Sample records for fpga-based technology systems

  1. Radiation Tolerant, FPGA-Based SmallSat Computer System

    NASA Technical Reports Server (NTRS)

    LaMeres, Brock J.; Crum, Gary A.; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Radiation Tolerant, FPGA-based SmallSat Computer System (RadSat) computing platform exploits a commercial off-the-shelf (COTS) Field Programmable Gate Array (FPGA) with real-time partial reconfiguration to provide increased performance, power efficiency and radiation tolerance at a fraction of the cost of existing radiation hardened computing solutions. This technology is ideal for small spacecraft that require state-of-the-art on-board processing in harsh radiation environments but where using radiation hardened processors is cost prohibitive.

  2. Research on NC motion controller based on SOPC technology

    NASA Astrophysics Data System (ADS)

    Jiang, Tingbiao; Meng, Biao

    2006-11-01

    With the rapid development of the digitization and informationization, the application of numerical control technology in the manufacturing industry becomes more and more important. However, the conventional numerical control system usually has some shortcomings such as the poor in system openness, character of real-time, cutability and reconfiguration. In order to solve these problems, this paper investigates the development prospect and advantage of the application in numerical control area with system-on-a-Programmable-Chip (SOPC) technology, and puts forward to a research program approach to the NC controller based on SOPC technology. Utilizing the characteristic of SOPC technology, we integrate high density logic device FPGA, memory SRAM, and embedded processor ARM into a single programmable logic device. We also combine the 32-bit RISC processor with high computing capability of the complicated algorithm with the FPGA device with strong motivable reconfiguration logic control ability. With these steps, we can greatly resolve the defect described in above existing numerical control systems. For the concrete implementation method, we use FPGA chip embedded with ARM hard nuclear processor to construct the control core of the motion controller. We also design the peripheral circuit of the controller according to the requirements of actual control functions, transplant real-time operating system into ARM, design the driver of the peripheral assisted chip, develop the application program to control and configuration of FPGA, design IP core of logic algorithm for various NC motion control to configured it into FPGA. The whole control system uses the concept of modular and structured design to develop hardware and software system. Thus the NC motion controller with the advantage of easily tailoring, highly opening, reconfigurable, and expandable can be implemented.

  3. A Real-Time Data Acquisition and Processing Framework Based on FlexRIO FPGA and ITER Fast Plant System Controller

    NASA Astrophysics Data System (ADS)

    Yang, C.; Zheng, W.; Zhang, M.; Yuan, T.; Zhuang, G.; Pan, Y.

    2016-06-01

    Measurement and control of the plasma in real-time are critical for advanced Tokamak operation. It requires high speed real-time data acquisition and processing. ITER has designed the Fast Plant System Controllers (FPSC) for these purposes. At J-TEXT Tokamak, a real-time data acquisition and processing framework has been designed and implemented using standard ITER FPSC technologies. The main hardware components of this framework are an Industrial Personal Computer (IPC) with a real-time system and FlexRIO devices based on FPGA. With FlexRIO devices, data can be processed by FPGA in real-time before they are passed to the CPU. The software elements are based on a real-time framework which runs under Red Hat Enterprise Linux MRG-R and uses Experimental Physics and Industrial Control System (EPICS) for monitoring and configuring. That makes the framework accord with ITER FPSC standard technology. With this framework, any kind of data acquisition and processing FlexRIO FPGA program can be configured with a FPSC. An application using the framework has been implemented for the polarimeter-interferometer diagnostic system on J-TEXT. The application is able to extract phase-shift information from the intermediate frequency signal produced by the polarimeter-interferometer diagnostic system and calculate plasma density profile in real-time. Different algorithms implementations on the FlexRIO FPGA are compared in the paper.

  4. Diagnostic layer integration in FPGA-based pipeline measurement systems for HEP experiments

    NASA Astrophysics Data System (ADS)

    Pozniak, Krzysztof T.

    2007-08-01

    Integrated triggering and data acquisition systems for high energy physics experiments may be considered as fast, multichannel, synchronous, distributed, pipeline measurement systems. A considerable extension of functional, technological and monitoring demands, which has recently been imposed on them, forced a common usage of large field-programmable gate array (FPGA), digital signal processing-enhanced matrices and fast optical transmission for their realization. This paper discusses modelling, design, realization and testing of pipeline measurement systems. A distribution of synchronous data stream flows is considered in the network. A general functional structure of a single network node is presented. A suggested, novel block structure of the node model facilitates full implementation in the FPGA chip, circuit standardization and parametrization, as well as integration of functional and diagnostic layers. A general method for pipeline system design was derived. This method is based on a unified model of the synchronous data network node. A few examples of practically realized, FPGA-based, pipeline measurement systems were presented. The described systems were applied in ZEUS and CMS.

  5. Developments of FPGA-based digital back-ends for low frequency antenna arrays at Medicina radio telescopes

    NASA Astrophysics Data System (ADS)

    Naldi, G.; Bartolini, M.; Mattana, A.; Pupillo, G.; Hickish, J.; Foster, G.; Bianchi, G.; Lingua, A.; Monari, J.; Montebugnoli, S.; Perini, F.; Rusticelli, S.; Schiaffino, M.; Virone, G.; Zarb Adami, K.

    In radio astronomy Field Programmable Gate Array (FPGA) technology is largely used for the implementation of digital signal processing techniques applied to antenna arrays. This is mainly due to the good trade-off among computing resources, power consumption and cost offered by FPGA chip compared to other technologies like ASIC, GPU and CPU. In the last years several digital backend systems based on such devices have been developed at the Medicina radio astronomical station (INAF-IRA, Bologna, Italy). Instruments like FX correlator, direct imager, beamformer, multi-beam system have been successfully designed and realized on CASPER (Collaboration for Astronomy Signal Processing and Electronics Research, https://casper.berkeley.edu) processing boards. In this paper we present the gained experience in this kind of applications.

  6. Design and Implementation of a Mechanical Control System for the Scanning Microwave Limb Sounder

    NASA Technical Reports Server (NTRS)

    Bowden, William

    2011-01-01

    The Scanning Microwave Limb Sounder (SMLS) will use technological improvements in low noise mixers to provide precise data on the Earth's atmospheric composition with high spatial resolution. This project focuses on the design and implementation of a real time control system needed for airborne engineering tests of the SMLS. The system must coordinate the actuation of optical components using four motors with encoder readback, while collecting synchronized telemetric data from a GPS receiver and 3-axis gyrometric system. A graphical user interface for testing the control system was also designed using Python. Although the system could have been implemented with a FPGA-based setup, we chose to use a low cost processor development kit manufactured by XMOS. The XMOS architecture allows parallel execution of multiple tasks on separate threads-making it ideal for this application and is easily programmed using XC (a subset of C). The necessary communication interfaces were implemented in software, including Ethernet, with significant cost and time reduction compared to an FPGA-based approach. For these reasons, the XMOS technology is an attractive, cost effective, alternative to FPGA-based technologies for this design and similar rapid prototyping projects.

  7. Generic FPGA-Based Platform for Distributed IO in Proton Therapy Patient Safety Interlock System

    NASA Astrophysics Data System (ADS)

    Eichin, Michael; Carmona, Pablo Fernandez; Johansen, Ernst; Grossmann, Martin; Mayor, Alexandre; Erhardt, Daniel; Gomperts, Alexander; Regele, Harald; Bula, Christian; Sidler, Christof

    2017-06-01

    At the Paul Scherrer Institute (PSI) in Switzerland, cancer patients are treated with protons. Proton therapy at PSI has a long history and started in the 1980s. More than 30 years later, a new gantry has recently been installed in the existing facility. This new machine has been delivered by an industry partner. A big challenge is the integration of the vendor's safety system into the existing PSI environment. Different interface standards and the complexity of the system made it necessary to find a technical solution connecting an industry system to the existing PSI infrastructure. A novel very flexible distributed IO system based on field-programmable gate array (FPGA) technology was developed, supporting many different IO interface standards and high-speed communication links connecting the device to a PSI standard versa module eurocard-bus input output controller. This paper summarizes the features of the hardware technology, the FPGA framework with its high-speed communication link protocol, and presents our first measurement results.

  8. Design of video interface conversion system based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhao, Heng; Wang, Xiang-jun

    2014-11-01

    This paper presents a FPGA based video interface conversion system that enables the inter-conversion between digital and analog video. Cyclone IV series EP4CE22F17C chip from Altera Corporation is used as the main video processing chip, and single-chip is used as the information interaction control unit between FPGA and PC. The system is able to encode/decode messages from the PC. Technologies including video decoding/encoding circuits, bus communication protocol, data stream de-interleaving and de-interlacing, color space conversion and the Camera Link timing generator module of FPGA are introduced. The system converts Composite Video Broadcast Signal (CVBS) from the CCD camera into Low Voltage Differential Signaling (LVDS), which will be collected by the video processing unit with Camera Link interface. The processed video signals will then be inputted to system output board and displayed on the monitor.The current experiment shows that it can achieve high-quality video conversion with minimum board size.

  9. FPGA-Based Efficient Hardware/Software Co-Design for Industrial Systems with Consideration of Output Selection

    NASA Astrophysics Data System (ADS)

    Deliparaschos, Kyriakos M.; Michail, Konstantinos; Zolotas, Argyrios C.; Tzafestas, Spyros G.

    2016-05-01

    This work presents a field programmable gate array (FPGA)-based embedded software platform coupled with a software-based plant, forming a hardware-in-the-loop (HIL) that is used to validate a systematic sensor selection framework. The systematic sensor selection framework combines multi-objective optimization, linear-quadratic-Gaussian (LQG)-type control, and the nonlinear model of a maglev suspension. A robustness analysis of the closed-loop is followed (prior to implementation) supporting the appropriateness of the solution under parametric variation. The analysis also shows that quantization is robust under different controller gains. While the LQG controller is implemented on an FPGA, the physical process is realized in a high-level system modeling environment. FPGA technology enables rapid evaluation of the algorithms and test designs under realistic scenarios avoiding heavy time penalty associated with hardware description language (HDL) simulators. The HIL technique facilitates significant speed-up in the required execution time when compared to its software-based counterpart model.

  10. ICE: A Scalable, Low-Cost FPGA-Based Telescope Signal Processing and Networking System

    NASA Astrophysics Data System (ADS)

    Bandura, K.; Bender, A. N.; Cliche, J. F.; de Haan, T.; Dobbs, M. A.; Gilbert, A. J.; Griffin, S.; Hsyu, G.; Ittah, D.; Parra, J. Mena; Montgomery, J.; Pinsonneault-Marotte, T.; Siegel, S.; Smecher, G.; Tang, Q. Y.; Vanderlinde, K.; Whitehorn, N.

    2016-03-01

    We present an overview of the ‘ICE’ hardware and software framework that implements large arrays of interconnected field-programmable gate array (FPGA)-based data acquisition, signal processing and networking nodes economically. The system was conceived for application to radio, millimeter and sub-millimeter telescope readout systems that have requirements beyond typical off-the-shelf processing systems, such as careful control of interference signals produced by the digital electronics, and clocking of all elements in the system from a single precise observatory-derived oscillator. A new generation of telescopes operating at these frequency bands and designed with a vastly increased emphasis on digital signal processing to support their detector multiplexing technology or high-bandwidth correlators — data rates exceeding a terabyte per second — are becoming common. The ICE system is built around a custom FPGA motherboard that makes use of an Xilinx Kintex-7 FPGA and ARM-based co-processor. The system is specialized for specific applications through software, firmware and custom mezzanine daughter boards that interface to the FPGA through the industry-standard FPGA mezzanine card (FMC) specifications. For high density applications, the motherboards are packaged in 16-slot crates with ICE backplanes that implement a low-cost passive full-mesh network between the motherboards in a crate, allow high bandwidth interconnection between crates and enable data offload to a computer cluster. A Python-based control software library automatically detects and operates the hardware in the array. Examples of specific telescope applications of the ICE framework are presented, namely the frequency-multiplexed bolometer readout systems used for the South Pole Telescope (SPT) and Simons Array and the digitizer, F-engine, and networking engine for the Canadian Hydrogen Intensity Mapping Experiment (CHIME) and Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) radio interferometers.

  11. High speed true random number generator with a new structure of coarse-tuning PDL in FPGA

    NASA Astrophysics Data System (ADS)

    Fang, Hongzhen; Wang, Pengjun; Cheng, Xu; Zhou, Keji

    2018-03-01

    A metastability-based TRNG (true random number generator) is presented in this paper, and implemented in FPGA. The metastable state of a D flip-flop is tunable through a two-stage PDL (programmable delay line). With the proposed coarse-tuning PDL structure, the TRNG core does not require extra placement and routing to ensure its entropy. Furthermore, the core needs fewer stages of coarse-tuning PDL at higher operating frequency, and thus saves more resources in FPGA. The designed TRNG achieves 25 Mbps @ 100 MHz throughput after proper post-processing, which is several times higher than other previous TRNGs based on FPGA. Moreover, the robustness of the system is enhanced with the adoption of a feedback system. The quality of the designed TRNG is verified by NIST (National Institute of Standards and Technology) and also accepted by class P1 of the AIS-20/31 test suite. Project supported by the S&T Plan of Zhejiang Provincial Science and Technology Department (No. 2016C31078), the National Natural Science Foundation of China (Nos. 61574041, 61474068, 61234002), and the K.C. Wong Magna Fund in Ningbo University, China.

  12. FPGA Based "Intelligent Tap" Device for Real-Time Ethernet Network Monitoring

    NASA Astrophysics Data System (ADS)

    Cupek, Rafał; Piękoś, Piotr; Poczobutt, Marcin; Ziębiński, Adam

    This paper describes an "Intelligent Tap" - hardware device dedicated to support real-time Ethernet networks monitoring. Presented solution was created as a student project realized in Institute of Informatics, Silesian University of Technology with support from Softing A.G company. Authors provide description of realized FPGA based "Intelligent Tap" architecture dedicated for Real-Time Ethernet network monitoring systems. The practical device realization and feasibility study conclusions are presented also.

  13. Bio-Inspired Controller on an FPGA Applied to Closed-Loop Diaphragmatic Stimulation

    PubMed Central

    Zbrzeski, Adeline; Bornat, Yannick; Hillen, Brian; Siu, Ricardo; Abbas, James; Jung, Ranu; Renaud, Sylvie

    2016-01-01

    Cervical spinal cord injury can disrupt connections between the brain respiratory network and the respiratory muscles which can lead to partial or complete loss of ventilatory control and require ventilatory assistance. Unlike current open-loop technology, a closed-loop diaphragmatic pacing system could overcome the drawbacks of manual titration as well as respond to changing ventilation requirements. We present an original bio-inspired assistive technology for real-time ventilation assistance, implemented in a digital configurable Field Programmable Gate Array (FPGA). The bio-inspired controller, which is a spiking neural network (SNN) inspired by the medullary respiratory network, is as robust as a classic controller while having a flexible, low-power and low-cost hardware design. The system was simulated in MATLAB with FPGA-specific constraints and tested with a computational model of rat breathing; the model reproduced experimentally collected respiratory data in eupneic animals. The open-loop version of the bio-inspired controller was implemented on the FPGA. Electrical test bench characterizations confirmed the system functionality. Open and closed-loop paradigm simulations were simulated to test the FPGA system real-time behavior using the rat computational model. The closed-loop system monitors breathing and changes in respiratory demands to drive diaphragmatic stimulation. The simulated results inform future acute animal experiments and constitute the first step toward the development of a neuromorphic, adaptive, compact, low-power, implantable device. The bio-inspired hardware design optimizes the FPGA resource and time costs while harnessing the computational power of spike-based neuromorphic hardware. Its real-time feature makes it suitable for in vivo applications. PMID:27378844

  14. Reconfigurable Processing Module

    NASA Technical Reports Server (NTRS)

    Somervill, Kevin; Hodson, Robert; Jones, Robert; Williams, John

    2005-01-01

    To accommodate a wide spectrum of applications and technologies, NASA s Exploration System's Missions Directorate has called for reconfigurable and modular technologies to support future missions to the moon and Mars. In response, Langley Research Center is leading a program entitled Reconfigurable Scaleable Computing (RSC) that is centered on the development of FPGA-based computing resources in a stackable form factor. This paper details the architecture and implementation of the Reconfigurable Processing Module (RPM), which is the key element of the RSC system. The RPM is an FPGA-based, space-qualified printed circuit assembly leveraging terrestrial/commercial design standards into the space applications domain. The form factor is similar to, and backwards compatible with, the PCI-104 standard utilizing only the PCI interface. The size is expanded to accommodate the required functionality while still better than 30% smaller than a 3U CompactPCI(TradeMark)card and without the overhead of the backplane. The architecture is built around two FPGA devices, one hosting PCI and memory interfaces, and another hosting mission application resources; both of which are connected with a high-speed data bus. The PCI interface FPGA provides access via the PCI bus to onboard SDRAM, flash PROM, and the application resources; both configuration management as well as runtime interaction. The reconfigurable FPGA, referred to as the Application FPGA - or simply "the application" - is a radiation-tolerant Xilinx Virtex-4 FX60 hosting custom application specific logic or soft microprocessor IP. The RPM implements various SEE mitigation techniques including TMR, EDAC, and configuration scrubbing of the reconfigurable FPGA. Prototype hardware and formal modeling techniques are used to explore the performability trade space. These models provide a novel way to calculate quality-of-service performance measures while simultaneously considering fault-related behavior due to SEE soft errors.

  15. Design of area array CCD image acquisition and display system based on FPGA

    NASA Astrophysics Data System (ADS)

    Li, Lei; Zhang, Ning; Li, Tianting; Pan, Yue; Dai, Yuming

    2014-09-01

    With the development of science and technology, CCD(Charge-coupled Device) has been widely applied in various fields and plays an important role in the modern sensing system, therefore researching a real-time image acquisition and display plan based on CCD device has great significance. This paper introduces an image data acquisition and display system of area array CCD based on FPGA. Several key technical challenges and problems of the system have also been analyzed and followed solutions put forward .The FPGA works as the core processing unit in the system that controls the integral time sequence .The ICX285AL area array CCD image sensor produced by SONY Corporation has been used in the system. The FPGA works to complete the driver of the area array CCD, then analog front end (AFE) processes the signal of the CCD image, including amplification, filtering, noise elimination, CDS correlation double sampling, etc. AD9945 produced by ADI Corporation to convert analog signal to digital signal. Developed Camera Link high-speed data transmission circuit, and completed the PC-end software design of the image acquisition, and realized the real-time display of images. The result through practical testing indicates that the system in the image acquisition and control is stable and reliable, and the indicators meet the actual project requirements.

  16. A FPGA embedded web server for remote monitoring and control of smart sensors networks.

    PubMed

    Magdaleno, Eduardo; Rodríguez, Manuel; Pérez, Fernando; Hernández, David; García, Enrique

    2013-12-27

    This article describes the implementation of a web server using an embedded Altera NIOS II IP core, a general purpose and configurable RISC processor which is embedded in a Cyclone FPGA. The processor uses the μCLinux operating system to support a Boa web server of dynamic pages using Common Gateway Interface (CGI). The FPGA is configured to act like the master node of a network, and also to control and monitor a network of smart sensors or instruments. In order to develop a totally functional system, the FPGA also includes an implementation of the time-triggered protocol (TTP/A). Thus, the implemented master node has two interfaces, the webserver that acts as an Internet interface and the other to control the network. This protocol is widely used to connecting smart sensors and actuators and microsystems in embedded real-time systems in different application domains, e.g., industrial, automotive, domotic, etc., although this protocol can be easily replaced by any other because of the inherent characteristics of the FPGA-based technology.

  17. A FPGA Embedded Web Server for Remote Monitoring and Control of Smart Sensors Networks

    PubMed Central

    Magdaleno, Eduardo; Rodríguez, Manuel; Pérez, Fernando; Hernández, David; García, Enrique

    2014-01-01

    This article describes the implementation of a web server using an embedded Altera NIOS II IP core, a general purpose and configurable RISC processor which is embedded in a Cyclone FPGA. The processor uses the μCLinux operating system to support a Boa web server of dynamic pages using Common Gateway Interface (CGI). The FPGA is configured to act like the master node of a network, and also to control and monitor a network of smart sensors or instruments. In order to develop a totally functional system, the FPGA also includes an implementation of the time-triggered protocol (TTP/A). Thus, the implemented master node has two interfaces, the webserver that acts as an Internet interface and the other to control the network. This protocol is widely used to connecting smart sensors and actuators and microsystems in embedded real-time systems in different application domains, e.g., industrial, automotive, domotic, etc., although this protocol can be easily replaced by any other because of the inherent characteristics of the FPGA-based technology. PMID:24379047

  18. Fast particles identification in programmable form at level-0 trigger by means of the 3D-Flow system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crosetto, Dario B.

    1998-10-30

    The 3D-Flow Processor system is a new, technology-independent concept in very fast, real-time system architectures. Based on either an FPGA or an ASIC implementation, it can address, in a fully programmable manner, applications where commercially available processors would fail because of throughput requirements. Possible applications include filtering-algorithms (pattern recognition) from the input of multiple sensors, as well as moving any input validated by these filtering-algorithms to a single output channel. Both operations can easily be implemented on a 3D-Flow system to achieve a real-time processing system with a very short lag time. This system can be built either with off-the-shelfmore » FPGAs or, for higher data rates, with CMOS chips containing 4 to 16 processors each. The basic building block of the system, a 3D-Flow processor, has been successfully designed in VHDL code written in ''Generic HDL'' (mostly made of reusable blocks that are synthesizable in different technologies, or FPGAs), to produce a netlist for a four-processor ASIC featuring 0.35 micron CBA (Ceil Base Array) technology at 3.3 Volts, 884 mW power dissipation at 60 MHz and 63.75 mm sq. die size. The same VHDL code has been targeted to three FPGA manufacturers (Altera EPF10K250A, ORCA-Lucent Technologies 0R3T165 and Xilinx XCV1000). A complete set of software tools, the 3D-Flow System Manager, equally applicable to ASIC or FPGA implementations, has been produced to provide full system simulation, application development, real-time monitoring, and run-time fault recovery. Today's technology can accommodate 16 processors per chip in a medium size die, at a cost per processor of less than $5 based on the current silicon die/size technology cost.« less

  19. Flexible Architecture for FPGAs in Embedded Systems

    NASA Technical Reports Server (NTRS)

    Clark, Duane I.; Lim, Chester N.

    2012-01-01

    Commonly, field-programmable gate arrays (FPGAs) being developed in cPCI embedded systems include the bus interface in the FPGA. This complicates the development because the interface is complicated and requires a lot of development time and FPGA resources. In addition, flight qualification requires a substantial amount of time be devoted to just this interface. Another complication of putting the cPCI interface into the FPGA being developed is that configuration information loaded into the device by the cPCI microprocessor is lost when a new bit file is loaded, requiring cumbersome operations to return the system to an operational state. Finally, SRAM-based FPGAs are typically programmed via specialized cables and software, with programming files being loaded either directly into the FPGA, or into PROM devices. This can be cumbersome when doing FPGA development in an embedded environment, and does not have an easy path to flight. Currently, FPGAs used in space applications are usually programmed via multiple space-qualified PROM devices that are physically large and require extra circuitry (typically including a separate one-time programmable FPGA) to enable them to be used for this application. This technology adds a cPCI interface device with a simple, flexible, high-performance backend interface supporting multiple backend FPGAs. It includes a mechanism for programming the FPGAs directly via the microprocessor in the embedded system, eliminating specialized hardware, software, and PROM devices and their associated circuitry. It has a direct path to flight, and no extra hardware and minimal software are required to support reprogramming in flight. The device added is currently a small FPGA, but an advantage of this technology is that the design of the device does not change, regardless of the application in which it is being used. This means that it needs to be qualified for flight only once, and is suitable for one-time programmable devices or an application specific integrated circuit (ASIC). An application programming interface (API) further reduces the development time needed to use the interface device in a system.

  20. Design of video processing and testing system based on DSP and FPGA

    NASA Astrophysics Data System (ADS)

    Xu, Hong; Lv, Jun; Chen, Xi'ai; Gong, Xuexia; Yang, Chen'na

    2007-12-01

    Based on high speed Digital Signal Processor (DSP) and Field Programmable Gate Array (FPGA), a video capture, processing and display system is presented, which is of miniaturization and low power. In this system, a triple buffering scheme was used for the capture and display, so that the application can always get a new buffer without waiting; The Digital Signal Processor has an image process ability and it can be used to test the boundary of workpiece's image. A video graduation technology is used to aim at the position which is about to be tested, also, it can enhance the system's flexibility. The character superposition technology realized by DSP is used to display the test result on the screen in character format. This system can process image information in real time, ensure test precision, and help to enhance product quality and quality management.

  1. Design of polarization imaging system based on CIS and FPGA

    NASA Astrophysics Data System (ADS)

    Zeng, Yan-an; Liu, Li-gang; Yang, Kun-tao; Chang, Da-ding

    2008-02-01

    As polarization is an important characteristic of light, polarization image detecting is a new image detecting technology of combining polarimetric and image processing technology. Contrasting traditional image detecting in ray radiation, polarization image detecting could acquire a lot of very important information which traditional image detecting couldn't. Polarization image detecting will be widely used in civilian field and military field. As polarization image detecting could resolve some problem which couldn't be resolved by traditional image detecting, it has been researched widely around the world. The paper introduces polarization image detecting in physical theory at first, then especially introduces image collecting and polarization image process based on CIS (CMOS image sensor) and FPGA. There are two parts including hardware and software for polarization imaging system. The part of hardware include drive module of CMOS image sensor, VGA display module, SRAM access module and the real-time image data collecting system based on FPGA. The circuit diagram and PCB was designed. Stokes vector and polarization angle computing method are analyzed in the part of software. The float multiply of Stokes vector is optimized into just shift and addition operation. The result of the experiment shows that real time image collecting system could collect and display image data from CMOS image sensor in real-time.

  2. An embedded laser marking controller based on ARM and FPGA processors.

    PubMed

    Dongyun, Wang; Xinpiao, Ye

    2014-01-01

    Laser marking is an important branch of the laser information processing technology. The existing laser marking machine based on PC and WINDOWS operating system, are large and inconvenient to move. Still, it cannot work outdoors or in other harsh environments. In order to compensate for the above mentioned disadvantages, this paper proposed an embedded laser marking controller based on ARM and FPGA processors. Based on the principle of laser galvanometer scanning marking, the hardware and software were designed for the application. Experiments showed that this new embedded laser marking controller controls the galvanometers synchronously and could achieve precise marking.

  3. Embedded algorithms within an FPGA-based system to process nonlinear time series data

    NASA Astrophysics Data System (ADS)

    Jones, Jonathan D.; Pei, Jin-Song; Tull, Monte P.

    2008-03-01

    This paper presents some preliminary results of an ongoing project. A pattern classification algorithm is being developed and embedded into a Field-Programmable Gate Array (FPGA) and microprocessor-based data processing core in this project. The goal is to enable and optimize the functionality of onboard data processing of nonlinear, nonstationary data for smart wireless sensing in structural health monitoring. Compared with traditional microprocessor-based systems, fast growing FPGA technology offers a more powerful, efficient, and flexible hardware platform including on-site (field-programmable) reconfiguration capability of hardware. An existing nonlinear identification algorithm is used as the baseline in this study. The implementation within a hardware-based system is presented in this paper, detailing the design requirements, validation, tradeoffs, optimization, and challenges in embedding this algorithm. An off-the-shelf high-level abstraction tool along with the Matlab/Simulink environment is utilized to program the FPGA, rather than coding the hardware description language (HDL) manually. The implementation is validated by comparing the simulation results with those from Matlab. In particular, the Hilbert Transform is embedded into the FPGA hardware and applied to the baseline algorithm as the centerpiece in processing nonlinear time histories and extracting instantaneous features of nonstationary dynamic data. The selection of proper numerical methods for the hardware execution of the selected identification algorithm and consideration of the fixed-point representation are elaborated. Other challenges include the issues of the timing in the hardware execution cycle of the design, resource consumption, approximation accuracy, and user flexibility of input data types limited by the simplicity of this preliminary design. Future work includes making an FPGA and microprocessor operate together to embed a further developed algorithm that yields better computational and power efficiency.

  4. High frequency signal acquisition and control system based on DSP+FPGA

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-qi; Zhang, Da-zhi; Yin, Ya-dong

    2017-10-01

    This paper introduces a design and implementation of high frequency signal acquisition and control system based on DSP + FPGA. The system supports internal/external clock and internal/external trigger sampling. It has a maximum sampling rate of 400MBPS and has a 1.4GHz input bandwidth for the ADC. Data can be collected continuously or periodically in systems and they are stored in DDR2. At the same time, the system also supports real-time acquisition, the collected data after digital frequency conversion and Cascaded Integrator-Comb (CIC) filtering, which then be sent to the CPCI bus through the high-speed DSP, can be assigned to the fiber board for subsequent processing. The system integrates signal acquisition and pre-processing functions, which uses high-speed A/D, high-speed DSP and FPGA mixed technology and has a wide range of uses in data acquisition and recording. In the signal processing, the system can be seamlessly connected to the dedicated processor board. The system has the advantages of multi-selectivity, good scalability and so on, which satisfies the different requirements of different signals in different projects.

  5. A real-time tracking system of infrared dim and small target based on FPGA and DSP

    NASA Astrophysics Data System (ADS)

    Rong, Sheng-hui; Zhou, Hui-xin; Qin, Han-lin; Wang, Bing-jian; Qian, Kun

    2014-11-01

    A core technology in the infrared warning system is the detection tracking of dim and small targets with complicated background. Consequently, running the detection algorithm on the hardware platform has highly practical value in the military field. In this paper, a real-time detection tracking system of infrared dim and small target which is used FPGA (Field Programmable Gate Array) and DSP (Digital Signal Processor) as the core was designed and the corresponding detection tracking algorithm and the signal flow is elaborated. At the first stage, the FPGA obtain the infrared image sequence from the sensor, then it suppresses background clutter by mathematical morphology method and enhances the target intensity by Laplacian of Gaussian operator. At the second stage, the DSP obtain both the original image and the filtered image form the FPGA via the video port. Then it segments the target from the filtered image by an adaptive threshold segmentation method and gets rid of false target by pipeline filter. Experimental results show that our system can achieve higher detection rate and lower false alarm rate.

  6. Real-time distortion correction for visual inspection systems based on FPGA

    NASA Astrophysics Data System (ADS)

    Liang, Danhua; Zhang, Zhaoxia; Chen, Xiaodong; Yu, Daoyin

    2008-03-01

    Visual inspection is a kind of new technology based on the research of computer vision, which focuses on the measurement of the object's geometry and location. It can be widely used in online measurement, and other real-time measurement process. Because of the defects of the traditional visual inspection, a new visual detection mode -all-digital intelligent acquisition and transmission is presented. The image processing, including filtering, image compression, binarization, edge detection and distortion correction, can be completed in the programmable devices -FPGA. As the wide-field angle lens is adopted in the system, the output images have serious distortion. Limited by the calculating speed of computer, software can only correct the distortion of static images but not the distortion of dynamic images. To reach the real-time need, we design a distortion correction system based on FPGA. The method of hardware distortion correction is that the spatial correction data are calculated first under software circumstance, then converted into the address of hardware storage and stored in the hardware look-up table, through which data can be read out to correct gray level. The major benefit using FPGA is that the same circuit can be used for other circularly symmetric wide-angle lenses without being modified.

  7. Tethered Forth system for FPGA applications

    NASA Astrophysics Data System (ADS)

    Goździkowski, Paweł; Zabołotny, Wojciech M.

    2013-10-01

    This paper presents the tethered Forth system dedicated for testing and debugging of FPGA based electronic systems. Use of the Forth language allows to interactively develop and run complex testing or debugging routines. The solution is based on a small, 16-bit soft core CPU, used to implement the Forth Virtual Machine. Thanks to the use of the tethered Forth model it is possible to minimize usage of the internal RAM memory in the FPGA. The function of the intelligent terminal, which is an essential part of the tethered Forth system, may be fulfilled by the standard PC computer or by the smartphone. System is implemented in Python (the software for intelligent terminal), and in VHDL (the IP core for FPGA), so it can be easily ported to different hardware platforms. The connection between the terminal and FPGA may be established and disconnected many times without disturbing the state of the FPGA based system. The presented system has been verified in the hardware, and may be used as a tool for debugging, testing and even implementing of control algorithms for FPGA based systems.

  8. Diversification of Processors Based on Redundancy in Instruction Set

    NASA Astrophysics Data System (ADS)

    Ichikawa, Shuichi; Sawada, Takashi; Hata, Hisashi

    By diversifying processor architecture, computer software is expected to be more resistant to plagiarism, analysis, and attacks. This study presents a new method to diversify instruction set architecture (ISA) by utilizing the redundancy in the instruction set. Our method is particularly suited for embedded systems implemented with FPGA technology, and realizes a genuine instruction set randomization, which has not been provided by the preceding studies. The evaluation results on four typical ISAs indicate that our scheme can provide a far larger degree of freedom than the preceding studies. Diversified processors based on MIPS architecture were actually implemented and evaluated with Xilinx Spartan-3 FPGA. The increase of logic scale was modest: 5.1% in Specialized design and 3.6% in RAM-mapped design. The performance overhead was also modest: 3.4% in Specialized design and 11.6% in RAM-mapped design. From these results, our scheme is regarded as a practical and promising way to secure FPGA-based embedded systems.

  9. An Embedded Laser Marking Controller Based on ARM and FPGA Processors

    PubMed Central

    Dongyun, Wang; Xinpiao, Ye

    2014-01-01

    Laser marking is an important branch of the laser information processing technology. The existing laser marking machine based on PC and WINDOWS operating system, are large and inconvenient to move. Still, it cannot work outdoors or in other harsh environments. In order to compensate for the above mentioned disadvantages, this paper proposed an embedded laser marking controller based on ARM and FPGA processors. Based on the principle of laser galvanometer scanning marking, the hardware and software were designed for the application. Experiments showed that this new embedded laser marking controller controls the galvanometers synchronously and could achieve precise marking. PMID:24772028

  10. Heterogeneous real-time computing in radio astronomy

    NASA Astrophysics Data System (ADS)

    Ford, John M.; Demorest, Paul; Ransom, Scott

    2010-07-01

    Modern computer architectures suited for general purpose computing are often not the best choice for either I/O-bound or compute-bound problems. Sometimes the best choice is not to choose a single architecture, but to take advantage of the best characteristics of different computer architectures to solve your problems. This paper examines the tradeoffs between using computer systems based on the ubiquitous X86 Central Processing Units (CPU's), Field Programmable Gate Array (FPGA) based signal processors, and Graphical Processing Units (GPU's). We will show how a heterogeneous system can be produced that blends the best of each of these technologies into a real-time signal processing system. FPGA's tightly coupled to analog-to-digital converters connect the instrument to the telescope and supply the first level of computing to the system. These FPGA's are coupled to other FPGA's to continue to provide highly efficient processing power. Data is then packaged up and shipped over fast networks to a cluster of general purpose computers equipped with GPU's, which are used for floating-point intensive computation. Finally, the data is handled by the CPU and written to disk, or further processed. Each of the elements in the system has been chosen for its specific characteristics and the role it can play in creating a system that does the most for the least, in terms of power, space, and money.

  11. A TTC upgrade proposal using bidirectional 10G-PON FTTH technology

    NASA Astrophysics Data System (ADS)

    Kolotouros, D. M.; Baron, S.; Soos, C.; Vasey, F.

    2015-04-01

    A new generation FPGA-based Timing-Trigger and Control (TTC) system based on emerging Passive Optical Network (PON) technology is being proposed to replace the existing off-detector TTC system used by the LHC experiments. High split ratio, dynamic software partitioning, low and deterministic latency, as well as low jitter are required. Exploiting the latest available technologies allows delivering higher capacity together with bidirectionality, a feature absent from the legacy TTC system. This article focuses on the features and capabilities of the latest TTC-PON prototype based on 10G-PON FTTH components along with some metrics characterizing its performance.

  12. Novel Algorithm/Hardware Partnerships for Real-Time Nonlinear Control

    DTIC Science & Technology

    2014-02-28

    Investigate Tempest Technologies 28 February 2014 Abstract The real-time implementation of controls in nonlinear systems remains one of the great...button for resetting the FPGA board in Max-Plus MVM FPGA system. We utilize the built-in 32MB BPI flash as storage for the Tempest Max-Plus MVM

  13. DSP+FPGA-based real-time histogram equalization system of infrared image

    NASA Astrophysics Data System (ADS)

    Gu, Dongsheng; Yang, Nansheng; Pi, Defu; Hua, Min; Shen, Xiaoyan; Zhang, Ruolan

    2001-10-01

    Histogram Modification is a simple but effective method to enhance an infrared image. There are several methods to equalize an infrared image's histogram due to the different characteristics of the different infrared images, such as the traditional HE (Histogram Equalization) method, and the improved HP (Histogram Projection) and PE (Plateau Equalization) method and so on. If to realize these methods in a single system, the system must have a mass of memory and extremely fast speed. In our system, we introduce a DSP + FPGA based real-time procession technology to do these things together. FPGA is used to realize the common part of these methods while DSP is to do the different part. The choice of methods and the parameter can be input by a keyboard or a computer. By this means, the function of the system is powerful while it is easy to operate and maintain. In this article, we give out the diagram of the system and the soft flow chart of the methods. And at the end of it, we give out the infrared image and its histogram before and after the process of HE method.

  14. The Application of Virtex-II Pro FPGA in High-Speed Image Processing Technology of Robot Vision Sensor

    NASA Astrophysics Data System (ADS)

    Ren, Y. J.; Zhu, J. G.; Yang, X. Y.; Ye, S. H.

    2006-10-01

    The Virtex-II Pro FPGA is applied to the vision sensor tracking system of IRB2400 robot. The hardware platform, which undertakes the task of improving SNR and compressing data, is constructed by using the high-speed image processing of FPGA. The lower level image-processing algorithm is realized by combining the FPGA frame and the embedded CPU. The velocity of image processing is accelerated due to the introduction of FPGA and CPU. The usage of the embedded CPU makes it easily to realize the logic design of interface. Some key techniques are presented in the text, such as read-write process, template matching, convolution, and some modules are simulated too. In the end, the compare among the modules using this design, using the PC computer and using the DSP, is carried out. Because the high-speed image processing system core is a chip of FPGA, the function of which can renew conveniently, therefore, to a degree, the measure system is intelligent.

  15. LAPACKrc: Fast linear algebra kernels/solvers for FPGA accelerators

    NASA Astrophysics Data System (ADS)

    Gonzalez, Juan; Núñez, Rafael C.

    2009-07-01

    We present LAPACKrc, a family of FPGA-based linear algebra solvers able to achieve more than 100x speedup per commodity processor on certain problems. LAPACKrc subsumes some of the LAPACK and ScaLAPACK functionalities, and it also incorporates sparse direct and iterative matrix solvers. Current LAPACKrc prototypes demonstrate between 40x-150x speedup compared against top-of-the-line hardware/software systems. A technology roadmap is in place to validate current performance of LAPACKrc in HPC applications, and to increase the computational throughput by factors of hundreds within the next few years.

  16. Spacewire Routers Implemented with FPGA Technology

    NASA Astrophysics Data System (ADS)

    Habinc, Sandi; Isomaki, Marko

    2011-08-01

    Routers are an integral part of SpaceWire networks. Aeroflex Gaisler has developed a highly configurable SpaceWire router VHDL IP core to meet the needs for technology independent router designs. The main design goals have been configurability, technology independence, support of the standard and expandability. The IP core being technologically independent allows it to be used in both ASIC and FPGA technology. The latter is now being used to produce versatile standard products that can reach the market faster than for example an ASIC based product.

  17. A Reconfigurable Communications System for Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Chu, Pong P.; Kifle, Muli

    2004-01-01

    Two trends of NASA missions are the use of multiple small spacecraft and the development of an integrated space network. To achieve these goals, a robust and agile communications system is needed. Advancements in field programmable gate array (FPGA) technology have made it possible to incorporate major communication and network functionalities in FPGA chips; thus this technology has great potential as the basis for a reconfigurable communications system. This report discusses the requirements of future space communications, reviews relevant issues, and proposes a methodology to design and construct a reconfigurable communications system for small scientific spacecraft.

  18. [Hardware Implementation of Numerical Simulation Function of Hodgkin-Huxley Model Neurons Action Potential Based on Field Programmable Gate Array].

    PubMed

    Wang, Jinlong; Lu, Mai; Hu, Yanwen; Chen, Xiaoqiang; Pan, Qiangqiang

    2015-12-01

    Neuron is the basic unit of the biological neural system. The Hodgkin-Huxley (HH) model is one of the most realistic neuron models on the electrophysiological characteristic description of neuron. Hardware implementation of neuron could provide new research ideas to clinical treatment of spinal cord injury, bionics and artificial intelligence. Based on the HH model neuron and the DSP Builder technology, in the present study, a single HH model neuron hardware implementation was completed in Field Programmable Gate Array (FPGA). The neuron implemented in FPGA was stimulated by different types of current, the action potential response characteristics were analyzed, and the correlation coefficient between numerical simulation result and hardware implementation result were calculated. The results showed that neuronal action potential response of FPGA was highly consistent with numerical simulation result. This work lays the foundation for hardware implementation of neural network.

  19. Note: Design of FPGA based system identification module with application to atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ghosal, Sayan; Pradhan, Sourav; Salapaka, Murti

    2018-05-01

    The science of system identification is widely utilized in modeling input-output relationships of diverse systems. In this article, we report field programmable gate array (FPGA) based implementation of a real-time system identification algorithm which employs forgetting factors and bias compensation techniques. The FPGA module is employed to estimate the mechanical properties of surfaces of materials at the nano-scale with an atomic force microscope (AFM). The FPGA module is user friendly which can be interfaced with commercially available AFMs. Extensive simulation and experimental results validate the design.

  20. Design of low noise imaging system

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Chen, Xiaolai

    2017-10-01

    In order to meet the needs of engineering applications for low noise imaging system under the mode of global shutter, a complete imaging system is designed based on the SCMOS (Scientific CMOS) image sensor CIS2521F. The paper introduces hardware circuit and software system design. Based on the analysis of key indexes and technologies about the imaging system, the paper makes chips selection and decides SCMOS + FPGA+ DDRII+ Camera Link as processing architecture. Then it introduces the entire system workflow and power supply and distribution unit design. As for the software system, which consists of the SCMOS control module, image acquisition module, data cache control module and transmission control module, the paper designs in Verilog language and drives it to work properly based on Xilinx FPGA. The imaging experimental results show that the imaging system exhibits a 2560*2160 pixel resolution, has a maximum frame frequency of 50 fps. The imaging quality of the system satisfies the requirement of the index.

  1. Moving Horizon Estimation on a Chip

    DTIC Science & Technology

    2014-06-26

    description, e.g. VHDL or Verilog, for FPGA implementation . Especially for those whose main expertise is in control system design, writing algorithms in C...ditional Kalman Filter(KF) where recursive solution is available. We devel- oped various MHE designs and implemented them on the Xilinx Zynq ZC702 FPGA...practical deployment of the MHE technology. 2.2 Implementation of MHE on FPGA The next paper demonstrated the feasibility of implementing MHE algo

  2. A Survey on FPGA-Based Sensor Systems: Towards Intelligent and Reconfigurable Low-Power Sensors for Computer Vision, Control and Signal Processing

    PubMed Central

    García, Gabriel J.; Jara, Carlos A.; Pomares, Jorge; Alabdo, Aiman; Poggi, Lucas M.; Torres, Fernando

    2014-01-01

    The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field. PMID:24691100

  3. A survey on FPGA-based sensor systems: towards intelligent and reconfigurable low-power sensors for computer vision, control and signal processing.

    PubMed

    García, Gabriel J; Jara, Carlos A; Pomares, Jorge; Alabdo, Aiman; Poggi, Lucas M; Torres, Fernando

    2014-03-31

    The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.

  4. Bridging FPGA and GPU technologies for AO real-time control

    NASA Astrophysics Data System (ADS)

    Perret, Denis; Lainé, Maxime; Bernard, Julien; Gratadour, Damien; Sevin, Arnaud

    2016-07-01

    Our team has developed a common environment for high performance simulations and real-time control of AO systems based on the use of Graphics Processors Units in the context of the COMPASS project. Such a solution, based on the ability of the real time core in the simulation to provide adequate computing performance, limits the cost of developing AO RTC systems and makes them more scalable. A code developed and validated in the context of the simulation may be injected directly into the system and tested on sky. Furthermore, the use of relatively low cost components also offers significant advantages for the system hardware platform. However, the use of GPUs in an AO loop comes with drawbacks: the traditional way of offloading computation from CPU to GPUs - involving multiple copies and unacceptable overhead in kernel launching - is not well suited in a real time context. This last application requires the implementation of a solution enabling direct memory access (DMA) to the GPU memory from a third party device, bypassing the operating system. This allows this device to communicate directly with the real-time core of the simulation feeding it with the WFS camera pixel stream. We show that DMA between a custom FPGA-based frame-grabber and a computation unit (GPU, FPGA, or Coprocessor such as Xeon-phi) across PCIe allows us to get latencies compatible with what will be needed on ELTs. As a fine-grained synchronization mechanism is not yet made available by GPU vendors, we propose the use of memory polling to avoid interrupts handling and involvement of a CPU. Network and Vision protocols are handled by the FPGA-based Network Interface Card (NIC). We present the results we obtained on a complete AO loop using camera and deformable mirror simulators.

  5. Development of an FPGA-based multipoint laser pyroshock measurement system for explosive bolts

    NASA Astrophysics Data System (ADS)

    Abbas, Syed Haider; Jang, Jae-Kyeong; Lee, Jung-Ryul; Kim, Zaeill

    2016-07-01

    Pyroshock can cause failure to the objective of an aerospace structure by damaging its sensitive electronic equipment, which is responsible for performing decisive operations. A pyroshock is the high intensity shock wave that is generated when a pyrotechnic device is explosively triggered to separate, release, or activate structural subsystems of an aerospace architecture. Pyroshock measurement plays an important role in experimental simulations to understand the characteristics of pyroshock on the host structure. This paper presents a technology to measure a pyroshock wave at multiple points using laser Doppler vibrometers (LDVs). These LDVs detect the pyroshock wave generated due to an explosive-based pyrotechnical event. Field programmable gate array (FPGA) based data acquisition is used in the study to acquire pyroshock signals simultaneously from multiple channels. This paper describes the complete system design for multipoint pyroshock measurement. The firmware architecture for the implementation of multichannel data acquisition on an FPGA-based development board is also discussed. An experiment using explosive bolts was configured to test the reliability of the system. Pyroshock was generated using explosive excitation on a 22-mm-thick steel plate. Three LDVs were deployed to capture the pyroshock wave at different points. The pyroshocks captured were displayed as acceleration plots. The results showed that our system effectively captured the pyroshock wave with a peak-to-peak magnitude of 303 741 g. The contribution of this paper is a specialized architecture of firmware design programmed in FPGA for data acquisition of large amount of multichannel pyroshock data. The advantages of the developed system are the near-field, multipoint, non-contact, and remote measurement of a pyroshock wave, which is dangerous and expensive to produce in aerospace pyrotechnic tests.

  6. A high-speed DAQ framework for future high-level trigger and event building clusters

    NASA Astrophysics Data System (ADS)

    Caselle, M.; Ardila Perez, L. E.; Balzer, M.; Dritschler, T.; Kopmann, A.; Mohr, H.; Rota, L.; Vogelgesang, M.; Weber, M.

    2017-03-01

    Modern data acquisition and trigger systems require a throughput of several GB/s and latencies of the order of microseconds. To satisfy such requirements, a heterogeneous readout system based on FPGA readout cards and GPU-based computing nodes coupled by InfiniBand has been developed. The incoming data from the back-end electronics is delivered directly into the internal memory of GPUs through a dedicated peer-to-peer PCIe communication. High performance DMA engines have been developed for direct communication between FPGAs and GPUs using "DirectGMA (AMD)" and "GPUDirect (NVIDIA)" technologies. The proposed infrastructure is a candidate for future generations of event building clusters, high-level trigger filter farms and low-level trigger system. In this paper the heterogeneous FPGA-GPU architecture will be presented and its performance be discussed.

  7. A single FPGA-based portable ultrasound imaging system for point-of-care applications.

    PubMed

    Kim, Gi-Duck; Yoon, Changhan; Kye, Sang-Bum; Lee, Youngbae; Kang, Jeeun; Yoo, Yangmo; Song, Tai-kyong

    2012-07-01

    We present a cost-effective portable ultrasound system based on a single field-programmable gate array (FPGA) for point-of-care applications. In the portable ultrasound system developed, all the ultrasound signal and image processing modules, including an effective 32-channel receive beamformer with pseudo-dynamic focusing, are embedded in an FPGA chip. For overall system control, a mobile processor running Linux at 667 MHz is used. The scan-converted ultrasound image data from the FPGA are directly transferred to the system controller via external direct memory access without a video processing unit. The potable ultrasound system developed can provide real-time B-mode imaging with a maximum frame rate of 30, and it has a battery life of approximately 1.5 h. These results indicate that the single FPGA-based portable ultrasound system developed is able to meet the processing requirements in medical ultrasound imaging while providing improved flexibility for adapting to emerging POC applications.

  8. FPGA-based prototype storage system with phase change memory

    NASA Astrophysics Data System (ADS)

    Li, Gezi; Chen, Xiaogang; Chen, Bomy; Li, Shunfen; Zhou, Mi; Han, Wenbing; Song, Zhitang

    2016-10-01

    With the ever-increasing amount of data being stored via social media, mobile telephony base stations, and network devices etc. the database systems face severe bandwidth bottlenecks when moving vast amounts of data from storage to the processing nodes. At the same time, Storage Class Memory (SCM) technologies such as Phase Change Memory (PCM) with unique features like fast read access, high density, non-volatility, byte-addressability, positive response to increasing temperature, superior scalability, and zero standby leakage have changed the landscape of modern computing and storage systems. In such a scenario, we present a storage system called FLEET which can off-load partial or whole SQL queries to the storage engine from CPU. FLEET uses an FPGA rather than conventional CPUs to implement the off-load engine due to its highly parallel nature. We have implemented an initial prototype of FLEET with PCM-based storage. The results demonstrate that significant performance and CPU utilization gains can be achieved by pushing selected query processing components inside in PCM-based storage.

  9. Integration of digital signal processing technologies with pulsed electron paramagnetic resonance imaging

    PubMed Central

    Pursley, Randall H.; Salem, Ghadi; Devasahayam, Nallathamby; Subramanian, Sankaran; Koscielniak, Janusz; Krishna, Murali C.; Pohida, Thomas J.

    2006-01-01

    The integration of modern data acquisition and digital signal processing (DSP) technologies with Fourier transform electron paramagnetic resonance (FT-EPR) imaging at radiofrequencies (RF) is described. The FT-EPR system operates at a Larmor frequency (Lf) of 300 MHz to facilitate in vivo studies. This relatively low frequency Lf, in conjunction with our ~10 MHz signal bandwidth, enables the use of direct free induction decay time-locked subsampling (TLSS). This particular technique provides advantages by eliminating the traditional analog intermediate frequency downconversion stage along with the corresponding noise sources. TLSS also results in manageable sample rates that facilitate the design of DSP-based data acquisition and image processing platforms. More specifically, we utilize a high-speed field programmable gate array (FPGA) and a DSP processor to perform advanced real-time signal and image processing. The migration to a DSP-based configuration offers the benefits of improved EPR system performance, as well as increased adaptability to various EPR system configurations (i.e., software configurable systems instead of hardware reconfigurations). The required modifications to the FT-EPR system design are described, with focus on the addition of DSP technologies including the application-specific hardware, software, and firmware developed for the FPGA and DSP processor. The first results of using real-time DSP technologies in conjunction with direct detection bandpass sampling to implement EPR imaging at RF frequencies are presented. PMID:16243552

  10. Real-time implementation of a multispectral mine target detection algorithm

    NASA Astrophysics Data System (ADS)

    Samson, Joseph W.; Witter, Lester J.; Kenton, Arthur C.; Holloway, John H., Jr.

    2003-09-01

    Spatial-spectral anomaly detection (the "RX Algorithm") has been exploited on the USMC's Coastal Battlefield Reconnaissance and Analysis (COBRA) Advanced Technology Demonstration (ATD) and several associated technology base studies, and has been found to be a useful method for the automated detection of surface-emplaced antitank land mines in airborne multispectral imagery. RX is a complex image processing algorithm that involves the direct spatial convolution of a target/background mask template over each multispectral image, coupled with a spatially variant background spectral covariance matrix estimation and inversion. The RX throughput on the ATD was about 38X real time using a single Sun UltraSparc system. A goal to demonstrate RX in real-time was begun in FY01. We now report the development and demonstration of a Field Programmable Gate Array (FPGA) solution that achieves a real-time implementation of the RX algorithm at video rates using COBRA ATD data. The approach uses an Annapolis Microsystems Firebird PMC card containing a Xilinx XCV2000E FPGA with over 2,500,000 logic gates and 18MBytes of memory. A prototype system was configured using a Tek Microsystems VME board with dual-PowerPC G4 processors and two PMC slots. The RX algorithm was translated from its C programming implementation into the VHDL language and synthesized into gates that were loaded into the FPGA. The VHDL/synthesizer approach allows key RX parameters to be quickly changed and a new implementation automatically generated. Reprogramming the FPGA is done rapidly and in-circuit. Implementation of the RX algorithm in a single FPGA is a major first step toward achieving real-time land mine detection.

  11. A FPGA-based architecture for real-time image matching

    NASA Astrophysics Data System (ADS)

    Wang, Jianhui; Zhong, Sheng; Xu, Wenhui; Zhang, Weijun; Cao, Zhiguo

    2013-10-01

    Image matching is a fundamental task in computer vision. It is used to establish correspondence between two images taken at different viewpoint or different time from the same scene. However, its large computational complexity has been a challenge to most embedded systems. This paper proposes a single FPGA-based image matching system, which consists of SIFT feature detection, BRIEF descriptor extraction and BRIEF matching. It optimizes the FPGA architecture for the SIFT feature detection to reduce the FPGA resources utilization. Moreover, we implement BRIEF description and matching on FPGA also. The proposed system can implement image matching at 30fps (frame per second) for 1280x720 images. Its processing speed can meet the demand of most real-life computer vision applications.

  12. Random number generators for large-scale parallel Monte Carlo simulations on FPGA

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Wang, F.; Liu, B.

    2018-05-01

    Through parallelization, field programmable gate array (FPGA) can achieve unprecedented speeds in large-scale parallel Monte Carlo (LPMC) simulations. FPGA presents both new constraints and new opportunities for the implementations of random number generators (RNGs), which are key elements of any Monte Carlo (MC) simulation system. Using empirical and application based tests, this study evaluates all of the four RNGs used in previous FPGA based MC studies and newly proposed FPGA implementations for two well-known high-quality RNGs that are suitable for LPMC studies on FPGA. One of the newly proposed FPGA implementations: a parallel version of additive lagged Fibonacci generator (Parallel ALFG) is found to be the best among the evaluated RNGs in fulfilling the needs of LPMC simulations on FPGA.

  13. FPGA based digital phase-coding quantum key distribution system

    NASA Astrophysics Data System (ADS)

    Lu, XiaoMing; Zhang, LiJun; Wang, YongGang; Chen, Wei; Huang, DaJun; Li, Deng; Wang, Shuang; He, DeYong; Yin, ZhenQiang; Zhou, Yu; Hui, Cong; Han, ZhengFu

    2015-12-01

    Quantum key distribution (QKD) is a technology with the potential capability to achieve information-theoretic security. Phasecoding is an important approach to develop practical QKD systems in fiber channel. In order to improve the phase-coding modulation rate, we proposed a new digital-modulation method in this paper and constructed a compact and robust prototype of QKD system using currently available components in our lab to demonstrate the effectiveness of the method. The system was deployed in laboratory environment over a 50 km fiber and continuously operated during 87 h without manual interaction. The quantum bit error rate (QBER) of the system was stable with an average value of 3.22% and the secure key generation rate is 8.91 kbps. Although the modulation rate of the photon in the demo system was only 200 MHz, which was limited by the Faraday-Michelson interferometer (FMI) structure, the proposed method and the field programmable gate array (FPGA) based electronics scheme have a great potential for high speed QKD systems with Giga-bits/second modulation rate.

  14. A dynamically reconfigurable multi-functional PLL for SRAM-based FPGA in 65nm CMOS technology

    NASA Astrophysics Data System (ADS)

    Yang, Mingqian; Chen, Lei; Li, Xuewu; Zhang, Yanlong

    2018-04-01

    Phase-locked loops (PLL) have been widely utilized in FPGA as an important module for clock management. PLL with dynamic reconfiguration capability is always welcomed in FPGA design as it is able to decrease power consumption and simultaneously improve flexibility. In this paper, a multi-functional PLL with dynamic reconfiguration capability for 65nm SRAM-based FPGA is proposed. Firstly, configurable charge pump and loop filter are utilized to optimize the loop bandwidth. Secondly, the PLL incorporates a VCO with dual control voltages to accelerate the adjustment of oscillation frequency. Thirdly, three configurable dividers are presented for flexible frequency synthesis. Lastly, a configuration block with dynamic reconfiguration function is proposed. Simulation results demonstrate that the proposed multi-functional PLL can output clocks with configurable division ratio, phase shift and duty cycle. The PLL can also be dynamically reconfigured without affecting other parts' running or halting the FPGA device.

  15. FPGA-based gating and logic for multichannel single photon counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pooser, Raphael C; Earl, Dennis Duncan; Evans, Philip G

    2012-01-01

    We present results characterizing multichannel InGaAs single photon detectors utilizing gated passive quenching circuits (GPQC), self-differencing techniques, and field programmable gate array (FPGA)-based logic for both diode gating and coincidence counting. Utilizing FPGAs for the diode gating frontend and the logic counting backend has the advantage of low cost compared to custom built logic circuits and current off-the-shelf detector technology. Further, FPGA logic counters have been shown to work well in quantum key distribution (QKD) test beds. Our setup combines multiple independent detector channels in a reconfigurable manner via an FPGA backend and post processing in order to perform coincidencemore » measurements between any two or more detector channels simultaneously. Using this method, states from a multi-photon polarization entangled source are detected and characterized via coincidence counting on the FPGA. Photons detection events are also processed by the quantum information toolkit for application testing (QITKAT)« less

  16. Research based on the SoPC platform of feature-based image registration

    NASA Astrophysics Data System (ADS)

    Shi, Yue-dong; Wang, Zhi-hui

    2015-12-01

    This paper focuses on the study of implementing feature-based image registration by System on a Programmable Chip (SoPC) hardware platform. We solidify the image registration algorithm on the FPGA chip, in which embedded soft core processor Nios II can speed up the image processing system. In this way, we can make image registration technology get rid of the PC. And, consequently, this kind of technology will be got an extensive use. The experiment result indicates that our system shows stable performance, particularly in terms of matching processing which noise immunity is good. And feature points of images show a reasonable distribution.

  17. Optoelectronic date acquisition system based on FPGA

    NASA Astrophysics Data System (ADS)

    Li, Xin; Liu, Chunyang; Song, De; Tong, Zhiguo; Liu, Xiangqing

    2015-11-01

    An optoelectronic date acquisition system is designed based on FPGA. FPGA chip that is EP1C3T144C8 of Cyclone devices from Altera corporation is used as the centre of logic control, XTP2046 chip is used as A/D converter, host computer that communicates with the date acquisition system through RS-232 serial communication interface are used as display device and photo resistance is used as photo sensor. We use Verilog HDL to write logic control code about FPGA. It is proved that timing sequence is correct through the simulation of ModelSim. Test results indicate that this system meets the design requirement, has fast response and stable operation by actual hardware circuit test.

  18. FASEA: A FPGA Acquisition System and Software Event Analysis for liquid scintillation counting

    NASA Astrophysics Data System (ADS)

    Steele, T.; Mo, L.; Bignell, L.; Smith, M.; Alexiev, D.

    2009-10-01

    The FASEA (FPGA based Acquisition and Software Event Analysis) system has been developed to replace the MAC3 for coincidence pulse processing. The system uses a National Instruments Virtex 5 FPGA card (PXI-7842R) for data acquisition and a purpose developed data analysis software for data analysis. Initial comparisons to the MAC3 unit are included based on measurements of 89Sr and 3H, confirming that the system is able to accurately emulate the behaviour of the MAC3 unit.

  19. FPGA-based Trigger System for the Fermilab SeaQuest Experimentz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiu, Shiuan-Hal; Wu, Jinyuan; McClellan, Randall Evan

    The SeaQuest experiment (Fermilab E906) detects pairs of energetic μ + and μ -produced in 120 GeV/c proton–nucleon interactions in a high rate environment. The trigger system we used consists of several arrays of scintillator hodoscopes and a set of field-programmable gate array (FPGA) based VMEbus modules. Signals from up to 96 channels of hodoscope are digitized by each FPGA with a 1-ns resolution using the time-to-digital convertor (TDC) firmware. The delay of the TDC output can be adjusted channel-by-channel in 1-ns step and then re-aligned with the beam RF clock. The hit pattern on the hodoscope planes is thenmore » examined against pre-determined trigger matrices to identify candidate muon tracks. Finally, information on the candidate tracks is sent to the 2nd-level FPGA-based track correlator to find candidate di-muon events. The design and implementation of the FPGA-based trigger system for SeaQuest experiment are presented.« less

  20. FPGA-based trigger system for the Fermilab SeaQuest experimentz

    NASA Astrophysics Data System (ADS)

    Shiu, Shiuan-Hal; Wu, Jinyuan; McClellan, Randall Evan; Chang, Ting-Hua; Chang, Wen-Chen; Chen, Yen-Chu; Gilman, Ron; Nakano, Kenichi; Peng, Jen-Chieh; Wang, Su-Yin

    2015-12-01

    The SeaQuest experiment (Fermilab E906) detects pairs of energetic μ+ and μ- produced in 120 GeV/c proton-nucleon interactions in a high rate environment. The trigger system consists of several arrays of scintillator hodoscopes and a set of field-programmable gate array (FPGA) based VMEbus modules. Signals from up to 96 channels of hodoscope are digitized by each FPGA with a 1-ns resolution using the time-to-digital convertor (TDC) firmware. The delay of the TDC output can be adjusted channel-by-channel in 1-ns step and then re-aligned with the beam RF clock. The hit pattern on the hodoscope planes is then examined against pre-determined trigger matrices to identify candidate muon tracks. Information on the candidate tracks is sent to the 2nd-level FPGA-based track correlator to find candidate di-muon events. The design and implementation of the FPGA-based trigger system for SeaQuest experiment are presented.

  1. FPGA-based Trigger System for the Fermilab SeaQuest Experimentz

    DOE PAGES

    Shiu, Shiuan-Hal; Wu, Jinyuan; McClellan, Randall Evan; ...

    2015-09-10

    The SeaQuest experiment (Fermilab E906) detects pairs of energetic μ + and μ -produced in 120 GeV/c proton–nucleon interactions in a high rate environment. The trigger system we used consists of several arrays of scintillator hodoscopes and a set of field-programmable gate array (FPGA) based VMEbus modules. Signals from up to 96 channels of hodoscope are digitized by each FPGA with a 1-ns resolution using the time-to-digital convertor (TDC) firmware. The delay of the TDC output can be adjusted channel-by-channel in 1-ns step and then re-aligned with the beam RF clock. The hit pattern on the hodoscope planes is thenmore » examined against pre-determined trigger matrices to identify candidate muon tracks. Finally, information on the candidate tracks is sent to the 2nd-level FPGA-based track correlator to find candidate di-muon events. The design and implementation of the FPGA-based trigger system for SeaQuest experiment are presented.« less

  2. Design of optical axis jitter control system for multi beam lasers based on FPGA

    NASA Astrophysics Data System (ADS)

    Ou, Long; Li, Guohui; Xie, Chuanlin; Zhou, Zhiqiang

    2018-02-01

    A design of optical axis closed-loop control system for multi beam lasers coherent combining based on FPGA was introduced. The system uses piezoelectric ceramics Fast Steering Mirrors (FSM) as actuator, the Fairfield spot detection of multi beam lasers by the high speed CMOS camera for optical detecting, a control system based on FPGA for real-time optical axis jitter suppression. The algorithm for optical axis centroid detecting and PID of anti-Integral saturation were realized by FPGA. Optimize the structure of logic circuit by reuse resource and pipeline, as a result of reducing logic resource but reduced the delay time, and the closed-loop bandwidth increases to 100Hz. The jitter of laser less than 40Hz was reduced 40dB. The cost of the system is low but it works stably.

  3. Field application of smart SHM using field programmable gate array technology to monitor an RC bridge in New Mexico

    NASA Astrophysics Data System (ADS)

    Azarbayejani, M.; Jalalpour, M.; El-Osery, A. I.; Reda Taha, M. M.

    2011-08-01

    In this paper, an innovative field application of a structural health monitoring (SHM) system using field programmable gate array (FPGA) technology and wireless communication is presented. The new SHM system was installed to monitor a reinforced concrete (RC) bridge on Interstate 40 (I-40) in Tucumcari, New Mexico. This newly installed system allows continuous remote monitoring of this bridge using solar power. Details of the SHM component design and installation are discussed. The integration of FPGA and solar power technologies make it possible to remotely monitor infrastructure with limited access to power. Furthermore, the use of FPGA technology enables smart monitoring where data communication takes place on-need (when damage warning signs are met) and on-demand for periodic monitoring of the bridge. Such a system enables a significant cut in communication cost and power demands which are two challenges during SHM operation. Finally, a three-dimensional finite element (FE) model of the bridge was developed and calibrated using a static loading field test. This model is then used for simulating damage occurrence on the bridge. Using the proposed automation process for SHM will reduce human intervention significantly and can save millions of dollars currently spent on prescheduled inspection of critical infrastructure worldwide.

  4. Real-time implementation of camera positioning algorithm based on FPGA & SOPC

    NASA Astrophysics Data System (ADS)

    Yang, Mingcao; Qiu, Yuehong

    2014-09-01

    In recent years, with the development of positioning algorithm and FPGA, to achieve the camera positioning based on real-time implementation, rapidity, accuracy of FPGA has become a possibility by way of in-depth study of embedded hardware and dual camera positioning system, this thesis set up an infrared optical positioning system based on FPGA and SOPC system, which enables real-time positioning to mark points in space. Thesis completion include: (1) uses a CMOS sensor to extract the pixel of three objects with total feet, implemented through FPGA hardware driver, visible-light LED, used here as the target point of the instrument. (2) prior to extraction of the feature point coordinates, the image needs to be filtered to avoid affecting the physical properties of the system to bring the platform, where the median filtering. (3) Coordinate signs point to FPGA hardware circuit extraction, a new iterative threshold selection method for segmentation of images. Binary image is then segmented image tags, which calculates the coordinates of the feature points of the needle through the center of gravity method. (4) direct linear transformation (DLT) and extreme constraints method is applied to three-dimensional reconstruction of the plane array CMOS system space coordinates. using SOPC system on a chip here, taking advantage of dual-core computing systems, which let match and coordinate operations separately, thus increase processing speed.

  5. A Fixed Point VHDL Component Library for a High Efficiency Reconfigurable Radio Design Methodology

    NASA Technical Reports Server (NTRS)

    Hoy, Scott D.; Figueiredo, Marco A.

    2006-01-01

    Advances in Field Programmable Gate Array (FPGA) technologies enable the implementation of reconfigurable radio systems for both ground and space applications. The development of such systems challenges the current design paradigms and requires more robust design techniques to meet the increased system complexity. Among these techniques is the development of component libraries to reduce design cycle time and to improve design verification, consequently increasing the overall efficiency of the project development process while increasing design success rates and reducing engineering costs. This paper describes the reconfigurable radio component library developed at the Software Defined Radio Applications Research Center (SARC) at Goddard Space Flight Center (GSFC) Microwave and Communications Branch (Code 567). The library is a set of fixed-point VHDL components that link the Digital Signal Processing (DSP) simulation environment with the FPGA design tools. This provides a direct synthesis path based on the latest developments of the VHDL tools as proposed by the BEE VBDL 2004 which allows for the simulation and synthesis of fixed-point math operations while maintaining bit and cycle accuracy. The VHDL Fixed Point Reconfigurable Radio Component library does not require the use of the FPGA vendor specific automatic component generators and provide a generic path from high level DSP simulations implemented in Mathworks Simulink to any FPGA device. The access to the component synthesizable, source code provides full design verification capability:

  6. Design of a system based on DSP and FPGA for video recording and replaying

    NASA Astrophysics Data System (ADS)

    Kang, Yan; Wang, Heng

    2013-08-01

    This paper brings forward a video recording and replaying system with the architecture of Digital Signal Processor (DSP) and Field Programmable Gate Array (FPGA). The system achieved encoding, recording, decoding and replaying of Video Graphics Array (VGA) signals which are displayed on a monitor during airplanes and ships' navigating. In the architecture, the DSP is a main processor which is used for a large amount of complicated calculation during digital signal processing. The FPGA is a coprocessor for preprocessing video signals and implementing logic control in the system. In the hardware design of the system, Peripheral Device Transfer (PDT) function of the External Memory Interface (EMIF) is utilized to implement seamless interface among the DSP, the synchronous dynamic RAM (SDRAM) and the First-In-First-Out (FIFO) in the system. This transfer mode can avoid the bottle-neck of the data transfer and simplify the circuit between the DSP and its peripheral chips. The DSP's EMIF and two level matching chips are used to implement Advanced Technology Attachment (ATA) protocol on physical layer of the interface of an Integrated Drive Electronics (IDE) Hard Disk (HD), which has a high speed in data access and does not rely on a computer. Main functions of the logic on the FPGA are described and the screenshots of the behavioral simulation are provided in this paper. In the design of program on the DSP, Enhanced Direct Memory Access (EDMA) channels are used to transfer data between the FIFO and the SDRAM to exert the CPU's high performance on computing without intervention by the CPU and save its time spending. JPEG2000 is implemented to obtain high fidelity in video recording and replaying. Ways and means of acquiring high performance for code are briefly present. The ability of data processing of the system is desirable. And smoothness of the replayed video is acceptable. By right of its design flexibility and reliable operation, the system based on DSP and FPGA for video recording and replaying has a considerable perspective in analysis after the event, simulated exercitation and so forth.

