Science.gov

Sample records for fox transcription factor

  1. Fox transcription factors: from development to disease.

    PubMed

    Golson, Maria L; Kaestner, Klaus H

    2016-12-15

    Forkhead box (Fox) transcription factors are evolutionarily conserved in organisms ranging from yeast to humans. They regulate diverse biological processes both during development and throughout adult life. Mutations in many Fox genes are associated with human disease and, as such, various animal models have been generated to study the function of these transcription factors in mechanistic detail. In many cases, the absence of even a single Fox transcription factor is lethal. In this Primer, we provide an overview of the Fox family, highlighting several key Fox transcription factor families that are important for mammalian development.

  2. Redox regulation of FoxO transcription factors

    PubMed Central

    Klotz, Lars-Oliver; Sánchez-Ramos, Cristina; Prieto-Arroyo, Ignacio; Urbánek, Pavel; Steinbrenner, Holger; Monsalve, Maria

    2015-01-01

    Transcription factors of the forkhead box, class O (FoxO) family are important regulators of the cellular stress response and promote the cellular antioxidant defense. On one hand, FoxOs stimulate the transcription of genes coding for antioxidant proteins located in different subcellular compartments, such as in mitochondria (i.e. superoxide dismutase-2, peroxiredoxins 3 and 5) and peroxisomes (catalase), as well as for antioxidant proteins found extracellularly in plasma (e.g., selenoprotein P and ceruloplasmin). On the other hand, reactive oxygen species (ROS) as well as other stressful stimuli that elicit the formation of ROS, may modulate FoxO activity at multiple levels, including posttranslational modifications of FoxOs (such as phosphorylation and acetylation), interaction with coregulators, alterations in FoxO subcellular localization, protein synthesis and stability. Moreover, transcriptional and posttranscriptional control of the expression of genes coding for FoxOs is sensitive to ROS. Here, we review these aspects of FoxO biology focusing on redox regulation of FoxO signaling, and with emphasis on the interplay between ROS and FoxOs under various physiological and pathophysiological conditions. Of particular interest are the dual role played by FoxOs in cancer development and their key role in whole body nutrient homeostasis, modulating metabolic adaptations and/or disturbances in response to low vs. high nutrient intake. Examples discussed here include calorie restriction and starvation as well as adipogenesis, obesity and type 2 diabetes. PMID:26184557

  3. Clever cancer strategies with FoxO transcription factors.

    PubMed

    Maiese, Kenneth; Chong, Zhao Zhong; Shang, Yan Chen; Hou, Jinling

    2008-12-15

    Given that cancer and related disorders affect a wide spectrum of the world's population, and in most cases are progressive in nature, it is essential that future care must overcome the present limitations of existing therapies in the absence of toxic side effects. Mammalian forkhead transcription factors of the O class (FoxOs) may fill this niche since these proteins are increasingly considered to represent unique cellular targets directed against human cancer in light of their pro-apoptotic effects and ability to lead to cell cycle arrest. Yet, FoxOs also can significantly affect normal cell survival and longevity, requiring new treatments for neoplastic growth to modulate novel pathways that integrate cell proliferation, metabolism, inflammation and survival. In this respect, members of the FoxO family are extremely compelling to consider since these transcription factors have emerged as versatile proteins that can control angiogenesis, stem cell proliferation, cell adhesion and autoimmune disease. Further elucidation of FoxO protein function during neoplastic growth should continue to lay the foundation for the successful translation of these transcription factors into novel and robust clinical therapies for cancer.

  4. The Fox/Forkhead transcription factor family of the hemichordate Saccoglossus kowalevskii

    PubMed Central

    2014-01-01

    Background The Fox gene family is a large family of transcription factors that arose early in organismal evolution dating back to at least the common ancestor of metazoans and fungi. They are key components of many gene regulatory networks essential for embryonic development. Although much is known about the role of Fox genes during vertebrate development, comprehensive comparative studies outside vertebrates are sparse. We have characterized the Fox transcription factor gene family from the genome of the enteropneust hemichordate Saccoglossus kowalevskii, including phylogenetic analysis, genomic organization, and expression analysis during early development. Hemichordates are a sister group to echinoderms, closely related to chordates and are a key group for tracing the evolution of gene regulatory mechanisms likely to have been important in the diversification of the deuterostome phyla. Results Of the 22 Fox gene families that were likely present in the last common ancestor of all deuterostomes, S. kowalevskii has a single ortholog of each group except FoxH, which we were unable to detect, and FoxQ2, which has three paralogs. A phylogenetic analysis of the FoxQ2 family identified an ancestral duplication in the FoxQ2 lineage at the base of the bilaterians. The expression analyses of all 23 Fox genes of S. kowalevskii provide insights into the evolution of components of the regulatory networks for the development of pharyngeal gill slits (foxC, foxL1, and foxI), mesoderm patterning (foxD, foxF, foxG), hindgut development (foxD, foxI), cilia formation (foxJ1), and patterning of the embryonic apical territory (foxQ2). Conclusions Comparisons of our results with data from echinoderms, chordates, and other bilaterians help to develop hypotheses about the developmental roles of Fox genes that likely characterized ancestral deuterostomes and bilaterians, and more recent clade-specific innovations. PMID:24987514

  5. FoxF1 and FoxF2 transcription factors synergistically promote Rhabdomyosarcoma carcinogenesis by repressing transcription of p21Cip1 CDK inhibitor

    PubMed Central

    Cai, Yuqi; Le, Tien; Turpin, Brian; Kalinichenko, Vladimir V.; Kalin, Tanya V.

    2016-01-01

    The role of Forkhead Box F1 (FoxF1) transcription factor in carcinogenesis is not well characterized. Depending on tissue and histological type of cancer, FoxF1 was shown to be either oncogene or tumor suppressor. Alveolar rhabdomyosarcoma (RMS) is the most aggressive pediatric soft tissue sarcoma. While FoxF1 is highly expressed in alveolar RMS, the functional role of FoxF1 in RMS is unknown. The present study demonstrates that expression of FoxF1 and its closely related transcription factor FoxF2 are essential for rhabdomyosarcoma tumor growth. Depletion of FoxF1 or FoxF2 in rhabdomyosarcoma cells decreased tumor growth in orthotopic mouse models of RMS. The decreased tumorigenesis was associated with the reduced tumor cell proliferation. Cell cycle regulatory proteins Cdk2, Cdk4/6, Cyclin D1 and Cyclin E2 were decreased in FoxF1- and FoxF2-deficient RMS tumors. Depletion of either FoxF1 or FoxF2 delayed G1-S cell cycle progression, decreased levels of phosphorylated Rb and increased protein levels of the CDK inhibitors, p21Cip1 and p27Kip1. Depletion of both FoxF1 and FoxF2 in tumor cells completely abrogated RMS tumor growth in mice. Overexpression of either FoxF1 or FoxF2 in tumor cells was sufficient to increase carcinogenesis in orthotopic RMS mouse model. FoxF1 and FoxF2 directly bound to and repressed transcriptional activity of p21Cip1 promoter through −556/−545 bp region, but did not affect p27Kip1 transcription. Knockdown of p21Cip1 restored cell cycle progression in the FoxF1- or FoxF2-deficient tumor cells. Altogether, FoxF1 and FoxF2 promoted RMS tumorigenesis by inducing tumor cell proliferation via transcriptional repression of p21Cip1 gene promoter. Due to robust oncogenic activity in RMS tumors, FoxF1 and FoxF2 may represent promising targets for anti-tumor therapy. PMID:27425595

  6. Thyroid transcription factor FOXE1 interacts with ETS factor ELK1 to co-regulate TERT

    PubMed Central

    Bullock, Martyn; Lim, Grace; Li, Cheng; Choi, In Ho; Kochhar, Shivansh; Liddle, Chris; Zhang, Lei; Clifton-Bligh, Roderick J.

    2016-01-01

    Background Although FOXE1 was initially recognized for its role in thyroid organogenesis, more recently a strong association has been identified between the FOXE1 locus and thyroid cancer. The role of FOXE1 in adult thyroid, and in particular regarding cancer risk, has not been well established. We hypothesised that discovering key FOXE1 transcriptional partners would in turn identify regulatory pathways relevant to its role in oncogenesis. Results In a transcription factor-binding array, ELK1 was identified to bind FOXE1. We confirmed this physical association in heterologously transfected cells by IP and mammalian two-hybrid assays. In thyroid tissue, endogenous FOXE1 was shown to bind ELK1, and using ChIP assays these factors bound thyroid-relevant gene promoters TPO and TERT in close proximity to each other. Using a combination of electromobility shift assays, TERT promoter assays and siRNA-silencing, we found that FOXE1 positively regulated TERT expression in a manner dependent upon its association with ELK1. Treating heterologously transfected thyroid cells with MEK inhibitor U0126 inhibited FOXE1-ELK1 interaction, and reduced TERT and TPO promoter activity. Methodology We investigated FOXE1 interactions within in vitro thyroid cell models and human thyroid tissue using a combination of immunoprecipitation (IP), chromatin IP (ChIP) and gene reporter assays. Conclusions FOXE1 interacts with ELK1 on thyroid relevant gene promoters, establishing a new regulatory pathway for its role in adult thyroid function. Co-regulation of TERT suggests a mechanism by which allelic variants in/near FOXE1 are associated with thyroid cancer risk. PMID:27852061

  7. Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors.

    PubMed

    Allen, David L; Unterman, Terry G

    2007-01-01

    Myostatin, a member of the transforming growth factor (TGF)-beta family, plays an important role in regulating skeletal muscle growth and differentiation. Here we examined the role of FoxO1 and SMAD transcription factors in regulating myostatin gene expression and myoblast differentiation in C(2)C(12) myotubes in vitro. Both myostatin and FoxO1 mRNA expression were greater in fast- vs. slow-twitch skeletal muscles in vivo. Moreover, expression of a constitutively active form of FoxO1 increased myostatin mRNA and increased activity of a myostatin promoter reporter construct in differentiated C(2)C(12) myotubes. Mutagenesis of highly conserved FoxO or SMAD binding sites significantly decreased myostatin promoter activity, and binding assays showed that both FoxO1 and SMADs bind to their respective sites in the myostatin promoter. Treatment with TGF-beta and/or overexpression of SMAD2, -3, or -4 also resulted in a significant increase in myostatin promoter activity. Treatment with TGF-beta along with overexpression of SMAD2 and FoxO1 resulted in the largest increase in myostatin promoter activity. Finally, TGF-beta treatment and SMAD2 overexpression greatly potentiated FoxO1-mediated suppression of myoblast differentiation. Together these data demonstrate that FoxO1 and SMAD transcription factors regulate the expression of myostatin and contribute to the control of muscle cell growth and differentiation.

  8. The "O" class: crafting clinical care with FoxO transcription factors.

    PubMed

    Maiese, Kenneth; Chong, Zhao Zhong; Hou, Jinling; Shang, Yan Chen

    2009-01-01

    Forkhead Transcription Factors: Vital Elements in Biology and Medicine provides a unique platform for the presentation of novel work and new insights into the vital role that forkhead transcription factors play in both cellular physiology as well as clinical medicine. Internationally recognized investigators provide their insights and perspectives for a number of forkhead genes and proteins that may have the greatest impact for the development of new strategies for a broad array of disorders that can involve aging, cancer, cardiac function, neurovascular integrity, fertility, stem cell differentiation, cellular metabolism, and immune system regulation. Yet, the work clearly sets a precedent for the necessity to understand the cellular and molecular function of forkhead proteins since this family of transcription factors can limit as well as foster disease progression depending upon the cellular environment. With this in mind, our concluding chapter for Forkhead Transcription Factors: Vital Elements in Biology andMedicine offers to highlight both the diversity and complexity of the forkhead transcription family by focusing upon the mammalian forkhead transcription factors of the O class (FoxOs) that include FoxO1, FoxO3, FoxO4, and FoxO6. FoxO proteins are increasingly considered to represent unique cellular targets that can control numerous processes such as angiogenesis, cardiovascular development, vascular tone, oxidative stress, stem cell proliferation, fertility, and immune surveillance. Furthermore, FoxO transcription factors are exciting considerations for disorders such as cancer in light of their pro-apoptotic and inhibitory cell cycle effects as well as diabetes mellitus given the close association FoxOs hold with cellular metabolism. In addition, these transcription factors are closely integrated with several novel signal transduction pathways, such as erythropoietin and Wnt proteins, that may influence the ability of FoxOs to lead to cell survival or

  9. Involvement of the transcription factor FoxM1 in contact inhibition

    SciTech Connect

    Faust, Dagmar; Al-Butmeh, Firas; Linz, Berenike; Dietrich, Cornelia

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer The transcription factor FoxM1 is downregulated upon contact inhibition. Black-Right-Pointing-Pointer The decrease in FoxM1 levels occurs very likely due to inhibition of ERK activity. Black-Right-Pointing-Pointer The decrease in FoxM1 is not sufficient, but required for contact inhibition. Black-Right-Pointing-Pointer We propose a new model of contact inhibition involving pRB/E2F and FoxM1. -- Abstract: Contact inhibition is a crucial mechanism regulating proliferation in vitro and in vivo. Although it is generally accepted that contact inhibition plays a pivotal role in maintaining tissue homeostasis, the molecular mechanisms of contact inhibition are still not fully understood. FoxM1 is known as a proliferation-associated transcription factor and is upregulated in many cancer types. Vice versa, anti-proliferative signals, such as TGF-{beta} and differentiation signals decrease FoxM1 expression. Here we investigated the role of FoxM1 in contact inhibition in fibroblasts. We show that protein expression of FoxM1 is severely and rapidly downregulated upon contact inhibition, probably by inhibition of ERK activity, which then leads to decreased expression of cyclin A and polo-like kinase 1. Vice versa, ectopic expression of FoxM1 prevents the decrease in cyclin A and polo-like kinase 1 and causes a two-fold increase in saturation density indicating loss of contact inhibition. Hence, we show that downregulation of FoxM1 is required for contact inhibition by regulating expression of cyclin A and polo-like kinase 1.

  10. Comprehensive expression analysis suggests functional overlapping of human FOX transcription factors in cancer.

    PubMed

    Zhang, Ya-Li; Sun, Feng-Ting; Zhang, Ze; Chen, Xiao-Xu; Liu, Ai-Xiang; Pan, Jing-Jing; Peng, Fei; Zhou, Shuai; Sun, Li-Jun

    2014-01-01

    Forkhead-box (FOX) transcription factors comprise a large gene family that contains more than 50 members in man. Extensive studies have revealed that they not only have functions in control of growth and development, but also play important roles in different diseases, especially in cancer. However, biological functions for most of the members in the FOX family remain unknown. In the present study, the expression of 39 FOX genes in 48 kinds of cancer was mined from the Gene Expression Atlas database of European Bioinformatics Institute. The analysis results showed that some FOX genes demonstrate overlapping expression in various cancers, which suggests particular biological functions. The pleiotropic features of the FOX genes make them excellent candidates in efforts aimed to give medical treatment for cancers at the genetic level. The results also indicated that different FOX genes may have the synergy or antagonistics effects in the same cancers. The study provides clues for further functional analysis of FOX genes, especially for the pleiotropic biological functions and crosstalk of FOX genes in human cancers.

  11. Evolutionarily Ancient Association of the FoxJ1 Transcription Factor with the Motile Ciliogenic Program

    PubMed Central

    Ho, Hao Kee; Babu, Deepak; Eitel, Michael; Narasimhan, Vijayashankaranarayanan; Tiku, Varnesh; Westbrook, Jody; Schierwater, Bernd; Roy, Sudipto

    2012-01-01

    It is generally believed that the last eukaryotic common ancestor (LECA) was a unicellular organism with motile cilia. In the vertebrates, the winged-helix transcription factor FoxJ1 functions as the master regulator of motile cilia biogenesis. Despite the antiquity of cilia, their highly conserved structure, and their mechanism of motility, the evolution of the transcriptional program controlling ciliogenesis has remained incompletely understood. In particular, it is presently not known how the generation of motile cilia is programmed outside of the vertebrates, and whether and to what extent the FoxJ1-dependent regulation is conserved. We have performed a survey of numerous eukaryotic genomes and discovered that genes homologous to foxJ1 are restricted only to organisms belonging to the unikont lineage. Using a mis-expression assay, we then obtained evidence of a conserved ability of FoxJ1 proteins from a number of diverse phyletic groups to activate the expression of a host of motile ciliary genes in zebrafish embryos. Conversely, we found that inactivation of a foxJ1 gene in Schmidtea mediterranea, a platyhelminth (flatworm) that utilizes motile cilia for locomotion, led to a profound disruption in the differentiation of motile cilia. Together, all of these findings provide the first evolutionary perspective into the transcriptional control of motile ciliogenesis and allow us to propose a conserved FoxJ1-regulated mechanism for motile cilia biogenesis back to the origin of the metazoans. PMID:23144623

  12. Transcription Factor FoxO1 Is Essential for Enamel Biomineralization

    PubMed Central

    Poché, Ross A.; Sharma, Ramaswamy; Garcia, Monica D.; Wada, Aya M.; Nolte, Mark J.; Udan, Ryan S.; Paik, Ji-Hye; DePinho, Ronald A.; Bartlett, John D.; Dickinson, Mary E.

    2012-01-01

    The Transforming growth factor β (Tgf-β) pathway, by signaling via the activation of Smad transcription factors, induces the expression of many diverse downstream target genes thereby regulating a vast array of cellular events essential for proper development and homeostasis. In order for a specific cell type to properly interpret the Tgf-β signal and elicit a specific cellular response, cell-specific transcriptional co-factors often cooperate with the Smads to activate a discrete set of genes in the appropriate temporal and spatial manner. Here, via a conditional knockout approach, we show that mice mutant for Forkhead Box O transcription factor FoxO1 exhibit an enamel hypomaturation defect which phenocopies that of the Smad3 mutant mice. Furthermore, we determined that both the FoxO1 and Smad3 mutant teeth exhibit changes in the expression of similar cohort of genes encoding enamel matrix proteins required for proper enamel development. These data raise the possibility that FoxO1 and Smad3 act in concert to regulate a common repertoire of genes necessary for complete enamel maturation. This study is the first to define an essential role for the FoxO family of transcription factors in tooth development and provides a new molecular entry point which will allow researchers to delineate novel genetic pathways regulating the process of biomineralization which may also have significance for studies of human tooth diseases such as amelogenesis imperfecta. PMID:22291941

  13. Transcription factor FoxO1 is essential for enamel biomineralization.

    PubMed

    Poché, Ross A; Sharma, Ramaswamy; Garcia, Monica D; Wada, Aya M; Nolte, Mark J; Udan, Ryan S; Paik, Ji-Hye; DePinho, Ronald A; Bartlett, John D; Dickinson, Mary E

    2012-01-01

    The Transforming growth factor β (Tgf-β) pathway, by signaling via the activation of Smad transcription factors, induces the expression of many diverse downstream target genes thereby regulating a vast array of cellular events essential for proper development and homeostasis. In order for a specific cell type to properly interpret the Tgf-β signal and elicit a specific cellular response, cell-specific transcriptional co-factors often cooperate with the Smads to activate a discrete set of genes in the appropriate temporal and spatial manner. Here, via a conditional knockout approach, we show that mice mutant for Forkhead Box O transcription factor FoxO1 exhibit an enamel hypomaturation defect which phenocopies that of the Smad3 mutant mice. Furthermore, we determined that both the FoxO1 and Smad3 mutant teeth exhibit changes in the expression of similar cohort of genes encoding enamel matrix proteins required for proper enamel development. These data raise the possibility that FoxO1 and Smad3 act in concert to regulate a common repertoire of genes necessary for complete enamel maturation. This study is the first to define an essential role for the FoxO family of transcription factors in tooth development and provides a new molecular entry point which will allow researchers to delineate novel genetic pathways regulating the process of biomineralization which may also have significance for studies of human tooth diseases such as amelogenesis imperfecta.

  14. Spatial and temporal expression of FoxO transcription factors in the developing and adult murine brain.

    PubMed

    Hoekman, Marco F M; Jacobs, Frank M J; Smidt, Marten P; Burbach, J Peter H

    2006-01-01

    In order to obtain leads to molecular mechanisms of signal transduction pathways and controlled gene expression in neuronal development we have screened the adult mouse brain for expressed forkhead transcription factors using a degenerate RT-PCR approach. Here, we focus on three FoxO genes found to be expressed in the brain: FoxO1, FoxO3 and FoxO6. The FoxO subfamily of forkhead transcription family is emerging as a central keypoint in an array of cellular functions, such as metabolism, differentiation and transformation. In situ hybridization experiments on adult and embryonic mouse brain showed differential expression patterns for three FoxO members. FoxO1 was strongly expressed in the striatum and neuronal subsets of the hippocampus (dentate gyrus and the ventral/posterior part of the CA regions), whereas FoxO3 was more diffusely expressed throughout the brain including all hippocampal areas, cortex and cerebellum. FoxO6 expression was eminent in various parts of the adult mouse brain, including the entire hippocampus, the amygdalohippocampal area and the shell of the nucleus accumbens. Remarkably, all three FoxO transcription factors were expressed relatively late in the developing murine brain, starting between E12.5 and E14. In summary, the presented data show FoxO factors to be expressed in the adult and developing mouse brain, in a spatially end temporally restricted manner.

  15. Nuclear/cytoplasmic shuttling of the transcription factor FoxO1 is regulated by neurotrophic factors.

    PubMed

    Gan, Lixia; Zheng, Wenhua; Chabot, Jean-Guy; Unterman, Terry G; Quirion, Remi

    2005-06-01

    FoxO1, a member of the FoxO subfamily of forkhead transcription factors, is an important target for insulin and growth factor signaling in the regulation of metabolism, cell cycle and proliferation, and survival in peripheral tissues. However, its role in the central nervous system is mostly unknown. In this study, we examined the effect of neurotrophic factors on nuclear/cytoplasmic shuttling of FoxO1. We showed that insulin-like growth factor-1 (IGF-1) and nerve growth factor (NGF) potently induced the nuclear exclusion of FoxO1-green fluorescent protein (GFP) while neurotrophin (NT)-3 and NT-4 were much weaker and brain-derived neurotrophic factor (BDNF) failed to induce FoxO1 translocation in PC12 cells. FoxO1 translocation was inhibited by LY294002, a well-established PI3K/Akt kinase inhibitor. Moreover, FoxO1 was phosphorylated at Thr24 and Ser256 residues by the above neurotrophic factors, with the exception of BDNF. Triple mutant FoxO1, in which three Akt/PKB phosphorylation sites (Thr24, Ser256 and Ser319) were mutated to alanine, resulted in the complete nuclear targeting of the expressed FoxO1-GFP fusion protein in the presence of the above neurotrophic factors in both PC12 cells and cultured hippocampal and cortical neurons. Taken together, these findings demonstrate that neurotrophic factors are able to regulate nuclear/cytoplasmic shuttling of FoxO1 via the PI3K/Akt pathway in neuronal cells.

  16. The Transcription Factor FoxK Participates with Nup98 To Regulate Antiviral Gene Expression

    PubMed Central

    Panda, Debasis; Gold, Beth; Tartell, Michael A.; Rausch, Keiko; Casas-Tinto, Sergio

    2015-01-01

    ABSTRACT Upon infection, pathogen recognition leads to a rapidly activated gene expression program that induces antimicrobial effectors to clear the invader. We recently found that Nup98 regulates the expression of a subset of rapidly activated antiviral genes to restrict disparate RNA virus infections in Drosophila by promoting RNA polymerase occupancy at the promoters of these antiviral genes. How Nup98 specifically targets these loci was unclear; however, it is known that Nup98 participates with transcription factors to regulate developmental-gene activation. We reasoned that additional transcription factors may facilitate the Nup98-dependent expression of antiviral genes. In a genome-wide RNA interference (RNAi) screen, we identified a relatively understudied forkhead transcription factor, FoxK, as active against Sindbis virus (SINV) in Drosophila. Here we find that FoxK is active against the panel of viruses that are restricted by Nup98, including SINV and vesicular stomatitis virus (VSV). Mechanistically, we show that FoxK coordinately regulates the Nup98-dependent expression of antiviral genes. Depletion of FoxK significantly reduces Nup98-dependent induction of antiviral genes and reduces the expression of a forkhead response element-containing luciferase reporter. Together, these data show that FoxK-mediated activation of gene expression is Nup98 dependent. We extended our studies to mammalian cells and found that the mammalian ortholog FOXK1 is antiviral against two disparate RNA viruses, SINV and VSV, in human cells. Interestingly, FOXK1 also plays a role in the expression of antiviral genes in mammals: depletion of FOXK1 attenuates virus-inducible interferon-stimulated response element (ISRE) reporter expression. Overall, our results demonstrate a novel role for FOXK1 in regulating the expression of antiviral genes, from insects to humans. PMID:25852164

  17. Anoxia-responsive regulation of the FoxO transcription factors in freshwater turtles, Trachemys scripta elegans.

    PubMed

    Krivoruchko, Anastasia; Storey, Kenneth B

    2013-11-01

    The forkhead class O (FoxO) transcription factors are important regulators of multiple aspects of cellular metabolism. We hypothesized that activation of these transcription factors could play crucial roles in low oxygen survival in the anoxia-tolerant turtle, Trachemys scripta elegans. Two FoxOs, FoxO1 and FoxO3, were examined in turtle tissues in response to 5 and 20h of anoxic submergence using techniques of RT-PCR, western immunoblotting and DNA-binding assays to assess activation. Transcript levels of FoxO-responsive genes were also quantified using RT-PCR. FoxO1 was anoxia-responsive in the liver, with increases in transcript levels, protein levels, nuclear levels and DNA-binding of 1.7-4.8fold in response to anoxia. Levels of phosphorylated FoxO1 also decreased to 57% of control values in response to 5h of anoxia, indicating activation. FoxO3 was activated in the heart, kidney and liver in response to anoxia, with nuclear levels increasing by 1.5-3.7fold and DNA-binding activity increasing by 1.3-2.9fold. Transcript levels of two FoxO-target genes, p27kip1 and catalase, also rose by 2.4-2.5fold in the turtle liver under anoxia. The results suggest that the FoxO transcription factors are activated in response to anoxia in T. scripta elegans, potentially contributing to the regulation of stress resistance and metabolic depression. This study provides the first demonstration of activation of FoxOs in a natural model for vertebrate anoxia tolerance, further improving understanding of how tissues can survive without oxygen. © 2013.

  18. Loss of Interdependent Binding by the FoxO1 and FoxA1/A2 Forkhead Transcription Factors Culminates in Perturbation of Active Chromatin Marks and Binding of Transcriptional Regulators at Insulin-sensitive Genes.

    PubMed

    Yalley, Akua; Schill, Daniel; Hatta, Mitsutoki; Johnson, Nicole; Cirillo, Lisa Ann

    2016-04-15

    FoxO1 binds to insulin response elements located in the promoters of insulin-like growth factor-binding protein 1 (IGFBP1) and glucose-6-phosphatase (G6Pase), activating their expression. Insulin-mediated phosphorylation of FoxO1 promotes cytoplasmic translocation, inhibiting FoxO1-mediated transactivation. We have previously demonstrated that FoxO1 opens and remodels chromatin assembled from the IGFBP1 promoter via a highly conserved winged helix motif. This finding, which established FoxO1 as a "pioneer" factor, suggested a model whereby FoxO1 chromatin remodeling at regulatory targets facilitates binding and recruitment of additional regulatory factors. However, the impact of FoxO1 phosphorylation on its ability to bind chromatin and the effect of FoxO1 loss on recruitment of neighboring transcription factors at its regulatory targets in liver chromatin is unknown. In this study, we demonstrate that an amino acid substitution that mimics insulin-mediated phosphorylation of a serine in the winged helix DNA binding motif curtails FoxO1 nucleosome binding. We also demonstrate that shRNA-mediated loss of FoxO1 binding to the IGFBP1 and G6Pase promoters in HepG2 cells significantly reduces binding of RNA polymerase II and the pioneer factors FoxA1/A2. Knockdown of FoxA1 similarly reduced binding of RNA polymerase II and FoxO1. Reduction in acetylation of histone H3 Lys-27 accompanies loss of FoxO1 and FoxA1/A2 binding. Interdependent binding of FoxO1 and FoxA1/A2 possibly entails cooperative binding because FoxO1 and FoxA1/A2 facilitate one another's binding to IGFPB1 promoter DNA. These results illustrate how transcription factors can nucleate transcriptional events in chromatin in response to signaling events and suggest a model for regulation of hepatic glucose metabolism through interdependent FoxO/FoxA binding.

  19. Fox Tales: Regulation of Gonadotropin Gene Expression by Forkhead Transcription Factors

    PubMed Central

    Thackray, Varykina G.

    2013-01-01

    Luteinizing hormone (LH) and follicle-stimulating hormone (FSH) are produced by pituitary gonadotrope cells and are required for steroidogenesis, the maturation of ovarian follicles, ovulation, and spermatogenesis. Synthesis of LH and FSH is tightly regulated by a complex network of signaling pathways activated by hormones including gonadotropin-releasing hormone, activin and sex steroids. Members of the forkhead box (FOX) transcription factor family have been shown to act as important regulators of development, homeostasis and reproduction. In this review, we focus on the role of four specific FOX factors (FOXD1, FOXL2, FOXO1 and FOXP3) in gonadotropin hormone production and discuss our current understanding of the molecular function of these factors derived from studies in mouse genetic and cell culture models. PMID:24099863

  20. Endometrial factors similarly induced by IFNT2 and IFNTc1 through transcription factor FOXS1

    PubMed Central

    Kusama, Kazuya; Bai, Rulan; Nakamura, Keigo; Okada, Sayaka; Yasuda, Jiro; Imakawa, Kazuhiko

    2017-01-01

    In ruminants, Interferon tau (IFNT) is the pregnancy recognition protein produced by the mononuclear trophectoderm of the conceptus, and is secreted into the uterine lumen during the peri-attachment period. In our previous study, the high-throughput RNA sequencing (RNA-seq) data obtained from bovine conceptuses during the peri-attachment period identified two IFNT mRNAs, IFNT2 and IFNTc1. However, how each of these IFNT variants regulates endometrial gene expression has not been characterized. Using RNA-seq analysis, we evaluated how IFNT2 and IFNTc1 affected transcript expression in primary bovine endometrial epithelial cells (EECs). IFNT treatment induced 348 differentially expressed genes (DEGs); however, there are few DEGs in IFNT2 or IFNTc1 treated EECs, indicating that IFNT2-induced DEGs were similar to those induced by IFNTc1 treatment. In in silico analysis, we identified four IFNT2- and IFNTc1-induced pathways: 1) type II interferon signaling, 2) proteasome degradation, 3) type III interferon signaling, and 4) DNA damage response. We further demonstrated that IFNT2 and IFNTc1 up-regulated several transcription factors, among which forkhead box S1 (FOXS1) was identified as the most highly expressed gene. Furthermore, the knockdown of FOXS1 in IFNT2- or IFNTc1-treated EECs similarly down-regulated 9 genes including IRF3 and IRF9, and up-regulated 9 genes including STAT1, STAT2, and IRF8. These represent the first demonstration that effects of each IFNT on EECs were studied, and suggest that endometrial response as well as signaling mechanisms were similar between two IFNT variants existed in utero. PMID:28199372

  1. Endometrial factors similarly induced by IFNT2 and IFNTc1 through transcription factor FOXS1.

    PubMed

    Kusama, Kazuya; Bai, Rulan; Nakamura, Keigo; Okada, Sayaka; Yasuda, Jiro; Imakawa, Kazuhiko

    2017-01-01

    In ruminants, Interferon tau (IFNT) is the pregnancy recognition protein produced by the mononuclear trophectoderm of the conceptus, and is secreted into the uterine lumen during the peri-attachment period. In our previous study, the high-throughput RNA sequencing (RNA-seq) data obtained from bovine conceptuses during the peri-attachment period identified two IFNT mRNAs, IFNT2 and IFNTc1. However, how each of these IFNT variants regulates endometrial gene expression has not been characterized. Using RNA-seq analysis, we evaluated how IFNT2 and IFNTc1 affected transcript expression in primary bovine endometrial epithelial cells (EECs). IFNT treatment induced 348 differentially expressed genes (DEGs); however, there are few DEGs in IFNT2 or IFNTc1 treated EECs, indicating that IFNT2-induced DEGs were similar to those induced by IFNTc1 treatment. In in silico analysis, we identified four IFNT2- and IFNTc1-induced pathways: 1) type II interferon signaling, 2) proteasome degradation, 3) type III interferon signaling, and 4) DNA damage response. We further demonstrated that IFNT2 and IFNTc1 up-regulated several transcription factors, among which forkhead box S1 (FOXS1) was identified as the most highly expressed gene. Furthermore, the knockdown of FOXS1 in IFNT2- or IFNTc1-treated EECs similarly down-regulated 9 genes including IRF3 and IRF9, and up-regulated 9 genes including STAT1, STAT2, and IRF8. These represent the first demonstration that effects of each IFNT on EECs were studied, and suggest that endometrial response as well as signaling mechanisms were similar between two IFNT variants existed in utero.

  2. FoxO1 interacts with transcription factor EB and differentially regulates mitochondrial uncoupling proteins via autophagy in adipocytes

    PubMed Central

    Liu, Longhua; Tao, Zhipeng; Zheng, Louise D; Brooke, Joseph P; Smith, Cayleen M; Liu, Dongmin; Long, Yun Chau; Cheng, Zhiyong

    2016-01-01

    Mitochondrial uncoupling proteins (UCPs) are inducible and play an important role in metabolic and redox homeostasis. Recent studies have suggested that FoxO1 controls mitochondrial biogenesis and morphology, but it remains largely unknown how FoxO1 may regulate mitochondrial UCPs. Here we show that FoxO1 interacted with transcription factor EB (Tfeb), a key regulator of autophagosome and lysosome, and mediated the expression of UCP1, UCP2 and UCP3 differentially via autophagy in adipocytes. UCP1 was down-regulated but UCP2 and UCP3 were upregulated during adipocyte differentiation, which was associated with increased Tfeb and autophagy activity. However, inhibition of FoxO1 suppressed Tfeb and autophagy, attenuating UCP2 and UCP3 but increasing UCP1 expression. Pharmacological blockade of autophagy recapitulated the effects of FoxO1 inhibition on UCPs. Chromatin immunoprecipitation assay demonstrated that FoxO1 interacted with Tfeb by directly binding to its promoter, and silencing FoxO1 led to drastic decrease in Tfeb transcript and protein levels. These data provide the first line of evidence that FoxO1 interacts with Tfeb to regulate autophagy and UCP expression in adipocytes. Dysregulation of FoxO1→autophagy→UCP pathway may account for metabolic changes in obesity. PMID:27777789

  3. Pro-proliferative and inflammatory signaling converge on FoxO1 transcription factor in pulmonary hypertension.

    PubMed

    Savai, Rajkumar; Al-Tamari, Hamza M; Sedding, Daniel; Kojonazarov, Baktybek; Muecke, Christian; Teske, Rebecca; Capecchi, Mario R; Weissmann, Norbert; Grimminger, Friedrich; Seeger, Werner; Schermuly, Ralph Theo; Pullamsetti, Soni Savai

    2014-11-01

    Pulmonary hypertension (PH) is characterized by increased proliferation and apoptosis resistance of pulmonary artery smooth muscle cells (PASMCs). Forkhead box O (FoxO) transcription factors are key regulators of cellular proliferation. Here we show that in pulmonary vessels and PASMCs of human and experimental PH lungs, FoxO1 expression is downregulated and FoxO1 is inactivated via phosphorylation and nuclear exclusion. These findings could be reproduced using ex vivo exposure of PASMCs to growth factors and inflammatory cytokines. Pharmacological inhibition and genetic ablation of FoxO1 in smooth muscle cells reproduced PH features in vitro and in vivo. Either pharmacological reconstitution of FoxO1 activity using intravenous or inhaled paclitaxel, or reconstitution of the transcriptional activity of FoxO1 by gene therapy, restored the physiologically quiescent PASMC phenotype in vitro, linked to changes in cell cycle control and bone morphogenic protein receptor type 2 (BMPR2) signaling, and reversed vascular remodeling and right-heart hypertrophy in vivo. Thus, PASMC FoxO1 is a critical integrator of multiple signaling pathways driving PH, and reconstitution of FoxO1 activity offers a potential therapeutic option for PH.

  4. The forkhead transcription factor FoxI1 remains bound to condensed mitotic chromosomes and stably remodels chromatin structure.

    PubMed

    Yan, Jizhou; Xu, Lisha; Crawford, Gregory; Wang, Zenfeng; Burgess, Shawn M

    2006-01-01

    All forkhead (Fox) proteins contain a highly conserved DNA binding domain whose structure is remarkably similar to the winged-helix structures of histones H1 and H5. Little is known about Fox protein binding in the context of higher-order chromatin structure in living cells. We created a stable cell line expressing FoxI1-green fluorescent protein (GFP) or FoxI1-V5 fusion proteins under control of the reverse tetracycline-controlled transactivator doxycycline inducible system and found that unlike most transcription factors, FoxI1 remains bound to the condensed chromosomes during mitosis. To isolate DNA fragments directly bound by the FoxI1 protein within living cells, we performed chromatin immunoprecipitation assays (ChIPs) with antibodies to either enhanced GFP or the V5 epitope and subcloned the FoxI1-enriched DNA fragments. Sequence analyses indicated that 88% (106/121) of ChIP sequences contain the consensus binding sites for all Fox proteins. Testing ChIP sequences with a quantitative DNase I hypersensitivity assay showed that FoxI1 created stable DNase I sensitivity changes in condensed chromosomes. The majority of ChIP targets and random targets increased in resistance to DNase I in FoxI1-expressing cells, but a small number of targets became more accessible to DNase I. Consistently, the accessibility of micrococcal nuclease to chromatin was generally inhibited. Micrococcal nuclease partial digestion generated a ladder in which all oligonucleosomes were slightly longer than those observed with the controls. On the basis of these findings, we propose that FoxI1 is capable of remodeling chromatin higher-order structure and can stably create site-specific changes in chromatin to either stably create or remove DNase I hypersensitive sites.

  5. Forkhead transcription factor FoxF1 interacts with Fanconi anemia protein complexes to promote DNA damage response

    PubMed Central

    Pradhan, Arun; Ustiyan, Vladimir; Zhang, Yufang; Kalin, Tanya V.; Kalinichenko, Vladimir V.

    2016-01-01

    Forkhead box F1 (Foxf1) transcription factor is an important regulator of embryonic development but its role in tumor cells remains incompletely understood. While 16 proteins were characterized in Fanconi anemia (FA) core complex, its interactions with cellular transcriptional machinery remain poorly characterized. Here, we identified FoxF1 protein as a novel interacting partner of the FA complex proteins. Using multiple human and mouse tumor cell lines and Foxf1+/− mice we demonstrated that FoxF1 physically binds to and increases stability of FA proteins. FoxF1 co-localizes with FANCD2 in DNA repair foci in cultured cells and tumor tissues obtained from cisplatin-treated mice. In response to DNA damage, FoxF1-deficient tumor cells showed significantly reduced FANCD2 monoubiquitination and FANCM phosphorylation, resulting in impaired formation of DNA repair foci. FoxF1 knockdown caused chromosomal instability, nuclear abnormalities, and increased tumor cell death in response to DNA-damaging agents. Overexpression of FoxF1 in DNA-damaged cells improved stability of FA proteins, decreased chromosomal and nuclear aberrations, restored formation of DNA repair foci and prevented cell death after DNA damage. These findings demonstrate that FoxF1 is a key component of FA complexes and a critical mediator of DNA damage response in tumor cells. PMID:26625197

  6. Forkhead transcription factor FoxF1 interacts with Fanconi anemia protein complexes to promote DNA damage response.

    PubMed

    Pradhan, Arun; Ustiyan, Vladimir; Zhang, Yufang; Kalin, Tanya V; Kalinichenko, Vladimir V

    2016-01-12

    Forkhead box F1 (Foxf1) transcription factor is an important regulator of embryonic development but its role in tumor cells remains incompletely understood. While 16 proteins were characterized in Fanconi anemia (FA) core complex, its interactions with cellular transcriptional machinery remain poorly characterized. Here, we identified FoxF1 protein as a novel interacting partner of the FA complex proteins. Using multiple human and mouse tumor cell lines and Foxf1+/- mice we demonstrated that FoxF1 physically binds to and increases stability of FA proteins. FoxF1 co-localizes with FANCD2 in DNA repair foci in cultured cells and tumor tissues obtained from cisplatin-treated mice. In response to DNA damage, FoxF1-deficient tumor cells showed significantly reduced FANCD2 monoubiquitination and FANCM phosphorylation, resulting in impaired formation of DNA repair foci. FoxF1 knockdown caused chromosomal instability, nuclear abnormalities, and increased tumor cell death in response to DNA-damaging agents. Overexpression of FoxF1 in DNA-damaged cells improved stability of FA proteins, decreased chromosomal and nuclear aberrations, restored formation of DNA repair foci and prevented cell death after DNA damage. These findings demonstrate that FoxF1 is a key component of FA complexes and a critical mediator of DNA damage response in tumor cells.

  7. Increased Expression of FoxM1 Transcription Factor in Respiratory Epithelium Inhibits Lung Sacculation and Causes Clara Cell Hyperplasia

    PubMed Central

    Wang, I-Ching; Zhang, Yufang; Snyder, Jonathan; Sutherland, Mardi J.; Burhans, Michael S.; Shannon, John M.; Park, Hyun Jung; Whitsett, Jeffrey A.; Kalinichenko, Vladimir V.

    2010-01-01

    Foxm1 is a member of the Forkhead Box (Fox) family of transcription factors. Foxm1 (previously called Foxm1b, HFH-11B, Trident, Win, or MPP2) is expressed in multiple cell types and plays important roles in cellular proliferation, differentiation and tumorigenesis. Genetic deletion of Foxm1 from mouse respiratory epithelium during initial stages of lung development inhibits lung maturation and causes respiratory failure after birth. However, the role of Foxm1 during postnatal lung morphogenesis remains unknown. In the present study, Foxm1 expression was detected in epithelial cells of conducting and peripheral airways and changing dynamically with lung maturation. To discern the biological role of Foxm1 in the prenatal and postnatal lung, a novel transgenic mouse line that expresses a constitutively active form of FoxM1 (FoxM1 N-terminal deletion mutant or FoxM1-ΔN) under the control of lung epithelial-specific SPC promoter was produced. Expression of the FoxM1-ΔN transgene during embryogenesis caused epithelial hyperplasia, inhibited lung sacculation and expression of the type II epithelial marker, pro-SPC. Expression of FoxM1-ΔN mutant during the postnatal period did not influence alveologenesis but caused focal airway hyperplasia and increased proliferation of Clara cells. Likewise, expression of FoxM1-ΔN mutant in conducting airways with Scgb1a1 promoter was sufficient to induce Clara cell hyperplasia. Furthermore, FoxM1-ΔN cooperated with activated K-Ras to induce lung tumor growth in vivo. Increased activity of Foxm1 altered lung sacculation, induced proliferation in the respiratory epithelium and accelerated lung tumor growth, indicating that precise regulation of Foxm1 is critical for normal lung morphogenesis and development of lung cancer. PMID:20816795

  8. The pioneer transcription factor FoxA maintains an accessible nucleosome configuration at enhancers for tissue-specific gene activation

    PubMed Central

    Iwafuchi-Doi, Makiko; Donahue, Greg; Kakumanu, Akshay; Watts, Jason A.; Mahony, Shaun; Pugh, B. Franklin; Lee, Dolim; Kaestner, Klaus H.; Zaret, Kenneth S.

    2016-01-01

    SUMMARY Nuclear DNA wraps around core histones to form nucleosomes, which restricts the binding of transcription factors to gene regulatory sequences. Pioneer transcription factors can bind DNA sites on nucleosomes and initiate gene regulatory events, often leading to the local opening of chromatin. However, the nucleosomal configuration of open chromatin and the basis for its regulation is unclear. We combined low and high levels of MNase digestion along with core histone mapping to assess the nucleosomal configuration at enhancers and promoters in mouse liver. We find that MNase-accessible nucleosomes, bound by transcription factors, are retained more at liver-specific enhancers than at promoters and ubiquitous enhancers. The pioneer factor FoxA displaces linker histone H1, thereby keeping enhancer nucleosomes accessible in chromatin and allowing other liver-specific transcription factors to bind and stimulate transcription. Thus, nucleosomes are not exclusively repressive to gene regulation when they are retained with, and exposed by, pioneer factors. PMID:27058788

  9. STAT3 protein interacts with Class O Forkhead transcription factors in the cytoplasm and regulates nuclear/cytoplasmic localization of FoxO1 and FoxO3a proteins in CD4(+) T cells.

    PubMed

    Oh, Hyun-Mee; Yu, Cheng-Rong; Dambuza, Ivy; Marrero, Bernadette; Egwuagu, Charles E

    2012-08-31

    An important feature of the adaptive immune response is its remarkable capacity to regulate the duration of inflammatory responses, and effector T cells have been shown to limit excessive immune responses by producing anti-inflammatory cytokines such as IL-10 and IL-27. However, how anti-inflammatory cytokines mediate their suppressive activities is not well understood. In this study, we show that STAT3 contributes to mechanisms that control the duration of T cell proliferation by regulating the subcellular location of FoxO1 and FoxO3a, two Class O Forkhead transcription factors that mediate lymphocyte quiescence and inhibit T cell activation. We show that active FoxO1 and FoxO3a reside exclusively in the nucleus of naïve T cells whereas inactive pFoxO1 and pFoxO3a were most abundant in activated T cells and sequestered in their cytoplasm in association with unphosphorylated STAT3 (U-STAT3) and 14-3-3. We further show that FoxO1/FoxO3a rapidly relocalized into the nucleus in response to pSTAT3 activation by IL-6 or IL-10, and the accumulation of FoxO1/FoxO3a in their nuclei coincided with increased expression of p27(Kip1) and p21(WAF1). STAT3 inhibitors completely abrogated cytokine-induced translocation of FoxO1/FoxO3a into the nucleus. In naïve or resting STAT3-deficient T cells, expression of pFoxO1/pFoxO3a was predominantly in the cytoplasm and correlated with defects in p27(Kip1) and p21(WAF1) expression, suggesting requirement of STAT3 for importation or retention of FoxO in the nucleus and attenuation of lymphocyte proliferation. Taken together, these results suggest that U-STAT3 collaborates with 14-3-3 to sequester pFoxO1/pFoxO3a in cytoplasm and thus prolong T cell activation, whereas pSTAT3 activation by anti-inflammatory cytokines would curtail the duration of TCR activation and re-establish lymphocyte quiescence by inducing nuclear localization of FoxO1/FoxO3a and FoxO-mediated expression of growth-inhibitory proteins.

  10. STAT3 Protein Interacts with Class O Forkhead Transcription Factors in the Cytoplasm and Regulates Nuclear/Cytoplasmic Localization of FoxO1 and FoxO3a Proteins in CD4+ T Cells*

    PubMed Central

    Oh, Hyun-Mee; Yu, Cheng-Rong; Dambuza, Ivy; Marrero, Bernadette; Egwuagu, Charles E.

    2012-01-01

    An important feature of the adaptive immune response is its remarkable capacity to regulate the duration of inflammatory responses, and effector T cells have been shown to limit excessive immune responses by producing anti-inflammatory cytokines such as IL-10 and IL-27. However, how anti-inflammatory cytokines mediate their suppressive activities is not well understood. In this study, we show that STAT3 contributes to mechanisms that control the duration of T cell proliferation by regulating the subcellular location of FoxO1 and FoxO3a, two Class O Forkhead transcription factors that mediate lymphocyte quiescence and inhibit T cell activation. We show that active FoxO1 and FoxO3a reside exclusively in the nucleus of naïve T cells whereas inactive pFoxO1 and pFoxO3a were most abundant in activated T cells and sequestered in their cytoplasm in association with unphosphorylated STAT3 (U-STAT3) and 14-3-3. We further show that FoxO1/FoxO3a rapidly relocalized into the nucleus in response to pSTAT3 activation by IL-6 or IL-10, and the accumulation of FoxO1/FoxO3a in their nuclei coincided with increased expression of p27Kip1 and p21WAF1. STAT3 inhibitors completely abrogated cytokine-induced translocation of FoxO1/FoxO3a into the nucleus. In naïve or resting STAT3-deficient T cells, expression of pFoxO1/pFoxO3a was predominantly in the cytoplasm and correlated with defects in p27Kip1 and p21WAF1 expression, suggesting requirement of STAT3 for importation or retention of FoxO in the nucleus and attenuation of lymphocyte proliferation. Taken together, these results suggest that U-STAT3 collaborates with 14-3-3 to sequester pFoxO1/pFoxO3a in cytoplasm and thus prolong T cell activation, whereas pSTAT3 activation by anti-inflammatory cytokines would curtail the duration of TCR activation and re-establish lymphocyte quiescence by inducing nuclear localization of FoxO1/FoxO3a and FoxO-mediated expression of growth-inhibitory proteins. PMID:22761423

  11. SIRT1 Protein, by Blocking the Activities of Transcription Factors FoxO1 and FoxO3, Inhibits Muscle Atrophy and Promotes Muscle Growth*

    PubMed Central

    Lee, Donghoon; Goldberg, Alfred L.

    2013-01-01

    In several cell types, the protein deacetylase SIRT1 regulates the activities of FoxO transcription factors whose activation is critical in muscle atrophy. However, the possible effects of SIRT1 on the activity of FoxOs in skeletal muscle and on the regulation of muscle size have not been investigated. Here, we show that after food deprivation, SIRT1 levels fall dramatically in type II skeletal muscles (tibialis anterior), which show marked atrophy, unlike in the liver (where SIRT1 rises) or heart or the soleus, a type I muscle (where SIRT1 is unchanged). Maintenance of high SIRT1 levels by electroporation in mouse muscle inhibits markedly the muscle wasting induced by fasting as well as by denervation, and these protective effects require its deacetylase activity. SIRT1 overexpression reduces muscle wasting by blocking the activation of FoxO1 and 3. It thus prevents the induction of key atrogenes, including the muscle-specific ubiquitin ligases, atrogin1 and MuRF1, and multiple autophagy (Atg) genes and the increase in overall proteolysis. In normal muscle, SIRT1 overexpression by electroporation causes rapid fiber hypertrophy without, surprisingly, activation of the PI3K-AKT signaling pathway. Thus, SIRT1 activation favors postnatal muscle growth, and its fall appears to be critical for atrophy during fasting. Consequently, SIRT1 activation represents an attractive possible pharmacological approach to prevent muscle wasting and cachexia. PMID:24003218

  12. CREB and FoxO1: two transcription factors for the regulation of hepatic gluconeogenesis.

    PubMed

    Oh, Kyoung-Jin; Han, Hye-Sook; Kim, Min-Jung; Koo, Seung-Hoi

    2013-12-01

    Liver plays a major role in maintaining glucose homeostasis in mammals. Under fasting conditions, hepatic glucose production is critical as a source of fuel to maintain the basic functions in other tissues, including skeletal muscle, red blood cells, and the brain. Fasting hormones glucagon and cortisol play major roles during the process, in part by activating the transcription of key enzyme genes in the gluconeogenesis such as phosphoenol pyruvate carboxykinase (PEPCK) and glucose 6 phosphatase catalytic subunit (G6Pase). Conversely, gluconeogenic transcription is repressed by pancreatic insulin under feeding conditions, which effectively inhibits transcriptional activator complexes by either promoting post-translational modifications or activating transcriptional inhibitors in the liver, resulting in the reduction of hepatic glucose output. The transcriptional regulatory machineries have been highlighted as targets for type 2 diabetes drugs to control glycemia, so understanding of the complex regulatory mechanisms for transcription circuits for hepatic gluconeogenesis is critical in the potential development of therapeutic tools for the treatment of this disease. In this review, the current understanding regarding the roles of two key transcriptional activators, CREB and FoxO1, in the regulation of hepatic gluconeogenic program is discussed.

  13. The role of Forkhead-box Class O (FoxO) transcription factors in cancer: A target for the management of cancer

    SciTech Connect

    Reagan-Shaw, Shannon; Ahmad, Nihal

    2007-11-01

    Human Forkhead-Box Class O (FoxO) transcription factors are primarily regulated through the phosphoinositide-3-kinase (PI3k)-Akt pathway via phosphorylation and nuclear exclusion. Acetylation and ubiquitination represent another level of regulation for FoxO proteins and FoxO-regulated gene expression. FoxO factors can act as tumor suppressors; however, the loss of FoxO function leads to increased cellular survival and a predisposition to neoplasia, especially of epithelial cancers. Based on the critical role of FoxO signaling, this family of transcription factors appears to be a promising target for future drug discovery for epithelial cancers. This review describes mechanism of the regulation of FoxO proteins and their role in epithelial cancers. Based on the current knowledge and studies in the past decade, we suggest that the development of novel agents which specifically activate FoxO members could be useful in the prevention as well as treatment of cancer in general and epithelial cancers in particular.

  14. VprBP/DCAF1 Regulates the Degradation and Nonproteolytic Activation of the Cell Cycle Transcription Factor FoxM1.

    PubMed

    Wang, Xianxi; Arceci, Anthony; Bird, Kelly; Mills, Christine A; Choudhury, Rajarshi; Kernan, Jennifer L; Zhou, Chunxiao; Bae-Jump, Victoria; Bowers, Albert; Emanuele, Michael J

    2017-07-01

    The oncogenic transcription factor FoxM1 plays a vital role in cell cycle progression, is activated in numerous human malignancies, and is linked to chromosome instability. We characterize here a cullin 4-based E3 ubiquitin ligase and its substrate receptor, VprBP/DCAF1 (CRL4(VprBP)), which we show regulate FoxM1 ubiquitylation and degradation. Paradoxically, we also found that the substrate receptor VprBP is a potent FoxM1 activator. VprBP depletion reduces expression of FoxM1 target genes and impairs mitotic entry, whereas ectopic VprBP expression strongly activates a FoxM1 transcriptional reporter. VprBP binding to CRL4 is reduced during mitosis, and our data suggest that VprBP activation of FoxM1 is ligase independent. This implies a nonproteolytic activation mechanism that is reminiscent of, yet distinct from, the ubiquitin-dependent transactivation of the oncoprotein Myc by other E3s. Significantly, VprBP protein levels were upregulated in high-grade serous ovarian patient tumors, where the FoxM1 signature is amplified. These data suggest that FoxM1 abundance and activity are controlled by VprBP and highlight the functional repurposing of E3 ligase substrate receptors independent of the ubiquitin system. Copyright © 2017 American Society for Microbiology.

  15. The estrogen receptor α is the key regulator of the bifunctional role of FoxO3a transcription factor in breast cancer motility and invasiveness

    PubMed Central

    Sisci, Diego; Maris, Pamela; Cesario, Maria Grazia; Anselmo, Wanda; Coroniti, Roberta; Trombino, Giovanna Elvi; Romeo, Francesco; Ferraro, Aurora; Lanzino, Marilena; Aquila, Saveria; Maggiolini, Marcello; Mauro, Loredana; Morelli, Catia; Andò, Sebastiano

    2013-01-01

    The role of the Forkhead box class O (FoxO)3a transcription factor in breast cancer migration and invasion is controversial. Here we show that FoxO3a overexpression decreases motility, invasiveness, and anchorage-independent growth in estrogen receptor α-positive (ERα+) cancer cells while eliciting opposite effects in ERα-silenced cells and in ERα-negative (ERα−) cell lines, demonstrating that the nuclear receptor represents a crucial switch in FoxO3a control of breast cancer cell aggressiveness. In ERα+ cells, FoxO3a-mediated events were paralleled by a significant induction of Caveolin-1 (Cav1), an essential constituent of caveolae negatively associated to tumor invasion and metastasis. Cav1 induction occurs at the transcriptional level through FoxO3a binding to a Forkhead responsive core sequence located at position −305/−299 of the Cav1 promoter. 17β-estradiol (E2) strongly emphasized FoxO3a effects on cell migration and invasion, while ERα and Cav1 silencing were able to reverse them, demonstrating that both proteins are pivotal mediators of these FoxO3a controlled processes. In vivo, an immunohistochemical analysis on tissue sections from patients with ERα+ or ERα− invasive breast cancers or in situ ductal carcinoma showed that nuclear FoxO3a inversely (ERα+) or directly (ERα−) correlated with the invasive phenotype of breast tumors. In conclusion, FoxO3a role in breast cancer motility and invasion depends on ERα status, disclosing a novel aspect of the well-established FoxO3a/ERα interplay. Therefore FoxO3a might become a pursuable target to be suitably exploited in combination therapies either in ERα+ or ERα− breast tumors. PMID:24047697

  16. FoxO1 inhibits sterol regulatory element-binding protein-1c (SREBP-1c) gene expression via transcription factors Sp1 and SREBP-1c.

    PubMed

    Deng, Xiong; Zhang, Wenwei; O-Sullivan, InSug; Williams, J Bradley; Dong, Qingming; Park, Edwards A; Raghow, Rajendra; Unterman, Terry G; Elam, Marshall B

    2012-06-08

    Induction of lipogenesis in response to insulin is critically dependent on the transcription factor, sterol regulatory element-binding protein-1c (SREBP-1c). FoxO1, a forkhead box class-O transcription factor, is an important mediator of insulin action, but its role in the regulation of lipid metabolism has not been clearly defined. We examined the effects of FoxO1 on srebp1 gene expression in vivo and in vitro. In vivo studies showed that constitutively active (CA) FoxO1 (CA-FoxO1) reduced basal expression of SREBP-1c mRNA in liver by ∼60% and blunted induction of SREBP-1c in response to feeding. In liver-specific FoxO knock-out mice, SREBP-1c expression was increased ∼2-fold. Similarly, in primary hepatocytes, CA-FoxO1 suppressed SREBP1-c expression and inhibited basal and insulin-induced SREBP-1c promoter activity. SREBP-1c gene expression is induced by the liver X receptor (LXR), but CA-FoxO1 did not block the activation of SREBP-1c by the LXR agonist TO9. Insulin stimulates SREBP-1c transcription through Sp1 and via "feed forward" regulation by newly synthesized SREBP-1c. CA-FoxO1 inhibited SREBP-1c by reducing the transactivational capacity of both Sp1 and SREBP-1c. In addition, chromatin immunoprecipitation assays indicate that FoxO1 can associate with the proximal promoter region of the srebp1 gene and disrupt the assembly of key components of the transcriptional complex of the SREBP-1c promoter. We conclude that FoxO1 inhibits SREBP-1c transcription via combined actions on multiple transcription factors and that this effect is exerted at least in part through reduced transcriptional activity of Sp1 and SREBP-1c and disrupted assembly of the transcriptional initiation complex on the SREBP-1c promoter.

  17. AmphiFoxE4, an amphioxus winged helix/forkhead gene encoding a protein closely related to vertebrate thyroid transcription factor-2: expression during pharyngeal development

    NASA Technical Reports Server (NTRS)

    Yu, Jr-Kai; Holland, Linda Z.; Jamrich, Milan; Blitz, Ira L.; Hollan, Nicholas D.

    2002-01-01

    The full-length sequence and developmental expression of amphioxus AmphiFoxE4 are described. Transcripts of the gene are first detected in the pharyngeal endoderm, where the club-shaped gland is forming and subsequently in the definitive gland itself. AmphiFoxE4 is closely related to vertebrate genes encoding the thyroid-specific transcription factor-2 (TTF2), which plays an early developmental role in the morphogenesis of the thyroid gland and a later role in hormone-mediated control of thyroid function. In amphioxus, AmphiFoxE4 expression is not thyroid specific because the club-shaped gland, the only structure expressing the gene, is not homologous to the vertebrate thyroid; instead, the thyroid homologue of amphioxus is a specialized region of the pharyngeal endoderm called the endostyle. We propose that (a) the pharynx of an amphioxus-like ancestor of the vertebrates included a club-shaped gland that expressed FoxE4 as well as an endostyle that did not, and (b) the club-shaped gland soon disappeared in the vertebrate line of descent but (c) not before there was a homeogenetic transfer of FoxE4 expression from the club-shaped gland to the nearby endostyle. Such a transfer could have provided part of the genetic program enabling the endostyle to separate from the pharyngeal endoderm and migrate away as the rudiment of the thyroid gland.

  18. AmphiFoxE4, an amphioxus winged helix/forkhead gene encoding a protein closely related to vertebrate thyroid transcription factor-2: expression during pharyngeal development

    NASA Technical Reports Server (NTRS)

    Yu, Jr-Kai; Holland, Linda Z.; Jamrich, Milan; Blitz, Ira L.; Hollan, Nicholas D.

    2002-01-01

    The full-length sequence and developmental expression of amphioxus AmphiFoxE4 are described. Transcripts of the gene are first detected in the pharyngeal endoderm, where the club-shaped gland is forming and subsequently in the definitive gland itself. AmphiFoxE4 is closely related to vertebrate genes encoding the thyroid-specific transcription factor-2 (TTF2), which plays an early developmental role in the morphogenesis of the thyroid gland and a later role in hormone-mediated control of thyroid function. In amphioxus, AmphiFoxE4 expression is not thyroid specific because the club-shaped gland, the only structure expressing the gene, is not homologous to the vertebrate thyroid; instead, the thyroid homologue of amphioxus is a specialized region of the pharyngeal endoderm called the endostyle. We propose that (a) the pharynx of an amphioxus-like ancestor of the vertebrates included a club-shaped gland that expressed FoxE4 as well as an endostyle that did not, and (b) the club-shaped gland soon disappeared in the vertebrate line of descent but (c) not before there was a homeogenetic transfer of FoxE4 expression from the club-shaped gland to the nearby endostyle. Such a transfer could have provided part of the genetic program enabling the endostyle to separate from the pharyngeal endoderm and migrate away as the rudiment of the thyroid gland.

  19. Hepatic deficiency of the pioneer transcription factor FoxA restricts hepatitis B virus biosynthesis by the developmental regulation of viral DNA methylation

    PubMed Central

    Shalaby, Rasha E.; Iram, Saira; Oropeza, Claudia E.; Landolfi, Jennifer A.; Lyubimov, Alexander V.; Maienschein-Cline, Mark; Kaestner, Klaus H.

    2017-01-01

    The FoxA family of pioneer transcription factors regulates hepatitis B virus (HBV) transcription, and hence viral replication. Hepatocyte-specific FoxA-deficiency in the HBV transgenic mouse model of chronic infection prevents the transcription of the viral DNA genome as a result of the failure of the developmentally controlled conversion of 5-methylcytosine residues to cytosine during postnatal hepatic maturation. These observations suggest that pioneer transcription factors such as FoxA, which mark genes for expression at subsequent developmental steps in the cellular differentiation program, mediate their effects by reversing the DNA methylation status of their target genes to permit their ensuing expression when the appropriate tissue-specific transcription factor combinations arise during development. Furthermore, as the FoxA-deficient HBV transgenic mice are viable, the specific developmental timing, abundance and isoform type of pioneer factor expression must permit all essential liver gene expression to occur at a level sufficient to support adequate liver function. This implies that pioneer transcription factors can recognize and mark their target genes in distinct developmental manners dependent upon, at least in part, the concentration and affinity of FoxA for its binding sites within enhancer and promoter regulatory sequence elements. This selective marking of cellular genes for expression by the FoxA pioneer factor compared to HBV may offer the opportunity for the specific silencing of HBV gene expression and hence the resolution of chronic HBV infections which are responsible for approximately one million deaths worldwide annually due to liver cirrhosis and hepatocellular carcinoma. PMID:28235042

  20. The role of transcription factor FoxO1 in the pathogenesis of acne vulgaris and the mode of isotretinoin action.

    PubMed

    Melnik, B C

    2010-10-01

    It is the purpose of this review to demonstrate that oral isotretinoin treatment restores all major pathogenetic factors of acne vulgaris by upregulation of the nuclear transcription factor FoxO1, which will be shown to be the major target of retinoid action. Nuclear FoxO1 deficiency is the result of increased growth factor signaling with activated phosphoinositol-3-kinase (PI3K) and Akt kinase during growth hormone signaling of puberty and increased insulin/IGF-1 signaling due to consumption of insulinotropic milk/dairy products as well as hyperglycemic carbohydrates of Western diet. Nuclear FoxO1 deficiency increases androgen receptor transactivation and modifies the activity of important nuclear receptors and key genes involved in pilosebaceous keratinocyte proliferation, sebaceous lipogenesis and expression of perifollicular inflammatory cytokines. Isotretinoin-induced upregulation of nuclear FoxO1 is proposed to be responsible for the mode of action of isotretinoin on all major pathogenetic factors in acne. Acne pathogenesis can be explained at the genomic level of transcriptional regulation. All major events in acne pathogenesis as well as all major effects of isotretinoin treatment appear to be related to modifications of the PI3K/Akt/FoxO1 signaling pathway, the well-known oncogenic pathway. These insights extend our understanding of FoxO1-mediated retinoid action in acne and other hyperproliferative skin diseases, cancer chemoprevention and cutaneous immune regulation. Understanding FoxO´s pivotal regulatory role in acne allows the development of novel treatment strategies and dietary interventions in acne which focus on the restoration of growth factor- and diet-induced imbalances of nuclear FoxO protein levels.

  1. Transcription factor FoxO1, the dominant mediator of muscle wasting in chronic kidney disease, is inhibited by microRNA-486.

    PubMed

    Xu, Jing; Li, Rongshan; Workeneh, Biruh; Dong, Yanlan; Wang, Xiaonan; Hu, Zhaoyong

    2012-08-01

    Chronic kidney disease (CKD) accelerates muscle protein degradation by stimulating the ubiquitin proteasome system through activation of the E3 ligases, Atrogin-1/MAFbx and MuRF-1. Forkhead transcription factors (FoxOs) can control the expression of these E3 ligases, but the contribution of individual FoxOs to muscle wasting is unclear. To study this we created mice with a muscle-specific FoxO1 deletion. The absence of FoxO1 blocked 70% of the increase in E3 ligase induction by CKD as well as the proteolysis and loss of muscle mass. Thus, FoxO1 has a role in controlling ubiquitin proteasome system-related proteolysis. As microRNA (miR)-486 reportedly dampens FoxO1 expression and its activity,we transfected a miR-486 mimic into primary cultures of myotubes and found this blocked dexamethasone-stimulated protein degradation without influencing protein synthesis.It also decreased FoxO1 protein translation and increased FoxO1 phosphorylation by downregulation of PTEN phosphatase, a negative regulator of p-Akt. To test its efficacy in vivo, we electroporated miR-486 into muscles and found that the expression of the E3 ligases was suppressed and muscle mass increased despite CKD. Thus, FoxO1 is a dominant mediator of CKD-induced muscle wasting, and miR-486 coordinately decreases FoxO1 and PTEN to protect against this catabolic response.

  2. FoxP2 is a parvocellular-specific transcription factor in the visual thalamus of monkeys and ferrets.

    PubMed

    Iwai, Lena; Ohashi, Yohei; van der List, Deborah; Usrey, William Martin; Miyashita, Yasushi; Kawasaki, Hiroshi

    2013-09-01

    Although the parallel visual pathways are a fundamental basis of visual processing, our knowledge of their molecular properties is still limited. Here, we uncovered a parvocellular-specific molecule in the dorsal lateral geniculate nucleus (dLGN) of higher mammals. We found that FoxP2 transcription factor was specifically expressed in X cells of the adult ferret dLGN. Interestingly, FoxP2 was also specifically expressed in parvocellular layers 3-6 of the dLGN of adult old world monkeys, providing new evidence for a homology between X cells in the ferret dLGN and parvocellular cells in the monkey dLGN. Furthermore, this expression pattern was established as early as gestation day 140 in the embryonic monkey dLGN, suggesting that parvocellular specification has already occurred when the cytoarchitectonic dLGN layers are formed. Our results should help in gaining a fundamental understanding of the development, evolution, and function of the parallel visual pathways, which are especially prominent in higher mammals.

  3. FoxP2 is a Parvocellular-Specific Transcription Factor in the Visual Thalamus of Monkeys and Ferrets

    PubMed Central

    Iwai, Lena; Ohashi, Yohei; van der List, Deborah; Usrey, William Martin; Miyashita, Yasushi; Kawasaki, Hiroshi

    2013-01-01

    Although the parallel visual pathways are a fundamental basis of visual processing, our knowledge of their molecular properties is still limited. Here, we uncovered a parvocellular-specific molecule in the dorsal lateral geniculate nucleus (dLGN) of higher mammals. We found that FoxP2 transcription factor was specifically expressed in X cells of the adult ferret dLGN. Interestingly, FoxP2 was also specifically expressed in parvocellular layers 3–6 of the dLGN of adult old world monkeys, providing new evidence for a homology between X cells in the ferret dLGN and parvocellular cells in the monkey dLGN. Furthermore, this expression pattern was established as early as gestation day 140 in the embryonic monkey dLGN, suggesting that parvocellular specification has already occurred when the cytoarchitectonic dLGN layers are formed. Our results should help in gaining a fundamental understanding of the development, evolution, and function of the parallel visual pathways, which are especially prominent in higher mammals. PMID:22791804

  4. Integrated Control Of Hepatic Lipogenesis Vs. Glucose Production Requires FoxO Transcription Factors

    PubMed Central

    Haeusler, Rebecca A.; Hartil, Kirsten; Vaitheesvaran, Bhavapriya; Arrieta–Cruz, Isabel; Knight, Colette M.; Cook, Joshua R.; Kammoun, Helene L.; Febbraio, Mark A.; Gutierrez–Juarez, Roger; Kurland, Irwin J.; Accili, Domenico

    2014-01-01

    Insulin integrates hepatic glucose and lipid metabolism, directing nutrients to storage as glycogen and triglyceride. In type 2 diabetes, levels of the former are low and the latter are exaggerated, posing a pathophysiologic and therapeutic conundrum. A branching model of insulin signaling, with FoxO1 presiding over glucose production and Srebp–1c regulating lipogenesis, provides a potential explanation. Here we illustrate an alternative mechanism that integrates glucose production and lipogenesis under the unifying control of FoxO. Liver–specific ablation of three FoxOs (L–FoxO1,3,4) prevents the induction of glucose–6–phosphatase and the repression of glucokinase during fasting, thus increasing lipogenesis at the expense of glucose production. We document a similar pattern in the early phases of diet-induced insulin resistance, and propose that FoxOs are required to enable the liver to direct nutritionally derived carbons to glucose vs. lipid metabolism. Our data underscore the heterogeneity of hepatic insulin resistance during progression from the metabolic syndrome to overt diabetes, and the conceptual challenge of designing therapies that curtail glucose production without promoting hepatic lipid accumulation. PMID:25307742

  5. Integrated control of hepatic lipogenesis versus glucose production requires FoxO transcription factors.

    PubMed

    Haeusler, Rebecca A; Hartil, Kirsten; Vaitheesvaran, Bhavapriya; Arrieta-Cruz, Isabel; Knight, Colette M; Cook, Joshua R; Kammoun, Helene L; Febbraio, Mark A; Gutierrez-Juarez, Roger; Kurland, Irwin J; Accili, Domenico

    2014-10-13

    Insulin integrates hepatic glucose and lipid metabolism, directing nutrients to storage as glycogen and triglyceride. In type 2 diabetes, levels of the former are low and the latter are exaggerated, posing a pathophysiologic and therapeutic conundrum. A branching model of insulin signalling, with FoxO1 presiding over glucose production and Srebp-1c regulating lipogenesis, provides a potential explanation. Here we illustrate an alternative mechanism that integrates glucose production and lipogenesis under the unifying control of FoxO. Liver-specific ablation of three FoxOs (L-FoxO1,3,4) prevents the induction of glucose-6-phosphatase and the repression of glucokinase during fasting, thus increasing lipogenesis at the expense of glucose production. We document a similar pattern in the early phases of diet-induced insulin resistance, and propose that FoxOs are required to enable the liver to direct nutritionally derived carbons to glucose versus lipid metabolism. Our data underscore the heterogeneity of hepatic insulin resistance during progression from the metabolic syndrome to overt diabetes, and the conceptual challenge of designing therapies that curtail glucose production without promoting hepatic lipid accumulation.

  6. Regulation of glucose metabolism via hepatic forkhead transcription factor 1 (FoxO1) by Morinda citrifolia (noni) in high-fat diet-induced obese mice.

    PubMed

    Nerurkar, Pratibha V; Nishioka, Adrienne; Eck, Philip O; Johns, Lisa M; Volper, Esther; Nerurkar, Vivek R

    2012-07-01

    Renewed interest in alternative medicine among diabetic individuals prompted us to investigate anti-diabetic effects of Morinda citrifolia (noni) in high-fat diet (HFD)-fed mice. Type 2 diabetes is associated with increased glucose production due to the inability of insulin to suppress hepatic gluconeogenesis and promote glycolysis. Insulin inhibits gluconeogenesis by modulating transcription factors such as forkhead box O (FoxO1). Based on microarray analysis data, we tested the hypothesis that fermented noni fruit juice (fNJ) improves glucose metabolism via FoxO1 phosphorylation. C57BL/6 male mice were fed a HFD and fNJ for 12 weeks. Body weights and food intake were monitored daily. FoxO1 expression was analysed by real-time PCR and Western blotting. Specificity of fNJ-associated FoxO1 regulation of gluconeogenesis was confirmed by small interfering RNA (siRNA) studies using human hepatoma cells, HepG2. Supplementation with fNJ inhibited weight gain and improved glucose and insulin tolerance and fasting glucose in HFD-fed mice. Hypoglycaemic properties of fNJ were associated with the inhibition of hepatic FoxO1 mRNA expression, with a concomitant increase in FoxO1 phosphorylation and nuclear expulsion of the proteins. Gluconeogenic genes, phosphoenolpyruvate C kinase (PEPCK) and glucose-6-phosphatase (G6P), were significantly inhibited in mice fed a HFD+fNJ. HepG2 cells demonstrated more than 80 % inhibition of PEPCK and G6P mRNA expression in cells treated with FoxO1 siRNA and fNJ. These data suggest that fNJ improves glucose metabolism via FoxO1 regulation in HFD-fed mice.

  7. Regulation of glucose metabolism via hepatic forkhead transcription factor 1 (FoxO1) by Morinda citrifolia (noni) in high-fat diet-induced obese mice

    PubMed Central

    Nerurkar, Pratibha V.; Nishioka, Adrienne; Eck, Philip O.; Nerurkar, Vivek R.

