Science.gov

Sample records for fq receptor agonism

  1. G Protein-Coupled Receptor Biased Agonism

    PubMed Central

    Hodavance, Sima Y.; Gareri, Clarice; Torok, Rachel D.; Rockman, Howard A.

    2016-01-01

    G protein-coupled receptors (GPCR) are the largest family of targets for current therapeutics. The classic model of their activation was binary, where agonist binding induced an active conformation and subsequent downstream signaling. Subsequently, the revised concept of biased agonism emerged, where different ligands at the same GPCR selectively activate one downstream pathway versus another. Advances in understanding the mechanism of biased agonism has led to the development of novel ligands, which have the potential for improved therapeutic and safety profiles. In this review, we summarize the theory and most recent breakthroughs in understanding biased signaling, examine recent laboratory investigations concerning biased ligands across different organ systems, and discuss the promising clinical applications of biased agonism. PMID:26751266

  2. Agonism and Antagonism at the Insulin Receptor

    PubMed Central

    Knudsen, Louise; Hansen, Bo Falck; Jensen, Pia; Pedersen, Thomas Åskov; Vestergaard, Kirsten; Schäffer, Lauge; Blagoev, Blagoy; Oleksiewicz, Martin B.; Kiselyov, Vladislav V.; De Meyts, Pierre

    2012-01-01

    Insulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR) binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs). In the case of the IR, no natural ligand or insulin analogue has been shown to exhibit antagonistic properties, with the exception of a crosslinked insulin dimer (B29-B’29). However, synthetic monomeric or dimeric peptides targeting sites 1 or 2 of the IR were shown to be either agonists or antagonists. We found here that the S961 peptide, previously described to be an IR antagonist, exhibited partial agonistic effects in the 1–10 nM range, showing altogether a bell-shaped dose-response curve. Intriguingly, the agonistic effects of S961 were seen only on mitogenic endpoints (3H-thymidine incorporation), and not on metabolic endpoints (14C-glucose incorporation in adipocytes and muscle cells). The agonistic effects of S961 were observed in 3 independent cell lines, with complete concordance between mitogenicity (3H-thymidine incorporation) and phosphorylation of the IR and Akt. Together with the B29-B’29 crosslinked dimer, S961 is a rare example of a mixed agonist/antagonist for the human IR. A plausible mechanistic explanation based on the bivalent crosslinking model of IR activation is proposed. PMID:23300584

  3. Ecdysone receptor agonism leading to lethal molting ...

    EPA Pesticide Factsheets

    Molting is a key biological process in growth, development, reproduction and survival in arthropods. Complex neuroendocrine pathways are involved in the regulation of molting and may potentially become targets of environmental endocrine disrupting compounds (EDCs). For example, several classes of pesticides used in agriculture and aquaculture specifically target key endocrine regulators of the molting process. These chemicals may also pose hazards to non-target species by causing molting defects, thus affecting the health of the ecosystems. The present review summarized the available knowledge on molting-related endocrine regulation and disruption in arthropods (with special focus on insects and crustaceans), in order to identify research gaps and develop a toxicity mechanism-based model for environmental hazard and risk assessment. Based on the review, multiple targets in the molting processes that EDCs can interact with were characterized to inform future studies. An adverse outcome pathway (AOP) describing ecdysone receptor agonism leading to incomplete ecdysis associated mortality was developed according to the OECD guideline and evaluated for weight of evidence using the Evolved Bradford Hill Criteria. This review proposed the first invertebrate endocrine disruption AOP and may serve as a knowledge foundation for future environmental studies and AOP development. Development of high throughput toxicology (HTT) programs (e.g., ToxCast, Tox21) and potential a

  4. Agonism, Antagonism, and Inverse Agonism Bias at the Ghrelin Receptor Signaling*

    PubMed Central

    M'Kadmi, Céline; Leyris, Jean-Philippe; Onfroy, Lauriane; Galés, Céline; Saulière, Aude; Gagne, Didier; Damian, Marjorie; Mary, Sophie; Maingot, Mathieu; Denoyelle, Séverine; Verdié, Pascal; Fehrentz, Jean-Alain; Martinez, Jean; Banères, Jean-Louis; Marie, Jacky

    2015-01-01

    The G protein-coupled receptor GHS-R1a mediates ghrelin-induced growth hormone secretion, food intake, and reward-seeking behaviors. GHS-R1a signals through Gq, Gi/o, G13, and arrestin. Biasing GHS-R1a signaling with specific ligands may lead to the development of more selective drugs to treat obesity or addiction with minimal side effects. To delineate ligand selectivity at GHS-R1a signaling, we analyzed in detail the efficacy of a panel of synthetic ligands activating the different pathways associated with GHS-R1a in HEK293T cells. Besides β-arrestin2 recruitment and ERK1/2 phosphorylation, we monitored activation of a large panel of G protein subtypes using a bioluminescence resonance energy transfer-based assay with G protein-activation biosensors. We first found that unlike full agonists, Gq partial agonists were unable to trigger β-arrestin2 recruitment and ERK1/2 phosphorylation. Using G protein-activation biosensors, we then demonstrated that ghrelin promoted activation of Gq, Gi1, Gi2, Gi3, Goa, Gob, and G13 but not Gs and G12. Besides, we identified some GHS-R1a ligands that preferentially activated Gq and antagonized ghrelin-mediated Gi/Go activation. Finally, we unambiguously demonstrated that in addition to Gq, GHS-R1a also promoted constitutive activation of G13. Importantly, we identified some ligands that were selective inverse agonists toward Gq but not of G13. This demonstrates that bias at GHS-R1a signaling can occur not only with regard to agonism but also to inverse agonism. Our data, combined with other in vivo studies, may facilitate the design of drugs selectively targeting individual signaling pathways to treat only the therapeutically relevant function. PMID:26363071

  5. Pharmacological Profile of Nociceptin/Orphanin FQ Receptors Interacting with G-Proteins and β-Arrestins 2

    PubMed Central

    Malfacini, D.; Ambrosio, C.; Gro’, M. C.; Sbraccia, M.; Trapella, C.; Guerrini, R.; Bonora, M.; Pinton, P.; Costa, T.; Calo’, G.

    2015-01-01

    Nociceptin/orphanin FQ (N/OFQ) controls several biological functions by selectively activating an opioid like receptor named N/OFQ peptide receptor (NOP). Biased agonism is emerging as an important and therapeutically relevant pharmacological concept in the field of G protein coupled receptors including opioids. To evaluate the relevance of this phenomenon in the NOP receptor, we used a bioluminescence resonance energy transfer technology to measure the interactions of the NOP receptor with either G proteins or β-arrestin 2 in the absence and in presence of increasing concentration of ligands. A large panel of receptor ligands was investigated by comparing their ability to promote or block NOP/G protein and NOP/arrestin interactions. In this study we report a systematic analysis of the functional selectivity of NOP receptor ligands. NOP/G protein interactions (investigated in cell membranes) allowed a precise estimation of both ligand potency and efficacy yielding data highly consistent with the known pharmacological profile of this receptor. The same panel of ligands displayed marked differences in the ability to promote NOP/β-arrestin 2 interactions (evaluated in whole cells). In particular, full agonists displayed a general lower potency and for some ligands an inverted rank order of potency was noted. Most partial agonists behaved as pure competitive antagonists of receptor/arrestin interaction. Antagonists displayed similar values of potency for NOP/Gβ1 or NOP/β-arrestin 2 interaction. Using N/OFQ as reference ligand we computed the bias factors of NOP ligands and a number of agonists with greater efficacy at G protein coupling were identified. PMID:26248189

  6. Third generation antipsychotic drugs: partial agonism or receptor functional selectivity?

    PubMed Central

    Mailman, Richard B.; Murthy, Vishakantha

    2010-01-01

    Functional selectivity is the term that describes drugs that cause markedly different signaling through a single receptor (e.g., full agonist at one pathway and antagonist at a second). It has been widely recognized recently that this phenomenon impacts the understanding of mechanism of action of some drugs, and has relevance to drug discovery. One of the clinical areas where this mechanism has particular importance is in the treatment of schizophrenia. Antipsychotic drugs have been grouped according to both pattern of clinical action and mechanism of action. The original antipsychotic drugs such as chlorpromazine and haloperidol have been called typical or first generation. They cause both antipsychotic actions and many side effects (extrapyramidal and endocrine) that are ascribed to their high affinity dopamine D2 receptor antagonism. Drugs such as clozapine, olanzapine, risperidone and others were then developed that avoided the neurological side effects (atypical or second generation antipsychotics). These compounds are divided mechanistically into those that are high affinity D2 and 5-HT2A antagonists, and those that also bind with modest affinity to D2, 5-HT2A, and many other neuroreceptors. There is one approved third generation drug, aripiprazole, whose actions have been ascribed alternately to either D2 partial agonism or D2 functional selectivity. Although partial agonism has been the more widely accepted mechanism, the available data are inconsistent with this mechanism. Conversely, the D2 functional selectivity hypothesis can accommodate all current data for aripiprazole, and also impacts on discovery compounds that are not pure D2 antagonists. PMID:19909227

  7. Effects of betahistine at histamine H3 receptors: mixed inverse agonism/agonism in vitro and partial inverse agonism in vivo.

    PubMed

    Gbahou, F; Davenas, E; Morisset, S; Arrang, J-M

    2010-09-01

    We previously suggested that therapeutic effects of betahistine in vestibular disorders result from its antagonist properties at histamine H(3) receptors (H(3)Rs). However, H(3)Rs exhibit constitutive activity, and most H(3)R antagonists act as inverse agonists. Here, we have investigated the effects of betahistine at recombinant H(3)R isoforms. On inhibition of cAMP formation and [(3)H]arachidonic acid release, betahistine behaved as a nanomolar inverse agonist and a micromolar agonist. Both effects were suppressed by pertussis toxin, were found at all isoforms tested, and were not detected in mock cells, confirming interactions at H(3)Rs. The inverse agonist potency of betahistine and its affinity on [(125)I]iodoproxyfan binding were similar in rat and human. We then investigated the effects of betahistine on histamine neuron activity by measuring tele-methylhistamine (t-MeHA) levels in the brains of mice. Its acute intraperitoneal administration increased t-MeHA levels with an ED(50) of 0.4 mg/kg, indicating inverse agonism. At higher doses, t-MeHA levels gradually returned to basal levels, a profile probably resulting from agonism. After acute oral administration, betahistine increased t-MeHA levels with an ED(50) of 2 mg/kg, a rightward shift probably caused by almost complete first-pass metabolism. In each case, the maximal effect of betahistine was lower than that of ciproxifan, indicating partial inverse agonism. After an oral 8-day treatment, the only effective dose of betahistine was 30 mg/kg, indicating that a tolerance had developed. These data strongly suggest that therapeutic effects of betahistine result from an enhancement of histamine neuron activity induced by inverse agonism at H(3) autoreceptors.

  8. Mechanism of partial agonism in AMPA-type glutamate receptors

    PubMed Central

    Salazar, Hector; Eibl, Clarissa; Chebli, Miriam; Plested, Andrew

    2017-01-01

    Neurotransmitters trigger synaptic currents by activating ligand-gated ion channel receptors. Whereas most neurotransmitters are efficacious agonists, molecules that activate receptors more weakly—partial agonists—also exist. Whether these partial agonists have weak activity because they stabilize less active forms, sustain active states for a lesser fraction of the time or both, remains an open question. Here we describe the crystal structure of an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) ligand binding domain (LBD) tetramer in complex with the partial agonist 5-fluorowillardiine (FW). We validate this structure, and others of different geometry, using engineered intersubunit bridges. We establish an inverse relation between the efficacy of an agonist and its promiscuity to drive the LBD layer into different conformations. These results suggest that partial agonists of the AMPAR are weak activators of the receptor because they stabilize multiple non-conducting conformations, indicating that agonism is a function of both the space and time domains. PMID:28211453

  9. In vitro functional characterization of novel nociceptin/orphanin FQ receptor agonists in recombinant and native preparations.

    PubMed

    Ferrari, Federica; Cerlesi, Maria Camilla; Malfacini, Davide; Asth, Laila; Gavioli, Elaine C; Journigan, Blair V; Kamakolanu, Uma Gayathri; Meyer, Michael E; Yasuda, Dennis; Polgar, Willma E; Rizzi, Anna; Guerrini, Remo; Ruzza, Chiara; Zaveri, Nurulain T; Calo, Girolamo

    2016-12-15

    Nociceptin/Orphanin FQ (N/OFQ) regulates several biological functions via selective activation of the N/OFQ receptor (NOP). In this study novel nonpeptide NOP ligands were characterized in vitro in receptor binding and [(35)S]GTPγS stimulated binding in membranes of cells expressing human NOP and classical opioid receptors, calcium mobilization assay in cells coexpressing the receptors and chimeric G proteins, bioluminescence resonance energy transfer (BRET) based assay for studying NOP receptor interaction with G protein and arrestin, the electrically stimulated mouse vas deferens and the mouse colon bioassays. The action of the AT compounds were compared with standard NOP agonists (N/OFQ and Ro 65-6570) and the NOP selective antagonist SB-612111. AT compounds displayed high NOP affinity and behaved as NOP agonists in all the functional assays consistently showing the following rank order of potency AT-127≥AT-090≥AT-035>AT-004= AT-001. AT compounds behaved as NOP full agonists in the calcium mobilization and mouse colon assays and as partial agonists in the [(35)S]GTPγS and BRET assays. Interestingly AT-090 and AT-127, contrary to standard nonpeptide agonists that display G protein biased agonism, behaved as an unbiased agonists. AT-090 and AT-127 displayed higher NOP selectivity than Ro 65-6570 at native mouse receptors. AT-090 and AT-127 might be useful pharmacological tools for investigating the therapeutic potential of NOP partial agonists. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Detecting constitutive activity and protean agonism at cannabinoid-2 receptor.

    PubMed

    Beltramo, Massimiliano; Brusa, Rossella; Mancini, Isabella; Scandroglio, Paola

    2010-01-01

    Since the cannabinoid system is involved in regulating several physiological functions such as locomotor activity, cognition, nociception, food intake, and inflammatory reaction, it has been the subject of intense study. Research on the pharmacology of this system has enormously progressed in the last 20years. One intriguing aspect that emerged from this research is that cannabinoid receptors (CBs) express a high level of constitutive activity. Investigation on this particular aspect of receptor pharmacology has largely focused on CB1, the CB subtype highly expressed in several brain regions. More recently, research on constitutive activity on the other CB subtype, CB2, was stimulated by the increasing interest on its potential as target for the treatment of various pathologies (e.g., pain and inflammation). There are several possible implications of constitutive activity on the therapeutic action of both agonists and antagonists, and consequently, it is important to have valuable methods to study this aspect of CB2 pharmacology. In the present chapter, we describe three methods to study constitutive activity at CB2: two classical methods relying on the detection of changes in cAMP level and GTPγS binding and a new one based on cell impedance measurement. In addition, we also included a section on detection of protean agonism, which is an interesting pharmacological phenomenon strictly linked to constitutive activity. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Involvement of 5-HT(2A/2B/2C) receptors on memory formation: simple agonism, antagonism, or inverse agonism?

    PubMed

    Meneses, Alfredo

    2002-12-01

    1. The 5-HT2 receptors subdivision into the 5-HT(2A/2B/2C) subtypes along with the advent of the selective antagonists has allowed a more detailed investigation on the role and therapeutic significance of these subtypes in cognitive functions. The present study further analyzed the 5-HT2 receptors role on memory consolidation. 2. The SB-200646 (a selective 5-HT(2B/2C) receptor antagonist) and LY215840 (a nonselective 5-HT(2/7) receptor antagonist) posttraining administration had no effect on an autoshaped memory consolidation. However, both drugs significantly and differentially antagonized the memory impairments induced by 1-(3-chlorophenyl)piperazine (mCPP), 1-naphtyl-piperazine (1-NP), mesulergine, or N-(3-trifluoromethylphenyl) piperazine (TFMPP). 3. In contrast, SB-200646 failed to modify the facilitatory procognitive effect produced by (+/-)-2.5-dimethoxy-4-iodoamphetamine (DOI) or ketanserin, which were sensitive to MDL100907 (a selective 5-HT2A receptor antagonist) and to a LY215840 high dose. 4. Finally, SB-200646 reversed the learning deficit induced by dizocilpine, but not that by scopolamine: while SB-200646 and MDL100907 coadministration reversed memory deficits induced by both drugs. 5. It is suggested that 5-HT(2B/2C) receptors might be involved on memory formation probably mediating a suppressive or constraining action. Whether the drug-induced memory impairments in this study are explained by simple agonism, antagonism, or inverse agonism at 5-HT2 receptors remains unclear at this time. 6. Notably, the 5-HT2 receptor subtypes blockade may provide some benefit to reverse poor memory consolidation conditions associated with decreasedcholinergic, glutamatergic, and/or serotonergic neurotransmission.

  12. Biased agonism as a mechanism for differential signaling by chemokine receptors.

    PubMed

    Rajagopal, Sudarshan; Bassoni, Daniel L; Campbell, James J; Gerard, Norma P; Gerard, Craig; Wehrman, Tom S

    2013-12-06

    Chemokines display considerable promiscuity with multiple ligands and receptors shared in common, a phenomenon that is thought to underlie their biochemical "redundancy." Their receptors are part of a larger seven-transmembrane receptor superfamily, commonly referred to as G protein-coupled receptors, which have been demonstrated to be able to signal with different efficacies to their multiple downstream signaling pathways, a phenomenon referred to as biased agonism. Biased agonism has been primarily reported as a phenomenon of synthetic ligands, and the biologic prevalence and importance of such signaling are unclear. Here, to assess the presence of biased agonism that may underlie differential signaling by chemokines targeting the same receptor, we performed a detailed pharmacologic analysis of a set of chemokine receptors with multiple endogenous ligands using assays for G protein signaling, β-arrestin recruitment, and receptor internalization. We found that chemokines targeting the same receptor can display marked differences in their efficacies for G protein- or β-arrestin-mediated signaling or receptor internalization. This ligand bias correlates with changes in leukocyte migration, consistent with different mechanisms underlying the signaling downstream of these receptors induced by their ligands. These findings demonstrate that biased agonism is a common and likely evolutionarily conserved biological mechanism for generating qualitatively distinct patterns of signaling via the same receptor in response to different endogenous ligands.

  13. 5-HT6 receptor agonism facilitates emotional learning

    PubMed Central

    Pereira, Marcela; Martynhak, Bruno J.; Andreatini, Roberto; Svenningsson, Per

    2015-01-01

    Serotonin (5-HT) and its receptors play crucial roles in various aspects of mood and cognitive functions. However, the role of specific 5-HT receptors in these processes remains to be better understood. Here, we examined the effects of the selective and potent 5-HT6 agonist (WAY208466) on mood, anxiety and emotional learning in mice. Male C57Bl/6J mice were therefore tested in the forced swim test (FST), elevated plus-maze (EPM), and passive avoidance tests (PA), respectively. In a dose-response experiment, mice were treated intraperitoneally with WAY208466 at 3, 9, or 27 mg/kg and examined in an open field arena open field test (OFT) followed by the FST. 9 mg/kg of WAY208466 reduced immobility in the FST, without impairing the locomotion. Thus, the dose of 9 mg/kg was subsequently used for tests of anxiety and emotional learning. There was no significant effect of WAY208466 in the EPM. In the PA, mice were trained 30 min before the treatment with saline or WAY208466. Two separate sets of animals were used for short term memory (tested 1 h post-training) or long term memory (tested 24 h post-training). WAY208466 improved both short and long term memories, evaluated by the latency to enter the dark compartment, in the PA. The WAY208466-treated animals also showed more grooming and rearing in the light compartment. To better understand the molecular mechanisms and brain regions involved in the facilitation of emotional learning by WAY208466, we studied its effects on signal transduction and immediate early gene expression. WAY208466 increased the levels of phospho-Ser845-GluA1 and phospho-Ser217/221-MEK in the caudate-putamen. Levels of phospho-Thr202/204-Erk1/2 and the ratio mature BDNF/proBDNF were increased in the hippocampus. Moreover, WAY208466 increased c-fos in the hippocampus and Arc expression in both hippocampus and prefrontal cortex (PFC). The results indicate antidepressant efficacy and facilitation of emotional learning by 5-HT6 receptor agonism via

  14. Systematic analysis of factors influencing observations of biased agonism at the mu-opioid receptor.

    PubMed

    Thompson, Georgina L; Lane, J Robert; Coudrat, Thomas; Sexton, Patrick M; Christopoulos, Arthur; Canals, Meritxell

    2016-08-01

    Biased agonism describes the ability of distinct G protein-coupled receptor (GPCR) ligands to stabilise distinct receptor conformations leading to the activation of different cell signalling pathways that can deliver different physiologic outcomes. This phenomenon is having a major impact on modern drug discovery as it offers the potential to design ligands that selectively activate or inhibit the signalling pathways linked to therapeutic effects with minimal activation or blockade of signalling pathways that are linked to the development of adverse on-target effects. However, the explosion in studies of biased agonism at multiple GPCR families in recombinant cell lines has revealed a high degree of variability on descriptions of biased ligands at the same GPCR and raised the question of whether biased agonism is a fixed attribute of a ligand in all cell types. The current study addresses this question at the mu-opioid receptor (MOP). Here, we have systematically assessed the impact of differential cellular protein complement (and cellular background), signalling kinetics and receptor species on our previous descriptions of biased agonism at MOP by several opioid peptides and synthetic opioids. Our results show that all these factors need to be carefully determined and reported when considering biased agonism. Nevertheless, our studies also show that, despite changes in overall signalling profiles, ligands that previously showed distinct bias profiles at MOP retained their uniqueness across different cell backgrounds. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. A New Molecular Mechanism To Engineer Protean Agonism at a G Protein-Coupled Receptor.

    PubMed

    De Min, Anna; Matera, Carlo; Bock, Andreas; Holze, Janine; Kloeckner, Jessica; Muth, Mathias; Traenkle, Christian; De Amici, Marco; Kenakin, Terry; Holzgrabe, Ulrike; Dallanoce, Clelia; Kostenis, Evi; Mohr, Klaus; Schrage, Ramona

    2017-04-01

    Protean agonists are of great pharmacological interest as their behavior may change in magnitude and direction depending on the constitutive activity of a receptor. Yet, this intriguing phenomenon has been poorly described and understood, due to the lack of stable experimental systems and design strategies. In this study, we overcome both limitations: First, we demonstrate that modulation of the ionic strength in a defined experimental set-up allows for analysis of G protein-coupled receptor activation in the absence and presence of a specific amount of spontaneous receptor activity using the muscarinic M2 acetylcholine receptor as a model. Second, we employ this assay system to show that a dualsteric design principle, that is, molecular probes, carrying two pharmacophores to simultaneously adopt orthosteric and allosteric topography within a G protein-coupled receptor, may represent a novel approach to achieve protean agonism. We pinpoint three molecular requirements within dualsteric compounds that elicit protean agonism at the muscarinic M2 acetylcholine receptor. Using radioligand-binding and functional assays, we posit that dynamic ligand binding may be the mechanism underlying protean agonism of dualsteric ligands. Our findings provide both new mechanistic insights into the still enigmatic phenomenon of protean agonism and a rationale for the design of such compounds for a G protein-coupled receptor. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Nucleus accumbens shell excitability is decreased by methamphetamine self-administration and increased by 5-HT2C receptor inverse agonism and agonism

    PubMed Central

    Graves, Steven M.; Clark, Mary J.; Traynor, John R.; Hu, Xiu-Ti; Napier, T. Celeste

    2014-01-01

    Methamphetamine profoundly increases brain monoamines and is a widely abused psychostimulant. The effects of methamphetamine self-administration on neuron function are not known for the nucleus accumbens, a brain region involved in addictive behaviors, including drug-seeking. One therapeutic target showing preclinical promise at attenuating psychostimulant-seeking is 5-HT2C receptors; however, the effects of 5-HT2C receptor ligands on neuronal physiology are unclear. 5-HT2C receptor agonism decreases psychostimulant-mediated behaviors, and the putative 5-HT2C receptor inverse agonist, SB 206553, attenuates methamphetamine-seeking in rats. To ascertain the effects of methamphetamine, and 5-HT2C receptor inverse agonism and agonism, on neuronal function in the nucleus accumbens, we evaluated methamphetamine, SB 206553, and the 5-HT2C receptor agonist and Ro 60-0175, on neuronal excitability within the accumbens shell subregion using whole-cell current-clamp recordings in forebrain slices ex vivo. We reveal that methamphetamine self-administration decreased generation of evoked action potentials. In contrast, SB 206553 and Ro 60-0175 increased evoked spiking, effects that were prevented by the 5-HT2C receptor antagonist, SB 242084. We also assessed signaling mechanisms engaged by 5-HT2C receptors, and determined that accumbal 5-HT2C receptors stimulated Gq, but not Gi/o. These findings demonstrate that methamphetamine-induced decreases in excitability of neurons within the nucleus accumbens shell were abrogated by both 5-HT2C inverse agonism and agonism, and this effect likely involved activation of Gq–mediated signaling pathways. PMID:25229719

  17. Nucleus accumbens shell excitability is decreased by methamphetamine self-administration and increased by 5-HT2C receptor inverse agonism and agonism.

    PubMed

    Graves, Steven M; Clark, Mary J; Traynor, John R; Hu, Xiu-Ti; Napier, T Celeste

    2015-02-01

    Methamphetamine profoundly increases brain monoamines and is a widely abused psychostimulant. The effects of methamphetamine self-administration on neuron function are not known for the nucleus accumbens, a brain region involved in addictive behaviors, including drug-seeking. One therapeutic target showing preclinical promise at attenuating psychostimulant-seeking is 5-HT2C receptors; however, the effects of 5-HT2C receptor ligands on neuronal physiology are unclear. 5-HT2C receptor agonism decreases psychostimulant-mediated behaviors, and the putative 5-HT2C receptor inverse agonist, SB 206553, attenuates methamphetamine-seeking in rats. To ascertain the effects of methamphetamine, and 5-HT2C receptor inverse agonism and agonism, on neuronal function in the nucleus accumbens, we evaluated methamphetamine, SB 206553, and the 5-HT2C receptor agonist and Ro 60-0175, on neuronal excitability within the accumbens shell subregion using whole-cell current-clamp recordings in forebrain slices ex vivo. We reveal that methamphetamine self-administration decreased generation of evoked action potentials. In contrast, SB 206553 and Ro 60-0175 increased evoked spiking, effects that were prevented by the 5-HT2C receptor antagonist, SB 242084. We also assessed signaling mechanisms engaged by 5-HT2C receptors, and determined that accumbal 5-HT2C receptors stimulated Gq, but not Gi/o. These findings demonstrate that methamphetamine-induced decreases in excitability of neurons within the nucleus accumbens shell were abrogated by both 5-HT2C inverse agonism and agonism, and this effect likely involved activation of Gq-mediated signaling pathways.

  18. RGS4 regulates partial agonism of the M2 muscarinic receptor-activated K+ currents

    PubMed Central

    Chen, I-Shan; Furutani, Kazuharu; Inanobe, Atsushi; Kurachi, Yoshihisa

    2014-01-01

    Partial agonists are used clinically to avoid overstimulation of receptor-mediated signalling, as they produce a submaximal response even at 100% receptor occupancy. The submaximal efficacy of partial agonists is due to conformational change of the agonist–receptor complex, which reduces effector activation. In addition to signalling activators, several regulators help control intracellular signal transductions. However, it remains unclear whether these signalling regulators contribute to partial agonism. Here we show that regulator of G-protein signalling (RGS) 4 is a determinant for partial agonism of the M2 muscarinic receptor (M2R). In rat atrial myocytes, pilocarpine evoked smaller G-protein-gated K+ inwardly rectifying (KG) currents than those evoked by ACh. In a Xenopus oocyte expression system, pilocarpine acted as a partial agonist in the presence of RGS4 as it did in atrial myocytes, while it acted like a full agonist in the absence of RGS4. Functional couplings within the agonist–receptor complex/G-protein/RGS4 system controlled the efficacy of pilocarpine relative to ACh. The pilocarpine–M2R complex suppressed G-protein-mediated activation of KG currents via RGS4. Our results demonstrate that partial agonism of M2R is regulated by the RGS4-mediated inhibition of G-protein signalling. This finding helps us to understand the molecular components and mechanism underlying the partial agonism of M2R-mediated physiological responses. PMID:24421355

  19. Biased Agonism of Endogenous Opioid Peptides at the μ-Opioid Receptor.

    PubMed

    Thompson, Georgina L; Lane, J Robert; Coudrat, Thomas; Sexton, Patrick M; Christopoulos, Arthur; Canals, Meritxell

    2015-08-01

    Biased agonism is having a major impact on modern drug discovery, and describes the ability of distinct G protein-coupled receptor (GPCR) ligands to activate different cell signaling pathways, and to result in different physiologic outcomes. To date, most studies of biased agonism have focused on synthetic molecules targeting various GPCRs; however, many of these receptors have multiple endogenous ligands, suggesting that "natural" bias may be an unappreciated feature of these GPCRs. The μ-opioid receptor (MOP) is activated by numerous endogenous opioid peptides, remains an attractive therapeutic target for the treatment of pain, and exhibits biased agonism in response to synthetic opiates. The aim of this study was to rigorously assess the potential for biased agonism in the actions of endogenous opioids at the MOP in a common cellular background, and compare these to the effects of the agonist d-Ala2-N-MePhe4-Gly-ol enkephalin (DAMGO). We investigated activation of G proteins, inhibition of cAMP production, extracellular signal-regulated kinase 1 and 2 phosphorylation, β-arrestin 1/2 recruitment, and MOP trafficking, and applied a novel analytical method to quantify biased agonism. Although many endogenous opioids displayed signaling profiles similar to that of DAMGO, α-neoendorphin, Met-enkephalin-Arg-Phe, and the putatively endogenous peptide endomorphin-1 displayed particularly distinct bias profiles. These may represent examples of natural bias if it can be shown that they have different signaling properties and physiologic effects in vivo compared with other endogenous opioids. Understanding how endogenous opioids control physiologic processes through biased agonism can reveal vital information required to enable the design of biased opioids with improved pharmacological profiles and treat diseases involving dysfunction of the endogenous opioid system.

  20. Nociceptin/Orphanin FQ Receptor Structure, Signaling, Ligands, Functions, and Interactions with Opioid Systems

    PubMed Central

    Bruchas, Michael R.; Calo', Girolamo; Cox, Brian M.; Zaveri, Nurulain T.

    2016-01-01

    The NOP receptor (nociceptin/orphanin FQ opioid peptide receptor) is the most recently discovered member of the opioid receptor family and, together with its endogenous ligand, N/OFQ, make up the fourth members of the opioid receptor and opioid peptide family. Because of its more recent discovery, an understanding of the cellular and behavioral actions induced by NOP receptor activation are less well developed than for the other members of the opioid receptor family. All of these factors are important because NOP receptor activation has a clear modulatory role on mu opioid receptor-mediated actions and thereby affects opioid analgesia, tolerance development, and reward. In addition to opioid modulatory actions, NOP receptor activation has important effects on motor function and other physiologic processes. This review discusses how NOP pharmacology intersects, contrasts, and interacts with the mu opioid receptor in terms of tertiary structure and mechanism of receptor activation; location of receptors in the central nervous system; mechanisms of desensitization and downregulation; cellular actions; intracellular signal transduction pathways; and behavioral actions with respect to analgesia, tolerance, dependence, and reward. This is followed by a discussion of the agonists and antagonists that have most contributed to our current knowledge. Because NOP receptors are highly expressed in brain and spinal cord and NOP receptor activation sometimes synergizes with mu receptor-mediated actions and sometimes opposes them, an understanding of NOP receptor pharmacology in the context of these interactions with the opioid receptors will be crucial to the development of novel therapeutics that engage the NOP receptor. PMID:26956246

  1. Structure- and conformation-activity studies of nociceptin/orphanin FQ receptor dimeric ligands

    PubMed Central

    Pacifico, Salvatore; Carotenuto, Alfonso; Brancaccio, Diego; Novellino, Ettore; Marzola, Erika; Ferrari, Federica; Cerlesi, Maria Camilla; Trapella, Claudio; Preti, Delia; Salvadori, Severo; Calò, Girolamo; Guerrini, Remo

    2017-01-01

    The peptide nociceptin/orphanin FQ (N/OFQ) and the N/OFQ receptor (NOP) constitute a neuropeptidergic system that modulates various biological functions and is currently targeted for the generation of innovative drugs. In the present study dimeric NOP receptor ligands with spacers of different lengths were generated using both peptide and non-peptide pharmacophores. The novel compounds (12 peptide and 7 nonpeptide ligands) were pharmacologically investigated in a calcium mobilization assay and in the mouse vas deferens bioassay. Both structure- and conformation-activity studies were performed. Results demonstrated that dimerization did not modify the pharmacological activity of both peptide and non-peptide pharmacophores. Moreover, when dimeric compounds were obtained with low potency peptide pharmacophores, dimerization recovered ligand potency. This effect depends on the doubling of the C-terminal address sequence rather than the presence of an additional N-terminal message sequence or modifications of peptide conformation. PMID:28383520

  2. Nociceptin/orphanin FQ receptor expression in clinical pain disorders and functional effects in cultured neurons.

    PubMed

    Anand, Praveen; Yiangou, Yiangos; Anand, Uma; Mukerji, Gaurav; Sinisi, Marco; Fox, Michael; McQuillan, Anthony; Quick, Tom; Korchev, Yuri E; Hein, Peter

    2016-09-01

    The nociceptin/orphanin FQ peptide receptor (NOP), activated by its endogenous peptide ligand nociceptin/orphanin FQ (N/OFQ), exerts several effects including modulation of pain signalling. We have examined, for the first time, the tissue distribution of the NOP receptor in clinical visceral and somatic pain disorders by immunohistochemistry and assessed functional effects of NOP and μ-opioid receptor activation in cultured human and rat dorsal root ganglion (DRG) neurons. Quantification of NOP-positive nerve fibres within the bladder suburothelium revealed a remarkable several-fold increase in detrusor overactivity (P < 0.0001) and painful bladder syndrome patient specimens (P = 0.0014) compared with controls. In postmortem control human DRG, 75% to 80% of small/medium neurons (≤50 μm diameter) in the lumbar (somatic) and sacral (visceral) DRG were positive for NOP, and fewer large neurons; avulsion-injured cervical human DRG neurons showed similar numbers. NOP immunoreactivity was significantly decreased in injured peripheral nerves (P = 0.0004), and also in painful neuromas (P = 0.025). Calcium-imaging studies in cultured rat DRG neurons demonstrated dose-dependent inhibition of capsaicin responses in the presence of N/OFQ, with an IC50 of 8.6 pM. In cultured human DRG neurons, 32% inhibition of capsaicin responses was observed in the presence of 1 pM N/OFQ (P < 0.001). The maximum inhibition of capsaicin responses was greater with N/OFQ than μ-opioid receptor agonist DAMGO. Our findings highlight the potential of NOP agonists, particularly in urinary bladder overactivity and pain syndromes. The regulation of NOP expression in visceral and somatic sensory neurons by target-derived neurotrophic factors deserves further study, and the efficacy of NOP selective agonists in clinical trials.

  3. The Therapeutic Potential of Nociceptin/Orphanin FQ Receptor Agonists as Analgesics without Abuse Liability

    PubMed Central

    2012-01-01

    Although mu opioid (MOP) receptor agonists are the most commonly used analgesics for the treatment of moderate to severe pain in the clinic, the side effects of MOP agonists such as abuse liability limit their value as a medication. Research to identify novel analgesics without adverse effects is pivotal to advance the health care of humans. The nociceptin/orphanin FQ peptide (NOP) receptor, the fourth opioid receptor subtype, mediates distinctive actions in nonhuman primates which suggests the possibility that activity at this receptor may result in strong analgesia in the absence of virtually all of the side effects associated with MOP agonists. The present review highlights the recent progress of pharmacological studies of NOP-related ligands in primates. Selective NOP agonists, either peptidic or nonpeptidic, produce full analgesia in various assays in primates, when delivered systemically or intrathecally. Yet small molecule NOP agonists do not serve as reinforcers, indicating a lack of abuse liability. Given that NOP agonists have low abuse liability and that coactivation of NOP and MOP receptors produces synergistic antinociception, it is worth developing bifunctional NOP/MOP ligands. The outcomes of these studies and recent developments provide new perspectives to establish a translational bridge for understanding the biobehavioral functions of NOP receptors in primates and for facilitating the development of NOP-related ligands as a new generation of analgesics without abuse liability in humans. PMID:23421672

  4. Expression of the nociceptin/orphanin FQ receptor in the intestinal mucosa of IBS patients.

    PubMed

    Li, Lu; Dong, Lei; Wang, Shenhao

    2013-09-01

    Nociceptin/orphanin FQ (N/OFQ) and the N/OFQ peptide (NOP) receptor play important roles in regulating gastrointestinal function. To assess whether the NOP receptor is implicated in the etiopathogenesis of irritable bowel syndrome (IBS), we measured the levels of NOP receptor mRNA and protein in the jejunal and colonic tissues of healthy subjects and patients with diarrhea-predominant IBS (D-IBS) and constipation-predominant IBS (C-IBS). Mucosal biopsies were obtained from the jejunum and colon of patients diagnosed with D-IBS and C-IBS by the Rome III criteria and from healthy control subjects. The expression of NOP receptor mRNA was measured quantitatively using quantitative PCR (qPCR) and NOP protein expression was assayed immunohistochemically using a rabbit monoclonal antibody to OFQ. NOP receptor mRNA was detected in the jejunum and colon of healthy subjects and was more highly expressed in the jejunum than in the colon. Expression was lower in the jejunum and colon of patients with D-IBS; however, it was similar in patients with C-IBS and healthy subjects. The numbers of OFQ-positive cells in the jejunum and colon were similar among the three groups. The NOP receptor may be involved in the regulation of intestinal movement in healthy individuals. Its involvement in the pathophysiology of IBS may depend on whether the IBS is constipation- or diarrhea-predominant.

  5. Expression of the nociceptin/orphanin FQ receptor in the intestinal mucosa of IBS patients

    PubMed Central

    LI, LU; DONG, LEI; WANG, SHENHAO

    2013-01-01

    Nociceptin/orphanin FQ (N/OFQ) and the N/OFQ peptide (NOP) receptor play important roles in regulating gastrointestinal function. To assess whether the NOP receptor is implicated in the etiopathogenesis of irritable bowel syndrome (IBS), we measured the levels of NOP receptor mRNA and protein in the jejunal and colonic tissues of healthy subjects and patients with diarrhea-predominant IBS (D-IBS) and constipation-predominant IBS (C-IBS). Mucosal biopsies were obtained from the jejunum and colon of patients diagnosed with D-IBS and C-IBS by the Rome III criteria and from healthy control subjects. The expression of NOP receptor mRNA was measured quantitatively using quantitative PCR (qPCR) and NOP protein expression was assayed immunohistochemically using a rabbit monoclonal antibody to OFQ. NOP receptor mRNA was detected in the jejunum and colon of healthy subjects and was more highly expressed in the jejunum than in the colon. Expression was lower in the jejunum and colon of patients with D-IBS; however, it was similar in patients with C-IBS and healthy subjects. The numbers of OFQ-positive cells in the jejunum and colon were similar among the three groups. The NOP receptor may be involved in the regulation of intestinal movement in healthy individuals. Its involvement in the pathophysiology of IBS may depend on whether the IBS is constipation- or diarrhea-predominant. PMID:24137246

  6. The therapeutic potential of nociceptin/orphanin FQ receptor agonists as analgesics without abuse liability.

    PubMed

    Lin, Ann P; Ko, Mei-Chuan

    2013-02-20

    Although mu opioid (MOP) receptor agonists are the most commonly used analgesics for the treatment of moderate to severe pain in the clinic, the side effects of MOP agonists such as abuse liability limit their value as a medication. Research to identify novel analgesics without adverse effects is pivotal to advance the health care of humans. The nociceptin/orphanin FQ peptide (NOP) receptor, the fourth opioid receptor subtype, mediates distinctive actions in nonhuman primates which suggests the possibility that activity at this receptor may result in strong analgesia in the absence of virtually all of the side effects associated with MOP agonists. The present review highlights the recent progress of pharmacological studies of NOP-related ligands in primates. Selective NOP agonists, either peptidic or nonpeptidic, produce full analgesia in various assays in primates, when delivered systemically or intrathecally. Yet small molecule NOP agonists do not serve as reinforcers, indicating a lack of abuse liability. Given that NOP agonists have low abuse liability and that coactivation of NOP and MOP receptors produces synergistic antinociception, it is worth developing bifunctional NOP/MOP ligands. The outcomes of these studies and recent developments provide new perspectives to establish a translational bridge for understanding the biobehavioral functions of NOP receptors in primates and for facilitating the development of NOP-related ligands as a new generation of analgesics without abuse liability in humans.

  7. Nociceptin/orphanin FQ-NOP receptor system in inflammatory and immune-mediated diseases.

    PubMed

    Gavioli, Elaine C; de Medeiros, Iris Ucella; Monteiro, Marta C; Calo, Girolamo; Romão, Pedro R T

    2015-01-01

    The neuropeptide nociceptin/orphanin FQ (N/OFQ) is the endogenous ligand of the G-protein-coupled receptor NOP. Cells from the immune system express the precursor preproN/OFQ and the NOP receptor, as well as secrete N/OFQ. The activation of the N/OFQ-NOP pathway can regulate inflammatory and immune responses. Several immune activities, including leukocyte migration, cytokine and chemokine production, and lymphocytes proliferation are influenced by NOP activation. It was demonstrated that cytokines and other stimuli such as Toll-like receptor agonist (e.g., lipopolysaccharide) induce N/OFQ production by cells from innate and adaptive immune response. In this context, N/OFQ could modulate the outcome of inflammatory diseases, such as sepsis and immune-mediated pathologies by mechanisms not clearly elucidated. In fact, clinical studies revealed increased levels of N/OFQ under sepsis, arthritis, and Parkinson's disease. Preclinical and clinical studies pointed to the blockade of NOP receptor signaling as successful strategy for the treatment of inflammatory diseases. This review is focused on experimental and clinical data that suggest the participation of N/OFQ-NOP receptor activation in the modulation of the immune response, highlighting the immunomodulatory potential of NOP antagonists in the inflammatory and immunological disturbances.