  7. Evaluation of CHO Benchmarks on the Arria 10 FPGA using Intel FPGA SDK for OpenCL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Zheming; Yoshii, Kazutomo; Finkel, Hal

    The OpenCL standard is an open programming model for accelerating algorithms on heterogeneous computing system. OpenCL extends the C-based programming language for developing portable codes on different platforms such as CPU, Graphics processing units (GPUs), Digital Signal Processors (DSPs) and Field Programmable Gate Arrays (FPGAs). The Intel FPGA SDK for OpenCL is a suite of tools that allows developers to abstract away the complex FPGA-based development flow for a high-level software development flow. Users can focus on the design of hardware-accelerated kernel functions in OpenCL and then direct the tools to generate the low-level FPGA implementations. The approach makes themore » FPGA-based development more accessible to software users as the needs for hybrid computing using CPUs and FPGAs are increasing. It can also significantly reduce the hardware development time as users can evaluate different ideas with high-level language without deep FPGA domain knowledge. Benchmarking of OpenCL-based framework is an effective way for analyzing the performance of system by studying the execution of the benchmark applications. CHO is a suite of benchmark applications that provides support for OpenCL [1]. The authors presented CHO as an OpenCL port of the CHStone benchmark. Using Altera OpenCL (AOCL) compiler to synthesize the benchmark applications, they listed the resource usage and performance of each kernel that can be successfully synthesized by the compiler. In this report, we evaluate the resource usage and performance of the CHO benchmark applications using the Intel FPGA SDK for OpenCL and Nallatech 385A FPGA board that features an Arria 10 FPGA device. The focus of the report is to have a better understanding of the resource usage and performance of the kernel implementations using Arria-10 FPGA devices compared to Stratix-5 FPGA devices. In addition, we also gain knowledge about the limitations of the current compiler when it fails to synthesize a benchmark application.« less

  8. FPGA based demodulation of laser induced fluorescence in plasmas

    NASA Astrophysics Data System (ADS)

    Mattingly, Sean W.; Skiff, Fred

    2018-04-01

    We present a field programmable gate array (FPGA)-based system that counts photons from laser-induced fluorescence (LIF) on a laboratory plasma. This is accomplished with FPGA-based up/down counters that demodulate the data, giving a background-subtracted LIF signal stream that is updated with a new point as each laser amplitude modulation cycle completes. We demonstrate using the FPGA to modulate a laser at 1 MHz and demodulate the resulting LIF data stream. This data stream is used to calculate an LIF-based measurement sampled at 1 MHz of a plasma ion fluctuation spectrum.

  9. Design Tools for Reconfigurable Hardware in Orbit (RHinO)

    NASA Technical Reports Server (NTRS)

    French, Mathew; Graham, Paul; Wirthlin, Michael; Larchev, Gregory; Bellows, Peter; Schott, Brian

    2004-01-01

    The Reconfigurable Hardware in Orbit (RHinO) project is focused on creating a set of design tools that facilitate and automate design techniques for reconfigurable computing in space, using SRAM-based field-programmable-gate-array (FPGA) technology. These tools leverage an established FPGA design environment and focus primarily on space effects mitigation and power optimization. The project is creating software to automatically test and evaluate the single-event-upsets (SEUs) sensitivities of an FPGA design and insert mitigation techniques. Extensions into the tool suite will also allow evolvable algorithm techniques to reconfigure around single-event-latchup (SEL) events. In the power domain, tools are being created for dynamic power visualiization and optimization. Thus, this technology seeks to enable the use of Reconfigurable Hardware in Orbit, via an integrated design tool-suite aiming to reduce risk, cost, and design time of multimission reconfigurable space processors using SRAM-based FPGAs.

  10. Tuple spaces in hardware for accelerated implicit routing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Zachary Kent; Tripp, Justin

    2010-12-01

    Organizing and optimizing data objects on networks with support for data migration and failing nodes is a complicated problem to handle as systems grow. The goal of this work is to demonstrate that high levels of speedup can be achieved by moving responsibility for finding, fetching, and staging data into an FPGA-based network card. We present a system for implicit routing of data via FPGA-based network cards. In this system, data structures are requested by name, and the network of FPGAs finds the data within the network and relays the structure to the requester. This is acheived through successive examinationmore » of hardware hash tables implemented in the FPGA. By avoiding software stacks between nodes, the data is quickly fetched entirely through FPGA-FPGA interaction. The performance of this system is orders of magnitude faster than software implementations due to the improved speed of the hash tables and lowered latency between the network nodes.« less

  11. A CCD experimental platform for large telescope in Antarctica based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhu, Yuhua; Qi, Yongjun

    2014-07-01

    The CCD , as a detector , is one of the important components of astronomical telescopes. For a large telescope in Antarctica, a set of CCD detector system with large size, high sensitivity and low noise is indispensable. Because of the extremely low temperatures and unattended, system maintenance and software and hardware upgrade become hard problems. This paper introduces a general CCD controller experiment platform, using Field programmable gate array FPGA, which is, in fact, a large-scale field reconfigurable array. Taking the advantage of convenience to modify the system, construction of driving circuit, digital signal processing module, network communication interface, control algorithm validation, and remote reconfigurable module may realize. With the concept of integrated hardware and software, the paper discusses the key technology of building scientific CCD system suitable for the special work environment in Antarctica, focusing on the method of remote reconfiguration for controller via network and then offering a feasible hardware and software solution.

  12. Timing generator of scientific grade CCD camera and its implementation based on FPGA technology

    NASA Astrophysics Data System (ADS)

    Si, Guoliang; Li, Yunfei; Guo, Yongfei

    2010-10-01

    The Timing Generator's functions of Scientific Grade CCD Camera is briefly presented: it generates various kinds of impulse sequence for the TDI-CCD, video processor and imaging data output, acting as the synchronous coordinator for time in the CCD imaging unit. The IL-E2TDI-CCD sensor produced by DALSA Co.Ltd. use in the Scientific Grade CCD Camera. Driving schedules of IL-E2 TDI-CCD sensor has been examined in detail, the timing generator has been designed for Scientific Grade CCD Camera. FPGA is chosen as the hardware design platform, schedule generator is described with VHDL. The designed generator has been successfully fulfilled function simulation with EDA software and fitted into XC2VP20-FF1152 (a kind of FPGA products made by XILINX). The experiments indicate that the new method improves the integrated level of the system. The Scientific Grade CCD camera system's high reliability, stability and low power supply are achieved. At the same time, the period of design and experiment is sharply shorted.

  13. Systems-on-chip approach for real-time simulation of wheel-rail contact laws

    NASA Astrophysics Data System (ADS)

    Mei, T. X.; Zhou, Y. J.

    2013-04-01

    This paper presents the development of a systems-on-chip approach to speed up the simulation of wheel-rail contact laws, which can be used to reduce the requirement for high-performance computers and enable simulation in real time for the use of hardware-in-loop for experimental studies of the latest vehicle dynamic and control technologies. The wheel-rail contact laws are implemented using a field programmable gate array (FPGA) device with a design that substantially outperforms modern general-purpose PC platforms or fixed architecture digital signal processor devices in terms of processing time, configuration flexibility and cost. In order to utilise the FPGA's parallel-processing capability, the operations in the contact laws algorithms are arranged in a parallel manner and multi-contact patches are tackled simultaneously in the design. The interface between the FPGA device and the host PC is achieved by using a high-throughput and low-latency Ethernet link. The development is based on FASTSIM algorithms, although the design can be adapted and expanded for even more computationally demanding tasks.

  14. A Real-Time System for Lane Detection Based on FPGA and DSP

    NASA Astrophysics Data System (ADS)

    Xiao, Jing; Li, Shutao; Sun, Bin

    2016-12-01

    This paper presents a real-time lane detection system including edge detection and improved Hough Transform based lane detection algorithm and its hardware implementation with field programmable gate array (FPGA) and digital signal processor (DSP). Firstly, gradient amplitude and direction information are combined to extract lane edge information. Then, the information is used to determine the region of interest. Finally, the lanes are extracted by using improved Hough Transform. The image processing module of the system consists of FPGA and DSP. Particularly, the algorithms implemented in FPGA are working in pipeline and processing in parallel so that the system can run in real-time. In addition, DSP realizes lane line extraction and display function with an improved Hough Transform. The experimental results show that the proposed system is able to detect lanes under different road situations efficiently and effectively.

  15. An FPGA-based High Speed Parallel Signal Processing System for Adaptive Optics Testbed

    NASA Astrophysics Data System (ADS)

    Kim, H.; Choi, Y.; Yang, Y.

    In this paper a state-of-the-art FPGA (Field Programmable Gate Array) based high speed parallel signal processing system (SPS) for adaptive optics (AO) testbed with 1 kHz wavefront error (WFE) correction frequency is reported. The AO system consists of Shack-Hartmann sensor (SHS) and deformable mirror (DM), tip-tilt sensor (TTS), tip-tilt mirror (TTM) and an FPGA-based high performance SPS to correct wavefront aberrations. The SHS is composed of 400 subapertures and the DM 277 actuators with Fried geometry, requiring high speed parallel computing capability SPS. In this study, the target WFE correction speed is 1 kHz; therefore, it requires massive parallel computing capabilities as well as strict hard real time constraints on measurements from sensors, matrix computation latency for correction algorithms, and output of control signals for actuators. In order to meet them, an FPGA based real-time SPS with parallel computing capabilities is proposed. In particular, the SPS is made up of a National Instrument's (NI's) real time computer and five FPGA boards based on state-of-the-art Xilinx Kintex 7 FPGA. Programming is done with NI's LabView environment, providing flexibility when applying different algorithms for WFE correction. It also facilitates faster programming and debugging environment as compared to conventional ones. One of the five FPGA's is assigned to measure TTS and calculate control signals for TTM, while the rest four are used to receive SHS signal, calculate slops for each subaperture and correction signal for DM. With this parallel processing capabilities of the SPS the overall closed-loop WFE correction speed of 1 kHz has been achieved. System requirements, architecture and implementation issues are described; furthermore, experimental results are also given.

  16. Grayscale image segmentation for real-time traffic sign recognition: the hardware point of view

    NASA Astrophysics Data System (ADS)

    Cao, Tam P.; Deng, Guang; Elton, Darrell

    2009-02-01

    In this paper, we study several grayscale-based image segmentation methods for real-time road sign recognition applications on an FPGA hardware platform. The performance of different image segmentation algorithms in different lighting conditions are initially compared using PC simulation. Based on these results and analysis, suitable algorithms are implemented and tested on a real-time FPGA speed sign detection system. Experimental results show that the system using segmented images uses significantly less hardware resources on an FPGA while maintaining comparable system's performance. The system is capable of processing 60 live video frames per second.

  17. A digital frequency stabilization system of external cavity diode laser based on LabVIEW FPGA

    NASA Astrophysics Data System (ADS)

    Liu, Zhuohuan; Hu, Zhaohui; Qi, Lu; Wang, Tao

    2015-10-01

    Frequency stabilization for external cavity diode laser has played an important role in physics research. Many laser frequency locking solutions have been proposed by researchers. Traditionally, the locking process was accomplished by analog system, which has fast feedback control response speed. However, analog system is susceptible to the effects of environment. In order to improve the automation level and reliability of the frequency stabilization system, we take a grating-feedback external cavity diode laser as the laser source and set up a digital frequency stabilization system based on National Instrument's FPGA (NI FPGA). The system consists of a saturated absorption frequency stabilization of beam path, a differential photoelectric detector, a NI FPGA board and a host computer. Many functions, such as piezoelectric transducer (PZT) sweeping, atomic saturation absorption signal acquisition, signal peak identification, error signal obtaining and laser PZT voltage feedback controlling, are totally completed by LabVIEW FPGA program. Compared with the analog system, the system built by the logic gate circuits, performs stable and reliable. User interface programmed by LabVIEW is friendly. Besides, benefited from the characteristics of reconfiguration, the LabVIEW program is good at transplanting in other NI FPGA boards. Most of all, the system periodically checks the error signal. Once the abnormal error signal is detected, FPGA will restart frequency stabilization process without manual control. Through detecting the fluctuation of error signal of the atomic saturation absorption spectrum line in the frequency locking state, we can infer that the laser frequency stability can reach 1MHz.

  18. V&V Plan for FPGA-based ESF-CCS Using System Engineering Approach.

    NASA Astrophysics Data System (ADS)

    Maerani, Restu; Mayaka, Joyce; El Akrat, Mohamed; Cheon, Jung Jae

    2018-02-01

    Instrumentation and Control (I&C) systems play an important role in maintaining the safety of Nuclear Power Plant (NPP) operation. However, most current I&C safety systems are based on Programmable Logic Controller (PLC) hardware, which is difficult to verify and validate, and is susceptible to software common cause failure. Therefore, a plan for the replacement of the PLC-based safety systems, such as the Engineered Safety Feature - Component Control System (ESF-CCS), with Field Programmable Gate Arrays (FPGA) is needed. By using a systems engineering approach, which ensures traceability in every phase of the life cycle, from system requirements, design implementation to verification and validation, the system development is guaranteed to be in line with the regulatory requirements. The Verification process will ensure that the customer and stakeholder’s needs are satisfied in a high quality, trustworthy, cost efficient and schedule compliant manner throughout a system’s entire life cycle. The benefit of the V&V plan is to ensure that the FPGA based ESF-CCS is correctly built, and to ensure that the measurement of performance indicators has positive feedback that “do we do the right thing” during the re-engineering process of the FPGA based ESF-CCS.

  19. FPGA platform for prototyping and evaluation of neural network automotive applications

    NASA Technical Reports Server (NTRS)

    Aranki, N.; Tawel, R.

    2002-01-01

    In this paper we present an FPGA based reconfigurable computing platform for prototyping and evaluation of advanced neural network based applications for control and diagnostics in an automotive sub-systems.

  20. Computer vision camera with embedded FPGA processing

    NASA Astrophysics Data System (ADS)

    Lecerf, Antoine; Ouellet, Denis; Arias-Estrada, Miguel

    2000-03-01

    Traditional computer vision is based on a camera-computer system in which the image understanding algorithms are embedded in the computer. To circumvent the computational load of vision algorithms, low-level processing and imaging hardware can be integrated in a single compact module where a dedicated architecture is implemented. This paper presents a Computer Vision Camera based on an open architecture implemented in an FPGA. The system is targeted to real-time computer vision tasks where low level processing and feature extraction tasks can be implemented in the FPGA device. The camera integrates a CMOS image sensor, an FPGA device, two memory banks, and an embedded PC for communication and control tasks. The FPGA device is a medium size one equivalent to 25,000 logic gates. The device is connected to two high speed memory banks, an IS interface, and an imager interface. The camera can be accessed for architecture programming, data transfer, and control through an Ethernet link from a remote computer. A hardware architecture can be defined in a Hardware Description Language (like VHDL), simulated and synthesized into digital structures that can be programmed into the FPGA and tested on the camera. The architecture of a classical multi-scale edge detection algorithm based on a Laplacian of Gaussian convolution has been developed to show the capabilities of the system.

  1. Uranus: a rapid prototyping tool for FPGA embedded computer vision

    NASA Astrophysics Data System (ADS)

    Rosales-Hernández, Victor; Castillo-Jimenez, Liz; Viveros-Velez, Gilberto; Zuñiga-Grajeda, Virgilio; Treviño Torres, Abel; Arias-Estrada, M.

    2007-01-01

    The starting point for all successful system development is the simulation. Performing high level simulation of a system can help to identify, insolate and fix design problems. This work presents Uranus, a software tool for simulation and evaluation of image processing algorithms with support to migrate them to an FPGA environment for algorithm acceleration and embedded processes purposes. The tool includes an integrated library of previous coded operators in software and provides the necessary support to read and display image sequences as well as video files. The user can use the previous compiled soft-operators in a high level process chain, and code his own operators. Additional to the prototyping tool, Uranus offers FPGA-based hardware architecture with the same organization as the software prototyping part. The hardware architecture contains a library of FPGA IP cores for image processing that are connected with a PowerPC based system. The Uranus environment is intended for rapid prototyping of machine vision and the migration to FPGA accelerator platform, and it is distributed for academic purposes.

  2. FPGA-Based Pulse Pile-Up Correction With Energy and Timing Recovery.

    PubMed

    Haselman, M D; Pasko, J; Hauck, S; Lewellen, T K; Miyaoka, R S

    2012-10-01

    Modern field programmable gate arrays (FPGAs) are capable of performing complex discrete signal processing algorithms with clock rates well above 100 MHz. This, combined with FPGA's low expense, ease of use, and selected dedicated hardware make them an ideal technology for a data acquisition system for a positron emission tomography (PET) scanner. The University of Washington is producing a high-resolution, small-animal PET scanner that utilizes FPGAs as the core of the front-end electronics. For this scanner, functions that are typically performed in dedicated circuits, or offline, are being migrated to the FPGA. This will not only simplify the electronics, but the features of modern FPGAs can be utilized to add significant signal processing power to produce higher quality images. In this paper we report on an all-digital pulse pile-up correction algorithm that has been developed for the FPGA. The pile-up mitigation algorithm will allow the scanner to run at higher count rates without incurring large data losses due to the overlapping of scintillation signals. This correction technique utilizes a reference pulse to extract timing and energy information for most pile-up events. Using pulses acquired from a Zecotech Photonics MAPD-N with an LFS-3 scintillator, we show that good timing and energy information can be achieved in the presence of pile-up utilizing a moderate amount of FPGA resources.

  3. Remote monitoring and fault recovery for FPGA-based field controllers of telescope and instruments

    NASA Astrophysics Data System (ADS)

    Zhu, Yuhua; Zhu, Dan; Wang, Jianing

    2012-09-01

    As the increasing size and more and more functions, modern telescopes have widely used the control architecture, i.e. central control unit plus field controller. FPGA-based field controller has the advantages of field programmable, which provide a great convenience for modifying software and hardware of control system. It also gives a good platform for implementation of the new control scheme. Because of multi-controlled nodes and poor working environment in scattered locations, reliability and stability of the field controller should be fully concerned. This paper mainly describes how we use the FPGA-based field controller and Ethernet remote to construct monitoring system with multi-nodes. When failure appearing, the new FPGA chip does self-recovery first in accordance with prerecovery strategies. In case of accident, remote reconstruction for the field controller can be done through network intervention if the chip is not being restored. This paper also introduces the network remote reconstruction solutions of controller, the system structure and transport protocol as well as the implementation methods. The idea of hardware and software design is given based on the FPGA. After actual operation on the large telescopes, desired results have been achieved. The improvement increases system reliability and reduces workload of maintenance, showing good application and popularization.

  4. Multichannel FPGA based MVT system for high precision time (20 ps RMS) and charge measurement

    NASA Astrophysics Data System (ADS)

    Pałka, M.; Strzempek, P.; Korcyl, G.; Bednarski, T.; Niedźwiecki, Sz.; Białas, P.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gorgol, M.; Jasińska, B.; Kamińska, D.; Kajetanowicz, M.; Kowalski, P.; Kozik, T.; Krzemień, W.; Kubicz, E.; Mohhamed, M.; Raczyński, L.; Rudy, Z.; Rundel, O.; Salabura, P.; Sharma, N. G.; Silarski, M.; Smyrski, J.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.; Zieliński, M.; Zgardzińska, B.; Moskal, P.

    2017-08-01

    In this article it is presented an FPGA based Multi-Voltage Threshold (MVT) system which allows of sampling fast signals (1-2 ns rising and falling edge) in both voltage and time domain. It is possible to achieve a precision of time measurement of 20 ps RMS and reconstruct charge of signals, using a simple approach, with deviation from real value smaller than 10%. Utilization of the differential inputs of an FPGA chip as comparators together with an implementation of a TDC inside an FPGA allowed us to achieve a compact multi-channel system characterized by low power consumption and low production costs. This paper describes realization and functioning of the system comprising 192-channel TDC board and a four mezzanine cards which split incoming signals and discriminate them. The boards have been used to validate a newly developed Time-of-Flight Positron Emission Tomography system based on plastic scintillators. The achieved full system time resolution of σ(TOF) ≈ 68 ps is by factor of two better with respect to the current TOF-PET systems.

  5. Onboard FPGA-based SAR processing for future spaceborne systems

    NASA Technical Reports Server (NTRS)

    Le, Charles; Chan, Samuel; Cheng, Frank; Fang, Winston; Fischman, Mark; Hensley, Scott; Johnson, Robert; Jourdan, Michael; Marina, Miguel; Parham, Bruce; hide

    2004-01-01

    We present a real-time high-performance and fault-tolerant FPGA-based hardware architecture for the processing of synthetic aperture radar (SAR) images in future spaceborne system. In particular, we will discuss the integrated design approach, from top-level algorithm specifications and system requirements, design methodology, functional verification and performance validation, down to hardware design and implementation.

  6. Motion camera based on a custom vision sensor and an FPGA architecture

    NASA Astrophysics Data System (ADS)

    Arias-Estrada, Miguel

    1998-09-01

    A digital camera for custom focal plane arrays was developed. The camera allows the test and development of analog or mixed-mode arrays for focal plane processing. The camera is used with a custom sensor for motion detection to implement a motion computation system. The custom focal plane sensor detects moving edges at the pixel level using analog VLSI techniques. The sensor communicates motion events using the event-address protocol associated to a temporal reference. In a second stage, a coprocessing architecture based on a field programmable gate array (FPGA) computes the time-of-travel between adjacent pixels. The FPGA allows rapid prototyping and flexible architecture development. Furthermore, the FPGA interfaces the sensor to a compact PC computer which is used for high level control and data communication to the local network. The camera could be used in applications such as self-guided vehicles, mobile robotics and smart surveillance systems. The programmability of the FPGA allows the exploration of further signal processing like spatial edge detection or image segmentation tasks. The article details the motion algorithm, the sensor architecture, the use of the event- address protocol for velocity vector computation and the FPGA architecture used in the motion camera system.

  7. FPGA-Based X-Ray Detection and Measurement for an X-Ray Polarimeter

    NASA Technical Reports Server (NTRS)

    Gregory, Kyle; Hill, Joanne; Black, Kevin; Baumgartner, Wayne

    2013-01-01

    This technology enables detection and measurement of x-rays in an x-ray polarimeter using a field-programmable gate array (FPGA). The technology was developed for the Gravitational and Extreme Magnetism Small Explorer (GEMS) mission. It performs precision energy and timing measurements, as well as rejection of non-x-ray events. It enables the GEMS polarimeter to detect precisely when an event has taken place so that additional measurements can be made. The technology also enables this function to be performed in an FPGA using limited resources so that mass and power can be minimized while reliability for a space application is maximized and precise real-time operation is achieved. This design requires a low-noise, charge-sensitive preamplifier; a highspeed analog to digital converter (ADC); and an x-ray detector with a cathode terminal. It functions by computing a sum of differences for time-samples whose difference exceeds a programmable threshold. A state machine advances through states as a programmable number of consecutive samples exceeds or fails to exceed this threshold. The pulse height is recorded as the accumulated sum. The track length is also measured based on the time from the start to the end of accumulation. For track lengths longer than a certain length, the algorithm estimates the barycenter of charge deposit by comparing the accumulator value at the midpoint to the final accumulator value. The design also employs a number of techniques for rejecting background events. This innovation enables the function to be performed in space where it can operate autonomously with a rapid response time. This implementation combines advantages of computing system-based approaches with those of pure analog approaches. The result is an implementation that is highly reliable, performs in real-time, rejects background events, and consumes minimal power.

  8. Synthesis of blind source separation algorithms on reconfigurable FPGA platforms

    NASA Astrophysics Data System (ADS)

    Du, Hongtao; Qi, Hairong; Szu, Harold H.

    2005-03-01

    Recent advances in intelligence technology have boosted the development of micro- Unmanned Air Vehicles (UAVs) including Sliver Fox, Shadow, and Scan Eagle for various surveillance and reconnaissance applications. These affordable and reusable devices have to fit a series of size, weight, and power constraints. Cameras used on such micro-UAVs are therefore mounted directly at a fixed angle without any motion-compensated gimbals. This mounting scheme has resulted in the so-called jitter effect in which jitter is defined as sub-pixel or small amplitude vibrations. The jitter blur caused by the jitter effect needs to be corrected before any other processing algorithms can be practically applied. Jitter restoration has been solved by various optimization techniques, including Wiener approximation, maximum a-posteriori probability (MAP), etc. However, these algorithms normally assume a spatial-invariant blur model that is not the case with jitter blur. Szu et al. developed a smart real-time algorithm based on auto-regression (AR) with its natural generalization of unsupervised artificial neural network (ANN) learning to achieve restoration accuracy at the sub-pixel level. This algorithm resembles the capability of the human visual system, in which an agreement between the pair of eyes indicates "signal", otherwise, the jitter noise. Using this non-statistical method, for each single pixel, a deterministic blind sources separation (BSS) process can then be carried out independently based on a deterministic minimum of the Helmholtz free energy with a generalization of Shannon's information theory applied to open dynamic systems. From a hardware implementation point of view, the process of jitter restoration of an image using Szu's algorithm can be optimized by pixel-based parallelization. In our previous work, a parallelly structured independent component analysis (ICA) algorithm has been implemented on both Field Programmable Gate Array (FPGA) and Application-Specific Integrated Circuit (ASIC) using standard-height cells. ICA is an algorithm that can solve BSS problems by carrying out the all-order statistical, decorrelation-based transforms, in which an assumption that neighborhood pixels share the same but unknown mixing matrix A is made. In this paper, we continue our investigation on the design challenges of firmware approaches to smart algorithms. We think two levels of parallelization can be explored, including pixel-based parallelization and the parallelization of the restoration algorithm performed at each pixel. This paper focuses on the latter and we use ICA as an example to explain the design and implementation methods. It is well known that the capacity constraints of single FPGA have limited the implementation of many complex algorithms including ICA. Using the reconfigurability of FPGA, we show, in this paper, how to manipulate the FPGA-based system to provide extra computing power for the parallelized ICA algorithm with limited FPGA resources. The synthesis aiming at the pilchard re-configurable FPGA platform is reported. The pilchard board is embedded with single Xilinx VIRTEX 1000E FPGA and transfers data directly to CPU on the 64-bit memory bus at the maximum frequency of 133MHz. Both the feasibility performance evaluations and experimental results validate the effectiveness and practicality of this synthesis, which can be extended to the spatial-variant jitter restoration for micro-UAV deployment.

  9. Photoelectric radar servo control system based on ARM+FPGA

    NASA Astrophysics Data System (ADS)

    Wu, Kaixuan; Zhang, Yue; Li, Yeqiu; Dai, Qin; Yao, Jun

    2016-01-01

    In order to get smaller, faster, and more responsive requirements of the photoelectric radar servo control system. We propose a set of core ARM + FPGA architecture servo controller. Parallel processing capability of FPGA to be used for the encoder feedback data, PWM carrier modulation, A, B code decoding processing and so on; Utilizing the advantage of imaging design in ARM Embedded systems achieves high-speed implementation of the PID algorithm. After the actual experiment, the closed-loop speed of response of the system cycles up to 2000 times/s, in the case of excellent precision turntable shaft, using a PID algorithm to achieve the servo position control with the accuracy of + -1 encoder input code. Firstly, This article carry on in-depth study of the embedded servo control system hardware to determine the ARM and FPGA chip as the main chip with systems based on a pre-measured target required to achieve performance requirements, this article based on ARM chip used Samsung S3C2440 chip of ARM7 architecture , the FPGA chip is chosen xilinx's XC3S400 . ARM and FPGA communicate by using SPI bus, the advantage of using SPI bus is saving a lot of pins for easy system upgrades required thereafter. The system gets the speed datas through the photoelectric-encoder that transports the datas to the FPGA, Then the system transmits the datas through the FPGA to ARM, transforms speed datas into the corresponding position and velocity data in a timely manner, prepares the corresponding PWM wave to control motor rotation by making comparison between the position data and the velocity data setted in advance . According to the system requirements to draw the schematics of the photoelectric radar servo control system and PCB board to produce specially. Secondly, using PID algorithm to control the servo system, the datas of speed obtained from photoelectric-encoder is calculated position data and speed data via high-speed digital PID algorithm and coordinate models. Finally, a large number of experiments verify the reliability of embedded servo control system's functions, the stability of the program and the stability of the hardware circuit. Meanwhile, the system can also achieve the satisfactory of user experience, to achieve a multi-mode motion, real-time motion status monitoring, online system parameter changes and other convenient features.

  10. Cavity parameters identification for TESLA control system development

    NASA Astrophysics Data System (ADS)

    Czarski, Tomasz; Pozniak, Krysztof T.; Romaniuk, Ryszard S.; Simrock, Stefan

    2005-08-01

    Aim of the control system development for TESLA cavity is a more efficient stabilization of the pulsed, accelerating EM field inside resonator. Cavity parameters identification is an essential task for the comprehensive control algorithm. TESLA cavity simulator has been successfully implemented using high-speed FPGA technology. Electromechanical model of the cavity resonator includes Lorentz force detuning and beam loading. The parameters identification is based on the electrical model of the cavity. The model is represented by state space equation for envelope of the cavity voltage driven by current generator and beam loading. For a given model structure, the over-determined matrix equation is created covering long enough measurement range with the solution according to the least-squares method. A low-degree polynomial approximation is applied to estimate the time-varying cavity detuning during the pulse. The measurement channel distortion is considered, leading to the external cavity model seen by the controller. The comprehensive algorithm of the cavity parameters identification was implemented in the Matlab system with different modes of operation. Some experimental results were presented for different cavity operational conditions. The following considerations have lead to the synthesis of the efficient algorithm for the cavity control system predicted for the potential FPGA technology implementation.

  11. Design of an FPGA-based electronic flow regulator (EFR) for spacecraft propulsion system

    NASA Astrophysics Data System (ADS)

    Manikandan, J.; Jayaraman, M.; Jayachandran, M.

    2011-02-01

    This paper describes a scheme for electronically regulating the flow of propellant to the thruster from a high-pressure storage tank used in spacecraft application. Precise flow delivery of propellant to thrusters ensures propulsion system operation at best efficiency by maximizing the propellant and power utilization for the mission. The proposed field programmable gate array (FPGA) based electronic flow regulator (EFR) is used to ensure precise flow of propellant to the thrusters from a high-pressure storage tank used in spacecraft application. This paper presents hardware and software design of electronic flow regulator and implementation of the regulation logic onto an FPGA.Motivation for proposed FPGA-based electronic flow regulation is on the disadvantages of conventional approach of using analog circuits. Digital flow regulation overcomes the analog equivalent as digital circuits are highly flexible, are not much affected due to noise, accurate performance is repeatable, interface is easier to computers, storing facilities are possible and finally failure rate of digital circuits is less. FPGA has certain advantages over ASIC and microprocessor/micro-controller that motivated us to opt for FPGA-based electronic flow regulator. Also the control algorithm being software, it is well modifiable without changing the hardware. This scheme is simple enough to adopt for a wide range of applications, where the flow is to be regulated for efficient operation.The proposed scheme is based on a space-qualified re-configurable field programmable gate arrays (FPGA) and hybrid micro circuit (HMC). A graphical user interface (GUI) based application software is also developed for debugging, monitoring and controlling the electronic flow regulator from PC COM port.

  12. XMOS XC-2 Development Board for Mechanical Control and Data Collection

    NASA Technical Reports Server (NTRS)

    Jarnot, Robert F.; Bowden, William J.

    2011-01-01

    The scanning microwave limb sounder (SMLS) will use technological improvements in low-noise mixers to provide precise data on the Earth s atmospheric composition with high spatial resolution. This project focuses on the design and implementation of a realtime control system needed for airborne engineering tests of the SMLS. The system must coordinate the actuation of optical components using four motors with encoder readback, while collecting synchronized telemetric data from a GPS receiver and 3-axis gyrometric system. A graphical user interface for testing the control system was also designed using Python. Although the system could have been implemented with an FPGA(fieldprogrammable gate array)-based setup, a processor development kit manufactured by XMOS was chosen. The XMOS architecture allows parallel execution of multiple tasks on separate threads, making it ideal for this application. It is easily programmed using XC (a subset of C). The necessary communication interfaces were implemented in software, including Ethernet, with significant cost and time reduction compared to an FPGA-based approach. A simple approach to control the chopper, calibration mirror, and gimbal for the airborne SMLS was needed. The XMOS board allows for multiple threads and real-time data acquisition. The XC-2 development kit is an attractive choice for synchronized, real-time, event-driven applications. The XMOS is based on the transputer microprocessor architecture developed for parallel computing, which is being revamped in this new platform. The XMOS device has multiple cores capable of running parallel applications on separate threads. The threads communicate with each other via user-defined channels capable of transmitting data within the device. XMOS provides a C-based development environment using XC, which eliminates the need for custom tool kits associated with FPGA programming. The XC-2 has four cores and necessary hardware for Ethernet I/O.

  13. The design of photoelectric signal processing system for a nuclear magnetic resonance gyroscope based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhang, Xian; Zhou, Binquan; Li, Hong; Zhao, Xinghua; Mu, Weiwei; Wu, Wenfeng

    2017-10-01

    Navigation technology is crucial to the national defense and military, which can realize the measurement of orientation, positioning, attitude and speed for moving object. Inertial navigation is not only autonomous, real-time, continuous, hidden, undisturbed but also no time-limited and environment-limited. The gyroscope is the core component of the inertial navigation system, whose precision and size are the bottleneck of the performance. However, nuclear magnetic resonance gyroscope is characteristic of the advantage of high precision and small size. Nuclear magnetic resonance gyroscope can meet the urgent needs of high-tech weapons and equipment development of new generation. This paper mainly designs a set of photoelectric signal processing system for nuclear magnetic resonance gyroscope based on FPGA, which process and control the information of detecting laser .The photoelectric signal with high frequency carrier is demodulated by in-phase and quadrature demodulation method. Finally, the processing system of photoelectric signal can compensate the residual magnetism of the shielding barrel and provide the information of nuclear magnetic resonance gyroscope angular velocity.

  14. Analog 65/130 nm CMOS 5 GHz Sub-Arrays with ROACH-2 FPGA Beamformers for Hybrid Aperture-Array Receivers

    DTIC Science & Technology

    2017-03-20

    sub-array, which is based on all-pass filters (APFs) is realized using 130 nm CMOS technology. Approximate- discrete Fourier transform (a-DFT...fixed beams are directed at known directions [9]. The proposed approximate- discrete Fourier transform (a-DFT) based multi-beamformer [9] yields L...to digital conversion daughter board. occurs in the discrete time domain (in ROACH-2 FPGA platform) following signal digitization (see Figs. 1(d) and

  15. Efficient Smart CMOS Camera Based on FPGAs Oriented to Embedded Image Processing

    PubMed Central

    Bravo, Ignacio; Baliñas, Javier; Gardel, Alfredo; Lázaro, José L.; Espinosa, Felipe; García, Jorge

    2011-01-01

    This article describes an image processing system based on an intelligent ad-hoc camera, whose two principle elements are a high speed 1.2 megapixel Complementary Metal Oxide Semiconductor (CMOS) sensor and a Field Programmable Gate Array (FPGA). The latter is used to control the various sensor parameter configurations and, where desired, to receive and process the images captured by the CMOS sensor. The flexibility and versatility offered by the new FPGA families makes it possible to incorporate microprocessors into these reconfigurable devices, and these are normally used for highly sequential tasks unsuitable for parallelization in hardware. For the present study, we used a Xilinx XC4VFX12 FPGA, which contains an internal Power PC (PPC) microprocessor. In turn, this contains a standalone system which manages the FPGA image processing hardware and endows the system with multiple software options for processing the images captured by the CMOS sensor. The system also incorporates an Ethernet channel for sending processed and unprocessed images from the FPGA to a remote node. Consequently, it is possible to visualize and configure system operation and captured and/or processed images remotely. PMID:22163739

  16. FPGA implementation of a ZigBee wireless network control interface to transmit biomedical signals

    NASA Astrophysics Data System (ADS)

    Gómez López, M. A.; Goy, C. B.; Bolognini, P. C.; Herrera, M. C.

    2011-12-01

    In recent years, cardiac hemodynamic monitors have incorporated new technologies based on wireless sensor networks which can implement different types of communication protocols. More precisely, a digital conductance catheter system recently developed adds a wireless ZigBee module (IEEE 802.15.4 standards) to transmit cardiac signals (ECG, intraventricular pressure and volume) which would allow the physicians to evaluate the patient's cardiac status in a noninvasively way. The aim of this paper is to describe a control interface, implemented in a FPGA device, to manage a ZigBee wireless network. ZigBee technology is used due to its excellent performance including simplicity, low-power consumption, short-range transmission and low cost. FPGA internal memory stores 8-bit signals with which the control interface prepares the information packets. These data were send to the ZigBee END DEVICE module that receives and transmits wirelessly to the external COORDINATOR module. Using an USB port, the COORDINATOR sends the signals to a personal computer for displaying. Each functional block of control interface was assessed by means of temporal diagrams. Three biological signals, organized in packets and converted to RS232 serial protocol, were sucessfully transmitted and displayed in a PC screen. For this purpose, a custom-made graphical software was designed using LabView.

  17. FPGA and USB based control board for quantum random number generator

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Wan, Xu; Zhang, Hong-Fei; Gao, Yuan; Chen, Teng-Yun; Liang, Hao

    2009-09-01

    The design and implementation of FPGA-and-USB-based control board for quantum experiments are discussed. The usage of quantum true random number generator, control- logic in FPGA and communication with computer through USB protocol are proposed in this paper. Programmable controlled signal input and output ports are implemented. The error-detections of data frame header and frame length are designed. This board has been used in our decoy-state based quantum key distribution (QKD) system successfully.

  18. A programmable controller based on CAN field bus embedded microprocessor and FPGA

    NASA Astrophysics Data System (ADS)

    Cai, Qizhong; Guo, Yifeng; Chen, Wenhei; Wang, Mingtao

    2008-10-01

    One kind of new programmable controller(PLC) is introduced in this paper. The advanced embedded microprocessor and Field-Programmable Gate Array (FPGA) device are applied in the PLC system. The PLC system structure was presented in this paper. It includes 32 bits Advanced RISC Machines (ARM) embedded microprocessor as control core, FPGA as control arithmetic coprocessor and CAN bus as data communication criteria protocol connected the host controller and its various extension modules. It is detailed given that the circuits and working principle, IiO interface circuit between ARM and FPGA and interface circuit between ARM and FPGA coprocessor. Furthermore the interface circuit diagrams between various modules are written. In addition, it is introduced that ladder chart program how to control the transfer info of control arithmetic part in FPGA coprocessor. The PLC, through nearly two months of operation to meet the design of the basic requirements.

  19. Automatic HDL firmware generation for FPGA-based reconfigurable measurement and control systems with mezzanines in FMC standard

    NASA Astrophysics Data System (ADS)

    Wojenski, Andrzej; Kasprowicz, Grzegorz; Pozniak, Krzysztof T.; Romaniuk, Ryszard

    2013-10-01

    The paper describes a concept of automatic firmware generation for reconfigurable measurement systems, which uses FPGA devices and measurement cards in FMC standard. Following sections are described in details: automatic HDL code generation for FPGA devices, automatic communication interfaces implementation, HDL drivers for measurement cards, automatic serial connection between multiple measurement backplane boards, automatic build of memory map (address space), automatic generated firmware management. Presented solutions are required in many advanced measurement systems, like Beam Position Monitors or GEM detectors. This work is a part of a wider project for automatic firmware generation and management of reconfigurable systems. Solutions presented in this paper are based on previous publication in SPIE.

  20. Experiences on developing digital down conversion algorithms using Xilinx system generator

    NASA Astrophysics Data System (ADS)

    Xu, Chengfa; Yuan, Yuan; Zhao, Lizhi

    2013-07-01

    The Digital Down Conversion (DDC) algorithm is a classical signal processing method which is widely used in radar and communication systems. In this paper, the DDC function is implemented by Xilinx System Generator tool on FPGA. System Generator is an FPGA design tool provided by Xilinx Inc and MathWorks Inc. It is very convenient for programmers to manipulate the design and debug the function, especially for the complex algorithm. Through the developing process of DDC function based on System Generator, the results show that System Generator is a very fast and efficient tool for FPGA design.

  1. Generating clock signals for a cycle accurate, cycle reproducible FPGA based hardware accelerator

    DOEpatents

    Asaad, Sameth W.; Kapur, Mohit

    2016-01-05

    A method, system and computer program product are disclosed for generating clock signals for a cycle accurate FPGA based hardware accelerator used to simulate operations of a device-under-test (DUT). In one embodiment, the DUT includes multiple device clocks generating multiple device clock signals at multiple frequencies and at a defined frequency ratio; and the FPG hardware accelerator includes multiple accelerator clocks generating multiple accelerator clock signals to operate the FPGA hardware accelerator to simulate the operations of the DUT. In one embodiment, operations of the DUT are mapped to the FPGA hardware accelerator, and the accelerator clock signals are generated at multiple frequencies and at the defined frequency ratio of the frequencies of the multiple device clocks, to maintain cycle accuracy between the DUT and the FPGA hardware accelerator. In an embodiment, the FPGA hardware accelerator may be used to control the frequencies of the multiple device clocks.

  2. FPGA architecture and implementation of sparse matrix vector multiplication for the finite element method

    NASA Astrophysics Data System (ADS)

    Elkurdi, Yousef; Fernández, David; Souleimanov, Evgueni; Giannacopoulos, Dennis; Gross, Warren J.

    2008-04-01

    The Finite Element Method (FEM) is a computationally intensive scientific and engineering analysis tool that has diverse applications ranging from structural engineering to electromagnetic simulation. The trends in floating-point performance are moving in favor of Field-Programmable Gate Arrays (FPGAs), hence increasing interest has grown in the scientific community to exploit this technology. We present an architecture and implementation of an FPGA-based sparse matrix-vector multiplier (SMVM) for use in the iterative solution of large, sparse systems of equations arising from FEM applications. FEM matrices display specific sparsity patterns that can be exploited to improve the efficiency of hardware designs. Our architecture exploits FEM matrix sparsity structure to achieve a balance between performance and hardware resource requirements by relying on external SDRAM for data storage while utilizing the FPGAs computational resources in a stream-through systolic approach. The architecture is based on a pipelined linear array of processing elements (PEs) coupled with a hardware-oriented matrix striping algorithm and a partitioning scheme which enables it to process arbitrarily big matrices without changing the number of PEs in the architecture. Therefore, this architecture is only limited by the amount of external RAM available to the FPGA. The implemented SMVM-pipeline prototype contains 8 PEs and is clocked at 110 MHz obtaining a peak performance of 1.76 GFLOPS. For 8 GB/s of memory bandwidth typical of recent FPGA systems, this architecture can achieve 1.5 GFLOPS sustained performance. Using multiple instances of the pipeline, linear scaling of the peak and sustained performance can be achieved. Our stream-through architecture provides the added advantage of enabling an iterative implementation of the SMVM computation required by iterative solution techniques such as the conjugate gradient method, avoiding initialization time due to data loading and setup inside the FPGA internal memory.

  3. FPGA-Based Front-End Electronics for Positron Emission Tomography

    PubMed Central

    Haselman, Michael; DeWitt, Don; McDougald, Wendy; Lewellen, Thomas K.; Miyaoka, Robert; Hauck, Scott

    2010-01-01

    Modern Field Programmable Gate Arrays (FPGAs) are capable of performing complex discrete signal processing algorithms with clock rates above 100MHz. This combined with FPGA’s low expense, ease of use, and selected dedicated hardware make them an ideal technology for a data acquisition system for positron emission tomography (PET) scanners. Our laboratory is producing a high-resolution, small-animal PET scanner that utilizes FPGAs as the core of the front-end electronics. For this next generation scanner, functions that are typically performed in dedicated circuits, or offline, are being migrated to the FPGA. This will not only simplify the electronics, but the features of modern FPGAs can be utilizes to add significant signal processing power to produce higher resolution images. In this paper two such processes, sub-clock rate pulse timing and event localization, will be discussed in detail. We show that timing performed in the FPGA can achieve a resolution that is suitable for small-animal scanners, and will outperform the analog version given a low enough sampling period for the ADC. We will also show that the position of events in the scanner can be determined in real time using a statistical positioning based algorithm. PMID:21961085

  4. Radiation effects and mitigation strategies for modern FPGAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stettler, M. W.; Caffrey, M. P.; Graham, P. S.

    2004-01-01

    Field Programmable Gate Array devices have become the technology of choice in small volume modern instrumentation and control systems. These devices have always offered significant advantages in flexibility, and recent advances in fabrication have greatly increased logic capacity, substantially increasing the number of applications for this technology. Unfortunately, the increased density (and corresponding shrinkage of process geometry), has made these devices more susceptible to failure due to external radiation. This has been an issue for space based systems for some time, but is now becoming an issue for terrestrial systems in elevated radiation environments and commercial avionics as well. Characterizingmore » the failure modes of Xilinx FPGAs, and developing mitigation strategies is the subject of ongoing research by a consortium of academic, industrial, and governmental laboratories. This paper presents background information of radiation effects and failure modes, as well as current and future mitigation techniques. In particular, the availability of very large FPGA devices, complete with generous amounts of RAM and embedded processor(s), has led to the implementation of complete digital systems on a single device, bringing issues of system reliability and redundancy management to the chip level. Radiation effects on a single FPGA are increasingly likely to have system level consequences, and will need to be addressed in current and future designs.« less

  5. Evaluation of the OpenCL AES Kernel using the Intel FPGA SDK for OpenCL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Zheming; Yoshii, Kazutomo; Finkel, Hal

    The OpenCL standard is an open programming model for accelerating algorithms on heterogeneous computing system. OpenCL extends the C-based programming language for developing portable codes on different platforms such as CPU, Graphics processing units (GPUs), Digital Signal Processors (DSPs) and Field Programmable Gate Arrays (FPGAs). The Intel FPGA SDK for OpenCL is a suite of tools that allows developers to abstract away the complex FPGA-based development flow for a high-level software development flow. Users can focus on the design of hardware-accelerated kernel functions in OpenCL and then direct the tools to generate the low-level FPGA implementations. The approach makes themore » FPGA-based development more accessible to software users as the needs for hybrid computing using CPUs and FPGAs are increasing. It can also significantly reduce the hardware development time as users can evaluate different ideas with high-level language without deep FPGA domain knowledge. In this report, we evaluate the performance of the kernel using the Intel FPGA SDK for OpenCL and Nallatech 385A FPGA board. Compared to the M506 module, the board provides more hardware resources for a larger design exploration space. The kernel performance is measured with the compute kernel throughput, an upper bound to the FPGA throughput. The report presents the experimental results in details. The Appendix lists the kernel source code.« less

  6. PCI bus content-addressable-memory (CAM) implementation on FPGA for pattern recognition/image retrieval in a distributed environment

    NASA Astrophysics Data System (ADS)

    Megherbi, Dalila B.; Yan, Yin; Tanmay, Parikh; Khoury, Jed; Woods, C. L.

    2004-11-01

    Recently surveillance and Automatic Target Recognition (ATR) applications are increasing as the cost of computing power needed to process the massive amount of information continues to fall. This computing power has been made possible partly by the latest advances in FPGAs and SOPCs. In particular, to design and implement state-of-the-Art electro-optical imaging systems to provide advanced surveillance capabilities, there is a need to integrate several technologies (e.g. telescope, precise optics, cameras, image/compute vision algorithms, which can be geographically distributed or sharing distributed resources) into a programmable system and DSP systems. Additionally, pattern recognition techniques and fast information retrieval, are often important components of intelligent systems. The aim of this work is using embedded FPGA as a fast, configurable and synthesizable search engine in fast image pattern recognition/retrieval in a distributed hardware/software co-design environment. In particular, we propose and show a low cost Content Addressable Memory (CAM)-based distributed embedded FPGA hardware architecture solution with real time recognition capabilities and computing for pattern look-up, pattern recognition, and image retrieval. We show how the distributed CAM-based architecture offers a performance advantage of an order-of-magnitude over RAM-based architecture (Random Access Memory) search for implementing high speed pattern recognition for image retrieval. The methods of designing, implementing, and analyzing the proposed CAM based embedded architecture are described here. Other SOPC solutions/design issues are covered. Finally, experimental results, hardware verification, and performance evaluations using both the Xilinx Virtex-II and the Altera Apex20k are provided to show the potential and power of the proposed method for low cost reconfigurable fast image pattern recognition/retrieval at the hardware/software co-design level.

  7. Fast data transmission in dynamic data acquisition system for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Byszuk, Adrian; Poźniak, Krzysztof; Zabołotny, Wojciech M.; Kasprowicz, Grzegorz; Wojeński, Andrzej; Cieszewski, Radosław; Juszczyk, Bartłomiej; Kolasiński, Piotr; Zienkiewicz, Paweł; Chernyshova, Maryna; Czarski, Tomasz

    2014-11-01

    This paper describes architecture of a new data acquisition system (DAQ) targeted mainly at plasma diagnostic experiments. Modular architecture, in combination with selected hardware components, allows for straightforward reconfiguration of the whole system, both offline and online. Main emphasis will be put into the implementation of data transmission subsystem in said system. One of the biggest advantages of described system is modular architecture with well defined boundaries between main components: analog frontend (AFE), digital backplane and acquisition/control software. Usage of a FPGA chips allows for a high flexibility in design of analog frontends, including ADC <--> FPGA interface. Data transmission between backplane boards and user software was accomplished with the use of industry-standard PCI Express (PCIe) technology. PCIe implementation includes both FPGA firmware and Linux device driver. High flexibility of PCIe connections was accomplished due to use of configurable PCIe switch. Whenever it's possible, described DAQ system tries to make use of standard off-the-shelf (OTF) components, including typical x86 CPU & motherboard (acting as PCIe controller) and cabling.

  8. Rapid and highly integrated FPGA-based Shack-Hartmann wavefront sensor for adaptive optics system

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Pin; Chang, Chia-Yuan; Chen, Shean-Jen

    2018-02-01

    In this study, a field programmable gate array (FPGA)-based Shack-Hartmann wavefront sensor (SHWS) programmed on LabVIEW can be highly integrated into customized applications such as adaptive optics system (AOS) for performing real-time wavefront measurement. Further, a Camera Link frame grabber embedded with FPGA is adopted to enhance the sensor speed reacting to variation considering its advantage of the highest data transmission bandwidth. Instead of waiting for a frame image to be captured by the FPGA, the Shack-Hartmann algorithm are implemented in parallel processing blocks design and let the image data transmission synchronize with the wavefront reconstruction. On the other hand, we design a mechanism to control the deformable mirror in the same FPGA and verify the Shack-Hartmann sensor speed by controlling the frequency of the deformable mirror dynamic surface deformation. Currently, this FPGAbead SHWS design can achieve a 266 Hz cyclic speed limited by the camera frame rate as well as leaves 40% logic slices for additionally flexible design.

  9. Remote hardware-reconfigurable robotic camera

    NASA Astrophysics Data System (ADS)

    Arias-Estrada, Miguel; Torres-Huitzil, Cesar; Maya-Rueda, Selene E.

    2001-10-01

    In this work, a camera with integrated image processing capabilities is discussed. The camera is based on an imager coupled to an FPGA device (Field Programmable Gate Array) which contains an architecture for real-time computer vision low-level processing. The architecture can be reprogrammed remotely for application specific purposes. The system is intended for rapid modification and adaptation for inspection and recognition applications, with the flexibility of hardware and software reprogrammability. FPGA reconfiguration allows the same ease of upgrade in hardware as a software upgrade process. The camera is composed of a digital imager coupled to an FPGA device, two memory banks, and a microcontroller. The microcontroller is used for communication tasks and FPGA programming. The system implements a software architecture to handle multiple FPGA architectures in the device, and the possibility to download a software/hardware object from the host computer into its internal context memory. System advantages are: small size, low power consumption, and a library of hardware/software functionalities that can be exchanged during run time. The system has been validated with an edge detection and a motion processing architecture, which will be presented in the paper. Applications targeted are in robotics, mobile robotics, and vision based quality control.

  10. DDGIPS: a general image processing system in robot vision

    NASA Astrophysics Data System (ADS)

    Tian, Yuan; Ying, Jun; Ye, Xiuqing; Gu, Weikang

    2000-10-01

    Real-Time Image Processing is the key work in robot vision. With the limitation of the hardware technique, many algorithm-oriented firmware systems were designed in the past. But their architectures were not flexible enough to achieve a multi-algorithm development system. Because of the rapid development of microelectronics technique, many high performance DSP chips and high density FPGA chips have come to life, and this makes it possible to construct a more flexible architecture in real-time image processing system. In this paper, a Double DSP General Image Processing System (DDGIPS) is concerned. We try to construct a two-DSP-based FPGA-computational system with two TMS320C6201s. The TMS320C6x devices are fixed-point processors based on the advanced VLIW CPU, which has eight functional units, including two multipliers and six arithmetic logic units. These features make C6x a good candidate for a general purpose system. In our system, the two TMS320C6201s each has a local memory space, and they also have a shared system memory space which enables them to intercommunicate and exchange data efficiently. At the same time, they can be directly inter-connected in star-shaped architecture. All of these are under the control of a FPGA group. As the core of the system, FPGA plays a very important role: it takes charge of DPS control, DSP communication, memory space access arbitration and the communication between the system and the host machine. And taking advantage of reconfiguring FPGA, all of the interconnection between the two DSP or between DSP and FPGA can be changed. In this way, users can easily rebuild the real-time image processing system according to the data stream and the task of the application and gain great flexibility.

  11. DDGIPS: a general image processing system in robot vision

    NASA Astrophysics Data System (ADS)

    Tian, Yuan; Ying, Jun; Ye, Xiuqing; Gu, Weikang

    2000-10-01

    Real-Time Image Processing is the key work in robot vision. With the limitation of the hardware technique, many algorithm-oriented firmware systems were designed in the past. But their architectures were not flexible enough to achieve a multi- algorithm development system. Because of the rapid development of microelectronics technique, many high performance DSP chips and high density FPGA chips have come to life, and this makes it possible to construct a more flexible architecture in real-time image processing system. In this paper, a Double DSP General Image Processing System (DDGIPS) is concerned. We try to construct a two-DSP-based FPGA-computational system with two TMS320C6201s. The TMS320C6x devices are fixed-point processors based on the advanced VLIW CPU, which has eight functional units, including two multipliers and six arithmetic logic units. These features make C6x a good candidate for a general purpose system. In our system, the two TMS320C6210s each has a local memory space, and they also have a shared system memory space which enable them to intercommunicate and exchange data efficiently. At the same time, they can be directly interconnected in star- shaped architecture. All of these are under the control of FPGA group. As the core of the system, FPGA plays a very important role: it takes charge of DPS control, DSP communication, memory space access arbitration and the communication between the system and the host machine. And taking advantage of reconfiguring FPGA, all of the interconnection between the two DSP or between DSP and FPGA can be changed. In this way, users can easily rebuild the real-time image processing system according to the data stream and the task of the application and gain great flexibility.

  12. Method to implement the CCD timing generator based on FPGA

    NASA Astrophysics Data System (ADS)

    Li, Binhua; Song, Qian; He, Chun; Jin, Jianhui; He, Lin

    2010-07-01

    With the advance of the PFPA technology, the design methodology of digital systems is changing. In recent years we develop a method to implement the CCD timing generator based on FPGA and VHDL. This paper presents the principles and implementation skills of the method. Taking a developed camera as an example, we introduce the structure, input and output clocks/signals of a timing generator implemented in the camera. The generator is composed of a top module and a bottom module. The bottom one is made up of 4 sub-modules which correspond to 4 different operation modes. The modules are implemented by 5 VHDL programs. Frame charts of the architecture of these programs are shown in the paper. We also describe implementation steps of the timing generator in Quartus II, and the interconnections between the generator and a Nios soft core processor which is the controller of this generator. Some test results are presented in the end.

  13. Energy efficiency analysis and implementation of AES on an FPGA

    NASA Astrophysics Data System (ADS)

    Kenney, David

    The Advanced Encryption Standard (AES) was developed by Joan Daemen and Vincent Rjimen and endorsed by the National Institute of Standards and Technology in 2001. It was designed to replace the aging Data Encryption Standard (DES) and be useful for a wide range of applications with varying throughput, area, power dissipation and energy consumption requirements. Field Programmable Gate Arrays (FPGAs) are flexible and reconfigurable integrated circuits that are useful for many different applications including the implementation of AES. Though they are highly flexible, FPGAs are often less efficient than Application Specific Integrated Circuits (ASICs); they tend to operate slower, take up more space and dissipate more power. There have been many FPGA AES implementations that focus on obtaining high throughput or low area usage, but very little research done in the area of low power or energy efficient FPGA based AES; in fact, it is rare for estimates on power dissipation to be made at all. This thesis presents a methodology to evaluate the energy efficiency of FPGA based AES designs and proposes a novel FPGA AES implementation which is highly flexible and energy efficient. The proposed methodology is implemented as part of a novel scripting tool, the AES Energy Analyzer, which is able to fully characterize the power dissipation and energy efficiency of FPGA based AES designs. Additionally, this thesis introduces a new FPGA power reduction technique called Opportunistic Combinational Operand Gating (OCOG) which is used in the proposed energy efficient implementation. The AES Energy Analyzer was able to estimate the power dissipation and energy efficiency of the proposed AES design during its most commonly performed operations. It was found that the proposed implementation consumes less energy per operation than any previous FPGA based AES implementations that included power estimations. Finally, the use of Opportunistic Combinational Operand Gating on an AES cipher was found to reduce its dynamic power consumption by up to 17% when compared to an identical design that did not employ the technique.

  14. Soft-core processor study for node-based architectures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Houten, Jonathan Roger; Jarosz, Jason P.; Welch, Benjamin James

    2008-09-01

    Node-based architecture (NBA) designs for future satellite projects hold the promise of decreasing system development time and costs, size, weight, and power and positioning the laboratory to address other emerging mission opportunities quickly. Reconfigurable Field Programmable Gate Array (FPGA) based modules will comprise the core of several of the NBA nodes. Microprocessing capabilities will be necessary with varying degrees of mission-specific performance requirements on these nodes. To enable the flexibility of these reconfigurable nodes, it is advantageous to incorporate the microprocessor into the FPGA itself, either as a hardcore processor built into the FPGA or as a soft-core processor builtmore » out of FPGA elements. This document describes the evaluation of three reconfigurable FPGA based processors for use in future NBA systems--two soft cores (MicroBlaze and non-fault-tolerant LEON) and one hard core (PowerPC 405). Two standard performance benchmark applications were developed for each processor. The first, Dhrystone, is a fixed-point operation metric. The second, Whetstone, is a floating-point operation metric. Several trials were run at varying code locations, loop counts, processor speeds, and cache configurations. FPGA resource utilization was recorded for each configuration. Cache configurations impacted the results greatly; for optimal processor efficiency it is necessary to enable caches on the processors. Processor caches carry a penalty; cache error mitigation is necessary when operating in a radiation environment.« less

  15. Rapidly Deployed Modular Telemetry System

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta A. (Inventor); Sims, William Herbert, III (Inventor)

    2013-01-01

    The present invention is a telemetry system, and more specifically is a rapidly deployed modular telemetry apparatus which utilizes of SDR technology and the FPGA programming capability to reduce the number of hardware components and programming required to deploy a telemetry system.

  16. VLBI Technology Development at SHAO

    NASA Technical Reports Server (NTRS)

    Zhang, Xiuzhong; Shu, Fengchun; Xiang, Ying; Zhu, Renjie; Xu, Zhijun; Chen, Zhong; Zheng, Weimin; Luo, Jintao; Wu, Yajun

    2010-01-01

    VLBI technology development made significant progress at SHAO in the last few years. The development status of the Chinese DBBC, the software and FPGA-based correlators, and the new VLBI antenna, as well as VLBI applications are summarized in this paper.

  17. Locomotive track detection for underground

    NASA Astrophysics Data System (ADS)

    Ma, Zhonglei; Lang, Wenhui; Li, Xiaoming; Wei, Xing

    2017-08-01

    In order to improve the PC-based track detection system, this paper proposes a method to detect linear track for underground locomotive based on DSP + FPGA. Firstly, the analog signal outputted from the camera is sampled by A / D chip. Then the collected digital signal is preprocessed by FPGA. Secondly, the output signal of FPGA is transmitted to DSP via EMIF port. Subsequently, the adaptive threshold edge detection, polar angle and radius constrain based Hough transform are implemented by DSP. Lastly, the detected track information is transmitted to host computer through Ethernet interface. The experimental results show that the system can not only meet the requirements of real-time detection, but also has good robustness.

  18. Design of CMOS imaging system based on FPGA

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Chen, Xiaolai

    2017-10-01

    In order to meet the needs of engineering applications for high dynamic range CMOS camera under the rolling shutter mode, a complete imaging system is designed based on the CMOS imaging sensor NSC1105. The paper decides CMOS+ADC+FPGA+Camera Link as processing architecture and introduces the design and implementation of the hardware system. As for camera software system, which consists of CMOS timing drive module, image acquisition module and transmission control module, the paper designs in Verilog language and drives it to work properly based on Xilinx FPGA. The ISE 14.6 emulator ISim is used in the simulation of signals. The imaging experimental results show that the system exhibits a 1280*1024 pixel resolution, has a frame frequency of 25 fps and a dynamic range more than 120dB. The imaging quality of the system satisfies the requirement of the index.

  19. Development of new data acquisition system for COMPASS experiment

    NASA Astrophysics Data System (ADS)

    Bodlak, M.; Frolov, V.; Jary, V.; Huber, S.; Konorov, I.; Levit, D.; Novy, J.; Salac, R.; Virius, M.

    2016-04-01

    This paper presents development and recent status of the new data acquisiton system of the COMPASS experiment at CERN with up to 50 kHz trigger rate and 36 kB average event size during 10 second period with beam followed by approximately 40 second period without beam. In the original DAQ, the event building is performed by software deployed on switched computer network, moreover the data readout is based on deprecated PCI technology; the new system replaces the event building network with a custom FPGA-based hardware. The custom cards are introduced and advantages of the FPGA technology for DAQ related tasks are discussed. In this paper, we focus on the software part that is mainly responsible for control and monitoring. The most of the system can run as slow control; only readout process has realtime requirements. The design of the software is built on state machines that are implemented using the Qt framework; communication between remote nodes that form the software architecture is based on the DIM library and IPBus technology. Furthermore, PHP and JS languages are used to maintain system configuration; the MySQL database was selected as storage for both configuration of the system and system messages. The system has been design with maximum throughput of 1500 MB/s and large buffering ability used to spread load on readout computers over longer period of time. Great emphasis is put on data latency, data consistency, and even timing checks which are done at each stage of event assembly. System collects results of these checks which together with special data format allows the software to localize origin of problems in data transmission process. A prototype version of the system has already been developed and tested the new system fulfills all given requirements. It is expected that the full-scale version of the system will be finalized in June 2014 and deployed on September provided that tests with cosmic run succeed.

  20. A novel biomimetic sonarhead using beamforming technology to mimic bat echolocation.

    PubMed

    Steckel, Jan; Peremans, Herbert

    2012-07-01

    A novel biomimetic sonarhead has been developed to allow researchers of bat echolocation behavior and biomimetic sonar to perform experiments with a system similar to the bat¿s sensory system. The bat's echolocation-related transfer function (ERTF) is implemented using an array of receivers to implement the head-related transfer function (HRTF), and an array of emitters mounted on a cylindrical manifold to implement the emission pattern of the bat. The complete system is controlled by a field-programmable gate array (FPGA) based embedded system connected through a USB interface.

  1. A Timing Synchronizer System for Beam Test Setups Requiring Galvanic Isolation

    NASA Astrophysics Data System (ADS)

    Meder, Lukas Dominik; Emschermann, David; Frühauf, Jochen; Müller, Walter F. J.; Becker, Jürgen

    2017-07-01

    In beam test setups detector elements together with a readout composed of frontend electronics (FEE) and usually a layer of field-programmable gate arrays (FPGAs) are being analyzed. The FEE is in this scenario often directly connected to both the detector and the FPGA layer what in many cases requires sharing the ground potentials of these layers. This setup can become problematic if parts of the detector need to be operated at different high-voltage potentials, since all of the FPGA boards need to receive a common clock and timing reference for getting the readout synchronized. Thus, for the context of the compressed baryonic matter experiment a versatile timing synchronizer (TS) system was designed providing galvanically isolated timing distribution links over twisted-pair cables. As an electrical interface the so-called timing data processing board FPGA mezzanine card was created for being mounted onto FPGA-based advanced mezzanine cards for mTCA.4 crates. The FPGA logic of the TS system connects to this card and can be monitored and controlled through IPBus slow-control links. Evaluations show that the system is capable of stably synchronizing the FPGA boards of a beam test setup being integrated into a hierarchical TS network.

  2. SAD-Based Stereo Vision Machine on a System-on-Programmable-Chip (SoPC)

    PubMed Central

    Zhang, Xiang; Chen, Zhangwei

    2013-01-01

    This paper, proposes a novel solution for a stereo vision machine based on the System-on-Programmable-Chip (SoPC) architecture. The SOPC technology provides great convenience for accessing many hardware devices such as DDRII, SSRAM, Flash, etc., by IP reuse. The system hardware is implemented in a single FPGA chip involving a 32-bit Nios II microprocessor, which is a configurable soft IP core in charge of managing the image buffer and users' configuration data. The Sum of Absolute Differences (SAD) algorithm is used for dense disparity map computation. The circuits of the algorithmic module are modeled by the Matlab-based DSP Builder. With a set of configuration interfaces, the machine can process many different sizes of stereo pair images. The maximum image size is up to 512 K pixels. This machine is designed to focus on real time stereo vision applications. The stereo vision machine offers good performance and high efficiency in real time. Considering a hardware FPGA clock of 90 MHz, 23 frames of 640 × 480 disparity maps can be obtained in one second with 5 × 5 matching window and maximum 64 disparity pixels. PMID:23459385

  3. FPGA in-the-loop simulations of cardiac excitation model under voltage clamp conditions

    NASA Astrophysics Data System (ADS)

    Othman, Norliza; Adon, Nur Atiqah; Mahmud, Farhanahani

    2017-01-01

    Voltage clamp technique allows the detection of single channel currents in biological membranes in identifying variety of electrophysiological problems in the cellular level. In this paper, a simulation study of the voltage clamp technique has been presented to analyse current-voltage (I-V) characteristics of ion currents based on Luo-Rudy Phase-I (LR-I) cardiac model by using a Field Programmable Gate Array (FPGA). Nowadays, cardiac models are becoming increasingly complex which can cause a vast amount of time to run the simulation. Thus, a real-time hardware implementation using FPGA could be one of the best solutions for high-performance real-time systems as it provides high configurability and performance, and able to executes in parallel mode operation. For shorter time development while retaining high confidence results, FPGA-based rapid prototyping through HDL Coder from MATLAB software has been used to construct the algorithm for the simulation system. Basically, the HDL Coder is capable to convert the designed MATLAB Simulink blocks into hardware description language (HDL) for the FPGA implementation. As a result, the voltage-clamp fixed-point design of LR-I model has been successfully conducted in MATLAB Simulink and the simulation of the I-V characteristics of the ionic currents has been verified on Xilinx FPGA Virtex-6 XC6VLX240T development board through an FPGA-in-the-loop (FIL) simulation.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbas, Syed Haider; Lee, Jung-Ryul; Jang, Jae-Kyeong

    Pyroshock can cause failure to the objective of an aerospace structure by damaging its sensitive electronic equipment, which is responsible for performing decisive operations. A pyroshock is the high intensity shock wave that is generated when a pyrotechnic device is explosively triggered to separate, release, or activate structural subsystems of an aerospace architecture. Pyroshock measurement plays an important role in experimental simulations to understand the characteristics of pyroshock on the host structure. This paper presents a technology to measure a pyroshock wave at multiple points using laser Doppler vibrometers (LDVs). These LDVs detect the pyroshock wave generated due to anmore » explosive-based pyrotechnical event. Field programmable gate array (FPGA) based data acquisition is used in the study to acquire pyroshock signals simultaneously from multiple channels. This paper describes the complete system design for multipoint pyroshock measurement. The firmware architecture for the implementation of multichannel data acquisition on an FPGA-based development board is also discussed. An experiment using explosive bolts was configured to test the reliability of the system. Pyroshock was generated using explosive excitation on a 22-mm-thick steel plate. Three LDVs were deployed to capture the pyroshock wave at different points. The pyroshocks captured were displayed as acceleration plots. The results showed that our system effectively captured the pyroshock wave with a peak-to-peak magnitude of 303 741 g. The contribution of this paper is a specialized architecture of firmware design programmed in FPGA for data acquisition of large amount of multichannel pyroshock data. The advantages of the developed system are the near-field, multipoint, non-contact, and remote measurement of a pyroshock wave, which is dangerous and expensive to produce in aerospace pyrotechnic tests.« less

  5. 20-GFLOPS QR processor on a Xilinx Virtex-E FPGA

    NASA Astrophysics Data System (ADS)

    Walke, Richard L.; Smith, Robert W. M.; Lightbody, Gaye

    2000-11-01

    Adaptive beamforming can play an important role in sensor array systems in countering directional interference. In high-sample rate systems, such as radar and comms, the calculation of adaptive weights is a very computational task that requires highly parallel solutions. For systems where low power consumption and volume are important the only viable implementation is as an Application Specific Integrated Circuit (ASIC). However, the rapid advancement of Field Programmable Gate Array (FPGA) technology is enabling highly credible re-programmable solutions. In this paper we present the implementation of a scalable linear array processor for weight calculation using QR decomposition. We employ floating-point arithmetic with mantissa size optimized to the target application to minimize component size, and implement them as relationally placed macros (RPMs) on Xilinx Virtex FPGAs to achieve predictable dense layout and high-speed operation. We present results that show that 20GFLOPS of sustained computation on a single XCV3200E-8 Virtex-E FPGA is possible. We also describe the parameterized implementation of the floating-point operators and QR-processor, and the design methodology that enables us to rapidly generate complex FPGA implementations using the industry standard hardware description language VHDL.

