, Cagin; Cavas, Levent; Alyuruk, Hakan

    2018-06-01

    There is a great need for development of educational materials on the transfer of current bioinformatics knowledge to undergraduate students in bioscience departments. In this study, it is aimed to prepare an example in silico laboratory tutorial on the topology prediction of membrane proteins by bioinformatics tools. This laboratory tutorial is prepared for biochemistry lessons at bioscience departments (biology, chemistry, biochemistry, molecular biology and genetics, and faculty of medicine). The tutorial is intended for students who have not taken a bioinformatics course yet or already have taken a course as an introduction to bioinformatics. The tutorial is based on step-by-step explanations with illustrations. It can be applied under supervision of an instructor in the lessons, or it can be used as a self-study guide by students. In the tutorial, membrane-spanning regions and α-helices of membrane proteins were predicted by internet-based bioinformatics tools. According to the results achieved from internet-based bioinformatics tools, the algorithms and parameters used were effective on the accuracy of prediction. The importance of this laboratory tutorial lies on the facts that it provides an introduction to the bioinformatics and that it also demonstrates an in silico laboratory application to the students at natural sciences. The presented example education material is applicable easily at all departments that have internet connection. This study presents an alternative education material to the students in biochemistry laboratories in addition to classical laboratory experiments.

  1. Indicators of suboptimal performance embedded in the Wechsler Memory Scale-Fourth Edition (WMS-IV).

    PubMed

    Bouman, Zita; Hendriks, Marc P H; Schmand, Ben A; Kessels, Roy P C; Aldenkamp, Albert P

    2016-01-01

    Recognition and visual working memory tasks from the Wechsler Memory Scale-Fourth Edition (WMS-IV) have previously been documented as useful indicators for suboptimal performance. The present study examined the clinical utility of the Dutch version of the WMS-IV (WMS-IV-NL) for the identification of suboptimal performance using an analogue study design. The patient group consisted of 59 mixed-etiology patients; the experimental malingerers were 50 healthy individuals who were asked to simulate cognitive impairment as a result of a traumatic brain injury; the last group consisted of 50 healthy controls who were instructed to put forth full effort. Experimental malingerers performed significantly lower on all WMS-IV-NL tasks than did the patients and healthy controls. A binary logistic regression analysis was performed on the experimental malingerers and the patients. The first model contained the visual working memory subtests (Spatial Addition and Symbol Span) and the recognition tasks of the following subtests: Logical Memory, Verbal Paired Associates, Designs, Visual Reproduction. The results showed an overall classification rate of 78.4%, and only Spatial Addition explained a significant amount of variation (p < .001). Subsequent logistic regression analysis and receiver operating characteristic (ROC) analysis supported the discriminatory power of the subtest Spatial Addition. A scaled score cutoff of <4 produced 93% specificity and 52% sensitivity for detection of suboptimal performance. The WMS-IV-NL Spatial Addition subtest may provide clinically useful information for the detection of suboptimal performance.

  2. Millimeter-wave sensor based on a λ/2-line resonator for identification and dielectric characterization of non-ionic surfactants

    PubMed Central

    Rodilla, H.; Kim, A. A.; Jeffries, G. D. M.; Vukusic, J.; Jesorka, A.; Stake, J.

    2016-01-01

    Studies of biological and artificial membrane systems, such as niosomes, currently rely on the use of fluorescent tags, which can influence the system under investigation. For this reason, the development of label-free, non-invasive detection techniques is of great interest. We demonstrate an open-volume label-free millimeter-wave sensing platform based on a coplanar waveguide, developed for identification and characterization of niosome constituents. A design based on a λ/2-line resonator was used and on-wafer measurements of transmission and reflection parameters were performed up to 110 GHz. Our sensor was able to clearly distinguish between common niosome constituents, non-ionic surfactants Tween 20 and Span 80, measuring a resonance shift of 3 GHz between them. The complex permittivities of the molecular compounds have been extracted. Our results indicate insignificant frequency dependence in the investigated frequency range (3 GHz – 110 GHz). Values of permittivity around 3.0 + 0.7i and 2.2 + 0.4i were obtained for Tween 20 and Span 80, respectively. PMID:26786983

  3. Millimeter-wave sensor based on a λ/2-line resonator for identification and dielectric characterization of non-ionic surfactants.

    PubMed

    Rodilla, H; Kim, A A; Jeffries, G D M; Vukusic, J; Jesorka, A; Stake, J

    2016-01-20

    Studies of biological and artificial membrane systems, such as niosomes, currently rely on the use of fluorescent tags, which can influence the system under investigation. For this reason, the development of label-free, non-invasive detection techniques is of great interest. We demonstrate an open-volume label-free millimeter-wave sensing platform based on a coplanar waveguide, developed for identification and characterization of niosome constituents. A design based on a λ/2-line resonator was used and on-wafer measurements of transmission and reflection parameters were performed up to 110 GHz. Our sensor was able to clearly distinguish between common niosome constituents, non-ionic surfactants Tween 20 and Span 80, measuring a resonance shift of 3 GHz between them. The complex permittivities of the molecular compounds have been extracted. Our results indicate insignificant frequency dependence in the investigated frequency range (3 GHz - 110 GHz). Values of permittivity around 3.0 + 0.7i and 2.2 + 0.4i were obtained for Tween 20 and Span 80, respectively.

  4. Saccharomyces cerevisiae YOR071C encodes the high affinity nicotinamide riboside transporter Nrt1.

    PubMed

    Belenky, Peter A; Moga, Tiberiu G; Brenner, Charles

    2008-03-28

    NAD(+) is an essential coenzyme for hydride transfer enzymes and a substrate of sirtuins and other NAD(+)-consuming enzymes. Nicotinamide riboside is a recently discovered eukaryotic NAD(+) precursor converted to NAD(+) via the nicotinamide riboside kinase pathway and by nucleosidase activity and nicotinamide salvage. Nicotinamide riboside supplementation of yeast extends replicative life span on high glucose medium. The molecular basis for nicotinamide riboside uptake was unknown in any eukaryote. Here, we show that deletion of a single gene, YOR071C, abrogates nicotinamide riboside uptake without altering nicotinic acid or nicotinamide import. The gene, which is negatively regulated by Sum1, Hst1, and Rfm1, fully restores nicotinamide riboside import and utilization when resupplied to mutant yeast cells. The encoded polypeptide, Nrt1, is a predicted deca-spanning membrane protein related to the thiamine transporter, which functions as a pH-dependent facilitator with a K(m) for nicotinamide riboside of 22 microm. Nrt1-related molecules are conserved in particular fungi, suggesting a similar basis for nicotinamide riboside uptake.

  5. Evidence of Distinct Channel Conformations and Substrate Binding Affinities for the Mitochondrial Outer Membrane Protein Translocase Pore Tom40*

    PubMed Central

    Kuszak, Adam J.; Jacobs, Daniel; Gurnev, Philip A.; Shiota, Takuya; Louis, John M.; Lithgow, Trevor; Bezrukov, Sergey M.; Rostovtseva, Tatiana K.; Buchanan, Susan K.

    2015-01-01

    Nearly all mitochondrial proteins are coded by the nuclear genome and must be transported into mitochondria by the translocase of the outer membrane complex. Tom40 is the central subunit of the translocase complex and forms a pore in the mitochondrial outer membrane. To date, the mechanism it utilizes for protein transport remains unclear. Tom40 is predicted to comprise a membrane-spanning β-barrel domain with conserved α-helical domains at both the N and C termini. To investigate Tom40 function, including the role of the N- and C-terminal domains, recombinant forms of the Tom40 protein from the yeast Candida glabrata, and truncated constructs lacking the N- and/or C-terminal domains, were functionally characterized in planar lipid membranes. Our results demonstrate that each of these Tom40 constructs exhibits at least four distinct conductive levels and that full-length and truncated Tom40 constructs specifically interact with a presequence peptide in a concentration- and voltage-dependent manner. Therefore, neither the first 51 amino acids of the N terminus nor the last 13 amino acids of the C terminus are required for Tom40 channel formation or for the interaction with a presequence peptide. Unexpectedly, substrate binding affinity was dependent upon the Tom40 state corresponding to a particular conductive level. A model where two Tom40 pores act in concert as a dimeric protein complex best accounts for the observed biochemical and electrophysiological data. These results provide the first evidence for structurally distinct Tom40 conformations playing a role in substrate recognition and therefore in transport function. PMID:26336107

  6. New insights into the targeting of a subset of tail-anchored proteins to the outer mitochondrial membrane

    PubMed Central

    Marty, Naomi J.; Teresinski, Howard J.; Hwang, Yeen Ting; Clendening, Eric A.; Gidda, Satinder K.; Sliwinska, Elwira; Zhang, Daiyuan; Miernyk, Ján A.; Brito, Glauber C.; Andrews, David W.; Dyer, John M.; Mullen, Robert T.

    2014-01-01

    Tail-anchored (TA) proteins are a unique class of functionally diverse membrane proteins defined by their single C-terminal membrane-spanning domain and their ability to insert post-translationally into specific organelles with an Ncytoplasm-Corganelle interior orientation. The molecular mechanisms by which TA proteins are sorted to the proper organelles are not well-understood. Herein we present results indicating that a dibasic targeting motif (i.e., -R-R/K/H-X{X≠E}) identified previously in the C terminus of the mitochondrial isoform of the TA protein cytochrome b5, also exists in many other A. thaliana outer mitochondrial membrane (OMM)-TA proteins. This motif is conspicuously absent, however, in all but one of the TA protein subunits of the translocon at the outer membrane of mitochondria (TOM), suggesting that these two groups of proteins utilize distinct biogenetic pathways. Consistent with this premise, we show that the TA sequences of the dibasic-containing proteins are both necessary and sufficient for targeting to mitochondria, and are interchangeable, while the TA regions of TOM proteins lacking a dibasic motif are necessary, but not sufficient for localization, and cannot be functionally exchanged. We also present results from a comprehensive mutational analysis of the dibasic motif and surrounding sequences that not only greatly expands the functional definition and context-dependent properties of this targeting signal, but also led to the identification of other novel putative OMM-TA proteins. Collectively, these results provide important insight to the complexity of the targeting pathways involved in the biogenesis of OMM-TA proteins and help define a consensus targeting motif that is utilized by at least a subset of these proteins. PMID:25237314

  7. Allantoin transport protein, PucI, from Bacillus subtilis: evolutionary relationships, amplified expression, activity and specificity

    PubMed Central

    Ma, Pikyee; Patching, Simon G.; Ivanova, Ekaterina; Baldwin, Jocelyn M.; Sharples, David; Baldwin, Stephen A.

    2016-01-01

    This work reports the evolutionary relationships, amplified expression, functional characterization and purification of the putative allantoin transport protein, PucI, from Bacillus subtilis. Sequence alignments and phylogenetic analysis confirmed close evolutionary relationships between PucI and membrane proteins of the nucleobase-cation-symport-1 family of secondary active transporters. These include the sodium-coupled hydantoin transport protein, Mhp1, from Microbacterium liquefaciens, and related proteins from bacteria, fungi and plants. Membrane topology predictions for PucI were consistent with 12 putative transmembrane-spanning α-helices with both N- and C-terminal ends at the cytoplasmic side of the membrane. The pucI gene was cloned into the IPTG-inducible plasmid pTTQ18 upstream from an in-frame hexahistidine tag and conditions determined for optimal amplified expression of the PucI(His6) protein in Escherichia coli to a level of about 5 % in inner membranes. Initial rates of inducible PucI-mediated uptake of 14C-allantoin into energized E. coli whole cells conformed to Michaelis–Menten kinetics with an apparent affinity (K mapp) of 24 ± 3 μM, therefore confirming that PucI is a medium-affinity transporter of allantoin. Dependence of allantoin transport on sodium was not apparent. Competitive uptake experiments showed that PucI recognizes some additional hydantoin compounds, including hydantoin itself, and to a lesser extent a range of nucleobases and nucleosides. PucI(His6) was solubilized from inner membranes using n-dodecyl-β-d-maltoside and purified. The isolated protein contained a substantial proportion of α-helix secondary structure, consistent with the predictions, and a 3D model was therefore constructed on a template of the Mhp1 structure, which aided localization of the potential ligand binding site in PucI. PMID:26967546

  8. Val-->Ala mutations selectively alter helix-helix packing in the transmembrane segment of phage M13 coat protein.

    PubMed Central

    Deber, C M; Khan, A R; Li, Z; Joensson, C; Glibowicka, M; Wang, J

    1993-01-01

    Val-->Ala mutations within the effective transmembrane segment of a model single-spanning membrane protein, the 50-residue major coat (gene VIII) protein of bacteriophage M13, are shown to have sequence-dependent impacts on stabilization of membrane-embedded helical dimeric structures. Randomized mutagenesis performed on the coat protein hydrophobic segment 21-39 (YIGYAWAMV-VVIVGATIGI) produced a library of viable mutants which included those in which each of the four valine residues was replaced by an alanine residue. Significant variations found among these Val-->Ala mutants in the relative populations and thermal stabilities of monomeric and dimeric helical species observed on SDS/PAGE, and in the range of their alpha-helix-->beta-sheet transition temperatures confirmed that intramembranous valine residues are not simply universal contributors to membrane anchoring. Additional analyses of (i) nonmutatable sites in the mutant protein library, (ii) the properties of the double mutant V29A-V31A obtained by recycling mutant V31A DNA through mutagenesis procedures, and (iii) energy-minimized helical dimer structures of wild-type and mutant V31A transmembrane regions indicated that the transmembrane hydrophobic core helix of the M13 coat protein can be partitioned into alternating pairs of potential protein-interactive residues (V30, V31; G34, A35; G38, I39) and membrane-interactive residues (M28, V29; I32, V33; T36, I37). The overall results consitute an experimental approach to categorizing the distinctive contributions to structure of the residues comprising a protein-protein packing interface vs. those facing lipid and confirm the sequence-dependent capacity of specific residues within the transmembrane domain to modulate protein-protein interactions which underlie regulatory events in membrane proteins. Images Fig. 2 Fig. 4 PMID:8265602

  9. Val-->Ala mutations selectively alter helix-helix packing in the transmembrane segment of phage M13 coat protein.

    PubMed

    Deber, C M; Khan, A R; Li, Z; Joensson, C; Glibowicka, M; Wang, J

    1993-12-15

    Val-->Ala mutations within the effective transmembrane segment of a model single-spanning membrane protein, the 50-residue major coat (gene VIII) protein of bacteriophage M13, are shown to have sequence-dependent impacts on stabilization of membrane-embedded helical dimeric structures. Randomized mutagenesis performed on the coat protein hydrophobic segment 21-39 (YIGYAWAMV-VVIVGATIGI) produced a library of viable mutants which included those in which each of the four valine residues was replaced by an alanine residue. Significant variations found among these Val-->Ala mutants in the relative populations and thermal stabilities of monomeric and dimeric helical species observed on SDS/PAGE, and in the range of their alpha-helix-->beta-sheet transition temperatures confirmed that intramembranous valine residues are not simply universal contributors to membrane anchoring. Additional analyses of (i) nonmutatable sites in the mutant protein library, (ii) the properties of the double mutant V29A-V31A obtained by recycling mutant V31A DNA through mutagenesis procedures, and (iii) energy-minimized helical dimer structures of wild-type and mutant V31A transmembrane regions indicated that the transmembrane hydrophobic core helix of the M13 coat protein can be partitioned into alternating pairs of potential protein-interactive residues (V30, V31; G34, A35; G38, I39) and membrane-interactive residues (M28, V29; I32, V33; T36, I37). The overall results consitute an experimental approach to categorizing the distinctive contributions to structure of the residues comprising a protein-protein packing interface vs. those facing lipid and confirm the sequence-dependent capacity of specific residues within the transmembrane domain to modulate protein-protein interactions which underlie regulatory events in membrane proteins.