    2016-01-01

    Renewed interest in alternative medicine among diabetic individuals prompted us to investigate anti-diabetic effects of Morinda citrifolia (noni) in high-fat diet (HFD)-fed mice. Type 2 diabetes is associated with increased glucose production due to the inability of insulin to suppress hepatic gluconeogenesis and promote glycolysis. Insulin inhibits gluconeogenesis by modulating transcription factors such as forkhead box O (FoxO1). Based on microarray analysis data, we tested the hypothesis that fermented noni fruit juice (fNJ) improves glucose metabolism via FoxO1 phosphorylation. C57BL/6 male mice were fed a HFD and fNJ for 12 weeks. Body weights and food intake were monitored daily. FoxO1 expression was analysed by real-time PCR and Western blotting. Specificity of fNJ-associated FoxO1 regulation of gluconeogenesis was confirmed by small interfering RNA (siRNA) studies using human hepatoma cells, HepG2. Supplementation with fNJ inhibited weight gain and improved glucose and insulin tolerance and fasting glucose in HFD-fed mice. Hypoglycaemic properties of fNJ were associated with the inhibition of hepatic FoxO1 mRNA expression, with a concomitant increase in FoxO1 phosphorylation and nuclear expulsion of the proteins. Gluconeogenic genes, phosphoenolpyruvate C kinase (PEPCK) and glucose-6-phosphatase (G6P), were significantly inhibited in mice fed a HFD + fNJ. HepG2 cells demonstrated more than 80% inhibition of PEPCK and G6P mRNA expression in cells treated with FoxO1 siRNA and fNJ. These data suggest that fNJ improves glucose metabolism via FoxO1 regulation in HFD-fed mice. PMID:22011624

  8. Generation of Wheat Transcription Factor FOX Rice Lines and Systematic Screening for Salt and Osmotic Stress Tolerance.

    PubMed

    Wu, Jinxia; Zhang, Zhiguo; Zhang, Qian; Liu, Yayun; Zhu, Butuo; Cao, Jian; Li, Zhanpeng; Han, Longzhi; Jia, Jizeng; Zhao, Guangyao; Sun, Xuehui

    2015-01-01

    Transcription factors (TFs) play important roles in plant growth, development, and responses to environmental stress. In this study, we collected 1,455 full-length (FL) cDNAs of TFs, representing 45 families, from wheat and its relatives Triticum urartu, Aegilops speltoides, Aegilops tauschii, Triticum carthlicum, and Triticum aestivum. More than 15,000 T0 TF FOX (Full-length cDNA Over-eXpressing) rice lines were generated; of these, 10,496 lines set seeds. About 14.88% of the T0 plants showed obvious phenotypic changes. T1 lines (5,232 lines) were screened for salt and osmotic stress tolerance using 150 mM NaCl and 20% (v/v) PEG-4000, respectively. Among them, five lines (591, 746, 1647, 1812, and J4065) showed enhanced salt stress tolerance, five lines (591, 746, 898, 1078, and 1647) showed enhanced osmotic stress tolerance, and three lines (591, 746, and 1647) showed both salt and osmotic stress tolerance. Further analysis of the T-DNA flanking sequences showed that line 746 over-expressed TaEREB1, line 898 over-expressed TabZIPD, and lines 1812 and J4065 over-expressed TaOBF1a and TaOBF1b, respectively. The enhanced salt and osmotic stress tolerance of lines 898 and 1812 was confirmed by retransformation of the respective genes. Our results demonstrate that a heterologous FOX system may be used as an alternative genetic resource for the systematic functional analysis of the wheat genome.

  9. PI3K/Akt and MAPK pathways evoke activation of FoxO transcription factor to undergo neuronal apoptosis in brain of the silkworm Bombyx mori (Lepidoptera: Bombycidae).

    PubMed

    Kim, J H; Choi, J-S; Lee, B H

    2012-10-10

    The Forkhead box O (FoxO) transcription factors, including FoxO1, FoxO3a, FoxO4, and FoxO6, are implicated in the regulation of cell apoptosis and survival. Here, we examined the role of FoxO transcription factors and the involvement of the PI3K/Akt and mitogen-activated protein kinase (MAPK) pathways in neuronal apoptosis in the brain of the silkworm Bombyx mori following starvation. Starvation inhibited cell proliferation and induced apoptosis through caspase-3 activation. The level of phosphorylated kinase Akt increased when the animals ceased feeding. Starvation conditions reduced extracellular-signal-regulated kinase phosphorylation but increased both c-Jun N-terminal kinase and p38 (MAPK) phosphorylation. FoxO1 and FoxO3a were simultaneously localized in the nuclei. These results provide new insights into the process of apoptosis of brain neurons through the involvement of FoxO transcription factors following starvation of insect species.

  10. The Variant rs1867277 in FOXE1 Gene Confers Thyroid Cancer Susceptibility through the Recruitment of USF1/USF2 Transcription Factors

    PubMed Central

    Montero-Conde, Cristina; Inglada-Pérez, Lucía; Schiavi, Francesca; Leskelä, Susanna; Pita, Guillermo; Milne, Roger; Maravall, Javier; Ramos, Ignacio; Andía, Víctor; Rodríguez-Poyo, Paloma; Jara-Albarrán, Antonino; Meoro, Amparo; del Peso, Cristina; Arribas, Luis; Iglesias, Pedro; Caballero, Javier; Serrano, Joaquín; Picó, Antonio; Pomares, Francisco; Giménez, Gabriel; López-Mondéjar, Pedro; Castello, Roberto; Merante-Boschin, Isabella; Pelizzo, Maria-Rosa; Mauricio, Didac; Opocher, Giuseppe; Rodríguez-Antona, Cristina; González-Neira, Anna; Matías-Guiu, Xavier; Santisteban, Pilar; Robledo, Mercedes

    2009-01-01

    In order to identify genetic factors related to thyroid cancer susceptibility, we adopted a candidate gene approach. We studied tag- and putative functional SNPs in genes involved in thyroid cell differentiation and proliferation, and in genes found to be differentially expressed in thyroid carcinoma. A total of 768 SNPs in 97 genes were genotyped in a Spanish series of 615 cases and 525 controls, the former comprising the largest collection of patients with this pathology from a single population studied to date. SNPs in an LD block spanning the entire FOXE1 gene showed the strongest evidence of association with papillary thyroid carcinoma susceptibility. This association was validated in a second stage of the study that included an independent Italian series of 482 patients and 532 controls. The strongest association results were observed for rs1867277 (OR[per-allele] = 1.49; 95%CI = 1.30–1.70; P = 5.9×10−9). Functional assays of rs1867277 (NM_004473.3:c.−283G>A) within the FOXE1 5′ UTR suggested that this variant affects FOXE1 transcription. DNA-binding assays demonstrated that, exclusively, the sequence containing the A allele recruited the USF1/USF2 transcription factors, while both alleles formed a complex in which DREAM/CREB/αCREM participated. Transfection studies showed an allele-dependent transcriptional regulation of FOXE1. We propose a FOXE1 regulation model dependent on the rs1867277 genotype, indicating that this SNP is a causal variant in thyroid cancer susceptibility. Our results constitute the first functional explanation for an association identified by a GWAS and thereby elucidate a mechanism of thyroid cancer susceptibility. They also attest to the efficacy of candidate gene approaches in the GWAS era. PMID:19730683

  11. Specific domains of FoxD4/5 activate and repress neural transcription factor genes to control the progression of immature neural ectoderm to differentiating neural plate.

    PubMed

    Neilson, Karen M; Klein, Steven L; Mhaske, Pallavi; Mood, Kathy; Daar, Ira O; Moody, Sally A

    2012-05-15

    FoxD4/5, a forkhead transcription factor, plays a critical role in establishing and maintaining the embryonic neural ectoderm. It both up-regulates genes that maintain a proliferative, immature neural ectoderm and down-regulates genes that promote the transition to a differentiating neural plate. We constructed deletion and mutant versions of FoxD4/5 to determine which domains are functionally responsible for these opposite activities, which regulate the critical developmental transition of neural precursors to neural progenitors to differentiating neural plate cells. Our results show that up-regulation of genes that maintain immature neural precursors (gem, zic2) requires the Acidic blob (AB) region in the N-terminal portion of the protein, indicating that the AB is the transactivating domain. Additionally, down-regulation of those genes that promote the transition to neural progenitors (sox) and those that lead to neural differentiation (zic, irx) involves: 1) an interaction with the Groucho co-repressor at the Eh-1 motif in the C-terminus; and 2) sequence downstream of this motif. Finally, the ability of FoxD4/5 to induce the ectopic expression of neural precursor genes in the ventral ectoderm also involves both the AB region and the Eh-1 motif; FoxD4/5 accomplishes ectopic neural induction by both activating neural precursor genes and repressing BMP signaling and epidermal genes. This study identifies the specific, conserved domains of the FoxD4/5 protein that allow this single transcription factor to regulate a network of genes that controls the transition of a proliferative neural ectodermal population to a committed neural plate population poised to begin differentiation.

  12. Elucidating the role of the FoxO3a transcription factor in the IGF-1-induced migration and invasion of uveal melanoma cancer cells.

    PubMed

    Yan, Fengxia; Liao, Rifang; Farhan, Mohd; Wang, Tinghuai; Chen, Jiashu; Wang, Zhong; Little, Peter J; Zheng, Wenhua

    2016-12-01

    Uveal melanoma (UM) is the most common primary intraocular malignant tumor of adults. It has high mortality rate due to liver metastasis. However, the epidemiology and pathogenesis of liver metastasis in UM are not elucidated and there is no effective therapy available for preventing the development of this disease. IGF-1 is a growth factor involved in cell proliferation, malignant transformation and inhibition of apoptosis. In previous report, IGF-1 receptor was found to be highly expressed in UM and this was related to tumor prognosis. FoxO3a is a Forkhead box O (FOXO) transcription factor and a downstream target of the IGF-1R/PI3K/Akt pathway involved in a number of physiological and pathological processes including cancer. However, the role of FoxO3a in UM is unknown. In the present study, we investigated fundamental mechanisms in the growth, migration and invasion of UM and the involvement of FoxO3a. IGF-1 increased the cell viability, invasion, migration and S-G2/M cell cycle phase accumulation of UM cells. Western blot analysis showed that IGF-1 led to activation of Akt and concomitant phosphorylation of FoxO3a. FoxO3a phosphorylation was associated with its translocation into the cytoplasm from the nucleus and its functional inhibition led to the inhibition of expression of Bim and p27, but an increase in the expression of Cyclin D1. The effects of IGF-1 on UM cells were reversed by LY294002 (a PI3K inhibitor) or Akt siRNA, and the overexpression of FoxO3a also attenuated basal invasion and migration of UM. Taken all together, these results suggest that inhibition of FoxO3a by IGF-1 via the PI3K/Akt pathway has an important role in IGF-1 induced proliferation and invasion of UM cells. These findings also support FoxO3a and IGF signaling may represent a valid target for investigating the development of new strategies for the treatment and prevention of the pathology of UM. Copyright © 2016. Published by Elsevier Masson SAS.

  13. Identification of stress-tolerance-related transcription-factor genes via mini-scale Full-length cDNA Over-eXpressor (FOX) gene hunting system.

    PubMed

    Fujita, Miki; Mizukado, Saho; Fujita, Yasunari; Ichikawa, Takanari; Nakazawa, Miki; Seki, Motoaki; Matsui, Minami; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2007-12-14

    Recently, we developed a novel system known as Full-length cDNA Over-eXpressor (FOX) gene hunting [T. Ichikawa, M. Nakazawa, M. Kawashima, H. Iizumi, H. Kuroda, Y. Kondou, Y. Tsuhara, K. Suzuki, A. Ishikawa, M. Seki, M. Fujita, R. Motohashi, N. Nagata, T. Takagi, K. Shinozaki, M. Matsui, The FOX hunting system: an alternative gain-of-function gene hunting technique, Plant J. 48 (2006) 974-985], which involves the random overexpression of a normalized Arabidopsis full-length cDNA library. While our system allows large-scale collection of full-length cDNAs for gene discovery, we sought to downsize it to analyze a small pool of full-length cDNAs. As a model system, we focused on stress-inducible transcription factors. The full-length cDNAs of 43 stress-inducible transcription factors were mixed to create a transgenic plant library. We screened for salt-stress-resistant lines in the T1 generation and identified a number of salt-tolerant lines that harbored the same transgene (F39). F39 encodes a bZIP-type transcription factor that is identical to AtbZIP60, which is believed to be involved in the endoplasmic reticulum stress response. Microarray analysis revealed that a number of stress-inducible genes were up-regulated in the F39-overexpressing lines, suggesting that AtbZIP60 is involved in stress signal transduction. Thus, our mini-scale FOX system may be used to screen for genes with valuable functions, such as transcription factors, from a small pool of genes that show similar expression profiles.

  14. Targeting the UPR transcription factor XBP1 protects against Huntington's disease through the regulation of FoxO1 and autophagy.

    PubMed

    Vidal, Rene L; Figueroa, Alicia; Court, Felipe A; Thielen, Peter; Molina, Claudia; Wirth, Craig; Caballero, Benjamin; Kiffin, Roberta; Segura-Aguilar, Juan; Cuervo, Ana Maria; Glimcher, Laurie H; Hetz, Claudio

    2012-05-15

    Mutations leading to expansion of a poly-glutamine track in Huntingtin (Htt) cause Huntington's disease (HD). Signs of endoplasmic reticulum (ER) stress have been recently reported in animal models of HD, associated with the activation of the unfolded protein response (UPR). Here we have investigated the functional contribution of ER stress to HD by targeting the expression of two main UPR transcription factors, XBP1 and ATF4 (activating transcription factor 4), in full-length mutant Huntingtin (mHtt) transgenic mice. XBP1-deficient mice were more resistant to developing disease features, associated with improved neuronal survival and motor performance, and a drastic decrease in mHtt levels. The protective effects of XBP1 deficiency were associated with enhanced macroautophagy in both cellular and animal models of HD. In contrast, ATF4 deficiency did not alter mHtt levels. Although, XBP1 mRNA splicing was observed in the striatum of HD transgenic brains, no changes in the levels of classical ER stress markers were detected in symptomatic animals. At the mechanistic level, we observed that XBP1 deficiency led to augmented expression of Forkhead box O1 (FoxO1), a key transcription factor regulating autophagy in neurons. In agreement with this finding, ectopic expression of FoxO1 enhanced autophagy and mHtt clearance in vitro. Our results provide strong evidence supporting an involvement of XBP1 in HD pathogenesis probably due to an ER stress-independent mechanism involving the control of FoxO1 and autophagy levels.

  15. Targeting the UPR transcription factor XBP1 protects against Huntington's disease through the regulation of FoxO1 and autophagy

    PubMed Central

    Vidal, Rene L.; Figueroa, Alicia; Court, Felipe A.; Thielen, Peter; Molina, Claudia; Wirth, Craig; Caballero, Benjamin; Kiffin, Roberta; Segura-Aguilar, Juan; Cuervo, Ana Maria; Glimcher, Laurie H.; Hetz, Claudio

    2012-01-01

    Mutations leading to expansion of a poly-glutamine track in Huntingtin (Htt) cause Huntington's disease (HD). Signs of endoplasmic reticulum (ER) stress have been recently reported in animal models of HD, associated with the activation of the unfolded protein response (UPR). Here we have investigated the functional contribution of ER stress to HD by targeting the expression of two main UPR transcription factors, XBP1 and ATF4 (activating transcription factor 4), in full-length mutant Huntingtin (mHtt) transgenic mice. XBP1-deficient mice were more resistant to developing disease features, associated with improved neuronal survival and motor performance, and a drastic decrease in mHtt levels. The protective effects of XBP1 deficiency were associated with enhanced macroautophagy in both cellular and animal models of HD. In contrast, ATF4 deficiency did not alter mHtt levels. Although, XBP1 mRNA splicing was observed in the striatum of HD transgenic brains, no changes in the levels of classical ER stress markers were detected in symptomatic animals. At the mechanistic level, we observed that XBP1 deficiency led to augmented expression of Forkhead box O1 (FoxO1), a key transcription factor regulating autophagy in neurons. In agreement with this finding, ectopic expression of FoxO1 enhanced autophagy and mHtt clearance in vitro. Our results provide strong evidence supporting an involvement of XBP1 in HD pathogenesis probably due to an ER stress-independent mechanism involving the control of FoxO1 and autophagy levels. PMID:22337954

  16. Forkhead transcription factor FoxA1 regulates sweat secretion through Bestrophin 2 anion channel and Na-K-Cl cotransporter 1.

    PubMed

    Cui, Chang-Yi; Childress, Victoria; Piao, Yulan; Michel, Marc; Johnson, Adiv A; Kunisada, Makoto; Ko, Minoru S H; Kaestner, Klaus H; Marmorstein, Alan D; Schlessinger, David

    2012-01-24

    Body temperature is maintained in a narrow range in mammals, primarily controlled by sweating. In humans, the dynamic thermoregulatory organ, comprised of 2-4 million sweat glands distributed over the body, can secrete up to 4 L of sweat per day, thereby making it possible to withstand high temperatures and endure prolonged physical stress (e.g., long-distance running). The genetic basis for sweat gland function, however, is largely unknown. We find that the forkhead transcription factor, FoxA1, is required to generate mouse sweating capacity. Despite continued sweat gland morphogenesis, ablation of FoxA1 in mice results in absolute anihidrosis (lack of sweating). This inability to sweat is accompanied by down-regulation of the Na-K-Cl cotransporter 1 (Nkcc1) and the Ca(2+)-activated anion channel Bestrophin 2 (Best2), as well as glycoprotein accumulation in gland lumens and ducts. Furthermore, Best2-deficient mice display comparable anhidrosis and glycoprotein accumulation. These findings link earlier observations that both sodium/potassium/chloride exchange and Ca(2+) are required for sweat production. FoxA1 is inferred to regulate two corresponding features of sweat secretion. One feature, via Best2, catalyzes a bicarbonate gradient that could help to drive calcium-associated ionic transport; the other, requiring Nkcc1, facilitates monovalent ion exchange into sweat. These mechanistic components can be pharmaceutical targets to defend against hyperthermia and alleviate defective thermoregulation in the elderly, and may provide a model relevant to more complex secretory processes.

  17. FoxO1 deacetylation regulates thyroid hormone-induced transcription of key hepatic gluconeogenic genes.

    PubMed

    Singh, Brijesh Kumar; Sinha, Rohit Anthony; Zhou, Jin; Xie, Sherwin Ying; You, Seo-Hee; Gauthier, Karine; Yen, Paul Michael

    2013-10-18

    Hepatic gluconeogenesis is a concerted process that integrates transcriptional regulation with hormonal signals. A major regulator is thyroid hormone (TH), which acts through its nuclear receptor (TR) to induce the expression of the hepatic gluconeogenic genes, phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC). Forkhead transcription factor FoxO1 also is an important regulator of these genes; however, its functional interactions with TR are not known. Here, we report that TR-mediated transcriptional activation of PCK1 and G6PC in human hepatic cells and mouse liver was FoxO1-dependent and furthermore required FoxO1 deacetylation by the NAD(+)-dependent deacetylase, SirT1. siRNA knockdown of FoxO1 decreased, whereas overexpression of FoxO1 increased, TH-dependent transcriptional activation of PCK1 and G6PC in cultured hepatic cells. FoxO1 siRNA knockdown also decreased TH-mediated transcription in vivo. Additionally, TH was unable to induce FoxO1 deacetylation or hepatic PCK1 gene expression in TH receptor β-null (TRβ(-/-)) mice. Moreover, TH stimulated FoxO1 recruitment to the PCK1 and G6PC gene promoters in a SirT1-dependent manner. In summary, our results show that TH-dependent deacetylation of a second metabolically regulated transcription factor represents a novel mechanism for transcriptional integration of nuclear hormone action with cellular energy status.

  18. FoxA1 binding to the MMTV LTR modulates chromatin structure and transcription

    SciTech Connect

    Holmqvist, Per-Henrik; Belikov, Sergey; Zaret, Kenneth S.; Wrange, Oerjan . E-mail: orjan.wrange@cmb.ki.se

    2005-04-01

    Novel binding sites for the forkhead transcription factor family member Forkhead box A (FoxA), previously referred to as Hepatocyte Nuclear Factor 3 (HNF3), were found within the mouse mammary tumor virus long terminal repeat (MMTV LTR). The effect of FoxA1 on MMTV LTR chromatin structure, and expression was evaluated in Xenopus laevis oocytes. Mutagenesis of either of the two main FoxA binding sites showed that the distal site, -232/-221, conferred FoxA1-dependent partial inhibition of glucocorticoid receptor (GR) driven MMTV transcription. The proximal FoxA binding segment consisted of two individual FoxA sites at -57/-46 and -45/-34, respectively, that mediated an increased basal MMTV transcription. FoxA1 binding altered the chromatin structure of both the inactive- and the hormone-activated MMTV LTR. Hydroxyl radical foot printing revealed FoxA1-mediated changes in the nucleosome arrangement. Micrococcal nuclease digestion showed the hormone-dependent sub-nucleosome complex, containing {approx}120 bp of DNA, to be expanded by FoxA1 binding to the proximal segment into a larger complex containing {approx}200 bp. The potential function of the FoxA1-mediated expression of the MMTV provirus for maintenance of expression in different tissues is discussed.

  19. FoxO1, the Transcriptional Chief of Staff of Energy Metabolism

    PubMed Central

    Kousteni, Stavroula

    2011-01-01

    FoxO1, one of the four FoxO isoforms of Forkhead transcription factors, is highly expressed in insulin-responsive tissues, including pancreas, liver, skeletal muscle and adipose tissue, as well as in the skeleton. In all these tissues FoxO1 orchestrates the transcriptional cascades regulating glucose metabolism. Indeed, FoxO1 is a major target of insulin which inhibits its transcriptional activity via nuclear exclusion. In the pancreas, FoxO1 regulates β-cell formation and function by a balanced dual mode of action that suppresses β-cell proliferation but promotes survival. Hepatic glucose production is promoted and lipid metabolism is regulated by FoxO1 such that under insulin resistance they lead to hyperglycemia and dyslipidemia, two features of type 2 diabetes. In skeletal muscle FoxO1 maintains energy homeostasis during fasting and provides energy supply through breakdown of carbohydrates, a process that leads to atrophy and underlies glycemic control in insulin resistance. In a dual function, FoxO1 regulates energy and nutrient homeostasis though energy storage in white adipose tissue, but promotes energy expenditure in brown adipose tissue. In its most recently discovered novel role, FoxO1 acts as a transcriptional link between the skeleton and pancreas as well as other insulin target tissues to regulate energy homeostasis. Through its expression in osteoblasts it controls glucose metabolism, insulin sensitivity and energy expenditure. In a feedback mode of regulation, FoxO1 is also a target of insulin signaling in osteoblasts. Insulin suppresses activity of osteoblastic FoxO1 thus promoting beneficial effects of osteoblasts on glucose metabolism. The multiple actions of FoxO1 in all glucose-regulating organs, along with clinical studies suggesting that its glycemic properties are conserved in humans, establish this transcription factor as a master regulator of energy metabolism across species. PMID:21816244

  20. On a FOX hunt: functions of FOX transcriptional regulators in bladder cancer.

    PubMed

    Yamashita, Hironobu; Amponsa, Vasty Osei; Warrick, Joshua I; Zheng, Zongyu; Clark, Peter E; Raman, Jay D; Wu, Xue-Ru; Mendelsohn, Cathy; DeGraff, David J

    2017-02-01

    Genomic and transcriptional studies have identified discrete molecular subtypes of bladder cancer. These observations could be the starting point to identify new treatments. Several members of the forkhead box (FOX) superfamily of transcription factors have been found to be differentially expressed in the different bladder cancer subtypes. In addition, the FOXA protein family are key regulators of embryonic bladder development and patterning. Both experimental and clinical data support a role for FOXA1 and FOXA2 in urothelial carcinoma. FOXA1 is expressed in embryonic and adult urothelium and its expression is altered in urothelial carcinomas and across disparate molecular bladder cancer subtypes. FOXA2 is normally absent from the adult urothelium, but developmental studies identified FOXA2 as a marker of a transient urothelial progenitor cell population during bladder development. Studies also implicate FOXA2 in bladder cancer and several other FOX proteins might be involved in development and/or progression of this disease; for example, FOXA1 and FOXO3A have been associated with clinical patient outcomes. Future studies should investigate to what extent and by which mechanisms FOX proteins might be directly involved in bladder cancer pathogenesis and treatment responses.

  1. FOX-2 Dependent Splicing of Ataxin-2 Transcript Is Affected by Ataxin-1 Overexpression

    PubMed Central

    Welzel, Franziska; Kaehler, Christian; Isau, Melanie; Hallen, Linda; Lehrach, Hans; Krobitsch, Sylvia

    2012-01-01

    Alternative splicing is a fundamental posttranscriptional mechanism for controlling gene expression, and splicing defects have been linked to various human disorders. The splicing factor FOX-2 is part of a main protein interaction hub in a network related to human inherited ataxias, however, its impact remains to be elucidated. Here, we focused on the reported interaction between FOX-2 and ataxin-1, the disease-causing protein in spinocerebellar ataxia type 1. In this line, we further evaluated this interaction by yeast-2-hybrid analyses and co-immunoprecipitation experiments in mammalian cells. Interestingly, we discovered that FOX-2 localization and splicing activity is affected in the presence of nuclear ataxin-1 inclusions. Moreover, we observed that FOX-2 directly interacts with ataxin-2, a protein modulating spinocerebellar ataxia type 1 pathogenesis. Finally, we provide evidence that splicing of pre-mRNA of ataxin-2 depends on FOX-2 activity, since reduction of FOX-2 levels led to increased skipping of exon 18 in ataxin-2 transcripts. Most striking, we observed that ataxin-1 overexpression has an effect on this splicing event as well. Thus, our results demonstrate that FOX-2 is involved in splicing of ataxin-2 transcripts and that this splicing event is altered by overexpression of ataxin-1. PMID:22666429

  2. FoxA1 translates epigenetic signatures into enhancer driven lineage-specific transcription

    PubMed Central

    Lupien, Mathieu; Eeckhoute, Jérôme; Meyer, Clifford A.; Wang, Qianben; Zhang, Yong; Li, Wei; Carroll, Jason S.; Liu, X. Shirley; Brown, Myles

    2008-01-01

    Summary Complex organisms require tissue-specific transcriptional programs, yet little is known about how these are established. The transcription factor FoxA1 is thought to contribute to gene regulation though its ability to act as a pioneer factor binding to nucleosomal DNA. Through genome-wide positional analyses, we demonstrate that FoxA1 cell type-specific functions rely primarily on differential recruitment to chromatin predominantly at distant enhancers rather than proximal promoters. This differential recruitment leads to cell-type specific changes in chromatin structure and functional collaboration with lineage-specific transcription factors. Despite the ability of FoxA1 to bind nucleosomes, its differential binding to chromatin sites is dependent on the distribution of histone H3 lysine 4 dimethylation. Together, our results suggest that methylation of histone H3 lysine 4 is part of the epigenetic signature that defines lineage-specific FoxA1 recruitment sites in chromatin. FoxA1 translates this epigenetic signature into changes in chromatin structure thereby establishing lineage-specific transcriptional enhancers and programs. PMID:18358809

  3. Forkhead transcription factors regulate mosquito reproduction

    PubMed Central

    Hansen, Immo A.; Sieglaff, Douglas H.; Munro, James B.; Shiao, Shin-Hong; Cruz, Josefa; Lee, Iris W.; Heraty, John M.; Raikhel, Alexander S.

    2007-01-01

    Forkhead box (Fox) genes encode a family of transcription factors defined by a ‘winged helix’ DNA-binding domain. In this study we aimed to identify Fox factors that are expressed within the fat body of the yellow fever mosquito Aedes aegypti, and determine whether any of these are involved in the regulation of mosquito yolk protein gene expression. The Ae. aegypti genome contains eighteen loci that encode putative Fox factors. Our stringent cladistic analysis has profound implications for the use of Fox genes as phylogenetic markers. Twelve Ae. aegypti Fox genes are expressed within various tissues of adult females, six of which are expressed within the fat body. All six Fox genes expressed in the fat body displayed dynamic expression profiles following a blood meal. We knocked down the ’fat body Foxes’ through RNAi to determine whether these “knockdowns” hindered amino acid-induced vitellogenin gene expression. We also determined the effect of these knockdowns on the number of eggs deposited following a blood meal. Knockdown of FoxN1, FoxN2, FoxL, and FoxO, had a negative effect on amino acid- induced vitellogenin gene expression and resulted in significantly fewer eggs laid. Our analysis stresses the importance of Fox transcription factors in regulating mosquito reproduction. PMID:17681238

  4. Inactivation of the FoxO3a transcription factor is associated with the production of reactive oxygen species during protein kinase CK2 downregulation-mediated senescence in human colon cancer and breast cancer cells

    SciTech Connect

    Park, Seong-Yeol; Bae, Young-Seuk

    2016-09-09

    We previously showed that protein kinase CK2 downregulation mediates senescence through the reactive oxygen species (ROS)–p53–p21{sup Cip1/WAF1} pathway in various human cells. In the present study, we investigated whether the FoxO3a transcription factor is associated with ROS production during CK2 downregulation-induced senescence in human colon cancer HCT116 and breast cancer MCF-7 cells. FoxO3a overexpression suppressed ROS production and p53 stabilization induced by a CK2α knockdown. CK2α downregulation induced nuclear export of FoxO3a through stimulation of AKT-mediated phosphorylation of FoxO3a and decreased transcription of its target genes (Cu/ZnSOD, MnSOD, and catalase). In contrast, CK2α overexpression inhibited AKT-mediated FoxO3a phosphorylation. This resulted in nuclear accumulation of FoxO3a, and elevated expression of its target genes. Therefore, these data indicate for the first time that CK2 downregulation stimulates ROS generation by inhibiting FoxO3a during premature senescence in human colon and breast cancer cells. - Highlights: • FoxO3a overexpression inhibited ROS production mediated by CK2α knockdown. • CK2α downregulation induced nuclear export of FoxO3a via AKT activation. • CK2α downregulation reduced transcription of FoxO3a target genes including SOD. • CK2α upregulation elevated nuclear import and target gene expression of FoxO3a. • This study indicates that CK2 can modulate the intracellular ROS level via FoxO3a.

  5. Chinese herbal medicine Yi-Gan-San decreases the lipid accumulation in mouse 3T3-L1 adipocytes by modulating the activities of transcription factors SREBP-1c and FoxO1.

    PubMed

    Izumi, Masayuki; Seki, Takashi; Iwasaki, Koh; Sakamoto, Kazuichi

    2009-09-01

    Abnormal lipid metabolism in adipose tissue is closely related to the occurrence and progression of a wide variety of metabolic syndromes. We have analyzed the pharmacological effects of Chinese herbal medicines on cell differentiation and lipid metabolism in adipocytes. Yi-Gan-San (YGS) is a Chinese herbal medicine that is effective in treating the behavioral and psychological symptoms of dementia; however, its physiological mechanism remains unclear. We analyzed the effects of YGS on lipid accumulation in mouse 3T3-L1 adipocytes. Adipocyte differentiation was induced in mouse 3T3-L1 preadipocytes by treatment with the mixture of dexamethasone, 3-iso-butyl-1-methylxanthine, and insulin, and cells were cultured for 8 days with Chinese herbal medicines, including YGS. YGS effectively reduced the lipid accumulation in the differentiated 3T3-L1 cells in a dose-dependent manner, but had no effect on cell viability. YGS also reduced the activity of glycerol-3-phosphate dehydrogenase, an enzyme involved in lipid synthesis. In contrast, YGS gave no noticeable effect on glucose uptake and fatty acid uptake in the differentiated 3T3-L1 cells. Moreover, we established the stably transfected 3T3-L1 cell lines, each of which expresses the luciferase reporter gene under the control of sterol regulatory element-binding protein-1c (SREBP-1c) or FoxO1. SREBP-1c is a transcription factor involved in fatty acid synthesis, and FoxO1 is a forkhead-type transcription factor involved in adipocyte differentiation. Using these cell lines, we showed that YGS reduced the transcriptional activity of SREBP-1c, whereas YGS increased the activity of FoxO1. Thus, YGS may suppress lipid synthesis and fat accumulation in adipocytes through modulating the activities of SREBP-1c and FoxO1.

  6. Nutritional and hormonal factors control the gene expression of FoxOs, the mammalian homologues of DAF-16.

    PubMed

    Imae, M; Fu, Z; Yoshida, A; Noguchi, T; Kato, H

    2003-04-01

    Transcription factors of the FoxO family in mammals are orthologues of the Caenorhabditis elegans forkhead factor DAF-16, which has been characterized as a target of insulin-like signalling. Three members of this family have been identified in rodents: FoxO1, FoxO3 and FoxO4, originally termed FKHR, FKHRL1 and AFX respectively. A number of in vitro studies have revealed that FoxOs are regulated through phosphorylation in response to insulin and related growth factors, resulting in their nuclear exclusion and inactivation. To clarify the mechanisms involved in the regulation of these factors in vivo, we investigated in the present study whether or not, and if so how, their mRNA levels in rat liver respond to the stimuli of several nutritional and hormonal factors. Imposed fasting for 48 h significantly elevated mRNA levels of FoxO1 (1.5-fold), FoxO3 (1.4-fold), and FoxO4 (1.6-fold). Refeeding for 3 h recovered the induced mRNA levels of FoxO1 and FoxO3 to the control levels, but did not affect that of FoxO4. FoxO1 and FoxO4 mRNA levels were proved to be highly reflective of their protein levels measured by Western immunoblotting. Of the three FoxO genes, FoxO4 only showed altered levels of mRNA (a 1.5-fold increase) in response to a protein-free diet. Streptozotocin-induced diabetes for 28 days decreased hepatic mRNA levels of FoxO1 and FoxO3 and increased the level of FoxO4 mRNA, but short-term (7 days) diabetes had fewer effects on the expression of these genes. Insulin replacement partially restored the FoxO1 and FoxO4 mRNA levels, but had no effect on the FoxO3 mRNA level. Daily administration for 1 week of dexamethasone, a synthetic glucocorticoid, increased the mRNA levels of FoxO1 (1.8-fold) and FoxO3 (2.4-fold). These results show that the FoxO genes respond differently to nutritional and hormonal factors, suggesting a new mechanism for the regulation of FoxO-dependent gene expression by these factors. Moreover, changes of FoxO1 and FoxO4 in the nucleus in

  7. Similarities between the Epstein-Barr Virus (EBV) Nuclear Protein EBNA1 and the Pioneer Transcription Factor FoxA: Is EBNA1 a “Bookmarking” Oncoprotein that Alters the Host Cell Epigenotype?

    PubMed Central

    Niller, Hans Helmut; Minarovits, Janos

    2012-01-01

    EBNA1, a nuclear protein expressed in all EBV-associated neoplasms is indispensable for the maintenance of the viral episomes in latently infected cells. EBNA1 may induce genetic alterations by upregulating cellular recombinases, production of reactive oxygen species (ROS) and affecting p53 levels and function. All these changes may contribute to tumorigenesis. In this overview we focus, however, on the epigenetic alterations elicited by EBNA1 by drawing a parallel between EBNA1 and the FoxA family of pioneer transcription factors. Both EBNA1 and FoxA induce local DNA demethylation, nucleosome destabilization and bind to mitotic chromosomes. Local DNA demethylation and nucleosome rearrangement mark active promoters and enhancers. In addition, EBNA1 and FoxA, when associated with mitotic chromatin may “bookmark” active genes and ensure their reactivation in postmitotic cells (epigenetic memory). We speculate that DNA looping induced by EBNA1-EBNA1 interactions may reorganize the cellular genome. Such chromatin loops, sustained in mitotic chromatin similarly to the long-distance interactions mediated by the insulator protein CTCF, may also mediate the epigenetic inheritance of gene expression patterns. We suggest that EBNA1 has the potential to induce patho-epigenetic alterations contributing to tumorigenesis. PMID:25436603

  8. Similarities between the Epstein-Barr Virus (EBV) Nuclear Protein EBNA1 and the Pioneer Transcription Factor FoxA: Is EBNA1 a "Bookmarking" Oncoprotein that Alters the Host Cell Epigenotype?

    PubMed

    Niller, Hans Helmut; Minarovits, Janos

    2012-09-17

    EBNA1, a nuclear protein expressed in all EBV-associated neoplasms is indispensable for the maintenance of the viral episomes in latently infected cells. EBNA1 may induce genetic alterations by upregulating cellular recombinases, production of reactive oxygen species (ROS) and affecting p53 levels and function. All these changes may contribute to tumorigenesis. In this overview we focus, however, on the epigenetic alterations elicited by EBNA1 by drawing a parallel between EBNA1 and the FoxA family of pioneer transcription factors. Both EBNA1 and FoxA induce local DNA demethylation, nucleosome destabilization and bind to mitotic chromosomes. Local DNA demethylation and nucleosome rearrangement mark active promoters and enhancers. In addition, EBNA1 and FoxA, when associated with mitotic chromatin may "bookmark" active genes and ensure their reactivation in postmitotic cells (epigenetic memory). We speculate that DNA looping induced by EBNA1-EBNA1 interactions may reorganize the cellular genome. Such chromatin loops, sustained in mitotic chromatin similarly to the long-distance interactions mediated by the insulator protein CTCF, may also mediate the epigenetic inheritance of gene expression patterns. We suggest that EBNA1 has the potential to induce patho-epigenetic alterations contributing to tumorigenesis.

  9. Forkhead box M1 (FoxM1) gene is a new STAT3 transcriptional factor target and is essential for proliferation, survival and DNA repair of K562 cell line.

    PubMed

    Mencalha, André L; Binato, Renata; Ferreira, Gerson M; Du Rocher, Barbara; Abdelhay, Eliana

    2012-01-01

    The forkhead box (Fox) M1 gene belongs to a superfamily of evolutionarily conserved transcriptional regulators that are involved in a wide range of biological processes, and its deregulation has been implicated in cancer survival, proliferation and chemotherapy resistance. However, the role of FoxM1, the signaling involved in its activation and its role in leukemia are poorly known. Here, we demonstrate by gene promoter analysis, Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assays that FoxM1 is a new target of the STAT3 transcriptional activator. Additionally, FoxM1 is transcriptionally dependent on STAT3 signaling activation. Furthermore, we verified that FoxM1 is crucial for K562 cell proliferation, cell cycle checkpoints and viability and could be related to chemotherapeutic resistance. By microarray analysis, we determined the signaling pathways related to FoxM1 expression and its role in DNA repair using K562 cells. Our results revealed new signaling involved in FoxM1 expression and its role in leukemic cells that elucidate cellular mechanisms associated with the development of leukemia and disease progression.

  10. Forkhead Box M1 (FoxM1) Gene Is a New STAT3 Transcriptional Factor Target and Is Essential for Proliferation, Survival and DNA Repair of K562 Cell Line

    PubMed Central

    Mencalha, André L.; Binato, Renata; Ferreira, Gerson M.; Du Rocher, Barbara; Abdelhay, Eliana

    2012-01-01

    The forkhead box (Fox) M1 gene belongs to a superfamily of evolutionarily conserved transcriptional regulators that are involved in a wide range of biological processes, and its deregulation has been implicated in cancer survival, proliferation and chemotherapy resistance. However, the role of FoxM1, the signaling involved in its activation and its role in leukemia are poorly known. Here, we demonstrate by gene promoter analysis, Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assays that FoxM1 is a new target of the STAT3 transcriptional activator. Additionally, FoxM1 is transcriptionally dependent on STAT3 signaling activation. Furthermore, we verified that FoxM1 is crucial for K562 cell proliferation, cell cycle checkpoints and viability and could be related to chemotherapeutic resistance. By microarray analysis, we determined the signaling pathways related to FoxM1 expression and its role in DNA repair using K562 cells. Our results revealed new signaling involved in FoxM1 expression and its role in leukemic cells that elucidate cellular mechanisms associated with the development of leukemia and disease progression. PMID:23110199

  11. Inactivation of the FoxO3a transcription factor is associated with the production of reactive oxygen species during protein kinase CK2 downregulation-mediated senescence in human colon cancer and breast cancer cells.

    PubMed

    Park, Seong-Yeol; Bae, Young-Seuk

    2016-09-09

    We previously showed that protein kinase CK2 downregulation mediates senescence through the reactive oxygen species (ROS)-p53-p21(Cip1/WAF1) pathway in various human cells. In the present study, we investigated whether the FoxO3a transcription factor is associated with ROS production during CK2 downregulation-induced senescence in human colon cancer HCT116 and breast cancer MCF-7 cells. FoxO3a overexpression suppressed ROS production and p53 stabilization induced by a CK2α knockdown. CK2α downregulation induced nuclear export of FoxO3a through stimulation of AKT-mediated phosphorylation of FoxO3a and decreased transcription of its target genes (Cu/ZnSOD, MnSOD, and catalase). In contrast, CK2α overexpression inhibited AKT-mediated FoxO3a phosphorylation. This resulted in nuclear accumulation of FoxO3a, and elevated expression of its target genes. Therefore, these data indicate for the first time that CK2 downregulation stimulates ROS generation by inhibiting FoxO3a during premature senescence in human colon and breast cancer cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy.

    PubMed

    Milan, Giulia; Romanello, Vanina; Pescatore, Francesca; Armani, Andrea; Paik, Ji-Hye; Frasson, Laura; Seydel, Anke; Zhao, Jinghui; Abraham, Reimar; Goldberg, Alfred L; Blaauw, Bert; DePinho, Ronald A; Sandri, Marco

    2015-04-10

    Stresses like low nutrients, systemic inflammation, cancer or infections provoke a catabolic state characterized by enhanced muscle proteolysis and amino acid release to sustain liver gluconeogenesis and tissue protein synthesis. These conditions activate the family of Forkhead Box (Fox) O transcription factors. Here we report that muscle-specific deletion of FoxO members protects from muscle loss as a result of the role of FoxOs in the induction of autophagy-lysosome and ubiquitin-proteasome systems. Notably, in the setting of low nutrient signalling, we demonstrate that FoxOs are required for Akt activity but not for mTOR signalling. FoxOs control several stress-response pathways such as the unfolded protein response, ROS detoxification, DNA repair and translation. Finally, we identify FoxO-dependent ubiquitin ligases including MUSA1 and a previously uncharacterised ligase termed SMART (Specific of Muscle Atrophy and Regulated by Transcription). Our findings underscore the central function of FoxOs in coordinating a variety of stress-response genes during catabolic conditions.

  13. 20-Hydroxyecdysone-induced transcriptional activity of FoxO upregulates brummer and acid lipase-1 and promotes lipolysis in Bombyx fat body.

    PubMed

    Hossain, Muktadir S; Liu, Yan; Zhou, Shun; Li, Kang; Tian, Ling; Li, Sheng

    2013-09-01

    In a previous study, we have shown that the molting hormone, 20-hydroxyecdysone (20E), reduces insect food consumption resulting in fat body lipolysis during the non-feeding molting and pupation stages, and assumed that the transcription factor FoxO is involved in this process. To verify this hypothesis, we cloned foxO from the silkworm, Bombyx mori. During molting and pupation, FoxO is highly expressed and predominantly localizes in the nuclei of fat body cells. 20E induced foxO mRNA expression and FoxO nuclear localization resulting in an increase of FoxO transcriptional activity. RNAi of foxO prior to the 4th larval molting downregulated two lipase genes--the insect adipose triacylglycerol lipase homologue, brummer, and an acid lipase, acid lipase-1, in the fat body. Overexpression of the constitutively-active form of foxO (foxO(CA)) upregulated brummer and acid lipase-1 in both the fat body and Bombyx Bm-12 cells. Putative FoxO-response elements (FREs) are present in the promoter regions of brummer and acid lipase-1, and mutation of the FREs attenuated their FoxO-induced luciferase activities. ChIP assay revealed that FoxO binds directly to those FREs. Moreover, foxO(CA) overexpression in vivo doubled lipid concentration in the hemolymph, increased total lipase activity, and slightly but significantly reduced lipid content in the fat body. Taken together, we conclude that 20E increases the transcriptional activity of FoxO which, in turn, upregulates brummer and acid lipase-1 and induces lipolysis in the Bombyx fat body during molting and pupation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. FoxO1 regulates myocardial glucose oxidation rates via transcriptional control of pyruvate dehydrogenase kinase 4 expression.

    PubMed

    Gopal, Keshav; Saleme, Bruno; Al Batran, Rami; Aburasayn, Hanin; Eshreif, Amina; Ho, Kim L; Ma, Wayne K; Almutairi, Malak; Eaton, Farah; Gandhi, Manoj; Park, Edwards A; Sutendra, Gopinath; Ussher, John R

    2017-09-01

    Pyruvate dehydrogenase (PDH) is the rate-limiting enzyme for glucose oxidation and a critical regulator of metabolic flexibility during the fasting to feeding transition. PDH is regulated via both PDH kinases (PDHK) and PDH phosphatases, which phosphorylate/inactivate and dephosphorylate/activate PDH, respectively. Our goal was to determine whether the transcription factor forkhead box O1 (FoxO1) regulates PDH activity and glucose oxidation in the heart via increasing the expression of Pdk4, the gene encoding PDHK4. To address this question, we differentiated H9c2 myoblasts into cardiac myocytes and modulated FoxO1 activity, after which Pdk4/PDHK4 expression and PDH phosphorylation/activity were assessed. We assessed binding of FoxO1 to the Pdk4 promoter in cardiac myocytes in conjunction with measuring the role of FoxO1 on glucose oxidation in the isolated working heart. Both pharmacological (1 µM AS1842856) and genetic (siRNA mediated) inhibition of FoxO1 decreased Pdk4/PDHK4 expression and subsequent PDH phosphorylation in H9c2 cardiac myocytes, whereas 10 µM dexamethasone-induced Pdk4/PDHK4 expression was abolished via pretreatment with 1 µM AS1842856. Furthermore, transfection of H9c2 cardiac myocytes with a vector expressing FoxO1 increased luciferase activity driven by a Pdk4 promoter construct containing the FoxO1 DNA-binding element region, but not in a Pdk4 promoter construct lacking this region. Finally, AS1842856 treatment in fasted mice enhanced glucose oxidation rates during aerobic isolated working heart perfusions. Taken together, FoxO1 directly regulates Pdk4 transcription in the heart, thereby controlling PDH activity and subsequent glucose oxidation rates.NEW & NOTEWORTHY Although studies have shown an association between FoxO1 activity and pyruvate dehydrogenase kinase 4 expression, our study demonstrated that pyruvate dehydrogenase kinase 4 is a direct transcriptional target of FoxO1 (but not FoxO3/FoxO4) in the heart. Furthermore, we report

  15. The essential role of p53-up-regulated modulator of apoptosis (Puma) and its regulation by FoxO3a transcription factor in β-amyloid-induced neuron death.

    PubMed

    Akhter, Rumana; Sanphui, Priyankar; Biswas, Subhas Chandra

    2014-04-11

    Neurodegeneration underlies the pathology of Alzheimer disease (AD). The molecules responsible for such neurodegeneration in AD brain are mostly unknown. Recent findings indicate that the BH3-only proteins of the Bcl-2 family play an essential role in various cell death paradigms, including neurodegeneration. Here we report that Puma (p53-up-regulated modulator of apoptosis), an important member of the BH3-only protein family, is up-regulated in neurons upon toxic β-amyloid 1-42 (Aβ(1-42)) exposure both in vitro and in vivo. Down-regulation of Puma by specific siRNA provides significant protection against neuron death induced by Aβ(1-42). We further demonstrate that the activation of p53 and inhibition of PI3K/Akt pathways induce Puma. The transcription factor FoxO3a, which is activated when PI3K/Akt signaling is inhibited, directly binds with the Puma gene and induces its expression upon exposure of neurons to oligomeric Aβ(1-42). Moreover, Puma cooperates with another BH3-only protein, Bim, which is already implicated in AD. Our results thus suggest that Puma is activated by both p53 and PI3K/Akt/FoxO3a pathways and cooperates with Bim to induce neuron death in response to Aβ(1-42).

  16. Prevalence of the EH1 Groucho interaction motif in the metazoan Fox family of transcriptional regulators

    PubMed Central

    Yaklichkin, Sergey; Vekker, Alexander; Stayrook, Steven; Lewis, Mitchell; Kessler, Daniel S

    2007-01-01

    Background The Fox gene family comprises a large and functionally diverse group of forkhead-related transcriptional regulators, many of which are essential for metazoan embryogenesis and physiology. Defining conserved functional domains that mediate the transcriptional activity of Fox proteins will contribute to a comprehensive understanding of the biological function of Fox family genes. Results Systematic analysis of 458 protein sequences of the metazoan Fox family was performed to identify the presence of the engrailed homology-1 motif (eh1), a motif known to mediate physical interaction with transcriptional corepressors of the TLE/Groucho family. Greater than 50% of Fox proteins contain sequences with high similarity to the eh1 motif, including ten of the nineteen Fox subclasses (A, B, C, D, E, G, H, I, L, and Q) and Fox proteins of early divergent species such as marine sponge. The eh1 motif is not detected in Fox proteins of the F, J, K, M, N, O, P, R and S subclasses, or in yeast Fox proteins. The eh1-like motifs are positioned C-terminal to the winged helix DNA-binding domain in all subclasses except for FoxG proteins, which have an N-terminal motif. Two similar eh1-like motifs are found in the zebrafish FoxQ1 and in FoxG proteins of sea urchin and amphioxus. The identification of eh1-like motifs by manual sequence alignment was validated by statistical analyses of the Swiss protein database, confirming a high frequency of occurrence of eh1-like sequences in Fox family proteins. Structural predictions suggest that the majority of identified eh1-like motifs are short α-helices, and wheel modeling revealed an amphipathicity that supports this secondary structure prediction. Conclusion A search for eh1 Groucho interaction motifs in the Fox gene family has identified eh1-like sequences in greater than 50% of Fox proteins. The results predict a physical and functional interaction of TLE/Groucho corepressors with many members of the Fox family of transcriptional

  17. Novel expression and transcriptional regulation of FoxJ1 during oro-facial morphogenesis

    PubMed Central

    Venugopalan, Shankar R.; Amen, Melanie A.; Wang, Jianbo; Wong, Leeyean; Cavender, Adriana C.; D'Souza, Rena N.; Akerlund, Mikael; Brody, Steve L.; Hjalt, Tord A.; Amendt, Brad A.

    2008-01-01

    Axenfeld–Rieger syndrome (ARS) patients with PITX2 point mutations exhibit a wide range of clinical features including mild craniofacial dysmorphism and dental anomalies. Identifying new PITX2 targets and transcriptional mechanisms are important to understand the molecular basis of these anomalies. Chromatin immunoprecipitation assays demonstrate PITX2 binding to the FoxJ1 promoter and PITX2C transgenic mouse fibroblasts and PITX2-transfected cells have increased endogenous FoxJ1 expression. FoxJ1 is expressed at embryonic day 14.5 (E14.5) in early tooth germs, then down-regulated from E15.5–E17.5 and re-expressed in the inner enamel epithelium, oral epithelium, tongue epithelium, sub-mandibular salivary gland and hair follicles during E18.5 and neonate day 1. FoxJ1 and Pitx2 exhibit overlapping expression patterns in the dental and oral epithelium. PITX2 activates the FoxJ1 promoter and, Lef-1 and β-catenin interact with PITX2 to synergistically regulate the FoxJ1 promoter. FoxJ1 physically interacts with the PITX2 homeodomain to synergistically regulate FoxJ1, providing a positive feedback mechanism for FoxJ1 expression. Furthermore, FoxJ1, PITX2, Lef-1 and β-catenin act in concert to activate the FoxJ1 promoter. The PITX2 T68P ARS mutant protein physically interacts with FoxJ1; however, it cannot activate the FoxJ1 promoter. These data indicate a mechanism for the activity of the ARS mutant proteins in specific cell types and provides a basis for craniofacial/ tooth anomalies observed in these patients. These data reveal novel transcriptional mechanisms of FoxJ1 and demonstrate a new role of FoxJ1 in oro-facial morphogenesis. PMID:18723525

  18. FoxO proteins mediate hypoxic induction of connective tissue growth factor in endothelial cells.

    PubMed

    Samarin, Jana; Wessel, Julia; Cicha, Iwona; Kroening, Sven; Warnecke, Christina; Goppelt-Struebe, Margarete

    2010-02-12

    Hypoxia, a driving force in neovascularization, promotes alterations in gene expression mediated by hypoxia-inducible factor (HIF)-1alpha. Connective tissue growth factor (CTGF, CCN2) is a modulator of endothelial cell growth and migration, but its regulation by hypoxia is poorly understood. Therefore, we analyzed signaling pathways involved in the regulation of CTGF by hypoxia in endothelial cells. Exposure to low oxygen tension or treatment with the hypoxia-mimetic dimethyloxalyl glycine (DMOG) stabilized HIF-1alpha and up-regulated CTGF in human umbilical vein endothelial cells and in a murine microvascular endothelial cell line. Induction of CTGF correlated with a HIF-dependent increase in protein and mRNA levels, and nuclear accumulation of the transcription factor FoxO3a. By contrast, gene expression and cellular localization of FoxO1 were not significantly altered by hypoxia. Expression of CTGF was strongly reduced by siRNA silencing of FoxO1 or FoxO3a. Furthermore, nuclear exclusion of FoxO1/3a transcription factors by inhibition of serine/threonine protein phosphatases by okadaic acid inhibited CTGF expression, providing evidence for both FoxO proteins as regulators of CTGF expression. The DMOG-stimulated induction of CTGF was further increased when endothelial cells were co-incubated with transforming growth factor-beta, an activator of Smad signaling. Activation of RhoA-Rho kinase signaling by the microtubule-disrupting drug combretastatin A4 also enhanced the DMOG-induced CTGF expression, thus placing CTGF induction by hypoxia in a network of interacting signaling pathways. Our findings provide evidence that FoxO1, hypoxia-stimulated expression of FoxO3a and its nuclear accumulation are required for the induction of CTGF by hypoxia in endothelial cells.

  19. The FOX transcription factor Hcm1 regulates oxidative metabolism in response to early nutrient limitation in yeast. Role of Snf1 and Tor1/Sch9 kinases.

    PubMed

    Rodríguez-Colman, María José; Sorolla, M Alba; Vall-Llaura, Núria; Tamarit, Jordi; Ros, Joaquim; Cabiscol, Elisa

    2013-08-01

    Within Saccharomyces cerevisiae, Hcm1is a member of the forkhead transcription factor family with a role in chromosome organization. Our group recently described its involvement in mitochondrial biogenesis and stress resistance, and reports here that Hcm1 played a role in adaptation to respiratory metabolism when glucose or nitrogen was decreased. Regulation of Hcm1 activity occurs in at least three ways: i) protein quantity, ii) subcellular localization, and iii) transcriptional activity. Transcriptional activity was measured using a reporter gene fused to a promoter that contains a binding site for Hcm1. We also analyzed the levels of several genes whose expression is known to be regulated by Hcm1 levels and the role of the main kinases known to respond to nutrients. Lack of sucrose-nonfermenting (Snf1) kinase increases cytoplasmic localization of Hcm1, whereas Δtor1 cells showed a mild increase in nuclear Hcm1. In vitro experiments showed that Snf1 clearly phosphorylates Hcm1 while Sch9 exerts a milder phosphorylation. Although in vitroTor1 does not directly phosphorylate Hcm1, in vivo rapamycin treatment increases nuclear Hcm1. We conclude that Hcm1 participates in the adaptation of cells from fermentation to respiratory metabolism during nutrient scarcity. According to our hypothesis, when nutrient levels decrease, Snf1 phosphorylates Hcm1. This results in a shift from the cytoplasm to the nucleus and increased transcriptional activity of genes involved in respiration, use of alternative energy sources, NAD synthesis and oxidative stress resistance. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy

    PubMed Central

    Reed, Sarah A.; Sandesara, Pooja B.; Senf, Sarah M.; Judge, Andrew R.

    2012-01-01

    Cachexia is characterized by inexorable muscle wasting that significantly affects patient prognosis and increases mortality. Therefore, understanding the molecular basis of this muscle wasting is of significant importance. Recent work showed that components of the forkhead box O (FoxO) pathway are increased in skeletal muscle during cachexia. In the current study, we tested the physiological significance of FoxO activation in the progression of muscle atrophy associated with cachexia. FoxO-DNA binding dependent transcription was blocked in the muscles of mice through injection of a dominant negative (DN) FoxO expression plasmid prior to inoculation with Lewis lung carcinoma cells or the induction of sepsis. Expression of DN FoxO inhibited the increased mRNA levels of atrogin-1, MuRF1, cathepsin L, and/or Bnip3 and inhibited muscle fiber atrophy during cancer cachexia and sepsis. Interestingly, during control conditions, expression of DN FoxO decreased myostatin expression, increased MyoD expression and satellite cell proliferation, and induced fiber hypertrophy, which required de novo protein synthesis. Collectively, these data show that FoxO-DNA binding-dependent transcription is necessary for normal muscle fiber atrophy during cancer cachexia and sepsis, and further suggest that basal levels of FoxO play an important role during normal conditions to depress satellite cell activation and limit muscle growth.—Reed, S. A., Sandesara, P. B., Senf, S. F., Judge, A. R. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. PMID:22102632

  1. Transcriptional regulation of FoxO3 gene by glucocorticoids in murine myotubes.

    PubMed

    Kuo, Taiyi; Liu, Patty H; Chen, Tzu-Chieh; Lee, Rebecca A; New, Jenny; Zhang, Danyun; Lei, Cassandra; Chau, Andy; Tang, Yicheng; Cheung, Edna; Wang, Jen-Chywan

    2016-04-01

    Glucocorticoids and FoxO3 exert similar metabolic effects in skeletal muscle. FoxO3 gene expression was increased by dexamethasone (Dex), a synthetic glucocorticoid, both in vitro and in vivo. In C2C12 myotubes the increased expression is due to, at least in part, the elevated rate of FoxO3 gene transcription. In the mouse FoxO3 gene, we identified three glucocorticoid receptor (GR) binding regions (GBRs): one being upstream of the transcription start site, -17kbGBR; and two in introns, +45kbGBR and +71kbGBR. Together, these three GBRs contain four 15-bp glucocorticoid response elements (GREs). Micrococcal nuclease (MNase) assay revealed that Dex treatment increased the sensitivity to MNase in the GRE of +45kbGBR and +71kbGBR upon 30- and 60-min Dex treatment, respectively. Conversely, Dex treatment did not affect the chromatin structure near the -17kbGBR, in which the GRE is located in the linker region. Dex treatment also increased histone H3 and/or H4 acetylation in genomic regions near all three GBRs. Moreover, using chromatin conformation capture (3C) assay, we showed that Dex treatment increased the interaction between the -17kbGBR and two genomic regions: one located around +500 bp and the other around +73 kb. Finally, the transcriptional coregulator p300 was recruited to all three GBRs upon Dex treatment. The reduction of p300 expression decreased FoxO3 gene expression and Dex-stimulated interaction between distinct genomic regions of FoxO3 gene identified by 3C. Overall, our results demonstrate that glucocorticoids activated FoxO3 gene transcription through multiple GREs by chromatin structural change and DNA looping.

  2. Natural Hendra Virus Infection in Flying-Foxes - Tissue Tropism and Risk Factors

    PubMed Central

    Goldspink, Lauren K.; Edson, Daniel W.; Vidgen, Miranda E.; Bingham, John; Field, Hume E.; Smith, Craig S.

    2015-01-01

    Hendra virus (HeV) is a lethal zoonotic agent that emerged in 1994 in Australia. Pteropid bats (flying-foxes) are the natural reservoir. To date, HeV has spilled over from flying-foxes to horses on 51 known occasions, and from infected horses to close-contact humans on seven occasions. We undertook screening of archived bat tissues for HeV by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Tissues were tested from 310 bats including 295 Pteropodiformes and 15 Vespertilioniformes. HeV was detected in 20 individual flying-foxes (6.4%) from various tissues including spleen, kidney, liver, lung, placenta and blood components. Detection was significantly higher in Pteropus Alecto and P. conspicillatus, identifying species as a risk factor for infection. Further, our findings indicate that HeV has a predilection for the spleen, suggesting this organ plays an important role in HeV infection. The lack of detections in the foetal tissues of HeV-positive females suggests that vertical transmission is not a regular mode of transmission in naturally infected flying-foxes, and that placental and foetal tissues are not a major source of infection for horses. A better understanding of HeV tissue tropism will strengthen management of the risk of spillover from flying-foxes to horses and ultimately humans. PMID:26060997

  3. Hierarchical Interactions of Homeodomain and Forkhead Transcription Factors in Regulating Odontogenic Gene Expression*

    PubMed Central

    Venugopalan, Shankar R.; Li, Xiao; Amen, Melanie A.; Florez, Sergio; Gutierrez, Diana; Cao, Huojun; Wang, Jianbo; Amendt, Brad A.

    2011-01-01

    FoxJ1 is a forkhead transcription factor expressed in multiple tissues during development and a major regulator of cilia development. FoxJ1−/− mice present with defects in odontogenesis, and we correlate these defects to hierarchical interactions between homeodomain factors Pitx2 and Dlx2 with FoxJ1 in regulating their expression through direct physical interactions. Chromatin immunoprecipitation assays reveal endogenous Pitx2 and Dlx2 binding to the Dlx2 promoter and Dlx2 binding to the FoxJ1 promoter as well as Dlx2 and FoxJ1 binding to the amelogenin promoter. PITX2 activation of the Dlx2 promoter is attenuated by a direct Dlx2 physical interaction with PITX2. Dlx2 autoregulates its promoter, and Dlx2 transcriptionally activates the downstream gene FoxJ1. Dlx2 and FoxJ1 physically interact and synergistically regulate both Dlx2 and FoxJ1 promoters. Dlx2 and FoxJ1 also activate the amelogenin promoter, and amelogenin is required for enamel formation and late stage tooth development. FoxJ1−/− mice maxillary and mandibular incisors are reduced in length and width and have reduced amelogenin expression. FoxJ1−/− mice show a reduced and defective ameloblast layer, revealing a biological effect of these transcription factor hierarchies during tooth morphogenesis. These transcriptional mechanisms may contribute to other developmental processes such as neuronal, pituitary, and heart development. PMID:21504905

  4. Characterization of flounder ( Paralichthys olivaceus) FoxD5 and its function in regulating myogenic regulatory factor

    NASA Astrophysics Data System (ADS)

    Tan, Xungang; Zhang, Yuqing; Sun, Wei; Zhang, Peijun; Xu, Yongli

    2012-03-01

    As one member of winged helix domain transcription factors, FoxD5 was reported to be a trunk organizer. Recent study showed that zebrafish foxd5 is expressed in the somites. To further understand the function of FoxD5 in fish muscle development, the FoxD5 gene was isolated from flounder. Its expression pattern was analyzed by in situ hybridization, while its function in regulating myogenic regulatory factor, MyoD, was analyzed by ectopic expression. It showed that flounder FoxD5 was firstly expressed in the tailbud, adaxial cells, and neural plate of the head. In flounder embryo, FoxD5 is expressed not only in forebrain but also in somite cells that will form muscle in the future. When flounder FoxD5 was over-expressed in zebrafish by microinjection, the expression of zebrafish MyoD in the somites was reduced, suggesting that FoxD5 is involved in myogenesis by regulating the expression of MyoD.

  5. Forkhead box, class O transcription factors in brain: regulation and behavioral manifestation.

    PubMed

    Polter, Abigail; Yang, Sufen; Zmijewska, Anna A; van Groen, Thomas; Paik, Ji-Hye; Depinho, Ronald A; Peng, Stanford L; Jope, Richard S; Li, Xiaohua

    2009-01-15

    The mammalian forkhead box, class O (FoxO) transcription factors function to regulate diverse physiological processes. Emerging evidence that both brain-derived neurotrophic factor (BDNF) and lithium suppress FoxO activity suggests a potential role of FoxOs in regulating mood-relevant behavior. Here, we investigated whether brain FoxO1 and FoxO3a can be regulated by serotonin and antidepressant treatment and whether their genetic deletion affects behaviors. C57BL/6 mice were treated with D-fenfluramine to increase brain serotonergic activity or with the antidepressant imipramine. The functional status of brain FoxO1 and FoxO3a was audited by immunoblot analysis for phosphorylation and subcellular localization. The behavioral manifestations in FoxO1- and FoxO3a-deficient mice were assessed via the Elevated Plus Maze Test, Forced Swim Test, Tail Suspension Test, and Open Field Test. Increasing serotonergic activity by d-fenfluramine strongly increased phosphorylation of FoxO1 and FoxO3a in several brain regions and reduced nuclear FoxO1 and FoxO3a. The effect of D-fenfluramine was mediated by the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Chronic, but not acute, treatment with the antidepressant imipramine also increased the phosphorylation of brain FoxO1 and FoxO3a. When FoxO1 was selectively deleted from brain, mice displayed reduced anxiety. In contrast, FoxO3a-deficient mice presented with a significant antidepressant-like behavior. FoxOs may be a transcriptional target for anxiety and mood disorder treatment. Despite their physical and functional relatedness, FoxO1 and FoxO3a influence distinct behavioral processes linked to anxiety and depression. Findings in this study reveal important new roles of FoxOs in brain and provide a molecular framework for further investigation of how FoxOs may govern mood and anxiety disorders.

  6. WRKY transcription factors.

    PubMed

    Rushton, Paul J; Somssich, Imre E; Ringler, Patricia; Shen, Qingxi J

    2010-05-01

    WRKY transcription factors are one of the largest families of transcriptional regulators in plants and form integral parts of signalling webs that modulate many plant processes. Here, we review recent significant progress in WRKY transcription factor research. New findings illustrate that WRKY proteins often act as repressors as well as activators, and that members of the family play roles in both the repression and de-repression of important plant processes. Furthermore, it is becoming clear that a single WRKY transcription factor might be involved in regulating several seemingly disparate processes. Mechanisms of signalling and transcriptional regulation are being dissected, uncovering WRKY protein functions via interactions with a diverse array of protein partners, including MAP kinases, MAP kinase kinases, 14-3-3 proteins, calmodulin, histone deacetylases, resistance proteins and other WRKY transcription factors. WRKY genes exhibit extensive autoregulation and cross-regulation that facilitates transcriptional reprogramming in a dynamic web with built-in redundancy. 2010 Elsevier Ltd. All rights reserved.

  7. FoxO1 negatively regulates leptin-induced POMC transcription through its direct interaction with STAT3.

    PubMed

    Ma, Wei; Fuentes, Gloria; Shi, Xiaohe; Verma, Chandra; Radda, George K; Han, Weiping

    2015-03-01

    FoxO1, which is up-regulated during early stages of diet-induced leptin resistance, directly interacts with STAT3 and prevents STAT3 from binding to specificity protein 1 (SP1)-pro-opiomelanocortin (POMC) promoter complex, and thereby inhibits STAT3-mediated regulation of POMC transcription. FoxO1 also binds directly to the POMC promoter and negatively regulates its transcription. The present study aims to understand the relative contribution of the two interactions in regulating POMC expression. We studied the structural requirement of FoxO1 for its interaction with STAT3 and POMC promoter, and tested the inhibitory action of FoxO1 mutants by using biochemical assays, molecular biology and computer modelling. FoxO1 mutant with deletion of residues Ala137-Leu160 failed to bind to STAT3 or inhibit STAT3-mediated POMC activation, although its binding to the POMC promoter was unaffected. Further analysis mapped Gly140-Leu160 to be critical for STAT3 binding. The identified region Gly140-Leu160 was conserved among mammalian FoxO1 proteins, and showed a high degree of sequence identity with FoxO3, but not FoxO4. Consistently, FoxO3 could interact with STAT3 and inhibit POMC promoter activity, whereas FoxO4 could not bind to STAT3 or affect POMC promoter activity. We further identified that five residues (Gln145, Arg147, Lys148, Arg153 and Arg154) in FoxO1 were necessary in FoxO1-STAT3 interaction, and mutation of these residues abolished its interaction with STAT3 and inhibition of POMC promoter activity. Finally, a FoxO1-STAT3 interaction interface model generated by computational docking simulations confirmed that the identified residues of FoxO1 were in close proximity to STAT3. These results show that FoxO1 inhibits STAT3-mediated leptin signalling through direct interaction with STAT3.

  8. Autoregulation of Fox protein expression to produce dominant negative splicing factors

    PubMed Central

    Damianov, Andrey; Black, Douglas L.

    2010-01-01

    The Fox proteins are a family of regulators that control the alternative splicing of many exons in neurons, muscle, and other tissues. Each of the three mammalian paralogs, Fox-1 (A2BP1), Fox-2 (RBM9), and Fox-3 (HRNBP3), produces proteins with a single RNA-binding domain (RRM) flanked by N- and C-terminal domains that are highly diversified through the use of alternative promoters and alternative splicing patterns. These genes also express protein isoforms lacking the second half of the RRM (FoxΔRRM), due to the skipping of a highly conserved 93-nt exon. Fox binding elements overlap the splice sites of these exons in Fox-1 and Fox-2, and the Fox proteins themselves inhibit exon inclusion. Unlike other cases of splicing autoregulation by RNA-binding proteins, skipping the RRM exon creates an in-frame deletion in the mRNA to produce a stable protein. These FoxΔRRM isoforms expressed from cDNA exhibit highly reduced binding to RNA in vivo. However, we show that they can act as repressors of Fox-dependent splicing, presumably by competing with full-length Fox isoforms for interaction with other splicing factors. Interestingly, the Drosophila Fox homolog contains a nearly identical exon in its RRM domain that also has flanking Fox-binding sites. Thus, rather than autoregulation of splicing controlling the abundance of the regulator, the Fox proteins use a highly conserved mechanism of splicing autoregulation to control production of a dominant negative isoform. PMID:20042473

  9. Comparative expression analysis of transcription factor genes in the endostyle of invertebrate chordates.

    PubMed

    Hiruta, Jin; Mazet, Francoise; Yasui, Kinya; Zhang, Peijun; Ogasawara, Michio

    2005-07-01

    The endostyle of invertebrate chordates is a pharyngeal organ that is thought to be homologous with the follicular thyroid of vertebrates. Although thyroid-like features such as iodine-concentrating and peroxidase activities are located in the dorsolateral part of both ascidian and amphioxus endostyles, the structural organization and numbers of functional units are different. To estimate phylogenetic relationships of each functional zone with special reference to the evolution of the thyroid, we have investigated, in ascidian and amphioxus, the expression patterns of thyroid-related transcription factors such as TTF-2/FoxE4 and Pax2/5/8, as well as the forkhead transcription factors FoxQ1 and FoxA. Comparative gene expression analyses depicted an overall similarity between ascidians and amphioxus endostyles, while differences in expression patterns of these genes might be specifically related to the addition or elimination of a pair of glandular zones. Expressions of Ci-FoxE and BbFoxE4 suggest that the ancestral FoxE class might have been recruited for the formation of thyroid-like region in a possible common ancestor of chordates. Furthermore, coexpression of FoxE4, Pax2/5/8, and TPO in the dorsolateral part of both ascidian and amphioxus endostyles suggests that genetic basis of the thyroid function was already in place before the vertebrate lineage.

  10. WRKY transcription factors

    PubMed Central

    Bakshi, Madhunita; Oelmüller, Ralf

    2014-01-01

    WRKY transcription factors are one of the largest families of transcriptional regulators found exclusively in plants. They have diverse biological functions in plant disease resistance, abiotic stress responses, nutrient deprivation, senescence, seed and trichome development, embryogenesis, as well as additional developmental and hormone-controlled processes. WRKYs can act as transcriptional activators or repressors, in various homo- and heterodimer combinations. Here we review recent progress on the function of WRKY transcription factors in Arabidopsis and other plant species such as rice, potato, and parsley, with a special focus on abiotic, developmental, and hormone-regulated processes. PMID:24492469

  11. FoxO3a mediates transforming growth factor-beta1-induced apoptosis in FaO rat hepatoma cells.

    PubMed

    Kim, Byung-Chul

    2008-10-31

    FoxO3a is a member of the forkhead box class O (FoxO) transcription factor family and an important regulator of apoptosis. This work aimed to elucidate the involvement of FoxO3a in transforming growth factor-beta1 (TGF-beta1)-induced apoptosis in FaO rat hepatoma cells. TGF-beta1 caused a time-dependent activation of FoxO3a and a subsequent increase in FoxO response-element-containing luciferase reporter activity, which was Akt-sensitive. The FaO cells stably transfected with a wild type FoxO3a were more susceptible to the formation of apoptotic bodies, populations of sub-G1 apoptotic cells, and collapse of the mitochondrial-membrane potential triggered by TGF-beta1. In contrast, transfection with small-interfering RNA (siRNA) oligonucleotide specific for FoxO3a significantly inhibited caspase activation in FaO cells treated with TGF-beta1. It thus appears that FoxO3a plays a crucial mediatory role in the TGF-beta1 signaling pathway leading to apoptosis.

  12. Inhibition of forkhead box class O family member transcription factors in rheumatoid synovial tissue.

    PubMed

    Ludikhuize, J; de Launay, D; Groot, D; Smeets, T J M; Vinkenoog, M; Sanders, M E; Tas, S W; Tak, P P; Reedquist, K A

    2007-07-01

    Phosphatidylinositol 3-kinase-dependent activation of protein kinase B (PKB) has been observed in rheumatoid arthritis (RA) synovial tissue, and mechanisms that interfere with this process are protective in animal models of arthritis. PKB can regulate cell survival and proliferation via phosphorylation-dependent inactivation of forkhead box class O (FoxO) transcription factors. The present study was undertaken to examine whether FoxO transcription factors are differentially inactivated in RA synovial tissue, and whether this inactivation correlates with laboratory and clinical parameters of disease activity. The expression and phosphorylation of FoxO family members were assessed in synovial biopsy tissue from 12 patients with RA and 9 patients with inflammatory osteoarthritis (OA), by immunohistochemistry and quantitative computer-assisted image analysis. Immunoblotting was used to assess the interleukin-1beta (IL-1beta)- and tumor necrosis factor alpha (TNFalpha)-induced phosphorylation of FoxO1 and FoxO4 in cultured fibroblast-like synoviocytes (FLS) and macrophages. FoxO1, FoxO3a, and FoxO4 were expressed and phosphorylated in synovial tissue from both RA patients and OA patients. In RA synovial tissue, phosphorylation of FoxO1 was observed in both FLS and macrophages, FoxO3a in T lymphocytes, and FoxO4 in macrophages alone. Following stimulation with IL-1beta and TNFalpha, FoxO1 and FoxO4 were phosphorylated in both RA and OA FLS and synovial macrophages, respectively. Inactivation of FoxO4 was significantly enhanced in the RA as compared with the OA synovial sublining. There was a strong negative correlation between inactivation of FoxO4 in RA synovial tissue and increased serum C-reactive protein levels and a raised erythrocyte sedimentation rate in RA patients. All 3 FoxO family members examined were phosphorylated in both RA and OA synovial tissue; in particular, inactivation of FoxO4 was significantly enhanced in macrophages from RA synovial tissue. Thus

  13. Advanced Glycation End-Products affect transcription factors regulating insulin gene expression

    SciTech Connect

    Puddu, A.; Storace, D.; Odetti, P.; Viviani, G.L.

    2010-04-23

    Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic {beta}-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation prevents FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HIT-T15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased expression and acetylation of FoxO1. These results suggest that AGEs decrease insulin content unbalancing transcription factors regulating insulin gene expression.