  6. Incorporating Probability Models of Complex Test Structures to Perform Technology Independent FPGA Single Event Upset Analysis

    NASA Technical Reports Server (NTRS)

    Berg, M. D.; Kim, H. S.; Friendlich, M. A.; Perez, C. E.; Seidlick, C. M.; LaBel, K. A.

    2011-01-01

    We present SEU test and analysis of the Microsemi ProASIC3 FPGA. SEU Probability models are incorporated for device evaluation. Included is a comparison to the RTAXS FPGA illustrating the effectiveness of the overall testing methodology.

  7. FPGA-based Upgrade to RITS-6 Control System, Designed with EMP Considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harold D. Anderson, John T. Williams

    2009-07-01

    The existing control system for the RITS-6, a 20-MA 3-MV pulsed-power accelerator located at Sandia National Laboratories, was built as a system of analog switches because the operators needed to be close enough to the machine to hear pulsed-power breakdowns, yet the electromagnetic pulse (EMP) emitted would disable any processor-based solutions. The resulting system requires operators to activate and deactivate a series of 110-V relays manually in a complex order. The machine is sensitive to both the order of operation and the time taken between steps. A mistake in either case would cause a misfire and possible machine damage. Basedmore » on these constraints, a field-programmable gate array (FPGA) was chosen as the core of a proposed upgrade to the control system. An FPGA is a series of logic elements connected during programming. Based on their connections, the elements can mimic primitive logic elements, a process called synthesis. The circuit is static; all paths exist simultaneously and do not depend on a processor. This should make it less sensitive to EMP. By shielding it and using good electromagnetic interference-reduction practices, it should continue to operate well in the electrically noisy environment. The FPGA has two advantages over the existing system. In manual operation mode, the synthesized logic gates keep the operators in sequence. In addition, a clock signal and synthesized countdown circuit provides an automated sequence, with adjustable delays, for quickly executing the time-critical portions of charging and firing. The FPGA is modeled as a set of states, each state being a unique set of values for the output signals. The state is determined by the input signals, and in the automated segment by the value of the synthesized countdown timer, with the default mode placing the system in a safe configuration. Unlike a processor-based system, any system stimulus that results in an abort situation immediately executes a shutdown, with only a tens-of-nanoseconds delay to propagate across the FPGA. This paper discusses the design, installation, and testing of the proposed system upgrade, including failure statistics and modifications to the original design.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andre, J.M.; et al.

    The data acquisition system (DAQ) of the CMS experiment at the CERN Large Hadron Collider assembles events at a rate of 100 kHz, transporting event data at an aggregate throughput of to the high-level trigger farm. The DAQ architecture is based on state-of-the-art network technologies for the event building. For the data concentration, 10/40 Gbit/s Ethernet technologies are used together with a reduced TCP/IP protocol implemented in FPGA for a reliable transport between custom electronics and commercial computing hardware. A 56 Gbit/s Infiniband FDR Clos network has been chosen for the event builder. This paper presents the implementation and performancemore » of the event-building system.« less

  9. Parallel algorithm for computation of second-order sequential best rotations

    NASA Astrophysics Data System (ADS)

    Redif, Soydan; Kasap, Server

    2013-12-01

    Algorithms for computing an approximate polynomial matrix eigenvalue decomposition of para-Hermitian systems have emerged as a powerful, generic signal processing tool. A technique that has shown much success in this regard is the sequential best rotation (SBR2) algorithm. Proposed is a scheme for parallelising SBR2 with a view to exploiting the modern architectural features and inherent parallelism of field-programmable gate array (FPGA) technology. Experiments show that the proposed scheme can achieve low execution times while requiring minimal FPGA resources.

  10. A low power flash-FPGA based brain implant micro-system of PID control.

    PubMed

    Lijuan Xia; Fattah, Nabeel; Soltan, Ahmed; Jackson, Andrew; Chester, Graeme; Degenaar, Patrick

    2017-07-01

    In this paper, we demonstrate that a low power flash FPGA based micro-system can provide a low power programmable interface for closed-loop brain implant inter- faces. The proposed micro-system receives recording local field potential (LFP) signals from an implanted probe, performs closed-loop control using a first order control system, then converts the signal into an optogenetic control stimulus pattern. Stimulus can be implemented through optoelectronic probes. The long term target is for both fundamental neuroscience applications and for clinical use in treating epilepsy. Utilizing our device, closed-loop processing consumes only 14nJ of power per PID cycle compared to 1.52μJ per cycle for a micro-controller implementation. Compared to an application specific digital integrated circuit, flash FPGA's are inherently programmable.

  11. Mutation Testing for Effective Verification of Digital Components of Physical Systems

    NASA Astrophysics Data System (ADS)

    Kushik, N. G.; Evtushenko, N. V.; Torgaev, S. N.

    2015-12-01

    Digital components of modern physical systems are often designed applying circuitry solutions based on the field programmable gate array technology (FPGA). Such (embedded) digital components should be carefully tested. In this paper, an approach for the verification of digital physical system components based on mutation testing is proposed. The reference description of the behavior of a digital component in the hardware description language (HDL) is mutated by introducing into it the most probable errors and, unlike mutants in high-level programming languages, the corresponding test case is effectively derived based on a comparison of special scalable representations of the specification and the constructed mutant using various logic synthesis and verification systems.

  12. An FPGA-based heterogeneous image fusion system design method

    NASA Astrophysics Data System (ADS)

    Song, Le; Lin, Yu-chi; Chen, Yan-hua; Zhao, Mei-rong

    2011-08-01

    Taking the advantages of FPGA's low cost and compact structure, an FPGA-based heterogeneous image fusion platform is established in this study. Altera's Cyclone IV series FPGA is adopted as the core processor of the platform, and the visible light CCD camera and infrared thermal imager are used as the image-capturing device in order to obtain dualchannel heterogeneous video images. Tailor-made image fusion algorithms such as gray-scale weighted averaging, maximum selection and minimum selection methods are analyzed and compared. VHDL language and the synchronous design method are utilized to perform a reliable RTL-level description. Altera's Quartus II 9.0 software is applied to simulate and implement the algorithm modules. The contrast experiments of various fusion algorithms show that, preferably image quality of the heterogeneous image fusion can be obtained on top of the proposed system. The applied range of the different fusion algorithms is also discussed.

  13. Intelligent FPGA Data Acquisition Framework

    NASA Astrophysics Data System (ADS)

    Bai, Yunpeng; Gaisbauer, Dominic; Huber, Stefan; Konorov, Igor; Levit, Dmytro; Steffen, Dominik; Paul, Stephan

    2017-06-01

    In this paper, we present the field programmable gate arrays (FPGA)-based framework intelligent FPGA data acquisition (IFDAQ), which is used for the development of DAQ systems for detectors in high-energy physics. The framework supports Xilinx FPGA and provides a collection of IP cores written in very high speed integrated circuit hardware description language, which use the common interconnect interface. The IP core library offers functionality required for the development of the full DAQ chain. The library consists of Serializer/Deserializer (SERDES)-based time-to-digital conversion channels, an interface to a multichannel 80-MS/s 10-b analog-digital conversion, data transmission, and synchronization protocol between FPGAs, event builder, and slow control. The functionality is distributed among FPGA modules built in the AMC form factor: front end and data concentrator. This modular design also helps to scale and adapt the DAQ system to the needs of the particular experiment. The first application of the IFDAQ framework is the upgrade of the read-out electronics for the drift chambers and the electromagnetic calorimeters (ECALs) of the COMPASS experiment at CERN. The framework will be presented and discussed in the context of this paper.

  14. Novel intelligent real-time position tracking system using FPGA and fuzzy logic.

    PubMed

    Soares dos Santos, Marco P; Ferreira, J A F

    2014-03-01

    The main aim of this paper is to test if FPGAs are able to achieve better position tracking performance than software-based soft real-time platforms. For comparison purposes, the same controller design was implemented in these architectures. A Multi-state Fuzzy Logic controller (FLC) was implemented both in a Xilinx(®) Virtex-II FPGA (XC2v1000) and in a soft real-time platform NI CompactRIO(®)-9002. The same sampling time was used. The comparative tests were conducted using a servo-pneumatic actuation system. Steady-state errors lower than 4 μm were reached for an arbitrary vertical positioning of a 6.2 kg mass when the controller was embedded into the FPGA platform. Performance gains up to 16 times in the steady-state error, up to 27 times in the overshoot and up to 19.5 times in the settling time were achieved by using the FPGA-based controller over the software-based FLC controller. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Application of space technologies for the purpose of education at the Belarusian state university

    NASA Astrophysics Data System (ADS)

    Liashkevich, Siarhey

    Application of space technologies for the purpose of education at the Aerospace Educational Center of Belarusian state university is discussed. The aim of the work is to prepare launch of small satellite. Students are expected to participate in the design of control station, systems of communication, earth observation, navigation, and positioning. Benefit of such project-based learning from economical perspective is discussed. At present our training system at the base of EyasSat classroom satellite is used for management of satellite orientation and stabilization system. Principles of video processing, communication technologies and informational security for small spacecraft are developed at the base of Wi9M-2443 developer kit. More recent equipment allows obtaining the skills in digital signal processing at the base of FPGA. Development of ground station includes setup of 2.6 meter diameter dish for L-band, and spiral rotational antennas for UHF and VHF bands. Receiver equipment from National Instruments is used for digital signal processing and signal management.

  16. FPGA based control system for space instrumentation

    NASA Astrophysics Data System (ADS)

    Di Giorgio, Anna M.; Cerulli Irelli, Pasquale; Nuzzolo, Francesco; Orfei, Renato; Spinoglio, Luigi; Liu, Giovanni S.; Saraceno, Paolo

    2008-07-01

    The prototype for a general purpose FPGA based control system for space instrumentation is presented, with particular attention to the instrument control application software. The system HW is based on the LEON3FT processor, which gives the flexibility to configure the chip with only the necessary HW functionalities, from simple logic up to small dedicated processors. The instrument control SW is developed in ANSI C and for time critical (<10μs) commanding sequences implements an internal instructions sequencer, triggered via an interrupt service routine based on a HW high priority interrupt.

  17. High-Performance CCSDS Encapsulation Service Implementation in FPGA

    NASA Technical Reports Server (NTRS)

    Clare, Loren P.; Torgerson, Jordan L.; Pang, Jackson

    2010-01-01

    The Consultative Committee for Space Data Systems (CCSDS) Encapsulation Service is a convergence layer between lower-layer space data link framing protocols, such as CCSDS Advanced Orbiting System (AOS), and higher-layer networking protocols, such as CFDP (CCSDS File Delivery Protocol) and Internet Protocol Extension (IPE). CCSDS Encapsulation Service is considered part of the data link layer. The CCSDS AOS implementation is described in the preceding article. Recent advancement in RF modem technology has allowed multi-megabit transmission over space links. With this increase in data rate, the CCSDS Encapsulation Service needs to be optimized to both reduce energy consumption and operate at a high rate. CCSDS Encapsulation Service has been implemented as an intellectual property core so that the aforementioned problems are solved by way of operating the CCSDS Encapsulation Service inside an FPGA. The CCSDS En capsula tion Service in FPGA implementation consists of both packetizing and de-packetizing features

  18. Real-time plasma control based on the ISTTOK tomography diagnostica)

    NASA Astrophysics Data System (ADS)

    Carvalho, P. J.; Carvalho, B. B.; Neto, A.; Coelho, R.; Fernandes, H.; Sousa, J.; Varandas, C.; Chávez-Alarcón, E.; Herrera-Velázquez, J. J. E.

    2008-10-01

    The presently available processing power in generic processing units (GPUs) combined with state-of-the-art programmable logic devices benefits the implementation of complex, real-time driven, data processing algorithms for plasma diagnostics. A tomographic reconstruction diagnostic has been developed for the ISTTOK tokamak, based on three linear pinhole cameras each with ten lines of sight. The plasma emissivity in a poloidal cross section is computed locally on a submillisecond time scale, using a Fourier-Bessel algorithm, allowing the use of the output signals for active plasma position control. The data acquisition and reconstruction (DAR) system is based on ATCA technology and consists of one acquisition board with integrated field programmable gate array (FPGA) capabilities and a dual-core Pentium module running real-time application interface (RTAI) Linux. In this paper, the DAR real-time firmware/software implementation is presented, based on (i) front-end digital processing in the FPGA; (ii) a device driver specially developed for the board which enables streaming data acquisition to the host GPU; and (iii) a fast reconstruction algorithm running in Linux RTAI. This system behaves as a module of the central ISTTOK control and data acquisition system (FIRESIGNAL). Preliminary results of the above experimental setup are presented and a performance benchmarking against the magnetic coil diagnostic is shown.

  19. Design of barrier bucket kicker control system

    NASA Astrophysics Data System (ADS)

    Ni, Fa-Fu; Wang, Yan-Yu; Yin, Jun; Zhou, De-Tai; Shen, Guo-Dong; Zheng, Yang-De.; Zhang, Jian-Chuan; Yin, Jia; Bai, Xiao; Ma, Xiao-Li

    2018-05-01

    The Heavy-Ion Research Facility in Lanzhou (HIRFL) contains two synchrotrons: the main cooler storage ring (CSRm) and the experimental cooler storage ring (CSRe). Beams are extracted from CSRm, and injected into CSRe. To apply the Barrier Bucket (BB) method on the CSRe beam accumulation, a new BB technology based kicker control system was designed and implemented. The controller of the system is implemented using an Advanced Reduced Instruction Set Computer (RISC) Machine (ARM) chip and a field-programmable gate array (FPGA) chip. Within the architecture, ARM is responsible for data presetting and floating number arithmetic processing. The FPGA computes the RF phase point of the two rings and offers more accurate control of the time delay. An online preliminary experiment on HIRFL was also designed to verify the functionalities of the control system. The result shows that the reference trigger point of two different sinusoidal RF signals for an arbitrary phase point was acquired with a matched phase error below 1° (approximately 2.1 ns), and the step delay time better than 2 ns were realized.

  20. FPGA-accelerated algorithm for the regular expression matching system

    NASA Astrophysics Data System (ADS)

    Russek, P.; Wiatr, K.

    2015-01-01

    This article describes an algorithm to support a regular expressions matching system. The goal was to achieve an attractive performance system with low energy consumption. The basic idea of the algorithm comes from a concept of the Bloom filter. It starts from the extraction of static sub-strings for strings of regular expressions. The algorithm is devised to gain from its decomposition into parts which are intended to be executed by custom hardware and the central processing unit (CPU). The pipelined custom processor architecture is proposed and a software algorithm explained accordingly. The software part of the algorithm was coded in C and runs on a processor from the ARM family. The hardware architecture was described in VHDL and implemented in field programmable gate array (FPGA). The performance results and required resources of the above experiments are given. An example of target application for the presented solution is computer and network security systems. The idea was tested on nearly 100,000 body-based viruses from the ClamAV virus database. The solution is intended for the emerging technology of clusters of low-energy computing nodes.

  1. Particle Identification on an FPGA Accelerated Compute Platform for the LHCb Upgrade

    NASA Astrophysics Data System (ADS)

    Fäerber, Christian; Schwemmer, Rainer; Machen, Jonathan; Neufeld, Niko

    2017-07-01

    The current LHCb readout system will be upgraded in 2018 to a “triggerless” readout of the entire detector at the Large Hadron Collider collision rate of 40 MHz. The corresponding bandwidth from the detector down to the foreseen dedicated computing farm (event filter farm), which acts as the trigger, has to be increased by a factor of almost 100 from currently 500 Gb/s up to 40 Tb/s. The event filter farm will preanalyze the data and will select the events on an event by event basis. This will reduce the bandwidth down to a manageable size to write the interesting physics data to tape. The design of such a system is a challenging task, and the reason why different new technologies are considered and have to be investigated for the different parts of the system. For the usage in the event building farm or in the event filter farm (trigger), an experimental field programmable gate array (FPGA) accelerated computing platform is considered and, therefore, tested. FPGA compute accelerators are used more and more in standard servers such as for Microsoft Bing search or Baidu search. The platform we use hosts a general Intel CPU and a high-performance FPGA linked via the high-speed Intel QuickPath Interconnect. An accelerator is implemented on the FPGA. It is very likely that these platforms, which are built, in general, for high-performance computing, are also very interesting for the high-energy physics community. First, the performance results of smaller test cases performed at the beginning are presented. Afterward, a part of the existing LHCb RICH particle identification is tested and is ported to the experimental FPGA accelerated platform. We have compared the performance of the LHCb RICH particle identification running on a normal CPU with the performance of the same algorithm, which is running on the Xeon-FPGA compute accelerator platform.

  2. FPGA implementation of a biological neural network based on the Hodgkin-Huxley neuron model.

    PubMed

    Yaghini Bonabi, Safa; Asgharian, Hassan; Safari, Saeed; Nili Ahmadabadi, Majid

    2014-01-01

    A set of techniques for efficient implementation of Hodgkin-Huxley-based (H-H) model of a neural network on FPGA (Field Programmable Gate Array) is presented. The central implementation challenge is H-H model complexity that puts limits on the network size and on the execution speed. However, basics of the original model cannot be compromised when effect of synaptic specifications on the network behavior is the subject of study. To solve the problem, we used computational techniques such as CORDIC (Coordinate Rotation Digital Computer) algorithm and step-by-step integration in the implementation of arithmetic circuits. In addition, we employed different techniques such as sharing resources to preserve the details of model as well as increasing the network size in addition to keeping the network execution speed close to real time while having high precision. Implementation of a two mini-columns network with 120/30 excitatory/inhibitory neurons is provided to investigate the characteristic of our method in practice. The implementation techniques provide an opportunity to construct large FPGA-based network models to investigate the effect of different neurophysiological mechanisms, like voltage-gated channels and synaptic activities, on the behavior of a neural network in an appropriate execution time. Additional to inherent properties of FPGA, like parallelism and re-configurability, our approach makes the FPGA-based system a proper candidate for study on neural control of cognitive robots and systems as well.

  3. FPGA Implementation of Metastability-Based True Random Number Generator

    NASA Astrophysics Data System (ADS)

    Hata, Hisashi; Ichikawa, Shuichi

    True random number generators (TRNGs) are important as a basis for computer security. Though there are some TRNGs composed of analog circuit, the use of digital circuits is desired for the application of TRNGs to logic LSIs. Some of the digital TRNGs utilize jitter in free-running ring oscillators as a source of entropy, which consume large power. Another type of TRNG exploits the metastability of a latch to generate entropy. Although this kind of TRNG has been mostly implemented with full-custom LSI technology, this study presents an implementation based on common FPGA technology. Our TRNG is comprised of logic gates only, and can be integrated in any kind of logic LSI. The RS latch in our TRNG is implemented as a hard-macro to guarantee the quality of randomness by minimizing the signal skew and load imbalance of internal nodes. To improve the quality and throughput, the output of 64-256 latches are XOR'ed. The derived design was verified on a Xilinx Virtex-4 FPGA (XC4VFX20), and passed NIST statistical test suite without post-processing. Our TRNG with 256 latches occupies 580 slices, while achieving 12.5Mbps throughput.

  4. FPGA implementation of Santos-Victor optical flow algorithm for real-time image processing: an useful attempt

    NASA Astrophysics Data System (ADS)

    Cobos Arribas, Pedro; Monasterio Huelin Macia, Felix

    2003-04-01

    A FPGA based hardware implementation of the Santos-Victor optical flow algorithm, useful in robot guidance applications, is described in this paper. The system used to do contains an ALTERA FPGA (20K100), an interface with a digital camera, three VRAM memories to contain the data input and some output memories (a VRAM and a EDO) to contain the results. The system have been used previously to develop and test other vision algorithms, such as image compression, optical flow calculation with differential and correlation methods. The designed system let connect the digital camera, or the FPGA output (results of algorithms) to a PC, throw its Firewire or USB port. The problems take place in this occasion have motivated to adopt another hardware structure for certain vision algorithms with special requirements, that need a very hard code intensive processing.

  5. Design of an Intelligent Front-End Signal Conditioning Circuit for IR Sensors

    NASA Astrophysics Data System (ADS)

    de Arcas, G.; Ruiz, M.; Lopez, J. M.; Gutierrez, R.; Villamayor, V.; Gomez, L.; Montojo, Mª. T.

    2008-02-01

    This paper presents the design of an intelligent front-end signal conditioning system for IR sensors. The system has been developed as an interface between a PbSe IR sensor matrix and a TMS320C67x digital signal processor. The system architecture ensures its scalability so it can be used for sensors with different matrix sizes. It includes an integrator based signal conditioning circuit, a data acquisition converter block, and a FPGA based advanced control block that permits including high level image preprocessing routines such as faulty pixel detection and sensor calibration in the signal conditioning front-end. During the design phase virtual instrumentation technologies proved to be a very valuable tool for prototyping when choosing the best A/D converter type for the application. Development time was significantly reduced due to the use of this technology.

  6. Performance of the CMS Event Builder

    NASA Astrophysics Data System (ADS)

    Andre, J.-M.; Behrens, U.; Branson, J.; Brummer, P.; Chaze, O.; Cittolin, S.; Contescu, C.; Craigs, B. G.; Darlea, G.-L.; Deldicque, C.; Demiragli, Z.; Dobson, M.; Doualot, N.; Erhan, S.; Fulcher, J. F.; Gigi, D.; Gładki, M.; Glege, F.; Gomez-Ceballos, G.; Hegeman, J.; Holzner, A.; Janulis, M.; Jimenez-Estupiñán, R.; Masetti, L.; Meijers, F.; Meschi, E.; Mommsen, R. K.; Morovic, S.; O'Dell, V.; Orsini, L.; Paus, C.; Petrova, P.; Pieri, M.; Racz, A.; Reis, T.; Sakulin, H.; Schwick, C.; Simelevicius, D.; Zejdl, P.

    2017-10-01

    The data acquisition system (DAQ) of the CMS experiment at the CERN Large Hadron Collider assembles events at a rate of 100 kHz, transporting event data at an aggregate throughput of {\\mathscr{O}}(100 {{GB}}/{{s}}) to the high-level trigger farm. The DAQ architecture is based on state-of-the-art network technologies for the event building. For the data concentration, 10/40 Gbit/s Ethernet technologies are used together with a reduced TCP/IP protocol implemented in FPGA for a reliable transport between custom electronics and commercial computing hardware. A 56 Gbit/s Infiniband FDR Clos network has been chosen for the event builder. This paper presents the implementation and performance of the event-building system.

  7. Research of aerial imaging spectrometer data acquisition technology based on USB 3.0

    NASA Astrophysics Data System (ADS)

    Huang, Junze; Wang, Yueming; He, Daogang; Yu, Yanan

    2016-11-01

    With the emergence of UAV (unmanned aerial vehicle) platform for aerial imaging spectrometer, research of aerial imaging spectrometer DAS(data acquisition system) faces new challenges. Due to the limitation of platform and other factors, the aerial imaging spectrometer DAS requires small-light, low-cost and universal. Traditional aerial imaging spectrometer DAS system is expensive, bulky, non-universal and unsupported plug-and-play based on PCIe. So that has been unable to meet promotion and application of the aerial imaging spectrometer. In order to solve these problems, the new data acquisition scheme bases on USB3.0 interface.USB3.0 can provide guarantee of small-light, low-cost and universal relying on the forward-looking technology advantage. USB3.0 transmission theory is up to 5Gbps.And the GPIF programming interface achieves 3.2Gbps of the effective theoretical data bandwidth.USB3.0 can fully meet the needs of the aerial imaging spectrometer data transmission rate. The scheme uses the slave FIFO asynchronous data transmission mode between FPGA and USB3014 interface chip. Firstly system collects spectral data from TLK2711 of high-speed serial interface chip. Then FPGA receives data in DDR2 cache after ping-pong data processing. Finally USB3014 interface chip transmits data via automatic-dma approach and uploads to PC by USB3.0 cable. During the manufacture of aerial imaging spectrometer, the DAS can achieve image acquisition, transmission, storage and display. All functions can provide the necessary test detection for aerial imaging spectrometer. The test shows that system performs stable and no data lose. Average transmission speed and storage speed of writing SSD can stabilize at 1.28Gbps. Consequently ,this data acquisition system can meet application requirements for aerial imaging spectrometer.

  8. Resource and Performance Evaluations of Fixed Point QRD-RLS Systolic Array through FPGA Implementation

    NASA Astrophysics Data System (ADS)

    Yokoyama, Yoshiaki; Kim, Minseok; Arai, Hiroyuki

    At present, when using space-time processing techniques with multiple antennas for mobile radio communication, real-time weight adaptation is necessary. Due to the progress of integrated circuit technology, dedicated processor implementation with ASIC or FPGA can be employed to implement various wireless applications. This paper presents a resource and performance evaluation of the QRD-RLS systolic array processor based on fixed-point CORDIC algorithm with FPGA. In this paper, to save hardware resources, we propose the shared architecture of a complex CORDIC processor. The required precision of internal calculation, the circuit area for the number of antenna elements and wordlength, and the processing speed will be evaluated. The resource estimation provides a possible processor configuration with a current FPGA on the market. Computer simulations assuming a fading channel will show a fast convergence property with a finite number of training symbols. The proposed architecture has also been implemented and its operation was verified by beamforming evaluation through a radio propagation experiment.

  9. A control system based on field programmable gate array for papermaking sewage treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Zi Sheng; Xie, Chang; Qing Xiong, Yan; Liu, Zhi Qiang; Li, Qing

    2013-03-01

    A sewage treatment control system is designed to improve the efficiency of papermaking wastewater treatment system. The automation control system is based on Field Programmable Gate Array (FPGA), coded with Very-High-Speed Integrate Circuit Hardware Description Language (VHDL), compiled and simulated with Quartus. In order to ensure the stability of the data used in FPGA, the data is collected through temperature sensors, water level sensor and online PH measurement system. The automatic control system is more sensitive, and both the treatment efficiency and processing power are increased. This work provides a new method for sewage treatment control.

  10. FPGA Implementation of Reed-Solomon Decoder for IEEE 802.16 WiMAX Systems using Simulink-Sysgen Design Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobrek, Miljko; Albright, Austin P

    This paper presents FPGA implementation of the Reed-Solomon decoder for use in IEEE 802.16 WiMAX systems. The decoder is based on RS(255,239) code, and is additionally shortened and punctured according to the WiMAX specifications. Simulink model based on Sysgen library of Xilinx blocks was used for simulation and hardware implementation. At the end, simulation results and hardware implementation performances are presented.

  11. Real-Time Spaceborne Synthetic Aperture Radar Float-Point Imaging System Using Optimized Mapping Methodology and a Multi-Node Parallel Accelerating Technique

    PubMed Central

    Li, Bingyi; Chen, Liang; Yu, Wenyue; Xie, Yizhuang; Bian, Mingming; Zhang, Qingjun; Pang, Long

    2018-01-01

    With the development of satellite load technology and very large-scale integrated (VLSI) circuit technology, on-board real-time synthetic aperture radar (SAR) imaging systems have facilitated rapid response to disasters. A key goal of the on-board SAR imaging system design is to achieve high real-time processing performance under severe size, weight, and power consumption constraints. This paper presents a multi-node prototype system for real-time SAR imaging processing. We decompose the commonly used chirp scaling (CS) SAR imaging algorithm into two parts according to the computing features. The linearization and logic-memory optimum allocation methods are adopted to realize the nonlinear part in a reconfigurable structure, and the two-part bandwidth balance method is used to realize the linear part. Thus, float-point SAR imaging processing can be integrated into a single Field Programmable Gate Array (FPGA) chip instead of relying on distributed technologies. A single-processing node requires 10.6 s and consumes 17 W to focus on 25-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384. The design methodology of the multi-FPGA parallel accelerating system under the real-time principle is introduced. As a proof of concept, a prototype with four processing nodes and one master node is implemented using a Xilinx xc6vlx315t FPGA. The weight and volume of one single machine are 10 kg and 32 cm × 24 cm × 20 cm, respectively, and the power consumption is under 100 W. The real-time performance of the proposed design is demonstrated on Chinese Gaofen-3 stripmap continuous imaging. PMID:29495637

  12. CoNNeCT Baseband Processor Module

    NASA Technical Reports Server (NTRS)

    Yamamoto, Clifford K; Jedrey, Thomas C.; Gutrich, Daniel G.; Goodpasture, Richard L.

    2011-01-01

    A document describes the CoNNeCT Baseband Processor Module (BPM) based on an updated processor, memory technology, and field-programmable gate arrays (FPGAs). The BPM was developed from a requirement to provide sufficient computing power and memory storage to conduct experiments for a Software Defined Radio (SDR) to be implemented. The flight SDR uses the AT697 SPARC processor with on-chip data and instruction cache. The non-volatile memory has been increased from a 20-Mbit EEPROM (electrically erasable programmable read only memory) to a 4-Gbit Flash, managed by the RTAX2000 Housekeeper, allowing more programs and FPGA bit-files to be stored. The volatile memory has been increased from a 20-Mbit SRAM (static random access memory) to a 1.25-Gbit SDRAM (synchronous dynamic random access memory), providing additional memory space for more complex operating systems and programs to be executed on the SPARC. All memory is EDAC (error detection and correction) protected, while the SPARC processor implements fault protection via TMR (triple modular redundancy) architecture. Further capability over prior BPM designs includes the addition of a second FPGA to implement features beyond the resources of a single FPGA. Both FPGAs are implemented with Xilinx Virtex-II and are interconnected by a 96-bit bus to facilitate data exchange. Dedicated 1.25- Gbit SDRAMs are wired to each Xilinx FPGA to accommodate high rate data buffering for SDR applications as well as independent SpaceWire interfaces. The RTAX2000 manages scrub and configuration of each Xilinx.

  13. Jamming protection of spread spectrum RFID system

    NASA Astrophysics Data System (ADS)

    Mazurek, Gustaw

    2006-10-01

    This paper presents a new transform-domain processing algorithm for rejection of narrowband interferences in RFID/DS-CDMA systems. The performance of the proposed algorithm has been verified via computer simulations. Implementation issues have been discussed. The algorithm can be implemented in the FPGA or DSP technology.

  14. The SpaceCube Family of Hybrid On-Board Science Data Processors: An Update

    NASA Astrophysics Data System (ADS)

    Flatley, T.

    2012-12-01

    SpaceCube is an FPGA based on-board hybrid science data processing system developed at the NASA Goddard Space Flight Center (GSFC). The goal of the SpaceCube program is to provide 10x to 100x improvements in on-board computing power while lowering relative power consumption and cost. The SpaceCube design strategy incorporates commercial rad-tolerant FPGA technology and couples it with an upset mitigation software architecture to provide "order of magnitude" improvements in computing power over traditional rad-hard flight systems. Many of the missions proposed in the Earth Science Decadal Survey (ESDS) will require "next generation" on-board processing capabilities to meet their specified mission goals. Advanced laser altimeter, radar, lidar and hyper-spectral instruments are proposed for at least ten of the ESDS missions, and all of these instrument systems will require advanced on-board processing capabilities to facilitate the timely conversion of Earth Science data into Earth Science information. Both an "order of magnitude" increase in processing power and the ability to "reconfigure on the fly" are required to implement algorithms that detect and react to events, to produce data products on-board for applications such as direct downlink, quick look, and "first responder" real-time awareness, to enable "sensor web" multi-platform collaboration, and to perform on-board "lossless" data reduction by migrating typical ground-based processing functions on-board, thus reducing on-board storage and downlink requirements. This presentation will highlight a number of SpaceCube technology developments to date and describe current and future efforts, including the collaboration with the U.S. Department of Defense - Space Test Program (DoD/STP) on the STP-H4 ISS experiment pallet (launch June 2013) that will demonstrate SpaceCube 2.0 technology on-orbit.; ;

  15. FPGA implementation of a biological neural network based on the Hodgkin-Huxley neuron model

    PubMed Central

    Yaghini Bonabi, Safa; Asgharian, Hassan; Safari, Saeed; Nili Ahmadabadi, Majid

    2014-01-01

    A set of techniques for efficient implementation of Hodgkin-Huxley-based (H-H) model of a neural network on FPGA (Field Programmable Gate Array) is presented. The central implementation challenge is H-H model complexity that puts limits on the network size and on the execution speed. However, basics of the original model cannot be compromised when effect of synaptic specifications on the network behavior is the subject of study. To solve the problem, we used computational techniques such as CORDIC (Coordinate Rotation Digital Computer) algorithm and step-by-step integration in the implementation of arithmetic circuits. In addition, we employed different techniques such as sharing resources to preserve the details of model as well as increasing the network size in addition to keeping the network execution speed close to real time while having high precision. Implementation of a two mini-columns network with 120/30 excitatory/inhibitory neurons is provided to investigate the characteristic of our method in practice. The implementation techniques provide an opportunity to construct large FPGA-based network models to investigate the effect of different neurophysiological mechanisms, like voltage-gated channels and synaptic activities, on the behavior of a neural network in an appropriate execution time. Additional to inherent properties of FPGA, like parallelism and re-configurability, our approach makes the FPGA-based system a proper candidate for study on neural control of cognitive robots and systems as well. PMID:25484854

  16. Packet based serial link realized in FPGA dedicated for high resolution infrared image transmission

    NASA Astrophysics Data System (ADS)

    Bieszczad, Grzegorz

    2015-05-01

    In article the external digital interface specially designed for thermographic camera built in Military University of Technology is described. The aim of article is to illustrate challenges encountered during design process of thermal vision camera especially related to infrared data processing and transmission. Article explains main requirements for interface to transfer Infra-Red or Video digital data and describes the solution which we elaborated based on Low Voltage Differential Signaling (LVDS) physical layer and signaling scheme. Elaborated link for image transmission is built using FPGA integrated circuit with built-in high speed serial transceivers achieving up to 2500Gbps throughput. Image transmission is realized using proprietary packet protocol. Transmission protocol engine was described in VHDL language and tested in FPGA hardware. The link is able to transmit 1280x1024@60Hz 24bit video data using one signal pair. Link was tested to transmit thermal-vision camera picture to remote monitor. Construction of dedicated video link allows to reduce power consumption compared to solutions with ASIC based encoders and decoders realizing video links like DVI or packed based Display Port, with simultaneous reduction of wires needed to establish link to one pair. Article describes functions of modules integrated in FPGA design realizing several functions like: synchronization to video source, video stream packeting, interfacing transceiver module and dynamic clock generation for video standard conversion.

  17. The integration of FPGA TDC inside White Rabbit node

    NASA Astrophysics Data System (ADS)

    Li, H.; Xue, T.; Gong, G.; Li, J.

    2017-04-01

    White Rabbit technology is capable of delivering sub-nanosecond accuracy and picosecond precision of synchronization and normal data packets over the fiber network. Carry chain structure in FPGA is a popular way to build TDC and tens of picosecond RMS resolution has been achieved. The integration of WR technology with FPGA TDC can enhance and simplify the TDC in many aspects that includes providing a low jitter clock for TDC, a synchronized absolute UTC/TAI timestamp for coarse counter, a fancy way to calibrate the carry chain DNL and an easy to use Ethernet link for data and control information transmit. This paper presents a FPGA TDC implemented inside a normal White Rabbit node with sub-nanosecond measurement precision. The measured standard deviation reaches 50ps between two distributed TDCs. Possible applications of this distributed TDC are also discussed.

  18. A CMOS high speed imaging system design based on FPGA

    NASA Astrophysics Data System (ADS)

    Tang, Hong; Wang, Huawei; Cao, Jianzhong; Qiao, Mingrui

    2015-10-01

    CMOS sensors have more advantages than traditional CCD sensors. The imaging system based on CMOS has become a hot spot in research and development. In order to achieve the real-time data acquisition and high-speed transmission, we design a high-speed CMOS imaging system on account of FPGA. The core control chip of this system is XC6SL75T and we take advantages of CameraLink interface and AM41V4 CMOS image sensors to transmit and acquire image data. AM41V4 is a 4 Megapixel High speed 500 frames per second CMOS image sensor with global shutter and 4/3" optical format. The sensor uses column parallel A/D converters to digitize the images. The CameraLink interface adopts DS90CR287 and it can convert 28 bits of LVCMOS/LVTTL data into four LVDS data stream. The reflected light of objects is photographed by the CMOS detectors. CMOS sensors convert the light to electronic signals and then send them to FPGA. FPGA processes data it received and transmits them to upper computer which has acquisition cards through CameraLink interface configured as full models. Then PC will store, visualize and process images later. The structure and principle of the system are both explained in this paper and this paper introduces the hardware and software design of the system. FPGA introduces the driven clock of CMOS. The data in CMOS is converted to LVDS signals and then transmitted to the data acquisition cards. After simulation, the paper presents a row transfer timing sequence of CMOS. The system realized real-time image acquisition and external controls.

  19. An FPGA-Based People Detection System

    NASA Astrophysics Data System (ADS)

    Nair, Vinod; Laprise, Pierre-Olivier; Clark, James J.

    2005-12-01

    This paper presents an FPGA-based system for detecting people from video. The system is designed to use JPEG-compressed frames from a network camera. Unlike previous approaches that use techniques such as background subtraction and motion detection, we use a machine-learning-based approach to train an accurate detector. We address the hardware design challenges involved in implementing such a detector, along with JPEG decompression, on an FPGA. We also present an algorithm that efficiently combines JPEG decompression with the detection process. This algorithm carries out the inverse DCT step of JPEG decompression only partially. Therefore, it is computationally more efficient and simpler to implement, and it takes up less space on the chip than the full inverse DCT algorithm. The system is demonstrated on an automated video surveillance application and the performance of both hardware and software implementations is analyzed. The results show that the system can detect people accurately at a rate of about[InlineEquation not available: see fulltext.] frames per second on a Virtex-II 2V1000 using a MicroBlaze processor running at[InlineEquation not available: see fulltext.], communicating with dedicated hardware over FSL links.

  20. Case for a field-programmable gate array multicore hybrid machine for an image-processing application

    NASA Astrophysics Data System (ADS)

    Rakvic, Ryan N.; Ives, Robert W.; Lira, Javier; Molina, Carlos

    2011-01-01

    General purpose computer designers have recently begun adding cores to their processors in order to increase performance. For example, Intel has adopted a homogeneous quad-core processor as a base for general purpose computing. PlayStation3 (PS3) game consoles contain a multicore heterogeneous processor known as the Cell, which is designed to perform complex image processing algorithms at a high level. Can modern image-processing algorithms utilize these additional cores? On the other hand, modern advancements in configurable hardware, most notably field-programmable gate arrays (FPGAs) have created an interesting question for general purpose computer designers. Is there a reason to combine FPGAs with multicore processors to create an FPGA multicore hybrid general purpose computer? Iris matching, a repeatedly executed portion of a modern iris-recognition algorithm, is parallelized on an Intel-based homogeneous multicore Xeon system, a heterogeneous multicore Cell system, and an FPGA multicore hybrid system. Surprisingly, the cheaper PS3 slightly outperforms the Intel-based multicore on a core-for-core basis. However, both multicore systems are beaten by the FPGA multicore hybrid system by >50%.

  1. The implementation of contour-based object orientation estimation algorithm in FPGA-based on-board vision system

    NASA Astrophysics Data System (ADS)

    Alpatov, Boris; Babayan, Pavel; Ershov, Maksim; Strotov, Valery

    2016-10-01

    This paper describes the implementation of the orientation estimation algorithm in FPGA-based vision system. An approach to estimate an orientation of objects lacking axial symmetry is proposed. Suggested algorithm is intended to estimate orientation of a specific known 3D object based on object 3D model. The proposed orientation estimation algorithm consists of two stages: learning and estimation. Learning stage is devoted to the exploring of studied object. Using 3D model we can gather set of training images by capturing 3D model from viewpoints evenly distributed on a sphere. Sphere points distribution is made by the geosphere principle. Gathered training image set is used for calculating descriptors, which will be used in the estimation stage of the algorithm. The estimation stage is focusing on matching process between an observed image descriptor and the training image descriptors. The experimental research was performed using a set of images of Airbus A380. The proposed orientation estimation algorithm showed good accuracy in all case studies. The real-time performance of the algorithm in FPGA-based vision system was demonstrated.

  2. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Monenegro, Justino (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used proportional-integral-derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM-based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a DSP (Digital Signal Processor) or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSP) devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacecraft. Radiation tolerant FPGA's are a feasible option for reaching this goal.

  3. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Montenegro, Justino (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of Field Programmable Gate Arrays (FPGA's) in the hardware implementation of fast digital signal processing functions. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used Proportional-Integral-Derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a Digital Signal Processor (DSP) device or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using DSP devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, Pulse Width Modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacemap. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive-control algorithm approaches. Radiation tolerant FPGA's are a feasible option for reaching this goal.

  4. Spacecube: A Family of Reconfigurable Hybrid On-Board Science Data Processors

    NASA Technical Reports Server (NTRS)

    Flatley, Thomas P.

    2015-01-01

    SpaceCube is a family of Field Programmable Gate Array (FPGA) based on-board science data processing systems developed at the NASA Goddard Space Flight Center (GSFC). The goal of the SpaceCube program is to provide 10x to 100x improvements in on-board computing power while lowering relative power consumption and cost. SpaceCube is based on the Xilinx Virtex family of FPGAs, which include processor, FPGA logic and digital signal processing (DSP) resources. These processing elements are leveraged to produce a hybrid science data processing platform that accelerates the execution of algorithms by distributing computational functions to the most suitable elements. This approach enables the implementation of complex on-board functions that were previously limited to ground based systems, such as on-board product generation, data reduction, calibration, classification, eventfeature detection, data mining and real-time autonomous operations. The system is fully reconfigurable in flight, including data parameters, software and FPGA logic, through either ground commanding or autonomously in response to detected eventsfeatures in the instrument data stream.

  5. FPGA-Based Optical Cavity Phase Stabilization for Coherent Pulse Stacking

    DOE PAGES

    Xu, Yilun; Wilcox, Russell; Byrd, John; ...

    2017-11-20

    Coherent pulse stacking (CPS) is a new time-domain coherent addition technique that stacks several optical pulses into a single output pulse, enabling high pulse energy from fiber lasers. We develop a robust, scalable, and distributed digital control system with firmware and software integration for algorithms, to support the CPS application. We model CPS as a digital filter in the Z domain and implement a pulse-pattern-based cavity phase detection algorithm on an field-programmable gate array (FPGA). A two-stage (2+1 cavities) 15-pulse stacking system achieves an 11.0 peak-power enhancement factor. Each optical cavity is fed back at 1.5kHz, and stabilized at anmore » individually-prescribed round-trip phase with 0.7deg and 2.1deg rms phase errors for Stages 1 and 2, respectively. Optical cavity phase control with nanometer accuracy ensures 1.2% intensity stability of the stacked pulse over 12 h. The FPGA-based feedback control system can be scaled to large numbers of optical cavities.« less

  6. FPGA-Based Optical Cavity Phase Stabilization for Coherent Pulse Stacking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yilun; Wilcox, Russell; Byrd, John

    Coherent pulse stacking (CPS) is a new time-domain coherent addition technique that stacks several optical pulses into a single output pulse, enabling high pulse energy from fiber lasers. We develop a robust, scalable, and distributed digital control system with firmware and software integration for algorithms, to support the CPS application. We model CPS as a digital filter in the Z domain and implement a pulse-pattern-based cavity phase detection algorithm on an field-programmable gate array (FPGA). A two-stage (2+1 cavities) 15-pulse stacking system achieves an 11.0 peak-power enhancement factor. Each optical cavity is fed back at 1.5kHz, and stabilized at anmore » individually-prescribed round-trip phase with 0.7deg and 2.1deg rms phase errors for Stages 1 and 2, respectively. Optical cavity phase control with nanometer accuracy ensures 1.2% intensity stability of the stacked pulse over 12 h. The FPGA-based feedback control system can be scaled to large numbers of optical cavities.« less

  7. High-speed polarization sensitive optical coherence tomography for retinal diagnostics

    NASA Astrophysics Data System (ADS)

    Yin, Biwei; Wang, Bingqing; Vemishetty, Kalyanramu; Nagle, Jim; Liu, Shuang; Wang, Tianyi; Rylander, Henry G., III; Milner, Thomas E.

    2012-01-01

    We report design and construction of an FPGA-based high-speed swept-source polarization-sensitive optical coherence tomography (SS-PS-OCT) system for clinical retinal imaging. Clinical application of the SS-PS-OCT system is accurate measurement and display of thickness, phase retardation and birefringence maps of the retinal nerve fiber layer (RNFL) in human subjects for early detection of glaucoma. The FPGA-based SS-PS-OCT system provides three incident polarization states on the eye and uses a bulk-optic polarization sensitive balanced detection module to record two orthogonal interference fringe signals. Interference fringe signals and relative phase retardation between two orthogonal polarization states are used to obtain Stokes vectors of light returning from each RNFL depth. We implement a Levenberg-Marquardt algorithm on a Field Programmable Gate Array (FPGA) to compute accurate phase retardation and birefringence maps. For each retinal scan, a three-state Levenberg-Marquardt nonlinear algorithm is applied to 360 clusters each consisting of 100 A-scans to determine accurate maps of phase retardation and birefringence in less than 1 second after patient measurement allowing real-time clinical imaging-a speedup of more than 300 times over previous implementations. We report application of the FPGA-based SS-PS-OCT system for real-time clinical imaging of patients enrolled in a clinical study at the Eye Institute of Austin and Duke Eye Center.

  8. FPGA Based High Speed Data Acquisition System for Electrical Impedance Tomography

    PubMed Central

    Khan, S; Borsic, A; Manwaring, Preston; Hartov, Alexander; Halter, Ryan

    2014-01-01

    Electrical Impedance Tomography (EIT) systems are used to image tissue bio-impedance. EIT provides a number of features making it attractive for use as a medical imaging device including the ability to image fast physiological processes (>60 Hz), to meet a range of clinical imaging needs through varying electrode geometries and configurations, to impart only non-ionizing radiation to a patient, and to map the significant electrical property contrasts present between numerous benign and pathological tissues. To leverage these potential advantages for medical imaging, we developed a modular 32 channel data acquisition (DAQ) system using National Instruments’ PXI chassis, along with FPGA, ADC, Signal Generator and Timing and Synchronization modules. To achieve high frame rates, signal demodulation and spectral characteristics of higher order harmonics were computed using dedicated FFT-hardware built into the FPGA module. By offloading the computing onto FPGA, we were able to achieve a reduction in throughput required between the FPGA and PC by a factor of 32:1. A custom designed analog front end (AFE) was used to interface electrodes with our system. Our system is wideband, and capable of acquiring data for input signal frequencies ranging from 100 Hz to 12 MHz. The modular design of both the hardware and software will allow this system to be flexibly configured for the particular clinical application. PMID:24729790

  9. Radiation Mitigation and Power Optimization Design Tools for Reconfigurable Hardware in Orbit

    NASA Technical Reports Server (NTRS)

    French, Matthew; Graham, Paul; Wirthlin, Michael; Wang, Li; Larchev, Gregory

    2005-01-01

    The Reconfigurable Hardware in Orbit (RHinO)project is focused on creating a set of design tools that facilitate and automate design techniques for reconfigurable computing in space, using SRAM-based field-programmable-gate-array (FPGA) technology. In the second year of the project, design tools that leverage an established FPGA design environment have been created to visualize and analyze an FPGA circuit for radiation weaknesses and power inefficiencies. For radiation, a single event Upset (SEU) emulator, persistence analysis tool, and a half-latch removal tool for Xilinx/Virtex-II devices have been created. Research is underway on a persistence mitigation tool and multiple bit upsets (MBU) studies. For power, synthesis level dynamic power visualization and analysis tools have been completed. Power optimization tools are under development and preliminary test results are positive.

  10. The Common Data Acquisition Platform in the Helmholtz Association

    NASA Astrophysics Data System (ADS)

    Kaever, P.; Balzer, M.; Kopmann, A.; Zimmer, M.; Rongen, H.

    2017-04-01

    Various centres of the German Helmholtz Association (HGF) started in 2012 to develop a modular data acquisition (DAQ) platform, covering the entire range from detector readout to data transfer into parallel computing environments. This platform integrates generic hardware components like the multi-purpose HGF-Advanced Mezzanine Card or a smart scientific camera framework, adding user value with Linux drivers and board support packages. Technically the scope comprises the DAQ-chain from FPGA-modules to computing servers, notably frontend-electronics-interfaces, microcontrollers and GPUs with their software plus high-performance data transmission links. The core idea is a generic and component-based approach, enabling the implementation of specific experiment requirements with low effort. This so called DTS-platform will support standards like MTCA.4 in hard- and software to ensure compatibility with commercial components. Its capability to deploy on other crate standards or FPGA-boards with PCI express or Ethernet interfaces remains an essential feature. Competences of the participating centres are coordinated in order to provide a solid technological basis for both research topics in the Helmholtz Programme ``Matter and Technology'': ``Detector Technology and Systems'' and ``Accelerator Research and Development''. The DTS-platform aims at reducing costs and development time and will ensure access to latest technologies for the collaboration. Due to its flexible approach, it has the potential to be applied in other scientific programs.

  11. FPGA Sequencer for Radar Altimeter Applications

    NASA Technical Reports Server (NTRS)

    Berkun, Andrew C.; Pollard, Brian D.; Chen, Curtis W.

    2011-01-01

    A sequencer for a radar altimeter provides accurate attitude information for a reliable soft landing of the Mars Science Laboratory (MSL). This is a field-programmable- gate-array (FPGA)-only implementation. A table loaded externally into the FPGA controls timing, processing, and decision structures. Radar is memory-less and does not use previous acquisitions to assist in the current acquisition. All cycles complete in exactly 50 milliseconds, regardless of range or whether a target was found. A RAM (random access memory) within the FPGA holds instructions for up to 15 sets. For each set, timing is run, echoes are processed, and a comparison is made. If a target is seen, more detailed processing is run on that set. If no target is seen, the next set is tried. When all sets have been run, the FPGA terminates and waits for the next 50-millisecond event. This setup simplifies testing and improves reliability. A single vertex chip does the work of an entire assembly. Output products require minor processing to become range and velocity. This technology is the heart of the Terminal Descent Sensor, which is an integral part of the Entry Decent and Landing system for MSL. In addition, it is a strong candidate for manned landings on Mars or the Moon.

  12. Real-time embedded atmospheric compensation for long-range imaging using the average bispectrum speckle method

    NASA Astrophysics Data System (ADS)

    Curt, Petersen F.; Bodnar, Michael R.; Ortiz, Fernando E.; Carrano, Carmen J.; Kelmelis, Eric J.

    2009-02-01

    While imaging over long distances is critical to a number of security and defense applications, such as homeland security and launch tracking, current optical systems are limited in resolving power. This is largely a result of the turbulent atmosphere in the path between the region under observation and the imaging system, which can severely degrade captured imagery. There are a variety of post-processing techniques capable of recovering this obscured image information; however, the computational complexity of such approaches has prohibited real-time deployment and hampers the usability of these technologies in many scenarios. To overcome this limitation, we have designed and manufactured an embedded image processing system based on commodity hardware which can compensate for these atmospheric disturbances in real-time. Our system consists of a reformulation of the average bispectrum speckle method coupled with a high-end FPGA processing board, and employs modular I/O capable of interfacing with most common digital and analog video transport methods (composite, component, VGA, DVI, SDI, HD-SDI, etc.). By leveraging the custom, reconfigurable nature of the FPGA, we have achieved performance twenty times faster than a modern desktop PC, in a form-factor that is compact, low-power, and field-deployable.

  13. A Modular Approach to Arithmetic and Logic Unit Design on a Reconfigurable Hardware Platform for Educational Purpose

    NASA Astrophysics Data System (ADS)

    Oztekin, Halit; Temurtas, Feyzullah; Gulbag, Ali

    The Arithmetic and Logic Unit (ALU) design is one of the important topics in Computer Architecture and Organization course in Computer and Electrical Engineering departments. There are ALU designs that have non-modular nature to be used as an educational tool. As the programmable logic technology has developed rapidly, it is feasible that ALU design based on Field Programmable Gate Array (FPGA) is implemented in this course. In this paper, we have adopted the modular approach to ALU design based on FPGA. All the modules in the ALU design are realized using schematic structure on Altera's Cyclone II Development board. Under this model, the ALU content is divided into four distinct modules. These are arithmetic unit except for multiplication and division operations, logic unit, multiplication unit and division unit. User can easily design any size of ALU unit since this approach has the modular nature. Then, this approach was applied to microcomputer architecture design named BZK.SAU.FPGA10.0 instead of the current ALU unit.

  14. Fpga based L-band pulse doppler radar design and implementation

    NASA Astrophysics Data System (ADS)

    Savci, Kubilay

    As its name implies RADAR (Radio Detection and Ranging) is an electromagnetic sensor used for detection and locating targets from their return signals. Radar systems propagate electromagnetic energy, from the antenna which is in part intercepted by an object. Objects reradiate a portion of energy which is captured by the radar receiver. The received signal is then processed for information extraction. Radar systems are widely used for surveillance, air security, navigation, weather hazard detection, as well as remote sensing applications. In this work, an FPGA based L-band Pulse Doppler radar prototype, which is used for target detection, localization and velocity calculation has been built and a general-purpose Pulse Doppler radar processor has been developed. This radar is a ground based stationary monopulse radar, which transmits a short pulse with a certain pulse repetition frequency (PRF). Return signals from the target are processed and information about their location and velocity is extracted. Discrete components are used for the transmitter and receiver chain. The hardware solution is based on Xilinx Virtex-6 ML605 FPGA board, responsible for the control of the radar system and the digital signal processing of the received signal, which involves Constant False Alarm Rate (CFAR) detection and Pulse Doppler processing. The algorithm is implemented in MATLAB/SIMULINK using the Xilinx System Generator for DSP tool. The field programmable gate arrays (FPGA) implementation of the radar system provides the flexibility of changing parameters such as the PRF and pulse length therefore it can be used with different radar configurations as well. A VHDL design has been developed for 1Gbit Ethernet connection to transfer digitized return signal and detection results to PC. An A-Scope software has been developed with C# programming language to display time domain radar signals and detection results on PC. Data are processed both in FPGA chip and on PC. FPGA uses fixed point arithmetic operations as it is fast and facilitates source requirement as it consumes less hardware than floating point arithmetic operations. The software uses floating point arithmetic operations, which ensure precision in processing at the expense of speed. The functionality of the radar system has been tested for experimental validation in the field with a moving car and the validation of submodules are tested with synthetic data simulated on MATLAB.

  15. Powerful conveyer belt real-time online detection system based on x-ray

    NASA Astrophysics Data System (ADS)

    Rong, Feng; Miao, Chang-yun; Meng, Wei

    2009-07-01

    The powerful conveyer belt is widely used in the mine, dock, and so on. After used for a long time, internal steel rope of the conveyor belt may fracture, rust, joints moving, and so on .This would bring potential safety problems. A kind of detection system based on x-ray is designed in this paper. Linear array detector (LDA) is used. LDA cost is low, response fast; technology mature .Output charge of LDA is transformed into differential voltage signal by amplifier. This kind of signal have great ability of anti-noise, is suitable for long-distance transmission. The processor is FPGA. A IP core control 4-channel A/D convertor, achieve parallel output data collection. Soft-core processor MicroBlaze which process tcp/ip protocol is embedded in FPGA. Sampling data are transferred to a computer via Ethernet. In order to improve the image quality, algorithm of getting rid of noise from the measurement result and taking gain normalization for pixel value is studied and designed. Experiments show that this system work well, can real-time online detect conveyor belt of width of 2.0m and speed of 5 m/s, does not affect the production. Image is clear, visual and can easily judge the situation of conveyor belt.

  16. Dynamic high-speed acquisition system design of transmission error with USB based on LabVIEW and FPGA

    NASA Astrophysics Data System (ADS)

    Zheng, Yong; Chen, Yan

    2013-10-01

    To realize the design of dynamic acquisition system for real-time detection of transmission chain error is very important to improve the machining accuracy of machine tool. In this paper, the USB controller and FPGA is used for hardware platform design, combined with LabVIEW to design user applications, NI-VISA is taken for develop USB drivers, and ultimately achieve the dynamic acquisition system design of transmission error

  17. Design the RS(255,239) encoder and interleaving in the space laser communication system

    NASA Astrophysics Data System (ADS)

    Lang, Yue; Tong, Shou-feng

    2013-08-01

    Space laser communication is researched by more and more countries. Space laser communication deserves to be researched. We can acquire higher transmission speed and better transmission quality between satellite and satellite, satellite and earth by setting up laser link. But in the space laser communication system,the reliability is under influences of many factors of atmosphere,detector noise, optical platform jitter and other factors. The intensity of the signal which is attenuated because of the long transmission distance is demanded to have higher intensity to acquire low BER. The channel code technology can enhance the anti-interference ability of the system. The theory of channel coding technology is that some redundancies is added to information codes. So it can make use of the checkout polynomial to correct errors at the sink port. It help the system to get low BER rate and coding gain. Reed-Solomon (RS) code is one of the channel code, and it is one kind of multi-ary BCH code, and it can correct both burst errors and random errors, and it is widely used in the error-control schemes. The new method of the RS encoder and interleaving based on the FPGA is proposed, aiming at satisfying the needs of the widely-used error control technology in the space laser communication field. An improved method for Finite Galois Field multiplier of encoding is proposed, and it is suitable for FPGA implementation. Comparison of the XOR gates cost between the optimization and original, the number of XOR gates is lessen more than 40% .Then give a new structure of interleaving by using the FPGA. By controlling the in-data stream and out-data stream of encoder, the asynchronous process of the whole frame is accomplished, while by using multi-level pipeline, the real-time transfer of the data is achieved. By controlling the read-address and write-address of the block RAM, the interleaving operation of the arbitrary depth is synchronously implemented. Compared with the normal method, it could reduce the complexity of the channel encoder and the hardware requirement effectively.

  18. Acceleration of Cherenkov angle reconstruction with the new Intel Xeon/FPGA compute platform for the particle identification in the LHCb Upgrade

    NASA Astrophysics Data System (ADS)

    Faerber, Christian

    2017-10-01

    The LHCb experiment at the LHC will upgrade its detector by 2018/2019 to a ‘triggerless’ readout scheme, where all the readout electronics and several sub-detector parts will be replaced. The new readout electronics will be able to readout the detector at 40 MHz. This increases the data bandwidth from the detector down to the Event Filter farm to 40 TBit/s, which also has to be processed to select the interesting proton-proton collision for later storage. The architecture of such a computing farm, which can process this amount of data as efficiently as possible, is a challenging task and several compute accelerator technologies are being considered for use inside the new Event Filter farm. In the high performance computing sector more and more FPGA compute accelerators are used to improve the compute performance and reduce the power consumption (e.g. in the Microsoft Catapult project and Bing search engine). Also for the LHCb upgrade the usage of an experimental FPGA accelerated computing platform in the Event Building or in the Event Filter farm is being considered and therefore tested. This platform from Intel hosts a general CPU and a high performance FPGA linked via a high speed link which is for this platform a QPI link. On the FPGA an accelerator is implemented. The used system is a two socket platform from Intel with a Xeon CPU and an FPGA. The FPGA has cache-coherent memory access to the main memory of the server and can collaborate with the CPU. As a first step, a computing intensive algorithm to reconstruct Cherenkov angles for the LHCb RICH particle identification was successfully ported in Verilog to the Intel Xeon/FPGA platform and accelerated by a factor of 35. The same algorithm was ported to the Intel Xeon/FPGA platform with OpenCL. The implementation work and the performance will be compared. Also another FPGA accelerator the Nallatech 385 PCIe accelerator with the same Stratix V FPGA were tested for performance. The results show that the Intel Xeon/FPGA platforms, which are built in general for high performance computing, are also very interesting for the High Energy Physics community.

  19. The RTE inversion on FPGA aboard the solar orbiter PHI instrument

    NASA Astrophysics Data System (ADS)

    Cobos Carrascosa, J. P.; Aparicio del Moral, B.; Ramos Mas, J. L.; Balaguer, M.; López Jiménez, A. C.; del Toro Iniesta, J. C.

    2016-07-01

    In this work we propose a multiprocessor architecture to reach high performance in floating point operations by using radiation tolerant FPGA devices, and under narrow time and power constraints. This architecture is used in the PHI instrument that carries out the scientific analysis aboard the ESA's Solar Orbiter mission. The proposed architecture, in a SIMD flavor, is aimed to be an accelerator within the Data Processing Unit (it is composed by a main Leon processor and two FPGAs) for carrying out the RTE inversion on board the spacecraft using a relatively slow FPGA device - Xilinx XQR4VSX55-. The proposed architecture squeezes the FPGA resources in order to reach the computational requirements and improves the ground-based system performance based on commercial CPUs regarding time and power consumption. In this work we demonstrate the feasibility of using this FPGA devices embedded in the SO/PHI instrument. With that goal in mind, we perform tests to evaluate the scientific results and to measure the processing time and power consumption for carrying out the RTE inversion.

  20. Design and FPGA Implementation of a Universal Chaotic Signal Generator Based on the Verilog HDL Fixed-Point Algorithm and State Machine Control

    NASA Astrophysics Data System (ADS)

    Qiu, Mo; Yu, Simin; Wen, Yuqiong; Lü, Jinhu; He, Jianbin; Lin, Zhuosheng

    In this paper, a novel design methodology and its FPGA hardware implementation for a universal chaotic signal generator is proposed via the Verilog HDL fixed-point algorithm and state machine control. According to continuous-time or discrete-time chaotic equations, a Verilog HDL fixed-point algorithm and its corresponding digital system are first designed. In the FPGA hardware platform, each operation step of Verilog HDL fixed-point algorithm is then controlled by a state machine. The generality of this method is that, for any given chaotic equation, it can be decomposed into four basic operation procedures, i.e. nonlinear function calculation, iterative sequence operation, iterative values right shifting and ceiling, and chaotic iterative sequences output, each of which corresponds to only a state via state machine control. Compared with the Verilog HDL floating-point algorithm, the Verilog HDL fixed-point algorithm can save the FPGA hardware resources and improve the operation efficiency. FPGA-based hardware experimental results validate the feasibility and reliability of the proposed approach.

  1. A Secure Content Delivery System Based on a Partially Reconfigurable FPGA

    NASA Astrophysics Data System (ADS)

    Hori, Yohei; Yokoyama, Hiroyuki; Sakane, Hirofumi; Toda, Kenji

    We developed a content delivery system using a partially reconfigurable FPGA to securely distribute digital content on the Internet. With partial reconfigurability of a Xilinx Virtex-II Pro FPGA, the system provides an innovative single-chip solution for protecting digital content. In the system, a partial circuit must be downloaded from a server to the client terminal to play content. Content will be played only when the downloaded circuit is correctly combined (=interlocked) with the circuit built in the terminal. Since each circuit has a unique I/O configuration, the downloaded circuit interlocks with the corresponding built-in circuit designed for a particular terminal. Thus, the interface of the circuit itself provides a novel authentication mechanism. This paper describes the detailed architecture of the system and clarify the feasibility and effectiveness of the system. In addition, we discuss a fail-safe mechanism and future work necessary for the practical application of the system.

  2. A high data rate universal lattice decoder on FPGA

    NASA Astrophysics Data System (ADS)

    Ma, Jing; Huang, Xinming; Kura, Swapna

    2005-06-01

    This paper presents the architecture design of a high data rate universal lattice decoder for MIMO channels on FPGA platform. A phost strategy based lattice decoding algorithm is modified in this paper to reduce the complexity of the closest lattice point search. The data dependency of the improved algorithm is examined and a parallel and pipeline architecture is developed with the iterative decoding function on FPGA and the division intensive channel matrix preprocessing on DSP. Simulation results demonstrate that the improved lattice decoding algorithm provides better bit error rate and less iteration number compared with the original algorithm. The system prototype of the decoder shows that it supports data rate up to 7Mbit/s on a Virtex2-1000 FPGA, which is about 8 times faster than the original algorithm on FPGA platform and two-orders of magnitude better than its implementation on a DSP platform.

  3. Design and implementation of low power clock gated 64-bit ALU on ultra scale FPGA

    NASA Astrophysics Data System (ADS)

    Gupta, Ashutosh; Murgai, Shruti; Gulati, Anmol; Kumar, Pradeep

    2016-03-01

    64-bit energy efficient Arithmetic and Logic Unit using negative latch based clock gating technique is designed in this paper. The 64-bit ALU is designed using multiplexer based full adder cell. We have designed a 64-bit ALU with a gated clock. We have used negative latch based circuit for generating gated clock. This gated clock is used to control the multiplexer based 64-bit ALU. The circuit has been synthesized on kintex FPGA through Xilinx ISE Design Suite 14.7 using 28 nm technology in Verilog HDL. The circuit has been simulated on Modelsim 10.3c. The design is verified using System Verilog on QuestaSim in UVM environment. We have achieved 74.07%, 92. 93% and 95.53% reduction in total clock power, 89.73%, 91.35% and 92.85% reduction in I/Os power, 67.14%, 62.84% and 74.34% reduction in dynamic power and 25.47%, 29.05% and 46.13% reduction in total supply power at 20 MHz, 200 MHz and 2 GHz frequency respectively. The power has been calculated using XPower Analyzer tool of Xilinx ISE Design Suite 14.3.

  4. VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

    PubMed Central

    2016-01-01

    Nowadays, chaos generators are an attractive field for research and the challenge is their realization for the development of engineering applications. From more than three decades ago, chaotic oscillators have been designed using discrete electronic devices, very few with integrated circuit technology, and in this work we propose the use of field-programmable gate arrays (FPGAs) for fast prototyping. FPGA-based applications require that one be expert on programming with very-high-speed integrated circuits hardware description language (VHDL). In this manner, we detail the VHDL descriptions of chaos generators for fast prototyping from high-level programming using Python. The cases of study are three kinds of chaos generators based on piecewise-linear (PWL) functions that can be systematically augmented to generate even and odd number of scrolls. We introduce new algorithms for the VHDL description of PWL functions like saturated functions series, negative slopes and sawtooth. The generated VHDL-code is portable, reusable and open source to be synthesized in an FPGA. Finally, we show experimental results for observing 2, 10 and 30-scroll attractors. PMID:27997930

  5. VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators.

    PubMed

    Tlelo-Cuautle, Esteban; Quintas-Valles, Antonio de Jesus; de la Fraga, Luis Gerardo; Rangel-Magdaleno, Jose de Jesus

    2016-01-01

    Nowadays, chaos generators are an attractive field for research and the challenge is their realization for the development of engineering applications. From more than three decades ago, chaotic oscillators have been designed using discrete electronic devices, very few with integrated circuit technology, and in this work we propose the use of field-programmable gate arrays (FPGAs) for fast prototyping. FPGA-based applications require that one be expert on programming with very-high-speed integrated circuits hardware description language (VHDL). In this manner, we detail the VHDL descriptions of chaos generators for fast prototyping from high-level programming using Python. The cases of study are three kinds of chaos generators based on piecewise-linear (PWL) functions that can be systematically augmented to generate even and odd number of scrolls. We introduce new algorithms for the VHDL description of PWL functions like saturated functions series, negative slopes and sawtooth. The generated VHDL-code is portable, reusable and open source to be synthesized in an FPGA. Finally, we show experimental results for observing 2, 10 and 30-scroll attractors.

  6. High speed CMOS acquisition system based on FPGA embedded image processing for electro-optical measurements

    NASA Astrophysics Data System (ADS)

    Rosu-Hamzescu, Mihnea; Polonschii, Cristina; Oprea, Sergiu; Popescu, Dragos; David, Sorin; Bratu, Dumitru; Gheorghiu, Eugen

    2018-06-01

    Electro-optical measurements, i.e., optical waveguides and plasmonic based electrochemical impedance spectroscopy (P-EIS), are based on the sensitive dependence of refractive index of electro-optical sensors on surface charge density, modulated by an AC electrical field applied to the sensor surface. Recently, P-EIS has emerged as a new analytical tool that can resolve local impedance with high, optical spatial resolution, without using microelectrodes. This study describes a high speed image acquisition and processing system for electro-optical measurements, based on a high speed complementary metal-oxide semiconductor (CMOS) sensor and a field-programmable gate array (FPGA) board. The FPGA is used to configure CMOS parameters, as well as to receive and locally process the acquired images by performing Fourier analysis for each pixel, deriving the real and imaginary parts of the Fourier coefficients for the AC field frequencies. An AC field generator, for single or multi-sine signals, is synchronized with the high speed acquisition system for phase measurements. The system was successfully used for real-time angle-resolved electro-plasmonic measurements from 30 Hz up to 10 kHz, providing results consistent to ones obtained by a conventional electrical impedance approach. The system was able to detect amplitude variations with a relative variation of ±1%, even for rather low sampling rates per period (i.e., 8 samples per period). The PC (personal computer) acquisition and control software allows synchronized acquisition for multiple FPGA boards, making it also suitable for simultaneous angle-resolved P-EIS imaging.