  10. From viscous to elastic sheets: Dynamics of smectic freely floating films

    NASA Astrophysics Data System (ADS)

    Stannarius, Ralf; Harth, Kirsten; May, Kathrin; Trittel, Torsten

    The dynamics of droplets and bubbles, particularly on microscopic scales, are of considerable importance in biological, environmental, and technical contexts. Soap bubbles, vesicles and components of biological cells are well known examples where the dynamic behavior is significantly influenced by the properties of thin membranes enclosed by fluids. Two-dimensional membrane motions couple to 3D shape transformations. Smectic liquid crystal mesogens form phases with internal molecular layer order. Free-standing films are easily prepared from this class of materials. They represent simple model systems for membrane dynamics and pattern formation in a quasi two-dimensional fluid. These films are usually spanned over a frame, and they can be inflated to bubbles on a support. Recently, closed microscopic shells of liquid-crystalline materials suspended in an outer fluid without contact to a solid support have been introduced and studied. With a special technique, we prepare millimetre to centimetre sized smectic bubbles in air (similar to soap bubbles). Their distinct feature is the fact that any change of surface area is coupled to a restructuring of the layers in the membrane. High-speed cameras are used to observe the shape transformations of freely floating bubbles from a distorted initial shape to a sphere. Bursting dynamics are recorded and compared to models. Most strikingly, an unpreceded cross-over from inviscid to viscous and elastic behaviour with increasing thickness of the membrane is found: Whereas thin bubbles behave almost like inviscid fluids, the relaxation dynamics slows down considerably for larger film thicknesses. Surface wrinkling and formation of extrusions are observed. We will present a characterization and an expalantion for the above phenomena.

  11. A Bacillus subtilis Gene Induced by Cold Shock Encodes a Membrane Phospholipid Desaturase

    PubMed Central

    Aguilar, Pablo S.; Cronan, John E.; de Mendoza, Diego

    1998-01-01

    Bacillus subtilis grown at 37°C synthesizes saturated fatty acids with only traces of unsaturated fatty acids (UFAs). However, when cultures growing at 37°C are transferred to 20°C, UFA synthesis is induced. We report the identification and characterization of the gene encoding the fatty acid desaturase of B. subtilis. This gene, called des, was isolated by complementation of Escherichia coli strains with mutations in either of two different genes of UFA synthesis. The des gene encodes a polypeptide of 352 amino acid residues containing the three conserved histidine cluster motifs and two putative membrane-spanning domains characteristic of the membrane-bound desaturases of plants and cyanobacteria. Expression of the des gene in E. coli resulted in desaturation of palmitic acid moieties of the membrane phospholipids to give the novel mono-UFA cis-5-hexadecenoic acid, indicating that the B. subtilis des gene product is a Δ5 acyl-lipid desaturase. The des gene was disrupted, and the resulting null mutant strains were unable to synthesize UFAs upon a shift to low growth temperatures. The des null mutant strain grew as well as its congenic parent at 20 or 37°C but showed severely reduced survival during stationary phase. Analysis of operon fusions in which the des promoter directed the synthesis of a lacZ reporter gene showed that des expression is repressed at 37°C, but a shift of cultures from 37 to 20°C resulted in a 10- to 15-fold increase in transcription. This is the first report of a membrane phospholipid desaturase in a nonphotosynthetic organism and the first direct evidence for cold induction of a desaturase. PMID:9555904

  12. The cytosolic domain of T-cell receptor ζ associates with membranes in a dynamic equilibrium and deeply penetrates the bilayer.

    PubMed

    Zimmermann, Kerstin; Eells, Rebecca; Heinrich, Frank; Rintoul, Stefanie; Josey, Brian; Shekhar, Prabhanshu; Lösche, Mathias; Stern, Lawrence J

    2017-10-27

    Interactions between lipid bilayers and the membrane-proximal regions of membrane-associated proteins play important roles in regulating membrane protein structure and function. The T-cell antigen receptor is an assembly of eight single-pass membrane-spanning subunits on the surface of T lymphocytes that initiates cytosolic signaling cascades upon binding antigens presented by MHC-family proteins on antigen-presenting cells. Its ζ-subunit contains multiple cytosolic immunoreceptor tyrosine-based activation motifs involved in signal transduction, and this subunit by itself is sufficient to couple extracellular stimuli to intracellular signaling events. Interactions of the cytosolic domain of ζ (ζ cyt ) with acidic lipids have been implicated in the initiation and regulation of transmembrane signaling. ζ cyt is unstructured in solution. Interaction with acidic phospholipids induces structure, but its disposition when bound to lipid bilayers is controversial. Here, using surface plasmon resonance and neutron reflection, we characterized the interaction of ζ cyt with planar lipid bilayers containing mixtures of acidic and neutral lipids. We observed two binding modes of ζ cyt to the bilayers in dynamic equilibrium: one in which ζ cyt is peripherally associated with lipid headgroups and one in which it penetrates deeply into the bilayer. Such an equilibrium between the peripherally bound and embedded forms of ζ cyt apparently controls accessibility of the immunoreceptor tyrosine-based activation signal transduction pathway. Our results reconcile conflicting findings of the ζ structure reported in previous studies and provide a framework for understanding how lipid interactions regulate motifs to tyrosine kinases and may regulate the T-cell antigen receptor biological activities for this cell-surface receptor system.

  13. The VPH1 gene encodes a 95-kDa integral membrane polypeptide required for in vivo assembly and activity of the yeast vacuolar H(+)-ATPase.

    PubMed

    Manolson, M F; Proteau, D; Preston, R A; Stenbit, A; Roberts, B T; Hoyt, M A; Preuss, D; Mulholland, J; Botstein, D; Jones, E W

    1992-07-15

    Yeast vacuolar acidification-defective (vph) mutants were identified using the pH-sensitive fluorescence of 6-carboxyfluorescein diacetate (Preston, R. A., Murphy, R. F., and Jones, E. W. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 7027-7031). Vacuoles purified from yeast bearing the vph1-1 mutation had no detectable bafilomycin-sensitive ATPase activity or ATP-dependent proton pumping. The peripherally bound nucleotide-binding subunits of the vacuolar H(+)-ATPase (60 and 69 kDa) were no longer associated with vacuolar membranes yet were present in wild type levels in yeast whole cell extracts. The VPH1 gene was cloned by complementation of the vph1-1 mutation and independently cloned by screening a lambda gt11 expression library with antibodies directed against a 95-kDa vacuolar integral membrane protein. Deletion disruption of the VPH1 gene revealed that the VPH1 gene is not essential for viability but is required for vacuolar H(+)-ATPase assembly and vacuolar acidification. VPH1 encodes a predicted polypeptide of 840 amino acid residues (molecular mass 95.6 kDa) and contains six putative membrane-spanning regions. Cell fractionation and immunodetection demonstrate that Vph1p is a vacuolar integral membrane protein that co-purifies with vacuolar H(+)-ATPase activity. Multiple sequence alignments show extensive homology over the entire lengths of the following four polypeptides: Vph1p, the 116-kDa polypeptide of the rat clathrin-coated vesicles/synaptic vesicle proton pump, the predicted polypeptide encoded by the yeast gene STV1 (Similar To VPH1, identified as an open reading frame next to the BUB2 gene), and the TJ6 mouse immune suppressor factor.

  14. Confounding effects of oxygen and temperature on the TEX86 signature of marine Thaumarchaeota

    PubMed Central

    Qin, Wei; Carlson, Laura T.; Armbrust, E. Virginia; Devol, Allan H.; Moffett, James W.; Stahl, David A.; Ingalls, Anitra E.

    2015-01-01

    Marine ammonia-oxidizing archaea (AOA) are among the most abundant of marine microorganisms, spanning nearly the entire water column of diverse oceanic provinces. Historical patterns of abundance are preserved in sediments in the form of their distinctive glycerol dibiphytanyl glycerol tetraether (GDGT) membrane lipids. The correlation between the composition of GDGTs in surface sediment and the overlying annual average sea surface temperature forms the basis for a paleotemperature proxy (TEX86) that is used to reconstruct surface ocean temperature as far back as the Middle Jurassic. However, mounting evidence suggests that factors other than temperature could also play an important role in determining GDGT distributions. We here use a study set of four marine AOA isolates to demonstrate that these closely related strains generate different TEX86–temperature relationships and that oxygen (O2) concentration is at least as important as temperature in controlling TEX86 values in culture. All of the four strains characterized showed a unique membrane compositional response to temperature, with TEX86-inferred temperatures varying as much as 12 °C from the incubation temperatures. In addition, both linear and nonlinear TEX86–temperature relationships were characteristic of individual strains. Increasing relative abundance of GDGT-2 and GDGT-3 with increasing O2 limitation, at the expense of GDGT-1, led to significant elevations in TEX86-derived temperature. Although the adaptive significance of GDGT compositional changes in response to both temperature and O2 is unclear, this observation necessitates a reassessment of archaeal lipid-based paleotemperature proxies, particularly in records that span low-oxygen events or underlie oxygen minimum zones. PMID:26283385

  15. Voltage-Gated Proton Channels: Molecular Biology, Physiology, and Pathophysiology of the HV Family

    PubMed Central

    2013-01-01

    Voltage-gated proton channels (HV) are unique, in part because the ion they conduct is unique. HV channels are perfectly selective for protons and have a very small unitary conductance, both arguably manifestations of the extremely low H+ concentration in physiological solutions. They open with membrane depolarization, but their voltage dependence is strongly regulated by the pH gradient across the membrane (ΔpH), with the result that in most species they normally conduct only outward current. The HV channel protein is strikingly similar to the voltage-sensing domain (VSD, the first four membrane-spanning segments) of voltage-gated K+ and Na+ channels. In higher species, HV channels exist as dimers in which each protomer has its own conduction pathway, yet gating is cooperative. HV channels are phylogenetically diverse, distributed from humans to unicellular marine life, and perhaps even plants. Correspondingly, HV functions vary widely as well, from promoting calcification in coccolithophores and triggering bioluminescent flashes in dinoflagellates to facilitating killing bacteria, airway pH regulation, basophil histamine release, sperm maturation, and B lymphocyte responses in humans. Recent evidence that hHV1 may exacerbate breast cancer metastasis and cerebral damage from ischemic stroke highlights the rapidly expanding recognition of the clinical importance of hHV1. PMID:23589829

  16. Comparative Proteomic Analysis of Human Liver Tissue and Isolated Hepatocytes with a Focus on Proteins Determining Drug Exposure.

    PubMed

    Vildhede, Anna; Wiśniewski, Jacek R; Norén, Agneta; Karlgren, Maria; Artursson, Per

    2015-08-07

    Freshly isolated human hepatocytes are considered the gold standard for in vitro studies of liver functions, including drug transport, metabolism, and toxicity. For accurate predictions of the in vivo outcome, the isolated hepatocytes should reflect the phenotype of their in vivo counterpart, i.e., hepatocytes in human liver tissue. Here, we quantified and compared the membrane proteomes of freshly isolated hepatocytes and human liver tissue using a label-free shotgun proteomics approach. A total of 5144 unique proteins were identified, spanning over 6 orders of magnitude in abundance. There was a good global correlation in protein abundance. However, the expression of many plasma membrane proteins was lower in the isolated hepatocytes than in the liver tissue. This included transport proteins that determine hepatocyte exposure to many drugs and endogenous compounds. Pathway analysis of the differentially expressed proteins confirmed that hepatocytes are exposed to oxidative stress during isolation and suggested that plasma membrane proteins were degraded via the protein ubiquitination pathway. Finally, using pitavastatin as an example, we show how protein quantifications can improve in vitro predictions of in vivo liver clearance. We tentatively conclude that our data set will be a useful resource for improved hepatocyte predictions of the in vivo outcome.

  17. One-step preparation of superhydrophobic acrylonitrile-butadiene-styrene copolymer coating for ultrafast separation of water-in-oil emulsions.

    PubMed

    Deng, Wanshun; Long, Mengying; Zhou, Qiannan; Wen, Ni; Deng, Wenli

    2018-02-01

    Superhydrophobic membranes with opposite wettability toward water and oil are able to separate water-in-oil emulsions. By constructing porous and hierarchal-structured superhydrophobic coating on filter paper, we hope a quick separation process could be achieved due to the acceleration of both demulsification and penetration process. Here, superhydrophobic coatings were prepared by simply spraying environmental and cost-effective acrylonitrile-butadiene-styrene copolymer (ABS) colloid in dichloromethane onto filter paper. The morphologies and wettability of the obtained coatings were carefully studied. Moreover, the separation performances in dealing with various surfactant-stabilized water-in-oil emulsions (SSWOE) were also investigated to verify our hypothesis. The morphologies of the ABS coatings varied with its weight concentration in dichloromethane and they changed from porous and plain surface into porous and hierarchal-structured surface. Besides, the hydrophobicity of the above coatings varied form hydrophobic to superhydrophobic. Moreover, the resulted superhydrophobic membranes show great separation capability in separating various span 80-stabilized water-in-oil emulsions with oil filtrate purities larger than 99.90% and huge penetration fluxes whose maximum is over 13,000L/(m 2 h). Thus, we envision that such membrane can be a practical candidate in dealing with water-in-oil emulsions to obtain pure oils. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Acylation-dependent protein export in Leishmania.