  14. The Transcription Factor Encyclopedia

    PubMed Central

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe. PMID:22458515

  15. The transcription factor encyclopedia.

    PubMed

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I; Bolotin, Eugene; Ticoll, Amy; Cheung, Warren A; Zhang, Xiao Yu Cindy; Dickman, Christopher T D; Fulton, Debra L; Lim, Jonathan S; Schnabl, Jake M; Ramos, Oscar H P; Vasseur-Cognet, Mireille; de Leeuw, Charles N; Simpson, Elizabeth M; Ryffel, Gerhart U; Lam, Eric W-F; Kist, Ralf; Wilson, Miranda S C; Marco-Ferreres, Raquel; Brosens, Jan J; Beccari, Leonardo L; Bovolenta, Paola; Benayoun, Bérénice A; Monteiro, Lara J; Schwenen, Helma D C; Grontved, Lars; Wederell, Elizabeth; Mandrup, Susanne; Veitia, Reiner A; Chakravarthy, Harini; Hoodless, Pamela A; Mancarelli, M Michela; Torbett, Bruce E; Banham, Alison H; Reddy, Sekhar P; Cullum, Rebecca L; Liedtke, Michaela; Tschan, Mario P; Vaz, Michelle; Rizzino, Angie; Zannini, Mariastella; Frietze, Seth; Farnham, Peggy J; Eijkelenboom, Astrid; Brown, Philip J; Laperrière, David; Leprince, Dominique; de Cristofaro, Tiziana; Prince, Kelly L; Putker, Marrit; del Peso, Luis; Camenisch, Gieri; Wenger, Roland H; Mikula, Michal; Rozendaal, Marieke; Mader, Sylvie; Ostrowski, Jerzy; Rhodes, Simon J; Van Rechem, Capucine; Boulay, Gaylor; Olechnowicz, Sam W Z; Breslin, Mary B; Lan, Michael S; Nanan, Kyster K; Wegner, Michael; Hou, Juan; Mullen, Rachel D; Colvin, Stephanie C; Noy, Peter John; Webb, Carol F; Witek, Matthew E; Ferrell, Scott; Daniel, Juliet M; Park, Jason; Waldman, Scott A; Peet, Daniel J; Taggart, Michael; Jayaraman, Padma-Sheela; Karrich, Julien J; Blom, Bianca; Vesuna, Farhad; O'Geen, Henriette; Sun, Yunfu; Gronostajski, Richard M; Woodcroft, Mark W; Hough, Margaret R; Chen, Edwin; Europe-Finner, G Nicholas; Karolczak-Bayatti, Magdalena; Bailey, Jarrod; Hankinson, Oliver; Raman, Venu; LeBrun, David P; Biswal, Shyam; Harvey, Christopher J; DeBruyne, Jason P; Hogenesch, John B; Hevner, Robert F; Héligon, Christophe; Luo, Xin M; Blank, Marissa Cathleen; Millen, Kathleen Joyce; Sharlin, David S; Forrest, Douglas; Dahlman-Wright, Karin; Zhao, Chunyan; Mishima, Yuriko; Sinha, Satrajit; Chakrabarti, Rumela; Portales-Casamar, Elodie; Sladek, Frances M; Bradley, Philip H; Wasserman, Wyeth W

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe.

  16. Dynamic and Differential Regulation of Stem Cell Factor FoxD3 in the Neural Crest Is Encrypted in the Genome

    PubMed Central

    Tan-Cabugao, Joanne; Sauka-Spengler, Tatjana; Bronner, Marianne E.

    2012-01-01

    The critical stem cell transcription factor FoxD3 is expressed by the premigratory and migrating neural crest, an embryonic stem cell population that forms diverse derivatives. Despite its important role in development and stem cell biology, little is known about what mediates FoxD3 activity in these cells. We have uncovered two FoxD3 enhancers, NC1 and NC2, that drive reporter expression in spatially and temporally distinct manners. Whereas NC1 activity recapitulates initial FoxD3 expression in the cranial neural crest, NC2 activity recapitulates initial FoxD3 expression at vagal/trunk levels while appearing only later in migrating cranial crest. Detailed mutational analysis, in vivo chromatin immunoprecipitation, and morpholino knock-downs reveal that transcription factors Pax7 and Msx1/2 cooperate with the neural crest specifier gene, Ets1, to bind to the cranial NC1 regulatory element. However, at vagal/trunk levels, they function together with the neural plate border gene, Zic1, which directly binds to the NC2 enhancer. These results reveal dynamic and differential regulation of FoxD3 in distinct neural crest subpopulations, suggesting that heterogeneity is encrypted at the regulatory level. Isolation of neural crest enhancers not only allows establishment of direct regulatory connections underlying neural crest formation, but also provides valuable tools for tissue specific manipulation and investigation of neural crest cell identity in amniotes. PMID:23284303

  17. Transforming growth factor-beta and Forkhead box O transcription factors as cardiac fibroblast regulators.

    PubMed

    Norambuena-Soto, Ignacio; Núñez-Soto, Constanza; Sanhueza-Olivares, Fernanda; Cancino-Arenas, Nicole; Mondaca-Ruff, David; Vivar, Raul; Díaz-Araya, Guillermo; Mellado, Rosemarie; Chiong, Mario

    2017-05-23

    Fibroblasts play several homeostatic roles, including electrical coupling, paracrine signaling and tissue repair after injury. Fibroblasts have low secretory activity. However, in response to injury, they differentiate to myofibroblasts. These cells have an increased extracellular matrix synthesis and secretion, including collagen fibers, providing stiffness to the tissue. In pathological conditions myofibroblasts became resistant to apoptosis, remaining in the tissue, causing excessive extracellular matrix secretion and deposition, which contributes to the progressive tissue remodeling. Therefore, increased myofibroblast content within damaged tissue is a characteristic hallmark of heart, lung, kidney and liver fibrosis. Recently, it was described that cardiac fibroblast to myofibroblast differentiation is triggered by the transforming growth factor β1 (TGF-β1) through a Smad-independent activation of Forkhead box O (FoxO). FoxO proteins are a transcription factor family that includes FoxO1, FoxO3, FoxO4 and FoxO6. In several cells types, they play an important role in cell cycle arrest, oxidative stress resistance, cell survival, energy metabolism, and cell death. Here, we review the role of FoxO family members on the regulation of cardiac fibroblast proliferation and differentiation.

  18. Smad transcription factors.

    PubMed

    Massagué, Joan; Seoane, Joan; Wotton, David

    2005-12-01

    Smad transcription factors lie at the core of one of the most versatile cytokine signaling pathways in metazoan biology-the transforming growth factor-beta (TGFbeta) pathway. Recent progress has shed light into the processes of Smad activation and deactivation, nucleocytoplasmic dynamics, and assembly of transcriptional complexes. A rich repertoire of regulatory devices exerts control over each step of the Smad pathway. This knowledge is enabling work on more complex questions about the organization, integration, and modulation of Smad-dependent transcriptional programs. We are beginning to uncover self-enabled gene response cascades, graded Smad response mechanisms, and Smad-dependent synexpression groups. Our growing understanding of TGFbeta signaling through the Smad pathway provides general principles for how animal cells translate complex inputs into concrete behavior.

  19. Direct transcriptional regulation of Gata4 during early endoderm specification is controlled by FoxA2 binding to an intronic enhancer.

    PubMed

    Rojas, Anabel; Schachterle, William; Xu, Shan-Mei; Martín, Franz; Black, Brian L

    2010-10-15

    The embryonic endoderm is a multipotent progenitor cell population that gives rise to the epithelia of the digestive and respiratory tracts, the liver and the pancreas. Among the transcription factors that have been shown to be important for endoderm development and gut morphogenesis is GATA4. Despite the important role of GATA4 in endoderm development, its transcriptional regulation is not well understood. In this study, we identified an intronic enhancer from the mouse Gata4 gene that directs expression to the definitive endoderm in the early embryo. The activity of this enhancer is initially broad in all endodermal progenitors, as demonstrated by fate mapping analysis using the Cre/loxP system, but becomes restricted to the dorsal foregut and midgut, and associated organs such as dorsal pancreas and stomach. The function of the intronic Gata4 enhancer is dependent upon a conserved Forkhead transcription factor-binding site, which is bound by recombinant FoxA2 in vitro. These studies identify Gata4 as a direct transcriptional target of FoxA2 in the hierarchy of the transcriptional regulatory network that controls the development of the definitive endoderm. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Fungal CSL transcription factors

    PubMed Central

    Převorovský, Martin; Půta, František; Folk, Petr

    2007-01-01

    Background The CSL (CBF1/RBP-Jκ/Suppressor of Hairless/LAG-1) transcription factor family members are well-known components of the transmembrane receptor Notch signaling pathway, which plays a critical role in metazoan development. They function as context-dependent activators or repressors of transcription of their responsive genes, the promoters of which harbor the GTG(G/A)GAA consensus elements. Recently, several studies described Notch-independent activities of the CSL proteins. Results We have identified putative CSL genes in several fungal species, showing that this family is not confined to metazoans. We have analyzed their sequence conservation and identified the presence of well-defined domains typical of genuine CSL proteins. Furthermore, we have shown that the candidate fungal protein sequences contain highly conserved regions known to be required for sequence-specific DNA binding in their metazoan counterparts. The phylogenetic analysis of the newly identified fungal CSL proteins revealed the existence of two distinct classes, both of which are present in all the species studied. Conclusion Our findings support the evolutionary origin of the CSL transcription factor family in the last common ancestor of fungi and metazoans. We hypothesize that the ancestral CSL function involved DNA binding and Notch-independent regulation of transcription and that this function may still be shared, to a certain degree, by the present CSL family members from both fungi and metazoans. PMID:17629904

  1. Study of FoxA Pioneer Factor at Silent Genes Reveals Rfx-Repressed Enhancer at Cdx2 and a Potential Indicator of Esophageal Adenocarcinoma Development

    PubMed Central

    Watts, Jason A.; Zhang, Chaolin; Klein-Szanto, Andres J.; Kormish, Jay D.; Fu, Jian; Zhang, Michael Q.; Zaret, Kenneth S.

    2011-01-01

    Understanding how silent genes can be competent for activation provides insight into development as well as cellular reprogramming and pathogenesis. We performed genomic location analysis of the pioneer transcription factor FoxA in the adult mouse liver and found that about one-third of the FoxA bound sites are near silent genes, including genes without detectable RNA polymerase II. Virtually all of the FoxA-bound silent sites are within conserved sequences, suggesting possible function. Such sites are enriched in motifs for transcriptional repressors, including for Rfx1 and type II nuclear hormone receptors. We found one such target site at a cryptic “shadow” enhancer 7 kilobases (kb) downstream of the Cdx2 gene, where Rfx1 restricts transcriptional activation by FoxA. The Cdx2 shadow enhancer exhibits a subset of regulatory properties of the upstream Cdx2 promoter region. While Cdx2 is ectopically induced in the early metaplastic condition of Barrett's esophagus, its expression is not necessarily present in progressive Barrett's with dysplasia or adenocarcinoma. By contrast, we find that Rfx1 expression in the esophageal epithelium becomes gradually extinguished during progression to cancer, i.e, expression of Rfx1 decreased markedly in dysplasia and adenocarcinoma. We propose that this decreased expression of Rfx1 could be an indicator of progression from Barrett's esophagus to adenocarcinoma and that similar analyses of other transcription factors bound to silent genes can reveal unanticipated regulatory insights into oncogenic progression and cellular reprogramming. PMID:21935353

  2. FoxP2 in songbirds.

    PubMed

    Wohlgemuth, Sandra; Adam, Iris; Scharff, Constance

    2014-10-01

    Humans with mutations in the transcription factor FOXP2 display a severe speech disorder. Songbirds are a powerful model system to study FoxP2. Like humans, songbirds communicate via vocalizations that are imitatively learned during critical periods and this learning is influenced by social factors and relies on functionally lateralized neural circuits. During the past five years significant progress has been made moving from a descriptive to a more mechanistic understanding of how FoxP2 functions in songbirds. Current evidence from molecular and electrophysiological studies indicates that FoxP2 is important for shaping synaptic plasticity of specific neuron populations. One future goal will be to identify the transcriptional regulation orchestrated by FoxP2 and its associated molecular network that brings about these physiological effects. This will be key to further unravel how FoxP2 influences synaptic function and thereby contributes to auditory guided vocal motor behavior in the songbird model.

  3. Transcriptional Regulation by Competing Transcription Factor Modules

    PubMed Central

    Hermsen, Rutger; Tans, Sander; ten Wolde, Pieter Rein

    2006-01-01

    Gene regulatory networks lie at the heart of cellular computation. In these networks, intracellular and extracellular signals are integrated by transcription factors, which control the expression of transcription units by binding to cis-regulatory regions on the DNA. The designs of both eukaryotic and prokaryotic cis-regulatory regions are usually highly complex. They frequently consist of both repetitive and overlapping transcription factor binding sites. To unravel the design principles of these promoter architectures, we have designed in silico prokaryotic transcriptional logic gates with predefined input–output relations using an evolutionary algorithm. The resulting cis-regulatory designs are often composed of modules that consist of tandem arrays of binding sites to which the transcription factors bind cooperatively. Moreover, these modules often overlap with each other, leading to competition between them. Our analysis thus identifies a new signal integration motif that is based upon the interplay between intramodular cooperativity and intermodular competition. We show that this signal integration mechanism drastically enhances the capacity of cis-regulatory domains to integrate signals. Our results provide a possible explanation for the complexity of promoter architectures and could be used for the rational design of synthetic gene circuits. PMID:17140283

  4. Genome-wide identification and characterization of Fox genes in the silkworm, Bombyx mori.

    PubMed

    Song, JiangBo; Li, ZhiQuan; Tong, XiaoLing; Chen, Cong; Chen, Min; Meng, Gang; Chen, Peng; Li, ChunLin; Xin, YaQun; Gai, TingTing; Dai, FangYin; Lu, Cheng

    2015-09-01

    The forkhead box (Fox) transcription factor family has a characteristic of forkhead domain, a winged DNA-binding domain. The Fox genes have been classified into 23 subfamilies, designated FoxA to FoxS, of which the FoxR and FoxS subfamilies are specific to vertebrates. In this review, using whole-genome scanning, we identified 17 distinct Fox genes distributed on 13 chromosomes of the silkworm, Bombyx mori. A phylogenetic tree showed that the silkworm Fox genes could be classified into 13 subfamilies. The FoxK subfamily is specifically absent from the silkworm, although it is present in other lepidopteran insects, including Danaus plexippus and Heliconius melpomene. Microarray data revealed that the Fox genes have distinct expression patterns in the tissues on day 3 of the 5th instar larva. A Gene Ontology analysis suggested that the Fox genes have roles in cellular components, molecular functions, and biological processes, except in pore complex biogenesis. An analysis of the selective pressure on the proteins indicated that most of the amino acid sites in the Fox proteins are undergoing strong purifying selection. Here, we summarize the general characteristics of the Fox genes in the silkworm, which should support further functional studies of the silkworm Fox proteins.

  5. Accelerated evolution of 3'avian FOXE1 genes, and thyroid and feather specific expression of chicken FoxE1.

    PubMed

    Yaklichkin, Sergey Yu; Darnell, Diana K; Pier, Maricela V; Antin, Parker B; Hannenhalli, Sridhar

    2011-10-15

    The forkhead transcription factor gene E1 (FOXE1) plays an important role in regulation of thyroid development, palate formation and hair morphogenesis in mammals. However, avian FOXE1 genes have not been characterized and as such, codon evolution of FOXE1 orthologs in a broader evolutionary context of mammals and birds is not known. In this study we identified the avian FOXE1 gene in chicken, turkey and zebra finch, all of which consist of a single exon. Chicken and zebra finch FOXE1 are uniquely located on the sex-determining Z chromosome. In situ hybridization shows that chicken FOXE1 is specifically expressed in the developing thyroid. Its expression is initiated at the placode stage and is maintained during the stages of vesicle formation and follicle primordia. Based on this expression pattern, we propose that avian FOXE1 may be involved in regulating the evagination and morphogenesis of thyroid. Chicken FOXE1 is also expressed in growing feathers. Sequence analysis identified two microdeletions in the avian FOXE1 genes, corresponding to the loss of a transferable repression domain and an engrailed homology motif 1 (Eh1) C-terminal to the forkhead domain. The avian FOXE1 proteins exhibit a significant sequence divergence of the C-terminus compared to those of amphibian and mammalian FOXE1. The codon evolution analysis (dN/dS) of FOXE1 shows a significantly increased dN/dS ratio in the avian lineages, consistent with either a relaxed purifying selection or positive selection on a few residues in avian FOXE1 evolution. Further site specific analysis indicates that while relaxed purifying selection is likely to be a predominant cause of accelerated evolution at the 3'-region of avian FOXE1, a few residues might have evolved under positive selection. We have identified three avian FOXE1 genes based on synteny and sequence similarity as well as characterized the expression pattern of the chicken FOXE1 gene during development. Our evolutionary analyses suggest that

  6. Prevalence, risk factors and multilocus genotyping of Enterocytozoon bieneusi in farmed foxes (Vulpes lagopus), Northern China.

    PubMed

    Zhang, Xiao-Xuan; Cong, Wei; Lou, Zhi-Long; Ma, Jian-Gang; Zheng, Wen-Bin; Yao, Qiu-Xia; Zhao, Quan; Zhu, Xing-Quan

    2016-02-05

    Microsporidiosis is a common disease in animals and humans around the world. Enterocytozoon bieneusi is the most common microsporidian species in humans. Many animal species may be a potential source of human microsporidiosis. However, information concerning prevalence and genotypes of E. bieneusi infection in farmed foxes (Vulpes lagopus) is scarce. Therefore, the present study examined prevalence, risk factors and genotypes of E. bieneusi in farmed foxes in northern China using a genetic approach. Of 302 fecal samples from farmed foxes, 37 (12.25%, 95% CI 8.55-15.95) were PCR-positive for E. bieneusi, and the prevalence was highly associated with the farming mode in that foxes raised outdoors (26.03% positive, 95% CI 18.91-33.15) had a significantly higher E. bieneusi prevalence than those raised indoors. Eleven internal transcribed spacer (ITS) genotypes were identified among the positive samples: four known E. bieneusi genotypes (Peru 8, Types IV, CHN-DC1 and D) and seven novel genotypes (NCF1-NCF7). Genotype NCF2 was the commonest (n = 13) and was found in five farms across three provinces (Jilin, Heilongjiang and Hebei). All genotypes belonged to phylogenetic group 1. Multilocus sequence typing (MLST) analyses revealed additional diversity. These findings indicate the presence of zoonotic E. bieneusi infection in farmed foxes in northern China. This is also the first report of genotypes Peru8, CHN-DC1 and Type IV, and seven novel genotypes (NCF1-NCF7) in farmed foxes by ITS combining with microsatellite and minisatellite markers for the first time. The results will provide baseline data for preventing and controlling E. bieneusi infection in farmed foxes, other animals and humans.

  7. Trends in anecdotal fox sightings in Tasmania accounted for by psychological factors.

    PubMed

    Marks, Clive A; Clark, Malcolm; Obendorf, David; Hall, Graham P; Soares, Inês; Pereira, Filipe

    2017-04-06

    There has been little evaluation of anecdotal sightings as a means to confirm new incursions of invasive species. This paper explores the potential for equivocal information communicated by the media to account for patterns of anecdotal reports. In 2001, it was widely reported that red foxes (Vulpes vulpes) had been deliberately released in the island state of Tasmania (Australia), although this claim was later revealed to be baseless. Regardless, by 2013 a total of 3153 anecdotal fox sightings had been reported by members of the public, which implied their distribution was wide. For each month in 2001-2003, we defined a monthly media index (MMI) of fox-related media coverage, an index of their relative seasonal abundance (abundance), and a factor denoting claims of fox evidence (claimed evidence) regardless of its evidentiary quality. We fitted a generalized linear model with Poisson error for monthly totals of anecdotal sightings with factors of year and claimed evidence and covariates of MMI, abundance, and hours of darkness. The collective effect of psychological factors (MMI, claimed evidence, and year) relative to biophysical factors (photoperiod and abundance) was highly significant (χ(2) = 122.1, df = 6, p < 0.0001), whereas anticipated changes in abundance had no significant influence on reported sightings (p = 0.15). An annual index of fox media from 2001 to 2010 was strongly associated with the yearly tally of anecdotal sightings (p = 0.018). The odds ratio of sightings ranked as reliable by the fox eradication program in any year decreased exponentially at a rate of 0.00643 as the total number of sightings increased (p < 0.0001) and was indicative of an observer-expectancy bias. Our results suggest anecdotal sightings are highly susceptible to cognitive biases and when used to qualify and quantify species presence can contribute to flawed risk assessments. © 2017 Society for Conservation Biology.

  8. Systemic Amyloid A Amyloidosis in Island Foxes (Urocyon littoralis): Severity and Risk Factors.

    PubMed

    Gaffney, P M; Witte, C; Clifford, D L; Imai, D M; O'Brien, T D; Trejo, M; Liberta, F; Annamalai, K; Fändrich, M; Masliah, E; Munson, L; Sigurdson, C J

    2016-05-01

    Systemic amyloid A (AA) amyloidosis is highly prevalent (34%) in endangered island foxes (Urocyon littoralis) and poses a risk to species recovery. Although elevated serum AA (SAA) from prolonged or recurrent inflammation predisposes to AA amyloidosis, additional risk factors are poorly understood. Here we define the severity of glomerular and medullary renal amyloid and identify risk factors for AA amyloidosis in 321 island foxes necropsied from 1987 through 2010. In affected kidneys, amyloid more commonly accumulated in the medullary interstitium than in the glomeruli (98% [n= 78 of 80] vs 56% [n= 45], respectively;P< .0001), and medullary deposition was more commonly severe (19% [n= 20 of 105]) as compared with glomeruli (7% [n= 7];P= .01). Univariate odds ratios (ORs) of severe renal AA amyloidosis were greater for short- and long-term captive foxes as compared with free-ranging foxes (ORs = 3.2, 3.7, respectively; overall P= .05) and for females as compared with males (OR = 2.9;P= .05). Multivariable logistic regression revealed that independent risk factors for amyloid development were increasing age class (OR = 3.8;P< .0001), San Clemente Island subspecies versus San Nicolas Island subspecies (OR = 5.3;P= .0003), captivity (OR = 5.1;P= .0001), and nephritis (OR = 2.3;P= .01). The increased risk associated with the San Clemente subspecies or captivity suggests roles for genetic as well as exogenous risk factors in the development of AA amyloidosis.

  9. Transcription factors involved in glucose-stimulated insulin secretion of pancreatic beta cells

    SciTech Connect

    Shao, Shiying; Fang, Zhong; Yu, Xuefeng; Zhang, Muxun

    2009-07-10

    GSIS, the most important function of pancreatic beta cell, is essential for maintaining the glucose homeostasis. Transcription factors are known to control different biological processes such as differentiation, proliferation and apoptosis. In pancreas, some transcription factors are involved in regulating the function of beta cells. In this review, the role of these transcription factors including Pdx-1, FoxO1, SREBP-1c, and MafA in GSIS is highlighted. The related molecular mechanisms are analyzed as well. Furthermore, the association between the role of transcription factors in GSIS and the development of T2DM is discussed.

  10. Nitric oxide-repressed Forkhead factor FoxE1 expression is involved in the inhibition of TSH-induced thyroid peroxidase levels.

    PubMed

    Montesinos, María del Mar; Nicola, Juan Pablo; Nazar, Magalí; Peyret, Victoria; Lucero, Ariel Maximiliano; Pellizas, Claudia Gabriela; Masini-Repiso, Ana María

    2016-01-15

    Thyroid peroxidase (TPO) is essential for thyroid hormone synthesis mediating the covalent incorporation of iodine into tyrosine residues of thyroglobulin process known as organification. Thyroid-stimulating hormone (TSH) via cAMP signaling is the main hormonal regulator of TPO gene expression. In thyroid cells, TSH-stimulated nitric oxide (NO) production inhibits TSH-induced thyroid-specific gene expression, suggesting a potential autocrine role of NO in modulating thyroid function. Indeed, NO donors downregulate TSH-induced iodide accumulation and organification in thyroid cells. Here, using FRTL-5 thyroid cells as model, we obtained insights into the molecular mechanism underlying the inhibitory effects of NO on iodide organification. We demonstrated that NO donors inhibited TSH-stimulated TPO expression by inducing a cyclic guanosine monophosphate-dependent protein kinase-mediated transcriptional repression of the TPO gene. Moreover, we characterized the FoxE1 binding site Z as mediator of the NO-inhibited TPO expression. Mechanistically, we demonstrated that NO decreases TSH-induced FoxE1 expression, thus repressing the transcripcional activation of TPO gene. Taken together, we provide novel evidence reinforcing the inhibitory role of NO on thyroid cell function, an observation of potential pathophysiological relevance associated with human thyroid pathologies that come along with changes in the NO production.

  11. Pioneer transcription factors: establishing competence for gene expression

    PubMed Central

    Zaret, Kenneth S.; Carroll, Jason S.

    2011-01-01

    Transcription factors are adaptor molecules that detect regulatory sequences in the DNA and target the assembly of protein complexes that control gene expression. Yet much of the DNA in the eukaryotic cell is in nucleosomes and thereby occluded by histones, and can be further occluded by higher-order chromatin structures and repressor complexes. Indeed, genome-wide location analyses have revealed that, for all transcription factors tested, the vast majority of potential DNA-binding sites are unoccupied, demonstrating the inaccessibility of most of the nuclear DNA. This raises the question of how target sites at silent genes become bound de novo by transcription factors, thereby initiating regulatory events in chromatin. Binding cooperativity can be sufficient for many kinds of factors to simultaneously engage a target site in chromatin and activate gene expression. However, in cases in which the binding of a series of factors is sequential in time and thus not initially cooperative, special “pioneer transcription factors” can be the first to engage target sites in chromatin. Such initial binding can passively enhance transcription by reducing the number of additional factors that are needed to bind the DNA, culminating in activation. In addition, pioneer factor binding can actively open up the local chromatin and directly make it competent for other factors to bind. Passive and active roles for the pioneer factor FoxA occur in embryonic development, steroid hormone induction, and human cancers. Herein we review the field and describe how pioneer factors may enable cellular reprogramming. PMID:22056668

  12. FoxP3 provides competitive fitness to CD4⁺CD25⁺ T cells in leprosy patients via transcriptional regulation.

    PubMed

    Kumar, Sudhir; Naqvi, Raza Ali; Ali, Riyasat; Rani, Richa; Khanna, Neena; Rao, D N

    2014-02-01

    Leprosy is a chronic infectious disease caused by Mycobacterium leprae. FoxP3 have been shown to have important implications in various diseases. The present study describes the mechanism of action of FoxP3 in CD4⁺CD25⁺ T cells derived from leprosy patients. Increased molecular interactions of FoxP3 with histone deacetylases 7/9 in the nucleus of CD4⁺CD25⁺ T cells derived from borderline lepromatous leprosy/lepromatous leprosy (BL/LL) patients were found to be responsible for FoxP3-driven immune suppression activities during the progression of leprosy. Further, downregulation of CTLA-4 and CD25 genes in siFoxP3-treated PBMCs derived from BL/LL patients elucidated the transcription-activating nature of FoxP3. This observation was supported by direct binding of FoxP3 to the promoter region of the CTLA-4 and CD25 genes, and FoxP3's molecular interaction with histone acetyl transferases. The study also revealed that the increased expression of miR155 in CD4⁺CD25⁺ cells from BL/LL governs the competitive fitness of these cells. Again, reduced Annexin V & propidium iodide staining and Nur77 expression, and concomitantly increased Ki-67 positivity suggested that CD4⁺CD25⁺ cells derived from BL/LL patients are more competitively fit than those from borderline tuberculoid leprosy/tuberculoid leprosy and healthy controls. Taken together, the study shows the orchestration of FoxP3 leading to competitive fitness of Treg cells in leprosy. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A forkhead Transcription Factor Is Wound-Induced at the Planarian Midline and Required for Anterior Pole Regeneration

    PubMed Central

    Scimone, M. Lucila; Lapan, Sylvain W.; Reddien, Peter W.

    2014-01-01

    Planarian regeneration requires positional information to specify the identity of tissues to be replaced as well as pluripotent neoblasts capable of differentiating into new cell types. We found that wounding elicits rapid expression of a gene encoding a Forkhead-family transcription factor, FoxD. Wound-induced FoxD expression is specific to the ventral midline, is regulated by Hedgehog signaling, and is neoblast-independent. FoxD is subsequently expressed within a medial subpopulation of neoblasts at wounds involving head regeneration. Ultimately, FoxD is co-expressed with multiple anterior markers at the anterior pole. Inhibition of FoxD with RNA interference (RNAi) results in the failure to specify neoblasts expressing anterior markers (notum and prep) and in anterior pole formation defects. FoxD(RNAi) animals fail to regenerate a new midline and to properly pattern the anterior blastema, consistent with a role for the anterior pole in organizing pattern of the regenerating head. Our results suggest that wound signaling activates a forkhead transcription factor at the midline and, if the head is absent, FoxD promotes specification of neoblasts at the prior midline for anterior pole regeneration. PMID:24415944

  14. A forkhead transcription factor is wound-induced at the planarian midline and required for anterior pole regeneration.

    PubMed

    Scimone, M Lucila; Lapan, Sylvain W; Reddien, Peter W

    2014-01-01

    Planarian regeneration requires positional information to specify the identity of tissues to be replaced as well as pluripotent neoblasts capable of differentiating into new cell types. We found that wounding elicits rapid expression of a gene encoding a Forkhead-family transcription factor, FoxD. Wound-induced FoxD expression is specific to the ventral midline, is regulated by Hedgehog signaling, and is neoblast-independent. FoxD is subsequently expressed within a medial subpopulation of neoblasts at wounds involving head regeneration. Ultimately, FoxD is co-expressed with multiple anterior markers at the anterior pole. Inhibition of FoxD with RNA interference (RNAi) results in the failure to specify neoblasts expressing anterior markers (notum and prep) and in anterior pole formation defects. FoxD(RNAi) animals fail to regenerate a new midline and to properly pattern the anterior blastema, consistent with a role for the anterior pole in organizing pattern of the regenerating head. Our results suggest that wound signaling activates a forkhead transcription factor at the midline and, if the head is absent, FoxD promotes specification of neoblasts at the prior midline for anterior pole regeneration.

  15. FoxO1-Mediated Activation of Akt Plays a Critical Role in Vascular Homeostasis

    PubMed Central

    Yuan, Lei; Dupuis, Dylan; Beeler, David; Spokes, Katherine C.; Janes, Lauren; Sciuto, Tracey; Kang, Peter M.; Jaminet, Shou-Ching S.; Dvorak, Ann; Grant, Marianne A.; Regan, Erzsébet Ravasz; Aird, William C.

    2016-01-01

    Rationale Forkhead box-O transcription factors (FoxOs) transduce a wide range of extracellular signals, resulting in changes in cell survival, cell cycle progression, and a number of cell type-specific responses. FoxO1 is expressed in many cell types, including endothelial cells. Previous studies have shown that FoxO1 knockout in mice results in embryonic lethality at E11 due to impaired vascular development. In contrast, somatic deletion of FoxO1 is associated with hyperproliferation of endothelial cells. Thus, the precise role of FoxO1 in the endothelium remains enigmatic. Objective To determine the effect of endothelial-specific knockout and overexpression of FoxO1 on vascular homeostasis. Methods and Results We show that endothelial cell (EC)-specific disruption of FoxO1 in mice phenocopies the full knockout. While endothelial expression of FoxO1 rescued otherwise FoxO-null animals, overexpression of constitutively active FoxO1 resulted in increased EC size, occlusion of capillaries, elevated peripheral resistance, heart failure and death. Knockdown of FoxO1 in ECs resulted in marked inhibition of basal and VEGF-induced Akt-mTOR1 signaling. Conclusions Our findings suggest that in mice endothelial expression of FoxO1 is both necessary and sufficient for embryonic development. Moreover, FoxO1-mediated feedback activation of Akt maintains growth factor-responsive Akt/mTORC1 activity within a homeostatic range. PMID:24874427

  16. Central FoxO3a and FoxO6 expression is down-regulated in obesity induced diabetes but not in aging.

    PubMed

    Zemva, J; Schilbach, K; Stöhr, O; Moll, L; Franko, A; Krone, W; Wiesner, R J; Schubert, M

    2012-06-01

    Recent data suggest that insulin-like growth factor (IGF)-1 resistance in neurons prolongs longevity. In C. elegans this effect is mediated via DAF-16 the ortholog of the mammalian FoxO transcription factors. 3 different FoxO transcription factors (FoxOs) are expressed in rodent CNS: FoxO1, FoxO3a and FoxO6. To define whether the different FoxOs are region-, sex- and age-specifically expressed, we analyzed FoxO mRNA levels in different brain regions from 6, 16, 60 and 100 weeks old mice using realtime-PCR. In addition, we fed mice a high fat diet (HFD) to experimentally induce obesity and diabetes and analyzed FoxO mRNA in the different brain regions. Interestingly, FoxO1 was predominantly expressed in the hippocampus whereas FoxO3a was quantitatively the most abundant FoxO in the neocortex. During aging, FoxO1 expression peaked in all brain regions at 16 weeks and FoxO6 showed its highest expression at 60 weeks in the parietal and occipital cortex. In 6 weeks old mice FoxO6 expression was higher in male compared to female mice in the hippocampus and all cortical regions. Surprisingly, in HFD animals FoxO3a was significantly less expressed in the cerebellum and all cortical regions compared to control animals. Even more dramatic, FoxO6 expression dropped about 80% in all brain regions in response to HFD. Thus, FoxOs in the CNS showed a highly distinct expression, which in addition was age- and sex-dependent. In contrast to FoxO1, FoxO3a and FoxO6 were specifically diminished in the CNS of HFD animals possibly contributing to the reduced lifespan observed in these animals. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  17. FoxO genes are dispensable during gastrulation but required for late embryogenesis in Xenopus laevis.

    PubMed

    Schuff, Maximilian; Siegel, Doreen; Bardine, Nabila; Oswald, Franz; Donow, Cornelia; Knöchel, Walter

    2010-01-15

    Forkhead box (Fox) transcription factors of subclass O are involved in cell survival, proliferation, apoptosis, cell metabolism and prevention of oxidative stress. FoxO genes are highly conserved throughout evolution and their functions were analyzed in several vertebrate and invertebrate organisms. We here report on the identification of FoxO4 and FoxO6 genes in Xenopus laevis and analyze their expression patterns in comparison with the previously described FoxO1 and FoxO3 genes. We demonstrate significant differences in their temporal and spatial expression during embryogenesis and in their relative expression within adult tissues. Overexpression of FoxO1, FoxO4 or FoxO6 results in severe gastrulation defects, while overexpression of FoxO3 reveals this defect only in a constitutively active form containing mutations of Akt-1 target sites. Injections of FoxO antisense morpholino oligonucleotides (MO) did not influence gastrulation, but, later onwards, the embryos showed a delay of development, severe body axis reduction and, finally, a high rate of lethality. Injection of FoxO4MO leads to specific defects in eye formation, neural crest migration and heart development, the latter being accompanied by loss of myocardin expression. Our observations suggest that FoxO genes in X. laevis are dispensable until blastopore closure but are required for tissue differentiation and organogenesis.

  18. Isotretinoin and FoxO1

    PubMed Central

    2011-01-01

    Oral isotretinoin (13-cis retinoic acid) is the most effective drug in the treatment of acne and restores all major pathogenetic factors of acne vulgaris. isotretinoin is regarded as a prodrug which after isomerizisation to all-trans-retinoic acid (ATRA) induces apoptosis in cells cultured from human sebaceous glands, meibomian glands, neuroblastoma cells, hypothalamic cells, hippocampus cells, Dalton's lymphoma ascites cells, B16F-10 melanoma cells, and neuronal crest cells and others. By means of translational research this paper provides substantial indirect evidence for isotretinoin's mode of action by upregulation of forkhead box class O (FoxO) transcription factors. FoxOs play a pivotal role in the regulation of androgen receptor transactivation, insulin/insulin like growth factor-1 (IGF-1)-signaling, peroxisome proliferator-activated receptor-γ (PPArγ)- and liver X receptor-α (LXrα)-mediated lipogenesis, β-catenin signaling, cell proliferation, apoptosis, reactive oxygene homeostasis, innate and acquired immunity, stem cell homeostasis, as well as anti-cancer effects. An accumulating body of evidence suggests that the therapeutic, adverse, teratogenic and chemopreventive effecs of isotretinoin are all mediated by upregulation of FoxO-mediated gene transcription. These FoxO-driven transcriptional changes of the second response of retinoic acid receptor (RAR)-mediated signaling counterbalance gene expression of acne due to increased growth factor signaling with downregulated nuclear FoxO proteins. The proposed isotretinoin→ATRA→RAR→FoxO interaction offers intriguing new insights into the mode of isotretinoin action and explains most therapeutic, adverse and teratogenic effects of isotretinoin in the treatment of acne by a common mode of FoxO-mediated transcriptional regulation. PMID:22110774

  19. Transcription factors in alkaloid biosynthesis.

    PubMed

    Yamada, Yasuyuki; Sato, Fumihiko

    2013-01-01

    Higher plants produce a large variety of low-molecular weight secondary compounds. Among them, nitrogen-containing alkaloids are the most biologically active and are often used pharmaceutically. Whereas alkaloid chemistry has been intensively investigated, alkaloid biosynthesis, including the relevant biosynthetic enzymes, genes and their regulation, and especially transcription factors, is largely unknown, as only a limited number of plant species produce certain types of alkaloids and they are difficult to study. Recently, however, several groups have succeeded in isolating the transcription factors that are involved in the biosynthesis of several types of alkaloids, including bHLH, ERF, and WRKY. Most of them show Jasmonate (JA) responsiveness, which suggests that the JA signaling cascade plays an important role in alkaloid biosynthesis. Here, we summarize the types and functions of transcription factors that have been isolated in alkaloid biosynthesis, and characterize their similarities and differences compared to those in other secondary metabolite pathways, such as phenylpropanoid and terpenoid biosyntheses. The evolution of this biosynthetic pathway and regulatory network, as well as the application of these transcription factors to metabolic engineering, is discussed.

  20. Transcription factor-based biosensor

    DOEpatents

    Dietrich, Jeffrey A; Keasling, Jay D

    2013-10-08

    The present invention provides for a system comprising a BmoR transcription factor, a .sigma..sup.54-RNA polymerase, and a pBMO promoter operatively linked to a reporter gene, wherein the pBMO promoter is capable of expression of the reporter gene with an activated form of the BmoR and the .sigma..sup.54-RNA polymerase.

  1. FoxO6 regulates memory consolidation and synaptic function

    PubMed Central

    Salih, Dervis A.M.; Rashid, Asim J.; Colas, Damien; de la Torre-Ubieta, Luis; Zhu, Ruo P.; Morgan, Alexander A.; Santo, Evan E.; Ucar, Duygu; Devarajan, Keerthana; Cole, Christina J.; Madison, Daniel V.; Shamloo, Mehrdad; Butte, Atul J.; Bonni, Azad; Josselyn, Sheena A.; Brunet, Anne

    2012-01-01

    The FoxO family of transcription factors is known to slow aging downstream from the insulin/IGF (insulin-like growth factor) signaling pathway. The most recently discovered FoxO isoform in mammals, FoxO6, is highly enriched in the adult hippocampus. However, the importance of FoxO factors in cognition is largely unknown. Here we generated mice lacking FoxO6 and found that these mice display normal learning but impaired memory consolidation in contextual fear conditioning and novel object recognition. Using stereotactic injection of viruses into the hippocampus of adult wild-type mice, we found that FoxO6 activity in the adult hippocampus is required for memory consolidation. Genome-wide approaches revealed that FoxO6 regulates a program of genes involved in synaptic function upon learning in the hippocampus. Consistently, FoxO6 deficiency results in decreased dendritic spine density in hippocampal neurons in vitro and in vivo. Thus, FoxO6 may promote memory consolidation by regulating a program coordinating neuronal connectivity in the hippocampus, which could have important implications for physiological and pathological age-dependent decline in memory. PMID:23222102

  2. FoxO6 regulates memory consolidation and synaptic function.

    PubMed

    Salih, Dervis A M; Rashid, Asim J; Colas, Damien; de la Torre-Ubieta, Luis; Zhu, Ruo P; Morgan, Alexander A; Santo, Evan E; Ucar, Duygu; Devarajan, Keerthana; Cole, Christina J; Madison, Daniel V; Shamloo, Mehrdad; Butte, Atul J; Bonni, Azad; Josselyn, Sheena A; Brunet, Anne

    2012-12-15

    The FoxO family of transcription factors is known to slow aging downstream from the insulin/IGF (insulin-like growth factor) signaling pathway. The most recently discovered FoxO isoform in mammals, FoxO6, is highly enriched in the adult hippocampus. However, the importance of FoxO factors in cognition is largely unknown. Here we generated mice lacking FoxO6 and found that these mice display normal learning but impaired memory consolidation in contextual fear conditioning and novel object recognition. Using stereotactic injection of viruses into the hippocampus of adult wild-type mice, we found that FoxO6 activity in the adult hippocampus is required for memory consolidation. Genome-wide approaches revealed that FoxO6 regulates a program of genes involved in synaptic function upon learning in the hippocampus. Consistently, FoxO6 deficiency results in decreased dendritic spine density in hippocampal neurons in vitro and in vivo. Thus, FoxO6 may promote memory consolidation by regulating a program coordinating neuronal connectivity in the hippocampus, which could have important implications for physiological and pathological age-dependent decline in memory.

  3. Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus)

    PubMed Central

    Plowright, Raina K; Field, Hume E; Smith, Craig; Divljan, Anja; Palmer, Carol; Tabor, Gary; Daszak, Peter; Foley, Janet E

    2008-01-01

    Hendra virus (HeV) is a lethal paramyxovirus which emerged in humans in 1994. Poor understanding of HeV dynamics in Pteropus spp. (flying fox or fruit bat) reservoir hosts has limited our ability to determine factors driving its emergence. We initiated a longitudinal field study of HeV in little red flying foxes (LRFF; Pteropus scapulatus) and examined individual and population risk factors for infection, to determine probable modes of intraspecific transmission. We also investigated whether seasonal changes in host behaviour, physiology and demography affect host–pathogen dynamics. Data showed that pregnant and lactating females had significantly higher risk of infection, which may explain previously observed temporal associations between HeV outbreaks and flying fox birthing periods. Age-specific seroprevalence curves generated from field data imply that HeV is transmitted horizontally via faeces, urine or saliva. Rapidly declining seroprevalence between two field seasons suggests that immunity wanes faster in LRFF than in other flying fox species, and highlights the potentially critical role of this species in interspecific viral persistence. The highest seroprevalence was observed when animals showed evidence of nutritional stress, suggesting that environmental processes that alter flying fox food sources, such as habitat loss and climate change, may increase HeV infection and transmission. These insights into the ecology of HeV in flying fox populations suggest causal links between anthropogenic environmental change and HeV emergence. PMID:18198149

  4. Roles of Forkhead-box Transcription Factors in Controlling Development, Pathogenicity, and Stress Response in Magnaporthe oryzae

    PubMed Central

    Park, Jaejin; Kong, Sunghyung; Kim, Seryun; Kang, Seogchan; Lee, Yong-Hwan

    2014-01-01

    Although multiple transcription factors (TFs) have been characterized via mutagenesis to understand their roles in controlling pathogenicity and infection-related development in Magnaporthe oryzae, the causal agent of rice blast, if and how forkhead-box (FOX) TFs contribute to these processes remain to be characterized. Four putative FOX TF genes were identified in the genome of M. oryzae, and phylogenetic analysis suggested that two of them (MoFKH1 and MoHCM1) correspond to Ascomycota-specific members of the FOX TF family while the others (MoFOX1 and MoFOX2) are Pezizomycotina-specific members. Deletion of MoFKH1 (ΔMofkh1) resulted in reduced mycelial growth and conidial germination, abnormal septation and stress response, and reduced virulence. Similarly, ΔMohcm1 exhibited reduced mycelial growth and conidial germination. Conidia of ΔMofkh1 and ΔMohcm1 were more sensitive to one or both of the cell cycle inhibitors hydroxyurea and benomyl, suggesting their role in cell cycle control. On the other hand, loss of MoFOX1 (ΔMofox1) did not show any noticeable changes in development, pathogenicity, and stress response. Deletion of MoFOX2 was not successful even after repeated attempts. Taken together, these results suggested that MoFKH1 and Mo-HCM1 are important in fungal development and that MoFKH1 is further implicated in pathogenicity and stress response in M. oryzae. PMID:25288996

  5. FoxP2 regulates neurogenesis during embryonic cortical development.

    PubMed

    Tsui, David; Vessey, John P; Tomita, Hideaki; Kaplan, David R; Miller, Freda D

    2013-01-02

    The transcription factor FoxP2 has been associated with the development of human speech but the underlying cellular function of FoxP2 is still unclear. Here we provide evidence that FoxP2 regulates genesis of some intermediate progenitors and neurons in the mammalian cortex, one of the key centers for human speech. Specifically, knockdown of FoxP2 in embryonic cortical precursors inhibits neurogenesis, at least in part by inhibiting the transition from radial glial precursors to neurogenic intermediate progenitors. Moreover, overexpression of human, but not mouse, FoxP2 enhances the genesis of intermediate progenitors and neurons. In contrast, expression of a human FoxP2 mutant that causes vocalization deficits decreases neurogenesis, suggesting that in the murine system human FoxP2 acts as a gain-of-function protein, while a human FoxP2 mutant acts as a dominant-inhibitory protein. These results support the idea that FoxP2 regulates the transition from neural precursors to transit-amplifying progenitors and ultimately neurons, and shed light upon the molecular changes that might contribute to evolution of the mammalian cortex.

  6. Genome-wide analysis of FoxO1 binding in hepatic chromatin: Potential involvement of FoxO1 in linking retinoid signaling to hepatic gluconeogenesis

    PubMed Central

    Shin, Dong-Ju; Joshi, Pujan; Hong, Seung-Hyun; Mosure, Kathleen; Shin, Dong-Guk; Osborne, Timothy F.

    2012-01-01

    The forkhead transcription factor FoxO1 is a critical regulator of hepatic glucose and lipid metabolism, and dysregulation of FoxO1 function has been implicated in diabetes and insulin resistance. We globally identified FoxO1 occupancy in mouse hepatic chromatin on a genome-wide level by chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-seq). To establish the specific functional significance of FoxO1 against other FoxO proteins, ChIP-seq was performed with chromatin from liver-specific FoxO1 knockout and wild-type mice. Here we identified 401 genome-wide FoxO1-binding locations. Motif search reveals a sequence element, 5′ GTAAACA 3′, consistent with a previously known FoxO1-binding site. Gene set enrichment analysis shows that the data from FoxO1 ChIP-seq are highly correlated with the global expression profiling of genes regulated by FoxO1, demonstrating the functional relevance of our FoxO1 ChIP-seq study. Interestingly, gene ontology analysis reveals the functional significance of FoxO1 in retinoid metabolic processes. We show here that FoxO1 directly binds to the genomic sites for the genes in retinoid metabolism. Notably, deletion of FoxO1 caused a significantly reduced induction of Pck1 and Pdk4 in response to retinoids. As Pck1 and Pdk4 are downstream targets of retinoid signaling, these results suggest that FoxO1 plays a potential role in linking retinoid metabolism to hepatic gluconeogenesis. PMID:23066095

  7. Ear Mite Removal in the Santa Catalina Island Fox (Urocyon littoralis catalinae): Controlling Risk Factors for Cancer Development.

    PubMed

    Moriarty, Megan E; Vickers, T Winston; Clifford, Deana L; Garcelon, David K; Gaffney, Patricia M; Lee, Kenneth W; King, Julie L; Duncan, Calvin L; Boyce, Walter M

    2015-01-01

    Ear mites (Otodectes cynotis) and ear canal tumors are highly prevalent among federally endangered Island foxes (Urocyon littoralis catalinae) living on Santa Catalina Island off the coast of Southern California. Since studies began in the 1990s, nearly all foxes examined were found to be infected with ear mites, and ceruminous gland tumors (carcinomas and adenomas) were detected in approximately half of all foxes ≥ 4 years of age. We hypothesized that reduction of ear mite infection would reduce otitis externa and ceruminous gland hyperplasia, a risk factor for tumor development. In this study, we conducted a randomized field trial to assess the impact of acaricide treatment on ear mite prevalence and intensity of infection, otitis externa, ceruminous gland hyperplasia, and mite-specific IgG and IgE antibody levels. Treatment was highly effective at eliminating mites and reducing otitis externa and ceruminous gland hyperplasia, and mite-specific IgG antibody levels were significantly lower among uninfected foxes. Ceruminous gland hyperplasia increased in the chronically infected, untreated foxes during the six month study. Our results provide compelling evidence that acaricide treatment is an effective means of reducing ear mites, and that mite removal in turn reduces ear lesions and mite-specific IgG antibody levels in Santa Catalina Island foxes. This study has advanced our understanding of the underlying pathogenesis which results in ceruminous gland tumors, and has helped inform management decisions that impact species conservation.

  8. Ear Mite Removal in the Santa Catalina Island Fox (Urocyon littoralis catalinae): Controlling Risk Factors for Cancer Development

    PubMed Central

    Moriarty, Megan E.; Vickers, T. Winston; Clifford, Deana L.; Garcelon, David K.; Gaffney, Patricia M.; Lee, Kenneth W.; King, Julie L.; Duncan, Calvin L.; Boyce, Walter M.

    2015-01-01

    Ear mites (Otodectes cynotis) and ear canal tumors are highly prevalent among federally endangered Island foxes (Urocyon littoralis catalinae) living on Santa Catalina Island off the coast of Southern California. Since studies began in the 1990s, nearly all foxes examined were found to be infected with ear mites, and ceruminous gland tumors (carcinomas and adenomas) were detected in approximately half of all foxes ≥ 4 years of age. We hypothesized that reduction of ear mite infection would reduce otitis externa and ceruminous gland hyperplasia, a risk factor for tumor development. In this study, we conducted a randomized field trial to assess the impact of acaricide treatment on ear mite prevalence and intensity of infection, otitis externa, ceruminous gland hyperplasia, and mite-specific IgG and IgE antibody levels. Treatment was highly effective at eliminating mites and reducing otitis externa and ceruminous gland hyperplasia, and mite-specific IgG antibody levels were significantly lower among uninfected foxes. Ceruminous gland hyperplasia increased in the chronically infected, untreated foxes during the six month study. Our results provide compelling evidence that acaricide treatment is an effective means of reducing ear mites, and that mite removal in turn reduces ear lesions and mite-specific IgG antibody levels in Santa Catalina Island foxes. This study has advanced our understanding of the underlying pathogenesis which results in ceruminous gland tumors, and has helped inform management decisions that impact species conservation. PMID:26641820

  9. [Genetic transcription in eukaryotes: from transcriptional factors to disease].

    PubMed

    Moreno Rocha, J C; Revol de Mendoza, A; Barrera Saldaña, H A

    1999-01-01

    The organisms' genetic information is stored as DNA sequences: the genes. The most important level of gene expression regulation is exerted at the transfer process of this information from the genes into messenger RNA molecules; this process is called transcription and is carried out by a molecular machinery conformed by hundreds of different proteins which are assembled in an ordered step way. These proteins or transcriptional factors are classified according to their mode of action in 4 groups: general transcriptional factors, activators, coactivators and repressors. There are diseases like. Aniridia, the Rubinstein-Taybi syndrome and Hodgkin's disease, in which some transcriptional factor have been involved and in some, the molecular cause i.e. the mutations responsible for the molecular dysfunction in a transcriptional factor has been elucidated. Understanding at the molecular level the transcription process will help to comprehend the relationship of it with the development and health of the organism.

  10. Effects of FoxO4 overexpression on cholesterol biosynthesis, triacylglycerol accumulation, and glucose uptake

    PubMed Central

    Zhu, Jun; Mounzih, Khalid; Chehab, Eric F.; Mitro, Nico; Saez, Enrique; Chehab, Farid F.

    2010-01-01

    The Forkhead transcription factors FoxO1, FoxO3a, and FoxO4 play a prominent role in regulating cell survival and cell cycle. Whereas FOXO1 was shown to mediate insulin sensitivity and adipocyte differentiation, the role of the transcription factor FoxO4 in metabolism remains ill defined. To uncover the effects of FoxO4, we generated a cellular model of stable FoxO4 overexpression and subjected it to microarray-based gene expression profiling. While pathway analysis revealed a disruption of cholesterol biosynthesis gene expression, biochemical studies revealed an inhibition of cholesterol biosynthesis, which was coupled with decreased mRNA levels of lanosterol 14α demethylase (CYP51). FoxO4-mediated repression of CYP51 led to the accumulation of 24,25 dihydrolano­sterol (DHL), which independently and unlike lanosterol inhibited cholesterol biosynthesis. Furthermore, FoxO4-overexpressing cells accumulated lipid droplets and triacylglycerols and had an increase in basal glucose uptake. Recapitulation of these effects was obtained following treatment with CYP51 inhibitors, which also induce DHL buildup. Moreover, DHL but not lanosterol strongly stimulated liver X receptor α (LXRα) activity, suggesting that DHL and LXRα mediate the downstream effects initiated by FoxO4. Together, these studies suggest that FoxO4 acts on CYP51 to regulate the late steps of cholesterol biosynthesis. PMID:20037138

  11. Effects of FoxO4 overexpression on cholesterol biosynthesis, triacylglycerol accumulation, and glucose uptake.

    PubMed

    Zhu, Jun; Mounzih, Khalid; Chehab, Eric F; Mitro, Nico; Saez, Enrique; Chehab, Farid F

    2010-06-01

    The Forkhead transcription factors FoxO1, FoxO3a, and FoxO4 play a prominent role in regulating cell survival and cell cycle. Whereas FOXO1 was shown to mediate insulin sensitivity and adipocyte differentiation, the role of the transcription factor FoxO4 in metabolism remains ill defined. To uncover the effects of FoxO4, we generated a cellular model of stable FoxO4 overexpression and subjected it to microarray-based gene expression profiling. While pathway analysis revealed a disruption of cholesterol biosynthesis gene expression, biochemical studies revealed an inhibition of cholesterol biosynthesis, which was coupled with decreased mRNA levels of lanosterol 14alpha demethylase (CYP51). FoxO4-mediated repression of CYP51 led to the accumulation of 24,25 dihydrolano-sterol (DHL), which independently and unlike lanosterol inhibited cholesterol biosynthesis. Furthermore, FoxO4-overexpressing cells accumulated lipid droplets and triacylglycerols and had an increase in basal glucose uptake. Recapitulation of these effects was obtained following treatment with CYP51 inhibitors, which also induce DHL buildup. Moreover, DHL but not lanosterol strongly stimulated liver X receptor alpha (LXRalpha) activity, suggesting that DHL and LXRalpha mediate the downstream effects initiated by FoxO4. Together, these studies suggest that FoxO4 acts on CYP51 to regulate the late steps of cholesterol biosynthesis.

  12. Targeting Transcription Factors in Cancer

    PubMed Central

    Bhagwat, Anand S.; Vakoc, Christopher R.

    2015-01-01

    Transcription factors (TFs) are commonly deregulated in the pathogenesis of human cancer and are a major class of cancer cell dependencies. Consequently, targeting of TFs can be highly effective in treating particular malignancies, as highlighted by the clinical efficacy of agents that target nuclear hormone receptors. In this review we discuss recent advances in our understanding of TFs as drug targets in oncology, with an emphasis on the emerging chemical approaches to modulate TF function. The remarkable diversity and potency of TFs as drivers of cell transformation justifies a continued pursuit of TFs as therapeutic targets for drug discovery. PMID:26645049

  13. FoxO gene family evolution in vertebrates

    PubMed Central

    Wang, Minghui; Zhang, Xiangzhe; Zhao, Hongbo; Wang, Qishan; Pan, Yuchun

    2009-01-01

    Background Forkhead box, class O (FoxO) belongs to the large family of forkhead transcription factors that are characterized by a conserved forkhead box DNA-binding domain. To date, the FoxO group has four mammalian members: FoxO1, FoxO3a, FoxO4 and FoxO6, which are orthologs of DAF16, an insulin-responsive transcription factor involved in regulating longevity of worms and flies. The degree of homology between these four members is high, especially in the forkhead domain, which contains the DNA-binding interface. Yet, mouse FoxO knockouts have revealed that each FoxO gene has its unique role in the physiological process. Whether the functional divergences are primarily due to adaptive selection pressure or relaxed selective constraint remains an open question. As such, this study aims to address the evolutionary mode of FoxO, which may lead to the functional divergence. Results Sequence similarity searches have performed in genome and scaffold data to identify homologues of FoxO in vertebrates. Phylogenetic analysis was used to characterize the family evolutionary history by identifying two duplications early in vertebrate evolution. To determine the mode of evolution in vertebrates, we performed a rigorous statistical analysis with FoxO gene sequences, including relative rate ratio tests, branch-specific dN/dS ratio tests, site-specific dN/dS ratio tests, branch-site dN/dS ratio tests and clade level amino acid conservation/variation patterns analysis. Our results suggest that FoxO is constrained by strong purifying selection except four sites in FoxO6, which have undergone positive Darwinian selection. The functional divergence in this family is best explained by either relaxed purifying selection or positive selection. Conclusion We present a phylogeny describing the evolutionary history of the FoxO gene family and show that the genes have evolved through duplications followed by purifying selection except for four sites in FoxO6 fixed by positive selection lie

  14. Regulated assembly of transcription factors and control of transcription initiation.

    PubMed

    Beckett, D

    2001-11-30

    Proteins that function in regulation of transcription initiation are typically homo or hetero-oligomeric. Results of recent biophysical studies of transcription regulators indicate that the assembly of these proteins is often subject to regulation. This regulation of assembly dictates the frequency of transcription initiation via its influence on the affinity of a transcription regulator for DNA and its affect on target site selection. Factors that modulate transcription factor assembly include binding of small molecules, post-translational modification, DNA binding and interactions with other proteins. Here, the results of recent structural and/or thermodynamic studies of a number of transcription regulators that are subject to regulated assembly are reviewed. The accumulated data indicate that this phenomenon is ubiquitous and that mechanisms utilized in eukaryotes and prokaryotes share common features. Copyright 2001 Academic Press.

  15. Forkhead transcription factors: new considerations for alzheimer’s disease and dementia

    PubMed Central

    Maiese, Kenneth

    2016-01-01

    Life expectancy of individuals in both developed and undeveloped nations continues to rise at an unprecedented rate. Coupled to this increase in longevity for individuals is the rise in the incidence of chronic neurodegenerative disorders that includes Alzheimer’s disease (AD). Currently, almost ten percent of the population over the age of 65 suffers from AD, a disorder that is presently without definitive therapy to prevent the onset or progression of cognitive loss. Yet, it is estimated that AD will continue to significantly increase throughout the world to impact millions of individuals and foster the escalation of healthcare costs. One potential target for the development of novel strategies against AD and other cognitive disorders involves the mammalian forkhead transcription factors of the O class (FoxOs). FoxOs are present in “cognitive centers” of the brain to include the hippocampus, the amygdala, and the nucleus accumbens and may be required for memory formation and consolidation. FoxOs play a critical role in determining survival of multiple cell types in the nervous system, drive pathways of apoptosis and autophagy, and control stem cell proliferation and differentiation. FoxOs also interface with multiple cellular pathways that include growth factors, Wnt signaling, Wnt1 inducible signaling pathway protein 1 (WISP1), and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) that ultimately may control FoxOs and determine the fate and function of cells in the nervous system that control memory and cognition. Future work that can further elucidate the complex relationship FoxOs hold over cell fate and cognitive function could yield exciting prospects for the treatment of a number of neurodegenerative disorders including AD. PMID:27390624

  16. Deregulation of FoxM1b leads to tumour metastasis

    PubMed Central

    Park, Hyun Jung; Gusarova, Galina; Wang, Zebin; Carr, Janai R; Li, Jing; Kim, Ki-Hyun; Qiu, Jin; Park, Yoon-Dong; Williamson, Peter R; Hay, Nissim; Tyner, Angela L; Lau, Lester F; Costa, Robert H; Raychaudhuri, Pradip

    2011-01-01

    The forkhead box M1b (FoxM1b) transcription factor is over-expressed in human cancers, and its expression often correlates with poor prognosis. Previously, using conditional knockout strains, we showed that FoxM1b is essential for hepatocellular carcinoma (HCC) development. However, over-expression of FoxM1b had only marginal effects on HCC progression. Here we investigated the effect of FoxM1b expression in the absence of its inhibitor Arf. We show that transgenic expression of FoxM1b in an Arf-null background drives hepatic fibrosis and metastasis of HCC. We identify novel mechanisms of FoxM1b that are involved in epithelial–mesenchymal transition, cell motility, invasion and a pre-metastatic niche formation. FoxM1b activates the Akt-Snail1 pathway and stimulates expression of Stathmin, lysyl oxidase, lysyl oxidase like-2 and several other genes involved in metastasis. Furthermore, we show that an Arf-derived peptide, which inhibits FoxM1b, impedes metastasis of the FoxM1b-expressing HCC cells. The observations indicate that FoxM1b is a potent activator of tumour metastasis and that the Arf-mediated inhibition of FoxM1b is a critical mechanism for suppression of tumour metastasis. PMID:21204266

  17. Molecular characterization and functional analysis of BdFoxO gene in the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae).

    PubMed

    Wu, Yi-Bei; Yang, Wen-Jia; Xie, Yi-Fei; Xu, Kang-Kang; Tian, Yi; Yuan, Guo-Rui; Wang, Jin-Jun

    2016-03-10

    The forkhead box O transcription factor (FoxO) is an important downstream transcription factor in the well-conserved insulin signaling pathway, which regulates the body size and development of insects. In this study, the FoxO gene (BdFoxO) was identified from the oriental fruit fly, Bactrocera dorsalis (Hendel). The open reading frame of BdFoxO (2732 bp) encoded a 910 amino acid protein, and the sequence was well conserved with other insect species. The BdFoxO was highly expressed in larvae and pupae among different development stages, and the highest tissue-specific expression level was found in the fat bodies compared to the testis, ovary, head, thorax, midgut, and Malpighian tubules of adults. Interestingly, we found BdFoxO expression was also up-regulated by starvation, but down-regulated when re-fed. Moreover, the injection of BdFoxO double-stranded RNAs into third-instar larvae significantly reduced BdFoxO transcript levels, which in turn down-regulated the expression of other four genes in the insulin signaling pathway. The silencing of BdFoxO resulted in delayed pupation, and the insect body weight increased significantly compared with that of the control. These results suggested that BdFoxO plays an important role in body size and development in B. dorsalis. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. DBD: a transcription factor prediction database.

    PubMed

    Kummerfeld, Sarah K; Teichmann, Sarah A

    2006-01-01

    Regulation of gene expression influences almost all biological processes in an organism; sequence-specific DNA-binding transcription factors are critical to this control. For most genomes, the repertoire of transcription factors is only partially known. Hitherto transcription factor identification has been largely based on genome annotation pipelines that use pairwise sequence comparisons, which detect only those factors similar to known genes, or on functional classification schemes that amalgamate many types of proteins into the category of 'transcription factor'. Using a novel transcription factor identification method, the DBD transcription factor database fills this void, providing genome-wide transcription factor predictions for organisms from across the tree of life. The prediction method behind DBD identifies sequence-specific DNA-binding transcription factors through homology using profile hidden Markov models (HMMs) of domains. Thus, it is limited to factors that are homologus to those HMMs. The collection of HMMs is taken from two existing databases (Pfam and SUPERFAMILY), and is limited to models that exclusively detect transcription factors that specifically recognize DNA sequences. It does not include basal transcription factors or chromatin-associated proteins, for instance. Based on comparison with experimentally verified annotation, the prediction procedure is between 95% and 99% accurate. Between one quarter and one-half of our genome-wide predicted transcription factors represent previously uncharacterized proteins. The DBD (www.transcriptionfactor.org) consists of predicted transcription factor repertoires for 150 completely sequenced genomes, their domain assignments and the hand curated list of DNA-binding domain HMMs. Users can browse, search or download the predictions by genome, domain family or sequence identifier, view families of transcription factors based on domain architecture and receive predictions for a protein sequence.

  19. Transcriptional Regulation by Hypoxia Inducible Factors

    PubMed Central

    Espinosa, Joaquín M.

    2015-01-01

    The cellular response to oxygen deprivation is governed largely by a family of transcription factors known as Hypoxia Inducible Factors (HIFs). This review focuses on the molecular mechanisms by which HIFs regulate the transcriptional apparatus to enable the cellular and organismal response to hypoxia. We discuss here how the various HIF polypeptides, their post-translational modifications, binding partners and transcriptional cofactors affect RNA polymerase II activity to drive context-dependent transcriptional programs during hypoxia. PMID:24099156

  20. Acetylation curtails nucleosome binding, not stable nucleosome remodeling, by FoxO1

    SciTech Connect

    Hatta, M.; Liu, F.; Cirillo, L.A.

    2009-02-20

    Transcriptional activity of FoxO factors is controlled through the actions of multiple growth factors signaling through protein kinase B, whereby phosphorylation of FoxO factors inhibits FoxO-mediated transactivation by promoting nuclear export. Phosphorylation of FoxO factors is enhanced by p300-mediated acetylation, which decreases their affinity for DNA. The negative effect of acetylation on FoxO DNA binding, together with nuclear FoxO mobility, is eliminated by over-expression of the de-acetylase Sirt1, suggesting that acetylation mobilizes FoxO factors in chromatin for inducible gene expression. Here, we show that acetylation significantly curtails the affinity of FoxO1 for its binding sites in nucleosomal DNA but has no effect on either stable nucleosome binding or remodeling by this factor. We suggest that, while acetylation provides a first, essential step toward mobilizing FoxO factors for inducible gene repression, additional mechanisms exist for overcoming their inherent capacity to stably bind and remodel nuclear chromatin.

  1. FOXE3 mutations predispose to thoracic aortic aneurysms and dissections.

    PubMed

    Kuang, Shao-Qing; Medina-Martinez, Olga; Guo, Dong-Chuan; Gong, Limin; Regalado, Ellen S; Reynolds, Corey L; Boileau, Catherine; Jondeau, Guillaume; Prakash, Siddharth K; Kwartler, Callie S; Zhu, Lawrence Yang; Peters, Andrew M; Duan, Xue-Yan; Bamshad, Michael J; Shendure, Jay; Nickerson, Debbie A; Santos-Cortez, Regie L; Dong, Xiurong; Leal, Suzanne M; Majesky, Mark W; Swindell, Eric C; Jamrich, Milan; Milewicz, Dianna M

    2016-03-01

    The ascending thoracic aorta is designed to withstand biomechanical forces from pulsatile blood. Thoracic aortic aneurysms and acute aortic dissections (TAADs) occur as a result of genetically triggered defects in aortic structure and a dysfunctional response to these forces. Here, we describe mutations in the forkhead transcription factor FOXE3 that predispose mutation-bearing individuals to TAAD. We performed exome sequencing of a large family with multiple members with TAADs and identified a rare variant in FOXE3 with an altered amino acid in the DNA-binding domain (p.Asp153His) that segregated with disease in this family. Additional pathogenic FOXE3 variants were identified in unrelated TAAD families. In mice, Foxe3 deficiency reduced smooth muscle cell (SMC) density and impaired SMC differentiation in the ascending aorta. Foxe3 expression was induced in aortic SMCs after transverse aortic constriction, and Foxe3 deficiency increased SMC apoptosis and ascending aortic rupture with increased aortic pressure. These phenotypes were rescued by inhibiting p53 activity, either by administration of a p53 inhibitor (pifithrin-α), or by crossing Foxe3-/- mice with p53-/- mice. Our data demonstrate that FOXE3 mutations lead to a reduced number of aortic SMCs during development and increased SMC apoptosis in the ascending aorta in response to increased biomechanical forces, thus defining an additional molecular pathway that leads to familial thoracic aortic disease.

  2. FOXE3 mutations predispose to thoracic aortic aneurysms and dissections

    PubMed Central

    Kuang, Shao-Qing; Medina-Martinez, Olga; Guo, Dong-chuan; Gong, Limin; Regalado, Ellen S.; Reynolds, Corey L.; Boileau, Catherine; Jondeau, Guillaume; Prakash, Siddharth K.; Kwartler, Callie S.; Zhu, Lawrence Yang; Peters, Andrew M.; Duan, Xue-Yan; Bamshad, Michael J.; Shendure, Jay; Nickerson, Debbie A.; Santos-Cortez, Regie L.; Dong, Xiurong; Leal, Suzanne M.; Majesky, Mark W.; Swindell, Eric C.; Jamrich, Milan; Milewicz, Dianna M.

    2016-01-01

    The ascending thoracic aorta is designed to withstand biomechanical forces from pulsatile blood. Thoracic aortic aneurysms and acute aortic dissections (TAADs) occur as a result of genetically triggered defects in aortic structure and a dysfunctional response to these forces. Here, we describe mutations in the forkhead transcription factor FOXE3 that predispose mutation-bearing individuals to TAAD. We performed exome sequencing of a large family with multiple members with TAADs and identified a rare variant in FOXE3 with an altered amino acid in the DNA-binding domain (p.Asp153His) that segregated with disease in this family. Additional pathogenic FOXE3 variants were identified in unrelated TAAD families. In mice, Foxe3 deficiency reduced smooth muscle cell (SMC) density and impaired SMC differentiation in the ascending aorta. Foxe3 expression was induced in aortic SMCs after transverse aortic constriction, and Foxe3 deficiency increased SMC apoptosis and ascending aortic rupture with increased aortic pressure. These phenotypes were rescued by inhibiting p53 activity, either by administration of a p53 inhibitor (pifithrin-α), or by crossing Foxe3–/– mice with p53–/– mice. Our data demonstrate that FOXE3 mutations lead to a reduced number of aortic SMCs during development and increased SMC apoptosis in the ascending aorta in response to increased biomechanical forces, thus defining an additional molecular pathway that leads to familial thoracic aortic disease. PMID:26854927

  3. FoxO1 mediates insulin-dependent regulation of hepatic VLDL production in mice

    PubMed Central

    Kamagate, Adama; Qu, Shen; Perdomo, German; Su, Dongming; Kim, Dae Hyun; Slusher, Sandra; Meseck, Marcia; Dong, H. Henry

    2008-01-01

    Excessive production of triglyceride-rich VLDL is attributable to hypertriglyceridemia. VLDL production is facilitated by microsomal triglyceride transfer protein (MTP) in a rate-limiting step that is regulated by insulin. To characterize the underlying mechanism, we studied hepatic MTP regulation by forkhead box O1 (FoxO1), a transcription factor that plays a key role in hepatic insulin signaling. In HepG2 cells, MTP expression was induced by FoxO1 and inhibited by exposure to insulin. This effect correlated with the ability of FoxO1 to bind and stimulate MTP promoter activity. Deletion or mutation of the FoxO1 target site within the MTP promoter disabled FoxO1 binding and resulted in abolition of insulin-dependent regulation of MTP expression. We generated mice that expressed a constitutively active FoxO1 transgene and found that increased FoxO1 activity was associated with enhanced MTP expression, augmented VLDL production, and elevated plasma triglyceride levels. In contrast, RNAi-mediated silencing of hepatic FoxO1 was associated with reduced MTP and VLDL production in adult mice. Furthermore, we found that hepatic FoxO1 abundance and MTP production were increased in mice with abnormal triglyceride metabolism. These data suggest that FoxO1 mediates insulin regulation of MTP production and that augmented MTP levels may be a causative factor for VLDL overproduction and hypertriglyceridemia in diabetes. PMID:18497885

  4. Stem cell-dependent formation of a functional anterior regeneration pole in planarians requires Zic and Forkhead transcription factors.

    PubMed

    Vogg, Matthias C; Owlarn, Suthira; Pérez Rico, Yuvia A; Xie, Jianlei; Suzuki, Yoko; Gentile, Luca; Wu, Wei; Bartscherer, Kerstin

    2014-06-15

    Planarians can regenerate their head within days. This process depends on the direction of adult stem cells to wound sites and the orchestration of their progenitors to commit to appropriate lineages and to arrange into patterned tissues. We identified a zinc finger transcription factor, Smed-ZicA, as a downstream target of Smed-FoxD, a Forkhead transcription factor required for head regeneration. Smed-zicA and Smed-FoxD are co-expressed with the Wnt inhibitor notum and the Activin inhibitor follistatin in a cluster of cells at the anterior-most tip of the regenerating head - the anterior regeneration pole - and in surrounding stem cell progeny. Depletion of Smed-zicA and Smed-FoxD by RNAi abolishes notum and follistatin expression at the pole and inhibits head formation downstream of initial polarity decisions. We suggest a model in which ZicA and FoxD transcription factors synergize to control the formation of Notum- and Follistatin-producing anterior pole cells. Pole formation might constitute an early step in regeneration, resulting in a signaling center that orchestrates cellular events in the growing tissue.

  5. Agouti regulates adipocyte transcription factors.

    PubMed

    Mynatt, R L; Stephens, J M

    2001-04-01

    Agouti is a secreted paracrine factor that regulates pigmentation in hair follicle melanocytes. Several dominant mutations cause ectopic expression of agouti, resulting in a phenotype characterized by yellow fur, adult-onset obesity and diabetes, increased linear growth and skeletal mass, and increased susceptibility to tumors. Humans also produce agouti protein, but the highest levels of agouti in humans are found in adipose tissue. To mimic the human agouti expression pattern in mice, transgenic mice (aP2-agouti) that express agouti in adipose tissue were generated. The transgenic mice develop a mild form of obesity, and they are sensitized to the action of insulin. We correlated the levels of specific regulators of insulin signaling and adipocyte differentiation with these phenotypic changes in adipose tissue. Signal transducers and activators of transcription (STAT)1, STAT3, and peroxisome proliferator-activated receptor (PPAR)-gamma protein levels were elevated in the transgenic mice. Treatment of mature 3T3-L1 adipocytes recapitulated these effects. These data demonstrate that agouti has potent effects on adipose tissue. We hypothesize that agouti increases adiposity and promotes insulin sensitivity by acting directly on adipocytes via PPAR-gamma.