  7. A soft decoding algorithm and hardware implementation for the visual prosthesis based on high order soft demodulation.

    PubMed

    Yang, Yuan; Quan, Nannan; Bu, Jingjing; Li, Xueping; Yu, Ningmei

    2016-09-26

    High order modulation and demodulation technology can solve the frequency requirement between the wireless energy transmission and data communication. In order to achieve reliable wireless data communication based on high order modulation technology for visual prosthesis, this work proposed a Reed-Solomon (RS) error correcting code (ECC) circuit on the basis of differential amplitude and phase shift keying (DAPSK) soft demodulation. Firstly, recognizing the weakness of the traditional DAPSK soft demodulation algorithm based on division that is complex for hardware implementation, an improved phase soft demodulation algorithm for visual prosthesis to reduce the hardware complexity is put forward. Based on this new algorithm, an improved RS soft decoding method is hence proposed. In this new decoding method, the combination of Chase algorithm and hard decoding algorithms is used to achieve soft decoding. In order to meet the requirements of implantable visual prosthesis, the method to calculate reliability of symbol-level based on multiplication of bit reliability is derived, which reduces the testing vectors number of Chase algorithm. The proposed algorithms are verified by MATLAB simulation and FPGA experimental results. During MATLAB simulation, the biological channel attenuation property model is added into the ECC circuit. The data rate is 8 Mbps in the MATLAB simulation and FPGA experiments. MATLAB simulation results show that the improved phase soft demodulation algorithm proposed in this paper saves hardware resources without losing bit error rate (BER) performance. Compared with the traditional demodulation circuit, the coding gain of the ECC circuit has been improved by about 3 dB under the same BER of [Formula: see text]. The FPGA experimental results show that under the condition of data demodulation error with wireless coils 3 cm away, the system can correct it. The greater the distance, the higher the BER. Then we use a bit error rate analyzer to measure BER of the demodulation circuit and the RS ECC circuit with different distance of two coils. And the experimental results show that the RS ECC circuit has about an order of magnitude lower BER than the demodulation circuit when under the same coils distance. Therefore, the RS ECC circuit has more higher reliability of the communication in the system. The improved phase soft demodulation algorithm and soft decoding algorithm proposed in this paper enables data communication that is more reliable than other demodulation system, which also provide a significant reference for further study to the visual prosthesis system.

  8. The SMS4 cryptographic system design based on dynamic partial self-reconfiguration technology

    NASA Astrophysics Data System (ADS)

    Wang, Jianxin; Gao, Xianwei; Li, Xiuying; Sui, Meili

    2013-03-01

    This paper describes SMS4 algorithm by using dynamic partial self-reconfiguration. The design is implemented on Xilinx VirtexII-Pro XC2VP30 FPGA devices. The partial self-reconfiguration encryption/decryption module data throughput is up to 50Mb/s, key expansion and encryption/decryption modules use 1606 and 1570 slices respectively, and the resource utilization ratio of the key expansion by using partial self-reconfiguration technology is less 32.03% and slices are less 757 than the non-reconfiguration technology. SMS4 implementation gets a good balance between high performance and low complexity in area. The theoretical and practical research of dynamic partial self-reconfiguration has a broad space for development and application prospect.

  9. Analog Module Architecture for Space-Qualified Field-Programmable Mixed-Signal Arrays

    NASA Technical Reports Server (NTRS)

    Edwards, R. Timothy; Strohbehn, Kim; Jaskulek, Steven E.; Katz, Richard

    1999-01-01

    Spacecraft require all manner of both digital and analog circuits. Onboard digital systems are constructed almost exclusively from field-programmable gate array (FPGA) circuits providing numerous advantages over discrete design including high integration density, high reliability, fast turn-around design cycle time, lower mass, volume, and power consumption, and lower parts acquisition and flight qualification costs. Analog and mixed-signal circuits perform tasks ranging from housekeeping to signal conditioning and processing. These circuits are painstakingly designed and built using discrete components due to a lack of options for field-programmability. FPAA (Field-Programmable Analog Array) and FPMA (Field-Programmable Mixed-signal Array) parts exist but not in radiation-tolerant technology and not necessarily in an architecture optimal for the design of analog circuits for spaceflight applications. This paper outlines an architecture proposed for an FPAA fabricated in an existing commercial digital CMOS process used to make radiation-tolerant antifuse-based FPGA devices. The primary concerns are the impact of the technology and the overall array architecture on the flexibility of programming, the bandwidth available for high-speed analog circuits, and the accuracy of the components for high-performance applications.

  10. High resolution distributed time-to-digital converter (TDC) in a White Rabbit network

    NASA Astrophysics Data System (ADS)

    Pan, Weibin; Gong, Guanghua; Du, Qiang; Li, Hongming; Li, Jianmin

    2014-02-01

    The Large High Altitude Air Shower Observatory (LHAASO) project consists of a complex detector array with over 6000 detector nodes spreading over 1.2 km2 areas. The arrival times of shower particles are captured by time-to-digital converters (TDCs) in the detectors' frontend electronics, the arrival direction of the high energy cosmic ray are then to be reconstructed from the space-time information of all detector nodes. To guarantee the angular resolution of 0.5°, a time synchronization of 500 ps (RMS) accuracy and 100 ps precision must be achieved among all TDC nodes. A technology enhancing Gigabit Ethernet, called the White Rabbit (WR), has shown the capability of delivering sub-nanosecond accuracy and picoseconds precision of synchronization over the standard data packet transfer. In this paper we demonstrate a distributed TDC prototype system combining the FPGA based TDC and the WR technology. With the time synchronization and data transfer services from a compact WR node, separate FPGA-TDC nodes can be combined to provide uniform time measurement information for correlated events. The design detail and test performance will be described in the paper.

  11. A Low Cost Matching Motion Estimation Sensor Based on the NIOS II Microprocessor

    PubMed Central

    González, Diego; Botella, Guillermo; Meyer-Baese, Uwe; García, Carlos; Sanz, Concepción; Prieto-Matías, Manuel; Tirado, Francisco

    2012-01-01

    This work presents the implementation of a matching-based motion estimation sensor on a Field Programmable Gate Array (FPGA) and NIOS II microprocessor applying a C to Hardware (C2H) acceleration paradigm. The design, which involves several matching algorithms, is mapped using Very Large Scale Integration (VLSI) technology. These algorithms, as well as the hardware implementation, are presented here together with an extensive analysis of the resources needed and the throughput obtained. The developed low-cost system is practical for real-time throughput and reduced power consumption and is useful in robotic applications, such as tracking, navigation using an unmanned vehicle, or as part of a more complex system. PMID:23201989

  12. Compute Element and Interface Box for the Hazard Detection System

    NASA Technical Reports Server (NTRS)

    Villalpando, Carlos Y.; Khanoyan, Garen; Stern, Ryan A.; Some, Raphael R.; Bailey, Erik S.; Carson, John M.; Vaughan, Geoffrey M.; Werner, Robert A.; Salomon, Phil M.; Martin, Keith E.; hide

    2013-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) program is building a sensor that enables a spacecraft to evaluate autonomously a potential landing area to generate a list of hazardous and safe landing sites. It will also provide navigation inputs relative to those safe sites. The Hazard Detection System Compute Element (HDS-CE) box combines a field-programmable gate array (FPGA) board for sensor integration and timing, with a multicore computer board for processing. The FPGA does system-level timing and data aggregation, and acts as a go-between, removing the real-time requirements from the processor and labeling events with a high resolution time. The processor manages the behavior of the system, controls the instruments connected to the HDS-CE, and services the "heavy lifting" computational requirements for analyzing the potential landing spots.

  13. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Ormsby, John (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing (DSP) functions. Such capability also makes and FPGA a suitable platform for the digital implementation of closed loop controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance in a compact form-factor. Other researchers have presented the notion that a second order digital filter with proportional-integral-derivative (PID) control functionality can be implemented in an FPGA. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSF) devices. Our goal is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. Meeting our goals requires alternative compact implementation of such functionality to withstand the harsh environment encountered on spacecraft. Radiation tolerant FPGA's are a feasible option for reaching these goals.

  14. An FPGA-based bolometer for the MAST-U Super-X divertor.

    PubMed

    Lovell, Jack; Naylor, Graham; Field, Anthony; Drewelow, Peter; Sharples, Ray

    2016-11-01

    A new resistive bolometer system has been developed for MAST-Upgrade. It will measure radiated power in the new Super-X divertor, with millisecond time resolution, along 16 vertical and 16 horizontal lines of sight. The system uses a Xilinx Zynq-7000 series Field-Programmable Gate Array (FPGA) in the D-TACQ ACQ2106 carrier to perform real time data acquisition and signal processing. The FPGA enables AC-synchronous detection using high performance digital filtering to achieve a high signal-to-noise ratio and will be able to output processed data in real time with millisecond latency. The system has been installed on 8 previously unused channels of the JET vertical bolometer system. Initial results suggest good agreement with data from existing vertical channels but with higher bandwidth and signal-to-noise ratio.

  15. An FPGA-based reconfigurable DDC algorithm

    NASA Astrophysics Data System (ADS)

    Juszczyk, B.; Kasprowicz, G.

    2016-09-01

    This paper describes implementation of reconfigurable digital down converter in an FPGA structure. System is designed to work with quadrature signals. One of the main criteria of the project was to provied wide range of reconfiguration in order to fulfill various application rage. Potential applications include: software defined radio receiver, passive noise radars and measurement data compression. This document contains general system overview, short description of hardware used in the project and gateware implementation.

  16. Flexible Peripheral Component Interconnect Input/Output Card

    NASA Technical Reports Server (NTRS)

    Bigelow, Kirk K.; Jerry, Albert L.; Baricio, Alisha G.; Cummings, Jon K.

    2010-01-01

    The Flexible Peripheral Component Interconnect (PCI) Input/Output (I/O) Card is an innovative circuit board that provides functionality to interface between a variety of devices. It supports user-defined interrupts for interface synchronization, tracks system faults and failures, and includes checksum and parity evaluation of interface data. The card supports up to 16 channels of high-speed, half-duplex, low-voltage digital signaling (LVDS) serial data, and can interface combinations of serial and parallel devices. Placement of a processor within the field programmable gate array (FPGA) controls an embedded application with links to host memory over its PCI bus. The FPGA also provides protocol stacking and quick digital signal processor (DSP) functions to improve host performance. Hardware timers, counters, state machines, and other glue logic support interface communications. The Flexible PCI I/O Card provides an interface for a variety of dissimilar computer systems, featuring direct memory access functionality. The card has the following attributes: 8/16/32-bit, 33-MHz PCI r2.2 compliance, Configurable for universal 3.3V/5V interface slots, PCI interface based on PLX Technology's PCI9056 ASIC, General-use 512K 16 SDRAM memory, General-use 1M 16 Flash memory, FPGA with 3K to 56K logical cells with embedded 27K to 198K bits RAM, I/O interface: 32-channel LVDS differential transceivers configured in eight, 4-bit banks; signaling rates to 200 MHz per channel, Common SCSI-3, 68-pin interface connector.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seyong; Kim, Jungwon; Vetter, Jeffrey S

    This paper presents a directive-based, high-level programming framework for high-performance reconfigurable computing. It takes a standard, portable OpenACC C program as input and generates a hardware configuration file for execution on FPGAs. We implemented this prototype system using our open-source OpenARC compiler; it performs source-to-source translation and optimization of the input OpenACC program into an OpenCL code, which is further compiled into a FPGA program by the backend Altera Offline OpenCL compiler. Internally, the design of OpenARC uses a high- level intermediate representation that separates concerns of program representation from underlying architectures, which facilitates portability of OpenARC. In fact, thismore » design allowed us to create the OpenACC-to-FPGA translation framework with minimal extensions to our existing system. In addition, we show that our proposed FPGA-specific compiler optimizations and novel OpenACC pragma extensions assist the compiler in generating more efficient FPGA hardware configuration files. Our empirical evaluation on an Altera Stratix V FPGA with eight OpenACC benchmarks demonstrate the benefits of our strategy. To demonstrate the portability of OpenARC, we show results for the same benchmarks executing on other heterogeneous platforms, including NVIDIA GPUs, AMD GPUs, and Intel Xeon Phis. This initial evidence helps support the goal of using a directive-based, high-level programming strategy for performance portability across heterogeneous HPC architectures.« less

  18. Implementation of the Timepix ASIC in the Scalable Readout System

    NASA Astrophysics Data System (ADS)

    Lupberger, M.; Desch, K.; Kaminski, J.

    2016-09-01

    We report on the development of electronics hardware, FPGA firmware and software to provide a flexible multi-chip readout of the Timepix ASIC within the framework of the Scalable Readout System (SRS). The system features FPGA-based zero-suppression and the possibility to read out up to 4×8 chips with a single Front End Concentrator (FEC). By operating several FECs in parallel, in principle an arbitrary number of chips can be read out, exploiting the scaling features of SRS. Specifically, we tested the system with a setup consisting of 160 Timepix ASICs, operated as GridPix devices in a large TPC field cage in a 1 T magnetic field at a DESY test beam facility providing an electron beam of up to 6 GeV. We discuss the design choices, the dedicated hardware components, the FPGA firmware as well as the performance of the system in the test beam.

  19. On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery

    PubMed Central

    Qi, Baogui; Zhuang, Yin; Chen, He; Chen, Liang

    2018-01-01

    With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited. PMID:29693585

  20. On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery.

    PubMed

    Qi, Baogui; Shi, Hao; Zhuang, Yin; Chen, He; Chen, Liang

    2018-04-25

    With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited.

  1. A Spaceborne Synthetic Aperture Radar Partial Fixed-Point Imaging System Using a Field- Programmable Gate Array—Application-Specific Integrated Circuit Hybrid Heterogeneous Parallel Acceleration Technique

    PubMed Central

    Li, Bingyi; Chen, Liang; Wei, Chunpeng; Xie, Yizhuang; Chen, He; Yu, Wenyue

    2017-01-01

    With the development of satellite load technology and very large scale integrated (VLSI) circuit technology, onboard real-time synthetic aperture radar (SAR) imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS) SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT), which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array—application-specific integrated circuit (FPGA-ASIC) hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS) technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384. PMID:28672813

  2. A Spaceborne Synthetic Aperture Radar Partial Fixed-Point Imaging System Using a Field- Programmable Gate Array-Application-Specific Integrated Circuit Hybrid Heterogeneous Parallel Acceleration Technique.

    PubMed

    Yang, Chen; Li, Bingyi; Chen, Liang; Wei, Chunpeng; Xie, Yizhuang; Chen, He; Yu, Wenyue

    2017-06-24

    With the development of satellite load technology and very large scale integrated (VLSI) circuit technology, onboard real-time synthetic aperture radar (SAR) imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS) SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT), which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array-application-specific integrated circuit (FPGA-ASIC) hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS) technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384.

  3. FPGA-based multiprocessor system for injection molding control.

    PubMed

    Muñoz-Barron, Benigno; Morales-Velazquez, Luis; Romero-Troncoso, Rene J; Rodriguez-Donate, Carlos; Trejo-Hernandez, Miguel; Benitez-Rangel, Juan P; Osornio-Rios, Roque A

    2012-10-18

    The plastic industry is a very important manufacturing sector and injection molding is a widely used forming method in that industry. The contribution of this work is the development of a strategy to retrofit control of an injection molding machine based on an embedded system microprocessors sensor network on a field programmable gate array (FPGA) device. Six types of embedded processors are included in the system: a smart-sensor processor, a micro fuzzy logic controller, a programmable logic controller, a system manager, an IO processor and a communication processor. Temperature, pressure and position are controlled by the proposed system and experimentation results show its feasibility and robustness. As validation of the present work, a particular sample was successfully injected.

  4. Real-time FPGA-based radar imaging for smart mobility systems

    NASA Astrophysics Data System (ADS)

    Saponara, Sergio; Neri, Bruno

    2016-04-01

    The paper presents an X-band FMCW (Frequency Modulated Continuous Wave) Radar Imaging system, called X-FRI, for surveillance in smart mobility applications. X-FRI allows for detecting the presence of targets (e.g. obstacles in a railway crossing or urban road crossing, or ships in a small harbor), as well as their speed and their position. With respect to alternative solutions based on LIDAR or camera systems, X-FRI operates in real-time also in bad lighting and weather conditions, night and day. The radio-frequency transceiver is realized through COTS (Commercial Off The Shelf) components on a single-board. An FPGA-based baseband platform allows for real-time Radar image processing.

  5. Embedded real-time image processing hardware for feature extraction and clustering

    NASA Astrophysics Data System (ADS)

    Chiu, Lihu; Chang, Grant

    2003-08-01

    Printronix, Inc. uses scanner-based image systems to perform print quality measurements for line-matrix printers. The size of the image samples and image definition required make commercial scanners convenient to use. The image processing is relatively well defined, and we are able to simplify many of the calculations into hardware equations and "c" code. The process of rapidly prototyping the system using DSP based "c" code gets the algorithms well defined early in the development cycle. Once a working system is defined, the rest of the process involves splitting the task up for the FPGA and the DSP implementation. Deciding which of the two to use, the DSP or the FPGA, is a simple matter of trial benchmarking. There are two kinds of benchmarking: One for speed, and the other for memory. The more memory intensive algorithms should run in the DSP, and the simple real time tasks can use the FPGA most effectively. Once the task is split, we can decide which platform the algorithm should be executed. This involves prototyping all the code in the DSP, then timing various blocks of the algorithm. Slow routines can be optimized using the compiler tools, and if further reduction in time is needed, into tasks that the FPGA can perform.

  6. FPGA-based trigger system for the LUX dark matter experiment

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bradley, A.; Bramante, R.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chapman, J. J.; Chiller, A. A.; Chiller, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; de Viveiros, L.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Malling, D. C.; Manalaysay, A. G.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O`Sullivan, K.; Oliver-Mallory, K. C.; Ott, R. A.; Palladino, K. J.; Pangilinan, M.; Pease, E. K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Skulski, W.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Yin, J.; Young, S. K.; Zhang, C.

    2016-05-01

    LUX is a two-phase (liquid/gas) xenon time projection chamber designed to detect nuclear recoils resulting from interactions with dark matter particles. Signals from the detector are processed with an FPGA-based digital trigger system that analyzes the incoming data in real-time, with just a few microsecond latency. The system enables first pass selection of events of interest based on their pulse shape characteristics and 3D localization of the interactions. It has been shown to be > 99 % efficient in triggering on S2 signals induced by only few extracted liquid electrons. It is continuously and reliably operating since its full underground deployment in early 2013. This document is an overview of the systems capabilities, its inner workings, and its performance.

  7. A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor

    PubMed Central

    Tayara, Hilal; Ham, Woonchul; Chong, Kil To

    2016-01-01

    This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation. PMID:27983714

  8. A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor.

    PubMed

    Tayara, Hilal; Ham, Woonchul; Chong, Kil To

    2016-12-15

    This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation.

  9. FPGA Implementation of Heart Rate Monitoring System.

    PubMed

    Panigrahy, D; Rakshit, M; Sahu, P K

    2016-03-01

    This paper describes a field programmable gate array (FPGA) implementation of a system that calculates the heart rate from Electrocardiogram (ECG) signal. After heart rate calculation, tachycardia, bradycardia or normal heart rate can easily be detected. ECG is a diagnosis tool routinely used to access the electrical activities and muscular function of the heart. Heart rate is calculated by detecting the R peaks from the ECG signal. To provide a portable and the continuous heart rate monitoring system for patients using ECG, needs a dedicated hardware. FPGA provides easy testability, allows faster implementation and verification option for implementing a new design. We have proposed a five-stage based methodology by using basic VHDL blocks like addition, multiplication and data conversion (real to the fixed point and vice-versa). Our proposed heart rate calculation (R-peak detection) method has been validated, using 48 first channel ECG records of the MIT-BIH arrhythmia database. It shows an accuracy of 99.84%, the sensitivity of 99.94% and the positive predictive value of 99.89%. Our proposed method outperforms other well-known methods in case of pathological ECG signals and successfully implemented in FPGA.

  10. Single-Event Effect (SEE) Survey of Advanced Reconfigurable Field Programmable Gate Arrays: NASA Electronic Parts and Packaging (NEPP) Program Office of Safety and Mission Assurance

    NASA Technical Reports Server (NTRS)

    Allen, Gregory

    2011-01-01

    The NEPP Reconfigurable Field-Programmable Gate Array (FPGA) task has been charged to evaluate reconfigurable FPGA technologies for use in space. Under this task, the Xilinx single-event-immune, reconfigurable FPGA (SIRF) XQR5VFX130 device was evaluated for SEE. Additionally, the Altera Stratix-IV and SiliconBlue iCE65 were screened for single-event latchup (SEL).

  11. Infrared small target tracking based on SOPC

    NASA Astrophysics Data System (ADS)

    Hu, Taotao; Fan, Xiang; Zhang, Yu-Jin; Cheng, Zheng-dong; Zhu, Bin

    2011-01-01

    The paper presents a low cost FPGA based solution for a real-time infrared small target tracking system. A specialized architecture is presented based on a soft RISC processor capable of running kernel based mean shift tracking algorithm. Mean shift tracking algorithm is realized in NIOS II soft-core with SOPC (System on a Programmable Chip) technology. Though mean shift algorithm is widely used for target tracking, the original mean shift algorithm can not be directly used for infrared small target tracking. As infrared small target only has intensity information, so an improved mean shift algorithm is presented in this paper. How to describe target will determine whether target can be tracked by mean shift algorithm. Because color target can be tracked well by mean shift algorithm, imitating color image expression, spatial component and temporal component are advanced to describe target, which forms pseudo-color image. In order to improve the processing speed parallel technology and pipeline technology are taken. Two RAM are taken to stored images separately by ping-pong technology. A FLASH is used to store mass temp data. The experimental results show that infrared small target is tracked stably in complicated background.

  12. The GANDALF 128-Channel Time-to-Digital Converter

    NASA Astrophysics Data System (ADS)

    Büchele, M.; Fischer, H.; Herrmann, F.; Königsmann, K.; Schill, C.; Schopferer, S.

    The GANDALF 6U-VME64x/VXS module has been designed to cope with a variety of readout tasks in high energy and nuclear physics experiments, in particular the COMPASS experiment at CERN. The exchangeable mezzanine cards allow for an employment of the system in very different applications such as analog-to-digital or time-to-digital conversions, coincidence matrix formation, fast pattern recognition or fast trigger generation. Based on this platform, we present a 128-channel TDC which is implemented in a single Xilinx Virtex-5 FPGA using a shifted clock sampling method. In this concept each input signal is continuously sampled by 16 flip-flops using equidistant phase-shifted clocks. Compared to previous FPGA designs, usually based on delay lines and comprising few TDC channels with resolutions in the order of 10 ps, our design permits the implementation of a large number of TDC channels with a resolution of 64 ps in a single FPGA. Predictable placement of logic components and uniform routing inside the FPGA fabric is a particular challenge of this design. We present measurement results for the time resolution and the nonlinearity of the TDC readout system.

  13. C to VHDL compiler

    NASA Astrophysics Data System (ADS)

    Berdychowski, Piotr P.; Zabolotny, Wojciech M.

    2010-09-01

    The main goal of C to VHDL compiler project is to make FPGA platform more accessible for scientists and software developers. FPGA platform offers unique ability to configure the hardware to implement virtually any dedicated architecture, and modern devices provide sufficient number of hardware resources to implement parallel execution platforms with complex processing units. All this makes the FPGA platform very attractive for those looking for efficient heterogeneous, computing environment. Current industry standard in development of digital systems on FPGA platform is based on HDLs. Although very effective and expressive in hands of hardware development specialists, these languages require specific knowledge and experience, unreachable for most scientists and software programmers. C to VHDL compiler project attempts to remedy that by creating an application, that derives initial VHDL description of a digital system (for further compilation and synthesis), from purely algorithmic description in C programming language. This idea itself is not new, and the C to VHDL compiler combines the best approaches from existing solutions developed over many previous years, with the introduction of some new unique improvements.

  14. Design of time interval generator based on hybrid counting method

    NASA Astrophysics Data System (ADS)

    Yao, Yuan; Wang, Zhaoqi; Lu, Houbing; Chen, Lian; Jin, Ge

    2016-10-01

    Time Interval Generators (TIGs) are frequently used for the characterizations or timing operations of instruments in particle physics experiments. Though some "off-the-shelf" TIGs can be employed, the necessity of a custom test system or control system makes the TIGs, being implemented in a programmable device desirable. Nowadays, the feasibility of using Field Programmable Gate Arrays (FPGAs) to implement particle physics instrumentation has been validated in the design of Time-to-Digital Converters (TDCs) for precise time measurement. The FPGA-TDC technique is based on the architectures of Tapped Delay Line (TDL), whose delay cells are down to few tens of picosecond. In this case, FPGA-based TIGs with high delay step are preferable allowing the implementation of customized particle physics instrumentations and other utilities on the same FPGA device. A hybrid counting method for designing TIGs with both high resolution and wide range is presented in this paper. The combination of two different counting methods realizing an integratable TIG is described in detail. A specially designed multiplexer for tap selection is emphatically introduced. The special structure of the multiplexer is devised for minimizing the different additional delays caused by the unpredictable routings from different taps to the output. A Kintex-7 FPGA is used for the hybrid counting-based implementation of a TIG, providing a resolution up to 11 ps and an interval range up to 8 s.

  15. Study on nondestructive detection system based on x-ray for wire ropes conveyer belt

    NASA Astrophysics Data System (ADS)

    Miao, Changyun; Shi, Boya; Wan, Peng; Li, Jie

    2008-03-01

    A nondestructive detection system based on X-ray for wire ropes conveyer belt is designed by X-ray detection technology. In this paper X-ray detection principle is analyzed, a design scheme of the system is presented; image processing of conveyer belt is researched and image processing algorithms are given; X-ray acquisition receiving board is designed with the use of FPGA and DSP; the software of the system is programmed by C#.NET on WINXP/WIN2000 platform. The experiment indicates the system can implement remote real-time detection of wire ropes conveyer belt images, find faults and give an alarm in time. The system is direct perceived, strong real-time and high accurate. It can be used for fault detection of wire ropes conveyer belts in mines, ports, terminals and other fields.

  16. [Research and realization of signal processing algorithms based on FPGA in digital ophthalmic ultrasonography imaging].

    PubMed

    Fang, Simin; Zhou, Sheng; Wang, Xiaochun; Ye, Qingsheng; Tian, Ling; Ji, Jianjun; Wang, Yanqun

    2015-01-01

    To design and improve signal processing algorithms of ophthalmic ultrasonography based on FPGA. Achieved three signal processing modules: full parallel distributed dynamic filter, digital quadrature demodulation, logarithmic compression, using Verilog HDL hardware language in Quartus II. Compared to the original system, the hardware cost is reduced, the whole image shows clearer and more information of the deep eyeball contained in the image, the depth of detection increases from 5 cm to 6 cm. The new algorithms meet the design requirements and achieve the system's optimization that they can effectively improve the image quality of existing equipment.

  17. FPGA-based architecture for motion recovering in real-time

    NASA Astrophysics Data System (ADS)

    Arias-Estrada, Miguel; Maya-Rueda, Selene E.; Torres-Huitzil, Cesar

    2002-03-01

    A key problem in the computer vision field is the measurement of object motion in a scene. The main goal is to compute an approximation of the 3D motion from the analysis of an image sequence. Once computed, this information can be used as a basis to reach higher level goals in different applications. Motion estimation algorithms pose a significant computational load for the sequential processors limiting its use in practical applications. In this work we propose a hardware architecture for motion estimation in real time based on FPGA technology. The technique used for motion estimation is Optical Flow due to its accuracy, and the density of velocity estimation, however other techniques are being explored. The architecture is composed of parallel modules working in a pipeline scheme to reach high throughput rates near gigaflops. The modules are organized in a regular structure to provide a high degree of flexibility to cover different applications. Some results will be presented and the real-time performance will be discussed and analyzed. The architecture is prototyped in an FPGA board with a Virtex device interfaced to a digital imager.

  18. High speed FPGA-based Phasemeter for the far-infrared laser interferometers on EAST

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Liu, H.; Zou, Z.; Li, W.; Lian, H.; Jie, Y.

    2017-12-01

    The far-infrared laser-based HCN interferometer and POlarimeter/INTerferometer\\break (POINT) system are important diagnostics for plasma density measurement on EAST tokamak. Both HCN and POINT provide high spatial and temporal resolution of electron density measurement and used for plasma density feedback control. The density is calculated by measuring the real-time phase difference between the reference beams and the probe beams. For long-pulse operations on EAST, the calculation of density has to meet the requirements of Real-Time and high precision. In this paper, a Phasemeter for far-infrared laser-based interferometers will be introduced. The FPGA-based Phasemeter leverages fast ADCs to obtain the three-frequency signals from VDI planar-diode Mixers, and realizes digital filters and an FFT algorithm in FPGA to provide real-time, high precision electron density output. Implementation of the Phasemeter will be helpful for the future plasma real-time feedback control in long-pulse discharge.

  19. FPGA-Based Reconfigurable Processor for Ultrafast Interlaced Ultrasound and Photoacoustic Imaging

    PubMed Central

    Alqasemi, Umar; Li, Hai; Aguirre, Andrés; Zhu, Quing

    2016-01-01

    In this paper, we report, to the best of our knowledge, a unique field-programmable gate array (FPGA)-based reconfigurable processor for real-time interlaced co-registered ultrasound and photoacoustic imaging and its application in imaging tumor dynamic response. The FPGA is used to control, acquire, store, delay-and-sum, and transfer the data for real-time co-registered imaging. The FPGA controls the ultrasound transmission and ultrasound and photoacoustic data acquisition process of a customized 16-channel module that contains all of the necessary analog and digital circuits. The 16-channel module is one of multiple modules plugged into a motherboard; their beamformed outputs are made available for a digital signal processor (DSP) to access using an external memory interface (EMIF). The FPGA performs a key role through ultrafast reconfiguration and adaptation of its structure to allow real-time switching between the two imaging modes, including transmission control, laser synchronization, internal memory structure, beamforming, and EMIF structure and memory size. It performs another role by parallel accessing of internal memories and multi-thread processing to reduce the transfer of data and the processing load on the DSP. Furthermore, because the laser will be pulsing even during ultrasound pulse-echo acquisition, the FPGA ensures that the laser pulses are far enough from the pulse-echo acquisitions by appropriate time-division multiplexing (TDM). A co-registered ultrasound and photoacoustic imaging system consisting of four FPGA modules (64-channels) is constructed, and its performance is demonstrated using phantom targets and in vivo mouse tumor models. PMID:22828830

  20. FPGA-based reconfigurable processor for ultrafast interlaced ultrasound and photoacoustic imaging.

    PubMed

    Alqasemi, Umar; Li, Hai; Aguirre, Andrés; Zhu, Quing

    2012-07-01

    In this paper, we report, to the best of our knowledge, a unique field-programmable gate array (FPGA)-based reconfigurable processor for real-time interlaced co-registered ultrasound and photoacoustic imaging and its application in imaging tumor dynamic response. The FPGA is used to control, acquire, store, delay-and-sum, and transfer the data for real-time co-registered imaging. The FPGA controls the ultrasound transmission and ultrasound and photoacoustic data acquisition process of a customized 16-channel module that contains all of the necessary analog and digital circuits. The 16-channel module is one of multiple modules plugged into a motherboard; their beamformed outputs are made available for a digital signal processor (DSP) to access using an external memory interface (EMIF). The FPGA performs a key role through ultrafast reconfiguration and adaptation of its structure to allow real-time switching between the two imaging modes, including transmission control, laser synchronization, internal memory structure, beamforming, and EMIF structure and memory size. It performs another role by parallel accessing of internal memories and multi-thread processing to reduce the transfer of data and the processing load on the DSP. Furthermore, because the laser will be pulsing even during ultrasound pulse-echo acquisition, the FPGA ensures that the laser pulses are far enough from the pulse-echo acquisitions by appropriate time-division multiplexing (TDM). A co-registered ultrasound and photoacoustic imaging system consisting of four FPGA modules (64-channels) is constructed, and its performance is demonstrated using phantom targets and in vivo mouse tumor models.

  1. Beam Instrument Development System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DOOLITTLE, LAWRENCE; HUANG, GANG; DU, QIANG

    Beam Instrumentation Development System (BIDS) is a collection of common support libraries and modules developed during a series of Low-Level Radio Frequency (LLRF) control and timing/synchronization projects. BIDS includes a collection of Hardware Description Language (HDL) libraries and software libraries. The BIDS can be used for the development of any FPGA-based system, such as LLRF controllers. HDL code in this library is generic and supports common Digital Signal Processing (DSP) functions, FPGA-specific drivers (high-speed serial link wrappers, clock generation, etc.), ADC/DAC drivers, Ethernet MAC implementation, etc.

  2. HALO: a reconfigurable image enhancement and multisensor fusion system

    NASA Astrophysics Data System (ADS)

    Wu, F.; Hickman, D. L.; Parker, Steve J.

    2014-06-01

    Contemporary high definition (HD) cameras and affordable infrared (IR) imagers are set to dramatically improve the effectiveness of security, surveillance and military vision systems. However, the quality of imagery is often compromised by camera shake, or poor scene visibility due to inadequate illumination or bad atmospheric conditions. A versatile vision processing system called HALO™ is presented that can address these issues, by providing flexible image processing functionality on a low size, weight and power (SWaP) platform. Example processing functions include video distortion correction, stabilisation, multi-sensor fusion and image contrast enhancement (ICE). The system is based around an all-programmable system-on-a-chip (SoC), which combines the computational power of a field-programmable gate array (FPGA) with the flexibility of a CPU. The FPGA accelerates computationally intensive real-time processes, whereas the CPU provides management and decision making functions that can automatically reconfigure the platform based on user input and scene content. These capabilities enable a HALO™ equipped reconnaissance or surveillance system to operate in poor visibility, providing potentially critical operational advantages in visually complex and challenging usage scenarios. The choice of an FPGA based SoC is discussed, and the HALO™ architecture and its implementation are described. The capabilities of image distortion correction, stabilisation, fusion and ICE are illustrated using laboratory and trials data.

  3. FPGA-Based Multiprocessor System for Injection Molding Control

    PubMed Central

    Muñoz-Barron, Benigno; Morales-Velazquez, Luis; Romero-Troncoso, Rene J.; Rodriguez-Donate, Carlos; Trejo-Hernandez, Miguel; Benitez-Rangel, Juan P.; Osornio-Rios, Roque A.

    2012-01-01

    The plastic industry is a very important manufacturing sector and injection molding is a widely used forming method in that industry. The contribution of this work is the development of a strategy to retrofit control of an injection molding machine based on an embedded system microprocessors sensor network on a field programmable gate array (FPGA) device. Six types of embedded processors are included in the system: a smart-sensor processor, a micro fuzzy logic controller, a programmable logic controller, a system manager, an IO processor and a communication processor. Temperature, pressure and position are controlled by the proposed system and experimentation results show its feasibility and robustness. As validation of the present work, a particular sample was successfully injected. PMID:23202036

  4. An efficient HW and SW design of H.264 video compression, storage and playback on FPGA devices for handheld thermal imaging systems

    NASA Astrophysics Data System (ADS)

    Gunay, Omer; Ozsarac, Ismail; Kamisli, Fatih

    2017-05-01

    Video recording is an essential property of new generation military imaging systems. Playback of the stored video on the same device is also desirable as it provides several operational benefits to end users. Two very important constraints for many military imaging systems, especially for hand-held devices and thermal weapon sights, are power consumption and size. To meet these constraints, it is essential to perform most of the processing applied to the video signal, such as preprocessing, compression, storing, decoding, playback and other system functions on a single programmable chip, such as FPGA, DSP, GPU or ASIC. In this work, H.264/AVC (Advanced Video Coding) compatible video compression, storage, decoding and playback blocks are efficiently designed and implemented on FPGA platforms using FPGA fabric and Altera NIOS II soft processor. Many subblocks that are used in video encoding are also used during video decoding in order to save FPGA resources and power. Computationally complex blocks are designed using FPGA fabric, while blocks such as SD card write/read, H.264 syntax decoding and CAVLC decoding are done using NIOS processor to benefit from software flexibility. In addition, to keep power consumption low, the system was designed to require limited external memory access. The design was tested using 640x480 25 fps thermal camera on CYCLONE V FPGA, which is the ALTERA's lowest power FPGA family, and consumes lower than 40% of CYCLONE V 5CEFA7 FPGA resources on average.

  5. Telemetry Modernization with Open Architecture Software-Defined Radio Technology

    DTIC Science & Technology

    2016-01-01

    digital (A/D) con- vertors and separated into narrowband channels through digital down-conversion ( DDC ) techniques implemented in field-programmable...Lexington, MA 02420-9108 781-981-4204 Operations center Recording Filter FPGA DDC Filter Channel 1 Filter FPGA DDC Filter Channel n Wideband tuner A

  6. Field programmable gate arrays: Evaluation report for space-flight application

    NASA Technical Reports Server (NTRS)

    Sandoe, Mike; Davarpanah, Mike; Soliman, Kamal; Suszko, Steven; Mackey, Susan

    1992-01-01

    Field Programmable Gate Arrays commonly called FPGA's are the newer generation of field programmable devices and offer more flexibility in the logic modules they incorporate and in how they are interconnected. The flexibility, the number of logic building blocks available, and the high gate densities achievable are why users find FPGA's attractive. These attributes are important in reducing product development costs and shortening the development cycle. The aerospace community is interested in incorporating this new generation of field programmable technology in space applications. To this end, a consortium was formed to evaluate the quality, reliability, and radiation performance of FPGA's. This report presents the test results on FPGA parts provided by ACTEL Corporation.

  7. FPGA-based trigger system for the LUX dark matter experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerib, D. S.; Araújo, H. M.; Bai, X.

    LUX is a two-phase (liquid/gas) xenon time projection chamber designed to detect nuclear recoils resulting from interactions with dark matter particles. Signals from the detector are processed with an FPGA-based digital trigger system that analyzes the incoming data in real-time, with just a few microsecond latency. The system enables first pass selection of events of interest based on their pulse shape characteristics and 3D localization of the interactions. It has been shown to be >99% efficient in triggering on S2 signals induced by only few extracted liquid electrons. It is continuously and reliably operating since its full underground deployment inmore » early 2013. This document is an overview of the systems capabilities, its inner workings, and its performance.« less

  8. FPGA-based trigger system for the LUX dark matter experiment

    DOE PAGES

    Akerib, D. S.; Araújo, H. M.; Bai, X.; ...

    2016-02-17

    We present that LUX is a two-phase (liquid/gas) xenon time projection chamber designed to detect nuclear recoils resulting from interactions with dark matter particles. Signals from the detector are processed with an FPGA-based digital trigger system that analyzes the incoming data in real-time, with just a few microsecond latency. The system enables first pass selection of events of interest based on their pulse shape characteristics and 3D localization of the interactions. It has been shown to be > 99% efficient in triggering on S2 signals induced by only few extracted liquid electrons. It is continuously and reliably operating since itsmore » full underground deployment in early 2013. Finally, this document is an overview of the systems capabilities, its inner workings, and its performance.« less

  9. Real-time object tracking based on scale-invariant features employing bio-inspired hardware.

    PubMed

    Yasukawa, Shinsuke; Okuno, Hirotsugu; Ishii, Kazuo; Yagi, Tetsuya

    2016-09-01

    We developed a vision sensor system that performs a scale-invariant feature transform (SIFT) in real time. To apply the SIFT algorithm efficiently, we focus on a two-fold process performed by the visual system: whole-image parallel filtering and frequency-band parallel processing. The vision sensor system comprises an active pixel sensor, a metal-oxide semiconductor (MOS)-based resistive network, a field-programmable gate array (FPGA), and a digital computer. We employed the MOS-based resistive network for instantaneous spatial filtering and a configurable filter size. The FPGA is used to pipeline process the frequency-band signals. The proposed system was evaluated by tracking the feature points detected on an object in a video. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. FPGA-based trigger system for the LUX dark matter experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerib, D. S.; Araújo, H. M.; Bai, X.

    We present that LUX is a two-phase (liquid/gas) xenon time projection chamber designed to detect nuclear recoils resulting from interactions with dark matter particles. Signals from the detector are processed with an FPGA-based digital trigger system that analyzes the incoming data in real-time, with just a few microsecond latency. The system enables first pass selection of events of interest based on their pulse shape characteristics and 3D localization of the interactions. It has been shown to be > 99% efficient in triggering on S2 signals induced by only few extracted liquid electrons. It is continuously and reliably operating since itsmore » full underground deployment in early 2013. Finally, this document is an overview of the systems capabilities, its inner workings, and its performance.« less

  11. Design of the ANTARES LCM-DAQ board test bench using a FPGA-based system-on-chip approach

    NASA Astrophysics Data System (ADS)

    Anvar, S.; Kestener, P.; Le Provost, H.

    2006-11-01

    The System-on-Chip (SoC) approach consists in using state-of-the-art FPGA devices with embedded RISC processor cores, high-speed differential LVDS links and ready-to-use multi-gigabit transceivers allowing development of compact systems with substantial number of IO channels. Required performances are obtained through a subtle separation of tasks between closely cooperating programmable hardware logic and user-friendly software environment. We report about our experience in using the SoC approach for designing the production test bench of the off-shore readout system for the ANTARES neutrino experiment.

  12. Enhanced Control for Local Helicity Injection on the Pegasus ST

    NASA Astrophysics Data System (ADS)

    Pierren, C.; Bongard, M. W.; Fonck, R. J.; Lewicki, B. T.; Perry, J. M.

    2017-10-01

    Local helicity injection (LHI) experiments on Pegasus rely upon programmable control of a 250 MVA modular power supply system that drives the electromagnets and helicity injection systems. Precise control of the central solenoid is critical to experimental campaigns that test the LHI Taylor relaxation limit and the coupling efficiency of LHI-produced plasmas to Ohmic current drive. Enhancement and expansion of the present control system is underway using field programmable gate array (FPGA) technology for digital logic and control, coupled to new 10 MHz optical-to-digital transceivers for semiconductor level device communication. The system accepts optical command signals from existing analog feedback controllers, transmits them to multiple devices in parallel H-bridges, and aggregates their status signals for fault detection. Present device-level multiplexing/de-multiplexing and protection logic is extended to include bridge-level protections with the FPGA. An input command filter protects against erroneous and/or spurious noise generated commands that could otherwise cause device failures. Fault registration and response times with the FPGA system are 25 ns. Initial system testing indicates an increased immunity to power supply induced noise, enabling plasma operations at higher working capacitor bank voltage. This can increase the applied helicity injection drive voltage, enable longer pulse lengths and improve Ohmic loop voltage control. Work supported by US DOE Grant DE-FG02-96ER54375.

  13. Implementation of a High-Speed FPGA and DSP Based FFT Processor for Improving Strain Demodulation Performance in a Fiber-Optic-Based Sensing System

    NASA Technical Reports Server (NTRS)

    Farley, Douglas L.

    2005-01-01

    NASA's Aviation Safety and Security Program is pursuing research in on-board Structural Health Management (SHM) technologies for purposes of reducing or eliminating aircraft accidents due to system and component failures. Under this program, NASA Langley Research Center (LaRC) is developing a strain-based structural health-monitoring concept that incorporates a fiber optic-based measuring system for acquiring strain values. This fiber optic-based measuring system provides for the distribution of thousands of strain sensors embedded in a network of fiber optic cables. The resolution of strain value at each discrete sensor point requires a computationally demanding data reduction software process that, when hosted on a conventional processor, is not suitable for near real-time measurement. This report describes the development and integration of an alternative computing environment using dedicated computing hardware for performing the data reduction. Performance comparison between the existing and the hardware-based system is presented.

  14. Embedded system of image storage based on fiber channel

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Su, Wanxin; Xing, Zhongbao; Wang, Hualong

    2008-03-01

    In domains of aerospace, aviation, aiming, and optic measure etc., the embedded system of imaging, processing and recording is absolutely necessary, which has small volume, high processing speed and high resolution. But the embedded storage technology becomes system bottleneck because of developing slowly. It is used to use RAID to promote storage speed, but it is unsuitable for the embedded system because of its big volume. Fiber channel (FC) technology offers a new method to develop the high-speed, portable storage system. In order to make storage subsystem meet the needs of high storage rate, make use of powerful Virtex-4 FPGA and high speed fiber channel, advance a project of embedded system of digital image storage based on Xilinx Fiber Channel Arbitrated Loop LogiCORE. This project utilizes Virtex- 4 RocketIO MGT transceivers to transmit the data serially, and connects many Fiber Channel hard drivers by using of Arbitrated Loop optionally. It can achieve 400MBps storage rate, breaks through the bottleneck of PCI interface, and has excellences of high-speed, real-time, portable and massive capacity.

  15. A generic FPGA-based detector readout and real-time image processing board

    NASA Astrophysics Data System (ADS)

    Sarpotdar, Mayuresh; Mathew, Joice; Safonova, Margarita; Murthy, Jayant

    2016-07-01

    For space-based astronomical observations, it is important to have a mechanism to capture the digital output from the standard detector for further on-board analysis and storage. We have developed a generic (application- wise) field-programmable gate array (FPGA) board to interface with an image sensor, a method to generate the clocks required to read the image data from the sensor, and a real-time image processor system (on-chip) which can be used for various image processing tasks. The FPGA board is applied as the image processor board in the Lunar Ultraviolet Cosmic Imager (LUCI) and a star sensor (StarSense) - instruments developed by our group. In this paper, we discuss the various design considerations for this board and its applications in the future balloon and possible space flights.

  16. Optimization of the Multi-Spectral Euclidean Distance Calculation for FPGA-based Spaceborne Systems

    NASA Technical Reports Server (NTRS)

    Cristo, Alejandro; Fisher, Kevin; Perez, Rosa M.; Martinez, Pablo; Gualtieri, Anthony J.

    2012-01-01

    Due to the high quantity of operations that spaceborne processing systems must carry out in space, new methodologies and techniques are being presented as good alternatives in order to free the main processor from work and improve the overall performance. These include the development of ancillary dedicated hardware circuits that carry out the more redundant and computationally expensive operations in a faster way, leaving the main processor free to carry out other tasks while waiting for the result. One of these devices is SpaceCube, a FPGA-based system designed by NASA. The opportunity to use FPGA reconfigurable architectures in space allows not only the optimization of the mission operations with hardware-level solutions, but also the ability to create new and improved versions of the circuits, including error corrections, once the satellite is already in orbit. In this work, we propose the optimization of a common operation in remote sensing: the Multi-Spectral Euclidean Distance calculation. For that, two different hardware architectures have been designed and implemented in a Xilinx Virtex-5 FPGA, the same model of FPGAs used by SpaceCube. Previous results have shown that the communications between the embedded processor and the circuit create a bottleneck that affects the overall performance in a negative way. In order to avoid this, advanced methods including memory sharing, Native Port Interface (NPI) connections and Data Burst Transfers have been used.

  17. MicroTCA-based Global Trigger Upgrade project for the CMS experiment at LHC

    NASA Astrophysics Data System (ADS)

    Rahbaran, B.; Arnold, B.; Bergauer, H.; Eichberger, M.; Rabady, D.

    2011-12-01

    The electronics of the first Level Global Trigger (GT) of CMS is the last stage of the Level-1 trigger system [1]. At LHC up to 40 million collisions of proton bunches occur every second, resulting in about 800 million proton collisions. The CMS Level-1 Global Trigger [1], a custom designed electronics system based on FPGA technology and the VMEbus system, performs a quick on-line analysis of each collision every 25 ns and decides whether to reject or to accept it for further analysis. The CMS trigger group of the Institute of High Energy Physics in Vienna (HEPHY) is involved in the Level-1 trigger of the CMS experiment at CERN. As part of the Trigger Upgrade, the Level-1 Global Trigger will be redesigned and implemented in MicroTCA based technology, which allows engineers to detect all possible faults on plug-in boards, in the power supply and in the cooling system. The upgraded Global Trigger will be designed to have the same basic categories of functions as the present GT, but will have more algorithms and more possibilities for combining trigger candidates. Additionally, reconfigurability and testability will be supported based on the next system generation.

  18. Multichannel FPGA-Based Data-Acquisition-System for Time-Resolved Synchrotron Radiation Experiments

    NASA Astrophysics Data System (ADS)

    Choe, Hyeokmin; Gorfman, Semen; Heidbrink, Stefan; Pietsch, Ullrich; Vogt, Marco; Winter, Jens; Ziolkowski, Michael

    2017-06-01

    The aim of this contribution is to describe our recent development of a novel compact field-programmable gatearray (FPGA)-based data acquisition (DAQ) system for use with multichannel X-ray detectors at synchrotron radiation facilities. The system is designed for time resolved counting of single photons arriving from several-currently 12-independent detector channels simultaneously. Detector signals of at least 2.8 ns duration are latched by asynchronous logic and then synchronized with the system clock of 100 MHz. The incoming signals are subsequently sorted out into 10 000 time-bins where they are counted. This occurs according to the arrival time of photons with respect to the trigger signal. Repeatable mode of triggered operation is used to achieve high statistic of accumulated counts. The time-bin width is adjustable from 10 ns to 1 ms. In addition, a special mode of operation with 2 ns time resolution is provided for two detector channels. The system is implemented in a pocketsize FPGA-based hardware of 10 cm × 10 cm × 3 cm and thus can easily be transported between synchrotron radiation facilities. For setup of operation and data read-out, the hardware is connected via USB interface to a portable control computer. DAQ applications are provided in both LabVIEW and MATLAB environments.

  19. Comparing an FPGA to a Cell for an Image Processing Application

    NASA Astrophysics Data System (ADS)

    Rakvic, Ryan N.; Ngo, Hau; Broussard, Randy P.; Ives, Robert W.

    2010-12-01

    Modern advancements in configurable hardware, most notably Field-Programmable Gate Arrays (FPGAs), have provided an exciting opportunity to discover the parallel nature of modern image processing algorithms. On the other hand, PlayStation3 (PS3) game consoles contain a multicore heterogeneous processor known as the Cell, which is designed to perform complex image processing algorithms at a high performance. In this research project, our aim is to study the differences in performance of a modern image processing algorithm on these two hardware platforms. In particular, Iris Recognition Systems have recently become an attractive identification method because of their extremely high accuracy. Iris matching, a repeatedly executed portion of a modern iris recognition algorithm, is parallelized on an FPGA system and a Cell processor. We demonstrate a 2.5 times speedup of the parallelized algorithm on the FPGA system when compared to a Cell processor-based version.

  20. A natural-color mapping for single-band night-time image based on FPGA

    NASA Astrophysics Data System (ADS)

    Wang, Yilun; Qian, Yunsheng

    2018-01-01

    A natural-color mapping for single-band night-time image method based on FPGA can transmit the color of the reference image to single-band night-time image, which is consistent with human visual habits and can help observers identify the target. This paper introduces the processing of the natural-color mapping algorithm based on FPGA. Firstly, the image can be transformed based on histogram equalization, and the intensity features and standard deviation features of reference image are stored in SRAM. Then, the real-time digital images' intensity features and standard deviation features are calculated by FPGA. At last, FPGA completes the color mapping through matching pixels between images using the features in luminance channel.

  1. Development of A Low-Cost FPGA-Based Measurement System for Real-Time Processing of Acoustic Emission Data: Proof of Concept Using Control of Pulsed Laser Ablation in Liquids.

    PubMed

    Wirtz, Sebastian F; Cunha, Adauto P A; Labusch, Marc; Marzun, Galina; Barcikowski, Stephan; Söffker, Dirk

    2018-06-01

    Today, the demand for continuous monitoring of valuable or safety critical equipment is increasing in many industrial applications due to safety and economical requirements. Therefore, reliable in-situ measurement techniques are required for instance in Structural Health Monitoring (SHM) as well as process monitoring and control. Here, current challenges are related to the processing of sensor data with a high data rate and low latency. In particular, measurement and analyses of Acoustic Emission (AE) are widely used for passive, in-situ inspection. Advantages of AE are related to its sensitivity to different micro-mechanical mechanisms on the material level. However, online processing of AE waveforms is computationally demanding. The related equipment is typically bulky, expensive, and not well suited for permanent installation. The contribution of this paper is the development of a Field Programmable Gate Array (FPGA)-based measurement system using ZedBoard devlopment kit with Zynq-7000 system on chip for embedded implementation of suitable online processing algorithms. This platform comprises a dual-core Advanced Reduced Instruction Set Computer Machine (ARM) architecture running a Linux operating system and FPGA fabric. A FPGA-based hardware implementation of the discrete wavelet transform is realized to accelerate processing the AE measurements. Key features of the system are low cost, small form factor, and low energy consumption, which makes it suitable to serve as field-deployed measurement and control device. For verification of the functionality, a novel automatically realized adjustment of the working distance during pulsed laser ablation in liquids is established as an example. A sample rate of 5 MHz is achieved at 16 bit resolution.

  2. Design of a temperature control system using incremental PID algorithm for a special homemade shortwave infrared spatial remote sensor based on FPGA

    NASA Astrophysics Data System (ADS)

    Xu, Zhipeng; Wei, Jun; Li, Jianwei; Zhou, Qianting

    2010-11-01

    An image spectrometer of a spatial remote sensing satellite requires shortwave band range from 2.1μm to 3μm which is one of the most important bands in remote sensing. We designed an infrared sub-system of the image spectrometer using a homemade 640x1 InGaAs shortwave infrared sensor working on FPA system which requires high uniformity and low level of dark current. The working temperature should be -15+/-0.2 Degree Celsius. This paper studies the model of noise for focal plane array (FPA) system, investigated the relationship with temperature and dark current noise, and adopts Incremental PID algorithm to generate PWM wave in order to control the temperature of the sensor. There are four modules compose of the FPGA module design. All of the modules are coded by VHDL and implemented in FPGA device APA300. Experiment shows the intelligent temperature control system succeeds in controlling the temperature of the sensor.

  3. A New Event Builder for CMS Run II

    NASA Astrophysics Data System (ADS)

    Albertsson, K.; Andre, J.-M.; Andronidis, A.; Behrens, U.; Branson, J.; Chaze, O.; Cittolin, S.; Darlea, G.-L.; Deldicque, C.; Dobson, M.; Dupont, A.; Erhan, S.; Gigi, D.; Glege, F.; Gomez-Ceballos, G.; Hegeman, J.; Holzner, A.; Jimenez-Estupiñán, R.; Masetti, L.; Meijers, F.; Meschi, E.; Mommsen, R. K.; Morovic, S.; Nunez-Barranco-Fernandez, C.; O'Dell, V.; Orsini, L.; Paus, C.; Petrucci, A.; Pieri, M.; Racz, A.; Roberts, P.; Sakulin, H.; Schwick, C.; Stieger, B.; Sumorok, K.; Veverka, J.; Zaza, S.; Zejdl, P.

    2015-12-01

    The data acquisition system (DAQ) of the CMS experiment at the CERN Large Hadron Collider (LHC) assembles events at a rate of 100 kHz, transporting event data at an aggregate throughput of 100GB/s to the high-level trigger (HLT) farm. The DAQ system has been redesigned during the LHC shutdown in 2013/14. The new DAQ architecture is based on state-of-the-art network technologies for the event building. For the data concentration, 10/40 Gbps Ethernet technologies are used together with a reduced TCP/IP protocol implemented in FPGA for a reliable transport between custom electronics and commercial computing hardware. A 56 Gbps Infiniband FDR CLOS network has been chosen for the event builder. This paper discusses the software design, protocols, and optimizations for exploiting the hardware capabilities. We present performance measurements from small-scale prototypes and from the full-scale production system.

  4. A new event builder for CMS Run II

    DOE PAGES

    Albertsson, K.; Andre, J-M; Andronidis, A.; ...

    2015-12-23

    The data acquisition system (DAQ) of the CMS experiment at the CERN Large Hadron Collider (LHC) assembles events at a rate of 100 kHz, transporting event data at an aggregate throughput of 100 GB/s to the high-level trigger (HLT) farm. The DAQ system has been redesigned during the LHC shutdown in 2013/14. The new DAQ architecture is based on state-of-the-art network technologies for the event building. For the data concentration, 10/40 Gbps Ethernet technologies are used together with a reduced TCP/IP protocol implemented in FPGA for a reliable transport between custom electronics and commercial computing hardware. A 56 Gbps Innibandmore » FDR CLOS network has been chosen for the event builder. This paper discusses the software design, protocols, and optimizations for exploiting the hardware capabilities. In conclusion, ee present performance measurements from small-scale prototypes and from the full-scale production system.« less

  5. An FPGA-Based Rapid Wheezing Detection System

    PubMed Central

    Lin, Bor-Shing; Yen, Tian-Shiue

    2014-01-01

    Wheezing is often treated as a crucial indicator in the diagnosis of obstructive pulmonary diseases. A rapid wheezing detection system may help physicians to monitor patients over the long-term. In this study, a portable wheezing detection system based on a field-programmable gate array (FPGA) is proposed. This system accelerates wheezing detection, and can be used as either a single-process system, or as an integrated part of another biomedical signal detection system. The system segments sound signals into 2-second units. A short-time Fourier transform was used to determine the relationship between the time and frequency components of wheezing sound data. A spectrogram was processed using 2D bilateral filtering, edge detection, multithreshold image segmentation, morphological image processing, and image labeling, to extract wheezing features according to computerized respiratory sound analysis (CORSA) standards. These features were then used to train the support vector machine (SVM) and build the classification models. The trained model was used to analyze sound data to detect wheezing. The system runs on a Xilinx Virtex-6 FPGA ML605 platform. The experimental results revealed that the system offered excellent wheezing recognition performance (0.912). The detection process can be used with a clock frequency of 51.97 MHz, and is able to perform rapid wheezing classification. PMID:24481034

  6. High-Speed Scanning Interferometer Using CMOS Image Sensor and FPGA Based on Multifrequency Phase-Tracking Detection

    NASA Technical Reports Server (NTRS)

    Ohara, Tetsuo

    2012-01-01

    A sub-aperture stitching optical interferometer can provide a cost-effective solution for an in situ metrology tool for large optics; however, the currently available technologies are not suitable for high-speed and real-time continuous scan. NanoWave s SPPE (Scanning Probe Position Encoder) has been proven to exhibit excellent stability and sub-nanometer precision with a large dynamic range. This same technology can transform many optical interferometers into real-time subnanometer precision tools with only minor modification. The proposed field-programmable gate array (FPGA) signal processing concept, coupled with a new-generation, high-speed, mega-pixel CMOS (complementary metal-oxide semiconductor) image sensor, enables high speed (>1 m/s) and real-time continuous surface profiling that is insensitive to variation of pixel sensitivity and/or optical transmission/reflection. This is especially useful for large optics surface profiling.

  7. [Integrated Development of Full-automatic Fluorescence Analyzer].

    PubMed

    Zhang, Mei; Lin, Zhibo; Yuan, Peng; Yao, Zhifeng; Hu, Yueming

    2015-10-01

    In view of the fact that medical inspection equipment sold in the domestic market is mainly imported from abroad and very expensive, we developed a full-automatic fluorescence analyzer in our center, presented in this paper. The present paper introduces the hardware architecture design of FPGA/DSP motion controlling card+PC+ STM32 embedded micro processing unit, software system based on C# multi thread, design and implementation of double-unit communication in detail. By simplifying the hardware structure, selecting hardware legitimately and adopting control system software to object-oriented technology, we have improved the precision and velocity of the control system significantly. Finally, the performance test showed that the control system could meet the needs of automated fluorescence analyzer on the functionality, performance and cost.

  8. FPGA-based real time controller for high order correction in EDIFISE

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ramos, L. F.; Chulani, H.; Martín, Y.; Dorta, T.; Alonso, A.; Fuensalida, J. J.

    2012-07-01

    EDIFISE is a technology demonstrator instrument developed at the Institute of Astrophysics of the Canary Islands (IAC), intended to explore the feasibility of combining Adaptive Optics with attenuated optical fibers in order to obtain high spatial resolution spectra at the surroundings of a star, as an alternative to coronagraphy. A simplified version with only tip tilt correction has been tested at the OGS telescope in Observatorio del Teide (Canary islands, Spain) and a complete version is intended to be tested at the OGS and at the WHT telescope in Observatorio del Roque de los Muchachos, (Canary Islands, Spain). This paper describes the FPGA-based real time control of the High Order unit, responsible of the computation of the actuation values of a 97-actuactor deformable mirror (11x11) with the information provided by a configurable wavefront sensor of up to 16x16 subpupils at 500 Hz (128x128 pixels). The reconfigurable logic hardware will allow both zonal and modal control approaches, will full access to select which mode loops should be closed and with a number of utilities for influence matrix and open loop response measurements. The system has been designed in a modular way to allow for easy upgrade to faster frame rates (1500 Hz) and bigger wavefront sensors (240x240 pixels), accepting also several interfaces from the WFS and towards the mirror driver. The FPGA-based (Field Programmable Gate Array) real time controller provides bias and flat-fielding corrections, subpupil slopes to modal matrix computation for up to 97 modes, independent servo loop controllers for each mode with user control for independent loop opening or closing, mode to actuator matrix computation and non-common path aberration correction capability. It also provides full housekeeping control via UPD/IP for matrix reloading and full system data logging.

  9. Custom FPGA processing for real-time fetal ECG extraction and identification.

    PubMed

    Torti, E; Koliopoulos, D; Matraxia, M; Danese, G; Leporati, F

    2017-01-01

    Monitoring the fetal cardiac activity during pregnancy is of crucial importance for evaluating fetus health. However, there is a lack of automatic and reliable methods for Fetal ECG (FECG) monitoring that can perform this elaboration in real-time. In this paper, we present a hardware architecture, implemented on the Altera Stratix V FPGA, capable of separating the FECG from the maternal ECG and to correctly identify it. We evaluated our system using both synthetic and real tracks acquired from patients beyond the 20th pregnancy week. This work is part of a project aiming at developing a portable system for FECG continuous real-time monitoring. Its characteristics of reduced power consumption, real-time processing capability and reduced size make it suitable to be embedded in the overall system, that is the first proposed exploiting Blind Source Separation with this technology, to the best of our knowledge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Address-event-based platform for bioinspired spiking systems

    NASA Astrophysics Data System (ADS)

    Jiménez-Fernández, A.; Luján, C. D.; Linares-Barranco, A.; Gómez-Rodríguez, F.; Rivas, M.; Jiménez, G.; Civit, A.

    2007-05-01

    Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows a real-time virtual massive connectivity between huge number neurons, located on different chips. By exploiting high speed digital communication circuits (with nano-seconds timings), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Also, neurons generate "events" according to their activity levels. More active neurons generate more events per unit time, and access the interchip communication channel more frequently, while neurons with low activity consume less communication bandwidth. When building multi-chip muti-layered AER systems, it is absolutely necessary to have a computer interface that allows (a) reading AER interchip traffic into the computer and visualizing it on the screen, and (b) converting conventional frame-based video stream in the computer into AER and injecting it at some point of the AER structure. This is necessary for test and debugging of complex AER systems. In the other hand, the use of a commercial personal computer implies to depend on software tools and operating systems that can make the system slower and un-robust. This paper addresses the problem of communicating several AER based chips to compose a powerful processing system. The problem was discussed in the Neuromorphic Engineering Workshop of 2006. The platform is based basically on an embedded computer, a powerful FPGA and serial links, to make the system faster and be stand alone (independent from a PC). A new platform is presented that allow to connect up to eight AER based chips to a Spartan 3 4000 FPGA. The FPGA is responsible of the network communication based in Address-Event and, at the same time, to map and transform the address space of the traffic to implement a pre-processing. A MMU microprocessor (Intel XScale 400MHz Gumstix Connex computer) is also connected to the FPGA to allow the platform to implement eventbased algorithms to interact to the AER system, like control algorithms, network connectivity, USB support, etc. The LVDS transceiver allows a bandwidth of up to 1.32 Gbps, around ~66 Mega events per second (Mevps).

  11. Power efficient, clock gated multiplexer based full adder cell using 28 nm technology

    NASA Astrophysics Data System (ADS)

    Gupta, Ashutosh; Murgai, Shruti; Gulati, Anmol; Kumar, Pradeep

    2016-03-01

    Clock gating is a leading technique used for power saving. Full adders is one of the basic circuit that can be found in maximum VLSI circuits. In this paper clock gated multiplexer based full adder cell is implemented on 28 nm technology. We have designed a full adder cell using a multiplexer with a gated clock without degrading its performance of the cell. We have negative latch circuit for generating gated clock. This gated clock is used to control the multiplexer based full adder cell. The circuit has been synthesized on kintex FPGA through Xilinx ISE Design Suite 14.7 using 28 nm technology in Verilog HDL. The circuit has been simulated on Modelsim 10.3c. The design is verified using System Verilog on QuestaSim in UVM environment. The total power of the circuit has been reduced by 7.41% without degrading the performance of original circuit. The power has been calculated using XPower Analyzer tool of XILINX ISE DESIGN SUITE 14.3.

  12. New Developments in FPGA: SEUs and Fail-Safe Strategies from the NASA Goddard Perspective

    NASA Technical Reports Server (NTRS)

    Berg, Melanie D.; Label, Kenneth A.; Pellish, Jonathan

    2016-01-01

    It has been shown that, when exposed to radiation environments, each Field Programmable Gate Array (FPGA) device has unique error signatures. Subsequently, fail-safe and mitigation strategies will differ per FPGA type. In this session several design approaches for safe systems will be presented. It will also explore the benefits and limitations of several mitigation techniques. The intention of the presentation is to provide information regarding FPGA types, their susceptibilities, and proven fail-safe strategies; so that users can select appropriate mitigation and perform the required trade for system insertion. The presentation will describe three types of FPGA devices and their susceptibilities in radiation environments.

  13. New Developments in FPGA: SEUs and Fail-Safe Strategies from the NASA Goddard Perspective

    NASA Technical Reports Server (NTRS)

    Berg, Melanie D.; LaBel, Kenneth; Pellish, Jonathan

    2015-01-01

    It has been shown that, when exposed to radiation environments, each Field Programmable Gate Array (FPGA) device has unique error signatures. Subsequently, fail-safe and mitigation strategies will differ per FPGA type. In this session several design approaches for safe systems will be presented. It will also explore the benefits and limitations of several mitigation techniques. The intention of the presentation is to provide information regarding FPGA types, their susceptibilities, and proven fail-safe strategies; so that users can select appropriate mitigation and perform the required trade for system insertion. The presentation will describe three types of FPGA devices and their susceptibilities in radiation environments.

  14. Efficient lossy compression implementations of hyperspectral images: tools, hardware platforms, and comparisons

    NASA Astrophysics Data System (ADS)

    García, Aday; Santos, Lucana; López, Sebastián.; Callicó, Gustavo M.; Lopez, Jose F.; Sarmiento, Roberto

    2014-05-01

    Efficient onboard satellite hyperspectral image compression represents a necessity and a challenge for current and future space missions. Therefore, it is mandatory to provide hardware implementations for this type of algorithms in order to achieve the constraints required for onboard compression. In this work, we implement the Lossy Compression for Exomars (LCE) algorithm on an FPGA by means of high-level synthesis (HSL) in order to shorten the design cycle. Specifically, we use CatapultC HLS tool to obtain a VHDL description of the LCE algorithm from C-language specifications. Two different approaches are followed for HLS: on one hand, introducing the whole C-language description in CatapultC and on the other hand, splitting the C-language description in functional modules to be implemented independently with CatapultC, connecting and controlling them by an RTL description code without HLS. In both cases the goal is to obtain an FPGA implementation. We explain the several changes applied to the original Clanguage source code in order to optimize the results obtained by CatapultC for both approaches. Experimental results show low area occupancy of less than 15% for a SRAM-based Virtex-5 FPGA and a maximum frequency above 80 MHz. Additionally, the LCE compressor was implemented into an RTAX2000S antifuse-based FPGA, showing an area occupancy of 75% and a frequency around 53 MHz. All these serve to demonstrate that the LCE algorithm can be efficiently executed on an FPGA onboard a satellite. A comparison between both implementation approaches is also provided. The performance of the algorithm is finally compared with implementations on other technologies, specifically a graphics processing unit (GPU) and a single-threaded CPU.

  15. A CDMA system implementation with dimming control for visible light communication

    NASA Astrophysics Data System (ADS)

    Chen, Danyang; Wang, Jianping; Jin, Jianli; Lu, Huimin; Feng, Lifang

    2018-04-01

    Visible light communication (VLC), using solid-state lightings to transmit information, has become a complement technology to wireless radio communication. As a realistic multiple access scheme for VLC system, code division multiple access (CDMA) has attracted more and more attentions in recent years. In this paper, we address and implement an improved CDMA scheme for VLC system. The simulation results reveal that the improved CDMA scheme not only supports multi-users' transmission but also maintains dimming value at about 50% and enhances the system efficiency. It can also realize the flexible dimming control by adjusting some parameters of system structure, which rarely affects the system BER performance. A real-time experimental VLC system with improved CDMA scheme is performed based on field programmable gate array (FPGA), reaching a good BER performance.