    PubMed

    Denny, P W; Gokool, S; Russell, D G; Field, M C; Smith, D F

    2000-04-14

    The surface of the protozoan parasite Leishmania is unusual in that it consists predominantly of glycosylphosphatidylinositol-anchored glycoconjugates and proteins. Additionally, a family of hydrophilic acylated surface proteins (HASPs) has been localized to the extracellular face of the plasma membrane in infective parasite stages. These surface polypeptides lack a recognizable endoplasmic reticulum secretory signal sequence, transmembrane spanning domain, or glycosylphosphatidylinositol-anchor consensus sequence, indicating that novel mechanisms are involved in their transport and localization. Here, we show that the N-terminal domain of HASPB contains primary structural information that directs both N-myristoylation and palmitoylation and is essential for correct localization of the protein to the plasma membrane. Furthermore, the N-terminal 18 amino acids of HASPB, encoding the dual acylation site, are sufficient to target the heterologous Aequorea victoria green fluorescent protein to the cell surface of Leishmania. Mutagenesis of the predicted acylated residues confirms that modification by both myristate and palmitate is required for correct trafficking. These data suggest that HASPB is a representative of a novel class of proteins whose translocation onto the surface of eukaryotic cells is dependent upon a "non-classical" pathway involving N-myristoylation/palmitoylation. Significantly, HASPB is also translocated on to the extracellular face of the plasma membrane of transfected mammalian cells, indicating that the export signal for HASPB is recognized by a higher eukaryotic export mechanism.

  19. Nanopores: A journey towards DNA sequencing

    PubMed Central

    Wanunu, Meni

    2013-01-01

    Much more than ever, nucleic acids are recognized as key building blocks in many of life's processes, and the science of studying these molecular wonders at the single-molecule level is thriving. A new method of doing so has been introduced in the mid 1990's. This method is exceedingly simple: a nanoscale pore that spans across an impermeable thin membrane is placed between two chambers that contain an electrolyte, and voltage is applied across the membrane using two electrodes. These conditions lead to a steady stream of ion flow across the pore. Nucleic acid molecules in solution can be driven through the pore, and structural features of the biomolecules are observed as measurable changes in the trans-membrane ion current. In essence, a nanopore is a high-throughput ion microscope and a single-molecule force apparatus. Nanopores are taking center stage as a tool that promises to read a DNA sequence, and this promise has resulted in overwhelming academic, industrial, and national interest. Regardless of the fate of future nanopore applications, in the process of this 16-year-long exploration, many studies have validated the indispensability of nanopores in the toolkit of single-molecule biophysics. This review surveys past and current studies related to nucleic acid biophysics, and will hopefully provoke a discussion of immediate and future prospects for the field. PMID:22658507

  20. The Dandy-Walker malformation. A review of 40 cases.

    PubMed

    Hirsch, J F; Pierre-Kahn, A; Renier, D; Sainte-Rose, C; Hoppe-Hirsch, E

    1984-09-01

    Forty cases of Dandy-Walker malformation referred to the Hôpital Necker Enfants-Malades between 1969 and 1982 have been reviewed. The incidence of the malformation in hydrocephalus was 2.4%. There was a slight, statistically insignificant, female prevalence. Hydrocephalus should not be included in the definition of the syndrome. In 80% of the cases, it was actually a post-natal complication of the malformation and most often developed within 3 months after birth. In 80% of the cases, a communication, although insufficient, was found between the dilated 4th ventricle and the subarachnoid space. Since this communication is probably established through the foramina of Luschka, the definition of the Dandy-Walker malformation should only include atresia of the foramen of Magendie. Associated brain and systemic malformations were numerous. Among facial anomalies, facial angiomas were found in 10% of our cases. The association of facial and cardiovascular anomalies favors the hypothesis that the onset of the malformation occurs between the formation and the migration of the cells of the neural crest (that is, between the 3rd and the 4th post-ovulatory week, earlier than previously thought). Except in selected patients, membrane excision has a high rate of failure and should be abandoned. Cyst-peritoneal shunting avoids the risk of an entrapped fourth ventricle and is presently the best surgical procedure. The overall mortality in this series was 12.5%. Intelligence quotients were over 80 in 60% of the patients. Other studies will be necessary to understand why the communication between the fourth ventricle and the subarachnoid spaces, sufficient in utero, usually becomes insufficient for a normal cerebrospinal fluid (CSF) circulation in the first months following birth. Two hypotheses are discussed: a change in CSF circulation, or bleeding in the dilated fourth ventricle during delivery.

  1. Long-term dose-response studies of inhaled or injected radionuclides. Biennial report, 1 October 1991--30 September 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boecker, B.B.; Muggenburg, B.A.; Miller, S.C.

    This report describes the scientific progress in, and current status of, life-span studies of the long-term health risks in Beagle dogs of chronic irradiation from internally deposited radionuclides or from an external source. The reporting period for this document is the 2-year period from October 1, 1991 through September 30, 1993. Studies that were initiated at three different laboratories (Inhalation Toxicology Research Institute, ITRI, University of Utah, and Argonne National Laboratory, ANL) are presented here because they are being completed at ITRI. All living dogs in the Utah-initiated studies were transferred to the ITRI facility for the remainder of theirmore » life-span observations and measurements in September 1987. This report is the fourth in a series of reports dealing with the current status and progress of both the Utah and ITRI studies. Other life-span studies involving dogs exposed to gamma radiation from an external source were initiated and conducted for many years at ANL. In 1991, the decision was made to discontinue the chronic irradiation of the remaining living dogs and to transfer all remaining dogs to ITRI for care, clinical observations, and pathological observations at death or euthanasia. This report provides the current status of these dogs. Status reports on the Utah and ITRI studies comprise most of this report. The ITRI-related section presents brief statements of project objectives, the general procedures used in these studies, and some study-specific features for each of the 19 studies being conducted with either beta- or alpha-emitting radionuclides. Dose- and effect-modifying factors being addressed in these studies include total dose, dose rate, LET, solubility, nonuniformity of dose, species, age, sex, health status, and mode of exposure. Recent additions to experimental protocols for studies in which dogs are still alive involve the collection and analysis of tumor tissues using currently available molecular biology techniques.« less

  2. The net effect: spanning diseases, crossing borders—highlights from the fourth triennial APCA conference and annual HPCA conference for palliative care

    PubMed Central

    Downing, J; Namisango, E; Kiyange, F; Luyirika, E; Gwyther, L; Enarson, S; Kampi, J; Sithole, Z; Kemigisha-Ssali, E; Masclee, M; Mukasa, I

    2013-01-01

    The African Palliative Care Association (APCA) jointly hosted its triennial palliative care conference for Africa with the Hospice and Palliative Care Association of South Africa (HPCA) on 17–20 September 2013 in Johannesburg, South Africa. At the heart of the conference stood a common commitment to see patient care improved across the continent. The theme for the conference, ‘The Net Effect: Spanning Diseases, Crossing Borders’, reflected this joint vision and the drive to remember the ‘net effect’ of our work in palliative care—that is, the ultimate impact of the care that we provide for our patients and their families across the disease and age spectrum and across the borders of African countries. The conference, held in Johannesburg, brought together 471 delegates from 34 countries. The key themes and messages from the conference are encapsulated in ten ‘C’s of commitment to political will and support at the highest levels of governance; engaging national, regional, and international bodies; collaboration; diversity; palliative care for children; planning for human resources and capacity building; palliative care integration at all levels; developing an evidence base for palliative care in Africa; using new technologies; and improved quality of care. Participants found the conference to be a forum that challenged their understanding of the topics presented, as well as enlightening in terms of applying best practice in their own context. Delegates found a renewed commitment and passion for palliative care and related health interventions for children and adults with life-limiting and life-threatening illnesses within the region. This conference highlighted many of the developments in palliative care in the region and served as a unique opportunity to bring people together and serve as a lynchpin for palliative care provision and development in Africa. The delegates were united in the fact that together we can ‘span diseases,’ ‘cross borders,’ and realise the ‘African Dream’ for palliative care. PMID:24222787

  3. Statistical analysis of electroconvection near an ion-selective membrane in the highly chaotic regime

    NASA Astrophysics Data System (ADS)

    Druzgalski, Clara; Mani, Ali

    2016-11-01

    We investigate electroconvection and its impact on ion transport in a model system comprised of an ion-selective membrane, an aqueous electrolyte, and an external electric field applied normal to the membrane. We develop a direct numerical simulation code to solve the governing Poisson-Nernst-Planck and Navier-Stokes equations in three dimensions using a specialized parallel numerical algorithm and sufficient resolution to capture the high frequency and high wavenumber physics. We show a comprehensive statistical analysis of the transport phenomena in the highly chaotic regime. Qualitative and quantitative comparisons of two-dimensional (2D) and 3D simulations include prediction of the mean concentration fields as well as the spectra of concentration, charge density, and velocity signals. Our analyses reveal a significant quantitative difference between 2D and 3D electroconvection. Furthermore, we show that high-intensity yet short-lived current density hot spots appear randomly on the membrane surface, contributing significantly to the mean current density. By examining cross correlations between current density on the membrane and other field quantities we explore the physical mechanisms leading to current hot spots. We also present analysis of transport fluxes in the context of ensemble-averaged equations. Our analysis reveals that in the highly chaotic regime the mixing layer (ML), which spans the majority of the domain extent, is governed by advective fluctuations. Furthermore, we show that in the ML the mean electromigration fluxes cancel out for positive and negative ions, indicating that the mean transport of total salt content within the ML can be represented via the electroneutral approximation. Finally, we present an assessment of the importance of different length scales in enhancing transport by computing the cross covariance of concentration and velocity fluctuations in the wavenumber space. Our analysis indicates that in the majority of the domain the large scales contribute most significantly to transport, while the effects of small scales become more appreciable in regions very near the membrane.

  4. Analysis of the variation in the determination of the shear modulus of the erythrocyte membrane: Effects of the constitutive law and membrane modeling

    PubMed Central

    Dimitrakopoulos, P.

    2013-01-01

    Despite research spanning several decades, the exact value of the shear modulus Gs of the erythrocyte membrane is still ambiguous, and a wealth of studies, using measurements based on micropipette aspirations, ektacytometry systems and other flow chambers, and optical tweezers as well as application of several models have found different average values in the range 2–10 µN/m. Our study shows that different methodologies have predicted the correct shear modulus for the specific membrane modeling employed, i.e. the variation in the shear modulus determination results from the specific membrane modeling. Available experimental findings from ektacytometry systems and optical tweezers suggest that the dynamics of the erythrocyte membrane is strain-hardening at both moderate and large deformations. Thus the erythrocyte shear modulus cannot be determined accurately using strain-softening models (such as the neo-Hookean and Evans laws) or strain-softening/strain-hardening models (such as the Yeoh law) which overestimate the erythrocyte shear modulus. According to our analysis, the only available strain-hardening constitutive law, the Skalak et al. law, is able to match well both deformation-shear rate data from ektacytometry and force-extension data from optical tweezers at moderate and large strains, using an average value of the shear modulus of Gs = 2.4–2.75 µN/m, i.e. very close to that found in the linear regime of deformations via force-extension data from optical tweezers, Gs = 2.5±0.4 µN/m. In addition, our analysis suggests that a standard deviation in Gs of 0.4–0.5 µN/m (owing to the inherent differences between erythrocytes within a large population) describes well the findings from optical tweezers at small and large strains as well as from micro-pipette aspirations. PMID:22680508

  5. How the pterosaur got its wings.

    PubMed

    Tokita, Masayoshi

    2015-11-01

    Throughout the evolutionary history of life, only three vertebrate lineages took to the air by acquiring a body plan suitable for powered flight: birds, bats, and pterosaurs. Because pterosaurs were the earliest vertebrate lineage capable of powered flight and included the largest volant animal in the history of the earth, understanding how they evolved their flight apparatus, the wing, is an important issue in evolutionary biology. Herein, I speculate on the potential basis of pterosaur wing evolution using recent advances in the developmental biology of flying and non-flying vertebrates. The most significant morphological features of pterosaur wings are: (i) a disproportionately elongated fourth finger, and (ii) a wing membrane called the brachiopatagium, which stretches from the posterior surface of the arm and elongated fourth finger to the anterior surface of the leg. At limb-forming stages of pterosaur embryos, the zone of polarizing activity (ZPA) cells, from which the fourth finger eventually differentiates, could up-regulate, restrict, and prolong expression of 5'-located Homeobox D (Hoxd) genes (e.g. Hoxd11, Hoxd12, and Hoxd13) around the ZPA through pterosaur-specific exploitation of sonic hedgehog (SHH) signalling. 5'Hoxd genes could then influence downstream bone morphogenetic protein (BMP) signalling to facilitate chondrocyte proliferation in long bones. Potential expression of Fgf10 and Tbx3 in the primordium of the brachiopatagium formed posterior to the forelimb bud might also facilitate elongation of the phalanges of the fourth finger. To establish the flight-adapted musculoskeletal morphology shared by all volant vertebrates, pterosaurs probably underwent regulatory changes in the expression of genes controlling forelimb and pectoral girdle musculoskeletal development (e.g. Tbx5), as well as certain changes in the mode of cell-cell interactions between muscular and connective tissues in the early phase of their evolution. Developmental data now accumulating for extant vertebrate taxa could be helpful in understanding the cellular and molecular mechanisms of body-plan evolution in extinct vertebrates as well as extant vertebrates with unique morphology whose embryonic materials are hard to obtain. © 2014 The Author. Biological Reviews © 2014 Cambridge Philosophical Society.

  6. A pressure-polishing set-up to fabricate patch pipettes that seal on virtually any membrane, yielding low access resistance and efficient intracellular perfusion.

    PubMed

    Benedusi, Mascia; Aquila, Marco; Milani, Alberto; Rispoli, Giorgio

    2011-11-01

    When performing whole-cell configuration recordings, it is important to minimize series resistance to reduce the time constant of charging the cell membrane capacitance and to reduce error in membrane potential control. To this end, an existing method was improved by widening the patch pipette shank through the calibrated combination of heat and air pressure. The heat was produced by passing current through a filament that was shaped appropriately to ensure a homogeneous heating of the pipette shank. Pressurized air was applied to the lumen of a pipette, pulled from a borosilicate glass microcap, via the pressure port of a modified commercial holder. The pipette reshaping was viewed on an LCD monitor connected to a contrast-intensified CCD camera and coupled to a modified bright-field stereomicroscope. By appropriately regulating the timing of air pressure and the application of heating, the pipette shank and, independently, the tip opening diameter were widened as desired. The methods illustrated here to fabricate and use the patch pipettes, using just one glass type, allowed the sealing of a wide variety of cell types isolated from different amphibian, reptilian, fish, and mammalian tissues as well as a variety of artificial membranes made with many different lipid mixtures. The access resistance yielded by pressure-polished pipettes was approximately one-fourth the size of the one attained with conventional pipettes; besides improving the electrical recordings, this minimized intracellular ion accumulation or depletion as well. Enlarged shank geometry allowed for fast intracellular perfusion as shown by fluorescence imaging, also via pulled quartz or plastic tubes, which could be inserted very close to the pipette tip.