  6. Purification & Characterization of Transcription Factors

    PubMed Central

    Nagore, LI; Nadeau, RJ; Guo, Q; Jadhav, YLA; Jarrett, HW; Haskins, WE

    2013-01-01

    Transcription factors (TFs) are essential for the expression of all proteins, including those involved in human health and disease. However, TFs are resistant to proteomic characterization because they are frequently masked by more abundant proteins due to the limited dynamic range of capillary liquid chromatography-tandem mass spectrometry and protein database searching. Purification methods, particularly strategies that exploit the high affinity of TFs for DNA response elements on gene promoters, can enrich TFs prior to proteomic analysis to improve dynamic range and penetrance of the TF proteome. For example, trapping of TF complexes specific for particular response elements has been achieved by recovering the element DNA-protein complex on solid supports. Additional methods for improving dynamic range include two- and three-dimensional gel electrophoresis incorporating electrophoretic mobility shift assays and Southwestern blotting for detection. Here we review methods for TF purification and characterization. We fully expect that future investigations will apply these and other methods to illuminate this important but challenging proteome. PMID:23832591

  7. Transcription factor pathways and congenital heart disease.

    PubMed

    McCulley, David J; Black, Brian L

    2012-01-01

    Congenital heart disease is a major cause of morbidity and mortality throughout life. Mutations in numerous transcription factors have been identified in patients and families with some of the most common forms of cardiac malformations and arrhythmias. This review discusses transcription factor pathways known to be important for normal heart development and how abnormalities in these pathways have been linked to morphological and functional forms of congenital heart defects. A comprehensive, current list of known transcription factor mutations associated with congenital heart disease is provided, but the review focuses primarily on three key transcription factors, Nkx2-5, GATA4, and Tbx5, and their known biochemical and genetic partners. By understanding the interaction partners, transcriptional targets, and upstream activators of these core cardiac transcription factors, additional information about normal heart formation and further insight into genes and pathways affected in congenital heart disease should result. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. INSIGHTS FROM GENOMIC PROFILING OF TRANSCRIPTION FACTORS

    PubMed Central

    Farnham, Peggy

    2010-01-01

    A crucial question in the field of gene regulation is whether the location at which a transcription factor binds influences its effectiveness or the mechanism by which it regulates transcription. Comprehensive transcription factor binding maps are needed to address these issues, and genome-wide mapping is now possible thanks to the technological advances of ChIP-chip and ChIP-Seq. This review discusses how recent genomic profiling of transcription factors gives insight into how binding specificity is achieved and what features of chromatin influence the ability of transcription factors to interact with the genome, and also suggests future experiments to further our understanding of the causes and consequences of transcription factor-genome interactions. PMID:19668247

  9. Transcription factor IIS impacts UV-inhibited transcription.

    PubMed

    Jensen, Anne; Mullenders, Leon H F

    2010-11-10

    Inhibition of transcription elongation can cause severe developmental and neurological abnormalities notably manifested by the rare recessive progeroid disorder Cockayne syndrome (CS). DNA alterations can cause permanent blocks to an elongating RNA polymerase II (RNAPII) leading to transcriptional arrest. Abrogation of transcription arrest requires removal of transcription blocking lesions through transcription-coupled nucleotide excision repair (TC-NER) a process defective in CS. Transcription elongation factor IIS (TFIIS) has been found to localize with the TC-NER complex after cellular exposure to UV-C light and in vitro addition of TFIIS to a damage arrested RNAPII causes transcript shortening. Hence default TFIIS activity might mimic or contribute to the severe phenotype of Cockayne syndrome. Here we show that down regulation of TFIIS by siRNA treatment of human cells lead to impaired RNA synthesis recovery and elevated levels of hyper-phosphorylated RNAPII after UV-irradiation. TFIIS knock down does not affect TC-NER, the reappearance of hypo-phosphorylated RNAPII post-UV-irradiation, UV sensitivity or the p53 damage response. These findings reveal a role for TFIIS in transcription recovery and re-establishment of the balance between hypo- and hyper-phosphorylated RNAPII after DNA damage repair. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Scaling factors: transcription factors regulating subcellular domains.

    PubMed

    Mills, Jason C; Taghert, Paul H

    2012-01-01

    Developing cells acquire mature fates in part by selective (i.e. qualitatively different) expression of a few cell-specific genes. However, all cells share the same basic repertoire of molecular and subcellular building blocks. Therefore, cells must also specialize according to quantitative differences in cell-specific distributions of those common molecular resources. Here we propose the novel hypothesis that evolutionarily-conserved transcription factors called scaling factors (SFs) regulate quantitative differences among mature cell types. SFs: (1) are induced during late stages of cell maturation; (2) are dedicated to specific subcellular domains; and, thus, (3) allow cells to emphasize specific subcellular features. We identify candidate SFs and discuss one in detail: MIST1 (BHLHA15, vertebrates)/DIMM (CG8667, Drosophila); professional secretory cells use this SF to scale up regulated secretion. Because cells use SFs to develop their mature properties and also to adapt them to ever-changing environmental conditions, SF aberrations likely contribute to diseases of adult onset.

  11. Circadian regulation of intestinal lipid absorption by apolipoprotein AIV involves forkhead transcription factors A2 and O1 and microsomal triglyceride transfer protein.

    PubMed

    Pan, Xiaoyue; Munshi, Mohamed Khalid; Iqbal, Jahangir; Queiroz, Joyce; Sirwi, Alaa Ahmed; Shah, Shrenik; Younus, Abdullah; Hussain, M Mahmood

    2013-07-12

    We have shown previously that Clock, microsomal triglyceride transfer protein (MTP), and nocturnin are involved in the circadian regulation of intestinal lipid absorption. Here, we clarified the role of apolipoprotein AIV (apoAIV) in the diurnal regulation of plasma lipids and intestinal lipid absorption in mice. Plasma triglyceride in apoAIV(-/-) mice showed diurnal variations similar to apoAIV(+/+) mice; however, the increases in plasma triglyceride at night were significantly lower in these mice. ApoAIV(-/-) mice absorbed fewer lipids at night and showed blunted response to daytime feeding. To explain reasons for these lower responses, we measured MTP expression; intestinal MTP was low at night, and its induction after food entrainment was less in apoAIV(-/-) mice. Conversely, apoAIV overexpression increased MTP mRNA in hepatoma cells, indicating transcriptional regulation. Mechanistic studies revealed that sequences between -204/-775 bp in the MTP promoter respond to apoAIV and that apoAIV enhances expression of FoxA2 and FoxO1 transcription factors and their binding to the identified cis elements in the MTP promoter at night. Knockdown of FoxA2 and FoxO1 abolished apoAIV-mediated MTP induction. Similarly, knockdown of apoAIV in differentiated Caco-2 cells reduced MTP, FoxA2, and FoxO1 mRNA levels, cellular MTP activity, and media apoB. Moreover, FoxA2 and FoxO1 expression showed diurnal variations, and their expression was significantly lower in apoAIV(-/-) mice. These data indicate that apoAIV modulates diurnal changes in lipid absorption by regulating forkhead transcription factors and MTP and that inhibition of apoAIV expression might reduce plasma lipids.

  12. Patents on plant transcription factors.

    PubMed

    Arce, Agustin L; Cabello, Julieta V; Chan, Raquel L

    2008-01-01

    Transcription factors are clue elements in the regulation of signal transduction pathways in living organisms. These proteins are able to recognize and bind specific sequences in the promoter regions of their targets and subsequently activate or repress entire metabolic or developmental processes. About 1500 TFs were informatically identified in plants, analysis mainly based in the presence of DNA-binding domains in the translated sequences. However, only a few of these 1500 were functionally characterized and clearly classified as TFs. Among these, several seem to be powerful biotechnological tools in order to improve agronomic crops via the obtaining of transgenic plants or as molecular markers. Such TFs have become the objects of patents presentations in the whole world. The assigned uses present a variety of purposes including the improvement in yield, abiotic and biotic stresses tolerances as well as a combination of them. Some examples are commented in the present overview. Most of these TFs confer to transgenic plants complex phenotypes due to a combination of different regulated pathways. In this sense, the use of inducible promoters instead of constitutive ones seems in some cases to be useful to limit the changed phenotype to the desired one, avoiding lateral effects. None of these TFs was converted up to now in a market product since time-consuming experiments and regulation permits are required to arrive to such point. Moreover, a considerable money investment must be done, not justified in all cases. However, it is likely that these molecules will become in the near future the first choice for breeders since it was demonstrated that TFs are very efficient conferring desired traits to transgenic plants. Additionally, for the public perception the over or ectopic expression of a plant gene should be more accepted than the use of molecules from other species.

  13. Prunus transcription factors: breeding perspectives

    PubMed Central

    Bianchi, Valmor J.; Rubio, Manuel; Trainotti, Livio; Verde, Ignazio; Bonghi, Claudio; Martínez-Gómez, Pedro

    2015-01-01

    Many plant processes depend on differential gene expression, which is generally controlled by complex proteins called transcription factors (TFs). In peach, 1533 TFs have been identified, accounting for about 5.5% of the 27,852 protein-coding genes. These TFs are the reference for the rest of the Prunus species. TF studies in Prunus have been performed on the gene expression analysis of different agronomic traits, including control of the flowering process, fruit quality, and biotic and abiotic stress resistance. These studies, using quantitative RT-PCR, have mainly been performed in peach, and to a lesser extent in other species, including almond, apricot, black cherry, Fuji cherry, Japanese apricot, plum, and sour and sweet cherry. Other tools have also been used in TF studies, including cDNA-AFLP, LC-ESI-MS, RNA, and DNA blotting or mapping. More recently, new tools assayed include microarray and high-throughput DNA sequencing (DNA-Seq) and RNA sequencing (RNA-Seq). New functional genomics opportunities include genome resequencing and the well-known synteny among Prunus genomes and transcriptomes. These new functional studies should be applied in breeding programs in the development of molecular markers. With the genome sequences available, some strategies that have been used in model systems (such as SNP genotyping assays and genotyping-by-sequencing) may be applicable in the functional analysis of Prunus TFs as well. In addition, the knowledge of the gene functions and position in the peach reference genome of the TFs represents an additional advantage. These facts could greatly facilitate the isolation of genes via QTL (quantitative trait loci) map-based cloning in the different Prunus species, following the association of these TFs with the identified QTLs using the peach reference genome. PMID:26124770

  14. Promoting elongation with transcript cleavage stimulatory factors.

    PubMed

    Fish, Rachel N; Kane, Caroline M

    2002-09-13

    Transcript elongation by RNA polymerase is a dynamic process, capable of responding to a number of intrinsic and extrinsic signals. A number of elongation factors have been identified that enhance the rate or efficiency of transcription. One such class of factors facilitates RNA polymerase transcription through blocks to elongation by stimulating the polymerase to cleave the nascent RNA transcript within the elongation complex. These cleavage factors are represented by the Gre factors from prokaryotes, and TFIIS and TFIIS-like factors found in archaea and eukaryotes. High-resolution structures of RNA polymerases and the cleavage factors in conjunction with biochemical investigations and genetic analyses have provided insights into the mechanism of action of these elongation factors. However, there are yet many unanswered questions regarding the regulation of these factors and their effects on target genes.

  15. Expression analysis of the speech-related genes FoxP1 and FoxP2 and their relation to singing behavior in two songbird species

    PubMed Central

    Chen, Qianqian; Heston, Jonathan B.; Burkett, Zachary D.; White, Stephanie A.

    2013-01-01

    SUMMARY Humans and songbirds are among the rare animal groups that exhibit socially learned vocalizations: speech and song, respectively. These vocal-learning capacities share a reliance on audition and cortico-basal ganglia circuitry, as well as neurogenetic mechanisms. Notably, the transcription factors Forkhead box proteins 1 and 2 (FoxP1, FoxP2) exhibit similar expression patterns in the cortex and basal ganglia of humans and the zebra finch species of songbird, among other brain regions. Mutations in either gene are associated with language disorders in humans. Experimental knock-down of FoxP2 in the basal ganglia song control region Area X during song development leads to imprecise copying of tutor songs. Moreover, FoxP2 levels decrease naturally within Area X when zebra finches sing. Here, we examined neural expression patterns of FoxP1 and FoxP2 mRNA in adult Bengalese finches, a songbird species whose songs exhibit greater sequence complexity and increased reliance on audition for maintaining their quality. We found that FoxP1 and FoxP2 expression in Bengalese finches is similar to that in zebra finches, including strong mRNA signals for both factors in multiple song control nuclei and enhancement of FoxP1 in these regions relative to surrounding brain tissue. As with zebra finches, when Bengalese finches sing, FoxP2 is behaviorally downregulated within basal ganglia Area X over a similar time course, and expression negatively correlates with the amount of singing. This study confirms that in multiple songbird species, FoxP1 expression highlights song control regions, and regulation of FoxP2 is associated with motor control of song. PMID:24006346

  16. Plk1 Regulates the Repressor Function of FoxM1b by inhibiting its Interaction with the Retinoblastoma Protein

    PubMed Central

    Mukhopadhyay, Nishit K.; Chand, Vaibhav; Pandey, Akshay; Kopanja, Dragana; Carr, Janai R.; Chen, Yi-Ju; Liao, Xiubei; Raychaudhuri, Pradip

    2017-01-01

    FoxM1b is a cell cycle-regulated transcription factor, whose over-expression is a marker for poor outcome in cancers. Its transcriptional activation function requires phosphorylation by Cdk1 or Cdk2 that primes FoxM1b for phosphorylation by Plk1, which triggers association with the co-activator CBP. FoxM1b also possesses transcriptional repression function. It represses the mammary differentiation gene GATA3 involving DNMT3b and Rb. We investigated what determines the two distinct functions of FoxM1b: activation and repression. We show that Rb binds to the C-terminal activation domain of FoxM1b. Analyses with phospho-defective and phospho-mimetic mutants of FoxM1b identified a critical role of the Plk1 phosphorylation sites in regulating the binding of FoxM1b to Rb and DNMT3b. That is opposite of what was seen for the interaction of FoxM1b with CBP. We show that, in addition to GATA3, FoxM1b also represses the mammary luminal differentiation marker FoxA1 by promoter-methylation, and that is regulated by the Plk1 phosphorylation sites in FoxM1b. Our results show that the Plk1 phosphorylation sites in FoxM1b serve as a regulator for its repressor function, and they provide insights into how FoxM1b inhibits differentiation genes and activates proliferation genes during cancer progression. PMID:28387346

  17. Differential FoxP2 and FoxP1 expression in a vocal learning nucleus of the developing budgerigar.

    PubMed

    Whitney, Osceola; Voyles, Tawni; Hara, Erina; Chen, Qianqian; White, Stephanie A; Wright, Timothy F

    2015-07-01

    The forkhead domain FOXP2 and FOXP1 transcription factors are implicated in several cognitive disorders with language deficits, notably autism, and thus play a central role in learned vocal motor behavior in humans. Although a similar role for FoxP2 and FoxP1 is proposed for other vertebrate species, including songbirds, the neurodevelopmental expression of these genes are unknown in a species with lifelong vocal learning abilities. Like humans, budgerigars (Melopsittacus undulatus) learn new vocalizations throughout their entire lifetime. Like songbirds, budgerigars have distinct brain nuclei for vocal learning, which include the magnocellular nucleus of the medial striatum (MMSt), a basal ganglia region that is considered developmentally and functionally analogous to Area X in songbirds. Here, we used in situ hybridization and immunohistochemistry to investigate FoxP2 and FoxP1 expression in the MMSt of juvenile and adult budgerigars. We found FoxP2 mRNA and protein expression levels in the MMSt that were lower than the surrounding striatum throughout development and adulthood. In contrast, FoxP1 mRNA and protein had an elevated MMSt/striatum expression ratio as birds matured, regardless of their sex. These results show that life-long vocal plasticity in budgerigars is associated with persistent low-level FoxP2 expression in the budgerigar MMSt, and suggests the possibility that FoxP1 plays an organizational role in the neurodevelopment of vocal motor circuitry. Thus, developmental regulation of the FoxP2 and FoxP1 genes in the basal ganglia appears essential for vocal mimicry in a range of species that possess this relatively rare trait.

  18. Differential FoxP2 and FoxP1 expression in a vocal learning nucleus of the developing budgerigar

    PubMed Central

    Whitney, Osceola; Voyles, Tawni; Hara, Erina; Chen, Qianqian; White, Stephanie A.; Wright, Timothy F.

    2014-01-01

    The forkhead domain FOXP2 and FOXP1 transcription factors are implicated in several cognitive disorders with language deficits, notably autism, and thus play a central role in learned vocal motor behavior in humans. Although a similar role for FoxP2 and FoxP1 is proposed for other vertebrate species, including songbirds, the neurodevelopmental expression of these genes are unknown in a species with lifelong vocal learning abilities. Like humans, budgerigars (Melopsittacus undulatus) learn new vocalizations throughout their entire lifetime. Like songbirds, budgerigars have distinct brain nuclei for vocal learning, which include the magnocellular nucleus of the medial striatum (MMSt), a basal ganglia region that is considered developmentally and functionally analogous to Area X in songbirds. Here we used in situ hybridization and immunohistochemistry to investigate FoxP2 and FoxP1 expression in the MMSt of juvenile and adult budgerigars. We found FoxP2 mRNA and protein expression levels in the MMSt that were lower than the surrounding striatum throughout development and adulthood. In contrast, FoxP1 mRNA and protein had an elevated MMSt/striatum expression ratio as birds matured, regardless of their sex. These results show that life-long vocal plasticity in budgerigars is associated with persistent low-level FoxP2 expression in the budgerigar MMSt, and suggests the possibility that FoxP1 plays an organizational role in the neurodevelopment of vocal motor circuitry. Thus, developmental regulation of the FoxP2 and FoxP1 genes in the basal ganglia appears essential for vocal mimicry in a range of species that possess this relatively rare trait. PMID:25407828

  19. Protein-Protein Interaction Among the FoxP Family Members and their Regulation of Two Target Genes, VLDLR and CNTNAP2 in the Zebra Finch Song System

    PubMed Central

    Mendoza, Ezequiel; Scharff, Constance

    2017-01-01

    The Forkhead transcription factor FOXP2 is implicated in speech perception and production. The avian homolog, FoxP21 contributes to song learning and production in birds. In human cell lines, transcriptional activity of FOXP2 requires homo-dimerization or dimerization with paralogs FOXP1 or FOXP4. Whether FoxP dimerization occurs in the brain is unknown. We recently showed that FoxP1, FoxP2 and FoxP4 (FoxP1/2/4) proteins are co-expressed in neurons of Area X, a song control region in zebra finches. We now report on dimer- and oligomerization of zebra finch FoxPs and how this affects transcription. In cell lines and in the brain we identify homo- and hetero-dimers, and an oligomer composed of FoxP1/2/4. We further show that FoxP1/2 but not FoxP4 bind to the regulatory region of the target gene Contactin-associated protein-like 2 (CNTNAP2). In addition, we demonstrate that FoxP1/4 bind to the regulatory region of very low density lipoprotein receptor (VLDLR), as has been shown for FoxP2 previously. Interestingly, FoxP1/2/4 individually or in combinations regulate the promoters for SV40, zebra finch VLDLR and CNTNAP2 differentially. These data exemplify the potential for complex transcriptional regulation of FoxP1/2/4, highlighting the need for future functional studies dissecting their differential regulation in the brain. PMID:28507505

  20. Protein-Protein Interaction Among the FoxP Family Members and their Regulation of Two Target Genes, VLDLR and CNTNAP2 in the Zebra Finch Song System.

    PubMed

    Mendoza, Ezequiel; Scharff, Constance

    2017-01-01

    The Forkhead transcription factor FOXP2 is implicated in speech perception and production. The avian homolog, FoxP2 contributes to song learning and production in birds. In human cell lines, transcriptional activity of FOXP2 requires homo-dimerization or dimerization with paralogs FOXP1 or FOXP4. Whether FoxP dimerization occurs in the brain is unknown. We recently showed that FoxP1, FoxP2 and FoxP4 (FoxP1/2/4) proteins are co-expressed in neurons of Area X, a song control region in zebra finches. We now report on dimer- and oligomerization of zebra finch FoxPs and how this affects transcription. In cell lines and in the brain we identify homo- and hetero-dimers, and an oligomer composed of FoxP1/2/4. We further show that FoxP1/2 but not FoxP4 bind to the regulatory region of the target gene Contactin-associated protein-like 2 (CNTNAP2). In addition, we demonstrate that FoxP1/4 bind to the regulatory region of very low density lipoprotein receptor (VLDLR), as has been shown for FoxP2 previously. Interestingly, FoxP1/2/4 individually or in combinations regulate the promoters for SV40, zebra finch VLDLR and CNTNAP2 differentially. These data exemplify the potential for complex transcriptional regulation of FoxP1/2/4, highlighting the need for future functional studies dissecting their differential regulation in the brain.

  1. Expression of tissue factor and forkhead box transcription factor O-1 in a rat model for chronic thromboembolic pulmonary hypertension.

    PubMed

    Deng, Chaosheng; Wu, Dawen; Yang, Minxia; Chen, Yunfei; Wang, Caiyun; Zhong, Zhanghua; Lian, Ningfang; Chen, Hua; Wu, Shuang

    2016-11-01

    Few reports have examined tissue factor (TF) and forkhead box transcription factor O-1 (FoxO1) expression in chronic thromboembolic pulmonary hypertension (CTEPH) animal models. To investigate the role of TF and FoxO1 and their interactions during CTEPH pathogenesis in a rat model. Autologous blood clots were repeatedly injected into the pulmonary arteries through right jugular vein to induce a rat model of CTEPH. Hemodynamic parameters, histopathology, and TF and FoxO1expression levels were detected. The mean pulmonary arterial pressure (mPAP), pulmonary vascular resistance and vessel wall area/total area (WA/TA) ratio in the experiment group increased significantly than sham group (P < 0.05). The cardiac output in the 1-, 2-, and 4-week groups decreased significantly (P < 0.05) when compared to sham group. TF mRNA expression levels in the experiment group increased significantly than sham group (P < 0.05). FoxO1 mRNA and protein expression levels were lower in the experiment group than sham group (P < 0.05). The mPAP had a positive correlation with WA/TA ratio (r = 0.45, P = 0.01). TF mRNA expression had a positive correlation with WA/TA ratio (r = 0.374, P = 0.035) and a positive correlation with mPAP (r = 0.48, P= 0.005). FoxO1 mRNA expression had a negative correlation trend with the WA/TA ratio (r = -0.297, P = 0.099) and a negative correlation trend with mPAP (r = -0.34, P = 0.057). TF mRNA expression had a negative correlation with FoxO1 mRNA expression (r = -0.62, P < 0.001). A rat model of CTEPH can be successfully established by the injection of autologous blood clots into the pulmonary artery. TF and FoxO1 may play a key role in vascular remodeling during CTEPH pathogenesis.

  2. Overexpression of FoxO3a is associated with glioblastoma progression and predicts poor patient prognosis.

    PubMed

    Qian, Zhongrun; Ren, Li; Wu, Dingchang; Yang, Xi; Zhou, Zhiyi; Nie, Quanmin; Jiang, Gan; Xue, Shuanglin; Weng, Weiji; Qiu, Yongming; Lin, Yingying

    2017-06-15

    Forkhead transcription factor FoxO3a has been reported to have ambiguous functions and distinct mechanisms in various solid tumors, including glioblastoma (GBM). Although a preliminary analysis of a small sample of patients indicated that FoxO3a aberrations in glioma might be related to aggressive clinical behavior, the clinical significance of FoxO3a in glioblastoma remains unclear. We investigated the expression of FoxO3a in a cohort of 91 glioblastoma specimens and analyzed the correlations of protein expression with patient prognosis. Furthermore, the functional impact of FoxO3a on GBM progression and the underlying mechanisms of FoxO3a regulation were explored in a series of in vitro and in vivo assays. FoxO3a expression was elevated in glioblastoma tissues, and high nuclear FoxO3a expression in human GBM tissues was associated with poor prognosis. Moreover, knockdown of FoxO3a significantly reduced the colony formation and invasion ability of GBM cells, whereas overexpression of FoxO3a promoted the colony formation and invasion ability. The results of in vivo GBM models further confirmed that FoxO3a knockdown inhibited GBM progression. More, the pro-oncogenic effects of FoxO3a in GBM were mediated by the activation of c-Myc, microtubule-associated protein 1 light chain 3 beta (LC3B) and Beclin1 in a mixed-lineage leukemia 2 (MLL2)-dependent manner. These findings suggest that high FoxO3a expression is associated with glioblastoma progression and that FoxO3a independently indicates poor prognosis in patients. FoxO3a might be a novel prognostic biomarker or a potential therapeutic target in glioblastoma. © 2017 UICC.

  3. A role for the transcription factor Helios in human CD4+CD25+ regulatory T cells

    PubMed Central

    Getnet, Derese; Grosso, Joseph F.; Goldberg, Monica V.; Harris, Timothy J.; Yen, Hung-Rong; Bruno, Tullia C.; Durham, Nicholas M.; Hipkiss, Edward L.; Pyle, Kristin J.; Wada, Satoshi; Pan, Fan; Pardoll, Drew M.; Drake, Charles G.

    2010-01-01

    Relative up-regulation of the Ikaros family transcription factor Helios in natural regulatory T cells (Tregs) has been reported by several groups. However, a role for Helios in regulatory T cells has not yet been described. Here, we show that Helios is upregulated in CD4+CD25+ regulatory T cells. Chromatin Immunoprecipitation (ChIP) experiments indicated that Helios binds to the FoxP3 promoter. These data were further corroborated by experiments showing that knocking-down Helios with siRNA oligonucleotides results in down-regulation of FoxP3. Functionally, we found that suppression of Helios message in CD4+CD25+ T cells significantly attenuates their suppressive function. Taken together, these data suggest that Helios may play an important role in regulatory T cell function and support the concept that Helios may be a novel target to manipulate Treg activity in a clinical setting. PMID:20226531

  4. Transcription factor SGF1 is critical for the neurodevelopment in the silkworm, Bombyx mori.

    PubMed

    Liu, Zhao-Yang; Yu, Qi; Yang, Chun-Hong; Meng, Miao; Ren, Chun-Jiu; Mu, Zhi-Mei; Cui, Wei-Zheng; Liu, Qing-Xin

    2016-08-01

    FoxA transcription factors play vital roles in regulating the expression of organ-specific genes. BmSGF1, the sole FoxA family member in Bombyx mori, is required for development of the silk gland. However, the function of BmSGF1 in development of the nervous system in the silkworm remains unknown. Here, we show that the amino acids sequence of BmSGF1 is evolutionarily conserved in its middle region from Trichoplax adhaerens to human and diverged from the homologues in most other species in its N-terminal region. BmSGF1 expresses in the nervous system at the embryonic stage. Knockdown of Bmsgf1 by RNA interference (RNAi) results in abnormal development of axons. Therefore, our results demonstrate that BmSGF1 is an indispensable regulator for neurodevelopment. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Insulin sensitization of human preadipocytes through glucocorticoid hormone induction of forkhead transcription factors.

    PubMed

    Tomlinson, Julianna J; Boudreau, Adèle; Wu, Dongmei; Abdou Salem, Houssein; Carrigan, Amanda; Gagnon, AnneMarie; Mears, Alan J; Sorisky, Alexander; Atlas, Ella; Haché, Robert J G

    2010-01-01

    Glucocorticoids are synthesized locally in adipose tissue and contribute to metabolic disease through the facilitation of adipose tissue expansion. Here we report that exposure of human primary preadipocytes to glucocorticoids increases their sensitivity to insulin and enhances their subsequent response to stimuli that promote differentiation. This effect was observed in primary human preadipocytes but not in immortalized 3T3-L1 murine preadipocytes or in fully differentiated primary human adipocytes. Stimulation of insulin signaling was mediated through induction of insulin receptor (IR), IR substrate protein 1 (IRS1), IRS2, and the p85 regulatory subunit of phosphoinositide-3-3-kinase, which led to enhanced insulin-mediated activation of Akt. Although induction of IRS2 was direct, induction of IR and IRS1 by glucocorticoids occurred subsequent to primary induction of the forkhead family transcription factors FoxO1A and FoxO3A. These results reveal a new role for glucocorticoids in preparing preadipocytes for differentiation.

  6. FoxO is required for the activation of hypertrehalosemic hormone expression in cockroaches.

    PubMed

    Süren-Castillo, Songül; Abrisqueta, Marc; Maestro, José L

    2014-01-01

    FoxO proteins are a subgroup of the Forkhead-box family of transcription factors, which function as the main transcriptional effectors of the insulin receptor pathway. This pathway, activated by the binding of insulin or IGFs (or insect insulin-like peptides), promotes the phosphorylation and inactivation of FoxO because of its export from the nucleus to the cytoplasm. The homolog of FoxO in the cockroach Blattella germanica works in a situation of nutrient shortage by inhibiting the endocrine induction of reproduction. Using Blattella germanica as a model, we studied the functions of FoxO using RNA interference methodologies. We analyzed the mRNA levels of hypertrehalosemic hormone (HTH) and genes related to lipolysis, glycogenolysis and gluconeogenesis and quantified triacylglycerides, glycogen and trehalose. FoxO knockdown eliminates the starvation-induced expression of HTH in the corpora cardiaca. In addition, FoxO knockdown prevents the activation of the expression of Brummer lipase, glycogen phosphorylase and phosphoenolpyruvate carboxylase in the fat body of starved females. Starvation-induced activation of FoxO stimulates the transcription of different genes related to catabolic processes, including HTH and genes involved in lipolysis, glycogenolysis and gluconeogenesis. Our results show conservation in the action of the transcription factor FoxO in the activation of catabolic processes from basal insects to vertebrates. The results also describe a new and essentially different mode of action of transcription factor FoxO, which works through the activation of neuropeptide HTH expression, which will subsequently produce its own catabolic stimulatory function. © 2013.

  7. dFoxO promotes Wingless signaling in Drosophila

    PubMed Central

    Zhang, Shiping; Guo, Xiaowei; Chen, Changyan; Chen, Yujun; Li, Jikai; Sun, Ying; Wu, Chenxi; Yang, Yang; Jiang, Cizhong; Li, Wenzhe; Xue, Lei

    2016-01-01

    The Wnt/β-catenin signaling is an evolutionarily conserved pathway that regulates a wide range of physiological functions, including embryogenesis, organ maintenance, cell proliferation and cell fate decision. Dysregulation of Wnt/β-catenin signaling has been implicated in various cancers, but its role in cell death has not yet been fully elucidated. Here we show that activation of Wg signaling induces cell death in Drosophila eyes and wings, which depends on dFoxO, a transcription factor known to be involved in cell death. In addition, dFoxO is required for ectopic and endogenous Wg signaling to regulate wing patterning. Moreover, dFoxO is necessary for activated Wg signaling-induced target genes expression. Furthermore, Arm is reciprocally required for dFoxO-induced cell death. Finally, dFoxO physically interacts with Arm both in vitro and in vivo. Thus, we have characterized a previously unknown role of dFoxO in promoting Wg signaling, and that a dFoxO-Arm complex is likely involved in their mutual functions, e.g. cell death. PMID:26936649

  8. Expression of Drosophila forkhead transcription factors during kidney development.

    PubMed

    Baek, Jeong-In; Choi, Soo Young; Chacon-Heszele, Maria F; Zuo, Xiaofeng; Lipschutz, Joshua H

    2014-03-28

    The Drosophila forkhead (Dfkh) family of transcription factors has over 40 family members. One Dfkh family member, BF2 (aka FoxD1), has been shown, by targeted disruption, to be essential for kidney development. In order to determine if other Dfkh family members were involved in kidney development and to search for new members of this family, reverse transcriptase polymerase chain reaction (RT-PCR) was performed using degenerate primers of the consensus sequence of the DNA binding domain of this family and developing rat kidney RNA. The RT-PCR product was used to probe RNA from a developing rat kidney (neonatal), from a 20-day old kidney, and from an adult kidney. The RT-PCR product hybridized only to a developing kidney RNA transcript of ∼2.3 kb (the size of BF2). A lambda gt10 mouse neonatal kidney library was then screened, using the above-described RT-PCR product as a probe. Three lambda phage clones were isolated that strongly hybridized to the RT-PCR probe. Sequencing of the RT-PCR product and the lambda phage clones isolated from the developing kidney library revealed Dfkh BF2. In summary, only Dfkh family member BF2, which has already been shown to be essential for nephrogenesis, was identified in our screen and no other candidate Dfkh family members were identified. Published by Elsevier Inc.

  9. Expression of Drosophila Forkhead Transcription Factors During Kidney Development

    PubMed Central

    Baek, Jeong-In; Choi, Soo Young; Chacon-Heszele, Maria F.; Zuo, Xiaofeng; Lipschutz, Joshua H.

    2014-01-01

    The Drosophila forkhead (Dfkh) family of transcription factors has over 40 family members. One Dfkh family member, BF2 (aka FoxD1), has been shown, by targeted disruption, to be essential for kidney development. In order to determine if other Dfkh family members were involved in kidney development and to search for new members of this family, reverse transcriptase polymerase chain reaction (RT-PCR) was performed using degenerate primers of the consensus sequence of the DNA binding domain of this family and developing rat kidney RNA. The RT-PCR product was used to probe RNA from a developing rat kidney (neonatal), from a 20-day old kidney, and from an adult kidney. The RT-PCR product hybridized only to a developing kidney RNA transcript of ~2.3 kb (the size of BF2). A lambda gt10 mouse neonatal kidney library was then screened, using the above-described RT-PCR product as a probe. Three lambda phage clones were isolated that strongly hybridized to the RT-PCR probe. Sequencing of the RT-PCR product and the lambda phage clones isolated from the developing kidney library revealed Dfkh BF2. In summary, only Dfkh family member BF2, which has already been shown to be essential for nephrogenesis, was identified in our screen and no other candidate Dfkh family members were identified. PMID:24491558

  10. Inhibition of ROS and upregulation of inflammatory cytokines by FoxO3a promotes survival against Salmonella typhimurium

    PubMed Central

    Joseph, Julie; Ametepe, Emmanuelle S.; Haribabu, Naveen; Agbayani, Gerard; Krishnan, Lakshmi; Blais, Alexandre; Sad, Subash

    2016-01-01

    Virulent intracellular pathogens, such as the Salmonella species, engage numerous virulence factors to subvert host defence mechanisms to induce a chronic infection that leads to typhoid or exacerbation of other chronic inflammatory conditions. Here we show the role of the forkhead transcription factor FoxO3a during infection of mice with Salmonella typhimurium (ST). Although FoxO3a signalling does not affect the development of CD8+ T cell responses to ST, FoxO3a has an important protective role, particularly during the chronic stage of infection, by limiting the persistence of oxidative stress. Furthermore, FoxO3a signalling regulates ERK signalling in macrophages, which results in the maintenance of a proinflammatory state. FoxO3a signalling does not affect cell proliferation or cell death. Thus, these results reveal mechanisms by which FoxO3a promotes host survival during infection with chronic, virulent intracellular bacteria. PMID:27599659

  11. Creating cellular diversity through transcription factor competition

    PubMed Central

    Göttgens, Berthold

    2015-01-01

    The development of blood cells has long served as a model system to study the generation of diverse mature cells from multipotent progenitors. The article by Org et al (2015) reveals how transcription factor competition on primed DNA templates may contribute to embryonic blood cell specification during the early stages of mesoderm development. The study not only provides new insights into the functionality of the key haematopoietic transcription factor Scl/Tal1, but also provides a potentially widely applicable framework for transcription factor-mediated cell fate specification. PMID:25680687

  12. FoxO1 in dopaminergic neurons regulates energy homeostasis and targets tyrosine hydroxylase

    PubMed Central

    Doan, Khanh V.; Kinyua, Ann W.; Yang, Dong Joo; Ko, Chang Mann; Moh, Sang Hyun; Shong, Ko Eun; Kim, Hail; Park, Sang-Kyu; Kim, Dong-Hoon; Kim, Inki; Paik, Ji-Hye; DePinho, Ronald A.; Yoon, Seul Gi; Kim, Il Yong; Seong, Je Kyung; Choi, Yun-Hee; Kim, Ki Woo

    2016-01-01

    Dopaminergic (DA) neurons are involved in the integration of neuronal and hormonal signals to regulate food consumption and energy balance. Forkhead transcriptional factor O1 (FoxO1) in the hypothalamus plays a crucial role in mediation of leptin and insulin function. However, the homoeostatic role of FoxO1 in DA system has not been investigated. Here we report that FoxO1 is highly expressed in DA neurons and mice lacking FoxO1 specifically in the DA neurons (FoxO1 KODAT) show markedly increased energy expenditure and interscapular brown adipose tissue (iBAT) thermogenesis accompanied by reduced fat mass and improved glucose/insulin homoeostasis. Moreover, FoxO1 KODAT mice exhibit an increased sucrose preference in concomitance with higher dopamine and norepinephrine levels. Finally, we found that FoxO1 directly targets and negatively regulates tyrosine hydroxylase (TH) expression, the rate-limiting enzyme of the catecholamine synthesis, delineating a mechanism for the KO phenotypes. Collectively, these results suggest that FoxO1 in DA neurons is an important transcriptional factor that directs the coordinated control of energy balance, thermogenesis and glucose homoeostasis. PMID:27681312

  13. Fox-2 Splicing Factor Binds to a Conserved Intron Motif to PromoteInclusion of Protein 4.1R Alternative Exon 16

    SciTech Connect

    Ponthier, Julie L.; Schluepen, Christina; Chen, Weiguo; Lersch,Robert A.; Gee, Sherry L.; Hou, Victor C.; Lo, Annie J.; Short, Sarah A.; Chasis, Joel A.; Winkelmann, John C.; Conboy, John G.

    2006-03-01

    Activation of protein 4.1R exon 16 (E16) inclusion during erythropoiesis represents a physiologically important splicing switch that increases 4.1R affinity for spectrin and actin. Previous studies showed that negative regulation of E16 splicing is mediated by the binding of hnRNP A/B proteins to silencer elements in the exon and that downregulation of hnRNP A/B proteins in erythroblasts leads to activation of E16 inclusion. This paper demonstrates that positive regulation of E16 splicing can be mediated by Fox-2 or Fox-1, two closely related splicing factors that possess identical RNA recognition motifs. SELEX experiments with human Fox-1 revealed highly selective binding to the hexamer UGCAUG. Both Fox-1 and Fox-2 were able to bind the conserved UGCAUG elements in the proximal intron downstream of E16, and both could activate E16 splicing in HeLa cell co-transfection assays in a UGCAUG-dependent manner. Conversely, knockdown of Fox-2 expression, achieved with two different siRNA sequences resulted in decreased E16 splicing. Moreover, immunoblot experiments demonstrate mouse erythroblasts express Fox-2, but not Fox-1. These findings suggest that Fox-2 is a physiological activator of E16 splicing in differentiating erythroid cells in vivo. Recent experiments show that UGCAUG is present in the proximal intron sequence of many tissue-specific alternative exons, and we propose that the Fox family of splicing enhancers plays an important role in alternative splicing switches during differentiation in metazoan organisms.

  14. A fork in the path: Developing therapeutic inroads with FoxO proteins.

    PubMed

    Maiese, Kenneth; Hou, Jinling; Chong, Zhao Zhong; Shang, Yan Chen

    2009-01-01

    Advances in clinical care for disorders involving any system of the body necessitates novel therapeutic strategies that can focus upon the modulation of cellular proliferation, metabolism, inflammation and longevity. In this respect, members of the mammalian forkhead transcription factors of the O class (FoxOs) that include FoxO1, FoxO3, FoxO4 and FoxO6 are increasingly being recognized as exciting prospects for multiple disorders. These transcription factors govern development, proliferation, survival and longevity during multiple cellular environments that can involve oxidative stress. Furthermore, these transcription factors are closely integrated with several novel signal transduction pathways, such as erythropoietin and Wnt proteins, that may influence the ability of FoxOs to act as a "double-edge sword" to sometimes promote cell survival, but at other times lead to cell injury. Here we discuss the fascinating but complex role of FoxOs during cellular injury and oxidative stress, progenitor cell development, fertility, angiogenesis, cardiovascular function, cellular metabolism and diabetes, cell longevity, immune surveillance and cancer.

  15. Neuroprotective effects of phenolic antioxidant tBHQ associate with inhibition of FoxO3a nuclear translocation and activity.

    PubMed

    Bahia, Parmvir K; Pugh, Victoria; Hoyland, Kimberley; Hensley, Victoria; Rattray, Marcus; Williams, Robert J

    2012-10-01

    The Forkhead transcription factor, FoxO3a induces genomic death responses in neurones following translocation from the cytosol to the nucleus. Nuclear translocation of FoxO3a is triggered by trophic factor withdrawal, oxidative stress and the stimulation of extrasynaptic NMDA receptors. Receptor activation of phosphatidylinositol 3-kinase (PI3K)-Akt signalling pathways retains FoxO3a in the cytoplasm, thereby inhibiting the transcriptional activation of death-promoting genes. We hypothesized that phenolic antioxidants such as tert-Butylhydroquinone (tBHQ), which is known to stimulate PI3K-Akt signalling, would inhibit FoxO3a translocation and activity. Treatment of cultured cortical neurones with NMDA increased the nuclear localization of FoxO3a, reduced the phosphorylation of FoxO3a, increased caspase activity and up-regulated Fas ligand expression. In contrast the phenolic antioxidant, tBHQ, caused retention of FoxO3a in the cytosol coincident with enhanced PI3K- dependent phosphorylation of FoxO3a. tBHQ-induced nuclear exclusion of FoxO3a was associated with reduced FoxO-mediated transcriptional activity. Exposure of neurones to tBHQ inhibited NMDA-induced nuclear translocation of FoxO3a, prevented NMDA-induced up-regulation of FoxO-mediated transcriptional activity, blocked caspase activation and protected neurones from NMDA-induced excitotoxic death. Collectively, these data suggest that phenolic antioxidants such as tBHQ oppose stress-induced activation of FoxO3a and therefore have potential neuroprotective utility in neurodegeneration. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  16. Neuroprotective effects of phenolic antioxidant tBHQ associate with inhibition of FoxO3a nuclear translocation and activity

    PubMed Central

    Bahia, Parmvir K; Pugh, Victoria; Hoyland, Kimberley; Hensley, Victoria; Rattray, Marcus; Williams, Robert J

    2012-01-01

    The Forkhead transcription factor, FoxO3a induces genomic death responses in neurones following translocation from the cytosol to the nucleus. Nuclear translocation of FoxO3a is triggered by trophic factor withdrawal, oxidative stress and the stimulation of extrasynaptic NMDA receptors. Receptor activation of phosphatidylinositol 3-kinase (PI3K)–Akt signalling pathways retains FoxO3a in the cytoplasm, thereby inhibiting the transcriptional activation of death-promoting genes. We hypothesized that phenolic antioxidants such as tert-Butylhydroquinone (tBHQ), which is known to stimulate PI3K–Akt signalling, would inhibit FoxO3a translocation and activity. Treatment of cultured cortical neurones with NMDA increased the nuclear localization of FoxO3a, reduced the phosphorylation of FoxO3a, increased caspase activity and up-regulated Fas ligand expression. In contrast the phenolic antioxidant, tBHQ, caused retention of FoxO3a in the cytosol coincident with enhanced PI3K- dependent phosphorylation of FoxO3a. tBHQ-induced nuclear exclusion of FoxO3a was associated with reduced FoxO-mediated transcriptional activity. Exposure of neurones to tBHQ inhibited NMDA-induced nuclear translocation of FoxO3a, prevented NMDA-induced up-regulation of FoxO-mediated transcriptional activity, blocked caspase activation and protected neurones from NMDA-induced excitotoxic death. Collectively, these data suggest that phenolic antioxidants such as tBHQ oppose stress-induced activation of FoxO3a and therefore have potential neuroprotective utility in neurodegeneration. PMID:22804756

  17. High throughput assays for analyzing transcription factors.

    PubMed

    Li, Xianqiang; Jiang, Xin; Yaoi, Takuro

    2006-06-01

    Transcription factors are a group of proteins that modulate the expression of genes involved in many biological processes, such as cell growth and differentiation. Alterations in transcription factor function are associated with many human diseases, and therefore these proteins are attractive potential drug targets. A key issue in the development of such therapeutics is the generation of effective tools that can be used for high throughput discovery of the critical transcription factors involved in human diseases, and the measurement of their activities in a variety of disease or compound-treated samples. Here, a number of innovative arrays and 96-well format assays for profiling and measuring the activities of transcription factors will be discussed.

  18. Mediator as a general transcription factor.

    PubMed

    Takagi, Yuichiro; Kornberg, Roger D

    2006-01-06

    Others have shown that yeast strains bearing a ts mutation in the Srb4 subunit of Mediator cease transcription of all mRNA at the restrictive temperature, in a manner virtually indistinguishable from a strain bearing a ts mutation in the largest subunit of RNA polymerase II. We find that srb4ts Mediator is defective for the stimulation of basal RNA polymerase II transcription at the restrictive temperature in vitro. Taken together, these findings lead to the suggestion that Mediator is required for basal RNA polymerase II transcription in vivo. On this basis, Mediator is identified as a general transcription factor, comparable in importance to RNA polymerase II and other general factors for the initiation of transcription. The possibility that Mediator serves as an anti-inhibitor, opposing the effects of global negative regulators, is largely excluded.

  19. A genome-wide view of transcription factor gene diversity in chordate evolution: less gene loss in amphioxus?

    PubMed

    Paps, Jordi; Holland, Peter W H; Shimeld, Sebastian M

    2012-03-01

    Previous studies of gene diversity in the homeobox superclass have shown that the Florida amphioxus Branchiostoma floridae has undergone remarkably little gene family loss. Here we use a combined BLAST and HMM search strategy to assess the family level diversity of four other transcription factor superclasses: the Paired/Pax genes, Tbx genes, Fox genes and Sox genes. We apply this across genomes from five chordate taxa, including B. floridae and Ciona intestinalis, plus two outgroup taxa. Our results show scattered gene family loss. However, as also found for homeobox genes, B. floridae has retained all ancient Pax, Tbx, Fox and Sox gene families that were present in the common ancestor of living chordates. We conclude that, at least in terms of transcription factor gene complexity, the genome of amphioxus has experienced remarkable stasis compared to the genomes of other chordates.

  20. Anthropogenic Factors Are the Major Cause of Hospital Admission of a Threatened Species, the Grey-Headed Flying Fox (Pteropus poliocephalus), in Victoria, Australia.

    PubMed

    Scheelings, Titus Franciscus; Frith, Sarah Elizabeth

    2015-01-01

    To determine the reasons for presentation and outcomes of hospitalised grey-headed flying foxes (Pteropus poliocephalus) in Victoria, Australia, a retrospective analysis was performed on 532 records from two wildlife hospitals. Cases were categorised based on presenting signs and outcomes determined. Anthropogenic factors (63.7%) were a major cause of flying fox admissions with entanglement in fruit netting the most significant risk for bats (36.8%). Overall the mortality rate for flying fox admissions was 59.3%. This study highlights the effects of urbanisation on wild animal populations and a need for continued public education in order to reduce morbidity and mortality of wildlife, especially threatened species.

  1. Anthropogenic Factors Are the Major Cause of Hospital Admission of a Threatened Species, the Grey-Headed Flying Fox (Pteropus poliocephalus), in Victoria, Australia

    PubMed Central

    Scheelings, Titus Franciscus; Frith, Sarah Elizabeth

    2015-01-01

    To determine the reasons for presentation and outcomes of hospitalised grey-headed flying foxes (Pteropus poliocephalus) in Victoria, Australia, a retrospective analysis was performed on 532 records from two wildlife hospitals. Cases were categorised based on presenting signs and outcomes determined. Anthropogenic factors (63.7%) were a major cause of flying fox admissions with entanglement in fruit netting the most significant risk for bats (36.8%). Overall the mortality rate for flying fox admissions was 59.3%. This study highlights the effects of urbanisation on wild animal populations and a need for continued public education in order to reduce morbidity and mortality of wildlife, especially threatened species. PMID:26207984

  2. FoxA1 as a lineage-specific oncogene in luminal type breast cancer

    SciTech Connect

    Yamaguchi, Noritaka; Ito, Emi; Azuma, Sakura; Honma, Reiko; Yanagisawa, Yuka; Nishikawa, Akira; Kawamura, Mika; Imai, Jun-ichi

    2008-01-25

    The forkhead transcription factor FoxA1 is thought to be involved in mammary tumorigenesis. However, the precise role of FoxA1 in breast cancer development is controversial. We examined expression of FoxA1 in 35 human breast cancer cell lines and compared it with that of ErbB2, a marker of poor prognosis in breast cancer. We found that FoxA1 is expressed at high levels in all ErbB2-positive cell lines and a subset of ErbB2-negative cell lines. Down-regulation of FoxA1 by RNA interference significantly suppressed proliferation of ErbB2-negative and FoxA1-positive breast cancer cell lines. Down-regulation of FoxA1 also enhanced the toxic effect of Herceptin on ErbB2-positive cell lines through induction of apoptosis. Taken together with previous data that FoxA1 is a marker of luminal cells in mammary gland, our present results suggest that FoxA1 plays an important role as a lineage-specific oncogene in proliferation of cancer cells derived from mammary luminal cells.

  3. Phylogenetic relationships of the Fox (Forkhead) gene family in the Bilateria

    NASA Technical Reports Server (NTRS)

    Mazet, Francoise; Yu, Jr Kai; Liberles, David A.; Holland, Linda Z.; Shimeld, Sebastian M.

    2003-01-01

    The Forkhead or Fox gene family encodes putative transcription factors. There are at least four Fox genes in yeast, 16 in Drosophila melanogaster (Dm) and 42 in humans. Recently, vertebrate Fox genes have been classified into 17 groups named FoxA to FoxQ. Here, we extend this analysis to invertebrates, using available sequences from D. melanogaster, Anopheles gambiae (Ag), Caenorhabditis elegans (Ce), the sea squirt Ciona intestinalis (Ci) and amphioxus Branchiostoma floridae (Bf), from which we also cloned several Fox genes. Phylogenetic analyses lend support to the previous overall subclassification of vertebrate genes, but suggest that four subclasses (FoxJ, L, N and Q) could be further subdivided to reflect their relationships to invertebrate genes. We were unable to identify orthologs of Fox subclasses E, H, I, J, M and Q1 in D. melanogaster, A. gambiae or C. elegans, suggesting either considerable loss in ecdysozoans or the evolution of these subclasses in the deuterostome lineage. Our analyses suggest that the common ancestor of protostomes and deuterostomes had a minimum complement of 14 Fox genes.

  4. Phylogenetic relationships of the Fox (Forkhead) gene family in the Bilateria

    NASA Technical Reports Server (NTRS)

    Mazet, Francoise; Yu, Jr Kai; Liberles, David A.; Holland, Linda Z.; Shimeld, Sebastian M.

    2003-01-01

    The Forkhead or Fox gene family encodes putative transcription factors. There are at least four Fox genes in yeast, 16 in Drosophila melanogaster (Dm) and 42 in humans. Recently, vertebrate Fox genes have been classified into 17 groups named FoxA to FoxQ. Here, we extend this analysis to invertebrates, using available sequences from D. melanogaster, Anopheles gambiae (Ag), Caenorhabditis elegans (Ce), the sea squirt Ciona intestinalis (Ci) and amphioxus Branchiostoma floridae (Bf), from which we also cloned several Fox genes. Phylogenetic analyses lend support to the previous overall subclassification of vertebrate genes, but suggest that four subclasses (FoxJ, L, N and Q) could be further subdivided to reflect their relationships to invertebrate genes. We were unable to identify orthologs of Fox subclasses E, H, I, J, M and Q1 in D. melanogaster, A. gambiae or C. elegans, suggesting either considerable loss in ecdysozoans or the evolution of these subclasses in the deuterostome lineage. Our analyses suggest that the common ancestor of protostomes and deuterostomes had a minimum complement of 14 Fox genes.

  5. Pax factors in transcription and epigenetic remodelling.

    PubMed

    Mayran, Alexandre; Pelletier, Audrey; Drouin, Jacques

    2015-08-01

    The nine Pax transcription factors that constitute the mammalian family of paired domain (PD) factors play key roles in many developmental processes. As DNA binding transcription factors, they exhibit tremendous variability and complexity in their DNA recognition patterns. This is ascribed to the presence of multiple DNA binding structural domains, namely helix-turn-helix (HTH) domains. The PD contains two HTH subdomains and four of the nine Pax factors have an additional HTH domain, the homeodomain (HD). We now review these diverse DNA binding modalities together with their properties as transcriptional activators and repressors. The action of Pax factors on gene expression is also exerted through recruitment of chromatin remodelling complexes that introduce either activating or repressive chromatin marks. Interestingly, the recent demonstration that Pax7 has pioneer activity, the unique property to "open" chromatin, further underlines the mechanistic versatility and the developmental importance of these factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Learning, memory, and transcription factors.

    PubMed

    Johnston, Michael V; Alemi, Lily; Harum, Karen H

    2003-03-01

    Cognitive disorders in children have traditionally been described in terms of clinical phenotypes or syndromes, chromosomal lesions, metabolic disorders, or neuropathology. Relatively little is known about how these disorders affect the chemical reactions involved in learning and memory. Experiments in fruit flies, snails, and mice have revealed some highly conserved pathways that are involved in learning, memory, and synaptic plasticity, which is the primary substrate for memory storage. These can be divided into short-term memory storage through local changes in synapses, and long-term storage mediated by activation of transcription to translate new proteins that modify synaptic function. This review summarizes evidence that disruptions in these pathways are involved in human cognitive disorders, including neurofibromatosis type I, Coffin-Lowry syndrome, Rubinstein-Taybi syndrome, Rett syndrome, tuberous sclerosis-2, Down syndrome, X-linked alpha-thalassemia/mental retardation, cretinism, Huntington disease, and lead poisoning.

  7. FoxO1 regulates Tlr4 inflammatory pathway signalling in macrophages

    PubMed Central

    Fan, WuQiang; Morinaga, Hidetaka; Kim, Jane J; Bae, Eunju; Spann, Nathanael J; Heinz, Sven; Glass, Christopher K; Olefsky, Jerrold M

    2010-01-01

    The macrophage-mediated inflammatory response is a key etiologic component of obesity-related tissue inflammation and insulin resistance. The transcriptional factor FoxO1 is a key regulator of cell metabolism, cell cycle and cell death. Its activity is tightly regulated by the phosphoinositide-3-kinase-AKT (PI3K-Akt) pathway, which leads to phosphorylation, cytoplasmic retention and inactivation of FoxO1. Here, we show that FoxO1 promotes inflammation by enhancing Tlr4-mediated signalling in mature macrophages. By means of chromatin immunoprecipitation (ChIP) combined with massively parallel sequencing (ChIP-Seq), we show that FoxO1 binds to multiple enhancer-like elements within the Tlr4 gene itself, as well as to sites in a number of Tlr4 signalling pathway genes. While FoxO1 potentiates Tlr4 signalling, activation of the latter induces AKT and subsequently inactivates FoxO1, establishing a self-limiting mechanism of inflammation. Given the central role of macrophage Tlr4 in transducing extrinsic proinflammatory signals, the novel functions for FoxO1 in macrophages as a transcriptional regulator of the Tlr4 gene and its inflammatory pathway, highlights FoxO1 as a key molecular adaptor integrating inflammatory responses in the context of obesity and insulin resistance. PMID:21045807

  8. Tissue-specific pioneer factors associate with androgen receptor cistromes and transcription programs

    PubMed Central

    Pihlajamaa, Päivi; Sahu, Biswajyoti; Lyly, Lauri; Aittomäki, Viljami; Hautaniemi, Sampsa; Jänne, Olli A

    2014-01-01

    Androgen receptor (AR) binds male sex steroids and mediates physiological androgen actions in target tissues. ChIP-seq analyses of AR-binding events in murine prostate, kidney and epididymis show that in vivo AR cistromes and their respective androgen-dependent transcription programs are highly tissue specific mediating distinct biological pathways. This high order of tissue specificity is achieved by the use of exclusive collaborating factors in the three androgen-responsive tissues. We find two novel collaborating factors for AR signaling in vivo—Hnf4α (hepatocyte nuclear factor 4α) in mouse kidney and AP-2α (activating enhancer binding protein 2α) in mouse epididymis—that define tissue-specific AR recruitment. In mouse prostate, FoxA1 serves for the same purpose. FoxA1, Hnf4α and AP-2α motifs are over-represented within unique AR-binding loci, and the cistromes of these factors show substantial overlap with AR-binding events distinct to each tissue type. These licensing or pioneering factors are constitutively bound to chromatin and guide AR to specific genomic loci upon hormone exposure. Collectively, liganded receptor and its DNA-response elements are required but not sufficient for establishment of tissue-specific transcription programs. PMID:24451200

  9. FoxO6 integrates insulin signaling with MTP for regulating VLDL production in the liver.

    PubMed

    Kim, Dae Hyun; Zhang, Ting; Lee, Sojin; Calabuig-Navarro, Virtu; Yamauchi, Jun; Piccirillo, Ann; Fan, Yong; Uppala, Radha; Goetzman, Eric; Dong, H Henry

    2014-04-01

    Excessive production of triglyceride-rich very low-density lipoproteins (VLDL-TG) contributes to hypertriglyceridemia in obesity and type 2 diabetes. To understand the underlying mechanism, we studied hepatic regulation of VLDL-TG production by (forkhead box O6) FoxO6, a forkhead transcription factor that integrates insulin signaling to hepatic metabolism. We showed that transgenic mice expressing a constitutively active FoxO6 allele developed hypertriglyceridemia, culminating in elevated VLDL-TG levels and impaired postprandial TG clearance. This effect resulted in part from increased hepatic VLDL-TG production. We recapitulated these findings in cultured HepG2 cells and human primary hepatocytes, demonstrating that FoxO6 promoted hepatic VLDL-TG secretion. This action correlated with the ability of FoxO6 to stimulate hepatic production of microsomal triglyceride transfer protein (MTP), a molecular chaperone that catalyzes the rate-limiting step in VLDL-TG assembly and secretion. FoxO6 was shown to bind to the MTP promoter and stimulate MTP promoter activity in HepG2 cells. This effect was inhibited by insulin, consistent with the ability of insulin to promote FoxO6 phosphorylation and disable FoxO6 DNA-binding activity. Mutations of the FoxO6 target site within the MTP promoter abrogated FoxO6-mediated induction of MTP promoter activity. Hepatic FoxO6 expression became deregulated in insulin-resistant mice with obesity and type 2 diabetes. FoxO6 inhibition in insulin-resistant liver suppressed hepatic MTP expression and curbed VLDL-TG overproduction, contributing to the amelioration of hypertriglyceridemia in obese and diabetic db/db mice. These results characterize FoxO6 as an important signaling molecule upstream of MTP for regulating hepatic VLDL-TG production.

  10. Human labour is associated with decreased cytoplasmic FoxO4.

    PubMed

    Lim, R; Riley, C; Barker, G; Rice, G E; Lappas, M

    2012-01-01

    Forkhead box O (FoxO) proteins function primarily as transcription factors in the nucleus where they bind to their cognate DNA targeting sequences. FoxO regulated genes include those involved in cellular stress responses, inflammation and apoptosis; all of which are involved in the processes of human labour and delivery. We have previously identified Forkhead box O4 (FoxO4) proteins in human gestational tissues; there is, however, no data is available on the role of FoxO4 in the processes of human labour and delivery. Thus the aim of this study was to determine the effect of (i) human labour, preterm chorioamnionitis and pro-inflammatory stimuli on the expression of FoxO4 in human placenta and fetal membranes; and (ii) FoxO4 knockdown by siRNA on the expression of pro-labour mediators. Quantitative RT-PCR (qRT-PCR), immunohistochemistry and/or Western blotting was used to analyse the expression of FoxO4 (n = 6 per group). Human labour and preterm chorioamnionitis significantly decreased cytoplasmic FoxO4 expression in placenta and/or choriodecidua. Knockdown of FoxO4 mRNA and protein in JEG-3 cells using siRNA was associated with decreased COX-2 mRNA expression concomitant with lower PGF(2α) secretion. However, in BeWo cells, siRNA inhibition of FoxO4 was not associated with inflammation, oxidative stress or apoptosis. In summary, human term labour and chorioamnionitis is characterised by lower FoxO4 mRNA and/or protein expression in placenta and/or choriodecidua. Although the exact role of FoxO4 in human pregnancy remains to be fully elucidated, our data demonstrate that it can regulate COX-2 expression and subsequent prostaglandin expression. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Pitx3 directly regulates Foxe3 during early lens development.

    PubMed

    Ahmad, Nafees; Aslam, Muhammad; Muenster, Doris; Horsch, Marion; Khan, Muhammad A; Carlsson, Peter; Beckers, Johannes; Graw, Jochen

    2013-01-01

    Pitx3 is a bicoid-related homeodomain transcription factor critical for the development of the ocular lens, mesencephalic dopaminergic neurons and skeletal muscle. In humans, mutations in PITX3 are responsible for cataracts and anterior segment abnormalities of varying degree; polymorphisms are associated with Parkinson’s disease. In aphakia (ak) mice, two deletions in the promoter region of Pitx3 cause abnormal lens development. Here, we investigated systematically the role of Pitx3 in lens development including its molecular targets responsible for the ak phenotype. We have shown that ak lenses exhibit reduced proliferation and aberrant fiber cell differentiation. This was associated with loss of Foxe3 expression, complete absence of Prox1 expression, reduced expression of epsilon-tubulin and earlier expression of gamma-crystallin during lens development. Using EMSA and ChIP assays, we demonstrated that Pitx3 binds to an evolutionary conserved bicoid-binding site on the 5'-upstream region of Foxe3. Finally, Pitx3 binding to 5'-upstream region of Foxe3 increased transcriptional activity significantly in a cell-based reporter assay. Identification of Foxe3 as a transcriptional target of Pitx3 explains at least in part some of the phenotypic similarities of the ak and dyl mice (dysgenic lens, a Foxe3 allele). These findings enhance our understanding of the molecular cascades which subserve lens development.

  12. SMAD3 augments FoxO3-induced MuRF-1 promoter activity in a DNA-binding-dependent manner

    PubMed Central

    Bollinger, Lance M.; Witczak, Carol A.; Houmard, Joseph A.

    2014-01-01

    Muscle-specific RING finger-1 (MuRF-1), a ubiquitin ligase and key regulator of proteasome-dependent protein degradation, is highly expressed during skeletal muscle atrophy. The transcription factor forkhead box O3 (FoxO3) induces MuRF-1 expression, but the direct role of other major atrophy-related transcription factors, such as SMAD3, is largely unknown. The goal of this study was to determine whether SMAD3 individually regulates, or with FoxO3 coordinately regulates, MuRF-1 expression. In cultured myotubes or human embryonic kidney cells, MuRF-1 mRNA content and promoter activity were increased by FoxO3 but not by SMAD3 overexpression. However, FoxO3 and SMAD3 coexpression synergistically increased MuRF-1 mRNA and promoter activity. Mutation of the SMAD-binding element (SBE) in the proximal MuRF-1 promoter or overexpression of a SMAD3 DNA-binding mutant attenuated FoxO3-dependent MuRF-1 promoter activation, showing that SMAD binding to DNA is required for optimal activation of FoxO3-induced transcription of MuRF-1. Using chromatin immunoprecipitation, SMAD3 DNA binding increased FoxO3 abundance and SBE mutation reduced FoxO3 abundance on the MuRF-1 promoter. Furthermore, SMAD3 overexpression dose-dependently increased FoxO3 protein content, and coexpression of FoxO3 and SMAD3 synergistically increased FoxO-dependent gene transcription [assessed with a FoxO response element (FRE)-driven reporter]. Collectively, these results show that SMAD3 regulates transcription of MuRF-1 by increasing FoxO3 binding at a conserved FRE-SBE motif within the proximal promoter region, and by increasing FoxO3 protein content and transcriptional activity. These data are the first to indicate that two major transcription factors regulating protein degradation, FoxO3 and SMAD3, converge to coordinately and directly regulate transcription of MuRF-1. PMID:24920680

  13. Yeast TATA-box transcription factor gene.

    PubMed

    Schmidt, M C; Kao, C C; Pei, R; Berk, A J

    1989-10-01

    The first step in the transcription of most protein-encoding genes in eukaryotes is the binding of a transcription factor to the TATA-box promoter element. This TATA-box transcription factor was purified from extracts of the yeast Saccharomyces cerevisiae by using reconstitution of in vitro transcription reactions as an assay. The activity copurified with a protein whose sodium dodecyl sulfate/polyacrylamide gel mobility is 25 kDa. The sequence of the amino-terminal 21 residues of this protein was determined by sequential Edman degradation. A yeast genomic library was screened with mixed oligonucleotides encoding six residues of the protein sequence. The yeast TATA-box factor gene was cloned, and DNA sequencing revealed a 720-base-pair open reading frame encoding a 27,016-Da protein. The identity of the clone was confirmed by expressing the gene in Escherichia coli and detecting TATA-box factor DNA binding and transcriptional activities in extracts of the recombinant E. coli. The TATA-box factor gene was mapped to chromosome five of S. cerevisiae. RNA blot hybridization and nuclease S1 analysis indicated that the major TATA-box factor mRNA is 1.3 kilobases, including an unusually long 5' untranslated region of 188 +/- 5 nucleotides. Homology searches showed a region of distant similarity to the calcium-binding structures of calpains, a structure that has a conformation similar to the helix-turn-helix motif of DNA binding proteins.

  14. Pioneer transcription factors in cell reprogramming.

    PubMed

    Iwafuchi-Doi, Makiko; Zaret, Kenneth S

    2014-12-15

    A subset of eukaryotic transcription factors possesses the remarkable ability to reprogram one type of cell into another. The transcription factors that reprogram cell fate are invariably those that are crucial for the initial cell programming in embryonic development. To elicit cell programming or reprogramming, transcription factors must be able to engage genes that are developmentally silenced and inappropriate for expression in the original cell. Developmentally silenced genes are typically embedded in "closed" chromatin that is covered by nucleosomes and not hypersensitive to nuclease probes such as DNase I. Biochemical and genomic studies have shown that transcription factors with the highest reprogramming activity often have the special ability to engage their target sites on nucleosomal DNA, thus behaving as "pioneer factors" to initiate events in closed chromatin. Other reprogramming factors appear dependent on pioneer factors for engaging nucleosomes and closed chromatin. However, certain genomic domains in which nucleosomes are occluded by higher-order chromatin structures, such as in heterochromatin, are resistant to pioneer factor binding. Understanding the means by which pioneer factors can engage closed chromatin and how heterochromatin can prevent such binding promises to advance our ability to reprogram cell fates at will and is the topic of this review.

  15. Interactions of transcription factors with chromatin.

    PubMed

    van Bakel, Harm

    2011-01-01

    Sequence-specific transcription factors (TFs) play a central role in regulating transcription initiation by directing the recruitment and activity of the general transcription machinery and accessory factors. It is now well established that many of the effects exerted by TFs in eukaryotes are mediated through interactions with a host of coregulators that modify the chromatin state, resulting in a more open (in case of activation) or closed conformation (in case of repression). The relationship between TFs and chromatin is a two-way street, however, as chromatin can in turn influence the recognition and binding of target sequences by TFs. The aim of this chapter is to highlight how this dynamic interplay between TF-directed remodelling of chromatin and chromatin-adjusted targeting of TF binding determines where and how transcription is initiated, and to what degree it is productive.

  16. Transcription Factors in Xylem Development. Final report

    SciTech Connect

    Sederoff, Ronald; Whetten, Ross; O'Malley, David; Campbell, Malcolm

    1999-07-01

    Answers to the following questions are answered in this report. do the two pine Byb proteins previously identified as candidate transcription factors bind to DNA and activate transcription? In what cell types are tehse Myb proteins expressed? Are these proteins localized to the nucleus? Do other proteins in pine xylem interact with these Myb proteins? Does altered expression of these genes have an impact on xylogenesis, specifically the expression of monolignol biosynthetic genes?

  17. Functional regulation of FoxO1 in neural stem cell differentiation

    PubMed Central

    Kim, D-Y; Hwang, I; Muller, F L; Paik, J-H

    2015-01-01

    Forkhead transcription factor family O (FoxO) maintains adult stem cell reserves by supporting their long-term proliferative potential. MicroRNAs (miRs) regulate neuronal stem/progenitor cell (NSPC) proliferation and differentiation during neural development by controlling the expression of a specific set of target genes. In the neurogenic subventricular zone, FoxO1 is specifically expressed in NSPCs and is no longer detected during the transition to neuroblast stage, forming an inverse correlation with miR-9 expression. The 3′-untranslated region of FoxO1 contains a conserved target sequence of miR-9 and FoxO1 expression is coordinated in concert with miR-9 during neuronal differentiation. Our study demonstrates that FoxO1 contributes to NSPC fate decision through its cooperation with the Notch signaling pathway. PMID:26470727

  18. Pioneer transcription factors in cell reprogramming

    PubMed Central

    Iwafuchi-Doi, Makiko

    2014-01-01

    A subset of eukaryotic transcription factors possesses the remarkable ability to reprogram one type of cell into another. The transcription factors that reprogram cell fate are invariably those that are crucial for the initial cell programming in embryonic development. To elicit cell programming or reprogramming, transcription factors must be able to engage genes that are developmentally silenced and inappropriate for expression in the original cell. Developmentally silenced genes are typically embedded in “closed” chromatin that is covered by nucleosomes and not hypersensitive to nuclease probes such as DNase I. Biochemical and genomic studies have shown that transcription factors with the highest reprogramming activity often have the special ability to engage their target sites on nucleosomal DNA, thus behaving as “pioneer factors” to initiate events in closed chromatin. Other reprogramming factors appear dependent on pioneer factors for engaging nucleosomes and closed chromatin. However, certain genomic domains in which nucleosomes are occluded by higher-order chromatin structures, such as in heterochromatin, are resistant to pioneer factor binding. Understanding the means by which pioneer factors can engage closed chromatin and how heterochromatin can prevent such binding promises to advance our ability to reprogram cell fates at will and is the topic of this review. PMID:25512556

  19. Importance of Natural and Anthropogenic Environmental Factors to Fish Communities of the Fox River in Illinois

    NASA Astrophysics Data System (ADS)

    Schnier, Spencer; Cai, Ximing; Cao, Yong

    2016-02-01

    The dominant environmental determinants of aquatic communities have been a persistent topic for many years. Interactions between natural and anthropogenic characteristics within the aquatic environment influence fish communities in complex ways that make the effect of a single characteristic difficult to ascertain. Researchers are faced with the question of how to deal with a large number of variables and complex interrelationships. This study utilized multiple approaches to identify key environmental variables to fish communities of the Fox River Basin in Illinois: Pearson and Spearman correlations, an algorithm based on information theory called mutual information, and a measure of variable importance built into the machine learning algorithm Random Forest. The results are based on a dataset developed for this study, which uses a fish index of biological integrity (IBI) and its ten component metrics as response variables and a range of environmental variables describing geomorphology, stream flow statistics, climate, and both reach-scale and watershed-scale land use as independent variables. Agricultural land use and the magnitude and duration of low flow events were ranked by the algorithms as key factors for the study area. Reach-scale characteristics were dominant for native sunfish, and stream flow metrics were rated highly for native suckers. Regression tree analyses of environmental variables on fish IBI identified breakpoints in percent agricultural land in the watershed (~64 %), duration of low flow pulses (~12 days), and 90-day minimum flow (~0.13 cms). The findings should be useful for building predictive models and design of more effective monitoring systems and restoration plans.

  20. Importance of Natural and Anthropogenic Environmental Factors to Fish Communities of the Fox River in Illinois.

    PubMed

    Schnier, Spencer; Cai, Ximing; Cao, Yong

    2016-02-01

    The dominant environmental determinants of aquatic communities have been a persistent topic for many years. Interactions between natural and anthropogenic characteristics within the aquatic environment influence fish communities in complex ways that make the effect of a single characteristic difficult to ascertain. Researchers are faced with the question of how to deal with a large number of variables and complex interrelationships. This study utilized multiple approaches to identify key environmental variables to fish communities of the Fox River Basin in Illinois: Pearson and Spearman correlations, an algorithm based on information theory called mutual information, and a measure of variable importance built into the machine learning algorithm Random Forest. The results are based on a dataset developed for this study, which uses a fish index of biological integrity (IBI) and its ten component metrics as response variables and a range of environmental variables describing geomorphology, stream flow statistics, climate, and both reach-scale and watershed-scale land use as independent variables. Agricultural land use and the magnitude and duration of low flow events were ranked by the algorithms as key factors for the study area. Reach-scale characteristics were dominant for native sunfish, and stream flow metrics were rated highly for native suckers. Regression tree analyses of environmental variables on fish IBI identified breakpoints in percent agricultural land in the watershed (~64%), duration of low flow pulses (~12 days), and 90-day minimum flow (~0.13 cms). The findings should be useful for building predictive models and design of more effective monitoring systems and restoration plans.

  1. Transcription factors make a turn into migration

    PubMed Central

    2009-01-01

    The formation of the brain depends on a tightly regulated process of proliferation, neuronal fate specification and migration which eventually leads to the final architecture of the cerebral cortex. The specification of different neuronal subtypes depends on a complex developmental program mastered by several transcription factors. Besides, it was shown that the same transcription factors can subsequently control neural migration. However, the mechanisms of this regulation are still unclear. Two papers recently published by Heng et al.1 and Nóbrega-Pereira et al.2 confirm that these transcription factors are involved in controlling neural migration. In addition, these studies show that these transcription factors can control neural migration via different molecular mechanisms: Heng and coworkers show that Neurogenin 2 controls neural migration by directly regulating the expression of the small GTPase Rnd2 (a modulator of cytoskeletal dynamics); whereas Nóbrega-Pereira and colleagues demonstrate that Nkx2-1 establishes the response to guidance cues, in migrating interneurons, by directly regulating the expression of the semaphorin receptor Neuropilin 2. Taken together, these findings support the idea that transcription factors are reused during development to control neural migration and they shed light on the molecular mechanisms underlying this regulation. PMID:19262164

  2. OutFOXOing disease and disability: the therapeutic potential of targeting FoxO proteins

    PubMed Central

    Maiese, Kenneth; Chong, Zhao Zhong; Shang, Yan Chen

    2008-01-01

    Forkhead transcription factors have a ‘winged helix’ domain and regulate processes that range from cell longevity to cell death. Of the mammalian forkhead family members in the O class, FoxO1, FoxO3a and FoxO4 can fill a crucial void for the treatment of disorders that include aging, cancer, diabetes, infertility, neurodegeneration and immune system dysfunction. Yet, observations that forkhead family members also can compromise clinical utility have fueled controversy and highlight the necessity to further outline the integrated cellular pathways governed by these transcription factors. Here we discuss recent advances that have elucidated the unique cellular pathways and clinical potential of targeting FoxO proteins to develop novel therapeutic strategies and avert potential pitfalls that might be closely intertwined with its benefits for patient care. PMID:18403263

  3. Onecut transcription factors in development and disease

    PubMed Central

    Kropp, Peter A.; Gannon, Maureen

    2016-01-01

    Developmental processes are remarkably well conserved among species, and among the most highly conserved developmental regulators are transcription factor families. The Onecut transcription factor family consists of three members known for their single “cut” DNA-binding domain and an aberrant homeodomain. The three members of the Onecut family are highly conserved from Drosophila to humans and have significant roles in regulating the development of diverse tissues derived from the ectoderm or endoderm, where they activate a number of gene families. Of note, the genetic interaction between Onecut family members and Neurogenin genes appears to be essential in multiple tissues for proper specification and development of unique cell types. This review highlights the importance of the Onecut factors in cell fate specification and organogenesis, highlighting their role in vertebrates, and discusses their role in the maintenance of cell fate and prevention of disease. We cover the essential spatial and temporal control of Onecut factor expression and how this tight regulation is required for proper specification and subsequent terminal differentiation of multiple tissue types including those within the retina, central nervous system, liver and pancreas. Beyond development, Onecut factors perform necessary functions in mature cell types; their misregulation can contribute to diseases such as pancreatic cancer. Given the importance of this family of transcription factors in development and disease, their consideration in essential transcription factor networks is underappreciated. PMID:28018056

  4. Metabolic stress–induced activation of FoxO1 triggers diabetic cardiomyopathy in mice

    PubMed Central

    Battiprolu, Pavan K.; Hojayev, Berdymammet; Jiang, Nan; Wang, Zhao V.; Luo, Xiang; Iglewski, Myriam; Shelton, John M.; Gerard, Robert D.; Rothermel, Beverly A.; Gillette, Thomas G.; Lavandero, Sergio; Hill, Joseph A.