  16. Study on digital closed-loop system of silicon resonant micro-sensor

    NASA Astrophysics Data System (ADS)

    Xu, Yefeng; He, Mengke

    2008-10-01

    Designing a micro, high reliability weak signal extracting system is a critical problem need to be solved in the application of silicon resonant micro-sensor. The closed-loop testing system based on FPGA uses software to replace hardware circuit which dramatically decrease the system's mass and power consumption and make the system more compact, both correlation theory and frequency scanning scheme are used in extracting weak signal, the adaptive frequency scanning arithmetic ensures the system real-time. The error model was analyzed to show the solution to enhance the system's measurement precision. The experiment results show that the closed-loop testing system based on FPGA has the personality of low power consumption, high precision, high-speed, real-time etc, and also the system is suitable for different kinds of Silicon Resonant Micro-sensor.

  17. Fine-grained parallelism accelerating for RNA secondary structure prediction with pseudoknots based on FPGA.

    PubMed

    Xia, Fei; Jin, Guoqing

    2014-06-01

    PKNOTS is a most famous benchmark program and has been widely used to predict RNA secondary structure including pseudoknots. It adopts the standard four-dimensional (4D) dynamic programming (DP) method and is the basis of many variants and improved algorithms. Unfortunately, the O(N(6)) computing requirements and complicated data dependency greatly limits the usefulness of PKNOTS package with the explosion in gene database size. In this paper, we present a fine-grained parallel PKNOTS package and prototype system for accelerating RNA folding application based on FPGA chip. We adopted a series of storage optimization strategies to resolve the "Memory Wall" problem. We aggressively exploit parallel computing strategies to improve computational efficiency. We also propose several methods that collectively reduce the storage requirements for FPGA on-chip memory. To the best of our knowledge, our design is the first FPGA implementation for accelerating 4D DP problem for RNA folding application including pseudoknots. The experimental results show a factor of more than 50x average speedup over the PKNOTS-1.08 software running on a PC platform with Intel Core2 Q9400 Quad CPU for input RNA sequences. However, the power consumption of our FPGA accelerator is only about 50% of the general-purpose micro-processors.

  18. Parallel Hough Transform-Based Straight Line Detection and Its FPGA Implementation in Embedded Vision

    PubMed Central

    Lu, Xiaofeng; Song, Li; Shen, Sumin; He, Kang; Yu, Songyu; Ling, Nam

    2013-01-01

    Hough Transform has been widely used for straight line detection in low-definition and still images, but it suffers from execution time and resource requirements. Field Programmable Gate Arrays (FPGA) provide a competitive alternative for hardware acceleration to reap tremendous computing performance. In this paper, we propose a novel parallel Hough Transform (PHT) and FPGA architecture-associated framework for real-time straight line detection in high-definition videos. A resource-optimized Canny edge detection method with enhanced non-maximum suppression conditions is presented to suppress most possible false edges and obtain more accurate candidate edge pixels for subsequent accelerated computation. Then, a novel PHT algorithm exploiting spatial angle-level parallelism is proposed to upgrade computational accuracy by improving the minimum computational step. Moreover, the FPGA based multi-level pipelined PHT architecture optimized by spatial parallelism ensures real-time computation for 1,024 × 768 resolution videos without any off-chip memory consumption. This framework is evaluated on ALTERA DE2-115 FPGA evaluation platform at a maximum frequency of 200 MHz, and it can calculate straight line parameters in 15.59 ms on the average for one frame. Qualitative and quantitative evaluation results have validated the system performance regarding data throughput, memory bandwidth, resource, speed and robustness. PMID:23867746

  19. Parallel Hough Transform-based straight line detection and its FPGA implementation in embedded vision.

    PubMed

    Lu, Xiaofeng; Song, Li; Shen, Sumin; He, Kang; Yu, Songyu; Ling, Nam

    2013-07-17

    Hough Transform has been widely used for straight line detection in low-definition and still images, but it suffers from execution time and resource requirements. Field Programmable Gate Arrays (FPGA) provide a competitive alternative for hardware acceleration to reap tremendous computing performance. In this paper, we propose a novel parallel Hough Transform (PHT) and FPGA architecture-associated framework for real-time straight line detection in high-definition videos. A resource-optimized Canny edge detection method with enhanced non-maximum suppression conditions is presented to suppress most possible false edges and obtain more accurate candidate edge pixels for subsequent accelerated computation. Then, a novel PHT algorithm exploiting spatial angle-level parallelism is proposed to upgrade computational accuracy by improving the minimum computational step. Moreover, the FPGA based multi-level pipelined PHT architecture optimized by spatial parallelism ensures real-time computation for 1,024 × 768 resolution videos without any off-chip memory consumption. This framework is evaluated on ALTERA DE2-115 FPGA evaluation platform at a maximum frequency of 200 MHz, and it can calculate straight line parameters in 15.59 ms on the average for one frame. Qualitative and quantitative evaluation results have validated the system performance regarding data throughput, memory bandwidth, resource, speed and robustness.

  20. FPGA based hardware optimized implementation of signal processing system for LFM pulsed radar

    NASA Astrophysics Data System (ADS)

    Azim, Noor ul; Jun, Wang

    2016-11-01

    Signal processing is one of the main parts of any radar system. Different signal processing algorithms are used to extract information about different parameters like range, speed, direction etc, of a target in the field of radar communication. This paper presents LFM (Linear Frequency Modulation) pulsed radar signal processing algorithms which are used to improve target detection, range resolution and to estimate the speed of a target. Firstly, these algorithms are simulated in MATLAB to verify the concept and theory. After the conceptual verification in MATLAB, the simulation is converted into implementation on hardware using Xilinx FPGA. Chosen FPGA is Xilinx Virtex-6 (XC6LVX75T). For hardware implementation pipeline optimization is adopted and also other factors are considered for resources optimization in the process of implementation. Focusing algorithms in this work for improving target detection, range resolution and speed estimation are hardware optimized fast convolution processing based pulse compression and pulse Doppler processing.

  1. FPGA platform for MEMS Disc Resonance Gyroscope (DRG) control

    NASA Astrophysics Data System (ADS)

    Keymeulen, Didier; Peay, Chris; Foor, David; Trung, Tran; Bakhshi, Alireza; Withington, Phil; Yee, Karl; Terrile, Rich

    2008-04-01

    Inertial navigation systems based upon optical gyroscopes tend to be expensive, large, power consumptive, and are not long lived. Micro-Electromechanical Systems (MEMS) based gyros do not have these shortcomings; however, until recently, the performance of MEMS based gyros had been below navigation grade. Boeing and JPL have been cooperating since 1997 to develop high performance MEMS gyroscopes for miniature, low power space Inertial Reference Unit applications. The efforts resulted in demonstration of a Post Resonator Gyroscope (PRG). This experience led to the more compact Disc Resonator Gyroscope (DRG) for further reduced size and power with potentially increased performance. Currently, the mass, volume and power of the DRG are dominated by the size of the electronics. This paper will detail the FPGA based digital electronics architecture and its implementation for the DRG which will allow reduction of size and power and will increase performance through a reduction in electronics noise. Using the digital control based on FPGA, we can program and modify in real-time the control loop to adapt to the specificity of each particular gyro and the change of the mechanical characteristic of the gyro during its life time.

  2. FPGA cluster for high-performance AO real-time control system

    NASA Astrophysics Data System (ADS)

    Geng, Deli; Goodsell, Stephen J.; Basden, Alastair G.; Dipper, Nigel A.; Myers, Richard M.; Saunter, Chris D.

    2006-06-01

    Whilst the high throughput and low latency requirements for the next generation AO real-time control systems have posed a significant challenge to von Neumann architecture processor systems, the Field Programmable Gate Array (FPGA) has emerged as a long term solution with high performance on throughput and excellent predictability on latency. Moreover, FPGA devices have highly capable programmable interfacing, which lead to more highly integrated system. Nevertheless, a single FPGA is still not enough: multiple FPGA devices need to be clustered to perform the required subaperture processing and the reconstruction computation. In an AO real-time control system, the memory bandwidth is often the bottleneck of the system, simply because a vast amount of supporting data, e.g. pixel calibration maps and the reconstruction matrix, need to be accessed within a short period. The cluster, as a general computing architecture, has excellent scalability in processing throughput, memory bandwidth, memory capacity, and communication bandwidth. Problems, such as task distribution, node communication, system verification, are discussed.

  3. Toward a Dynamically Reconfigurable Computing and Communication System for Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Kifle, Muli; Andro, Monty; Tran, Quang K.; Fujikawa, Gene; Chu, Pong P.

    2003-01-01

    Future science missions will require the use of multiple spacecraft with multiple sensor nodes autonomously responding and adapting to a dynamically changing space environment. The acquisition of random scientific events will require rapidly changing network topologies, distributed processing power, and a dynamic resource management strategy. Optimum utilization and configuration of spacecraft communications and navigation resources will be critical in meeting the demand of these stringent mission requirements. There are two important trends to follow with respect to NASA's (National Aeronautics and Space Administration) future scientific missions: the use of multiple satellite systems and the development of an integrated space communications network. Reconfigurable computing and communication systems may enable versatile adaptation of a spacecraft system's resources by dynamic allocation of the processor hardware to perform new operations or to maintain functionality due to malfunctions or hardware faults. Advancements in FPGA (Field Programmable Gate Array) technology make it possible to incorporate major communication and network functionalities in FPGA chips and provide the basis for a dynamically reconfigurable communication system. Advantages of higher computation speeds and accuracy are envisioned with tremendous hardware flexibility to ensure maximum survivability of future science mission spacecraft. This paper discusses the requirements, enabling technologies, and challenges associated with dynamically reconfigurable space communications systems.

  4. Superconductor Digital-RF Receiver Systems

    NASA Astrophysics Data System (ADS)

    Mukhanov, Oleg A.; Kirichenko, Dmitri; Vernik, Igor V.; Filippov, Timur V.; Kirichenko, Alexander; Webber, Robert; Dotsenko, Vladimir; Talalaevskii, Andrei; Tang, Jia Cao; Sahu, Anubhav; Shevchenko, Pavel; Miller, Robert; Kaplan, Steven B.; Sarwana, Saad; Gupta, Deepnarayan

    Digital superconductor electronics has been experiencing rapid maturation with the emergence of smaller-scale, lower-cost communications applications which became the major technology drivers. These applications are primarily in the area of wireless communications, radar, and surveillance as well as in imaging and sensor systems. In these areas, the fundamental advantages of superconductivity translate into system benefits through novel Digital-RF architectures with direct digitization of wide band, high frequency radio frequency (RF) signals. At the same time the availability of relatively small 4K cryocoolers has lowered the foremost market barrier for cryogenically-cooled digital electronic systems. Recently, we have achieved a major breakthrough in the development, demonstration, and successful delivery of the cryocooled superconductor digital-RF receivers directly digitizing signals in a broad range from kilohertz to gigahertz. These essentially hybrid-technology systems combine a variety of superconductor and semiconductor technologies packaged with two-stage commercial cryocoolers: cryogenic Nb mixed-signal and digital circuits based on Rapid Single Flux Quantum (RSFQ) technology, room-temperature amplifiers, FPGA processing and control circuitry. The demonstrated cryocooled digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals in X-band and performing signal acquisition in HF to L-band at ˜30GHz clock frequencies.

  5. Design of an Oximeter Based on LED-LED Configuration and FPGA Technology

    PubMed Central

    Stojanovic, Radovan; Karadaglic, Dejan

    2013-01-01

    A fully digital photoplethysmographic (PPG) sensor and actuator has been developed. The sensing circuit uses one Light Emitting Diode (LED) for emitting light into human tissue and one LED for detecting the reflectance light from human tissue. A Field Programmable Gate Array (FPGA) is used to control the LEDs and determine the PPG and Blood Oxygen Saturation (SpO2). The configurations with two LEDs and four LEDs are developed for measuring PPG signal and Blood Oxygen Saturation (SpO2). N-LEDs configuration is proposed for multichannel SpO2 measurements. The approach resulted in better spectral sensitivity, increased and adjustable resolution, reduced noise, small size, low cost and low power consumption. PMID:23291575

  6. A Hybrid FPGA/Tilera Compute Element for Autonomous Hazard Detection and Navigation

    NASA Technical Reports Server (NTRS)

    Villalpando, Carlos Y.; Werner, Robert A.; Carson, John M., III; Khanoyan, Garen; Stern, Ryan A.; Trawny, Nikolas

    2013-01-01

    To increase safety for future missions landing on other planetary or lunar bodies, the Autonomous Landing and Hazard Avoidance Technology (ALHAT) program is developing an integrated sensor for autonomous surface analysis and hazard determination. The ALHAT Hazard Detection System (HDS) consists of a Flash LIDAR for measuring the topography of the landing site, a gimbal to scan across the terrain, and an Inertial Measurement Unit (IMU), along with terrain analysis algorithms to identify the landing site and the local hazards. An FPGA and Manycore processor system was developed to interface all the devices in the HDS, to provide high-resolution timing to accurately measure system state, and to run the surface analysis algorithms quickly and efficiently. In this paper, we will describe how we integrated COTS components such as an FPGA evaluation board, a TILExpress64, and multi-threaded/multi-core aware software to build the HDS Compute Element (HDSCE). The ALHAT program is also working with the NASA Morpheus Project and has integrated the HDS as a sensor on the Morpheus Lander. This paper will also describe how the HDS is integrated with the Morpheus lander and the results of the initial test flights with the HDS installed. We will also describe future improvements to the HDSCE.

  7. A hybrid FPGA/Tilera compute element for autonomous hazard detection and navigation

    NASA Astrophysics Data System (ADS)

    Villalpando, C. Y.; Werner, R. A.; Carson, J. M.; Khanoyan, G.; Stern, R. A.; Trawny, N.

    To increase safety for future missions landing on other planetary or lunar bodies, the Autonomous Landing and Hazard Avoidance Technology (ALHAT) program is developing an integrated sensor for autonomous surface analysis and hazard determination. The ALHAT Hazard Detection System (HDS) consists of a Flash LIDAR for measuring the topography of the landing site, a gimbal to scan across the terrain, and an Inertial Measurement Unit (IMU), along with terrain analysis algorithms to identify the landing site and the local hazards. An FPGA and Manycore processor system was developed to interface all the devices in the HDS, to provide high-resolution timing to accurately measure system state, and to run the surface analysis algorithms quickly and efficiently. In this paper, we will describe how we integrated COTS components such as an FPGA evaluation board, a TILExpress64, and multi-threaded/multi-core aware software to build the HDS Compute Element (HDSCE). The ALHAT program is also working with the NASA Morpheus Project and has integrated the HDS as a sensor on the Morpheus Lander. This paper will also describe how the HDS is integrated with the Morpheus lander and the results of the initial test flights with the HDS installed. We will also describe future improvements to the HDSCE.

  8. Development of ROACH firmware for microwave multiplexed X-ray TES microcalorimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madden, T. J.; Cecil, T. W.; Gades, L. M.

    We are developing room temperature electronics based upon the ROACH platform for reading out microwave multiplexed X-ray TES. ROACH is an open-source hardware and software platform featuring a large Xilinx Field Programmable Gate Array (FPGA), Power PC processor, several 10GB Ethernet SFP+ interfaces, and a collection of daughter boards for analog signal generation and acquisition. The combination of a ROACH board, ADC/DAC conversion daughter boards, and hardware for RF mixing allows for the generation and capture of multiple RF tones for reading out microwave multiplexed x-ray TES microcalorimeters. The FPGA is used to generate multiple tones in base band, frommore » 10MHz to 250MHz, which are subsequently mixed to RF in the multiple GHz range and sent through the microwave multiplexer. The tones are generated in the FPGA by storing a large lookup table in Quad Data Rate (QDR) SRAM modules and playing out the waveform to a DAC board. Once the signal has been modulated to RF, passed through the microwave multiplexer, and has been modulated back to base band, the signal is digitized by an ADC board. The tones are modulated to 0Hz by using a FPGA circuit consisting of a polyphase filter bank, several Xilinx FFT blocks, Xilinx CORDIC blocks (for converting to magnitude and phase), and special phase accumulator circuit for mixing to exactly 0Hz. Upwards of 256 channels can be simultaneously captured and written into a bank of 256 First-In-First-Out (FIFO) memories, with each FIFO corresponding to a channel. Individual channel data can be further processed in the FPGA before being streamed through a 10GB Ethernet fiber-optic interface to a Linux system. The Linux system runs software written in Python and QT C++ for controlling the ROACH system, capturing data, and processing data.« less

  9. PCI-based WILDFIRE reconfigurable computing engines

    NASA Astrophysics Data System (ADS)

    Fross, Bradley K.; Donaldson, Robert L.; Palmer, Douglas J.

    1996-10-01

    WILDFORCE is the first PCI-based custom reconfigurable computer that is based on the Splash 2 technology transferred from the National Security Agency and the Institute for Defense Analyses, Supercomputing Research Center (SRC). The WILDFORCE architecture has many of the features of the WILDFIRE computer, such as field- programmable gate array (FPGA) based processing elements, linear array and crossbar interconnection, and high- performance memory and I/O subsystems. New features introduced in the PCI-based WILDFIRE systems include memory/processor options that can be added to any processing element. These options include static and dynamic memory, digital signal processors (DSPs), FPGAs, and microprocessors. In addition to memory/processor options, many different application specific connectors can be used to extend the I/O capabilities of the system, including systolic I/O, camera input and video display output. This paper also discusses how this new PCI-based reconfigurable computing engine is used for rapid-prototyping, real-time video processing and other DSP applications.

  10. Radiation Hardened 10BASE-T Ethernet Physical Layer (PHY)

    NASA Technical Reports Server (NTRS)

    Lin, Michael R. (Inventor); Petrick, David J. (Inventor); Ballou, Kevin M. (Inventor); Espinosa, Daniel C. (Inventor); James, Edward F. (Inventor); Kliesner, Matthew A. (Inventor)

    2017-01-01

    Embodiments may provide a radiation hardened 10BASE-T Ethernet interface circuit suitable for space flight and in compliance with the IEEE 802.3 standard for Ethernet. The various embodiments may provide a 10BASE-T Ethernet interface circuit, comprising a field programmable gate array (FPGA), a transmitter circuit connected to the FPGA, a receiver circuit connected to the FPGA, and a transformer connected to the transmitter circuit and the receiver circuit. In the various embodiments, the FPGA, transmitter circuit, receiver circuit, and transformer may be radiation hardened.

  11. Development of an MRI-compatible digital SiPM detector stack for simultaneous PET/MRI.

    PubMed

    Düppenbecker, Peter M; Weissler, Bjoern; Gebhardt, Pierre; Schug, David; Wehner, Jakob; Marsden, Paul K; Schulz, Volkmar

    2016-02-01

    Advances in solid-state photon detectors paved the way to combine positron emission tomography (PET) and magnetic resonance imaging (MRI) into highly integrated, truly simultaneous, hybrid imaging systems. Based on the most recent digital SiPM technology, we developed an MRI-compatible PET detector stack, intended as a building block for next generation simultaneous PET/MRI systems. Our detector stack comprises an array of 8 × 8 digital SiPM channels with 4 mm pitch using Philips Digital Photon Counting DPC 3200-22 devices, an FPGA for data acquisition, a supply voltage control system and a cooling infrastructure. This is the first detector design that allows the operation of digital SiPMs simultaneously inside an MRI system. We tested and optimized the MRI-compatibility of our detector stack on a laboratory test bench as well as in combination with a Philips Achieva 3 T MRI system. Our design clearly reduces distortions of the static magnetic field compared to a conventional design. The MRI static magnetic field causes weak and directional drift effects on voltage regulators, but has no direct impact on detector performance. MRI gradient switching initially degraded energy and timing resolution. Both distortions could be ascribed to voltage variations induced on the bias and the FPGA core voltage supply respectively. Based on these findings, we improved our detector design and our final design shows virtually no energy or timing degradations, even during heavy and continuous MRI gradient switching. In particular, we found no evidence that the performance of the DPC 3200-22 digital SiPM itself is degraded by the MRI system.

  12. Evaluation of FPGA to PC feedback loop

    NASA Astrophysics Data System (ADS)

    Linczuk, Pawel; Zabolotny, Wojciech M.; Wojenski, Andrzej; Krawczyk, Rafal D.; Pozniak, Krzysztof T.; Chernyshova, Maryna; Czarski, Tomasz; Gaska, Michal; Kasprowicz, Grzegorz; Kowalska-Strzeciwilk, Ewa; Malinowski, Karol

    2017-08-01

    The paper presents the evaluation study of the performance of the data transmission subsystem which can be used in High Energy Physics (HEP) and other High-Performance Computing (HPC) systems. The test environment consisted of Xilinx Artix-7 FPGA and server-grade PC connected via the PCIe 4xGen2 bus. The DMA engine was based on the Xilinx DMA for PCI Express Subsystem1 controlled by the modified Xilinx XDMA kernel driver.2 The research is focused on the influence of the system configuration on achievable throughput and latency of data transfer.

  13. FPGA-based firmware model for extended measurement systems with data quality monitoring

    NASA Astrophysics Data System (ADS)

    Wojenski, A.; Pozniak, K. T.; Mazon, D.; Chernyshova, M.

    2017-08-01

    Modern physics experiments requires construction of advanced, modular measurement systems for data processing and registration purposes. Components are often designed in one of the common mechanical and electrical standards, e.g. VME or uTCA. The paper is focused on measurement systems using FPGAs as data processing blocks, especially for plasma diagnostics using GEM detectors with data quality monitoring aspects. In the article is proposed standardized model of HDL FPGA firmware implementation, for use in a wide range of different measurement system. The effort was made in term of flexible implementation of data quality monitoring along with source data dynamic selection. In the paper is discussed standard measurement system model followed by detailed model of FPGA firmware for modular measurement systems. Considered are both: functional blocks and data buses. In the summary, necessary blocks and signal lines are described. Implementation of firmware following the presented rules should provide modular design, with ease of change different parts of it. The key benefit is construction of universal, modular HDL design, that can be applied in different measurement system with simple adjustments.

  14. FPGA-Based Laboratory Assignments for NoC-Based Manycore Systems

    ERIC Educational Resources Information Center

    Ttofis, C.; Theocharides, T.; Michael, M. K.

    2012-01-01

    Manycore systems have emerged as being one of the dominant architectural trends in next-generation computer systems. These highly parallel systems are expected to be interconnected via packet-based networks-on-chip (NoC). The complexity of such systems poses novel and exciting challenges in academia, as teaching their design requires the students…

  15. Design of embedded endoscopic ultrasonic imaging system

    NASA Astrophysics Data System (ADS)

    Li, Ming; Zhou, Hao; Wen, Shijie; Chen, Xiodong; Yu, Daoyin

    2008-12-01

    Endoscopic ultrasonic imaging system is an important component in the endoscopic ultrasonography system (EUS). Through the ultrasonic probe, the characteristics of the fault histology features of digestive organs is detected by EUS, and then received by the reception circuit which making up of amplifying, gain compensation, filtering and A/D converter circuit, in the form of ultrasonic echo. Endoscopic ultrasonic imaging system is the back-end processing system of the EUS, with the function of receiving digital ultrasonic echo modulated by the digestive tract wall from the reception circuit, acquiring and showing the fault histology features in the form of image and characteristic data after digital signal processing, such as demodulation, etc. Traditional endoscopic ultrasonic imaging systems are mainly based on image acquisition and processing chips, which connecting to personal computer with USB2.0 circuit, with the faults of expensive, complicated structure, poor portability, and difficult to popularize. To against the shortcomings above, this paper presents the methods of digital signal acquisition and processing specially based on embedded technology with the core hardware structure of ARM and FPGA for substituting the traditional design with USB2.0 and personal computer. With built-in FIFO and dual-buffer, FPGA implement the ping-pong operation of data storage, simultaneously transferring the image data into ARM through the EBI bus by DMA function, which is controlled by ARM to carry out the purpose of high-speed transmission. The ARM system is being chosen to implement the responsibility of image display every time DMA transmission over and actualizing system control with the drivers and applications running on the embedded operating system Windows CE, which could provide a stable, safe and reliable running platform for the embedded device software. Profiting from the excellent graphical user interface (GUI) and good performance of Windows CE, we can not only clearly show 511×511 pixels ultrasonic echo images through application program, but also provide a simple and friendly operating interface with mouse and touch screen which is more convenient than the traditional endoscopic ultrasonic imaging system. Including core and peripheral circuits of FPGA and ARM, power network circuit and LCD display circuit, we designed the whole embedded system, achieving the desired purpose by implementing ultrasonic image display properly after the experimental verification, solving the problem of hugeness and complexity of the traditional endoscopic ultrasonic imaging system.

  16. New Developments in FPGA Devices: SEUs and Fail-Safe Strategies from the NASA Goddard Perspective

    NASA Technical Reports Server (NTRS)

    Berg, Melanie; LaBel, Kenneth; Pellish, Jonathan

    2016-01-01

    It has been shown that, when exposed to radiation environments, each Field Programmable Gate Array (FPGA) device has unique error signatures. Subsequently, fail-safe and mitigation strategies will differ per FPGA type. In this session several design approaches for safe systems will be presented. It will also explore the benefits and limitations of several mitigation techniques. The intention of the presentation is to provide information regarding FPGA types, their susceptibilities, and proven fail-safe strategies; so that users can select appropriate mitigation and perform the required trade for system insertion. The presentation will describe three types of FPGA devices and their susceptibilities in radiation environments.

  17. Health Monitoring System Based on Intra-Body Communication

    NASA Astrophysics Data System (ADS)

    Razak, A. H. A.; Ibrahim, I. W.; Ayub, A. H.; Amri, M. F.; Hamzi, M. H.; Halim, A. K.; Ahmad, A.; Junid, S. A. M. Al

    2015-11-01

    This paper presents a model of a Body Area Network (BAN) health monitoring system based on Intra-Body Communication. Intra-body Communication (IBC) is a communication technique that uses the human body as a medium for electrical signal communication. One of the visions in the health care industry is to provide autonomous and continuous self and the remote health monitoring system. This can be achieved via BAN, LAN and WAN integration. The BAN technology itself consists of short range data communication modules, sensors, controller and actuators. The information can be transmitted to the LAN and WAN via the RF technology such as Bluetooth, ZigBee and ANT. Although the implementations of RF communication have been successful, there are still limitations in term of power consumption, battery lifetime, interferences and signal attenuations. One of the solutions for Medical Body Area Network (MBANs) to overcome these issues is by using an IBC technique because it can operate at lower frequencies and power consumption compared to the existing techniques. The first objective is to design the IBC's transmitter and receiver modules using the off the shelf components. The specifications of the modules such as frequency, data rate, modulation and demodulation coding system were defined. The individual module were designed and tested separately. The modules was integrated as an IBC system and tested for functionality then was implemented on PCB. Next objective is to model and implement the digital parts of the transmitter and receiver modules on the Altera's FPGA board. The digital blocks were interfaced with the FPGA's on board modules and the discrete components. The signals that have been received from the transmitter were converted into a proper waveform and it can be viewed via external devices such as oscilloscope and Labview. The signals such as heartbeats or pulses can also be displayed on LCD. In conclusion, the IBC project presents medical health monitoring model that operates at the range of 21 MHz frequency and reduce the power consumption for a longer battery lifetime.

  18. MoPCoM Methodology: Focus on Models of Computation

    NASA Astrophysics Data System (ADS)

    Koudri, Ali; Champeau, Joël; Le Lann, Jean-Christophe; Leilde, Vincent

    Today, developments of Real Time Embedded Systems have to face new challenges. On the one hand, Time-To-Market constraints require a reliable development process allowing quick design space exploration. On the other hand, rapidly developing technology, as stated by Moore's law, requires techniques to handle the resulting productivity gap. In a previous paper, we have presented our Model Based Engineering methodology addressing those issues. In this paper, we make a focus on Models of Computation design and analysis. We illustrate our approach on a Cognitive Radio System development implemented on an FPGA. This work is part of the MoPCoM research project gathering academic and industrial organizations (http://www.mopcom.fr).

  19. All-IP-Ethernet architecture for real-time sensor-fusion processing

    NASA Astrophysics Data System (ADS)

    Hiraki, Kei; Inaba, Mary; Tezuka, Hiroshi; Tomari, Hisanobu; Koizumi, Kenichi; Kondo, Shuya

    2016-03-01

    Serendipter is a device that distinguishes and selects very rare particles and cells from huge amount of population. We are currently designing and constructing information processing system for a Serendipter. The information processing system for Serendipter is a kind of sensor-fusion system but with much more difficulties: To fulfill these requirements, we adopt All IP based architecture: All IP-Ethernet based data processing system consists of (1) sensor/detector directly output data as IP-Ethernet packet stream, (2) single Ethernet/TCP/IP streams by a L2 100Gbps Ethernet switch, (3) An FPGA board with 100Gbps Ethernet I/F connected to the switch and a Xeon based server. Circuits in the FPGA include 100Gbps Ethernet MAC, buffers and preprocessing, and real-time Deep learning circuits using multi-layer neural networks. Proposed All-IP architecture solves existing problem to construct large-scale sensor-fusion systems.

  20. Portable Multispectral Colorimeter for Metallic Ion Detection and Classification

    PubMed Central

    Jaimes, Ruth F. V. V.; Borysow, Walter; Gomes, Osmar F.; Salcedo, Walter J.

    2017-01-01

    This work deals with a portable device system applied to detect and classify different metallic ions as proposed and developed, aiming its application for hydrological monitoring systems such as rivers, lakes and groundwater. Considering the system features, a portable colorimetric system was developed by using a multispectral optoelectronic sensor. All the technology of quantification and classification of metallic ions using optoelectronic multispectral sensors was fully integrated in the embedded hardware FPGA ( Field Programmable Gate Array) technology and software based on virtual instrumentation (NI LabView®). The system draws on an indicative colorimeter by using the chromogen reagent of 1-(2-pyridylazo)-2-naphthol (PAN). The results obtained with the signal processing and pattern analysis using the method of the linear discriminant analysis, allows excellent results during detection and classification of Pb(II), Cd(II), Zn(II), Cu(II), Fe(III) and Ni(II) ions, with almost the same level of performance as for those obtained from the Ultravioled and visible (UV-VIS) spectrophotometers of high spectral resolution. PMID:28788082

  1. Portable Multispectral Colorimeter for Metallic Ion Detection and Classification.

    PubMed

    Braga, Mauro S; Jaimes, Ruth F V V; Borysow, Walter; Gomes, Osmar F; Salcedo, Walter J

    2017-07-28

    This work deals with a portable device system applied to detect and classify different metallic ions as proposed and developed, aiming its application for hydrological monitoring systems such as rivers, lakes and groundwater. Considering the system features, a portable colorimetric system was developed by using a multispectral optoelectronic sensor. All the technology of quantification and classification of metallic ions using optoelectronic multispectral sensors was fully integrated in the embedded hardware FPGA ( Field Programmable Gate Array) technology and software based on virtual instrumentation (NI LabView ® ). The system draws on an indicative colorimeter by using the chromogen reagent of 1-(2-pyridylazo)-2-naphthol (PAN). The results obtained with the signal processing and pattern analysis using the method of the linear discriminant analysis, allows excellent results during detection and classification of Pb(II), Cd(II), Zn(II), Cu(II), Fe(III) and Ni(II) ions, with almost the same level of performance as for those obtained from the Ultravioled and visible (UV-VIS) spectrophotometers of high spectral resolution.

  2. Iris unwrapping using the Bresenham circle algorithm for real-time iris recognition

    NASA Astrophysics Data System (ADS)

    Carothers, Matthew T.; Ngo, Hau T.; Rakvic, Ryan N.; Broussard, Randy P.

    2015-02-01

    An efficient parallel architecture design for the iris unwrapping process in a real-time iris recognition system using the Bresenham Circle Algorithm is presented in this paper. Based on the characteristics of the model parameters this algorithm was chosen over the widely used polar conversion technique as the iris unwrapping model. The architecture design is parallelized to increase the throughput of the system and is suitable for processing an inputted image size of 320 × 240 pixels in real-time using Field Programmable Gate Array (FPGA) technology. Quartus software is used to implement, verify, and analyze the design's performance using the VHSIC Hardware Description Language. The system's predicted processing time is faster than the modern iris unwrapping technique used today∗.

  3. High performance embedded system for real-time pattern matching

    NASA Astrophysics Data System (ADS)

    Sotiropoulou, C.-L.; Luciano, P.; Gkaitatzis, S.; Citraro, S.; Giannetti, P.; Dell'Orso, M.

    2017-02-01

    In this paper we present an innovative and high performance embedded system for real-time pattern matching. This system is based on the evolution of hardware and algorithms developed for the field of High Energy Physics and more specifically for the execution of extremely fast pattern matching for tracking of particles produced by proton-proton collisions in hadron collider experiments. A miniaturized version of this complex system is being developed for pattern matching in generic image processing applications. The system works as a contour identifier able to extract the salient features of an image. It is based on the principles of cognitive image processing, which means that it executes fast pattern matching and data reduction mimicking the operation of the human brain. The pattern matching can be executed by a custom designed Associative Memory chip. The reference patterns are chosen by a complex training algorithm implemented on an FPGA device. Post processing algorithms (e.g. pixel clustering) are also implemented on the FPGA. The pattern matching can be executed on a 2D or 3D space, on black and white or grayscale images, depending on the application and thus increasing exponentially the processing requirements of the system. We present the firmware implementation of the training and pattern matching algorithm, performance and results on a latest generation Xilinx Kintex Ultrascale FPGA device.

  4. Using SRAM Based FPGAs for Power-Aware High Performance Wireless Sensor Networks

    PubMed Central

    Valverde, Juan; Otero, Andres; Lopez, Miguel; Portilla, Jorge; de la Torre, Eduardo; Riesgo, Teresa

    2012-01-01

    While for years traditional wireless sensor nodes have been based on ultra-low power microcontrollers with sufficient but limited computing power, the complexity and number of tasks of today’s applications are constantly increasing. Increasing the node duty cycle is not feasible in all cases, so in many cases more computing power is required. This extra computing power may be achieved by either more powerful microcontrollers, though more power consumption or, in general, any solution capable of accelerating task execution. At this point, the use of hardware based, and in particular FPGA solutions, might appear as a candidate technology, since though power use is higher compared with lower power devices, execution time is reduced, so energy could be reduced overall. In order to demonstrate this, an innovative WSN node architecture is proposed. This architecture is based on a high performance high capacity state-of-the-art FPGA, which combines the advantages of the intrinsic acceleration provided by the parallelism of hardware devices, the use of partial reconfiguration capabilities, as well as a careful power-aware management system, to show that energy savings for certain higher-end applications can be achieved. Finally, comprehensive tests have been done to validate the platform in terms of performance and power consumption, to proof that better energy efficiency compared to processor based solutions can be achieved, for instance, when encryption is imposed by the application requirements. PMID:22736971

  5. Using SRAM based FPGAs for power-aware high performance wireless sensor networks.

    PubMed

    Valverde, Juan; Otero, Andres; Lopez, Miguel; Portilla, Jorge; de la Torre, Eduardo; Riesgo, Teresa

    2012-01-01

    While for years traditional wireless sensor nodes have been based on ultra-low power microcontrollers with sufficient but limited computing power, the complexity and number of tasks of today's applications are constantly increasing. Increasing the node duty cycle is not feasible in all cases, so in many cases more computing power is required. This extra computing power may be achieved by either more powerful microcontrollers, though more power consumption or, in general, any solution capable of accelerating task execution. At this point, the use of hardware based, and in particular FPGA solutions, might appear as a candidate technology, since though power use is higher compared with lower power devices, execution time is reduced, so energy could be reduced overall. In order to demonstrate this, an innovative WSN node architecture is proposed. This architecture is based on a high performance high capacity state-of-the-art FPGA, which combines the advantages of the intrinsic acceleration provided by the parallelism of hardware devices, the use of partial reconfiguration capabilities, as well as a careful power-aware management system, to show that energy savings for certain higher-end applications can be achieved. Finally, comprehensive tests have been done to validate the platform in terms of performance and power consumption, to proof that better energy efficiency compared to processor based solutions can be achieved, for instance, when encryption is imposed by the application requirements.

  6. Evaluation of the FIR Example using Xilinx Vivado High-Level Synthesis Compiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Zheming; Finkel, Hal; Yoshii, Kazutomo

    Compared to central processing units (CPUs) and graphics processing units (GPUs), field programmable gate arrays (FPGAs) have major advantages in reconfigurability and performance achieved per watt. This development flow has been augmented with high-level synthesis (HLS) flow that can convert programs written in a high-level programming language to Hardware Description Language (HDL). Using high-level programming languages such as C, C++, and OpenCL for FPGA-based development could allow software developers, who have little FPGA knowledge, to take advantage of the FPGA-based application acceleration. This improves developer productivity and makes the FPGA-based acceleration accessible to hardware and software developers. Xilinx Vivado HLSmore » compiler is a high-level synthesis tool that enables C, C++ and System C specification to be directly targeted into Xilinx FPGAs without the need to create RTL manually. The white paper [1] published recently by Xilinx uses a finite impulse response (FIR) example to demonstrate the variable-precision features in the Vivado HLS compiler and the resource and power benefits of converting floating point to fixed point for a design. To get a better understanding of variable-precision features in terms of resource usage and performance, this report presents the experimental results of evaluating the FIR example using Vivado HLS 2017.1 and a Kintex Ultrascale FPGA. In addition, we evaluated the half-precision floating-point data type against the double-precision and single-precision data type and present the detailed results.« less

  7. An ultra-low cost NMR device with arbitrary pulse programming

    NASA Astrophysics Data System (ADS)

    Chen, Hsueh-Ying; Kim, Yaewon; Nath, Pulak; Hilty, Christian

    2015-06-01

    Ultra-low cost, general purpose electronics boards featuring microprocessors or field programmable gate arrays (FPGA) are reaching capabilities sufficient for direct implementation of NMR spectrometers. We demonstrate a spectrometer based on such a board, implemented with a minimal need for the addition of custom electronics and external components. This feature allows such a spectrometer to be readily implemented using typical knowledge present in an NMR laboratory. With FPGA technology, digital tasks are performed with precise timing, without the limitation of predetermined hardware function. In this case, the FPGA is used for programming of arbitrarily timed pulse sequence events, and to digitally generate required frequencies. Data acquired from a 0.53 T permanent magnet serves as a demonstration of the flexibility of pulse programming for diverse experiments. Pulse sequences applied include a spin-lattice relaxation measurement using a pulse train with small-flip angle pulses, and a Carr-Purcell-Meiboom-Gill experiment with phase cycle. Mixing of NMR signals with a digitally generated, 4-step phase-cycled reference frequency is further implemented to achieve sequential quadrature detection. The flexibility in hardware implementation permits tailoring this type of spectrometer for applications such as relaxometry, polarimetry, diffusometry or NMR based magnetometry.

  8. A phase-based stereo vision system-on-a-chip.

    PubMed

    Díaz, Javier; Ros, Eduardo; Sabatini, Silvio P; Solari, Fabio; Mota, Sonia

    2007-02-01

    A simple and fast technique for depth estimation based on phase measurement has been adopted for the implementation of a real-time stereo system with sub-pixel resolution on an FPGA device. The technique avoids the attendant problem of phase warping. The designed system takes full advantage of the inherent processing parallelism and segmentation capabilities of FPGA devices to achieve a computation speed of 65megapixels/s, which can be arranged with a customized frame-grabber module to process 211frames/s at a size of 640x480 pixels. The processing speed achieved is higher than conventional camera frame rates, thus allowing the system to extract multiple estimations and be used as a platform to evaluate integration schemes of a population of neurons without increasing hardware resource demands.

  9. A minimal SATA III Host Controller based on FPGA

    NASA Astrophysics Data System (ADS)

    Liu, Hailiang

    2018-03-01

    SATA (Serial Advanced Technology Attachment) is an advanced serial bus which has a outstanding performance in transmitting high speed real-time data applied in Personal Computers, Financial Industry, astronautics and aeronautics, etc. In this express, a minimal SATA III Host Controller based on Xilinx Kintex 7 serial FPGA is designed and implemented. Compared to the state-of-art, registers utilization are reduced 25.3% and LUTs utilization are reduced 65.9%. According to the experimental results, the controller works precisely and steady with the reading bandwidth of up to 536 MB per second and the writing bandwidth of up to 512 MB per second, both of which are close to the maximum bandwidth of the SSD(Solid State Disk) device. The host controller is very suitable for high speed data transmission and mass data storage.

  10. The Use of Field Programmable Gate Arrays (FPGA) in Small Satellite Communication Systems

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta; Sims, William Herbert; Casas, Joseph

    2015-01-01

    This paper will describe the use of digital Field Programmable Gate Arrays (FPGA) to contribute to advancing the state-of-the-art in software defined radio (SDR) transponder design for the emerging SmallSat and CubeSat industry and to provide advances for NASA as described in the TAO5 Communication and Navigation Roadmap (Ref 4). The use of software defined radios (SDR) has been around for a long time. A typical implementation of the SDR is to use a processor and write software to implement all the functions of filtering, carrier recovery, error correction, framing etc. Even with modern high speed and low power digital signal processors, high speed memories, and efficient coding, the compute intensive nature of digital filters, error correcting and other algorithms is too much for modern processors to get efficient use of the available bandwidth to the ground. By using FPGAs, these compute intensive tasks can be done in parallel, pipelined fashion and more efficiently use every clock cycle to significantly increase throughput while maintaining low power. These methods will implement digital radios with significant data rates in the X and Ka bands. Using these state-of-the-art technologies, unprecedented uplink and downlink capabilities can be achieved in a 1/2 U sized telemetry system. Additionally, modern FPGAs have embedded processing systems, such as ARM cores, integrated inside the FPGA allowing mundane tasks such as parameter commanding to occur easily and flexibly. Potential partners include other NASA centers, industry and the DOD. These assets are associated with small satellite demonstration flights, LEO and deep space applications. MSFC currently has an SDR transponder test-bed using Hardware-in-the-Loop techniques to evaluate and improve SDR technologies.

  11. 40-Gbps optical backbone network deep packet inspection based on FPGA

    NASA Astrophysics Data System (ADS)

    Zuo, Yuan; Huang, Zhiping; Su, Shaojing

    2014-11-01

    In the era of information, the big data, which contains huge information, brings about some problems, such as high speed transmission, storage and real-time analysis and process. As the important media for data transmission, the Internet is the significant part for big data processing research. With the large-scale usage of the Internet, the data streaming of network is increasing rapidly. The speed level in the main fiber optic communication of the present has reached 40Gbps, even 100Gbps, therefore data on the optical backbone network shows some features of massive data. Generally, data services are provided via IP packets on the optical backbone network, which is constituted with SDH (Synchronous Digital Hierarchy). Hence this method that IP packets are directly mapped into SDH payload is named POS (Packet over SDH) technology. Aiming at the problems of real time process of high speed massive data, this paper designs a process system platform based on ATCA for 40Gbps POS signal data stream recognition and packet content capture, which employs the FPGA as the CPU. This platform offers pre-processing of clustering algorithms, service traffic identification and data mining for the following big data storage and analysis with high efficiency. Also, the operational procedure is proposed in this paper. Four channels of 10Gbps POS signal decomposed by the analysis module, which chooses FPGA as the kernel, are inputted to the flow classification module and the pattern matching component based on TCAM. Based on the properties of the length of payload and net flows, buffer management is added to the platform to keep the key flow information. According to data stream analysis, DPI (deep packet inspection) and flow balance distribute, the signal is transmitted to the backend machine through the giga Ethernet ports on back board. Practice shows that the proposed platform is superior to the traditional applications based on ASIC and NP.

  12. SpaceCube Version 1.5

    NASA Technical Reports Server (NTRS)

    Geist, Alessandro; Lin, Michael; Flatley, Tom; Petrick, David

    2013-01-01

    SpaceCube 1.5 is a high-performance and low-power system in a compact form factor. It is a hybrid processing system consisting of CPU (central processing unit), FPGA (field-programmable gate array), and DSP (digital signal processor) processing elements. The primary processing engine is the Virtex- 5 FX100T FPGA, which has two embedded processors. The SpaceCube 1.5 System was a bridge to the SpaceCube 2.0 and SpaceCube 2.0 Mini processing systems. The SpaceCube 1.5 system was the primary avionics in the successful SMART (Small Rocket/Spacecraft Technology) Sounding Rocket mission that was launched in the summer of 2011. For SMART and similar missions, an avionics processor is required that is reconfigurable, has high processing capability, has multi-gigabit interfaces, is low power, and comes in a rugged/compact form factor. The original SpaceCube 1.0 met a number of the criteria, but did not possess the multi-gigabit interfaces that were required and is a higher-cost system. The SpaceCube 1.5 was designed with those mission requirements in mind. The SpaceCube 1.5 features one Xilinx Virtex-5 FX100T FPGA and has excellent size, weight, and power characteristics [4×4×3 in. (approx. = 10×10×8 cm), 3 lb (approx. = 1.4 kg), and 5 to 15 W depending on the application]. The estimated computing power of the two PowerPC 440s in the Virtex-5 FPGA is 1100 DMIPS each. The SpaceCube 1.5 includes two Gigabit Ethernet (1 Gbps) interfaces as well as two SATA-I/II interfaces (1.5 to 3.0 Gbps) for recording to data drives. The SpaceCube 1.5 also features DDR2 SDRAM (double data rate synchronous dynamic random access memory); 4- Gbit Flash for storing application code for the CPU, FPGA, and DSP processing elements; and a Xilinx Platform Flash XL to store FPGA configuration files or application code. The system also incorporates a 12 bit analog to digital converter with the ability to read 32 discrete analog sensor inputs. The SpaceCube 1.5 design also has a built-in accelerometer. In addition, the system has 12 receive and transmit RS- 422 interfaces for legacy support. The SpaceCube 1.5 processor card represents the first NASA Goddard design in a compact form factor featuring the Xilinx Virtex- 5. The SpaceCube 1.5 incorporates backward compatibility with the Space- Cube 1.0 form factor and stackable architecture. It also makes use of low-cost commercial parts, but is designed for operation in harsh environments.

  13. FPGA-based multi-channel fluorescence lifetime analysis of Fourier multiplexed frequency-sweeping lifetime imaging

    PubMed Central

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-01-01

    We report a fast non-iterative lifetime data analysis method for the Fourier multiplexed frequency-sweeping confocal FLIM (Fm-FLIM) system [ Opt. Express22, 10221 ( 2014)24921725]. The new method, named R-method, allows fast multi-channel lifetime image analysis in the system’s FPGA data processing board. Experimental tests proved that the performance of the R-method is equivalent to that of single-exponential iterative fitting, and its sensitivity is well suited for time-lapse FLIM-FRET imaging of live cells, for example cyclic adenosine monophosphate (cAMP) level imaging with GFP-Epac-mCherry sensors. With the R-method and its FPGA implementation, multi-channel lifetime images can now be generated in real time on the multi-channel frequency-sweeping FLIM system, and live readout of FRET sensors can be performed during time-lapse imaging. PMID:25321778

  14. Real-time FPGA architectures for computer vision

    NASA Astrophysics Data System (ADS)

    Arias-Estrada, Miguel; Torres-Huitzil, Cesar

    2000-03-01

    This paper presents an architecture for real-time generic convolution of a mask and an image. The architecture is intended for fast low level image processing. The FPGA-based architecture takes advantage of the availability of registers in FPGAs to implement an efficient and compact module to process the convolutions. The architecture is designed to minimize the number of accesses to the image memory and is based on parallel modules with internal pipeline operation in order to improve its performance. The architecture is prototyped in a FPGA, but it can be implemented on a dedicated VLSI to reach higher clock frequencies. Complexity issues, FPGA resources utilization, FPGA limitations, and real time performance are discussed. Some results are presented and discussed.

  15. Validation techniques for fault emulation of SRAM-based FPGAs

    DOE PAGES

    Quinn, Heather; Wirthlin, Michael

    2015-08-07

    A variety of fault emulation systems have been created to study the effect of single-event effects (SEEs) in static random access memory (SRAM) based field-programmable gate arrays (FPGAs). These systems are useful for augmenting radiation-hardness assurance (RHA) methodologies for verifying the effectiveness for mitigation techniques; understanding error signatures and failure modes in FPGAs; and failure rate estimation. For radiation effects researchers, it is important that these systems properly emulate how SEEs manifest in FPGAs. If the fault emulation systems does not mimic the radiation environment, the system will generate erroneous data and incorrect predictions of behavior of the FPGA inmore » a radiation environment. Validation determines whether the emulated faults are reasonable analogs to the radiation-induced faults. In this study we present methods for validating fault emulation systems and provide several examples of validated FPGA fault emulation systems.« less

  16. Design Methodology of an Equalizer for Unipolar Non Return to Zero Binary Signals in the Presence of Additive White Gaussian Noise Using a Time Delay Neural Network on a Field Programmable Gate Array

    PubMed Central

    Pérez Suárez, Santiago T.; Travieso González, Carlos M.; Alonso Hernández, Jesús B.

    2013-01-01

    This article presents a design methodology for designing an artificial neural network as an equalizer for a binary signal. Firstly, the system is modelled in floating point format using Matlab. Afterward, the design is described for a Field Programmable Gate Array (FPGA) using fixed point format. The FPGA design is based on the System Generator from Xilinx, which is a design tool over Simulink of Matlab. System Generator allows one to design in a fast and flexible way. It uses low level details of the circuits and the functionality of the system can be fully tested. System Generator can be used to check the architecture and to analyse the effect of the number of bits on the system performance. Finally the System Generator design is compiled for the Xilinx Integrated System Environment (ISE) and the system is described using a hardware description language. In ISE the circuits are managed with high level details and physical performances are obtained. In the Conclusions section, some modifications are proposed to improve the methodology and to ensure portability across FPGA manufacturers.

  17. Reconfigurable fault tolerant avionics system

    NASA Astrophysics Data System (ADS)

    Ibrahim, M. M.; Asami, K.; Cho, Mengu

    This paper presents the design of a reconfigurable avionics system based on modern Static Random Access Memory (SRAM)-based Field Programmable Gate Array (FPGA) to be used in future generations of nano satellites. A major concern in satellite systems and especially nano satellites is to build robust systems with low-power consumption profiles. The system is designed to be flexible by providing the capability of reconfiguring itself based on its orbital position. As Single Event Upsets (SEU) do not have the same severity and intensity in all orbital locations, having the maximum at the South Atlantic Anomaly (SAA) and the polar cusps, the system does not have to be fully protected all the time in its orbit. An acceptable level of protection against high-energy cosmic rays and charged particles roaming in space is provided within the majority of the orbit through software fault tolerance. Check pointing and roll back, besides control flow assertions, is used for that level of protection. In the minority part of the orbit where severe SEUs are expected to exist, a reconfiguration for the system FPGA is initiated where the processor systems are triplicated and protection through Triple Modular Redundancy (TMR) with feedback is provided. This technique of reconfiguring the system as per the level of the threat expected from SEU-induced faults helps in reducing the average dynamic power consumption of the system to one-third of its maximum. This technique can be viewed as a smart protection through system reconfiguration. The system is built on the commercial version of the (XC5VLX50) Xilinx Virtex5 FPGA on bulk silicon with 324 IO. Simulations of orbit SEU rates were carried out using the SPENVIS web-based software package.

  18. Design of extensible meteorological data acquisition system based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Liu, Yin-hua; Zhang, Hui-jun; Li, Xiao-hui

    2015-02-01

    In order to compensate the tropospheric refraction error generated in the process of satellite navigation and positioning. Temperature, humidity and air pressure had to be used in concerned models to calculate the value of this error. While FPGA XC6SLX16 was used as the core processor, the integrated silicon pressure sensor MPX4115A and digital temperature-humidity sensor SHT75 are used as the basic meteorological parameter detection devices. The core processer was used to control the real-time sampling of ADC AD7608 and to acquire the serial output data of SHT75. The data was stored in the BRAM of XC6SLX16 and used to generate standard meteorological parameters in NEMA format. The whole design was based on Altium hardware platform and ISE software platform. The system was described in the VHDL language and schematic diagram to realize the correct detection of temperature, humidity, air pressure. The 8-channel synchronous sampling characteristics of AD7608 and programmable external resources of FPGA laid the foundation for the increasing of analog or digital meteorological element signal. The designed meteorological data acquisition system featured low cost, high performance, multiple expansions.

  19. Design of a real-time system of moving ship tracking on-board based on FPGA in remote sensing images

    NASA Astrophysics Data System (ADS)

    Yang, Tie-jun; Zhang, Shen; Zhou, Guo-qing; Jiang, Chuan-xian

    2015-12-01

    With the broad attention of countries in the areas of sea transportation and trade safety, the requirements of efficiency and accuracy of moving ship tracking are becoming higher. Therefore, a systematic design of moving ship tracking onboard based on FPGA is proposed, which uses the Adaptive Inter Frame Difference (AIFD) method to track a ship with different speed. For the Frame Difference method (FD) is simple but the amount of computation is very large, it is suitable for the use of FPGA to implement in parallel. But Frame Intervals (FIs) of the traditional FD method are fixed, and in remote sensing images, a ship looks very small (depicted by only dozens of pixels) and moves slowly. By applying invariant FIs, the accuracy of FD for moving ship tracking is not satisfactory and the calculation is highly redundant. So we use the adaptation of FD based on adaptive extraction of key frames for moving ship tracking. A FPGA development board of Xilinx Kintex-7 series is used for simulation. The experiments show that compared with the traditional FD method, the proposed one can achieve higher accuracy of moving ship tracking, and can meet the requirement of real-time tracking in high image resolution.

  20. High-Performance, Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog Arrays (FPAA)s for use in reconfigurable architectures. As these component/chip level technologies mature, the RHESE project emphasis shifts to focus on efforts encompassing total processor hardening techniques and board-level electronic reconfiguration techniques featuring spare and interface modularity. This phased approach to distributing emphasis between technology developments provides hardened FPGA/FPAAs for early mission infusion, then migrates to hardened, board-level, high speed processors with associated memory elements and high density storage for the longer duration missions encountered for Lunar Outpost and Mars Exploration occurring later in the Constellation schedule.

  1. FPGA based charge acquisition algorithm for soft x-ray diagnostics system

    NASA Astrophysics Data System (ADS)

    Wojenski, A.; Kasprowicz, G.; Pozniak, K. T.; Zabolotny, W.; Byszuk, A.; Juszczyk, B.; Kolasinski, P.; Krawczyk, R. D.; Zienkiewicz, P.; Chernyshova, M.; Czarski, T.

    2015-09-01

    Soft X-ray (SXR) measurement systems working in tokamaks or with laser generated plasma can expect high photon fluxes. Therefore it is necessary to focus on data processing algorithms to have the best possible efficiency in term of processed photon events per second. This paper refers to recently designed algorithm and data-flow for implementation of charge data acquisition in FPGA. The algorithms are currently on implementation stage for the soft X-ray diagnostics system. In this paper despite of the charge processing algorithm is also described general firmware overview, data storage methods and other key components of the measurement system. The simulation section presents algorithm performance and expected maximum photon rate.

  2. Dedicated hardware processor and corresponding system-on-chip design for real-time laser speckle imaging.

    PubMed

    Jiang, Chao; Zhang, Hongyan; Wang, Jia; Wang, Yaru; He, Heng; Liu, Rui; Zhou, Fangyuan; Deng, Jialiang; Li, Pengcheng; Luo, Qingming

    2011-11-01

    Laser speckle imaging (LSI) is a noninvasive and full-field optical imaging technique which produces two-dimensional blood flow maps of tissues from the raw laser speckle images captured by a CCD camera without scanning. We present a hardware-friendly algorithm for the real-time processing of laser speckle imaging. The algorithm is developed and optimized specifically for LSI processing in the field programmable gate array (FPGA). Based on this algorithm, we designed a dedicated hardware processor for real-time LSI in FPGA. The pipeline processing scheme and parallel computing architecture are introduced into the design of this LSI hardware processor. When the LSI hardware processor is implemented in the FPGA running at the maximum frequency of 130 MHz, up to 85 raw images with the resolution of 640×480 pixels can be processed per second. Meanwhile, we also present a system on chip (SOC) solution for LSI processing by integrating the CCD controller, memory controller, LSI hardware processor, and LCD display controller into a single FPGA chip. This SOC solution also can be used to produce an application specific integrated circuit for LSI processing.

  3. Intermediate frequency band digitized high dynamic range radiometer system for plasma diagnostics and real-time Tokamak control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bongers, W. A.; Beveren, V. van; Westerhof, E.

    2011-06-15

    An intermediate frequency (IF) band digitizing radiometer system in the 100-200 GHz frequency range has been developed for Tokamak diagnostics and control, and other fields of research which require a high flexibility in frequency resolution combined with a large bandwidth and the retrieval of the full wave information of the mm-wave signals under investigation. The system is based on directly digitizing the IF band after down conversion. The enabling technology consists of a fast multi-giga sample analog to digital converter that has recently become available. Field programmable gate arrays (FPGA) are implemented to accomplish versatile real-time data analysis. A prototypemore » system has been developed and tested and its performance has been compared with conventional electron cyclotron emission (ECE) spectrometer systems. On the TEXTOR Tokamak a proof of principle shows that ECE, together with high power injected and scattered radiation, becomes amenable to measurement by this device. In particular, its capability to measure the phase of coherent signals in the spectrum offers important advantages in diagnostics and control. One case developed in detail employs the FPGA in real-time fast Fourier transform (FFT) and additional signal processing. The major benefit of such a FFT-based system is the real-time trade-off that can be made between frequency and time resolution. For ECE diagnostics this corresponds to a flexible spatial resolution in the plasma, with potential application in smart sensing of plasma instabilities such as the neoclassical tearing mode (NTM) and sawtooth instabilities. The flexible resolution would allow for the measurement of the full mode content of plasma instabilities contained within the system bandwidth.« less

  4. FPGA-based rate-adaptive LDPC-coded modulation for the next generation of optical communication systems.

    PubMed

    Zou, Ding; Djordjevic, Ivan B

    2016-09-05

    In this paper, we propose a rate-adaptive FEC scheme based on LDPC codes together with its software reconfigurable unified FPGA architecture. By FPGA emulation, we demonstrate that the proposed class of rate-adaptive LDPC codes based on shortening with an overhead from 25% to 42.9% provides a coding gain ranging from 13.08 dB to 14.28 dB at a post-FEC BER of 10-15 for BPSK transmission. In addition, the proposed rate-adaptive LDPC coding combined with higher-order modulations have been demonstrated including QPSK, 8-QAM, 16-QAM, 32-QAM, and 64-QAM, which covers a wide range of signal-to-noise ratios. Furthermore, we apply the unequal error protection by employing different LDPC codes on different bits in 16-QAM and 64-QAM, which results in additional 0.5dB gain compared to conventional LDPC coded modulation with the same code rate of corresponding LDPC code.

  5. Theory and implementation of a very high throughput true random number generator in field programmable gate array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yonggang, E-mail: wangyg@ustc.edu.cn; Hui, Cong; Liu, Chong

    The contribution of this paper is proposing a new entropy extraction mechanism based on sampling phase jitter in ring oscillators to make a high throughput true random number generator in a field programmable gate array (FPGA) practical. Starting from experimental observation and analysis of the entropy source in FPGA, a multi-phase sampling method is exploited to harvest the clock jitter with a maximum entropy and fast sampling speed. This parametrized design is implemented in a Xilinx Artix-7 FPGA, where the carry chains in the FPGA are explored to realize the precise phase shifting. The generator circuit is simple and resource-saving,more » so that multiple generation channels can run in parallel to scale the output throughput for specific applications. The prototype integrates 64 circuit units in the FPGA to provide a total output throughput of 7.68 Gbps, which meets the requirement of current high-speed quantum key distribution systems. The randomness evaluation, as well as its robustness to ambient temperature, confirms that the new method in a purely digital fashion can provide high-speed high-quality random bit sequences for a variety of embedded applications.« less

  6. Theory and implementation of a very high throughput true random number generator in field programmable gate array.

    PubMed

    Wang, Yonggang; Hui, Cong; Liu, Chong; Xu, Chao

    2016-04-01

    The contribution of this paper is proposing a new entropy extraction mechanism based on sampling phase jitter in ring oscillators to make a high throughput true random number generator in a field programmable gate array (FPGA) practical. Starting from experimental observation and analysis of the entropy source in FPGA, a multi-phase sampling method is exploited to harvest the clock jitter with a maximum entropy and fast sampling speed. This parametrized design is implemented in a Xilinx Artix-7 FPGA, where the carry chains in the FPGA are explored to realize the precise phase shifting. The generator circuit is simple and resource-saving, so that multiple generation channels can run in parallel to scale the output throughput for specific applications. The prototype integrates 64 circuit units in the FPGA to provide a total output throughput of 7.68 Gbps, which meets the requirement of current high-speed quantum key distribution systems. The randomness evaluation, as well as its robustness to ambient temperature, confirms that the new method in a purely digital fashion can provide high-speed high-quality random bit sequences for a variety of embedded applications.

  7. An FPGA-Based High-Speed Error Resilient Data Aggregation and Control for High Energy Physics Experiment

    NASA Astrophysics Data System (ADS)

    Mandal, Swagata; Saini, Jogender; Zabołotny, Wojciech M.; Sau, Suman; Chakrabarti, Amlan; Chattopadhyay, Subhasis

    2017-03-01

    Due to the dramatic increase of data volume in modern high energy physics (HEP) experiments, a robust high-speed data acquisition (DAQ) system is very much needed to gather the data generated during different nuclear interactions. As the DAQ works under harsh radiation environment, there is a fair chance of data corruption due to various energetic particles like alpha, beta, or neutron. Hence, a major challenge in the development of DAQ in the HEP experiment is to establish an error resilient communication system between front-end sensors or detectors and back-end data processing computing nodes. Here, we have implemented the DAQ using field-programmable gate array (FPGA) due to some of its inherent advantages over the application-specific integrated circuit. A novel orthogonal concatenated code and cyclic redundancy check (CRC) have been used to mitigate the effects of data corruption in the user data. Scrubbing with a 32-b CRC has been used against error in the configuration memory of FPGA. Data from front-end sensors will reach to the back-end processing nodes through multiple stages that may add an uncertain amount of delay to the different data packets. We have also proposed a novel memory management algorithm that helps to process the data at the back-end computing nodes removing the added path delays. To the best of our knowledge, the proposed FPGA-based DAQ utilizing optical link with channel coding and efficient memory management modules can be considered as first of its kind. Performance estimation of the implemented DAQ system is done based on resource utilization, bit error rate, efficiency, and robustness to radiation.

  8. Field programmable gate arrays-based number plate binarization and adjustment for automatic number plate recognition systems

    NASA Astrophysics Data System (ADS)

    Zhai, Xiaojun; Bensaali, Faycal; Sotudeh, Reza

    2013-01-01

    Number plate (NP) binarization and adjustment are important preprocessing stages in automatic number plate recognition (ANPR) systems and are used to link the number plate localization (NPL) and character segmentation stages. Successfully linking these two stages will improve the performance of the entire ANPR system. We present two optimized low-complexity NP binarization and adjustment algorithms. Efficient area/speed architectures based on the proposed algorithms are also presented and have been successfully implemented and tested using the Mentor Graphics RC240 FPGA development board, which together require only 9% of the available on-chip resources of a Virtex-4 FPGA, run with a maximum frequency of 95.8 MHz and are capable of processing one image in 0.07 to 0.17 ms.

  9. Adaptive Proactive Inhibitory Control for Embedded Real-Time Applications

    PubMed Central

    Yang, Shufan; McGinnity, T. Martin; Wong-Lin, KongFatt

    2012-01-01

    Psychologists have studied the inhibitory control of voluntary movement for many years. In particular, the countermanding of an impending action has been extensively studied. In this work, we propose a neural mechanism for adaptive inhibitory control in a firing-rate type model based on current findings in animal electrophysiological and human psychophysical experiments. We then implement this model on a field-programmable gate array (FPGA) prototyping system, using dedicated real-time hardware circuitry. Our results show that the FPGA-based implementation can run in real-time while achieving behavioral performance qualitatively suggestive of the animal experiments. Implementing such biological inhibitory control in an embedded device can lead to the development of control systems that may be used in more realistic cognitive robotics or in neural prosthetic systems aiding human movement control. PMID:22701420

  10. Large-N correlator systems for low frequency radio astronomy

    NASA Astrophysics Data System (ADS)

    Foster, Griffin

    Low frequency radio astronomy has entered a second golden age driven by the development of a new class of large-N interferometric arrays. The low frequency array (LOFAR) and a number of redshifted HI Epoch of Reionization (EoR) arrays are currently undergoing commission and regularly observing. Future arrays of unprecedented sensitivity and resolutions at low frequencies, such as the square kilometer array (SKA) and the hydrogen epoch of reionization array (HERA), are in development. The combination of advancements in specialized field programmable gate array (FPGA) hardware for signal processing, computing and graphics processing unit (GPU) resources, and new imaging and calibration algorithms has opened up the oft underused radio band below 300 MHz. These interferometric arrays require efficient implementation of digital signal processing (DSP) hardware to compute the baseline correlations. FPGA technology provides an optimal platform to develop new correlators. The significant growth in data rates from these systems requires automated software to reduce the correlations in real time before storing the data products to disk. Low frequency, widefield observations introduce a number of unique calibration and imaging challenges. The efficient implementation of FX correlators using FPGA hardware is presented. Two correlators have been developed, one for the 32 element BEST-2 array at Medicina Observatory and the other for the 96 element LOFAR station at Chilbolton Observatory. In addition, calibration and imaging software has been developed for each system which makes use of the radio interferometry measurement equation (RIME) to derive calibrations. A process for generating sky maps from widefield LOFAR station observations is presented. Shapelets, a method of modelling extended structures such as resolved sources and beam patterns has been adapted for radio astronomy use to further improve system calibration. Scaling of computing technology allows for the development of larger correlator systems, which in turn allows for improvements in sensitivity and resolution. This requires new calibration techniques which account for a broad range of systematic effects.

  11. Hardware and Software Design of FPGA-based PCIe Gen3 interface for APEnet+ network interconnect system

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Frezza, O.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Paolucci, P. S.; Pastorelli, E.; Rossetti, D.; Simula, F.; Tosoratto, L.; Vicini, P.

    2015-12-01

    In the attempt to develop an interconnection architecture optimized for hybrid HPC systems dedicated to scientific computing, we designed APEnet+, a point-to-point, low-latency and high-performance network controller supporting 6 fully bidirectional off-board links over a 3D torus topology. The first release of APEnet+ (named V4) was a board based on a 40 nm Altera FPGA, integrating 6 channels at 34 Gbps of raw bandwidth per direction and a PCIe Gen2 x8 host interface. It has been the first-of-its-kind device to implement an RDMA protocol to directly read/write data from/to Fermi and Kepler NVIDIA GPUs using NVIDIA peer-to-peer and GPUDirect RDMA protocols, obtaining real zero-copy GPU-to-GPU transfers over the network. The latest generation of APEnet+ systems (now named V5) implements a PCIe Gen3 x8 host interface on a 28 nm Altera Stratix V FPGA, with multi-standard fast transceivers (up to 14.4 Gbps) and an increased amount of configurable internal resources and hardware IP cores to support main interconnection standard protocols. Herein we present the APEnet+ V5 architecture, the status of its hardware and its system software design. Both its Linux Device Driver and the low-level libraries have been redeveloped to support the PCIe Gen3 protocol, introducing optimizations and solutions based on hardware/software co-design.

  12. Development of a real time magnetic island identification system for HL-2A tokamak.

    PubMed

    Chen, Chao; Sun, Shan; Ji, Xiaoquan; Yin, Zejie

    2017-08-01

    A novel real time magnetic island identification system for HL-2A is introduced. The identification method is based on the measurement of Mirnov probes and the equilibrium flux constructed by the equilibrium fit (EFIT) code. The system consists of an analog front board and a digital processing board connected by a shield cable. Four octal-channel analog-to-digital convertors are utilized for 100 KHz simultaneous sampling of all the probes, and the applications of PCI extensions for Instrumentation platform and reflective memory allow the system to receive EFIT results simultaneously. A high performance field programmable gate array (FPGA) is used to realize the real time identification algorithm. Based on the parallel and pipeline processing of the FPGA, the magnetic island structure can be identified with a cycle time of 3 ms during experiments.

  13. Development of a real time magnetic island identification system for HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Sun, Shan; Ji, Xiaoquan; Yin, Zejie

    2017-08-01

    A novel real time magnetic island identification system for HL-2A is introduced. The identification method is based on the measurement of Mirnov probes and the equilibrium flux constructed by the equilibrium fit (EFIT) code. The system consists of an analog front board and a digital processing board connected by a shield cable. Four octal-channel analog-to-digital convertors are utilized for 100 KHz simultaneous sampling of all the probes, and the applications of PCI extensions for Instrumentation platform and reflective memory allow the system to receive EFIT results simultaneously. A high performance field programmable gate array (FPGA) is used to realize the real time identification algorithm. Based on the parallel and pipeline processing of the FPGA, the magnetic island structure can be identified with a cycle time of 3 ms during experiments.

  14. Region-Oriented Placement Algorithm for Coarse-Grained Power-Gating FPGA Architecture

    NASA Astrophysics Data System (ADS)

    Li, Ce; Dong, Yiping; Watanabe, Takahiro

    An FPGA plays an essential role in industrial products due to its fast, stable and flexible features. But the power consumption of FPGAs used in portable devices is one of critical issues. Top-down hierarchical design method is commonly used in both ASIC and FPGA design. But, in the case where plural modules are integrated in an FPGA and some of them might be in sleep-mode, current FPGA architecture cannot be fully effective. In this paper, coarse-grained power gating FPGA architecture is proposed where a whole area of an FPGA is partitioned into several regions and power supply is controlled for each region, so that modules in sleep mode can be effectively power-off. We also propose a region oriented FPGA placement algorithm fitted to this user's hierarchical design based on VPR[1]. Simulation results show that this proposed method could reduce power consumption of FPGA by 38% on average by setting unused modules or regions in sleep mode.