  8. Partial agonism: mechanisms based on ligand-receptor interactions and on stimulus-response coupling.

    PubMed

    Pliska, V

    1999-01-01

    Substances eliciting, at very high concentrations, a lower maximal response of a particular biological system than a defined standard, are defined as partial agonists. The convention rests on the definition of a standard substance that achieves a 'full' maximal response; partial agonism being, therefore, relative. Various mechanisms lie behind this phenomenon: 1. Receptor-related mechanisms: the agonist-receptor complex exists in several conformational states from which only one, or only a few, activate the cell signaling pathway. This may occur when the receptor itself, or the agonist, exists in multiple states (e.g., in the form of enantiomers or stereoisomers), or when the agonist-receptor complex changes its conformation (receptor switch: two-state model of receptor activation). Furthermore, a steric hindrance by a 'wrong-way binding' of a part of the agonist's molecules may prevent the full 'correct' occupancy of receptors. 2. Mechanisms based on the efficacy of the stimulus-response coupling. The efficacy is then proportional to the sum of probabilities that receptors in individual states activate the cell-signaling pathway. Doses (concentrations) eliciting the half maximal response (EC50), or similar response sensitivity parameters, are not included in the definition of partial agonism. However, tight correlations exist between maximal response and EC50 in many, but not all, generic groups of agonistically acting substances. These relationships are frequently linear; intercepts and slopes of these 'E, KE plots' are characteristic for individual, putative mechanisms. Dose-response curves of partial agonists are akin to those obtained for a response to a full agonist after a stepwise partial inactivation of receptors by an irreversible inhibitor. Also, the E, KE plots obtained in these instances are similar to those of partial agonists. The receptor reserve, rather vaguely defined in early reports, is therefore closely linked to the phenomenon of partial

  9. Nociceptin/orphanin FQ receptor agonists attenuate L-DOPA-induced dyskinesias.

    PubMed

    Marti, Matteo; Rodi, Donata; Li, Qin; Guerrini, Remo; Fasano, Stefania; Morella, Ilaria; Tozzi, Alessandro; Brambilla, Riccardo; Calabresi, Paolo; Simonato, Michele; Bezard, Erwan; Morari, Michele

    2012-11-14

    In the present study we investigated whether the neuropeptide nociceptin/orphanin FQ (N/OFQ), previously implicated in the pathogenesis of Parkinson's disease, also affects L-DOPA-induced dyskinesia. In striatal slices of naive rodents, N/OFQ (0.1-1 μm) prevented the increase of ERK phosphorylation and the loss of depotentiation of synaptic plasticity induced by the D1 receptor agonist SKF38393 in spiny neurons. In vivo, exogenous N/OFQ (0.03-1 nmol, i.c.v.) or a synthetic N/OFQ receptor agonist given systemically (0.01-1 mg/Kg) attenuated dyskinesias expression in 6-hydroxydopamine hemilesioned rats primed with L-DOPA, without causing primary hypolocomotive effects. Conversely, N/OFQ receptor antagonists worsened dyskinesia expression. In vivo microdialysis revealed that N/OFQ prevented dyskinesias simultaneously with its neurochemical correlates such as the surge of nigral GABA and glutamate, and the reduction of thalamic GABA. Regional microinjections revealed that N/OFQ attenuated dyskinesias more potently and effectively when microinjected in striatum than substantia nigra (SN) reticulata, whereas N/OFQ receptor antagonists were ineffective in striatum but worsened dyskinesias when given in SN. Quantitative autoradiography showed an increase in N/OFQ receptor binding in striatum and a reduction in SN of both unprimed and dyskinetic 6-hydroxydopamine rats, consistent with opposite adaptive changes of N/OFQ transmission. Finally, the N/OFQ receptor synthetic agonist also reduced dyskinesia expression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated dyskinetic macaques without affecting the global parkinsonian score. We conclude that N/OFQ receptor agonists may represent a novel strategy to counteract L-DOPA-induced dyskinesias. Their action is possibly mediated by upregulated striatal N/OFQ receptors opposing the D1 receptor-mediated overactivation of the striatonigral direct pathway.

  10. Synthetically accessible non-secosteroidal hybrid molecules combining vitamin D receptor agonism and histone deacetylase inhibition.

    PubMed

    Fischer, Joshua; Wang, Tian-Tian; Kaldre, Dainis; Rochel, Natacha; Moras, Dino; White, John H; Gleason, James L

    2012-08-24

    1,25-Dihydroxyvitamin D(3) (1,25D), the hormonal form of vitamin D, and several analogs have failed as monotherapies for cancer because of poor efficacy or acquired resistance. However, 1,25D analogs are amenable to bifunctionalization. Preclinical studies have revealed combinatorial effects of 1,25D analogs and histone deacetylase inhibitors (HDACi). Secosteroidal hybrid molecules combining vitamin D receptor (VDR) agonism with HDACi displayed enhanced efficacy but are laborious to synthesize. Here, we have developed easily assembled, fully integrated, non-secosteroidal VDR agonist/HDACi hybrids. The most promising are full VDR agonists with ~10-fold lower potency than 1,25D. Structure/function studies revealed that antiproliferative activity against 1,25D-resistant squamous carcinoma cells required VDR agonism and HDACi. Remarkably, modeling and X-ray crystallography reveal non-secosteroidal hybrids bind in the VDR ligand binding domain in the opposite orientation of their secosteroidal counterparts.

  11. Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic

    SciTech Connect

    Thompson, Aaron A.; Liu, Wei; Chun, Eugene; Katritch, Vsevolod; Wu, Huixian; Vardy, Eyal; Huang, Xi-Ping; Trapella, Claudio; Guerrini, Remo; Calo, Girolamo; Roth, Bryan L.; Cherezov, Vadim; Stevens, Raymond C.

    2012-07-11

    Members of the opioid receptor family of G-protein-coupled receptors (GPCRs) are found throughout the peripheral and central nervous system, where they have key roles in nociception and analgesia. Unlike the 'classical' opioid receptors, {delta}, {kappa} and {mu} ({delta}-OR, {kappa}-OR and {mu}-OR), which were delineated by pharmacological criteria in the 1970s and 1980s, the nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP, also known as ORL-1) was discovered relatively recently by molecular cloning and characterization of an orphan GPCR. Although it shares high sequence similarity with classical opioid GPCR subtypes ({approx}60%), NOP has a markedly distinct pharmacology, featuring activation by the endogenous peptide N/OFQ, and unique selectivity for exogenous ligands. Here we report the crystal structure of human NOP, solved in complex with the peptide mimetic antagonist compound-24 (C-24) (ref. 4), revealing atomic details of ligand-receptor recognition and selectivity. Compound-24 mimics the first four amino-terminal residues of the NOP-selective peptide antagonist UFP-101, a close derivative of N/OFQ, and provides important clues to the binding of these peptides. The X-ray structure also shows substantial conformational differences in the pocket regions between NOP and the classical opioid receptors {kappa} (ref. 5) and {mu} (ref. 6), and these are probably due to a small number of residues that vary between these receptors. The NOP-compound-24 structure explains the divergent selectivity profile of NOP and provides a new structural template for the design of NOP ligands.

  12. Unraveling mechanisms underlying partial agonism in 5-HT3A receptors.

    PubMed

    Corradi, Jeremías; Bouzat, Cecilia

    2014-12-10

    Partial agonists have emerged as attractive therapeutic molecules. 2-Me-5HT and tryptamine have been defined as partial agonists of 5-HT3 receptors on the basis of macroscopic measurements. Because several mechanisms may limit maximal responses, we took advantage of the high-conductance form of the mouse serotonin type 3A (5-HT3A) receptor to understand their molecular actions. Individual 5-HT-bound receptors activate in long episodes of high open probability, consisting of groups of openings in quick succession. The activation pattern is similar for 2-Me-5HT only at very low concentrations since profound channel blockade takes place within the activating concentration range. In contrast, activation episodes are significantly briefer in the presence of tryptamine. Generation of a full activation scheme reveals that the fully occupied receptor overcomes transitions to closed preopen states (primed states) before opening. Reduced priming explains the partial agonism of tryptamine. In contrast, 2-Me-5HT is not a genuine partial agonist since priming is not dramatically affected and its low apparent efficacy is mainly due to channel blockade. The analysis also shows that the first priming step is the rate-limiting step and partial agonists require an increased number of priming steps for activation. Molecular docking suggests that interactions are similar for 5-HT and 2-Me-5HT but slightly different for tryptamine. Our study contributes to understanding 5-HT3A receptor activation, extends the novel concept of partial agonism within the Cys-loop family, reveals novel aspects of partial agonism, and unmasks molecular actions of classically defined partial agonists. Unraveling mechanisms underlying partial responses has implications in the design of therapeutic compounds.

  13. Structure of the murine constitutive androstane receptor complexed to androstenol: a molecular basis for inverse agonism

    SciTech Connect

    Shan, L.; Vincent, J.; Brunzelle, J.S.; Dussault, I.; Lin, M.; Ianculescu, I.; Sherman, M.A.; Forman, B.M.; Fernandez, E.

    2010-03-08

    The nuclear receptor CAR is a xenobiotic responsive transcription factor that plays a central role in the clearance of drugs and bilirubin while promoting cocaine and acetaminophen toxicity. In addition, CAR has established a 'reverse' paradigm of nuclear receptor action where the receptor is active in the absence of ligand and inactive when bound to inverse agonists. We now report the crystal structure of murine CAR bound to the inverse agonist androstenol. Androstenol binds within the ligand binding pocket, but unlike many nuclear receptor ligands, it makes no contacts with helix H12/AF2. The transition from constitutive to basal activity (androstenol bound) appears to be associated with a ligand-induced kink between helices H10 and H11. This disrupts the previously predicted salt bridge that locks H12 in the transcriptionally active conformation. This mechanism of inverse agonism is distinct from traditional nuclear receptor antagonists thereby offering a new approach to receptor modulation.

  14. Structure-Activity Analysis of Biased Agonism at the Human Adenosine A3 Receptor

    PubMed Central

    Baltos, Jo-Anne; Paoletta, Silvia; Nguyen, Anh T. N.; Gregory, Karen J.; Tosh, Dilip K.; Christopoulos, Arthur; Jacobson, Kenneth A.

    2016-01-01

    Biased agonism at G protein–coupled receptors (GPCRs) has significant implications for current drug discovery, but molecular determinants that govern ligand bias remain largely unknown. The adenosine A3 GPCR (A3AR) is a potential therapeutic target for various conditions, including cancer, inflammation, and ischemia, but for which biased agonism remains largely unexplored. We now report the generation of bias “fingerprints” for prototypical ribose containing A3AR agonists and rigidified (N)-methanocarba 5′-N-methyluronamide nucleoside derivatives with regard to their ability to mediate different signaling pathways. Relative to the reference prototypical agonist IB-MECA, (N)-methanocarba 5′-N-methyluronamide nucleoside derivatives with significant N6 or C2 modifications, including elongated aryl-ethynyl groups, exhibited biased agonism. Significant positive correlation was observed between the C2 substituent length (in Å) and bias toward cell survival. Molecular modeling suggests that extended C2 substituents on (N)-methanocarba 5′-N-methyluronamide nucleosides promote a progressive outward shift of the A3AR transmembrane domain 2, which may contribute to the subset of A3AR conformations stabilized on biased agonist binding. PMID:27136943

  15. Pharmacogenomic study of the role of the nociceptin/orphanin FQ receptor and opioid receptors in diabetic hyperalgesia.

    PubMed

    Rutten, Kris; Tzschentke, Thomas M; Koch, Thomas; Schiene, Klaus; Christoph, Thomas

    2014-10-15

    Targeting functionally independent receptors may provide synergistic analgesic effects in neuropathic pain. To examine the interdependency between different opioid receptors (µ-opioid peptide [MOP], δ-opioid peptide [DOP] and κ-opioid peptide [KOP]) and the nociceptin/orphanin FQ peptide (NOP) receptor in streptozotocin (STZ)-induced diabetic polyneuropathy, nocifensive activity was measured using a hot plate test in wild-type and NOP, MOP, DOP and KOP receptor knockout mice in response to the selective receptor agonists Ro65-6570, morphine, SNC-80 and U50488H, or vehicle. Nocifensive activity was similar in non-diabetic wild-type and knockout mice at baseline, before agonist or vehicle administration. STZ-induced diabetes significantly increased heat sensitivity in all mouse strains, but MOP, DOP and KOP receptor knockouts showed a smaller degree of hyperalgesia than wild-type mice and NOP receptor knockouts. For each agonist, a significant antihyperalgesic effect was observed in wild-type diabetic mice (all P<0.05 versus vehicle); the effect was markedly attenuated in diabetic mice lacking the cognate receptor compared with wild-type diabetic mice. Morphine was the only agonist that demonstrated near-full antihyperalgesic efficacy across all non-cognate receptor knockouts. Partial or near-complete reductions in efficacy were observed with Ro65-6570 in DOP and KOP receptor knockouts, with SNC-80 in NOP, MOP and KOP receptor knockouts, and with U50488H in NOP and DOP receptor knockouts. There was no evidence of NOP and MOP receptor interdependency in response to selective agonists for these receptors. These findings suggest that concurrent activation of NOP and MOP receptors, which showed functional independence, may yield an effective and favorable therapeutic analgesic profile.

  16. Glucagon-Like Peptide 1/Glucagon Receptor Dual Agonism Reverses Obesity in Mice

    PubMed Central

    Pocai, Alessandro; Carrington, Paul E.; Adams, Jennifer R.; Wright, Michael; Eiermann, George; Zhu, Lan; Du, Xiaobing; Petrov, Aleksandr; Lassman, Michael E.; Jiang, Guoqiang; Liu, Franklin; Miller, Corey; Tota, Laurie M.; Zhou, Gaochao; Zhang, Xiaoping; Sountis, Michael M.; Santoprete, Alessia; Capito', Elena; Chicchi, Gary G.; Thornberry, Nancy; Bianchi, Elisabetta; Pessi, Antonello; Marsh, Donald J.; SinhaRoy, Ranabir

    2009-01-01

    OBJECTIVE Oxyntomodulin (OXM) is a glucagon-like peptide 1 (GLP-1) receptor (GLP1R)/glucagon receptor (GCGR) dual agonist peptide that reduces body weight in obese subjects through increased energy expenditure and decreased energy intake. The metabolic effects of OXM have been attributed primarily to GLP1R agonism. We examined whether a long acting GLP1R/GCGR dual agonist peptide exerts metabolic effects in diet-induced obese mice that are distinct from those obtained with a GLP1R-selective agonist. RESEARCH DESIGN AND METHODS We developed a protease-resistant dual GLP1R/GCGR agonist, DualAG, and a corresponding GLP1R-selective agonist, GLPAG, matched for GLP1R agonist potency and pharmacokinetics. The metabolic effects of these two peptides with respect to weight loss, caloric reduction, glucose control, and lipid lowering, were compared upon chronic dosing in diet-induced obese (DIO) mice. Acute studies in DIO mice revealed metabolic pathways that were modulated independent of weight loss. Studies in Glp1r−/− and Gcgr−/− mice enabled delineation of the contribution of GLP1R versus GCGR activation to the pharmacology of DualAG. RESULTS Peptide DualAG exhibits superior weight loss, lipid-lowering activity, and antihyperglycemic efficacy comparable to GLPAG. Improvements in plasma metabolic parameters including insulin, leptin, and adiponectin were more pronounced upon chronic treatment with DualAG than with GLPAG. Dual receptor agonism also increased fatty acid oxidation and reduced hepatic steatosis in DIO mice. The antiobesity effects of DualAG require activation of both GLP1R and GCGR. CONCLUSIONS Sustained GLP1R/GCGR dual agonism reverses obesity in DIO mice and is a novel therapeutic approach to the treatment of obesity. PMID:19602537

  17. Activation of nociceptin/orphanin FQ receptors inhibits contextual fear memory reconsolidation.

    PubMed

    Rekik, Khaoula; Faria Da Silva, Raquel; Colom, Morgane; Pacifico, Salvatore; Zaveri, Nurulain T; Calo', Girolamo; Rampon, Claire; Frances, Bernard; Mouledous, Lionel

    2017-10-01

    Several neuropeptidergic systems act as modulators of cognitive performances. Among them, nociceptin, an opioid-like peptide also known as orphanin FQ (N/OFQ), has recently gained attention. Stimulation of its receptor, the N/OFQ opioid receptor (NOP), which is expressed in brain regions involved in emotion, memory and stress response, has inhibitory effects on the acquisition and/or consolidation of spatial and emotional memory in rodents. Recently, N/OFQ was also proposed to be linked to the pathogenesis of Post-Traumatic Stress Disorder in humans. However, until now the effect of the activation of the N/OFQ-NOP system on already consolidated memory, such as during retrieval and reconsolidation phases, has never been explored. In the present study, we investigated the consequences of systemic injection of NOP agonists or i.c.v. injection of the N/OFQ peptide on the retrieval and the reconsolidation of contextual fear memory in mice. We demonstrate that the activation of the N/OFQ system impairs the reconsolidation of context-dependent but not cue-dependent aversive memories. We also show that this amnestic effect is associated with decreased c-Fos expression in the hippocampus and amygdala. Our data thus provide the first evidence that the NOP receptor could be targeted during the reconsolidation process to weaken maladaptive memories. The N/OFQ-NOP system might constitute in the future an interesting pharmacological target for interfering with so-called "pathological memories", in particular those involving maladaptive contextual memories. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Recent developments in constitutive receptor activity and inverse agonism, and their potential for GPCR drug discovery.

    PubMed

    Bond, Richard A; Ijzerman, Ad P

    2006-02-01

    The concept of constitutively active G-protein-coupled receptors is now firmly rooted in receptor pharmacology. Many independent research groups have contributed to its acceptance since its introduction by Costa and Herz in 1989. This concept necessitated a revised ligand classification, and a new category of inverse agonists was introduced alongside existing agonist and antagonist ligands. Initially, it was hoped that new therapeutic modalities would become available. However, the drug industry has not adopted inverse agonism as a design criterion and instead accepted that some compounds emerge as (neutral) antagonists in compound screening, whereas other compounds possess inverse agonistic activity. In this article, we summarize aspects of the impact of constitutive activity on the drug-discovery process: for example, its use in orphan receptor assays, its link with pharmacogenetics and genomics, and its relevance for currently marketed drugs.

  19. Structural Basis for Agonism and Antagonism for a Set of Chemically Related Progesterone Receptor Modulators

    PubMed Central

    Lusher, Scott J.; Raaijmakers, Hans C. A.; Vu-Pham, Diep; Dechering, Koen; Lam, Tsang Wai; Brown, Angus R.; Hamilton, Niall M.; Nimz, Olaf; Bosch, Rolien; McGuire, Ross; Oubrie, Arthur; de Vlieg, Jacob

    2011-01-01

    The progesterone receptor is able to bind to a large number and variety of ligands that elicit a broad range of transcriptional responses ranging from full agonism to full antagonism and numerous mixed profiles inbetween. We describe here two new progesterone receptor ligand binding domain x-ray structures bound to compounds from a structurally related but functionally divergent series, which show different binding modes corresponding to their agonistic or antagonistic nature. In addition, we present a third progesterone receptor ligand binding domain dimer bound to an agonist in monomer A and an antagonist in monomer B, which display binding modes in agreement with the earlier observation that agonists and antagonists from this series adopt different binding modes. PMID:21849509

  20. BU74, a complex oripavine derivative with potent kappa opioid receptor agonism and delayed opioid antagonism.

    PubMed

    Husbands, Stephen M; Neilan, Claire L; Broadbear, Jillian; Grundt, Peter; Breeden, Simon; Aceto, Mario D; Woods, James H; Lewis, John W; Traynor, John R

    2005-02-21

    In the search for opioid agonists with delayed antagonist actions as potential treatments for substance abuse, the bridged morphinan BU74 (17-cyclopropylmethyl-3-hydroxy-[5beta,7beta,3',5']-pyrrolidino-2'[S]-phenyl-7alpha-methyl-6,14-endoetheno morphinan) (3f) was synthesized. In isolated tissue and [35S]GTPgammaS opioid receptor functional assays BU74 was shown to be a potent long-lasting kappa opioid receptor agonist, delta opioid receptor partial agonist and mu opioid receptor antagonist. In antinociceptive tests in the mouse, BU74 showed high efficacy and potent kappa opioid receptor agonism. When its agonist action had waned BU74 became an antagonist of kappa and mu opioid receptor agonists in the tail flick assay and of delta, kappa and mu opioid receptor agonists in the acetic acid writhing assay. The slow onset, long-duration kappa opioid receptor agonist effects of BU74 suggests that it could be a lead compound for the discovery of a treatment for cocaine abuse.

  1. Dopamine Receptor D1 Agonism and Antagonism Using a Field-Effect Transistor Assay.

    PubMed

    Park, Seon Joo; Yang, Heehong; Lee, Seung Hwan; Song, Hyun Seok; Park, Chul Soon; Bae, Joonwon; Kwon, Oh Seok; Park, Tai Hyun; Jang, Jyongsik

    2017-06-27

    The field-effect transistor (FET) has been used in the development of diagnostic tools for several decades, leading to high-performance biosensors. Therefore, the FET platform can provide the foundation for the next generation of analytical methods. A major role of G-protein-coupled receptors (GPCRs) is in the transfer of external signals into the cell and promoting human body functions; thus, their principle application is in the screening of new drugs. The research community uses efficient systems to screen potential GPCR drugs; nevertheless, the need to develop GPCR-conjugated analytical devices remains for next-generation new drug screening. In this study, we proposed an approach for studying receptor agonism and antagonism by combining the roles of FETs and GPCRs in a dopamine receptor D1 (DRD1)-conjugated FET system, which is a suitable substitute for conventional cell-based receptor assays. DRD1 was reconstituted and purified to mimic native binding pockets that have highly discriminative interactions with DRD1 agonists/antagonists. The real-time responses from the DRD1-nanohybrid FET were highly sensitive and selective for dopamine agonists/antagonists, and their maximal response levels were clearly different depending on their DRD1 affinities. Moreover, the equilibrium constants (K) were estimated by fitting the response levels. Each K value indicates the variation in the affinity between DRD1 and the agonists/antagonists; a greater K value corresponds to a stronger DRD1 affinity in agonism, whereas a lower K value in antagonism indicates a stronger dopamine-blocking effect.

  2. Partial Agonism of Taurine at Gamma-Containing Native and Recombinant GABAA Receptors

    PubMed Central

    Kletke, Olaf; Gisselmann, Guenter; May, Andrea; Hatt, Hanns; A. Sergeeva, Olga

    2013-01-01

    Taurine is a semi-essential sulfonic acid found at high concentrations in plasma and mammalian tissues which regulates osmolarity, ion channel activity and glucose homeostasis. The structural requirements of GABAA-receptors (GABAAR) gated by taurine are not yet known. We determined taurine potency and efficacy relative to GABA at different types of recombinant GABAAR occurring in central histaminergic neurons of the mouse hypothalamic tuberomamillary nucleus (TMN) which controls arousal. At binary α1/2β1/3 receptors taurine was as efficient as GABA, whereas incorporation of the γ1/2 subunit reduced taurine efficacy to 60–90% of GABA. The mutation γ2F77I, which abolishes zolpidem potentiation, significantly reduced taurine efficacy at recombinant and native receptors compared to the wild type controls. As taurine was a full- or super- agonist at recombinant αxβ1δ-GABAAR, we generated a chimeric γ2 subunit carrying the δ subunit motif around F77 (MTVFLH). At α1/2β1γ2(MTVFLH) receptors taurine became a super-agonist, similar to δ-containing ternary receptors, but remained a partial agonist at β3-containing receptors. In conclusion, using site-directed mutagenesis we found structural determinants of taurine’s partial agonism at γ-containing GABAA receptors. Our study sheds new light on the β1 subunit conferring the widest range of taurine-efficacies modifying GABAAR function under (patho)physiological conditions. PMID:23637894

  3. Partial agonism of taurine at gamma-containing native and recombinant GABAA receptors.

    PubMed

    Kletke, Olaf; Gisselmann, Guenter; May, Andrea; Hatt, Hanns; A Sergeeva, Olga

    2013-01-01

    Taurine is a semi-essential sulfonic acid found at high concentrations in plasma and mammalian tissues which regulates osmolarity, ion channel activity and glucose homeostasis. The structural requirements of GABAA-receptors (GABAAR) gated by taurine are not yet known. We determined taurine potency and efficacy relative to GABA at different types of recombinant GABAAR occurring in central histaminergic neurons of the mouse hypothalamic tuberomamillary nucleus (TMN) which controls arousal. At binary α(1/2)β(1/3) receptors taurine was as efficient as GABA, whereas incorporation of the γ(1/2) subunit reduced taurine efficacy to 60-90% of GABA. The mutation γ(2F77I), which abolishes zolpidem potentiation, significantly reduced taurine efficacy at recombinant and native receptors compared to the wild type controls. As taurine was a full- or super- agonist at recombinant αxβ1δ-GABAAR, we generated a chimeric γ(2) subunit carrying the δ subunit motif around F77 (MTVFLH). At α(1/2)β(1)γ2(MTVFLH) receptors taurine became a super-agonist, similar to δ-containing ternary receptors, but remained a partial agonist at β3-containing receptors. In conclusion, using site-directed mutagenesis we found structural determinants of taurine's partial agonism at γ-containing GABAA receptors. Our study sheds new light on the β1 subunit conferring the widest range of taurine-efficacies modifying GABAAR function under (patho)physiological conditions.

  4. Binding of GTPgamma[35S] is regulated by GDP and receptor activation. Studies with the nociceptin/orphanin FQ receptor.

    PubMed

    McDonald, John; Lambert, David G

    2010-03-01

    We have examined the effects of ligand efficacy and receptor density on the binding of guanosine 5'-[gamma-thio]triphosphate (GTPgammaS) and GDP to the nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP)-coupled G-proteins. In GTPgamma[(35)S] binding experiments, using stable (CHO(hNOP)) and inducible (CHO(INDhNOP)) recombinant human and rat NOP we have measured: (i) ligand-specific GDP requirements; (ii) the effects of receptor density on guanine nucleotide affinity/capacity; and (iii) the effect of ligand efficacy on GTPgammaS association kinetics. GTPgammaS competition curves were shallow and modelled by high- and low-affinity components that were relatively consistent between cell types and tissue preparations. In the presence of 1 microM N/OFQ a high-affinity GDP binding site was also present, but the fraction of total binding was reduced. In an efficacy-dependent manner, the partial agonists [F/G]N/OFQ(1-13)NH(2) ([Phe(1)psi(CH(2)-NH)Gly(2)]-nociceptin(1-13)NH(2)) and naloxone benzoylhydrazone both reduced the fraction of high-affinity sites for GDP (relative to basal). While the pIC(50) for high-affinity GDP binding site did not decrease in the presence of 1 microM N/OFQ, N/OFQ produced a significant reduction in pIC(50) for the low-affinity site. Agonist-mediated decrease in affinity for GDP binding was efficacy-dependent. GDP displayed three affinities: high, conserved in the presence and absence of ligand; intermediate, present as a low fraction under basal conditions; low (efficacy-dependent), present during receptor activation representing the majority of binding. The affinity of GTPgamma[(35)S] was regulated by GDP and receptor activation caused increased binding of GTPgamma[(35)S] through a reduction in GDP affinity.

  5. 8-acenaphthen-1-yl-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one derivatives as orphanin FQ receptor agonists.

    PubMed

    Wichmann, J; Adam, G; Röver, S; Cesura, A M; Dautzenberg, F M; Jenck, F

    1999-08-16

    A series of 8-acenaphthen-1-yl-1-phenyl-1,3,8-triaza-spiro[4.5]decan+ ++-4-one derivatives 1 was studied with respect to the binding affinity for the orphanin FQ (OFQ) and opioid (mu, kappa, delta) receptors. The influence of stereochemistry as well as the substitution pattern of the phenyl-ring in position 1 on the affinity for the orphanin FQ receptor and selectivity to opioid (mu, kappa, delta) receptors is discussed. The most interesting compound 1c was tested for its anxiolytic-like properties in vivo.

  6. Optimization of co-agonism at GLP-1 and glucagon receptors to safely maximize weight reduction in DIO-rodents.

    PubMed

    Day, Jonathan W; Gelfanov, Vasily; Smiley, David; Carrington, Paul E; Eiermann, George; Chicchi, Gary; Erion, Mark D; Gidda, Jas; Thornberry, Nancy A; Tschöp, Matthias H; Marsh, Donald J; SinhaRoy, Ranabir; DiMarchi, Richard; Pocai, Alessandro

    2012-01-01

    The ratio of GLP-1/glucagon receptor (GLP1R/GCGR) co-agonism that achieves maximal weight loss without evidence of hyperglycemia was determined in diet-induced obese (DIO) mice chronically treated with GLP1R/GCGR co-agonist peptides differing in their relative receptor agonism. Using glucagon-based peptides, a spectrum of receptor selectivity was achieved by a combination of selective incorporation of GLP-1 sequences, C-terminal modification, backbone lactam stapling to stabilize helical structure, and unnatural amino acid substitutions at the N-terminal dipeptide. In addition to α-amino-isobutyric acid (Aib) substitution at position two, we show that α,α'-dimethyl imidazole acetic acid (Dmia) can serve as a potent replacement for the highly conserved histidine at position one. Selective site-specific pegylation was used to further minimize enzymatic degradation and provide uniform, extended in vivo duration of action. Maximal weight loss devoid of any sign of hyperglycemia was achieved with a co-agonist comparably balanced for in vitro potency at murine GLP1R and GCGR. This peptide exhibited superior weight loss and glucose lowering compared to a structurally matched pure GLP1R agonist, and to co-agonists of relatively reduced GCGR tone. Any further enhancement of the relative GCGR agonist potency yielded increased weight loss but at the expense of elevated blood glucose. We conclude that GCGR agonism concomitant with GLP1R agonism constitutes a promising approach to treatment of the metabolic syndrome. However, the relative ratio of GLP1R/GCGR co-agonism needs to be carefully chosen for each species to maximize weight loss efficacy and minimize hyperglycemia.

  7. Beta-arrestin biased agonism/antagonism at cardiovascular seven transmembrane-spanning receptors.

    PubMed

    Lymperopoulos, Anastasios

    2012-01-01

    Heptahelical, G protein-coupled or seven transmembrane-spanning receptors, such as the β-adrenergic and the angiotensin II type 1 receptors, are the most diverse and therapeutically important family of receptors in the human genome, playing major roles in the physiology of various organs/tissues including the heart and blood vessels. Ligand binding activates heterotrimeric G proteins that transmit intracellular signals by regulating effector enzymes or ion channels. G protein signaling is terminated, in large part, by phosphorylation of the agonist-bound receptor by the G-protein coupled receptor kinases (GRKs), followed by βarrestin binding, which uncouples the phosphorylated receptor from the G protein and subsequently targets the receptor for internalization. As the receptor-βarrestin complex enters the cell, βarrestin-1 and -2, the two mammalian βarrestin isoforms, serve as ligand-regulated scaffolds that recruit a host of intracellular proteins and signal transducers, thus promoting their own wave of signal transduction independently of G-proteins. A constantly increasing number of studies over the past several years have begun to uncover specific roles played by these ubiquitously expressed receptor adapter proteins in signal transduction of several important heptahelical receptors regulating the physiology of various organs/ systems, including the cardiovascular (CV) system. Thus, βarrestin-dependent signaling has increasingly been implicated in CV physiology and pathology, presenting several exciting opportunities for therapeutic intervention in the treatment of CV disorders. Additionally, the discovery of this novel mode of heptahelical receptor signaling via βarrestins has prompted a revision of classical pharmacological concepts such as receptor agonism/antagonism, as well as introduction of new terms such as "biased signaling", which refers to ligand-specific activation of selective signal transduction pathways by the very same receptor. The

  8. Molecular mechanism of agonism and inverse agonism in the melanocortin receptors: Zn(2+) as a structural and functional probe.

    PubMed

    Holst, Birgitte; Schwartz, Thue W

    2003-06-01

    Among the rhodopsin-like 7TM receptors, the MC receptors are functionally unique because their high constitutive signaling activity is regulated not only by endogenous peptide agonists-MSH peptides-but also by endogenous inverse agonists, namely, the proteins agouti and AGRP. Moreover, the metal-ion Zn(2+) increases the signaling activity of at least the MC1 and MC4 receptors in three distinct ways: (1). by directly functioning as an agonist; (2). by potentiating the action of the endogenous agonist; and (3). by inhibiting the binding of the endogenous inverse agonist. Structurally the MC receptors are part of a small subset of 7TM receptors in which the main ligand-binding crevice, and especially extracellular loops 2 and 3, appear to be specially designed for easy ligand access and bias towards an active state of the receptor-i.e., constitutive activity. Thus, in the MC receptors extracellular loop 2 is ultrashort because TM-IV basically connects directly into TM-V, whereas extracellular loop 3 appears to be held in a particular, constrained conformation by a putative, internal disulfide bridge. The interaction mode for the small and well-defined zinc-ion between a third, free Cys residue in extracellular loop 3 and conceivably an Asp residue located at the inner face of TM-III gives important information concerning the activation mechanism for the MC receptors.

  9. Sigma-1 Receptor Agonism Promotes Mechanical Allodynia After Priming the Nociceptive System with Capsaicin.

    PubMed

    Entrena, J M; Sánchez-Fernández, C; Nieto, F R; González-Cano, R; Yeste, S; Cobos, E J; Baeyens, J M

    2016-11-25

    Sigma-1 receptor antagonists promote antinociception in several models of pain, but the effects of sigma-1 agonists on nociception (particularly when the nociceptive system is primed) are not so well characterized; therefore we evaluated the effects of sigma-1 agonists on pain under different experimental conditions. The systemic administration of the selective sigma-1 agonists (+)-pentazocine and PRE-084, as well as the nonselective sigma-1 agonist carbetapentane (used clinically as an antitussive drug), did not alter sensitivity to mechanical stimulation under baseline conditions. However, they greatly promoted secondary mechanical allodynia after priming the nociceptive system with capsaicin. These effects of sigma-1 agonists were consistent in terms potency with the affinities of these drugs for sigma-1 receptors, were reversed by sigma-1 antagonists, and were not observed in sigma-1 knockout mice, indicating that they are sigma-1-mediated. Repeated systemic treatment with PRE-084 induced proallodynic effects even 24 h after treatment completion, but only after the nociceptive system was primed. However, neither the presence of this drug in the organism nor changes in sigma-1 receptor expression in areas involved in pain processing explains its long-term effects, suggesting that sustained sigma-1 agonism induces plastic changes in the nociceptive system that promote nociception.

  10. Sigma-1 Receptor Agonism Promotes Mechanical Allodynia After Priming the Nociceptive System with Capsaicin

    PubMed Central

    Entrena, J. M.; Sánchez-Fernández, C.; Nieto, F. R.; González-Cano, R.; Yeste, S.; Cobos, E. J.; Baeyens, J. M.

    2016-01-01

    Sigma-1 receptor antagonists promote antinociception in several models of pain, but the effects of sigma-1 agonists on nociception (particularly when the nociceptive system is primed) are not so well characterized; therefore we evaluated the effects of sigma-1 agonists on pain under different experimental conditions. The systemic administration of the selective sigma-1 agonists (+)-pentazocine and PRE-084, as well as the nonselective sigma-1 agonist carbetapentane (used clinically as an antitussive drug), did not alter sensitivity to mechanical stimulation under baseline conditions. However, they greatly promoted secondary mechanical allodynia after priming the nociceptive system with capsaicin. These effects of sigma-1 agonists were consistent in terms potency with the affinities of these drugs for sigma-1 receptors, were reversed by sigma-1 antagonists, and were not observed in sigma-1 knockout mice, indicating that they are sigma-1-mediated. Repeated systemic treatment with PRE-084 induced proallodynic effects even 24 h after treatment completion, but only after the nociceptive system was primed. However, neither the presence of this drug in the organism nor changes in sigma-1 receptor expression in areas involved in pain processing explains its long-term effects, suggesting that sustained sigma-1 agonism induces plastic changes in the nociceptive system that promote nociception. PMID:27886264

  11. Binding of GTPγ[35S] is regulated by GDP and receptor activation. Studies with the nociceptin/orphanin FQ receptor

    PubMed Central

    McDonald, John; Lambert, David G

    2010-01-01

    Background and purpose: We have examined the effects of ligand efficacy and receptor density on the binding of guanosine 5′-[γ-thio]triphosphate (GTPγS) and GDP to the nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP)-coupled G-proteins. Experimental approach: In GTPγ[35S] binding experiments, using stable (CHOhNOP) and inducible (CHOINDhNOP) recombinant human and rat NOP we have measured: (i) ligand-specific GDP requirements; (ii) the effects of receptor density on guanine nucleotide affinity/capacity; and (iii) the effect of ligand efficacy on GTPγS association kinetics. Key results: GTPγS competition curves were shallow and modelled by high- and low-affinity components that were relatively consistent between cell types and tissue preparations. In the presence of 1 µM N/OFQ a high-affinity GDP binding site was also present, but the fraction of total binding was reduced. In an efficacy-dependent manner, the partial agonists [F/G]N/OFQ(1-13)NH2 ([Phe1ψ(CH2-NH)Gly2]-nociceptin(1-13)NH2) and naloxone benzoylhydrazone both reduced the fraction of high-affinity sites for GDP (relative to basal). While the pIC50 for high-affinity GDP binding site did not decrease in the presence of 1 µM N/OFQ, N/OFQ produced a significant reduction in pIC50 for the low-affinity site. Agonist-mediated decrease in affinity for GDP binding was efficacy-dependent. GDP displayed three affinities: high, conserved in the presence and absence of ligand; intermediate, present as a low fraction under basal conditions; low (efficacy-dependent), present during receptor activation representing the majority of binding. Conclusions and implications: The affinity of GTPγ[35S] was regulated by GDP and receptor activation caused increased binding of GTPγ[35S] through a reduction in GDP affinity. PMID:20148892

  12. A synthetic agonist at the orphanin FQ/nociceptin receptor ORL1: Anxiolytic profile in the rat

    PubMed Central

    Jenck, François; Wichmann, Juergen; Dautzenberg, Frank M.; Moreau, Jean-Luc; Ouagazzal, Abdel M.; Martin, James R.; Lundstrom, Kenneth; Cesura, Andrea M.; Poli, Sonia M.; Roever, Stephan; Kolczewski, Sabine; Adam, Geo; Kilpatrick, Gavin

    2000-01-01

    The biochemical and behavioral effects of a nonpeptidic, selective, and brain-penetrant agonist at the ORL1 receptor are reported herein. This low molecular weight compound {(1S,3aS)-8- (2,3,3a,4,5,6-hexahydro-1H-phenalen-1-yl)-1-phenyl-1,3,8-triaza- spiro[4.5]decan-4-one} has high affinity for recombinant human ORL1 receptors and has 100-fold selectivity for ORL1 over other members of the opioid receptor family. It is a full agonist at these receptors and elicits dose-dependent anxiolytic-like effects in a set of validated models of distinct types of anxiety states in the rat (i.e., elevated plus-maze, fear-potentiated startle, and operant conflict). When given systemically, the compound has an efficacy and potency comparable to those of a benzodiazepine anxiolytic such as alprazolam or diazepam. However, this compound is differentiated from a classical benzodiazepine anxiolytic by a lack of efficient anti-panic-like activity, absence of anticonvulsant properties, and lack of effects on motor performance and cognitive function at anxiolytic doses (0.3 to 3 mg/kg i.p.). No significant change in intracranial self-stimulation performance and pain reactivity was observed in this dose range. Higher doses of this compound (≥10 mg/kg) induced disruption in rat behavior. These data confirm the notable anxiolytic-like effects observed at low doses with the orphanin FQ/nociceptin neuropeptide given locally into the brain and support a role for orphanin FQ/nociceptin in adaptive behavioral fear responses to stress. PMID:10758169

  13. A Practical Guide to Approaching Biased Agonism at G Protein Coupled Receptors.

    PubMed

    Gundry, Jaimee; Glenn, Rachel; Alagesan, Priya; Rajagopal, Sudarshan

    2017-01-01

    Biased agonism, the ability of a receptor to differentially activate downstream signaling pathways depending on binding of a "biased" agonist compared to a "balanced" agonist, is a well-established paradigm for G protein-coupled receptor (GPCR) signaling. Biased agonists have the promise to act as smarter drugs by specifically targeting pathogenic or therapeutic signaling pathways while avoiding others that could lead to side effects. A number of biased agonists targeting a wide array of GPCRs have been described, primarily based on their signaling in pharmacological assays. However, with the promise of biased agonists as novel therapeutics, comes the peril of not fully characterizing and understanding the activities of these compounds. Indeed, it is likely that some of the compounds that have been described as biased, may not be if quantitative approaches for bias assessment are used. Moreover, cell specific effects can result in "system bias" that cannot be accounted by current approaches for quantifying ligand bias. Other confounding includes kinetic effects which can alter apparent bias and differential propagation of biological signal that results in different levels of amplification of reporters downstream of the same effector. Moreover, the effects of biased agonists frequently cannot be predicted from their pharmacological profiles, and must be tested in the vivo physiological context. Thus, the development of biased agonists as drugs requires a detailed pharmacological characterization, involving both qualitative and quantitative approaches, and a detailed physiological characterization. With this understanding, we stand on the edge of a new era of smarter drugs that target GPCRs.