    2012-01-01

    The leading cause of death in diabetic patients is cardiovascular disease; diabetic cardiomyopathy is typified by alterations in cardiac morphology and function, independent of hypertension or coronary disease. However, the molecular mechanism that links diabetes to cardiomyopathy is incompletely understood. Insulin resistance is a hallmark feature of diabetes, and the FoxO family of transcription factors, which regulate cell size, viability, and metabolism, are established targets of insulin and growth factor signaling. Here, we set out to evaluate a possible role of FoxO proteins in diabetic cardiomyopathy. We found that FoxO proteins were persistently activated in cardiac tissue in mice with diabetes induced either genetically or by high-fat diet (HFD). FoxO activity was critically linked with development of cardiomyopathy: cardiomyocyte-specific deletion of FoxO1 rescued HFD-induced declines in cardiac function and preserved cardiomyocyte insulin responsiveness. FoxO1-depleted cells displayed a shift in their metabolic substrate usage, from free fatty acids to glucose, associated with decreased accumulation of lipids in the heart. Furthermore, we found that FoxO1-dependent downregulation of IRS1 resulted in blunted Akt signaling and insulin resistance. Together, these data suggest that activation of FoxO1 is an important mediator of diabetic cardiomyopathy and is a promising therapeutic target for the disease. PMID:22326951

  5. FoxM1 promotes breast tumorigenesis by activating PDGF-A and forming a positive feedback loop with the PDGF/AKT signaling pathway.

    PubMed

    Yu, Guanzhen; Zhou, Aidong; Xue, Jianfei; Huang, Chen; Zhang, Xia; Kang, Shin-Hyuk; Chiu, Wen-Tai; Tan, Christina; Xie, Keping; Wang, Jiejun; Huang, Suyun

    2015-05-10

    The autocrine platelet-derived growth factor (PDGF)/PDGF receptor (PDGFR) signaling pathway promotes breast cancer tumorigenesis, but the mechanisms for its dysregulation in breast cancer are largely unknown. In the study, we identified PDGF-A as a novel transcriptional target of FoxM1. FoxM1 directly binds to two sites in the promoter of PDGF-A and activates its transcription. Mutation of these FoxM1-binding sites diminished PDGF-A promoter activity. Increased FoxM1 resulted in the upregulation of PDGF-A, which led to activation of the AKT pathway and increased breast cancer cell proliferation and tumorigenesis, whereas knockdown of FoxM1 does the opposite. Blocking AKT activation with a phosphoinositide 3-kinase/AKT inhibitor decreased FoxM1-induced cell proliferation. Moreover, PDGF/AKT pathway upregulates the expression of FoxM1 in breast cancer cells. Knockdown of PDGF-A or blockade of AKT activation inhibited the expression of FoxM1 in breast cancer cells. Furthermore, expression of FoxM1 significantly correlated with the expression of PDGF-A and the activated AKT signaling pathway in human breast cancer specimens. Our study demonstrates a novel positive regulatory feedback loop between FoxM1 and the PDGF/AKT signaling pathway; this loop contributes to breast cancer cell growth and tumorigenesis.

  6. Accelerated FoxP2 Evolution in Echolocating Bats

    PubMed Central

    Li, Gang; Wang, Jinhong; Rossiter, Stephen J.; Jones, Gareth; Zhang, Shuyi

    2007-01-01

    FOXP2 is a transcription factor implicated in the development and neural control of orofacial coordination, particularly with respect to vocalisation. Observations that orthologues show almost no variation across vertebrates yet differ by two amino acids between humans and chimpanzees have led to speculation that recent evolutionary changes might relate to the emergence of language. Echolocating bats face especially challenging sensorimotor demands, using vocal signals for orientation and often for prey capture. To determine whether mutations in the FoxP2 gene could be associated with echolocation, we sequenced FoxP2 from echolocating and non-echolocating bats as well as a range of other mammal species. We found that contrary to previous reports, FoxP2 is not highly conserved across all nonhuman mammals but is extremely diverse in echolocating bats. We detected divergent selection (a change in selective pressure) at FoxP2 between bats with contrasting sonar systems, suggesting the intriguing possibility of a role for FoxP2 in the evolution and development of echolocation. We speculate that observed accelerated evolution of FoxP2 in bats supports a previously proposed function in sensorimotor coordination. PMID:17878935

  7. Forkhead box transcription factors in embryonic heart development and congenital heart disease.

    PubMed

    Zhu, Hong

    2016-01-01

    Embryonic heart development is a very complicated process regulated precisely by a network composed of many genes and signaling pathways in time and space. Forkhead box (Fox, FOX) proteins are a family of transcription factors characterized by the presence of an evolutionary conserved "forkhead"or "winged-helix" DNA-binding domain and able to organize temporal and spatial gene expression during development. They are involved in a wide variety of cellular processes, such as cell cycle progression, proliferation, differentiation, migration, metabolism and DNA damage response. An abundance of studies in model organisms and systems has established that Foxa2, Foxc1/c2, Foxh1 and Foxm1, Foxos and Foxps are important components of the signaling pathways that instruct cardiogenesis and embryonic heart development, playing paramount roles in heart development. The previous studies also have demonstrated that mutations in some of the forkhead box genes and the aberrant expression of forkhead box gene are heavily implicated in the congenital heart disease (CHD) of humans. This review primarily focuses on the current understanding of heart development regulated by forkhead box transcription factors and molecular genetic mechanisms by which forkhead box factors modulate heart development during embryogenesis and organogenesis. This review also summarizes human CHD related mutations in forkhead box genes as well as the abnormal expression of forkhead box gene, and discusses additional possible regulatory mechanisms of the forkhead box genes during embryonic heart development that warrant further investigation.

  8. Ultraviolet B Regulation of Transcription Factor Families

    PubMed Central

    Cooper, S.J.; Bowden, G.T.

    2008-01-01

    Prolonged and repeated exposure of the skin to ultraviolet light (UV) leads not only to aging of the skin but also increases the incidence of non-melanoma skin cancer (NMSC). Damage of cells induced by ultraviolet B (UVB) light both at the DNA level and molecular level initiates the activation of transcription factor pathways, which in turn regulate the expression of a number of genes termed the “UV response genes”. Two such transcription factor families that are activated in this way are those of the nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) families. These two transcription factor families have been identified to be involved in the processes of cell proliferation, cell differentiation and cell survival and therefore play important roles in tumorigenesis. The study of these two transcription factor pathways and the cross-talk between them in response to UVB exposure may help with the development of new chemopreventive strategies for the prevention of UVB-induced skin carcinogenesis. PMID:17979627

  9. Overexpression of hypoxia-inducible factor 1 alpha impacts FoxP3 levels in mycosis fungoides--cutaneous T-cell lymphoma: clinical implications.

    PubMed

    Alcántara-Hernández, M; Torres-Zárate, C; Pérez-Montesinos, G; Jurado-Santacruz, F; Domínguez-Gómez, M A; Peniche-Castellanos, A; Ferat-Osorio, E; Neri, N; Nambo, M J; Alvarado-Cabrero, I; Moreno-Lafont, M; Huerta-Yepez, S; Bonifaz, L C

    2014-05-01

    Mycosis fungoides (MF) is the most common variant of primary cutaneous T-cell lymphoma, and decreased forkhead box P3 (FoxP3) expression has been reported in MF late stages. Hypoxia-inducible factor 1 alpha (HIF-1α) may regulate FoxP3 expression; however, it is unknown whether HIF-1α is expressed in the CD4(+) T cells of MF patients and how it could affect the expression of FoxP3. Therefore, we evaluated the expression of HIF-1α and FoxP3 in CD4(+) T cells obtained from the skin lesions of MF patients. We found increased cell proliferation and an increase in CD4(+) T cells with an aberrant phenotype among early stage MF patients. HIF-1α was overexpressed in these CD4(+) T cells. In addition, we found a decrease in the percentage of FoxP3(+) cells both in the skin of MF patients, when compared with control skin samples, and with disease progression. In addition, a negative correlation was established between HIF-1α and FoxP3 expression. Skin HIF-1α expression in MF patients correlated with the extent of the affected area and increased with the disease progression. Finally, we showed that ex vivo inhibition of HIF-1α degradation increases the percentage of FoxP3(+) T cells in skin lesions. Our results suggest that overexpression of HIF-1α affects the levels of FoxP3 in MF patients, which could have relevant implications in terms of disease outcome.

  10. Hey bHLH transcription factors.

    PubMed

    Weber, David; Wiese, Cornelia; Gessler, Manfred

    2014-01-01

    Hey bHLH transcription factors are direct targets of canonical Notch signaling. The three mammalian Hey proteins are closely related to Hes proteins and they primarily repress target genes by either directly binding to core promoters or by inhibiting other transcriptional activators. Individual candidate gene approaches and systematic screens identified a number of Hey target genes, which often encode other transcription factors involved in various developmental processes. Here, we review data on interaction partners and target genes and conclude with a model for Hey target gene regulation. Furthermore, we discuss how expression of Hey proteins affects processes like cell fate decisions and differentiation, e.g., in cardiovascular, skeletal, and neural development or oncogenesis and how this relates to the observed developmental defects and phenotypes observed in various knockout mice.

  11. Epigallocatechin gallate-induced modulation of FoxO signaling in mammalian cells and C. elegans: FoxO stimulation is masked via PI3K/Akt activation by hydrogen peroxide formed in cell culture.

    PubMed

    Bartholome, André; Kampkötter, Andreas; Tanner, Stephan; Sies, Helmut; Klotz, Lars-Oliver

    2010-09-01

    The green tea flavonoid epigallocatechin gallate (EGCG) is demonstrated in this study to modulate FoxO transcription factors in human skin fibroblasts in culture. EGCG at 1 microM stimulated FoxO transcription factor nuclear accumulation and DNA binding activity. This effect was masked at higher EGCG concentrations (100 microM) by EGCG-derived hydrogen peroxide generated in cell culture media that stimulates phosphoinositide-3'-kinase (PI3K)/Akt signaling to attenuate FoxO activity, involving FoxO phosphorylation, nuclear exclusion and attenuation of DNA binding activity. Like low concentrations of EGCG, harmine, an inhibitor of the FoxO kinase DYRK1a, stimulated FoxO nuclear accumulation and DNA binding activity. Exposure of Caenorhabditis elegans worms to EGCG caused nuclear accumulation of the FoxO ortholog, DAF-16, and enhanced expression of the DAF-16 target gene, sod-3. In line with the role of FoxO/DAF-16 in the control of life span, C. elegans mean and maximum life span were enhanced by 20% and 13%, respectively, by EGCG. 2010 Elsevier Inc. All rights reserved.

  12. The LIM Homeodomain Transcription Factor LHX6

    PubMed Central

    Zhang, Zichao; Gutierrez, Diana; Li, Xiao; Bidlack, Felicitas; Cao, Huojun; Wang, Jianbo; Andrade, Kelsey; Margolis, Henry C.; Amendt, Brad A.

    2013-01-01

    LHX6 is a LIM-homeobox transcription factor expressed during embryogenesis; however, the molecular mechanisms regulating LHX6 transcriptional activities are unknown. LHX6 and the PITX2 homeodomain transcription factor have overlapping expression patterns during tooth and craniofacial development, and in this report, we demonstrate new transcriptional mechanisms for these factors. PITX2 and LHX6 are co-expressed in the oral and dental epithelium and epithelial cell lines. Lhx6 expression is increased in Pitx2c transgenic mice and decreased in Pitx2 null mice. PITX2 activates endogenous Lhx6 expression and the Lhx6 promoter, whereas LHX6 represses its promoter activity. Chromatin immunoprecipitation experiments reveal endogenous PITX2 binding to the Lhx6 promoter. LHX6 directly interacts with PITX2 to inhibit PITX2 transcriptional activities and activation of multiple promoters. Bimolecular fluorescence complementation assays reveal an LHX6·PITX2 nuclear interaction in living cells. LHX6 has a dominant repressive effect on the PITX2 synergistic activation with LEF-1 and β-catenin co-factors. Thus, LHX6 acts as a transcriptional repressor and represses the expression of several genes involved in odontogenesis. We have identified specific defects in incisor, molar, mandible, bone, and root development and late stage enamel formation in Lhx6 null mice. Amelogenin and ameloblastin expression is reduced and/or delayed in the Lhx6 null mice, potentially resulting from defects in dentin deposition and ameloblast differentiation. Our results demonstrate that LHX6 regulates cell proliferation in the cervical loop and promotes cell differentiation in the anterior region of the incisor. We demonstrate new molecular mechanisms for LHX6 and an interaction with PITX2 for normal craniofacial and tooth development. PMID:23229549

  13. Polyphenol Compound as a Transcription Factor Inhibitor

    PubMed Central

    Park, Seyeon

    2015-01-01

    A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor–DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein–protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1), c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and β-catenin/T cell factor (Tcf)). PMID:26529010

  14. TCP transcription factors: architectures of plant form.

    PubMed

    Manassero, Nora G Uberti; Viola, Ivana L; Welchen, Elina; Gonzalez, Daniel H

    2013-04-01

    After its initial definition in 1999, the TCP family of transcription factors has become the focus of a multiplicity of studies related with plant development at the cellular, organ, and tissue levels. Evidence has accumulated indicating that TCP transcription factors are the main regulators of plant form and architecture and constitute a tool through which evolution shapes plant diversity. The TCP transcription factors act in a multiplicity of pathways related with cell proliferation and hormone responses. In recent years, the molecular pathways of TCP protein action and biochemical studies on their mode of interaction with DNA have begun to shed light on their mechanism of action. However, the available information is fragmented and a unifying view of TCP protein action is lacking, as well as detailed structural studies of the TCP-DNA complex. Also important, the possible role of TCP proteins as integrators of plant developmental responses to the environment has deserved little attention. In this review, we summarize the current knowledge about the structure and functions of TCP transcription factors and analyze future perspectives for the study of the role of these proteins and their use to modify plant development.

  15. Mechanical Unloading Activates FoxO3 to Trigger Bnip3‐Dependent Cardiomyocyte Atrophy

    PubMed Central

    Cao, Dian J.; Jiang, Nan; Blagg, Andrew; Johnstone, Janet L.; Gondalia, Raj; Oh, Misook; Luo, Xiang; Yang, Kai‐Chun; Shelton, John M.; Rothermel, Beverly A.; Gillette, Thomas G.; Dorn, Gerald W.; Hill, Joseph A.

    2013-01-01

    Background Mechanical assist device therapy has emerged recently as an important and rapidly expanding therapy in advanced heart failure, triggering in some patients a beneficial reverse remodeling response. However, mechanisms underlying this benefit are unclear. Methods and Results In a model of mechanical unloading of the left ventricle, we observed progressive myocyte atrophy, autophagy, and robust activation of the transcription factor FoxO3, an established regulator of catabolic processes in other cell types. Evidence for FoxO3 activation was similarly detected in unloaded failing human myocardium. To determine the role of FoxO3 activation in cardiac muscle in vivo, we engineered transgenic mice harboring a cardiomyocyte‐specific constitutively active FoxO3 mutant (caFoxO3flox;αMHC‐Mer‐Cre‐Mer). Expression of caFoxO3 triggered dramatic and progressive loss of cardiac mass, robust increases in cardiomyocyte autophagy, declines in mitochondrial biomass and function, and early mortality. Whereas increases in cardiomyocyte apoptosis were not apparent, we detected robust increases in Bnip3 (Bcl2/adenovirus E1B 19‐kDa interacting protein 3), an established downstream target of FoxO3. To test the role of Bnip3, we crossed the caFoxO3flox;αMHC‐Mer‐Cre‐Mer mice with Bnip3‐null animals. Remarkably, the atrophy and autophagy phenotypes were significantly blunted, yet the early mortality triggered by FoxO3 activation persisted. Rather, declines in cardiac performance were attenuated by proteasome inhibitors. Consistent with involvement of FoxO3‐driven activation of the ubiquitin‐proteasome system, we detected time‐dependent activation of the atrogenes program and sarcomere protein breakdown. Conclusions In aggregate, these data point to FoxO3, a protein activated by mechanical unloading, as a master regulator that governs both the autophagy‐lysosomal and ubiquitin‐proteasomal pathways to orchestrate cardiac muscle atrophy. PMID:23568341

  16. Mechanical unloading activates FoxO3 to trigger Bnip3-dependent cardiomyocyte atrophy.

    PubMed

    Cao, Dian J; Jiang, Nan; Blagg, Andrew; Johnstone, Janet L; Gondalia, Raj; Oh, Misook; Luo, Xiang; Yang, Kai-Chun; Shelton, John M; Rothermel, Beverly A; Gillette, Thomas G; Dorn, Gerald W; Hill, Joseph A

    2013-04-08

    Mechanical assist device therapy has emerged recently as an important and rapidly expanding therapy in advanced heart failure, triggering in some patients a beneficial reverse remodeling response. However, mechanisms underlying this benefit are unclear. In a model of mechanical unloading of the left ventricle, we observed progressive myocyte atrophy, autophagy, and robust activation of the transcription factor FoxO3, an established regulator of catabolic processes in other cell types. Evidence for FoxO3 activation was similarly detected in unloaded failing human myocardium. To determine the role of FoxO3 activation in cardiac muscle in vivo, we engineered transgenic mice harboring a cardiomyocyte-specific constitutively active FoxO3 mutant (caFoxO3(flox);αMHC-Mer-Cre-Mer). Expression of caFoxO3 triggered dramatic and progressive loss of cardiac mass, robust increases in cardiomyocyte autophagy, declines in mitochondrial biomass and function, and early mortality. Whereas increases in cardiomyocyte apoptosis were not apparent, we detected robust increases in Bnip3 (Bcl2/adenovirus E1B 19-kDa interacting protein 3), an established downstream target of FoxO3. To test the role of Bnip3, we crossed the caFoxO3(flox);αMHC-Mer-Cre-Mer mice with Bnip3-null animals. Remarkably, the atrophy and autophagy phenotypes were significantly blunted, yet the early mortality triggered by FoxO3 activation persisted. Rather, declines in cardiac performance were attenuated by proteasome inhibitors. Consistent with involvement of FoxO3-driven activation of the ubiquitin-proteasome system, we detected time-dependent activation of the atrogenes program and sarcomere protein breakdown. In aggregate, these data point to FoxO3, a protein activated by mechanical unloading, as a master regulator that governs both the autophagy-lysosomal and ubiquitin-proteasomal pathways to orchestrate cardiac muscle atrophy.

  17. Identification of functional glucocorticoid response elements in the mouse FoxO1 promoter.

    PubMed

    Qin, Weiping; Pan, Jiangping; Qin, Yiwen; Lee, David N; Bauman, William A; Cardozo, Christopher

    2014-07-25

    Glucocorticoids stimulate muscle atrophy through a cascade of signals that includes activation of FoxO transcription factors which then upregulate multiple genes to promote degradation of myofibrillar and other muscle proteins and inhibit protein synthesis. Our previous finding that glucocorticoids upregulate mRNA levels for FoxO1 in skeletal muscle led us to hypothesize that the FoxO1 gene contains one or more glucocorticoid response elements (GREs). Here we show that upregulation of FoxO1 expression by glucocorticoids requires the glucocorticoid receptor (GR) and binding of hormones to it. In cultured C2C12 myoblasts dexamethasone did not alter FoxO1 mRNA stability. Computational analysis predicted that the proximal promoter of the FoxO1 gene contained a cluster of eight GRE half sites and one highly conserved near-consensus SRE; the cluster is found between -800 and -2000bp upstream of the first codon of the FoxO1 gene. A reporter gene constructed using the first 2kb of the FoxO1 promoter was stimulated by dexamethasone. Removal of a 5' domain containing half of the GREs reduced reporter gene activity and removal of all GREs in this region ablated activation by dexamethasone. Restriction fragments of the cluster of 8 upstream GREs bound recombinant GR in gel shift assays. Collectively, the data demonstrate that the proximal promoter of the FoxO1 gene contains multiple functional GREs, indicating that upregulation of FoxO1 expression by glucocorticoids through GREs represents an additional mechanism by which the GR drives glucocorticoid-mediated muscle atrophy. These findings are also relevant to other physiological roles of FoxO1 such as regulation of hepatic metabolism. Published by Elsevier Inc.

  18. FoxG1 and TLE2 act cooperatively to regulate ventral telencephalon formation

    PubMed Central

    Roth, Martin; Bonev, Boyan; Lindsay, Jennefer; Lea, Robert; Panagiotaki, Niki; Houart, Corinne; Papalopulu, Nancy

    2010-01-01

    FoxG1 is a conserved transcriptional repressor that plays a key role in the specification, proliferation and differentiation of the telencephalon, and is expressed from the earliest stages of telencephalic development through to the adult. How the interaction with co-factors might influence the multiplicity and diversity of FoxG1 function is not known. Here, we show that interaction of FoxG1 with TLE2, a Xenopus tropicalis co-repressor of the Groucho/TLE family, is crucial for regulating the early activity of FoxG1. We show that TLE2 is co-expressed with FoxG1 in the ventral telencephalon from the early neural plate stage and functionally cooperates with FoxG1 in an ectopic neurogenesis assay. FoxG1 has two potential TLE binding sites: an N-terminal eh1 motif and a C-terminal YWPMSPF motif. Although direct binding seems to be mediated by the N-terminal motif, both motifs appear important for functional synergism. In the neurogenesis assay, mutation of either motif abolishes functional cooperation of TLE2 with FoxG1, whereas in the forebrain deletion of both motifs renders FoxG1 unable to induce the ventral telencephalic marker Nkx2.1. Knocking down either FoxG1 or TLE2 disrupts the development of the ventral telencephalon, supporting the idea that endogenous TLE2 and FoxG1 work together to specify the ventral telencephalon. PMID:20356955

  19. Birdsong Decreases Protein Levels of FoxP2, a Molecule Required for Human Speech

    PubMed Central

    Miller, Julie E.; Spiteri, Elizabeth; Condro, Michael C.; Dosumu-Johnson, Ryan T.; Geschwind, Daniel H.; White, Stephanie A.

    2008-01-01

    Cognitive and motor deficits associated with language and speech are seen in humans harboring FOXP2 mutations. The neural bases for FOXP2 mutation-related deficits are thought to reside in structural abnormalities distributed across systems important for language and motor learning including the cerebral cortex, basal ganglia, and cerebellum. In these brain regions, our prior research showed that FoxP2 mRNA expression patterns are strikingly similar between developing humans and songbirds. Within the songbird brain, this pattern persists throughout life and includes the striatal subregion, Area X, that is dedicated to song development and maintenance. The persistent mRNA expression suggests a role for FoxP2 that extends beyond the formation of vocal learning circuits to their ongoing use. Because FoxP2 is a transcription factor, a role in shaping circuits likely depends on FoxP2 protein levels which might not always parallel mRNA levels. Indeed our current study shows that FoxP2 protein, like its mRNA, is acutely downregulated in mature Area X when adult males sing with some differences. Total corticosterone levels associated with the different behavioral contexts did not vary, indicating that differences in FoxP2 levels are not likely attributable to stress. Our data, together with recent reports on FoxP2's target genes, suggest that lowered FoxP2 levels may allow for expression of genes important for circuit modification and thus vocal variability. PMID:18701760

  20. Birdsong decreases protein levels of FoxP2, a molecule required for human speech.

    PubMed

    Miller, Julie E; Spiteri, Elizabeth; Condro, Michael C; Dosumu-Johnson, Ryan T; Geschwind, Daniel H; White, Stephanie A

    2008-10-01

    Cognitive and motor deficits associated with language and speech are seen in humans harboring FOXP2 mutations. The neural bases for FOXP2 mutation-related deficits are thought to reside in structural abnormalities distributed across systems important for language and motor learning including the cerebral cortex, basal ganglia, and cerebellum. In these brain regions, our prior research showed that FoxP2 mRNA expression patterns are strikingly similar between developing humans and songbirds. Within the songbird brain, this pattern persists throughout life and includes the striatal subregion, Area X, that is dedicated to song development and maintenance. The persistent mRNA expression suggests a role for FoxP2 that extends beyond the formation of vocal learning circuits to their ongoing use. Because FoxP2 is a transcription factor, a role in shaping circuits likely depends on FoxP2 protein levels which might not always parallel mRNA levels. Indeed our current study shows that FoxP2 protein, like its mRNA, is acutely downregulated in mature Area X when adult males sing with some differences. Total corticosterone levels associated with the different behavioral contexts did not vary, indicating that differences in FoxP2 levels are not likely attributable to stress. Our data, together with recent reports on FoxP2's target genes, suggest that lowered FoxP2 levels may allow for expression of genes important for circuit modification and thus vocal variability.

  1. Expression of FoxP2 during zebrafish development and in the adult brain.

    PubMed

    Shah, Rina; Medina-Martinez, Olga; Chu, Li-Fang; Samaco, Rodney C; Jamrich, Milan

    2006-01-01

    Fox (forkhead) genes encode transcription factors that play important roles in the regulation of embryonic patterning as well as in tissue specific gene expression. Mutations in the human FOXP2 gene cause abnormal speech development. Here we report the structure and expression pattern of zebrafish FoxP2. In zebrafish, this gene is first expressed at the 20-somite stage in the presumptive telencephalon. At this stage there is a significant overlap of FoxP2 expression with the expression of the emx homeobox genes. However, in contrast to emx1, FoxP2 is not expressed in the pineal gland or in the pronephric duct. After 72 hours of development, the expression of zebrafish FoxP2 becomes more complex in the brain. The developing optic tectum becomes the major area of FoxP2 expression. In the adult brain, the highest concentrations of the FoxP2 transcript can be observed in the optic tectum. In the cerebellum, only the caudal lobes show high levels of Foxp2 expression. These regions correspond to the vestibulocerebellum of mammals. Several other regions of the brain also show high levels of Foxp2 expression.

  2. GOLDEN 2-LIKE Transcription Factors of Plants

    PubMed Central

    Chen, Min; Ji, Meiling; Wen, Binbin; Liu, Li; Li, Shaoxuan; Chen, Xiude; Gao, Dongsheng; Li, Ling

    2016-01-01

    Golden2-like (GLK) transcription factors are members of the GARP family of Myb transcription factors with an established relationship to chloroplast development in the plant kingdom. In the last century, Golden2 was proposed as a second golden producing factor and identified as controlling cellular differentiation in maize leaves. Then, GLKs were also found to play roles in disease defense and their function is conserved in regulating chloroplast development. Recently, research on GLKs has rapidly increased and shown that GLKs control chloroplast development in green and non-green tissues. Moreover, links between phytohormones and GLKs were verified. In this mini-review, we summarize the history, conservation, function, potential targets and degradation of GLKs. PMID:27757121

  3. Computational identification of a p38SAPK regulated transcription factor network required for tumor cell quiescence

    PubMed Central

    Adam, Alejandro P.; George, Ajish; Schewe, Denis; Bragado, Paloma; Iglesias, Bibiana V.; Ranganathan, Aparna C.; Kourtidis, Antonis; Conklin, Douglas S.; Aguirre-Ghiso, Julio A.

    2009-01-01

    The stress activated kinase p38 plays key roles in tumor suppression and induction of tumor cell dormancy. However, the mechanisms behind these functions remain poorly understood. Using computational tools we identified a transcription factor (TF) network regulated by p38α/β and required for human squamous carcinoma cell quiescence in vivo. We found that p38 transcriptionally regulates a core network of 46 genes that includes 16 TFs. Activation of p38 induced the expression of the TFs p53 and BHLHB3, while inhibiting c-Jun and FoxM1 expression. Further, induction of p53 by p38 was dependent on c-Jun downregulation. Accordingly, while RNAi downregulation of BHLHB3 or p53 interrupted tumor cell quiescence; downregulation of c-Jun or FoxM1 or overexpression of BHLHB3 in malignant cells mimicked the onset of quiescence. Our results identify components of the regulatory mechanisms driving p38-induced cancer cell quiescence. These may regulate dormancy of residual disease that usually precedes the onset of metastasis in many cancers. PMID:19584293

  4. The world according to GARP transcription factors.

    PubMed

    Safi, Alaeddine; Medici, Anna; Szponarski, Wojciech; Ruffel, Sandrine; Lacombe, Benoît; Krouk, Gabriel

    2017-10-01

    Plant specific GARP transcription factor family (made of ARR-B and G2-like) contains genes with very diverse in planta functions: nutrient sensing, root and shoot development, floral transition, chloroplast development, circadian clock oscillation maintenance, hormonal transport and signaling. In this work we review: first, their structural but distant relationships with MYB transcription factors, second, their role in planta, third, the diversity of their Cis-regulatory elements, fourth, their potential protein partners. We conclude that the GARP family may hold keys to understand the interactions between nutritional signaling pathways (nitrogen and phosphate at least) and development. Understanding how plant nutrition and development are coordinated is central to understand how to adapt plants to an ever-changing environment. Consequently GARPs are likely to attract increasing research attentions, as they are likely at the crossroads of these fundamental processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Transcription factors and the genetic organization of brain stem respiratory neurons.

    PubMed

    Gray, Paul A

    2008-05-01

    Breathing is a genetically determined behavior generated by neurons in the brain stem. Transcription factors, in part, determine the basic developmental identity of neurons, but the relationships between these genes and the neural populations generating and modulating respiration are unclear. The diversity of brain stem populations has been proposed to result from a combinatorial code of transcription factor expression corresponding to the anterior-posterior (A-P) and dorsal-ventral (D-V) location of a neuron's birth. I provide a schematic of transcription factor coding identifying at least 15 genetically distinct D-V subdivisions of brain stem neurons that, combined with A-P patterning, may provide a genetic organization of the brain stem in general, with the eventual goal of describing respiratory populations in particular. Using a combination of fate mapping in transgenic mouse lines and immunohistochemistry, we confirm the parabrachial nuclei are derived from a subset of Atoh1 expression progenitor neurons. I hypothesize the Kölliker-Fuse nucleus can be uniquely defined in the neonate mouse by the coexpression of the transcription factor FoxP2 in Atoh1-derived neurons of rhombomere 1.

  6. Modulation of transcription factors by curcumin.

    PubMed

    Shishodia, Shishir; Singh, Tulika; Chaturvedi, Madan M

    2007-01-01

    Curcumin is the active ingredient of turmeric that has been consumed as a dietary spice for ages. Turmeric is widely used in traditional Indian medicine to cure biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. Extensive investigation over the last five decades has indicated that curcumin reduces blood cholesterol, prevents low-density lipoprotein oxidation, inhibits platelet aggregation, suppresses thrombosis and myocardial infarction, suppresses symptoms associated with type II diabetes, rheumatoid arthritis, multiple sclerosis, and Alzheimer's disease, inhibits HIV replication, enhances wound healing, protects from liver injury, increases bile secretion, protects from cataract formation, and protects from pulmonary toxicity and fibrosis. Evidence indicates that the divergent effects of curcumin are dependent on its pleiotropic molecular effects. These include the regulation of signal transduction pathways and direct modulation of several enzymatic activities. Most of these signaling cascades lead to the activation of transcription factors. Curcumin has been found to modulate the activity of several key transcription factors and, in turn, the cellular expression profiles. Curcumin has been shown to elicit vital cellular responses such as cell cycle arrest, apoptosis, and differentiation by activating a cascade of molecular events. In this chapter, we briefly review the effects of curcumin on transcription factors NF-KB, AP-1, Egr-1, STATs, PPAR-gamma, beta-catenin, nrf2, EpRE, p53, CBP, and androgen receptor (AR) and AR-related cofactors giving major emphasis to the molecular mechanisms of its action.

  7. FoxO mediates APP-induced AICD-dependent cell death.

    PubMed

    Wang, X; Wang, Z; Chen, Y; Huang, X; Hu, Y; Zhang, R; Ho, M S; Xue, L

    2014-05-15

    The amyloid precursor protein (APP) is a broadly expressed transmembrane protein that has a significant role in the pathogenesis of Alzheimer's disease (AD). APP can be cleaved at multiple sites to generate a series of fragments including the amyloid β (Aβ) peptides and APP intracellular domain (AICD). Although Aβ peptides have been proposed to be the main cause of AD pathogenesis, the role of AICD has been underappreciated. Here we report that APP induces AICD-dependent cell death in Drosophila neuronal and non-neuronal tissues. Our genetic screen identified the transcription factor forkhead box O (FoxO) as a crucial downstream mediator of APP-induced cell death and locomotion defect. In mammalian cells, AICD physically interacts with FoxO in the cytoplasm, translocates with FoxO into the nucleus upon oxidative stress, and promotes FoxO-induced transcription of pro-apoptotic gene Bim. These data demonstrate that APP modulates FoxO-mediated cell death through AICD, which acts as a transcriptional co-activator of FoxO.

  8. Systematic genetic analysis of transcription factors to map the fission yeast transcription-regulatory network.

    PubMed

    Chua, Gordon

    2013-12-01

    Mapping transcriptional-regulatory networks requires the identification of target genes, binding specificities and signalling pathways of transcription factors. However, the characterization of each transcription factor sufficiently for deciphering such networks remains laborious. The recent availability of overexpression and deletion strains for almost all of the transcription factor genes in the fission yeast Schizosaccharomyces pombe provides a valuable resource to better investigate transcription factors using systematic genetics. In the present paper, I review and discuss the utility of these strain collections combined with transcriptome profiling and genome-wide chromatin immunoprecipitation to identify the target genes of transcription factors.

  9. Pioneer Transcription Factors Target Partial DNA Motifs on Nucleosomes to Initiate Reprogramming

    PubMed Central

    Soufi, Abdenour; Garcia, Meilin Fernandez; Jaroszewicz, Artur; Osman, Nebiyu; Pellegrini, Matteo; Zaret, Kenneth S.

    2015-01-01

    SUMMARY Pioneer transcription factors (TFs) access silent chromatin and initiate cell fate changes, using diverse types of DNA binding domains (DBDs). FoxA, the paradigm pioneer TF, has a winged helix DBD that resembles linker histone and thereby binds its target sites on nucleosomes and in compacted chromatin. Herein we compare the nucleosome and chromatin targeting activities of Oct4 (POU DBD), Sox2 (HMG box DBD), Klf4 (zinc finger DBD), and c-Myc (bHLH DBD), which together reprogram somatic cells to pluripotency. Purified Oct4, Sox2, and Klf4 proteins can bind nucleosomes in vitro, and in vivo they preferentially target silent sites enriched for nucleosomes. Pioneer activity relates simply to the ability of a given DBD to target partial motifs displayed on the nucleosome surface. Such partial motif recognition can occur by coordinate binding between factors. Our findings provide insight into how pioneer factors can target naïve chromatin sites. PMID:25892221

  10. FoxO Proteins in the Nervous System

    PubMed Central

    Maiese, Kenneth

    2015-01-01

    Acute as well as chronic disorders of the nervous system lead to significant morbidity and mortality for millions of individuals globally. Given the ability to govern stem cell proliferation and differentiated cell survival, mammalian forkhead transcription factors of the forkhead box class O (FoxO) are increasingly being identified as potential targets for disorders of the nervous system, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and auditory neuronal disease. FoxO proteins are present throughout the body, but they are selectively expressed in the nervous system and have diverse biological functions. The forkhead O class transcription factors interface with an array of signal transduction pathways that include protein kinase B (Akt), serum- and glucocorticoid-inducible protein kinase (SgK), IκB kinase (IKK), silent mating type information regulation 2 homolog 1 (S. cerevisiae) (SIRT1), growth factors, and Wnt signaling that can determine the activity and integrity of FoxO proteins. Ultimately, there exists a complex interplay between FoxO proteins and their signal transduction pathways that can significantly impact programmed cell death pathways of apoptosis and autophagy as well as the development of clinical strategies for the treatment of neurodegenerative disorders. PMID:26171319

  11. The role of a Williams-Beuren syndrome-associated helix-loop-helix domain-containing transcription factor in activin/nodal signaling.

    PubMed

    Ring, Colleen; Ogata, Souichi; Meek, Lauren; Song, Jihwan; Ohta, Tatsuru; Miyazono, Kohei; Cho, Ken W Y

    2002-04-01

    We investigated the regulation of the activin/nodal-inducible distal element (DE) of the Xenopus goosecoid (gsc) promoter. On the basis of its interaction with the DE, we isolated a Xenopus homolog of the human Williams-Beuren syndrome critical region 11 (XWBSCR11), and further, show that it interacts with pathway-specific Smad2 and Smad3 in a ligand-dependent manner. Interestingly, we also find that XWBSCR11 functions cooperatively with FoxH1 (Fast-1) to stimulate DE-dependent transcription. We propose a mechanism in which FoxH1 functions together with Smads as a cofactor for the recruitment of transcription factors like XWBSCR11 in the process of activin/nodal-mediated gsc-specific induction. This mechanism provides considerable opportunities for modulation of transcription across a variety of activin/nodal-inducible genes, increasing diversity in promoter selection, thus leading to the differential induction of activin/nodal target genes.

  12. Predicting tissue specific transcription factor binding sites

    PubMed Central

    2013-01-01

    Background Studies of gene regulation often utilize genome-wide predictions of transcription factor (TF) binding sites. Most existing prediction methods are based on sequence information alone, ignoring biological contexts such as developmental stages and tissue types. Experimental methods to study in vivo binding, including ChIP-chip and ChIP-seq, can only study one transcription factor in a single cell type and under a specific condition in each experiment, and therefore cannot scale to determine the full set of regulatory interactions in mammalian transcriptional regulatory networks. Results We developed a new computational approach, PIPES, for predicting tissue-specific TF binding. PIPES integrates in vitro protein binding microarrays (PBMs), sequence conservation and tissue-specific epigenetic (DNase I hypersensitivity) information. We demonstrate that PIPES improves over existing methods on distinguishing between in vivo bound and unbound sequences using ChIP-seq data for 11 mouse TFs. In addition, our predictions are in good agreement with current knowledge of tissue-specific TF regulation. Conclusions We provide a systematic map of computationally predicted tissue-specific binding targets for 284 mouse TFs across 55 tissue/cell types. Such comprehensive resource is useful for researchers studying gene regulation. PMID:24238150

  13. Flying-Fox Species Density - A Spatial Risk Factor for Hendra Virus Infection in Horses in Eastern Australia

    PubMed Central

    Smith, Craig; Skelly, Chris; Kung, Nina; Roberts, Billie; Field, Hume

    2014-01-01

    Hendra virus causes sporadic but typically fatal infection in horses and humans in eastern Australia. Fruit-bats of the genus Pteropus (commonly known as flying-foxes) are the natural host of the virus, and the putative source of infection in horses; infected horses are the source of human infection. Effective treatment is lacking in both horses and humans, and notwithstanding the recent availability of a vaccine for horses, exposure risk mitigation remains an important infection control strategy. This study sought to inform risk mitigation by identifying spatial and environmental risk factors for equine infection using multiple analytical approaches to investigate the relationship between plausible variables and reported Hendra virus infection in horses. Spatial autocorrelation (Global Moran’s I) showed significant clustering of equine cases at a distance of 40 km, a distance consistent with the foraging ‘footprint’ of a flying-fox roost, suggesting the latter as a biologically plausible basis for the clustering. Getis-Ord Gi* analysis identified multiple equine infection hot spots along the eastern Australia coast from far north Queensland to central New South Wales, with the largest extending for nearly 300 km from southern Queensland to northern New South Wales. Geographically weighted regression (GWR) showed the density of P. alecto and P. conspicillatus to have the strongest positive correlation with equine case locations, suggesting these species are more likely a source of infection of Hendra virus for horses than P. poliocephalus or P. scapulatus. The density of horses, climate variables and vegetation variables were not found to be a significant risk factors, but the residuals from the GWR suggest that additional unidentified risk factors exist at the property level. Further investigations and comparisons between case and control properties are needed to identify these local risk factors. PMID:24936789

  14. FoxO3 induces reversible cardiac atrophy and autophagy in a transgenic mouse model.

    PubMed

    Schips, Tobias G; Wietelmann, Astrid; Höhn, Katharina; Schimanski, Silvia; Walther, Paul; Braun, Thomas; Wirth, Thomas; Maier, Harald J

    2011-09-01

    The transcription factor FoxO3 contributes to anti-hypertrophic signalling in the heart presumably by regulating autophagic-lysosomal and ubiquitin-proteasomal pathways. We wanted to study FoxO3 function in the adult heart in vivo by expressing a constitutively active mutant of FoxO3 in transgenic mice. We generated transgenic mice in which a tetracycline-regulated constitutively active FoxO3 transgene (FoxO3-CA) is controlled by the heart-specific α-myosin heavy chain promoter. Cardiac-specific expression in adult mice resulted in a decrease in heart weight by 25% and a reduction in stroke volume and cardiac output. The decrease in heart size was due to a reduction in the size of individual cardiomyocytes, whereas there was no evidence for increased cell death. FoxO3 activation was accompanied by the initiation of a foetal gene programme with increased expression of β-myosin heavy chain and natriuretic peptides, and by the activation of AKT and mammalian target of rapamycin signalling. As shown by electron microscopy, FoxO3-CA massively stimulated destruction of sarcomeres and autophagy, and induced expression of LC3-II and BNIP3. When FoxO3-CA expression was shut off in affected mice, cardiac atrophy and dysfunction as well as molecular markers were normalized within 1 month. FoxO3-CA expression did not counteract hypertrophy induced by transverse aortic constriction. Heart-specific expression of constitutively active FoxO3 leads to reversible heart atrophy. The reversibility of the phenotype suggests a remarkable ability of the adult myocardium to respond to different regulatory cues.

  15. Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake.

    PubMed

    Kitamura, Tadahiro; Feng, Yun; Kitamura, Yukari Ido; Chua, Streamson C; Xu, Allison W; Barsh, Gregory S; Rossetti, Luciano; Accili, Domenico

    2006-05-01

    Leptin controls food intake by regulating the transcription of key neuropeptides in the hypothalamus. The mechanism by which leptin regulates gene expression is unclear, however. Here we show that delivery of adenovirus encoding a constitutively nuclear mutant FoxO1, a transcription factor known to control liver metabolism and pancreatic beta-cell function, to the hypothalamic arcuate nucleus of rodents results in a loss of the ability of leptin to curtail food intake and suppress expression of Agrp. Conversely, a transactivation-deficient FoxO1 mutant prevents induction of Agrp by fasting. We also find that FoxO1 and the transcription factor Stat3 exert opposing actions on the expression of Agrp and Pomc through transcriptional squelching. FoxO1 promotes opposite patterns of coactivator-corepressor exchange at the Pomc and Agrp promoters, resulting in activation of Agrp and inhibition of Pomc. Thus, FoxO1 represents a shared component of pathways integrating food intake and peripheral metabolism.

  16. The forkhead transcription factor FOXO3a controls microglial inflammatory activation and eventual apoptotic injury through caspase 3.

    PubMed

    Shang, Yan Chen; Chong, Zhao Zhong; Hou, Jinling; Maiese, Kenneth

    2009-02-01

    Memory loss and cognitive failure are increasingly being identified as potential risks with the recognized increase in life expectancy of the general population. As a result, the development of novel therapeutic strategies for disorders such as Alzheimer's disease have garnered increased attention. The etiologies that can lead to Alzheimer's disease are extremely varied, but a number of therapeutic options are directed against amyloid-beta peptide and inflammatory cell regulation to prevent or halt progressive cognitive loss. In particular, inflammatory microglial cells may have disparate functions that in some scenarios lead to disability through the removal of functional neurovascular cells and in other circumstances foster tissue repair. Given the significance microglial cells hold for neurodegenerative disorders, we therefore examined the function that amyloid (Abeta(1-42)) has upon the microglial cell line EOC 2 and identified a novel role for the forkhead transcription factor FoxO3a and caspase 3. Here we show that Abeta(1-42) leads to progressive injury and apoptotic cell loss in microglial cells that involves both early phosphatidylserine (PS) externalization and late genomic DNA fragmentation over a 24 hour course. Prior to these injury programs, Abeta(1-42) results in the activation and proliferation of microglia as demonstrated by increased proliferating cell nuclear antigen (PCNA) expression and bromodeoxyuridine (BrdU) uptake. Both apoptotic injury as well as the prior activation and proliferation of microglial cells relies upon the presence of FoxO3a, since specific gene silencing of FoxO3a promotes microglial cell protection and prevents the early activation and proliferation of these cells. Furthermore, Abeta(1-42) exposure maintained FoxO3a in an unphosphorylated "active" state and facilitated the cellular trafficking of FoxO3a from the cytoplasm to the cell nucleus to potentially lead to "pro-apoptotic" programs by this transcription factor. One

  17. Dynamic Regulation of FoxA1 by Steroid Receptors | Center for Cancer Research

    Cancer.gov

    The estrogen receptor (ER) is a key regulator in breast cancer initiation and progression. A widely discussed model proposes that forkhead box protein A1 (FoxA1) acts as a pioneer factor in cancer by binding and penetrating closed chromatin to allow access by transcription factors (TFs), including ER.

  18. PAX transcription factors in neural crest development.

    PubMed

    Monsoro-Burq, Anne H

    2015-08-01

    The nine vertebrate PAX transcription factors (PAX1-PAX9) play essential roles during early development and organogenesis. Pax genes were identified in vertebrates using their homology with the Drosophila melanogaster paired gene DNA-binding domain. PAX1-9 functions are largely conserved throughout vertebrate evolution, in particular during central nervous system and neural crest development. The neural crest is a vertebrate invention, which gives rise to numerous derivatives during organogenesis, including neurons and glia of the peripheral nervous system, craniofacial skeleton and mesenchyme, the heart outflow tract, endocrine and pigment cells. Human and mouse spontaneous mutations as well as experimental analyses have evidenced the critical and diverse functions of PAX factors during neural crest development. Recent studies have highlighted the role of PAX3 and PAX7 in neural crest induction. Additionally, several PAX proteins - PAX1, 3, 7, 9 - regulate cell proliferation, migration and determination in multiple neural crest-derived lineages, such as cardiac, sensory, and enteric neural crest, pigment cells, glia, craniofacial skeleton and teeth, or in organs developing in close relationship with the neural crest such as the thymus and parathyroids. The diverse PAX molecular functions during neural crest formation rely on fine-tuned modulations of their transcriptional transactivation properties. These modulations are generated by multiple means, such as different roles for the various isoforms (formed by alternative splicing), or posttranslational modifications which alter protein-DNA binding, or carefully orchestrated protein-protein interactions with various co-factors which control PAX proteins activity. Understanding these regulations is the key to decipher the versatile roles of PAX transcription factors in neural crest development, differentiation and disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Increased FoxM1 expression is a target for metformin in the suppression of EMT in prostate cancer.

    PubMed

    Wang, Yiru; Yao, Binwei; Wang, Yu; Zhang, Mingbo; Fu, Shuai; Gao, Hanjing; Peng, Ruiyun; Zhang, Lingqiang; Tang, Jie

    2014-06-01

    Forkhead box M1 (FoxM1) transcription factor is related to the pathogenesis of various malignancies and recent evidence indicates that FoxM1 promotes epithelial-mesenchymal transition (EMT) in breast cancer. Metformin can inhibit the progression of cancer. However, whether FoxM1 plays a role in EMT in prostate cancer (PCa) and whether metformin can suppress EMT through FoxM1 in PCa remain unresolved issues. In this study, we investigated the expression levels of the FoxM1 protein in 62 PCa and 39 benign prostate hyperplasia (BPH) samples and found that the expression levels of FoxM1 were higher in the PCa tissues (66.1%) compared with the BPH tissues (28.2%) (p<0.05). We observed that FoxM1 was expressed in the PCa cell lines and that metformin suppressed cell proliferation and the expression of FoxM1. We induced EMT in the PCa cells by the addition of transforming growth factor (TGF)-β1 and verified the process by examining EMT-related gene (E-cadherin, vimentin and Slug) expression. In addition, the knockdown of FoxM1 by shRNA in the PCa cells reversed EMT and markedly reduced cell migration. These results indicate that metformin suppresses EMT by inhibiting FoxM1. We demonstrate that the suppression of FoxM1 may be an effective therapeutic strategy for PCa and provide further evidence of the anticancer effects of metformin.

  20. Transcription of Toll-Like Receptors 2, 3, 4 and 9, FoxP3 and Th17 Cytokines in a Susceptible Experimental Model of Canine Leishmania infantum Infection

    PubMed Central

    Hosein, Shazia; Rodríguez-Cortés, Alhelí; Blake, Damer P.; Allenspach, Karin; Alberola, Jordi; Solano-Gallego, Laia

    2015-01-01

    Canine leishmaniosis (CanL) due to Leishmania infantum is a chronic zoonotic systemic disease resulting from complex interactions between protozoa and the canine immune system. Toll-like receptors (TLRs) are essential components of the innate immune system and facilitate the early detection of many infections. However, the role of TLRs in CanL remains unknown and information describing TLR transcription during infection is extremely scarce. The aim of this research project was to investigate the impact of L. infantum infection on canine TLR transcription using a susceptible model. The objectives of this study were to evaluate transcription of TLRs 2, 3, 4 and 9 by means of quantitative reverse transcription polymerase chain reaction (qRT-PCR) in skin, spleen, lymph node and liver in the presence or absence of experimental L. infantum infection in Beagle dogs. These findings were compared with clinical and serological data, parasite densities in infected tissues and transcription of IL-17, IL-22 and FoxP3 in different tissues in non-infected dogs (n = 10), and at six months (n = 24) and 15 months (n = 7) post infection. Results revealed significant down regulation of transcription with disease progression in lymph node samples for TLR3, TLR4, TLR9, IL-17, IL-22 and FoxP3. In spleen samples, significant down regulation of transcription was seen in TLR4 and IL-22 when both infected groups were compared with controls. In liver samples, down regulation of transcription was evident with disease progression for IL-22. In the skin, upregulation was seen only for TLR9 and FoxP3 in the early stages of infection. Subtle changes or down regulation in TLR transcription, Th17 cytokines and FoxP3 are indicative of the silent establishment of infection that Leishmania is renowned for. These observations provide new insights about TLR transcription, Th17 cytokines and Foxp3 in the liver, spleen, lymph node and skin in CanL and highlight possible markers of disease susceptibility in

  1. Transcription of Toll-Like Receptors 2, 3, 4 and 9, FoxP3 and Th17 Cytokines in a Susceptible Experimental Model of Canine Leishmania infantum Infection.

    PubMed

    Hosein, Shazia; Rodríguez-Cortés, Alhelí; Blake, Damer P; Allenspach, Karin; Alberola, Jordi; Solano-Gallego, Laia

    2015-01-01

    Canine leishmaniosis (CanL) due to Leishmania infantum is a chronic zoonotic systemic disease resulting from complex interactions between protozoa and the canine immune system. Toll-like receptors (TLRs) are essential components of the innate immune system and facilitate the early detection of many infections. However, the role of TLRs in CanL remains unknown and information describing TLR transcription during infection is extremely scarce. The aim of this research project was to investigate the impact of L. infantum infection on canine TLR transcription using a susceptible model. The objectives of this study were to evaluate transcription of TLRs 2, 3, 4 and 9 by means of quantitative reverse transcription polymerase chain reaction (qRT-PCR) in skin, spleen, lymph node and liver in the presence or absence of experimental L. infantum infection in Beagle dogs. These findings were compared with clinical and serological data, parasite densities in infected tissues and transcription of IL-17, IL-22 and FoxP3 in different tissues in non-infected dogs (n = 10), and at six months (n = 24) and 15 months (n = 7) post infection. Results revealed significant down regulation of transcription with disease progression in lymph node samples for TLR3, TLR4, TLR9, IL-17, IL-22 and FoxP3. In spleen samples, significant down regulation of transcription was seen in TLR4 and IL-22 when both infected groups were compared with controls. In liver samples, down regulation of transcription was evident with disease progression for IL-22. In the skin, upregulation was seen only for TLR9 and FoxP3 in the early stages of infection. Subtle changes or down regulation in TLR transcription, Th17 cytokines and FoxP3 are indicative of the silent establishment of infection that Leishmania is renowned for. These observations provide new insights about TLR transcription, Th17 cytokines and Foxp3 in the liver, spleen, lymph node and skin in CanL and highlight possible markers of disease susceptibility in

  2. HIF Transcription Factors, Inflammation, and Immunity

    PubMed Central

    Palazon, Asis; Goldrath, Ananda; Nizet, Victor

    2015-01-01

    The hypoxic response in cells and tissues is mediated by the family of hypoxia-inducible factor (HIF) transcription factors that play an integral role in the metabolic changes that drive cellular adaptation to low oxygen availability. HIF expression and stabilization in immune cells can be triggered by hypoxia, but also by other factors associated with pathological stress: e.g., inflammation, infectious microorganisms, and cancer. HIF induces a number of aspects of host immune function, from boosting phagocyte microbicidal capacity to driving T cell differentiation and cytotoxic activity. Cellular metabolism is emerging as a key regulator of immunity, and it constitutes another layer of fine-tuned immune control by HIF that can dictate myeloid cell and lymphocyte development, fate, and function. Here we discuss how oxygen sensing in the immune microenvironment shapes immunological response and examine how HIF and the hypoxia pathway control innate and adaptive immunity. PMID:25367569

  3. HIF transcription factors, inflammation, and immunity.

    PubMed

    Palazon, Asis; Goldrath, Ananda W; Nizet, Victor; Johnson, Randall S

    2014-10-16

    The hypoxic response in cells and tissues is mediated by the family of hypoxia-inducible factor (HIF) transcription factors; these play an integral role in the metabolic changes that drive cellular adaptation to low oxygen availability. HIF expression and stabilization in immune cells can be triggered by hypoxia, but also by other factors associated with pathological stress: e.g., inflammation, infectious microorganisms, and cancer. HIF induces a number of aspects of host immune function, from boosting phagocyte microbicidal capacity to driving T cell differentiation and cytotoxic activity. Cellular metabolism is emerging as a key regulator of immunity, and it constitutes another layer of fine-tuned immune control by HIF that can dictate myeloid cell and lymphocyte development, fate, and function. Here we discuss how oxygen sensing in the immune microenvironment shapes immunological response and examine how HIF and the hypoxia pathway control innate and adaptive immunity.

  4. Transcription factor regulation by mechanical stress.

    PubMed

    Mendez, Melissa G; Janmey, Paul A

    2012-05-01

    New technologies and interest in cell mechanics are generating exciting new discoveries about how material properties and forces affect biological structure and function. Mechanical forces are transduced via a variety of mechanisms, recently beginning to be revealed, into signals capable of altering cell function and structure. Responses to physical stimuli occur at multiple levels, from changes in the structures of single proteins to global cascades capable of altering cell proliferation and differentiation. This review describes recent findings in which physical stimuli were shown to modulate transcription factor activity, including that of armadillo/β-catenin, serum response factor (SRF), yes-associated protein (YAP) and nuclear factor κB (NF-κB). Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Neural FoxP2 and FoxP1 expression in the budgerigar, an avian species with adult vocal learning

    PubMed Central

    Hara, Erina; Perez, Jemima M.; Whitney, Osceola; Chen, Qianqian; White, Stephanie A.; Wright, Timothy F.

    2015-01-01

    Vocal learning underlies acquisition of both language in humans and vocal signals in some avian taxa. These bird groups and humans exhibit convergent developmental phases and associated brain pathways for vocal communication. The transcription factor FoxP2 plays critical roles in vocal learning in humans and songbirds. Another member of the forkhead box gene family, FoxP1 also shows high expression in brain areas involved in vocal learning and production. Here, we investigate FoxP2 and FoxP1 mRNA and protein in adult male budgerigars (Melopsittacus undulatus), a parrot species that exhibits vocal learning as both juveniles and adults. To examine these molecules in adult vocal learners, we compared their expression patterns in the budgerigar striatal nucleus involved in vocal learning, magnocellular nucleus of the medial striatum (MMSt), across birds with different vocal states, such as vocalizing to a female (directed), vocalizing alone (undirected), and non-vocalizing. We found that both FoxP2 mRNA and protein expressions were consistently lower in MMSt than in the adjacent striatum regardless of the vocal states, whereas previous work has shown that songbirds exhibit downregulation in the homologous region, Area X, only after singing alone. In contrast, FoxP1 levels were high in MMSt compared to the adjacent striatum in all groups. Taken together these results strengthen the general hypothesis that FoxP2 and FoxP1 have specialized expression in vocal nuclei across a range of taxa, and suggest that the adult vocal plasticity seen in budgerigars may be a product of persistent down-regulation of FoxP2 in MMSt. PMID:25601574

  6. Neural FoxP2 and FoxP1 expression in the budgerigar, an avian species with adult vocal learning.

    PubMed

    Hara, Erina; Perez, Jemima M; Whitney, Osceola; Chen, Qianqian; White, Stephanie A; Wright, Timothy F

    2015-04-15

    Vocal learning underlies acquisition of both language in humans and vocal signals in some avian taxa. These bird groups and humans exhibit convergent developmental phases and associated brain pathways for vocal communication. The transcription factor FoxP2 plays critical roles in vocal learning in humans and songbirds. Another member of the forkhead box gene family, FoxP1 also shows high expression in brain areas involved in vocal learning and production. Here, we investigate FoxP2 and FoxP1 mRNA and protein in adult male budgerigars (Melopsittacus undulatus), a parrot species that exhibits vocal learning as both juveniles and adults. To examine these molecules in adult vocal learners, we compared their expression patterns in the budgerigar striatal nucleus involved in vocal learning, magnocellular nucleus of the medial striatum (MMSt), across birds with different vocal states, such as vocalizing to a female (directed), vocalizing alone (undirected), and non-vocalizing. We found that both FoxP2 mRNA and protein expressions were consistently lower in MMSt than in the adjacent striatum regardless of the vocal states, whereas previous work has shown that songbirds exhibit down-regulation in the homologous region, Area X, only after singing alone. In contrast, FoxP1 levels were high in MMSt compared to the adjacent striatum in all groups. Taken together these results strengthen the general hypothesis that FoxP2 and FoxP1 have specialized expression in vocal nuclei across a range of taxa, and suggest that the adult vocal plasticity seen in budgerigars may be a product of persistent down-regulation of FoxP2 in MMSt.

  7. The evolution of WRKY transcription factors.

    PubMed

    Rinerson, Charles I; Rabara, Roel C; Tripathi, Prateek; Shen, Qingxi J; Rushton, Paul J

    2015-02-27

    The availability of increasing numbers of sequenced genomes has necessitated a re-evaluation of the evolution of the WRKY transcription factor family. Modern day plants descended from a charophyte green alga that colonized the land between 430 and 470 million years ago. The first charophyte genome sequence from Klebsormidium flaccidum filled a gap in the available genome sequences in the plant kingdom between unicellular green algae that typically have 1-3 WRKY genes and mosses that contain 30-40. WRKY genes have been previously found in non-plant species but their occurrence has been difficult to explain. Only two WRKY genes are present in the Klebsormidium flaccidum genome and the presence of a Group IIb gene was unexpected because it had previously been thought that Group IIb WRKY genes first appeared in mosses. We found WRKY transcription factor genes outside of the plant lineage in some diplomonads, social amoebae, fungi incertae sedis, and amoebozoa. This patchy distribution suggests that lateral gene transfer is responsible. These lateral gene transfer events appear to pre-date the formation of the WRKY groups in flowering plants. Flowering plants contain proteins with domains typical for both resistance (R) proteins and WRKY transcription factors. R protein-WRKY genes have evolved numerous times in flowering plants, each type being restricted to specific flowering plant lineages. These chimeric proteins contain not only novel combinations of protein domains but also novel combinations and numbers of WRKY domains. Once formed, R protein WRKY genes may combine different components of signalling pathways that may either create new diversity in signalling or accelerate signalling by short circuiting signalling pathways. We propose that the evolution of WRKY transcription factors includes early lateral gene transfers to non-plant organisms and the occurrence of algal WRKY genes that have no counterparts in flowering plants. We propose two alternative hypotheses

  8. Matrix Factorization for Transcriptional Regulatory Network Inference

    PubMed Central

    Ochs, Michael F.; Fertig, Elana J.

    2013-01-01

    Inference of Transcriptional Regulatory Networks (TRNs) provides insight into the mechanisms driving biological systems, especially mammalian development and disease. Many techniques have been developed for TRN estimation from indirect biochemical measurements. Although successful when initially tested in model organisms, these regulatory models often fail when applied to data from multicellular organisms where multiple regulation and gene reuse increase dramatically. Non-negative matrix factorization techniques were initially introduced to find non-orthogonal patterns in data, making them ideal techniques for inference in cases of multiple regulation. We review these techniques and their application to TRN analysis. PMID:25364782

  9. Genetic analysis of Xenopus transcription factor IIIA.

    PubMed

    Bumbulis, M J; Wroblewski, G; McKean, D; Setzer, D R

    1998-12-18

    We describe a method for the genetic analysis of the DNA-binding properties of Xenopus transcription factor IIIA (TFIIIA). In this approach, a transcriptional activator with the DNA-binding specificity of Xenopus TFIIIA is expressed in yeast cells, where it specifically activates expression of a beta-galactosidase reporter gene containing one or more Xenopus 5 S rRNA genes that function as upstream activator sequences. This transcription-promoting activity was used as the basis for a genetic assay of Xenopus TFIIIA's DNA-binding function in yeast, an assay that we show can be calibrated quantitatively to allow the affinity of the Xenopus TFIIIA-5 S rRNA gene interaction to be deduced from measurements of beta-galactosidase activity. We have combined this genetic assay with a simple and efficient method of mutagenesis that makes use of error-prone PCR and homologous recombination to generate and screen large numbers of TFIIIA mutants for those with altered 5 S rRNA gene-binding affinity. Over 30 such mutants have been identified and partially characterized. The mutants we have obtained provide strong support for the application to intact TFIIIA of recent structural models of the N-terminal zinc fingers of the protein bound to fragments of the 5 S rRNA gene. Other mutants permit identification of important residues in more C-terminal zinc fingers of TFIIIA for which high-resolution structural information is not currently available. Finally, our results have interesting implications with respect to the mechanism of activation of transcription by RNA polymerase II in yeast. Copyright 1998 Academic Press

  10. Young and intense: FoxP2 immunoreactivity in Area X varies with age, song stereotypy, and singing in male zebra finches.

    PubMed

    Thompson, Christopher K; Schwabe, Fabian; Schoof, Alexander; Mendoza, Ezequiel; Gampe, Jutta; Rochefort, Christelle; Scharff, Constance

    2013-01-01

    FOXP2 is a transcription factor functionally relevant for learned vocalizations in humans and songbirds. In songbirds, FoxP2 mRNA expression in the medium spiny neurons of the basal ganglia song nucleus Area X is developmentally regulated and varies with singing conditions in different social contexts. How individual neurons in Area X change FoxP2 expression across development and in social contexts is not known, however. Here we address this critical gap in our understanding of FoxP2 as a link between neuronal networks and behavior. We used a statistically unbiased analysis of FoxP2-immunoreactivity (FoxP2-IR) on a neuron-by-neuron basis and found a bimodal distribution of FoxP2-IR neurons in Area X: weakly-stained and intensely-stained. The density of intensely-stained FoxP2-IR neurons was 10 times higher in juveniles than in adults, exponentially decreased with age, and was negatively correlated with adult song stability. Three-week old neurons labeled with BrdU were more than five times as likely to be intensely-stained than weakly-stained. The density of FoxP2-IR putative migratory neurons with fusiform-shaped nuclei substantially decreased as birds aged. The density of intensely-stained FoxP2-IR neurons was not affected by singing whereas the density of weakly-stained FoxP2-IR neurons was. Together, these data indicate that young Area X medium spiny neurons express FoxP2 at high levels and decrease expression as they become integrated into existing neural circuits. Once integrated, levels of FoxP2 expression correlate with singing behavior. Together, these findings raise the possibility that FoxP2 levels may orchestrate song learning and song stereotypy in adults by a common mechanism.

  11. Young and intense: FoxP2 immunoreactivity in Area X varies with age, song stereotypy, and singing in male zebra finches

    PubMed Central

    Thompson, Christopher K.; Schwabe, Fabian; Schoof, Alexander; Mendoza, Ezequiel; Gampe, Jutta; Rochefort, Christelle; Scharff, Constance

    2013-01-01

    FOXP2 is a transcription factor functionally relevant for learned vocalizations in humans and songbirds. In songbirds, FoxP2 mRNA expression in the medium spiny neurons of the basal ganglia song nucleus Area X is developmentally regulated and varies with singing conditions in different social contexts. How individual neurons in Area X change FoxP2 expression across development and in social contexts is not known, however. Here we address this critical gap in our understanding of FoxP2 as a link between neuronal networks and behavior. We used a statistically unbiased analysis of FoxP2-immunoreactivity (FoxP2-IR) on a neuron-by-neuron basis and found a bimodal distribution of FoxP2-IR neurons in Area X: weakly-stained and intensely-stained. The density of intensely-stained FoxP2-IR neurons was 10 times higher in juveniles than in adults, exponentially decreased with age, and was negatively correlated with adult song stability. Three-week old neurons labeled with BrdU were more than five times as likely to be intensely-stained than weakly-stained. The density of FoxP2-IR putative migratory neurons with fusiform-shaped nuclei substantially decreased as birds aged. The density of intensely-stained FoxP2-IR neurons was not affected by singing whereas the density of weakly-stained FoxP2-IR neurons was. Together, these data indicate that young Area X medium spiny neurons express FoxP2 at high levels and decrease expression as they become integrated into existing neural circuits. Once integrated, levels of FoxP2 expression correlate with singing behavior. Together, these findings raise the possibility that FoxP2 levels may orchestrate song learning and song stereotypy in adults by a common mechanism. PMID:23450800

  12. Fatty Acid–Regulated Transcription Factors in the Liver

    PubMed Central

    Jump, Donald B.; Tripathy, Sasmita; Depner, Christopher M.

    2014-01-01

    Fatty acid regulation of hepatic gene transcription was first reported in the early 1990s. Several transcription factors have been identified as targets of fatty acid regulation. This regulation is achieved by direct fatty acid binding to the transcription factor or by indirect mechanisms where fatty acids regulate signaling pathways controlling the expression of transcription factors or the phosphorylation, ubiquitination, or proteolytic cleavage of the transcription factor. Although dietary fatty acids are well-established regulators of hepatic transcription factors, emerging evidence indicates that endogenously generated fatty acids are equally important in controlling transcription factors in the context of glucose and lipid homeostasis. Our first goal in this review is to provide an up-to-date examination of the molecular and metabolic bases of fatty acid regulation of key transcription factors controlling hepatic metabolism. Our second goal is to link these mechanisms to nonalcoholic fatty liver disease (NAFLD), a growing health concern in the obese population. PMID:23528177

  13. FoxO3 coordinates metabolic pathways to maintain redox balance in neural stem cells.

    PubMed

    Yeo, Hyeonju; Lyssiotis, Costas A; Zhang, Yuqing; Ying, Haoqiang; Asara, John M; Cantley, Lewis C; Paik, Ji-Hye

    2013-10-02

    Forkhead Box O (FoxO) transcription factors act in adult stem cells to preserve their regenerative potential. Previously, we reported that FoxO maintains the long-term proliferative capacity of neural stem/progenitor cells (NPCs), and that this occurs, in part, through the maintenance of redox homeostasis. Herein, we demonstrate that among the FoxO3-regulated genes in NPCs are a host of enzymes in central carbon metabolism that act to combat reactive oxygen species (ROS) by directing the flow of glucose and glutamine carbon into defined metabolic pathways. Characterization of the metabolic circuit observed upon loss of FoxO3 revealed a drop in glutaminolysis and filling of the tricarboxylic acid (TCA) cycle. Additionally, we found that glucose uptake, glucose metabolism and oxidative pentose phosphate pathway activity were similarly repressed in the absence of FoxO3. Finally, we demonstrate that impaired glucose and glutamine metabolism compromises the proliferative potential of NPCs and that this is exacerbated following FoxO3 loss. Collectively, our findings show that a FoxO3-dependent metabolic programme supports redox balance and the neurogenic potential of NPCs.

  14. Epigenetic features of FoxP3 in children with cow's milk allergy.

    PubMed

    Paparo, Lorella; Nocerino, Rita; Cosenza, Linda; Aitoro, Rosita; D'Argenio, Valeria; Del Monaco, Valentina; Di Scala, Carmen; Amoroso, Antonio; Di Costanzo, Margherita; Salvatore, Francesco; Berni Canani, Roberto

    2016-01-01

    DNA methylation of the Th1 and Th2 cytokine genes is altered during cow's milk allergy (CMA). Forkhead box transcription factor 3 (FoxP3) is essential for the development and function of regulatory T cells (Tregs) and is involved in oral tolerance acquisition. We assessed whether tolerance acquisition in children with IgE-mediated CMA is associated with DNA demethylation of the Treg-specific demethylated region (TSDR) of FoxP3. Forty children (aged 3-18 months) were enrolled: 10 children with active IgE-mediated CMA (group 1), 10 children who outgrew CMA after dietary treatment with an extensively hydrolyzed casein formula containing the probiotic Lactobacillus rhamnosus GG (group 2), 10 children who outgrew CMA after treatment with other formulas (group 3), and 10 healthy controls (group 4). FoxP3 TSDR demethylation and expression were measured in mononuclear cells purified from peripheral blood of the four groups of children. FoxP3 TSDR demethylation was significantly lower in children with active IgE-mediated CMA than in either children who outgrew CMA or in healthy children. Formula selection influenced the FoxP3 TSDR demethylation profile. The FoxP3 TSDR demethylation rate and expression level were correlated. Tolerance acquisition in children with IgE-mediated CMA involves epigenetic regulation of the FoxP3 gene. This feature could be a new target for preventive and therapeutic strategies against CMA.

  15. Oxidative Stress Induces Mouse Follicular Granulosa Cells Apoptosis via JNK/FoxO1 Pathway

    PubMed Central

    Weng, Qiannan; Liu, Zequn; Li, Bojiang; Liu, Kaiqing; Wu, Wangjun; Liu, Honglin

    2016-01-01

    The c-Jun N-terminal protein kinase (JNK) plays an important role in the regulation of cell apoptosis. Forkhead box O (FoxO) transcription factors are involved in diverse biological processes, including cellular metabolism, cell apoptosis, and cell cycle. However, the JNK/FoxO1 pathway involved in the process of apoptosis induced by oxidative stress remains to be elucidated. Here, we demonstrated that the JNK activity significantly increased in response to oxidative stress in mouse follicular granulosa cells (MGCs). SP600125, a selective JNK inhibitor, attenuated the oxidative stress-induced MGCs apoptosis. Oxidative stress enhanced the FoxO1 nuclear translocation by activating the JNK activity. Moreover, JNK mediated the dissociation of FoxO1 from 14-3-3 proteins in MGCs after the treatment with H2O2. Finally, oxidative stress up-regulated the expression of FoxO1 via JNK mediation of FoxO1 self-regulation in MGCs. Taken together, our findings suggest that JNK/FoxO1 is involved in the regulation of oxidative stress-induced cell apoptosis in MGCs. PMID:27936150

  16. Wnt glycoproteins regulate the expression of FoxN1, the gene defective in nude mice.

    PubMed

    Balciunaite, Gina; Keller, Marcel P; Balciunaite, Egle; Piali, Luca; Zuklys, Saulius; Mathieu, Yves D; Gill, Jason; Boyd, Richard; Sussman, Daniel J; Holländer, Georg A

    2002-11-01

    T cell development and selection require the fully mature and diverse epithelial microenvironment of the thymus. Acquisition of these characteristics is dependent on expression of the forkhead (also known as winged-helix) transcription factor FoxN1, as a lack of functional FoxN1 results in aberrant epithelial morphogenesis and an inability to attract lymphoid precursors to the thymus primordium. However, the transcriptional control of Foxn1 expression has not been elucidated. Here we report that secreted Wnt glycoproteins, expressed by thymic epithelial cells and thymocytes, regulate epithelial Foxn1 expression in both autocrine and paracrine fashions. Wnt molecules therefore provide regulatory signals critical for thymic function.

  17. Molecular cloning and developmental expression of foxP2 in zebrafish.

    PubMed

    Bonkowsky, Joshua L; Chien, Chi-Bin

    2005-11-01

    Forkhead domain transcription factors are a large gene family with multiple roles in development. FOXP2, a recently identified member of this family, has been shown to be critical for normal development of language in humans, but little is known of its broader function during nervous system development. We report here the cloning of foxP2, the zebrafish ortholog of FOXP2. Zebrafish FoxP2 is highly conserved in its zinc-finger and forkhead domains, but lacks the large glutamine repeat characteristic of its orthologs. In examining the spatial and temporal distribution of foxP2 during development, we find that it is specifically expressed in many domains of the nervous system, including the telencephalon, diencephalon, cerebellum, hindbrain, tectum, retinal ganglion cells, and spinal cord. Thus, in addition to specific roles in language development, foxP2 likely has a more general conserved role in nervous system development.

  18. Transcription factor repertoire of homeostatic eosinophilopoiesis

    PubMed Central

    Bouffi, Carine; Kartashov, Andrey V.; Schollaert, Kaila L.; Chen, Xiaoting; Bacon, W. Clark; Weirauch, Matthew T.; Barski, Artem; Fulkerson, Patricia C.

    2015-01-01

    The production of mature eosinophils is a tightly orchestrated process with the aim to sustain normal eosinophil levels in tissues while also maintaining low numbers of these complex and sensitive cells in the blood. To identify regulators of homeostatic eosinophilopoiesis in mice, we took a global approach to identify genome-wide transcriptome and epigenome changes that occur during homeostasis at critical developmental stages, including eosinophil-lineage commitment and lineage maturation. Our analyses revealed a markedly greater number of transcriptome alterations associated with eosinophil maturation (1199 genes) than with eosinophil-lineage commitment (490 genes), highlighting the greater transcriptional investment necessary for differentiation. Eosinophil progenitors (EoPs) were noted to express high levels of granule proteins and contain granules with an ultrastructure distinct from that of mature resting eosinophils. Our analyses also delineated a 976-gene eosinophil-lineage transcriptome that included a repertoire of 56 transcription factors, many of which have never previously been associated with eosinophils. EoPs and eosinophils, but not granulocyte-monocyte progenitors (GMPs) or neutrophils, expressed Helios and Aiolos, members of the Ikaros family of transcription factors, which regulate gene expression via modulation of chromatin structure and DNA accessibility. Epigenetic studies revealed a distinct distribution of active chromatin marks between genes induced with lineage commitment and genes induced with cell maturation during eosinophil development. In addition, Aiolos and Helios binding sites were significantly enriched in genes expressed by EoPs and eosinophils with active chromatin, highlighting a potential novel role for Helios and Aiolos in regulating gene expression during eosinophil development. PMID:26268651

  19. Transcription factor binding energy vs. biological function

    NASA Astrophysics Data System (ADS)

    Djordjevic, M.; Grotewold, E.