  15. Compiling for Application Specific Computational Acceleration in Reconfigurable Architectures Final Report CRADA No. TSB-2033-01

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Supinski, B.; Caliga, D.

    2017-09-28

    The primary objective of this project was to develop memory optimization technology to efficiently deliver data to, and distribute data within, the SRC-6's Field Programmable Gate Array- ("FPGA") based Multi-Adaptive Processors (MAPs). The hardware/software approach was to explore efficient MAP configurations and generate the compiler technology to exploit those configurations. This memory accessing technology represents an important step towards making reconfigurable symmetric multi-processor (SMP) architectures that will be a costeffective solution for large-scale scientific computing.

  16. FPGA-based real time processing of the Plenoptic Wavefront Sensor

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ramos, L. F.; Marín, Y.; Díaz, J. J.; Piqueras, J.; García-Jiménez, J.; Rodríguez-Ramos, J. M.

    The plenoptic wavefront sensor combines measurements at pupil and image planes in order to obtain simultaneously wavefront information from different points of view, being capable to sample the volume above the telescope to extract the tomographic information of the atmospheric turbulence. The advantages of this sensor are presented elsewhere at this conference (José M. Rodríguez-Ramos et al). This paper will concentrate in the processing required for pupil plane phase recovery, and its computation in real time using FPGAs (Field Programmable Gate Arrays). This technology eases the implementation of massive parallel processing and allows tailoring the system to the requirements, maintaining flexibility, speed and cost figures.

  17. RPython high-level synthesis

    NASA Astrophysics Data System (ADS)

    Cieszewski, Radoslaw; Linczuk, Maciej

    2016-09-01

    The development of FPGA technology and the increasing complexity of applications in recent decades have forced compilers to move to higher abstraction levels. Compilers interprets an algorithmic description of a desired behavior written in High-Level Languages (HLLs) and translate it to Hardware Description Languages (HDLs). This paper presents a RPython based High-Level synthesis (HLS) compiler. The compiler get the configuration parameters and map RPython program to VHDL. Then, VHDL code can be used to program FPGA chips. In comparison of other technologies usage, FPGAs have the potential to achieve far greater performance than software as a result of omitting the fetch-decode-execute operations of General Purpose Processors (GPUs), and introduce more parallel computation. This can be exploited by utilizing many resources at the same time. Creating parallel algorithms computed with FPGAs in pure HDL is difficult and time consuming. Implementation time can be greatly reduced with High-Level Synthesis compiler. This article describes design methodologies and tools, implementation and first results of created VHDL backend for RPython compiler.

  18. Computing Models for FPGA-Based Accelerators

    PubMed Central

    Herbordt, Martin C.; Gu, Yongfeng; VanCourt, Tom; Model, Josh; Sukhwani, Bharat; Chiu, Matt

    2011-01-01

    Field-programmable gate arrays are widely considered as accelerators for compute-intensive applications. A critical phase of FPGA application development is finding and mapping to the appropriate computing model. FPGA computing enables models with highly flexible fine-grained parallelism and associative operations such as broadcast and collective response. Several case studies demonstrate the effectiveness of using these computing models in developing FPGA applications for molecular modeling. PMID:21603152

  19. Development of an MRI-compatible digital SiPM detector stack for simultaneous PET/MRI

    PubMed Central

    Düppenbecker, Peter M; Weissler, Bjoern; Gebhardt, Pierre; Schug, David; Wehner, Jakob; Marsden, Paul K; Schulz, Volkmar

    2016-01-01

    Abstract Advances in solid-state photon detectors paved the way to combine positron emission tomography (PET) and magnetic resonance imaging (MRI) into highly integrated, truly simultaneous, hybrid imaging systems. Based on the most recent digital SiPM technology, we developed an MRI-compatible PET detector stack, intended as a building block for next generation simultaneous PET/MRI systems. Our detector stack comprises an array of 8 × 8 digital SiPM channels with 4 mm pitch using Philips Digital Photon Counting DPC 3200-22 devices, an FPGA for data acquisition, a supply voltage control system and a cooling infrastructure. This is the first detector design that allows the operation of digital SiPMs simultaneously inside an MRI system. We tested and optimized the MRI-compatibility of our detector stack on a laboratory test bench as well as in combination with a Philips Achieva 3 T MRI system. Our design clearly reduces distortions of the static magnetic field compared to a conventional design. The MRI static magnetic field causes weak and directional drift effects on voltage regulators, but has no direct impact on detector performance. MRI gradient switching initially degraded energy and timing resolution. Both distortions could be ascribed to voltage variations induced on the bias and the FPGA core voltage supply respectively. Based on these findings, we improved our detector design and our final design shows virtually no energy or timing degradations, even during heavy and continuous MRI gradient switching. In particular, we found no evidence that the performance of the DPC 3200-22 digital SiPM itself is degraded by the MRI system. PMID:28458919

  20. A low power, area efficient fpga based beamforming technique for 1-D CMUT arrays.

    PubMed

    Joseph, Bastin; Joseph, Jose; Vanjari, Siva Rama Krishna

    2015-08-01

    A low power area efficient digital beamformer targeting low frequency (2MHz) 1-D linear Capacitive Micromachined Ultrasonic Transducer (CMUT) array is developed. While designing the beamforming logic, the symmetry of the CMUT array is well exploited to reduce the area and power consumption. The proposed method is verified in Matlab by clocking an Arbitrary Waveform Generator(AWG). The architecture is successfully implemented in Xilinx Spartan 3E FPGA kit to check its functionality. The beamforming logic is implemented for 8, 16, 32, and 64 element CMUTs targeting Application Specific Integrated Circuit (ASIC) platform at Vdd 1.62V for UMC 90nm technology. It is observed that the proposed architecture consumes significantly lesser power and area (1.2895 mW power and 47134.4 μm(2) area for a 64 element digital beamforming circuit) compared to the conventional square root based algorithm.

  1. Field Programmable Gate Array (FPGA) Respiratory Monitoring System Using a Flow Microsensor and an Accelerometer

    NASA Astrophysics Data System (ADS)

    Mellal, Idir; Laghrouche, Mourad; Bui, Hung Tien

    2017-04-01

    This paper describes a non-invasive system for respiratory monitoring using a Micro Electro Mechanical Systems (MEMS) flow sensor and an IMU (Inertial Measurement Unit) accelerometer. The designed system is intended to be wearable and used in a hospital or at home to assist people with respiratory disorders. To ensure the accuracy of our system, we proposed a calibration method based on ANN (Artificial Neural Network) to compensate the temperature drift of the silicon flow sensor. The sigmoid activation functions used in the ANN model were computed with the CORDIC (COordinate Rotation DIgital Computer) algorithm. This algorithm was also used to estimate the tilt angle in body position. The design was implemented on reconfigurable platform FPGA.

  2. Design of Energy Storage Management System Based on FPGA in Micro-Grid

    NASA Astrophysics Data System (ADS)

    Liang, Yafeng; Wang, Yanping; Han, Dexiao

    2018-01-01

    Energy storage system is the core to maintain the stable operation of smart micro-grid. Aiming at the existing problems of the energy storage management system in the micro-grid such as Low fault tolerance, easy to cause fluctuations in micro-grid, a new intelligent battery management system based on field programmable gate array is proposed : taking advantage of FPGA to combine the battery management system with the intelligent micro-grid control strategy. Finally, aiming at the problem that during estimation of battery charge State by neural network, initialization of weights and thresholds are not accurate leading to large errors in prediction results, the genetic algorithm is proposed to optimize the neural network method, and the experimental simulation is carried out. The experimental results show that the algorithm has high precision and provides guarantee for the stable operation of micro-grid.

  3. VLSI Implementation of a 2.8 Gevent/s Packet-Based AER Interface with Routing and Event Sorting Functionality

    PubMed Central

    Scholze, Stefan; Schiefer, Stefan; Partzsch, Johannes; Hartmann, Stephan; Mayr, Christian Georg; Höppner, Sebastian; Eisenreich, Holger; Henker, Stephan; Vogginger, Bernhard; Schüffny, Rene

    2011-01-01

    State-of-the-art large-scale neuromorphic systems require sophisticated spike event communication between units of the neural network. We present a high-speed communication infrastructure for a waferscale neuromorphic system, based on application-specific neuromorphic communication ICs in an field programmable gate arrays (FPGA)-maintained environment. The ICs implement configurable axonal delays, as required for certain types of dynamic processing or for emulating spike-based learning among distant cortical areas. Measurements are presented which show the efficacy of these delays in influencing behavior of neuromorphic benchmarks. The specialized, dedicated address-event-representation communication in most current systems requires separate, low-bandwidth configuration channels. In contrast, the configuration of the waferscale neuromorphic system is also handled by the digital packet-based pulse channel, which transmits configuration data at the full bandwidth otherwise used for pulse transmission. The overall so-called pulse communication subgroup (ICs and FPGA) delivers a factor 25–50 more event transmission rate than other current neuromorphic communication infrastructures. PMID:22016720

  4. FPGA-Based Smart Sensor for Online Displacement Measurements Using a Heterodyne Interferometer

    PubMed Central

    Vera-Salas, Luis Alberto; Moreno-Tapia, Sandra Veronica; Garcia-Perez, Arturo; de Jesus Romero-Troncoso, Rene; Osornio-Rios, Roque Alfredo; Serroukh, Ibrahim; Cabal-Yepez, Eduardo

    2011-01-01

    The measurement of small displacements on the nanometric scale demands metrological systems of high accuracy and precision. In this context, interferometer-based displacement measurements have become the main tools used for traceable dimensional metrology. The different industrial applications in which small displacement measurements are employed requires the use of online measurements, high speed processes, open architecture control systems, as well as good adaptability to specific process conditions. The main contribution of this work is the development of a smart sensor for large displacement measurement based on phase measurement which achieves high accuracy and resolution, designed to be used with a commercial heterodyne interferometer. The system is based on a low-cost Field Programmable Gate Array (FPGA) allowing the integration of several functions in a single portable device. This system is optimal for high speed applications where online measurement is needed and the reconfigurability feature allows the addition of different modules for error compensation, as might be required by a specific application. PMID:22164040

  5. An FPGA-Based WASN for Remote Real-Time Monitoring of Endangered Species: A Case Study on the Birdsong Recognition of Botaurus stellaris

    PubMed Central

    Hervás, Marcos; Alsina-Pagès, Rosa Ma; Alías, Francesc; Salvador, Martí

    2017-01-01

    Fast environmental variations due to climate change can cause mass decline or even extinctions of species, having a dramatic impact on the future of biodiversity. During the last decade, different approaches have been proposed to track and monitor endangered species, generally based on costly semi-automatic systems that require human supervision adding limitations in coverage and time. However, the recent emergence of Wireless Acoustic Sensor Networks (WASN) has allowed non-intrusive remote monitoring of endangered species in real time through the automatic identification of the sound they emit. In this work, an FPGA-based WASN centralized architecture is proposed and validated on a simulated operation environment. The feasibility of the architecture is evaluated in a case study designed to detect the threatened Botaurus stellaris among other 19 cohabiting birds species in The Parc Natural dels Aiguamolls de l’Empordà, showing an averaged recognition accuracy of 91% over 2h 55’ of representative data. The FPGA-based feature extraction implementation allows the system to process data from 30 acoustic sensors in real time with an affordable cost. Finally, several open questions derived from this research are discussed to be considered for future works. PMID:28594373

  6. A High-Throughput Processor for Flight Control Research Using Small UAVs

    NASA Technical Reports Server (NTRS)

    Klenke, Robert H.; Sleeman, W. C., IV; Motter, Mark A.

    2006-01-01

    There are numerous autopilot systems that are commercially available for small (<100 lbs) UAVs. However, they all share several key disadvantages for conducting aerodynamic research, chief amongst which is the fact that most utilize older, slower, 8- or 16-bit microcontroller technologies. This paper describes the development and testing of a flight control system (FCS) for small UAV s based on a modern, high throughput, embedded processor. In addition, this FCS platform contains user-configurable hardware resources in the form of a Field Programmable Gate Array (FPGA) that can be used to implement custom, application-specific hardware. This hardware can be used to off-load routine tasks such as sensor data collection, from the FCS processor thereby further increasing the computational throughput of the system.

  7. A Re-programmable Platform for Dynamic Burn-in Test of Xilinx Virtexll 3000 FPGA for Military and Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Roosta, Ramin; Wang, Xinchen; Sadigursky, Michael; Tracton, Phil

    2004-01-01

    Field Programmable Gate Arrays (FPGA) have played increasingly important roles in military and aerospace applications. Xilinx SRAM-based FPGAs have been extensively used in commercial applications. They have been used less frequently in space flight applications due to their susceptibility to single-event upsets. Reliability of these devices in space applications is a concern that has not been addressed. The objective of this project is to design a fully programmable hardware/software platform that allows (but is not limited to) comprehensive static/dynamic burn-in test of Virtex-II 3000 FPGAs, at speed test and SEU test. Conventional methods test very few discrete AC parameters (primarily switching) of a given integrated circuit. This approach will test any possible configuration of the FPGA and any associated performance parameters. It allows complete or partial re-programming of the FPGA and verification of the program by using read back followed by dynamic test. Designers have full control over which functional elements of the FPGA to stress. They can completely simulate all possible types of configurations/functions. Another benefit of this platform is that it allows collecting information on elevation of the junction temperature as a function of gate utilization, operating frequency and functionality. A software tool has been implemented to demonstrate the various features of the system. The software consists of three major parts: the parallel interface driver, main system procedure and a graphical user interface (GUI).

  8. Living in a digital world: features and applications of FPGA in photon detection

    NASA Astrophysics Data System (ADS)

    Arnesano, Cosimo

    Optical spectroscopy and imaging outcomes rely upon many factors; one of the most critical is the photon acquisition and processing method employed. For some types of measurements it may be crucial to acquire every single photon quickly with temporal resolution, but in other cases it is important to acquire as many photons as possible, regardless of the time information about each of them. Fluorescence Lifetime Imaging Microscopy belongs to the first case, where the information of the time of arrival of every single photon in every single pixel is fundamental in obtaining the desired information. Spectral tissue imaging belongs to the second case, where high photon density is needed in order to calculate the optical parameters necessary to build the spectral image. In both cases, the current instrumentation suffers from limitations in terms of acquisition time, duty cycle, cost, and radio-frequency interference and emission. We developed the Digital Frequency-Domain approach for photon acquisition and processing purpose using new digital technology. This approach is based on the use of photon detectors in photon counting mode, and the digital heterodyning method to acquire data which is analyzed in the frequency domain to provide the information of the time of arrival of the photons . In conjunction with the use of pulsed laser sources, this method allows the determination of the time of arrival of the photons using the harmonic content of the frequency domain analysis. The parallel digital FD design is a powerful approach that others the possibility to implement a variety of different applications in fluorescence spectroscopy and microscopy. It can be applied to fluorometry, Fluorescence Lifetime Imaging (FLIM), and Fluorescence Correlation Spectroscopy (FCS), as well as multi frequency and multi wavelength tissue imaging in compact portable medical devices. It dramatically reduces the acquisition time from the several minutes scale to the seconds scale, performs signal processing in a digital fashion avoiding RF emission and it is extremely inexpensive. This development is the result of a systematic study carried on a previous design known as the FLIMBox developed as part of a thesis of another graduate student. The extensive work done in maximizing the performance of the original FLIMBox led us to develop a new hardware solution with exciting and promising results and potential that were not possible in the previous hardware realization, where the signal harmonic content was limited by the FPGA technology. The new design permits acquisition of a much larger harmonic content of the sample response when it is excited with a pulsed light source in one single measurement using the digital mixing principle that was developed in the original design. Furthermore, we used the parallel digital FD principle to perform tissue imaging through Diffuse Optical Spectroscopy (DOS) measurements. We integrated the FLIMBox in a new system that uses a supercontinuum white laser with high brightness as a single light source and photomultipliers with large detection area, both allowing a high penetration depth with extremely low power at the sample. The parallel acquisition, achieved by using the FlimBox, decreases the time required for standard serial systems that scan through all modulation frequencies. Furthermore, the all-digital acquisition avoids analog noise, removes the analog mixer of the conventional frequency domain approach, and it does not generate radio-frequencies, normally present in current analog systems. We are able to obtain a very sensitive acquisition due to the high signal to noise ratio (S/N). The successful results obtained by utilizing digital technology in photon acquisition and processing, prompted us to extend the use of FPGA to other applications, such as phosphorescence detection. Using the FPGA concept we proposed possible solutions to outstanding problems with the current technology. In this thesis I discuss new possible scenarios where new FPGA chips are applied to spectral tissue imaging.

  9. Ready to use detector modules for the NEAT spectrometer: Concept, design, first results

    NASA Astrophysics Data System (ADS)

    Magi, Ádám; Harmat, Péter; Russina, Margarita; Günther, Gerrit; Mezei, Ferenc

    2018-05-01

    The paper presents the detector system developed by Datalist Systems, Ltd. (previously ANTE Innovative Technologies) for the NEAT-II spectrometer at HZB. We present initial concept, design and implementation highlights as well as the first results of measurements such as position resolution. The initial concept called for modular architecture with 416 3He detector tubes organized into thirteen 32-tube modules that can be independently installed and removed to and from the detector vacuum chamber for ease of maintenance. The unalloyed aluminum mechanical support modules for four 8-tube units each also house the air-boxes that contain the front-end electronics (preamplifiers) that need to be on atmospheric pressure. The modules have been manufactured and partly assembled in Hungary and then fully assembled and installed on site by Datalist Systems crew. The signal processing and data acquisition solution is based on low time constant (˜60 ns) preamplifier electronics and sampling ADC's running at 50 MS/s (i.e. a sample every 20 ns) for all 832 data channels. The preamplifiers are proprietary, developed specifically for the NEAT spectrometer, while the ADC's and the FPGA's that further process the data are based on National Instruments products. The data acquisition system comprises 26 FPGA modules each serving 16 tubes (providing for up to 50 kHz count rate per individual tube) and it is organized into two PXI chassis and two data acquisition computers that perform post-processing, event classification and provide appropriate preview of the collected data. The data acquisition software based on Event Recording principles provides a single point of contact for the scientific software with an Event Record List with absolute timestamps of 100ns resolution, timing data of 100 ns resolution for the seven discs chopper system as well as classification data that can be used for flexible data filtering in off-line analysis of the gathered data. A unique 3-tier system of filtering criteria of events is in operation: a hard threshold in the FPGA's to reduce the effect of noise, a pulse-shape based classification to eliminate gamma sensitivity and an additional flexible feature based classification to filter out pileup and other unwanted phenomena. This ensures high count rates (50kHz per tube, 1MHz overall) while maintaining good quality of measurements (e.g. position resolution). The first measurement results show that the delivered detector system meets the initial requirements of 20 mm position resolution along the 2000mm long detector tubes. This is partly due to the innovative event classification system that provides vital pulse shape data that can be used for sophisticated position resolution algorithms implemented on the DAQ computers.

  10. Reconfigurable vision system for real-time applications

    NASA Astrophysics Data System (ADS)

    Torres-Huitzil, Cesar; Arias-Estrada, Miguel

    2002-03-01

    Recently, a growing community of researchers has used reconfigurable systems to solve computationally intensive problems. Reconfigurability provides optimized processors for systems on chip designs, and makes easy to import technology to a new system through reusable modules. The main objective of this work is the investigation of a reconfigurable computer system targeted for computer vision and real-time applications. The system is intended to circumvent the inherent computational load of most window-based computer vision algorithms. It aims to build a system for such tasks by providing an FPGA-based hardware architecture for task specific vision applications with enough processing power, using the minimum amount of hardware resources as possible, and a mechanism for building systems using this architecture. Regarding the software part of the system, a library of pre-designed and general-purpose modules that implement common window-based computer vision operations is being investigated. A common generic interface is established for these modules in order to define hardware/software components. These components can be interconnected to develop more complex applications, providing an efficient mechanism for transferring image and result data among modules. Some preliminary results are presented and discussed.

  11. An FPGA-based demodulation system for fiber Bragg grating sensing

    NASA Astrophysics Data System (ADS)

    Li, Yongqian; He, Haitao; Yao, Guozhen

    2010-11-01

    This paper introduces the principle of fiber Bragg grating (FBG) sensor, designs and realizes a compact wavelength demodulation system for FBG sensing using a Fabry-Perot (F-P) filter. FPGA is adopted as a main controller to control a D/A converter to produce a sawtooth wave for driving the F-P filter, and to design the data acquisition circuit for collecting the output signals of photoelectric detector. The collected data is processed after transmitting to PC through the data transmission circuit, and then the demodulation of FBG wavelength is completed finally. This compact FBG wavelength demodulation system is expected to have wide applications in on-line monitoring of electric power equipment and large structures.

  12. A systematic FPGA acceleration design for applications based on convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Dong, Hao; Jiang, Li; Li, Tianjian; Liang, Xiaoyao

    2018-04-01

    Most FPGA accelerators for convolutional neural network are designed to optimize the inner acceleration and are ignored of the optimization for the data path between the inner accelerator and the outer system. This could lead to poor performance in applications like real time video object detection. We propose a brand new systematic FPFA acceleration design to solve this problem. This design takes the data path optimization between the inner accelerator and the outer system into consideration and optimizes the data path using techniques like hardware format transformation, frame compression. It also takes fixed-point, new pipeline technique to optimize the inner accelerator. All these make the final system's performance very good, reaching about 10 times the performance comparing with the original system.

  13. Real-time blind image deconvolution based on coordinated framework of FPGA and DSP

    NASA Astrophysics Data System (ADS)

    Wang, Ze; Li, Hang; Zhou, Hua; Liu, Hongjun

    2015-10-01

    Image restoration takes a crucial place in several important application domains. With the increasing of computation requirement as the algorithms become much more complexity, there has been a significant rise in the need for accelerating implementation. In this paper, we focus on an efficient real-time image processing system for blind iterative deconvolution method by means of the Richardson-Lucy (R-L) algorithm. We study the characteristics of algorithm, and an image restoration processing system based on the coordinated framework of FPGA and DSP (CoFD) is presented. Single precision floating-point processing units with small-scale cascade and special FFT/IFFT processing modules are adopted to guarantee the accuracy of the processing. Finally, Comparing experiments are done. The system could process a blurred image of 128×128 pixels within 32 milliseconds, and is up to three or four times faster than the traditional multi-DSPs systems.

  14. Software-based high-level synthesis design of FPGA beamformers for synthetic aperture imaging.

    PubMed

    Amaro, Joao; Yiu, Billy Y S; Falcao, Gabriel; Gomes, Marco A C; Yu, Alfred C H

    2015-05-01

    Field-programmable gate arrays (FPGAs) can potentially be configured as beamforming platforms for ultrasound imaging, but a long design time and skilled expertise in hardware programming are typically required. In this article, we present a novel approach to the efficient design of FPGA beamformers for synthetic aperture (SA) imaging via the use of software-based high-level synthesis techniques. Software kernels (coded in OpenCL) were first developed to stage-wise handle SA beamforming operations, and their corresponding FPGA logic circuitry was emulated through a high-level synthesis framework. After design space analysis, the fine-tuned OpenCL kernels were compiled into register transfer level descriptions to configure an FPGA as a beamformer module. The processing performance of this beamformer was assessed through a series of offline emulation experiments that sought to derive beamformed images from SA channel-domain raw data (40-MHz sampling rate, 12 bit resolution). With 128 channels, our FPGA-based SA beamformer can achieve 41 frames per second (fps) processing throughput (3.44 × 10(8) pixels per second for frame size of 256 × 256 pixels) at 31.5 W power consumption (1.30 fps/W power efficiency). It utilized 86.9% of the FPGA fabric and operated at a 196.5 MHz clock frequency (after optimization). Based on these findings, we anticipate that FPGA and high-level synthesis can together foster rapid prototyping of real-time ultrasound processor modules at low power consumption budgets.

  15. A low delay transmission method of multi-channel video based on FPGA

    NASA Astrophysics Data System (ADS)

    Fu, Weijian; Wei, Baozhi; Li, Xiaobin; Wang, Quan; Hu, Xiaofei

    2018-03-01

    In order to guarantee the fluency of multi-channel video transmission in video monitoring scenarios, we designed a kind of video format conversion method based on FPGA and its DMA scheduling for video data, reduces the overall video transmission delay.In order to sace the time in the conversion process, the parallel ability of FPGA is used to video format conversion. In order to improve the direct memory access (DMA) writing transmission rate of PCIe bus, a DMA scheduling method based on asynchronous command buffer is proposed. The experimental results show that this paper designs a low delay transmission method based on FPGA, which increases the DMA writing transmission rate by 34% compared with the existing method, and then the video overall delay is reduced to 23.6ms.

  16. FPGA-based voltage and current dual drive system for high frame rate electrical impedance tomography.

    PubMed

    Khan, Shadab; Manwaring, Preston; Borsic, Andrea; Halter, Ryan

    2015-04-01

    Electrical impedance tomography (EIT) is used to image the electrical property distribution of a tissue under test. An EIT system comprises complex hardware and software modules, which are typically designed for a specific application. Upgrading these modules is a time-consuming process, and requires rigorous testing to ensure proper functioning of new modules with the existing ones. To this end, we developed a modular and reconfigurable data acquisition (DAQ) system using National Instruments' (NI) hardware and software modules, which offer inherent compatibility over generations of hardware and software revisions. The system can be configured to use up to 32-channels. This EIT system can be used to interchangeably apply current or voltage signal, and measure the tissue response in a semi-parallel fashion. A novel signal averaging algorithm, and 512-point fast Fourier transform (FFT) computation block was implemented on the FPGA. FFT output bins were classified as signal or noise. Signal bins constitute a tissue's response to a pure or mixed tone signal. Signal bins' data can be used for traditional applications, as well as synchronous frequency-difference imaging. Noise bins were used to compute noise power on the FPGA. Noise power represents a metric of signal quality, and can be used to ensure proper tissue-electrode contact. Allocation of these computationally expensive tasks to the FPGA reduced the required bandwidth between PC, and the FPGA for high frame rate EIT. In 16-channel configuration, with a signal-averaging factor of 8, the DAQ frame rate at 100 kHz exceeded 110 frames s (-1), and signal-to-noise ratio exceeded 90 dB across the spectrum. Reciprocity error was found to be for frequencies up to 1 MHz. Static imaging experiments were performed on a high-conductivity inclusion placed in a saline filled tank; the inclusion was clearly localized in the reconstructions obtained for both absolute current and voltage mode data.

  17. A versatile LabVIEW and field-programmable gate array-based scanning probe microscope for in operando electronic device characterization.

    PubMed

    Berger, Andrew J; Page, Michael R; Jacob, Jan; Young, Justin R; Lewis, Jim; Wenzel, Lothar; Bhallamudi, Vidya P; Johnston-Halperin, Ezekiel; Pelekhov, Denis V; Hammel, P Chris

    2014-12-01

    Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform the various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.

  18. A versatile LabVIEW and field-programmable gate array-based scanning probe microscope for in operando electronic device characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, Andrew J., E-mail: berger.156@osu.edu; Page, Michael R.; Young, Justin R.

    Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform themore » various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.« less

  19. FPGA Implementation of Stereo Disparity with High Throughput for Mobility Applications

    NASA Technical Reports Server (NTRS)

    Villalpando, Carlos Y.; Morfopolous, Arin; Matthies, Larry; Goldberg, Steven

    2011-01-01

    High speed stereo vision can allow unmanned robotic systems to navigate safely in unstructured terrain, but the computational cost can exceed the capacity of typical embedded CPUs. In this paper, we describe an end-to-end stereo computation co-processing system optimized for fast throughput that has been implemented on a single Virtex 4 LX160 FPGA. This system is capable of operating on images from a 1024 x 768 3CCD (true RGB) camera pair at 15 Hz. Data enters the FPGA directly from the cameras via Camera Link and is rectified, pre-filtered and converted into a disparity image all within the FPGA, incurring no CPU load. Once complete, a rectified image and the final disparity image are read out over the PCI bus, for a bandwidth cost of 68 MB/sec. Within the FPGA there are 4 distinct algorithms: Camera Link capture, Bilinear rectification, Bilateral subtraction pre-filtering and the Sum of Absolute Difference (SAD) disparity. Each module will be described in brief along with the data flow and control logic for the system. The system has been successfully fielded upon the Carnegie Mellon University's National Robotics Engineering Center (NREC) Crusher system during extensive field trials in 2007 and 2008 and is being implemented for other surface mobility systems at JPL.

  20. A system for characterization of DEPFET silicon pixel matrices and test beam results

    NASA Astrophysics Data System (ADS)

    Furletov, Sergey; DEPFET Collaboration

    2011-02-01

    The DEPFET pixel detector offers first stage in-pixel amplification by incorporating a field effect transistor in the high resistivity silicon substrate. In this concept, a very small input capacitance can be realized thus allowing for low noise measurements. This makes DEPFET sensors a favorable technology for tracking in particle physics. Therefore a system with a DEPFET pixel matrix was developed to test DEPFET performance for an application as a vertex detector for the Belle II experiment. The system features a current based, row-wise readout of a DEPFET pixel matrix with a designated readout chip, steering chips for matrix control, a FPGA based data acquisition board, and a dedicated software package. The system was successfully operated in both test beam and lab environment. In 2009 new DEPFET matrices have been characterized in a 120 GeV pion beam at the CERN SPS. The current status of the DEPFET system and test beam results are presented.

  1. Continued Data Acquisition Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwellenbach, David

    This task focused on improving techniques for integrating data acquisition of secondary particles correlated in time with detected cosmic-ray muons. Scintillation detectors with Pulse Shape Discrimination (PSD) capability show the most promise as a detector technology based on work in FY13. Typically PSD parameters are determined prior to an experiment and the results are based on these parameters. By saving data in list mode, including the fully digitized waveform, any experiment can effectively be replayed to adjust PSD and other parameters for the best data capture. List mode requires time synchronization of two independent data acquisitions (DAQ) systems: the muonmore » tracker and the particle detector system. Techniques to synchronize these systems were studied. Two basic techniques were identified: real time mode and sequential mode. Real time mode is the preferred system but has proven to be a significant challenge since two FPGA systems with different clocking parameters must be synchronized. Sequential processing is expected to work with virtually any DAQ but requires more post processing to extract the data.« less

  2. Real-time laser cladding control with variable spot size

    NASA Astrophysics Data System (ADS)

    Arias, J. L.; Montealegre, M. A.; Vidal, F.; Rodríguez, J.; Mann, S.; Abels, P.; Motmans, F.

    2014-03-01

    Laser cladding processing has been used in different industries to improve the surface properties or to reconstruct damaged pieces. In order to cover areas considerably larger than the diameter of the laser beam, successive partially overlapping tracks are deposited. With no control over the process variables this conduces to an increase of the temperature, which could decrease mechanical properties of the laser cladded material. Commonly, the process is monitored and controlled by a PC using cameras, but this control suffers from a lack of speed caused by the image processing step. The aim of this work is to design and develop a FPGA-based laser cladding control system. This system is intended to modify the laser beam power according to the melt pool width, which is measured using a CMOS camera. All the control and monitoring tasks are carried out by a FPGA, taking advantage of its abundance of resources and speed of operation. The robustness of the image processing algorithm is assessed, as well as the control system performance. Laser power is decreased as substrate temperature increases, thus maintaining a constant clad width. This FPGA-based control system is integrated in an adaptive laser cladding system, which also includes an adaptive optical system that will control the laser focus distance on the fly. The whole system will constitute an efficient instrument for part repair with complex geometries and coating selective surfaces. This will be a significant step forward into the total industrial implementation of an automated industrial laser cladding process.

  3. A new simple technique for improving the random properties of chaos-based cryptosystems

    NASA Astrophysics Data System (ADS)

    Garcia-Bosque, M.; Pérez-Resa, A.; Sánchez-Azqueta, C.; Celma, S.

    2018-03-01

    A new technique for improving the security of chaos-based stream ciphers has been proposed and tested experimentally. This technique manages to improve the randomness properties of the generated keystream by preventing the system to fall into short period cycles due to digitation. In order to test this technique, a stream cipher based on a Skew Tent Map algorithm has been implemented on a Virtex 7 FPGA. The randomness of the keystream generated by this system has been compared to the randomness of the keystream generated by the same system with the proposed randomness-enhancement technique. By subjecting both keystreams to the National Institute of Standards and Technology (NIST) tests, we have proved that our method can considerably improve the randomness of the generated keystreams. In order to incorporate our randomness-enhancement technique, only 41 extra slices have been needed, proving that, apart from effective, this method is also efficient in terms of area and hardware resources.

  4. A FPGA-Based, Granularity-Variable Neuromorphic Processor and Its Application in a MIMO Real-Time Control System.

    PubMed

    Zhang, Zhen; Ma, Cheng; Zhu, Rong

    2017-08-23

    Artificial Neural Networks (ANNs), including Deep Neural Networks (DNNs), have become the state-of-the-art methods in machine learning and achieved amazing success in speech recognition, visual object recognition, and many other domains. There are several hardware platforms for developing accelerated implementation of ANN models. Since Field Programmable Gate Array (FPGA) architectures are flexible and can provide high performance per watt of power consumption, they have drawn a number of applications from scientists. In this paper, we propose a FPGA-based, granularity-variable neuromorphic processor (FBGVNP). The traits of FBGVNP can be summarized as granularity variability, scalability, integrated computing, and addressing ability: first, the number of neurons is variable rather than constant in one core; second, the multi-core network scale can be extended in various forms; third, the neuron addressing and computing processes are executed simultaneously. These make the processor more flexible and better suited for different applications. Moreover, a neural network-based controller is mapped to FBGVNP and applied in a multi-input, multi-output, (MIMO) real-time, temperature-sensing and control system. Experiments validate the effectiveness of the neuromorphic processor. The FBGVNP provides a new scheme for building ANNs, which is flexible, highly energy-efficient, and can be applied in many areas.

  5. A FPGA-Based, Granularity-Variable Neuromorphic Processor and Its Application in a MIMO Real-Time Control System

    PubMed Central

    Zhang, Zhen; Zhu, Rong

    2017-01-01

    Artificial Neural Networks (ANNs), including Deep Neural Networks (DNNs), have become the state-of-the-art methods in machine learning and achieved amazing success in speech recognition, visual object recognition, and many other domains. There are several hardware platforms for developing accelerated implementation of ANN models. Since Field Programmable Gate Array (FPGA) architectures are flexible and can provide high performance per watt of power consumption, they have drawn a number of applications from scientists. In this paper, we propose a FPGA-based, granularity-variable neuromorphic processor (FBGVNP). The traits of FBGVNP can be summarized as granularity variability, scalability, integrated computing, and addressing ability: first, the number of neurons is variable rather than constant in one core; second, the multi-core network scale can be extended in various forms; third, the neuron addressing and computing processes are executed simultaneously. These make the processor more flexible and better suited for different applications. Moreover, a neural network-based controller is mapped to FBGVNP and applied in a multi-input, multi-output, (MIMO) real-time, temperature-sensing and control system. Experiments validate the effectiveness of the neuromorphic processor. The FBGVNP provides a new scheme for building ANNs, which is flexible, highly energy-efficient, and can be applied in many areas. PMID:28832522

  6. Programming and Runtime Support to Blaze FPGA Accelerator Deployment at Datacenter Scale.

    PubMed

    Huang, Muhuan; Wu, Di; Yu, Cody Hao; Fang, Zhenman; Interlandi, Matteo; Condie, Tyson; Cong, Jason

    2016-10-01

    With the end of CPU core scaling due to dark silicon limitations, customized accelerators on FPGAs have gained increased attention in modern datacenters due to their lower power, high performance and energy efficiency. Evidenced by Microsoft's FPGA deployment in its Bing search engine and Intel's 16.7 billion acquisition of Altera, integrating FPGAs into datacenters is considered one of the most promising approaches to sustain future datacenter growth. However, it is quite challenging for existing big data computing systems-like Apache Spark and Hadoop-to access the performance and energy benefits of FPGA accelerators. In this paper we design and implement Blaze to provide programming and runtime support for enabling easy and efficient deployments of FPGA accelerators in datacenters. In particular, Blaze abstracts FPGA accelerators as a service (FaaS) and provides a set of clean programming APIs for big data processing applications to easily utilize those accelerators. Our Blaze runtime implements an FaaS framework to efficiently share FPGA accelerators among multiple heterogeneous threads on a single node, and extends Hadoop YARN with accelerator-centric scheduling to efficiently share them among multiple computing tasks in the cluster. Experimental results using four representative big data applications demonstrate that Blaze greatly reduces the programming efforts to access FPGA accelerators in systems like Apache Spark and YARN, and improves the system throughput by 1.7 × to 3× (and energy efficiency by 1.5× to 2.7×) compared to a conventional CPU-only cluster.

  7. An Efficient, FPGA-Based, Cluster Detection Algorithm Implementation for a Strip Detector Readout System in a Time Projection Chamber Polarimeter

    NASA Technical Reports Server (NTRS)

    Gregory, Kyle J.; Hill, Joanne E. (Editor); Black, J. Kevin; Baumgartner, Wayne H.; Jahoda, Keith

    2016-01-01

    A fundamental challenge in a spaceborne application of a gas-based Time Projection Chamber (TPC) for observation of X-ray polarization is handling the large amount of data collected. The TPC polarimeter described uses the APV-25 Application Specific Integrated Circuit (ASIC) to readout a strip detector. Two dimensional photoelectron track images are created with a time projection technique and used to determine the polarization of the incident X-rays. The detector produces a 128x30 pixel image per photon interaction with each pixel registering 12 bits of collected charge. This creates challenging requirements for data storage and downlink bandwidth with only a modest incidence of photons and can have a significant impact on the overall mission cost. An approach is described for locating and isolating the photoelectron track within the detector image, yielding a much smaller data product, typically between 8x8 pixels and 20x20 pixels. This approach is implemented using a Microsemi RT-ProASIC3-3000 Field-Programmable Gate Array (FPGA), clocked at 20 MHz and utilizing 10.7k logic gates (14% of FPGA), 20 Block RAMs (17% of FPGA), and no external RAM. Results will be presented, demonstrating successful photoelectron track cluster detection with minimal impact to detector dead-time.

  8. A 4.2 ps Time-Interval RMS Resolution Time-to-Digital Converter Using a Bin Decimation Method in an UltraScale FPGA

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Liu, Chong

    2016-10-01

    The common solution for a field programmable gate array (FPGA)-based time-to-digital converter (TDC) is constructing a tapped delay line (TDL) for time interpolation to yield a sub-clock time resolution. The granularity and uniformity of the delay elements of TDL determine the TDC time resolution. In this paper, we propose a dual-sampling TDL architecture and a bin decimation method that could make the delay elements as small and uniform as possible, so that the implemented TDCs can achieve a high time resolution beyond the intrinsic cell delay. Two identical full hardware-based TDCs were implemented in a Xilinx UltraScale FPGA for performance evaluation. For fixed time intervals in the range from 0 to 440 ns, the average time-interval RMS resolution is measured by the two TDCs with 4.2 ps, thus the timestamp resolution of single TDC is derived as 2.97 ps. The maximum hit rate of the TDC is as high as half the system clock rate of FPGA, namely 250 MHz in our demo prototype. Because the conventional online bin-by-bin calibration is not needed, the implementation of the proposed TDC is straightforward and relatively resource-saving.

  9. FPGA-based coprocessor for matrix algorithms implementation

    NASA Astrophysics Data System (ADS)

    Amira, Abbes; Bensaali, Faycal

    2003-03-01

    Matrix algorithms are important in many types of applications including image and signal processing. These areas require enormous computing power. A close examination of the algorithms used in these, and related, applications reveals that many of the fundamental actions involve matrix operations such as matrix multiplication which is of O (N3) on a sequential computer and O (N3/p) on a parallel system with p processors complexity. This paper presents an investigation into the design and implementation of different matrix algorithms such as matrix operations, matrix transforms and matrix decompositions using an FPGA based environment. Solutions for the problem of processing large matrices have been proposed. The proposed system architectures are scalable, modular and require less area and time complexity with reduced latency when compared with existing structures.

  10. FPGA Implementation of Generalized Hebbian Algorithm for Texture Classification

    PubMed Central

    Lin, Shiow-Jyu; Hwang, Wen-Jyi; Lee, Wei-Hao

    2012-01-01

    This paper presents a novel hardware architecture for principal component analysis. The architecture is based on the Generalized Hebbian Algorithm (GHA) because of its simplicity and effectiveness. The architecture is separated into three portions: the weight vector updating unit, the principal computation unit and the memory unit. In the weight vector updating unit, the computation of different synaptic weight vectors shares the same circuit for reducing the area costs. To show the effectiveness of the circuit, a texture classification system based on the proposed architecture is physically implemented by Field Programmable Gate Array (FPGA). It is embedded in a System-On-Programmable-Chip (SOPC) platform for performance measurement. Experimental results show that the proposed architecture is an efficient design for attaining both high speed performance and low area costs. PMID:22778640

  11. STRS Compliant FPGA Waveform Development

    NASA Technical Reports Server (NTRS)

    Nappier, Jennifer; Downey, Joseph; Mortensen, Dale

    2008-01-01

    The Space Telecommunications Radio System (STRS) Architecture Standard describes a standard for NASA space software defined radios (SDRs). It provides a common framework that can be used to develop and operate a space SDR in a reconfigurable and reprogrammable manner. One goal of the STRS Architecture is to promote waveform reuse among multiple software defined radios. Many space domain waveforms are designed to run in the special signal processing (SSP) hardware. However, the STRS Architecture is currently incomplete in defining a standard for designing waveforms in the SSP hardware. Therefore, the STRS Architecture needs to be extended to encompass waveform development in the SSP hardware. The extension of STRS to the SSP hardware will promote easier waveform reconfiguration and reuse. A transmit waveform for space applications was developed to determine ways to extend the STRS Architecture to a field programmable gate array (FPGA). These extensions include a standard hardware abstraction layer for FPGAs and a standard interface between waveform functions running inside a FPGA. A FPGA-based transmit waveform implementation of the proposed standard interfaces on a laboratory breadboard SDR will be discussed.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, Heather; Wirthlin, Michael

    A variety of fault emulation systems have been created to study the effect of single-event effects (SEEs) in static random access memory (SRAM) based field-programmable gate arrays (FPGAs). These systems are useful for augmenting radiation-hardness assurance (RHA) methodologies for verifying the effectiveness for mitigation techniques; understanding error signatures and failure modes in FPGAs; and failure rate estimation. For radiation effects researchers, it is important that these systems properly emulate how SEEs manifest in FPGAs. If the fault emulation systems does not mimic the radiation environment, the system will generate erroneous data and incorrect predictions of behavior of the FPGA inmore » a radiation environment. Validation determines whether the emulated faults are reasonable analogs to the radiation-induced faults. In this study we present methods for validating fault emulation systems and provide several examples of validated FPGA fault emulation systems.« less

  13. Architectural design for a low cost FPGA-based traffic signal detection system in vehicles

    NASA Astrophysics Data System (ADS)

    López, Ignacio; Salvador, Rubén; Alarcón, Jaime; Moreno, Félix

    2007-05-01

    In this paper we propose an architecture for an embedded traffic signal detection system. Development of Advanced Driver Assistance Systems (ADAS) is one of the major trends of research in automotion nowadays. Examples of past and ongoing projects in the field are CHAMELEON ("Pre-Crash Application all around the vehicle" IST 1999-10108), PREVENT (Preventive and Active Safety Applications, FP6-507075, http://www.prevent-ip.org/) and AVRT in the US (Advanced Vision-Radar Threat Detection (AVRT): A Pre-Crash Detection and Active Safety System). It can be observed a major interest in systems for real-time analysis of complex driving scenarios, evaluating risk and anticipating collisions. The system will use a low cost CCD camera on the dashboard facing the road. The images will be processed by an Altera Cyclone family FPGA. The board does median and Sobel filtering of the incoming frames at PAL rate, and analyzes them for several categories of signals. The result is conveyed to the driver. The scarce resources provided by the hardware require an architecture developed for optimal use. The system will use a combination of neural networks and an adapted blackboard architecture. Several neural networks will be used in sequence for image analysis, by reconfiguring a single, generic hardware neural network in the FPGA. This generic network is optimized for speed, in order to admit several executions within the frame rate. The sequence will follow the execution cycle of the blackboard architecture. The global, blackboard architecture being developed and the hardware architecture for the generic, reconfigurable FPGA perceptron will be explained in this paper. The project is still at an early stage. However, some hardware implementation results are already available and will be offered in the paper.

  14. A 3.9 ps Time-Interval RMS Precision Time-to-Digital Converter Using a Dual-Sampling Method in an UltraScale FPGA

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Liu, Chong

    2016-10-01

    Field programmable gate arrays (FPGAs) manufactured with more advanced processing technology have faster carry chains and smaller delay elements, which are favorable for the design of tapped delay line (TDL)-style time-to-digital converters (TDCs) in FPGA. However, new challenges are posed in using them to implement TDCs with a high time precision. In this paper, we propose a bin realignment method and a dual-sampling method for TDC implementation in a Xilinx UltraScale FPGA. The former realigns the disordered time delay taps so that the TDC precision can approach the limit of its delay granularity, while the latter doubles the number of taps in the delay line so that the TDC precision beyond the cell delay limitation can be expected. Two TDC channels were implemented in a Kintex UltraScale FPGA, and the effectiveness of the new methods was evaluated. For fixed time intervals in the range from 0 to 440 ns, the average RMS precision measured by the two TDC channels reaches 5.8 ps using the bin realignment, and it further improves to 3.9 ps by using the dual-sampling method. The time precision has a 5.6% variation in the measured temperature range. Every part of the TDC, including dual-sampling, encoding, and on-line calibration, could run at a 500 MHz clock frequency. The system measurement dead time is only 4 ns.

  15. Estimating the circuit delay of FPGA with a transfer learning method

    NASA Astrophysics Data System (ADS)

    Cui, Xiuhai; Liu, Datong; Peng, Yu; Peng, Xiyuan

    2017-10-01

    With the increase of FPGA (Field Programmable Gate Array, FPGA) functionality, FPGA has become an on-chip system platform. Due to increase the complexity of FPGA, estimating the delay of FPGA is a very challenge work. To solve the problems, we propose a transfer learning estimation delay (TLED) method to simplify the delay estimation of different speed grade FPGA. In fact, the same style different speed grade FPGA comes from the same process and layout. The delay has some correlation among different speed grade FPGA. Therefore, one kind of speed grade FPGA is chosen as a basic training sample in this paper. Other training samples of different speed grade can get from the basic training samples through of transfer learning. At the same time, we also select a few target FPGA samples as training samples. A general predictive model is trained by these samples. Thus one kind of estimation model is used to estimate different speed grade FPGA circuit delay. The framework of TRED includes three phases: 1) Building a basic circuit delay library which includes multipliers, adders, shifters, and so on. These circuits are used to train and build the predictive model. 2) By contrasting experiments among different algorithms, the forest random algorithm is selected to train predictive model. 3) The target circuit delay is predicted by the predictive model. The Artix-7, Kintex-7, and Virtex-7 are selected to do experiments. Each of them includes -1, -2, -2l, and -3 different speed grade. The experiments show the delay estimation accuracy score is more than 92% with the TLED method. This result shows that the TLED method is a feasible delay assessment method, especially in the high-level synthesis stage of FPGA tool, which is an efficient and effective delay assessment method.

  16. An FPGA- Based General-Purpose Data Acquisition Controller

    NASA Astrophysics Data System (ADS)

    Robson, C. C. W.; Bousselham, A.; Bohm

    2006-08-01

    System development in advanced FPGAs allows considerable flexibility, both during development and in production use. A mixed firmware/software solution allows the developer to choose what shall be done in firmware or software, and to make that decision late in the process. However, this flexibility comes at the cost of increased complexity. We have designed a modular development framework to help to overcome these issues of increased complexity. This framework comprises a generic controller that can be adapted for different systems by simply changing the software or firmware parts. The controller can use both soft and hard processors, with or without an RTOS, based on the demands of the system to be developed. The resulting system uses the Internet for both control and data acquisition. In our studies we developed the embedded system in a Xilinx Virtex-II Pro FPGA, where we used both PowerPC and MicroBlaze cores, http, Java, and LabView for control and communication, together with the MicroC/OS-II and OSE operating systems

  17. The microwave holography system for the Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Serra, G.; Bolli, P.; Busonera, G.; Pisanu, T.; Poppi, S.; Gaudiomonte, F.; Zacchiroli, G.; Roda, J.; Morsiani, M.; López-Pérez, J. A.

    2012-09-01

    Microwave holography is a well-established technique for mapping surface errors of large reflector antennas, particularly those designed to operate at high frequencies. We present here a holography system based on the interferometric method for mapping the primary reflector surface of the Sardinia Radio Telescope (SRT). SRT is a new 64-m-diameter antenna located in Sardinia, Italy, equipped with an active surface and designed to operate up to 115 GHz. The system consists mainly of two radio frequency low-noise coherent channels, designed to receive Ku-band digital TV signals from geostationary satellites. Two commercial prime focus low-noise block converters are installed on the radio telescope under test and on a small reference antenna, respectively. Then the signals are amplified, filtered and downconverted to baseband. An innovative digital back-end based on FPGA technology has been implemented to digitize two 5 MHz-band signals and calculate their cross-correlation in real-time. This is carried out by using a 16-bit resolution ADCs and a FPGA reaching very large amplitude dynamic range and reducing post-processing time. The final holography data analysis is performed by CLIC data reduction software developed within the Institut de Radioastronomie Millimétrique (IRAM, Grenoble, France). The system was successfully tested during several holography measurement campaigns, recently performed at the Medicina 32-m radio telescope. Two 65-by-65 maps, using an on-the-fly raster scan with on-source phase calibration, were performed pointing the radio telescope at 38 degrees elevation towards EUTELSAT 7A satellite. The high SNR (greater than 60 dB) and the good phase stability led to get an accuracy on the surface error maps better than 150 μm RMS.

  18. Embedded controller for GEM detector readout system

    NASA Astrophysics Data System (ADS)

    Zabołotny, Wojciech M.; Byszuk, Adrian; Chernyshova, Maryna; Cieszewski, Radosław; Czarski, Tomasz; Dominik, Wojciech; Jakubowska, Katarzyna L.; Kasprowicz, Grzegorz; Poźniak, Krzysztof; Rzadkiewicz, Jacek; Scholz, Marek

    2013-10-01

    This paper describes the embedded controller used for the multichannel readout system for the GEM detector. The controller is based on the embedded Mini ITX mainboard, running the GNU/Linux operating system. The controller offers two interfaces to communicate with the FPGA based readout system. FPGA configuration and diagnostics is controlled via low speed USB based interface, while high-speed setup of the readout parameters and reception of the measured data is handled by the PCI Express (PCIe) interface. Hardware access is synchronized by the dedicated server written in C. Multiple clients may connect to this server via TCP/IP network, and different priority is assigned to individual clients. Specialized protocols have been implemented both for low level access on register level and for high level access with transfer of structured data with "msgpack" protocol. High level functionalities have been split between multiple TCP/IP servers for parallel operation. Status of the system may be checked, and basic maintenance may be performed via web interface, while the expert access is possible via SSH server. System was designed with reliability and flexibility in mind.

  19. Implementation of High Speed Distributed Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Raju, Anju P.; Sekhar, Ambika

    2012-09-01

    This paper introduces a high speed distributed data acquisition system based on a field programmable gate array (FPGA). The aim is to develop a "distributed" data acquisition interface. The development of instruments such as personal computers and engineering workstations based on "standard" platforms is the motivation behind this effort. Using standard platforms as the controlling unit allows independence in hardware from a particular vendor and hardware platform. The distributed approach also has advantages from a functional point of view: acquisition resources become available to multiple instruments; the acquisition front-end can be physically remote from the rest of the instrument. High speed data acquisition system transmits data faster to a remote computer system through Ethernet interface. The data is acquired through 16 analog input channels. The input data commands are multiplexed and digitized and then the data is stored in 1K buffer for each input channel. The main control unit in this design is the 16 bit processor implemented in the FPGA. This 16 bit processor is used to set up and initialize the data source and the Ethernet controller, as well as control the flow of data from the memory element to the NIC. Using this processor we can initialize and control the different configuration registers in the Ethernet controller in a easy manner. Then these data packets are sending to the remote PC through the Ethernet interface. The main advantages of the using FPGA as standard platform are its flexibility, low power consumption, short design duration, fast time to market, programmability and high density. The main advantages of using Ethernet controller AX88796 over others are its non PCI interface, the presence of embedded SRAM where transmit and reception buffers are located and high-performance SRAM-like interface. The paper introduces the implementation of the distributed data acquisition using FPGA by VHDL. The main advantages of this system are high accuracy, high speed, real time monitoring.

  20. FPGA applications for single dish activity at Medicina radio telescopes

    NASA Astrophysics Data System (ADS)

    Bartolini, M.; Naldi, G.; Mattana, A.; Maccaferri, A.; De Biaggi, M.

    FPGA technologies are gaining major attention in the recent years in the field of radio astronomy. At Medicina radio telescopes, FPGAs have been used in the last ten years for a number of purposes and in this article we will take into exam the applications developed and installed for the Medicina Single Dish 32m Antenna: these range from high performance digital signal processing to instrument control developed on top of smaller FPGAs.

  1. Gas Sensors Characterization and Multilayer Perceptron (MLP) Hardware Implementation for Gas Identification Using a Field Programmable Gate Array (FPGA)

    PubMed Central

    Benrekia, Fayçal; Attari, Mokhtar; Bouhedda, Mounir

    2013-01-01

    This paper develops a primitive gas recognition system for discriminating between industrial gas species. The system under investigation consists of an array of eight micro-hotplate-based SnO2 thin film gas sensors with different selectivity patterns. The output signals are processed through a signal conditioning and analyzing system. These signals feed a decision-making classifier, which is obtained via a Field Programmable Gate Array (FPGA) with Very High-Speed Integrated Circuit Hardware Description Language. The classifier relies on a multilayer neural network based on a back propagation algorithm with one hidden layer of four neurons and eight neurons at the input and five neurons at the output. The neural network designed after implementation consists of twenty thousand gates. The achieved experimental results seem to show the effectiveness of the proposed classifier, which can discriminate between five industrial gases. PMID:23529119

  2. Real-Time Phase Correction Based on FPGA in the Beam Position and Phase Measurement System

    NASA Astrophysics Data System (ADS)

    Gao, Xingshun; Zhao, Lei; Liu, Jinxin; Jiang, Zouyi; Hu, Xiaofang; Liu, Shubin; An, Qi

    2016-12-01

    A fully digital beam position and phase measurement (BPPM) system was designed for the linear accelerator (LINAC) in Accelerator Driven Sub-critical System (ADS) in China. Phase information is obtained from the summed signals from four pick-ups of the Beam Position Monitor (BPM). Considering that the delay variations of different analog circuit channels would introduce phase measurement errors, we propose a new method to tune the digital waveforms of four channels before summation and achieve real-time error correction. The process is based on the vector rotation method and implemented within one single Field Programmable Gate Array (FPGA) device. Tests were conducted to evaluate this correction method and the results indicate that a phase correction precision better than ± 0.3° over the dynamic range from -60 dBm to 0 dBm is achieved.

  3. A real-time MTFC algorithm of space remote-sensing camera based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhao, Liting; Huang, Gang; Lin, Zhe

    2018-01-01

    A real-time MTFC algorithm of space remote-sensing camera based on FPGA was designed. The algorithm can provide real-time image processing to enhance image clarity when the remote-sensing camera running on-orbit. The image restoration algorithm adopted modular design. The MTF measurement calculation module on-orbit had the function of calculating the edge extension function, line extension function, ESF difference operation, normalization MTF and MTFC parameters. The MTFC image filtering and noise suppression had the function of filtering algorithm and effectively suppressing the noise. The algorithm used System Generator to design the image processing algorithms to simplify the design structure of system and the process redesign. The image gray gradient dot sharpness edge contrast and median-high frequency were enhanced. The image SNR after recovery reduced less than 1 dB compared to the original image. The image restoration system can be widely used in various fields.

  4. A digitalized silicon microgyroscope based on embedded FPGA.

    PubMed

    Xia, Dunzhu; Yu, Cheng; Wang, Yuliang

    2012-09-27

    This paper presents a novel digital miniaturization method for a prototype silicon micro-gyroscope (SMG) with the symmetrical and decoupled structure. The schematic blocks of the overall system consist of high precision analog front-end interface, high-speed 18-bit analog to digital convertor, a high-performance core Field Programmable Gate Array (FPGA) chip and other peripherals such as high-speed serial ports for transmitting data. In drive mode, the closed-loop drive circuit are implemented by automatic gain control (AGC) loop and software phase-locked loop (SPLL) based on the Coordinated Rotation Digital Computer (CORDIC) algorithm. Meanwhile, the sense demodulation module based on varying step least mean square demodulation (LMSD) are addressed in detail. All kinds of algorithms are simulated by Simulink and DSPbuilder tools, which is in good agreement with the theoretical design. The experimental results have fully demonstrated the stability and flexibility of the system.

  5. A Digitalized Silicon Microgyroscope Based on Embedded FPGA

    PubMed Central

    Xia, Dunzhu; Yu, Cheng; Wang, Yuliang

    2012-01-01

    This paper presents a novel digital miniaturization method for a prototype silicon micro-gyroscope (SMG) with the symmetrical and decoupled structure. The schematic blocks of the overall system consist of high precision analog front-end interface, high-speed 18-bit analog to digital convertor, a high-performance core Field Programmable Gate Array (FPGA) chip and other peripherals such as high-speed serial ports for transmitting data. In drive mode, the closed-loop drive circuit are implemented by automatic gain control (AGC) loop and software phase-locked loop (SPLL) based on the Coordinated Rotation Digital Computer (CORDIC) algorithm. Meanwhile, the sense demodulation module based on varying step least mean square demodulation (LMSD) are addressed in detail. All kinds of algorithms are simulated by Simulink and DSPbuilder tools, which is in good agreement with the theoretical design. The experimental results have fully demonstrated the stability and flexibility of the system. PMID:23201990

  6. Sensor Systems Based on FPGAs and Their Applications: A Survey

    PubMed Central

    de la Piedra, Antonio; Braeken, An; Touhafi, Abdellah

    2012-01-01

    In this manuscript, we present a survey of designs and implementations of research sensor nodes that rely on FPGAs, either based upon standalone platforms or as a combination of microcontroller and FPGA. Several current challenges in sensor networks are distinguished and linked to the features of modern FPGAs. As it turns out, low-power optimized FPGAs are able to enhance the computation of several types of algorithms in terms of speed and power consumption in comparison to microcontrollers of commercial sensor nodes. We show that architectures based on the combination of microcontrollers and FPGA can play a key role in the future of sensor networks, in fields where processing capabilities such as strong cryptography, self-testing and data compression, among others, are paramount.

  7. A pipelined architecture for real time correction of non-uniformity in infrared focal plane arrays imaging system using multiprocessors

    NASA Astrophysics Data System (ADS)

    Zou, Liang; Fu, Zhuang; Zhao, YanZheng; Yang, JunYan

    2010-07-01

    This paper proposes a kind of pipelined electric circuit architecture implemented in FPGA, a very large scale integrated circuit (VLSI), which efficiently deals with the real time non-uniformity correction (NUC) algorithm for infrared focal plane arrays (IRFPA). Dual Nios II soft-core processors and a DSP with a 64+ core together constitute this image system. Each processor undertakes own systematic task, coordinating its work with each other's. The system on programmable chip (SOPC) in FPGA works steadily under the global clock frequency of 96Mhz. Adequate time allowance makes FPGA perform NUC image pre-processing algorithm with ease, which has offered favorable guarantee for the work of post image processing in DSP. And at the meantime, this paper presents a hardware (HW) and software (SW) co-design in FPGA. Thus, this systematic architecture yields an image processing system with multiprocessor, and a smart solution to the satisfaction with the performance of the system.

  8. FPGA accelerator for protein secondary structure prediction based on the GOR algorithm

    PubMed Central

    2011-01-01

    Background Protein is an important molecule that performs a wide range of functions in biological systems. Recently, the protein folding attracts much more attention since the function of protein can be generally derived from its molecular structure. The GOR algorithm is one of the most successful computational methods and has been widely used as an efficient analysis tool to predict secondary structure from protein sequence. However, the execution time is still intolerable with the steep growth in protein database. Recently, FPGA chips have emerged as one promising application accelerator to accelerate bioinformatics algorithms by exploiting fine-grained custom design. Results In this paper, we propose a complete fine-grained parallel hardware implementation on FPGA to accelerate the GOR-IV package for 2D protein structure prediction. To improve computing efficiency, we partition the parameter table into small segments and access them in parallel. We aggressively exploit data reuse schemes to minimize the need for loading data from external memory. The whole computation structure is carefully pipelined to overlap the sequence loading, computing and back-writing operations as much as possible. We implemented a complete GOR desktop system based on an FPGA chip XC5VLX330. Conclusions The experimental results show a speedup factor of more than 430x over the original GOR-IV version and 110x speedup over the optimized version with multi-thread SIMD implementation running on a PC platform with AMD Phenom 9650 Quad CPU for 2D protein structure prediction. However, the power consumption is only about 30% of that of current general-propose CPUs. PMID:21342582

  9. Instrumentation and control of harmonic oscillators via a single-board microprocessor-FPGA device.

    PubMed

    Picone, Rico A R; Davis, Solomon; Devine, Cameron; Garbini, Joseph L; Sidles, John A

    2017-04-01

    We report the development of an instrumentation and control system instantiated on a microprocessor-field programmable gate array (FPGA) device for a harmonic oscillator comprising a portion of a magnetic resonance force microscope. The specific advantages of the system are that it minimizes computation, increases maintainability, and reduces the technical barrier required to enter the experimental field of magnetic resonance force microscopy. Heterodyne digital control and measurement yields computational advantages. A single microprocessor-FPGA device improves system maintainability by using a single programming language. The system presented requires significantly less technical expertise to instantiate than the instrumentation of previous systems, yet integrity of performance is retained and demonstrated with experimental data.

  10. Instrumentation and control of harmonic oscillators via a single-board microprocessor-FPGA device

    NASA Astrophysics Data System (ADS)

    Picone, Rico A. R.; Davis, Solomon; Devine, Cameron; Garbini, Joseph L.; Sidles, John A.

    2017-04-01

    We report the development of an instrumentation and control system instantiated on a microprocessor-field programmable gate array (FPGA) device for a harmonic oscillator comprising a portion of a magnetic resonance force microscope. The specific advantages of the system are that it minimizes computation, increases maintainability, and reduces the technical barrier required to enter the experimental field of magnetic resonance force microscopy. Heterodyne digital control and measurement yields computational advantages. A single microprocessor-FPGA device improves system maintainability by using a single programming language. The system presented requires significantly less technical expertise to instantiate than the instrumentation of previous systems, yet integrity of performance is retained and demonstrated with experimental data.

  11. Super-Resolution in Plenoptic Cameras Using FPGAs

    PubMed Central

    Pérez, Joel; Magdaleno, Eduardo; Pérez, Fernando; Rodríguez, Manuel; Hernández, David; Corrales, Jaime

    2014-01-01

    Plenoptic cameras are a new type of sensor that extend the possibilities of current commercial cameras allowing 3D refocusing or the capture of 3D depths. One of the limitations of plenoptic cameras is their limited spatial resolution. In this paper we describe a fast, specialized hardware implementation of a super-resolution algorithm for plenoptic cameras. The algorithm has been designed for field programmable graphic array (FPGA) devices using VHDL (very high speed integrated circuit (VHSIC) hardware description language). With this technology, we obtain an acceleration of several orders of magnitude using its extremely high-performance signal processing capability through parallelism and pipeline architecture. The system has been developed using generics of the VHDL language. This allows a very versatile and parameterizable system. The system user can easily modify parameters such as data width, number of microlenses of the plenoptic camera, their size and shape, and the super-resolution factor. The speed of the algorithm in FPGA has been successfully compared with the execution using a conventional computer for several image sizes and different 3D refocusing planes. PMID:24841246

  12. Super-resolution in plenoptic cameras using FPGAs.

    PubMed

    Pérez, Joel; Magdaleno, Eduardo; Pérez, Fernando; Rodríguez, Manuel; Hernández, David; Corrales, Jaime

    2014-05-16

    Plenoptic cameras are a new type of sensor that extend the possibilities of current commercial cameras allowing 3D refocusing or the capture of 3D depths. One of the limitations of plenoptic cameras is their limited spatial resolution. In this paper we describe a fast, specialized hardware implementation of a super-resolution algorithm for plenoptic cameras. The algorithm has been designed for field programmable graphic array (FPGA) devices using VHDL (very high speed integrated circuit (VHSIC) hardware description language). With this technology, we obtain an acceleration of several orders of magnitude using its extremely high-performance signal processing capability through parallelism and pipeline architecture. The system has been developed using generics of the VHDL language. This allows a very versatile and parameterizable system. The system user can easily modify parameters such as data width, number of microlenses of the plenoptic camera, their size and shape, and the super-resolution factor. The speed of the algorithm in FPGA has been successfully compared with the execution using a conventional computer for several image sizes and different 3D refocusing planes.

  13. An FPGA-based DS-CDMA multiuser demodulator employing adaptive multistage parallel interference cancellation

    NASA Astrophysics Data System (ADS)

    Li, Xinhua; Song, Zhenyu; Zhan, Yongjie; Wu, Qiongzhi

    2009-12-01

    Since the system capacity is severely limited, reducing the multiple access interfere (MAI) is necessary in the multiuser direct-sequence code division multiple access (DS-CDMA) system which is used in the telecommunication terminals data-transferred link system. In this paper, we adopt an adaptive multistage parallel interference cancellation structure in the demodulator based on the least mean square (LMS) algorithm to eliminate the MAI on the basis of overviewing various of multiuser dectection schemes. Neither a training sequence nor a pilot signal is needed in the proposed scheme, and its implementation complexity can be greatly reduced by a LMS approximate algorithm. The algorithm and its FPGA implementation is then derived. Simulation results of the proposed adaptive PIC can outperform some of the existing interference cancellation methods in AWGN channels. The hardware setup of mutiuser demodulator is described, and the experimental results based on it demonstrate that the simulation results shows large performance gains over the conventional single-user demodulator.

  14. Systems and methods for detecting a failure event in a field programmable gate array

    NASA Technical Reports Server (NTRS)

    Ng, Tak-Kwong (Inventor); Herath, Jeffrey A. (Inventor)

    2009-01-01

    An embodiment generally relates to a method of self-detecting an error in a field programmable gate array (FPGA). The method includes writing a signature value into a signature memory in the FPGA and determining a conclusion of a configuration refresh operation in the FPGA. The method also includes reading an outcome value from the signature memory.

  15. A Fine-Grained Pipelined Implementation for Large-Scale Matrix Inversion on FPGA

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Dou, Yong; Zhao, Jianxun; Xia, Fei; Lei, Yuanwu; Tang, Yuxing

    Large-scale matrix inversion play an important role in many applications. However to the best of our knowledge, there is no FPGA-based implementation. In this paper, we explore the possibility of accelerating large-scale matrix inversion on FPGA. To exploit the computational potential of FPGA, we introduce a fine-grained parallel algorithm for matrix inversion. A scalable linear array processing elements (PEs), which is the core component of the FPGA accelerator, is proposed to implement this algorithm. A total of 12 PEs can be integrated into an Altera StratixII EP2S130F1020C5 FPGA on our self-designed board. Experimental results show that a factor of 2.6 speedup and the maximum power-performance of 41 can be achieved compare to Pentium Dual CPU with double SSE threads.

  16. Field programmable gate array based fuzzy neural signal processing system for differential diagnosis of QRS complex tachycardia and tachyarrhythmia in noisy ECG signals.

    PubMed

    Chowdhury, Shubhajit Roy

    2012-04-01

    The paper reports of a Field Programmable Gate Array (FPGA) based embedded system for detection of QRS complex in a noisy electrocardiogram (ECG) signal and thereafter differential diagnosis of tachycardia and tachyarrhythmia. The QRS complex has been detected after application of entropy measure of fuzziness to build a detection function of ECG signal, which has been previously filtered to remove power line interference and base line wander. Using the detected QRS complexes, differential diagnosis of tachycardia and tachyarrhythmia has been performed. The entire algorithm has been realized in hardware on an FPGA. Using the standard CSE ECG database, the algorithm performed highly effectively. The performance of the algorithm in respect of QRS detection with sensitivity (Se) of 99.74% and accuracy of 99.5% is achieved when tested using single channel ECG with entropy criteria. The performance of the QRS detection system has been compared and found to be better than most of the QRS detection systems available in literature. Using the system, 200 patients have been diagnosed with an accuracy of 98.5%.

  17. LinoSPAD: a time-resolved 256×1 CMOS SPAD line sensor system featuring 64 FPGA-based TDC channels running at up to 8.5 giga-events per second

    NASA Astrophysics Data System (ADS)

    Burri, Samuel; Homulle, Harald; Bruschini, Claudio; Charbon, Edoardo

    2016-04-01

    LinoSPAD is a reconfigurable camera sensor with a 256×1 CMOS SPAD (single-photon avalanche diode) pixel array connected to a low cost Xilinx Spartan 6 FPGA. The LinoSPAD sensor's line of pixels has a pitch of 24 μm and 40% fill factor. The FPGA implements an array of 64 TDCs and histogram engines capable of processing up to 8.5 giga-photons per second. The LinoSPAD sensor measures 1.68 mm×6.8 mm and each pixel has a direct digital output to connect to the FPGA. The chip is bonded on a carrier PCB to connect to the FPGA motherboard. 64 carry chain based TDCs sampled at 400 MHz can generate a timestamp every 7.5 ns with a mean time resolution below 25 ps per code. The 64 histogram engines provide time-of-arrival histograms covering up to 50 ns. An alternative mode allows the readout of 28 bit timestamps which have a range of up to 4.5 ms. Since the FPGA TDCs have considerable non-linearity we implemented a correction module capable of increasing histogram linearity at real-time. The TDC array is interfaced to a computer using a super-speed USB3 link to transfer over 150k histograms per second for the 12.5 ns reference period used in our characterization. After characterization and subsequent programming of the post-processing we measure an instrument response histogram shorter than 100 ps FWHM using a strong laser pulse with 50 ps FWHM. A timing resolution that when combined with the high fill factor makes the sensor well suited for a wide variety of applications from fluorescence lifetime microscopy over Raman spectroscopy to 3D time-of-flight.