  14. Pharmacological characterization of the nociceptin/orphanin FQ receptor on ethanol-mediated motivational effects in infant and adolescent rats.

    PubMed

    Miranda-Morales, Roberto Sebastián; Pautassi, Ricardo M

    2016-02-01

    Activation of nociceptin/orphanin FQ (NOP) receptors attenuates ethanol drinking and prevents relapse in adult rodents. In younger rodents (i.e., infant rats), activation of NOP receptors blocks ethanol-induced locomotor activation but does not attenuate ethanol intake. The aim of the present study was to extend the analysis of NOP modulation of ethanol's effects during early ontogeny. Aversive and anxiolytic effects of ethanol were measured in infant and adolescent rats via conditioned taste aversion and the light-dark box test; whereas ethanol-induced locomotor activity and ethanol intake was measured in adolescents only. Before these tests, infant rats were treated with the natural ligand of NOP receptors, nociceptin (0.0, 0.5 or 1.0 μg) and adolescent rats were treated with the specific agonist Ro 64-6198 (0.0, 0.1 or 0.3 mg/kg). The activation of NOP receptors attenuated ethanol-induced anxiolysis in adolescents only, and had no effect on ethanol's aversive effects. Administration of Ro 64-6198 blocked ethanol-induced locomotor activation but did not modify ethanol intake patterns. The attenuation of ethanol stimulating and anxiolytic effect by activation of NOP receptors indicates a modulatory role of this receptor on ethanol effects, which is expressed early in ontogeny. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Peripheral cannabinoid-1 receptor inverse agonism reduces obesity by reversing leptin resistance.

    PubMed

    Tam, Joseph; Cinar, Resat; Liu, Jie; Godlewski, Grzegorz; Wesley, Daniel; Jourdan, Tony; Szanda, Gergő; Mukhopadhyay, Bani; Chedester, Lee; Liow, Jeih-San; Innis, Robert B; Cheng, Kejun; Rice, Kenner C; Deschamps, Jeffrey R; Chorvat, Robert J; McElroy, John F; Kunos, George

    2012-08-08

    Obesity-related leptin resistance manifests in loss of leptin's ability to reduce appetite and increase energy expenditure. Obesity is also associated with increased activity of the endocannabinoid system, and CB(1) receptor (CB(1)R) inverse agonists reduce body weight and the associated metabolic complications, although adverse neuropsychiatric effects halted their therapeutic development. Here we show that in mice with diet-induced obesity (DIO), the peripherally restricted CB(1)R inverse agonist JD5037 is equieffective with its brain-penetrant parent compound in reducing appetite, body weight, hepatic steatosis, and insulin resistance, even though it does not occupy central CB(1)R or induce related behaviors. Appetite and weight reduction by JD5037 are mediated by resensitizing DIO mice to endogenous leptin through reversing the hyperleptinemia by decreasing leptin expression and secretion by adipocytes and increasing leptin clearance via the kidney. Thus, inverse agonism at peripheral CB(1)R not only improves cardiometabolic risk in obesity but has antiobesity effects by reversing leptin resistance.

  16. Ecdysone Receptor Agonism Leading to Lethal Molting Disruption in Arthropods: Review and Adverse Outcome Pathway Development.

    PubMed

    Song, You; Villeneuve, Daniel L; Toyota, Kenji; Iguchi, Taisen; Tollefsen, Knut Erik

    2017-04-18

    Molting is critical for growth, development, reproduction, and survival in arthropods. Complex neuroendocrine pathways are involved in the regulation of molting and may potentially become targets of environmental endocrine disrupting chemicals (EDCs). Based on several known ED mechanisms, a wide range of pesticides has been developed to combat unwanted organisms in food production activities such as agriculture and aquaculture. Meanwhile, these chemicals may also pose hazards to nontarget species by causing molting defects, and thus potentially affecting the health of the ecosystems. The present review summarizes the available knowledge on molting-related endocrine regulation and chemically mediated disruption in arthropods (with special focus on insects and crustaceans), to identify research gaps and develop a mechanistic model for assessing environmental hazards of these compounds. Based on the review, multiple targets of EDCs in the molting processes were identified and the link between mode of action (MoA) and adverse effects characterized to inform future studies. An adverse outcome pathway (AOP) describing ecdysone receptor agonism leading to incomplete ecdysis associated mortality was developed according to the OECD guideline and subjected to weight of evidence considerations by evolved Bradford Hill Criteria. This review proposes the first invertebrate ED AOP and may serve as a knowledge foundation for future environmental studies and AOP development.

  17. A Practical Guide to Approaching Biased Agonism at G Protein Coupled Receptors

    PubMed Central

    Gundry, Jaimee; Glenn, Rachel; Alagesan, Priya; Rajagopal, Sudarshan

    2017-01-01

    Biased agonism, the ability of a receptor to differentially activate downstream signaling pathways depending on binding of a “biased” agonist compared to a “balanced” agonist, is a well-established paradigm for G protein-coupled receptor (GPCR) signaling. Biased agonists have the promise to act as smarter drugs by specifically targeting pathogenic or therapeutic signaling pathways while avoiding others that could lead to side effects. A number of biased agonists targeting a wide array of GPCRs have been described, primarily based on their signaling in pharmacological assays. However, with the promise of biased agonists as novel therapeutics, comes the peril of not fully characterizing and understanding the activities of these compounds. Indeed, it is likely that some of the compounds that have been described as biased, may not be if quantitative approaches for bias assessment are used. Moreover, cell specific effects can result in “system bias” that cannot be accounted by current approaches for quantifying ligand bias. Other confounding includes kinetic effects which can alter apparent bias and differential propagation of biological signal that results in different levels of amplification of reporters downstream of the same effector. Moreover, the effects of biased agonists frequently cannot be predicted from their pharmacological profiles, and must be tested in the vivo physiological context. Thus, the development of biased agonists as drugs requires a detailed pharmacological characterization, involving both qualitative and quantitative approaches, and a detailed physiological characterization. With this understanding, we stand on the edge of a new era of smarter drugs that target GPCRs. PMID:28174517

  18. Synthesis of Novel Analogs of Cabergoline: Improving Cardiovascular Safety by Removing 5-HT2B Receptor Agonism

    PubMed Central

    2013-01-01

    The dopamine agonist cabergoline has been used to treat prolactinomas, Parkinson’s disease, Cushing’s disease, and sexual dysfunction. However, its clinical use was severely curtailed when it was found that patients taking cabergoline had an increased risk of developing cardiac-valve regurgitation. This potentially life-threatening condition has been associated with drugs, such as cabergoline, that are 5-HT2B receptor agonists. We prepared analogs of cabergoline and have identified several that have limited or no agonism at the 5-HT2B receptor. PMID:23606928

  19. Contribution of nociceptin/orphanin FQ receptors to the anti-nociceptive and hypothermic effects of dipyrone.

    PubMed

    Ertin, Ismet Hande; Gunduz, Ozgur; Ulugol, Ahmet

    2015-02-01

    Dipyrone is one of the most commonly used non-opioid analgesic and antipyretic drug. Its anti-nociceptive and hypothermic effects have long been suspected to be centrally mediated. The involvement of the most recently discovered opioid peptide, nociceptin/orphanin FQ (N/OFQ), and its receptor (NOP) in pain transmission is controversial. It appears to be pro-nociceptive when administered supra-spinally, but exerts anti-nociceptive effects when injected spinally or systemically. Investigation of the role of the N/OFQ system in paracetamol-induced anti-nociception and hypothermia led us to determine its role in the anti-nociceptive and hypothermic effects of dipyrone. Material and Methods Hot-plate and tail-flick tests were used to assess nociception, and a rectal thermometer was used to measure rectal temperature in mice. Mice injected with dipyrone (150, 300, 600 mg/kg, i.p.) displayed dose-related anti-nociception and hypothermia. The NOP receptor antagonist JTC-801 (3 mg/kg, i.p.), at a dose that exerted no effect when used alone, alleviated dipyrone-induced anti-nociception but did not reverse dipyrone-induced hypothermia. We conclude that NOP receptors participate in the anti-nociceptive, but not in the hypothermic, effects of dipyrone.

  20. Intrathecal administration of nociceptin/orphanin FQ receptor agonists in rats: A strategy to relieve chemotherapy-induced neuropathic hypersensitivity.

    PubMed

    Micheli, Laura; Di Cesare Mannelli, Lorenzo; Rizzi, Anna; Guerrini, Remo; Trapella, Claudio; Calò, Girolamo; Ghelardini, Carla

    2015-11-05

    Oxaliplatin and paclitaxel are considered central components in the treatment of colorectal and breast cancer, respectively. The development of neuropathy during chronic treatment represents the major dose-limiting side effect that leads to discontinuation or interruption of therapies. The management of neuropathy is a challenge to individuate innovative therapeutic strategies based on new targets and correct routes of administration. We evaluated the hypersensitivity reliever effect of different opioid receptor agonists in rat models of oxaliplatin and paclitaxel-induced neuropathy. Compounds were spinally infused by intrathecal catheter. In oxaliplatin-treated rats, 0.3 nmol morphine induced the reversion of the mechanical hypersensitivity (Paw-pressure test), nociceptin/orphanin FQ (N/OFQ; 0.3-3 nmol) significantly increased the pain threshold without reaching the values of the control animals. The N/OFQ peptide (NOP) receptor full agonist UFP-112 reverted pain threshold alterations at lower dosage (0.1 nmol) vs morphine and N/OFQ, the partial agonist UFP-113 (0.1-1 nmol) was similar to N/OFQ. The higher efficacy of morphine vs N/OFQ was highlighted also in paclitaxel-treated rats. The mechanical hypersensitivity was fully reverted by 0.1 nmol UFP-112 and UFP-113. In conclusion, intrathecal μ opioid peptide (MOP) and NOP receptor agonists relieved chemotherapy-induced neuropathic pain. The synthetic peptides showed valuable potency and efficacy suggesting the NOP system as an exploitable target.

  1. Fulfilling the Promise of "Biased" G Protein–Coupled Receptor Agonism

    PubMed Central

    Maudsley, Stuart; Bohn, Laura M.

    2015-01-01

    The fact that over 30% of current pharmaceuticals target heptahelical G protein–coupled receptors (GPCRs) attests to their tractability as drug targets. Although GPCR drug development has traditionally focused on conventional agonists and antagonists, the growing appreciation that GPCRs mediate physiologically relevant effects via both G protein and non–G protein effectors has prompted the search for ligands that can "bias" downstream signaling in favor of one or the other process. Biased ligands are novel entities with distinct signaling profiles dictated by ligand structure, and the potential prospect of biased ligands as better drugs has been pleonastically proclaimed. Indeed, preclinical proof-of-concept studies have demonstrated that both G protein and arrestin pathway-selective ligands can promote beneficial effects in vivo while simultaneously antagonizing deleterious ones. But along with opportunity comes added complexity and new challenges for drug discovery. If ligands can be biased, then ligand classification becomes assay dependent, and more nuanced screening approaches are needed to capture ligand efficacy across several dimensions of signaling. Moreover, because the signaling repertoire of biased ligands differs from that of the native agonist, unpredicted responses may arise in vivo as these unbalanced signals propagate. For any given GPCR target, establishing a framework relating in vitro efficacy to in vivo biologic response is crucial to biased drug discovery. This review discusses approaches to describing ligand efficacy in vitro, translating ligand bias into biologic response, and developing a systems-level understanding of biased agonism in vivo, with the overall goal of overcoming current barriers to developing biased GPCR therapeutics. PMID:26134495

  2. Cellular androgen content influences enzalutamide agonism of F877L mutant androgen receptor

    PubMed Central

    Coleman, Daniel J.; Van Hook, Kathryn; King, Carly J.; Schwartzman, Jacob; Lisac, Robert; Urrutia, Joshua; Sehrawat, Archana; Woodward, Josha; Wang, Nicholas J.; Gulati, Roman; Thomas, George V.; Beer, Tomasz M.; Gleave, Martin; Korkola, James E.; Gao, Lina; Heiser, Laura M.; Alumkal, Joshi J.

    2016-01-01

    Prostate cancer is the most commonly diagnosed and second-most lethal cancer among men in the United States. The vast majority of prostate cancer deaths are due to castration-resistant prostate cancer (CRPC) – the lethal form of the disease that has progressed despite therapies that interfere with activation of androgen receptor (AR) signaling. One emergent resistance mechanism to medical castration is synthesis of intratumoral androgens that activate the AR. This insight led to the development of the AR antagonist enzalutamide. However, resistance to enzalutamide invariably develops, and disease progression is nearly universal. One mechanism of resistance to enzalutamide is an F877L mutation in the AR ligand-binding domain that can convert enzalutamide to an agonist of AR activity. However, mechanisms that contribute to the agonist switch had not been fully clarified, and there were no therapies to block AR F877L. Using cell line models of castration-resistant prostate cancer (CRPC), we determined that cellular androgen content influences enzalutamide agonism of mutant F877L AR. Further, enzalutamide treatment of AR F877L-expressing cell lines recapitulated the effects of androgen activation of F877L AR or wild-type AR. Because the BET bromodomain inhibitor JQ-1 was previously shown to block androgen activation of wild-type AR, we tested JQ-1 in AR F877L-expressing CRPC models. We determined that JQ-1 suppressed androgen or enzalutamide activation of mutant F877L AR and suppressed growth of mutant F877L AR CRPC tumors in vivo, demonstrating a new strategy to treat tumors harboring this mutation. PMID:27276681

  3. Probing biased/partial agonism at the G protein-coupled A(2B) adenosine receptor.

    PubMed

    Gao, Zhan-Guo; Balasubramanian, Ramachandran; Kiselev, Evgeny; Wei, Qiang; Jacobson, Kenneth A

    2014-08-01

    G protein-coupled A(2B) adenosine receptor (AR) regulates numerous important physiological functions, but its activation by diverse A(2B)AR agonists is poorly profiled. We probed potential partial and/or biased agonism in cell lines expressing variable levels of endogenous or recombinant A(2B)AR. In cAMP accumulation assays, both 5'-substituted NECA and C2-substituted MRS3997 are full agonists. However, only 5'-substituted adenosine analogs are full agonists in calcium mobilization, ERK1/2 phosphorylation and β-arrestin translocation. A(2B)AR overexpression in HEK293 cells markedly increased the agonist potency and maximum effect in cAMP accumulation, but less in calcium and ERK1/2. A(2B)AR siRNA silencing was more effective in reducing the maximum cAMP effect of non-nucleoside agonist BAY60-6583 than NECA's. A quantitative 'operational model' characterized C2-substituted MRS3997 as either balanced (cAMP accumulation, ERK1/2) or strongly biased agonist (against calcium, β-arrestin). N⁶-substitution biased against ERK1/2 (weakly) and calcium and β-arrestin (strongly) pathways. BAY60-6583 is ERK1/2-biased, suggesting a mechanism distinct from adenosine derivatives. BAY60-6583, as A(2B)AR antagonist in MIN-6 mouse pancreatic β cells expressing low A(2B)AR levels, induced insulin release. This is the first relatively systematic study of structure-efficacy relationships of this emerging drug target. Published by Elsevier Inc.

  4. Blockade of nociceptin/orphanin FQ receptor signaling reverses LPS-induced depressive-like behavior in mice.

    PubMed

    Medeiros, Iris U; Ruzza, Chiara; Asth, Laila; Guerrini, Remo; Romão, Pedro R T; Gavioli, Elaine C; Calo, Girolamo

    2015-10-01

    Nociceptin/orphanin FQ is the natural ligand of a Gi-protein coupled receptor named NOP. This peptidergic system is involved in the regulation of mood states and inflammatory responses. The present study aimed to investigate the consequences of blocking NOP signaling in lipopolysaccharide (LPS)-induced sickness and depressive-like behaviors in mice. LPS 0.8mg/kg, ip, significantly induced sickness signs such as weight loss, decrease of water and food intake and depressive-like behavior in the tail suspension test. Nortriptyline (ip, 60min prior the test) reversed the LPS-induced depressive states. The NOP receptor antagonist SB-612111, 30min prior LPS, did not modify LPS-induced sickness signs and depressive-like behavior. However, when injected 24h after LPS, NOP antagonists (UFP-101, icv, and SB-612111, ip) significantly reversed the mood effects of LPS. LPS evoked similar sickness signs and significantly increased tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) plasma levels 6h post-injection in wild-type ((NOP(+/+)) and NOP knockout ((NOP(-/-)) mice. However, LPS treatment elicited depressive-like effects in NOP(+/+) but not in NOP(-/-) mice. In conclusion, the pharmacological and genetic blockade of NOP signaling does not affect LPS evoked sickness signs while reversing depressive-like behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Mechanisms of inverse agonism of antipsychotic drugs at the D(2) dopamine receptor: use of a mutant D(2) dopamine receptor that adopts the activated conformation.

    PubMed

    Wilson, J; Lin, H; Fu, D; Javitch, J A; Strange, P G

    2001-04-01

    The antipsychotic drugs have been shown to be inverse agonists at the D(2) dopamine receptor. We have examined the mechanism of this inverse agonism by making mutations in residue T343 in the base of the sixth transmembrane spanning region of the receptor. T343R, T343S and T343K mutant D(2) dopamine receptors were made and the T343R mutant characterized in detail. The T343R mutant D(2) dopamine receptor exhibits properties of a receptor that resides more in the activated state, namely increased agonist binding affinity (independent of G-protein coupling and dependent on agonist efficacy), increased agonist potency in functional tests (adenylyl cyclase inhibition) and increased inverse agonist effects. The binding of agonists to the mutant receptor also shows sensitivity to sodium ions, unlike the native receptor, so that isomerization of the receptor to its inactive state may be driven by sodium ions. The binding of inverse agonists to the receptor is, however, unaffected by the mutation. We conclude that inverse agonism at this receptor is not achieved by the inverse agonist binding preferentially to the non-activated state of the receptor over the activated state. Rather the inverse agonist appears to bind to all forms of the receptor but then renders the receptor inactive.

  6. Genetic Deletion of the Nociceptin/Orphanin FQ Receptor in the Rat Confers Resilience to the Development of Drug Addiction.

    PubMed

    Kallupi, Marsida; Scuppa, Giulia; de Guglielmo, Giordano; Calò, Girolamo; Weiss, Friedbert; Statnick, Michael A; Rorick-Kehn, Linda M; Ciccocioppo, Roberto

    2017-02-01

    The nociceptin (NOP) receptor is a G-protein-coupled receptor whose natural ligand is the NOP/orphanin FQ (N/OFQ) peptide. Evidence from pharmacological studies suggests that the N/OFQ system is implicated in the regulation of several addiction-related phenomena, such as drug intake, withdrawal, and relapse. Here, to further explore the role of NOP system in addiction, we used NOP (-/-) rats to study the motivation for cocaine, heroin, and alcohol self-administration in the absence of N/OFQ function. Conditioned place preference (CPP) and saccharin (0.2% w/v) self-administration were also investigated. Results showed that NOP (-/-) rats self-administer less cocaine (0.25, 0.125, or 0.5 mg/infusion) both under a fixed ratio 1 and a progressive ratio schedule of reinforcement compared with wild-type (Wt) controls. Consistently, cocaine (10 mg/kg, i.p.) was able to induce CPP in Wt but not in NOP (-/-). When NOP (-/-) rats were tested for heroin (20 μg/infusion) and ethanol (10% v/v) self-administration, they showed significantly lower drug intake compared with Wt. Conversely, saccharin self-administration was not affected by NOP deletion, excluding the possibility of nonspecific learning deficits or generalized disruption of reward mechanisms in NOP (-/-) rats. These findings were confirmed with pharmacological experiments using two selective NOP antagonists, SB-612111 and LY2817412. Both drugs attenuated alcohol self-administration in Wt rats but not in NOP (-/-) rats. In conclusion, our results demonstrate that genetic deletion of NOP receptors confers resilience to drug abuse and support a role for NOP receptor antagonism as a potential treatment option for drug addiction.

  7. Quantitative Signaling and Structure-Activity Analyses Demonstrate Functional Selectivity at the Nociceptin/Orphanin FQ Opioid Receptor

    PubMed Central

    Chang, Steven D.; Mascarella, S. Wayne; Spangler, Skylar M.; Gurevich, Vsevolod V.; Navarro, Hernan A.; Carroll, F. Ivy

    2015-01-01

    Comprehensive studies that consolidate selective ligands, quantitative comparisons of G protein versus arrestin-2/3 coupling, together with structure-activity relationship models for G protein–coupled receptor (GPCR) systems are less commonly employed. Here we examine biased signaling at the nociceptin/orphanin FQ opioid receptor (NOPR), the most recently identified member of the opioid receptor family. Using real-time, live-cell assays, we identified the signaling profiles of several NOPR-selective ligands in upstream GPCR signaling (G protein and arrestin pathways) to determine their relative transduction coefficients and signaling bias. Complementing this analysis, we designed novel ligands on the basis of NOPR antagonist J-113,397 [(±)-1-[(3R*,4R*)-1-(cyclooctylmethyl)-3-(hydroxymethyl)-4-piperidinyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one] to explore structure-activity relationships. Our study shows that NOPR is capable of biased signaling, and further, the NOPR selective ligands MCOPPB [1-[1-(1-methylcyclooctyl)-4-piperidinyl]-2-(3R)-3-piperidinyl-1H-benzimidazole trihydrochloride] and NNC 63-0532 [8-(1-naphthalenylmethyl)-4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]decane-3-acetic acid, methyl ester] are G protein–biased agonists. Additionally, minor structural modification of J-113,397 can dramatically shift signaling from antagonist to partial agonist activity. We explore these findings with in silico modeling of binding poses. This work is the first to demonstrate functional selectivity and identification of biased ligands at the nociceptin opioid receptor. PMID:26134494

  8. Divergent transducer-specific molecular efficacies generate biased agonism at a G protein-coupled receptor (GPCR).

    PubMed

    Strachan, Ryan T; Sun, Jin-peng; Rominger, David H; Violin, Jonathan D; Ahn, Seungkirl; Rojas Bie Thomsen, Alex; Zhu, Xiao; Kleist, Andrew; Costa, Tommaso; Lefkowitz, Robert J

    2014-05-16

    The concept of "biased agonism" arises from the recognition that the ability of an agonist to induce a receptor-mediated response (i.e. "efficacy") can differ across the multiple signal transduction pathways (e.g. G protein and β-arrestin (βarr)) emanating from a single GPCR. Despite the therapeutic promise of biased agonism, the molecular mechanism(s) whereby biased agonists selectively engage signaling pathways remain elusive. This is due in large part to the challenges associated with quantifying ligand efficacy in cells. To address this, we developed a cell-free approach to directly quantify the transducer-specific molecular efficacies of balanced and biased ligands for the angiotensin II type 1 receptor (AT1R), a prototypic GPCR. Specifically, we defined efficacy in allosteric terms, equating shifts in ligand affinity (i.e. KLo/KHi) at AT1R-Gq and AT1R-βarr2 fusion proteins with their respective molecular efficacies for activating Gq and βarr2. Consistent with ternary complex model predictions, transducer-specific molecular efficacies were strongly correlated with cellular efficacies for activating Gq and βarr2. Subsequent comparisons across transducers revealed that biased AT1R agonists possess biased molecular efficacies that were in strong agreement with the signaling bias observed in cellular assays. These findings not only represent the first measurements of the thermodynamic driving forces underlying differences in ligand efficacy between transducers but also support a molecular mechanism whereby divergent transducer-specific molecular efficacies generate biased agonism at a GPCR.

  9. Nociceptin/orphanin FQ-induced delay in gastric emptying: role of central corticotropin-releasing factor and glucocorticoid receptors.

    PubMed

    Broccardo, M; Scaccianoce, S; Del Bianco, P; Agostini, S; Petrella, C; Improta, G

    2005-12-01

    When injected intracerebroventricularly (i.c.v.) in rats, nociceptin/orphanin FQ (N/OFQ) delays gastric emptying and increases plasma corticosterone levels. Our aim in this study was to investigate changes in gastric emptying of a phenol red meal, and the plasma corticosterone response to N/OFQ in adrenalectomized (ADX) rats, in ADX rats injected with corticosterone at 1, 24 and 72 h before the gastric emptying assay, and in intact rats i.c.v. pretreated with a glucocorticoid antagonist (RU486) and with a corticotropin-releasing factor receptor antagonist (alpha-helical CRF9-41). In adrenal intact rats, i.c.v. injection of N/OFQ (2.5 nmol rat-1) significantly delayed gastric emptying (by 70%) and increased plasma corticosterone concentrations. Conversely, in ADX rats, N/OFQ left gastric emptying unchanged. In ADX rats, corticosterone injected at 1, 24 and 72 h before the gastric emptying assay almost restored the N/OFQ-induced delay in gastric emptying. Finally, pretreatment with RU486- and alpha-helical CRF9-41 abolished the N/OFQ-induced inhibition of gastric emptying. These findings suggest that central N/OFQ inhibits gastric emptying through an integrated orphaninergic system-CRF interaction in which corticosterone plays a permissive role.

  10. Inverse agonism of histamine H2 antagonist accounts for upregulation of spontaneously active histamine H2 receptors.

    PubMed Central

    Smit, M J; Leurs, R; Alewijnse, A E; Blauw, J; Van Nieuw Amerongen, G P; Van De Vrede, Y; Roovers, E; Timmerman, H

    1996-01-01

    Histamine H2 receptors transfected in Chinese hamster ovary (CHO) cells are time- and dose-dependently upregulated upon exposure to the H2 antagonists cimetidine and ranitidine. This effect appears to be H2 receptor-mediated as no change in receptor density was observed after H1 or H3 antagonist treatment or after incubation with the structural analogue of cimetidine, VUF 8299, which has no H2 antagonistic effects. By using transfected CHO cells expressing different densities of wild-type H2 receptors or an uncoupled H2Leu124Ala receptor, the histamine H2 receptor was found to display considerable agonist-independent H2 receptor activity. Cimetidine and ranitidine, which both induce H2 receptor upregulation, actually functioned as inverse agonists in those cell lines displaying spontaneous agonist-independent H2 receptor activity. Burimamide, on the other hand, was shown to act as a neutral antagonist and did as expected not induce H2 receptor upregulation after long-term exposure. The displayed inverse agonism of H2 antagonists appears to be a mechanistic basis for the observed H2 antagonist-induced H2 receptor upregulation in transfected CHO cells. These observations shed new light on the pharmacological classification of the H2 antagonists and may offer a plausible explanation for the observed development of tolerance after prolonged clinical use. Images Fig. 3 PMID:8692899

  11. GLP-1 receptor agonism ameliorates hepatic VLDL overproduction and de novo lipogenesis in insulin resistance.

    PubMed

    Taher, Jennifer; Baker, Christopher L; Cuizon, Carmelle; Masoudpour, Hassan; Zhang, Rianna; Farr, Sarah; Naples, Mark; Bourdon, Celine; Pausova, Zdenka; Adeli, Khosrow

    2014-12-01

    Fasting dyslipidemia is commonly observed in insulin resistant states and mechanistically linked to hepatic overproduction of very low density lipoprotein (VLDL). Recently, the incretin hormone glucagon-like peptide-1 (GLP-1) has been implicated in ameliorating dyslipidemia associated with insulin resistance and reducing hepatic lipid stores. Given that hepatic VLDL production is a key determinant of circulating lipid levels, we investigated the role of both peripheral and central GLP-1 receptor (GLP-1R) agonism in regulation of VLDL production. The fructose-fed Syrian golden hamster was employed as a model of diet-induced insulin resistance and VLDL overproduction. Hamsters were treated with the GLP-1R agonist exendin-4 by intraperitoneal (ip) injection for peripheral studies or by intracerebroventricular (ICV) administration into the 3rd ventricle for central studies. Peripheral studies were repeated in vagotomised hamsters. Short term (7-10 day) peripheral exendin-4 enhanced satiety and also prevented fructose-induced fasting dyslipidemia and hyperinsulinemia. These changes were accompanied by decreased fasting plasma glucose levels, reduced hepatic lipid content and decreased levels of VLDL-TG and -apoB100 in plasma. The observed changes in fasting dyslipidemia could be partially explained by reduced respiratory exchange ratio (RER) thereby indicating a switch in energy utilization from carbohydrate to lipid. Additionally, exendin-4 reduced mRNA markers associated with hepatic de novo lipogenesis and inflammation. Despite these observations, GLP-1R activity could not be detected in primary hamster hepatocytes, thus leading to the investigation of a potential brain-liver axis functioning to regulate lipid metabolism. Short term (4 day) central administration of exendin-4 decreased body weight and food consumption and further prevented fructose-induced hypertriglyceridemia. Additionally, the peripheral lipid-lowering effects of exendin-4 were negated in

  12. Structure-Function Basis of Attenuated Inverse Agonism of Angiotensin II Type 1 Receptor Blockers for Active-State Angiotensin II Type 1 Receptor

    PubMed Central

    Unal, Hamiyet; Karnik, Sadashiva S.; Node, Koichi

    2015-01-01

    Ligand-independent signaling by the angiotensin II type 1 receptor (AT1R) can be activated in clinical settings by mechanical stretch and autoantibodies as well as receptor mutations. Transition of the AT1R to the activated state is known to lower inverse agonistic efficacy of clinically used AT1R blockers (ARBs). The structure-function basis for reduced efficacy of inverse agonists is a fundamental aspect that has been understudied not only in relation to the AT1R but also regarding other homologous receptors. Here, we demonstrate that the active-state transition in the AT1R indeed attenuates an inverse agonistic effect of four biphenyl-tetrazole ARBs through changes in specific ligand-receptor interactions. In the ground state, tight interactions of four ARBs with a set of residues (Ser109TM3, Phe182ECL2, Gln257TM6, Tyr292TM7, and Asn295TM7) results in potent inverse agonism. In the activated state, the ARB-AT1R interactions shift to a different set of residues (Val108TM3, Ser109TM3, Ala163TM4, Phe182ECL2, Lys199TM5, Tyr292TM7, and Asn295TM7), resulting in attenuated inverse agonism. Interestingly, V108I, A163T, N295A, and F182A mutations in the activated state of the AT1R shift the functional response to the ARB binding toward agonism, but in the ground state the same mutations cause inverse agonism. Our data show that the second extracellular loop is an important regulator of the functional states of the AT1R. Our findings suggest that the quest for discovering novel ARBs, and improving current ARBs, fundamentally depends on the knowledge of the unique sets of residues that mediate inverse agonistic potency in the two states of the AT1R. PMID:26121982

  13. Structure-Function Basis of Attenuated Inverse Agonism of Angiotensin II Type 1 Receptor Blockers for Active-State Angiotensin II Type 1 Receptor.

    PubMed

    Takezako, Takanobu; Unal, Hamiyet; Karnik, Sadashiva S; Node, Koichi

    2015-09-01

    Ligand-independent signaling by the angiotensin II type 1 receptor (AT1R) can be activated in clinical settings by mechanical stretch and autoantibodies as well as receptor mutations. Transition of the AT1R to the activated state is known to lower inverse agonistic efficacy of clinically used AT1R blockers (ARBs). The structure-function basis for reduced efficacy of inverse agonists is a fundamental aspect that has been understudied not only in relation to the AT1R but also regarding other homologous receptors. Here, we demonstrate that the active-state transition in the AT1R indeed attenuates an inverse agonistic effect of four biphenyl-tetrazole ARBs through changes in specific ligand-receptor interactions. In the ground state, tight interactions of four ARBs with a set of residues (Ser109(TM3), Phe182(ECL2), Gln257(TM6), Tyr292(TM7), and Asn295(TM7)) results in potent inverse agonism. In the activated state, the ARB-AT1R interactions shift to a different set of residues (Val108(TM3), Ser109(TM3), Ala163(TM4), Phe182(ECL2), Lys199(TM5), Tyr292(TM7), and Asn295(TM7)), resulting in attenuated inverse agonism. Interestingly, V108I, A163T, N295A, and F182A mutations in the activated state of the AT1R shift the functional response to the ARB binding toward agonism, but in the ground state the same mutations cause inverse agonism. Our data show that the second extracellular loop is an important regulator of the functional states of the AT1R. Our findings suggest that the quest for discovering novel ARBs, and improving current ARBs, fundamentally depends on the knowledge of the unique sets of residues that mediate inverse agonistic potency in the two states of the AT1R.

  14. Acute and subchronic antinociceptive effects of nociceptin/orphanin FQ receptor agonists infused by intrathecal route in rats.

    PubMed

    Micheli, Laura; Di Cesare Mannelli, Lorenzo; Guerrini, Remo; Trapella, Claudio; Zanardelli, Matteo; Ciccocioppo, Roberto; Rizzi, Anna; Ghelardini, Carla; Calò, Girolamo

    2015-05-05

    Severe pain occurs in the context of many diseases and conditions and is a leading cause of disability. Nociceptin/orphanin FQ (N/OFQ) is the endogenous ligand of the N/OFQ peptide (NOP) receptor. This peptidergic system controls pain transmission and in particular spinally administered N/OFQ has robust antinociceptive properties. The aim of this study was to investigate the spinal antinociceptive properties of NOP peptide agonists after acute and subchronic treatment in rats. Doses unable to alter motor coordination were selected. UFP-112 (full NOP agonist) and UFP-113 (partial NOP agonist) were administered intrathecally (i.t.) by spinal catheterization. Acute injection of UFP-112 induced antinociceptive response at lower dosages (0.03-1nmol i.t.) compared to morphine and similar to N/OFQ. UFP-113 was effective in a 0.001-1nmol i.t. dose range. The antinociceptive effects of NOP ligands were no longer evident in rats knockout for the NOP gene, while those of morphine were maintained. The continuous spinal infusion (by osmotic pumps) of 0.1nmol/h UFP-112 and UFP-113 showed antinociceptive action comparable to 1-3nmol/h morphine or N/OFQ. The antinociceptive effect of morphine progressively decreased and was no longer significant after 6 days of treatment. Similar results were obtained with N/OFQ, UFP-112, and UFP-113. The acute i.t. injection of morphine in animals tolerant to N/OFQ and UFP-112 evoked analgesic effects. Neither morphine nor N/OFQ induced antinociceptive effects in morphine- and UFP-113-tolerant rats. In conclusion this study highlights the analgesic efficacy and potency of UFP-112 and UFP-113 underlining the relevance of NOP system in analgesia.

  15. Divergent Transducer-specific Molecular Efficacies Generate Biased Agonism at a G Protein-coupled Receptor (GPCR)*

    PubMed Central

    Strachan, Ryan T.; Sun, Jin-peng; Rominger, David H.; Violin, Jonathan D.; Ahn, Seungkirl; Rojas Bie Thomsen, Alex; Zhu, Xiao; Kleist, Andrew; Costa, Tommaso; Lefkowitz, Robert J.

    2014-01-01

    The concept of “biased agonism” arises from the recognition that the ability of an agonist to induce a receptor-mediated response (i.e. “efficacy”) can differ across the multiple signal transduction pathways (e.g. G protein and β-arrestin (βarr)) emanating from a single GPCR. Despite the therapeutic promise of biased agonism, the molecular mechanism(s) whereby biased agonists selectively engage signaling pathways remain elusive. This is due in large part to the challenges associated with quantifying ligand efficacy in cells. To address this, we developed a cell-free approach to directly quantify the transducer-specific molecular efficacies of balanced and biased ligands for the angiotensin II type 1 receptor (AT1R), a prototypic GPCR. Specifically, we defined efficacy in allosteric terms, equating shifts in ligand affinity (i.e. KLo/KHi) at AT1R-Gq and AT1R-βarr2 fusion proteins with their respective molecular efficacies for activating Gq and βarr2. Consistent with ternary complex model predictions, transducer-specific molecular efficacies were strongly correlated with cellular efficacies for activating Gq and βarr2. Subsequent comparisons across transducers revealed that biased AT1R agonists possess biased molecular efficacies that were in strong agreement with the signaling bias observed in cellular assays. These findings not only represent the first measurements of the thermodynamic driving forces underlying differences in ligand efficacy between transducers but also support a molecular mechanism whereby divergent transducer-specific molecular efficacies generate biased agonism at a GPCR. PMID:24668815

  16. Different epidermal growth factor (EGF) receptor ligands show distinct kinetics and biased or partial agonism for homodimer and heterodimer formation.

    PubMed

    Macdonald-Obermann, Jennifer L; Pike, Linda J

    2014-09-19

    The EGF receptor has seven different cognate ligands. Previous work has shown that these different ligands are capable of inducing different biological effects, even in the same cell. To begin to understand the molecular basis for this variation, we used luciferase fragment complementation to measure ligand-induced dimer formation and radioligand binding to study the effect of the ligands on subunit-subunit interactions in EGF receptor (EGFR) homodimers and EGFR/ErbB2 heterodimers. In luciferase fragment complementation imaging studies, amphiregulin (AREG) functioned as a partial agonist, inducing only about half as much total dimerization as the other three ligands. However, unlike the other ligands, AREG showed biphasic kinetics for dimer formation, suggesting that its path for EGF receptor activation involves binding to both monomers and preformed dimers. EGF, TGFα, and betacellulin (BTC) appear to mainly stimulate receptor activation through binding to and dimerization of receptor monomers. In radioligand binding assays, EGF and TGFα exhibited increased affinity for EGFR/ErbB2 heterodimers compared with EGFR homodimers. By contrast, BTC and AREG showed a similar affinity for both dimers. Thus, EGF and TGFα are biased agonists, whereas BTC and AREG are balanced agonists with respect to selectivity of dimer formation. These data suggest that the differences in biological response to different EGF receptor ligands may result from partial agonism for dimer formation, differences in the kinetic pathway utilized to generate activated receptor dimers, and biases in the formation of heterodimers versus homodimers. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Vasopressin 1a receptor partial agonism increases sodium excretion and reduces portal hypertension and ascites in cirrhotic rats.

    PubMed

    Fernández-Varo, Guillermo; Oró, Denise; Cable, Edward Earl; Reichenbach, Vedrana; Carvajal, Silvia; de la Presa, Bernardino González; Wiśniewski, Kazimierz; Ginés, Pere; Harris, Geoffrey; Jiménez, Wladimiro

    2016-01-01

    Patients and rats with cirrhosis and ascites have portal hypertension and circulatory dysfunction. Synthetic arginine vasopressin (AVP) receptor agonists able to induce systemic and mesenteric vasoconstriction have shown their usefulness in reducing portal pressure (PP) in this condition. We assessed the potential therapeutic value of a new V1 a -AVP receptor partial agonist with a preferential splanchnic vasoconstrictor effect (FE 204038) in rats with cirrhosis and ascites. The hemodynamic effects of cumulative intravenous doses of FE 204038, terlipressin, or vehicle were investigated. Mean arterial pressure and PP were continuously recorded and cardiac output and systemic vascular resistance (SVR) assessed at 30-minute intervals for 90 minutes. Urine volume, urine osmolality, and urinary excretion of sodium and creatinine were measured in basal conditions and following twice-daily subcutaneous doses of FE 204038 or vehicle. PP, mean arterial pressure, cardiac output, SVR, and ascites volume were also measured after 6 days. The expression of an array of vasoactive genes was assessed in the thoracic aorta and the mesenteric circulation of control rats and rats with cirrhosis and ascites. FE 204038 dose-dependently decreased PP, did not modify mean arterial pressure, and increased SVR. The effect of the V1a -AVP receptor partial agonist on PP was associated with an improvement in urine volume and urinary excretion of sodium during the first day of treatment. SVR was higher and cardiac output and ascites volume were lower in rats with cirrhosis and ascites treated with FE 204038. V1a -AVP receptor expression in rats with cirrhosis and ascites was markedly enhanced in the mesenteric circulation compared to the thoracic aorta. FE 204038 increases sodium excretion and reduces portal hypertension and ascites in experimental cirrhosis. V1a -AVP receptor partial agonism could be a useful pharmacological treatment in decompensated patients with cirrhosis. © 2015 by the

  18. Cannabinoid receptor agonism suppresses tremor, cognition disturbances and anxiety-like behaviors in a rat model of essential tremor.