  7. Fatty acids from membrane lipids become incorporated into lipid bodies during Myxococcus xanthus differentiation.

    PubMed

    Bhat, Swapna; Boynton, Tye O; Pham, Dan; Shimkets, Lawrence J

    2014-01-01

    Myxococcus xanthus responds to amino acid limitation by producing fruiting bodies containing dormant spores. During development, cells produce triacylglycerides in lipid bodies that become consumed during spore maturation. As the cells are starved to induce development, the production of triglycerides represents a counterintuitive metabolic switch. In this paper, lipid bodies were quantified in wild-type strain DK1622 and 33 developmental mutants at the cellular level by measuring the cross sectional area of the cell stained with the lipophilic dye Nile red. We provide five lines of evidence that triacylglycerides are derived from membrane phospholipids as cells shorten in length and then differentiate into myxospores. First, in wild type cells, lipid bodies appear early in development and their size increases concurrent with an 87% decline in membrane surface area. Second, developmental mutants blocked at different stages of shortening and differentiation accumulated lipid bodies proportionate with their cell length with a Pearson's correlation coefficient of 0.76. Third, peripheral rods, developing cells that do not produce lipid bodies, fail to shorten. Fourth, genes for fatty acid synthesis are down-regulated while genes for fatty acid degradation are up regulated. Finally, direct movement of fatty acids from membrane lipids in growing cells to lipid bodies in developing cells was observed by pulse labeling cells with palmitate. Recycling of lipids released by Programmed Cell Death appears not to be necessary for lipid body production as a fadL mutant was defective in fatty acid uptake but proficient in lipid body production. The lipid body regulon involves many developmental genes that are not specifically involved in fatty acid synthesis or degradation. MazF RNA interferase and its target, enhancer-binding protein Nla6, appear to negatively regulate cell shortening and TAG accumulation whereas most cell-cell signals activate these processes.

  8. The human dopamine transporter forms a tetramer in the plasma membrane: cross-linking of a cysteine in the fourth transmembrane segment is sensitive to cocaine analogs.

    PubMed

    Hastrup, Hanne; Sen, Namita; Javitch, Jonathan A

    2003-11-14

    Using cysteine cross-linking, we demonstrated previously that the dopamine transporter (DAT) is at least a homodimer, with the extracellular end of transmembrane segment (TM) 6 at a symmetrical dimer interface. We have now explored the possibility that DAT exists as a higher order oligomer in the plasma membrane. Cysteine cross-linking of wild type DAT resulted in bands on SDS-PAGE consistent with dimer, trimer, and tetramer, suggesting that DAT forms a tetramer in the plasma membrane. A cysteine-depleted DAT (CD-DAT) into which only Cys243 or Cys306 was reintroduced was cross-linked to dimer, suggesting that these endogenous cysteines in TM4 and TM6, respectively, were cross-linked at a symmetrical dimer interface. Reintroduction of both Cys243 and Cys306 into CD-DAT led to a pattern of cross-linking indistinguishable from that of wild type, with dimer, trimer, and tetramer bands. This indicated that the TM4 interface and the TM6 interface are distinct and further suggested that DAT may exist in the plasma membrane as a dimer of dimers, with two symmetrical homodimer interfaces. The cocaine analog MFZ 2-12 and other DAT inhibitors, including benztropine and mazindol, protected Cys243 against cross-linking. In contrast, two substrates of DAT, dopamine and tyramine, did not significantly impact cross-linking. We propose that the impairment of cross-linking produced by the inhibitors results from a conformational change at the TM4 interface, further demonstrating that these compounds are not neutral blockers but by themselves have effects on the structure of the transporter.

  9. Developmental Changes for the Hemolymph Metabolome of Silkworm (Bombyx moriL.)

    PubMed Central

    Zhou, Lihong; Li, Huihui; Hao, Fuhua; Li, Ning; Liu, Xin; Wang, Guoliang; Wang, Yulan; Tang, Huiru

    2015-01-01

    Silkworm (Bombyx mori) is a lepidopteran-holometabolic model organism. To understand its developmental biochemistry, we characterized the larval hemolymph metabonome from the third instar to prepupa stage using 1H NMR spectroscopy whilst hemolymph fatty acid composition using GC-FID/MS. We unambiguously assigned more than 60 metabolites, among which tyrosine-o-β-glucuronide, mesaconate, homocarnosine, and picolinate were reported for the first time from the silkworm hemolymph. Phosphorylcholine was the most abundant metabolite in all developmental stages with exception for the periods before the third and fourth molting. We also found obvious developmental dependence for the hemolymph metabonome involving multiple pathways including protein biosyntheses, glycolysis, TCA cycle, the metabolisms of choline amino acids, fatty acids, purines, and pyrimidines. Most hemolymph amino acids had two elevations during the feeding period of the fourth instar and prepupa stage. Trehalose was the major blood sugar before day 8 of the fifth instar, whereas glucose became the major blood sugar after spinning. C16:0, C18:0 and its unsaturated forms were dominant fatty acids in hemolymph. The developmental changes of hemolymph metabonome were associated with dietary nutrient intakes, biosyntheses of cell membrane, pigments, proteins, and energy metabolism. These findings offered essential biochemistry information in terms of the dynamic metabolic changes during silkworm development. PMID:25825269

  10. Developmental Changes for the Hemolymph Metabolome of Silkworm (Bombyx mori L.).

    PubMed

    Zhou, Lihong; Li, Huihui; Hao, Fuhua; Li, Ning; Liu, Xin; Wang, Guoliang; Wang, Yulan; Tang, Huiru

    2015-05-01

    Silkworm (Bombyx mori) is a lepidopteran-holometabolic model organism. To understand its developmental biochemistry, we characterized the larval hemolymph metabonome from the third instar to prepupa stage using (1)H NMR spectroscopy whilst hemolymph fatty acid composition using GC-FID/MS. We unambiguously assigned more than 60 metabolites, among which tyrosine-o-β-glucuronide, mesaconate, homocarnosine, and picolinate were reported for the first time from the silkworm hemolymph. Phosphorylcholine was the most abundant metabolite in all developmental stages with exception for the periods before the third and fourth molting. We also found obvious developmental dependence for the hemolymph metabonome involving multiple pathways including protein biosyntheses, glycolysis, TCA cycle, the metabolisms of choline amino acids, fatty acids, purines, and pyrimidines. Most hemolymph amino acids had two elevations during the feeding period of the fourth instar and prepupa stage. Trehalose was the major blood sugar before day 8 of the fifth instar, whereas glucose became the major blood sugar after spinning. C16:0, C18:0 and its unsaturated forms were dominant fatty acids in hemolymph. The developmental changes of hemolymph metabonome were associated with dietary nutrient intakes, biosyntheses of cell membrane, pigments, proteins, and energy metabolism. These findings offered essential biochemistry information in terms of the dynamic metabolic changes during silkworm development.

  11. Mechanisms underlying caloric restriction and life span regulation: implications for vascular aging

    PubMed Central

    Ungvari, Zoltan; Parrado-Fernandez, Cristina; Csiszar, Anna; de Cabo, Rafael

    2008-01-01

    This review focuses on the emerging evidence that attenuation of the production of reactive oxygen species (ROS) and inhibition of inflammatory pathways play a central role in the anti-aging cardiovascular effects of caloric restriction (CR). Particular emphasis is placed on the potential role of the plasma membrane redox system in CR-induced pathways responsible for sensing oxidative stress and increasing cellular oxidative stress resistance. We propose that CR increases bioavailability of NO, decreases vascular ROS generation, activates the Nrf2/ARE pathway inducing ROS detoxification systems, exerts anti-inflammatory effects and, thereby, suppresses initiation/progression of vascular disease that accompany aging. PMID:18340017

  12. GM1 and GM2 gangliosides: recent developments.

    PubMed

    Bisel, Blaine; Pavone, Francesco S; Calamai, Martino

    2014-03-01

    GM1 and GM2 gangliosides are important components of the cell membrane and play an integral role in cell signaling and metabolism. In this conceptual overview, we discuss recent developments in our understanding of the basic biological functions of GM1 and GM2 and their involvement in several diseases. In addition to a well-established spectrum of disorders known as gangliosidoses, such as Tay-Sachs disease, more and more evidence points at an involvement of GM1 in Alzheimer's and Parkinson's diseases. New emerging methodologies spanning from single-molecule imaging in vivo to simulations in silico have complemented standard studies based on ganglioside extraction.

  13. What Were They Thinking? Reducing Sunk-Cost Bias in a Life-Span Sample

    PubMed Central

    Strough, JoNell; Bruine de Bruin, Wändi; Parker, Andrew M.; Karns, Tara; Lemaster, Philip; Pichayayothin, Nipat; Delaney, Rebecca; Stoiko, Rachel

    2016-01-01

    We tested interventions to reduce “sunk-cost bias,” the tendency to continue investing in failing plans even when those plans have soured and are no longer rewarding. We showed members of a national U.S. life-span panel a hypothetical scenario about a failing plan that was halfway complete. Participants were randomly assigned to an intervention to focus on how to improve the situation, an intervention to focus on thoughts and feelings, or a no-intervention control group. First, we found that the thoughts and feelings intervention reduced sunk-cost bias in decisions about project completion, as compared to the improvement intervention and the no-intervention control. Second, older age was associated with greater willingness to cancel the failing plan across all three groups. Third, we found that introspection processes helped to explain the effectiveness of the interventions. Specifically, the larger reduction in sunk-cost bias as observed in the thoughts and feelings intervention (vs. the improvement intervention) was associated with suppression of future-oriented thoughts of eventual success, and with suppression of augmentations of the scenario that could make it seem reasonable to continue the plan. Fourth, we found that introspection processes were related to age differences in decisions. Older people were less likely to mention future-oriented thoughts of eventual success associated with greater willingness to continue the failing plan. We discuss factors to consider when designing interventions for reducing sunk-cost bias. PMID:27831712

  14. N-Acetylcysteine interacts with copper to generate hydrogen peroxide and selectively induce cancer cell death

    PubMed Central

    Zheng, Jie; Lou, Jessica R.; Zhang, Xiao-Xi; Benbrook, Doris M.; Hanigan, Marie H.; Lind, Stuart E.; Ding, Wei-Qun

    2013-01-01

    A variety of metal-binding compounds have been found to exert anti-cancer activity. We postulated that N-acetylcysteine (NAC), which is a membrane-permeable metal-binding compound, might have anti-cancer activity in the presence of metals. We found that NAC/Cu(II) significantly alters growth and induces apoptosis in human cancer lines, yet NAC/Zn(II) and NAC/Fe(III) do not. We further confirmed that this cytotoxicity of NAC/Cu(II) is attributed to reactive oxygen species (ROS). These findings indicate that the combination of Cu(II) and thiols generates cytotoxic ROS that induce apoptosis in cancer cells. They also indicate a fourth class of anti-neoplastic metal-binding compounds, the “ROS generator”. PMID:20667650

  15. The mitochondrial intermembrane loop region of rat carnitine palmitoyltransferase 1A is a major determinant of its malonyl-CoA sensitivity.

    PubMed

    Borthwick, Karen; Jackson, Vicky N; Price, Nigel T; Zammit, Victor A

    2006-11-03

    Carnitine palmitoyltransferase (CPT) 1A adopts a polytopic conformation within the mitochondrial outer membrane, having both the N- and C-terminal segments on the cytosolic aspect of the membrane and a loop region connecting the two transmembrane (TM) segments protruding into the inter membrane space. In this study we demonstrate that the loop exerts major effects on the sensitivity of the enzyme to its inhibitor, malonyl-CoA. Insertion of a 16-residue spacer between the C-terminal part of the loop sequence (i.e. between residues 100 and 101) and TM2 (which is predicted to start at residue 102) increased the sensitivity to malonyl-CoA inhibition of the resultant mutant protein by more than 10-fold. By contrast, the same insertion made between TM1 and the loop had no effects on the kinetic properties of the enzyme, indicating that effects on the catalytic C-terminal segment were specifically induced by loop-TM2 interactions. Enhanced sensitivity was also observed in all mutants in which the native TM2-loop pairing was disrupted either by making chimeras in which the loops and TM2 segments of CPT 1A and CPT 1B were exchanged or by deleting successive 9-residue segments from the loop sequence. The data suggest that the sequence spanning the loop-TM2 boundary determines the disposition of this TM in the membrane so as to alter the conformation of the C-terminal segment and thus affect its interaction with malonyl-CoA.

  16. Two endoplasmic reticulum (ER) membrane proteins that facilitate ER-to-Golgi transport of glycosylphosphatidylinositol-anchored proteins.

    PubMed

    Barz, W P; Walter, P

    1999-04-01

    Many eukaryotic cell surface proteins are anchored in the lipid bilayer through glycosylphosphatidylinositol (GPI). GPI anchors are covalently attached in the endoplasmic reticulum (ER). The modified proteins are then transported through the secretory pathway to the cell surface. We have identified two genes in Saccharomyces cerevisiae, LAG1 and a novel gene termed DGT1 (for "delayed GPI-anchored protein transport"), encoding structurally related proteins with multiple membrane-spanning domains. Both proteins are localized to the ER, as demonstrated by immunofluorescence microscopy. Deletion of either gene caused no detectable phenotype, whereas lag1Delta dgt1Delta cells displayed growth defects and a significant delay in ER-to-Golgi transport of GPI-anchored proteins, suggesting that LAG1 and DGT1 encode functionally redundant or overlapping proteins. The rate of GPI anchor attachment was not affected, nor was the transport rate of several non-GPI-anchored proteins. Consistent with a role of Lag1p and Dgt1p in GPI-anchored protein transport, lag1Delta dgt1Delta cells deposit abnormal, multilayered cell walls. Both proteins have significant sequence similarity to TRAM, a mammalian membrane protein thought to be involved in protein translocation across the ER membrane. In vivo translocation studies, however, did not detect any defects in protein translocation in lag1Delta dgt1Delta cells, suggesting that neither yeast gene plays a role in this process. Instead, we propose that Lag1p and Dgt1p facilitate efficient ER-to-Golgi transport of GPI-anchored proteins.