    2007-03-01

    Transcription factors (TFs) are proteins that bind to DNA and regulate expression of genes. Identification of transcription factor binding sites within the regulatory segments of genomic DNA is an important step towards understanding of gene regulatory networks. Recent theoretical advances that we developed [1,2], allow us to infer TF-DNA interaction parameters from in-vitro selection experiments [3]. We use more than 6000 binding sequences [3], assembled under controlled conditions, to obtain protein-DNA interaction parameters for a mammalian TF with up to now unprecedented accuracy. Can one accurately identify biologically functional TF binding sites (i.e. the binding sites that regulate gene expression), even with the best possible protein-DNA interaction parameters? To address this issue we i) compare our prediction of protein binding with gene expression data, ii) use evolutionary comparison between related mammalian genomes. Our results strongly suggest that in a genome there exists a large number of randomly occurring high energy binding sites that are not biologically functional. [1] M Djordjevic, submitted to Biomol. Eng. [2] M. Djordjevic and A. M. Sengupta, Phys. Biol. 3: 13, 2006. [3] E. Roulet et al., Nature Biotech. 20: 831, 2002.

  20. From tissue mechanics to transcription factors.

    PubMed

    Janmey, Paul A; Wells, Rebecca G; Assoian, Richard K; McCulloch, Christopher A

    2013-10-01

    Changes in tissue stiffness are frequently associated with diseases such as cancer, fibrosis, and atherosclerosis. Several recent studies suggest that, in addition to resulting from pathology, mechanical changes may play a role akin to soluble factors in causing the progression of disease, and similar mechanical control might be essential for normal tissue development and homeostasis. Many cell types alter their structure and function in response to exogenous forces or as a function of the mechanical properties of the materials to which they adhere. This review summarizes recent progress in identifying intracellular signaling pathways, and especially transcriptional programs, that are differentially activated when cells adhere to materials with different mechanical properties or when they are subject to tension arising from external forces. Several cytoplasmic or cytoskeletal signaling pathways involving small GTPases, focal adhesion kinase and transforming growth factor beta as well as the transcriptional regulators MRTF-A, NFκB, and Yap/Taz have emerged as important mediators of mechanical signaling. © 2013 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  1. Mitochondrial nucleoid and transcription factor A.

    PubMed

    Kanki, Tomotake; Nakayama, Hiroshi; Sasaki, Narie; Takio, Koji; Alam, Tanfis Istiaq; Hamasaki, Naotaka; Kang, Dongchon

    2004-04-01

    Nuclear DNA is tightly packed into nucleosomal structure. In contrast, human mitochondrial DNA (mtDNA) had long been believed to be rather naked because mitochondria lack histone. Mitochondrial transcription factor A (TFAM), a member of a high mobility group (HMG) protein family and a first-identified mitochondrial transcription factor, is essential for maintenance of mitochondrial DNA. Abf2, a yeast counterpart of human TFAM, is abundant enough to cover the whole region of mtDNA and to play a histone-like role in mitochondria. Human TFAM is indeed as abundant as Abf2, suggesting that TFAM also has a histone-like architectural role for maintenance of mtDNA. When human mitochondria are solubilized with non-ionic detergent Nonidet-P40 and then separated into soluble and particulate fractions, most TFAM is recovered from the particulate fraction together with mtDNA, suggesting that human mtDNA forms a nucleoid structure. TFAM is tightly associated with mtDNA as a main component of the nucleoid.

  2. From tissue mechanics to transcription factors

    PubMed Central

    Janmey, Paul A.; Wells, Rebecca G.; Assoian, Richard K.; McCulloch, Christopher A.

    2015-01-01

    Changes in tissue stiffness are frequently associated with diseases such as cancer, fibrosis, and atherosclerosis. Several recent studies suggest that, in addition to resulting from pathology, mechanical changes may play a role akin to soluble factors in causing the progression of disease, and similar mechanical control might be essential for normal tissue development and homeostasis. Many cell types alter their structure and function in response to exogenous forces or as a function of the mechanical properties of the materials to which they adhere. This review summarizes recent progress in identifying intracellular signaling pathways, and especially transcriptional programs, that are differentially activated when cells adhere to materials with different mechanical properties or when they are subject to tension arising from external forces. Several cytoplasmic or cytoskeletal signaling pathways involving small GTPases, focal adhesion kinase and transforming growth factor beta as well as the transcriptional regulators MRTF-A, NFκB, and Yap/Taz have emerged as important mediators of mechanical signaling. PMID:23969122

  3. Definition of a FoxA1 Cistrome that is Crucial for G1-S Phase Cell-Cycle Transit in Castration-Resistant Prostate Cancer

    PubMed Central

    Chen, Hongyan; Chen, Zhong; Thomas-Ahner, Jennifer M.; Zynger, Debra L.; Eeckhoute, Jérôme; Yu, Jindan; Luo, Jun; Brown, Myles; Clinton, Steven K.; Nephew, Kenneth P.; Huang, Tim H.-M.; Li, Wei; Wang, Qianben

    2014-01-01

    The enhancer pioneer transcription factor FoxA1 is a global mediator of steroid receptor (SR) action in hormone-dependent cancers. In castration-resistant prostate cancer (CRPC), FoxA1 acts as an androgen receptor co-factor to drive G2-M phase cell-cycle transit. Here we describe a mechanistically distinct SR-independent role for FoxA1 in driving G1-S phase cell-cycle transit in CRPC. By comparing FoxA1 binding sites in prostate cancer cell genomes, we defined a co-dependent set of FoxA1-MYBL2 and FoxA1-CREB1 binding sites within the regulatory regions of the Cyclin E2 and E2F1 genes that are critical for CRPC growth. Binding at these sites upregulate the Cyclin E2 and Cyclin A2 genes in CRPC but not in earlier stage androgen-dependent prostate cancer (ADPC), establishing a stage-specific role for this pathway in CRPC growth. Mechanistic investigations indicated that FoxA1, MYBL2 or CREB1 induction of histone H3 acetylation facilitated nucleosome disruption as the basis for co-dependent transcriptional activation and G1-S phase cell-cycle transit. Our findings establish FoxA1 as a pivotal driver of the cell-cycle in CRPC which promotes G1-S phase transit as well as G2-M phase transit through two distinct mechanisms. PMID:21900400

  4. Pleiotropic Functions for Transcription Factor Zscan10

    PubMed Central

    Kraus, Petra; V, Sivakamasundari; Yu, Hong Bing; Xing, Xing; Lim, Siew Lan; Adler, Thure; Pimentel, Juan Antonio Aguilar; Becker, Lore; Bohla, Alexander; Garrett, Lillian; Hans, Wolfgang; Hölter, Sabine M.; Janas, Eva; Moreth, Kristin; Prehn, Cornelia; Puk, Oliver; Rathkolb, Birgit; Rozman, Jan; Adamski, Jerzy; Bekeredjian, Raffi; Busch, Dirk H.; Graw, Jochen; Klingenspor, Martin; Klopstock, Thomas; Neff, Frauke; Ollert, Markus; Stoeger, Tobias; Yildrim, Ali Önder; Eickelberg, Oliver; Wolf, Eckhard; Wurst, Wolfgang; Fuchs, Helmut; Gailus-Durner, Valérie; de Angelis, Martin Hrabě; Lufkin, Thomas; Stanton, Lawrence W.

    2014-01-01

    The transcription factor Zscan10 had been attributed a role as a pluripotency factor in embryonic stem cells based on its interaction with Oct4 and Sox2 in in vitro assays. Here we suggest a potential role of Zscan10 in controlling progenitor cell populations in vivo. Mice homozygous for a Zscan10 mutation exhibit reduced weight, mild hypoplasia in the spleen, heart and long bones and phenocopy an eye malformation previously described for Sox2 hypomorphs. Phenotypic abnormalities are supported by the nature of Zscan10 expression in midgestation embryos and adults suggesting a role for Zscan10 in either maintaining progenitor cell subpopulation or impacting on fate choice decisions thereof. PMID:25111779

  5. Caenorhabditis elegans EAK-3 inhibits dauer arrest via nonautonomous regulation of nuclear DAF-16/FoxO activity.

    PubMed

    Zhang, Yanmei; Xu, Jinling; Puscau, Cristina; Kim, Yongsoon; Wang, Xi; Alam, Hena; Hu, Patrick J

    2008-03-15

    Insulin regulates development, metabolism, and lifespan via a conserved PI3K/Akt pathway that promotes cytoplasmic sequestration of FoxO transcription factors. The regulation of nuclear FoxO is poorly understood. In the nematode Caenorhabditis elegans, insulin-like signaling functions in larvae to inhibit dauer arrest and acts during adulthood to regulate lifespan. In a screen for genes that modulate C. elegans insulin-like signaling, we identified eak-3, which encodes a novel protein that is specifically expressed in the two endocrine XXX cells. The dauer arrest phenotype of eak-3 mutants is fully suppressed by mutations in daf-16/FoxO, which encodes the major target of C. elegans insulin-like signaling, and daf-12, which encodes a nuclear receptor regulated by steroid hormones known as dafachronic acids. eak-3 mutation does not affect DAF-16/FoxO subcellular localization but enhances expression of the direct DAF-16/FoxO target sod-3 in a daf-16/FoxO- and daf-12-dependent manner. eak-3 mutants have normal lifespans, suggesting that EAK-3 decouples insulin-like regulation of development and longevity. We propose that EAK-3 activity in the XXX cells promotes the synthesis and/or secretion of a hormone that acts in parallel to AKT-1 to inhibit the expression of DAF-16/FoxO target genes. Similar hormonal pathways may regulate FoxO target gene expression in mammals.

  6. 14-3-3ε antagonizes FoxO to control growth, apoptosis and longevity in Drosophila

    PubMed Central

    Nielsen, Mette Damgaard; Luo, Xi; Biteau, Benoît; Syverson, Keith; Jasper, Heinrich

    2013-01-01

    Summary Antagonism between growth-promoting and stress-responsive signaling influences tissue homeostasis and longevity in metazoans. The transcription factor FoxO is central to this regulation, affecting cell proliferation, stress responses, apoptosis, and longevity. Insulin/IGF signaling promotes FoxO phosphorylation, causing its interaction with 14-3-3 molecules. The consequences of this interaction for FoxO-induced biological processes and for the regulation of lifespan in higher organisms remain unclear. Significant complexities in the effects of 14-3-3 proteins on lifespan have been uncovered in Caenorhabditis elegans, suggesting both positive and negative roles for 14-3-3 proteins in the control of aging. Using genetic and biochemical studies, we show here that 14-3-3ε antagonizes FoxO function in Drosophila. We find that dFoxO and 14-3-3ε proteins interact in vivo and that this interaction is lost in response to oxidative stress. Loss of 14-3-3ε results in increased stress-induced apoptosis, growth repression and extended lifespan of flies, phenotypes associated with elevated FoxO function. Our results further show that increased expression of 14-3-3ε reverts FoxO-induced growth defects. 14-3-3ε thus serves as a central modulator of FoxO activity in the regulation of growth, cell death and longevity in vivo. PMID:18665908

  7. C. elegans EAK-3 inhibits dauer arrest via nonautonomous regulation of nuclear DAF-16/FoxO activity

    PubMed Central

    Zhang, Yanmei; Xu, Jinling; Puscau, Cristina; Kim, Yongsoon; Wang, Xi; Alam, Hena; Hu, Patrick J.

    2008-01-01

    SUMMARY Insulin regulates development, metabolism, and lifespan via a conserved PI3K/Akt pathway that promotes cytoplasmic sequestration of FoxO transcription factors. The regulation of nuclear FoxO is poorly understood. In the nematode Caenorhabditis elegans, insulin-like signaling functions in larvae to inhibit dauer arrest and acts during adulthood to regulate lifespan. In a screen for genes that modulate C. elegans insulin-like signaling, we identified eak-3, which encodes a novel protein that is specifically expressed in the two endocrine XXX cells. The dauer arrest phenotype of eak-3 mutants is fully suppressed by mutations in daf-16/FoxO, which encodes the major target of C. elegans insulin-like signaling, and daf-12, which encodes a nuclear receptor regulated by steroid hormones known as dafachronic acids. eak-3 mutation does not affect DAF-16/FoxO subcellular localization but enhances expression of the direct DAF-16/FoxO target sod-3 in a daf-16/FoxO- and daf-12-dependent manner. eak-3 mutants have normal lifespans, suggesting that EAK-3 decouples insulin-like regulation of development and longevity. We propose that EAK-3 activity in the XXX cells promotes the synthesis and/or secretion of a hormone that acts in parallel to AKT-1 to inhibit the expression of DAF-16/FoxO target genes. Similar hormonal pathways may regulate FoxO target gene expression in mammals. PMID:18241854

  8. Nucleotides of transcription factor binding sites exert interdependent effects on the binding affinities of transcription factors

    PubMed Central

    Bulyk, Martha L.; Johnson, Philip L. F.; Church, George M.

    2002-01-01

    We can determine the effects of many possible sequence variations in transcription factor binding sites using microarray binding experiments. Analysis of wild-type and mutant Zif268 (Egr1) zinc fingers bound to microarrays containing all possible central 3 bp triplet binding sites indicates that the nucleotides of transcription factor binding sites cannot be treated independently. This indicates that the current practice of characterizing transcription factor binding sites by mutating individual positions of binding sites one base pair at a time does not provide a true picture of the sequence specificity. Similarly, current bioinformatic practices using either just a consensus sequence, or even mononucleotide frequency weight matrices to provide more complete descriptions of transcription factor binding sites, are not accurate in depicting the true binding site specificities, since these methods rely upon the assumption that the nucleotides of binding sites exert independent effects on binding affinity. Our results stress the importance of complete reference tables of all possible binding sites for comparing protein binding preferences for various DNA sequences. We also show results suggesting that microarray binding data using particular subsets of all possible binding sites can be used to extrapolate the relative binding affinities of all possible full-length binding sites, given a known binding site for use as a starting sequence for site preference refinement. PMID:11861919

  9. FoxO3 mediates antagonistic effects of glucocorticoids and interleukin-2 on glucocorticoid-induced leucine zipper expression.

    PubMed

    Asselin-Labat, Marie-Liesse; Biola-Vidamment, Armelle; Kerbrat, Stéphane; Lombès, Marc; Bertoglio, Jacques; Pallardy, Marc

    2005-07-01

    We have analyzed the promoter of human gilz (glucocorticoid-induced leucine zipper), a dexamethasone-inducible gene that is involved in regulating apoptosis, and identified six glucocorticoid (GC)-responsive elements and three Forkhead responsive elements (FHREs). Promoter deletion analysis and point mutations showed that individual mutation of the GC-responsive elements does not affect GC-induced transcription and that FHRE-1 and FHRE-3 elements contribute to the effects of GCs. Furthermore, overexpression of the Forkhead transcription factor FoxO3 enhances GC-induced gilz mRNA expression. The functional significance of the interaction between FoxO3 and GC receptor was established in T lymphocytes. Indeed, we show that GCs failed to induce GILZ expression in the presence of IL-2, a cytokine known to antagonize GC effects in T cells. Using a constitutive active mutant of protein kinase B that inactivates FoxO3 or a FoxO3 mutant that cannot be inactivated by protein kinase B, we demonstrate that IL-2 inhibitory effects on GILZ expression are mediated through inhibition of FoxO3 transcriptional activity. Therefore, FoxO3 appears to be a key factor mediating GC and IL-2 antagonism for gilz regulation in T lymphocytes. This regulation of GILZ expression was placed in a meaningful context in evaluating the effects of GILZ on GC-induced apoptosis in T lymphocytes.

  10. foxD5 plays a critical upstream role in regulating neural ectodermal fate and the onset of neural differentiation

    PubMed Central

    Yan, Bo; Neilson, Karen M.; Moody, Sally A.

    2009-01-01

    foxD5 is expressed in the nascent neural ectoderm concomitant with several other neural-fate specifying transcription factors. We used loss-of-function and gain-of-function approaches to analyze the functional position of foxD5 amongst these other factors. Loss of FoxD5 reduces the expression of sox2, sox11, soxD, zic1, zic3 and Xiro1-3 at the onset of gastrulation, and of geminin, sox3 and zic2, which are maternally expressed, by late gastrulation. At neural plate stages most of these genes remain reduced, but the domains of zic1 and zic3 are expanded. Increased FoxD5 induces geminin and zic2, weakly represses sox11 at early gastrula but later (st12) induces it; weakly represses sox2 and sox3 transiently and strongly represses soxD, zic1, zic3 and Xiro1-3. The foxD5 effects on zic1, zic3 and Xiro1-3 involve transcriptional repression, whereas those on geminin and zic2 involve transcriptional activation. foxD5’s effects on geminin, sox11 and zic2 occur at the onset of gastrulation, whereas the other genes require earlier foxD5 activity. geminin, sox11 and zic2, each of which is up-regulated directly by foxD5, are all required to account for foxD5 phenotypes, indicating that this triad constitutes a transcriptional network rather than linear path that coordinately up-regulates genes that promote an immature neural fate and inhibits genes that promote the onset of neural differentiation. We also show that foxD5 promotes an ectopic neural fate in the epidermis by reducing BMP signaling. Several of the genes that are repressed by foxD5 in turn reduce foxD5 expression, contributing to the medial-lateral patterning of the neural plate. PMID:19250931

  11. Emerging factors associated with the decline of a gray fox population and multi-scale land cover associations of mesopredators in the Chicago metropolitan area.

    SciTech Connect

    Willingham, Alison N.; /Ohio State U.

    2008-01-01

    mortality due to coyote predation was documented and disease was a major mortality source for foxes. The declining relative abundance of gray fox in Illinois is likely a result of a combination of factors. Assessment of habitat associations indicated that urban mesopredators, particularly coyotes and foxes, perceived the landscape as relatively homogeneous and that urban mesopredators interacted with the environment at scales larger than that accommodated by remnant habitat patches. Coyote and fox presence was found to be associated with a high degree of urban development at large and intermediate spatial scales. However, at a small spatial scale fox presence was associated with high density urban land cover whereas coyote presence was associated with urban development with increased forest cover. Urban habitats can offer a diversity of prey items and anthropogenic resources and natural land cover could offer coyotes daytime resting opportunities in urban areas where they may not be as tolerated as smaller foxes. Raccoons and opossums were found to utilize moderately developed landscapes with interspersed natural and semi-natural land covers at a large spatial scale, which may facilitate dispersal movements. At intermediate and small spatial scales, both species were found to utilize areas that were moderately developed and included forested land cover. These results indicated that raccoons and opossums used natural areas in proximity to anthropogenic resources. At a large spatial scale, skunk presence was associated with highly developed landscapes with interspersed natural and semi-natural land covers. This may indicate that skunks perceived the urban matrix as more homogeneous than raccoons or opossums. At an intermediate spatial scale skunks were associated with moderate levels of development and increased forest cover, which indicated that they might utilize natural land cover in proximity to human-dominated land cover. At the smallest spatial scale skunk presence was

  12. Analysis of lamprey clustered Fox genes: insight into Fox gene evolution and expression in vertebrates.

    PubMed

    Wotton, Karl R; Shimeld, Sebastian M

    2011-12-01

    In the human genome, members of the FoxC, FoxF, FoxL1, and FoxQ1 gene families are found in two paralagous clusters. One cluster contains the genes FOXQ1, FOXF2, FOXC1 and the second consists of FOXF1, FOXC2, and FOXL1. In jawed vertebrates these genes are known to be expressed in different pharyngeal tissues and all, except FoxQ1, are involved in patterning the early embryonic mesoderm. We have previously traced the evolution of this cluster in the bony vertebrates, and the gene content is identical in the dogfish, a member of the most basally branching lineage of the jawed vertebrates. Here we extend these analyses to jawless vertebrates. Using genomic searches and molecular approaches we have identified homologues of these genes from lampreys. We identify two FoxC genes, two FoxF genes, two FoxQ1 genes and single FoxL1 gene. We examine the embryonic expression of one predominantly mesodermally expressed gene family, FoxC, and the endodermally expressed member of the cluster, FoxQ1. We identified FoxQ1 transcripts in the pharyngeal endoderm, while the two FoxC genes are differentially expressed in the pharyngeal mesenchyme and ectoderm. Furthermore we identify conserved expression of lamprey FoxC genes in the paraxial and intermediate mesoderms. We interpret our results through a chordate-wide comparison of expression patterns and discuss gene content in the context of theories on the evolution of the vertebrate genome.

  13. Characterization of human mitochondrial ferritin promoter: identification of transcription factors and evidences of epigenetic control

    NASA Astrophysics Data System (ADS)

    Guaraldo, Michela; Santambrogio, Paolo; Rovelli, Elisabetta; di Savino, Augusta; Saglio, Giuseppe; Cittaro, Davide; Roetto, Antonella; Levi, Sonia

    2016-09-01

    Mitochondrial ferritin (FtMt) is an iron storage protein belonging to the ferritin family but, unlike the cytosolic ferritin, it has an iron-unrelated restricted tissue expression. FtMt appears to be preferentially expressed in cell types characterized by high metabolic activity and oxygen consumption, suggesting a role in protecting mitochondria from iron-dependent oxidative damage. The human gene (FTMT) is intronless and its promoter region has not been described yet. To analyze the regulatory mechanisms controlling FTMT expression, we characterized the 5‧ flanking region upstream the transcriptional starting site of FTMT by in silico enquiry of sequences conservation, DNA deletion analysis, and ChIP assay. The data revealed a minimal promoter region and identified the presence of SP1, CREB and YY1 as positive regulators, and GATA2, FoxA1 and C/EBPβ as inhibitors of the transcriptional regulation. Furthermore, the FTMT transcription is increased by acetylating and de-methylating agent treatments in K562 and HeLa cells. These treatments up-regulate FtMt expression even in fibroblasts derived from a Friedreich ataxia patient, where it might exert a beneficial effect against mitochondrial oxidative damage. The expression of FTMT appears regulated by a complex mechanism involving epigenetic events and interplay between transcription factors.

  14. Characterization of human mitochondrial ferritin promoter: identification of transcription factors and evidences of epigenetic control

    PubMed Central

    Guaraldo, Michela; Santambrogio, Paolo; Rovelli, Elisabetta; Di Savino, Augusta; Saglio, Giuseppe; Cittaro, Davide; Roetto, Antonella; Levi, Sonia

    2016-01-01

    Mitochondrial ferritin (FtMt) is an iron storage protein belonging to the ferritin family but, unlike the cytosolic ferritin, it has an iron-unrelated restricted tissue expression. FtMt appears to be preferentially expressed in cell types characterized by high metabolic activity and oxygen consumption, suggesting a role in protecting mitochondria from iron-dependent oxidative damage. The human gene (FTMT) is intronless and its promoter region has not been described yet. To analyze the regulatory mechanisms controlling FTMT expression, we characterized the 5′ flanking region upstream the transcriptional starting site of FTMT by in silico enquiry of sequences conservation, DNA deletion analysis, and ChIP assay. The data revealed a minimal promoter region and identified the presence of SP1, CREB and YY1 as positive regulators, and GATA2, FoxA1 and C/EBPβ as inhibitors of the transcriptional regulation. Furthermore, the FTMT transcription is increased by acetylating and de-methylating agent treatments in K562 and HeLa cells. These treatments up-regulate FtMt expression even in fibroblasts derived from a Friedreich ataxia patient, where it might exert a beneficial effect against mitochondrial oxidative damage. The expression of FTMT appears regulated by a complex mechanism involving epigenetic events and interplay between transcription factors. PMID:27625068

  15. Functional specialization of transcription elongation factors

    PubMed Central

    Belogurov, Georgiy A; Mooney, Rachel A; Svetlov, Vladimir; Landick, Robert; Artsimovitch, Irina

    2009-01-01

    Elongation factors NusG and RfaH evolved from a common ancestor and utilize the same binding site on RNA polymerase (RNAP) to modulate transcription. However, although NusG associates with RNAP transcribing most Escherichia coli genes, RfaH regulates just a few operons containing ops, a DNA sequence that mediates RfaH recruitment. Here, we describe the mechanism by which this specificity is maintained. We observe that RfaH action is indeed restricted to those several operons that are devoid of NusG in vivo. We also show that RfaH and NusG compete for their effects on transcript elongation and termination in vitro. Our data argue that RfaH recognizes its DNA target even in the presence of NusG. Once recruited, RfaH remains stably associated with RNAP, thereby precluding NusG binding. We envision a pathway by which a specialized regulator has evolved in the background of its ubiquitous paralogue. We propose that RfaH and NusG may have opposite regulatory functions: although NusG appears to function in concert with Rho, RfaH inhibits Rho action and activates the expression of poorly translated, frequently foreign genes. PMID:19096362

  16. Forkhead box O3 (FoxO3) regulates kidney tubular autophagy following urinary tract obstruction.

    PubMed

    Li, Ling; Zviti, Ronald; Ha, Catherine; Wang, Zhao V; Hill, Joseph A; Lin, Fangming

    2017-08-18

    Autophagy has been shown to be important for normal homeostasis and adaptation to stress in the kidney. Yet, the molecular mechanisms regulating renal epithelial autophagy are not fully understood. Here, we explored the role of the stress-responsive transcription factor forkhead box O3 (FoxO3) in mediating injury-induced proximal tubular autophagy in mice with unilateral ureteral obstruction (UUO). We show that following UUO, FoxO3 is activated and displays nuclear expression in the hypoxic proximal tubules exhibiting high levels of autophagy. Activation of FoxO3 by mutating phosphorylation sites to enhance its nuclear expression induces profound autophagy in cultured renal epithelial cells. Conversely, deleting FoxO3 in mice results in fewer numbers of autophagic cells in the proximal tubules and reduced ratio of the autophagy-related protein LC3-II/I in the kidney post-UUO. Interestingly, autophagic cells deficient in FoxO3 contain lower numbers of autophagic vesicles per cell. Analyses of individual cells treated with autophagic inhibitors to sequentially block the autophagic flux suggest that FoxO3 stimulates the formation of autophagosomes to increase autophagic capacity but has no significant effect on autophagosome-lysosome fusion or autolysosomal clearance. Furthermore, in kidneys with persistent UUO for 7 days, FoxO3 activation increases the abundance of mRNA and protein levels of the core autophagy-related (Atg) proteins including Ulk1, Beclin-1, Atg9A, Atg4B, and Bnip3, suggesting that FoxO3 may function to maintain components of the autophagic machinery that would otherwise be consumed during prolonged autophagy. Taken together, our findings indicate that FoxO3 activation can both induce and maintain autophagic activities in renal epithelial cells in response to injury from urinary tract obstruction. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Identification and dissection of a key enhancer mediating cranial neural crest specific expression of transcription factor, Ets-1.

    PubMed

    Barembaum, Meyer; Bronner, Marianne E

    2013-10-15

    Neural crest cells form diverse derivatives that vary according to their level of origin along the body axis, with only cranial neural crest cells contributing to facial skeleton. Interestingly, the transcription factor Ets-1 is uniquely expressed in cranial but not trunk neural crest, where it functions as a direct input into neural crest specifier genes, Sox10 and FoxD3. We have isolated and interrogated a cis-regulatory element, conserved between birds and mammals, that drives reporter expression in a manner that recapitulates that of endogenous Ets-1 expression in the neural crest. Within a minimal Ets-1 enhancer region, mutation of putative binding sites for SoxE, homeobox, Ets, TFAP2 or Fox proteins results in loss or reduction of neural crest enhancer activity. Morpholino-mediated loss-of-function experiments show that Sox9, Pax7, Msx1/2, Ets-1, TFAP2A and FoxD3, all are required for enhancer activity. In contrast, mutation of a putative cMyc/E-box sequence augments reporter expression, consistent with this being a repressor binding site. Taken together, these results uncover new inputs into Ets-1, revealing critical links in the cranial neural crest gene regulatory network. © 2013 Elsevier Inc. All rights reserved.

  18. Skin expression of mammalian target of rapamycin and forkhead box transcription factor O1, and serum insulin-like growth factor-1 in patients with acne vulgaris and their relationship with diet.

    PubMed

    Agamia, N F; Abdallah, D M; Sorour, O; Mourad, B; Younan, D N

    2016-06-01

    Acne vulgaris is a multifactorial disorder of the pilosebaceous units. Several studies have reported that insulin-like growth factor (IGF)-1, forkhead box transcription factor (Fox)O1 and mammalian target of rapamycin (mTOR) interactions may be the key to understanding the links between genetic and environmental factors in acne vulgaris. To evaluate the immunohistochemical detection of mTOR and FoxO1 in the skin, and the serum level of IGF-1 in patients with acne vulgaris. This study was carried out on 60 participants, including 40 patients with acne and 20 controls. A diet questionnaire was administered to the patients and controls. Serum levels of IGF-1 were measured using enzyme-linked immunosorbent assay, and skin biopsies were taken from lesions on the backs of the patients and controls. FoxO1 and mTOR expression was detected using immunohistochemistry. A significantly higher serum IGF-1 level was found in the patients with acne than in the controls. The cytoplasmic expression of FoxO1 was found to be significantly greater in the acne group, whereas in the control subjects this expression was likely to be nuclear. Both the cytoplasmic expression and the nuclear expression of mTOR were significantly more intense in the patients with acne than in the controls. Excess consumption of a high-glycaemic-load diet was significantly associated with higher serum levels of IGF-1 and cytoplasmic expression of FoxO1 and mTOR. These results suggest that FoxO1, mTOR, serum IGF-1 and a high-glycaemic-load diet may play a role in acne pathogenesis. © 2016 British Association of Dermatologists.

  19. FoxO3a is activated and executes neuron death via Bim in response to β-amyloid

    PubMed Central

    Sanphui, P; Biswas, S C

    2013-01-01

    The molecules that mediate death of selective neurons in Alzheimer's disease (AD) are mostly unknown. The Forkhead transcription factor FoxO3a has emerged as an important mediator of cell fate including apoptosis. When phosphorylated by Akt, it is localized in the cytosol as an inactive complex bound with 14-3-3 protein. For activation and localization of FoxO3a in the nucleus, further modifications are required, such as phosphorylation by mammalian sterile 20-like kinase 1 (MST1) and arginine methylation by protein arginine methyltransferase1. We report here that Akt-mediated phosphorylation of FoxO3a is diminished in neurons exposed to oligomeric β-amyloid (Aβ), in vitro and in vivo. We also find that oligomeric Aβ activates FoxO3a by MST1 phosphorylation and arginine methylation in primary cultures of hippocampal and cortical neurons. Moreover, FoxO3a translocates from the cytosol to nucleus in cultured neurons in response to Aβ. Most importantly, the nuclear redistribution of FoxO3a is significantly increased in Aβ-overexpressing AβPPswe-PS1dE9 mice and Aβ-infused rat brains. We further find that FoxO3a is essential for loss of neurons and neural networks in response to Aβ. Recent reports implicate Bim, a pro-apoptotic member of Bcl-2 family, in neuron death in AD, as a key target of this transcription factor. We show that Bim is a direct target of FoxO3a in Aβ-treated neurons. Our findings thus indicate that FoxO3a is activated, translocated to the nucleus and mediates neuron death via Bim in response to Aβ toxicity. PMID:23661003

  20. DNA residence time is a regulatory factor of transcription repression.

    PubMed

    Clauß, Karen; Popp, Achim P; Schulze, Lena; Hettich, Johannes; Reisser, Matthias; Escoter Torres, Laura; Uhlenhaut, N Henriette; Gebhardt, J Christof M

    2017-08-21

    Transcription comprises a highly regulated sequence of intrinsically stochastic processes, resulting in bursts of transcription intermitted by quiescence. In transcription activation or repression, a transcription factor binds dynamically to DNA, with a residence time unique to each factor. Whether the DNA residence time is important in the transcription process is unclear. Here, we designed a series of transcription repressors differing in their DNA residence time by utilizing the modular DNA binding domain of transcription activator-like effectors (TALEs) and varying the number of nucleotide-recognizing repeat domains. We characterized the DNA residence times of our repressors in living cells using single molecule tracking. The residence times depended non-linearly on the number of repeat domains and differed by more than a factor of six. The factors provoked a residence time-dependent decrease in transcript level of the glucocorticoid receptor-activated gene SGK1. Down regulation of transcription was due to a lower burst frequency in the presence of long binding repressors and is in accordance with a model of competitive inhibition of endogenous activator binding. Our single molecule experiments reveal transcription factor DNA residence time as a regulatory factor controlling transcription repression and establish TALE-DNA binding domains as tools for the temporal dissection of transcription regulation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Transcriptional interference by RNA polymerase pausing and dislodgement of transcription factors.

    PubMed

    Palmer, Adam C; Egan, J Barry; Shearwin, Keith E

    2011-01-01

    Transcriptional interference is the in cis suppression of one transcriptional process by another. Mathematical modeling shows that promoter occlusion by elongating RNA polymerases cannot produce strong interference. Interference may instead be generated by (1) dislodgement of slow-to-assemble pre-initiation complexes and transcription factors and (2) prolonged occlusion by paused RNA polymerases.

  2. Transcription factor binding predicts histone modifications in human cell lines

    PubMed Central

    Benveniste, Dan; Sonntag, Hans-Joachim; Sanguinetti, Guido; Sproul, Duncan

    2014-01-01

    Gene expression in higher organisms is thought to be regulated by a complex network of transcription factor binding and chromatin modifications, yet the relative importance of these two factors remains a matter of debate. Here, we show that a computational approach allows surprisingly accurate prediction of histone modifications solely from knowledge of transcription factor binding both at promoters and at potential distal regulatory elements. This accuracy significantly and substantially exceeds what could be achieved by using DNA sequence as an input feature. Remarkably, we show that transcription factor binding enables strikingly accurate predictions across different cell lines. Analysis of the relative importance of specific transcription factors as predictors of specific histone marks recapitulated known interactions between transcription factors and histone modifiers. Our results demonstrate that reported associations between histone marks and gene expression may be indirect effects caused by interactions between transcription factors and histone-modifying complexes. PMID:25187560

  3. TOBFAC: the database of tobacco transcription factors

    PubMed Central

    Rushton, Paul J; Bokowiec, Marta T; Laudeman, Thomas W; Brannock, Jennifer F; Chen, Xianfeng; Timko, Michael P

    2008-01-01

    Background Regulation of gene expression at the level of transcription is a major control point in many biological processes. Transcription factors (TFs) can activate and/or repress the transcriptional rate of target genes and vascular plant genomes devote approximately 7% of their coding capacity to TFs. Global analysis of TFs has only been performed for three complete higher plant genomes – Arabidopsis (Arabidopsis thaliana), poplar (Populus trichocarpa) and rice (Oryza sativa). Presently, no large-scale analysis of TFs has been made from a member of the Solanaceae, one of the most important families of vascular plants. To fill this void, we have analysed tobacco (Nicotiana tabacum) TFs using a dataset of 1,159,022 gene-space sequence reads (GSRs) obtained by methylation filtering of the tobacco genome. An analytical pipeline was developed to isolate TF sequences from the GSR data set. This involved multiple (typically 10–15) independent searches with different versions of the TF family-defining domain(s) (normally the DNA-binding domain) followed by assembly into contigs and verification. Our analysis revealed that tobacco contains a minimum of 2,513 TFs representing all of the 64 well-characterised plant TF families. The number of TFs in tobacco is higher than previously reported for Arabidopsis and rice. Results TOBFAC: the database of tobacco transcription factors, is an integrative database that provides a portal to sequence and phylogeny data for the identified TFs, together with a large quantity of other data concerning TFs in tobacco. The database contains an individual page dedicated to each of the 64 TF families. These contain background information, domain architecture via Pfam links, a list of all sequences and an assessment of the minimum number of TFs in this family in tobacco. Downloadable phylogenetic trees of the major families are provided along with detailed information on the bioinformatic pipeline that was used to find all family members

  4. Competitive inhibition of transcription factors by small interfering peptides.

    PubMed

    Seo, Pil Joon; Hong, Shin-Young; Kim, Sang-Gyu; Park, Chung-Mo

    2011-10-01

    Combinatorial assortment by dynamic dimer formation diversifies gene transcriptional specificities of transcription factors. A similar but biochemically distinct mechanism is competitive inhibition in which small proteins act as negative regulators by competitively forming nonfunctional heterodimers with specific transcription factors. The most extensively studied is the negative regulation of auxin response factors by AUXIN/INDOLE-3-ACETIC ACID repressors. Similarly, Arabidopsis thaliana (Arabidopsis) little zipper and mini finger proteins act as competitive inhibitors of target transcription factors. Competitive inhibitors are also generated by alternative splicing and controlled proteolytic processing. Because they provide a way of attenuating transcription factors we propose to call them small interfering peptides (siPEPs). The siPEP-mediated strategy could be applied to deactivate specific transcription factors in crop plants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Label free analysis of transcription factors using microcantilever arrays.

    PubMed

    Huber, François; Hegner, Martin; Gerber, Christoph; Güntherodt, Hans-Joachim; Lang, Hans Peter

    2006-02-15

    We report the measurement of protein interaction with double-stranded DNA oligonucleotides using cantilever microarray technology. We investigated two different DNA-binding proteins, the transcription factors SP1 and NF-kappaB, using cantilever arrays as they allow label-free measurement of different biomolecular interactions in parallel. Double-stranded DNA oligonucleotides containing a specific binding site for a transcription factor were sensitized on gold-coated cantilevers. The binding of the transcription factor creates a surface stress, resulting in a bending of the cantilevers. Both transcription factors could be detected independently at concentrations of 80-100 nM. A concentration dependence of the bending signal was measured using concentrations from 100 to 400 nM of NF-kappaB. The experiments show that the recognition sequence of one transcription factor can serve as a reference for the other, highlighting the sequence specificity of transcription factor binding.

  6. Genome-Wide Chromosomal Targets of Oncogenic Transcription Factors

    DTIC Science & Technology

    2005-04-01

    cancer. Cancer involves, at least in part, aberrant programs of gene expression often mediated by oncogenic transcription factors activating downstream...networks that underlie complex gene expression programs that are activated in cancer. Indeed, transcription factors have been proposed as targets of...some of the limitations of ChIP-chip analysis and can be applied to transcription factors important in breast cancer such as c-myc and ER ( estrogen

  7. Multiple functions of nucleosomes and regulatory factors in transcription.

    PubMed

    Workman, J L; Buchman, A R

    1993-03-01

    The in vivo packaging of DNA with histone proteins to form chromatin makes its transcription a difficult process. Biochemical and genetic studies are beginning to reveal mechanistic details of how transcriptional regulatory factors confront at least two hurdles created by nucleosomes, the primary structural unit of chromatin. Regulatory factors must gain access to their respective binding sites and activate the formation of transcription complexes at core promoter elements. Distinct regulatory factors may be specialized to perform these functions.

  8. Involvement of the Up-regulated FoxO1 Expression in Follicular Granulosa Cell Apoptosis Induced by Oxidative Stress*

    PubMed Central

    Shen, Ming; Lin, Fei; Zhang, Jiaqing; Tang, Yiting; Chen, Wei-Kang; Liu, Honglin

    2012-01-01

    Follicular atresia is common in female mammalian ovaries, where most follicles undergo degeneration at any stage of growth and development. Oxidative stress gives rise to triggering granulosa cell apoptosis, which has been suggested as a major cause of follicular atresia. However, the underlying mechanism by which the oxidative stress induces follicular atresia remains unclear. FoxO transcription factors are known as critical mediators in the regulation of oxidative stress and apoptosis. In this study, the involvement of FoxO1 in oxidative stress-induced apoptosis of mouse follicular granulosa cells (MGCs) was investigated in vivo and in vitro. It was observed that increased apoptotic signals correlated with elevated expression of FoxO1 in MGCs when mice were treated with the oxidant. Correspondingly, the expressions of FoxO1 target genes, such as proapoptotic genes and antioxidative genes, were also up-regulated. In primary cultured MGCs, treatment with H2O2 led to FoxO1 nuclear translocation. Further studies with overexpression and knockdown of FoxO1 demonstrated the critical role of FoxO1 in the induction of MGC apoptosis by oxidative stress. Finally, inactivation of FoxO1 by insulin treatment confirmed that FoxO1 induced by oxidative stress played a pivotal role in up-regulating the expression of downstream apoptosis-related genes in MGCs. Our results suggest that up-regulation of FoxO1 by oxidative stress leads to apoptosis of granulosa cells, which eventually results in follicular atresia in mice. PMID:22669940

  9. DNA-binding small molecules as inhibitors of transcription factors.

    PubMed

    Leung, Chung-Hang; Chan, Daniel Shiu-Hin; Ma, Victor Pui-Yan; Ma, Dik-Lung

    2013-07-01

    Accumulating evidence implicating the role of aberrant transcription factor signaling in the pathogenesis of various human diseases such as cancer and inflammation has stimulated the development of small molecule ligands capable of targeting transcription factor activity and modulating gene expression. The use of DNA-binding small molecules to selectively inhibit transcription factor-DNA interactions represents one possible approach toward this goal. In this review, we summarize the development of DNA-binding small molecule inhibitors of transcription factors from 2004 to 2011, and their binding mode and therapeutic potential will be discussed. © 2012 Wiley Periodicals, Inc.

  10. In vivo delivery of transcription factors with multifunctional oligonucleotides

    NASA Astrophysics Data System (ADS)

    Lee, Kunwoo; Rafi, Mohammad; Wang, Xiaojian; Aran, Kiana; Feng, Xuli; Lo Sterzo, Carlo; Tang, Richard; Lingampalli, Nithya; Kim, Hyun Jin; Murthy, Niren

    2015-07-01

    Therapeutics based on transcription factors have the potential to revolutionize medicine but have had limited clinical success as a consequence of delivery problems. The delivery of transcription factors is challenging because it requires the development of a delivery vehicle that can complex transcription factors, target cells and stimulate endosomal disruption, with minimal toxicity. Here, we present a multifunctional oligonucleotide, termed DARTs (DNA assembled recombinant transcription factors), which can deliver transcription factors with high efficiency in vivo. DARTs are composed of an oligonucleotide that contains a transcription-factor-binding sequence and hydrophobic membrane-disruptive chains that are masked by acid-cleavable galactose residues. DARTs have a unique molecular architecture, which allows them to bind transcription factors, trigger endocytosis in hepatocytes, and stimulate endosomal disruption. The DARTs have enhanced uptake in hepatocytes as a result of their galactose residues and can disrupt endosomes efficiently with minimal toxicity, because unmasking of their hydrophobic domains selectively occurs in the acidic environment of the endosome. We show that DARTs can deliver the transcription factor nuclear erythroid 2-related factor 2 (Nrf2) to the liver, catalyse the transcription of Nrf2 downstream genes, and rescue mice from acetaminophen-induced liver injury.

  11. Mechanisms of transcription factor evolution in Metazoa

    PubMed Central

    Schmitz, Jonathan F.; Zimmer, Fabian; Bornberg-Bauer, Erich

    2016-01-01

    Transcriptions factors (TFs) are pivotal for the regulation of virtually all cellular processes, including growth and development. Expansions of TF families are causally linked to increases in organismal complexity. Here we study the evolutionary dynamics, genetic causes and functional implications of the five largest metazoan TF families. We find that family expansions dominate across the whole metazoan tree; however, some branches experience exceptional family-specific accelerated expansions. Additionally, we find that such expansions are often predated by modular domain rearrangements, which spur the expansion of a new sub-family by separating it from the rest of the TF family in terms of protein–protein interactions. This separation allows for radical shifts in the functional spectrum of a duplicated TF. We also find functional differentiation inside TF sub-families as changes in expression specificity. Furthermore, accelerated family expansions are facilitated by repeats of sequence motifs such as C2H2 zinc fingers. We quantify whole genome duplications and single gene duplications as sources of TF family expansions, implying that some, but not all, TF duplicates are preferentially retained. We conclude that trans-regulatory changes (domain rearrangements) are instrumental for fundamental functional innovations, that cis-regulatory changes (affecting expression) accomplish wide-spread fine tuning and both jointly contribute to the functional diversification of TFs. PMID:27288445

  12. InsR/FoxO1 signaling curtails hypothalamic POMC neuron number.

    PubMed

    Plum, Leona; Lin, Hua V; Aizawa, Kumiko S; Liu, Yitian; Accili, Domenico

    2012-01-01

    Insulin receptor (InsR) signaling through transcription factor FoxO1 is important in the development of hypothalamic neuron feeding circuits, but knowledge about underlying mechanisms is limited. To investigate the role of InsR/FoxO1 signaling in the development and maintenance of these circuits, we surveyed the pool of hypothalamic neurons expressing Pomc mRNA in different mouse models of impaired hypothalamic InsR signaling. InsR ablation in the entire hypothalamus did not affect Pomc-neuron number at birth, but resulted in a 25% increase, most notably in the middle arcuate nucleus region, in young adults. Selective restoration of InsR expression in POMC neurons in these mice partly reversed the abnormality, resulting in a 10% decrease compared to age-matched controls. To establish whether FoxO1 signaling plays a role in this process, we examined POMC neuron number in mice with POMC-specific deletion of FoxO1, and detected a 23% decrease in age-matched animals, consistent with a cell-autonomous role of InsR/FoxO1 signaling in regulating POMC neuron number, distinct from its established role to activate Pomc transcription. These changes in Pomc cells occurred in the absence of marked changes in humoral factors or hypothalamic NPY neurons.

  13. Effects of Cigarette Smoke on the Activation of Oxidative Stress-Related Transcription Factors in Female A/J Mouse Lung

    PubMed Central

    Tharappel, Job C.; Cholewa, Jill; Espandiari, Parvaneh; Spear, Brett T.; Gairola, C. Gary; Glauert, Howard P.

    2010-01-01

    Cigarette smoke contains a high concentration of free radicals and induces oxidative stress in the lung and other tissues. Several transcription factors are known to be activated by oxidative stress, including nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and hypoxia-inducible factor (HIF). Studies were therefore undertaken to examine if cigarette smoke could activate these transcription factors, as well as other transcription factors that may be important in lung carcinogenesis. Female A/J mice were exposed to cigarette smoke for 2, 5, 10, 15, 20, 42, or 56 days (6 hr/day, 5 days/wk). Cigarette smoke did not increase NF-κB activation at any of these times, but NF-κB DNA binding activity was lower after 15 days and 56 days of smoke exposure. The DNA binding activity of AP-1 was lower after 10 days and 56 days but was not changed after 42 days of smoke exposure. The DNA binding activity of HIF was quantitatively increased after 42 days of smoke exposure but decreased after 56 days. Whether the activation of other transcription factors in the lung could be altered after exposure to cigarette smoke was subsequently examined. The DNA binding activities of FoxF2, myc-CF1, RORE, and p53 were examined after 10 days of smoke exposure. The DNA binding activities of FoxF2 and p53 were quantitatively increased, but those of myc-CF1 and RORE were unaffected. These studies show that cigarette smoke exposure leads to quantitative increases in DNA binding activities of FoxF2 and p53, while the activations of NF-κB, AP-1, and HIF are largely unaffected or reduced. PMID:20711931

  14. FoxP3 inhibits proliferation and induces apoptosis of gastric cancer cells by activating the apoptotic signaling pathway

    SciTech Connect

    Ma, Gui-Fen; Chen, Shi-Yao; Sun, Zhi-Rong; Miao, Qing; Liu, Yi-Mei; Zeng, Xiao-Qing; Luo, Tian-Cheng; Ma, Li-Li; Lian, Jing-Jing; Song, Dong-Li

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer The article revealed FoxP3 gene function in gastric cancer firstly. Black-Right-Pointing-Pointer Present the novel roles of FoxP3 in inhibiting proliferation and promoting apoptosis in gastric cancer cells. Black-Right-Pointing-Pointer Overexpression of FoxP3 increased proapoptotic molecules and repressed antiapoptotic molecules. Black-Right-Pointing-Pointer Silencing of FoxP3 reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. Black-Right-Pointing-Pointer FoxP3 is sufficient for activating the apoptotic signaling pathway. -- Abstract: Forkhead Box Protein 3 (FoxP3) was identified as a key transcription factor to the occurring and function of the regulatory T cells (Tregs). However, limited evidence indicated its function in tumor cells. To elucidate the precise roles and underlying molecular mechanism of FoxP3 in gastric cancer (GC), we examined the expression of FoxP3 and the consequences of interfering with FoxP3 gene in human GC cell lines, AGS and MKN45, by multiple cellular and molecular approaches, such as immunofluorescence, gene transfection, CCK-8 assay, clone formation assay, TUNEL assay, Flow cytometry, immunoassay and quantities polymerase chain reaction (PCR). As a result, FoxP3 was expressed both in nucleus and cytoplasm of GC cells. Up-regulation of FoxP3 inhibited cell proliferation and promoted cell apoptosis. Overexpression of FoxP3 increased the protein and mRNA levels of proapoptotic molecules, such as poly ADP-ribose polymerase1 (PARP), caspase-3 and caspase-9, and repressed the expression of antiapoptotic molecules, such as cellular inhibitor of apoptosis-1 (c-IAP1) and the long isoform of B cell leukemia/lymphoma-2 (Bcl-2). Furthermore, silencing of FoxP3 by siRNA in GC cells reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. Collectively, our findings identify the novel roles of FoxP3 in inhibiting proliferation and inducing apoptosis

  15. Quantitatively predictable control of Drosophila transcriptional enhancers in vivo with engineered transcription factors.

    PubMed

    Crocker, Justin; Ilsley, Garth R; Stern, David L

    2016-03-01

    Genes are regulated by transcription factors that bind to regions of genomic DNA called enhancers. Considerable effort is focused on identifying transcription factor binding sites, with the goal of predicting gene expression from DNA sequence. Despite this effort, general, predictive models of enhancer function are currently lacking. Here we combine quantitative models of enhancer function with manipulations using engineered transcription factors to examine the extent to which enhancer function can be controlled in a quantitatively predictable manner. Our models, which incorporate few free parameters, can accurately predict the contributions of ectopic transcription factor inputs. These models allow the predictable 'tuning' of enhancers, providing a framework for the quantitative control of enhancers with engineered transcription factors.

  16. Transcription factor abundance controlled by an auto-regulatory mechanism involving a transcription start site switch.

    PubMed

    Ngondo, Richard Patryk; Carbon, Philippe

    2014-02-01

    A transcriptional feedback loop is the simplest and most direct means for a transcription factor to provide an increased stability of gene expression. In this work performed in human cells, we reveal a new negative auto-regulatory mechanism involving an alternative transcription start site (TSS) usage. Using the activating transcription factor ZNF143 as a model, we show that the ZNF143 low-affinity binding sites, located downstream of its canonical TSS, play the role of protein sensors to induce the up- or down-regulation of ZNF143 gene expression. We uncovered that the TSS switch that mediates this regulation implies the differential expression of two transcripts with an opposite protein production ability due to their different 5' untranslated regions. Moreover, our analysis of the ENCODE data suggests that this mechanism could be used by other transcription factors to rapidly respond to their own aberrant expression level.

  17. Networks of Transcription Factors for Oct4 Expression in Mice.

    PubMed

    Li, Yu-Qiang

    2017-09-01

    The present review aimed to assess the networks of transcription factors regulating the Oct4 expression in mice. Through a comprehensive analysis of the binding sites and the interrelationships of the transcription factors of Oct4, it is found that transcription factors of Oct4 form three regulating complexes centered by Oct4-Sox2, Nanog, and Lrh1. They bind on CR4, CR2, and CR1 regions of Oct4 promoter/enhancer, respectively, to activate Oct4 transcription synergistically. This article also discusses the mechanisms of fine-tuning the Oct4 expression. These findings have important implications in the field of stem cell and developmental biology.

  18. The WRKY transcription factor family in Brachypodium distachyon.

    PubMed

    Tripathi, Prateek; Rabara, Roel C; Langum, Tanner J; Boken, Ashley K; Rushton, Deena L; Boomsma, Darius D; Rinerson, Charles I; Rabara, Jennifer; Reese, R Neil; Chen, Xianfeng; Rohila, Jai S; Rushton, Paul J

    2012-06-22

    A complete assembled genome sequence of wheat is not yet available. Therefore, model plant systems for wheat are very valuable. Brachypodium distachyon (Brachypodium) is such a system. The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating important agronomic traits. Studies of WRKY transcription factors in Brachypodium and wheat therefore promise to lead to new strategies for wheat improvement. We have identified and manually curated the WRKY transcription factor family from Brachypodium using a pipeline designed to identify all potential WRKY genes. 86 WRKY transcription factors were found, a total higher than all other current databases. We therefore propose that our numbering system (BdWRKY1-BdWRKY86) becomes the standard nomenclature. In the JGI v1.0 assembly of Brachypodium with the MIPS/JGI v1.0 annotation, nine of the transcription factors have no gene model and eleven gene models are probably incorrectly predicted. In total, twenty WRKY transcription factors (23.3%) do not appear to have accurate gene models. To facilitate use of our data, we have produced The Database of Brachypodium distachyon WRKY Transcription Factors. Each WRKY transcription factor has a gene page that includes predicted protein domains from MEME analyses. These conserved protein domains reflect possible input and output domains in signaling. The database also contains a BLAST search function where a large dataset of WRKY transcription factors, published genes, and an extensive set of wheat ESTs can be searched. We also produced a phylogram containing the WRKY transcription factor families from Brachypodium, rice, Arabidopsis, soybean, and Physcomitrella patens, together with published WRKY transcription factors from wheat. This phylogenetic tree provides evidence for orthologues, co-orthologues, and paralogues of Brachypodium WRKY transcription factors. The description of the WRKY transcription factor

  19. The WRKY transcription factor family in Brachypodium distachyon

    PubMed Central

    2012-01-01

    Background A complete assembled genome sequence of wheat is not yet available. Therefore, model plant systems for wheat are very valuable. Brachypodium distachyon (Brachypodium) is such a system. The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating important agronomic traits. Studies of WRKY transcription factors in Brachypodium and wheat therefore promise to lead to new strategies for wheat improvement. Results We have identified and manually curated the WRKY transcription factor family from Brachypodium using a pipeline designed to identify all potential WRKY genes. 86 WRKY transcription factors were found, a total higher than all other current databases. We therefore propose that our numbering system (BdWRKY1-BdWRKY86) becomes the standard nomenclature. In the JGI v1.0 assembly of Brachypodium with the MIPS/JGI v1.0 annotation, nine of the transcription factors have no gene model and eleven gene models are probably incorrectly predicted. In total, twenty WRKY transcription factors (23.3%) do not appear to have accurate gene models. To facilitate use of our data, we have produced The Database of Brachypodium distachyon WRKY Transcription Factors. Each WRKY transcription factor has a gene page that includes predicted protein domains from MEME analyses. These conserved protein domains reflect possible input and output domains in signaling. The database also contains a BLAST search function where a large dataset of WRKY transcription factors, published genes, and an extensive set of wheat ESTs can be searched. We also produced a phylogram containing the WRKY transcription factor families from Brachypodium, rice, Arabidopsis, soybean, and Physcomitrella patens, together with published WRKY transcription factors from wheat. This phylogenetic tree provides evidence for orthologues, co-orthologues, and paralogues of Brachypodium WRKY transcription factors. Conclusions The description

  20. A Functional Interaction between Hippo-YAP Signaling and FoxO1 Mediates the Oxidative Stress Response

    PubMed Central

    Shao, Dan; Zhai, Peiyong; Del Re, Dominic P.; Sciarretta, Sebastiano; Yabuta, Norikazu; Nojima, Hiroshi; Lim, Dae-Sik; Pan, Duojia; Sadoshima, Junichi

    2014-01-01

    The Hippo pathway is an evolutionarily conserved regulator of organ size and tumorigenesis that negatively regulates cell growth and survival. Here we report that YAP, the terminal effector of the Hippo pathway, interacts with FoxO1 in the nucleus of cardiomyocytes, thereby promoting survival. YAP and FoxO1 form a functional complex on the promoters of the catalase and MnSOD antioxidant genes and stimulate their transcription. Inactivation of YAP, induced by Hippo activation, suppresses FoxO1 activity and decreases antioxidant gene expression, suggesting that Hippo signaling modulates the FoxO1-mediated antioxidant response. In the setting of ischemia/reperfusion (I/R) in the heart, activation of Hippo antagonizes YAP-FoxO1, leading to enhanced oxidative stress-induced cell death through downregulation of catalase and MnSOD. Conversely, restoration of YAP activity protects against I/R injury. These results suggest that YAP is a nuclear co-factor of FoxO1 and that the Hippo pathway negatively affects cardiomyocyte survival by inhibiting the function of YAP-FoxO1. PMID:24525530

  1. FoxO proteins: cunning concepts and considerations for the cardiovascular system.

    PubMed

    Maiese, Kenneth; Chong, Zhao Zhong; Shang, Yan Chen; Hou, Jinling

    2009-02-01

    Dysfunction in the cardiovascular system can lead to the progression of a number of disease entities that can involve cancer, diabetes, cardiac ischaemia, neurodegeneration and immune system dysfunction. In order for new therapeutic avenues to overcome some of the limitations of present clinical treatments for these disorders, future investigations must focus upon novel cellular processes that control cellular development, proliferation, metabolism and inflammation. In this respect, members of the mammalian forkhead transcription factors of the O class (FoxOs) have increasingly become recognized as important and exciting targets for disorders of the cardiovascular system. In the present review, we describe the role of these transcription factors in the cardiovascular system during processes that involve angiogenesis, cardiovascular development, hypertension, cellular metabolism, oxidative stress, stem cell proliferation, immune system regulation and cancer. Current knowledge of FoxO protein function combined with future studies should continue to lay the foundation for the successful translation of these transcription factors into novel and robust clinical therapies.

  2. Transcriptional repression of BODENLOS by HD-ZIP transcription factor HB5 in Arabidopsis thaliana

    PubMed Central

    De Smet, Ive; Lau, Steffen; Ehrismann, Jasmin S.; Axiotis, Ioannis; Kolb, Martina; Kientz, Marika; Weijers, Dolf; Jürgens, Gerd

    2013-01-01

    In Arabidopsis thaliana, the phytohormone auxin is an important patterning agent during embryogenesis and post-embryonic development, exerting effects through transcriptional regulation. The main determinants of the transcriptional auxin response machinery are AUXIN RESPONSE FACTOR (ARF) transcription factors and AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) inhibitors. Although members of these two protein families are major developmental regulators, the transcriptional regulation of the genes encoding them has not been well explored. For example, apart from auxin-linked regulatory inputs, factors regulating the expression of the AUX/IAA BODENLOS (BDL)/IAA12 are not known. Here, it was shown that the HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP) transcription factor HOMEOBOX PROTEIN 5 (HB5) negatively regulates BDL expression, which may contribute to the spatial control of BDL expression. As such, HB5 and probably other class I HD-ZIP proteins, appear to modulate BDL-dependent auxin response. PMID:23682118

  3. Endothelial FoxM1 Mediates Bone Marrow Progenitor Cell-Induced Vascular Repair and Resolution of Inflammation following Inflammatory Lung Injury

    PubMed Central

    Zhao, Yidan D.; Huang, Xiaojia; Yi, Fan; Dai, Zhiyu; Qian, Zhijian; Tiruppathi, Chinnaswamy; Tran, Khiem; Zhao, You-Yang

    2015-01-01

    Adult stem cell treatment is a potential novel therapeutic approach for acute respiratory distress syndrome. Given the extremely low rate of cell engraftment, it is believed that these cells exert their beneficial effects via paracrine mechanisms. However, the endogenous mediator(s) in the pulmonary vasculature remains unclear. Employing the mouse model with endothelial cell (EC)-restricted disruption of FoxM1 (FoxM1 CKO), here we show that endothelial expression of the reparative transcriptional factor FoxM1 is required for the protective effects of bone marrow progenitor cells (BMPC) against LPS-induced inflammatory lung injury and mortality. BMPC treatment resulted in rapid induction of FoxM1 expression in WT but not FoxM1 CKO lungs. BMPC-induced inhibition of lung vascular injury, resolution of lung inflammation, and survival, as seen in WT mice, were abrogated in FoxM1 CKO mice following LPS challenge. Mechanistically, BMPC treatment failed to induce lung EC proliferation in FoxM1 CKO mice, which was associated with impaired expression of FoxM1 target genes essential for cell cycle progression. We also observed that BMPC treatment enhanced endothelial barrier function in WT, but not in FoxM1-deficient EC monolayers. Restoration of β-catenin expression in FoxM1-deficient ECs normalized endothelial barrier enhancement in response to BMPC treatment. These data demonstrate the requisite role of endothelial FoxM1 in the mechanism of BMPC-induced vascular repair to restore vascular integrity and accelerate resolution of inflammation, thereby promoting survival following inflammatory lung injury. PMID:24578354

  4. Transcription elongation regulator 1 is a co-integrator of the cell fate determination factor Dachshund homolog 1.

    PubMed

    Zhou, Jie; Liu, Yang; Zhang, Wei; Popov, Vladimir M; Wang, Min; Pattabiraman, Nagarajan; Suñé, Carlos; Cvekl, Ales; Wu, Kongming; Jiang, Jie; Wang, Chenguang; Pestell, Richard G

    2010-12-17

    DACH1 (Dachshund homolog 1) is a key component of the retinal determination gene network and regulates gene expression either indirectly as a co-integrator or through direct DNA binding. The current studies were conducted to understand, at a higher level of resolution, the mechanisms governing DACH1-mediated transcriptional repression via DNA sequence-specific binding. DACH1 repressed gene transcription driven by the DACH1-responsive element (DRE). Recent genome-wide ChIP-Seq analysis demonstrated DACH1 binding sites co-localized with Forkhead protein (FOX) binding sites. Herein, DACH1 repressed, whereas FOX proteins enhanced, both DRE and FOXA-responsive element-driven gene expression. Reduced DACH1 expression using a shRNA approach enhanced FOX protein activity. As DACH1 antagonized FOX target gene expression and attenuated FOX signaling, we sought to identify limiting co-integrator proteins governing DACH1 signaling. Proteomic analysis identified transcription elongation regulator 1 (TCERG1) as the transcriptional co-regulator of DACH1 activity. The FF2 domain of TCERG1 was required for DACH1 binding, and the deletion of FF2 abolished DACH1 trans-repression function. The carboxyl terminus of DACH1 was necessary and sufficient for TCERG1 binding. Thus, DACH1 represses gene transcription through direct DNA binding to the promoter region of target genes by recruiting the transcriptional co-regulator, TCERG1.

  5. Overexpression of Mitogen-activated protein kinase phosphatase-3 (MKP-3) reduces FoxO1 phosphorylation in mice hypothalamus.

    PubMed

    Rodrigues, Bárbara de Almeida; Kuga, Gabriel Keine; Muñoz, Vitor Rosetto; Gaspar, Rafael Calais; Tavares, Mariana Rosolen; Botezelli, José Diego; da Silva, Adelino Sanchez Ramos; Cintra, Dennys Esper; de Moura, Leandro Pereira; Simabuco, Fernando Moreira; Ropelle, Eduardo Rochete; Pauli, José Rodrigo

    2017-10-17

    The mitogen-activated kinase phosphatase-3 (MKP-3) has gained great importance in the scientific community by acting as a regulator of the cell cycle through dephosphorylation of FoxO1, an important transcription factor involved in the insulin intracellular signaling cascade. When dephosphorylated and translocated to the nuclei, FoxO1 can promote the transcription of orexigenic neuropeptides (NPY/AgRP) in the hypothalamus, whereas insulin signaling is responsible for the disruption of this process. However, it is not understood if the hypothalamic activation of MKP-3 affects FoxO1 phosphorylation, and we hypothesized that MKP-3 overexpression reduces the capacity of the insulin signal to phosphorylate FoxO1. In the present study, we overexpressed the DUSP6 gene through an injection of adenovirus directly into the hypothalamic third ventricle of Swiss mice. The colocalization of the adenovirus was confirmed by the immunofluorescence assay. Then, MKP-3 overexpression resulted in a significant reduction of hypothalamic FoxO1 phosphorylation after insulin stimulation. This effect was independent of changes in Akt phosphorylation. Thus, the role of MKP-3 in the hypothalamus is closely associated with FoxO1 dephosphorylation and may provide a potential therapeutic target against hypothalamic disorders related to obesity and unbalanced food intake control. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. FoxO1 Haploinsufficiency Protects Against High-Fat Diet–Induced Insulin Resistance With Enhanced Peroxisome Proliferator–Activated Receptor γ Activation in Adipose Tissue

    PubMed Central

    Kim, Jane J.; Li, Pingping; Huntley, Jessica; Chang, Jeffrey P.; Arden, Karen C.; Olefsky, Jerrold M.

    2009-01-01

    OBJECTIVE Forkhead box O (FoxO) transcription factors represent evolutionarily conserved targets of insulin signaling, regulating metabolism and cellular differentiation in response to changes in nutrient availability. Although the FoxO1 isoform is known to play a key role in adipogenesis, its physiological role in differentiated adipose tissue remains unclear. RESEARCH DESIGN AND METHODS In this study, we analyzed the phenotype of FoxO1 haploinsufficient mice to investigate the role of FoxO1 in high-fat diet–induced obesity and adipose tissue metabolism. RESULTS We showed that reduced FoxO1 expression protects mice against obesity-related insulin resistance with marked improvement not only in hepatic insulin sensitivity but also in skeletal muscle insulin action. FoxO1 haploinsufficiency also resulted in increased peroxisome proliferator–activated receptor (PPAR)γ gene expression in adipose tissue, with enhanced expression of PPARγ target genes known to influence metabolism. Moreover, treatment of mice with the PPARγ agonist rosiglitazone caused a greater improvement in in vivo insulin sensitivity in FoxO1 haploinsufficient animals, including reductions in circulating proinflammatory cytokines. CONCLUSIONS These findings indicate that FoxO1 proteins negatively regulate insulin action and that their effect may be explained, at least in part, by inhibition of PPARγ function. PMID:19289458

  7. The ThPOK transcription factor differentially affects the development and function of self-specific CD8(+) T cells and regulatory CD4(+) T cells.

    PubMed

    Twu, Yuh-Ching; Teh, Hung-Sia

    2014-03-01

    The zinc finger transcription factor ThPOK plays a crucial role in CD4 T-cell development and CD4/CD8 lineage decision. In ThPOK-deficient mice, developing T cells expressing MHC class II-restricted T-cell receptors are redirected into the CD8 T-cell lineage. In this study, we investigated whether the ThPOK transgene affected the development and function of two additional types of T cells, namely self-specific CD8 T cells and CD4(+) FoxP3(+) T regulatory cells. Self-specific CD8 T cells are characterized by high expression of CD44, CD122, Ly6C, 1B11 and proliferation in response to either IL-2 or IL-15. The ThPOK transgene converted these self-specific CD8 T cells into CD4 T cells. The converted CD4(+) T cells are no longer self-reactive, lose the characteristics of self-specific CD8 T cells, acquire the properties of conventional CD4 T cells and survive poorly in peripheral lymphoid organs. By contrast, the ThPOK transgene promoted the development of CD4(+) FoxP3(+) regulatory T cells resulting in an increased recovery of CD4(+) FoxP3(+) regulatory T cells that expressed higher transforming growth factor-β-dependent suppressor activity. These studies indicate that the ThPOK transcription factor differentially affects the development and function of self-specific CD8 T cells and CD4(+) FoxP3(+) regulatory T cells.

  8. The physical size of transcription factors is key to transcriptional regulation in chromatin domains

    NASA Astrophysics Data System (ADS)

    Maeshima, Kazuhiro; Kaizu, Kazunari; Tamura, Sachiko; Nozaki, Tadasu; Kokubo, Tetsuro; Takahashi, Koichi

    2015-02-01

    Genetic information, which is stored in the long strand of genomic DNA as chromatin, must be scanned and read out by various transcription factors. First, gene-specific transcription factors, which are relatively small (˜50 kDa), scan the genome and bind regulatory elements. Such factors then recruit general transcription factors, Mediators, RNA polymerases, nucleosome remodellers, and histone modifiers, most of which are large protein complexes of 1-3 MDa in size. Here, we propose a new model for the functional significance of the size of transcription factors (or complexes) for gene regulation of chromatin domains. Recent findings suggest that chromatin consists of irregularly folded nucleosome fibres (10 nm fibres) and forms numerous condensed domains (e.g., topologically associating domains). Although the flexibility and dynamics of chromatin allow repositioning of genes within the condensed domains, the size exclusion effect of the domain may limit accessibility of DNA sequences by transcription factors. We used Monte Carlo computer simulations to determine the physical size limit of transcription factors that can enter condensed chromatin domains. Small gene-specific transcription factors can penetrate into the chromatin domains and search their target sequences, whereas large transcription complexes cannot enter the domain. Due to this property, once a large complex binds its target site via gene-specific factors it can act as a ‘buoy’ to keep the target region on the surface of the condensed domain and maintain transcriptional competency. This size-dependent specialization of target-scanning and surface-tethering functions could provide novel insight into the mechanisms of various DNA transactions, such as DNA replication and repair/recombination.

  9. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.

    PubMed

    Riechmann, J L; Heard, J; Martin, G; Reuber, L; Jiang, C; Keddie, J; Adam, L; Pineda, O; Ratcliffe, O J; Samaha, R R; Creelman, R; Pilgrim, M; Broun, P; Zhang, J Z; Ghandehari, D; Sherman, B K; Yu, G

    2000-12-15

    The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

  10. Temperature, template topology, and factor requirements of archaeal transcription

    PubMed Central

    Bell, Stephen D.; Jaxel, Christine; Nadal, Marc; Kosa, Peter F.; Jackson, Stephen P.

    1998-01-01

    Although Archaea are prokaryotic and resemble Bacteria morphologically, their transcription apparatus is remarkably similar to those of eukaryotic cell nuclei. Because some Archaea exist in environments with temperatures of around 100°C, they are likely to have evolved unique strategies for transcriptional control. Here, we investigate the effects of temperature and DNA template topology in a thermophilic archaeal transcription system. Significantly, and in marked contrast with characterized eucaryal systems, archaeal DNA template topology has negligible effect on transcription levels at physiological temperatures using highly purified polymerase and recombinant transcription factors. Furthermore, archaeal transcription does not require hydrolysis of the β-γ phosphoanhydride bond of ATP. However, at lower temperatures, negatively supercoiled templates are transcribed more highly than those that are positively supercoiled. Notably, the block to transcription on positively supercoiled templates at lowered temperatures is at the level of polymerase binding and promoter opening. These data imply that Archaea do not possess a functional homologue of transcription factor TFIIH, and that for the promoters studied, transcription is mediated by TATA box-binding protein, transcription factor TFB, and RNA polymerase alone. Furthermore, they suggest that the reduction of plasmid linking number by hyperthermophilic Archaea in vivo in response to cold shock is a mechanism to maintain gene expression under these adverse circumstances. PMID:9860949

  11. Understanding variation in transcription factor binding by modeling transcription factor genome-epigenome interactions.

    PubMed

    Chen, Chieh-Chun; Xiao, Shu; Xie, Dan; Cao, Xiaoyi; Song, Chun-Xiao; Wang, Ting; He, Chuan; Zhong, Sheng

    2013-01-01

    Despite explosive growth in genomic datasets, the methods for studying epigenomic mechanisms of gene regulation remain primitive. Here we present a model-based approach to systematically analyze the epigenomic functions in modulating transcription factor-DNA binding. Based on the first principles of statistical mechanics, this model considers the interactions between epigenomic modifications and a cis-regulatory module, which contains multiple binding sites arranged in any configurations. We compiled a comprehensive epigenomic dataset in mouse embryonic stem (mES) cells, including DNA methylation (MeDIP-seq and MRE-seq), DNA hydroxymethylation (5-hmC-seq), and histone modifications (ChIP-seq). We discovered correlations of transcription factors (TFs) for specific combinations of epigenomic modifications, which we term epigenomic motifs. Epigenomic motifs explained why some TFs appeared to have different DNA binding motifs derived from in vivo (ChIP-seq) and in vitro experiments. Theoretical analyses suggested that the epigenome can modulate transcriptional noise and boost the cooperativity of weak TF binding sites. ChIP-seq data suggested that epigenomic boost of binding affinities in weak TF binding sites can function in mES cells. We showed in theory that the epigenome should suppress the TF binding differences on SNP-containing binding sites in two people. Using personal data, we identified strong associations between H3K4me2/H3K9ac and the degree of personal differences in NFκB binding in SNP-containing binding sites, which may explain why some SNPs introduce much smaller personal variations on TF binding than other SNPs. In summary, this model presents a powerful approach to analyze the functions of epigenomic modifications. This model was implemented into an open source program APEG (Affinity Prediction by Epigenome and Genome, http://systemsbio.ucsd.edu/apeg).

  12. FoxO1 regulates muscle fiber-type specification and inhibits calcineurin signaling during C2C12 myoblast differentiation.

    PubMed

    Yuan, Yuan; Shi, Xin-e; Liu, Yue-guang; Yang, Gong-she

    2011-02-01

    Adult skeletal muscle fibers can be categorized into slow-oxidative and fast-glycolytic subtypes based on specialized metabolic and contractile properties. The Forkhead box O1 (FoxO1) transcription factor governs muscle growth, metabolism, and cell differentiation, and has been shown to be involved in regulating muscle fiber type specification. However, to date, the mechanism behind FoxO1-mediated fiber type diversity is still unclear. In this article, FoxO1 being expressed preferentially in fast twitch fiber enriched muscles is reported. Moreover, the autors also detected that FoxO1 expression decreased in both fast and slow muscles from mice undergoing endurance exercise which induced a fast-to-slow fiber type transition. Using C2C12 myoblast, constitutively active FoxO1 mutant altered the proportion of muscle fiber type composition toward a fast-glycolytic phenotype and attenuated calcineurin phosphatase activity. In addition, a transcriptionally inactive FoxO1 by resveratrol triggered the expression of genes related to slow-oxidative muscle but not sufficient to induce a complete slow fiber transformation. Taken together, these results suggest that FoxO1 up-regulates fast fiber-type formation and down-regulates muscle oxidative capacity at least in part through inhibition of the calcineurin pathway.