    PubMed

    Abbassian, Hassan; Esmaeili, Parisa; Tahamtan, Mahshid; Aghaei, Iraj; Vaziri, Zohreh; Sheibani, Vahid; Whalley, Benjamin J; Shabani, Mohammad

    2016-10-01

    Cognitive and motor disturbances are serious consequences of tremor induced by motor disorders. Despite a lack of effective clinical treatment, some potential therapeutic agents have been used to alleviate the cognitive symptoms in the animal models of tremor. In the current study, the effects of WIN55, 212-2 (WIN), a cannabinoid receptor (CBR) agonist, on harmaline-induced motor and cognitive impairments were studied. Adult rats were treated with WIN (0.5mg/kg; i.p.) 15min before harmaline administration (10mg/kg; ip) after which exploratory and anxiety related behaviors, and cognitive function were assessed using open-field behavior and shuttle box tests. Rats that received harmaline only exhibited a markedly reduced number of central square entries when compared to harmaline vehicle-treated controls, whereas those treated with WIN and harmaline showed a significant increase in central square entries, compared to harmaline only treated. The passive avoidance memory impairments observed in harmaline treated rats, was reversed somewhat by administration of WIN. The neuroprotective and anxiolytic effects of WIN demonstrated in the current study can be offered cannabinoid receptor (CBR) agonism as a potential neuroprotective agent in the treatment of patients with tremor that manifest mental dysfunctions. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Label-free cell phenotypic assessment of the biased agonism and efficacy of agonists at the endogenous muscarinic M3 receptors

    PubMed Central

    Deng, Huayun; Sun, Haiyan; Fang, Ye

    2013-01-01

    Introduction Efficacy describes the property of a ligand that enables the receptor to change its behavior towards the host cell, while biased agonism defines the ability of a ligand to differentially activate some of the vectorial pathways over others mediated through the receptor. However, little is known about the molecular basis defining the efficacy of ligands at G protein-coupled receptors. Here we characterize the biased agonism and cell phenotypic efficacy of seven agonists at the endogenous muscarinic M3 receptors in six different cell lines including HT-29, PC-3, HeLa, SF268, CCRF-CEM and HCT-15 cells. Methods Quantitative real-time PCR and multiple label-free whole cell dynamic mass redistribution (DMR) assays were used to determine the functional muscarinic receptors in each cell line. DMR pathway deconvolution assay was used to determine the pathway biased activity of the muscarinic agonists. Operational agonism model was used to quantify the pathway bias, while macro-kinetic data reported in literature was used to analyze the biochemical mechanism of action of these agonists. Results Quantitative real-time PCR and ligand pharmacology studies showed that all the native cell lines endogenously express functional M3 receptors. Furthermore, different agonists triggered distinct DMR signals in a specific cell line as well as in different cell lines. DMR pathway deconvolution using known G protein modulators revealed that the M3 receptor in all the six cell lines signals through multiple G protein-mediated pathways, and certain agonists display biased agonism in a cell line-dependent manner. The whole cell efficacy and potency of these agonists were found to be sensitive to the assay time as well as the cell background. Correlation analysis suggested that the whole cell efficacy of agonists is correlated well with their macro-dissociation rate constants. Discussion This study implicates that the endogenous M3 receptors are coupled to multiple pathways, and

  20. Metabotropic glutamate2/3 receptor agonism facilitates autonomic recovery after pharmacological panic challenge in healthy humans.

    PubMed

    Agorastos, Agorastos; Demiralay, Cüneyt; Stiedl, Oliver; Muhtz, Christoph; Wiedemann, Klaus; Kellner, Michael

    2016-05-01

    Group II metabotropic glutamate receptors (mGluR2/3) are suggested to modulate anxiety, arousal, and stress including autonomic control. However, no study has investigated mGluR2/3-related effects on baseline autonomic activity and reactivity to emotional challenge in humans as yet. Using a double-blind, randomized placebo-controlled, cross-over study design, we investigated the influence of a 1-week treatment with the mGluR2/3 agonist LY544344, prodrug of LY354740, on autonomic reactivity to a cholecystokinin tetrapeptide (CCK-4) panic challenge in eight healthy young men. The main outcome measures were time and frequency domain heart rate variability parameters during baseline, CCK-4 challenge, and recovery. There was no evidence for LY544344-mediated effects on baseline and CCK-4 challenge vagal activity, but a significantly lower recovery low frequency (%) and low frequency/high frequency ratio in the LY544344 group, suggesting enhanced autonomic recovery. This pilot study provides first human data indicating that mGluR2/3 agonism is involved in autonomic responsiveness, suggesting an important role of mGluR2/3 in central autonomic regulation.

  1. Effects of Spinally Administered Bifunctional Nociceptin/Orphanin FQ Peptide Receptor/μ-Opioid Receptor Ligands in Mouse Models of Neuropathic and Inflammatory Pain

    PubMed Central

    Sukhtankar, Devki D.; Zaveri, Nurulain T.; Husbands, Stephen M.

    2013-01-01

    Nociceptin/orphanin FQ peptide receptor (NOP) agonists produce antinociceptive effects in animal models after spinal administration and potentiate μ-opioid receptor (MOP)-mediated antinociception. This study determined the antinociceptive effects of spinally administered bifunctional NOP/MOP ligands and the antinociceptive functions of spinal NOP and MOP receptors in mice. Antinociceptive effects of bifunctional NOP/MOP ligands BU08028 [(2S)-2-[(5R,6R,7R,14S)-N-cyclopropylmethyl-4,5-epoxy-6,14-ethano-3-hydroxy-6-methoxymorphinan-7-yl]-3,3-dimethylpentan-2-ol] and SR16435 [1-(1-(2,3,3α,4,5,6-hexahydro-1H-phenalen-1-yl)piperidin-4-yl)-indolin-2-one] were pharmacologically compared with the putative bifunctional ligand buprenorphine, selective NOP agonist SCH221510 [3-endo-8-[bis(2-methylphenyl)methyl]-3-phenyl-8-azabicyclo[3.2.1]octan-3-ol] and selective MOP agonist morphine in neuropathic and inflammatory pain models. Additionally, the degree of tolerance development to the antiallodynic effects of SR16435 and buprenorphine were determined after repeated intrathecal administration. Our data indicated that BU08028 and SR16435 were more potent than morphine and SCH221510 in attenuating nerve injury-induced tactile allodynia and inflammation-induced thermal hyperalgesia. Coadministration of receptor-selective antagonists further revealed that both NOP and MOP in the spinal cord mediated the antiallodynic effects of BU08028 and SR16435, but intrathecal buprenorphine-induced antiallodynic effects were primarily mediated by MOP. Repeated intrathecal administration of SR16435 resulted in reduced and slower development of tolerance to its antiallodynic effects compared with buprenorphine. In conclusion, both NOP and MOP receptors in the spinal cord independently drive antinociception in mice. Spinally administered bifunctional NOP/MOP ligands not only can effectively attenuate neuropathic and inflammatory pain, but also have higher antinociceptive potency with reduced

  2. σ1-Receptor Agonism Protects against Renal Ischemia-Reperfusion Injury.

    PubMed

    Hosszu, Adam; Antal, Zsuzsanna; Lenart, Lilla; Hodrea, Judit; Koszegi, Sandor; Balogh, Dora B; Banki, Nora F; Wagner, Laszlo; Denes, Adam; Hamar, Peter; Degrell, Peter; Vannay, Adam; Szabo, Attila J; Fekete, Andrea

    2017-01-01

    Mechanisms of renal ischemia-reperfusion injury remain unresolved, and effective therapies are lacking. We previously showed that dehydroepiandrosterone protects against renal ischemia-reperfusion injury in male rats. Here, we investigated the potential role of σ1-receptor activation in mediating this protection. In rats, pretreatment with either dehydroepiandrosterone or fluvoxamine, a high-affinity σ1-receptor agonist, improved survival, renal function and structure, and the inflammatory response after sublethal renal ischemia-reperfusion injury. In human proximal tubular epithelial cells, stimulation by fluvoxamine or oxidative stress caused the σ1-receptor to translocate from the endoplasmic reticulum to the cytosol and nucleus. Fluvoxamine stimulation in these cells also activated nitric oxide production that was blocked by σ1-receptor knockdown or Akt inhibition. Similarly, in the postischemic rat kidney, σ1-receptor activation by fluvoxamine triggered the Akt-nitric oxide synthase signaling pathway, resulting in time- and isoform-specific endothelial and neuronal nitric oxide synthase activation and nitric oxide production. Concurrently, intravital two-photon imaging revealed prompt peritubular vasodilation after fluvoxamine treatment, which was blocked by the σ1-receptor antagonist or various nitric oxide synthase blockers. In conclusion, in this rat model of ischemia-reperfusion injury, σ1-receptor agonists improved postischemic survival and renal function via activation of Akt-mediated nitric oxide signaling in the kidney. Thus, σ1-receptor activation might provide a therapeutic option for renoprotective therapy.

  3. Post-blast treatment with Nociceptin/Orphanin FQ peptide (NOP) receptor antagonist reduces brain injury-induced hypoxia and signaling proteins in vestibulomotor-related brain regions.

    PubMed

    Awwad, Hibah O; Durand, Cindy D; Gonzalez, Larry P; Tompkins, Paul; Zhang, Yong; Lerner, Megan R; Brackett, Daniel J; Sherry, David M; Awasthi, Vibhudutta; Standifer, Kelly M

    2016-10-25

    Mild traumatic brain injury (mTBI) diagnoses have increased due to aggressive sports and blast-related injuries, but the cellular mechanisms and pathology underlying mTBI are not completely understood. Previous reports indicate that Nociceptin Orphanin/FQ (N/OFQ), an endogenous neuropeptide, contributes to post-injury ischemia following mechanical brain injury, yet its specific role in cerebral hypoxia, vestibulomotor function and injury marker expression following blast-induced TBI is not known. This study is the first to identify a direct association of N/OFQ and its N/OFQ peptide (NOP) receptor with TBI-induced changes following a single 80psi head blast exposure in male rats. N/OFQ and NOP receptor expression increased in brain tissue and plasma following TBI, concurrent with vestibular dysfunction but preceding hypoxia and appearance of injury markers compared to sham rats. A single post-blast treatment with the NOP receptor antagonist, SB-612111, transiently improved acute vestibulomotor performance. It also prevented increases in markers of TBI-induced hypoxia, pro-apoptotic proteins and injury seen 8-10days post-blast. This study reveals an apparent role for the N/OFQ-NOP receptor system in blast TBI and suggests potential therapeutic utility of NOP receptor antagonists for mTBI.

  4. Pharmacological characterization of mGlu1 receptors in cerebellar granule cells reveals biased agonism

    PubMed Central

    Hathaway, Hannah A.; Pshenichkin, Sergey; Grajkowska, Ewa; Gelb, Tara; Emery, Andrew C.; Wolfe, Barry B.; Wroblewski, Jarda T.

    2015-01-01

    The majority of existing research on the function of metabotropic glutamate (mGlu) receptor 1 focuses on G protein-mediated outcomes. However, similar to other G protein-coupled receptors (GPCR), it is becoming apparent that mGlu1 receptor signaling is multi-dimensional and does not always involve G protein activation. Previously, in transfected CHO cells, we showed that mGlu1 receptors activate a G protein-independent, β-arrestin-dependent signal transduction mechanism and that some mGlu1 receptor ligands were incapable of stimulating this response. Here we set out to investigate the physiological relevance of these findings in a native system using primary cultures of cerebellar granule cells. We tested the ability of a panel of compounds to stimulate two mGlu1 receptor-mediated outcomes: (1) protection from decreased cell viability after withdrawal of trophic support and (2) G protein-mediated phosphoinositide (PI) hydrolysis. We report that the commonly used mGlu1 receptor ligands quisqualate, DHPG, and ACPD are completely biased towards PI hydrolysis and do not induce mGlu1 receptor-stimulated neuroprotection. On the other hand, endogenous compounds including glutamate, aspartate, cysteic acid, cysteine sulfinic acid, and homocysteic acid stimulate both responses. These results show that some commonly used mGlu1 receptor ligands are biased agonists, stimulating only a fraction of mGlu1 receptor-mediated responses in neurons. This emphasizes the importance of utilizing multiple agonists and assays when studying GPCR function. PMID:25700650

  5. Inverse agonism at the P2Y12 receptor and ENT1 transporter blockade contribute to platelet inhibition by ticagrelor

    PubMed Central

    Aungraheeta, Riyaad; Conibear, Alexandra; Butler, Mark; Kelly, Eamonn; Nylander, Sven; Mumford, Andrew

    2016-01-01

    Ticagrelor is a potent antagonist of the P2Y12 receptor (P2Y12R) and consequently an inhibitor of platelet activity effective in the treatment of atherothrombosis. Here, we sought to further characterize its molecular mechanism of action. Initial studies showed that ticagrelor promoted a greater inhibition of adenosine 5′-diphosphate (ADP)–induced Ca2+ release in washed platelets vs other P2Y12R antagonists. This additional effect of ticagrelor beyond P2Y12R antagonism was in part as a consequence of ticagrelor inhibiting the equilibrative nucleoside transporter 1 (ENT1) on platelets, leading to accumulation of extracellular adenosine and activation of Gs-coupled adenosine A2A receptors. This contributed to an increase in basal cyclic adenosine monophosphate (cAMP) and vasodilator-stimulated phosphoprotein phosphorylation (VASP-P). In addition, ticagrelor increased platelet cAMP and VASP-P in the absence of ADP in an adenosine receptor–independent manner. We hypothesized that this increase originated from a direct effect on basal agonist-independent P2Y12R signaling, and this was validated in 1321N1 cells stably transfected with human P2Y12R. In these cells, ticagrelor blocked the constitutive agonist-independent activity of the P2Y12R, limiting basal Gi-coupled signaling and thereby increasing cAMP levels. These data suggest that ticagrelor has the pharmacological profile of an inverse agonist. Based on our results showing insurmountable inhibition of ADP-induced Ca2+ release and forskolin-induced cAMP, the mode of antagonism of ticagrelor also appears noncompetitive, at least functionally. In summary, our studies describe 2 novel modes of action of ticagrelor, inhibition of platelet ENT1 and inverse agonism at the P2Y12R that contribute to its effective inhibition of platelet activation. PMID:27694321

  6. Key Issues in the Role of Peroxisome Proliferator–Activated Receptor Agonism and Cell Signaling in Trichloroethylene Toxicity

    PubMed Central

    Keshava, Nagalakshmi; Caldwell, Jane C.

    2006-01-01

    Peroxisome proliferator–activated receptor α (PPARα) is thought to be involved in several different diseases, toxic responses, and receptor pathways. The U.S. Environmental Protection Agency 2001 draft trichloroethylene (TCE) risk assessment concluded that although PPAR may play a role in liver tumor induction, the role of its activation and the sequence of subsequent events important to tumorigenesis are not well defined, particularly because of uncertainties concerning the extraperoxisomal effects. In this article, which is part of a mini-monograph on key issues in the health risk assessment of TCE, we summarize some of the scientific literature published since that time on the effects and actions of PPARα that help inform and illustrate the key scientific questions relevant to TCE risk assessment. Recent analyses of the role of PPARα in gene expression changes caused by TCE and its metabolites provide only limited data for comparison with other PPARα agonists, particularly given the difficulties in interpreting results involving PPARα knockout mice. Moreover, the increase in data over the last 5 years from the broader literature on PPARα agonists presents a more complex array of extraperoxisomal effects and actions, suggesting the possibility that PPARα may be involved in modes of action (MOAs) not only for liver tumors but also for other effects of TCE and its metabolites. In summary, recent studies support the conclusion that determinations of the human relevance and susceptibility to PPARα-related MOA(s) of TCE-induced effects cannot rely on inferences regarding peroxisome proliferation per se and require a better understanding of the interplay of extraperoxisomal events after PPARα agonism. PMID:16966106

  7. Somatostatin receptor-mediated arachidonic acid mobilization: evidence for partial agonism of synthetic peptides

    PubMed Central

    Alderton, Forbes; Fan, Tai-Ping D; Humphrey, Patrick P A

    2001-01-01

    Somatostatin and the stable octapeptide analogues, octreotide and angiopeptin, were examined for their ability to stimulate the release of tritium from [3H]-arachidonic acid pre-loaded CHO-K1 cells expressing human recombinant sst2, sst3 or sst5 receptors. Somatostatin stimulated tritium release (pEC50) through the sst2 (7.8±0.1) and sst5 (7.3±0.2), but not the sst3 receptor. Octreotide behaved as a full (sst2 receptor) or partial agonist (sst5 receptor), whereas angiopeptin behaved as a weak partial agonist at both receptor types. Maximum responses to somatostatin through both receptor types were significantly reduced by pertussis toxin, whereas pEC50 estimates were unaffected. Inhibition of MEK1 or Src, but not PKA, PI 3-kinases or tyrosine kinases, by reportedly selective inhibitors reduced sst2-mediated responses by somatostatin, but not angiopeptin. A selective inhibitor of PKC (Ro-31-8220) reduced both somatostatin and angiopeptin responses. These data provide further evidence for partial agonist activity of synthetic peptides of somatostatin. Furthermore, the somatostatin receptor signalling mechanisms which mediate arachidonic acid mobilization appear to be multiple and complex. PMID:11159729

  8. Could the 5-HT1B receptor inverse agonism affect learning consolidation?

    PubMed

    Meneses, A

    2001-03-01

    Diverse evidence indicates that, the 5-HT system might play a role in learning and memory, since it occurs in brain areas mediating such processes and 5-HT drugs modulate them. Hence in this work, in order to explore further 5-HT involvement on learning and memory 5-HT1B receptors' role is investigated. Evidence indicates that SB-224289 (a 5-HT1B receptor inverse agonist) post-training injection facilitated learning consolidation in an associative autoshaping learning task, this effect was partially reversed by GR 127935 (a 5-HT1B/1D receptor antagonist), but unaffected by MDL 100907 (a 5-HT2A receptor antagonist) or ketanserin (a 5-HT1D/2A/7 receptor antagonist) at low doses. Moreover, SB-224289 antagonized the learning deficit produced by TFMPP (a 5-HT1A/1B/1D/2A/2C receptor agonist), GR 46611 (a 5-HT1A/1B/1D receptor agonist), mCPP (a 5-HT2A/2C/3/7 receptor agonist/antagonist) or GR 127935 (at low dose). SB-224289 did not alter the 8-OH-DPAT (a 5-HT1A/7 receptor agonist) learning facilitatory effect. SB-224289 eliminated the deficit learning produced by the anticholinergic muscarinic scopolamine or the glutamatergic antagonist dizocilpine. Administration of both, GR 127935 (5mg/kg) plus ketanserin (0.01 mg/kg) did not modify learning consolidation; nevertheless, when ketanserin dose was increased (0.1-1.0mg/kg) and SB-224289 dose was maintained constant, a learning facilitation effect was observed. Notably, SB-224289 at 1.0mg/kg potentiated a subeffective dose of the 5-HT1B/1D receptor agonist/antagonist mixed GR 127935, which facilitated learning consolidation and this effect was abolished by ketanserin at a higher dose. Collectively, the data confirm and extend the earlier findings with GR 127935 and the effects of non-selective 5-HT(1B) receptor agonists. Clearly 5-HT1B agonists induced a learning deficit which can be reversed with SB-224289. Perhaps more importantly, SB-224289 enhances learning consolidation when given alone and can reverse the deficits

  9. Analysis of agonism and inverse agonism in functional assays with constitutive activity: estimation of orthosteric ligand affinity constants for active and inactive receptor states.

    PubMed

    Ehlert, Frederick J; Suga, Hinako; Griffin, Michael T

    2011-08-01

    We describe a modification of receptor theory for the estimation of observed affinities (K(obs)) and relative efficacies of orthosteric ligands in functional assays that exhibit constitutive activity. Our theory includes parameters for the fractions of the occupied receptor population in the active (intrinsic efficacy, ε) and inactive (ε(i)) states and analogous parameters for the fractions of the free receptor population in the active (ε(sys)) and inactive (ε(i-sys)) states. The total stimulus represents the summation of the active states of the free and occupied receptor populations. A modified operational model is developed that expresses the response as a logistic function of the total stimulus. This function includes the standard parameters related to affinity and efficacy (K(obs) and τ) as well as a parameter proportional to the activity of the free receptor complex, τ(sys). Two related parameters are proportional to the fraction of the free (τ(i-sys)) and occupied (τ(i)) receptor populations in the inactive state. We show that the estimates of the affinity constants of orthosteric ligands for the active (K(b)) and inactive (K(a)) states of the receptor are equivalent to τK(obs)/τ(sys) and τ(i)K(obs)/τ(i-sys), respectively. We verify our method with computer simulation techniques and apply it to the analysis of M(2) and M(3) muscarinic receptors. Our method is applicable in the analysis of ligand bias in drug discovery programs.

  10. Nociceptin/orphanin FQ peptide receptor antagonist JTC-801 reverses pain and anxiety symptoms in a rat model of post-traumatic stress disorder.

    PubMed

    Zhang, Y; Simpson-Durand, C D; Standifer, K M

    2015-01-01

    Single-prolonged stress (SPS), a rat model of post-traumatic stress disorder (PTSD), also induces long-lasting hyperalgesia associated with hypocortisolism and elevated nociceptin/orphanin FQ (N/OFQ) levels in serum and CSF. Here, we determined the effect of JTC-801 (N-(4-amino-2-methylquinolin-6-yl)-2-(4-ethylphenoxymethyl) benzamide monohydrochloride), a nociceptin/orphanin FQ peptide (NOP) receptor antagonist, on symptoms of pain and anxiety in rats after SPS exposure, and examined N/OFQ-NOP receptor system changes. Male Sprague Dawley rats received JTC-801 (6 mg kg(-1) i.p., once daily) during days 7-21 of SPS. The ability of JTC-801 to inhibit N/OFQ-stimulated [(35) S]-GTPγS binding was confirmed in rat brain membranes. Anxiety-like behaviour and pain sensitivity were monitored by changes in elevated plus maze performance and withdrawal responses to thermal and mechanical stimuli. Serum corticosterone and N/OFQ content in CSF, serum and brain tissues were determined by radioimmunoassay; NOP receptor protein and gene expression in amygdala, hippocampus and periaqueductal grey (PAG) were examined by immunoblotting and real-time PCR respectively. JTC-801 treatment reversed SPS-induced mechanical allodynia, thermal hyperalgesia, anxiety-like behaviour and hypocortisolism. Elevated N/OFQ levels in serum, CSF, PAG and hippocampus at day 21 of SPS were blocked by JTC-801; daily JTC-801 treatment also reversed NOP receptor protein and mRNA up-regulation in amygdala and PAG. JTC-801 reversed SPS-induced anxiety- and pain-like behaviours, and NOP receptor system up-regulation. These findings suggest that N/OFQ plays an important role in hyperalgesia and allodynia maintenance after SPS. NOP receptor antagonists may provide effective treatment for co-morbid PTSD and pain. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2014

  11. [Dmt1]N/OFQ(1–13)-NH2: a potent nociceptin/orphanin FQ and opioid receptor universal agonist

    PubMed Central

    Molinari, S; Camarda, V; Rizzi, A; Marzola, G; Salvadori, S; Marzola, E; Molinari, P; McDonald, J; Ko, MC; Lambert, DG; Calo', G; Guerrini, R

    2013-01-01

    Background and Purpose Intrathecally (i.t.) administered nociceptin/orphanin FQ (N/OFQ) evokes antinociceptive effects in rodents. Recent studies in monkeys demonstrated that i.t. co-application of N/OFQ and morphine elicits synergistic antinociceptive actions suggesting mixed N/OFQ peptide (NOP) and μ opioid receptor agonists as innovative spinal analgesics. Thus, novel N/OFQ related peptides were synthesized in order to identify and pharmacologically characterize a mixed NOP/ μ opioid receptor agonist. Experimental Approach The following in vitro assays were used: calcium mobilization in cells expressing the human NOP or classical opioid receptors and chimeric G proteins, receptor and [35S]-GTPγS binding, [35S]-GTPγS binding in rat spinal cord membranes, guinea pig ileum bioassay. In vivo experiments were performed in monkeys using the tail withdrawal assay. Key Results From calcium mobilization studies [Dmt1]N/OFQ(1–13)-NH2 was selected as the most potent and least selective compound. The mixed NOP/opioid full agonist activity and high affinity of [Dmt1]N/OFQ(1–13)-NH2 was confirmed at human recombinant receptors in receptor binding, calcium mobilization and/or [35S]-GTPγS binding studies, at rat spinal cord receptors in [35S]-GTPγS binding experiments, and at guinea pig receptors inhibiting neurogenic contractions in the ileum. In vivo in the tail withdrawal assay in monkeys i.t. [Dmt1]N/OFQ(1–13)-NH2 was able to elicit robust and long-lasting antinociceptive effects. Conclusions and Implications Collectively, these results demonstrate that [Dmt1]N/OFQ(1–13)-NH2 behaves as NOP/opioid receptor universal agonist and substantiate the suggestion that such mixed ligands are worthy of development as innovative spinal analgesics. PMID:22827708

  12. Selective prostacyclin receptor agonism augments glucocorticoid-induced gene expression in human bronchial epithelial cells.

    PubMed

    Wilson, Sylvia M; Shen, Pamela; Rider, Christopher F; Traves, Suzanne L; Proud, David; Newton, Robert; Giembycz, Mark A

    2009-11-15

    Prostacyclin receptor (IP-receptor) agonists display anti-inflammatory and antiviral activity in cell-based assays and in preclinical models of asthma and chronic obstructive pulmonary disease. In this study, we have extended these observations by demonstrating that IP-receptor activation also can enhance the ability of glucocorticoids to induce genes with anti-inflammatory activity. BEAS-2B bronchial epithelial cells stably transfected with a glucocorticoid response element (GRE) luciferase reporter were activated in a concentration-dependent manner by the glucocorticoid dexamethasone. An IP-receptor agonist, taprostene, increased cAMP in these cells and augmented luciferase expression at all concentrations of dexamethasone examined. Analysis of the concentration-response relationship that described this effect showed that taprostene increased the magnitude of transcription without affecting the potency of dexamethasone and was, thus, steroid-sparing in this simple system. RO3244794, an IP-receptor antagonist, and oligonucleotides that selectively silenced the IP-receptor gene, PTGIR, abolished these effects of taprostene. Infection of BEAS-2B GRE reporter cells with an adenovirus vector encoding a highly selective inhibitor of cAMP-dependent protein kinase (PKA) also prevented taprostene from enhancing GRE-dependent transcription. In BEAS-2B cells and primary cultures of human airway epithelial cells, taprostene and dexamethasone interacted either additively or cooperatively in the expression of three glucocorticoid-inducible genes (GILZ, MKP-1, and p57(kip2)) that have anti-inflammatory potential. Collectively, these data show that IP-receptor agonists can augment the ability of glucocorticoids to induce anti-inflammatory genes in human airway epithelial cells by activating a cAMP/PKA-dependent mechanism. This observation may have clinical relevance in the treatment of airway inflammatory diseases that are either refractory or respond suboptimally to

  13. A Novel Method for Analyzing Extremely Biased Agonism at G Protein–Coupled Receptors

    PubMed Central

    Zhou, Lei; Ehlert, Frederick J.; Bohn, Laura M.

    2015-01-01

    Seven transmembrane receptors were originally named and characterized based on their ability to couple to heterotrimeric G proteins. The assortment of coupling partners for G protein–coupled receptors has subsequently expanded to include other effectors (most notably the βarrestins). This diversity of partners available to the receptor has prompted the pursuit of ligands that selectively activate only a subset of the available partners. A biased or functionally selective ligand may be able to distinguish between different active states of the receptor, and this would result in the preferential activation of one signaling cascade more than another. Although application of the “standard” operational model for analyzing ligand bias is useful and suitable in most cases, there are limitations that arise when the biased agonist fails to induce a significant response in one of the assays being compared. In this article, we describe a quantitative method for measuring ligand bias that is particularly useful for such cases of extreme bias. Using simulations and experimental evidence from several κ opioid receptor agonists, we illustrate a “competitive” model for quantitating the degree and direction of bias. By comparing the results obtained from the competitive model with the standard model, we demonstrate that the competitive model expands the potential for evaluating the bias of very partial agonists. We conclude the competitive model provides a useful mechanism for analyzing the bias of partial agonists that exhibit extreme bias. PMID:25680753

  14. Isoform-Specific Biased Agonism of Histamine H3 Receptor Agonists.

    PubMed

    Riddy, Darren M; Cook, Anna E; Diepenhorst, Natalie A; Bosnyak, Sanja; Brady, Ryan; Mannoury la Cour, Clotilde; Mocaer, Elisabeth; Summers, Roger J; Charman, William N; Sexton, Patrick M; Christopoulos, Arthur; Langmead, Christopher J

    2017-02-01

    The human histamine H3 receptor (hH3R) is subject to extensive gene splicing that gives rise to a large number of functional and nonfunctional isoforms. Despite the general acceptance that G protein-coupled receptors can adopt different ligand-induced conformations that give rise to biased signaling, this has not been studied for the H3R; further, it is unknown whether splice variants of the same receptor engender the same or differential biased signaling. Herein, we profiled the pharmacology of histamine receptor agonists at the two most abundant hH3R splice variants (hH3R445 and hH3R365) across seven signaling endpoints. Both isoforms engender biased signaling, notably for 4-[3-(benzyloxy)propyl]-1H-imidazole (proxyfan) [e.g., strong bias toward phosphorylation of glycogen synthase kinase 3β (GSK3β) via the full-length receptor] and its congener 3-(1H-imidazol-4-yl)propyl-(4-iodophenyl)-methyl ether (iodoproxyfan), which are strongly consistent with the former's designation as a "protean" agonist. The 80 amino acid IL3 deleted isoform hH3R365 is more permissive in its signaling than hH3R445: 2-(1H-imidazol-5-yl)ethyl imidothiocarbamate (imetit), proxyfan, and iodoproxyfan were all markedly biased away from calcium signaling, and principal component analysis of the full data set revealed divergent profiles for all five agonists. However, most interesting was the identification of differential biased signaling between the two isoforms. Strikingly, hH3R365 was completely unable to stimulate GSK3β phosphorylation, an endpoint robustly activated by the full-length receptor. To the best of our knowledge, this is the first quantitative example of differential biased signaling via isoforms of the same G protein-coupled receptor that are simultaneously expressed in vivo and gives rise to the possibility of selective pharmacological targeting of individual receptor splice variants.

  15. Valsartan ameliorates the constitutive adipokine expression pattern in mature adipocytes: a role for inverse agonism of the angiotensin II type 1 receptor in obesity.

    PubMed

    Hasan, Arif U; Ohmori, Koji; Hashimoto, Takeshi; Kamitori, Kazuyo; Yamaguchi, Fuminori; Ishihara, Yasuhiro; Ishihara, Naoko; Noma, Takahisa; Tokuda, Masaaki; Kohno, Masakazu

    2014-07-01

    Angiotensin (Ang) II receptor blockers (ARBs) alleviate obesity-related insulin resistance, which suggests an important role for the Ang II type 1 receptor (AT1R) in the regulation of adipocytokines. Therefore, we treated mature 3T3-L1 adipocytes with 50 μmol l(-1) of valsartan, a selective AT1R blocker without direct agonism to peroxisome proliferator-activated receptor (PPAR)-γ. In the absence of effective concentrations of Ang II, unstimulated mature adipocytes expressed and secreted high levels of interleukin (IL)-6. This constitutive proinflammatory activity was attenuated by the suppression of extracellular signal-regulated kinase phosphorylation by valsartan but was unaffected by the Ang II type 2 receptor blocker PD123319. COS7 cells co-transfected with AT1R and IL-6, which expressed NF-κB but lacked PPAR-γ, showed no constitutive but substantial ligand-dependent IL-6 reporter activity, which was counteracted by valsartan. Valsartan preserved cytosolic IκB-α and subsequently reduced nuclear NF-κB1 protein expression in mature adipocytes. Interestingly, valsartan did not increase PPAR-γ messenger RNA expression per se but enhanced the transcriptional activity of PPAR-γ in mature adipocytes; this enhancement was accompanied by upregulation of the PPAR coactivator (PGC)-1α. Moreover, T0090907, a PPAR-γ inhibitor, increased IL-6 expression, and this increase was attenuated by valsartan. Indeed, addition of valsartan without direct PPAR-γ agonism increased adiponectin production in mature adipocytes. Together, the findings indicate that valsartan blocks the constitutive AT1R activity involving the NF-κB pathway that limits PPAR-γ activity in mature adipocytes. Thus, inverse agonism of AT1R attenuates the spontaneous proinflammatory response and enhances the constitutive insulin-sensitizing activities of mature adipocytes, which may underlie the beneficial metabolic impacts of ARBs.

  16. Targeting β3-Adrenergic Receptors in the Heart: Selective Agonism and β-Blockade

    PubMed Central

    Cannavo, Alessandro

    2017-01-01

    Abstract: Cardiac diseases, such as heart failure, remain leading causes of morbidity and mortality worldwide, with myocardial infarction as the most common etiology. HF is characterized by β-adrenergic receptor (βAR) dysregulation that is primarily due to the upregulation of G protein–coupled receptor kinases that leads to overdesensitization of β1 and β2ARs, and this clinically manifests as a loss of inotropic reserve. Interestingly, the “minor” βAR isoform, the β3AR, found in the heart, lacks G protein–coupled receptor kinases recognition sites, and is not subject to desensitization, and as a consequence of this, in human failing myocardium, the levels of this receptor remain unchanged or are even increased. In different preclinical studies, it has been shown that β3ARs can activate different signaling pathways that can protect the heart. The clinical relevance of this is also supported by the effects of β-blockers which are well known for their proangiogenic and cardioprotective effects, and data are emerging showing that these are mediated, at least in part, by enhancement of β3AR activity. In this regard, targeting of β3ARs could represent a novel potential strategy to improve cardiac metabolism, function, and remodeling. PMID:28170359

  17. AOP description: Androgen receptor agonism leading to reproductive dysfunction (in fish)

    EPA Science Inventory

    This adverse outcome pathway details the linkage between binding and activation of androgen receptor as a nuclear transcription factor in females and the adverse effect of reduced cumulative fecundity in repeat-spawning fish species. Cumulative fecundity is the most apical endpoi...

  18. AOP description: Androgen receptor agonism leading to reproductive dysfunction (in fish)

    EPA Science Inventory

    This adverse outcome pathway details the linkage between binding and activation of androgen receptor as a nuclear transcription factor in females and the adverse effect of reduced cumulative fecundity in repeat-spawning fish species. Cumulative fecundity is the most apical endpoi...

  19. CB1 receptor antagonism/inverse agonism increases motor system excitability in humans.

    PubMed

    Oliviero, A; Arevalo-Martin, A; Rotondi, M; García-Ovejero, D; Mordillo-Mateos, L; Lozano-Sicilia, A; Panyavin, I; Chiovato, L; Aguilar, J; Foffani, G; Di Lazzaro, V; Molina-Holgado, E

    2012-01-01

    CB1 receptor is highly expressed in cerebral structures related to motor control, such as motor cortex, basal ganglia and cerebellum. In the spinal cord, the expression of CB1 receptors has also been observed in ventral motor neurons, interneurons and primary afferents, i.e., in the cells that may be part of the circuits involved in motor control. It is known that the antagonist/inverse agonist of CB1 receptors Rimonabant penetrates the blood-brain barrier and produces a broad range of central psychoactive effects in humans. Based on the occurrence of central effects in humans treated with Rimonabant and on the location of CB1 receptors, we hypothesized that the application of Rimonabant can also affect the motor system. We tested the effects of a single dose of 20mg of Rimonabant on the excitability of motor cortex and of spinal motor neurons in order to detect a possible drug action on motor system at cortical and spinal levels. For this purpose we use classical protocols of transcranial magnetic and electrical stimulation (TMS and TES). Single and paired pulse TMS and TES were used to assess a number of parameters of cortical inhibition and cortical excitability as well as of the excitability of spinal motor neurons. We demonstrated that a single oral dose of 20mg of Rimonabant can increase motor system excitability at cortical and spinal levels. This opens new avenues to test the CB1R antagonists/inverse agonists for the treatment of a number of neurological dysfunctions in which can be useful to increase the excitability levels of motor system. Virtually all the disorders characterized by a reduced output of the motor cortex can be included in the list of the disorders that can be treated using CB1 antagonists/reverse agonists (e.g. stroke, traumatic brain injury, spinal cord injury, multiple sclerosis, fatigue syndromes, parkinsonisms, etc.). Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Behavioral, pharmacological and neuroanatomical analysis of serotonin 2C receptor agonism on maternal behavior in rats.

    PubMed

    Wu, Ruiyong; Gao, Jun; Chou, Shinnyi; Davis, Collin; Li, Ming

    2016-11-01

    As a highly motivated social behavior, maternal behavior in rats has been routinely used to study psychoactive drugs for clinical, neuroscience and pharmacological purposes. Recent evidence indicates that acute activation of serotonin 2C (5-HT2C) receptors causes a disruption of rat maternal behavior. The present study was designed to elucidate the behavioral, pharmacological mechanisms and neuroanatomical basis of this 5-HT2C effect. First, we replicated the finding that acute MK212 injection (2.0mg/kg, a highly selective 5-HT2C agonist) disrupts maternal behavior, especially on pup retrieval. Interestingly, this disruption was significantly attenuated by 4-h pup separation (a procedure putatively increased maternal motivation). MK212 also suppressed food retrieval, indicating that it has a general effect on motivated behaviors. Second, we showed that MK212 disrupts maternal behavior by specifically activating 5-HT2C receptor, as pretreatment with a 5-HT2C receptor antagonist SB242084 (0.6 and 1.0mg/kg) alleviated MK212-induced disruption on pup retrieval. Third, we microinjected MK212 into various brain regions implicated in the regulation of maternal behavior: nucleus accumbens shell (25, 75, 250ng/0.5μl/side), medial prefrontal cortex (25 and 250ng, 1, 2 and 5μg/0.5μl/side), and medial preoptic area (MPOA, 75ng, 1 and 5μg/0.5μl/side). Pup retrieval and other maternal responses were not affected by any of these manipulations. Finally, we used c-Fos immunohistochemistry to identify the central mechanisms of the acute and repeated MK212 effects on maternal behavior. Acute MK212 (2.0mg/kg) disrupted pup retrieval and concurrently decreased c-Fos expression in the ventral part of lateral septal nucleus (LSv), MPOA, dentate gyrus (DG) and dorsal raphe (DR), but increased it in the central amygdala (CeA). Five days of repeated MK212 (2.0mg/kg) treatment produced a persistent disruption of pup retrieval and only decreased c-Fos expression in the DR. These findings

  1. Antagonism/Agonism Modulation to Build Novel Antihypertensives Selectively Triggering I1-Imidazoline Receptor Activation

    PubMed Central

    2015-01-01

    Pharmacological studies have suggested that I1-imidazoline receptors are involved in the regulation of cardiovascular function and that selective I1-agonists, devoid of the side effects associated with the common hypotensive α2-adrenoreceptor agonists, might be considered as a second generation of centrally acting antihypertensives. Therefore, in the present study, inspired by the antihypertensive behavior of our selective I1-agonist 4, we designed, prepared, and studied the novel analogues 5–9. A selective I1-profile, associated with significant hemodinamic effects, was displayed by 5, 8, and 9. Interestingly, the highest potency and longest lasting activity displayed by 8 (carbomethyline) suggested that van der Waals interactions, promoted by the ortho methyl decoration of its aromatic moiety, are particularly advantageous. In addition, in analogy to what was noted for (S)-(+)-4, the observation that only (S)-(+)-8 displayed significant hemodynamic effects unequivocally confirmed the stereospecific nature of the I1 proteins. PMID:26005521

  2. M1 muscarinic acetylcholine receptor agonism alters sleep without affecting memory consolidation.

    PubMed

    Nissen, Christoph; Power, Ann E; Nofzinger, Eric A; Feige, Bernd; Voderholzer, Ulrich; Kloepfer, Corinna; Waldheim, Bernhard; Radosa, Marc-Philipp; Berger, Mathias; Riemann, Dieter

    2006-11-01

    Preclinical studies have implicated cholinergic neurotransmission, specifically M1 muscarinic acetylcholine receptor (mAChR) activation, in sleep-associated memory consolidation. In the present study, we investigated the effects of administering the direct M1 mAChR agonist RS-86 on pre-post sleep memory consolidation. Twenty healthy human participants were tested in a declarative word-list task and a procedural mirror-tracing task. RS-86 significantly reduced rapid eye movement (REM) sleep latency and slow wave sleep (SWS) duration in comparison with placebo. Presleep acquisition and postsleep recall rates were within the expected ranges. However, recall rates in both tasks were almost identical for the RS-86 and placebo conditions. These results indicate that selective M1 mAChR activation in healthy humans has no clinically relevant effect on pre-post sleep consolidation of declarative or procedural memories at a dose that reduces REM sleep latency and SWS duration.

  3. Biased Agonism of Three Different Cannabinoid Receptor Agonists in Mouse Brain Cortex

    PubMed Central

    Diez-Alarcia, Rebeca; Ibarra-Lecue, Inés; Lopez-Cardona, Ángela P.; Meana, Javier; Gutierrez-Adán, Alfonso; Callado, Luis F.; Agirregoitia, Ekaitz; Urigüen, Leyre

    2016-01-01

    Cannabinoid receptors are able to couple to different families of G proteins when activated by an agonist drug. It has been suggested that different intracellular responses may be activated depending on the ligand. The goal of the present study was to characterize the pattern of G protein subunit stimulation triggered by three different cannabinoid ligands, Δ9-THC, WIN55212-2, and ACEA in mouse brain cortex. Stimulation of the [35S]GTPγS binding coupled to specific immunoprecipitation with antibodies against different subtypes of G proteins (Gαi1, Gαi2, Gαi3, Gαo, Gαz, Gαs, Gαq/11, and Gα12/13), in the presence of Δ9-THC, WIN55212-2 and ACEA (submaximal concentration 10 μM) was determined by scintillation proximity assay (SPA) technique in mouse cortex of wild type, CB1 knock-out, CB2 knock-out and CB1/CB2 double knock-out mice. Results show that, in mouse brain cortex, cannabinoid agonists are able to significantly stimulate not only the classical inhibitory Gαi/o subunits but also other G subunits like Gαz, Gαq/11, and Gα12/13. Moreover, the specific pattern of G protein subunit activation is different depending on the ligand. In conclusion, our results demonstrate that, in mice brain native tissue, different exogenous cannabinoid ligands are able to selectively activate different inhibitory and non-inhibitory Gα protein subtypes, through the activation of CB1 and/or CB2 receptors. Results of the present study may help to understand the specific molecular pathways involved in the pharmacological effects of cannabinoid-derived drugs. PMID:27867358

  4. The Minimal Pharmacophore for Silent Agonism of the α7 Nicotinic Acetylcholine Receptor

    PubMed Central

    Chojnacka, Kinga; Horenstein, Nicole A.