  17. Two Endoplasmic Reticulum (ER) Membrane Proteins That Facilitate ER-to-Golgi Transport of Glycosylphosphatidylinositol-anchored Proteins

    PubMed Central

    Barz, Wolfgang P.; Walter, Peter

    1999-01-01

    Many eukaryotic cell surface proteins are anchored in the lipid bilayer through glycosylphosphatidylinositol (GPI). GPI anchors are covalently attached in the endoplasmic reticulum (ER). The modified proteins are then transported through the secretory pathway to the cell surface. We have identified two genes in Saccharomyces cerevisiae, LAG1 and a novel gene termed DGT1 (for “delayed GPI-anchored protein transport”), encoding structurally related proteins with multiple membrane-spanning domains. Both proteins are localized to the ER, as demonstrated by immunofluorescence microscopy. Deletion of either gene caused no detectable phenotype, whereas lag1Δ dgt1Δ cells displayed growth defects and a significant delay in ER-to-Golgi transport of GPI-anchored proteins, suggesting that LAG1 and DGT1 encode functionally redundant or overlapping proteins. The rate of GPI anchor attachment was not affected, nor was the transport rate of several non–GPI-anchored proteins. Consistent with a role of Lag1p and Dgt1p in GPI-anchored protein transport, lag1Δ dgt1Δ cells deposit abnormal, multilayered cell walls. Both proteins have significant sequence similarity to TRAM, a mammalian membrane protein thought to be involved in protein translocation across the ER membrane. In vivo translocation studies, however, did not detect any defects in protein translocation in lag1Δ dgt1Δ cells, suggesting that neither yeast gene plays a role in this process. Instead, we propose that Lag1p and Dgt1p facilitate efficient ER-to-Golgi transport of GPI-anchored proteins. PMID:10198056

  18. Fast tracking the vaccine licensure process to control an epidemic of serogroup B meningococcal disease in New Zealand.

    PubMed

    Lennon, Diana; Jackson, Catherine; Wong, Sharon; Horsfall, Maraekura; Stewart, Joanna; Reid, Stewart

    2009-08-15

    Epidemics of serogroup B meningococcal disease are rare. Strain-specific outer membrane vesicle vaccines, which are not marketed, are the only current tool for control. A correlate of protection is ill defined, but published data suggest that measured serum bactericidal antibody levels parallel efficacy. Even infants can mount a strain-specific antibody response to a strain-specific vaccine. New Zealand's epidemic (1991-2007; peak rate [in 2001], 17.4 cases per 100,000 persons) was dominated by a single strain. After a 5-year search (1996-2001) for a manufacturer for a strain-specific outer membrane vesicle vaccine, a fast-tracked research program (2002-2004) determined the safety and immunogenicity of vaccine in infants (2 age groups: 6-10 weeks and 6-8 months), children (age, 16-24 months), and school-aged children (age, 8-12 years) after an adult trial. The vaccine was reactogenic, compared with control vaccines (meningococcal C conjugate and routine infant vaccines), but retention was high. Three vaccine doses produced antibody levels (measured by serum bactericidal assay) that were considered to be adequate for public health intervention. However, in young infants, a fourth dose was required to achieve levels equivalent to those achieved by other age groups. Provisional licensure by New Zealand's MedSafe was based on serological criteria strengthened by bridged safety data from studies of the parent outer membrane vesicle vaccine, independent assessment of manufacturing quality, and a clear plan for safety monitoring and effectiveness evaluation after licensure.

  19. Vitamin K3 induces antiproliferative effect in cervical epithelial cells transformed by HPV 16 (SiHa cells) through the increase in reactive oxygen species production.

    PubMed

    de Carvalho Scharf Santana, Natália; Lima, Natália Alves; Desoti, Vânia Cristina; Bidóia, Danielle Lazarin; de Souza Bonfim Mendonça, Patrícia; Ratti, Bianca Altrão; Nakamura, Tânia Ueda; Nakamura, Celso Vataru; Consolaro, Marcia Edilaine Lopes; Ximenes, Valdecir Farias; de Oliveira Silva, Sueli

    2016-10-01

    Cervical cancer is characterized as an important public health problem. According to latest estimates, cancer of the cervix is the fourth most common cancer among women. Due to its high prevalence, the search for new and efficient drugs to treat this infection is continuous. The progression of HPV-associated cervical cancer involves the expression of two viral proteins, E6 and E7, which are rapidly degraded by the ubiquitin-proteasome system through the increase in reactive oxygen species generation. Vitamins are essential to human substances, participate in the regulation of metabolism, and facilitate the process of energy transfer. Some early studies have indicated that vitamin K3 exerts antitumor activity by inducing cell death by apoptosis through an increase in the generation of reactive oxygen species. Thus, we evaluated the antiproliferative effect and a likely mechanism of action of vitamin K3 against cervical epithelial cells transformed by HPV 16 (SiHa cells) assessing the production of total ROS, the mitochondrial membrane potential, the cell morphology, the cell volume, and the cell membrane integrity. Our results show that vitamin K3 induces an increase in ROS production in SiHa cells, triggering biochemical and morphological events, such as depolarization of mitochondrial membrane potential and decreasing cell volume. Our data showed that vitamin K3 generates an oxidative imbalance in SiHa cells, leading to mechanisms that induce cell death by apoptosis.

  20. CDC42 is required for epicardial and pro-epicardial development by mediating FGF receptor trafficking to the plasma membrane

    PubMed Central

    Li, Jingjing; Miao, Lianjie; Zhao, Chen; Shaikh Qureshi, Wasay Mohiuddin; Shieh, David; Guo, Hua; Lu, Yangyang; Hu, Saiyang; Huang, Alice; Zhang, Lu; Cai, Chen-leng; Wan, Leo Q.; Xin, Hongbo; Vincent, Peter; Singer, Harold A.; Zheng, Yi; Cleaver, Ondine; Fan, Zhen-Chuan

    2017-01-01

    The epicardium contributes to multiple cardiac lineages and is essential for cardiac development and regeneration. However, the mechanism of epicardium formation is unclear. This study aimed to establish the cellular and molecular mechanisms underlying the dissociation of pro-epicardial cells (PECs) from the pro-epicardium (PE) and their subsequent translocation to the heart to form the epicardium. We used lineage tracing, conditional deletion, mosaic analysis and ligand stimulation in mice to determine that both villous protrusions and floating cysts contribute to PEC translocation to myocardium in a CDC42-dependent manner. We resolved a controversy by demonstrating that physical contact of the PE with the myocardium constitutes a third mechanism for PEC translocation to myocardium, and observed a fourth mechanism in which PECs migrate along the surface of the inflow tract to reach the ventricles. Epicardial-specific Cdc42 deletion disrupted epicardium formation, and Cdc42 null PECs proliferated less, lost polarity and failed to form villous protrusions and floating cysts. FGF signaling promotes epicardium formation in vivo, and biochemical studies demonstrated that CDC42 is involved in the trafficking of FGF receptors to the cell membrane to regulate epicardium formation. PMID:28465335

  1. Synergy-based small-molecule screen using a human lung epithelial cell line yields ΔF508-CFTR correctors that augment VX-809 maximal efficacy.

    PubMed

    Phuan, Puay-Wah; Veit, Guido; Tan, Joseph; Roldan, Ariel; Finkbeiner, Walter E; Lukacs, Gergely L; Verkman, A S

    2014-07-01

    The most prevalent cystic fibrosis transmembrane conductance regulator (CFTR) mutation causing cystic fibrosis, ΔF508, impairs folding of nucleotide binding domain (NBD) 1 and stability of the interface between NBD1 and the membrane-spanning domains. The interfacial stability defect can be partially corrected by the investigational drug VX-809 (3-[6-[[[1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl]amino]-3-methyl-2-pyridinyl]-benzoic acid) or the R1070W mutation. Second-generation ΔF508-CFTR correctors are needed to improve on the modest efficacy of existing cystic fibrosis correctors. We postulated that a second corrector targeting a distinct folding/interfacial defect might act in synergy with VX-809 or the R1070W suppressor mutation. A biochemical screen for ΔF508-CFTR cell surface expression was developed in a human lung epithelium-derived cell line (CFBE41o(-)) by expressing chimeric CFTRs with a horseradish peroxidase (HRP) in the fourth exofacial loop in either the presence or absence of R1070W. Using a luminescence readout of HRP activity, screening of approximately 110,000 small molecules produced nine novel corrector scaffolds that increased cell surface ∆F508-CFTR expression by up to 200% in the presence versus absence of maximal VX-809. Further screening of 1006 analogs of compounds identified from the primary screen produced 15 correctors with an EC50 < 5 µM. Eight chemical scaffolds showed synergy with VX-809 in restoring chloride permeability in ∆F508-expressing A549 cells. An aminothiazole increased chloride conductance in human bronchial epithelial cells from a ΔF508 homozygous subject beyond that of maximal VX-809. Mechanistic studies suggested that NBD2 is required for the aminothiazole rescue. Our results provide proof of concept for synergy screening to identify second-generation correctors, which, when used in combination, may overcome the "therapeutic ceiling" of first-generation correctors. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  2. A Biosurfactant-Sophorolipid Acts in Synergy with Antibiotics to Enhance Their Efficiency

    PubMed Central

    Joshi-Navare, Kasturi; Prabhune, Asmita

    2013-01-01

    Sophorolipids (SLs), biosurfactants with antimicrobial properties, have been tried to address the problem of antibiotic resistance. The synergistic action of SL and antibiotics was checked using standard microdilution and spread plate methods. With Staphylococcus aureus, SL-tetracycline combination achieved total inhibition before 4 h of exposure while tetracycline alone couldnot achieve total inhibition till the end of 6 h. The inhibition caused by exposure of bacterium to SL-tetracycline mixture was ~25% more as compared to SL alone. In spite of known robustness of gram-negative bacteria, SL-cefaclor mixture proved to be efficient against Escherichia coli which showed ~48% more inhibition within 2 h of exposure as compared to cefaclor alone. Scanning electron microscopy of the cells treated with mixture revealed bacterial cell membrane damage and pore formation. Moreover, SLs being a type of asymmetric bola, they are expected to form self-assemblies with unique functionality. This led to the speculation that SLs being amphiphilic in nature can span through the structurally alike cell membrane and facilitate the entry of drug molecules. PMID:24089681

  3. A Nutrient Combination that Can Affect Synapse Formation

    PubMed Central

    Wurtman, Richard J.

    2014-01-01

    Brain neurons form synapses throughout the life span. This process is initiated by neuronal depolarization, however the numbers of synapses thus formed depend on brain levels of three key nutrients—uridine, the omega-3 fatty acid DHA, and choline. Given together, these nutrients accelerate formation of synaptic membrane, the major component of synapses. In infants, when synaptogenesis is maximal, relatively large amounts of all three nutrients are provided in bioavailable forms (e.g., uridine in the UMP of mothers’ milk and infant formulas). However, in adults the uridine in foods, mostly present at RNA, is not bioavailable, and no food has ever been compelling demonstrated to elevate plasma uridine levels. Moreover, the quantities of DHA and choline in regular foods can be insufficient for raising their blood levels enough to promote optimal synaptogenesis. In Alzheimer’s disease (AD) the need for extra quantities of the three nutrients is enhanced, both because their basal plasma levels may be subnormal (reflecting impaired hepatic synthesis), and because especially high brain levels are needed for correcting the disease-related deficiencies in synaptic membrane and synapses. PMID:24763080

  4. 4D metrology of flapping-wing micro air vehicle based on fringe projection

    NASA Astrophysics Data System (ADS)

    Zhang, Qican; Huang, Lei; Chin, Yao-Wei; Keong, Lau-Gih; Asundi, Anand

    2013-06-01

    Inspired by dominant flight of the natural flyers and driven by civilian and military purposes, micro air vehicle (MAV) has been developed so far by passive wing control but still pales in aerodynamic performance. Better understanding of flapping wing flight mechanism is eager to improve MAV's flight performance. In this paper, a simple and effective 4D metrology technique to measure full-field deformation of flapping membrane wing is presented. Based on fringe projection and 3D Fourier analysis, the fast and complex dynamic deformation, including wing rotation and wing stroke, of a flapping wing during its flight can be accurately reconstructed from the deformed fringe patterns recorded by a highspeed camera. An experiment was carried on a flapping-wing MAV with 5-cm span membrane wing beating at 30 Hz, and the results show that this method is effective and will be useful to the aerodynamicist or micro aircraft designer for visualizing high-speed complex wing deformation and consequently aid the design of flapping wing mechanism to enhanced aerodynamic performance.

  5. Decoupling catalytic activity from biological function of the ATPase that powers lipopolysaccharide transport

    PubMed Central

    Sherman, David J.; Lazarus, Michael B.; Murphy, Lea; Liu, Charles; Walker, Suzanne; Ruiz, Natividad; Kahne, Daniel

    2014-01-01

    The cell surface of Gram-negative bacteria contains lipopolysaccharides (LPS), which provide a barrier against the entry of many antibiotics. LPS assembly involves a multiprotein LPS transport (Lpt) complex that spans from the cytoplasm to the outer membrane. In this complex, an unusual ATP-binding cassette transporter is thought to power the extraction of LPS from the outer leaflet of the cytoplasmic membrane and its transport across the cell envelope. We introduce changes into the nucleotide-binding domain, LptB, that inactivate transporter function in vivo. We characterize these residues using biochemical experiments combined with high-resolution crystal structures of LptB pre- and post-ATP hydrolysis and suggest a role for an active site residue in phosphate exit. We also identify a conserved residue that is not required for ATPase activity but is essential for interaction with the transmembrane components. Our studies establish the essentiality of ATP hydrolysis by LptB to power LPS transport in cells and suggest strategies to inhibit transporter function away from the LptB active site. PMID:24639492

  6. Ligand-Induced Dynamics of Neurotrophin Receptors Investigated by Single-Molecule Imaging Approaches

    PubMed Central

    Marchetti, Laura; Luin, Stefano; Bonsignore, Fulvio; de Nadai, Teresa; Beltram, Fabio; Cattaneo, Antonino

    2015-01-01

    Neurotrophins are secreted proteins that regulate neuronal development and survival, as well as maintenance and plasticity of the adult nervous system. The biological activity of neurotrophins stems from their binding to two membrane receptor types, the tropomyosin receptor kinase and the p75 neurotrophin receptors (NRs). The intracellular signalling cascades thereby activated have been extensively investigated. Nevertheless, a comprehensive description of the ligand-induced nanoscale details of NRs dynamics and interactions spanning from the initial lateral movements triggered at the plasma membrane to the internalization and transport processes is still missing. Recent advances in high spatio-temporal resolution imaging techniques have yielded new insight on the dynamics of NRs upon ligand binding. Here we discuss requirements, potential and practical implementation of these novel approaches for the study of neurotrophin trafficking and signalling, in the framework of current knowledge available also for other ligand-receptor systems. We shall especially highlight the correlation between the receptor dynamics activated by different neurotrophins and the respective signalling outcome, as recently revealed by single-molecule tracking of NRs in living neuronal cells. PMID:25603178

  7. Maternal and neonatal interleukin-1 receptor antagonist genotype and pregnancy outcome in a population with a high rate of pre-term birth.