  13. TFIIB-related Factors in RNA Polymerase I Transcription

    PubMed Central

    Knutson, Bruce A.; Hahn, Steven

    2012-01-01

    Eukaryotic RNA polymerases (Pol) I, II, III and archaeal Pol use a related set of general transcription factors to recognize promoter sequences, recruit Pol to promoters and to function at key points in the transcription initiation mechanism. The TFIIB-like general transcription factors (GTFs) function during several important and conserved steps in the initiation pathway for Pol II, III, and archaeal Pol. Until recently, the mechanism of Pol I initiation seemed unique, since it appeared to lack a GTF paralogous to the TFIIB-like proteins. The surprising recent discovery of TFIIB-related Pol I general factors in yeast and humans highlights the evolutionary conservation of transcription initiation mechanisms for all eukaryotic and archaeal Pols. These findings reveal new roles for the function of the Pol I GTFs and insight into the function of TFIIB-related factors. Models for Pol I transcription initiation are reexamined in light of these recent findings. PMID:22960599

  14. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis.

    PubMed

    Roczniak-Ferguson, Agnes; Petit, Constance S; Froehlich, Florian; Qian, Sharon; Ky, Jennifer; Angarola, Brittany; Walther, Tobias C; Ferguson, Shawn M

    2012-06-12

    Lysosomes are the major cellular site for clearance of defective organelles and digestion of internalized material. Demand on lysosomal capacity can vary greatly, and lysosomal function must be adjusted to maintain cellular homeostasis. Here, we identified an interaction between the lysosome-localized mechanistic target of rapamycin complex 1 (mTORC1) and the transcription factor TFEB (transcription factor EB), which promotes lysosome biogenesis. When lysosomal activity was adequate, mTOR-dependent phosphorylation of TFEB on Ser(211) triggered the binding of 14-3-3 proteins to TFEB, resulting in retention of the transcription factor in the cytoplasm. Inhibition of lysosomal function reduced the mTOR-dependent phosphorylation of TFEB, resulting in diminished interactions between TFEB and 14-3-3 proteins and the translocation of TFEB into the nucleus, where it could stimulate genes involved in lysosomal biogenesis. These results identify TFEB as a target of mTOR and suggest a mechanism for matching the transcriptional regulation of genes encoding proteins of autophagosomes and lysosomes to cellular need. The closely related transcription factors MITF (microphthalmia transcription factor) and TFE3 (transcription factor E3) also localized to lysosomes and accumulated in the nucleus when lysosome function was inhibited, thus broadening the range of physiological contexts under which this regulatory mechanism may prove important.

  15. Expression and function of transcription factor cMyb during cranial neural crest development

    PubMed Central

    Betancur, Paola; Simões-Costa, Marcos; Sauka-Spengler, Tatjana; Bronner, Marianne E.

    2014-01-01

    The transcription factor cMyb has well known functions in vertebrate hematopoiesis, but little was known about its distribution or function at early developmental stages. Here, we show that cMyb transcripts are present at the neural plate during gastrulation in chick embryos. cMyb expression then resolves to the cranial neural folds and is maintained in early migrating cranial neural crest cells during and after neurulation. Morpholino-mediated knock-down of cMyb reduces expression of Pax7 and Twist at the neural plate border, as well as reducing expression of neural crest specifier genes Snail2 and Sox10 and completely eliminating expression of Ets1. On the other hand, its loss results in abnormal maintenance of Zic1, but little or no effect on other neural crest specifier genes like FoxD3 or Sox9. These results place cMyb in a critical hierarchical position within the cranial neural crest cell gene regulatory network, likely directly inhibiting Zic1 and upstream of Ets1 and some, but not all, neural crest specifier genes. PMID:24509349

  16. Proteomic analyses reveal distinct chromatin-associated and soluble transcription factor complexes

    PubMed Central

    Li, Xu; Wang, Wenqi; Wang, Jiadong; Malovannaya, Anna; Xi, Yuanxin; Li, Wei; Guerra, Rudy; Hawke, David H; Qin, Jun; Chen, Junjie

    2015-01-01

    The current knowledge on how transcription factors (TFs), the ultimate targets and executors of cellular signalling pathways, are regulated by protein–protein interactions remains limited. Here, we performed proteomics analyses of soluble and chromatin-associated complexes of 56 TFs, including the targets of many signalling pathways involved in development and cancer, and 37 members of the Forkhead box (FOX) TF family. Using tandem affinity purification followed by mass spectrometry (TAP/MS), we performed 214 purifications and identified 2,156 high-confident protein–protein interactions. We found that most TFs form very distinct protein complexes on and off chromatin. Using this data set, we categorized the transcription-related or unrelated regulators for general or specific TFs. Our study offers a valuable resource of protein–protein interaction networks for a large number of TFs and underscores the general principle that TFs form distinct location-specific protein complexes that are associated with the different regulation and diverse functions of these TFs. PMID:25609649

  17. Longevity Genes Revealed by Integrative Analysis of Isoform-Specific daf-16/FoxO Mutants of Caenorhabditis elegans

    PubMed Central

    Chen, Albert Tzong-Yang; Guo, Chunfang; Itani, Omar A.; Budaitis, Breane G.; Williams, Travis W.; Hopkins, Christopher E.; McEachin, Richard C.; Pande, Manjusha; Grant, Ana R.; Yoshina, Sawako; Mitani, Shohei; Hu, Patrick J.

    2015-01-01

    FoxO transcription factors promote longevity across taxa. How they do so is poorly understood. In the nematode Caenorhabditis elegans, the A- and F-isoforms of the FoxO transcription factor DAF-16 extend life span in the context of reduced DAF-2 insulin-like growth factor receptor (IGFR) signaling. To elucidate the mechanistic basis for DAF-16/FoxO-dependent life span extension, we performed an integrative analysis of isoform-specific daf-16/FoxO mutants. In contrast to previous studies suggesting that DAF-16F plays a more prominent role in life span control than DAF-16A, isoform-specific daf-16/FoxO mutant phenotypes and whole transcriptome profiling revealed a predominant role for DAF-16A over DAF-16F in life span control, stress resistance, and target gene regulation. Integration of these datasets enabled the prioritization of a subset of 92 DAF-16/FoxO target genes for functional interrogation. Among 29 genes tested, two DAF-16A-specific target genes significantly influenced longevity. A loss-of-function mutation in the conserved gene gst-20, which is induced by DAF-16A, reduced life span extension in the context of daf-2/IGFR RNAi without influencing longevity in animals subjected to control RNAi. Therefore, gst-20 promotes DAF-16/FoxO-dependent longevity. Conversely, a loss-of-function mutation in srr-4, a gene encoding a seven-transmembrane-domain receptor family member that is repressed by DAF-16A, extended life span in control animals, indicating that DAF-16/FoxO may extend life span at least in part by reducing srr-4 expression. Our discovery of new longevity genes underscores the efficacy of our integrative strategy while providing a general framework for identifying specific downstream gene regulatory events that contribute substantially to transcription factor functions. As FoxO transcription factors have conserved functions in promoting longevity and may be dysregulated in aging-related diseases, these findings promise to illuminate fundamental

  18. Longevity Genes Revealed by Integrative Analysis of Isoform-Specific daf-16/FoxO Mutants of Caenorhabditis elegans.

    PubMed

    Chen, Albert Tzong-Yang; Guo, Chunfang; Itani, Omar A; Budaitis, Breane G; Williams, Travis W; Hopkins, Christopher E; McEachin, Richard C; Pande, Manjusha; Grant, Ana R; Yoshina, Sawako; Mitani, Shohei; Hu, Patrick J

    2015-10-01

    FoxO transcription factors promote longevity across taxa. How they do so is poorly understood. In the nematode Caenorhabditis elegans, the A- and F-isoforms of the FoxO transcription factor DAF-16 extend life span in the context of reduced DAF-2 insulin-like growth factor receptor (IGFR) signaling. To elucidate the mechanistic basis for DAF-16/FoxO-dependent life span extension, we performed an integrative analysis of isoform-specific daf-16/FoxO mutants. In contrast to previous studies suggesting that DAF-16F plays a more prominent role in life span control than DAF-16A, isoform-specific daf-16/FoxO mutant phenotypes and whole transcriptome profiling revealed a predominant role for DAF-16A over DAF-16F in life span control, stress resistance, and target gene regulation. Integration of these datasets enabled the prioritization of a subset of 92 DAF-16/FoxO target genes for functional interrogation. Among 29 genes tested, two DAF-16A-specific target genes significantly influenced longevity. A loss-of-function mutation in the conserved gene gst-20, which is induced by DAF-16A, reduced life span extension in the context of daf-2/IGFR RNAi without influencing longevity in animals subjected to control RNAi. Therefore, gst-20 promotes DAF-16/FoxO-dependent longevity. Conversely, a loss-of-function mutation in srr-4, a gene encoding a seven-transmembrane-domain receptor family member that is repressed by DAF-16A, extended life span in control animals, indicating that DAF-16/FoxO may extend life span at least in part by reducing srr-4 expression. Our discovery of new longevity genes underscores the efficacy of our integrative strategy while providing a general framework for identifying specific downstream gene regulatory events that contribute substantially to transcription factor functions. As FoxO transcription factors have conserved functions in promoting longevity and may be dysregulated in aging-related diseases, these findings promise to illuminate fundamental

  19. miR-182 is a negative regulator of osteoblast proliferation, differentiation, and skeletogenesis through targeting FoxO1.

    PubMed

    Kim, Kyoung Min; Park, Su Jin; Jung, Seung-Hyun; Kim, Eun Jin; Jogeswar, Gadi; Ajita, Jami; Rhee, Yumie; Kim, Cheol-Hee; Lim, Sung-Kil

    2012-08-01

    Uncontrolled oxidative stress impairs bone formation and induces age-related bone loss in humans. The FoxO family is widely accepted to play an important role in protecting diverse cells from reactive oxygen species (ROS). Activation of FoxO1, the main FoxO in bone, stimulates proliferation and differentiation as well as inhibits apoptosis of osteoblast lineage cells. Despite the important role of FoxO1, little is known about how FoxO1 expression in bone is regulated. Meanwhile, several recent studies reported that microRNAs (miRNAs) could play a role in osteoblast differentiation and bone formation by targeting various transcriptional factors. Here, we identified one additional crucial miRNA, miR-182, which regulates osteoblastogenesis by repressing FoxO1 and thereby negatively affecting osteogenesis. Overexpression of miR-182 in osteoblast lineage cells increased cell apoptosis and inhibited osteoblast differentiation, whereas in vivo overexpression of miR-182 in zebrafish impaired bone formation. From in silico analysis and validation experiments, FoxO1 was identified as the target of miR-182, and restoration of FoxO1 expression in miR-182-overexpressing osteoblasts rescued them from the inhibitory effects of miR-182. These results indicate that miR-182 functions as a FoxO1 inhibitor to antagonize osteoblast proliferation and differentiation, with a subsequent negative effect on osteogenesis. To treat bone aging, an antisense approach targeting miR-182 could be of therapeutic value.

  20. Mercury inactivates transcription and the generalized transcription factor TFB in the archaeon Sulfolobus solfataricus.

    PubMed

    Dixit, Vidula; Bini, Elisabetta; Drozda, Melissa; Blum, Paul

    2004-06-01

    Mercury has a long history as an antimicrobial agent effective against eukaryotic and prokaryotic organisms. Despite its prolonged use, the basis for mercury toxicity in prokaryotes is not well understood. Archaea, like bacteria, are prokaryotes but they use a simplified version of the eukaryotic transcription apparatus. This study examined the mechanism of mercury toxicity to the archaeal prokaryote Sulfolobus solfataricus. In vivo challenge with mercuric chloride instantaneously blocked cell division, eliciting a cytostatic response at submicromolar concentrations and a cytocidal response at micromolar concentrations. The cytostatic response was accompanied by a 70% reduction in bulk RNA synthesis and elevated rates of degradation of several transcripts, including tfb-1, tfb-2, and lacS. Whole-cell extracts prepared from mercuric chloride-treated cells or from cell extracts treated in vitro failed to support in vitro transcription of 16S rRNAp and lacSp promoters. Extract-mixing experiments with treated and untreated extracts excluded the occurrence of negative-acting factors in the mercury-treated cell extracts. Addition of transcription factor B (TFB), a general transcription factor homolog of eukaryotic TFIIB, to mercury-treated cell extracts restored >50% of in vitro transcription activity. Consistent with this finding, mercuric ion treatment of TFB in vitro inactivated its ability to restore the in vitro transcription activity of TFB-immunodepleted cell extracts. These findings indicate that the toxicity of mercuric ion in S. solfataricus is in part the consequence of transcription inhibition due to TFB-1 inactivation.

  1. FoxM1 Promotes Stemness and Radio-Resistance of Glioblastoma by Regulating the Master Stem Cell Regulator Sox2

    PubMed Central

    Kim, Dong Geon; Cho, Hee Jin; Kim, Yeonghwan; Rheey, Jinguen; Shin, Kayoung; Seo, Yun Jee; Choi, Yeon-Sook; Lee, Jung-Il; Lee, Jeongwu; Joo, Kyeung Min; Nam, Do-Hyun

    2015-01-01

    Glioblastoma (GBM) is the most aggressive and most lethal brain tumor. As current standard therapy consisting of surgery and chemo-irradiation provides limited benefit for GBM patients, novel therapeutic options are urgently required. Forkhead box M1 (FoxM1) transcription factor is an oncogenic regulator that promotes the proliferation, survival, and treatment resistance of various human cancers. The roles of FoxM1 in GBM remain incompletely understood, due in part to pleotropic nature of the FoxM1 pathway. Here, we show the roles of FoxM1 in GBM stem cell maintenance and radioresistance. ShRNA-mediated FoxM1 inhibition significantly impeded clonogenic growth and survival of patient-derived primary GBM cells with marked downregulation of Sox2, a master regulator of stem cell phenotype. Ectopic expression of Sox2 partially rescued FoxM1 inhibition-mediated effects. Conversely, FoxM1 overexpression upregulated Sox2 expression and promoted clonogenic growth of GBM cells. These data, with a direct binding of FoxM1 in the Sox2 promoter region in GBM cells, suggest that FoxM1 regulates stemness of primary GBM cells via Sox2. We also found significant increases in FoxM1 and Sox2 expression in GBM cells after irradiation both in vitro and in vivo orthotopic tumor models. Notably, genetic or a small-molecule FoxM1 inhibitor-mediated FoxM1 targeting significantly sensitized GBM cells to irradiation, accompanying with Sox2 downregulation. Finally, FoxM1 inhibition combined with irradiation in a patient GBM-derived orthotopic model significantly impeded tumor growth and prolonged the survival of tumor bearing mice. Taken together, these results indicate that the FoxM1-Sox2 signaling axis promotes clonogenic growth and radiation resistance of GBM, and suggest that FoxM1 targeting combined with irradiation is a potentially effective therapeutic approach for GBM. PMID:26444992

  2. Identification of human autoantibodies to transcription factor IIB.

    PubMed Central

    Abendroth, F D; Peterson, S R; Galman, M; Suwa, A; Hardin, J A; Dynan, W S

    1995-01-01

    We have characterized the ability of various human autoimmune sera to react with RNA polymerase II transcription factors. One serum, which strongly inhibited transcription in a cell-free system, was shown to contain antibodies directed against human TFIIB. The serum did not show reactivity against the other general transcription factors, including human TBP, TFIIE and TFIIF. The inhibition of transcription was directly attributable to depletion of TFIIB activity, as demonstrated by reconstitution of activity with recombinant TFIIB. It has long been recognized that components of the RNA processing machinery are major human autoantigens. The present results show that at least one general transcription factor required for messenger RNA synthesis is an autoantigen as well. Images PMID:7651839

  3. The Arabidopsis thaliana Nuclear Factor Y Transcription Factors

    PubMed Central

    Zhao, Hang; Wu, Di; Kong, Fanying; Lin, Ke; Zhang, Haishen; Li, Gang

    2017-01-01

    Nuclear factor Y (NF-Y) is an evolutionarily conserved trimeric transcription factor complex present in nearly all eukaryotes. The heterotrimeric NF-Y complex consists of three subunits, NF-YA, NF-YB, and NF-YC, and binds to the CCAAT box in the promoter regions of its target genes to regulate their expression. Yeast and mammal genomes generally have single genes with multiple splicing isoforms that encode each NF-Y subunit. By contrast, plant genomes generally have multi-gene families encoding each subunit and these genes are differentially expressed in various tissues or stages. Therefore, different subunit combinations can lead to a wide variety of NF-Y complexes in various tissues, stages, and growth conditions, indicating the potentially diverse functions of this complex in plants. Indeed, many recent studies have proved that the NF-Y complex plays multiple essential roles in plant growth, development, and stress responses. In this review, we highlight recent progress on NF-Y in Arabidopsis thaliana, including NF-Y protein structure, heterotrimeric complex formation, and the molecular mechanism by which NF-Y regulates downstream target gene expression. We then focus on its biological functions and underlying molecular mechanisms. Finally, possible directions for future research on NF-Y are also presented. PMID:28119722

  4. The Arabidopsis thaliana Nuclear Factor Y Transcription Factors.

    PubMed

    Zhao, Hang; Wu, Di; Kong, Fanying; Lin, Ke; Zhang, Haishen; Li, Gang

    2016-01-01

    Nuclear factor Y (NF-Y) is an evolutionarily conserved trimeric transcription factor complex present in nearly all eukaryotes. The heterotrimeric NF-Y complex consists of three subunits, NF-YA, NF-YB, and NF-YC, and binds to the CCAAT box in the promoter regions of its target genes to regulate their expression. Yeast and mammal genomes generally have single genes with multiple splicing isoforms that encode each NF-Y subunit. By contrast, plant genomes generally have multi-gene families encoding each subunit and these genes are differentially expressed in various tissues or stages. Therefore, different subunit combinations can lead to a wide variety of NF-Y complexes in various tissues, stages, and growth conditions, indicating the potentially diverse functions of this complex in plants. Indeed, many recent studies have proved that the NF-Y complex plays multiple essential roles in plant growth, development, and stress responses. In this review, we highlight recent progress on NF-Y in Arabidopsis thaliana, including NF-Y protein structure, heterotrimeric complex formation, and the molecular mechanism by which NF-Y regulates downstream target gene expression. We then focus on its biological functions and underlying molecular mechanisms. Finally, possible directions for future research on NF-Y are also presented.

  5. Experimental determination of the evolvability of a transcription factor.

    PubMed

    Maerkl, Sebastian J; Quake, Stephen R

    2009-11-03

    Sequence-specific binding of a transcription factor to DNA is the central event in any transcriptional regulatory network. However, relatively little is known about the evolutionary plasticity of transcription factors. For example, the exact functional consequence of an amino acid substitution on the DNA-binding specificity of most transcription factors is currently not predictable. Furthermore, although the major structural families of transcription factors have been identified, the detailed DNA-binding repertoires within most families have not been characterized. We studied the sequence recognition code and evolvability of the basic helix-loop-helix transcription factor family by creating all possible 95 single-point mutations of five DNA-contacting residues of Max, a human helix-loop-helix transcription factor and measured the detailed DNA-binding repertoire of each mutant. Our results show that the sequence-specific repertoire of Max accessible through single-point mutations is extremely limited, and we are able to predict 92% of the naturally occurring diversity at these positions. All naturally occurring basic regions were also found to be accessible through functional intermediates. Finally, we observed a set of amino acids that are functional in vitro but are not found to be used naturally, indicating that functionality alone is not sufficient for selection.

  6. TNF-α Inhibits FoxO1 by Upregulating miR-705 to Aggravate Oxidative Damage in Bone Marrow-Derived Mesenchymal Stem Cells during Osteoporosis.

    PubMed

    Liao, Li; Su, Xiaoxia; Yang, Xiaohong; Hu, Chenghu; Li, Bei; Lv, Yajie; Shuai, Yi; Jing, Huan; Deng, Zhihong; Jin, Yan

    2016-04-01

    Decline of antioxidant defense after estrogen deficiency leads to oxidative damage in bone marrow-derived mesenchymal stem cells (BMMSCs), resulting a defect of bone formation in osteoporosis. Forkhead box O1 (FoxO1) protein is crucial for defending physiological oxidative damage in bone. But whether FoxO1 is involved in the oxidative damage during osteoporosis is largely unknown. In this study, we found that FoxO1 protein accumulation was decreased in BMMSCs of ovariectomized mice. The decrease of FoxO1 resulted in the suppression of manganese superoxide dismutase (Sod2) and catalase (Cat) expression and accumulation of reactive oxygen species (ROS), inhibiting the osteogenic differentiation of BMMSCs. The decline of FoxO1 protein was caused by tumor necrosis factor-alpha (TNF-α) accumulated after estrogen deficiency. Mechanistically, TNF-α activated NF-κB pathway to promote microRNA-705 expression, which function as a repressor of FoxO1 through post-transcriptional regulation. Inhibition of NF-κB pathway or knockdown of miR-705 largely prevented the decline of FoxO1-mediated antioxidant defense caused by TNF-α and ameliorated the oxidative damage in osteoporotic BMMSCs. Moreover, the accumulated ROS further activated NF-κB pathway with TNF-α, which formed a feed-forward loop to persistently inhibiting FoxO1 protein accumulation in BMMSCs. In conclusion, our study revealed that the decline of FoxO1 is an important etiology factor of osteoporosis and unclosed a novel mechanism of FoxO1 regulation by TNF-α. These findings suggested a close correlation between inflammation and oxidative stress in stem cell dysfunction during degenerative bone diseases.

  7. Maintenance of Transcription-Translation Coupling by Elongation Factor P

    PubMed Central

    Elgamal, Sara

    2016-01-01

    ABSTRACT Under conditions of tight coupling between translation and transcription, the ribosome enables synthesis of full-length mRNAs by preventing both formation of intrinsic terminator hairpins and loading of the transcription termination factor Rho. While previous studies have focused on transcription factors, we investigated the role of Escherichia coli elongation factor P (EF-P), an elongation factor required for efficient translation of mRNAs containing consecutive proline codons, in maintaining coupled translation and transcription. In the absence of EF-P, the presence of Rho utilization (rut) sites led to an ~30-fold decrease in translation of polyproline-encoding mRNAs. Coexpression of the Rho inhibitor Psu fully restored translation. EF-P was also shown to inhibit premature termination during synthesis and translation of mRNAs encoding intrinsic terminators. The effects of EF-P loss on expression of polyproline mRNAs were augmented by a substitution in RNA polymerase that accelerates transcription. Analyses of previously reported ribosome profiling and global proteomic data identified several candidate gene clusters where EF-P could act to prevent premature transcription termination. In vivo probing allowed detection of some predicted premature termination products in the absence of EF-P. Our findings support a model in which EF-P maintains coupling of translation and transcription by decreasing ribosome stalling at polyproline motifs. Other regulators that facilitate ribosome translocation through roadblocks to prevent premature transcription termination upon uncoupling remain to be identified. PMID:27624127

  8. Yin Yang 1: a multifaceted protein beyond a transcription factor.

    PubMed

    Deng, Zhiyong; Cao, Paul; Wan, Mei Mei; Sui, Guangchao

    2010-01-01

    As a transcription factor, Yin Yang 1 (YY1) regulates the transcription of a dazzling list of genes and the number of its targets still mounts. Recent studies revealed that YY1 possesses functions independent of its DNA binding activity and its regulatory role in tumorigenesis has started to emerge.

  9. Phenotypically non-suppressive cells predominate among FoxP3-positive cells in oral lichen planus.

    PubMed

    Schreurs, Olav; Karatsaidis, Andreas; Schenck, Karl

    2016-11-01

    Oral lichen planus (OLP) is a common T-cell-dominated oral chronic inflammatory disease occurring in periods of remission, quiescence, activity with pronounced inflammation, and acute ulceration. Cell infiltrates in OLP contain varying numbers of CD4(+) T cells expressing the transcription factor FoxP3. FoxP3(+) CD4(+) T cells are, however, a heterogeneous cell population containing suppressive and non-suppressive cells, and their distribution in infiltrates from OLP is unknown. Biopsies were taken from normal oral mucosa (n = 8) and OLP lesions (n = 19), and a set of in situ methods for the determination of the functional phenotype of FoxP3(+) CD4(+) T cells was applied. Numbers of FoxP3(+) CD4(+) T cells were highest in the atrophic form of the disease, yet low in the ulcerative form. The main FoxP3(+) CD4(+) T-cell population observed was FoxP3(+) CD45RA(-) CD25(+) CD45RO(+) and CD15s(-) , a phenotype delineating a non-suppressive subset. Numbers of cells with an actively suppressing phenotype (FoxP3(+) CD45RA(-) CD25(+) CD45RO(+) and CD15s(+) ) were, however, about twice as high in reticular lesions as compared with the atrophic form. Many FoxP3(+) CD4(+) T cells expressed T-bet, the hallmark transcription factor for IFN-γ-producing T cells, indicating that they may enhance immune and inflammatory responses rather than suppress them. The absence of actively suppressing FoxP3(+) CD4(+) T cells may in part explain why OLP is a remarkably persisting condition, in spite of the presence of substantially high numbers of FoxP3(+) CD4(+) T cells. The findings emphasize that it is crucial to examine not only numbers but also functional phenotype of FoxP3(+) CD4(+) T cells in human tissues. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Antisense-mediated FLC transcriptional repression requires the P-TEFb transcription elongation factor

    PubMed Central

    Wang, Zhi-Wei; Wu, Zhe; Raitskin, Oleg; Sun, Qianwen; Dean, Caroline

    2014-01-01

    The functional significance of noncoding transcripts is currently a major question in biology. We have been studying the function of a set of antisense transcripts called COOLAIR that encompass the whole transcription unit of the Arabidopsis floral repressor FLOWERING LOCUS C (FLC). Alternative polyadenylation of COOLAIR transcripts correlates with different FLC sense expression states. Suppressor mutagenesis aimed at understanding the importance of this sense–antisense transcriptional circuitry has identified a role for Arabidopsis cyclin-dependent kinase C (CDKC;2) in FLC repression. CDKC;2 functions in an Arabidopsis positive transcription elongation factor b (P-TEFb) complex and influences global RNA polymerase II (Pol II) Ser2 phosphorylation levels. CDKC;2 activity directly promotes COOLAIR transcription but does not affect an FLC transgene missing the COOLAIR promoter. In the endogenous gene context, however, the reduction of COOLAIR transcription by cdkc;2 disrupts a COOLAIR-mediated repression mechanism that increases FLC expression. This disruption then feeds back to indirectly increase COOLAIR expression. This tight interconnection between sense and antisense transcription, together with differential promoter sensitivity to P-TEFb, is central to quantitative regulation of this important floral repressor gene. PMID:24799695

  11. Transcriptional Control of Synaptic Plasticity by Transcription Factor NF-κB.

    PubMed

    Engelmann, Christian; Haenold, Ronny

    2016-01-01

    Activation of nuclear factor kappa B (NF-κB) transcription factors is required for the induction of synaptic plasticity and memory formation. All components of this signaling pathway are localized at synapses, and transcriptionally active NF-κB dimers move to the nucleus to translate synaptic signals into altered gene expression. Neuron-specific inhibition results in altered connectivity of excitatory and inhibitory synapses and functionally in selective learning deficits. Recent research on transgenic mice with impaired or hyperactivated NF-κB gave important insights into plasticity-related target gene expression that is regulated by NF-κB. In this minireview, we update the available data on the role of this transcription factor for learning and memory formation and comment on cross-sectional activation of NF-κB in the aged and diseased brain that may directly or indirectly affect κB-dependent transcription of synaptic genes.

  12. Nucleocytoplasmic shuttling of STAT transcription factors.

    PubMed

    Meyer, Thomas; Vinkemeier, Uwe

    2004-12-01

    The signal transducer and activator of transcription (STAT) proteins have initially been described as cytoplasmic proteins that enter the nucleus only after cytokine treatment of cells. Contrary to this assumption, it was demonstrated that STATs are constantly shuttling between nucleus and cytoplasm irrespective of cytokine stimulation. This happens both via carrier-dependent as well as carrier-independent transportation. Moreover, it was also recognized that cytokine stimulation triggers nuclear retention of dimeric STATs, rather than affecting the rate of nuclear import. In summary, it is increasingly being appreciated that STAT nucleocytoplasmic cycling determines the quality of cytokine signaling and also constitutes an important area for microbial intervention.

  13. ETS transcription factors in hematopoietic stem cell development.

    PubMed

    Ciau-Uitz, Aldo; Wang, Lu; Patient, Roger; Liu, Feng

    2013-12-01

    Hematopoietic stem cells (HSCs) are essential for the maintenance of the hematopoietic system. However, these cells cannot be maintained or created in vitro, and very little is known about their generation during embryogenesis. Many transcription factors and signaling pathways play essential roles at various stages of HSC development. Members of the ETS ('E twenty-six') family of transcription factors are recognized as key regulators within the gene regulatory networks governing hematopoiesis, including the ontogeny of HSCs. Remarkably, although all ETS transcription factors bind the same DNA consensus sequence and overlapping tissue expression is observed, individual ETS transcription factors play unique roles in the development of HSCs. Also, these transcription factors are recurrently used throughout development and their functions are context-dependent, increasing the challenge of studying their mechanism of action. Critically, ETS factors also play roles under pathological conditions, such as leukemia and, therefore, deciphering their mechanism of action will not only enhance our knowledge of normal hematopoiesis, but also inform protocols for their creation in vitro from pluripotent stem cells and the design of new therapeutic approaches for the treatment of malignant blood cell diseases. In this review, we summarize the key findings on the roles of ETS transcription factors in HSC development and discuss novel mechanisms by which they could control hematopoiesis. © 2013.

  14. Transcription factor binding dynamics during human ESC differentiation

    PubMed Central

    Tsankov, Alexander M.; Gu, Hongcang; Akopian, Veronika; Ziller, Michael J.; Donaghey, Julie; Amit, Ido; Gnirke, Andreas; Meissner, Alexander

    2015-01-01

    Summary Pluripotent stem cells provide a powerful system to dissect the underlying molecular dynamics that regulate cell fate changes during mammalian development. Here we report the integrative analysis of genome wide binding data for 38 transcription factors with extensive epigenome and transcriptional data across the differentiation of human embryonic stem cells to the three germ layers. We describe core regulatory dynamics and show the lineage specific behavior of selected factors. In addition to the orchestrated remodeling of the chromatin landscape, we find that the binding of several transcription factors is strongly associated with specific loss of DNA methylation in one germ layer and in many cases a reciprocal gain in the other layers. Taken together, our work shows context-dependent rewiring of transcription factor binding, downstream signaling effectors, and the epigenome during human embryonic stem cell differentiation. PMID:25693565

  15. Human transcription factor Sp3: genomic structure, identification of a processed pseudogene, and transcript analysis.

    PubMed

    Moran, Kelly M; Crusio, Robbert H J; Chan, Connie H; Grekova, Maria C; Richert, John R

    2004-10-27

    The human transcription factor Sp3 has been widely studied at the translational level and has been described as a regulatory factor for a number of genes. Sp3 is currently characterized as a bifunctional transcription factor having the ability to behave as both an activator and/or a repressor in various promoter regions. Previous translational studies have attempted to determine the basis for these diverse functions with mostly contradictory evidence to date. Little data are available, however, concerning genomic structure, full-length cDNA, potential transcript variants, or location of translation initiation sites for the large isoform of the Sp3 gene. In this study, bacterial artificial chromosome (BAC) sequencing, reverse transcription-polymerase chain reaction (RT-PCR), genomic PCR, and database mining indicate that the Sp3 gene encompasses seven exons spanning more than 55 kb of genomic DNA on Chromosome 2. The 5' end of this sequence contains a large CpG island. This work also detected a processed pseudogene, psiSp3, located on Chromosome 13, spanning approximately 4.0 kb. Northern blot analysis detected three predominant transcripts at 4.0, 6.0 and 2.5 kb. Sequence analysis indicated that alternative splicing of exon 3 allows for multiple transcripts of Sp3. Each sequenced transcript possesses three to five potential translation initiation sites. This diversity at the level of gene expression will likely be key to understanding the diverse functions of Sp3.

  16. Transcription factor networks regulating hepatic fatty acid metabolism.

    PubMed

    Karagianni, Panagiota; Talianidis, Iannis

    2015-01-01

    Tight regulation of lipid levels is critical for cellular and organismal homeostasis, not only in terms of energy utilization and storage, but also to prevent potential toxicity. The liver utilizes a set of hepatic transcription factors to regulate the expression of genes implicated in all aspects of lipid metabolism including catabolism, transport, and synthesis. In this article, we will review the main transcriptional mechanisms regulating the expression of genes involved in hepatic lipid metabolism. The principal regulatory pathways are composed of simple modules of transcription factor crosstalks, which correspond to building blocks of more complex regulatory networks. These transcriptional networks contribute to the regulation of proper lipid homeostasis in parallel to posttranslational mechanisms and end product-mediated modulation of lipid metabolizing enzymes. This article is part of a Special Issue entitled Linking transcription to physiology in lipodomics. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Pelle Modulates dFoxO-Mediated Cell Death in Drosophila

    PubMed Central

    Chen, Changyan; Zhang, Shiping; Li, Chaojie; Li, Wenzhe; Wu, Shian; Xue, Lei

    2015-01-01

    Interleukin-1 receptor-associated kinases (IRAKs) are crucial mediators of the IL-1R/TLR signaling pathways that regulate the immune and inflammation response in mammals. Recent studies also suggest a critical role of IRAKs in tumor development, though the underlying mechanism remains elusive. Pelle is the sole Drosophila IRAK homolog implicated in the conserved Toll pathway that regulates Dorsal/Ventral patterning, innate immune response, muscle development and axon guidance. Here we report a novel function of pll in modulating apoptotic cell death, which is independent of the Toll pathway. We found that loss of pll results in reduced size in wing tissue, which is caused by a reduction in cell number but not cell size. Depletion of pll up-regulates the transcription of pro-apoptotic genes, and triggers caspase activation and cell death. The transcription factor dFoxO is required for loss-of-pll induced cell death. Furthermore, loss of pll activates dFoxO, promotes its translocation from cytoplasm to nucleus, and up-regulates the transcription of its target gene Thor/4E-BP. Finally, Pll physically interacts with dFoxO and phosphorylates dFoxO directly. This study not only identifies a previously unknown physiological function of pll in cell death, but also shed light on the mechanism of IRAKs in cell survival/death during tumorigenesis. PMID:26474173

  18. Cooperative activation of Xenopus rhodopsin transcription by paired-like transcription factors

    PubMed Central

    2014-01-01

    Background In vertebrates, rod photoreceptor-specific gene expression is regulated by the large Maf and Pax-like transcription factors, Nrl/LNrl and Crx/Otx5. The ubiquitous occurrence of their target DNA binding sites throughout rod-specific gene promoters suggests that multiple transcription factor interactions within the promoter are functionally important. Cooperative action by these transcription factors activates rod-specific genes such as rhodopsin. However, a quantitative mechanistic explanation of transcriptional rate determinants is lacking. Results We investigated the contributions of various paired-like transcription factors and their cognate cis-elements to rhodopsin gene activation using cultured cells to quantify activity. The Xenopus rhodopsin promoter (XOP) has a bipartite structure, with ~200 bp proximal to the start site (RPP) coordinating cooperative activation by Nrl/LNrl-Crx/Otx5 and the adjacent 5300 bp upstream sequence increasing the overall expression level. The synergistic activation by Nrl/LNrl-Crx/Otx5 also occurred when XOP was stably integrated into the genome. We determined that Crx/Otx5 synergistically activated transcription independently and additively through the two Pax-like cis-elements, BAT1 and Ret4, but not through Ret1. Other Pax-like family members, Rax1 and Rax2, do not synergistically activate XOP transcription with Nrl/LNrl and/or Crx/Otx5; rather they act as co-activators via the Ret1 cis-element. Conclusions We have provided a quantitative model of cooperative transcriptional activation of the rhodopsin promoter through interaction of Crx/Otx5 with Nrl/LNrl at two paired-like cis-elements proximal to the NRE and TATA binding site. Further, we have shown that Rax genes act in cooperation with Crx/Otx5 with Nrl/LNrl as co-activators of rhodopsin transcription. PMID:24499263

  19. TrSDB: a proteome database of transcription factors

    PubMed Central

    Hermoso, Antoni; Aguilar, Daniel; Aviles, Francesc X.; Querol, Enrique

    2004-01-01

    TrSDB—TranScout Database—(http://ibb.uab.es/trsdb) is a proteome database of eukaryotic transcription factors based upon predicted motifs by TranScout and data sources such as InterPro and Gene Ontology Annotation. Nine eukaryotic proteomes are included in the current version. Extensive and diverse information for each database entry, different analyses considering TranScout classification and similarity relationships are offered for research on transcription factors or gene expression. PMID:14681387

  20. Regulatory coding of lymphoid lineage choice by hematopoietic transcription factors

    NASA Technical Reports Server (NTRS)

    Warren, Luigi A.; Rothenberg, Ellen V.

    2003-01-01

    During lymphopoiesis, precursor cells negotiate a complex regulatory space, defined by the levels of several competing and cross-regulating transcription factors, before arriving at stable states of commitment to the B-, T- and NK-specific developmental programs. Recent perturbation experiments provide evidence that this space has three major axes, corresponding to the PU.1 versus GATA-1 balance, the intensity of Notch signaling through the CSL pathway, and the ratio of E-box transcription factors to their Id protein antagonists.

  1. Regulatory coding of lymphoid lineage choice by hematopoietic transcription factors

    NASA Technical Reports Server (NTRS)

    Warren, Luigi A.; Rothenberg, Ellen V.

    2003-01-01

    During lymphopoiesis, precursor cells negotiate a complex regulatory space, defined by the levels of several competing and cross-regulating transcription factors, before arriving at stable states of commitment to the B-, T- and NK-specific developmental programs. Recent perturbation experiments provide evidence that this space has three major axes, corresponding to the PU.1 versus GATA-1 balance, the intensity of Notch signaling through the CSL pathway, and the ratio of E-box transcription factors to their Id protein antagonists.

  2. DNA dynamics play a role as a basal transcription factor in the positioning and regulation of gene transcription initiation.

    PubMed

    Alexandrov, Boian S; Gelev, Vladimir; Yoo, Sang Wook; Alexandrov, Ludmil B; Fukuyo, Yayoi; Bishop, Alan R; Rasmussen, Kim Ø; Usheva, Anny

    2010-04-01

    We assess the role of DNA breathing dynamics as a determinant of promoter strength and transcription start site (TSS) location. We compare DNA Langevin dynamic profiles of representative gene promoters, calculated with the extended non-linear PBD model of DNA with experimental data on transcription factor binding and transcriptional activity. Our results demonstrate that DNA dynamic activity at the TSS can be suppressed by mutations that do not affect basal transcription factor binding-DNA contacts. We use this effect to establish the separate contributions of transcription factor binding and DNA dynamics to transcriptional activity. Our results argue against a purely 'transcription factor-centric' view of transcription initiation, suggesting that both DNA dynamics and transcription factor binding are necessary conditions for transcription initiation.

  3. ID1 upregulation and FoxO3a downregulation by Epstein-Barr virus-encoded LMP1 in Hodgkin's lymphoma

    PubMed Central

    Ikeda, Jun-Ichiro; Wada, Naoki; Nojima, Satoshi; Tahara, Shinichiro; Tsuruta, Yoko; Oya, Kaori; Morii, Eiichi

    2016-01-01

    Cancer-initiating cells (CICs) are specialized cells that have the ability to self-renew and are multipotent. We recently demonstrated that Forkhead box O3a (FoxO3a)-expressing cells exhibited a CIC-like potential in Hodgkin's lymphoma (HL). A proportion of HL patients are infected with Epstein-Barr virus (EBV). EBV-encoded latent membrane protein (LMP) 1 downregulates FoxO3a, suggesting that FoxO3a expression may be abolished in EBV-positive HL. Inhibitors of DNA-binding (ID) proteins are highly conserved transcription factors mediating stem cell functions. To the best of our knowledge, no study has investigated possible associations among ID1, FoxO3a and LMP1 expression in HL to date. We immunohistochemically evaluated the expression of the three abovementioned factors in HL patients. The ID1 expression level was inversely correlated with that of FoxO3a (P=0.00035). LMP1-positive HL cells abundantly expressed ID1 (P=0.029), but not FoxO3a (P=0.00085). Thus, our previous observation that FoxO3a may serve as a marker of CICs may not be applicable in EBV-positive HL patients, but rather ID1 may be a candidate CIC marker in this type of HL. PMID:27900085

  4. The transcription factor nuclear factor-kappa B and cancer.

    PubMed

    Escárcega, R O; Fuentes-Alexandro, S; García-Carrasco, M; Gatica, A; Zamora, A

    2007-03-01

    Since the discovery of nuclear factor-kappa B (NF-kappaB) in 1986, many studies have been conducted showing the link between the NF-kappaB signalling pathway and control of the inflammatory response. Today it is well known that control of the inflammatory response and apoptosis is closely related to the activation of NF-kappaB. Three NF-kappaB activation pathways exist. The first (the classical pathway) is normally triggered in response to microbial and viral infections or exposure to pro-inflammatory cytokines that activate the tripartite IKK complex, leading to phosphorylation-induced IkappaB degradation and depends mainly on IKKbeta activity. The second (the alternative pathway), leads to selective activation of p52:RelB dimers by inducing the processing of the NF-kappaB2/p100 precursor protein, which mostly occurs as a heterodimer with RelB in the cytoplasm. This pathway is triggered by certain members of the tumour necrosis factor cytokine family, through selective activation of IKKalpha homodimers by the upstream kinase NIK. The third pathway is named CK2 and is IKK independent. NF-kappaB acts through the transcription of anti-apoptotic proteins, leading to increased proliferation of cells and tumour growth. It is also known that some drugs act directly in the inhibition of NF-kappaB, thus producing regulation of apoptosis; some examples are aspirin and corticosteroids. Here we review the role of NF-kappaB in the control of apoptosis, its link to oncogenesis, the evidence of several studies that show that NF-kappaB activation is closely related to different cancers, and finally the potential target of NF-kappaB as cancer therapy.

  5. Networks of WRKY transcription factors in defense signaling.

    PubMed

    Eulgem, Thomas; Somssich, Imre E

    2007-08-01

    Members of the complex family of WRKY transcription factors have been implicated in the regulation of transcriptional reprogramming associated with plant immune responses. Recently genetic evidence directly proving their significance as positive and negative regulators of disease resistance has accumulated. WRKY genes were shown to be functionally connected forming a transcriptional network composed of positive and negative feedback loops and feed-forward modules. Within a web of partially redundant elements some WRKY factors hold central positions mediating fast and efficient activation of defense programs. A key mechanism triggering strong immune responses appears to be based on the inactivation of defense-suppressing WRKY proteins.

  6. Retroactivity effects dependency on the transcription factors binding mechanisms.

    PubMed

    Pantoja-Hernández, Libertad; Álvarez-Buylla, Elena; Aguilar-Ibáñez, Carlos F; Garay-Arroyo, Adriana; Soria-López, Alberto; Martínez-García, Juan Carlos

    2016-12-07

    Downstream connection effects on transcription are caused by retroactivity. When biomolecular dynamical systems interconnect retroactivity is a property that becomes important. The biological functional meaning of these effects is increasingly becoming an area of interest. Downstream targets, which are operator binding sites in transcriptional networks, may induce behaviors such as ultrasensitive responses or even represent an undesired issue in regulation. To the best of our knowledge, the role of the binding mechanisms of transcription factors in relation to minimizing - or enhancing - retroactivity effects has not been previously addressed. Our aim is to evaluate retroactivity effects considering how the binding mechanism impacts the number of free functional transcription factor (FFTF) molecules using a simple model via deterministic and stochastic simulations. We study four transcription factor binding mechanisms (BM): simple monomer binding (SMB), dimer binding (DB), cooperative sequential binding (CSB) and cooperative sequential binding with dimerization (CSB_D). We consider weak and strong binding regimes for each mechanism, where we contrast the cases when the FFTF is bound or unbound to the downstream loads. Upon interconnection, the number of FFTF molecules changed less for the SMB mechanism while for DB they changed the most. Our results show that for the chosen mechanisms (in terms of the corresponding described dynamics), retroactivity effects depend on transcription binding mechanisms. This contributes to the understanding of how the transcription factor regulatory function-such as decision making-and its dynamic needs for the response, may determine the nature of the selected binding mechanism.

  7. A bacteriophage transcription regulator inhibits bacterial transcription initiation by σ-factor displacement.

    PubMed

    Liu, Bing; Shadrin, Andrey; Sheppard, Carol; Mekler, Vladimir; Xu, Yingqi; Severinov, Konstantin; Matthews, Steve; Wigneshweraraj, Sivaramesh

    2014-04-01

    Bacteriophages (phages) appropriate essential processes of bacterial hosts to benefit their own development. The multisubunit bacterial RNA polymerase (RNAp) enzyme, which catalyses DNA transcription, is targeted by phage-encoded transcription regulators that selectively modulate its activity. Here, we describe the structural and mechanistic basis for the inhibition of bacterial RNAp by the transcription regulator P7 encoded by Xanthomonas oryzae phage Xp10. We reveal that P7 uses a two-step mechanism to simultaneously interact with the catalytic β and β' subunits of the bacterial RNAp and inhibits transcription initiation by inducing the displacement of the σ(70)-factor on initial engagement of RNAp with promoter DNA. The new mode of interaction with and inhibition mechanism of bacterial RNAp by P7 underscore the remarkable variety of mechanisms evolved by phages to interfere with host transcription.

  8. A non-bacterial transcription factor inhibits bacterial transcription by a multipronged mechanism.

    PubMed

    Sheppard, Carol; James, Ellen; Barton, Geraint; Matthews, Stephen; Severinov, Konstantin; Wigneshweraraj, Sivaramesh

    2013-04-01

    The process of transcription initiation is the major target for regulation of gene expression in bacteria and is performed by a multi-subunit RNA polymerase enzyme (RNAp). A complex network of regulatory elements controls the activity of the RNAp to fine-tune transcriptional output. Thus, RNAp is a nexus for controlling bacterial gene expression at the transcription level. Many bacteriophages, viruses that infect bacteria, encode transcription factors that specifically target and modulate the activity of the host RNAp and, thereby, facilitate the acquisition of the host bacteria by the phage. Here, we describe the modus operandi of a T7 bacteriophage-encoded small protein called Gp2 and define Gp2 as a non-bacterial regulator of bacterial transcription.

  9. Cancer genetics and genomics of human FOX family genes.

    PubMed

    Katoh, Masuko; Igarashi, Maki; Fukuda, Hirokazu; Nakagama, Hitoshi; Katoh, Masaru

    2013-01-28

    Forkhead-box (FOX) family proteins, involved in cell growth and differentiation as well as embryogenesis and longevity, are DNA-binding proteins regulating transcription and DNA repair. The focus of this review is on the mechanisms of FOX-related human carcinogenesis. FOXA1 is overexpressed as a result of gene amplification in lung cancer, esophageal cancer, ER-positive breast cancer and anaplastic thyroid cancer and is point-mutated in prostate cancer. FOXA1 overexpression in breast cancer and prostate cancer is associated with good or poor prognosis, respectively. Single nucleotide polymorphism (SNP) within the 5'-UTR of the FOXE1 (TTF2) gene is associated with thyroid cancer risk. FOXF1 overexpression in breast cancer is associated with epithelial-to-mesenchymal transition (EMT). FOXM1 is overexpressed owing to gene amplification in basal-type breast cancer and diffuse large B-cell lymphoma (DLBCL), and it is transcriptionally upregulated owing to Hedgehog-GLI, hypoxia-HIF1α or YAP-TEAD signaling activation. FOXM1 overexpression leads to malignant phenotypes by directly upregulating CCNB1, AURKB, MYC and SKP2 and indirectly upregulating ZEB1 and ZEB2 via miR-200b downregulation. Tumor suppressor functions of FOXO transcription factors are lost in cancer cells as a result of chromosomal translocation, deletion, miRNA-mediated repression, AKT-mediated cytoplasmic sequestration or ubiquitination-mediated proteasomal degradation. FOXP1 is upregulated as a result of gene fusion or amplification in DLBCL and MALT lymphoma and also repression of miRNAs, such as miR-1, miR-34a and miR-504. FOXP1 overexpression is associated with poor prognosis in DLBCL, gastric MALT lymphoma and hepatocellular carcinoma but with good prognosis in breast cancer. In neuroblastoma, the entire coding region of the FOXR1 (FOXN5) gene is fused to the MLL or the PAFAH1B gene owing to interstitial deletions. FOXR1 fusion genes function as oncogenes that repress transcription of FOXO target

  10. Multilayered Control of Alternative Splicing Regulatory Networks by Transcription Factors.

    PubMed

    Han, Hong; Braunschweig, Ulrich; Gonatopoulos-Pournatzis, Thomas; Weatheritt, Robert J; Hirsch, Calley L; Ha, Kevin C H; Radovani, Ernest; Nabeel-Shah, Syed; Sterne-Weiler, Tim; Wang, Juli; O'Hanlon, Dave; Pan, Qun; Ray, Debashish; Zheng, Hong; Vizeacoumar, Frederick; Datti, Alessandro; Magomedova, Lilia; Cummins, Carolyn L; Hughes, Timothy R; Greenblatt, Jack F; Wrana, Jeffrey L; Moffat, Jason; Blencowe, Benjamin J

    2017-02-02

    Networks of coordinated alternative splicing (AS) events play critical roles in development and disease. However, a comprehensive knowledge of the factors that regulate these networks is lacking. We describe a high-throughput system for systematically linking trans-acting factors to endogenous RNA regulatory events. Using this system, we identify hundreds of factors associated with diverse regulatory layers that positively or negatively control AS events linked to cell fate. Remarkably, more than one-third of the regulators are transcription factors. Further analyses of the zinc finger protein Zfp871 and BTB/POZ domain transcription factor Nacc1, which regulate neural and stem cell AS programs, respectively, reveal roles in controlling the expression of specific splicing regulators. Surprisingly, these proteins also appear to regulate target AS programs via binding RNA. Our results thus uncover a large "missing cache" of splicing regulators among annotated transcription factors, some of which dually regulate AS through direct and indirect mechanisms.

  11. Evolution of transcriptional networks in yeast: alternative teams of transcriptional factors for different species.

    PubMed

    Muñoz, Adriana; Santos Muñoz, Daniella; Zimin, Aleksey; Yorke, James A

    2016-11-11

    The diversity in eukaryotic life reflects a diversity in regulatory pathways. Nocedal and Johnson argue that the rewiring of gene regulatory networks is a major force for the diversity of life, that changes in regulation can create new species. We have created a method (based on our new "ping-pong algorithm) for detecting more complicated rewirings, where several transcription factors can substitute for one or more transcription factors in the regulation of a family of co-regulated genes. An example is illustrative. A rewiring has been reported by Hogues et al. that RAP1 in Saccharomyces cerevisiae substitutes for TBF1/CBF1 in Candida albicans for ribosomal RP genes. There one transcription factor substitutes for another on some collection of genes. Such a substitution is referred to as a "rewiring". We agree with this finding of rewiring as far as it goes but the situation is more complicated. Many transcription factors can regulate a gene and our algorithm finds that in this example a "team" (or collection) of three transcription factors including RAP1 substitutes for TBF1 for 19 genes. The switch occurs for a branch of the phylogenetic tree containing 10 species (including Saccharomyces cerevisiae), while the remaining 13 species (Candida albicans) are regulated by TBF1. To gain insight into more general evolutionary mechanisms, we have created a mathematical algorithm that finds such general switching events and we prove that it converges. Of course any such computational discovery should be validated in the biological tests. For each branch of the phylogenetic tree and each gene module, our algorithm finds a sub-group of co-regulated genes and a team of transcription factors that substitutes for another team of transcription factors. In most cases the signal will be small but in some cases we find a strong signal of switching. We report our findings for 23 Ascomycota fungi species.

  12. FoxP2 expression in the cerebellum and inferior olive: development of the transverse stripe-shaped expression pattern in the mouse cerebellar cortex.

    PubMed

    Fujita, Hirofumi; Sugihara, Izumi

    2012-02-15

    Many molecules are expressed heterogeneously in subpopulations of cerebellar Purkinje cells (PCs) and inferior olive (IO) neurons during development or in adulthood. These expression patterns are often organized in longitudinal stripes in the cerebellar cortex, which may be related to functional compartmentalization. FoxP2, a transcription factor, is expressed in PCs and IO neurons, but the details of its expression pattern remain unclear. Here we examined FoxP2 expression patterns systematically by immunostaining serial sections of the hindbrain from embryonic day 14.5 to adulthood in mice. FoxP2 was highly expressed in virtually all PCs at and before postnatal day 6 (P6), except for those in the flocculus and small parts of the nodulus (vermal lobule X), where FoxP2 expression was moderate or absent. After P6, FoxP2 expression gradually diminished in PCs in some areas. In adults, FoxP2 was expressed, less intensely than in earlier stages, in subsets of PCs that were mostly arranged transversely along the folial apices. In contrast, FoxP2 was expressed intensely in most IO neurons during development and in adulthood. FoxP2 was also expressed in a small population of neurons in the cerebellar nuclei. FoxP2 expression in adult rats and chicks was generally comparable to that in adult mice, suggesting evolutionary conservation of the expression pattern. Thus, the FoxP2 expression pattern reflects new transverse compartmentalization in the adult cerebellar cortex, although its functional significance remains unclear.

  13. Sirt1 rescues the obesity induced by insulin-resistant constitutively-nuclear FoxO1 in POMC neurons of male mice.

    PubMed

    Susanti, Vina Yanti; Sasaki, Tsutomu; Yokota-Hashimoto, Hiromi; Matsui, Sho; Lee, Yong-Soo; Kikuchi, Osamu; Shimpuku, Mayumi; Kim, Hye-Jin; Kobayashi, Masaki; Kitamura, Tadahiro

    2014-10-01

    The hypothalamus is the brain center that controls the energy balance. Anorexigenic proopiomelanocortin (POMC) neurons and orexigenic AgRP neurons in the arcuate nucleus of the hypothalamus plays critical roles in energy balance regulation. FoxO1 is a transcription factor regulated by insulin signaling that is deacetylated by Sirt1, a nicotinamide adenine dinucleotide- (NAD(+) -) dependent deacetylase. Overexpression of insulin-resistant constitutively-nuclear FoxO1 (CN-FoxO1) in POMC neurons leads to obesity, whereas Sirt1 overexpression in POMC neurons leads to leanness. Whether overexpression of Sirt1 in POMC neurons could rescue the obesity caused by insulin-resistant CN-FoxO1 was tested here. POMC neuron-specific CN-FoxO1/Sirt1 double-KI (DKI) mice were analyzed. The obese phenotype of CN-FoxO1 KI mice was rescued in male DKI mice. Reduced O2 consumption, increased adiposity, and fewer POMC neurons observed in CN-FoxO1 mice were rescued in male DKI mice without affecting food intake and locomotor activity. Sirt1 overexpression decreased FoxO1 acetylation and protein levels without affecting its nuclear localization in mouse embryonic fibroblasts and hypothalamic N41 cells. Sirt1 rescues the obesity induced by insulin-resistant CN-FoxO1 in POMC neurons of male mice by decreasing FoxO1 protein through deacetylation. Sirt1 ameliorates obesity caused by a genetic model of central insulin resistance. © 2014 The Authors Obesity published by Wiley Periodicals, Inc. on behalf of The Obesity Society (TOS).

  14. Modulation of DNA binding by gene-specific transcription factors.

    PubMed

    Schleif, Robert F

    2013-10-01

    The transcription of many genes, particularly in prokaryotes, is controlled by transcription factors whose activity can be modulated by controlling their DNA binding affinity. Understanding the molecular mechanisms by which DNA binding affinity is regulated is important, but because forming definitive conclusions usually requires detailed structural information in combination with data from extensive biophysical, biochemical, and sometimes genetic experiments, little is truly understood about this topic. This review describes the biological requirements placed upon DNA binding transcription factors and their consequent properties, particularly the ways that DNA binding affinity can be modulated and methods for its study. What is known and not known about the mechanisms modulating the DNA binding affinity of a number of prokaryotic transcription factors, including CAP and lac repressor, is provided.

  15. Depleting Mycobacterium tuberculosis of the transcription termination factor Rho causes pervasive transcription and rapid death

    PubMed Central

    Botella, Laure; Vaubourgeix, Julien; Livny, Jonathan; Schnappinger, Dirk

    2017-01-01

    Rifampicin, which inhibits bacterial RNA polymerase, provides one of the most effective treatments for tuberculosis. Inhibition of the transcription termination factor Rho is used to treat some bacterial infections, but its importance varies across bacteria. Here we show that Rho of Mycobacterium tuberculosis functions to both define the 3′ ends of mRNAs and silence substantial fragments of the genome. Brief inactivation of Rho affects over 500 transcripts enriched for genes of foreign DNA elements and bacterial virulence factors. Prolonged inactivation of Rho causes extensive pervasive transcription, a genome-wide increase in antisense transcripts, and a rapid loss of viability of replicating and non-replicating M. tuberculosis in vitro and during acute and chronic infection in mice. Collectively, these data suggest that inhibition of Rho may provide an alternative strategy to treat tuberculosis with an efficacy similar to inhibition of RNA polymerase. PMID:28348398

  16. Depleting Mycobacterium tuberculosis of the transcription termination factor Rho causes pervasive transcription and rapid death.

    PubMed

    Botella, Laure; Vaubourgeix, Julien; Livny, Jonathan; Schnappinger, Dirk

    2017-03-28

    Rifampicin, which inhibits bacterial RNA polymerase, provides one of the most effective treatments for tuberculosis. Inhibition of the transcription termination factor Rho is used to treat some bacterial infections, but its importance varies across bacteria. Here we show that Rho of Mycobacterium tuberculosis functions to both define the 3' ends of mRNAs and silence substantial fragments of the genome. Brief inactivation of Rho affects over 500 transcripts enriched for genes of foreign DNA elements and bacterial virulence factors. Prolonged inactivation of Rho causes extensive pervasive transcription, a genome-wide increase in antisense transcripts, and a rapid loss of viability of replicating and non-replicating M. tuberculosis in vitro and during acute and chronic infection in mice. Collectively, these data suggest that inhibition of Rho may provide an alternative strategy to treat tuberculosis with an efficacy similar to inhibition of RNA polymerase.

  17. Functional Profiling of Transcription Factor Genes in Neurospora crassa.

    PubMed

    Carrillo, Alexander J; Schacht, Patrick; Cabrera, Ilva E; Blahut, Johnathon; Prudhomme, Loren; Dietrich, Sarah; Bekman, Thomas; Mei, Jennifer; Carrera, Cristian; Chen, Vivian; Clark, Isaiah; Fierro, Gerardo; Ganzen, Logan; Orellana, Jose; Wise, Shelby; Yang, Kevin; Zhong, Hui; Borkovich, Katherine A

    2017-09-07

    Regulation of gene expression by DNA-binding transcription factors is essential for proper control of growth and development in all organisms. In this study, we annotate and characterize growth and developmental phenotypes for transcription factor genes in the model filamentous fungus Neurospora crassa We identified 312 transcription factor genes, corresponding to 3.2% of the protein coding genes in the genome. The largest class was the fungal-specific Zn2Cys6 (C6) binuclear cluster, with 135 members, followed by the highly conserved C2H2 zinc finger group, with 61 genes. Viable knockout mutants were produced for 273 genes, and complete growth and developmental phenotypic data are available for 242 strains, with 64% possessing at least one defect. The most prominent defect observed was in growth of basal hyphae (43% of mutants analyzed), followed by asexual sporulation (38%), and the various stages of sexual development (19%). Two growth or developmental defects were observed for 21% of the mutants, while 8% were defective in all three major phenotypes tested. Analysis of available mRNA expression data for a time course of sexual development revealed mutants with sexual phenotypes that correlate with transcription factor transcript abundance in wild type. Inspection of this data also implicated cryptic roles in sexual development for several cotranscribed transcription factor genes that do not produce a phenotype when mutated. Copyright © 2017 Carrillo et al.

  18. Intratumoral FoxP3 expression is associated with angiogenesis and prognosis in malignant canine mammary tumors.

    PubMed

    Carvalho, Maria Isabel; Pires, Isabel; Prada, Justina; Gregório, Hugo; Lobo, Luis; Queiroga, Felisbina L

    2016-10-01

    The activity of regulatory T cells (Tregs) is closely associated with the expression of FoxP3 transcription factor. FoxP3 regulatory T cells (FoxP3Treg) have immunosuppressive properties and can work for prevention of harmful autoimmune responses, however can also interfere with beneficial anti-tumor immunity. In human breast cancer these cells play a crucial role in tumor progression. In canine mammary tumors (CMT) this topic is not well-documented. This study included 80 malignant CMT and studied, by immunohistochemistry, the intratumoral FoxP3 expression together with microvessel density (MVD), vascular endothelial growth factor (VEGF) and several clinicopathological characteristics. Abundant FoxP3Treg cells were associated with tumor necrosis (p=0.001), high mitotic grade (p<0.001), more marked nuclear polymorphism (p=0.001), poor differentiation of tumors (p<0.001), high histological grade of malignancy (HGM) (p<0.001), presence of neoplastic intravascular emboli (p<0.001) and presence of lymph node metastasis (p<0.001). Intratumoral FoxP3 was correlated with MVD (r=0.827; p<0.001) and associated with VEGF (p=0.001). Additionally tumors with abundant FoxP3Treg cells were associated with shorter overall survival (OS) time in univariate and multivariate analysis (p<0.001 Kaplan-Meier curves and 7.97 hazard ratio, p<0.001 Cox proportional hazard model). Results suggest that Treg cells play a role in CMT progression and may contribute to increased angiogenesis and aggression in these tumors. The association of intratumoral FoxP3 expression with shorter OS in multivariate analysis suggests the usefulness of Treg cells as an independent prognostic marker.

  19. HDAC1 activates FoxO and is both sufficient and required for skeletal muscle atrophy

    PubMed Central

    Beharry, Adam W.; Sandesara, Pooja B.; Roberts, Brandon M.; Ferreira, Leonardo F.; Senf, Sarah M.; Judge, Andrew R.

    2014-01-01

    ABSTRACT The Forkhead box O (FoxO) transcription factors are activated, and necessary for the muscle atrophy, in several pathophysiological conditions, including muscle disuse and cancer cachexia. However, the mechanisms that lead to FoxO activation are not well defined. Recent data from our laboratory and others indicate that the activity of FoxO is repressed under basal conditions via reversible lysine acetylation, which becomes compromised during catabolic conditions. Therefore, we aimed to determine how histone deacetylase (HDAC) proteins contribute to activation of FoxO and induction of the muscle atrophy program. Through the use of various pharmacological inhibitors to block HDAC activity, we demonstrate that class I HDACs are key regulators of FoxO and the muscle-atrophy program during both nutrient deprivation and skeletal muscle disuse. Furthermore, we demonstrate, through the use of wild-type and dominant-negative HDAC1 expression plasmids, that HDAC1 is sufficient to activate FoxO and induce muscle fiber atrophy in vivo and is necessary for the atrophy of muscle fibers that is associated with muscle disuse. The ability of HDAC1 to cause muscle atrophy required its deacetylase activity and was linked to the induction of several atrophy genes by HDAC1, including atrogin-1, which required deacetylation of FoxO3a. Moreover, pharmacological inhibition of class I HDACs during muscle disuse, using MS-275, significantly attenuated both disuse muscle fiber atrophy and contractile dysfunction. Together, these data solidify the importance of class I HDACs in the muscle atrophy program and indicate that class I HDAC inhibitors are feasible countermeasures to impede muscle atrophy and weakness. PMID:24463822

  20. Epigenetic program and transcription factor circuitry of dendritic cell development

    PubMed Central

    Lin, Qiong; Chauvistré, Heike; Costa, Ivan G.; Gusmao, Eduardo G.; Mitzka, Saskia; Hänzelmann, Sonja; Baying, Bianka; Klisch, Theresa; Moriggl, Richard; Hennuy, Benoit; Smeets, Hubert; Hoffmann, Kurt; Benes, Vladimir; Seré, Kristin; Zenke, Martin

    2015-01-01

    Dendritic cells (DC) are professional antigen presenting cells that develop from hematopoietic stem cells through successive steps of lineage commitment and differentiation. Multipotent progenitors (MPP) are committed to DC restricted common DC progenitors (CDP), which differentiate into specific DC subsets, classical DC (cDC) and plasmacytoid DC (pDC). To determine epigenetic states and regulatory circuitries during DC differentiation, we measured consecutive changes of genome-wide gene expression, histone modification and transcription factor occupancy during the sequel MPP-CDP-cDC/pDC. Specific histone marks in CDP reveal a DC-primed epigenetic signature, which is maintained and reinforced during DC differentiation. Epigenetic marks and transcription factor PU.1 occupancy increasingly coincide upon DC differentiation. By integrating PU.1 occupancy and gene expression we devised a transcription factor regulatory circuitry for DC commitment and subset specification. The circuitry provides the transcription factor hierarchy that drives the sequel MPP-CDP-cDC/pDC, including Irf4, Irf8, Tcf4, Spib and Stat factors. The circuitry also includes feedback loops inferred for individual or multiple factors, which stabilize distinct stages of DC development and DC subsets. In summary, here we describe the basic regulatory circuitry of transcription factors that drives DC development. PMID:26476451

  1. Missed, Not Missing: Phylogenomic Evidence for the Existence of Avian FoxP3.

    PubMed

    Denyer, Michael P; Pinheiro, Dammy Y; Garden, Oliver A; Shepherd, Adrian J

    2016-01-01

    The Forkhead box transcription factor FoxP3 is pivotal to the development and function of regulatory T cells (Tregs), which make a major contribution to peripheral tolerance. FoxP3 is believed to perform a regulatory role in all the vertebrate species in which it has been detected. The prevailing view is that FoxP3 is absent in birds and that avian Tregs rely on alternative developmental and suppressive pathways. Prompted by the automated annotation of foxp3 in the ground tit (Parus humilis) genome, we have questioned this assumption. Our analysis of all available avian genomes has revealed that the foxp3 locus is missing, incomplete or of poor quality in the relevant genomic assemblies for nearly all avian species. Nevertheless, in two species, the peregrine falcon (Falco peregrinus) and the saker falcon (F. cherrug), there is compelling evidence for the existence of exons showing synteny with foxp3 in the ground tit. A broader phylogenomic analysis has shown that FoxP3 sequences from these three species are similar to crocodilian sequences, the closest living relatives of birds. In both birds and crocodilians, we have also identified a highly proline-enriched region at the N terminus of FoxP3, a region previously identified only in mammals.

  2. Missed, Not Missing: Phylogenomic Evidence for the Existence of Avian FoxP3

    PubMed Central

    Denyer, Michael P.; Pinheiro, Dammy Y.; Garden, Oliver A.; Shepherd, Adrian J.

    2016-01-01

    The Forkhead box transcription factor FoxP3 is pivotal to the development and function of regulatory T cells (Tregs), which make a major contribution to peripheral tolerance. FoxP3 is believed to perform a regulatory role in all the vertebrate species in which it has been detected. The prevailing view is that FoxP3 is absent in birds and that avian Tregs rely on alternative developmental and suppressive pathways. Prompted by the automated annotation of foxp3 in the ground tit (Parus humilis) genome, we have questioned this assumption. Our analysis of all available avian genomes has revealed that the foxp3 locus is missing, incomplete or of poor quality in the relevant genomic assemblies for nearly all avian species. Nevertheless, in two species, the peregrine falcon (Falco peregrinus) and the saker falcon (F. cherrug), there is compelling evidence for the existence of exons showing synteny with foxp3 in the ground tit. A broader phylogenomic analysis has shown that FoxP3 sequences from these three species are similar to crocodilian sequences, the closest living relatives of birds. In both birds and crocodilians, we have also identified a highly proline-enriched region at the N terminus of FoxP3, a region previously identified only in mammals. PMID:26938477

  3. Activation of MAPK and FoxO by manganese (Mn) in rat neonatal primary astrocyte cultures.

    PubMed

    Exil, Vernat; Ping, Li; Yu, Yingchun; Chakraborty, Sudipta; Caito, Samuel W; Wells, K Sam; Karki, Pratap; Lee, Eunsook; Aschner, Michael

    2014-01-01

    Environmental exposure to manganese (Mn) leads to a neurodegenerative disease that has shared clinical characteristics with Parkinson's disease (PD). Mn-induced neurotoxicity is time- and dose-dependent, due in part to oxidative stress. We ascertained the molecular targets involved in Mn-induced neurodegeneration using astrocyte culture as: (1) Astrocytes are vital for information processing within the brain, (2) their redox potential is essential in mitigating reactive oxygen species (ROS) levels, and (3) they are targeted early in the course of Mn toxicity. We first tested protein levels of Mn superoxide dismutase -2 (SOD-2) and glutathione peroxidase (GPx-1) as surrogates of astrocytic oxidative stress response. We assessed levels of the forkhead winged-helix transcription factor O (FoxO) in response to Mn exposure. FoxO is highly regulated by the insulin-signaling pathway. FoxO mediates cellular responses to toxic stress and modulates adaptive responses. We hypothesized that FoxO is fundamental in mediating oxidative stress response upon Mn treatment, and may be a biomarker of Mn-induced neurodegeneration. Our results indicate that 100 or 500 µM of MnCl2 led to increased levels of FoxO (dephosphorylated and phosphorylated) compared with control cells (P<0.01). p-FoxO disappeared from the cytosol upon Mn exposure. Pre-treatment of cultured cells with (R)-(-)-2-oxothiazolidine-4-carboxylic acid (OTC), a cysteine analog rescued the cytosolic FoxO. At these concentrations, MAPK phosphorylation, in particular p38 and ERK, and PPAR gamma coactivator-1 (PGC-1) levels were increased, while AKT phosphorylation remained unchanged. FoxO phosphorylation level was markedly reduced with the use of SB203580 (a p38 MAPK inhibitor) and PD98059 (an ERK inhibitor). We conclude that FoxO phosphorylation after Mn exposure occurs in parallel with, and independent of the insulin-signaling pathway. FoxO levels and its translocation into the nucleus are part of early events

  4. Activation of MAPK and FoxO by Manganese (Mn) in Rat Neonatal Primary Astrocyte Cultures

    PubMed Central

    Exil, Vernat; Ping, Li; Yu, Yingchun; Chakraborty, Sudipta; Caito, Samuel W.; Wells, K. Sam; Karki, Pratap; Lee, Eunsook; Aschner, Michael

    2014-01-01

    Environmental exposure to manganese (Mn) leads to a neurodegenerative disease that has shared clinical characteristics with Parkinson's disease (PD). Mn-induced neurotoxicity is time- and dose-dependent, due in part to oxidative stress. We ascertained the molecular targets involved in Mn-induced neurodegeneration using astrocyte culture as: (1) Astrocytes are vital for information processing within the brain, (2) their redox potential is essential in mitigating reactive oxygen species (ROS) levels, and (3) they are targeted early in the course of Mn toxicity. We first tested protein levels of Mn superoxide dismutase -2 (SOD-2) and glutathione peroxidase (GPx-1) as surrogates of astrocytic oxidative stress response. We assessed levels of the forkhead winged-helix transcription factor O (FoxO) in response to Mn exposure. FoxO is highly regulated by the insulin-signaling pathway. FoxO mediates cellular responses to toxic stress and modulates adaptive responses. We hypothesized that FoxO is fundamental in mediating oxidative stress response upon Mn treatment, and may be a biomarker of Mn-induced neurodegeneration. Our results indicate that 100 or 500 µM of MnCl2 led to increased levels of FoxO (dephosphorylated and phosphorylated) compared with control cells (P<0.01). p-FoxO disappeared from the cytosol upon Mn exposure. Pre-treatment of cultured cells with (R)-(−)-2-oxothiazolidine-4-carboxylic acid (OTC), a cysteine analog rescued the cytosolic FoxO. At these concentrations, MAPK phosphorylation, in particular p38 and ERK, and PPAR gamma coactivator-1 (PGC-1) levels were increased, while AKT phosphorylation remained unchanged. FoxO phosphorylation level was markedly reduced with the use of SB203580 (a p38 MAPK inhibitor) and PD98059 (an ERK inhibitor). We conclude that FoxO phosphorylation after Mn exposure occurs in parallel with, and independent of the insulin-signaling pathway. FoxO levels and its translocation into the nucleus are part of early events

  5. Transcription factors and induction in Xenopus laevis embryos.

    PubMed

    Knöchel, W; Kaufmann, E

    1997-04-01

    Studies with amphibian embryos have contributed major insights into the molecular basis of induction processes and the formation of germ layers during vertebrate embryogenesis. Primary signals that have been identified as growth factors or growth factor-related ligands act as inducing factors on their target cells and, by a change of the genetic program, evoke a specification of the cellular differentiation pathways. While at present the signal transduction mechanisms leading from the ligands via cognate receptors to the nuclei are still poorly understood, there is growing information on transcription factors which are activated upon induction. They govern the expression of other regulatory molecules and co-ordinate the expression of cell type-specific structural genes. Meanwhile, it is generally accepted that development and cellular differentiation in all multicellular organisms depends upon a cascade of evolutionarily conserved transcription factors. Striking structural similarities within their DNA-binding domains allow many of these factors to be subdivided into different transcription factor families. Most of the basic knowledge on these factors emerged from the pioneering work done with Drosophila embryos which was greatly facilitated by the availability of numerous mutants. Despite the fact that Drosophila development until the blastoderm stage proceeds in a multinuclear syncytium and thus is significantly different from that in vertebrate organisms, the primary structures of many embryonic transcription factors have been conserved in higher organisms. This especially holds true for the various DNA binding motifs and it facilitated the isolation and characterization of vertebrate homologues to factors previously identified in lower organisms.

  6. A key role for foxQ2 in anterior head and central brain patterning in insects.

    PubMed

    Kitzmann, Peter; Weißkopf, Matthias; Schacht, Magdalena Ines; Bucher, Gregor

    2017-08-15

    Anterior patterning of animals is based on a set of highly conserved transcription factors but the interactions within the protostome anterior gene regulatory network (aGRN) remain enigmatic. Here, we identify the red flour beetle Tribolium castaneum ortholog of foxQ2 (Tc-foxQ2) as a novel upstream component of the aGRN. It is required for the development of the labrum and higher order brain structures, namely the central complex and the mushroom bodies. We reveal Tc-foxQ2 interactions by RNAi and heat shock-mediated misexpression. Surprisingly, Tc-foxQ2 and Tc-six3 mutually activate each other, forming a novel regulatory module at the top of the aGRN. Comparisons of our results with those of sea urchins and cnidarians suggest that foxQ2 has acquired more upstream functions in the aGRN during protostome evolution. Our findings expand the knowledge on foxQ2 gene function to include essential roles in epidermal development and central brain patterning. © 2017. Published by The Company of Biologists Ltd.