  18. Technology Developments in Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Howell, Joe T.

    2008-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS, Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches. System level applications for the RHESE technology products are discussed.

  19. An experimental performance evaluation of the hybrid FSO/RF

    NASA Astrophysics Data System (ADS)

    Touati, Abir; Touati, Farid; Abdaoui, Abderrazak; Khandakar, Amith; Hussain, Syed Jawad; Bouallegue, Ammar

    2017-02-01

    This paper is a first attempt to study the effects of atmospheric turbulences on hybrid free space optics/ radio frequency (FSO/RF) transmission system in Doha, Qatar. The state of Qatar is characterized by a Mediterranean climate with hot and dry summers with modest cloud coverage highly affected by airborne dust. Due to its sensitivity to atmospheric turbulences, throughout this study, we try to demonstrate the working capabilities of FSO technology as well as to promote an understanding of this technology amongst the countries of the gulf cooperation council (GCC). Moreover, we studied the behavior of RF link during the same period. In order to analyze the transport media, two transmitting subsystems are employed and installed at Qatar University (QU) at two different buildings separated by a distance of 600 m. Each system is composed of a FSO and RF terminal. We have ported an Embedded Linux kernel on Micro-blaze processor build in Field Programmable Gate Array (FPGA). Then, we have designed a network sniffer application that can run on the FPGA board. The measurements from the network sniffer applications were carried out during summer season from June up to September 2015. The relation between the measurements and the atmospheric factors, taken from a weather station installed at QU, were also found.

  20. Implementation in an FPGA circuit of Edge detection algorithm based on the Discrete Wavelet Transforms

    NASA Astrophysics Data System (ADS)

    Bouganssa, Issam; Sbihi, Mohamed; Zaim, Mounia

    2017-07-01

    The 2D Discrete Wavelet Transform (DWT) is a computationally intensive task that is usually implemented on specific architectures in many imaging systems in real time. In this paper, a high throughput edge or contour detection algorithm is proposed based on the discrete wavelet transform. A technique for applying the filters on the three directions (Horizontal, Vertical and Diagonal) of the image is used to present the maximum of the existing contours. The proposed architectures were designed in VHDL and mapped to a Xilinx Sparten6 FPGA. The results of the synthesis show that the proposed architecture has a low area cost and can operate up to 100 MHz, which can perform 2D wavelet analysis for a sequence of images while maintaining the flexibility of the system to support an adaptive algorithm.

  1. The characterization and application of a low resource FPGA-based time to digital converter

    NASA Astrophysics Data System (ADS)

    Balla, Alessandro; Mario Beretta, Matteo; Ciambrone, Paolo; Gatta, Maurizio; Gonnella, Francesco; Iafolla, Lorenzo; Mascolo, Matteo; Messi, Roberto; Moricciani, Dario; Riondino, Domenico

    2014-03-01

    Time to Digital Converters (TDCs) are very common devices in particles physics experiments. A lot of "off-the-shelf" TDCs can be employed but the necessity of a custom DAta acQuisition (DAQ) system makes the TDCs implemented on the Field-Programmable Gate Arrays (FPGAs) desirable. Most of the architectures developed so far are based on the tapped delay lines with precision down to 10 ps, obtained with high FPGA resources usage and non-linearity issues to be managed. Often such precision is not necessary; in this case TDC architectures with low resources occupancy are preferable allowing the implementation of data processing systems and of other utilities on the same device. In order to reconstruct γγ physics events tagged with High Energy Tagger (HET) in the KLOE-2 (K LOng Experiment 2), we need to measure the Time Of Flight (TOF) of the electrons and positrons from the KLOE-2 Interaction Point (IP) to our tagging stations (11 m apart). The required resolution must be better than the bunch spacing (2.7 ns). We have developed and implemented on a Xilinx Virtex-5 FPGA a 32 channel TDC with a precision of 255 ps and low non-linearity effects along with an embedded data acquisition system and the interface to the online FARM of KLOE-2. The TDC is based on a low resources occupancy technique: the 4×Oversampling technique which, in this work, is pushed to its best resolution and its performances were exhaustively measured.

  2. Laser positioning of four-quadrant detector based on pseudo-random sequence

    NASA Astrophysics Data System (ADS)

    Tang, Yanqin; Cao, Ercong; Hu, Xiaobo; Gu, Guohua; Qian, Weixian

    2016-10-01

    Nowadays the technology of laser positioning based on four-quadrant detector has the wide scope of the study and application areas. The main principle of laser positioning is that by capturing the projection of the laser spot on the photosensitive surface of the detector, and then calculating the output signal from the detector to obtain the coordinates of the spot on the photosensitive surface of the detector, the coordinate information of the laser spot in the space with respect to detector system which reflects the spatial position of the target object is calculated effectively. Given the extensive application of FPGA technology and the pseudo-random sequence has the similar correlation of white noise, the measurement process of the interference, noise has little effect on the correlation peak. In order to improve anti-jamming capability of the guided missile in tracking process, when the laser pulse emission, the laser pulse period is pseudo-random encoded which maintains in the range of 40ms-65ms so that people of interfering can't find the exact real laser pulse. Also, because the receiver knows the way to solve the pseudo-random code, when the receiver receives two consecutive laser pulses, the laser pulse period can be decoded successfully. In the FPGA hardware implementation process, around each laser pulse arrival time, the receiver can open a wave door to get location information contained the true signal. Taking into account the first two consecutive pulses received have been disturbed, so after receiving the first laser pulse, it receives all the laser pulse in the next 40ms-65ms to obtain the corresponding pseudo-random code.

  3. Generation of Custom DSP Transform IP Cores: Case Study Walsh-Hadamard Transform

    DTIC Science & Technology

    2002-09-01

    mathematics and hardware design What I know: Finite state machine Pipelining Systolic array … What I know: Linear algebra Digital signal processing...state machine Pipelining Systolic array … What I know: Linear algebra Digital signal processing Adaptive filter theory … A math guy A hardware engineer...Synthesis Technology Libary Bit-width (8) HF factor (1,2,3,6) VF factor (1,2,4, ... 32) Xilinx FPGA Place&Route Xilinx FPGA Place&Route Performance

  4. H-Bridge Inverter Loading Analysis for an Energy Management System

    DTIC Science & Technology

    2013-06-01

    In order to accomplish the stated objectives, a physics-based model of the system was developed in MATLAB/Simulink. The system was also implemented ...functional architecture and then compile the high level design down to VHDL in order to program the designed functions to the FPGA. B. INSULATED

  5. Cycle accurate and cycle reproducible memory for an FPGA based hardware accelerator

    DOEpatents

    Asaad, Sameh W.; Kapur, Mohit

    2016-03-15

    A method, system and computer program product are disclosed for using a Field Programmable Gate Array (FPGA) to simulate operations of a device under test (DUT). The DUT includes a device memory having a number of input ports, and the FPGA is associated with a target memory having a second number of input ports, the second number being less than the first number. In one embodiment, a given set of inputs is applied to the device memory at a frequency Fd and in a defined cycle of time, and the given set of inputs is applied to the target memory at a frequency Ft. Ft is greater than Fd and cycle accuracy is maintained between the device memory and the target memory. In an embodiment, a cycle accurate model of the DUT memory is created by separating the DUT memory interface protocol from the target memory storage array.

  6. A Test Methodology for Determining Space-Readiness of Xilinx SRAM-Based FPGA Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, Heather M; Graham, Paul S; Morgan, Keith S

    2008-01-01

    Using reconfigurable, static random-access memory (SRAM) based field-programmable gate arrays (FPGAs) for space-based computation has been an exciting area of research for the past decade. Since both the circuit and the circuit's state is stored in radiation-tolerant memory, both could be alterd by the harsh space radiation environment. Both the circuit and the circuit's state can be prote cted by triple-moduler redundancy (TMR), but applying TMR to FPGA user designs is often an error-prone process. Faulty application of TMR could cause the FPGA user circuit to output incorrect data. This paper will describe a three-tiered methodology for testing FPGA usermore » designs for space-readiness. We will describe the standard approach to testing FPGA user designs using a particle accelerator, as well as two methods using fault injection and a modeling tool. While accelerator testing is the current 'gold standard' for pre-launch testing, we believe the use of fault injection and modeling tools allows for easy, cheap and uniform access for discovering errors early in the design process.« less

  7. Research on moving object detection based on frog's eyes

    NASA Astrophysics Data System (ADS)

    Fu, Hongwei; Li, Dongguang; Zhang, Xinyuan

    2008-12-01

    On the basis of object's information processing mechanism with frog's eyes, this paper discussed a bionic detection technology which suitable for object's information processing based on frog's vision. First, the bionics detection theory by imitating frog vision is established, it is an parallel processing mechanism which including pick-up and pretreatment of object's information, parallel separating of digital image, parallel processing, and information synthesis. The computer vision detection system is described to detect moving objects which has special color, special shape, the experiment indicates that it can scheme out the detecting result in the certain interfered background can be detected. A moving objects detection electro-model by imitating biologic vision based on frog's eyes is established, the video simulative signal is digital firstly in this system, then the digital signal is parallel separated by FPGA. IN the parallel processing, the video information can be caught, processed and displayed in the same time, the information fusion is taken by DSP HPI ports, in order to transmit the data which processed by DSP. This system can watch the bigger visual field and get higher image resolution than ordinary monitor systems. In summary, simulative experiments for edge detection of moving object with canny algorithm based on this system indicate that this system can detect the edge of moving objects in real time, the feasibility of bionic model was fully demonstrated in the engineering system, and it laid a solid foundation for the future study of detection technology by imitating biologic vision.

  8. Design and implementation of projects with Xilinx Zynq FPGA: a practical case

    NASA Astrophysics Data System (ADS)

    Travaglini, R.; D'Antone, I.; Meneghini, S.; Rignanese, L.; Zuffa, M.

    The main advantage when using FPGAs with embedded processors is the availability of additional several high-performance resources in the same physical device. Moreover, the FPGA programmability allows for connect custom peripherals. Xilinx have designed a programmable device named Zynq-7000 (simply called Zynq in the following), which integrates programmable logic (identical to the other Xilinx "serie 7" devices) with a System on Chip (SOC) based on two embedded ARM processors. Since both parts are deeply connected, the designers benefit from performance of hardware SOC and flexibility of programmability as well. In this paper a design developed by the Electronic Design Department at the Bologna Division of INFN will be presented as a practical case of project based on Zynq device. It is developed by using a commercial board called ZedBoard hosting a FMC mezzanine with a 12-bit 500 MS/s ADC. The Zynq FPGA on the ZedBoard receives digital outputs from the ADC and send them to the acquisition PC, after proper formatting, through a Gigabit Ethernet link. The major focus of the paper will be about the methodology to develop a Zynq-based design with the Xilinx Vivado software, enlightening how to configure the SOC and connect it with the programmable logic. Firmware design techniques will be presented: in particular both VHDL and IP core based strategies will be discussed. Further, the procedure to develop software for the embedded processor will be presented. Finally, some debugging tools, like the embedded Logic Analyzer, will be shown. Advantages and disadvantages with respect to adopting FPGA without embedded processors will be discussed.

  9. Implementation of total focusing method for phased array ultrasonic imaging on FPGA

    NASA Astrophysics Data System (ADS)

    Guo, JianQiang; Li, Xi; Gao, Xiaorong; Wang, Zeyong; Zhao, Quanke

    2015-02-01

    This paper describes a multi-FPGA imaging system dedicated for the real-time imaging using the Total Focusing Method (TFM) and Full Matrix Capture (FMC). The system was entirely described using Verilog HDL language and implemented on Altera Stratix IV GX FPGA development board. The whole algorithm process is to: establish a coordinate system of image and divide it into grids; calculate the complete acoustic distance of array element between transmitting array element and receiving array element, and transform it into index value; then index the sound pressure values from ROM and superimpose sound pressure values to get pixel value of one focus point; and calculate the pixel values of all focus points to get the final imaging. The imaging result shows that this algorithm has high SNR of defect imaging. And FPGA with parallel processing capability can provide high speed performance, so this system can provide the imaging interface, with complete function and good performance.

  10. Non-preconditioned conjugate gradient on cell and FPGA based hybrid supercomputer nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubois, David H; Dubois, Andrew J; Boorman, Thomas M

    2009-01-01

    This work presents a detailed implementation of a double precision, non-preconditioned, Conjugate Gradient algorithm on a Roadrunner heterogeneous supercomputer node. These nodes utilize the Cell Broadband Engine Architecture{sup TM} in conjunction with x86 Opteron{sup TM} processors from AMD. We implement a common Conjugate Gradient algorithm, on a variety of systems, to compare and contrast performance. Implementation results are presented for the Roadrunner hybrid supercomputer, SRC Computers, Inc. MAPStation SRC-6 FPGA enhanced hybrid supercomputer, and AMD Opteron only. In all hybrid implementations wall clock time is measured, including all transfer overhead and compute timings.

  11. Investigation of High-Level Synthesis tools’ applicability to data acquisition systems design based on the CMS ECAL Data Concentrator Card example

    NASA Astrophysics Data System (ADS)

    HUSEJKO, Michal; EVANS, John; RASTEIRO DA SILVA, Jose Carlos

    2015-12-01

    High-Level Synthesis (HLS) for Field-Programmable Logic Array (FPGA) programming is becoming a practical alternative to well-established VHDL and Verilog languages. This paper describes a case study in the use of HLS tools to design FPGA-based data acquisition systems (DAQ). We will present the implementation of the CERN CMS detector ECAL Data Concentrator Card (DCC) functionality in HLS and lessons learned from using HLS design flow. The DCC functionality and a definition of the initial system-level performance requirements (latency, bandwidth, and throughput) will be presented. We will describe how its packet processing control centric algorithm was implemented with VHDL and Verilog languages. We will then show how the HLS flow could speed up design-space exploration by providing loose coupling between functions interface design and functions algorithm implementation. We conclude with results of real-life hardware tests performed with the HLS flow-generated design with a DCC Tester system.

  12. Driver face tracking using semantics-based feature of eyes on single FPGA

    NASA Astrophysics Data System (ADS)

    Yu, Ying-Hao; Chen, Ji-An; Ting, Yi-Siang; Kwok, Ngaiming

    2017-06-01

    Tracking driver's face is one of the essentialities for driving safety control. This kind of system is usually designed with complicated algorithms to recognize driver's face by means of powerful computers. The design problem is not only about detecting rate but also from parts damages under rigorous environments by vibration, heat, and humidity. A feasible strategy to counteract these damages is to integrate entire system into a single chip in order to achieve minimum installation dimension, weight, power consumption, and exposure to air. Meanwhile, an extraordinary methodology is also indispensable to overcome the dilemma of low-computing capability and real-time performance on a low-end chip. In this paper, a novel driver face tracking system is proposed by employing semantics-based vague image representation (SVIR) for minimum hardware resource usages on a FPGA, and the real-time performance is also guaranteed at the same time. Our experimental results have indicated that the proposed face tracking system is viable and promising for the smart car design in the future.

  13. A field programmable gate array unit for the diagnosis and control of neoclassical tearing modes on MAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Gorman, T.; Gibson, K. J.; Snape, J. A.

    2012-10-15

    A real-time system has been developed to trigger both the MAST Thomson scattering (TS) system and the plasma control system on the phase and amplitude of neoclassical tearing modes (NTMs), extending the capabilities of the original system. This triggering system determines the phase and amplitude of a given NTM using magnetic coils at different toroidal locations. Real-time processing of the raw magnetic data occurs on a low cost field programmable gate array (FPGA) based unit which permits triggering of the TS lasers on specific amplitudes and phases of NTM evolution. The MAST plasma control system can receive a separate triggermore » from the FPGA unit that initiates a vertical shift of the MAST magnetic axis. Such shifts have fully removed m/n= 2/1 NTMs instabilities on a number of MAST discharges.« less

  14. FPGA implementation for real-time background subtraction based on Horprasert model.

    PubMed

    Rodriguez-Gomez, Rafael; Fernandez-Sanchez, Enrique J; Diaz, Javier; Ros, Eduardo

    2012-01-01

    Background subtraction is considered the first processing stage in video surveillance systems, and consists of determining objects in movement in a scene captured by a static camera. It is an intensive task with a high computational cost. This work proposes an embedded novel architecture on FPGA which is able to extract the background on resource-limited environments and offers low degradation (produced because of the hardware-friendly model modification). In addition, the original model is extended in order to detect shadows and improve the quality of the segmentation of the moving objects. We have analyzed the resource consumption and performance in Spartan3 Xilinx FPGAs and compared to others works available on the literature, showing that the current architecture is a good trade-off in terms of accuracy, performance and resources utilization. With less than a 65% of the resources utilization of a XC3SD3400 Spartan-3A low-cost family FPGA, the system achieves a frequency of 66.5 MHz reaching 32.8 fps with resolution 1,024 × 1,024 pixels, and an estimated power consumption of 5.76 W.

  15. FPGA Implementation for Real-Time Background Subtraction Based on Horprasert Model

    PubMed Central

    Rodriguez-Gomez, Rafael; Fernandez-Sanchez, Enrique J.; Diaz, Javier; Ros, Eduardo

    2012-01-01

    Background subtraction is considered the first processing stage in video surveillance systems, and consists of determining objects in movement in a scene captured by a static camera. It is an intensive task with a high computational cost. This work proposes an embedded novel architecture on FPGA which is able to extract the background on resource-limited environments and offers low degradation (produced because of the hardware-friendly model modification). In addition, the original model is extended in order to detect shadows and improve the quality of the segmentation of the moving objects. We have analyzed the resource consumption and performance in Spartan3 Xilinx FPGAs and compared to others works available on the literature, showing that the current architecture is a good trade-off in terms of accuracy, performance and resources utilization. With less than a 65% of the resources utilization of a XC3SD3400 Spartan-3A low-cost family FPGA, the system achieves a frequency of 66.5 MHz reaching 32.8 fps with resolution 1,024 × 1,024 pixels, and an estimated power consumption of 5.76 W. PMID:22368487

  16. Fast BPM data distribution for global orbit feedback using commercial gigabit ethernet technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hulsart, R.; Cerniglia, P.; Michnoff, R.

    2011-03-28

    In order to correct beam perturbations in RHIC around 10Hz, a new fast data distribution network was required to deliver BPM position data at rates several orders of magnitude above the capability of the existing system. The urgency of the project limited the amount of custom hardware that could be developed, which dictated the use of as much commercially available equipment as possible. The selected architecture uses a custom hardware interface to the existing RHIC BPM electronics together with commercially available Gigabit Ethernet switches to distribute position data to devices located around the collider ring. Using the minimum Ethernet packetmore » size and a field programmable gate array (FPGA) based state machine logic instead of a software based driver, real-time and deterministic data delivery is possible using Ethernet. The method of adapting this protocol for low latency data delivery, bench testing of Ethernet hardware, and the logic to construct Ethernet packets using FPGA hardware will be discussed. A robust communications system using almost all commercial off-the-shelf equipment was developed in under a year which enabled retrofitting of the existing RHIC BPM system to provide 10 KHz data delivery for a global orbit feedback scheme using 72 BPMs. Total latencies from data acquisition at the BPMs to delivery at the controller modules, including very long transmission distances, were kept under 100 {micro}s, which provide very little phase error in correcting the 10 Hz oscillations. Leveraging off of the speed of Gigabit Ethernet and wide availability of Ethernet products enabled this solution to be fully implemented in a much shorter time and at lower cost than if a similar network was developed using a proprietary method.« less

  17. Integration of multi-interface conversion channel using FPGA for modular photonic network

    NASA Astrophysics Data System (ADS)

    Janicki, Tomasz; Pozniak, Krzysztof T.; Romaniuk, Ryszard S.

    2010-09-01

    The article discusses the integration of different types of interfaces with FPGA circuits using a reconfigurable communication platform. The solution has been implemented in practice in a single node of a distributed measurement system. Construction of communication platform has been presented with its selected hardware modules, described in VHDL and implemented in FPGA circuits. The graphical user interface (GUI) has been described that allows a user to control the operation of the system. In the final part of the article selected practical solutions have been introduced. The whole measurement system resides on multi-gigabit optical network. The optical network construction is highly modular, reconfigurable and scalable.

  18. An improved non-uniformity correction algorithm and its hardware implementation on FPGA

    NASA Astrophysics Data System (ADS)

    Rong, Shenghui; Zhou, Huixin; Wen, Zhigang; Qin, Hanlin; Qian, Kun; Cheng, Kuanhong

    2017-09-01

    The Non-uniformity of Infrared Focal Plane Arrays (IRFPA) severely degrades the infrared image quality. An effective non-uniformity correction (NUC) algorithm is necessary for an IRFPA imaging and application system. However traditional scene-based NUC algorithm suffers the image blurring and artificial ghosting. In addition, few effective hardware platforms have been proposed to implement corresponding NUC algorithms. Thus, this paper proposed an improved neural-network based NUC algorithm by the guided image filter and the projection-based motion detection algorithm. First, the guided image filter is utilized to achieve the accurate desired image to decrease the artificial ghosting. Then a projection-based moving detection algorithm is utilized to determine whether the correction coefficients should be updated or not. In this way the problem of image blurring can be overcome. At last, an FPGA-based hardware design is introduced to realize the proposed NUC algorithm. A real and a simulated infrared image sequences are utilized to verify the performance of the proposed algorithm. Experimental results indicated that the proposed NUC algorithm can effectively eliminate the fix pattern noise with less image blurring and artificial ghosting. The proposed hardware design takes less logic elements in FPGA and spends less clock cycles to process one frame of image.

  19. Analyzing Reliability and Performance Trade-Offs of HLS-Based Designs in SRAM-Based FPGAs Under Soft Errors

    NASA Astrophysics Data System (ADS)

    Tambara, Lucas Antunes; Tonfat, Jorge; Santos, André; Kastensmidt, Fernanda Lima; Medina, Nilberto H.; Added, Nemitala; Aguiar, Vitor A. P.; Aguirre, Fernando; Silveira, Marcilei A. G.

    2017-02-01

    The increasing system complexity of FPGA-based hardware designs and shortening of time-to-market have motivated the adoption of new designing methodologies focused on addressing the current need for high-performance circuits. High-Level Synthesis (HLS) tools can generate Register Transfer Level (RTL) designs from high-level software programming languages. These tools have evolved significantly in recent years, providing optimized RTL designs, which can serve the needs of safety-critical applications that require both high performance and high reliability levels. However, a reliability evaluation of HLS-based designs under soft errors has not yet been presented. In this work, the trade-offs of different HLS-based designs in terms of reliability, resource utilization, and performance are investigated by analyzing their behavior under soft errors and comparing them to a standard processor-based implementation in an SRAM-based FPGA. Results obtained from fault injection campaigns and radiation experiments show that it is possible to increase the performance of a processor-based system up to 5,000 times by changing its architecture with a small impact in the cross section (increasing up to 8 times), and still increasing the Mean Workload Between Failures (MWBF) of the system.

  20. STAR: FPGA-based software defined satellite transponder

    NASA Astrophysics Data System (ADS)

    Davalle, Daniele; Cassettari, Riccardo; Saponara, Sergio; Fanucci, Luca; Cucchi, Luca; Bigongiari, Franco; Errico, Walter

    2013-05-01

    This paper presents STAR, a flexible Telemetry, Tracking & Command (TT&C) transponder for Earth Observation (EO) small satellites, developed in collaboration with INTECS and SITAEL companies. With respect to state-of-the-art EO transponders, STAR includes the possibility of scientific data transfer thanks to the 40 Mbps downlink data-rate. This feature represents an important optimization in terms of hardware mass, which is important for EO small satellites. Furthermore, in-flight re-configurability of communication parameters via telecommand is important for in-orbit link optimization, which is especially useful for low orbit satellites where visibility can be as short as few hundreds of seconds. STAR exploits the principles of digital radio to minimize the analog section of the transceiver. 70MHz intermediate frequency (IF) is the interface with an external S/X band radio-frequency front-end. The system is composed of a dedicated configurable high-speed digital signal processing part, the Signal Processor (SP), described in technology-independent VHDL working with a clock frequency of 184.32MHz and a low speed control part, the Control Processor (CP), based on the 32-bit Gaisler LEON3 processor clocked at 32 MHz, with SpaceWire and CAN interfaces. The quantization parameters were fine-tailored to reach a trade-off between hardware complexity and implementation loss which is less than 0.5 dB at BER = 10-5 for the RX chain. The IF ports require 8-bit precision. The system prototype is fitted on the Xilinx Virtex 6 VLX75T-FF484 FPGA of which a space-qualified version has been announced. The total device occupation is 82 %.

  1. Radiation Hardened Electronics for Space Environments (RHESE)

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Frazier, Donald O.; Patrick, Marshall C.; Watson, Michael D.; Johnson, Michael A.; Cressler, John D.; Kolawa, Elizabeth A.

    2007-01-01

    Radiation Environmental Modeling is crucial to proper predictive modeling and electronic response to the radiation environment. When compared to on-orbit data, CREME96 has been shown to be inaccurate in predicting the radiation environment. The NEDD bases much of its radiation environment data on CREME96 output. Close coordination and partnership with DoD radiation-hardened efforts will result in leveraged - not duplicated or independently developed - technology capabilities of: a) Radiation-hardened, reconfigurable FPGA-based electronics; and b) High Performance Processors (NOT duplication or independent development).

  2. NEW EPICS/RTEMS IOC BASED ON ALTERA SOC AT JEFFERSON LAB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Jianxun; Seaton, Chad; Allison, Trent L.

    A new EPICS/RTEMS IOC based on the Altera System-on-Chip (SoC) FPGA is being designed at Jefferson Lab. The Altera SoC FPGA integrates a dual ARM Cortex-A9 Hard Processor System (HPS) consisting of processor, peripherals and memory interfaces tied seamlessly with the FPGA fabric using a high-bandwidth interconnect backbone. The embedded Altera SoC IOC has features of remote network boot via U-Boot from SD card or QSPI Flash, 1Gig Ethernet, 1GB DDR3 SDRAM on HPS, UART serial ports, and ISA bus interface. RTEMS for the ARM processor BSP were built with CEXP shell, which will dynamically load the EPICS applications atmore » runtime. U-Boot is the primary bootloader to remotely load the kernel image into local memory from a DHCP/TFTP server over Ethernet, and automatically run RTEMS and EPICS. The first design of the SoC IOC will be compatible with Jefferson Lab’s current PC104 IOCs, which have been running in CEBAF 10 years. The next design would be mounting in a chassis and connected to a daughter card via standard HSMC connectors. This standard SoC IOC will become the next generation of low-level IOC for the accelerator controls at Jefferson Lab.« less

  3. Three Generations of FPGA DAQ Development for the ATLAS Pixel Detector

    NASA Astrophysics Data System (ADS)

    Mayer, Joseph A., II

    The Large Hadron Collider (LHC) at the European Center for Nuclear Research (CERN) tracks a schedule of long physics runs, followed by periods of inactivity known as Long Shutdowns (LS). During these LS phases both the LHC, and the experiments around its ring, undergo maintenance and upgrades. For the LHC these upgrades improve their ability to create data for physicists; the more data the LHC can create the more opportunities there are for rare events to appear that physicists will be interested in. The experiments upgrade so they can record the data and ensure the event won't be missed. Currently the LHC is in Run 2 having completed the first LS of three. This thesis focuses on the development of Field-Programmable Gate Array (FPGA)-based readout systems that span across three major tasks of the ATLAS Pixel data acquisition (DAQ) system. The evolution of Pixel DAQ's Readout Driver (ROD) card is presented. Starting from improvements made to the new Insertable B-Layer (IBL) ROD design, which was part of the LS1 upgrade; to upgrading the old RODs from Run 1 to help them run more efficiently in Run 2. It also includes the research and development of FPGA based DAQs and integrated circuit emulators for the ITk upgrade which will occur during LS3 in 2025.

  4. [A capillary blood flow velocity detection system based on linear array charge-coupled devices].

    PubMed

    Zhou, Houming; Wang, Ruofeng; Dang, Qi; Yang, Li; Wang, Xiang

    2017-12-01

    In order to detect the flow characteristics of blood samples in the capillary, this paper introduces a blood flow velocity measurement system based on field-programmable gate array (FPGA), linear charge-coupled devices (CCD) and personal computer (PC) software structure. Based on the analysis of the TCD1703C and AD9826 device data sheets, Verilog HDL hardware description language was used to design and simulate the driver. Image signal acquisition and the extraction of the real-time edge information of the blood sample were carried out synchronously in the FPGA. Then a series of discrete displacement were performed in a differential operation to scan each of the blood samples displacement, so that the sample flow rate could be obtained. Finally, the feasibility of the blood flow velocity detection system was verified by simulation and debugging. After drawing the flow velocity curve and analyzing the velocity characteristics, the significance of measuring blood flow velocity is analyzed. The results show that the measurement of the system is less time-consuming and less complex than other flow rate monitoring schemes.

  5. FPGA-based RF spectrum merging and adaptive hopset selection

    NASA Astrophysics Data System (ADS)

    McLean, R. K.; Flatley, B. N.; Silvius, M. D.; Hopkinson, K. M.

    The radio frequency (RF) spectrum is a limited resource. Spectrum allotment disputes stem from this scarcity as many radio devices are confined to a fixed frequency or frequency sequence. One alternative is to incorporate cognition within a reconfigurable radio platform, therefore enabling the radio to adapt to dynamic RF spectrum environments. In this way, the radio is able to actively sense the RF spectrum, decide, and act accordingly, thereby sharing the spectrum and operating in more flexible manner. In this paper, we present a novel solution for merging many distributed RF spectrum maps into one map and for subsequently creating an adaptive hopset. We also provide an example of our system in operation, the result of which is a pseudorandom adaptive hopset. The paper then presents a novel hardware design for the frequency merger and adaptive hopset selector, both of which are written in VHDL and implemented as a custom IP core on an FPGA-based embedded system using the Xilinx Embedded Development Kit (EDK) software tool. The design of the custom IP core is optimized for area, and it can process a high-volume digital input via a low-latency circuit architecture. The complete embedded system includes the Xilinx PowerPC microprocessor, UART serial connection, and compact flash memory card IP cores, and our custom map merging/hopset selection IP core, all of which are targeted to the Virtex IV FPGA. This system is then incorporated into a cognitive radio prototype on a Rice University Wireless Open Access Research Platform (WARP) reconfigurable radio.

  6. Optimization on fixed low latency implementation of the GBT core in FPGA

    DOE PAGES

    Chen, K.; Chen, H.; Wu, W.; ...

    2017-07-11

    We present that in the upgrade of ATLAS experiment, the front-end electronics components are subjected to a large radiation background. Meanwhile high speed optical links are required for the data transmission between the on-detector and off-detector electronics. The GBT architecture and the Versatile Link (VL) project are designed by CERN to support the 4.8 Gbps line rate bidirectional high-speed data transmission which is called GBT link. In the ATLAS upgrade, besides the link with on-detector, the GBT link is also used between different off-detector systems. The GBTX ASIC is designed for the on-detector front-end, correspondingly for the off-detector electronics, themore » GBT architecture is implemented in Field Programmable Gate Arrays (FPGA). CERN launches the GBT-FPGA project to provide examples in different types of FPGA. In the ATLAS upgrade framework, the Front-End LInk eXchange (FELIX) system is used to interface the front end electronics of several ATLAS subsystems. The GBT link is used between them, to transfer the detector data and the timing, trigger, control and monitoring information. The trigger signal distributed in the down-link from FELIX to the front-end requires a fixed and low latency. In this paper, several optimizations on the GBT-FPGA IP core are introduced, to achieve a lower fixed latency. For FELIX, a common firmware will be used to interface different front-ends with support of both GBT modes: the forward error correction mode and the wide mode. The modified GBT-FPGA core has the ability to switch between the GBT modes without FPGA reprogramming. Finally, the system clock distribution of the multi-channel FELIX firmware is also discussed in this paper.« less

  7. Optimization on fixed low latency implementation of the GBT core in FPGA

    NASA Astrophysics Data System (ADS)

    Chen, K.; Chen, H.; Wu, W.; Xu, H.; Yao, L.

    2017-07-01

    In the upgrade of ATLAS experiment [1], the front-end electronics components are subjected to a large radiation background. Meanwhile high speed optical links are required for the data transmission between the on-detector and off-detector electronics. The GBT architecture and the Versatile Link (VL) project are designed by CERN to support the 4.8 Gbps line rate bidirectional high-speed data transmission which is called GBT link [2]. In the ATLAS upgrade, besides the link with on-detector, the GBT link is also used between different off-detector systems. The GBTX ASIC is designed for the on-detector front-end, correspondingly for the off-detector electronics, the GBT architecture is implemented in Field Programmable Gate Arrays (FPGA). CERN launches the GBT-FPGA project to provide examples in different types of FPGA [3]. In the ATLAS upgrade framework, the Front-End LInk eXchange (FELIX) system [4, 5] is used to interface the front-end electronics of several ATLAS subsystems. The GBT link is used between them, to transfer the detector data and the timing, trigger, control and monitoring information. The trigger signal distributed in the down-link from FELIX to the front-end requires a fixed and low latency. In this paper, several optimizations on the GBT-FPGA IP core are introduced, to achieve a lower fixed latency. For FELIX, a common firmware will be used to interface different front-ends with support of both GBT modes: the forward error correction mode and the wide mode. The modified GBT-FPGA core has the ability to switch between the GBT modes without FPGA reprogramming. The system clock distribution of the multi-channel FELIX firmware is also discussed in this paper.

  8. Implementation of data acquisition interface using on-board field-programmable gate array (FPGA) universal serial bus (USB) link

    NASA Astrophysics Data System (ADS)

    Yussup, N.; Ibrahim, M. M.; Lombigit, L.; Rahman, N. A. A.; Zin, M. R. M.

    2014-02-01

    Typically a system consists of hardware as the controller and software which is installed in the personal computer (PC). In the effective nuclear detection, the hardware involves the detection setup and the electronics used, with the software consisting of analysis tools and graphical display on PC. A data acquisition interface is necessary to enable the communication between the controller hardware and PC. Nowadays, Universal Serial Bus (USB) has become a standard connection method for computer peripherals and has replaced many varieties of serial and parallel ports. However the implementation of USB is complex. This paper describes the implementation of data acquisition interface between a field-programmable gate array (FPGA) board and a PC by exploiting the USB link of the FPGA board. The USB link is based on an FTDI chip which allows direct access of input and output to the Joint Test Action Group (JTAG) signals from a USB host and a complex programmable logic device (CPLD) with a 24 MHz clock input to the USB link. The implementation and results of using the USB link of FPGA board as the data interfacing are discussed.

  9. Implementation of data acquisition interface using on-board field-programmable gate array (FPGA) universal serial bus (USB) link

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yussup, N.; Ibrahim, M. M.; Lombigit, L.

    Typically a system consists of hardware as the controller and software which is installed in the personal computer (PC). In the effective nuclear detection, the hardware involves the detection setup and the electronics used, with the software consisting of analysis tools and graphical display on PC. A data acquisition interface is necessary to enable the communication between the controller hardware and PC. Nowadays, Universal Serial Bus (USB) has become a standard connection method for computer peripherals and has replaced many varieties of serial and parallel ports. However the implementation of USB is complex. This paper describes the implementation of datamore » acquisition interface between a field-programmable gate array (FPGA) board and a PC by exploiting the USB link of the FPGA board. The USB link is based on an FTDI chip which allows direct access of input and output to the Joint Test Action Group (JTAG) signals from a USB host and a complex programmable logic device (CPLD) with a 24 MHz clock input to the USB link. The implementation and results of using the USB link of FPGA board as the data interfacing are discussed.« less

  10. PROGRAPE-1: A Programmable, Multi-Purpose Computer for Many-Body Simulations

    NASA Astrophysics Data System (ADS)

    Hamada, Tsuyoshi; Fukushige, Toshiyuki; Kawai, Atsushi; Makino, Junichiro

    2000-10-01

    We have developed PROGRAPE-1 (PROgrammable GRAPE-1), a programmable multi-purpose computer for many-body simulations. The main difference between PROGRAPE-1 and ``traditional'' GRAPE systems is that the former uses FPGA (Field Programmable Gate Array) chips as the processing elements, while the latter relies on a hardwired pipeline processor specialized to gravitational interactions. Since the logic implemented in FPGA chips can be reconfigured, we can use PROGRAPE-1 to calculate not only gravitational interactions, but also other forms of interactions, such as the van der Waals force, hydro\\-dynamical interactions in the SPHr calculation, and so on. PROGRAPE-1 comprises two Altera EPF10K100 FPGA chips, each of which contains nominally 100000 gates. To evaluate the programmability and performance of PROGRAPE-1, we implemented a pipeline for gravitational interactions similar to that of GRAPE-3. One pipeline is fitted into a single FPGA chip, operated at 16 MHz clock. Thus, for gravitational interactions, PROGRAPE-1 provided a speed of 0.96 Gflops-equivalent. PROGRAPE will prove to be useful for a wide-range of particle-based simulations in which the calculation cost of interactions other than gravity is high, such as the evaluation of SPH interactions.

  11. FPGA implementation of a configurable neuromorphic CPG-based locomotion controller.

    PubMed

    Barron-Zambrano, Jose Hugo; Torres-Huitzil, Cesar

    2013-09-01

    Neuromorphic engineering is a discipline devoted to the design and development of computational hardware that mimics the characteristics and capabilities of neuro-biological systems. In recent years, neuromorphic hardware systems have been implemented using a hybrid approach incorporating digital hardware so as to provide flexibility and scalability at the cost of power efficiency and some biological realism. This paper proposes an FPGA-based neuromorphic-like embedded system on a chip to generate locomotion patterns of periodic rhythmic movements inspired by Central Pattern Generators (CPGs). The proposed implementation follows a top-down approach where modularity and hierarchy are two desirable features. The locomotion controller is based on CPG models to produce rhythmic locomotion patterns or gaits for legged robots such as quadrupeds and hexapods. The architecture is configurable and scalable for robots with either different morphologies or different degrees of freedom (DOFs). Experiments performed on a real robot are presented and discussed. The obtained results demonstrate that the CPG-based controller provides the necessary flexibility to generate different rhythmic patterns at run-time suitable for adaptable locomotion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Removal of anti-Stokes emission background in STED microscopy by FPGA-based synchronous detection

    NASA Astrophysics Data System (ADS)

    Castello, M.; Tortarolo, G.; Coto Hernández, I.; Deguchi, T.; Diaspro, A.; Vicidomini, G.

    2017-05-01

    In stimulated emission depletion (STED) microscopy, the role of the STED beam is to de-excite, via stimulated emission, the fluorophores that have been previously excited by the excitation beam. This condition, together with specific beam intensity distributions, allows obtaining true sub-diffraction spatial resolution images. However, if the STED beam has a non-negligible probability to excite the fluorophores, a strong fluorescent background signal (anti-Stokes emission) reduces the effective resolution. For STED scanning microscopy, different synchronous detection methods have been proposed to remove this anti-Stokes emission background and recover the resolution. However, every method works only for a specific STED microscopy implementation. Here we present a user-friendly synchronous detection method compatible with any STED scanning microscope. It exploits a data acquisition (DAQ) card based on a field-programmable gate array (FPGA), which is progressively used in STED microscopy. In essence, the FPGA-based DAQ card synchronizes the fluorescent signal registration, the beam deflection, and the excitation beam interruption, providing a fully automatic pixel-by-pixel synchronous detection method. We validate the proposed method in both continuous wave and pulsed STED microscope systems.

  13. Embedded System Implementation on FPGA System With μCLinux OS

    NASA Astrophysics Data System (ADS)

    Fairuz Muhd Amin, Ahmad; Aris, Ishak; Syamsul Azmir Raja Abdullah, Raja; Kalos Zakiah Sahbudin, Ratna

    2011-02-01

    Embedded systems are taking on more complicated tasks as the processors involved become more powerful. The embedded systems have been widely used in many areas such as in industries, automotives, medical imaging, communications, speech recognition and computer vision. The complexity requirements in hardware and software nowadays need a flexibility system for further enhancement in any design without adding new hardware. Therefore, any changes in the design system will affect the processor that need to be changed. To overcome this problem, a System On Programmable Chip (SOPC) has been designed and developed using Field Programmable Gate Array (FPGA). A softcore processor, NIOS II 32-bit RISC, which is the microprocessor core was utilized in FPGA system together with the embedded operating system(OS), μClinux. In this paper, an example of web server is explained and demonstrated

  14. Special purpose computer system with highly parallel pipelines for flow visualization using holography technology

    NASA Astrophysics Data System (ADS)

    Masuda, Nobuyuki; Sugie, Takashige; Ito, Tomoyoshi; Tanaka, Shinjiro; Hamada, Yu; Satake, Shin-ichi; Kunugi, Tomoaki; Sato, Kazuho

    2010-12-01

    We have designed a PC cluster system with special purpose computer boards for visualization of fluid flow using digital holographic particle tracking velocimetry (DHPTV). In this board, there is a Field Programmable Gate Array (FPGA) chip in which is installed a pipeline for calculating the intensity of an object from a hologram by fast Fourier transform (FFT). This cluster system can create 1024 reconstructed images from a 1024×1024-grid hologram in 0.77 s. It is expected that this system will contribute to the analysis of fluid flow using DHPTV.

  15. Programming and Runtime Support to Blaze FPGA Accelerator Deployment at Datacenter Scale

    PubMed Central

    Huang, Muhuan; Wu, Di; Yu, Cody Hao; Fang, Zhenman; Interlandi, Matteo; Condie, Tyson; Cong, Jason

    2017-01-01

    With the end of CPU core scaling due to dark silicon limitations, customized accelerators on FPGAs have gained increased attention in modern datacenters due to their lower power, high performance and energy efficiency. Evidenced by Microsoft’s FPGA deployment in its Bing search engine and Intel’s 16.7 billion acquisition of Altera, integrating FPGAs into datacenters is considered one of the most promising approaches to sustain future datacenter growth. However, it is quite challenging for existing big data computing systems—like Apache Spark and Hadoop—to access the performance and energy benefits of FPGA accelerators. In this paper we design and implement Blaze to provide programming and runtime support for enabling easy and efficient deployments of FPGA accelerators in datacenters. In particular, Blaze abstracts FPGA accelerators as a service (FaaS) and provides a set of clean programming APIs for big data processing applications to easily utilize those accelerators. Our Blaze runtime implements an FaaS framework to efficiently share FPGA accelerators among multiple heterogeneous threads on a single node, and extends Hadoop YARN with accelerator-centric scheduling to efficiently share them among multiple computing tasks in the cluster. Experimental results using four representative big data applications demonstrate that Blaze greatly reduces the programming efforts to access FPGA accelerators in systems like Apache Spark and YARN, and improves the system throughput by 1.7 × to 3× (and energy efficiency by 1.5× to 2.7×) compared to a conventional CPU-only cluster. PMID:28317049

  16. Real-time machine vision system using FPGA and soft-core processor

    NASA Astrophysics Data System (ADS)

    Malik, Abdul Waheed; Thörnberg, Benny; Meng, Xiaozhou; Imran, Muhammad

    2012-06-01

    This paper presents a machine vision system for real-time computation of distance and angle of a camera from reference points in the environment. Image pre-processing, component labeling and feature extraction modules were modeled at Register Transfer (RT) level and synthesized for implementation on field programmable gate arrays (FPGA). The extracted image component features were sent from the hardware modules to a soft-core processor, MicroBlaze, for computation of distance and angle. A CMOS imaging sensor operating at a clock frequency of 27MHz was used in our experiments to produce a video stream at the rate of 75 frames per second. Image component labeling and feature extraction modules were running in parallel having a total latency of 13ms. The MicroBlaze was interfaced with the component labeling and feature extraction modules through Fast Simplex Link (FSL). The latency for computing distance and angle of camera from the reference points was measured to be 2ms on the MicroBlaze, running at 100 MHz clock frequency. In this paper, we present the performance analysis, device utilization and power consumption for the designed system. The FPGA based machine vision system that we propose has high frame speed, low latency and a power consumption that is much lower compared to commercially available smart camera solutions.

  17. Mapping Parameterized Dataflow Graphs onto FPGA Platforms (Preprint)

    DTIC Science & Technology

    2014-02-01

    Shen , Nimish Sane, William Plishker, Shuvra S. Bhattacharyya (University of Maryland) Hojin Kee (National Instruments) 5d. PROJECT NUMBER T2MC 5e...Rodyushkin, A. Ku - ranov, and V. Eruhimov. Computer vision workload analysis: Case study of video surveillance systems. Intel Technology Journal, 9, 2005...Prototyping, pages 1–7, Fairfax, Virginia, June 2010. [56] H. Wu, C. Shen , S. S. Bhattacharyya, K. Compton, M. Schulte, M. Wolf, and T. Zhang. Design and

  18. Acceleration of fluoro-CT reconstruction for a mobile C-Arm on GPU and FPGA hardware: a simulation study

    NASA Astrophysics Data System (ADS)

    Xue, Xinwei; Cheryauka, Arvi; Tubbs, David

    2006-03-01

    CT imaging in interventional and minimally-invasive surgery requires high-performance computing solutions that meet operational room demands, healthcare business requirements, and the constraints of a mobile C-arm system. The computational requirements of clinical procedures using CT-like data are increasing rapidly, mainly due to the need for rapid access to medical imagery during critical surgical procedures. The highly parallel nature of Radon transform and CT algorithms enables embedded computing solutions utilizing a parallel processing architecture to realize a significant gain of computational intensity with comparable hardware and program coding/testing expenses. In this paper, using a sample 2D and 3D CT problem, we explore the programming challenges and the potential benefits of embedded computing using commodity hardware components. The accuracy and performance results obtained on three computational platforms: a single CPU, a single GPU, and a solution based on FPGA technology have been analyzed. We have shown that hardware-accelerated CT image reconstruction can be achieved with similar levels of noise and clarity of feature when compared to program execution on a CPU, but gaining a performance increase at one or more orders of magnitude faster. 3D cone-beam or helical CT reconstruction and a variety of volumetric image processing applications will benefit from similar accelerations.

  19. On line separation of overlapped signals from multi-time photons for the GEM-based detection system

    NASA Astrophysics Data System (ADS)

    Czarski, T.; Pozniak, K. T.; Chernyshova, M.; Malinowski, K.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zabolotny, W.

    2015-09-01

    The Triple Gas Electron Multiplier (T-GEM) is presented as soft X-ray (SXR) energy and position sensitive detector for high-resolution X-ray diagnostics of magnetic confinement fusion plasmas. Multi-channel measurement system and serial data acquisition for X-ray energy and position recognition is described. Fundamental characteristics are presented for two dimensional detector structure. Typical signals of ADC - Analog to Digital Converter are considered for charge value and position estimation. Coinciding signals for high flux radiation cause the problem for cluster charge identification. The amplifier with shaper determines time characteristics and limits the pulses frequency. Separation of coincided signals was introduced and verified for simulation experiments. On line separation of overlapped signals was implemented applying the FPGA technology with relatively simple firmware procedure. Representative results for reconstruction of coinciding signals are demonstrated.

  20. Development of IR imaging system simulator

    NASA Astrophysics Data System (ADS)

    Xiang, Xinglang; He, Guojing; Dong, Weike; Dong, Lu

    2017-02-01

    To overcome the disadvantages of the tradition semi-physical simulation and injection simulation equipment in the performance evaluation of the infrared imaging system (IRIS), a low-cost and reconfigurable IRIS simulator, which can simulate the realistic physical process of infrared imaging, is proposed to test and evaluate the performance of the IRIS. According to the theoretical simulation framework and the theoretical models of the IRIS, the architecture of the IRIS simulator is constructed. The 3D scenes are generated and the infrared atmospheric transmission effects are simulated using OGRE technology in real-time on the computer. The physical effects of the IRIS are classified as the signal response characteristic, modulation transfer characteristic and noise characteristic, and they are simulated on the single-board signal processing platform based on the core processor FPGA in real-time using high-speed parallel computation method.

  1. Real-time field programmable gate array architecture for computer vision

    NASA Astrophysics Data System (ADS)

    Arias-Estrada, Miguel; Torres-Huitzil, Cesar

    2001-01-01

    This paper presents an architecture for real-time generic convolution of a mask and an image. The architecture is intended for fast low-level image processing. The field programmable gate array (FPGA)-based architecture takes advantage of the availability of registers in FPGAs to implement an efficient and compact module to process the convolutions. The architecture is designed to minimize the number of accesses to the image memory and it is based on parallel modules with internal pipeline operation in order to improve its performance. The architecture is prototyped in a FPGA, but it can be implemented on dedicated very- large-scale-integrated devices to reach higher clock frequencies. Complexity issues, FPGA resources utilization, FPGA limitations, and real-time performance are discussed. Some results are presented and discussed.

  2. Implementation of an RBF neural network on embedded systems: real-time face tracking and identity verification.

    PubMed

    Yang, Fan; Paindavoine, M

    2003-01-01

    This paper describes a real time vision system that allows us to localize faces in video sequences and verify their identity. These processes are image processing techniques based on the radial basis function (RBF) neural network approach. The robustness of this system has been evaluated quantitatively on eight video sequences. We have adapted our model for an application of face recognition using the Olivetti Research Laboratory (ORL), Cambridge, UK, database so as to compare the performance against other systems. We also describe three hardware implementations of our model on embedded systems based on the field programmable gate array (FPGA), zero instruction set computer (ZISC) chips, and digital signal processor (DSP) TMS320C62, respectively. We analyze the algorithm complexity and present results of hardware implementations in terms of the resources used and processing speed. The success rates of face tracking and identity verification are 92% (FPGA), 85% (ZISC), and 98.2% (DSP), respectively. For the three embedded systems, the processing speeds for images size of 288 /spl times/ 352 are 14 images/s, 25 images/s, and 4.8 images/s, respectively.

  3. Anti-aliasing filter design on spaceborne digital receiver

    NASA Astrophysics Data System (ADS)

    Yu, Danru; Zhao, Chonghui

    2009-12-01

    In recent years, with the development of satellite observation technologies, more and more active remote sensing technologies are adopted in spaceborne system. The spaceborne precipitation radar will depend heavily on high performance digital processing to collect meaningful rain echo data. It will increase the complexity of the spaceborne system and need high-performance and reliable digital receiver. This paper analyzes the frequency aliasing in the intermediate frequency signal sampling of digital down conversion in spaceborne radar, and gives an effective digital filter. By analysis and calculation, we choose reasonable parameters of the half-band filters to suppress the frequency aliasing on DDC. Compared with traditional filter, the FPGA resources cost in our system are reduced by over 50%. This can effectively reduce the complexity in the spaceborne digital receiver and improve the reliability of system.

  4. A Comparison of FPGA and GPGPU Designs for Bayesian Occupancy Filters.

    PubMed

    Medina, Luis; Diez-Ochoa, Miguel; Correal, Raul; Cuenca-Asensi, Sergio; Serrano, Alejandro; Godoy, Jorge; Martínez-Álvarez, Antonio; Villagra, Jorge

    2017-11-11

    Grid-based perception techniques in the automotive sector based on fusing information from different sensors and their robust perceptions of the environment are proliferating in the industry. However, one of the main drawbacks of these techniques is the traditionally prohibitive, high computing performance that is required for embedded automotive systems. In this work, the capabilities of new computing architectures that embed these algorithms are assessed in a real car. The paper compares two ad hoc optimized designs of the Bayesian Occupancy Filter; one for General Purpose Graphics Processing Unit (GPGPU) and the other for Field-Programmable Gate Array (FPGA). The resulting implementations are compared in terms of development effort, accuracy and performance, using datasets from a realistic simulator and from a real automated vehicle.

  5. Dual-Phase Lock-In Amplifier Based on FPGA for Low-Frequencies Experiments

    PubMed Central

    Macias-Bobadilla, Gonzalo; Rodríguez-Reséndiz, Juvenal; Mota-Valtierra, Georgina; Soto-Zarazúa, Genaro; Méndez-Loyola, Maurino; Garduño-Aparicio, Mariano

    2016-01-01

    Photothermal techniques allow the detection of characteristics of material without invading it. Researchers have developed hardware for some specific Phase and Amplitude detection (Lock-In Function) applications, eliminating space and unnecessary electronic functions, among others. This work shows the development of a Digital Lock-In Amplifier based on a Field Programmable Gate Array (FPGA) for low-frequency applications. This system allows selecting and generating the appropriated frequency depending on the kind of experiment or material studied. The results show good frequency stability in the order of 1.0 × 10−9 Hz, which is considered good linearity and repeatability response for the most common Laboratory Amplitude and Phase Shift detection devices, with a low error and standard deviation. PMID:26999138

  6. Dual-Phase Lock-In Amplifier Based on FPGA for Low-Frequencies Experiments.

    PubMed

    Macias-Bobadilla, Gonzalo; Rodríguez-Reséndiz, Juvenal; Mota-Valtierra, Georgina; Soto-Zarazúa, Genaro; Méndez-Loyola, Maurino; Garduño-Aparicio, Mariano

    2016-03-16

    Photothermal techniques allow the detection of characteristics of material without invading it. Researchers have developed hardware for some specific Phase and Amplitude detection (Lock-In Function) applications, eliminating space and unnecessary electronic functions, among others. This work shows the development of a Digital Lock-In Amplifier based on a Field Programmable Gate Array (FPGA) for low-frequency applications. This system allows selecting and generating the appropriated frequency depending on the kind of experiment or material studied. The results show good frequency stability in the order of 1.0 × 10(-9) Hz, which is considered good linearity and repeatability response for the most common Laboratory Amplitude and Phase Shift detection devices, with a low error and standard deviation.

  7. High-resolution LCOS microdisplay with sub-kHz frame rate for high performance, high precision 3D sensor

    NASA Astrophysics Data System (ADS)

    Lazarev, Grigory; Bonifer, Stefanie; Engel, Philip; Höhne, Daniel; Notni, Gunther

    2017-06-01

    We report about the implementation of the liquid crystal on silicon (LCOS) microdisplay with 1920 by 1080 resolution and 720 Hz frame rate. The driving solution is FPGA-based. The input signal is converted from the ultrahigh-resolution HDMI 2.0 signal into HD frames, which follow with the specified 720 Hz frame rate. Alternatively the signal is generated directly on the FPGA with built-in pattern generator. The display is showing switching times below 1.5 ms for the selected working temperature. The bit depth of the addressed image achieves 8 bit within each frame. The microdisplay is used in the fringe projection-based 3D sensing system, implemented by Fraunhofer IOF.

  8. FPGA-based real-time phase measuring profilometry algorithm design and implementation

    NASA Astrophysics Data System (ADS)

    Zhan, Guomin; Tang, Hongwei; Zhong, Kai; Li, Zhongwei; Shi, Yusheng

    2016-11-01

    Phase measuring profilometry (PMP) has been widely used in many fields, like Computer Aided Verification (CAV), Flexible Manufacturing System (FMS) et al. High frame-rate (HFR) real-time vision-based feedback control will be a common demands in near future. However, the instruction time delay in the computer caused by numerous repetitive operations greatly limit the efficiency of data processing. FPGA has the advantages of pipeline architecture and parallel execution, and it fit for handling PMP algorithm. In this paper, we design a fully pipelined hardware architecture for PMP. The functions of hardware architecture includes rectification, phase calculation, phase shifting, and stereo matching. The experiment verified the performance of this method, and the factors that may influence the computation accuracy was analyzed.

  9. Design of the Wind Tunnel Model Communication Controller Board. Degree awarded by Christopher Newport Univ. on Dec. 1998

    NASA Technical Reports Server (NTRS)

    Wilson, William C.

    1999-01-01

    The NASA Langley Research Center's Wind Tunnel Reinvestment project plans to shrink the existing data acquisition electronics to fit inside a wind tunnel model. Space limitations within a model necessitate a distributed system of Application Specific Integrated Circuits (ASICs) rather than a centralized system based on PC boards. This thesis will focus on the design of the prototype of the communication Controller board. A portion of the communication Controller board is to be used as the basis of an ASIC design. The communication Controller board will communicate between the internal model modules and the external data acquisition computer. This board is based around an Field Programmable Gate Array (FPGA), to allow for reconfigurability. In addition to the FPGA, this board contains buffer Random Access Memory (RAM), configuration memory (EEPROM), drivers for the communications ports, and passive components.

  10. Use of Commercial FPGA-Based Evaluation Boards for Single-Event Testing of DDR2 and DDR3 SDRAMs

    NASA Technical Reports Server (NTRS)

    Ladbury, R. L.; Berg, M. D.; Wilcox, E. P.; LaBel, K. A.; Kim, H. S.; Phan, A. M.; Seidleck, C. M.

    2013-01-01

    We investigate the use of commercial FPGA based evaluation boards for radiation testing DDR2 and DDR3 SDRAMs. We evaluate the resulting data quality and the tradeoffs involved in the use of these boards.

  11. FPGA-accelerated adaptive optics wavefront control

    NASA Astrophysics Data System (ADS)

    Mauch, S.; Reger, J.; Reinlein, C.; Appelfelder, M.; Goy, M.; Beckert, E.; Tünnermann, A.

    2014-03-01

    The speed of real-time adaptive optical systems is primarily restricted by the data processing hardware and computational aspects. Furthermore, the application of mirror layouts with increasing numbers of actuators reduces the bandwidth (speed) of the system and, thus, the number of applicable control algorithms. This burden turns out a key-impediment for deformable mirrors with continuous mirror surface and highly coupled actuator influence functions. In this regard, specialized hardware is necessary for high performance real-time control applications. Our approach to overcome this challenge is an adaptive optics system based on a Shack-Hartmann wavefront sensor (SHWFS) with a CameraLink interface. The data processing is based on a high performance Intel Core i7 Quadcore hard real-time Linux system. Employing a Xilinx Kintex-7 FPGA, an own developed PCie card is outlined in order to accelerate the analysis of a Shack-Hartmann Wavefront Sensor. A recently developed real-time capable spot detection algorithm evaluates the wavefront. The main features of the presented system are the reduction of latency and the acceleration of computation For example, matrix multiplications which in general are of complexity O(n3 are accelerated by using the DSP48 slices of the field-programmable gate array (FPGA) as well as a novel hardware implementation of the SHWFS algorithm. Further benefits are the Streaming SIMD Extensions (SSE) which intensively use the parallelization capability of the processor for further reducing the latency and increasing the bandwidth of the closed-loop. Due to this approach, up to 64 actuators of a deformable mirror can be handled and controlled without noticeable restriction from computational burdens.

  12. FPGA-based LDPC-coded APSK for optical communication systems.

    PubMed

    Zou, Ding; Lin, Changyu; Djordjevic, Ivan B

    2017-02-20

    In this paper, with the aid of mutual information and generalized mutual information (GMI) capacity analyses, it is shown that the geometrically shaped APSK that mimics an optimal Gaussian distribution with equiprobable signaling together with the corresponding gray-mapping rules can approach the Shannon limit closer than conventional quadrature amplitude modulation (QAM) at certain range of FEC overhead for both 16-APSK and 64-APSK. The field programmable gate array (FPGA) based LDPC-coded APSK emulation is conducted on block interleaver-based and bit interleaver-based systems; the results verify a significant improvement in hardware efficient bit interleaver-based systems. In bit interleaver-based emulation, the LDPC-coded 64-APSK outperforms 64-QAM, in terms of symbol signal-to-noise ratio (SNR), by 0.1 dB, 0.2 dB, and 0.3 dB at spectral efficiencies of 4.8, 4.5, and 4.2 b/s/Hz, respectively. It is found by emulation that LDPC-coded 64-APSK for spectral efficiencies of 4.8, 4.5, and 4.2 b/s/Hz is 1.6 dB, 1.7 dB, and 2.2 dB away from the GMI capacity.

  13. The research and application of multi-biometric acquisition embedded system

    NASA Astrophysics Data System (ADS)

    Deng, Shichao; Liu, Tiegen; Guo, Jingjing; Li, Xiuyan

    2009-11-01

    The identification technology based on multi-biometric can greatly improve the applicability, reliability and antifalsification. This paper presents a multi-biometric system bases on embedded system, which includes: three capture daughter boards are applied to obtain different biometric: one each for fingerprint, iris and vein of the back of hand; FPGA (Field Programmable Gate Array) is designed as coprocessor, which uses to configure three daughter boards on request and provides data path between DSP (digital signal processor) and daughter boards; DSP is the master processor and its functions include: control the biometric information acquisition, extracts feature as required and responsible for compare the results with the local database or data server through network communication. The advantages of this system were it can acquire three different biometric in real time, extracts complexity feature flexibly in different biometrics' raw data according to different purposes and arithmetic and network interface on the core-board will be the solution of big data scale. Because this embedded system has high stability, reliability, flexibility and fit for different data scale, it can satisfy the demand of multi-biometric recognition.

  14. A real-time multi-scale 2D Gaussian filter based on FPGA

    NASA Astrophysics Data System (ADS)

    Luo, Haibo; Gai, Xingqin; Chang, Zheng; Hui, Bin

    2014-11-01

    Multi-scale 2-D Gaussian filter has been widely used in feature extraction (e.g. SIFT, edge etc.), image segmentation, image enhancement, image noise removing, multi-scale shape description etc. However, their computational complexity remains an issue for real-time image processing systems. Aimed at this problem, we propose a framework of multi-scale 2-D Gaussian filter based on FPGA in this paper. Firstly, a full-hardware architecture based on parallel pipeline was designed to achieve high throughput rate. Secondly, in order to save some multiplier, the 2-D convolution is separated into two 1-D convolutions. Thirdly, a dedicate first in first out memory named as CAFIFO (Column Addressing FIFO) was designed to avoid the error propagating induced by spark on clock. Finally, a shared memory framework was designed to reduce memory costs. As a demonstration, we realized a 3 scales 2-D Gaussian filter on a single ALTERA Cyclone III FPGA chip. Experimental results show that, the proposed framework can computing a Multi-scales 2-D Gaussian filtering within one pixel clock period, is further suitable for real-time image processing. Moreover, the main principle can be popularized to the other operators based on convolution, such as Gabor filter, Sobel operator and so on.

  15. LDPC decoder with a limited-precision FPGA-based floating-point multiplication coprocessor

    NASA Astrophysics Data System (ADS)

    Moberly, Raymond; O'Sullivan, Michael; Waheed, Khurram

    2007-09-01

    Implementing the sum-product algorithm, in an FPGA with an embedded processor, invites us to consider a tradeoff between computational precision and computational speed. The algorithm, known outside of the signal processing community as Pearl's belief propagation, is used for iterative soft-decision decoding of LDPC codes. We determined the feasibility of a coprocessor that will perform product computations. Our FPGA-based coprocessor (design) performs computer algebra with significantly less precision than the standard (e.g. integer, floating-point) operations of general purpose processors. Using synthesis, targeting a 3,168 LUT Xilinx FPGA, we show that key components of a decoder are feasible and that the full single-precision decoder could be constructed using a larger part. Soft-decision decoding by the iterative belief propagation algorithm is impacted both positively and negatively by a reduction in the precision of the computation. Reducing precision reduces the coding gain, but the limited-precision computation can operate faster. A proposed solution offers custom logic to perform computations with less precision, yet uses the floating-point format to interface with the software. Simulation results show the achievable coding gain. Synthesis results help theorize the the full capacity and performance of an FPGA-based coprocessor.

  16. NEPP Update of Independent Single Event Upset Field Programmable Gate Array Testing

    NASA Technical Reports Server (NTRS)

    Berg, Melanie; Label, Kenneth; Campola, Michael; Pellish, Jonathan

    2017-01-01

    This presentation provides a NASA Electronic Parts and Packaging (NEPP) Program update of independent Single Event Upset (SEU) Field Programmable Gate Array (FPGA) testing including FPGA test guidelines, Microsemi RTG4 heavy-ion results, Xilinx Kintex-UltraScale heavy-ion results, Xilinx UltraScale+ single event effect (SEE) test plans, development of a new methodology for characterizing SEU system response, and NEPP involvement with FPGA security and trust.

  17. High-Performance CCSDS AOS Protocol Implementation in FPGA

    NASA Technical Reports Server (NTRS)

    Clare, Loren P.; Torgerson, Jordan L.; Pang, Jackson

    2010-01-01

    The Consultative Committee for Space Data Systems (CCSDS) Advanced Orbiting Systems (AOS) space data link protocol provides a framing layer between channel coding such as LDPC (low-density parity-check) and higher-layer link multiplexing protocols such as CCSDS Encapsulation Service, which is described in the following article. Recent advancement in RF modem technology has allowed multi-megabit transmission over space links. With this increase in data rate, the CCSDS AOS protocol implementation needs to be optimized to both reduce energy consumption and operate at a high rate.

  18. Diagnostic-management system and test pulse acquisition for WEST plasma measurement system

    NASA Astrophysics Data System (ADS)

    Wojenski, A.; Kasprowicz, G.; Pozniak, K. T.; Byszuk, A.; Juszczyk, B.; Zabolotny, W.; Zienkiewicz, P.; Chernyshova, M.; Czarski, T.; Mazon, D.; Malard, P.

    2014-11-01

    This paper describes current status of electronics, firmware and software development for new plasma measurement system for use in WEST facility. The system allows to perform two dimensional plasma visualization (in time) with spectrum measurement. The analog front-end is connected to Gas Electron Multiplier detector (GEM detector). The system architecture have high data throughput due to use of PCI-Express interface, Gigabit Transceivers and sampling frequency of ADC integrated circuits. The hardware is based on several years of experience in building X-ray spectrometer system for Joint European Torus (JET) facility. Data streaming is done using Artix7 FPGA devices. The system in basic configuration can work with up to 256 channels, while the maximum number of measurement channels is 2048. Advanced firmware for the FPGA is required in order to perform high speed data streaming and analog signal sampling. Diagnostic system management has been developed in order to configure measurement system, perform necessary calibration and prepare hardware for data acquisition.

  19. FPGA Acceleration of the phylogenetic likelihood function for Bayesian MCMC inference methods.

    PubMed

    Zierke, Stephanie; Bakos, Jason D

    2010-04-12

    Likelihood (ML)-based phylogenetic inference has become a popular method for estimating the evolutionary relationships among species based on genomic sequence data. This method is used in applications such as RAxML, GARLI, MrBayes, PAML, and PAUP. The Phylogenetic Likelihood Function (PLF) is an important kernel computation for this method. The PLF consists of a loop with no conditional behavior or dependencies between iterations. As such it contains a high potential for exploiting parallelism using micro-architectural techniques. In this paper, we describe a technique for mapping the PLF and supporting logic onto a Field Programmable Gate Array (FPGA)-based co-processor. By leveraging the FPGA's on-chip DSP modules and the high-bandwidth local memory attached to the FPGA, the resultant co-processor can accelerate ML-based methods and outperform state-of-the-art multi-core processors. We use the MrBayes 3 tool as a framework for designing our co-processor. For large datasets, we estimate that our accelerated MrBayes, if run on a current-generation FPGA, achieves a 10x speedup relative to software running on a state-of-the-art server-class microprocessor. The FPGA-based implementation achieves its performance by deeply pipelining the likelihood computations, performing multiple floating-point operations in parallel, and through a natural log approximation that is chosen specifically to leverage a deeply pipelined custom architecture. Heterogeneous computing, which combines general-purpose processors with special-purpose co-processors such as FPGAs and GPUs, is a promising approach for high-performance phylogeny inference as shown by the growing body of literature in this field. FPGAs in particular are well-suited for this task because of their low power consumption as compared to many-core processors and Graphics Processor Units (GPUs).

  20. Synchronized operation by field programmable gate array based signal controller for the Thomson scattering diagnostic system in KSTAR.

    PubMed

    Lee, W R; Kim, H S; Park, M K; Lee, J H; Kim, K H

    2012-09-01

    The Thomson scattering diagnostic system is successfully installed in the Korea Superconducting Tokamak Advanced Research (KSTAR) facility. We got the electron temperature and electron density data for the first time in 2011, 4th campaign using a field programmable gate array (FPGA) based signal control board. It operates as a signal generator, a detector, a controller, and a time measuring device. This board produces two configurable trigger pulses to operate Nd:YAG laser system and receives a laser beam detection signal from a photodiode detector. It allows a trigger pulse to be delivered to a time delay module to make a scattered signal measurement, measuring an asynchronous time value between the KSTAR timing board and the laser system injection signal. All functions are controlled by the embedded processor running on operating system within a single FPGA. It provides Ethernet communication interface and is configured with standard middleware to integrate with KSTAR. This controller has operated for two experimental campaigns including commissioning and performed the reconfiguration of logic designs to accommodate varying experimental situation without hardware rebuilding.

  1. Active vibration control of a full scale aircraft wing using a reconfigurable controller

    NASA Astrophysics Data System (ADS)

    Prakash, Shashikala; Renjith Kumar, T. G.; Raja, S.; Dwarakanathan, D.; Subramani, H.; Karthikeyan, C.