    2014-01-01

    The minimum pharmacophore for activation of the human α7 nicotinic acetylcholine receptor (nAChR) is the tetramethylammonium cation. Previous work demonstrated that larger quaternary ammonium compounds, such as diethyldimethylammonium or 1-methyl quinuclidine, were α7-selective partial agonists, but additional increase in the size of the ammonium cation or the quinuclidine N-alkyl group by a single carbon to an N-ethyl group led to a loss of efficacy for ion channel activation. We report that although such compounds are ineffective at inducing the normal channel open state, they nonetheless regulate the induction of specific conformational states normally considered downstream of channel activation. We synthesized several panels of quaternary ammonium nAChR ligands that systematically varied the size of the substituents bonded to the central positively charged nitrogen atom. In these molecular series, we found a correlation between the molecular volume of the ligand and/or charge density, and the receptor’s preferred distribution among conformational states including the closed state, the active state, a nonconducting state that could be converted to an activated state by a positive allosteric modulator (PAM), and a PAM-insensitive nonconducting state. We hypothesize that the changes of molecular volume of an agonist’s cationic core subtly impact interactions at the subunit interface constituting the orthosteric binding site in such a way as to regulate the probability of conversions among the conformational states. We define a new minimal pharmacophore for the class of compounds we have termed “silent agonists,” which are able to induce allosteric modulator-dependent activation but not the normal activated state. PMID:24990939

  5. Genomic agonism and phenotypic antagonism between estrogen and progesterone receptors in breast cancer

    PubMed Central

    Singhal, Hari; Greene, Marianne E.; Tarulli, Gerard; Zarnke, Allison L.; Bourgo, Ryan J.; Laine, Muriel; Chang, Ya-Fang; Ma, Shihong; Dembo, Anna G.; Raj, Ganesh V.; Hickey, Theresa E.; Tilley, Wayne D.; Greene, Geoffrey L.

    2016-01-01

    The functional role of progesterone receptor (PR) and its impact on estrogen signaling in breast cancer remain controversial. In primary ER+ (estrogen receptor–positive)/PR+ human tumors, we report that PR reprograms estrogen signaling as a genomic agonist and a phenotypic antagonist. In isolation, estrogen and progestin act as genomic agonists by regulating the expression of common target genes in similar directions, but at different levels. Similarly, in isolation, progestin is also a weak phenotypic agonist of estrogen action. However, in the presence of both hormones, progestin behaves as a phenotypic estrogen antagonist. PR remodels nucleosomes to noncompetitively redirect ER genomic binding to distal enhancers enriched for BRCA1 binding motifs and sites that link PR and ER/PR complexes. When both hormones are present, progestin modulates estrogen action, such that responsive transcriptomes, cellular processes, and ER/PR recruitment to genomic sites correlate with those observed with PR alone, but not ER alone. Despite this overall correlation, the transcriptome patterns modulated by dual treatment are sufficiently different from individual treatments, such that antagonism of oncogenic processes is both predicted and observed. Combination therapies using the selective PR modulator/antagonist (SPRM) CDB4124 in combination with tamoxifen elicited 70% cytotoxic tumor regression of T47D tumor xenografts, whereas individual therapies inhibited tumor growth without net regression. Our findings demonstrate that PR redirects ER chromatin binding to antagonize estrogen signaling and that SPRMs can potentiate responses to antiestrogens, suggesting that cotargeting of ER and PR in ER+/PR+ breast cancers should be explored. PMID:27386569

  6. Dual and pan-peroxisome proliferator-activated receptors (PPAR) co-agonism: the bezafibrate lessons.

    PubMed

    Tenenbaum, Alexander; Motro, Michael; Fisman, Enrique Z

    2005-09-16

    There are three peroxisome proliferator-activated receptors (PPARs) subtypes which are commonly designated PPAR alpha, PPAR gamma and PPAR beta/delta. PPAR alpha activation increases high density lipoprotein (HDL) cholesterol synthesis, stimulates "reverse" cholesterol transport and reduces triglycerides. PPAR gamma activation results in insulin sensitization and antidiabetic action. Until recently, the biological role of PPAR beta/delta remained unclear. However, treatment of obese animals by specific PPAR delta agonists results in normalization of metabolic parameters and reduction of adiposity. Combined treatments with PPAR gamma and alpha agonists may potentially improve insulin resistance and alleviate atherogenic dyslipidemia, whereas PPAR delta properties may prevent the development of overweight which typically accompanies "pure" PPAR gamma ligands. The new generation of dual-action PPARs--the glitazars, which target PPAR-gamma and PPAR-alpha (like muraglitazar and tesaglitazar) are on deck in late-stage clinical trials and may be effective in reducing cardiovascular risk, but their long-term clinical effects are still unknown. A number of glitazars have presented problems at a late stage of clinical trials because of serious side-effects (including ragaglitazar and farglitazar). The old and well known lipid-lowering fibric acid derivative bezafibrate is the first clinically tested pan--(alpha, beta/delta, gamma) PPAR activator. It is the only pan-PPAR activator with more than a quarter of a century of therapeutic experience with a good safety profile. Therefore, bezafibrate could be considered (indeed, as a "post hoc" understanding) as an "archetype" of a clinically tested pan-PPAR ligand. Bezafibrate leads to considerable raising of HDL cholesterol and reduces triglycerides, improves insulin sensitivity and reduces blood glucose level, significantly lowering the incidence of cardiovascular events and new diabetes in patients with features of metabolic

  7. Dual and pan-peroxisome proliferator-activated receptors (PPAR) co-agonism: the bezafibrate lessons

    PubMed Central

    Tenenbaum, Alexander; Motro, Michael; Fisman, Enrique Z

    2005-01-01

    There are three peroxisome proliferator-activated receptors (PPARs) subtypes which are commonly designated PPAR alpha, PPAR gamma and PPAR beta/delta. PPAR alpha activation increases high density lipoprotein (HDL) cholesterol synthesis, stimulates "reverse" cholesterol transport and reduces triglycerides. PPAR gamma activation results in insulin sensitization and antidiabetic action. Until recently, the biological role of PPAR beta/delta remained unclear. However, treatment of obese animals by specific PPAR delta agonists results in normalization of metabolic parameters and reduction of adiposity. Combined treatments with PPAR gamma and alpha agonists may potentially improve insulin resistance and alleviate atherogenic dyslipidemia, whereas PPAR delta properties may prevent the development of overweight which typically accompanies "pure" PPAR gamma ligands. The new generation of dual-action PPARs – the glitazars, which target PPAR-gamma and PPAR-alpha (like muraglitazar and tesaglitazar) are on deck in late-stage clinical trials and may be effective in reducing cardiovascular risk, but their long-term clinical effects are still unknown. A number of glitazars have presented problems at a late stage of clinical trials because of serious side-effects (including ragaglitazar and farglitazar). The old and well known lipid-lowering fibric acid derivative bezafibrate is the first clinically tested pan – (alpha, beta/delta, gamma) PPAR activator. It is the only pan-PPAR activator with more than a quarter of a century of therapeutic experience with a good safety profile. Therefore, bezafibrate could be considered (indeed, as a "post hoc" understanding) as an "archetype" of a clinically tested pan-PPAR ligand. Bezafibrate leads to considerable raising of HDL cholesterol and reduces triglycerides, improves insulin sensitivity and reduces blood glucose level, significantly lowering the incidence of cardiovascular events and new diabetes in patients with features of

  8. The effects of nociceptin/orphanin FQ receptor agonist Ro 64-6198 and diazepam on antinociception and remifentanil self-administration in rhesus monkeys.

    PubMed

    Podlesnik, Christopher A; Ko, Mei-Chuan; Winger, Gail; Wichmann, Jürgen; Prinssen, Eric P; Woods, James H

    2011-01-01

    The synthetic nonpeptide NOP (nociceptin/orphanin FQ peptide) receptor agonist Ro 64-6198 produces antinociception in rhesus monkeys. In rodents, it has much more variable effects on pain responses, but has response rate-increasing effects on punished operant behavior and decreases drug reward. The aim of this study was to compare Ro 64-6198 with the benzodiazepine diazepam in tests of analgesia, drug self-administration, and response-increasing effects in rhesus monkeys. Ro 64-6198 (0.001-0.01 mg/kg, i.v.) produced antinociception against an acute noxious stimulus (50°C water) in the absence of sedation, whereas diazepam (0.32-3.2 mg/kg, i.v.) did not have analgesic effects without sedation. Diazepam (1.0-5.6 mg/kg, i.v.) and the largest dose of Ro 64-6198 (0.32 mg/kg, i.v.) decreased lever pressing maintained by intravenous self-administration of the mu-opioid agonist, remifentanil, but neither effect could be distinguished from sedative effects. Although neither drug consistently increased responding during nonreinforcement, such effects were observed more frequently following diazepam administration. The effects of Ro 64-6198 on lever pressing were blocked by the NOP-receptor antagonist, J-113397, but not by the benzodiazepine antagonist, flumazenil. These findings suggest that the effects of Ro 64-6198 on operant lever pressing are mediated by NOP receptors and that larger doses are required to impact operant behavior when compared directly with those that produce antinociception. Therefore, the present findings support previous literature suggesting NOP receptors are a viable target for pain management.

  9. 3D-QSAR, homology modeling, and molecular docking studies on spiropiperidines analogues as agonists of nociceptin/orphanin FQ receptor.

    PubMed

    Liu, Ming; He, Lin; Hu, Xiaopeng; Liu, Peiqing; Luo, Hai-Bin

    2010-12-01

    The nociceptin/orphanin FQ receptor (NOP) has been implicated in a wide range of biological functions, including pain, anxiety, depression and drug abuse. Especially, its agonists have a great potential to be developed into anxiolytics. However, the crystal structure of NOP is still not available. In the present work, both structure-based and ligand-based modeling methods have been used to achieve a comprehensive understanding on 67N-substituted spiropiperidine analogues as NOP agonists. The comparative molecular-field analysis method was performed to formulate a reasonable 3D-QSAR model (cross-validated coefficient q(2)=0.819 and conventional r(2)=0.950), whose robustness and predictability were further verified by leave-eight-out, Y-randomization, and external test-set validations. The excellent performance of CoMFA to the affinity differences among these compounds was attributed to the contributions of electrostatic/hydrogen-bonding and steric/hydrophobic interactions, which was supported by the Surflex-Dock and CDOCKER molecular-docking simulations based on the 3D model of NOP built by the homology modeling method. The CoMFA contour maps and the molecular docking simulations were integrated to propose a binding mode for the spiropiperidine analogues at the binding site of NOP.

  10. Biased agonism and allosteric modulation of G protein-coupled receptor 183 - a 7TM receptor also known as Epstein-Barr virus-induced gene 2.

    PubMed

    Daugvilaite, Viktorija; Madsen, Christian Medom; Lückmann, Michael; Echeverria, Clara Castello; Sailer, Andreas Walter; Frimurer, Thomas Michael; Rosenkilde, Mette Marie; Benned-Jensen, Tau

    2017-07-01

    The GPCR Epstein-Barr virus-induced gene 2 (EBI2, also known as GPR183) is activated by oxysterols and plays a pivotal role in the regulation of B cell migration during immune responses. While the molecular basis of agonist binding has been addressed in several studies, the concept of biased agonism of the EBI2 receptor has not been explored. We investigated the effects of the EBI2 endogenous agonist 7α,25-dihydroxycholesterol (7α,25-OHC) on G protein-dependent and -independent pathways as well as sodium ion allosterism using site-directed mutagenesis and functional studies. Moreover, we generated a homology model of the EBI2 receptor to investigate the structural basis of the allosteric modulation by sodium. Residue N114, located in the middle of transmembrane-III at position III:11/3.35, was found to function as an efficacy switch. Thus, substituting N114 with an alanine (N114A) completely abolished heterotrimeric G protein subunit Gi α activation by 7α,25-OHC even though the specific binding of [(3) H]-7α,25-OHC increased. In contrast, the N114A mutant was still able to recruit β-arrestin and even had an enhanced potency (18.7-fold) compared with EBI2 wild type. Sodium had a negative allosteric effect on oxysterol binding that was mediated via N114, verifying the key role of N114. This was further supported by molecular modelling of the ion binding site based on a EBI2 receptor homology model. Collectively, our data point to N114 as a key residue for EBI2 signalling controlling the balance between G protein-dependent and -independent pathways and facilitating sodium binding. © 2017 The British Pharmacological Society.

  11. Nociceptin/orphanin FQ (N/OFQ)-evoked bradycardia, hypotension, and diuresis are absent in N/OFQ peptide (NOP) receptor knockout mice.

    PubMed

    Burmeister, Melissa A; Ansonoff, Michael A; Pintar, John E; Kapusta, Daniel R

    2008-09-01

    Intracerebroventricular administration of the opioid-like peptide nociceptin/orphanin FQ (N/OFQ) produces bradycardia, hypotension, and diuresis in mice. We hypothesized that these responses are solely caused by selective activation of central N/OFQ peptide (NOP) receptors. To test this premise, we first examined whether i.c.v. N/OFQ produced dose-dependent diuretic and cardiovascular depressor responses in commercially available C57BL/6 mice. Next, using doses established in these studies, we examined the renal excretory and cardiovascular responses to i.c.v. N/OFQ in conscious transgenic NOP receptor knockout mice (NOP(-/-)). In metabolic studies, i.c.v. N/OFQ, but not saline vehicle, dose-dependently increased urine output (V) in NOP(+/+); this response was significant at 3 nmol (N/OFQ, V = 0.39 +/- 0.10 ml/2 h; saline, 0.08 +/- 0.05 ml/2 h). The N/OFQ-evoked diuresis was absent in littermate NOP(-/-) (N/OFQ, V = 0.06 +/- 0.06 ml/2 h; saline, 0.03 +/- 0.03 ml/2 h). There were no significant changes in urinary sodium or potassium excretion or free water clearance in either group. In telemetry studies, i.c.v. N/OFQ dose dependently lowered heart rate (HR) and mean arterial pressure (MAP). At 3 nmol N/OFQ, both HR and MAP were reduced in NOP(+/+) (peak DeltaHR = -217 +/- 31 bpm; peak DeltaMAP =-47 +/- 7 mm Hg) compared with saline (peak DeltaHR =-14 +/- 5 bpm; peak DeltaMAP = 2 +/- 3 mm Hg). These N/OFQ-evoked bradycardic and hypotensive responses were absent in NOP(-/-) (peak DeltaHR =-13 +/- 17 bpm; peak DeltaMAP =-2 +/- 4 mm Hg, respectively). Basal 24-h cardiovascular and renal excretory function were not different between NOP(-/-) and NOP(+/+) mice. These results establish that the bradycardia, hypotension and diuresis produced by centrally administered N/OFQ are mediated by selective activation of NOP receptors.

  12. Retest imaging of [11C]NOP-1A binding to nociceptin/orphanin FQ peptide (NOP) receptors in brain of healthy humans

    PubMed Central

    Lohith, Talakad G.; Zoghbi, Sami S.; Morse, Cheryl L.; Araneta, Maria D. Ferraris; Barth, Vanessa N.; Goebl, Nancy A.; Tauscher, Johannes T.; Pike, Victor W.; Innis, Robert B.; Fujita, Masahiro

    2013-01-01

    [11C]NOP-1A is a novel high-affinity PET ligand for imaging nociceptin/orphanin FQ peptide (NOP) receptors. Here, we report reproducibility and reliability measures of binding parameter estimates for [11C]NOP-1A binding in brain of healthy humans. After intravenous injection of [11C]NOP-1A, PET scans were conducted twice on eleven healthy volunteers on the same (10/11 subjects) or different (1/11 subjects) days. Subjects underwent serial sampling of radial arterial blood to measure parent radioligand concentrations. Distribution volume (VT; a measure of receptor density) was determined by compartmental (one- and two-tissue) modeling in large regions and by simpler regression methods (graphical Logan and bilinear MA1) in both large regions and voxel data. Retest variability and intraclass correlation coefficient (ICC) of VT were determined as measures of reproducibility and reliability, respectively. Regional [11C]NOP-1A uptake in brain was high, with a peak radioactivity concentration of 4 – 7 SUV (standardized uptake value) and a rank order of putamen > cingulate cortex > cerebellum. Brain time-activity curves fitted well in 10 of 11 subjects by unconstrained two-tissue compartmental model. The retest variability of VT was moderately good across brain regions except cerebellum, and was similar across different modeling methods, averaging 12% for large regions and 14% for voxel-based methods. The retest reliability of VT was also moderately good in most brain regions, except thalamus and cerebellum, and was similar across different modeling methods averaging 0.46 for large regions and 0.48 for voxels having gray matter probability > 20%. The lowest retest variability and highest retest reliability of VT was achieved by compartmental modeling for large regions, and by the parametric Logan method for voxel-based methods. Moderately good reproducibility and reliability measures of VT for [11C]NOP-1A make it a useful PET ligand for comparing NOP receptor binding

  13. V2 vasopressin receptor (V2R) mutations in partial nephrogenic diabetes insipidus highlight protean agonism of V2R antagonists.

    PubMed

    Takahashi, Kazuhiro; Makita, Noriko; Manaka, Katsunori; Hisano, Masataka; Akioka, Yuko; Miura, Kenichiro; Takubo, Noriyuki; Iida, Atsuko; Ueda, Norishi; Hashimoto, Makiko; Fujita, Toshiro; Igarashi, Takashi; Sekine, Takashi; Iiri, Taroh

    2012-01-13

    Inactivating mutations of the V2 vasopressin receptor (V2R) cause cross-linked congenital nephrogenic diabetes insipidus (NDI), resulting in renal resistance to the antidiuretic hormone AVP. In two families showing partial NDI, characterized by an apparently normal response to diagnostic tests and an increase in the basal ADH levels suggesting AVP resistance, we have identified two V2R mutations, Ser-333del and Y128S. Both mutant V2Rs, when expressed in COS-7 cells, show partial defects in vasopressin-stimulated cAMP accumulation and intracellular localization. The inhibition of internalization does not rescue their localization. In contrast, the non-peptide V2R antagonists OPC41061 and OPC31260 partially rescue the membrane localization and basal function of these V2R mutants, whereas they inhibit the basal activity of the wild-type V2R. These results indicate that a partial loss of function of Ser-333del and Y128S mutant V2Rs results from defective membrane trafficking. These findings further indicate that V2R antagonists can act as protean agonists, serving as pharmacological chaperones for inactivating V2R mutants and also as inverse agonists of wild-type receptors. We speculate that this protean agonism could underlie the possible dual beneficial effects of the V2R antagonist: improvement of hyponatremia with heart failure or polycystic kidney disease and potential rescue of NDI.

  14. V2 Vasopressin Receptor (V2R) Mutations in Partial Nephrogenic Diabetes Insipidus Highlight Protean Agonism of V2R Antagonists*

    PubMed Central

    Takahashi, Kazuhiro; Makita, Noriko; Manaka, Katsunori; Hisano, Masataka; Akioka, Yuko; Miura, Kenichiro; Takubo, Noriyuki; Iida, Atsuko; Ueda, Norishi; Hashimoto, Makiko; Fujita, Toshiro; Igarashi, Takashi; Sekine, Takashi; Iiri, Taroh

    2012-01-01

    Inactivating mutations of the V2 vasopressin receptor (V2R) cause cross-linked congenital nephrogenic diabetes insipidus (NDI), resulting in renal resistance to the antidiuretic hormone AVP. In two families showing partial NDI, characterized by an apparently normal response to diagnostic tests and an increase in the basal ADH levels suggesting AVP resistance, we have identified two V2R mutations, Ser-333del and Y128S. Both mutant V2Rs, when expressed in COS-7 cells, show partial defects in vasopressin-stimulated cAMP accumulation and intracellular localization. The inhibition of internalization does not rescue their localization. In contrast, the non-peptide V2R antagonists OPC41061 and OPC31260 partially rescue the membrane localization and basal function of these V2R mutants, whereas they inhibit the basal activity of the wild-type V2R. These results indicate that a partial loss of function of Ser-333del and Y128S mutant V2Rs results from defective membrane trafficking. These findings further indicate that V2R antagonists can act as protean agonists, serving as pharmacological chaperones for inactivating V2R mutants and also as inverse agonists of wild-type receptors. We speculate that this protean agonism could underlie the possible dual beneficial effects of the V2R antagonist: improvement of hyponatremia with heart failure or polycystic kidney disease and potential rescue of NDI. PMID:22144672

  15. Constitutive activity of cannabinoid-2 (CB2) receptors plays an essential role in the protean agonism of (+)AM1241 and L768242

    PubMed Central

    Mancini, I; Brusa, R; Quadrato, G; Foglia, C; Scandroglio, P; Silverman, LS; Tulshian, D; Reggiani, A; Beltramo, M

    2009-01-01

    Background and purpose: Cannabinoid-2 (CB2) receptor-selective agonists have shown anti-nociceptive activity in models of neuropathic and inflammatory pain, and the two agonists most widely used, (+/−)AM1241 [(2-iodo-5-nitrophenyl)-[1-(1-methylpiperidin-2-ylmethyl)-1H-indol-3-yl-methanone] and L768242 [(2,3-dichloro-phenyl)-[5-methoxy-2-methyl-3-(2-morpholin-4-yl-ethyl)-indol-1-yl]-methanone] (GW405833), have been suggested to be protean agonists. Here we investigated the role of the constitutive activity of CB2 receptors in (+)AM1241 and L768242 protean agonism. Experimental approach: Pharmacological profiles of CB2 receptor ligands were evaluated in Chinese hamster ovary cells expressing recombinant human (hCB2) or rat (rCB2) receptors, by measuring modulation of cAMP. To assess the influence of constitutive activity on pharmacological profile, constitutive activity was abolished by pretreatment with AM630 [(6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-methoxyphenyl) methanone)], followed by extensive washing. Key results: In cell lines expressing either hCB2 or rCB2 receptors, (+)AM1241 did not reverse forskolin stimulation of cAMP levels. Conversely, L768242 was an inverse agonist at both hCB2 and rCB2 receptors. Abolition of constitutive activity disclosed (+)AM1241 and L768242 agonist activity, while activity of CP55940 [5-(1,1-dimethylheptyl)-2-[(1R,2R,5R)-5-hydroxy-2-(3-hydroxy-propyl)-cyclohexyl]-phenol] was unaffected and AM630 became a neutral antagonist. In presence of constitutively active CB2 receptors, (+)AM1241 antagonized CP55940, but when constitutive activity was abolished, it acted as a partial agonist with additive or antagonistic behaviour, depending on concentration. Conclusions and implications: These results show that (+)AM1241 and L768242 are protean agonists at both hCB2 and rCB2 receptors. Abolition of constitutive activity reveals the agonist activity of these compounds. Thus, differences between in vivo and in vitro

  16. Vortioxetine dose-dependently reverses 5-HT depletion-induced deficits in spatial working and object recognition memory: a potential role for 5-HT1A receptor agonism and 5-HT3 receptor antagonism.

    PubMed

    du Jardin, Kristian Gaarn; Jensen, Jesper Bornø; Sanchez, Connie; Pehrson, Alan L

    2014-01-01

    We previously reported that the investigational multimodal antidepressant, vortioxetine, reversed 5-HT depletion-induced memory deficits while escitalopram and duloxetine did not. The present report studied the effects of vortioxetine and the potential impact of its 5-HT1A receptor agonist and 5-HT3 receptor antagonist properties on 5-HT depletion-induced memory deficits. Recognition and spatial working memory were assessed in the object recognition (OR) and Y-maze spontaneous alternation (SA) tests, respectively. 5-HT depletion was induced in female Long-Evans rats using 4-cholro-DL-phenylalanine methyl ester HCl (PCPA) and receptor occupancies were determined by ex vivo autoradiography. Rats were acutely dosed with vortioxetine, ondansetron (5-HT3 receptor antagonist) or flesinoxan (5-HT1A receptor agonist). The effects of chronic vortioxetine administration on 5-HT depletion-induced memory deficits were also assessed. 5-HT depletion reliably impaired memory performance in both the tests. Vortioxetine reversed PCPA-induced memory deficits dose-dependently with a minimal effective dose (MED) ≤0.1mg/kg (∼80% 5-HT3 receptor occupancy; OR) and ≤3.0mg/kg (5-HT1A, 5-HT1B, 5-HT3 receptor occupancy: ∼15%, 60%, 95%) in SA. Ondansetron exhibited a MED ≤3.0μg/kg (∼25% 5-HT3 receptor occupancy; OR), but was inactive in the SA test. Flesinoxan had a MED ≤1.0mg/kg (∼25% 5-HT1A receptor occupancy; SA); only 1.0mg/kg ameliorated deficits in the NOR. Chronic p.o. vortioxetine administration significantly improved memory performance in OR and occupied 95%, 66%, and 9.5% of 5-HT3, 5-HT1B, and 5-HT1A receptors, respectively. Vortioxetine's effects on SA performance may involve 5-HT1A receptor agonism, but not 5-HT3 receptor antagonism, whereas the effects on OR performance may involve 5-HT3 receptor antagonism and 5-HT1A receptor agonism. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.

  17. Defining the minimal structural requirements for partial agonism at the type I myo-inositol 1,4,5-trisphosphate receptor.

    PubMed

    Wilcox, R A; Fauq, A; Kozikowski, A P; Nahorski, S R

    1997-02-03

    The novel synthetic analogues D-3-fluoro-myo-inositol 1,5-bisphosphate-4-phosphorothioate, [3F-Ins(1,5)P2-4PS], D-3-fluoro-myo-inositol 1,4-bisphosphate-5-phosphorothioate [3F-Ins(1,4)P2-5PS], and D-3-fluoro-myo-inositol 1-phosphate-4,5-bisphosphorothioate [3F-Ins(1)P-(4,5)PS2] were utilised to define the structure-activity relationships which could produce partial agonism at the Ca2+ mobilising myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] receptor. Based on prior structure-activity data we hypothesised that the minimal structural requirements for lns(1,4,5)P3 receptor partial agonism, were phosphorothioate substitution of the crucial vicinal 4,5-bisphosphate pair accompanied by another structural perturbation, such fluorination of 3-position of the myo-inositol ring. All the analogues fully displaced [3H]Ins(1,4,5)P3 from a single Ins(1,4,5)P3 binding site in pig cerebellar membranes [3F-Ins(1,5)P2-4PS (1C50 = 26 nM), 3F-Ins(1,4)P2-5PS (IC50 = 80 nM) and 3F-Ins(1)P-(4,5)PS2 (IC50 = 109 nM) cf. Ins(1,4,5)P3 (IC50 = 11 nM)]. In contrast, 3F-Ins(1,5)P2-4PS (IC50 = 424 nM) and 3F-Ins(1,4)P2-5PS (IC50 = 3579 nM) were weak full agonists at the Ca2+ mobilising Ins(1,4,5)P3 receptor of permeabilised SH-SY5Y neuroblastoma cells, being respectively 4- and 36-fold less potent than Ins(1,4,5)P3 (EC50 = 99 nM). While 3F-Ins(1)P-(4,5)PS2 (EC50 = 11345 nM) was a partial agonist releasing only 64.3 +/- 1.9% of the Ins(1,4,5)P3-sensitive intracellular Ca2+ pools. 3F-Ins(1)P-(4,5)PS2 was unique among the Ins(1,4,5)P3 receptor partial agonists so far identified in having a relatively high affinity for the Ins(1,4,5)P3 binding site, accompanied by a significant loss of intrinsic activity for Ca2+ mobilisation. This improved affinity was probably due to the retention of the 1-position phosphate, which enhances interaction with the Ins-(1,4,5)P3 receptor. 3F-Ins(1)P-(4,5)PS2 may be an important lead compound for the development of efficient Ins(1,4,5)P3 receptor antagonists.

  18. Broad-spectrum efficacy across cognitive domains by alpha7 nicotinic acetylcholine receptor agonism correlates with activation of ERK1/2 and CREB phosphorylation pathways.

    PubMed

    Bitner, Robert S; Bunnelle, William H; Anderson, David J; Briggs, Clark A; Buccafusco, Jerry; Curzon, Peter; Decker, Michael W; Frost, Jennifer M; Gronlien, Jens Halvard; Gubbins, Earl; Li, Jinhe; Malysz, John; Markosyan, Stella; Marsh, Kennan; Meyer, Michael D; Nikkel, Arthur L; Radek, Richard J; Robb, Holly M; Timmermann, Daniel; Sullivan, James P; Gopalakrishnan, Murali

    2007-09-26

    The alpha7 nicotinic acetylcholine receptor (nAChR) plays an important role in cognitive processes and may represent a drug target for treating cognitive deficits in neurodegenerative and psychiatric disorders. In the present study, we used a novel alpha7 nAChR-selective agonist, 2-methyl-5-(6-phenyl-pyridazin-3-yl)-octahydro-pyrrolo[3,4-c]pyrrole (A-582941) to interrogate cognitive efficacy, as well as examine potential cellular mechanisms of cognition. Exhibiting high affinity to native rat (Ki = 10.8 nM) and human (Ki = 16.7 nM) alpha7 nAChRs, A-582941 enhanced cognitive performance in behavioral assays including the monkey delayed matching-to-sample, rat social recognition, and mouse inhibitory avoidance models that capture domains of working memory, short-term recognition memory, and long-term memory consolidation, respectively. In addition, A-582941 normalized sensory gating deficits induced by the alpha7 nAChR antagonist methyllycaconitine in rats, and in DBA/2 mice that exhibit a natural sensory gating deficit. Examination of signaling pathways known to be involved in cognitive function revealed that alpha7 nAChR agonism increased extracellular-signal regulated kinase 1/2 (ERK1/2) phosphorylation in PC12 cells. Furthermore, increases in ERK1/2 and cAMP response element-binding protein (CREB) phosphorylation were observed in mouse cingulate cortex and/or hippocampus after acute A-582941 administration producing plasma concentrations in the range of alpha7 binding affinities and behavioral efficacious doses. The MEK inhibitor SL327 completely blocked alpha7 agonist-evoked ERK1/2 phosphorylation. Our results demonstrate that alpha7 nAChR agonism can lead to broad-spectrum efficacy in animal models at doses that enhance ERK1/2 and CREB phosphorylation/activation and may represent a mechanism that offers potential to improve cognitive deficits associated with neurodegenerative and psychiatric diseases, such as Alzheimer's disease and schizophrenia.

  19. Acute and subchronic treatments with selective serotonin reuptake inhibitors increase Nociceptin/Orphanin FQ (NOP) receptor density in the rat dorsal raphe nucleus; interactions between nociceptin/NOP system and serotonin.

    PubMed

    Le Maître, Erwan; Dourmap, Nathalie; Vilpoux, Catherine; Leborgne, Romain; Janin, François; Bonnet, Jean-Jacques; Costentin, Jean; Leroux-Nicollet, Isabelle

    2013-07-03

    Nociceptin/Orphanin FQ is the endogenous ligand of NOP receptor, formerly referred to as the Opioid Receptor-Like 1 receptor. We have previously shown that NOP receptors were located on serotonergic neurons in the rat dorsal raphe nucleus, suggesting possible direct interactions between nociceptin and serotonin in this region, which is a target for antidepressant action. In the present study, we investigated further the link between Selective Serotonin Reuptake Inhibitor (SSRI) antidepressant treatments and the nociceptin/NOP receptor system. Intraperitoneal administration of the SSRI citalopram induced an increase in NOP-receptor density, measured by autoradiographic [(3)H] nociceptin binding, in the rat dorsal raphe nucleus, from the first to the 21st day of treatment. This effect was also observed with other SSRIs (sertraline, fluoxetine), but not with two tricyclic antidepressants (imipramine, clomipramine) and was abolished by pre-treatment with para-chlorophenylalanine, an inhibitor of serotonin synthesis. Using microdialysis experiments, we demonstrated that NOP-receptor activation by infusion of nociceptin 10(-6) M or 10(-5) M increased the level of extracellular serotonin in the dorsal raphe nucleus. This effect was abolished by co-infusion of the NOP-receptor antagonist UFP 101. These results confirm the existence of reciprocal interactions between serotonin and nociceptin/NOP transmissions in the dorsal raphe nucleus.

  20. Switching agonist/antagonist properties of opiate alkaloids at the delta opioid receptor using mutations based on the structure of the orphanin FQ receptor.

    PubMed

    Meng, F; Wei, Q; Hoversten, M T; Taylor, L P; Akil, H

    2000-07-21

    In an earlier study, we have demonstrated that by mutating five amino acid residues to those conserved in the opioid receptors, the OFQ receptor could be converted to a functional receptor that bound many opioid alkaloids with nanomolar affinities. Surprisingly, when the reciprocal mutations, Lys-214 --> Ala (TM5), Ile-277 --> Val/His-278 --> Gln/Ile-279 --> Val (TM6), and Ile-304 --> Thr (TM7), are introduced in the delta receptor, neither the individual mutations nor their various combinations significantly reduce the binding affinities of opioid alkaloids tested. However, these mutations cause profound alterations in the functional characteristics of the mutant receptors as measured in guanosine 5'-3-O-(thio)triphosphate binding assays. Some agonists become antagonists at some constructs as they lose their ability to activate them. Some alkaloid antagonists are transformed into agonists at other constructs, but their agonistic effects can still be blocked by the peptide antagonist TIPP. Even the delta inverse agonist 7-benzylidenenaltrexone becomes an agonist at the mutant containing both the Ile-277 --> Val/His-278 --> Gln/Ile-279 --> Val and Ile-304 --> Thr mutations. Thus, although the mutated residues are thought to be part of the binding pocket, they are critically involved in the control of the delta receptor activation process. These findings shed light on some of the structural bases of ligand efficacy. They are also compatible with the hypothesis that a ligand may achieve high affinity binding in several different ways, each having different effects on receptor activation.

  1. Structure-based drug design targeting the cell membrane receptor GPBAR1: exploiting the bile acid scaffold towards selective agonism

    NASA Astrophysics Data System (ADS)

    di Leva, Francesco Saverio; Festa, Carmen; Renga, Barbara; Sepe, Valentina; Novellino, Ettore; Fiorucci, Stefano; Zampella, Angela; Limongelli, Vittorio

    2015-11-01

    Bile acids can regulate nutrient metabolism through the activation of the cell membrane receptor GPBAR1 and the nuclear receptor FXR. Developing an exogenous control over these receptors represents an attractive strategy for the treatment of enterohepatic and metabolic disorders. A number of dual GPBAR1/FXR agonists are known, however their therapeutic use is limited by multiple unwanted effects due to activation of the diverse downstream signals controlled by the two receptors. On the other hand, designing selective GPBAR1 and FXR agonists is challenging since the two proteins share similar structural requisites for ligand binding. Here, taking advantage of our knowledge of the two targets, we have identified through a rational drug design study a series of amine lithocholic acid derivatives as selective GPBAR1 agonists. The presence of the 3α-NH2 group on the steroidal scaffold is responsible for the selectivity over FXR unveiling unprecedented structural insights into bile acid receptors activity modulation.

  2. Partial Agonism of 5-HT3 Receptors: A Novel Approach to the Symptomatic Treatment of IBS-D

    PubMed Central

    2012-01-01

    Irritable bowel syndrome (IBS) is a functional bowel disorder characterized by abdominal pain, discomfort, and altered bowel habits, which have a significant impact on quality of life for approximately 10–20% of the population. IBS can be divided into three main types IBS-D (diarrhea predominant), IBS-C (constipation predominant), and mixed or alternating IBS. 5-HT3 receptor antagonism has proved to be an efficacious treatment option for IBS-D. For example, alosetron displays efficacy in the treatment of multiple symptoms, including abdominal pain, discomfort, urgency, stool frequency and consistency. However, significant constipation occurred in approximately 25% of patients, leading to withdrawal of up to 10% of patients in clinical trials. Targeting compounds with partial agonist activity at the 5-HT3 receptor represents a mechanistic departure from the classic 5-HT3 receptor antagonist approach and should result in agents that are applicable to a broader array of IBS patient populations. Attenuation of the activity of the ion channel without completely abolishing its function may control or normalize bowel function without leading to a total block associated with severe constipation. We have identified a new class of selective, orally active 5-HT3 receptor ligands with high 5-HT3 receptor affinity and low partial agonist activity currently in preclinical development that should offer a significant advantage over existing therapies. PMID:23342199

  3. Peroxisome proliferator-activated receptor {alpha} agonism prevents renal damage and the oxidative stress and inflammatory processes affecting the brains of stroke-prone rats.

    PubMed

    Gelosa, Paolo; Banfi, Cristina; Gianella, Anita; Brioschi, Maura; Pignieri, Alice; Nobili, Elena; Castiglioni, Laura; Cimino, Mauro; Tremoli, Elena; Sironi, Luigi

    2010-11-01

    A growing body of evidence suggests that chronic kidney disease is a significant risk for cardiovascular events and stroke regardless of traditional risk factors. The aim of this study was to examine the effects of peroxisome proliferator-activated receptor (PPAR) agonists on the tissue damage affecting salt-loaded spontaneously hypertensive stroke-prone rats ( SHRSPs), an animal model that develops a complex pathology characterized by systemic inflammation, hypertension, and proteinuria and leads to end-organ injury (initially renal and subsequently cerebral). Compared with the PPARγ agonist rosiglitazone, the PPARα ligands fenofibrate and clofibrate significantly increased survival (p < 0.001) by delaying the occurrence of brain lesions monitored by magnetic resonance imaging (p < 0.001) and delaying increased proteinuria (p < 0.001). Fenofibrate completely prevented the renal disorder characterized by severe vascular lesions, tubular damage, and glomerular sclerosis, reduced the number of ED-1-positive cells and collagen accumulation, and decreased the renal expression of interleukin-1β, transforming growth factor β, and monocyte chemoattractant protein 1. It also prevented the plasma and urine accumulation of acute-phase and oxidized proteins, suggesting that the protection induced by PPARα agonists was at least partially caused by their anti-inflammatory and antioxidative properties. The results of this study demonstrate that PPAR agonism has beneficial effects on spontaneous brain and renal damage in SHRSPs by inhibiting systemic inflammation and oxidative stress, and they support carrying out future studies aimed at evaluating the effect of PPARα agonists on proteinuria and clinical outcomes in hypertensive patients with renal disease at increased risk of stroke.

  4. Obese Mice Lacking Inducible Nitric Oxide Synthase Are Sensitized to the Metabolic Actions of Peroxisome Proliferator–Activated ReceptorAgonism

    PubMed Central

    Dallaire, Patrice; Bellmann, Kerstin; Laplante, Mathieu; Gélinas, Stéphanie; Centeno-Baez, Carolina; Penfornis, Patrice; Peyot, Marie-Line; Latour, Martin G.; Lamontagne, Julien; Trujillo, Maria E.; Scherer, Philipp E.; Prentki, Marc; Deshaies, Yves; Marette, André

    2008-01-01

    OBJECTIVE—Synthetic ligands for peroxisome proliferator–activated receptor-γ (PPAR-γ) improve insulin sensitivity in obesity, but it is still unclear whether inflammatory signals modulate their metabolic actions. In this study, we tested whether targeted disruption of inducible nitric oxide (NO) synthase (iNOS), a key inflammatory mediator in obesity, modulates the metabolic effects of rosiglitazone in obese mice. RESEARCH DESIGN AND METHODS—iNOS−/− and iNOS+/+ were subjected to a high-fat diet or standard diet for 18 weeks and were then treated with rosiglitazone for 2 weeks. Whole-body insulin sensitivity and glucose tolerance were determined and metabolic tissues harvested to assess activation of insulin and AMP-activated protein kinase (AMPK) signaling pathways and the levels of inflammatory mediators. RESULTS—Rosiglitazone was found to similarly improve whole-body insulin sensitivity and insulin signaling to Akt/PKB in skeletal muscle of obese iNOS−/− and obese iNOS+/+ mice. However, rosiglitazone further improved glucose tolerance and liver insulin signaling only in obese mice lacking iNOS. This genotype-specific effect of rosiglitazone on glucose tolerance was linked to a markedly increased ability of the drug to raise plasma adiponectin levels. Accordingly, rosiglitazone increased AMPK activation in muscle and liver only in obese iNOS−/− mice. PPAR-γ transcriptional activity was increased in adipose tissue of iNOS−/− mice. Conversely, treatment of 3T3-L1 adipocytes with a NO donor blunted PPAR-γ activity. CONCLUSIONS—Our results identify the iNOS/NO pathway as a critical modulator of PPAR-γ activation and circulating adiponectin levels and show that invalidation of this key inflammatory mediator improves the efficacy of PPAR-γ agonism in an animal model of obesity and insulin resistance. PMID:18458147

  5. Conformational profiling of the AT1 angiotensin II receptor reflects biased agonism, G protein coupling and cellular context.

    PubMed

    Devost, Dominic; Sleno, Rory; Petrin, Darlaine; Zhang, Alice; Shinjo, Yuji; Okde, Rakan; Aoki, Junken; Inoue, Asuka; Hebert, Terence E

    2017-02-17

    Here, we report the design and use of GPCR-based biosensors to monitor ligand-mediated conformational changes in receptors in intact cells. These biosensors use Bioluminescence Resonance Energy Transfer (BRET) with Renilla luciferase (RlucII) as an energy donor, placed at the distal end of the receptor C-tail and the small fluorescent molecule FlAsH, as an energy acceptor, its binding site inserted at different positions throughout the intracellular loops and carboxy-terminal tail of the angiotensin II type I receptor (AT1R). We verified that the modifications did not compromise receptor localization or function before proceeding further. Our biosensors were able to capture effects of both canonical and biased ligands, even to the extent of discriminating between different biased ligands. Using a combination of G protein inhibitors and HEK 293 cell lines CRISPR/Cas9-engineered to delete Gαq, Gα11, Gα12, and Gα13 or β-arrestins, we showed that Gαq and Gα11 are required for functional responses in conformational sensors in ICL3 but not ICL2. Loss of β-arrestin did not alter biased ligand effects on ICL2P2. We also demonstrate that such biosensors are portable between different cell types and yield context-dependent readouts of GPCR conformation. Our study provides mechanistic insights into signalling events that depend on either G proteins or β-arrestin.