  7. A key role for foxQ2 in anterior head and central brain patterning in insects

    PubMed Central

    Kitzmann, Peter; Weißkopf, Matthias; Schacht, Magdalena Ines

    2017-01-01

    ABSTRACT Anterior patterning of animals is based on a set of highly conserved transcription factors but the interactions within the protostome anterior gene regulatory network (aGRN) remain enigmatic. Here, we identify the red flour beetle Tribolium castaneum ortholog of foxQ2 (Tc-foxQ2) as a novel upstream component of the aGRN. It is required for the development of the labrum and higher order brain structures, namely the central complex and the mushroom bodies. We reveal Tc-foxQ2 interactions by RNAi and heat shock-mediated misexpression. Surprisingly, Tc-foxQ2 and Tc-six3 mutually activate each other, forming a novel regulatory module at the top of the aGRN. Comparisons of our results with those of sea urchins and cnidarians suggest that foxQ2 has acquired more upstream functions in the aGRN during protostome evolution. Our findings expand the knowledge on foxQ2 gene function to include essential roles in epidermal development and central brain patterning. PMID:28811313

  8. FoxP2 expression defines dorsolateral pontine neurons activated by sodium deprivation*

    PubMed Central

    Geerling, Joel C; Stein, Matthew K; Miller, Rebecca L; Shin, Jung-Won; Gray, Paul A; Loewy, Arthur D

    2010-01-01

    Two specific groups of neurons in the dorsolateral pons are activated by dietary sodium deprivation. These two groups are the pre-locus coeruleus (pre-LC) and the inner subdivision of the external lateral parabrachial nucleus (PBel-inner). In each site, after rats are fed an extremely low-sodium diet for over a week, neurons increase their expression of an activity-induced transcription factor, c-Fos. Here, we confirm this observation and extend it by demonstrating that these two groups of neurons express a common marker gene, the constitutively-expressed transcription factor Forkhead box protein 2 (FoxP2). That is, virtually all of the c-Fos activated neurons in both regions also express FoxP2. The expression of FoxP2 by both these groups of neurons suggests that they are developmentally-related subsets derived from the same basic population. Given that FoxP2, unlike c-Fos, is expressed independent of sodium deprivation, this marker may be useful in future studies of the pre-LC and PBel-inner. The molecular definition of these neurons, which project to circuits in the forebrain that influence visceral, appetitive, and hedonic functions, may allow direct experimental exploration of the functional role of these circuits using genetic tools. PMID:21108936

  9. Transcription factor network reconstruction using the living cell array.

    PubMed

    Yang, Eric; Yarmush, Martin L; Androulakis, Ioannis P

    2009-02-07

    The objective of identifying transcriptional regulatory networks is to provide insights as to what governs an organism's long term response to external stimuli. We explore the coupling of the living cell array (LCA), a novel microfluidics device which utilizes fluorescence levels as a surrogate for transcription factor activity with reverse Euler deconvolution (RED) a computational technique proposed in this work to decipher the dynamics of the interactions. It is hypothesized that these two methods will allow us to first assess the underlying network architecture associated with the transcription factor network as well as specific mechanistic consequences of transcription factor activation such as receptor dimerization or tolerance. The overall approach identifies evidence of time-lagged response which may be indicative of mechanisms such as receptor dimerization, tolerance mechanisms which are evidence of various receptor mediated dynamics, and feedback loops which regulate the response of an organism to changing environmental conditions. Furthermore, through the exploration of multiple network architectures, we were able to obtain insights as to the role each transcription factor plays in the overall response and their overall redundancy in the organism's response to external perturbations. Thus, the LCA along with the proposed analysis technique is a valuable tool for identifying the possible architectures and mechanisms underlying the transcriptional response.

  10. Bayesian model-based inference of transcription factor activity

    PubMed Central

    Rogers, Simon; Khanin, Raya; Girolami, Mark

    2007-01-01

    Background In many approaches to the inference and modeling of regulatory interactions using microarray data, the expression of the gene coding for the transcription factor is considered to be an accurate surrogate for the true activity of the protein it produces. There are many instances where this is inaccurate due to post-translational modifications of the transcription factor protein. Inference of the activity of the transcription factor from the expression of its targets has predominantly involved linear models that do not reflect the nonlinear nature of transcription. We extend a recent approach to inferring the transcription factor activity based on nonlinear Michaelis-Menten kinetics of transcription from maximum likelihood to fully Bayesian inference and give an example of how the model can be further developed. Results We present results on synthetic and real microarray data. Additionally, we illustrate how gene and replicate specific delays can be incorporated into the model. Conclusion We demonstrate that full Bayesian inference is appropriate in this application and has several benefits over the maximum likelihood approach, especially when the volume of data is limited. We also show the benefits of using a non-linear model over a linear model, particularly in the case of repression. PMID:17493251

  11. Roles of FoxO1 and Sirt1 in the central regulation of food intake.

    PubMed

    Sasaki, Tsutomu; Kitamura, Tadahiro

    2010-01-01

    The hypothalamus is the center of controlling food intake and energy expenditure by integrating information on energy status, i.e. adiposity and nutrient signals. Especially, two types of neurons in the arcuate nucleus of the hypothalamus, anorexigenic proopiomelanocortin (POMC) neurons and orexigenic agouti-related peptide (AgRP) neurons, play vital roles in regulating feeding and energy expenditure. On the other hand, insulin and leptin are hormones that control food intake via regulating POMC and AgRP expression. FoxO1 is a downstream effecter of insulin signaling and Sirt1 is an NAD(+)-dependent deacetylase, both of which have been reported to play important roles in the regulation of metabolism in various organs including liver, pancreas, muscle, adipose tissue and hypothalamus. Histological analyses revealed that FoxO1 and Sirt1 are expressed in both AgRP and POMC neurons where FoxO1 localizes to the nucleus in the fasted, while to the cytoplasm in the refed condition. In contrast, hypothalamic Sirt1 protein is decreased in the fasted condition due to increased ubiquitination of Sirt1. In rodents, overexpression of FoxO1 in the hypothalamus by adenovirus microinjection induces hyperphagia and body weight gain, and simultaneous overexpression of Sirt1 suppresses these phenotypes. FoxO1 and the transcription factor Stat3 exert opposing actions on the expression of AgRP and POMC through transcriptional squelching, and Sirt1 suppresses AgRP expression. In conclusion, we propose that FoxO1 and Sirt1 in hypothalamus are key regulators of energy homeostasis and are molecular targets for the development of new strategy of treating obesity.

  12. BACH transcription factors in innate and adaptive immunity.

    PubMed

    Igarashi, Kazuhiko; Kurosaki, Tomohiro; Roychoudhuri, Rahul

    2017-07-01

    BTB and CNC homology (BACH) proteins are transcriptional repressors of the basic region leucine zipper (bZIP) transcription factor family. Recent studies indicate widespread roles of BACH proteins in controlling the development and function of the innate and adaptive immune systems, including the differentiation of effector and memory cells of the B and T cell lineages, CD4(+) regulatory T cells and macrophages. Here, we emphasize similarities at a molecular level in the cell-type-specific activities of BACH factors, proposing that competitive interactions of BACH proteins with transcriptional activators of the bZIP family form a common mechanistic theme underlying their diverse actions. The findings contribute to a general understanding of how transcriptional repressors shape lineage commitment and cell-type-specific functions through repression of alternative lineage programmes.

  13. A heteromeric transcription factor required for mammalian RNA polymerase II.

    PubMed Central

    Kitajima, S; Tanaka, Y; Kawaguchi, T; Nagaoka, T; Weissman, S M; Yasukochi, Y

    1990-01-01

    A general transcription factor, FC, essential for specific initiation of in vitro transcription by mammalian RNA polymerase II was identified and a procedure developed to purify it to near homogeneity from HeLa cell nuclei. Purified FC is composed of two polypeptides of apparent molecular masses 80 kDa and 30 kDa, on SDS-PAGE, and has a native size of 280 kDa estimated by gel filtration column. Both polypeptides were shown to be essential for reconstituting in vitro transcription activity. Biochemical analysis showed that the 80 kDa and 30 kDa components were present in a 1:1 molar ratio. FC was also demonstrated to interact directly or indirectly with purified RNA polymerase II. Similarities between FC and transcription factors reported by others from human, rat or Drosophila cells are discussed. Images PMID:2395645

  14. FoxJ1-dependent gene expression is required for differentiation of radial glia into ependymal cells and a subset of astrocytes in the postnatal brain.

    PubMed

    Jacquet, Benoit V; Salinas-Mondragon, Raul; Liang, Huixuan; Therit, Blair; Buie, Justin D; Dykstra, Michael; Campbell, Kenneth; Ostrowski, Lawrence E; Brody, Steven L; Ghashghaei, H Troy

    2009-12-01

    Neuronal specification occurs at the periventricular surface of the embryonic central nervous system. During early postnatal periods, radial glial cells in various ventricular zones of the brain differentiate into ependymal cells and astrocytes. However, mechanisms that drive this time- and cell-specific differentiation remain largely unknown. Here, we show that expression of the forkhead transcription factor FoxJ1 in mice is required for differentiation into ependymal cells and a small subset of FoxJ1(+) astrocytes in the lateral ventricles, where these cells form a postnatal neural stem cell niche. Moreover, we show that a subset of FoxJ1(+) cells harvested from the stem cell niche can self-renew and possess neurogenic potential. Using a transcriptome comparison of FoxJ1-null and wild-type microdissected tissue, we identified candidate genes regulated by FoxJ1 during early postnatal development. The list includes a significant number of microtubule-associated proteins, some of which form a protein complex that could regulate the transport of basal bodies to the ventricular surface of differentiating ependymal cells during FoxJ1-dependent ciliogenesis. Our results suggest that time- and cell-specific expression of FoxJ1 in the brain acts on an array of target genes to regulate the differentiation of ependymal cells and a small subset of astrocytes in the adult stem cell niche.

  15. The transcription factor FOXN3 inhibits cell proliferation by downregulating E2F5 expression in hepatocellular carcinoma cells

    PubMed Central

    Huo, Qi; Cui, Meiling; Ge, Chao; Zhao, Fangyu; Tian, Hua; Chen, Taoyang; Yao, Ming; Li, Jinjun

    2016-01-01

    Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide, and the mechanisms underlying the development of HCC remain to be elucidated. Forkhead box N3 (FOXN3) is an important member of the FOX family of transcription factors that plays an essential role in several cancers but has not been investigated in HCC. In this study, we demonstrate that FOXN3 is downregulated in human primary HCC tissues compared with their matched adjacent liver tissues. Functional tests of FOXN3 demonstrated that FOXN3 inhibits the proliferation of HCC cells in vitro and in vivo. Additionally, FOXN3 repressed the mRNA and protein expression of E2F5, a reported potential oncogene, by inhibiting the promoter activity of E2F5. Collectively, our findings indicate that FOXN3 functions as a tumor suppressor in HCC by downregulating the expression of E2F5. PMID:27259277

  16. Function of transcription factors at DNA lesions in DNA repair.

    PubMed

    Malewicz, Michal; Perlmann, Thomas

    2014-11-15

    Cellular systems for DNA repair ensure prompt removal of DNA lesions that threaten the genomic stability of the cell. Transcription factors (TFs) have long been known to facilitate DNA repair via transcriptional regulation of specific target genes encoding key DNA repair proteins. However, recent findings identified TFs as DNA repair components acting directly at the DNA lesions in a transcription-independent fashion. Together this recent progress is consistent with the hypothesis that TFs have acquired the ability to localize DNA lesions and function by facilitating chromatin remodeling at sites of damaged DNA. Here we review these recent findings and discuss how TFs may function in DNA repair.

  17. DNA Binding by the Ribosomal DNA Transcription Factor Rrn3 Is Essential for Ribosomal DNA Transcription*

    PubMed Central

    Stepanchick, Ann; Zhi, Huijun; Cavanaugh, Alice H.; Rothblum, Katrina; Schneider, David A.; Rothblum, Lawrence I.

    2013-01-01

    The human homologue of yeast Rrn3 is an RNA polymerase I-associated transcription factor that is essential for ribosomal DNA (rDNA) transcription. The generally accepted model is that Rrn3 functions as a bridge between RNA polymerase I and the transcription factors bound to the committed template. In this model Rrn3 would mediate an interaction between the mammalian Rrn3-polymerase I complex and SL1, the rDNA transcription factor that binds to the core promoter element of the rDNA. In the course of studying the role of Rrn3 in recruitment, we found that Rrn3 was in fact a DNA-binding protein. Analysis of the sequence of Rrn3 identified a domain with sequence similarity to the DNA binding domain of heat shock transcription factor 2. Randomization, or deletion, of the amino acids in this region in Rrn3, amino acids 382–400, abrogated its ability to bind DNA, indicating that this domain was an important contributor to DNA binding by Rrn3. Control experiments demonstrated that these mutant Rrn3 constructs were capable of interacting with both rpa43 and SL1, two other activities demonstrated to be essential for Rrn3 function. However, neither of these Rrn3 mutants was capable of functioning in transcription in vitro. Moreover, although wild-type human Rrn3 complemented a yeast rrn3-ts mutant, the DNA-binding site mutant did not. These results demonstrate that DNA binding by Rrn3 is essential for transcription by RNA polymerase I. PMID:23393135

  18. DNA binding by the ribosomal DNA transcription factor rrn3 is essential for ribosomal DNA transcription.

    PubMed

    Stepanchick, Ann; Zhi, Huijun; Cavanaugh, Alice H; Rothblum, Katrina; Schneider, David A; Rothblum, Lawrence I

    2013-03-29

    The human homologue of yeast Rrn3 is an RNA polymerase I-associated transcription factor that is essential for ribosomal DNA (rDNA) transcription. The generally accepted model is that Rrn3 functions as a bridge between RNA polymerase I and the transcription factors bound to the committed template. In this model Rrn3 would mediate an interaction between the mammalian Rrn3-polymerase I complex and SL1, the rDNA transcription factor that binds to the core promoter element of the rDNA. In the course of studying the role of Rrn3 in recruitment, we found that Rrn3 was in fact a DNA-binding protein. Analysis of the sequence of Rrn3 identified a domain with sequence similarity to the DNA binding domain of heat shock transcription factor 2. Randomization, or deletion, of the amino acids in this region in Rrn3, amino acids 382-400, abrogated its ability to bind DNA, indicating that this domain was an important contributor to DNA binding by Rrn3. Control experiments demonstrated that these mutant Rrn3 constructs were capable of interacting with both rpa43 and SL1, two other activities demonstrated to be essential for Rrn3 function. However, neither of these Rrn3 mutants was capable of functioning in transcription in vitro. Moreover, although wild-type human Rrn3 complemented a yeast rrn3-ts mutant, the DNA-binding site mutant did not. These results demonstrate that DNA binding by Rrn3 is essential for transcription by RNA polymerase I.

  19. Transcription-coupled DNA repair in yeast transcription factor IIE (TFIIE) mutants.

    PubMed

    Lommel, L; Gregory, S M; Becker, K I; Sweder, K S

    2000-02-01

    We examined the role of yeast transcription initiation factor IIE (TFIIE) in eukaryotic transcription-coupled repair (TCR), the preferential removal of DNA damage from the transcribed strands of genes over non-transcribed sequences. TFIIE can recruit the transcription initiation/repair factor TFIIH to the RNA polymerase II (RNA pol II) initiation complex to facilitate promoter clearance. Following exposure to UV radiation, the RNA pol II elongation complex is blocked at sites of UV-induced DNA damage, and may be recognized by nucleotide excision repair proteins, thus enabling TCR. The TFA1 gene encodes the large subunit of TFIIE. We determined how DNA repair is affected by TFA1 conditional mutations. In particular, we find proficient TCR in a heat-sensitive tfa1 mutant at the non-permissive temperature during which growth is inhibited and overall RNA pol II transcription is reported to be inhibited. We demonstrate that transcription of the RPB2 gene was reduced, but readily detectable, in the heat-sensitive tfa1 mutant at the non-permissive temperature and thereby prove that TCR does occur in an expressed gene in the absence of TFIIE in vivo. We demonstrate that TCR occurs even at low levels of transcription.

  20. Mechanistic duality of transcription factor function in phytochrome signaling

    USDA-ARS?s Scientific Manuscript database

    The phytochrome (phy) family of sensory photoreceptors (phyA–E in Arabidopsis) elicit changes in gene expression after light-induced migration to the nucleus, where they interact with basic helix–loop–helix transcription factors, such as phytochrome-interacting factor 3 (PIF3). The mechanism by whic...

  1. Resetting the transcription factor network reverses terminal chronic hepatic failure

    PubMed Central

    Nishikawa, Taichiro; Bell, Aaron; Brooks, Jenna M.; Setoyama, Kentaro; Melis, Marta; Han, Bing; Fukumitsu, Ken; Handa, Kan; Tian, Jianmin; Kaestner, Klaus H.; Vodovotz, Yoram; Locker, Joseph; Soto-Gutierrez, Alejandro; Fox, Ira J.

    2015-01-01

    The cause of organ failure is enigmatic for many degenerative diseases, including end-stage liver disease. Here, using a CCl4-induced rat model of irreversible and fatal hepatic failure, which also exhibits terminal changes in the extracellular matrix, we demonstrated that chronic injury stably reprograms the critical balance of transcription factors and that diseased and dedifferentiated cells can be returned to normal function by re-expression of critical transcription factors, a process similar to the type of reprogramming that induces somatic cells to become pluripotent or to change their cell lineage. Forced re-expression of the transcription factor HNF4α induced expression of the other hepatocyte-expressed transcription factors; restored functionality in terminally diseased hepatocytes isolated from CCl4-treated rats; and rapidly reversed fatal liver failure in CCl4-treated animals by restoring diseased hepatocytes rather than replacing them with new hepatocytes or stem cells. Together, the results of our study indicate that disruption of the transcription factor network and cellular dedifferentiation likely mediate terminal liver failure and suggest reinstatement of this network has therapeutic potential for correcting organ failure without cell replacement. PMID:25774505

  2. Emerging functions of transcription factors in malaria parasite.

    PubMed

    Tuteja, Renu; Ansari, Abulaish; Chauhan, Virander Singh

    2011-01-01

    Transcription is a process by which the genetic information stored in DNA is converted into mRNA by enzymes known as RNA polymerase. Bacteria use only one RNA polymerase to transcribe all of its genes while eukaryotes contain three RNA polymerases to transcribe the variety of eukaryotic genes. RNA polymerase also requires other factors/proteins to produce the transcript. These factors generally termed as transcription factors (TFs) are either associated directly with RNA polymerase or add in building the actual transcription apparatus. TFs are the most common tools that our cells use to control gene expression. Plasmodium falciparum is responsible for causing the most lethal form of malaria in humans. It shows most of its characteristics common to eukaryotic transcription but it is assumed that mechanisms of transcriptional control in P. falciparum somehow differ from those of other eukaryotes. In this article we describe the studies on the main TFs such as myb protein, high mobility group protein and ApiA2 family proteins from malaria parasite. These studies show that these TFs are slowly emerging to have defined roles in the regulation of gene expression in the parasite.

  3. JunB transcription factor maintains skeletal muscle mass and promotes hypertrophy

    PubMed Central

    Raffaello, Anna; Milan, Giulia; Masiero, Eva; Carnio, Silvia; Lee, Donghoon

    2010-01-01

    The size of skeletal muscle cells is precisely regulated by intracellular signaling networks that determine the balance between overall rates of protein synthesis and degradation. Myofiber growth and protein synthesis are stimulated by the IGF-1/Akt/mammalian target of rapamycin (mTOR) pathway. In this study, we show that the transcription factor JunB is also a major determinant of whether adult muscles grow or atrophy. We found that in atrophying myotubes, JunB is excluded from the nucleus and that decreasing JunB expression by RNA interference in adult muscles causes atrophy. Furthermore, JunB overexpression induces hypertrophy without affecting satellite cell proliferation and stimulated protein synthesis independently of the Akt/mTOR pathway. When JunB is transfected into denervated muscles, fiber atrophy is prevented. JunB blocks FoxO3 binding to atrogin-1 and MuRF-1 promoters and thus reduces protein breakdown. Therefore, JunB is important not only in dividing populations but also in adult muscle, where it is required for the maintenance of muscle size and can induce rapid hypertrophy and block atrophy. PMID:20921137

  4. miR-182 attenuates atrophy-related gene expression by targeting FoxO3 in skeletal muscle.

    PubMed

    Hudson, Matthew B; Rahnert, Jill A; Zheng, Bin; Woodworth-Hobbs, Myra E; Franch, Harold A; Price, S Russ

    2014-08-15

    Skeletal muscle atrophy occurs in response to a variety of conditions including chronic kidney disease, diabetes, cancer, and elevated glucocorticoids. MicroRNAs (miR) may play a role in the wasting process. Activation of the forkhead box O3 (FoxO3) transcription factor causes skeletal muscle atrophy in patients, animals, and cultured cells by increasing the expression of components of the ubiquitin-proteasome and autophagy-lysosome proteolytic systems. To identify microRNAs that potentially modulate the atrophy process, an in silico target analysis was performed and miR-182 was predicted to target FoxO3 mRNA. Using a combination of immunoblot analysis, quantitative real-time RT-PCR, and FoxO3 3'-UTR luciferase reporter genes, miR-182 was confirmed to regulate FoxO3 expression in C2C12 myotubes. Transfection of miR-182 into muscle cells decreased FoxO3 mRNA 30% and FoxO3 protein 67% (P < 0.05) and also prevented a glucocorticoid-induced upregulation of multiple FoxO3 gene targets including MAFbx/atrogin-1, autophagy-related protein 12 (ATG12), cathepsin L, and microtubule-associated protein light chain 3 (LC3). Treatment of C2C12 myotubes with dexamethasone (Dex) (1 μM, 6 h) to induce muscle atrophy decreased miR-182 expression by 63% (P < 0.05). Similarly, miR-182 was decreased 44% (P < 0.05) in the gastrocnemius muscle of rats injected with streptozotocin to induce diabetes compared with controls. Finally, miR-182 was present in exosomes isolated from the media of C2C12 myotubes and Dex increased its abundance. These data identify miR-182 as an important regulator of FoxO3 expression that participates in the control of atrophy-inducing genes during catabolic diseases.

  5. Homeodomain transcription factors regulate BMP-2-induced osteoactivin transcription in osteoblasts.

    PubMed

    Singh, Maneet; Del Carpio-Cano, Fabiola E; Monroy, M Alexandra; Popoff, Steven N; Safadi, Fayez F

    2012-01-01

    Osteoactivin (OA) is required for the differentiation of osteoblast cells. OA expression is stimulated by bone morphogenetic protein-2 (BMP-2). BMP-2 recruits homeodomain transcription factors Dlx3, Dlx5, and Msx2 to selectively activate or repress transcription of osteogenic genes and hence tightly regulate their transcription during osteoblast differentiation. Considering the key roles of Dlx3, Dlx5, and Msx2 in osteoblast differentiation, here we hypothesize that homeodomain proteins regulate BMP-2-induced OA transcription during osteoblast differentiation. Four classical homeodomain binding sites were identified in the proximal 0.96 kb region of rat OA promoter. Deletions and mutagenesis studies of the OA promoter region indicated that all four homeodomain binding sites are crucial for BMP-2-induced OA promoter activity. Simultaneous disruption of homeodomain binding sites at -852 and -843 of the transcription start site of OA gene significantly decreased the BMP-2-induced OA transcription and inhibited binding of Dlx3, Dlx5, and Msx2 proteins to the OA promoter. Dlx3 and Dlx5 proteins were found to activate the OA transcription, whereas, Msx2 suppressed BMP-2-induced OA transcription. Using chromatin immunoprecipitation assays, we demonstrated that the OA promoter is predominantly occupied by Dlx3 and Dlx5 during the proliferation and matrix maturation stages of osteoblast differentiation, respectively. During the matrix mineralization stage, BMP-2 robustly enhanced the recruitment of Dlx5 and to a lesser extent of Dlx3 and Msx2 to the OA promoter region. Collectively, our results show that the BMP-2-induced OA transcription is differentially regulated by Dlx3, Dlx5, and Msx2 during osteoblast differentiation.

  6. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors.

    PubMed

    Piatek, Agnieszka; Ali, Zahir; Baazim, Hatoon; Li, Lixin; Abulfaraj, Aala; Al-Shareef, Sahar; Aouida, Mustapha; Mahfouz, Magdy M

    2015-05-01

    Targeted genomic regulation is a powerful approach to accelerate trait discovery and development in agricultural biotechnology. Bacteria and archaea use clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) regulatory systems for adaptive molecular immunity against foreign nucleic acids introduced by invading phages and conjugative plasmids. The type II CRISPR/Cas system has been adapted for genome editing in many cell types and organisms. A recent study used the catalytically inactive Cas9 (dCas9) protein combined with guide-RNAs (gRNAs) as a DNA-targeting platform to modulate gene expression in bacterial, yeast, and human cells. Here, we modified this DNA-targeting platform for targeted transcriptional regulation in planta by developing chimeric dCas9-based transcriptional activators and repressors. To generate transcriptional activators, we fused the dCas9 C-terminus with the activation domains of EDLL and TAL effectors. To generate a transcriptional repressor, we fused the dCas9 C-terminus with the SRDX repression domain. Our data demonstrate that dCas9 fusion with the EDLL activation domain (dCas9:EDLL) and the TAL activation domain (dCas9:TAD), guided by gRNAs complementary to selected promoter elements, induce strong transcriptional activation on Bs3::uidA targets in plant cells. Further, the dCas9:SRDX-mediated transcriptional repression of an endogenous gene. Thus, our results suggest that the synthetic transcriptional repressor (dCas9:SRDX) and activators (dCas9:EDLL and dCas9:TAD) can be used as endogenous transcription factors to repress or activate transcription of an endogenous genomic target. Our data indicate that the CRISPR/dCas9 DNA-targeting platform can be used in plants as a functional genomics tool and for biotechnological applications. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Sumoylation delays the ATF7 transcription factor subcellular localization and inhibits its transcriptional activity.

    PubMed

    Hamard, Pierre-Jacques; Boyer-Guittaut, Michaël; Camuzeaux, Barbara; Dujardin, Denis; Hauss, Charlotte; Oelgeschläger, Thomas; Vigneron, Marc; Kedinger, Claude; Chatton, Bruno

    2007-01-01

    Over the past few years, small ubiquitin-like modifier (SUMO) modification has emerged as an important regulator of diverse pathways and activities including protein localization and transcriptional regulation. We identified a consensus sumoylation motif (IKEE), located within the N-terminal activation domain of the ATF7 transcription factor and thus investigated the role of this modification. ATF7 is a ubiquitously expressed transcription factor, homologous to ATF2, that binds to CRE elements within specific promoters. This protein is able to heterodimerize with Jun or Fos proteins and its transcriptional activity is mediated by interaction with TAF12, a subunit of the general transcription factor TFIID. In the present article, we demonstrate that ATF7 is sumoylated in vitro (using RanBP2 as a E3-specific ligase) and in vivo. Moreover, we show that ATF7 sumoylation affects its intranuclear localization by delaying its entry into the nucleus. Furthermore, SUMO conjugation inhibits ATF7 transactivation activity by (i) impairing its association with TAF12 and (ii) blocking its binding-to-specific sequences within target promoters.

  8. FoxO proteins' nuclear retention and BH3-only protein Bim induction evoke mitochondrial dysfunction-mediated apoptosis in berberine-treated HepG2 cells.

    PubMed

    Shukla, Shatrunajay; Rizvi, Fatima; Raisuddin, Sheikh; Kakkar, Poonam

    2014-11-01

    Mammalian forkhead-box family members belonging to the 'O' category (FoxO) manipulate a plethora of genes modulating a wide array of cellular functions including cell cycle regulation, apoptosis, DNA damage repair, and energy metabolism. FoxO overexpression and nuclear accumulation have been reported to show correlation with hindered tumor growth in vitro and size in vivo, while FoxO's downregulation via phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway has been linked with tumor promotion. In this study, we have explored for the first time intervention of berberine, a plant-derived isoquinoline alkaloid, with FoxO family proteins in hepatoma cells. We observed that berberine significantly upregulated the mRNA expression of both FoxO1 and FoxO3a. Their phosphorylation-mediated cytoplasmic sequestration followed by degradation was prevented by berberine-induced downmodulation of the PI3K/Akt/mTOR pathway which promoted FoxO nuclear retention. PTEN, a tumor suppressor gene and negative regulator of the PI3K/Akt axis, was upregulated while phosphorylation of its Ser380 residue (possible mechanism of PTEN degradation) was significantly decreased in treated HepG2 cells. Exposure to berberine induced a significant increase in transcriptional activity of FoxO, as shown by GFP reporter assay. FoxO transcription factors effectively heightened BH3-only protein Bim expression, which in turn, being a direct activator of proapoptotic protein Bax, altered Bax/Bcl-2 ratio, culminating into mitochondrial dysfunction, caspases activation, and DNA fragmentation. The pivotal role of Bim in berberine-mediated cytotoxicity was further corroborated by knockdown experiments where Bim-silencing partially restored HepG2 cell viability during berberine exposure. In addition, a correlation between oxidative overload and FoxO's nuclear accumulation via JNK activation was evident as berberine treatment led to a pronounced increase in JNK phosphorylation together with enhanced

  9. Theory on the dynamic memory in the transcription-factor-mediated transcription activation

    NASA Astrophysics Data System (ADS)

    Murugan, R.

    2011-04-01

    We develop a theory to explain the origin of the static and dynamical memory effects in transcription-factor-mediated transcription activation. Our results suggest that the following inequality conditions should be satisfied to observe such memory effects: (a) τL≫max(τR,τE), (b) τLT≫τT, and (c) τI⩾(τEL+τTR) where τL is the average time required for the looping-mediated spatial interactions of enhancer—transcription-factor complex with the corresponding promoter—RNA-polymerase or eukaryotic RNA polymerase type II (PolII in eukaryotes) complex that is located L base pairs away from the cis-acting element, (τR,τE) are respectively the search times required for the site-specific binding of the RNA polymerase and the transcription factor with the respective promoter and the cis-regulatory module, τLT is the time associated with the relaxation of the looped-out segment of DNA that connects the cis-acting site and promoter, τT is the time required to generate a complete transcript, τI is the transcription initiation time, τEL is the elongation time, and τTR is the termination time. We have theoretically derived the expressions for the various searching, looping, and loop-relaxation time components. Using the experimentally determined values of various time components we further show that the dynamical memory effects cannot be experimentally observed whenever the segment of DNA that connects the cis-regulatory element with the promoter is not loaded with bulky histone bodies. Our analysis suggests that the presence of histone-mediated compaction of the connecting segment of DNA can result in higher values of looping and loop-relaxation times, which is the origin of the static memory in the transcription activation that is mediated by the memory gene loops in eukaryotes.

  10. Theory on the dynamic memory in the transcription-factor-mediated transcription activation.

    PubMed

    Murugan, R

    2011-04-01

    We develop a theory to explain the origin of the static and dynamical memory effects in transcription-factor-mediated transcription activation. Our results suggest that the following inequality conditions should be satisfied to observe such memory effects: (a) τ(L)≫max(τ(R),τ(E)), (b) τ(LT)≫τ(T), and (c) τ(I)≥(τ(EL)+τ(TR)) where τ(L) is the average time required for the looping-mediated spatial interactions of enhancer-transcription-factor complex with the corresponding promoter--RNA-polymerase or eukaryotic RNA polymerase type II (PolII in eukaryotes) complex that is located L base pairs away from the cis-acting element, (τ(R),τ(E)) are respectively the search times required for the site-specific binding of the RNA polymerase and the transcription factor with the respective promoter and the cis-regulatory module, τ(LT) is the time associated with the relaxation of the looped-out segment of DNA that connects the cis-acting site and promoter, τ(T) is the time required to generate a complete transcript, τ(I) is the transcription initiation time, τ(EL) is the elongation time, and τ(TR) is the termination time. We have theoretically derived the expressions for the various searching, looping, and loop-relaxation time components. Using the experimentally determined values of various time components we further show that the dynamical memory effects cannot be experimentally observed whenever the segment of DNA that connects the cis-regulatory element with the promoter is not loaded with bulky histone bodies. Our analysis suggests that the presence of histone-mediated compaction of the connecting segment of DNA can result in higher values of looping and loop-relaxation times, which is the origin of the static memory in the transcription activation that is mediated by the memory gene loops in eukaryotes.

  11. Identifying genetic modulators of the connectivity between transcription factors and their transcriptional targets.

    PubMed

    Fazlollahi, Mina; Muroff, Ivor; Lee, Eunjee; Causton, Helen C; Bussemaker, Harmen J

    2016-03-29

    Regulation of gene expression by transcription factors (TFs) is highly dependent on genetic background and interactions with cofactors. Identifying specific context factors is a major challenge that requires new approaches. Here we show that exploiting natural variation is a potent strategy for probing functional interactions within gene regulatory networks. We developed an algorithm to identify genetic polymorphisms that modulate the regulatory connectivity between specific transcription factors and their target genes in vivo. As a proof of principle, we mapped connectivity quantitative trait loci (cQTLs) using parallel genotype and gene expression data for segregants from a cross between two strains of the yeast Saccharomyces cerevisiae We identified a nonsynonymous mutation in the DIG2 gene as a cQTL for the transcription factor Ste12p and confirmed this prediction empirically. We also identified three polymorphisms in TAF13 as putative modulators of regulation by Gcn4p. Our method has potential for revealing how genetic differences among individuals influence gene regulatory networks in any organism for which gene expression and genotype data are available along with information on binding preferences for transcription factors.

  12. Generalisation of a procedure for computing transcription factor profiles.

    PubMed

    Huang, Z; Chu, Y; Cunha, B; Hahn, J

    2010-03-01

    The limited amount of quantitative experimental data generated from life-science experiments poses a major challenge in systems biology. The reason for this is that many systems approaches, such as parameter estimation, simulation and sensitivity analysis make use of models or analyse quantitative data. However, these techniques are only of limited use if only qualitative or semi-quantitative information is available about a system. Therefore procedures that generate quantitative data from experiments in the life sciences can greatly expand the use of systems approaches to biological problems. This study addresses this issue as it introduces a procedure that computes quantitative transcription factor profiles from fluorescent microscopy data collected from green fluorescent protein (GFP) reporter cells. This technique forms a generalisation of a method that has recently been introduced for monitoring NF-B profiles. The contribution made in this work is that the assumption that the transcription factor profile exhibits damped oscillations is relaxed, as transcription factors, other than the previously investigated NF-B, may exhibit different profiles. This is achieved by investigating a variety of potential profiles and solving the inverse problem for the model describing transcription, translation and activation of GFP for each one. The transcription factor profile that results in the best fit among the potential candidates, for the measured fluorescent intensity data, is then chosen as the most likely concentration profile. The technique is illustrated in two detailed case studies, where one case study involves simulation data whereas the other one uses experimentally derived fluorescent intensity data.

  13. The transcription factor ATF-3 promotes neurite outgrowth.

    PubMed

    Seijffers, Rhona; Allchorne, Andrew J; Woolf, Clifford J

    2006-01-01

    Dorsal root ganglion (DRG) neurons regenerate after a peripheral nerve injury but not after injury to their axons in the spinal cord. A key question is which transcription factors drive the changes in gene expression that increase the intrinsic growth state of peripherally injured sensory neurons? A prime candidate is activating transcription factor-3 (ATF-3), a transcription factor that we find is induced in all DRG neurons after peripheral, but not central axonal injury. Moreover, we show in adult DRG neurons that a preconditioning peripheral, but not central axonal injury, increases their growth, correlating closely with the pattern of ATF-3 induction. Using viral vectors, we delivered ATF-3 to cultured adult DRG neurons and find that ATF-3 enhances neurite outgrowth. Furthermore, ATF-3 promotes long sparsely branched neurites. ATF-3 overexpression did not increase c-Jun expression. ATF-3 may contribute, therefore, to neurite outgrowth by orchestrating the gene expression responses in injured neurons.

  14. Role of non-coding RNA transcription around gene regulatory elements in transcription factor recruitment

    PubMed Central

    Ohta, Kunihiro

    2017-01-01

    ABSTRACT Eukaryotic cells produce a variety of non-coding RNAs (ncRNAs), many of which have been shown to play pivotal roles in biological processes such as differentiation, maintenance of pluripotency of stem cells, and cellular response to various stresses. Genome-wide analyses have revealed that many ncRNAs are transcribed around regulatory DNA elements located proximal or distal to gene promoters, but their biological functions are largely unknown. Recently, it has been demonstrated in yeast and mouse that ncRNA transcription around gene promoters and enhancers facilitates DNA binding of transcription factors to their target sites. These results suggest universal roles of promoter/enhancer-associated ncRNAs in the recruitment of transcription factors to their binding sites. PMID:27763805

  15. 2,3,7,8-Tetrachlorodibenzo-p-dioxin Upregulates FoxQ1b in Zebrafish Jaw Primordium

    PubMed Central

    Planchart, Antonio; Mattingly, Carolyn J.

    2010-01-01

    Vertebrate jaw development can be disrupted by exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)—a potent activator of the aryl hydrocarbon receptor (AHR) transcription factor required for transducing the toxic effects of TCDD. We used zebrafish (Danio rerio) embryos to investigate transcriptional responses to TCDD with the goal of discovering novel, jaw-specific genes affected by TCDD exposure. Our results uncovered a novel target of TCDD-activated Ahr belonging to the evolutionarily conserved family of forkhead box transcription factors. Quantitative real-time polymerase chain reaction analysis demonstrated that FoxQ1b was upregulated by TCDD 7- and 10-fold at 24 and 48 h postfertilization (hpf), respectively. The rate of TCDD-induced FoxQ1b expression was more rapid than that of Cyp1a, a known direct target of TCDD-activated Ahr. TCDD-mediated induction of FoxQ1b was suppressed in the presence of an Ahr antagonist, α-naphthoflavone, as well as following knockdown of Ahr2 expression using an Ahr2-specific morpholino antisense oligonucleotide. In situ hybridization analysis of FoxQ1b expression at 48 hpf demonstrated that FoxQ1b is specifically expressed in the jaw primordium where it discretely outlines a developing jaw structure known as Meckel’s cartilage—a conserved structure in all jawed vertebrates that develops abnormally in the presence of TCDD. These results identify a novel target of TCDD-activated Ahr and suggest that FoxQ1b may play a role in craniofacial abnormalities induced by developmental exposure to TCDD. PMID:20055451

  16. FoxP1 orchestration of ASD-relevant signaling pathways in the striatum

    PubMed Central

    Araujo, Daniel J.; Anderson, Ashley G.; Berto, Stefano; Runnels, Wesley; Harper, Matthew; Ammanuel, Simon; Rieger, Michael A.; Huang, Hung-Chung; Rajkovich, Kacey; Loerwald, Kristofer W.; Dekker, Joseph D.; Tucker, Haley O.; Dougherty, Joseph D.; Gibson, Jay R.; Konopka, Genevieve

    2015-01-01

    Mutations in the transcription factor Forkhead box p1 (FOXP1) are causative for neurodevelopmental disorders such as autism. However, the function of FOXP1 within the brain remains largely uncharacterized. Here, we identify the gene expression program regulated by FoxP1 in both human neural cells and patient-relevant heterozygous Foxp1 mouse brains. We demonstrate a role for FoxP1 in the transcriptional regulation of autism-related pathways as well as genes involved in neuronal activity. We show that Foxp1 regulates the excitability of striatal medium spiny neurons and that reduction of Foxp1 correlates with defects in ultrasonic vocalizations. Finally, we demonstrate that FoxP1 has an evolutionarily conserved role in regulating pathways involved in striatal neuron identity through gene expression studies in human neural progenitors with altered FOXP1 levels. These data support an integral role for FoxP1 in regulating signaling pathways vulnerable in autism and the specific regulation of striatal pathways important for vocal communication. PMID:26494785

  17. Transcriptional elongation factor ENL phosphorylated by ATM recruits polycomb and switches off transcription for DSB repair.

    PubMed

    Ui, Ayako; Nagaura, Yuko; Yasui, Akira

    2015-05-07

    Transcription is repressed if a DNA double-strand break (DSB) is introduced in close proximity to a transcriptional activation site at least in part by H2A-ubiquitination. While ATM signaling is involved, how it controls H2A-ubiquitination remains unclear. Here, we identify that, in response to DSBs, a transcriptional elongation factor, ENL (MLLT1), is phosphorylated by ATM at conserved SQ sites. This phosphorylation increases the interaction between ENL and the E3-ubiquitin-ligase complex of Polycomb Repressive Complex 1 (PRC1) via BMI1. This interaction promotes enrichment of PRC1 at transcription elongation sites near DSBs to ubiquitinate H2A leading to transcriptional repression. ENL SQ sites and BMI1 are necessary for KU70 accumulation at DSBs near active transcription sites and cellular resistance to DSBs. Our data suggest that ATM-dependent phosphorylation of ENL functions as switch from elongation to Polycomb-mediated repression to preserve genome integrity. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Identification of Transcriptional Targets of the Dual Function Transcription Factor/Phosphatase Eyes Absent

    PubMed Central

    Jemc, Jennifer; Rebay, Ilaria

    2007-01-01

    Drosophila eye specification and development relies on a collection of transcription factors termed the retinal determination gene network (RDGN). Two members of this network, Eyes absent (EYA) and Sine oculis (SO), form a transcriptional complex in which EYA provides the transactivation function while SO provides the DNA binding activity. EYA also functions as a protein tyrosine phosphatase, raising the question of whether transcriptional output is dependent or independent of phosphatase activity. To explore this, we used microarrays together with binding site analysis, quantitative real-time PCR, chromatin immunoprecipitation, genetics and in vivo expression analysis to identify new EYA-SO targets. In parallel, we examined the expression profiles of tissue expressing phosphatase mutant eya and found that reducing phosphatase activity did not globally impair transcriptional output. Among the targets identified by our analysis was the cell cycle regulatory gene, string (stg), suggesting that EYA and SO may influence cell proliferation through transcriptional regulation of stg. Future investigation into the regulation of stg and other EYA-SO targets identified in this study will help elucidate the transcriptional circuitries whereby output from the RDGN integrates with other signaling inputs to coordinate retinal development. PMID:17714699

  19. CRTR-1, a developmentally regulated transcriptional repressor related to the CP2 family of transcription factors.

    PubMed

    Rodda, S; Sharma, S; Scherer, M; Chapman, G; Rathjen, P

    2001-02-02

    CP2-related proteins comprise a family of DNA-binding transcription factors that are generally activators of transcription and expressed ubiquitously. We reported a differential display polymerase chain reaction fragment, Psc2, which was expressed in a regulated fashion in mouse pluripotent cells in vitro and in vivo. Here, we report further characterization of the Psc2 cDNA and function. The Psc2 cDNA contained an open reading frame homologous to CP2 family proteins. Regions implicated in DNA binding and oligomeric complex formation, but not transcription activation, were conserved. Psc2 expression in vivo during embryogenesis and in the adult mouse demonstrated tight spatial and temporal regulation, with the highest levels of expression in the epithelial lining of distal convoluted tubules in embryonic and adult kidneys. Functional analysis demonstrated that PSC2 repressed transcription 2.5-15-fold when bound to a heterologous promoter in ES, 293T, and COS-1 cells. The N-terminal 52 amino acids of PSC2 were shown to be necessary and sufficient for this activity and did not share obvious homology with reported repressor motifs. These results represent the first report of a CP2 family member that is expressed in a developmentally regulated fashion in vivo and that acts as a direct repressor of transcription. Accordingly, the protein has been named CP2-Related Transcriptional Repressor-1 (CRTR-1).

  20. Regulation of the Hippo Pathway Transcription Factor TEAD.

    PubMed

    Lin, Kimberly C; Park, Hyun Woo; Guan, Kun-Liang

    2017-09-27

    The TEAD transcription factor family is best known for transcriptional output of the Hippo signaling pathway and has been implicated in processes such as development, cell growth and proliferation, tissue homeostasis, and regeneration. Our understanding of the functional importance of TEADs has increased dramatically since its initial discovery three decades ago. The majority of our knowledge of TEADs is in the context of Hippo signaling as nuclear DNA-binding proteins passively activated by Yes-associated protein (YAP) and transcriptional activator with PDZ-binding domain (TAZ), transcription coactivators downstream of the Hippo pathway. However, recent studies suggest that TEAD itself is actively regulated. Here, we highlight evidence demonstrating Hippo-independent regulation of TEADs and the potential impacts these studies may have on new cancer therapeutics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Transcription factor trapping by RNA in gene regulatory elements.

    PubMed

    Sigova, Alla A; Abraham, Brian J; Ji, Xiong; Molinie, Benoit; Hannett, Nancy M; Guo, Yang Eric; Jangi, Mohini; Giallourakis, Cosmas C; Sharp, Phillip A; Young, Richard A

    2015-11-20

    Transcription factors (TFs) bind specific sequences in promoter-proximal and -distal DNA elements to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF Yin-Yang 1 (YY1) binds to both gene regulatory elements and their associated RNA species across the entire genome. Reduced transcription of regulatory elements diminishes YY1 occupancy, whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive-feedback loop that contributes to the stability of gene expression programs. Copyright © 2015, American Association for the Advancement of Science.

  2. FoxO integration of insulin signaling with glucose and lipid metabolism.

    PubMed

    Lee, Sojin; Dong, H Henry

    2017-05-01

    The forkhead box O family consists of FoxO1, FoxO3, FoxO4 and FoxO6 proteins in mammals. Expressed ubiquitously in the body, the four FoxO isoforms share in common the amino DNA-binding domain, known as 'forkhead box' domain. They mediate the inhibitory action of insulin or insulin-like growth factor on key functions involved in cell metabolism, growth, differentiation, oxidative stress, senescence, autophagy and aging. Genetic mutations in FoxO genes or abnormal expression of FoxO proteins are associated with metabolic disease, cancer or altered lifespan in humans and animals. Of the FoxO family, FoxO6 is the least characterized member and is shown to play pivotal roles in the liver, skeletal muscle and brain. Altered FoxO6 expression is associated with the pathogenesis of insulin resistance, dietary obesity and type 2 diabetes and risk of neurodegeneration disease. FoxO6 is evolutionally divergent from other FoxO isoforms. FoxO6 mediates insulin action on target genes in a mechanism that is fundamentally different from other FoxO members. Here, we focus our review on the role of FoxO6, in contrast with other FoxO isoforms, in health and disease. We review the distinctive mechanism by which FoxO6 integrates insulin signaling to hepatic glucose and lipid metabolism. We highlight the importance of FoxO6 dysregulation in the dual pathogenesis of fasting hyperglycemia and hyperlipidemia in diabetes. We review the role of FoxO6 in memory consolidation and its contribution to neurodegeneration disease and aging. We discuss the potential therapeutic option of pharmacological FoxO6 inhibition for improving glucose and lipid metabolism in diabetes. © 2017 Society for Endocrinology.

  3. Split personality of transcription factors inside and outside the nuclear border.

    PubMed

    Naranjo, José R; Mellström, Britt

    2007-01-30

    Growing evidence indicates that transcription factors may have functions entirely distinct from the regulation of gene transcription. Here we describe three transcription factors that, when outside the nucleus, regulate calcium homeostasis by three independent but convergent mechanisms.

  4. The Transcription Factor THO Promotes Transcription Initiation and Elongation by RNA Polymerase I.

    PubMed

    Zhang, Yinfeng; French, Sarah L; Beyer, Ann L; Schneider, David A

    2016-02-05

    Although ribosomal RNA represents the majority of cellular RNA, and ribosome synthesis is closely connected to cell growth and proliferation rates, a complete understanding of the factors that influence transcription of ribosomal DNA is lacking. Here, we show that the THO complex positively affects transcription by RNA polymerase I (Pol I). We found that THO physically associates with the rDNA repeat and interacts genetically with Pol I transcription initiation factors. Pol I transcription in hpr1 or tho2 null mutants is dramatically reduced to less than 20% of the WT level. Pol I occupancy of the coding region of the rDNA in THO mutants is decreased to ~50% of WT level. Furthermore, although the percentage of active rDNA repeats remains unaffected in the mutant cells, the overall rDNA copy number increases ~2-fold compared with WT. Together, these data show that perturbation of THO function impairs transcription initiation and elongation by Pol I, identifying a new cellular target for the conserved THO complex. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. A Transcription Factor Pulse Can Prime Chromatin for Heritable Transcriptional Memory

    PubMed Central

    Iberg-Badeaux, Aimee; Collombet, Samuel; Laurent, Benoit; van Oevelen, Chris; Chin, Kuo-Kai; Thieffry, Denis

    2016-01-01

    ABSTRACT Short-term and long-term transcriptional memory is the phenomenon whereby the kinetics or magnitude of gene induction is enhanced following a prior induction period. Short-term memory persists within one cell generation or in postmitotic cells, while long-term memory can survive multiple rounds of cell division. We have developed a tissue culture model to study the epigenetic basis for long-term transcriptional memory (LTTM) and subsequently used this model to better understand the epigenetic mechanisms that enable heritable memory of temporary stimuli. We find that a pulse of transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) induces LTTM on a subset of target genes that survives nine cell divisions. The chromatin landscape at genes that acquire LTTM is more repressed than at those genes that do not exhibit memory, akin to a latent state. We show through chromatin immunoprecipitation (ChIP) and chemical inhibitor studies that RNA polymerase II (Pol II) elongation is important for establishing memory in this model but that Pol II itself is not retained as part of the memory mechanism. More generally, our work reveals that a transcription factor involved in lineage specification can induce LTTM and that failure to rerepress chromatin is one epigenetic mechanism underlying transcriptional memory. PMID:27920256

  6. A Transcription Factor Pulse Can Prime Chromatin for Heritable Transcriptional Memory.

    PubMed

    Iberg-Badeaux, Aimee; Collombet, Samuel; Laurent, Benoit; van Oevelen, Chris; Chin, Kuo-Kai; Thieffry, Denis; Graf, Thomas; Shi, Yang

    2017-02-15

    Short-term and long-term transcriptional memory is the phenomenon whereby the kinetics or magnitude of gene induction is enhanced following a prior induction period. Short-term memory persists within one cell generation or in postmitotic cells, while long-term memory can survive multiple rounds of cell division. We have developed a tissue culture model to study the epigenetic basis for long-term transcriptional memory (LTTM) and subsequently used this model to better understand the epigenetic mechanisms that enable heritable memory of temporary stimuli. We find that a pulse of transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) induces LTTM on a subset of target genes that survives nine cell divisions. The chromatin landscape at genes that acquire LTTM is more repressed than at those genes that do not exhibit memory, akin to a latent state. We show through chromatin immunoprecipitation (ChIP) and chemical inhibitor studies that RNA polymerase II (Pol II) elongation is important for establishing memory in this model but that Pol II itself is not retained as part of the memory mechanism. More generally, our work reveals that a transcription factor involved in lineage specification can induce LTTM and that failure to rerepress chromatin is one epigenetic mechanism underlying transcriptional memory. Copyright © 2017 American Society for Microbiology.

  7. Associations between Forkhead Box O1 (FoxO1) Expression and Indicators of Hepatic Glucose Production in Transition Dairy Cows Supplemented with Dietary Nicotinic Acid

    PubMed Central

    Kinoshita, Asako; Locher, Lena; Tienken, Reka; Meyer, Ulrich; Dänicke, Sven; Rehage, Jürgen; Huber, Korinna

    2016-01-01

    Forkhead box protein O1 (FoxO1) is a transcription factor which promotes hepatic glucose production (HGP) by up-regulating the transcription of gluconeogenic enzymes in monogastric species. The activity of FoxO1 is inhibited by insulin-induced phosphorylation. The aims of the present study were to find associations between FoxO1 expression and variables associated with HGP as affected by feeding regimen in dairy cows during the transition period. Twenty one healthy German Holstein cows were allocated to four groups (LC-CON, HC-CON, LC-NA with 5 cows/group and HC-NA with 6 cows/group, respectively). Cows received 0 (LC-CON and HC-CON) or 24 (LC-NA and HC-NA) g/d nicotinic acid with high (HC) or low (LC) concentrate proportion from -42 days (-41.8 + 4.8; mean + standard deviation) relative to expected calving date (d-42) to d24. Liver biopsy was taken at d-42, 1, 21, and 100. The total protein expression of FoxO1 (tFoxO1) and the extent of phosphorylation of FoxO1 at serine 256 (pFoxO1) were analysed semiquantitatively by Western Blotting. The expression of hepatic mRNA of FoxO1 and seven genes associated with HGP was measured by real-time RT-PCR. Mixed model and Pearson’s correlation were used for statistical evaluation with the level of significance at P<0.05. No dietary effect was observed either on feed intake, energy balance, or on the concentration of blood metabolites. Neither time nor diet affected the expression of FoxO1 total protein and mRNA. A NA × concentrate interaction was found in pFoxO1. However, no corresponding dietary effect was found in the mRNA expression of investigated genes. Different patterns of correlations between FoxO1-related variables and investigated indicators for HGP were found at d21 and 100. The results indicated that the regulation of HGP did not take place on the levels of mRNA and protein expression and the phosphorylation of FoxO1 in dairy cows in early lactation. PMID:26800252

  8. Codependent activators direct myoblast-specific MyoD transcription.

    PubMed

    Hu, Ping; Geles, Kenneth G; Paik, Ji-Hye; DePinho, Ronald A; Tjian, Robert

    2008-10-01

    Although FoxO and Pax proteins represent two important families of transcription factors in determining cell fate, they had not been functionally or physically linked together in mediating regulation of a common target gene during normal cellular transcription programs. Here, we identify MyoD, a key regulator of myogenesis, as a direct target of FoxO3 and Pax3/7 in myoblasts. Our cell-based assays and in vitro studies reveal a tight codependent partnership between FoxO3 and Pax3/7 to coordinately recruit RNA polymerase II and form a preinitiation complex (PIC) to activate MyoD transcription in myoblasts. The role of FoxO3 in regulating muscle differentiation is confirmed in vivo by observed defects in muscle regeneration caused by MyoD downregulation in FoxO3 null mice. These data establish a mutual interdependence and functional link between two families of transcription activators serving as potential signaling sensors and regulators of cell fate commitment in directing tissue specific MyoD transcription.

  9. Transcription Factor Binding Sites Prediction Based on Modified Nucleosomes

    PubMed Central

    Talebzadeh, Mohammad; Zare-Mirakabad, Fatemeh

    2014-01-01

    In computational methods, position weight matrices (PWMs) are commonly applied for transcription factor binding site (TFBS) prediction. Although these matrices are more accurate than simple consensus sequences to predict actual binding sites, they usually produce a large number of false positive (FP) predictions and so are impoverished sources of information. Several studies have employed additional sources of information such as sequence conservation or the vicinity to transcription start sites to distinguish true binding regions from random ones. Recently, the spatial distribution of modified nucleosomes has been shown to be associated with different promoter architectures. These aligned patterns can facilitate DNA accessibility for transcription factors. We hypothesize that using data from these aligned and periodic patterns can improve the performance of binding region prediction. In this study, we propose two effective features, “modified nucleosomes neighboring” and “modified nucleosomes occupancy”, to decrease FP in binding site discovery. Based on these features, we designed a logistic regression classifier which estimates the probability of a region as a TFBS. Our model learned each feature based on Sp1 binding sites on Chromosome 1 and was tested on the other chromosomes in human CD4+T cells. In this work, we investigated 21 histone modifications and found that only 8 out of 21 marks are strongly correlated with transcription factor binding regions. To prove that these features are not specific to Sp1, we combined the logistic regression classifier with the PWM, and created a new model to search TFBSs on the genome. We tested the model using transcription factors MAZ, PU.1 and ELF1 and compared the results to those using only the PWM. The results show that our model can predict Transcription factor binding regions more successfully. The relative simplicity of the model and capability of integrating other features make it a superior method for TFBS

  10. Deletion of FoxO1 leads to shortening of QRS by increasing Na(+) channel activity through enhanced expression of both cardiac NaV1.5 and β3 subunit.

    PubMed

    Cai, Benzhi; Wang, Ning; Mao, Weike; You, Tao; Lu, Yan; Li, Xiang; Ye, Bo; Li, Faqian; Xu, Haodong

    2014-09-01

    Our in vitro studies revealed that a transcription factor, Forkhead box protein O1 (FoxO1), negatively regulates the expression of NaV1.5, a main α subunit of the cardiac Na(+) channel, by altering the promoter activity of SCN5a in HL-1 cardiomyocytes. The in vivo role of FoxO1 in the regulation of cardiac NaV1.5 expression remains unknown. The present study aimed to define the role of FoxO1 in the regulation of NaV1.5 expression and cardiac Na(+) channel activity in mouse ventricular cardiomyocytes and assess the cardiac electrophysiological phenotype of mice with cardiac FoxO1 deletion. Tamoxifen-induced and cardiac-specific FoxO1 deletion was confirmed by polymerase chain reaction (PCR). Cardiac FoxO1 deletion failed to result in either cardiac functional changes or hypertrophy as assessed by echocardiography and individual ventricular cell capacitances, respectively. Western blotting showed that FoxO1 was significantly decreased while NaV1.5 protein level was significantly increased in mouse hearts with FoxO1 deletion. Reverse transcription-PCR (RT-PCR) revealed that FoxO1 deletion led to an increase in NaV1.5 and Na(+) channel subunit β3 mRNA, but not β1, 2, and 4, or connexin 43. Whole patch-clamp recordings demonstrated that cardiac Na(+) currents were significantly augmented by FoxO1 deletion without affecting the steady-state activation and inactivation, leading to accelerated depolarization of action potentials in mouse ventricular cardiomyocytes. Electrocardiogram recordings showed that the QRS complex was significantly shortened and the P wave amplitude was significantly increased in conscious and unrestrained mice with cardiac FoxO1 deletion. NaV1.5 expression was decreased in the peri-infarct (border-zone) of mice with myocardial infarction and FoxO1 accumulated in the cardiomyocyte nuclei of chronic ischemic human hearts. Our findings indicate that FoxO1 plays an important role in the regulation of NaV1.5 and β3 subunit expressions as well as Na

  11. Differential regulation of TGA transcription factors by post-transcriptional control.

    PubMed

    Pontier, Dominique; Privat, Isabelle; Trifa, Youssef; Zhou, Jun-Ma; Klessig, Daniel F; Lam, Eric

    2002-12-01

    Transcription factors often belong to multigene families and their individual contribution in a particular regulatory network remains difficult to assess. We show here that specific members from a family of conserved Arabidopsis bZIP transcription factors, the TGA proteins, are regulated in their protein stability by developmental stage-specific proteolysis. Using GFP fusions of three different Arabidopsis TGA factors that represent members of distinct subclasses of the TGA factor family, we demonstrate that two of these TGA proteins are specifically targeted for proteolysis in mature leaf cells. Using a supershift gel mobility assay, we found evidence for similar regulation of the cognate proteins as compared to the GFP fusion proteins expressed under the cauliflower mosaic virus (CaMV) 35S promoter. Using various inhibitors, we showed that the expression of at least one of these three TGA factors could be stabilized by inhibition of proteasome-mediated proteolysis. This study indicates that TGA transcription factors may be regulated by distinct pathways of targeted proteolysis that can serve to modulate the contribution of specific members of a multigene family in complex regulatory pathways.

  12. In vivo phosphorylation of WRKY transcription factor by MAPK.

    PubMed

    Ishihama, Nobuaki; Adachi, Hiroaki; Yoshioka, Miki; Yoshioka, Hirofumi

    2014-01-01

    Plants activate signaling networks in response to diverse pathogen-derived signals, facilitating transcriptional reprogramming through mitogen-activated protein kinase (MAPK) cascades. Identification of phosphorylation targets of MAPK and in vivo detection of the phosphorylated substrates are important processes to elucidate the signaling pathway in plant immune responses. We have identified a WRKY transcription factor, which is phosphorylated by defense-related MAPKs, SIPK and WIPK. Recent evidence demonstrated that some group I WRKY transcription factors, which contain a conserved motif in the N-terminal region, are activated by MAPK-dependent phosphorylation. In this chapter, we describe protocols for preparation of anti-phosphopeptide antibodies, detection of activated MAPKs using anti-phospho-MAPK antibody, and activated WRKY using anti-phospho-WRKY antibody, respectively.

  13. Transcriptional Profiling of Intrinsic PNS Factors in the Postnatal Mouse

    PubMed Central

    Smith, Robin P.; Lerch-Haner, Jessica K.; Pardinas, Jose R.; Buchser, William J.; Bixby, John L.; Lemmon, Vance P.

    2010-01-01

    Neurons in the peripheral nervous system (PNS) display a higher capacity to regenerate after injury than those in the central nervous system, suggesting cell specific transcriptional modules underlying axon growth and inhibition. We report a systems biology based search for PNS specific transcription factors (TFs). Messenger RNAs enriched in dorsal root ganglion (DRG) neurons compared to cerebellar granule neurons (CGNs) were identified using subtractive hybridization and DNA microarray approaches. Network and transcription factor binding site enrichment analyses were used to further identify TFs that may be differentially active. Combining these techniques, we identified 32 TFs likely to be enriched and/or active in the PNS. Twenty-five of these TFs were then tested for an ability to promote CNS neurite outgrowth in an overexpression screen. Real-time PCR and immunohistochemical studies confirmed that one representative TF, STAT3, is intrinsic to PNS neurons, and that constitutively active STAT3 is sufficient to promote CGN neurite outgrowth. PMID:20696251

  14. Transcriptional profiling of intrinsic PNS factors in the postnatal mouse.

    PubMed

    Smith, Robin P; Lerch-Haner, Jessica K; Pardinas, Jose R; Buchser, William J; Bixby, John L; Lemmon, Vance P

    2011-01-01

    Neurons in the peripheral nervous system (PNS) display a higher capacity to regenerate after injury than those in the central nervous system, suggesting cell specific transcriptional modules underlying axon growth and inhibition. We report a systems biology based search for PNS specific transcription factors (TFs). Messenger RNAs enriched in dorsal root ganglion (DRG) neurons compared to cerebellar granule neurons (CGNs) were identified using subtractive hybridization and DNA microarray approaches. Network and transcription factor binding site enrichment analyses were used to further identify TFs that may be differentially active. Combining these techniques, we identified 32 TFs likely to be enriched and/or active in the PNS. Twenty-five of these TFs were then tested for an ability to promote CNS neurite outgrowth in an overexpression screen. Real-time PCR and immunohistochemical studies confirmed that one representative TF, STAT3, is intrinsic to PNS neurons, and that constitutively active STAT3 is sufficient to promote CGN neurite outgrowth.

  15. Resveratrol regulates gene transcription via activation of stimulus-responsive transcription factors.

    PubMed

    Thiel, Gerald; Rössler, Oliver G

    2017-03-01

    Resveratrol (trans-3,4',5-trihydroxystilbene), a polyphenolic phytoalexin of grapes and other fruits and plants, is a common constituent of our diet and of dietary supplements. Many health-promoting benefits have been connected with resveratrol in the treatment of cardiovascular diseases, cancer, diabetes, inflammation, neurodegeneration, and diseases connected with aging. To explain the pleiotropic effects of resveratrol, the molecular targets of this compound have to be identified on the cellular level. Resveratrol induces intracellular signal transduction pathways which ultimately lead to changes in the gene expression pattern of the cells. Here, we review the effect of resveratrol on the activation of the stimulus-responsive transcription factors CREB, AP-1, Egr-1, Elk-1, and Nrf2. Following activation, these transcription factors induce transcription of delayed response genes. The gene products of these delayed response genes are ultimately responsible for the changes in the biochemistry and physiology of resveratrol-treated cells. The activation of stimulus-responsive transcription factors may explain many of the intracellular activities of resveratrol. However, results obtained in vitro may not easily be transferred to in vivo systems.

  16. Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor.

    PubMed

    Paonessa, Francesco; Criscuolo, Stefania; Sacchetti, Silvio; Amoroso, Davide; Scarongella, Helena; Pecoraro Bisogni, Federico; Carminati, Emanuele; Pruzzo, Giacomo; Maragliano, Luca; Cesca, Fabrizia; Benfenati, Fabio

    2016-01-05

    Optogenetics provides new ways to activate gene transcription; however, no attempts have been made as yet to modulate mammalian transcription factors. We report the light-mediated regulation of the repressor element 1 (RE1)-silencing transcription factor (REST), a master regulator of neural genes. To tune REST activity, we selected two protein domains that impair REST-DNA binding or recruitment of the cofactor mSin3a. Computational modeling guided the fusion of the inhibitory domains to the light-sensitive Avena sativa light-oxygen-voltage-sensing (LOV) 2-phototrophin 1 (AsLOV2). By expressing AsLOV2 chimeras in Neuro2a cells, we achieved light-dependent modulation of REST target genes that was associated with an improved neural differentiation. In primary neurons, light-mediated REST inhibition increased Na(+)-channel 1.2 and brain-derived neurotrophic factor transcription and boosted Na(+) currents and neuronal firing. This optogenetic approach allows the coordinated expression of a cluster of genes impinging on neuronal activity, providing a tool for studying neuronal physiology and correcting gene expression changes taking place in brain diseases.

  17. Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor

    PubMed Central

    Paonessa, Francesco; Criscuolo, Stefania; Sacchetti, Silvio; Amoroso, Davide; Scarongella, Helena; Pecoraro Bisogni, Federico; Carminati, Emanuele; Pruzzo, Giacomo; Maragliano, Luca; Cesca, Fabrizia; Benfenati, Fabio

    2016-01-01

    Optogenetics provides new ways to activate gene transcription; however, no attempts have been made as yet to modulate mammalian transcription factors. We report the light-mediated regulation of the repressor element 1 (RE1)-silencing transcription factor (REST), a master regulator of neural genes. To tune REST activity, we selected two protein domains that impair REST-DNA binding or recruitment of the cofactor mSin3a. Computational modeling guided the fusion of the inhibitory domains to the light-sensitive Avena sativa light–oxygen–voltage-sensing (LOV) 2-phototrophin 1 (AsLOV2). By expressing AsLOV2 chimeras in Neuro2a cells, we achieved light-dependent modulation of REST target genes that was associated with an improved neural differentiation. In primary neurons, light-mediated REST inhibition increased Na+-channel 1.2 and brain-derived neurotrophic factor transcription and boosted Na+ currents and neuronal firing. This optogenetic approach allows the coordinated expression of a cluster of genes impinging on neuronal activity, providing a tool for studying neuronal physiology and correcting gene expression changes taking place in brain diseases. PMID:26699507

  18. A multiple redundant genetic switch locks in the transcriptional signature of T regulatory cells

    PubMed Central

    Fu, Wenxian; Ergun, Ayla; Lu, Ting; Hill, Jonathan A.; Haxhinasto, Sokol; Fassett, Marlys S.; Gazit, Roi; Adoro, Stanley; Glimcher, Laurie; Chan, Susan; Kastner, Philippe; Rossi, Derrick; Collins, James J.; Mathis, Diane; Benoist, Christophe

    2013-01-01

    The transcription factor FoxP3 partakes dominantly in the specification and function of FoxP3+CD4+ T regulatory cells (Tregs), but is neither strictly necessary nor sufficient to determine the characteristic Treg signature. Computational network inference and experimental testing assessed the contribution of other transcription factors (TF). Enforced expression of Helios or Xbp1 elicited specific signatures, but Eos, Irf4, Satb1, Lef1 and Gata1 elicited exactly the same outcome, synergizing with FoxP3 to activate most of the Treg signature, including key TFs, and enhancing FoxP3 occupancy at its genomic targets. Conversely, the Treg signature was robust to inactivation of any single cofactor. A redundant genetic switch thus locks-in the Treg phenotype, a model which accounts for several aspects of Treg physiology, differentiation and stability. PMID:22961053

  19. In vitro squelching of activated transcription by serum response factor: evidence for a common coactivator used by multiple transcriptional activators.

    PubMed Central

    Prywes, R; Zhu, H

    1992-01-01

    Low amounts of serum response factor (SRF) activate transcription in vitro from a fos promoter construct containing an SRF binding site. Using this human HeLa cell-derived in vitro transcription system, we have found that high amounts of SRF inhibited, or 'squelched', transcription from this construct. Transcription from several other promoters activated by different gene-specific factors, including CREB and the acidic activator VP16, was also inhibited by high amounts of SRF. Basal transcription, from TATA-only promoters, however, was not inhibited. These results suggest that SRF binds to a common factor(s) (termed coactivator) required for activated transcription by a diverse group of transcriptional activators. Inhibition of transcription by SRF could be blocked by a double stranded oligonucleotide containing an SRF binding site. Mutations in SRF which abolished its DNA binding activity also reduced its ability to inhibit transcription. In addition, a C-terminal truncation of SRF which reduced its ability to activate transcription also reduced SRF's ability to inhibit transcription. These results suggest that activation and inhibition of transcription may be mediated by SRF binding to the same factor and that SRF can only bind to this factor when SRF is bound to plasmid DNA. Images PMID:1531519

  20. The WRKY transcription factor family and senescence in switchgrass

    USDA-ARS?s Scientific Manuscript database

    Background: Early aerial senescence in switchgrass (Panicum virgatum) can significantly limit biomass yields. WRKY transcription factors that can regulate senescence could be used to reprogram senescence and enhance biomass yields. Methods: All potential WRKY genes present in the version 1.0 of the...

  1. Why Transcription Factor Binding Sites Are Ten Nucleotides Long

    PubMed Central

    Stewart, Alexander J.; Hannenhalli, Sridhar; Plotkin, Joshua B.

    2012-01-01

    Gene expression is controlled primarily by transcription factors, whose DNA binding sites are typically 10 nt long. We develop a population-genetic model to understand how the length and information content of such binding sites evolve. Our analysis is based on an inherent trade-off between specificity, which is greater in long binding sites, and robustness to mutation, which is greater in short binding sites. The evolutionary stable distribution of binding site lengths predicted by the model agrees with the empirical distribution (5–31 nt, with mean 9.9 nt for eukaryotes), and it is remarkably robust to variation in the underlying parameters of population size, mutation rate, number of transcription factor targets, and strength of selection for proper binding and selection against improper binding. In a systematic data set of eukaryotic and prokaryotic transcription factors we also uncover strong relationships between the length of a binding site and its information content per nucleotide, as well as between the number of targets a transcription factor regulates and the information content in its binding sites. Our analysis explains these features as well as the remarkable conservation of binding site characteristics across diverse taxa. PMID:22887818

  2. A Recommendation for Naming Transcription Factor Proteins in the Grasses

    USDA-ARS?s Scientific Manuscript database

    Transcription factors are central for the exquisite temporal and spatial expression patterns of many genes. These proteins are characterized by their ability to be tethered to particular regulatory sequences in the genes that they control. While many other proteins participate in the regulation of g...

  3. Metastatic Bone Disease: Role of Transcription Factors and Future Targets

    PubMed Central

    Pratap, Jitesh; Lian, Jane B.; Stein, Gary S.

    2010-01-01

    Progression of cancer from the earliest event of cell transformation through stages of tumor growth and metastasis at a distal site involves many complex biological processes. Underlying the numerous responses of cancer cells to the tumor microenvironment which support their survival, migration and metastasis are transcription factors that regulate the expression of genes reflecting properties of the tumor cell. A number of transcription factors have been identified that play key roles in promoting oncogenesis, tumor growth, metastasis and tissue destruction. Relevant to solid tumors and leukemias, tissue specific transcription factors that are deregulated resulting from mutations, being silenced or aberrantly expressed, have been well characterized. These are the master transcription factors of the Runx family of genes, the focus of this review, with emphasis placed on Runx2 that is abnormally expressed at very high levels in cancer cell lines that are metastatic to bone. Recent evidence has identified a correlation of Runx2 levels in advanced stages of prostate and breast cancer and demonstrated that effective depletion of Runx2 by RNA interference inhibits migration and invasive properties of the cells prevents metastatic bone disease. This striking effect is consistent with the broad spectrum of Runx2 properties in activating many genes in tumor cells that have already been established as indicators of bone metastasis in poor prognosis. Potential strategies to translate these findings for therapeutic applications are discussed. PMID:20561908

  4. Control of cellulose biosynthesis by overexpression of a transcription factor

    DOEpatents

    Han, Kyung-Hwan; Ko, Jae-Heung; Kim, Won-Chan; Kim; , Joo-Yeol

    2017-05-16

    The invention relates to the over-expression of a transcription factor selected from the group consisting of MYB46, HAM1, HAM2, MYB112, WRKY11, ERF6, and any combination thereof in a plant, which can modulate and thereby modulating the cellulose content of the plant.

  5. Epistatic relationships reveal the functional organization of yeast transcription factors.

    PubMed

    Zheng, Jiashun; Benschop, Joris J; Shales, Michael; Kemmeren, Patrick; Greenblatt, Jack; Cagney, Gerard; Holstege, Frank; Li, Hao; Krogan, Nevan J

    2010-10-05

    The regulation of gene expression is, in large part, mediated by interplay between the general transcription factors (GTFs) that function to bring about the expression of many genes and site-specific DNA-binding transcription factors (STFs). Here, quantitative genetic profiling using the epistatic miniarray profile (E-MAP) approach allowed us to measure 48 391 pairwise genetic interactions, both negative (aggravating) and positive (alleviating), between and among genes encoding STFs and GTFs in Saccharomyces cerevisiae. This allowed us to both reconstruct regulatory models for specific subsets of transcription factors and identify global epistatic patterns. Overall, there was a much stronger preference for negative relative to positive genetic interactions among STFs than there was among GTFs. Negative genetic interactions, which often identify factors working in non-essential, redundant pathways, were also enriched for pairs of STFs that co-regulate similar sets of genes. Microarray analysis demonstrated that pairs of STFs that display negative genetic interactions regulate gene expression in an independent rather than coordinated manner. Collectively, these data suggest that parallel/compensating relationships between regulators, rather than linear pathways, often characterize transcriptional circuits.

  6. The forkhead transcription factor AFX activates apoptosis by induction of the BCL-6 transcriptional repressor.

    PubMed

    Tang, Tracy Tzu-Ling; Dowbenko, Donald; Jackson, Amanda; Toney, Lisa; Lewin, David A; Dent, Alexander L; Lasky, Laurence A

    2002-04-19

    The activation of the AKT/protein kinase B kinases by mutation of the PTEN lipid phosphatase results in enhanced survival of a diversity of tumors. This resistance to apoptosis is partly accomplished by the inhibition of genetic programs induced by a subfamily of forkhead transcription factors including AFX. Here we describe an AFX-regulated pathway that appears to account for at least part of this apoptotic regulatory system. Cells induced to synthesize an active form of AFX die by activating the apoptotic death pathway. An analysis of genes regulated by AFX demonstrated that BCL-6, a transcriptional repressor, is up-regulated approximately 4-7-fold. An examination of the BCL-6 promoter demonstrated that AFX bound to specific target sites that could activate transcription. BCL-X(L), an anti-apoptotic protein, contains potential BCL-6 target sites in its promoter. An analysis of endogenous BCL-X(L) levels in AFX-expressing cells revealed enhanced down-regulation of the transcript ( approximately 1.3-1.7-fold) and protein, and BCL-6 directly binds to and suppresses the BCL-X(L) promoter. Finally, macrophages isolated from BCL-6-/- mice show enhanced survival in vitro. These results suggest that AFX regulates apoptosis in part by suppressing the levels of anti-apoptotic BCL-XL through t