    PubMed

    Chaves, José Humberto Belmino; Babayan, Arthur; Bezerra, Cledna de Melo; Linhares, Iara M; Witkin, Steven S

    2008-10-01

    We evaluated associations between a length polymorphism in intron 2 of the gene coding for IL-1ra (gene symbol IL1RN) and pregnancy outcome in a population with a high rate of preterm birth. Subjects were pregnant women in Maceio, Brazil and their newborns. DNA was tested for IL1RN genotypes and alleles by gene amplification using primer pairs that spanned the polymorphic region. Every subject completed a detailed questionnaire. The frequency of allele 2 (IL1RN*2) carriage was elevated in mothers with a spontaneous preterm birth (SPTB) in the current pregnancy (P = 0.02) and also with a prior preterm delivery (P = .01). Both SPTB with intact membranes (P = 0.01) and SPTB preceded by pre-term premature rupture of membranes (P = .03) were associated with ILlRN*2 carriage. A previous fetal demise was more than twice as prevalent in mothers positive for two copies of IL1RN*2. Maternal carriage of ILlRN*2 increases susceptibility to inflammation-triggered spontaneous pre-term birth.

  8. Interactions of Pannexin1 channels with purinergic and NMDA receptor channels.

    PubMed

    Li, Shuo; Bjelobaba, Ivana; Stojilkovic, Stanko S

    2018-01-01

    Pannexins are a three-member family of vertebrate plasma membrane spanning molecules that have homology to the invertebrate gap junction forming proteins, the innexins. However, pannexins do not form gap junctions but operate as plasma membrane channels. The best-characterized member of these proteins, Pannexin1 (Panx1) was suggested to be functionally associated with purinergic P2X and N-methyl-D-aspartate (NMDA) receptor channels. Activation of these receptor channels by their endogenous ligands leads to cross-activation of Panx1 channels. This in turn potentiates P2X and NMDA receptor channel signaling. Two potentiation concepts have been suggested: enhancement of the current responses and/or sustained receptor channel activation by ATP released through Panx1 pore and adenosine generated by ectonucleotidase-dependent dephosphorylation of ATP. Here we summarize the current knowledge and hypotheses about interactions of Panx1 channels with P2X and NMDA receptor channels. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve. Published by Elsevier B.V.

  9. The Role of the Photoreceptor ABC Transporter ABCA4 in Lipid Transport and Stargardt Macular Degeneration

    PubMed Central

    Molday, Robert S.; Zhong, Ming; Quazi, Faraz

    2009-01-01

    ABCA4 is a member of the ABCA subfamily of ATP binding cassette (ABC) transporters that is expressed in rod and cone photoreceptors of the vertebrate retina. ABCA4, also known as the Rim protein and ABCR, is a large 2273 amino acid glycoprotein organized as two tandem halves, each containing a single membrane spanning segment followed sequentially by a large exocytoplasmic domain, a multispanning membrane domain and a nucleotide binding domain. Over 500 mutations in the gene encoding ABCA4 are associated with a spectrum of related autosomal recessive retinal degenerative diseases including Stargardt macular degeneration, cone-rod dystrophy and a subset of retinitis pigmentosa. Biochemical studies on the purified ABCA4 together with analysis of abca4 knockout mice and patients with Stargardt disease have implicated ABCA4 as a retinylidene-phosphatidylethanolamine transporter that facilitates the removal of potentially reactive retinal derivatives from photoreceptors following photoexcitation. Knowledge of the genetic and molecular basis for ABCA4 related retinal degenerative diseases is being used to develop rationale therapeutic treatments for this set of disorders. PMID:19230850

  10. Isolation and characterization of true mesenchymal stem cells derived from human term decidua capable of multilineage differentiation into all 3 embryonic layers.

    PubMed

    Macias, Maria I; Grande, Jesús; Moreno, Ana; Domínguez, Irene; Bornstein, Rafael; Flores, Ana I

    2010-11-01

    The objective of the study was to isolate and characterize a population of mesenchymal stem cells (MSCs) from human term placental membranes. We isolated an adherent cell population from extraembryonic membranes. Morphology, phenotype, growth characteristics, karyotype, and immunological and differentiation properties were analyzed. The isolated placental MSCs were from maternal origin and named as decidua-derived mesenchymal stem cells (DMSCs). DMSCs differentiated into derivatives of all germ layers. It is the first report about placental MSC differentiation into alveolar type II cells. Clonally expanded DMSCs differentiated into all embryonic layers, including pulmonary cells. DMSCs showed higher life span than placental cells from fetal origin and proliferated without genomic instability. The data suggest that DMSCs are true multipotent MSCs, distinguishing them from other placental MSCs. DMSCs could be safely used in the mother as a potential source of MSCs for pelvic floor dysfunctions and immunological diseases. Additionally, frozen DMSCs can be stored for both autologous and allogeneic tissue regeneration. Copyright © 2010 Mosby, Inc. All rights reserved.

  11. Resolving the homology—function relationship through comparative genomics of membrane-trafficking machinery and parasite cell biology

    PubMed Central

    Klinger, Christen M.; Ramirez-Macias, Inmaculada; Herman, Emily K.; Turkewitz, Aaron P.; Field, Mark C.; Dacks, Joel B.

    2016-01-01

    With advances in DNA sequencing technology, it is increasingly common and tractable to informatically look for genes of interest in the genomic databases of parasitic organisms and infer cellular states. Assignment of a putative gene function based on homology to functionally characterized genes in other organisms, though powerful, relies on the implicit assumption of functional homology, i.e. that orthology indicates conserved function. Eukaryotes reveal a dazzling array of cellular features and structural organization, suggesting a concomitant diversity in their underlying molecular machinery. Significantly, examples of novel functions for pre-existing or new paralogues are not uncommon. Do these examples undermine the basic assumption of functional homology, especially in parasitic protists, which are often highly derived? Here we examine the extent to which functional homology exists between organisms spanning the eukaryotic lineage. By comparing membrane trafficking proteins between parasitic protists and traditional model organisms, where direct functional evidence is available, we find that function is indeed largely conserved between orthologues, albeit with significant adaptation arising from the unique biological features within each lineage. PMID:27444378

  12. Prognostics of Proton Exchange Membrane Fuel Cells stack using an ensemble of constraints based connectionist networks

    NASA Astrophysics Data System (ADS)

    Javed, Kamran; Gouriveau, Rafael; Zerhouni, Noureddine; Hissel, Daniel

    2016-08-01

    Proton Exchange Membrane Fuel Cell (PEMFC) is considered the most versatile among available fuel cell technologies, which qualify for diverse applications. However, the large-scale industrial deployment of PEMFCs is limited due to their short life span and high exploitation costs. Therefore, ensuring fuel cell service for a long duration is of vital importance, which has led to Prognostics and Health Management of fuel cells. More precisely, prognostics of PEMFC is major area of focus nowadays, which aims at identifying degradation of PEMFC stack at early stages and estimating its Remaining Useful Life (RUL) for life cycle management. This paper presents a data-driven approach for prognostics of PEMFC stack using an ensemble of constraint based Summation Wavelet- Extreme Learning Machine (SW-ELM) models. This development aim at improving the robustness and applicability of prognostics of PEMFC for an online application, with limited learning data. The proposed approach is applied to real data from two different PEMFC stacks and compared with ensembles of well known connectionist algorithms. The results comparison on long-term prognostics of both PEMFC stacks validates our proposition.

  13. Protein Export According to Schedule: Architecture, Assembly, and Regulation of Type III Secretion Systems from Plant- and Animal-Pathogenic Bacteria

    PubMed Central

    2012-01-01

    Summary: Flagellar and translocation-associated type III secretion (T3S) systems are present in most Gram-negative plant- and animal-pathogenic bacteria and are often essential for bacterial motility or pathogenicity. The architectures of the complex membrane-spanning secretion apparatuses of both systems are similar, but they are associated with different extracellular appendages, including the flagellar hook and filament or the needle/pilus structures of translocation-associated T3S systems. The needle/pilus is connected to a bacterial translocon that is inserted into the host plasma membrane and mediates the transkingdom transport of bacterial effector proteins into eukaryotic cells. During the last 3 to 5 years, significant progress has been made in the characterization of membrane-associated core components and extracellular structures of T3S systems. Furthermore, transcriptional and posttranscriptional regulators that control T3S gene expression and substrate specificity have been described. Given the architecture of the T3S system, it is assumed that extracellular components of the secretion apparatus are secreted prior to effector proteins, suggesting that there is a hierarchy in T3S. The aim of this review is to summarize our current knowledge of T3S system components and associated control proteins from both plant- and animal-pathogenic bacteria. PMID:22688814

  14. The BOS1 gene encodes an essential 27-kD putative membrane protein that is required for vesicular transport from the ER to the Golgi complex in yeast

    PubMed Central

    1991-01-01

    We recently described the identification of BOS1 (Newman, A., J. Shim, and S. Ferro-Novick. 1990. Mol. Cell. Biol. 10:3405-3414.). BOS1 is a gene that in multiple copy suppresses the growth and secretion defect of bet1 and sec22, two mutants that disrupt transport from the ER to the Golgi complex in yeast. The ability of BOS1 to specifically suppress mutants blocked at a particular stage of the secretory pathway suggested that this gene encodes a protein that functions in this process. The experiments presented in this study support this hypothesis. Specifically, the BOS1 gene was found to be essential for cellular growth. Furthermore, cells depleted of the Bos1 protein fail to transport pro-alpha-factor and carboxypeptidase Y (CPY) to the Golgi apparatus. This defect in export leads to the accumulation of an extensive network of ER and small vesicles. DNA sequence analysis predicts that Bos1 is a 27-kD protein containing a putative membrane- spanning domain. This prediction is supported by differential centrifugation experiments. Thus, Bos1 appears to be a membrane protein that functions in conjunction with Bet1 and Sec22 to facilitate the transport of proteins at a step subsequent to translocation into the ER but before entry into the Golgi apparatus. PMID:2007627

  15. Preparation of lipid nanoemulsions by premix membrane emulsification with disposable materials.

    PubMed

    Gehrmann, Sandra; Bunjes, Heike

    2016-09-25

    The possibility to prepare nanoemulsions as drug carrier systems on small scale was investigated with disposable materials. For this purpose premix membrane emulsification (premix ME) as a preparation method for nanoemulsions with narrow particle size distributions on small scale was used. The basic principle of premix ME is that the droplets of a coarse pre-emulsion get disrupted by the extrusion through a porous membrane. In order to implement the common preparation setup for premix ME with disposable materials, the suitability of different syringe filters (made from polyethersulfone, cellulose acetate, cellulose ester and nylon) and different pharmaceutically relevant emulsifiers (phospholipids, polysorbate 80 and sucrose laurate) for the preparation of nanoemulsions was investigated. Already the preparation of the premix could be realized by emulsification with the help of two disposable syringes. As shown for a phospholipid-stabilized emulsion, the polyethersulfone filter was the most appropriate one and was used for the study with different emulsifiers. With this syringe filter, the median particle size of all investigated emulsions was below 500nm after 21 extrusion cycles through a 200nm filter and a subsequent extrusion cycle through a 100nm filter. Furthermore, the particle size distribution of the polysorbate 80- and sucrose laurate-stabilized emulsions prepared this way was very narrow (span value of 0.7). Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Water at hydrophobic interfaces delays proton surface-to-bulk transfer and provides a pathway for lateral proton diffusion

    PubMed Central

    Zhang, Chao; Knyazev, Denis G.; Vereshaga, Yana A.; Ippoliti, Emiliano; Nguyen, Trung Hai; Carloni, Paolo; Pohl, Peter

    2012-01-01

    Fast lateral proton migration along membranes is of vital importance for cellular energy homeostasis and various proton-coupled transport processes. It can only occur if attractive forces keep the proton at the interface. How to reconcile this high affinity to the membrane surface with high proton mobility is unclear. Here, we tested whether a minimalistic model interface between an apolar hydrophobic phase (n-decane) and an aqueous phase mimics the biological pathway for lateral proton migration. The observed diffusion span, on the order of tens of micrometers, and the high proton mobility were both similar to the values previously reported for lipid bilayers. Extensive ab initio simulations on the same water/n-decane interface reproduced the experimentally derived free energy barrier for the excess proton. The free energy profile GH+ adopts the shape of a well at the interface, having a width of two water molecules and a depth of 6 ± 2RT. The hydroniums in direct contact with n-decane have a reduced mobility. However, the hydroniums in the second layer of water molecules are mobile. Their in silico diffusion coefficient matches that derived from our in vitro experiments, (5.7 ± 0.7) × 10-5 cm2 s-1. Conceivably, these are the protons that allow for fast diffusion along biological membranes. PMID:22675120

  17. Size and mobility of lipid domains tuned by geometrical constraints.

    PubMed

    Schütte, Ole M; Mey, Ingo; Enderlein, Jörg; Savić, Filip; Geil, Burkhard; Janshoff, Andreas; Steinem, Claudia

    2017-07-25

    In the plasma membrane of eukaryotic cells, proteins and lipids are organized in clusters, the latter ones often called lipid domains or "lipid rafts." Recent findings highlight the dynamic nature of such domains and the key role of membrane geometry and spatial boundaries. In this study, we used porous substrates with different pore radii to address precisely the extent of the geometric constraint, permitting us to modulate and investigate the size and mobility of lipid domains in phase-separated continuous pore-spanning membranes (PSMs). Fluorescence video microscopy revealed two types of liquid-ordered ( l o ) domains in the freestanding parts of the PSMs: ( i ) immobile domains that were attached to the pore rims and ( ii ) mobile, round-shaped l o domains within the center of the PSMs. Analysis of the diffusion of the mobile l o domains by video microscopy and particle tracking showed that the domains' mobility is slowed down by orders of magnitude compared with the unrestricted case. We attribute the reduced mobility to the geometric confinement of the PSM, because the drag force is increased substantially due to hydrodynamic effects generated by the presence of these boundaries. Our system can serve as an experimental test bed for diffusion of 2D objects in confined geometry. The impact of hydrodynamics on the mobility of enclosed lipid domains can have great implications for the formation and lateral transport of signaling platforms.