    2016-01-01

    This work highlights the design of a Reconfigurable Active Vibration Control (AVC) System for aircraft structures using adaptive techniques. The AVC system with a multichannel capability is realized using Filtered-X Least Mean Square algorithm (FxLMS) on Xilinx Virtex-4 Field Programmable Gate Array (FPGA) platform in Very High Speed Integrated Circuits Hardware Description Language, (VHDL). The HDL design is made based on Finite State Machine (FSM) model with Floating point Intellectual Property (IP) cores for arithmetic operations. The use of FPGA facilitates to modify the system parameters even during runtime depending on the changes in user's requirements. The locations of the control actuators are optimized based on dynamic modal strain approach using genetic algorithm (GA). The developed system has been successfully deployed for the AVC testing of the full-scale wing of an all composite two seater transport aircraft. Several closed loop configurations like single channel and multi-channel control have been tested. The experimental results from the studies presented here are very encouraging. They demonstrate the usefulness of the system's reconfigurability for real time applications.

  2. Advanced Data Acquisition System Implementation for the ITER Neutron Diagnostic Use Case Using EPICS and FlexRIO Technology on a PXIe Platform

    NASA Astrophysics Data System (ADS)

    Sanz, D.; Ruiz, M.; Castro, R.; Vega, J.; Afif, M.; Monroe, M.; Simrock, S.; Debelle, T.; Marawar, R.; Glass, B.

    2016-04-01

    To aid in assessing the functional performance of ITER, Fission Chambers (FC) based on the neutron diagnostic use case deliver timestamped measurements of neutron source strength and fusion power. To demonstrate the Plant System Instrumentation & Control (I&C) required for such a system, ITER Organization (IO) has developed a neutron diagnostics use case that fully complies with guidelines presented in the Plant Control Design Handbook (PCDH). The implementation presented in this paper has been developed on the PXI Express (PXIe) platform using products from the ITER catalog of standard I&C hardware for fast controllers. Using FlexRIO technology, detector signals are acquired at 125 MS/s, while filtering, decimation, and three methods of neutron counting are performed in real-time via the onboard Field Programmable Gate Array (FPGA). Measurement results are reported every 1 ms through Experimental Physics and Industrial Control System (EPICS) Channel Access (CA), with real-time timestamps derived from the ITER Timing Communication Network (TCN) based on IEEE 1588-2008. Furthermore, in accordance with ITER specifications for CODAC Core System (CCS) application development, the software responsible for the management, configuration, and monitoring of system devices has been developed in compliance with a new EPICS module called Nominal Device Support (NDS) and RIO/FlexRIO design methodology.

  3. A Hybrid FPGA-Based System for EEG- and EMG-Based Online Movement Prediction.

    PubMed

    Wöhrle, Hendrik; Tabie, Marc; Kim, Su Kyoung; Kirchner, Frank; Kirchner, Elsa Andrea

    2017-07-03

    A current trend in the development of assistive devices for rehabilitation, for example exoskeletons or active orthoses, is to utilize physiological data to enhance their functionality and usability, for example by predicting the patient's upcoming movements using electroencephalography (EEG) or electromyography (EMG). However, these modalities have different temporal properties and classification accuracies, which results in specific advantages and disadvantages. To use physiological data analysis in rehabilitation devices, the processing should be performed in real-time, guarantee close to natural movement onset support, provide high mobility, and should be performed by miniaturized systems that can be embedded into the rehabilitation device. We present a novel Field Programmable Gate Array (FPGA) -based system for real-time movement prediction using physiological data. Its parallel processing capabilities allows the combination of movement predictions based on EEG and EMG and additionally a P300 detection, which is likely evoked by instructions of the therapist. The system is evaluated in an offline and an online study with twelve healthy subjects in total. We show that it provides a high computational performance and significantly lower power consumption in comparison to a standard PC. Furthermore, despite the usage of fixed-point computations, the proposed system achieves a classification accuracy similar to systems with double precision floating-point precision.

  4. A Hybrid FPGA-Based System for EEG- and EMG-Based Online Movement Prediction

    PubMed Central

    Wöhrle, Hendrik; Tabie, Marc; Kim, Su Kyoung; Kirchner, Frank; Kirchner, Elsa Andrea

    2017-01-01

    A current trend in the development of assistive devices for rehabilitation, for example exoskeletons or active orthoses, is to utilize physiological data to enhance their functionality and usability, for example by predicting the patient’s upcoming movements using electroencephalography (EEG) or electromyography (EMG). However, these modalities have different temporal properties and classification accuracies, which results in specific advantages and disadvantages. To use physiological data analysis in rehabilitation devices, the processing should be performed in real-time, guarantee close to natural movement onset support, provide high mobility, and should be performed by miniaturized systems that can be embedded into the rehabilitation device. We present a novel Field Programmable Gate Array (FPGA) -based system for real-time movement prediction using physiological data. Its parallel processing capabilities allows the combination of movement predictions based on EEG and EMG and additionally a P300 detection, which is likely evoked by instructions of the therapist. The system is evaluated in an offline and an online study with twelve healthy subjects in total. We show that it provides a high computational performance and significantly lower power consumption in comparison to a standard PC. Furthermore, despite the usage of fixed-point computations, the proposed system achieves a classification accuracy similar to systems with double precision floating-point precision. PMID:28671632

  5. A Component-Based FPGA Design Framework for Neuronal Ion Channel Dynamics Simulations

    PubMed Central

    Mak, Terrence S. T.; Rachmuth, Guy; Lam, Kai-Pui; Poon, Chi-Sang

    2008-01-01

    Neuron-machine interfaces such as dynamic clamp and brain-implantable neuroprosthetic devices require real-time simulations of neuronal ion channel dynamics. Field Programmable Gate Array (FPGA) has emerged as a high-speed digital platform ideal for such application-specific computations. We propose an efficient and flexible component-based FPGA design framework for neuronal ion channel dynamics simulations, which overcomes certain limitations of the recently proposed memory-based approach. A parallel processing strategy is used to minimize computational delay, and a hardware-efficient factoring approach for calculating exponential and division functions in neuronal ion channel models is used to conserve resource consumption. Performances of the various FPGA design approaches are compared theoretically and experimentally in corresponding implementations of the AMPA and NMDA synaptic ion channel models. Our results suggest that the component-based design framework provides a more memory economic solution as well as more efficient logic utilization for large word lengths, whereas the memory-based approach may be suitable for time-critical applications where a higher throughput rate is desired. PMID:17190033

  6. Field Programmable Gate Array Based Parallel Strapdown Algorithm Design for Strapdown Inertial Navigation Systems

    PubMed Central

    Li, Zong-Tao; Wu, Tie-Jun; Lin, Can-Long; Ma, Long-Hua

    2011-01-01

    A new generalized optimum strapdown algorithm with coning and sculling compensation is presented, in which the position, velocity and attitude updating operations are carried out based on the single-speed structure in which all computations are executed at a single updating rate that is sufficiently high to accurately account for high frequency angular rate and acceleration rectification effects. Different from existing algorithms, the updating rates of the coning and sculling compensations are unrelated with the number of the gyro incremental angle samples and the number of the accelerometer incremental velocity samples. When the output sampling rate of inertial sensors remains constant, this algorithm allows increasing the updating rate of the coning and sculling compensation, yet with more numbers of gyro incremental angle and accelerometer incremental velocity in order to improve the accuracy of system. Then, in order to implement the new strapdown algorithm in a single FPGA chip, the parallelization of the algorithm is designed and its computational complexity is analyzed. The performance of the proposed parallel strapdown algorithm is tested on the Xilinx ISE 12.3 software platform and the FPGA device XC6VLX550T hardware platform on the basis of some fighter data. It is shown that this parallel strapdown algorithm on the FPGA platform can greatly decrease the execution time of algorithm to meet the real-time and high precision requirements of system on the high dynamic environment, relative to the existing implemented on the DSP platform. PMID:22164058

  7. Exploring Accelerating Science Applications with FPGAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storaasli, Olaf O; Strenski, Dave

    2007-01-01

    FPGA hardware and tools (VHDL, Viva, MitrionC and CHiMPS) are described. FPGA performance is evaluated on two Cray XD1 systems (Virtex-II Pro 50 and Virtex-4 LX160) for human genome (DNA and protein) sequence comparisons for a computational biology code (FASTA). Scalable FPGA speedups of 50X (Virtex-II) and 100X (Virtex-4) over a 2.2 GHz Opteron were achieved. Coding and IO issues faced for human genome data are described.

  8. Central FPGA-based destination and load control in the LHCb MHz event readout

    NASA Astrophysics Data System (ADS)

    Jacobsson, R.

    2012-10-01

    The readout strategy of the LHCb experiment is based on complete event readout at 1 MHz. A set of 320 sub-detector readout boards transmit event fragments at total rate of 24.6 MHz at a bandwidth usage of up to 70 GB/s over a commercial switching network based on Gigabit Ethernet to a distributed event building and high-level trigger processing farm with 1470 individual multi-core computer nodes. In the original specifications, the readout was based on a pure push protocol. This paper describes the proposal, implementation, and experience of a non-conventional mixture of a push and a pull protocol, akin to credit-based flow control. An FPGA-based central master module, partly operating at the LHC bunch clock frequency of 40.08 MHz and partly at a double clock speed, is in charge of the entire trigger and readout control from the front-end electronics up to the high-level trigger farm. One FPGA is dedicated to controlling the event fragment packing in the readout boards, the assignment of the farm node destination for each event, and controls the farm load based on an asynchronous pull mechanism from each farm node. This dynamic readout scheme relies on generic event requests and the concept of node credit allowing load control and trigger rate regulation as a function of the global farm load. It also allows the vital task of fast central monitoring and automatic recovery in-flight of failing nodes while maintaining dead-time and event loss at a minimum. This paper demonstrates the strength and suitability of implementing this real-time task for a very large distributed system in an FPGA where no random delays are introduced, and where extreme reliability and accurate event accounting are fundamental requirements. It was in use during the entire commissioning phase of LHCb and has been in faultless operation during the first two years of physics luminosity data taking.

  9. Design and realization of the baseband processor in satellite navigation and positioning receiver

    NASA Astrophysics Data System (ADS)

    Zhang, Dawei; Hu, Xiulin; Li, Chen

    2007-11-01

    The content of this paper is focused on the Design and realization of the baseband processor in satellite navigation and positioning receiver. Baseband processor is the most important part of the satellite positioning receiver. The design covers baseband processor's main functions include multi-channel digital signal DDC, acquisition, code tracking, carrier tracking, demodulation, etc. The realization is based on an Altera's FPGA device, that makes the system can be improved and upgraded without modifying the hardware. It embodies the theory of software defined radio (SDR), and puts the theory of the spread spectrum into practice. This paper puts emphasis on the realization of baseband processor in FPGA. In the order of choosing chips, design entry, debugging and synthesis, the flow is presented detailedly. Additionally the paper detailed realization of Digital PLL in order to explain a method of reducing the consumption of FPGA. Finally, the paper presents the result of Synthesis. This design has been used in BD-1, BD-2 and GPS.

  10. A hybrid short read mapping accelerator

    PubMed Central

    2013-01-01

    Background The rapid growth of short read datasets poses a new challenge to the short read mapping problem in terms of sensitivity and execution speed. Existing methods often use a restrictive error model for computing the alignments to improve speed, whereas more flexible error models are generally too slow for large-scale applications. A number of short read mapping software tools have been proposed. However, designs based on hardware are relatively rare. Field programmable gate arrays (FPGAs) have been successfully used in a number of specific application areas, such as the DSP and communications domains due to their outstanding parallel data processing capabilities, making them a competitive platform to solve problems that are “inherently parallel”. Results We present a hybrid system for short read mapping utilizing both FPGA-based hardware and CPU-based software. The computation intensive alignment and the seed generation operations are mapped onto an FPGA. We present a computationally efficient, parallel block-wise alignment structure (Align Core) to approximate the conventional dynamic programming algorithm. The performance is compared to the multi-threaded CPU-based GASSST and BWA software implementations. For single-end alignment, our hybrid system achieves faster processing speed than GASSST (with a similar sensitivity) and BWA (with a higher sensitivity); for pair-end alignment, our design achieves a slightly worse sensitivity than that of BWA but has a higher processing speed. Conclusions This paper shows that our hybrid system can effectively accelerate the mapping of short reads to a reference genome based on the seed-and-extend approach. The performance comparison to the GASSST and BWA software implementations under different conditions shows that our hybrid design achieves a high degree of sensitivity and requires less overall execution time with only modest FPGA resource utilization. Our hybrid system design also shows that the performance bottleneck for the short read mapping problem can be changed from the alignment stage to the seed generation stage, which provides an additional requirement for the future development of short read aligners. PMID:23441908

  11. A new FPGA-driven P-HIFU system with harmonic cancellation technique

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Shen, Guofeng; Su, Zhiqiang; Chen, Yazhu

    2017-03-01

    This paper introduces a high intensity focused ultrasound system for ablation using switch-mode power amplifiers with harmonic cancellation technique eliminating the 3rdharmonic and all even harmonics. The efficiency of the amplifier is optimized by choosing different parameters of the harmonic cancellation technique. This technique requires double driving signals, and specific signal waveform because of the full-bridge topology. The new FPGA-driven P-HIFU system has 200 channels of phase signals that can form 100 output channels. An FPGA chip is used to generate these signals, and each channel has a phase resolution of 2 ns, less than one degree. The output waveform of the amplifier, voltage waveform across the transducer, shows fewer harmonic components.

  12. Programmable logic controller performance enhancement by field programmable gate array based design.

    PubMed

    Patel, Dhruv; Bhatt, Jignesh; Trivedi, Sanjay

    2015-01-01

    PLC, the core element of modern automation systems, due to serial execution, exhibits limitations like slow speed and poor scan time. Improved PLC design using FPGA has been proposed based on parallel execution mechanism for enhancement of performance and flexibility. Modelsim as simulation platform and VHDL used to translate, integrate and implement the logic circuit in FPGA. Xilinx's Spartan kit for implementation-testing and VB has been used for GUI development. Salient merits of the design include cost-effectiveness, miniaturization, user-friendliness, simplicity, along with lower power consumption, smaller scan time and higher speed. Various functionalities and applications like typical PLC and industrial alarm annunciator have been developed and successfully tested. Results of simulation, design and implementation have been reported. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  13. A Comparison of FPGA and GPGPU Designs for Bayesian Occupancy Filters

    PubMed Central

    Medina, Luis; Diez-Ochoa, Miguel; Correal, Raul; Cuenca-Asensi, Sergio; Godoy, Jorge; Martínez-Álvarez, Antonio

    2017-01-01

    Grid-based perception techniques in the automotive sector based on fusing information from different sensors and their robust perceptions of the environment are proliferating in the industry. However, one of the main drawbacks of these techniques is the traditionally prohibitive, high computing performance that is required for embedded automotive systems. In this work, the capabilities of new computing architectures that embed these algorithms are assessed in a real car. The paper compares two ad hoc optimized designs of the Bayesian Occupancy Filter; one for General Purpose Graphics Processing Unit (GPGPU) and the other for Field-Programmable Gate Array (FPGA). The resulting implementations are compared in terms of development effort, accuracy and performance, using datasets from a realistic simulator and from a real automated vehicle. PMID:29137137

  14. Onboard Radar Processing Development for Rapid Response Applications

    NASA Technical Reports Server (NTRS)

    Lou, Yunling; Chien, Steve; Clark, Duane; Doubleday, Josh; Muellerschoen, Ron; Wang, Charles C.

    2011-01-01

    We are developing onboard processor (OBP) technology to streamline data acquisition on-demand and explore the potential of the L-band SAR instrument onboard the proposed DESDynI mission and UAVSAR for rapid response applications. The technology would enable the observation and use of surface change data over rapidly evolving natural hazards, both as an aid to scientific understanding and to provide timely data to agencies responsible for the management and mitigation of natural disasters. We are adapting complex science algorithms for surface water extent to detect flooding, snow/water/ice classification to assist in transportation/ shipping forecasts, and repeat-pass change detection to detect disturbances. We are near completion of the development of a custom FPGA board to meet the specific memory and processing needs of L-band SAR processor algorithms and high speed interfaces to reformat and route raw radar data to/from the FPGA processor board. We have also developed a high fidelity Matlab model of the SAR processor that is modularized and parameterized for ease to prototype various SAR processor algorithms targeted for the FPGA. We will be testing the OBP and rapid response algorithms with UAVSAR data to determine the fidelity of the products.

  15. A configurable electronics system for the ESS-Bilbao beam position monitors

    NASA Astrophysics Data System (ADS)

    Muguira, L.; Belver, D.; Etxebarria, V.; Varnasseri, S.; Arredondo, I.; del Campo, M.; Echevarria, P.; Garmendia, N.; Feuchtwanger, J.; Jugo, J.; Portilla, J.

    2013-09-01

    A versatile and configurable system has been developed in order to monitorize the beam position and to meet all the requirements of the future ESS-Bilbao Linac. At the same time the design has been conceived to be open and configurable so that it could eventually be used in different kinds of accelerators, independent of the charged particle, with minimal change. The design of the Beam Position Monitors (BPMs) system includes a test bench both for button-type pick-ups (PU) and striplines (SL), the electronic units and the control system. The electronic units consist of two main parts. The first part is an Analog Front-End (AFE) unit where the RF signals are filtered, conditioned and converted to base-band. The second part is a Digital Front-End (DFE) unit which is based on an FPGA board where the base-band signals are sampled in order to calculate the beam position, the amplitude and the phase. To manage the system a Multipurpose Controller (MC) developed at ESSB has been used. It includes the FPGA management, the EPICS integration and Archiver Instances. A description of the system and a comparison between the performance of both PU and SL BPM designs measured with this electronics system are fully described and discussed.

  16. Compact Low Power DPU for Plasma Instrument LINA on the Russian Luna-Glob Lander

    NASA Astrophysics Data System (ADS)

    Schmidt, Walter; Riihelä, Pekka; Kallio, Esa

    2013-04-01

    The Swedish Institute for Space Physics in Kiruna is bilding a Lunar Ions and Neutrals Analyzer (LINA) for the Russian Luna-Glob lander mission and its orbiter, to be launched around 2016 [1]. The Finnish Meteorological Institute is responsible for designing and building the central data processing units (DPU) for both instruments. The design details were optimized to serve as demonstrator also for a similar instrument on the Jupiter mission JUICE. To accommodate the originally set short development time and to keep the design between orbiter and Lander as similar as possible, the DPU is built around two re-programmable flash-based FPGAs from Actel. One FPGA contains a public-domain 32-bit processor core identical for both Lander and orbiter. The other FPGA handles all interfaces to the spacecraft system and the detectors, somewhat different for both implementations. Monitoring of analog housekeeping data is implemented as an IP-core from Stellamar inside the interface FPGA, saving mass, volume and especially power while simplifying the radiation protection design. As especially on the Lander the data retention before transfer to the orbiter cannot be guaranteed under all conditions, the DPU includes a Flash-PROM containing several software versions and data storage capability. With the memory management implemented inside the interface FPGA, one of the serial links can also be used as test port to verify the system, load the initial software into the Flash-PROM and to control the detector hardware directly without support by the processor and a ready developed operating system and software. Implementation and performance details will be presented. Reference: [1] http://www.russianspaceweb.com/luna_glob_lander.html.

  17. Design Considerations for a Computationally-Lightweight Authentication Mechanism for Passive RFID Tags

    DTIC Science & Technology

    2009-09-01

    suffer the power and complexity requirements of a public key system. 28 In [18], a simulation of the SHA –1 algorithm is performed on a Xilinx FPGA ... 256 bits. Thus, the construction of a hash table would need 2512 independent comparisons. It is known that hash collisions of the SHA –1 algorithm... SHA –1 algorithm for small-core FPGA design. Small-core FPGA design is the process by which a circuit is adapted to use the minimal amount of logic

  18. Performance evaluation of multiple (32 channels) sub-nanosecond TDC implemented in low-cost FPGA

    NASA Astrophysics Data System (ADS)

    Lichard, P.; Konstantinou, G.; Villar Vilanueva, A.; Palladino, V.

    2014-03-01

    NA62 experiment Straw tracker frontend board serves as a gas-tight detector cover and integrates two CARIOCA chips, a low cost FPGA (Cyclon III, Altera) and a set of 400Mbit/s links to the backend. The FPGA houses 16 pairs of sub-nanosecond resolution TDCs with derandomizers and an output link serializer. Evaluation methods, including simulations, and performance results of the system in the lab and on a detector prototype are presented.

  19. Dual Active Bridge based DC Transformer LabVIEW FPGA Control Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    In the area of power electronics control, Field Programmable Gate Arrays (FPGAs) have the capability to outperform their Digital Signal Processor (DSP) counterparts due to the FPGA’s ability to implement true parallel processing and therefore facilitate higher switching frequencies, higher control bandwidth, and/or enhanced functionality. National Instruments (NI) has developed two platforms, Compact RIO (cRIO) and Single Board RIO (sbRIO), which combine a real-time processor with an FPGA. The FPGA can be programmed with a subset of the well-known LabVIEW graphical programming language. The candidate software implements complete control algorithms in LabVIEW FPGA for a DC Transformer (DCX) based onmore » a dual active bridge (DAB). A DCX is an isolated bi-directional DC-DC converter designed to operate at unity conversion ratio, M, defined by where Vin is the primary-side DC bus voltage, Vout is the secondary-side DC bus voltage, and n is the turns ratio of the embedded high frequency transformer (HFX). The DCX based on a DAB incorporates two H-bridges, a resonant inductor, and an HFX to provide this functionality. The candidate software employs phase-shift modulation of the two H-bridges and a feedback loop to regulate the conversion ratio at unity. The software also includes alarm-handling capabilities as well as debugging and tuning tools. The software fits on the Xilinx Virtex V LX110 FPGA embedded in the NI cRIO-9118 FPGA chassis, and with a 40 MHz base clock, supports a modulation update rate of 40 MHz, and user-settable switching frequencies and synchronized control loop update rates of tens of kHz.« less

  20. Synchronization Design and Error Analysis of Near-Infrared Cameras in Surgical Navigation.

    PubMed

    Cai, Ken; Yang, Rongqian; Chen, Huazhou; Huang, Yizhou; Wen, Xiaoyan; Huang, Wenhua; Ou, Shanxing

    2016-01-01

    The accuracy of optical tracking systems is important to scientists. With the improvements reported in this regard, such systems have been applied to an increasing number of operations. To enhance the accuracy of these systems further and to reduce the effect of synchronization and visual field errors, this study introduces a field-programmable gate array (FPGA)-based synchronization control method, a method for measuring synchronous errors, and an error distribution map in field of view. Synchronization control maximizes the parallel processing capability of FPGA, and synchronous error measurement can effectively detect the errors caused by synchronization in an optical tracking system. The distribution of positioning errors can be detected in field of view through the aforementioned error distribution map. Therefore, doctors can perform surgeries in areas with few positioning errors, and the accuracy of optical tracking systems is considerably improved. The system is analyzed and validated in this study through experiments that involve the proposed methods, which can eliminate positioning errors attributed to asynchronous cameras and different fields of view.

  1. A counting-weighted calibration method for a field-programmable-gate-array-based time-to-digital converter

    NASA Astrophysics Data System (ADS)

    Chen, Yuan-Ho

    2017-05-01

    In this work, we propose a counting-weighted calibration method for field-programmable-gate-array (FPGA)-based time-to-digital converter (TDC) to provide non-linearity calibration for use in positron emission tomography (PET) scanners. To deal with the non-linearity in FPGA, we developed a counting-weighted delay line (CWD) to count the delay time of the delay cells in the TDC in order to reduce the differential non-linearity (DNL) values based on code density counts. The performance of the proposed CWD-TDC with regard to linearity far exceeds that of TDC with a traditional tapped delay line (TDL) architecture, without the need for nonlinearity calibration. When implemented in a Xilinx Vertix-5 FPGA device, the proposed CWD-TDC achieved time resolution of 60 ps with integral non-linearity (INL) and DNL of [-0.54, 0.24] and [-0.66, 0.65] least-significant-bit (LSB), respectively. This is a clear indication of the suitability of the proposed FPGA-based CWD-TDC for use in PET scanners.

  2. Distributed Continuous Event-Based Data Acquisition Using the IEEE 1588 Synchronization and FlexRIO FPGA

    NASA Astrophysics Data System (ADS)

    Taliercio, C.; Luchetta, A.; Manduchi, G.; Rigoni, A.

    2017-07-01

    High-speed event driven acquisition is normally performed by analog-to-digital converter (ADC) boards with a given number of pretrigger sample and posttrigger sample that are recorded upon the occurrence of a hardware trigger. A direct physical connection is, therefore, required between the source of event (trigger) and the ADC, because any other software-based communication method would introduce a delay in triggering that would turn out to be not acceptable in many cases. This paper proposes a solution for the relaxation of the event communication time that can be, in this case, carried out by software messaging (e.g., via an LAN), provided that the system components are synchronized in time using the IEEE 1588 synchronization mechanism. The information about the exact event occurrence time is contained in the software packet that is sent to communicate the event and is used by the ADC FPGA to identify the exact sample in the ADC sample queue. The length of the ADC sample queue will depend on the maximum delay in software event message communication time. A prototype implementation using a National FlexRIO FPGA board connected with an ADC device is presented as the proof of concept.

  3. The implementation of aerial object recognition algorithm based on contour descriptor in FPGA-based on-board vision system

    NASA Astrophysics Data System (ADS)

    Babayan, Pavel; Smirnov, Sergey; Strotov, Valery

    2017-10-01

    This paper describes the aerial object recognition algorithm for on-board and stationary vision system. Suggested algorithm is intended to recognize the objects of a specific kind using the set of the reference objects defined by 3D models. The proposed algorithm based on the outer contour descriptor building. The algorithm consists of two stages: learning and recognition. Learning stage is devoted to the exploring of reference objects. Using 3D models we can build the database containing training images by rendering the 3D model from viewpoints evenly distributed on a sphere. Sphere points distribution is made by the geosphere principle. Gathered training image set is used for calculating descriptors, which will be used in the recognition stage of the algorithm. The recognition stage is focusing on estimating the similarity of the captured object and the reference objects by matching an observed image descriptor and the reference object descriptors. The experimental research was performed using a set of the models of the aircraft of the different types (airplanes, helicopters, UAVs). The proposed orientation estimation algorithm showed good accuracy in all case studies. The real-time performance of the algorithm in FPGA-based vision system was demonstrated.

  4. Configurable test bed design for nanosats to qualify commercial and customized integrated circuits

    NASA Astrophysics Data System (ADS)

    Guareschi, W.; Azambuja, J.; Kastensmidt, F.; Reis, R.; Durao, O.; Schuch, N.; Dessbesel, G.

    The use of small satellites has increased substantially in recent years due to the reduced cost of their development and launch, as well to the flexibility offered by commercial components. The test bed is a platform that allows components to be evaluated and tested in space. It is a flexible platform, which can be adjusted to a wide quantity of components and interfaces. This work proposes the design and implementation of a test bed suitable for test and evaluation of commercial circuits used in nanosatellites. The development of such a platform allows developers to reduce the efforts in the integration of components and therefore speed up the overall system development time. The proposed test bed is a configurable platform implemented using a Field Programmable Gate Array (FPGA) that controls the communication protocols and connections to the devices under test. The Flash-based ProASIC3E FPGA from Microsemi is used as a control system. This adaptive system enables the control of new payloads and softcores for test and validation in space. Thus, the integration can be easily performed through configuration parameters. It is intended for modularity. Each component connected to the test bed can have a specific interface programmed using a hardware description language (HDL). The data of each component is stored in embedded memories. Each component has its own memory space. The size of the allocated memory can be also configured. The data transfer priority can be set and packaging can be added to the logic, when needed. Communication with peripheral devices and with the Onboard Computer (OBC) is done through the pre-implemented protocols, such as I2C (Inter-Integrated Circuit), SPI (Serial Peripheral Interface) and external memory control. In loco primary tests demonstrated the control system's functionality. The commercial ProASIC3E FPGA family is not space-flight qualified, but tests have been made under Total Ionizing Dose (TID) showing its robustness up to 25 kr- ds (Si). When considering proton and heavy ions, flash-based FPGAs provide immunity to configuration loss and low bit-flips susceptibility in flash memory. In this first version of the test bed two components are connected to the controller FPGA: a commercial magnetometer and a hardened test chip. The embedded FPGA implements a Single Event Effects (SEE) hardened microprocessor and few other soft-cores to be used in space. This test bed will be used in the NanoSatC-BR1, the first Brazilian Cubesat scheduled to be launched in mid-2013.

  5. Petaflops router

    DOEpatents

    Baker, Zachary Kent; Power, John Fredrick; Tripp, Justin Leonard; Dunham, Mark Edward; Stettler, Matthew W; Jones, John Alexander

    2014-10-14

    Disclosed is a method and system for performing operations on at least one input data vector in order to produce at least one output vector to permit easy, scalable and fast programming of a petascale equivalent supercomputer. A PetaFlops Router may comprise one or more PetaFlops Nodes, which may be connected to each other and/or external data provider/consumers via a programmable crossbar switch external to the PetaFlops Node. Each PetaFlops Node has a FPGA and a programmable intra-FPGA crossbar switch that permits input and output variables to be configurably connected to various physical operators contained in the FPGA as desired by a user. This allows a user to specify the instruction set of the system on a per-application basis. Further, the intra-FPGA crossbar switch permits the output of one operation to be delivered as an input to a second operation. By configuring the external crossbar switch, the output of a first operation on a first PetaFlops Node may be used as the input for a second operation on a second PetaFlops Node. An embodiment may provide an ability for the system to recognize and generate pipelined functions. Streaming operators may be connected together at run-time and appropriately staged to allow data to flow through a series of functions. This allows the system to provide high throughput and parallelism when possible. The PetaFlops Router may implement the user desired instructions by appropriately configuring the intra-FPGA crossbar switch on each PetaFlops Node and the external crossbar switch.

  6. Highly Reconfigurable Beamformer Stimulus Generator

    NASA Astrophysics Data System (ADS)

    Vaviļina, E.; Gaigals, G.

    2018-02-01

    The present paper proposes a highly reconfigurable beamformer stimulus generator of radar antenna array, which includes three main blocks: settings of antenna array, settings of objects (signal sources) and a beamforming simulator. Following from the configuration of antenna array and object settings, different stimulus can be generated as the input signal for a beamformer. This stimulus generator is developed under a greater concept with two utterly independent paths where one is the stimulus generator and the other is the hardware beamformer. Both paths can be complemented in final and in intermediate steps as well to check and improve system performance. This way the technology development process is promoted by making each of the future hardware steps more substantive. Stimulus generator configuration capabilities and test results are presented proving the application of the stimulus generator for FPGA based beamforming unit development and tuning as an alternative to an actual antenna system.

  7. The design and implementation of postprocessing for depth map on real-time extraction system.

    PubMed

    Tang, Zhiwei; Li, Bin; Li, Huosheng; Xu, Zheng

    2014-01-01

    Depth estimation becomes the key technology to resolve the communications of the stereo vision. We can get the real-time depth map based on hardware, which cannot implement complicated algorithm as software, because there are some restrictions in the hardware structure. Eventually, some wrong stereo matching will inevitably exist in the process of depth estimation by hardware, such as FPGA. In order to solve the problem a postprocessing function is designed in this paper. After matching cost unique test, the both left-right and right-left consistency check solutions are implemented, respectively; then, the cavities in depth maps can be filled by right depth values on the basis of right-left consistency check solution. The results in the experiments have shown that the depth map extraction and postprocessing function can be implemented in real time in the same system; what is more, the quality of the depth maps is satisfactory.

  8. FPGA wavelet processor design using language for instruction-set architectures (LISA)

    NASA Astrophysics Data System (ADS)

    Meyer-Bäse, Uwe; Vera, Alonzo; Rao, Suhasini; Lenk, Karl; Pattichis, Marios

    2007-04-01

    The design of an microprocessor is a long, tedious, and error-prone task consisting of typically three design phases: architecture exploration, software design (assembler, linker, loader, profiler), architecture implementation (RTL generation for FPGA or cell-based ASIC) and verification. The Language for instruction-set architectures (LISA) allows to model a microprocessor not only from instruction-set but also from architecture description including pipelining behavior that allows a design and development tool consistency over all levels of the design. To explore the capability of the LISA processor design platform a.k.a. CoWare Processor Designer we present in this paper three microprocessor designs that implement a 8/8 wavelet transform processor that is typically used in today's FBI fingerprint compression scheme. We have designed a 3 stage pipelined 16 bit RISC processor (NanoBlaze). Although RISC μPs are usually considered "fast" processors due to design concept like constant instruction word size, deep pipelines and many general purpose registers, it turns out that DSP operations consume essential processing time in a RISC processor. In a second step we have used design principles from programmable digital signal processor (PDSP) to improve the throughput of the DWT processor. A multiply-accumulate operation along with indirect addressing operation were the key to achieve higher throughput. A further improvement is possible with today's FPGA technology. Today's FPGAs offer a large number of embedded array multipliers and it is now feasible to design a "true" vector processor (TVP). A multiplication of two vectors can be done in just one clock cycle with our TVP, a complete scalar product in two clock cycles. Code profiling and Xilinx FPGA ISE synthesis results are provided that demonstrate the essential improvement that a TVP has compared with traditional RISC or PDSP designs.

  9. A novel pipeline based FPGA implementation of a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Thirer, Nonel

    2014-05-01

    To solve problems when an analytical solution is not available, more and more bio-inspired computation techniques have been applied in the last years. Thus, an efficient algorithm is the Genetic Algorithm (GA), which imitates the biological evolution process, finding the solution by the mechanism of "natural selection", where the strong has higher chances to survive. A genetic algorithm is an iterative procedure which operates on a population of individuals called "chromosomes" or "possible solutions" (usually represented by a binary code). GA performs several processes with the population individuals to produce a new population, like in the biological evolution. To provide a high speed solution, pipelined based FPGA hardware implementations are used, with a nstages pipeline for a n-phases genetic algorithm. The FPGA pipeline implementations are constraints by the different execution time of each stage and by the FPGA chip resources. To minimize these difficulties, we propose a bio-inspired technique to modify the crossover step by using non identical twins. Thus two of the chosen chromosomes (parents) will build up two new chromosomes (children) not only one as in classical GA. We analyze the contribution of this method to reduce the execution time in the asynchronous and synchronous pipelines and also the possibility to a cheaper FPGA implementation, by using smaller populations. The full hardware architecture for a FPGA implementation to our target ALTERA development card is presented and analyzed.

  10. Simpler Adaptive Optics using a Single Device for Processing and Control

    NASA Astrophysics Data System (ADS)

    Zovaro, A.; Bennet, F.; Rye, D.; D'Orgeville, C.; Rigaut, F.; Price, I.; Ritchie, I.; Smith, C.

    The management of low Earth orbit is becoming more urgent as satellite and debris densities climb, in order to avoid a Kessler syndrome. A key part of this management is to precisely measure the orbit of both active satellites and debris. The Research School of Astronomy and Astrophysics at the Australian National University have been developing an adaptive optics (AO) system to image and range orbiting objects. The AO system provides atmospheric correction for imaging and laser ranging, allowing for the detection of smaller angular targets and drastically increasing the number of detectable objects. AO systems are by nature very complex and high cost systems, often costing millions of dollars and taking years to design. It is not unusual for AO systems to comprise multiple servers, digital signal processors (DSP) and field programmable gate arrays (FPGA), with dedicated tasks such as wavefront sensor data processing or wavefront reconstruction. While this multi-platform approach has been necessary in AO systems to date due to computation and latency requirements, this may no longer be the case for those with less demanding processing needs. In recent years, large strides have been made in FPGA and microcontroller technology, with todays devices having clock speeds in excess of 200 MHz whilst using a < 5 V power supply. AO systems using a single such device for all data processing and control may present a far simpler, cheaper, smaller and more efficient solution than existing systems. A novel AO system design based around a single, low-cost controller is presented. The objective is to determine the performance which can be achieved in terms of bandwidth and correction order, with a focus on optimisation and parallelisation of AO algorithms such as wavefront measurement and reconstruction. The AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror to correct light from a 1.8 m telescope for the purpose of imaging orbiting satellites. The microcontroller or FPGA interfaces directly with the wavefront sensor detector and deformable mirror. Wavefront slopes are calculated from each detector frame and converted into actuator commands to complete the closed loop AO control system. A particular challenge of this system is to optimise the AO algorithms to achieve a high rate (> 1kHz) with low latency (< 1ms) to achieve a good AO correction. As part of the Space Environment Cooperative Research Centre (SERC) this AO system design will be used as a demonstrator for what is possible with ground based AO corrected satellite imaging and ranging systems. The ability to directly and efficiently interface the wavefront sensor and deformable mirror is an important step in reducing the cost and complexity of an AO system. It is hoped that in the future this design can be modified for use in general AO applications, such as in 1-3 m telescopes for space surveillance, or even for amateur astronomy.

  11. 160-fold acceleration of the Smith-Waterman algorithm using a field programmable gate array (FPGA)

    PubMed Central

    Li, Isaac TS; Shum, Warren; Truong, Kevin

    2007-01-01

    Background To infer homology and subsequently gene function, the Smith-Waterman (SW) algorithm is used to find the optimal local alignment between two sequences. When searching sequence databases that may contain hundreds of millions of sequences, this algorithm becomes computationally expensive. Results In this paper, we focused on accelerating the Smith-Waterman algorithm by using FPGA-based hardware that implemented a module for computing the score of a single cell of the SW matrix. Then using a grid of this module, the entire SW matrix was computed at the speed of field propagation through the FPGA circuit. These modifications dramatically accelerated the algorithm's computation time by up to 160 folds compared to a pure software implementation running on the same FPGA with an Altera Nios II softprocessor. Conclusion This design of FPGA accelerated hardware offers a new promising direction to seeking computation improvement of genomic database searching. PMID:17555593

  12. 160-fold acceleration of the Smith-Waterman algorithm using a field programmable gate array (FPGA).

    PubMed

    Li, Isaac T S; Shum, Warren; Truong, Kevin

    2007-06-07

    To infer homology and subsequently gene function, the Smith-Waterman (SW) algorithm is used to find the optimal local alignment between two sequences. When searching sequence databases that may contain hundreds of millions of sequences, this algorithm becomes computationally expensive. In this paper, we focused on accelerating the Smith-Waterman algorithm by using FPGA-based hardware that implemented a module for computing the score of a single cell of the SW matrix. Then using a grid of this module, the entire SW matrix was computed at the speed of field propagation through the FPGA circuit. These modifications dramatically accelerated the algorithm's computation time by up to 160 folds compared to a pure software implementation running on the same FPGA with an Altera Nios II softprocessor. This design of FPGA accelerated hardware offers a new promising direction to seeking computation improvement of genomic database searching.

  13. TOT measurement implemented in FPGA TDC

    NASA Astrophysics Data System (ADS)

    Fan, Huan-Huan; Cao, Ping; Liu, Shu-Bin; An, Qi

    2015-11-01

    Time measurement plays a crucial role for the purpose of particle identification in high energy physics experiments. With increasingly demanding physics goals and the development of electronics, modern time measurement systems need to meet the requirement of excellent resolution specification as well as high integrity. Based on Field Programmable Gate Arrays (FPGAs), FPGA time-to-digital converters (TDCs) have become one of the most mature and prominent time measurement methods in recent years. For correcting the time-walk effect caused by leading timing, a time-over-threshold (TOT) measurement should be added to the FPGA TDC. TOT can be obtained by measuring the interval between the signal leading and trailing edges. Unfortunately, a traditional TDC can recognize only one kind of signal edge, the leading or the trailing. Generally, to measure the interval, two TDC channels need to be used at the same time, one for leading, the other for trailing. However, this method unavoidably increases the amount of FPGA resources used and reduces the TDC's integrity. This paper presents one method of TOT measurement implemented in a Xilinx Virtex-5 FPGA. In this method, TOT measurement can be achieved using only one TDC input channel. The consumed resources and time resolution can both be guaranteed. Testing shows that this TDC can achieve resolution better than 15ps for leading edge measurement and 37 ps for TOT measurement. Furthermore, the TDC measurement dead time is about two clock cycles, which makes it good for applications with higher physics event rates. Supported by National Natural Science Foundation of China (11079003, 10979003)

  14. A FPGA-based Cluster Finder for CMOS Monolithic Active Pixel Sensors of the MIMOSA-26 Family

    NASA Astrophysics Data System (ADS)

    Li, Qiyan; Amar-Youcef, S.; Doering, D.; Deveaux, M.; Fröhlich, I.; Koziel, M.; Krebs, E.; Linnik, B.; Michel, J.; Milanovic, B.; Müntz, C.; Stroth, J.; Tischler, T.

    2014-06-01

    CMOS Monolithic Active Pixel Sensors (MAPS) demonstrated excellent performances in the field of charged particle tracking. Among their strong points are an single point resolution few μm, a light material budget of 0.05% X0 in combination with a good radiation tolerance and high rate capability. Those features make the sensors a valuable technology for vertex detectors of various experiments in heavy ion and particle physics. To reduce the load on the event builders and future mass storage systems, we have developed algorithms suited for preprocessing and reducing the data streams generated by the MAPS. This real-time processing employs remaining free resources of the FPGAs of the readout controllers of the detector and complements the on-chip data reduction circuits of the MAPS.

  15. Remotely Powered Reconfigurable Receiver for Extreme Sensing Platforms

    NASA Technical Reports Server (NTRS)

    Sheldon, Douglas J. (Inventor)

    2017-01-01

    Unmanned space programs are currently used to enable scientists to explore and research the furthest reaches of outer space. Systems and methods for low power communication devices in accordance with embodiments of the invention are disclosed, describing a wide variety of low power communication devices capable of remotely collecting, processing, and transmitting data from outer space in order to further mankind's goal of exploring the cosmos. Many embodiments of the invention include a Flash-based FPGA, an energy-harvesting power supply module, a sensor module, and a radio module. By utilizing technologies that withstand the harsh environment of outer space, more reliable low power communication devices can be deployed, enhancing the quality and longevity of the low power communication devices, enabling more data to be gathered and aiding in the exploration of outer space.

  16. A Survey of Techniques for Approximate Computing

    DOE PAGES

    Mittal, Sparsh

    2016-03-18

    Approximate computing trades off computation quality with the effort expended and as rising performance demands confront with plateauing resource budgets, approximate computing has become, not merely attractive, but even imperative. Here, we present a survey of techniques for approximate computing (AC). We discuss strategies for finding approximable program portions and monitoring output quality, techniques for using AC in different processing units (e.g., CPU, GPU and FPGA), processor components, memory technologies etc., and programming frameworks for AC. Moreover, we classify these techniques based on several key characteristics to emphasize their similarities and differences. Finally, the aim of this paper is tomore » provide insights to researchers into working of AC techniques and inspire more efforts in this area to make AC the mainstream computing approach in future systems.« less

  17. FPGA implementation of high-performance QC-LDPC decoder for optical communications

    NASA Astrophysics Data System (ADS)

    Zou, Ding; Djordjevic, Ivan B.

    2015-01-01

    Forward error correction is as one of the key technologies enabling the next-generation high-speed fiber optical communications. Quasi-cyclic (QC) low-density parity-check (LDPC) codes have been considered as one of the promising candidates due to their large coding gain performance and low implementation complexity. In this paper, we present our designed QC-LDPC code with girth 10 and 25% overhead based on pairwise balanced design. By FPGAbased emulation, we demonstrate that the 5-bit soft-decision LDPC decoder can achieve 11.8dB net coding gain with no error floor at BER of 10-15 avoiding using any outer code or post-processing method. We believe that the proposed single QC-LDPC code is a promising solution for 400Gb/s optical communication systems and beyond.

  18. A new FPGA architecture suitable for DSP applications

    NASA Astrophysics Data System (ADS)

    Liyun, Wang; Jinmei, Lai; Jiarong, Tong; Pushan, Tang; Xing, Chen; Xueyan, Duan; Liguang, Chen; Jian, Wang; Yuan, Wang

    2011-05-01

    A new FPGA architecture suitable for digital signal processing applications is presented. DSP modules can be inserted into FPGA conveniently with the proposed architecture, which is much faster when used in the field of digital signal processing compared with traditional FPGAs. An advanced 2-level MUX (multiplexer) is also proposed. With the added SLEEP MODE PASS to traditional 2-level MUX, static leakage is reduced. Furthermore, buffers are inserted at early returns of long lines. With this kind of buffer, the delay of the long line is improved by 9.8% while the area increases by 4.37%. The layout of this architecture has been taped out in standard 0.13 μm CMOS technology successfully. The die size is 6.3 × 4.5 mm2 with the QFP208 package. Test results show that performances of presented classical DSP cases are improved by 28.6%-302% compared with traditional FPGAs.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, K.; Chen, H.; Wu, W.

    We present that in the upgrade of ATLAS experiment, the front-end electronics components are subjected to a large radiation background. Meanwhile high speed optical links are required for the data transmission between the on-detector and off-detector electronics. The GBT architecture and the Versatile Link (VL) project are designed by CERN to support the 4.8 Gbps line rate bidirectional high-speed data transmission which is called GBT link. In the ATLAS upgrade, besides the link with on-detector, the GBT link is also used between different off-detector systems. The GBTX ASIC is designed for the on-detector front-end, correspondingly for the off-detector electronics, themore » GBT architecture is implemented in Field Programmable Gate Arrays (FPGA). CERN launches the GBT-FPGA project to provide examples in different types of FPGA. In the ATLAS upgrade framework, the Front-End LInk eXchange (FELIX) system is used to interface the front end electronics of several ATLAS subsystems. The GBT link is used between them, to transfer the detector data and the timing, trigger, control and monitoring information. The trigger signal distributed in the down-link from FELIX to the front-end requires a fixed and low latency. In this paper, several optimizations on the GBT-FPGA IP core are introduced, to achieve a lower fixed latency. For FELIX, a common firmware will be used to interface different front-ends with support of both GBT modes: the forward error correction mode and the wide mode. The modified GBT-FPGA core has the ability to switch between the GBT modes without FPGA reprogramming. Finally, the system clock distribution of the multi-channel FELIX firmware is also discussed in this paper.« less

  20. An FPGA-Based WASN for Remote Real-Time Monitoring of Endangered Species: A Case Study on the Birdsong Recognition of Botaurus stellaris.

    PubMed

    Hervás, Marcos; Alsina-Pagès, Rosa Ma; Alías, Francesc; Salvador, Martí

    2017-06-08

    Fast environmental variations due to climate change can cause mass decline or even extinctions of species, having a dramatic impact on the future of biodiversity. During the last decade, different approaches have been proposed to track and monitor endangered species, generally based on costly semi-automatic systems that require human supervision adding limitations in coverage and time. However, the recent emergence of Wireless Acoustic Sensor Networks (WASN) has allowed non-intrusive remote monitoring of endangered species in real time through the automatic identification of the sound they emit. In this work, an FPGA-based WASN centralized architecture is proposed and validated on a simulated operation environment. The feasibility of the architecture is evaluated in a case study designed to detect the threatened Botaurus stellaris among other 19 cohabiting birds species in The Parc Natural dels Aiguamolls de l'Empord.

  1. Low-SWaP coincidence processing for Geiger-mode LIDAR video

    NASA Astrophysics Data System (ADS)

    Schultz, Steven E.; Cervino, Noel P.; Kurtz, Zachary D.; Brown, Myron Z.

    2015-05-01

    Photon-counting Geiger-mode lidar detector arrays provide a promising approach for producing three-dimensional (3D) video at full motion video (FMV) data rates, resolution, and image size from long ranges. However, coincidence processing required to filter raw photon counts is computationally expensive, generally requiring significant size, weight, and power (SWaP) and also time. In this paper, we describe a laboratory test-bed developed to assess the feasibility of low-SWaP, real-time processing for 3D FMV based on Geiger-mode lidar. First, we examine a design based on field programmable gate arrays (FPGA) and demonstrate proof-of-concept results. Then we examine a design based on a first-of-its-kind embedded graphical processing unit (GPU) and compare performance with the FPGA. Results indicate feasibility of real-time Geiger-mode lidar processing for 3D FMV and also suggest utility for real-time onboard processing for mapping lidar systems.

  2. FPGA Techniques Based New Hybrid Modulation Strategies for Voltage Source Inverters

    PubMed Central

    Sudha, L. U.; Baskaran, J.; Elankurisil, S. A.

    2015-01-01

    This paper corroborates three different hybrid modulation strategies suitable for single-phase voltage source inverter. The proposed method is formulated using fundamental switching and carrier based pulse width modulation methods. The main tale of this proposed method is to optimize a specific performance criterion, such as minimization of the total harmonic distortion (THD), lower order harmonics, switching losses, and heat losses. The proposed method is articulated using fundamental switching and carrier based pulse width modulation methods. Thus, the harmonic pollution in the power system will be reduced and the power quality will be augmented with better harmonic profile for a target fundamental output voltage. The proposed modulation strategies are simulated in MATLAB r2010a and implemented in a Xilinx spartan 3E-500 FG 320 FPGA processor. The feasibility of these modulation strategies is authenticated through simulation and experimental results. PMID:25821852

  3. Field-Programmable Gate Array-based fluxgate magnetometer with digital integration

    NASA Astrophysics Data System (ADS)

    Butta, Mattia; Janosek, Michal; Ripka, Pavel

    2010-05-01

    In this paper, a digital magnetometer based on printed circuit board fluxgate is presented. The fluxgate is pulse excited and the signal is extracted by gate integration. We investigate the possibility to perform integration on very narrow gates (typically 500 ns) by using digital techniques. The magnetometer is based on field-programmable gate array (FPGA) card: we will show all the advantages and disadvantages, given by digitalization of fluxgate output voltage by means of analog-to-digital converter on FPGA card, as well as digitalization performed by external digitizer. Due to very narrow gate, it is shown that a magnetometer entirely based on a FPGA card is preferable, because it avoids noise due to trigger instability. Both open loop and feedback operative mode are described and achieved results are presented.

  4. Temporal high-pass non-uniformity correction algorithm based on grayscale mapping and hardware implementation

    NASA Astrophysics Data System (ADS)

    Jin, Minglei; Jin, Weiqi; Li, Yiyang; Li, Shuo

    2015-08-01

    In this paper, we propose a novel scene-based non-uniformity correction algorithm for infrared image processing-temporal high-pass non-uniformity correction algorithm based on grayscale mapping (THP and GM). The main sources of non-uniformity are: (1) detector fabrication inaccuracies; (2) non-linearity and variations in the read-out electronics and (3) optical path effects. The non-uniformity will be reduced by non-uniformity correction (NUC) algorithms. The NUC algorithms are often divided into calibration-based non-uniformity correction (CBNUC) algorithms and scene-based non-uniformity correction (SBNUC) algorithms. As non-uniformity drifts temporally, CBNUC algorithms must be repeated by inserting a uniform radiation source which SBNUC algorithms do not need into the view, so the SBNUC algorithm becomes an essential part of infrared imaging system. The SBNUC algorithms' poor robustness often leads two defects: artifacts and over-correction, meanwhile due to complicated calculation process and large storage consumption, hardware implementation of the SBNUC algorithms is difficult, especially in Field Programmable Gate Array (FPGA) platform. The THP and GM algorithm proposed in this paper can eliminate the non-uniformity without causing defects. The hardware implementation of the algorithm only based on FPGA has two advantages: (1) low resources consumption, and (2) small hardware delay: less than 20 lines, it can be transplanted to a variety of infrared detectors equipped with FPGA image processing module, it can reduce the stripe non-uniformity and the ripple non-uniformity.

  5. Implementation of the 2-D Wavelet Transform into FPGA for Image

    NASA Astrophysics Data System (ADS)

    León, M.; Barba, L.; Vargas, L.; Torres, C. O.

    2011-01-01

    This paper presents a hardware system implementation of the of discrete wavelet transform algoritm in two dimensions for FPGA, using the Daubechies filter family of order 2 (db2). The decomposition algorithm of this transform is designed and simulated with the Hardware Description Language VHDL and is implemented in a programmable logic device (FPGA) XC3S1200E reference, Spartan IIIE family, by Xilinx, take advantage the parallels properties of these gives us and speeds processing that can reach them. The architecture is evaluated using images input of different sizes. This implementation is done with the aim of developing a future images encryption hardware system using wavelet transform for security information.

  6. Field-programmable gate array-controlled sweep velocity-locked laser pulse generator

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2017-05-01

    A field-programmable gate array (FPGA)-controlled sweep velocity-locked laser pulse generator (SV-LLPG) design based on an all-digital phase-locked loop (ADPLL) is proposed. A distributed feedback laser with modulated injection current was used as a swept-frequency laser source. An open-loop predistortion modulation waveform was calibrated using a feedback iteration method to initially improve frequency sweep linearity. An ADPLL control system was then implemented using an FPGA to lock the output of a Mach-Zehnder interferometer that was directly proportional to laser sweep velocity to an on-board system clock. Using this system, linearly chirped laser pulses with a sweep bandwidth of 111.16 GHz were demonstrated. Further testing evaluating the sensing utility of the system was conducted. In this test, the SV-LLPG served as the swept laser source of an optical frequency-domain reflectometry system used to interrogate a subterahertz range fiber structure (sub-THz-FS) array. A static strain test was then conducted and linear sensor results were observed.

  7. MO-F-CAMPUS-J-03: Development of a Human Brain PET for On-Line Proton Beam-Range Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Yiping

    Purpose: To develop a prototype PET for verifying proton beam-range before each fractionated therapy that will enable on-line re-planning proton therapy. Methods: Latest “edge-less” silicon photomultiplier arrays and customized ASIC readout electronics were used to develop PET detectors with depth-of-interaction (DOI) measurement capability. Each detector consists of one LYSO array with each end coupled to a SiPM array. Multiple detectors can be seamlessly tiled together to form a large detector panel. Detectors with 1.5×1.5 and 2.0×2.0 mm crystals at 20 or 30 mm lengths were studied. Readout of individual SiPM or signal multiplexing was used to transfer 3D interaction position-codedmore » analog signals through flexible-print-circuit cables or PCB board to dedicated ASIC front-end electronics to output digital timing pulses that encode interaction information. These digital pulses can be transferred to, through standard LVDS cables, and decoded by a FPGA-based data acquisition of coincidence events and data transfer. The modular detector and scalable electronics/data acquisition will enable flexible PET system configuration for different imaging geometry. Results: Initial detector performance measurement shows excellent crystal identification even with 30 mm long crystals, ∼18% and 2.8 ns energy and timing resolutions, and around 2–3 mm DOI resolution. A small prototype PET scanner with one detector ring has been built and evaluated, validating the technology and design. A large size detector panel has been fabricated by scaling up from modular detectors. Different designs of resistor and capacitor based signal multiplexing boards were tested and selected based on optimal crystal identification and timing performance. Stackable readout electronics boards and FPGA-based data acquisition boards were developed and tested. A brain PET is under construction. Conclusion: Technology of large-size DOI detector based on SiPM array and advanced readout has been developed. PET imaging performance and initial phantom studies of on-line proton beam-range measurement will be conducted and reported. NIH grant R21CA187717; Cancer Prevention and Research Institute of Texas grant RP120326.« less

  8. Step-by-Step Design of an FPGA-Based Digital Compensator for DC/DC Converters Oriented to an Introductory Course

    ERIC Educational Resources Information Center

    Zumel, P.; Fernandez, C.; Sanz, M.; Lazaro, A.; Barrado, A.

    2011-01-01

    In this paper, a short introductory course to introduce field-programmable gate array (FPGA)-based digital control of dc/dc switching power converters is presented. Digital control based on specific hardware has been at the leading edge of low-medium power dc/dc switching converters in recent years. Besides industry's interest in this topic, from…

  9. Experimental validation of improved 3D SBP positioning algorithm in PET applications using UW Phase II Board

    NASA Astrophysics Data System (ADS)

    Jorge, L. S.; Bonifacio, D. A. B.; DeWitt, Don; Miyaoka, R. S.

    2016-12-01

    Continuous scintillator-based detectors have been considered as a competitive and cheaper approach than highly pixelated discrete crystal positron emission tomography (PET) detectors, despite the need for algorithms to estimate 3D gamma interaction position. In this work, we report on the implementation of a positioning algorithm to estimate the 3D interaction position in a continuous crystal PET detector using a Field Programmable Gate Array (FPGA). The evaluated method is the Statistics-Based Processing (SBP) technique that requires light response function and event position characterization. An algorithm has been implemented using the Verilog language and evaluated using a data acquisition board that contains an Altera Stratix III FPGA. The 3D SBP algorithm was previously successfully implemented on a Stratix II FPGA using simulated data and a different module design. In this work, improvements were made to the FPGA coding of the 3D positioning algorithm, reducing the total memory usage to around 34%. Further the algorithm was evaluated using experimental data from a continuous miniature crystal element (cMiCE) detector module. Using our new implementation, average FWHM (Full Width at Half Maximum) for the whole block is 1.71±0.01 mm, 1.70±0.01 mm and 1.632±0.005 mm for x, y and z directions, respectively. Using a pipelined architecture, the FPGA is able to process 245,000 events per second for interactions inside of the central area of the detector that represents 64% of the total block area. The weighted average of the event rate by regional area (corner, border and central regions) is about 198,000 events per second. This event rate is greater than the maximum expected coincidence rate for any given detector module in future PET systems using the cMiCE detector design.

  10. NaNet: a configurable NIC bridging the gap between HPC and real-time HEP GPU computing

    NASA Astrophysics Data System (ADS)

    Lonardo, A.; Ameli, F.; Ammendola, R.; Biagioni, A.; Cotta Ramusino, A.; Fiorini, M.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Pontisso, L.; Rossetti, D.; Simeone, F.; Simula, F.; Sozzi, M.; Tosoratto, L.; Vicini, P.

    2015-04-01

    NaNet is a FPGA-based PCIe Network Interface Card (NIC) design with GPUDirect and Remote Direct Memory Access (RDMA) capabilities featuring a configurable and extensible set of network channels. The design currently supports both standard—Gbe (1000BASE-T) and 10GbE (10Base-R)—and custom—34 Gbps APElink and 2.5 Gbps deterministic latency KM3link—channels, but its modularity allows for straightforward inclusion of other link technologies. The GPUDirect feature combined with a transport layer offload module and a data stream processing stage makes NaNet a low-latency NIC suitable for real-time GPU processing. In this paper we describe the NaNet architecture and its performances, exhibiting two of its use cases: the GPU-based low-level trigger for the RICH detector in the NA62 experiment at CERN and the on-/off-shore data transport system for the KM3NeT-IT underwater neutrino telescope.

  11. JTRS/SCA and Custom/SDR Waveform Comparison

    NASA Technical Reports Server (NTRS)

    Oldham, Daniel R.; Scardelletti, Maximilian C.

    2007-01-01

    This paper compares two waveform implementations generating the same RF signal using the same SDR development system. Both waveforms implement a satellite modem using QPSK modulation at 1M BPS data rates with one half rate convolutional encoding. Both waveforms are partitioned the same across the general purpose processor (GPP) and the field programmable gate array (FPGA). Both waveforms implement the same equivalent set of radio functions on the GPP and FPGA. The GPP implements the majority of the radio functions and the FPGA implements the final digital RF modulator stage. One waveform is implemented directly on the SDR development system and the second waveform is implemented using the JTRS/SCA model. This paper contrasts the amount of resources to implement both waveforms and demonstrates the importance of waveform partitioning across the SDR development system.

  12. An Undergraduate Course and Laboratory in Digital Signal Processing with Field Programmable Gate Arrays

    ERIC Educational Resources Information Center

    Meyer-Base, U.; Vera, A.; Meyer-Base, A.; Pattichis, M. S.; Perry, R. J.

    2010-01-01

    In this paper, an innovative educational approach to introducing undergraduates to both digital signal processing (DSP) and field programmable gate array (FPGA)-based design in a one-semester course and laboratory is described. While both DSP and FPGA-based courses are currently present in different curricula, this integrated approach reduces the…

  13. An FPGA-based data acquisition system for directional dark matter detection

    NASA Astrophysics Data System (ADS)

    Yang, Chen; Nicoloff, Catherine; Sanaullah, Ahmed; Sridhar, Arvind; Herbordt, Martin; Battat, James; Battat Lab at Wellesley College Team; CAAD Lab at Boston University Team

    2017-01-01

    Directional dark matter detection is a powerful tool in the search for dark matter. Low-pressure gas TPCs are commonly used for directional detection, and dark-matter-induced recoils are mm long. These tracks can be reconstructed by micropatterned readouts. Because large detector volumes are needed, a cost-effective data acquisition system capable of scaling to large channel counts (105 or 106) is required. The Directional Recoil Identification From Tracks (DRIFT) collaboration has pioneered the use of TPCs for directional detection. We employ a negative ion gas with drift speed comparable to the electron drift speed in liquid argon (LAr). We aim to use electronics developed for million-channel readouts in large LAr neutrino detectors. We have built a prototype Micromegas-based directional detector with 103 channels. A FPGA-based back-end system (BE) receives a 12 Gbps data stream from eight ASIC-based front-end boards (FE), each with 128 detector channels. The BE buffers 3 μs of pretrigger data for all channels in DRAM, and streams triggered data to a host PC. We will describe the system architecture and present preliminary measurements from the DAQ. We acknowledge the support of the Research Corporation for Science Advancement, the NSF and the Massachusetts Space Grant Consortium.

  14. Controller and data acquisition system for SIDECAR ASIC driven HAWAII detectors

    NASA Astrophysics Data System (ADS)

    Ramaprakash, Anamparambu; Burse, Mahesh; Chordia, Pravin; Chillal, Kalpesh; Kohok, Abhay; Mestry, Vilas; Punnadi, Sujit; Sinha, Sakya

    2010-07-01

    SIDECAR is an Application Specific Integrated Circuit (ASIC), which can be used for control and data acquisition from near-IR HAWAII detectors offered by Teledyne Imaging Sensors (TIS), USA. The standard interfaces provided by Teledyne are COM API and socket servers running under MS Windows platform. These interfaces communicate to the ASIC (and the detector) through an intermediate card called JWST ASIC Drive Electronics (JADE2). As part of an ongoing programme of several years, for developing astronomical focal plane array (CCDs, CMOS and Hybrid) controllers and data acquisition systems (CDAQs), IUCAA is currently developing the next generation controllers employing Virtex-5 family FPGA devices. We present here the capabilities which are built into these new CDAQs for handling HAWAII detectors. In our system, the computer which hosts the application programme, user interface and device drivers runs on a Linux platform. It communicates through a hot-pluggable USB interface (with an optional optical fibre extender) to the FPGA-based card which replaces the JADE2. The FPGA board in turn, controls the SIDECAR ASIC and through it a HAWAII-2RG detector, both of which are located in a cryogenic test Dewar set up which is liquid nitrogen cooled. The system can acquire data over 1, 4, or 32 readout channels, with or without binning, at different speeds, can define sub-regions for readout, offers various readout schemes like Fowler sampling, up-theramp etc. In this paper, we present the performance results obtained from a prototype system.

  15. Cortical control of intraspinal microstimulation: Toward a new approach for restoration of function after spinal cord injury.

    PubMed

    Shahdoost, Shahab; Frost, Shawn; Dunham, Caleb; DeJong, Stacey; Barbay, Scott; Nudo, Randolph; Mohseni, Pedram

    2015-08-01

    Approximately 6 million people in the United States are currently living with paralysis in which 23% of the cases are related to spinal cord injury (SCI). Miniaturized closed-loop neural interfaces have the potential for restoring function and mobility lost to debilitating neural injuries such as SCI by leveraging recent advancements in bioelectronics and a better understanding of the processes that underlie functional and anatomical reorganization in an injured nervous system. This paper describes our current progress toward developing a miniaturized brain-machine-spinal cord interface (BMSI) that converts in real time the neural command signals recorded from the cortical motor regions to electrical stimuli delivered to the spinal cord below the injury level. Using a combination of custom integrated circuit (IC) technology for corticospinal interfacing and field-programmable gate array (FPGA)-based technology for embedded signal processing, we demonstrate proof-of-concept of distinct muscle pattern activation via intraspinal microstimulation (ISMS) controlled in real time by intracortical neural spikes in an anesthetized laboratory rat.

  16. Configurable Multi-Purpose Processor

    NASA Technical Reports Server (NTRS)

    Valencia, J. Emilio; Forney, Chirstopher; Morrison, Robert; Birr, Richard

    2010-01-01

    Advancements in technology have allowed the miniaturization of systems used in aerospace vehicles. This technology is driven by the need for next-generation systems that provide reliable, responsive, and cost-effective range operations while providing increased capabilities such as simultaneous mission support, increased launch trajectories, improved launch, and landing opportunities, etc. Leveraging the newest technologies, the command and telemetry processor (CTP) concept provides for a compact, flexible, and integrated solution for flight command and telemetry systems and range systems. The CTP is a relatively small circuit board that serves as a processing platform for high dynamic, high vibration environments. The CTP can be reconfigured and reprogrammed, allowing it to be adapted for many different applications. The design is centered around a configurable field-programmable gate array (FPGA) device that contains numerous logic cells that can be used to implement traditional integrated circuits. The FPGA contains two PowerPC processors running the Vx-Works real-time operating system and are used to execute software programs specific to each application. The CTP was designed and developed specifically to provide telemetry functions; namely, the command processing, telemetry processing, and GPS metric tracking of a flight vehicle. However, it can be used as a general-purpose processor board to perform numerous functions implemented in either hardware or software using the FPGA s processors and/or logic cells. Functionally, the CTP was designed for range safety applications where it would ultimately become part of a vehicle s flight termination system. Consequently, the major functions of the CTP are to perform the forward link command processing, GPS metric tracking, return link telemetry data processing, error detection and correction, data encryption/ decryption, and initiate flight termination action commands. Also, the CTP had to be designed to survive and operate in a launch environment. Additionally, the CTP was designed to interface with the WFF (Wallops Flight Facility) custom-designed transceiver board which is used in the Low Cost TDRSS Transceiver (LCT2) also developed by WFF. The LCT2 s transceiver board demodulates commands received from the ground via the forward link and sends them to the CTP, where they are processed. The CTP inputs and processes data from the inertial measurement unit (IMU) and the GPS receiver board, generates status data, and then sends the data to the transceiver board where it is modulated and sent to the ground via the return link. Overall, the CTP has combined processing with the ability to interface to a GPS receiver, an IMU, and a pulse code modulation (PCM) communication link, while providing the capability to support common interfaces including Ethernet and serial interfaces boarding a relatively small-sized, lightweight package.

  17. A COMPACTRIO-BASED BEAM LOSS MONITOR FOR THE SNS RF TEST CAVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blokland, Willem; Armstrong, Gary A

    2009-01-01

    An RF Test Cave has been built at the Spallation Neutron Source (SNS) to be able to test RF cavities without interfering the SNS accelerator operations. In addition to using thick concrete wall to minimize radiation exposure, a Beam Loss Monitor (BLM) must abort the operation within 100 usec when the integrated radiation within the cave exceeds a threshold. We choose the CompactRIO platform to implement the BLM based on its performance, cost-effectiveness, and rapid development. Each in/output module is connected through an FPGA to provide point-by-point processing. Every 10 usec the data is acquired analyzed and compared to themore » threshold. Data from the FPGA is transferred using DMA to the real-time controller, which communicates to a gateway PC to talk to the SNS control system. The system includes diagnostics to test the hardware and integrates the losses in real-time. In this paper we describe our design, implementation, and results« less

  18. Encrypted IP video communication system

    NASA Astrophysics Data System (ADS)

    Bogdan, Apetrechioaie; Luminiţa, Mateescu

    2010-11-01

    Digital video transmission is a permanent subject of development, research and improvement. This field of research has an exponentially growing market in civil, surveillance, security and military aplications. A lot of solutions: FPGA, ASIC, DSP have been used for this purpose. The paper presents the implementation of an encrypted, IP based, video communication system having a competitive performance/cost ratio .

  19. Implementation of real-time nonuniformity correction with multiple NUC tables using FPGA in an uncooled imaging system

    NASA Astrophysics Data System (ADS)

    Oh, Gyong Jin; Kim, Lyang-June; Sheen, Sue-Ho; Koo, Gyou-Phyo; Jin, Sang-Hun; Yeo, Bo-Yeon; Lee, Jong-Ho

    2009-05-01

    This paper presents a real time implementation of Non Uniformity Correction (NUC). Two point correction and one point correction with shutter were carried out in an uncooled imaging system which will be applied to a missile application. To design a small, light weight and high speed imaging system for a missile system, SoPC (System On a Programmable Chip) which comprises of FPGA and soft core (Micro-blaze) was used. Real time NUC and generation of control signals are implemented using FPGA. Also, three different NUC tables were made to make the operating time shorter and to reduce the power consumption in a large range of environment temperature. The imaging system consists of optics and four electronics boards which are detector interface board, Analog to Digital converter board, Detector signal generation board and Power supply board. To evaluate the imaging system, NETD was measured. The NETD was less than 160mK in three different environment temperatures.

  20. Field programmable gate array-assigned complex-valued computation and its limits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard-Schwarz, Maria, E-mail: maria.bernardschwarz@ni.com; Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8, 1040 Wien; Zwick, Wolfgang

    We discuss how leveraging Field Programmable Gate Array (FPGA) technology as part of a high performance computing platform reduces latency to meet the demanding real time constraints of a quantum optics simulation. Implementations of complex-valued operations using fixed point numeric on a Virtex-5 FPGA compare favorably to more conventional solutions on a central processing unit. Our investigation explores the performance of multiple fixed point options along with a traditional 64 bits floating point version. With this information, the lowest execution times can be estimated. Relative error is examined to ensure simulation accuracy is maintained.

Top