  6. Effects of CB1 receptor agonism and antagonism on behavioral fear and physiological stress responses in adult intact, ovariectomized, and estradiol-replaced female rats.

    PubMed

    Simone, J J; Malivoire, B L; McCormick, C M

    2015-10-15

    There is growing interest in the development of cannabis-based therapies for the treatment of fear and anxiety disorders. There are a few studies, but none in females, of the effects of the highly selective cannabinoid receptor type 1 (CB1) agonist, arachidonyl 2'-chlorethylamide (ACEA), on behavioral fear. In experiment 1 involving gonadally-intact females, ACEA (either 0.1 or 0.01 mg/kg) was without effect in the elevated plus maze (EPM), and the lower dose decreased anxiety in the open field test (OFT). AM251 increased anxiety in the EPM and decreased locomotor activity in the OFT. Twenty-four hours after fear conditioning, neither ACEA nor AM251 affected generalized fear or conditioned fear recall. AM251 and 0.1 mg/kg ACEA impaired, and 0.01 mg/kg ACEA enhanced, within-session fear extinction. AM251 increased plasma corticosterone concentrations after the fear extinction session, whereas ACEA was without effect. Based on evidence that estradiol may moderate the effects of CB1 receptor signaling in females, experiment 2 involved ovariectomized (OVX) rats provided with 10-μg 17β-Estradiol and compared with OVX rats without hormone replacement (oil vehicle). Irrespective of hormone treatment, AM251 increased anxiety in the EPM, whereas ACEA (0.01 mg/kg) was without effect. Neither hormone nor drug altered anxiety in the OFT, but estradiol increased and AM251 decreased distance traveled. After fear conditioning, AM251 decreased generalized fear. Neither hormone nor drug had any effect on recall or extinction of conditioned fear, however, ACEA and AM251 increased fear-induced plasma corticosterone concentrations. Further, when results with intact rats were compared with those from OVX rats, gonadal status did not moderate the effects of either AM251 or ACEA, although OVX displayed greater anxiety and fear than did intact rats. Thus, the effects of CB1 receptor antagonism and agonism in adult female rats do not depend on ovarian estradiol. Copyright © 2015 IBRO

  7. Convergent chemoenzymatic synthesis of a library of glycosylated analogues of pramlintide: structure-activity relationships for amylin receptor agonism.

    PubMed

    Kowalczyk, Renata; Brimble, Margaret A; Tomabechi, Yusuke; Fairbanks, Antony J; Fletcher, Madeleine; Hay, Debbie L

    2014-11-07

    Pramlintide (Symlin®), a synthetic analogue of the naturally occurring pancreatic hormone amylin, is currently used with insulin in adjunctive therapy for type 1 and type 2 diabetes mellitus. Herein we report a systematic study into the effect that N-glycosylation of pramlintide has on activation of amylin receptors. A highly efficient convergent synthetic route, involving a combination of solid phase peptide synthesis and enzymatic glycosylation, delivered a library of N-glycosylated variants of pramlintide bearing either GlcNAc, the core N-glycan pentasaccharide [Man3(GlcNAc)2] or a complex biantennary glycan [(NeuAcGalGlcNAcMan)2Man(GlcNAc)2] at each of its six asparagine residues. The majority of glycosylated versions of pramlintide were potent receptor agonists, suggesting that N-glycosylation may be used as a tool to optimise the pharmacokinetic properties of pramlintide and so deliver improved therapeutic agents for the treatment of diabetes and obesity.

  8. Dipyridamole attenuates ischemia reperfusion induced acute kidney injury through adenosinergic A1 and A2A receptor agonism in rats.

    PubMed

    Puri, Nikkita; Mohey, Vinita; Singh, Manjinder; Kaur, Tajpreet; Pathak, Devendra; Buttar, Harpal Singh; Singh, Amrit Pal

    2016-04-01

    Dipyridamole (DYP) is an anti-platelet agent with marked vasodilator, anti-oxidant, and anti-inflammatory activity. The present study investigated the role of adenosine receptors in DYP-mediated protection against ischemia reperfusion-induced acute kidney injury (AKI) in rats. The rats were subjected to bilateral renal ischemia for 40 min followed by reperfusion for 24 h. The renal damage induced by ischemia reperfusion injury (IRI) was assessed by measuring creatinine clearance, blood urea nitrogen, uric acid, plasma potassium, fractional excretion of sodium, and microproteinuria in rats. The oxidative stress in renal tissues was assessed by quantification of thiobarbituric acid-reactive substances, superoxide anion generation, and reduced glutathione level. The hematoxylin-eosin staining was carried out to observe histopathological changes in renal tissues. DYP (10 and 30 mg/kg, intraperitoneal, i.p.) was administered 30 min before subjecting the rats to renal IRI. In separate groups, caffeine (50 mg/kg, i.p.), an adenosinergic A1 and A2A receptor antagonist was administered with and without DYP treatment before subjecting the rats to renal IRI. The ischemia reperfusion-induced AKI was demonstrated by significant changes in serum as well as urinary parameters, enhanced oxidative stress, and histopathological changes in renal tissues. The administration of DYP demonstrated protection against AKI. The prior treatment with caffeine abolished DYP-mediated reno-protection suggesting role of A1 and A2A adenosine receptors in DYP-mediated reno-protection in rats. It is concluded that adenosine receptors find their definite involvement in DYP-mediated anti-oxidative and reno-protective effect against ischemia reperfusion-induced AKI.

  9. Endothelin ETB1 receptor agonism as a new therapeutic strategy in pulmonary arterial hypertension and chronic heart failure.

    PubMed

    Ramirez, Giuseppe A

    2013-11-01

    Pulmonary arterial hypertension and post-ischemic chronic heart failure are highly prevalent diseases with high morbidity and mortality rates due to chronic vascular injury and extensive remodeling responses at the level of the vessel walls. Endothelins play a central role in this setting, through a complex signaling system that mainly affects endothelial and vascular smooth muscle cells. ETA and ETB2 endothelin receptors are thought to mediate pro-ischemic responses, while ETB1 receptor activity could account for the overall protective effect of ETB signaling in physiology. The pharmacologic modulation of the endothelin system has mainly focused on the dual non-selective blockade of ETA and ETB endothelin receptors or to the selective blockade of ETA-related pathways to date. Good clinical results were achieved in the setting of pulmonary hypertension but no advantage has been demonstrated for heart failure. Restoring and enhancing the physiological protective role of ETB1-signaling with concomitant blockade of ETB2 could possibly improve the efficacy of current therapies in the setting of pulmonary arterial hypertension and post-ischemic chronic heart failure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Dual motor response to l-dopa and nociceptin/orphanin FQ receptor antagonists in 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) treated mice: Paradoxical inhibition is relieved by D(2)/D(3) receptor blockade.

    PubMed

    Viaro, Riccardo; Marti, Matteo; Morari, Michele

    2010-06-01

    Motor activity of mice acutely treated with the parkinsonian toxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) was monitored for 6 days using behavioral tests which provide complementary information on motor function: the bar, reaction time, drag, stair climbing, grip, rotarod and footprinting tests. These tests consistently disclosed a prolonged motor impairment characterized by akinesia, bradykinesia, speed reduction, loss of coordination and gait patterns. This impairment was associated with approximately 60% loss of striatal dopamine terminals, as revealed by tyrosine hydroxylase immunohistochemistry, and was attenuated by dopaminergic drugs. Indeed, the dopamine precursor, l-dopa (1-10 mg/kg), and the D(3)/D(2) receptor agonist pramipexole (0.0001-0.001 mg/kg) promoted stepping activity in the drag test (a test for akinesia/bradykinesia). The novel nociceptin/orphanin FQ receptor (NOP) antagonist 1-[1-(cyclooctylmethyl)-1,2,3,6-tetrahydro-5-(hydroxymethyl)-4-pyridinyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one (Trap-101, 0.001-0.1 mg/kg), an analogue of 1-[(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one (J-113397), also promoted stepping and synergistically or additively (depending on test) attenuated parkinsonism when combined to dopamine agonists. High doses of l-dopa (100 mg/kg), pramipexole (0.1 mg/kg), Trap-101 and J-113397 (1 mg/kg), however, failed to modulate stepping, worsening immobility time and/or rotarod performance. Low doses of amisulpride (0.1 mg/kg) reversed motor inhibition induced by l-dopa and J-113397, suggesting involvement of D(2)/D(3) receptors. This study brings further evidence for a dopamine-dependent motor phenotype in MPTP-treated mice reinforcing the view that this model can be predictive of symptomatic antiparkinsonian activity provided the appropriate test is used. Moreover, it offers mechanistic interpretation to clinical reports of paradoxical worsening of parkinsonism

  11. Inverse agonism and its therapeutic significance

    PubMed Central

    Khilnani, Gurudas; Khilnani, Ajeet Kumar

    2011-01-01

    A large number of G-protein-coupled receptors (GPCRs) show varying degrees of basal or constitutive activity. This constitutive activity is usually minimal in natural receptors but is markedly observed in wild type and mutated (naturally or induced) receptors. According to conventional two-state drug receptor interaction model, binding of a ligand may initiate activity (agonist with varying degrees of positive intrinsic activity) or prevent the effect of an agonist (antagonist with zero intrinsic activity). Inverse agonists bind with the constitutively active receptors, stabilize them, and thus reduce the activity (negative intrinsic activity). Receptors of many classes (α-and β-adrenergic, histaminergic, GABAergic, serotoninergic, opiate, and angiotensin receptors) have shown basal activity in suitable in vitro models. Several drugs that have been conventionally classified as antagonists (β-blockers, antihistaminics) have shown inverse agonist effects on corresponding constitutively active receptors. Nearly all H1 and H2 antihistaminics (antagonists) have been shown to be inverse agonists. Among the β-blockers, carvedilol and bucindolol demonstrate low level of inverse agonism as compared to propranolol and nadolol. Several antipsychotic drugs (D2 receptors antagonist), antihypertensive (AT1 receptor antagonists), antiserotoninergic drugs and opioid antagonists have significant inverse agonistic activity that contributes partly or wholly to their therapeutic value. Inverse agonism may also help explain the underlying mechanism of beneficial effects of carvedilol in congestive failure, naloxone-induced withdrawal syndrome in opioid dependence, clozapine in psychosis, and candesartan in cardiac hypertrophy. Understanding inverse agonisms has paved a way for newer drug development. It is now possible to develop agents, which have only desired therapeutic value and are devoid of unwanted adverse effect. Pimavanserin (ACP-103), a highly selective 5-HT2A inverse

  12. Adenosine 2A receptor agonism: A single intrathecal administration attenuates motor paralysis in experimental autoimmune encephalopathy in rats.

    PubMed

    Loram, Lisa C; Strand, Keith A; Taylor, Frederick R; Sloane, Evan; Van Dam, Anne-Marie; Rieger, Jayson; Maier, Steven F; Watkins, Linda R

    2015-05-01

    A single intrathecal dose of adenosine 2A receptor (A2AR) agonist was previously reported to produce a multi-week reversal of allodynia in two different models of neuropathic pain in addition to downregulating glial activation markers in the spinal cord. We aimed to determine whether a single intrathecal administration of an A2AR agonist was able to attenuate motor symptoms induced by experimental autoimmune encephalopathy. Two A2AR agonists (CGS21680 and ATL313) significantly attenuated progression of motor symptoms following a single intrathecal administration at the onset of motor symptoms. OX-42, a marker of microglial activation, was significantly attenuated in the lumbar spinal cord following A2AR administration compared to vehicle. Therefore, A2AR agonists attenuate motor symptoms of EAE by acting on A2AR in the spinal cord.

  13. Obesity alters molecular and functional cardiac responses to ischemia/reperfusion and glucagon-like peptide-1 receptor agonism.

    PubMed

    Sassoon, Daniel J; Goodwill, Adam G; Noblet, Jillian N; Conteh, Abass M; Herring, B Paul; McClintick, Jeanette N; Tune, Johnathan D; Mather, Kieren J

    2016-07-01

    This study tested the hypothesis that obesity alters the cardiac response to ischemia/reperfusion and/or glucagon like peptide-1 (GLP-1) receptor activation, and that these differences are associated with alterations in the obese cardiac proteome and microRNA (miRNA) transcriptome. Ossabaw swine were fed normal chow or obesogenic diet for 6 months. Cardiac function was assessed at baseline, during a 30-minutes coronary occlusion, and during 2 hours of reperfusion in anesthetized swine treated with saline or exendin-4 for 24 hours. Cardiac biopsies were obtained from normal and ischemia/reperfusion territories. Fat-fed animals were heavier, and exhibited hyperinsulinemia, hyperglycemia, and hypertriglyceridemia. Plasma troponin-I concentration (index of myocardial injury) was increased following ischemia/reperfusion and decreased by exendin-4 treatment in both groups. Ischemia/reperfusion produced reductions in systolic pressure and stroke volume in lean swine. These indices were higher in obese hearts at baseline and relatively maintained throughout ischemia/reperfusion. Exendin-4 administration increased systolic pressure in lean swine but did not affect the blood pressure in obese swine. End-diastolic volume was reduced by exendin-4 following ischemia/reperfusion in obese swine. These divergent physiologic responses were associated with obesity-related differences in proteins related to myocardial structure/function (e.g. titin) and calcium handling (e.g. SERCA2a, histidine-rich Ca(2+) binding protein). Alterations in expression of cardiac miRs in obese hearts included miR-15, miR-27, miR-130, miR-181, and let-7. Taken together, these observations validate this discovery approach and reveal novel associations that suggest previously undiscovered mechanisms contributing to the effects of obesity on the heart and contributing to the actions of GLP-1 following ischemia/reperfusion.

  14. Quantum Codes From Negacyclic Codes over Group Ring (Fq + υFq) G

    NASA Astrophysics Data System (ADS)

    Koroglu, Mehmet E.; Siap, Irfan

    2016-10-01

    In this paper, we determine self dual and self orthogonal codes arising from negacyclic codes over the group ring (Fq + υFq) G. By taking a suitable Gray image of these codes we obtain many good parameter quantum error-correcting codes over Fq .

  15. Oligodendrocyte Responses to Buprenorphine Uncover Novel and Opposing Roles of μ-Opioid- and Nociceptin/Orphanin FQ Receptors in Cell Development: Implications for Drug Addiction Treatment During Pregnancy

    PubMed Central

    Eschenroeder, Andrew C.; Vestal-Laborde, Allison A.; Sanchez, Emilse S.; Robinson, Susan E.; Sato-Bigbee, Carmen

    2011-01-01

    While the classical function of myelin is the facilitation of saltatory conduction, this membrane and the oligodendrocytes, the cells that make myelin in the central nervous system (CNS), are now recognized as important regulators of plasticity and remodeling in the developing brain. As such, oligodendrocyte maturation and myelination are among the most vulnerable processes along CNS development. We have shown previously that rat brain myelination is significantly altered by buprenorphine, an opioid analogue currently used in clinical trials for managing pregnant opioid addicts. Perinatal exposure to low levels of this drug induced accelerated and increased expression of myelin basic proteins (MBPs), cellular and myelin components that are markers of mature oligodendrocytes. In contrast, supra-therapeutic drug doses delayed MBP brain expression and resulted in a decreased number of myelinated axons. We have now found that this biphasic-dose response to buprenorphine can be attributed to the participation of both the μ-opioid receptor (MOR) and the nociceptin/orphanin FQ receptor (NOP receptor) in the oligodendrocytes. This is particularly intriguing because the NOP receptor/nociceptin system has been primarily linked to behavior and pain regulation, but a role in CNS development or myelination has not been described before. Our findings suggest that balance between signaling mediated by (a) MOR activation and (b) a novel, yet unidentified pathway that includes the NOP receptor, plays a crucial role in the timing of oligodendrocyte maturation and myelin synthesis. Moreover, exposure to opioids could disrupt the normal interplay between these two systems altering the developmental pattern of brain myelination. PMID:22002899

  16. Oligodendrocyte responses to buprenorphine uncover novel and opposing roles of μ-opioid- and nociceptin/orphanin FQ receptors in cell development: implications for drug addiction treatment during pregnancy.

    PubMed

    Eschenroeder, Andrew C; Vestal-Laborde, Allison A; Sanchez, Emilse S; Robinson, Susan E; Sato-Bigbee, Carmen

    2012-01-01

    Although the classical function of myelin is the facilitation of saltatory conduction, this membrane and the oligodendrocytes, the cells that make myelin in the central nervous system (CNS), are now recognized as important regulators of plasticity and remodeling in the developing brain. As such, oligodendrocyte maturation and myelination are among the most vulnerable processes along CNS development. We have shown previously that rat brain myelination is significantly altered by buprenorphine, an opioid analogue currently used in clinical trials for managing pregnant opioid addicts. Perinatal exposure to low levels of this drug induced accelerated and increased expression of myelin basic proteins (MBPs), cellular and myelin components that are markers of mature oligodendrocytes. In contrast, supra-therapeutic drug doses delayed MBP brain expression and resulted in a decreased number of myelinated axons. We have now found that this biphasic-dose response to buprenorphine can be attributed to the participation of both the μ-opioid receptor (MOR) and the nociceptin/orphanin FQ receptor (NOP receptor) in the oligodendrocytes. This is particularly intriguing because the NOP receptor/nociceptin system has been primarily linked to behavior and pain regulation, but a role in CNS development or myelination has not been described before. Our findings suggest that balance between signaling mediated by (a) MOR activation and (b) a novel, yet unidentified pathway that includes the NOP receptor, plays a crucial role in the timing of oligodendrocyte maturation and myelin synthesis. Moreover, exposure to opioids could disrupt the normal interplay between these two systems altering the developmental pattern of brain myelination.

  17. Combined serotonin (5-HT)1A agonism, 5-HT(2A) and dopamine D₂ receptor antagonism reproduces atypical antipsychotic drug effects on phencyclidine-impaired novel object recognition in rats.

    PubMed

    Oyamada, Yoshihiro; Horiguchi, Masakuni; Rajagopal, Lakshmi; Miyauchi, Masanori; Meltzer, Herbert Y

    2015-05-15

    Subchronic administration of an N-methyl-D-aspartate receptor (NMDAR) antagonist, e.g. phencyclidine (PCP), produces prolonged impairment of novel object recognition (NOR), suggesting they constitute a hypoglutamate-based model of cognitive impairment in schizophrenia (CIS). Acute administration of atypical, e.g. lurasidone, but not typical antipsychotic drugs (APDs), e.g. haloperidol, are able to restore NOR following PCP (acute reversal model). Furthermore, atypical APDs, when co-administered with PCP, have been shown to prevent development of NOR deficits (prevention model). Most atypical, but not typical APDs, are more potent 5-HT(2A) receptor inverse agonists than dopamine (DA) D2 antagonists, and have been shown to enhance cortical and hippocampal efflux and to be direct or indirect 5-HT(1A) agonists in vivo. To further clarify the importance of these actions to the restoration of NOR by atypical APDs, sub-effective or non-effective doses of combinations of the 5-HT(1A) partial agonist (tandospirone), the 5-HT(2A) inverse agonist (pimavanserin), or the D2 antagonist (haloperidol), as well as the combination of all three agents, were studied in the acute reversal and prevention PCP models of CIS. Only the combination of all three agents restored NOR and prevented the development of PCP-induced deficit. Thus, this triple combination of 5-HT(1A) agonism, 5-HT(2A) antagonism/inverse agonism, and D2 antagonism is able to mimic the ability of atypical APDs to prevent or ameliorate the PCP-induced NOR deficit, possibly by stimulating signaling cascades from D1 and 5-HT(1A) receptor stimulation, modulated by D2 and 5-HT(2A) receptor antagonism.

  18. Sphingosine-1-phosphate (S1P) displays sustained S1P1 receptor agonism and signaling through S1P lyase-dependent receptor recycling.

    PubMed

    Gatfield, John; Monnier, Lucile; Studer, Rolf; Bolli, Martin H; Steiner, Beat; Nayler, Oliver

    2014-07-01

    The sphingosine-1-phosphate (S1P) type 1 receptor (S1P1R) is a novel therapeutic target in lymphocyte-mediated autoimmune diseases. S1P1 receptor desensitization caused by synthetic S1P1 receptor agonists prevents T-lymphocyte egress from secondary lymphoid organs into the circulation. The selective S1P1 receptor agonist ponesimod, which is in development for the treatment of autoimmune diseases, efficiently reduces peripheral lymphocyte counts and displays efficacy in animal models of autoimmune disease. Using ponesimod and the natural ligand S1P, we investigated the molecular mechanisms leading to different signaling, desensitization and trafficking behavior of S1P1 receptors. In recombinant S1P1 receptor-expressing cells, ponesimod and S1P triggered Gαi protein-mediated signaling and β-arrestin recruitment with comparable potency and efficiency, but only ponesimod efficiently induced intracellular receptor accumulation. In human umbilical vein endothelial cells (HUVEC), ponesimod and S1P triggered translocation of the endogenous S1P1 receptor to the Golgi compartment. However, only ponesimod treatment caused efficient surface receptor depletion, receptor accumulation in the Golgi and degradation. Impedance measurements in HUVEC showed that ponesimod induced only short-lived Gαi protein-mediated signaling followed by resistance to further stimulation, whereas S1P induced sustained Gαi protein-mediated signaling without desensitization. Inhibition of S1P lyase activity in HUVEC rendered S1P an efficient S1P1 receptor internalizing compound and abrogated S1P-mediated sustained signaling. This suggests that S1P lyase - by facilitating S1P1 receptor recycling - is essential for S1P-mediated sustained signaling, and that synthetic agonists are functional antagonists because they are not S1P lyase substrates.

  19. Exploration of allosteric agonism structure-activity relationships within an acetylene series of metabotropic glutamate receptor 5 (mGlu5) positive allosteric modulators (PAMs): discovery of 5-((3-fluorophenyl)ethynyl)-N-(3-methyloxetan-3-yl)picolinamide (ML254).

    PubMed

    Turlington, Mark; Noetzel, Meredith J; Chun, Aspen; Zhou, Ya; Gogliotti, Rocco D; Nguyen, Elizabeth D; Gregory, Karen J; Vinson, Paige N; Rook, Jerri M; Gogi, Kiran K; Xiang, Zixiu; Bridges, Thomas M; Daniels, J Scott; Jones, Carrie; Niswender, Colleen M; Meiler, Jens; Conn, P Jeffrey; Lindsley, Craig W; Stauffer, Shaun R

    2013-10-24

    Positive allosteric modulators (PAMs) of metabotropic glutamate receptor 5 (mGlu5) represent a promising therapeutic strategy for the treatment of schizophrenia. Both allosteric agonism and high glutamate fold-shift have been implicated in the neurotoxic profile of some mGlu5 PAMs; however, these hypotheses remain to be adequately addressed. To develop tool compounds to probe these hypotheses, the structure-activity relationship of allosteric agonism was examined within an acetylenic series of mGlu5 PAMs exhibiting allosteric agonism in addition to positive allosteric modulation (ago-PAMs). PAM 38t, a low glutamate fold-shift allosteric ligand (maximum fold-shift ~ 3.0), was selected as a potent PAM with no agonism in the in vitro system used for compound characterization and in two native electrophysiological systems using rat hippocampal slices. PAM 38t (ML254) will be useful to probe the relative contribution of cooperativity and allosteric agonism to the adverse effect liability and neurotoxicity associated with this class of mGlu5 PAMs.

  20. Exploration of Allosteric Agonism Structure-Activity Relationships within an Acetylene Series of Metabotropic Glutamate Receptor 5 (mGlu5) Positive Allosteric Modulators (PAMs): discovery of 5-((3-fluorophenyl)ethynyl)-N-(3-methyloxetan-3-yl)picolinamide (ML254)

    PubMed Central

    Turlington, Mark; Noetzel, Meredith J.; Chun, Aspen; Zhou, Ya; Gogliotti, Rocco D.; Nguyen, Elizabeth D.; Gregory, Karen J.; Vinson, Paige N.; Rook, Jerri M.; Gogi, Kiran K.; Xiang, Zixiu; Bridges, Thomas M.; Daniels, J. Scott; Jones, Carrie; Niswender, Colleen M.; Meiler, Jens; Conn, P. Jeffrey; Lindsley, Craig W.; Stauffer, Shaun R.

    2014-01-01

    Positive allosteric modulators (PAMs) of metabotropic glutamate receptor 5 (mGlu5) represent a promising therapeutic strategy for the treatment of schizophrenia. Both allosteric agonism and high glutamate fold-shift have been implicated in the neurotoxic profile of some mGlu5 PAMs; however, these hypotheses remain to be adequately addressed. To develop tool compounds to probe these hypotheses, the structure-activity relationship of allosteric agonism was examined within an acetylenic series of mGlu5 PAMs exhibiting allosteric agonism in addition to positive allosteric modulation (ago-PAMs). PAM 38t, a low glutamate fold-shift allosteric ligand (maximum fold-shift ~3.0), was selected as a potent PAM with no agonism in the in vitro system used for compound characterization and in two native electrophysiological systems using rat hippocampal slices. PAM 38t (ML254) will be useful to probe the relative contribution of cooperativity and allosteric agonism to the adverse effect liability and neurotoxicity associated with this class of mGlu5 PAMs. PMID:24050755

  1. The nociceptin/orphanin FQ receptor agonist Ro 64-6198 reduces alcohol self-administration and prevents relapse-like alcohol drinking.

    PubMed

    Kuzmin, Alexander; Kreek, Mary Jeanne; Bakalkin, Georgy; Liljequist, Sture

    2007-04-01

    Effects of the opioid receptor like-1 (ORL-1) receptor agonist Ro 64-6198 (0.1, 0.3, and 1.0 mg/kg intraperitoneally (i.p.)) on operant ethanol self-administration and activation of self-administration by ethanol deprivation were studied in male Wistar rats. Acute administration of Ro 64-6198 caused a dose-dependent reduction of ethanol self-administration. In comparison, the opioid antagonist naltrexone (0.1, 0.3, and 1.0 mg/kg i.p.) inhibited ethanol self-administration at all doses tested. Ethanol deprivation for 10 days significantly increased ethanol self-administration during the first 2 days after deprivation. Daily pretreatment with Ro 64-6198 (0.3 mg/kg) or naltrexone (0.3 mg/kg) during the last 3 days of ethanol deprivation abolished the deprivation-induced increase in ethanol intake. Thus, stimulation of the ORL-1 receptors by Ro 64-6198 reduced the acute reinforcing effects of ethanol and prevented relapse-like behavior in the ethanol-deprivation model in a similar manner as a blockade of opioid receptors by naltrexone. Ro 64-6198 at 0.1 and 0.3 mg/kg doses did not alter self-administration of 0.2% saccharin solution, indicating an apparent selectivity of this compound in modification of ethanol reward. These findings add further support to the idea that Ro 64-6198 and potentially other synthetic ORL-1 receptor agonists are as effective as naltrexone in blocking the actions of ethanol important for its addictive potential in animal experiments, and therefore may have therapeutic value in the treatment of alcoholism.

  2. Evidence for both inverse agonism at the cannabinoid CB1 receptor and the lack of an endogenous cannabinoid tone in the rat and guinea-pig isolated ileum myenteric plexus-longitudinal muscle preparation

    PubMed Central

    Makwana, R; Molleman, A; Parsons, ME

    2010-01-01

    Background and purpose: Cannabinoid receptor agonists reduce intestinal propulsion in rodents through the CB1 receptor. In addition to its antagonistic activity at this receptor, rimonabant (N-(piperidino)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole-carboxyamide) alone augments intestinal transit. Using rat and guinea-pig ileum MPLM (myenteric plexus-longitudinal muscle) preparations, we investigated whether the latter effect was through inverse agonism or antagonism of endocannabinoid agonist(s). Experimental approach: Inverse agonism was investigated by comparing the maximal enhancement of electrically evoked contractions of the MPLM by two CB1 receptor antagonists, AM 251 (N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide) and O-2050 [(6aR,10aR)-3-(1-methanesulphonylamino-4-hexyn-6-yl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6-H-dibenzo[b,d]pyran], with that produced by rimonabant. To reveal ongoing endocannabinoid activity, effects of inhibiting endocannabinoid hydrolysis by fatty acid amide hydrolase (FAAH) using AA-5HT (arachidonyl-5-hydroxytryptamine), PMSF (phenylmethylsulphonyl fluoride) or URB-597 (3′-carbamoyl-biphenyl-3-yl-cyclohexylcarbamate), or putative uptake using VDM-11 [(5Z,8Z,11Z,14Z)-N-(4-hydroxy-2-methylphenyl)-5,8,11,14-eicosatetraenamide] was evaluated. Key results: The presence of CB1 receptors was revealed by antagonism of exogenous anandamide, arachidonylethanolamide (AEA) and WIN 55,212-2 [(R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)-pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate] by rimonabant. The rank order of potentiation of contractions was AM 251 > rimonabant > O-2050. Neither the FAAH inhibitors nor VDM-11 affected electrically evoked contractions. Each FAAH inhibitor increased the potency of AEA but not WIN 55,212-2. VDM-11 did not alter the inhibitory effect of AEA. Conclusions and implications: The different levels of maximal

  3. 2-(4-Amino-3-methylphenyl)-5-fluorobenzothiazole is a ligand and shows species-specific partial agonism of the aryl hydrocarbon receptor

    SciTech Connect

    Bazzi, Rana; Bradshaw, Tracey D.; Rowlands, J. Craig; Stevens, Malcolm F.G.; Bell, David R.

    2009-05-15

    2-(4-Amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203) and related compounds are a series of anti-cancer candidate pharmaceuticals, that have been shown to activate the AhR. We show that these compounds are high-affinity ligands for the rat AhR, but a quantitative assay for their ability to induce CYP1A1 RNA in H4IIEC3 cells, a measure of activation of the AhR, showed a poor relationship between affinity for the AhR and ability to induce CYP1A1 RNA. 5F 203, an agonist with low potency, was able to antagonise the induction of CYP1A1 RNA by TCDD, while IH 445, a potent agonist, did not antagonise the induction of CYP1A1 RNA by TCDD, and Schild analysis confirmed 5F 203 to be a potent antagonist of the induction of CYP1A1 RNA by TCDD in H4IIEC3 cells. In contrast, several benzothiazoles show potent induction of CYP1A1 RNA in human MCF-7 cells, and 5F 203 is unable to detectably antagonise the induction of CYP1A1 RNA in MCF-7 cells, showing a species difference in antagonism. Evaluation of the anti-proliferative activity of benzothiazoles showed that the ability to agonise the AhR correlated with growth inhibition both in H4IIEC3 cells for a variety of benzothiazoles, and between H4IIEC3 and MCF-7 cells for 5F 203, suggesting an important role of agonism of the AhR in the anti-proliferative activity of benzothiazoles.

  4. Orphanin FQ/Nociceptin Interacts with the Basolateral Amygdala Noradrenergic System in Memory Consolidation

    ERIC Educational Resources Information Center

    Roozendaal, Benno; Lengvilas, Ray; McGaugh, James L.; Civelli, Olivier; Reinscheid, Rainer K.

    2007-01-01

    Extensive evidence indicates that the basolateral complex of the amygdala (BLA) mediates hormonal and neurotransmitter effects on the consolidation of emotionally influenced memory and that such modulatory influences involve noradrenergic activation of the BLA. As the BLA also expresses a high density of receptors for orphanin FQ/nociceptin…

  5. Orphanin FQ/Nociceptin Interacts with the Basolateral Amygdala Noradrenergic System in Memory Consolidation

    ERIC Educational Resources Information Center

    Roozendaal, Benno; Lengvilas, Ray; McGaugh, James L.; Civelli, Olivier; Reinscheid, Rainer K.

    2007-01-01

    Extensive evidence indicates that the basolateral complex of the amygdala (BLA) mediates hormonal and neurotransmitter effects on the consolidation of emotionally influenced memory and that such modulatory influences involve noradrenergic activation of the BLA. As the BLA also expresses a high density of receptors for orphanin FQ/nociceptin…

  6. Clozapine: dopamine D1 receptor agonism in the prefrontal cortex as the code to decipher a Rosetta stone of antipsychotic drugs.

    PubMed

    Ahlenius, S

    1999-05-01

    A large number of ligand binding studies have shown that clozapine has a number of receptor affinities, including those of the dopamine (DA) D1 and D2 receptor families. The study of intrinsic efficacy at these receptors is less straight-forward. In the experiments summarised here, evidence is presented that clozapine behaves as an agonist at DA D1 receptors. Thus, the hypothermia produced by clozapine (2.5 mg kg(-1)) in the rat is fully antagonised by either of the selective DA D1 receptor antagonists SCH-23390 (0.1 mg kg(-1)) or NNC-687 (4 mg kg(-1)). These results provide an intriguing explanation for the clinical profile of clozapine as an atypical antipsychotic drug. Thus, there are supporting clinical and laboratory observations implicating DA D1 receptors in the prefrontal cortex in cognitive functions. Finally, clozapine displays features with regard to extrapyramidal motor mechanisms, and seizure thresholds, that could be explained by its properties as a DA D1 receptor agonist.

  7. Investigating the Role of Loop C Hydrophilic Residue ‘T244’ in the Binding Site of ρ1 GABAC Receptors via Site Mutation and Partial Agonism

    PubMed Central

    Naffaa, Moawiah M.; Absalom, Nathan; Solomon, V. Raja; Chebib, Mary; Hibbs, David E.; Hanrahan, Jane R.

    2016-01-01

    The loop C hydrophilic residue, threonine 244 lines the orthosteric binding site of ρ1 GABAC receptors was studied by point mutation into serine, alanine and cysteine, and tested with GABA, some representative partial agonists and antagonists. Thr244 has a hydroxyl group essential for GABA activity that is constrained by the threonine methyl group, orienting it toward the binding site. Significant decreases in activation effects of the studied ligands at ρ1 T244S mutant receptors, suggests a critical role for this residue. Results of aliphatic and heteroaromatic partial agonists demonstrate different pharmacological effects at ρ1 T244S mutant receptors when co-applied with GABA EC50 responses. ρ1 T244A and ρ1 T244C mutant receptors have minimal sensitivity to GABA at high mM concentrations, whereas, the ρ1 WT partial agonists, β-alanine and MTSEA demonstrate more efficacy and potency, respectively, than GABA at these mutant receptors. This study explores the role of Thr244 in the binding of agonists as an initial step during channel gating by moving loop C towards the ligand. PMID:27244450

  8. Cannabinoid 2 (CB2) receptor agonism reduces lithium chloride-induced vomiting in Suncus murinus and nausea-induced conditioned gaping in rats.

    PubMed

    Rock, Erin M; Boulet, Nathalie; Limebeer, Cheryl L; Mechoulam, Raphael; Parker, Linda A

    2016-09-05

    We aimed to investigate the potential anti-emetic and anti-nausea properties of targeting the cannabinoid 2 (CB2) receptor. We investigated the effect of the selective CB2 agonist, HU-308, on lithium chloride- (LiCl) induced vomiting in Suncus murinus (S. murinus) and conditioned gaping (nausea-induced behaviour) in rats. Additionally, we determined whether these effects could be prevented by pretreatment with AM630 (a selective CB2 receptor antagonist/inverse agonist). In S. murinus, HU-308 (2.5, 5mg/kg, i.p.) reduced, but did not completely block, LiCl-induced vomiting; an effect that was prevented with AM630. In rats, HU-308 (5mg/kg, i.p.) suppressed, but did not completely block, LiCl-induced conditioned gaping to a flavour; an effect that was prevented by AM630. These findings are the first to demonstrate the ability of a selective CB2 receptor agonist to reduce nausea in animal models, indicating that targeting the CB2 receptor may be an effective strategy, devoid of psychoactive effects, for managing toxin-induced nausea and vomiting.

  9. Effects of neurokinin-1 receptor agonism and antagonism in the rostral ventromedial medulla of rats with acute or persistent inflammatory nociception.

    PubMed

    Hamity, M V; White, S R; Hammond, D L

    2010-02-03

    The rostral ventromedial medulla (RVM), a central relay in the bulbospinal pathways that modulate nociception, contains high concentrations of substance P (Sub P) and neurokinin-1 (NK1) receptors. However, the function of Sub P in the RVM is poorly understood. This study characterized the actions of Sub P in the RVM in the absence of injury and then used two NK1 receptor antagonists, L-733,060 and L-703, 606, to probe the role of endogenously released Sub P in the development and maintenance of persistent inflammatory nociception of immune or neurogenic origin. In uninjured rats, microinjection of Sub P in the RVM produced a transient thermal antinociception that was attenuated by pretreatment with L-733,060 or L-703,606. It did not alter threshold to withdrawal from tactile stimulation with von Frey filaments. Microinjection of the antagonists alone did not alter paw withdrawal latency (PWL) or threshold suggesting that Sub P is not tonically released in the RVM in the absence of injury. However, microinjection of either antagonist in the RVM was sufficient to reverse heat hyperalgesia 4 h, 4 days or 2 weeks after intraplantar (ipl) injection of complete Freund's adjuvant (CFA). Antagonism of NK1 receptors in the RVM did not prevent or reverse tactile hypersensitivity induced by CFA, but did attenuate that produced by capsaicin. NK1 receptor antagonism did not prevent the development of thermal hyperalgesia, tactile hypersensitivity or spontaneous pain behaviors induced by mustard oil (MO). The results suggest that Sub P has bimodal actions in the RVM and that following inflammatory injury, it can play a critical role as a pronociceptive agent in the development and maintenance of hyperalgesia and tactile hypersensitivity. However, its actions are highly dependent on the stimulus modality and the type of injury, and this may be an additional basis for the poor efficacy of NK1 receptor antagonists in clinical trials.

  10. 17β-Estradiol and Agonism of G-protein-Coupled Estrogen Receptor Enhance Hippocampal Memory via Different Cell-Signaling Mechanisms

    PubMed Central

    Kim, Jaekyoon; Szinte, Julia S.; Boulware, Marissa I.

    2016-01-01

    The ability of 17β-estradiol (E2) to enhance hippocampal object recognition and spatial memory depends on rapid activation of extracellular signal-regulated kinase (ERK) in the dorsal hippocampus (DH). Although this activation can be mediated by the intracellular estrogen receptors ERα and ERβ, little is known about the role that the membrane estrogen receptor GPER plays in regulating ERK or E2-mediated memory formation. In this study, post-training DH infusion of the GPER agonist G-1 enhanced object recognition and spatial memory in ovariectomized female mice, whereas the GPER antagonist G-15 impaired memory, suggesting that GPER activation, like E2, promotes hippocampal memory formation. However, unlike E2, G-1 did not increase ERK phosphorylation, but instead significantly increased phosphorylation of c-Jun N-terminal kinase (JNK) in the DH. Moreover, DH infusion of the JNK inhibitor SP600125 prevented G-1 from enhancing object recognition and spatial memory, but the ERK inhibitor U0126 did not. These data suggest that GPER enhances memory via different cell-signaling mechanisms than E2. This conclusion was supported by data showing that the ability of E2 to facilitate memory and activate ERK signaling was not blocked by G-15 or SP600125, which demonstrates that the memory-enhancing effects of E2 are not dependent on JNK or GPER activation in the DH. Together, these data indicate that GPER regulates memory independently from ERα and ERβ by activating JNK signaling, rather than ERK signaling. Thus, the findings suggest that GPER in the DH may not function as an estrogen receptor to regulate object recognition and spatial memory. SIGNIFICANCE STATEMENT Although 17β-estradiol has long been known to regulate memory function, the molecular mechanisms underlying estrogenic memory modulation remain largely unknown. Here, we examined whether the putative membrane estrogen receptor GPER acts like the classical estrogen receptors, ERα and ERβ, to facilitate

  11. Investigating Metabotropic Glutamate Receptor 5 Allosteric Modulator Cooperativity, Affinity, and Agonism: Enriching Structure-Function Studies and Structure-Activity Relationships

    PubMed Central

    Gregory, Karen J.; Noetzel, Meredith J.; Rook, Jerri M.; Vinson, Paige N.; Stauffer, Shaun R.; Rodriguez, Alice L.; Emmitte, Kyle A.; Zhou, Ya; Chun, Aspen C.; Felts, Andrew S.; Chauder, Brian A.; Lindsley, Craig W.; Niswender, Colleen M.

    2012-01-01

    Drug discovery programs increasingly are focusing on allosteric modulators as a means to modify the activity of G protein-coupled receptor (GPCR) targets. Allosteric binding sites are topographically distinct from the endogenous ligand (orthosteric) binding site, which allows for co-occupation of a single receptor with the endogenous ligand and an allosteric modulator that can alter receptor pharmacological characteristics. Negative allosteric modulators (NAMs) inhibit and positive allosteric modulators (PAMs) enhance the affinity and/or efficacy of orthosteric agonists. Established approaches for estimation of affinity and efficacy values for orthosteric ligands are not appropriate for allosteric modulators, and this presents challenges for fully understanding the actions of novel modulators of GPCRs. Metabotropic glutamate receptor 5 (mGlu5) is a family C GPCR for which a large array of allosteric modulators have been identified. We took advantage of the many tools for probing allosteric sites on mGlu5 to validate an operational model of allosterism that allows quantitative estimation of modulator affinity and cooperativity values. Affinity estimates derived from functional assays fit well with affinities measured in radioligand binding experiments for both PAMs and NAMs with diverse chemical scaffolds and varying degrees of cooperativity. We observed modulation bias for PAMs when we compared mGlu5-mediated Ca2+ mobilization and extracellular signal-regulated kinase 1/2 phosphorylation data. Furthermore, we used this model to quantify the effects of mutations that reduce binding or potentiation by PAMs. This model can be applied to PAM and NAM potency curves in combination with maximal fold-shift data to derive reliable estimates of modulator affinities. PMID:22863693

  12. Structural studies unravel the active conformation of apo RORγt nuclear receptor and a common inverse agonism of two diverse classes of RORγt inhibitors.