  18. Accumulation of 19-kDa plasma membrane polypeptide during induction of freezing tolerance in wheat suspension-cultured cells by abscisic acid.

    PubMed

    Koike, M; Takezawa, D; Arakawa, K; Yoshida, S

    1997-06-01

    Suspension-cultured cells derived from immature embryos of winter wheat (Triticum aestivum L. cv. Chihoku) were used in experiments designed to obtain clues to the mechanism of the ABA-induced development of freezing tolerance. Cultured cells treated with 50 microM ABA for 5 d at 23 degrees C acquired the maximum level of freezing tolerance (LT50; -21.6 degrees C). The increased freezing tolerance of ABA-treated cells was closely associated with the remarkable accumulation of 19-kDa polypeptides in the plasma membrane. The 19-kDa polypeptide components were isolated by preparative gel electrophoresis and were further separated into one major (AWPM-19) and other minor polypeptide components by Tricine-SDS-PAGE. N-terminal amino acid sequence of AWPM-19 was determined, and a cDNA clone encoding AWPM-19 was isolated by PCR from the library prepared from the ABA-treated cultured cells. The cDNA clone (WPM-1) encoded a 18.9 kDa hydrophobic polypeptide with four putative membrane spanning domains and with a high pI value (10.2). Expression of WPM-1 mRNA was dramatically induced by 50 microM ABA within a few hours. These results suggest that the AWPM-19 might be closely associated with the ABA-induced increase in freezing tolerance in wheat cultured cells.

  19. Ion Transport through Membrane-Spanning Nanopores Studied by Molecular Dynamics Simulations and Continuum Electrostatics Calculations

    PubMed Central

    Peter, Christine; Hummer, Gerhard

    2005-01-01

    Narrow hydrophobic regions are a common feature of biological channels, with possible roles in ion-channel gating. We study the principles that govern ion transport through narrow hydrophobic membrane pores by molecular dynamics simulation of model membranes formed of hexagonally packed carbon nanotubes. We focus on the factors that determine the energetics of ion translocation through such nonpolar nanopores and compare the resulting free-energy barriers for pores with different diameters corresponding to the gating regions in closed and open forms of potassium channels. Our model system also allows us to compare the results from molecular dynamics simulations directly to continuum electrostatics calculations. Both simulations and continuum calculations show that subnanometer wide pores pose a huge free-energy barrier for ions, but a small increase in the pore diameter to ∼1 nm nearly eliminates that barrier. We also find that in those wider channels the ion mobility is comparable to that in the bulk phase. By calculating local electrostatic potentials, we show that the long range Coulomb interactions of ions are strongly screened in the wide water-filled channels. Whereas continuum calculations capture the overall energetics reasonably well, the local water structure, which is not accounted for in this model, leads to interesting effects such as the preference of hydrated ions to move along the pore wall rather than through the center of the pore. PMID:16006629

  20. The requirements for herpes simplex virus type 1 cell-cell spread via nectin-1 parallel those for virus entry.

    PubMed

    Even, Deborah L; Henley, Allison M; Geraghty, Robert J

    2006-08-01

    Herpes simplex virus type 1 (HSV-1) spreads from an infected cell to an uninfected cell by virus entry, virus-induced cell fusion, and cell-cell spread. The three forms of virus spread require the viral proteins gB, gD, and gH-gL, as well as a cellular gD receptor. The mutual requirement for the fusion glycoproteins and gD receptor suggests that virus entry, cell fusion, and cell-cell spread occur by a similar mechanism. The goals of this study were to examine the role of the nectin-1alpha transmembrane domain and cytoplasmic tail in cell-cell spread and to obtain a better understanding of the receptor-dependent events occurring at the plasma membrane during cell-cell spread. We determined that an intact nectin-1alpha V-like domain was required for cell-cell spread, while a membrane-spanning domain and cytoplasmic tail were not. Chimeric forms of nectin-1 that were non-functional for virus entry did not mediate cell-cell spread regardless of whether they could mediate cell fusion. Also, cell-cell spread of syncytial isolates was dependent upon nectin-1alpha expression and occurred through a nectin-1-dependent mechanism. Taken together, our results indicate that nectin-1-dependent events occurring at the plasma membrane during cell-cell spread were equivalent to those for virus entry.

  1. Size and mobility of lipid domains tuned by geometrical constraints

    PubMed Central

    Schütte, Ole M.; Mey, Ingo; Savić, Filip; Geil, Burkhard; Janshoff, Andreas

    2017-01-01

    In the plasma membrane of eukaryotic cells, proteins and lipids are organized in clusters, the latter ones often called lipid domains or “lipid rafts.” Recent findings highlight the dynamic nature of such domains and the key role of membrane geometry and spatial boundaries. In this study, we used porous substrates with different pore radii to address precisely the extent of the geometric constraint, permitting us to modulate and investigate the size and mobility of lipid domains in phase-separated continuous pore-spanning membranes (PSMs). Fluorescence video microscopy revealed two types of liquid-ordered (lo) domains in the freestanding parts of the PSMs: (i) immobile domains that were attached to the pore rims and (ii) mobile, round-shaped lo domains within the center of the PSMs. Analysis of the diffusion of the mobile lo domains by video microscopy and particle tracking showed that the domains’ mobility is slowed down by orders of magnitude compared with the unrestricted case. We attribute the reduced mobility to the geometric confinement of the PSM, because the drag force is increased substantially due to hydrodynamic effects generated by the presence of these boundaries. Our system can serve as an experimental test bed for diffusion of 2D objects in confined geometry. The impact of hydrodynamics on the mobility of enclosed lipid domains can have great implications for the formation and lateral transport of signaling platforms. PMID:28696315

  2. The Crystal Structure of GXGD Membrane Protease FlaK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J Hu; Y Xue; S Lee

    2011-12-31

    The GXGD proteases are polytopic membrane proteins with catalytic activities against membrane-spanning substrates that require a pair of aspartyl residues. Representative members of the family include preflagellin peptidase, type 4 prepilin peptidase, presenilin and signal peptide peptidase. Many GXGD proteases are important in medicine. For example, type 4 prepilin peptidase may contribute to bacterial pathogenesis, and mutations in presenilin are associated with Alzheimer's disease. As yet, there is no atomic-resolution structure in this protease family. Here we report the crystal structure of FlaK, a preflagellin peptidase from Methanococcus maripaludis, solved at 3.6 {angstrom} resolution. The structure contains six transmembrane helices.more » The GXGD motif and a short transmembrane helix, helix 4, are positioned at the centre, surrounded by other transmembrane helices. The crystal structure indicates that the protease must undergo conformational changes to bring the GXGD motif and a second essential aspartyl residue from transmembrane helix 1 into close proximity for catalysis. A comparison of the crystal structure with models of presenilin derived from biochemical analysis reveals three common transmembrane segments that are similarly arranged around the active site. This observation reinforces the idea that the prokaryotic and human proteases are evolutionarily related. The crystal structure presented here provides a framework for understanding the mechanism of the GXGD proteases, and may facilitate the rational design of inhibitors that target specific members of the family.« less

  3. The crystal structure of GXGD membrane protease FlaK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jian; Xue, Yi; Lee, Sangwon

    2011-09-20

    The GXGD proteases are polytopic membrane proteins with catalytic activities against membrane-spanning substrates that require a pair of aspartyl residues. Representative members of the family include preflagellin peptidase, type 4 prepilin peptidase, presenilin and signal peptide peptidase. Many GXGD proteases are important in medicine. For example, type 4 prepilin peptidase may contribute to bacterial pathogenesis, and mutations in presenilin are associated with Alzheimer's disease. As yet, there is no atomic-resolution structure in this protease family. Here we report the crystal structure of FlaK, a preflagellin peptidase from Methanococcus maripaludis, solved at 3.6 {angstrom} resolution. The structure contains six transmembrane helices.more » The GXGD motif and a short transmembrane helix, helix 4, are positioned at the centre, surrounded by other transmembrane helices. The crystal structure indicates that the protease must undergo conformational changes to bring the GXGD motif and a second essential aspartyl residue from transmembrane helix 1 into close proximity for catalysis. A comparison of the crystal structure with models of presenilin derived from biochemical analysis reveals three common transmembrane segments that are similarly arranged around the active site. This observation reinforces the idea that the prokaryotic and human proteases are evolutionarily related. The crystal structure presented here provides a framework for understanding the mechanism of the GXGD proteases, and may facilitate the rational design of inhibitors that target specific members of the family.« less

  4. Kidins220/ARMS as a functional mediator of multiple receptor signalling pathways.

    PubMed

    Neubrand, Veronika E; Cesca, Fabrizia; Benfenati, Fabio; Schiavo, Giampietro

    2012-04-15

    An increasing body of evidence suggests that several membrane receptors--in addition to activating distinct signalling cascades--also engage in substantial crosstalk with each other, thereby adjusting their signalling outcome as a function of specific input information. However, little is known about the molecular mechanisms that control their coordination and integration of downstream signalling. A protein that is likely to have a role in this process is kinase-D-interacting substrate of 220 kDa [Kidins220, also known as ankyrin repeat-rich membrane spanning (ARMS), hereafter referred to as Kidins220/ARMS]. Kidins220/ARMS is a conserved membrane protein that is preferentially expressed in the nervous system and interacts with the microtubule and actin cytoskeleton. It interacts with neurotrophin, ephrin, vascular endothelial growth factor (VEGF) and glutamate receptors, and is a common downstream target of several trophic stimuli. Kidins220/ARMS is required for neuronal differentiation and survival, and its expression levels modulate synaptic plasticity. Kidins220/ARMS knockout mice show developmental defects mainly in the nervous and cardiovascular systems, suggesting a crucial role for this protein in modulating the cross talk between different signalling pathways. In this Commentary, we summarise existing knowledge regarding the physiological functions of Kidins220/ARMS, and highlight some interesting directions for future studies on the role of this protein in health and disease.

  5. Interactions and effects of BSA-functionalized single-walled carbon nanotubes on different cell lines

    NASA Astrophysics Data System (ADS)

    Muzi, Laura; Tardani, Franco; La Mesa, Camillo; Bonincontro, Adalberto; Bianco, Alberto; Risuleo, Gianfranco

    2016-04-01

    Functionalized carbon nanotubes (CNTs) have shown great promise in several biomedical contexts, spanning from drug delivery to tissue regeneration. Thanks to their unique size-related properties, single-walled CNTs (SWCNTs) are particularly interesting in these fields. However, their use in nanomedicine requires a clear demonstration of their safety in terms of tissue damage, toxicity and pro-inflammatory response. Thus, a better understanding of the cytotoxicity mechanisms, the cellular interactions and the effects that these materials have on cell survival and on biological membranes is an important first step for an appropriate assessment of their biocompatibility. In this study we show how bovine serum albumin (BSA) is able to generate homogeneous and stable dispersions of SWCNTs (BSA-CNTs), suggesting their possible use in the biomedical field. On the other hand, this study wishes to shed more light on the impact and the interactions of protein-stabilized SWCNTs with two different cell types exploiting multidisciplinary techniques. We show that BSA-CNTs are efficiently taken up by cells. We also attempt to describe the effect that the interaction with cells has on the dielectric characteristics of the plasma membrane and ion flux using electrorotation. We then focus on the BSA-CNTs’ acute toxicity using different cellular models. The novel aspect of this work is the evaluation of the membrane alterations that have been poorly investigated to date.

  6. Structure, function, and fate of the BlaR signal transducer involved in induction of beta-lactamase in Bacillus licheniformis.

    PubMed Central

    Zhu, Y; Englebert, S; Joris, B; Ghuysen, J M; Kobayashi, T; Lampen, J O

    1992-01-01

    The membrane-spanning protein BlaR is essential for the induction of beta-lactamase in Bacillus licheniformis. Its nature and location were confirmed by the use of an antiserum specific for its carboxy-terminal penicillin sensor, its function was studied by genetic dissection, and the structure of the penicillin sensor was derived from hydrophobic cluster analysis of the amino acid sequence by using, as a reference, the class A beta-lactamases with known three-dimensional structures. During the first 2 h after the addition of the beta-lactam inducer, full-size BlaR, bound to the plasma membrane, is produced, and then beta-lactamase is produced. By 2 h after induction, BlaR is present in various (membrane-bound and cytosolic) forms, and there is a gradual decrease in beta-lactamase production. The penicillin sensors of BlaR and the class D beta-lactamases show strong similarities in primary structures. They appear to have the same basic spatial disposition of secondary structures as that of the class A beta-lactamases, except that they lack several alpha helices and, therefore, have a partially uncovered five-stranded beta sheet and a more readily accessible active site. Alterations of BlaR affecting conserved secondary structures of the penicillin sensor and specific sites of the transducer annihilate beta-lactamase inducibility. Images PMID:1400165

  7. Force generation and wing deformation characteristics of a flapping-wing micro air vehicle 'DelFly II' in hovering flight.

    PubMed

    Percin, M; van Oudheusden, B W; de Croon, G C H E; Remes, B

    2016-05-19

    The study investigates the aerodynamic performance and the relation between wing deformation and unsteady force generation of a flapping-wing micro air vehicle in hovering flight configuration. Different experiments were performed where fluid forces were acquired with a force sensor, while the three-dimensional wing deformation was measured with a stereo-vision system. In these measurements, time-resolved power consumption and flapping-wing kinematics were also obtained under both in-air and in-vacuum conditions. Comparison of the results for different flapping frequencies reveals different wing kinematics and deformation characteristics. The high flapping frequency case produces higher forces throughout the complete flapping cycle. Moreover, a phase difference occurs in the variation of the forces, such that the low flapping frequency case precedes the high frequency case. A similar phase lag is observed in the temporal evolution of the wing deformation characteristics, suggesting that there is a direct link between the two phenomena. A considerable camber formation occurs during stroke reversals, which is mainly determined by the stiffener orientation. The wing with the thinner surface membrane displays very similar characteristics to the baseline wing, which implies the dominance of the stiffeners in terms of providing rigidity to the wing. Wing span has a significant effect on the aerodynamic efficiency such that increasing the span length by 4 cm results in a 6% enhancement in the cycle-averaged X-force to power consumption ratio compared to the standard DelFly II wings with a span length of 28 cm.

  8. Cadherin juxtamembrane region derived peptides inhibit TGFβ1 induced gene expression

    PubMed Central

    Stavropoulos, Ilias; Golla, Kalyan; Moran, Niamh; Martin, Finian; Shields, Denis C

    2014-01-01

    Bioactive peptides in the juxtamembrane regions of proteins are involved in many signaling events. The juxtamembrane regions of cadherins were examined for the identification of bioactive regions. Several peptides spanning the cytoplasmic juxtamembrane regions of E- and N-cadherin were synthesized and assessed for the ability to influence TGFβ responses in epithelial cells at the gene expression and protein levels. Peptides from regions closer to the membrane appeared more potent inhibitors of TGFβ signaling, blocking Smad3 phosphorylation. Thus inhibiting nuclear translocation of phosphorylated Smad complexes and subsequent transcriptional activation of TGFβ signal propagating genes. The peptides demonstrated a peptide-specific potential to inhibit other TGFβ superfamily members, such as BMP4. PMID:25108297

  9. Productive interaction between transmembrane mutants of the bovine papillomavirus E5 protein and the platelet-derived growth factor beta receptor.

    PubMed

    Lai, Char-Chang; Edwards, Anne P B; DiMaio, Daniel

    2005-02-01

    The bovine papillomavirus E5 protein is a 44-amino-acid transmembrane protein that transforms cells by binding to the transmembrane region of the cellular platelet-derived growth factor (PDGF) beta receptor, resulting in sustained receptor signaling. However, there are published reports that certain mutants with amino acid substitutions in the membrane-spanning segment of the E5 protein transform cells without activating the PDGF beta receptor. We re-examined several of these transmembrane mutants, and here we present five lines of evidence that these mutants do in fact activate the PDGF beta receptor, resulting in cellular signaling and transformation.

  10. Plant Nutrition 2: Macronutrients (N, P, K, S, Mg, and Ca)

    PubMed Central

    2014-01-01

    Summary In the second of three lessons spanning the topic of Plant Nutrition, we examine how macronutrients affect plant growth. Specifically, we look at (1) the availability of nutrients in the soil along with the effects of soil microbes and physical properties on their availability; (2) nutrient uptake from the external environment, across plasma membranes and into plant cells; (3) in some cases, the assimilation of the nutrient into organic molecules; (4) the distribution and redistribution of nutrients throughout the plant; and (5) regulation of these processes. In parallel, we examine the genetic basis of a plant's nutrient use efficiency (NUE) and evaluate strategies by which to replenish nutrients that growing plants extract from soil.

  11. Crystal Structure of a Histidine Kinase Sensor Domain with Similarity to Periplasmic Binding Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, J.; Le-Khac, M; Hendrickson, W

    2009-01-01

    Histidine kinase receptors are elements of the two-component signal transduction systems commonly found in bacteria and lower eukaryotes, where they are crucial for environmental adaption through the coupling of extracellular changes to intracellular responses. The typical two-component system consists of a membrane-spanning histidine kinase sensor and a cytoplasmic response regulator. In the calssic system, extracellular signals such as small molecule ligands and ions are detected by the periplasmic sensor domain of the histidine kinase receptor, which modulates the catalytic activity of the cytoplasmic histidine kinase domain and promotes ATP-dependent autophosphorylation of a conserved histidine residue. G. sulfurreducens genomic DNA wasmore » used.« less

  12. Applications of pharmacogenomics in regulatory science: a product life cycle review.

    PubMed

    Tan-Koi, W C; Leow, P C; Teo, Y Y

    2018-05-22

    With rapid developments of pharmacogenomics (PGx) and regulatory science, it is important to understand the current PGx integration in product life cycle, impact on clinical practice thus far and opportunities ahead. We conducted a cross-sectional review on PGx-related regulatory documents and implementation guidelines in the United States and Europe. Our review found that although PGx-related guidance in both markets span across the entire product life cycle, the scope of implementation guidelines varies across two continents. Approximately one-third of Food and Drug Administration (FDA)-approved drugs with PGx information in drug labels and half of the European labels posted on PharmGKB website contain recommendations on genetic testing. The drugs affected 19 and 15 World Health Organization Anatomical Therapeutic Chemical drug classes (fourth level) in the United States and Europe, respectively, with protein kinase inhibitors (13 drugs in the United States and 16 drugs in Europe) being most prevalent. Topics of emerging interest were novel technologies, adaptive design in clinical trial and sample collection.

  13. Retaining the next generation of nurses: the Wisconsin nurse residency program provides a continuum of support.

    PubMed

    Bratt, Marilyn Meyer

    2009-09-01

    Because of the high costs associated with new graduate nurse turnover, an academic-service partnership developed a nurse residency program that provides a comprehensive support system that spans 15 months. Now in its fourth year, involving more than 50 urban and rural hospitals of varying sizes and geographic locations, the program provides formalized preceptor training, monthly daylong educational sessions, and mentoring by clinical coaches. Key factors contributing to the success of this program are a dedicated, cohesive planning team of individuals who embrace a common agenda, stakeholder buy-in, appropriate allocation of resources, and clear articulation of measures of success, with associated data collection. Successful elements of the monthly educational sessions are the use of interactive teaching methods, inclusion of content tailored to the unique needs of the nurse residents, and storytelling to facilitate learning from practice. Finally, training to advance the skill development of preceptors, coaches, educators, and facilitators has provided organizations with enduring benefits. Copyright 2009, SLACK Incorporated.

  14. Working memory capacity predicts listwise directed forgetting in adults and children.

    PubMed

    Aslan, Alp; Zellner, Martina; Bäuml, Karl-Heinz T

    2010-05-01

    In listwise directed forgetting, participants are cued to forget previously studied material and to learn new material instead. Such cueing typically leads to forgetting of the first set of material and to memory enhancement of the second. The present study examined the role of working memory capacity in adults' and children's listwise directed forgetting. Working memory capacity was assessed with complex span tasks. In Experiment 1 working memory capacity predicted young adults' directed-forgetting performance, demonstrating a positive relationship between working memory capacity and each of the two directed-forgetting effects. In Experiment 2 we replicated the finding with a sample of first and a sample of fourth-grade children, and additionally showed that working memory capacity can account for age-related increases in directed-forgetting efficiency between the two age groups. Following the view that directed forgetting is mediated by inhibition of the first encoded list, the results support the proposal of a close link between working memory capacity and inhibitory function.

  15. Growing Epidemic of Coronary Heart Disease in Low- and Middle-Income Countries

    PubMed Central

    Gaziano, Thomas A.; Bitton, Asaf; Anand, Shuchi; Abrahams-Gessel, Shafika; Murphy, Adrianna

    2010-01-01

    Coronary heart disease (CHD) is the single largest cause of death in the developed countries and is one of the leading causes of disease burden in developing countries. In 2001, there were 7.3 million deaths due to CHD worldwide. Three-fourths of global deaths due to CHD occurred in the low and middle-income countries. The rapid rise in CHD burden in most of the low and middle and income countries is due to socio-economic changes, increase in life span and acquisition of lifestyle related risk factors. The CHD death rate, however, varies dramatically across the developing countries. The varying incidence, prevalence, and mortality rates reflect the different levels of risk factors, other competing causes of death, availability of resources to combat CVD, and the stage of epidemiologic transition that each country or region finds itself. The economic burden of CHD is equally large but solutions exist to manage this growing burden. PMID:20109979

  16. Toward a continuous 405-kyr-calibrated Astronomical Time Scale for the Mesozoic Era

    NASA Astrophysics Data System (ADS)

    Hinnov, Linda; Ogg, James; Huang, Chunju

    2010-05-01

    Mesozoic cyclostratigraphy is being assembled into a continuous Astronomical Time Scale (ATS) tied to the Earth's cyclic orbital parameters. Recognition of a nearly ubiquitous, dominant ~400-kyr cycling in formations throughout the era has been particularly striking. Composite formations spanning contiguous intervals up to 50 myr clearly express these long-eccentricity cycles, and in some cases, this cycling is defined by third- or fourth-order sea-level sequences. This frequency is associated with the 405-kyr orbital eccentricity cycle, which provides a basic metronome and enables the extension of the well-defined Cenozoic ATS to scale the majority of the Mesozoic Era. This astronomical calibration has a resolution comparable to the 1% to 0.1% precision for radioisotope dating of Mesozoic ash beds, but with the added benefit of providing continuous stratigraphic coverage between dated beds. Extended portions of the Mesozoic ATS provide solutions to long-standing geologic problems of tectonics, eustasy, paleoclimate change, and rates of seafloor spreading.

  17. Multiple Locations of Peptides in the Hydrocarbon Core of Gel-Phase Membranes Revealed by Peptide 13C to Lipid 2H Rotational-Echo Double-Resonance Solid-State Nuclear Magnetic Resonance

    PubMed Central

    2015-01-01

    Membrane locations of peptides and proteins are often critical to their functions. Solid-state rotational-echo double-resonance (REDOR) nuclear magnetic resonance is applied to probe the locations of two peptides via peptide 13CO to lipid 2H distance measurements. The peptides are KALP, an α-helical membrane-spanning peptide, and HFP, the β-sheet N-terminal fusion peptide of the HIV gp41 fusion protein that plays an important role in HIV–host cell membrane fusion. Both peptides are shown to have at least two distinct locations within the hydrocarbon core of gel-phase membranes. The multiple locations are attributed to snorkeling of lysine side chains for KALP and to the distribution of antiparallel β-sheet registries for HFP. The relative population of each location is also quantitated. To the best of our knowledge, this is the first clear experimental support of multiple peptide locations within the membrane hydrocarbon core. These data are for gel-phase membranes, but the approach should work for liquid-ordered membranes containing cholesterol and may be applicable to liquid-disordered membranes with appropriate additional analysis to take into account protein and lipid motion. This paper also describes the methodological development of 13CO–2H REDOR using the lyophilized I4 peptide that is α-helical and 13CO-labeled at A9 and 2Hα-labeled at A8. The I4 spins are well-approximated as an ensemble of isolated 13CO–2H spin pairs each separated by 5.0 Å with a 37 Hz dipolar coupling. A pulse sequence with rectangular 100 kHz 2H π pulses results in rapid and extensive buildup of REDOR (ΔS/S0) with a dephasing time (τ). The buildup is well-fit by a simple exponential function with a rate of 24 Hz and an extent close to 1. These parameter values reflect nonradiative transitions between the 2H spin states during the dephasing period. Each spin pair spends approximately two-thirds of its time in the 13CO–2H (m = ±1) states and approximately one-third of its time in the 13CO–2H (m = 0) state and contributes to the ΔS/S0 buildup during the former but not the latter time segments. PMID:25531389

  18. Inhibition of the Hantavirus Fusion Process by Predicted Domain III and Stem Peptides from Glycoprotein Gc.

    PubMed

    Barriga, Gonzalo P; Villalón-Letelier, Fernando; Márquez, Chantal L; Bignon, Eduardo A; Acuña, Rodrigo; Ross, Breyan H; Monasterio, Octavio; Mardones, Gonzalo A; Vidal, Simon E; Tischler, Nicole D

    2016-07-01

    Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses.

  19. Genes for all metals--a bacterial view of the periodic table. The 1996 Thom Award Lecture.

    PubMed

    Silver, S

    1998-01-01

    Bacterial chromosomes have genes for transport proteins for inorganic nutrient cations and oxyanions, such as NH4+, K+, Mg2+, Co2+, Fe3+, Mn2+, Zn2+ and other trace cations, and PO4(3-), SO4(2-) and less abundant oxyanions. Together these account for perhaps a few hundred genes in many bacteria. Bacterial plasmids encode resistance systems for toxic metal and metalloid ions including Ag+, AsO2-, AsO4(3-), Cd2+, Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, TeO3(2-), Tl+ and Zn2+. Most resistance systems function by energy-dependent efflux of toxic ions. A few involve enzymatic (mostly redox) transformations. Some of the efflux resistance systems are ATPases and others are chemiosmotic ion/proton exchangers. The Cd(2+)-resistance cation pump of Gram-positive bacteria is membrane P-type ATPase, which has been labeled with 32P from [gamma-32P]ATP and drives ATP-dependent Cd2+ (and Zn2+) transport by membrane vesicles. The genes defective in the human hereditary diseases of copper metabolism, Menkes syndrome and Wilson's disease, encode P-type ATPases that are similar to bacterial cadmium ATPases. The arsenic resistance system transports arsenite [As(III)], alternatively with the ArsB polypeptide functioning as a chemiosmotic efflux transporter or with two polypeptides, ArsB and ArsA, functioning as an ATPase. The third protein of the arsenic resistance system is an enzyme that reduces intracellular arsenate [As(V)] to arsenite [As(III)], the substrate of the efflux system. In Gram-negative cells, a three polypeptide complex functions as a chemiosmotic cation/protein exchanger to efflux Cd2+, Zn2+ and Co2+. This pump consists of an inner membrane (CzcA), an outer membrane (CzcC) and a membrane-spanning (CzcB) protein that function together.

  20. Source clustering in the Hi-GAL survey determined using a minimum spanning tree method

    NASA Astrophysics Data System (ADS)

    Beuret, M.; Billot, N.; Cambrésy, L.; Eden, D. J.; Elia, D.; Molinari, S.; Pezzuto, S.; Schisano, E.

    2017-01-01

    Aims: The aims are to investigate the clustering of the far-infrared sources from the Herschel infrared Galactic Plane Survey (Hi-GAL) in the Galactic longitude range of -71 to 67 deg. These clumps, and their spatial distribution, are an imprint of the original conditions within a molecular cloud. This will produce a catalogue of over-densities. Methods: The minimum spanning tree (MST) method was used to identify the over-densities in two dimensions. The catalogue was further refined by folding in heliocentric distances, resulting in more reliable over-densities, which are cluster candidates. Results: We found 1633 over-densities with more than ten members. Of these, 496 are defined as cluster candidates because of the reliability of the distances, with a further 1137 potential cluster candidates. The spatial distributions of the cluster candidates are different in the first and fourth quadrants, with all clusters following the spiral structure of the Milky Way. The cluster candidates are fractal. The clump mass functions of the clustered and isolated are statistically indistinguishable from each other and are consistent with Kroupa's initial mass function. Hi-GAL is a key-project of the Herschel Space Observatory survey (Pilbratt et al. 2010) and uses the PACS (Poglitsch et al. 2010) and SPIRE (Griffin et al. 2010) cameras in parallel mode.The catalogues of cluster candidates and potential clusters are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/597/A114

Top