    PubMed

    Li, Xiang; Anderson, Marie; Collin, Delphine; Muegge, Ingo; Wan, John; Brennan, Debra; Kugler, Stanley; Terenzio, Donna; Kennedy, Charles; Lin, Siqi; Labadia, Mark E; Cook, Brian; Hughes, Robert; Farrow, Neil A

    2017-07-14

    The nuclear receptor retinoid acid receptor-related orphan receptor γt (RORγt) is a master regulator of the Th17/IL-17 pathway that plays crucial roles in the pathogenesis of autoimmunity. RORγt has recently emerged as a highly promising target for treatment of a number of autoimmune diseases. Through high-throughput screening, we previously identified several classes of inverse agonists for RORγt. Here, we report the crystal structures for the ligand-binding domain of RORγt in both apo and ligand-bound states. We show that apo RORγt adopts an active conformation capable of recruiting coactivator peptides and present a detailed analysis of the structural determinants that stabilize helix 12 (H12) of RORγt in the active state in the absence of a ligand. The structures of ligand-bound RORγt reveal that binding of the inverse agonists disrupts critical interactions that stabilize H12. This destabilizing effect is supported by ab initio calculations and experimentally by a normalized crystallographic B-factor analysis. Of note, the H12 destabilization in the active state shifts the conformational equilibrium of RORγt toward an inactive state, which underlies the molecular mechanism of action for the inverse agonists reported here. Our findings highlight that nuclear receptor structure and function are dictated by a dynamic conformational equilibrium and that subtle changes in ligand structures can shift this equilibrium in opposite directions, leading to a functional switch from agonists to inverse agonists. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. The place of partial agonism in psychiatry: recent developments.

    PubMed

    Ohlsen, R I; Pilowsky, L S

    2005-07-01

    Drugs used to treat psychiatric disorders, although effective, are often restricted by adverse events. The use of partial agonists for treating hypertension was found to limit some of the side-effects in some patients. This led to the investigation of partial agonists as a treatment modality in psychiatric disorders. Partial agonists have a lower intrinsic efficacy than full agonists leading to reduced maximum response. They can act as antagonists by competing for receptor binding with full agonists. The level of activity depends on the level of endogenous receptor activity. Buprenorphine, a partial agonist at the mu-opioid receptor, is used to treat patients with addiction and decreases the symptoms of withdrawal and risks of overdose and intoxication. The anxiolytic buspirone shows partial agonism at 5-HT(1A) receptors, and this seems to provide anxioselective effects, without inducing extrapyramidal side-effects, convulsions, tolerance or withdrawal reactions. In schizophrenia, partial dopamine agonism results in antagonistic effects at sites activated by high concentrations of dopamine and agonistic effects at sites activated by low concentrations of dopamine. This stabilizes the dopamine system to effect antipsychotic action without inducing adverse motor or hormonal events. Aripiprazole is the first 'dopamine system stabilizer', and the data are promising, with efficacy at least equivalent to that with current atypical antipsychotics but fewer of the troublesome side-effects. Partial agonists seem to provide a way to fine-tune the treatment of psychiatric disorders by maximizing the treatment effect while minimizing undesirable adverse events.

  14. Towards a thermodynamic definition of efficacy in partial agonism: The thermodynamics of efficacy and ligand proton transfer in a G protein-coupled receptor of the rhodopsin class.

    PubMed

    Broadley, Kenneth J; Sykes, Shane C; Davies, Robin H

    2010-11-15

    The thermodynamic binding profiles of agonist and antagonist complexes of the 4-hydroxypropanolamine partial agonist, prenalterol, on the chronotropic adrenergic response in guinea-pig right atria were determined over a 15 °C temperature range. The tissue response was compared with data on the ethanolamine agonist, isoprenaline, given by binding studies in a number of rat tissues. Utilising the residue conservatism surrounding the known active conformers bound to either of two aspartate residues (α-helices II, III) in both receptors (β(1), β(2)) and species (guinea-pig, rat and human), no significant deformation in the extended side chain could be found in prenalterol's agonist binding compared to isoprenaline. Antagonist binding gave a highly favourable entropy contribution at 30.0 °C of -4.7±1.2 kcal/mol. The enthalpy change between bound agonist and antagonist complexes, a function of the efficacy alone, was -6.4±1.1 kcal/mol, coincident with the calculated intrinsic preference of a primary/secondary amine-aspartate interaction for a neutral hydrogen-bonded form over its ion pair state, giving values of 6.3-6.6 kcal/mol with calculations of good quality, a figure expected to be close to that shown within a hydrophobic environment. Delivery of a proton to a conserved aspartate anion (α-helix II) becomes the critical determinant for agonist action with resultant proton transfer stabilisation dominating the enthalpy change. A proposed monocation-driven ligand proton pumping mechanism within the ternary complex is consistent with the data, delivery between two acid groups being created by the movement of the cation and the counter-movement of the ligand protonated amine moving from Asp 138 (α-helix III) to Asp 104 (α-helix II).

  15. Analysis of thyroid hormone receptor {beta}A mRNA expression in Xenopus laevis tadpoles as a means to detect agonism and antagonism of thyroid hormone action

    SciTech Connect

    Opitz, Robert . E-mail: r.opitz@igb-berlin.de; Lutz, Ilka; Nguyen, Ngoc-Ha; Scanlan, Thomas S.; Kloas, Werner

    2006-04-01

    Amphibian metamorphosis represents a unique biological model to study thyroid hormone (TH) action in vivo. In this study, we examined the utility of thyroid hormone receptors {alpha} (TR{alpha}) and {beta}A (TR{beta}A) mRNA expression patterns in Xenopus laevis tadpoles as molecular markers indicating modulation of TH action. During spontaneous metamorphosis, only moderate changes were evident for TR{alpha} gene expression whereas a marked up-regulation of TR{beta}A mRNA occurred in hind limbs (prometamorphosis), head (late prometamorphosis), and tail tissue (metamorphic climax). Treatment of premetamorphic tadpoles with 1 nM 3,5,3'-triiodothyronine (T3) caused a rapid induction of TR{beta}A mRNA in head and tail tissue within 6 to 12 h which was maintained for at least 72 h after initiation of T3 treatment. Developmental stage had a strong influence on the responsiveness of tadpole tissues to induce TR{beta}A mRNA during 24 h treatment with thyroxine (0, 1, 5, 10 nM T4) or T3 (0, 1, 5, 10 nM). Premetamorphic tadpoles were highly sensitive in their response to T4 and T3 treatments, whereas sensitivity to TH was decreased in early prometamorphic tadpoles and strongly diminished in late prometamorphic tadpoles. To examine the utility of TR{beta}A gene expression analysis for detection of agonistic and antagonistic effects on T3 action, mRNA expression was assessed in premetamorphic tadpoles after 48 h of treatment with the synthetic agonist GC-1 (0, 10, 50, 250 nM), the synthetic antagonist NH-3 (0, 40, 200, 1000 nM), and binary combinations of NH-3 (0, 40, 200, 1000 nM) and T3 (1 nM). All tested concentrations of GC-1 as well as the highest concentration of NH-3 caused an up-regulation of TR{beta}A expression. Co-treatment with NH-3 and T3 revealed strong antagonistic effects by NH-3 on T3-induced TR{beta}A mRNA up-regulation. Results of this study suggest that TR{beta}A mRNA expression analysis could serve as a sensitive molecular testing approach to study effects

  16. New asymmetric quantum codes over Fq

    NASA Astrophysics Data System (ADS)

    Ma, Yuena; Feng, Xiaoyi; Xu, Gen

    2016-07-01

    Two families of new asymmetric quantum codes are constructed in this paper. The first family is the asymmetric quantum codes with length n=qm-1 over Fq, where qge 5 is a prime power. The second one is the asymmetric quantum codes with length n=3m-1. These asymmetric quantum codes are derived from the CSS construction and pairs of nested BCH codes. Moreover, let the defining set T1=T2^{-q}, then the real Z-distance of our asymmetric quantum codes are much larger than δ _max+1, where δ _max is the maximal designed distance of dual-containing narrow-sense BCH code, and the parameters presented here have better than the ones available in the literature.

  17. Effects of electroacupuncture on orphanin FQ immunoreactivity and preproorphanin FQ mRNA in nucleus of raphe magnus in the neuropathic pain rats.

    PubMed

    Ma, Fei; Xie, Hong; Dong, Zhi-Qiang; Wang, Yan-Qing; Wu, Gen-Cheng

    2004-07-15

    Orphanin FQ (OFQ) is an endogenous ligand for opioid receptor-like-1 (ORL1) receptor. Previous studies have shown that both OFQ immunoreactivity and preproorphanin FQ (ppOFQ) mRNA expression could be observed in the brain regions involved in pain modulation, e.g., nucleus of raphe magnus (NRM), dorsal raphe nucleus (DRN), and ventrolateral periaqueductal gray (vlPAG). It was reported that electroacupuncture (EA) has analgesic effect on neuropathic pain, and the analgesic effect was mediated by the endogenous opioid peptides. In the present study, we investigated the effects of EA on the changes of OFQ in the neuropathic pain rats. In the sciatic nerve chronic constriction injury (CCI) model, we investigated the changes of ppOFQ mRNA and OFQ immunoreactivity in NRM after EA by in situ hybridization (ISH) and immunohistochemistry methods, respectively. Then, the ppOFQ mRNA-positive and OFQ immunoreactive cells were counted under a computerized image analysis system. The results showed that expression of ppOFQ mRNA decreased and OFQ immunoreactivity increased after EA treatment in the neuropathic pain rats. These results indicated that EA modulated OFQ synthesis and OFQ peptide level in NRM of the neuropathic pain rats.

  18. GPR120 agonism as a countermeasure against metabolic diseases.

    PubMed

    Cornall, Lauren M; Mathai, Michael L; Hryciw, Deanne H; McAinch, Andrew J

    2014-05-01

    Obesity, type 2 diabetes mellitus and cardiovascular disease are at epidemic proportions in developed nations globally, representing major causes of ill-health and premature death. The search for drug targets to counter the growing prevalence of metabolic diseases has uncovered G-protein-coupled receptor 120 (GPR120). GPR120 agonism has been shown to improve inflammation and metabolic health on a systemic level via regulation of adiposity, gastrointestinal peptide secretion, taste preference and glucose homeostasis. Therefore, GPR120 agonists present as a novel therapeutic option that could be exploited for the treatment of impaired metabolic health. This review summarizes the current knowledge of GPR120 functionality and the potential applications of GPR120-specific agonists for the treatment of disease states such as obesity, type 2 diabetes mellitus and cardiovascular disease.

  19. Pharmacological profile and antiparkinsonian properties of the novel nociceptin/orphanin FQ receptor antagonist 1-[1-cyclooctylmethyl-5-(1-hydroxy-1-methyl-ethyl)-1,2,3,6-tetrahydro-pyridin-4-yl]-3-ethyl-1,3-dihydro-benzoimidazol-2-one (GF-4).

    PubMed

    Volta, Mattia; Marti, Matteo; McDonald, John; Molinari, Stefano; Camarda, Valeria; Pelà, Michela; Trapella, Claudio; Morari, Michele

    2010-06-01

    In this study we provided a pharmacological characterization of the recently synthesized nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP) antagonist 1-[1-Cyclooctylmethyl-5-(1-hydroxy-1-methyl-ethyl)-1,2,3,6-tetrahydro-pyridin-4-yl]-3-ethyl-1,3-dihydro-benzoimidazol-2-one (GF-4) and investigated its antiparkinsonian properties. GF-4 inhibited N/OFQ binding to CHO(hNOP) cell membranes (pK(i) 7.46), and antagonized N/OFQ effects in a calcium mobilization assay and electrically stimulated isolated tissues (pK(B) 7.27-7.82), showing a approximately 5-fold selectivity over classical opioid receptors. In vivo, GF-4 dually modulated stepping activity in wild-type mice, causing facilitation in the 0.01-10mg/kg dose range and inhibition at 30mg/kg. These effects were mediated by NOP receptors since GF-4 was ineffective in NOP receptor knock-out mice. Antiparkinsonian properties of GF-4 were investigated in 6-hydroxydopamine hemilesioned rats. GF-4 ameliorated akinesia, bradykinesia and overall gait ability in the 0.1-10mg/kg dose range, but inhibited motor activity at 30mg/kg. To investigate the circuitry underlying motor facilitating and inhibitory effects of GF-4, microdialysis coupled to behavioral testing (akinesia test) was performed. An anti-akinetic dose of GF-4 (1mg/kg) reduced glutamate (GLU) and enhanced GABA release in SNr, while the pro-akinetic dose of GF-4 (30mg/kg) evoked opposite effects. Moreover, the anti-akinetic dose of GF-4 reduced GABA and increased GLU release in ventro-medial thalamus, the pro-akinetic dose decreasing GABA without affecting GLU release in this area. We conclude that GF-4 is an effective NOP receptor antagonist able to attenuate parkinsonian-like symptoms in vivo via inhibition of the nigro-thalamic pathway. Copyright 2010 Elsevier Inc. All rights reserved.

  20. The role of kinetic context in apparent biased agonism at GPCRs

    PubMed Central

    Klein Herenbrink, Carmen; Sykes, David A.; Donthamsetti, Prashant; Canals, Meritxell; Coudrat, Thomas; Shonberg, Jeremy; Scammells, Peter J.; Capuano, Ben; Sexton, Patrick M.; Charlton, Steven J.; Javitch, Jonathan A.; Christopoulos, Arthur; Lane, J. Robert

    2016-01-01

    Biased agonism describes the ability of ligands to stabilize different conformations of a GPCR linked to distinct functional outcomes and offers the prospect of designing pathway-specific drugs that avoid on-target side effects. This mechanism is usually inferred from pharmacological data with the assumption that the confounding influences of observational (that is, assay dependent) and system (that is, cell background dependent) bias are excluded by experimental design and analysis. Here we reveal that ‘kinetic context', as determined by ligand-binding kinetics and the temporal pattern of receptor-signalling processes, can have a profound influence on the apparent bias of a series of agonists for the dopamine D2 receptor and can even lead to reversals in the direction of bias. We propose that kinetic context must be acknowledged in the design and interpretation of studies of biased agonism. PMID:26905976

  1. Biotransformation of a novel positive allosteric modulator of metabotropic glutamate receptor subtype 5 contributes to seizure-like adverse events in rats involving a receptor agonism-dependent mechanism.

    PubMed

    Bridges, Thomas M; Rook, Jerri M; Noetzel, Meredith J; Morrison, Ryan D; Zhou, Ya; Gogliotti, Rocco D; Vinson, Paige N; Xiang, Zixiu; Jones, Carrie K; Niswender, Colleen M; Lindsley, Craig W; Stauffer, Shaun R; Conn, P Jeffrey; Daniels, J Scott

    2013-09-01

    Activation of metabotropic glutamate receptor subtype 5 (mGlu5) represents a novel strategy for therapeutic intervention into multiple central nervous system disorders, including schizophrenia. Recently, a number of positive allosteric modulators (PAMs) of mGlu5 were discovered to exhibit in vivo efficacy in rodent models of psychosis, including PAMs possessing varying degrees of agonist activity (ago-PAMs), as well as PAMs devoid of agonist activity. However, previous studies revealed that ago-PAMs can induce seizure activity and behavioral convulsions, whereas pure mGlu5 PAMs do not induce these adverse effects. We recently identified a potent and selective mGlu5 PAM, VU0403602, that was efficacious in reversing amphetamine-induced hyperlocomotion in rats. The compound also induced time-dependent seizure activity that was blocked by coadministration of the mGlu5 antagonist, 2-methyl-6-(phenylethynyl) pyridine. Consistent with potential adverse effects induced by ago-PAMs, we found that VU0403602 had significant allosteric agonist activity. Interestingly, inhibition of VU0403602 metabolism in vivo by a pan cytochrome P450 (P450) inactivator completely protected rats from induction of seizures. P450-mediated biotransformation of VU0403602 was discovered to produce another potent ago-PAM metabolite-ligand (M1) of mGlu5. Electrophysiological studies in rat hippocampal slices confirmed agonist activity of both M1 and VU0403602 and revealed that M1 can induce epileptiform activity in a manner consistent with its proconvulsant behavioral effects. Furthermore, unbound brain exposure of M1 was similar to that of the parent compound, VU0403602. These findings indicate that biotransformation of mGlu5 PAMs to active metabolite-ligands may contribute to the epileptogenesis observed after in vivo administration of this class of allosteric receptor modulators.

  2. Biotransformation of a Novel Positive Allosteric Modulator of Metabotropic Glutamate Receptor Subtype 5 Contributes to Seizure-Like Adverse Events in Rats Involving a Receptor Agonism-Dependent Mechanism

    PubMed Central

    Bridges, Thomas M.; Rook, Jerri M.; Noetzel, Meredith J.; Morrison, Ryan D.; Zhou, Ya; Gogliotti, Rocco D.; Vinson, Paige N.; Xiang, Zixiu; Jones, Carrie K.; Niswender, Colleen M.; Lindsley, Craig W.; Stauffer, Shaun R.; Conn, P. Jeffrey

    2013-01-01

    Activation of metabotropic glutamate receptor subtype 5 (mGlu5) represents a novel strategy for therapeutic intervention into multiple central nervous system disorders, including schizophrenia. Recently, a number of positive allosteric modulators (PAMs) of mGlu5 were discovered to exhibit in vivo efficacy in rodent models of psychosis, including PAMs possessing varying degrees of agonist activity (ago-PAMs), as well as PAMs devoid of agonist activity. However, previous studies revealed that ago-PAMs can induce seizure activity and behavioral convulsions, whereas pure mGlu5 PAMs do not induce these adverse effects. We recently identified a potent and selective mGlu5 PAM, VU0403602, that was efficacious in reversing amphetamine-induced hyperlocomotion in rats. The compound also induced time-dependent seizure activity that was blocked by coadministration of the mGlu5 antagonist, 2-methyl-6-(phenylethynyl) pyridine. Consistent with potential adverse effects induced by ago-PAMs, we found that VU0403602 had significant allosteric agonist activity. Interestingly, inhibition of VU0403602 metabolism in vivo by a pan cytochrome P450 (P450) inactivator completely protected rats from induction of seizures. P450-mediated biotransformation of VU0403602 was discovered to produce another potent ago-PAM metabolite-ligand (M1) of mGlu5. Electrophysiological studies in rat hippocampal slices confirmed agonist activity of both M1 and VU0403602 and revealed that M1 can induce epileptiform activity in a manner consistent with its proconvulsant behavioral effects. Furthermore, unbound brain exposure of M1 was similar to that of the parent compound, VU0403602. These findings indicate that biotransformation of mGlu5 PAMs to active metabolite-ligands may contribute to the epileptogenesis observed after in vivo administration of this class of allosteric receptor modulators. PMID:23821185

  3. Stapled Vasoactive Intestinal Peptide (VIP) Derivatives Improve VPAC2 Agonism and Glucose-Dependent Insulin Secretion.

    PubMed

    Giordanetto, Fabrizio; Revell, Jefferson D; Knerr, Laurent; Hostettler, Marie; Paunovic, Amalia; Priest, Claire; Janefeldt, Annika; Gill, Adrian

    2013-12-12

    Agonists of vasoactive intestinal peptide receptor 2 (VPAC2) stimulate glucose-dependent insulin secretion, making them attractive candidates for the treatment of hyperglycaemia and type-II diabetes. Vasoactive intestinal peptide (VIP) is an endogenous peptide hormone that potently agonizes VPAC2. However, VIP has a short serum half-life and poor pharmacokinetics in vivo and is susceptible to proteolytic degradation, making its development as a therapeutic agent challenging. Here, we investigated two peptide cyclization strategies, lactamisation and olefin-metathesis stapling, and their effects on VPAC2 agonism, peptide secondary structure, protease stability, and cell membrane permeability. VIP analogues showing significantly enhanced VPAC2 agonist potency, glucose-dependent insulin secretion activity, and increased helical content were discovered; however, neither cyclization strategy appeared to effect proteolytic stability or cell permeability of the resulting peptides.

  4. Targeting the Nociceptin/Orphanin FQ Receptor for Scleroderma Therapy

    DTIC Science & Technology

    2016-08-01

    in three in vitro assays: endothelial cell wound healing , macrophage chemotaxis, and blood vessel tension (aortic ring assay) 3-12 66% This...candidate partial agonist compounds in wound healing assays using the SVEC4-10 mouse endothelial cell line. These compounds are commercially...be provided. As the Milestone(s): Select one partial agonist compound based on its wound healing , chemotaxis, and vasodilation profile for in

  5. Targeting the Nociceptin/Orphanin FQ Receptor for Scleroderma Therapy

    DTIC Science & Technology

    2015-12-01

    fibrosis, vasculopathy, autoimmunity. U U U UU USAMRMC 23 TABLE OF CONTENTS Page No. 1. Introduction 3 2. Keywords 3 3. Accomplishments 3-13 4. Impact...this reporting period describe: 1) major activities; 2) specific objectives; 3) significant results or key outcomes, including major findings...8, and 12) (Revised Table 1). For our initial studies, we elected to focus on evaluating a single NOPR agonist (Ro-64-6198), a single antagonist

  6. The endocannabinoid system and rimonabant: a new drug with a novel mechanism of action involving cannabinoid CB1 receptor antagonism--or inverse agonism--as potential obesity treatment and other therapeutic use.

    PubMed

    Xie, S; Furjanic, M A; Ferrara, J J; McAndrew, N R; Ardino, E L; Ngondara, A; Bernstein, Y; Thomas, K J; Kim, E; Walker, J M; Nagar, S; Ward, S J; Raffa, R B

    2007-06-01

    There is considerable evidence that the endocannabinoid (endogenous cannabinoid) system plays a significant role in appetitive drive and associated behaviours. It is therefore reasonable to hypothesize that the attenuation of the activity of this system would have therapeutic benefit in treating disorders that might have a component of excess appetitive drive or over-activity of the endocannabinoid system, such as obesity, ethanol and other drug abuse, and a variety of central nervous system and other disorders. Towards this end, antagonists of cannabinoid receptors have been designed through rational drug discovery efforts. Devoid of the abuse concerns that confound and impede the use of cannabinoid receptor agonists for legitimate medical purposes, investigation of the use of cannabinoid receptor antagonists as possible pharmacotherapeutic agents is currently being actively investigated. The compound furthest along this pathway is rimonabant, a selective CB(1) (cannabinoid receptor subtype 1) antagonist, or inverse agonist, approved in the European Union and under regulatory review in the United States for the treatment of obesity. This article summarizes the basic science of the endocannabinoid system and the therapeutic potential of cannabinoid receptor antagonists, with emphasis on the treatment of obesity.

  7. Treg activation defect in type 1 diabetes: correction with TNFR2 agonism

    PubMed Central

    Okubo, Yoshiaki; Torrey, Heather; Butterworth, John; Zheng, Hui; Faustman, Denise L

    2016-01-01

    Activated T-regulatory cells (aTregs) prevent or halt various forms of autoimmunity. We show that type 1 diabetics (T1D) have a Treg activation defect through an increase in resting Tregs (rTregs, CD4+CD25+Foxp3+CD45RA) and decrease in aTregs (CD4+CD25+Foxp3+CD45RO) (n= 55 T1D, n=45 controls, P=0.01). The activation defect persists life long in T1D subjects (T1D=45, controls=45, P=0.01, P=0.04). Lower numbers of aTregs had clinical significance because they were associated with a trend for less residual C-peptide secretion from the pancreas (P=0.08), and poorer HbA1C control (P=0.03). In humans, the tumor necrosis factor receptor 2 (TNFR2) is obligatory for Treg induction, maintenance and expansion of aTregs. TNFR2 agonism is a method for stimulating Treg conversion from resting to activated. Using two separate in vitro expansion protocols, TNFR2 agonism corrected the T1D activation defect by triggering conversion of rTregs into aTregs (n=54 T1D, P<0.001). TNFR2 agonism was superior to standard protocols and TNF in proliferating Tregs. In T1D, TNFR2 agonist-expanded Tregs were homogeneous and functionally potent by virtue of suppressing autologous cytotoxic T cells in a dose-dependent manner comparable to controls. Targeting the TNFR2 receptor for Treg expansion in vitro demonstrates a means to correct the activation defect in T1D. PMID:26900470

  8. Effects of nociceptin/orphanin FQ on rats with cathartic colon.

    PubMed

    Li, Hai-Yan; Yan, Xiang; Xue, Quan-Lai; Zhou, Yong-Ning; Gao, Yan; Wang, Rui; Liu, Yong-Ming; Ran, Jun-Tao

    2007-01-07

    To demonstrate the change and effect of nociceptin/orphanin FQ in the colon of rats with cathartic colon. The cathartic colon model was established by feeding rats rhubarb for 3 mo, the changes of colonic electromyography were investigated by both suspension muscle strips test and serosal recordings of colonic myoelectrical activity. Immunohistochemical staining (S-P methods) and image analysis were used to determine the changes of nociceptin/orphanin FQ in the proximal colon and distal colon of rats with cathartic colon. Suspension muscle strips test in vitro showed OFQ (10(-9)-10(-6) mol/L) concentration dependently caused an immediate tonic contraction in the isolated colon. But the increase of tension in cathartic colon was less than control groups (P < 0.01). Intravenous administration of OFQ (1 microg/kg) caused phasic contractions in the proximal colon, while the amplitude of phasic contractions caused by OFQ in cathartic colon was much lower than that in the control groups (2.58 +/- 0.41 vs 4.16 +/- 0.53, t = -2.6, P = 0.012). OFQ was highly expressed in the myenteric plexus of the rat colon but not in the muscle cells. The immunoreactivity of OFQ in the proximal colon in cathartic colon rats decreased significantly compared with the control group (P = 0.001). Colonic smooth muscle of cathartic colon showed low sensitivity to the stimulation of OFQ, suggesting that it might be caused by the abnormal distribution of OFQ or the abnormalities of receptors, leading to the disorganization of dynamic and incoordinated contractions.

  9. Effects of nociceptin/orphanin FQ on rats with cathartic colon

    PubMed Central

    Li, Hai-Yan; Yan, Xiang; Xue, Quan-Lai; Zhou, Yong-Ning; Gao, Yan; Wang, Rui; Liu, Yong-Ming; Ran, Jun-Tao

    2007-01-01

    AIM: To demonstrate the change and effect of nociceptin/orphanin FQ in the colon of rats with cathartic colon. METHODS: The cathartic colon model was established by feeding rats rhubarb for 3 mo, the changes of colonic electromyography were investigated by both suspension muscle strips test and serosal recordings of colonic myoelectrical activity. Immunohistochemical staining (S-P methods) and image analysis were used to determine the changes of nociceptin/orphanin FQ in the proximal colon and distal colon of rats with cathartic colon. RESULTS: Suspension muscle strips test in vitro showed OFQ (10-9-10-6 mol/L) concentration dependently caused an immediate tonic contraction in the isolated colon. But the increase of tension in cathartic colon was less than control groups (P < 0.01). Intravenous administration of OFQ (1 μg/kg) caused phasic contractions in the proximal colon, while the amplitude of phasic contractions caused by OFQ in cathartic colon was much lower than that in the control groups (2.58 ± 0.41 vs 4.16 ± 0.53, t = -2.6, P = 0.012). OFQ was highly expressed in the myenteric plexus of the rat colon but not in the muscle cells. The immunoreactivity of OFQ in the proximal colon in cathartic colon rats decreased significantly compared with the control group (P = 0.001). CONCLUSION: Colonic smooth muscle of cathartic colon showed low sensitivity to the stimulation of OFQ, suggesting that it might be caused by the abnormal distribution of OFQ or the abnormalities of receptors, leading to the disorganization of dynamic and incoordinated contractions. PMID:17206761

  10. The Pharmacology of TUG-891, a Potent and Selective Agonist of the Free Fatty Acid Receptor 4 (FFA4/GPR120), Demonstrates Both Potential Opportunity and Possible Challenges to Therapeutic Agonism

    PubMed Central

    Hudson, Brian D.; Shimpukade, Bharat; Mackenzie, Amanda E.; Butcher, Adrian J.; Pediani, John D.; Christiansen, Elisabeth; Heathcote, Helen; Tobin, Andrew B.; Ulven, Trond

    2013-01-01

    TUG-891 [3-(4-((4-fluoro-4′-methyl-[1,1′-biphenyl]-2-yl)methoxy)phenyl)propanoic acid] was recently described as a potent and selective agonist for the long chain free fatty acid (LCFA) receptor 4 (FFA4; previously G protein–coupled receptor 120, or GPR120). Herein, we have used TUG-891 to further define the function of FFA4 and used this compound in proof of principle studies to indicate the therapeutic potential of this receptor. TUG-891 displayed similar signaling properties to the LCFA α-linolenic acid at human FFA4 across various assay end points, including stimulation of Ca2+ mobilization, β-arrestin-1 and β-arrestin-2 recruitment, and extracellular signal-regulated kinase phosphorylation. Activation of human FFA4 by TUG-891 also resulted in rapid phosphorylation and internalization of the receptor. While these latter events were associated with desensitization of the FFA4 signaling response, removal of TUG-891 allowed both rapid recycling of FFA4 back to the cell surface and resensitization of the FFA4 Ca2+ signaling response. TUG-891 was also a potent agonist of mouse FFA4, but it showed only limited selectivity over mouse FFA1, complicating its use in vivo in this species. Pharmacologic dissection of responses to TUG-891 in model murine cell systems indicated that activation of FFA4 was able to mimic many potentially beneficial therapeutic properties previously reported for LCFAs, including stimulating glucagon-like peptide-1 secretion from enteroendocrine cells, enhancing glucose uptake in 3T3-L1 adipocytes, and inhibiting release of proinflammatory mediators from RAW264.7 macrophages, which suggests promise for FFA4 as a therapeutic target for type 2 diabetes and obesity. Together, these results demonstrate both potential but also significant challenges that still need to be overcome to therapeutically target FFA4. PMID:23979972

  11. Concurrent agonism of adenosine A2B and glucocorticoid receptors in human airway epithelial cells cooperatively induces genes with anti-inflammatory potential: a novel approach to treat chronic obstructive pulmonary disease.

    PubMed

    Greer, Stephanie; Page, Cara W; Joshi, Taruna; Yan, Dong; Newton, Robert; Giembycz, Mark A

    2013-09-01

    Chronic obstructive pulmonary disease (COPD) is a neutrophilic inflammatory disorder that is weakly responsive to glucocorticoids. Identification of ways to enhance the anti-inflammatory activity of glucocorticoids is, therefore, a major research objective. Adenosine receptor agonists that target the A2B-receptor subtype are efficacious in several cell-based assays and preclinical models of inflammation. Accordingly, the present study was designed to determine if a selective A2B-receptor agonist, 2-[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]pyridin-2-ylsulphanyl]acetamide (Bay 60-6583), and a glucocorticoid, dexamethasone, in combination display putative anti-inflammatory activity that is superior to either drug alone. In BEAS-2B human airway epithelial cells stably transfected with cAMP-response element (CRE) and glucocorticoid response element (GRE) reporter constructs, Bay 60-6583 promoted CRE-dependent transcription and enhanced GRE-dependent transcription by an adenosine A2B-receptor-mediated mechanism that was associated with cAMP formation and abolished by an inhibitor of cAMP-dependent protein kinase. Analysis of the concentration-response relationship that described the enhancement of GRE-dependent transcription showed that Bay 60-6583 increased the magnitude of response without affecting the potency of dexamethasone. Bay 60-6583 and dexamethasone also induced a panel of genes that, collectively, could have benefit in COPD. These were categorized into genes that were induced in a positive cooperative manner (RGS2, p57(kip2)), an additive manner (TTP, BRL-1), or by Bay 60-6583 (CD200, CRISPLD2, SOCS3) or dexamethasone (GILZ) only. Thus, the gene induction "fingerprints" produced by Bay 60-6583 and dexamethasone, alone and in combination, were distinct. Collectively, through their actions on gene expression, an adenosine A2B-receptor agonist and a glucocorticoid administered together may have utility in the treatment of inflammatory disorders that

  12. Neonatal agonism of ERβ impairs male reproductive behavior and attractiveness

    PubMed Central

    Sullivan, Alana W.; Hamilton, Peter; Patisaul, Heather B.

    2011-01-01

    The organization of the developing male rodent brain is profoundly influenced by endogenous steroids, most notably estrogen. This process may be disrupted by estrogenic endocrine disrupting compounds (EDCs) resulting in altered sex behavior and the capacity to attract a mate in adulthood. To better understand the relative role each estrogen receptor (ER) subtype (ERα and ERβ) plays in mediating these effects, we exposed male Long Evans rats to estradiol benzoate (EB, 10 μg), vehicle, or agonists specific for ERβ (DPN, 1 mg/kg) or ERα (PPT, 1 mg/kg) daily for the first four days of life, and then assessed adult male reproductive behavior and attractiveness via a partner preference paradigm. DPN had a greater adverse impact than PPT on reproductive behavior, suggesting a functional role for ERβ in the organization of these male-specific behaviors. Therefore the impact of neonatal ERβ agonism was further investigated by repeating the experiment using vehicle, EB and additional DPN doses (0.5 mg/kg, 1 mg/kg, and 2 mg/kg bw). Exposure to DPN suppressed male reproductive behavior and attractiveness in a dose dependent manner. Finally, males were exposed to EB or an environmentally relevant dose of genistein (GEN, 10 mg/kg), a naturally occurring xenoestrogen, which has a higher relative binding affinity for ERβ than ERα. Sexual performance was impaired by GEN but not attractiveness. In addition to suppressing reproductive behavior and attractiveness, EB exposure significantly lowered the testis to body weight ratio, and circulating testosterone levels. DPN and GEN exposure only impaired behavior, suggesting that disrupted androgen secretion does not underlie the impairment. PMID:21554883

  13. Biased agonism of the μ-opioid receptor by TRV130 increases analgesia and reduces on-target adverse effects versus morphine: A randomized, double-blind, placebo-controlled, crossover study in healthy volunteers.

    PubMed

    Soergel, David G; Subach, Ruth Ann; Burnham, Nancy; Lark, Michael W; James, Ian E; Sadler, Brian M; Skobieranda, Franck; Violin, Jonathan D; Webster, Lynn R

    2014-09-01

    Opioids provide powerful analgesia but also efficacy-limiting adverse effects, including severe nausea, vomiting, and respiratory depression, by activating μ-opioid receptors. Preclinical models suggest that differential activation of signaling pathways downstream of these receptors dissociates analgesia from adverse effects; however, this has not yet translated to a treatment with an improved therapeutic index. Thirty healthy men received single intravenous injections of the biased ligand TRV130 (1.5, 3, or 4.5mg), placebo, or morphine (10mg) in a randomized, double-blind, crossover study. Primary objectives were to measure safety and tolerability (adverse events, vital signs, electrocardiography, clinical laboratory values), and analgesia (cold pain test) versus placebo. Other measures included respiratory drive (minute volume after induced hypercapnia), subjective drug effects, and pharmacokinetics. Compared to morphine, TRV130 (3, 4.5mg) elicited higher peak analgesia (105, 116 seconds latency vs 75 seconds for morphine, P<.02), with faster onset and similar duration of action. More subjects doubled latency or achieved maximum latency (180 seconds) with TRV130 (3, 4.5mg). Respiratory drive reduction was greater after morphine than any TRV130 dose (-15.9 for morphine versus -7.3, -7.6, and -9.4 h*L/min, P<.05). More subjects experienced severe nausea after morphine (n=7) than TRV130 1.5 or 3mg (n=0, 1), but not 4.5mg (n=9). TRV130 was generally well tolerated, and exposure was dose proportional. Thus, in this study, TRV130 produced greater analgesia than morphine at doses with less reduction in respiratory drive and less severe nausea. This demonstrates early clinical translation of ligand bias as an important new concept in receptor-targeted pharmacotherapy.

  14. The combined strategy with PPARα agonism and AT₁ receptor antagonism is not superior relative to their individual treatment approach in preventing the induction of nephropathy in the diabetic rat.

    PubMed

    Bishnoi, Harish Kumar; Mahadevan, Nanjaian; Balakumar, Pitchai

    2012-10-01

    We have previously shown that the low-dose combination of fenofibrate and rosiglitazone might halt the progression of diabetes-induced nephropathy in rats. The present study investigated the combined effect of fenofibrate (PPARα agonist) and telmisartan (AT₁ receptor antagonist) in diabetes-induced onset of nephropathy in rats. The single administration of streptozotocin (STZ, 55 mg/kg i.p.) produced diabetes mellitus, which subsequently produced nephropathy in 8 weeks by markedly elevating serum creatinine, blood urea nitrogen and microproteinuria. In addition, histopathological studies revealed the development of renal structural abnormalities such as mesangial expansion, glomerular and tubular damage. Moreover, diabetes-induced nephropathy was accompanied with high renal oxidative stress and lipid alteration. Treatment with fenofibrate (80 mg/kg/day, p.o., 4 weeks) and telmisartan (10 mg/kg/day, p.o., 4 weeks) either alone or in combination did not affect the elevated glucose levels in diabetic rats. Albeit treatment with fenofibrate normalizes the altered lipid profile in diabetic rats, telmisartan treatment has no effect on it. Treatment with fenofibrate and telmisartan either alone or in combination markedly prevented diabetes-induced onset of nephropathy and renal oxidative stress. Their combination was as good as to their individual treatment, but not superior in attenuating the diabetes-induced nephropathy and renal oxidative stress. It may be concluded that diabetes-induced oxidative stress and lipid alteration, besides hyperglycemia, could play a key role in the induction of nephropathy. Fenofibrate and telmisartan individual treatment was equipotent in preventing the onset of diabetes-induced experimental nephropathy, while their combination did not afford additional benefits in preventing the disease induction of the diabetic kidney.

  15. Evidence that Orphanin FQ Mediates Progesterone Negative Feedback in the Ewe

    PubMed Central

    Nestor, Casey C; Coolen, Lique M.; Nesselrod, Gail L.; Valent, Miro; Connors, John M.; Hileman, Stanley M.; Cheng, Guanliang; Lehman, Michael N.

    2013-01-01

    Orphanin FQ (OFQ), a member of the opioid family, is found in many areas of the hypothalamus and, when given centrally OFQ inhibits episodic LH secretion in rodents and sheep. Because GnRH neurons are devoid of the appropriate receptors to mediate steroid negative feedback directly, neurons that release OFQ may be involved. Using immunocytochemistry, we first determined that most OFQ neurons in the arcuate nucleus (ARC) and other hypothalamic regions of luteal phase ewes contained both estrogen receptor α and progesterone (P) receptor. Given a similar high degree of steroid receptor colocalization in other ARC subpopulations, we examined whether OFQ neurons of the ARC contained those other neuropeptides and neurotransmitters. OFQ did not colocalize with kisspeptin, tyrosine hydroxylase, or agouti-related peptide, but all ARC OFQ neurons coexpressed proopiomelanocortin. To test for a role for endogenous OFQ, we examined the effects of an OFQ receptor antagonist, [Nphe1,Arg14,Lys15]Nociceptin-NH2 (UFP-101) (30 nmol intracerebroventricular/h), on LH secretion in steroid-treated ewes in the breeding season and ovary-intact ewes in anestrus. Ovariectomized ewes with luteal phase concentrations of P and estradiol showed a significant increase in LH pulse frequency during infusion of UFP-101 (4.5 ± 0.5 pulses/6 h) compared with saline infusion (2.6 ± 0.4 pulses/6 h), whereas ewes implanted with only estradiol did not. Ovary-intact anestrous ewes displayed no significant differences in LH pulse amplitude or frequency during infusion of UFP-101. Therefore, we conclude that OFQ mediates, at least in part, the negative feedback action of P on GnRH/LH pulse frequency in sheep. PMID:23928375

  16. Evidence that orphanin FQ mediates progesterone negative feedback in the ewe.

    PubMed

    Nestor, Casey C; Coolen, Lique M; Nesselrod, Gail L; Valent, Miro; Connors, John M; Hileman, Stanley M; Cheng, Guanliang; Lehman, Michael N; Goodman, Robert L

    2013-11-01

    Orphanin FQ (OFQ), a member of the opioid family, is found in many areas of the hypothalamus and, when given centrally OFQ inhibits episodic LH secretion in rodents and sheep. Because GnRH neurons are devoid of the appropriate receptors to mediate steroid negative feedback directly, neurons that release OFQ may be involved. Using immunocytochemistry, we first determined that most OFQ neurons in the arcuate nucleus (ARC) and other hypothalamic regions of luteal phase ewes contained both estrogen receptor α and progesterone (P) receptor. Given a similar high degree of steroid receptor colocalization in other ARC subpopulations, we examined whether OFQ neurons of the ARC contained those other neuropeptides and neurotransmitters. OFQ did not colocalize with kisspeptin, tyrosine hydroxylase, or agouti-related peptide, but all ARC OFQ neurons coexpressed proopiomelanocortin. To test for a role for endogenous OFQ, we examined the effects of an OFQ receptor antagonist, [Nphe1,Arg14,Lys15]Nociceptin-NH2 (UFP-101) (30 nmol intracerebroventricular/h), on LH secretion in steroid-treated ewes in the breeding season and ovary-intact ewes in anestrus. Ovariectomized ewes with luteal phase concentrations of P and estradiol showed a significant increase in LH pulse frequency during infusion of UFP-101 (4.5 ± 0.5 pulses/6 h) compared with saline infusion (2.6 ± 0.4 pulses/6 h), whereas ewes implanted with only estradiol did not. Ovary-intact anestrous ewes displayed no significant differences in LH pulse amplitude or frequency during infusion of UFP-101. Therefore, we conclude that OFQ mediates, at least in part, the negative feedback action of P on GnRH/LH pulse frequency in sheep.

  17. Decreased expression of nociceptin/orphanin FQ in the dorsal anterior cingulate cortex of suicides.

    PubMed

    Lutz, Pierre-Eric; Zhou, Yi; Labbe, Aurélie; Mechawar, Naguib; Turecki, Gustavo

    2015-11-01

    The nociceptin/orphanin FQ (N/OFQ)-Nociceptin Opiod-like Peptide (NOP) receptor system is a critical mediator of physiological and pathological processes involved in emotional regulation and drug addiction. As such, this system may be an important biological substrate underlying psychiatric conditions that contribute to the risk of suicide. Thus, the goal of the present study was to characterize changes in human N/OFQ and NOP signaling as a function of depression, addiction and suicide. We quantified the expression of N/OFQ and NOP by RT-PCR in the anterior insula, the mediodorsal thalamus, and the dorsal anterior cingulate cortex (dACC) from a large sample of individuals who died by suicide and matched psychiatrically-healthy controls. Suicides displayed an 18% decrease in the expression of N/OFQ in the dACC that was not accounted for by current depressive or substance use disorders at the time of death. Therefore, our results suggest that dysregulation of the N/OFQ-NOP system may contribute to the neurobiology of suicide, a hypothesis that warrants further exploration.

  18. Decreased Expression of Nociceptin/Orphanin FQ in the dorsal Anterior Cingulate Cortex of Suicides

    PubMed Central

    Lutz, Pierre-Eric; Zhou, Yi; Labbe, Aurélie; Mechawar, Naguib; Turecki, Gustavo

    2015-01-01

    The nociceptin/orphanin FQ (N/OFQ) – Nociceptin Opiod-like Peptide (NOP) receptor system is a critical mediator of physiological and pathological processes involved in emotional regulation and drug addiction. As such, this system may be an important biological substrate underlying psychiatric conditions that contribute to the risk of suicide. Thus, the goal of the present study was to characterize changes in human N/OFQ and NOP signaling as a function of depression, addiction and suicide. We quantified the expression of N/OFQ and NOP by RT-PCR in the anterior insula, the mediodorsal thalamus, and the dorsal anterior cingulate cortex (dACC) from a large sample of individuals who died by suicide and matched psychiatrically-healthy controls. Suicides displayed an 18% decrease in the expression of N/OFQ in the dACC that was not accounted for by current depressive or substance use disorders at the time of death. Therefore, our results suggest that dysregulation of the N/OFQ-NOP system may contribute to the neurobiology of suicide, a hypothesis that warrants further exploration. PMID:26349406

  19. Minocycline enhances the effectiveness of nociceptin/orphanin FQ during neuropathic pain.

    PubMed

    Popiolek-Barczyk, Katarzyna; Rojewska, Ewelina; Jurga, Agnieszka M; Makuch, Wioletta; Zador, Ferenz; Borsodi, Anna; Piotrowska, Anna; Przewlocka, Barbara; Mika, Joanna

    2014-01-01

    Nociceptin/orphanin FQ (N/OFQ) antinociception, which is mediated selectively by the N/OFQ peptide receptor (NOP), was demonstrated in pain models. In this study, we determine the role of activated microglia on the analgesic effects of N/OFQ in a rat model of neuropathic pain induced by chronic constriction injury (CCI) to the sciatic nerve. Repeated 7-day administration of minocycline (30 mg/kg i.p.), a drug that affects microglial activation, significantly reduced pain in CCI-exposed rats and it potentiates the analgesic effects of administered N/OFQ (2.5-5 μg i.t.). Minocycline also downregulates the nerve injury-induced upregulation of NOP protein in the dorsal lumbar spinal cord. Our in vitro study showed that minocycline reduced NOP mRNA, but not protein, level in rat primary microglial cell cultures. In [(35)S]GTPγS binding assays we have shown that minocycline increases the spinal N/OFQ-stimulated NOP signaling. We suggest that the modulation of the N/OFQ system by minocycline is due to the potentiation of its neuronal antinociceptive activity and weakening of the microglial cell activation. This effect is beneficial for pain relief, and these results suggest new targets for the development of drugs that are effective against neuropathic pain.

  20. Minocycline Enhances the Effectiveness of Nociceptin/Orphanin FQ during Neuropathic Pain

    PubMed Central

    Popiolek-Barczyk, Katarzyna; Rojewska, Ewelina; Jurga, Agnieszka M.; Makuch, Wioletta; Zador, Ferenz; Piotrowska, Anna; Przewlocka, Barbara

    2014-01-01

    Nociceptin/orphanin FQ (N/OFQ) antinociception, which is mediated selectively by the N/OFQ peptide receptor (NOP), was demonstrated in pain models. In this study, we determine the role of activated microglia on the analgesic effects of N/OFQ in a rat model of neuropathic pain induced by chronic constriction injury (CCI) to the sciatic nerve. Repeated 7-day administration of minocycline (30 mg/kg i.p.), a drug that affects microglial activation, significantly reduced pain in CCI-exposed rats and it potentiates the analgesic effects of administered N/OFQ (2.5–5 μg i.t.). Minocycline also downregulates the nerve injury-induced upregulation of NOP protein in the dorsal lumbar spinal cord. Our in vitro study showed that minocycline reduced NOP mRNA, but not protein, level in rat primary microglial cell cultures. In [35S]GTPγS binding assays we have shown that minocycline increases the spinal N/OFQ-stimulated NOP signaling. We suggest that the modulation of the N/OFQ system by minocycline is due to the potentiation of its neuronal antinociceptive activity and weakening of the microglial cell activation. This effect is beneficial for pain relief, and these results suggest new targets for the development of drugs that are effective against neuropathic pain. PMID:25276817

  1. Antinociceptive Effects of Nociceptin/Orphanin FQ Administered Intrathecally in Monkeys

    PubMed Central

    Ko, Mei-Chuan; Naughton, Norah N.

    2009-01-01

    Nociceptin/orphanin FQ (N/OFQ) is the endogenous peptide for the NOP receptors. Depending on the doses, intrathecal administration of N/OFQ has dual actions (ie, hyperalgesia and antinociception) in rodents. However, the pharmacological profile of intrathecal N/OFQ is not fully known in primates. The aim of this study was to investigate behavioral effects of intrathecal N/OFQ over a wide dose range and to compare its effects with ligands known to produce hyperalgesia or antinociception in monkeys. Intrathecal N/OFQ from 1 fmol to 1 nmol did not produce any hyperalgesic or scratching responses. In contrast, intrathecal substance P 100 nmol produced hyperalgesia, and intrathecal DAMGO 10 nmol produced antinociception. At the dose range between 10 nmol and 1 µmol, intrathecal N/OFQ dose-dependently produced thermal antinociception against a noxious stimulus in 2 intensities. More importantly, N/OFQ in combined with intrathecal morphine dose-dependently potentiated morphine-induced antinociception without inhibiting morphine-induced itch/scratching. Taken together, this study is the first to provide a unique functional profile of intrathecal N/OFQ over a wide dose range in primates. Intrathecal N/OFQ produces thermal antinociception without anti-morphine actions or scratching responses, indicating that N/OFQ or NOP receptor agonists represent a promising target as spinal analgesics. Perspective: Intrathecal administration of N/OFQ only produced thermal antinociception, not hyperalgesia, in monkeys. In addition, intrathecal N/OFQ does not have anti-morphine actions or itch/scratching responses. This study strongly supports the therapeutic potential of N/OFQ or NOP receptor agonists as spinal analgesics for clinical trials. PMID:19231294

  2. Comparison of the in vitro efficacy of mu, delta, kappa and ORL1 receptor agonists and non-selective opioid agonists in dog brain membranes.

    PubMed

    Lester, Patrick A; Traynor, John R

    2006-02-16

    Morphine and related opioid agonists are frequently used in dogs for their analgesic properties, their sedative effects and as adjuncts to anesthesia. Such compounds may be effective through a combined action at mu-, delta- and kappa-opioid receptors. In this work, the in vitro relative agonist efficacy of ligands selective for mu (DAMGO)-, delta (SNC80)- and kappa (U69593)-opioid receptors as well as the opioid receptor-like receptor ORL(1) (orphaninFQ/nociceptin) which may mediate nociceptive or antinociceptive actions was determined using the [35S]GTPgammaS binding assay in membrane homogenates from the frontal cortex, thalamus and spinal cord of beagle dogs. In addition, other analgesics commonly used in the dog were investigated. For the receptor-selective compounds, maximum stimulation of [35S]GTPgammaS binding decreased in the order kappa > ORL1 > delta > mu in cortical homogenates, compared with mu > ORL1 > kappa > delta in thalamic and spinal cord homogenates. For other opioids examined, efficacy decreased in the order etorphine > morphine > fentanyl = oxymorphine > butorphanol = oxycodone = nalbuphine. There was no significant difference in the potency of compounds to stimulate [35S]GTPgammaS binding between cortex and thalamus, with the exception of etorphine. Buprenorphine, the partial mu-opioid receptor agonist and kappa-, delta-opioid receptor antagonist, which does have analgesic efficacy in the dog, showed no agonism in any tissue but was an effective mu-opioid receptor > ORL1 receptor antagonist. The results show that the ability of agonists to stimulate [35S]GTPgammaS binding relates to the receptor distribution of opioid and ORL1 receptors in the dog.

  3. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance

    PubMed Central

    Fang, Sungsoon; Suh, Jae Myoung; Reilly, Shannon M; Yu, Elizabeth; Osborn, Olivia; Lackey, Denise; Yoshihara, Eiji; Perino, Alessia; Jacinto, Sandra; Lukasheva, Yelizaveta; Atkins, Annette R; Khvat, Alexander; Schnabl, Bernd; Yu, Ruth T; Brenner, David A; Coulter, Sally; Liddle, Christopher; Schoonjans, Kristina; Olefsky, Jerrold M; Saltiel, Alan R; Downes, Michael; Evans, Ronald M

    2015-01-01

    The systemic expression of the bile acid (BA) sensor farnesoid X receptor (FXR) has led to promising new therapies targeting cholesterol metabolism, triglyceride production, hepatic steatosis and biliary cholestasis. In contrast to systemic therapy, bile acid release during a meal selectively activates intestinal FXR. By mimicking this tissue-selective effect, the gut-restricted FXR agonist fexaramine (Fex) robustly induces enteric fibroblast growth factor 15 (FGF15), leading to alterations in BA composition, but does so without activating FXR target genes in the liver. However, unlike systemic agonism, we find that Fex reduces diet-induced weight gain, body-wide inflammation and hepatic glucose production, while enhancing thermogenesis and browning of white adipose tissue (WAT). These pronounced metabolic improvements suggest tissue-restricted FXR activation as a new approach in the treatment of obesity and metabolic syndrome. PMID:25559344

  4. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance.

    PubMed

    Fang, Sungsoon; Suh, Jae Myoung; Reilly, Shannon M; Yu, Elizabeth; Osborn, Olivia; Lackey, Denise; Yoshihara, Eiji; Perino, Alessia; Jacinto, Sandra; Lukasheva, Yelizaveta; Atkins, Annette R; Khvat, Alexander; Schnabl, Bernd; Yu, Ruth T; Brenner, David A; Coulter, Sally; Liddle, Christopher; Schoonjans, Kristina; Olefsky, Jerrold M; Saltiel, Alan R; Downes, Michael; Evans, Ronald M

    2015-02-01

    The systemic expression of the bile acid (BA) sensor farnesoid X receptor (FXR) has led to promising new therapies targeting cholesterol metabolism, triglyceride production, hepatic steatosis and biliary cholestasis. In contrast to systemic therapy, bile acid release during a meal selectively activates intestinal FXR. By mimicking this tissue-selective effect, the gut-restricted FXR agonist fexaramine (Fex) robustly induces enteric fibroblast growth factor 15 (FGF15), leading to alterations in BA composition, but does so without activating FXR target genes in the liver. However, unlike systemic agonism, we find that Fex reduces diet-induced weight gain, body-wide inflammation and hepatic glucose production, while enhancing thermogenesis and browning of white adipose tissue (WAT). These pronounced metabolic improvements suggest tissue-restricted FXR activation as a new approach in the treatment of obesity and metabolic syndrome.

  5. Have many estimates of efficacy and affinity been misled? Revisiting the operational model of agonism.

    PubMed

    Roche, David; van der Graaf, Piet H; Giraldo, Jesús

    2016-11-01

    The operational model of agonism offers a general equation to account for steep or flat functional curves by including a slope parameter different from 1. However, because this equation is not a Hill equation, those steep or flat experimental curves that follow the Hill model are excluded from the operational framework. This conceptual omission could have significant consequences in the estimation of affinity and efficacy - the operational model tends to overestimate agonist-receptor dissociation constants and operational efficacy parameters to accommodate the shape of theoretical curves to steep or flat experimental Hill curves. To avoid misled parameter estimates for an ample space of pharmacological data a new version of the operational model has been developed.

  6. Effect of LXR/RXR agonism on brain and CSF Aβ40 levels in rats

    PubMed Central

    Wang, Songli; Wen, Paul; Wood, Stephen

    2016-01-01

    Alzheimer's disease (AD) is characterized pathologically by the presence of amyloid plaques and neurofibrillary tangles. The amyloid hypothesis contends that the abnormal accumulation of Aβ, the principal component of amyloid plaques, plays an essential role in initiating the disease. Impaired clearance of soluble Aβ from the brain, a process facilitated by apolipoprotein E (APOE), is believed to be a contributing factor in plaque formation. APOE expression is transcriptionally regulated through the action of a family of nuclear receptors including the peroxisome proliferator-activated receptor gamma and liver X receptors (LXRs) in coordination with retinoid X receptors (RXRs). It has been previously reported that various agonists of this receptor family can influence brain Aβ levels in rodents. In this study we investigated the effects of LXR/RXR agonism on brain and cerebrospinal fluid (CSF) levels of Aβ40 in naïve rats. Treatment of rats for 3 days or 7 days with the LXR agonist, T0901317 or the RXR agonist, bexarotene did not result in significant changes in brain or CSF Aβ40 levels. PMID:27239272

  7. Connecting inflammation with glutamate agonism in suicidality

    PubMed Central

    Erhardt, Sophie; Lim, Chai K; Linderholm, Klas R; Janelidze, Shorena; Lindqvist, Daniel; Samuelsson, Martin; Lundberg, Kristina; Postolache, Teodor T; Träskman-Bendz, Lil; Guillemin, Gilles J; Brundin, Lena

    2013-01-01

    The NMDA-receptor antagonist ketamine has proven efficient in reducing symptoms of suicidality, although the mechanisms explaining this effect have not been detailed in psychiatric patients. Recent evidence points towards a low-grade inflammation in brains of suicide victims. Inflammation leads to production of quinolinic acid (QUIN) and kynurenic acid (KYNA), an agonist and antagonist of the glutamatergic N-methyl-D-aspartate (NMDA) receptor, respectively. We here measured QUIN and KYNA in the cerebrospinal fluid (CSF) of 64 medication-free suicide attempters and 36 controls, using gas chromatography mass spectrometry and high-performance liquid chromatography. We assessed the patients clinically using the Suicide Intent Scale and the Montgomery–Asberg Depression Rating Scale (MADRS). We found that QUIN, but not KYNA, was significantly elevated in the CSF of suicide attempters (P<0.001). As predicted, the increase in QUIN was associated with higher levels of CSF interleukin-6. Moreover, QUIN levels correlated with the total scores on Suicide Intent Scale. There was a significant decrease of QUIN in patients who came for follow-up lumbar punctures within 6 months after the suicide attempt. In summary, we here present clinical evidence of increased QUIN in the CSF of suicide attempters. An increased QUIN/KYNA quotient speaks in favor of an overall NMDA-receptor stimulation. The correlation between QUIN and the Suicide Intent Scale indicates that changes in glutamatergic neurotransmission could be specifically linked to suicidality. Our findings have important implications for the detection and specific treatment of suicidal patients, and might explain the observed remedial effects of ketamine. PMID:23299933

  8. The effect of serotonergic system on nociceptin/orphanin FQ induced food intake in chicken.

    PubMed

    Zendehdel, Morteza; Mokhtarpouriani, Kasra; Babapour, Vahab; Baghbanzadeh, Ali; Pourrahimi, Maryam; Hassanpour, Shahin

    2013-07-01

    The present study was designed to examine the effects of intracerebroventricular injection of para-chlorophenylalanine (PCPA) (cerebral serotonin depletive), fluoxetine (selective serotonin reuptake inhibitor), 8-OH-DPAT (5-HT1A autoreceptor agonist) and SB 242084 (5-HT2c receptor antagonist) on nociceptin/orphanin FQ (N/OFQ) induced feeding response in chickens. A guide cannula was surgically implanted into the lateral ventricle of chickens. Before the experiments, 3-h fasting periods had been given to all experimental birds. In experiment 1, chickens were injected with PCPA (1.5 μg) followed by an N/OFQ injection (16 nmol) intracerebroventricularly. In experiment 2, birds received fluoxetine (10 μg) prior to the injection of N/OFQ. In experiment 3, chickens were administered with N/OFQ after the 8-OH-DPAT administration (15.25 nmol). In experiment 4, birds were injected with SB 242084 (1.5 μg) followed by an N/OFQ injection. Cumulative food intake was measured at 3 h post injection. The results of this study show that N/OFQ increases food intake in broiler cockerels (P < 0.05) and that this effect is amplified by pretreatment with PCPA and SB 242084 in an additive manner (P < 0.05). The effect of N/OFQ is not changed by pretreatment with 8-OH-DPAT (P > 0.05). Furthermore, the stimulatory effect of N/OFQ on food intake was significantly attenuated by pretreatment with fluoxetine. These results suggest that N/OFQ induced hyperphagia is mediated by serotonergic mechanisms, and possibly imply an interaction between N/OFQ and the serotonergic system (via 5-HT2C receptors) on food intake in chickens.

  9. Estradiol negatively modulates the pleiotropic actions of orphanin FQ/nociceptin at proopiomelanocortin synapses.

    PubMed

    Borgquist, Amanda; Kachani, Malika; Tavitian, Nadia; Sinchak, Kevin; Wagner, Edward J

    2013-01-01

    Orphanin FQ/nociceptin (OFQ/N) inhibits the activity of proopiomelanocortin (POMC) neurons located in the hypothalamic arcuate nucleus (ARH) that regulate female sexual behavior and energy balance. We tested the hypothesis that estradiol modulates the ability of OFQ/N to pre- and postsynaptically decrease the excitability of these cells. To this end, whole-cell patch-clamp recordings were performed in hypothalamic slices prepared from ovariectomized rats, including some that were injected with the retrograde tracer Fluorogold in the medial preoptic nucleus (MPN) to label the POMC neurons regulating sexual receptivity. OFQ/N (1 µM) evoked a robust outward current in ARH neurons from vehicle-treated animals that was blocked by the opioid receptor-like (ORL)1 receptor antagonist UFP-101 (100 nM) and the G protein-gated, inwardly rectifying K⁺ (GIRK-1) channel blocker tertiapin (10 nM). OFQ/N also produced a decrease in the frequency of glutamatergic, miniature excitatory postsynaptic currents (mEPSCs), which was also antagonized by UFP-101. Estradiol benzoate (2 µg) increased basal mEPSC frequency and markedly diminished both the OFQ/N-induced activation of postsynaptic GIRK-1 channel currents and the presynaptic inhibition of glutamatergic neurotransmission. These effects were observed in identified POMC neurons, including eight that projected to the MPN. Taken together, these data reveal that estradiol attenuates the pleiotropic inhibitory actions of OFQ/N on POMC neurons: presynaptically through reducing the OFQ/N inhibition of glutamate release and postsynaptically by reducing ORL1 signaling through GIRK channels. As such, they impart critical insight into a mechanism for estradiol to increase the activity of POMC neurons that inhibit sexual receptivity.

  10. Orphanin FQ/nociceptin suppresses motor activity through an action along the mesoaccumbens axis in rats

    PubMed Central

    Narayanan, Shridhar; Lam, Hoa; Carroll, F. Ivy; Lutfy, Kabirullah

    2004-01-01

    Objective Intracerebroventricular administration of orphanin FQ/nociceptin (OFQ/N), the endogenous agonist ligand of the opioid receptor-like (ORL-1) receptor, decreases extracellular levels of dopamine and suppresses motor activity. The presence of the ORL-1 receptor on mesoaccumbal and nigrostriatal dopaminergic neurons raises the possibility that an action along these pathways may be one means by which OFQ/N produces motor suppression. Thus, the present study used local administration of OFQ/N into the ventral tegmental area (VTA), the substantia nigra, the nucleus accumbens and the striatum to determine the contribution of cell-body regions and terminal fields of the dopaminergic neurons to the motor-suppressant effect of OFQ/N. Methods Rats were implanted bilaterally with guide cannulae into one of the brain regions and tested 4 days later. First, the effect of a single dose of OFQ/N (30 μg/0.5 μL per side) on motor activity was determined after direct injection into the VTA, substantia nigra, nucleus accumbens or striatum. Rats were habituated to activity chambers for 1 hour and then injected with either artificial cerebrospinal fluid or OFQ/N into one of the brain regions, and motor activity was recorded for a further 1 hour. Next, the dose–response effect of intra-VTA or intranigral OFQ/N (3 μg or 30 μg/0.5 μL per side) on motor activity was examined. Finally, the effect of intra-VTA OFQ/N (3 μg or 30 μg/0.5 μL per side) on motor activity was determined in the presence of J-113397, an ORL-1 receptor antagonist. Results OFQ/N suppressed motor activity when injected into the VTA and to a lesser extent after direct injection into the nucleus accumbens. However, OFQ/N failed to attenuate motor activity significantly after injection into the substantia nigra or the striatum. Subsequent dose–response studies showed that OFQ/N suppressed motor activity even at a 10-fold-lower dose after intrategmental but not intranigral administration. The motor

  11. Melanocortin agonism as a viable strategy to control alveolar bone loss induced by oral infection.

    PubMed

    Madeira, Mila F M; Queiroz-Junior, Celso M; Montero-Melendez, Trinidad; Werneck, Silvia M C; Corrêa, Jôice D; Soriani, Frederico M; Garlet, Gustavo P; Souza, Daniele G; Teixeira, Mauro M; Silva, Tarcilia A; Perretti, Mauro

    2016-12-01

    Alveolar bone loss is a result of an aggressive form of periodontal disease (PD) associated with Aggregatibacter actinomycetemcomitans (Aa) infection. PD is often observed with other systemic inflammatory conditions, including arthritis. Melanocortin peptides activate specific receptors to exert antiarthritic properties, avoiding excessing inflammation and modulating macrophage function. Recent work has indicated that melanocortin can control osteoclast development and function, but whether such protection takes place in infection-induced alveolar bone loss has not been investigated. The purpose of this study was to evaluate the role of melanocortin in Aa-induced PD. Mice were orally infected with Aa and treated with the melanocortin analog DTrp(8)-γMSH or vehicle daily for 30 d. Then, periodontal tissue was collected and analyzed. Aa-infected mice treated with DTrp(8)-γMSH presented decreased alveolar bone loss and a lower degree of neutrophil infiltration in the periodontium than vehicle-treated animals; these actions were associated with reduced periodontal levels of TNF-α, IFN-γ, and IL-17A. In vitro experiments with cells differentiated into osteoclasts showed that osteoclast formation and resorptive activity were attenuated after treatment with DTrp(8)-γMSH. Thus, melanocortin agonism could represent an innovative way to tame overexuberant inflammation and, at the same time, preserve bone physiology, as seen after Aa infection.-Madeira, M. F. M., Queiroz-Junior, C. M., Montero-Melendez, T., Werneck, S. M. C., Corrêa, J. D., Soriani, F. M., Garlet, G. P., Souza, D. G., Teixeira, M. M., Silva, T. A., Perretti, M. Melanocortin agonism as a viable strategy to control alveolar bone loss induced by oral infection. © FASEB.

  12. Structural determinant for inducing RORgamma specific inverse agonism triggered by a synthetic benzoxazinone ligand.

    PubMed

    Marcotte, Douglas J; Liu, YuTing; Little, Kevin; Jones, John H; Powell, Noel A; Wildes, Craig P; Silvian, Laura F; Chodaparambil, Jayanth V

    2016-06-01

    The nuclear hormone receptor RORγ regulates transcriptional genes involved in the production of the pro-inflammatory interleukin IL-17 which has been linked to autoimmune diseases such as rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. This transcriptional activity of RORγ is modulated through a protein-protein interaction involving the activation function 2 (AF2) helix on the ligand binding domain of RORγ and a conserved LXXLL helix motif on coactivator proteins. Our goal was to develop a RORγ specific inverse agonist that would help down regulate pro-inflammatory gene transcription by disrupting the protein protein interaction with coactivator proteins as a therapeutic agent. We identified a novel series of synthetic benzoxazinone ligands having an agonist (BIO592) and inverse agonist (BIO399) mode of action in a FRET based assay. We show that the AF2 helix of RORγ is proteolytically sensitive when inverse agonist BIO399 binds. Using x-ray crystallography we show how small modifications on the benzoxazinone agonist BIO592 trigger inverse agonism of RORγ. Using an in vivo reporter assay, we show that the inverse agonist BIO399 displayed specificity for RORγ over ROR sub-family members α and β. The synthetic benzoxazinone ligands identified in our FRET assay have an agonist (BIO592) or inverse agonist (BIO399) effect by stabilizing or destabilizing the agonist conformation of RORγ. The proteolytic sensitivity of the AF2 helix of RORγ demonstrates that it destabilizes upon BIO399 inverse agonist binding perturbing the coactivator protein binding site. Our structural investigation of the BIO592 agonist and BIO399 inverse agonist structures identified residue Met358 on RORγ as the trigger for RORγ specific inverse agonism.

  13. Orphanin FQ-ORL-1 regulation of reproduction and reproductive behavior in the female.

    PubMed

    Sinchak, Kevin; Dalhousay, Lauren; Sanathara, Nayna

    2015-01-01

    Orphanin FQ (OFQ/N) and its receptor, opioid receptor-like receptor-1 (ORL-1), are expressed throughout steroid-responsive limbic and hypothalamic circuits that regulate female ovarian hormone feedback and reproductive behavior circuits. The arcuate nucleus of the hypothalamus (ARH) is a brain region that expresses OFQ/N and ORL-1 important for both sexual behavior and modulating estradiol feedback loops. Within the ARH, the activation of the OFQ/N-ORL-1 system facilitates sexual receptivity (lordosis) through the inhibition of β-endorphin neuronal activity. Estradiol initially activates ARH β-endorphin neurons to inhibit lordosis. Simultaneously, estradiol upregulates coexpression of OFQ/N and progesterone receptors and ORL-1 in ARH β-endorphin neurons. Ovarian hormones regulate pre- and postsynaptic coupling of ORL-1 to its G protein-coupled signaling pathways. When the steroid-primed rat is nonreceptive, estradiol acts pre- and postsynaptically to decrease the ability of the OFQ/N-ORL-1 system to inhibit ARH β-endorphin neurotransmission. Conversely, when sexually receptive, ORL-1 signaling is restored to inhibit β-endorphin neurotransmission. Although steroid signaling that facilitates lordosis converges to deactivate ARH β-endorphin neurons, estradiol-only facilitation of lordosis requires the activation of ORL-1, but estradiol+progesterone does not, indicating that multiple circuits mediate ovarian hormone signaling to deactivate ARH β-endorphin neurons. Research on the role of OFQ/N-ORL-1 in ovarian hormone feedback loops is just beginning. In the rat, OFQ/N may act to terminate gonadotropin-releasing hormone and luteinizing hormone release under positive and negative feedbacks. In the ewe, it appears to directly inhibit gonadotropin-releasing hormone release to mediate progesterone-negative feedback. As a whole, the localization and actions of OFQ/N-ORL-1 system indicate that it may mediate the actions of estradiol and progesterone to synchronize

  14. Increased nociceptive sensitivity and nociceptin/orphanin FQ levels in a rat model of PTSD

    PubMed Central

    2012-01-01

    Background Clinical studies indicate that post-traumatic stress disorder (PTSD) frequently shares co-morbidity with chronic pain. Although in animals acute stress-induced antinociception is well documented, the effect of PTSD-like stress on nociceptive sensitivity is unclear. Though a few studies measured nociceptive responses at a single time point, no studies have examined changes in nociceptive sensitivity over time following exposure to PTSD-like stress. Nociceptin/orphanin FQ (N/OFQ), an endogenous ligand for the N/OFQ peptide (NOP) receptor, modulates various biological functions in the central nervous system that are affected by PTSD, including nociceptive sensitivity, stress and anxiety, learning and memory. Results The present study examined thermal and mechanical nociceptive sensitivity in male Sprague Dawley rats between 7 and 28 days after single-prolonged stress (SPS), an established animal model for PTSD. Rat paw withdrawal thresholds (PWT) to von Frey and paw withdrawal latencies (PWL) to radiant heat stimuli, respectively, dramatically decreased as early as 7 days after initiation of SPS and lasted the length of the study, 28 days. In addition, N/OFQ levels increased in cerebrospinal fluid (CSF; on days 9, 14 and 28) and serum (day 28), while levels of circulating corticosterone (CORT) decreased 28 days after initiation of SPS. SPS exposure induced anxiety-like behavior and enhanced inhibition of the hypothalamo-pituitary-adrenal (HPA) axis, as previously reported for this model. Conclusions Our results demonstrate that SPS induces the development of persistent mechanical allodynia and thermal hyperalgesia that is accompanied by increased N/OFQ content in the CSF, and eventually, in serum. These findings suggest a link between N/OFQ and the development of hyperalgesia and allodynia in a rat model of PTSD. PMID:23082795

  15. Structure activity studies of nociceptin/orphanin FQ(1-13)-NH2 derivatives modified in position 5.

    PubMed

    Guerrini, Remo; Marzola, Erika; Trapella, Claudio; Pacifico, Salvatore; Cerlesi, Maria Camilla; Malfacini, Davide; Ferrari, Federica; Bird, Mark Francis; Lambert, David George; Salvadori, Severo; Calo, Girolamo

    2015-04-01

    Nociceptin/orphanin FQ (N/OFQ) is a heptadecapeptide acting as the endogenous ligand of the N/OFQ peptide receptor (NOP). N/OFQ(1-13)-NH2 is the shortest N/OFQ sequence maintaining the same potency and efficacy as the natural peptide. Thus N/OFQ(1-13)-NH2 was used as chemical template for investigating the structure activity relationship of threonine in position 5. 28 [X(5)]N/OFQ(1-13)-NH2 derivatives, in which Thr was substituted with natural and unnatural residues, were synthesized and characterized pharmacologically for their effects at the human NOP receptor. Two different functional assays were used: agonist stimulated [(35)S]GTPγS binding in cell membranes and calcium mobilization in whole cells co-expressing chimeric G proteins. All [X(5)]N/OFQ(1-13)-NH2 derivatives behaved as full NOP agonists showing large differences in their potency. There was an excellent correlation between the results obtained in the two assays. The results of this study suggest that: position 5 does not play a pivotal role in receptor activation; the secondary alcoholic function of Thr is not important for receptor binding; side chain size, lipo/hydrophilic balance as well as hydrogen bond capability are also not crucial for receptor binding; an aliphatic amino function positively charged with at least 3 carbon atom distance from the peptide backbone has a huge disrupting effect on receptor binding. In conclusion this study demonstrates that a simple ethyl side chain as in compound 23 is sufficient in N/OFQ position 5 for maintaining bioactivity.

  16. An operational model of pharmacological agonism: the effect of E/[A] curve shape on agonist dissociation constant estimation.

    PubMed Central

    Black, J. W.; Leff, P.; Shankley, N. P.; Wood, J.

    1985-01-01

    An operational model of pharmacological agonism has been analysed to predict the behaviour of rectangular hyperbolic and non-hyperbolic agonist-concentration effect, E/[A], curves with variation in receptor concentration, [Ro]. Irreversible antagonism is predicted to cause E/[A] curve gradient changes in non-hyperbolic cases but not in hyperbolic cases; in both cases estimation of agonist dissociation constants (KAS) is theoretically valid. 5-Hydroxytryptamine (5-HT) produced "steep' E/[A] curves in contracting the rabbit isolated aorta preparation. Irreversible antagonism by phenoxybenzamine (Pbz) produced a flattened E/[A] curve, consistent with theoretical predictions. Fitting 5-HT E/[A] curves in the presence and absence of Pbz to the model provided an estimate of KA for 5-HT which was not significantly different from the estimate obtained using Furchgott's null method. The operational model of agonism appears to account qualitatively and quantitatively for the effects of [Ro] changes on hyperbolic and non-hyperbolic E/[A] curves. Under conditions where irreversible antagonism may be used to estimate KAS, fitting the operational model directly to E/[A] data represents a valid, economical and analytically simple alternative to the conventional null method. PMID:3978322

  17. Fc Engineering Approaches to Enhance the Agonism and Effector Functions of an Anti-OX40 Antibody*

    PubMed Central

    Zhang, Di; Goldberg, Monica V.; Chiu, Mark L.

    2016-01-01

    Agonistic antibodies directed against immunostimulatory receptors belonging to the tumor necrosis factor receptor (TNFR) superfamily are emerging as promising cancer immunotherapies. Several Fc engineering approaches discovered recently can augment the anti-tumor activities of TNFR antibodies by enhancing their agonistic activities and/or effector functions. In this study, we compared these approaches for their effects on an anti-OX40 antibody. Both S267E/L328F and V12 mutations facilitated enhanced binding to FcγRIIB and thus increased FcγRIIB cross-linking mediated agonist activity. However, both mutations abrogated the binding to FcγRIIIA and thereby decreasing the antibody-dependent cellular cytotoxicity activities. In contrast, the E345R mutation, which can promote antibody multimerization upon receptor binding, facilitated anti-OX40 antibody to have increased agonism by promoting the clustering of OX40 receptors without the dependence on FcγRIIB cross-linking. Nonetheless, cross-linking to FcγRIIB can lead to a further boost of the agonism of the anti-OX40 antibody with IgG1 Fc but not with the silent IgG2σ Fc. The antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity activities of the anti-OX40 antibody with the E345R mutation were affected by the choice of IgG subtypes. However, there was little change in the antibody-dependent cellular phagocytosis activity. In summary, different Fc engineering approaches can guide the design of engineered antibodies to OX40 and other TNFR with improved anti-tumor activity. PMID:27856634

  18. Effect of nociceptin/orphanin FQ on feeding behavior and hypothalamic neuropeptide expression in layer-type chicks.

    PubMed

    Bungo, Takashi; Shiraishi, Jun-ichi; Yanagita, Kouichi; Ohta, Yoshiyuki; Fujita, Masanori

    2009-09-01

    Nociceptin/orphanin FQ (N/OFQ) was identified in 1995 as the endogenous ligand for the orphan G(i)/G(o)-coupled opioid receptor-like 1 receptor (NOP(1)). Exogenous N/OFQ increases food intake in mammals, but its effect and mode of action in chicks are not fully known. We report herein that N/OFQ (5.0 nmol) has a stimulatory effect on food intake in layer-type chicks over a 2-h period after intracerebroventricular (icv) injection. Thirty minutes after central injection of N/OFQ (5.0 nmol) the concentration of agouti-related protein (AGRP) mRNA in the diencephalon increased, while cocaine- and amphetamine-regulated transcript (CART) mRNA decreased. However, concentrations of neuropeptide Y, proopiomelanocortin and glutamate decarboxylase mRNAs, and of catecholamines and excitatory amino acids were not affected. Simultaneous administration of alpha-melanocyte stimulating hormone (alpha-MSH: 1.0 pmol), a competitor of AGRP, completely blocked the orexigenic effect of N/OFQ (5.0 nmol). These data suggest that N/OFQ functions in layer chicks as an orexigenic peptide in the central nervous system, and that the AGRP and the CART neurons may mediate this function, as in mammals.

  19. The biology of Nociceptin/Orphanin FQ (N/OFQ) related to obesity, stress, anxiety, mood, and drug dependence.

    PubMed

    Witkin, Jeffrey M; Statnick, Michael A; Rorick-Kehn, Linda M; Pintar, John E; Ansonoff, Michael; Chen, Yanyun; Tucker, R Craig; Ciccocioppo, Roberto

    2014-03-01

    Nociceptin/Orphanin FQ (N/OFQ) is a 17 amino acid peptide that was deorphanized in 1995. The generation of specific agonists, antagonists and receptor deficient mice and rats has enabled progress in elucidating the biological functions of N/OFQ. Additionally, radio-imaging technologies have been advanced for investigation of this system in animals and humans. Together with traditional neurobehavioral techniques, these tools have been utilized to identify the biological significance of the N/OFQ system and its interacting partners. The present review focuses on the role of N/OFQ in the regulation of feeding, body weight homeostasis, stress, the stress-related psychiatric disorders of depression and anxiety, and in drug and alcohol dependence. Critical evaluation of the current scientific preclinical literature suggests that small molecule modulators of nociceptin opioid peptide receptors (NOP) might be useful in the treatment of diseases related to these biological functions. In particular, the literature data suggest that antagonism of NOP receptors will produce anti-obesity and antidepressant activities in humans. However, there are also contradictory data discussed. The current literature on the role of N/OFQ in anxiety and addiction, on the other hand points primarily to a role of agonist modulation being potentially therapeutic. Some drug-like molecules that function either as agonists or antagonists of NOP receptors have been optimized for human clinical study to test some of these hypotheses. The discovery of PET ligands for NOP receptors, combined with the pharmacological tools and burgeoning preclinical data set discussed here bodes well for a rapid advancement of clinical understanding and potential therapeutic benefit.

  20. Regulation of proinflammatory cytokines gene expression by nociceptin/orphanin FQ in the spinal cord and the cultured astrocytes.

    PubMed

    Fu, X; Zhu, Z-H; Wang, Y-Q; Wu, G-C

    2007-01-05

    Peripheral inflammation induces central sensitization characterized by the development of allodynia and hyperalgesia to thermal stimuli. Recent evidence suggests that activation of glial cells and a subsequent increase in proinflammatory cytokines contribute to the development of behavioral hypersensitivity after nerve injury or peripheral inflammation. The neuropeptide nociceptin/orphanin FQ (N/OFQ), the endogenous agonist of the N/OFQ peptide receptor (ORL1 receptor), has been demonstrated to play an important role in modulation of nociceptive signals. In the present study, we investigated: (1) astrocyte activation and proinflammatory cytokine expression at the lumbar spinal cord following intraplantar administration of complete Freund's adjuvant (CFA) in rats; (2) the mechanism of N/OFQ on nociception modulation, the relationship between N/OFQ and cytokines in the rat CNS in vivo and in vitro. The results showed: (1) CFA-induced peripheral inflammation evoked robust astrocyte activation and proinflammatory cytokines spinally; (2) down-regulation of cytokine mRNA transcripts by intrathecal administration of N/OFQ, the effects produced by N/OFQ were abolished by combination with ORL1 receptor-specific antagonist [Nphe(1)]N/OFQ(1-13)NH2; (3) ORL1 receptor was expressed on astrocytes of rat spinal cord; (4) cytokine gene expression was inhibited in astrocyte cultures exposed to N/OFQ, the inhibiting effects of N/OFQ were significantly blocked by [Nphe(1)]N/OFQ(1-13)NH2. The present data demonstrated that astrocyte activation and enhanced cytokine expression at the CNS had a role in eliciting behavioral hypersensitivity; the anti-nociception function of N/OFQ might be dependent on cytokines derived from astrocytes, the effects were attributable to the ORL1 receptor pathway.

  1. Innovative Opioid Peptides and Biased Agonism: Novel Avenues for More Effective and Safer Analgesics to Treat Chronic Pain.

    PubMed

    Bedini, Andrea; Spampinato, Santi Mario

    2017-02-15

    Chronic pain is a clinically relevant and yet unsolved conditions that is poorly treated with the currently available drugs, thus highlighting the urgent need of innovative analgesics. Although opiates are not very effective in the treatment of inflammatory and neuropathic pain, developing novel opioid receptor peptide agonists, as well as modulating the opioid receptor-mediated responses in a ligand-specific fashion, may represent an innovative and promising strategy to identify more efficacious and safer antalgic drugs. In this review, novel analogues of endomorphin 1 (a mu opioid receptor selective agonist able to induce analgesia in different animal models of pain - including neuropathic pain) and dermorphin (one of the most potent opioid peptide existing in nature) will be discussed as they are emerging as a promising starting point to develop novel opioid agonists: endomorphin 1 analogues, in fact, may determine antinociception in different models of neuropathic pain with reduced side effects as compared to classic opiates as morphine; dermorphin analogues may elicit analgesia in animal models of both inflammatory and neuropathic pain and with less severe adverse effects. Furthermore, such opioid peptides may allow to explore unprecedented modalities of ligand-receptor interactions, helping to characterize biased agonism at opioid receptors: exploiting functional selectivity at opioid receptor may lead to identify innovative analgesic with improved pharmacological responses and optimized side effects. Thus, innovative opioid peptides, as those outlined in this review, are promising candidates to develop more effective opioid analgesics to be employed as medications for chronic pain states, as inflammatory or neuropathic pain.

  2. SR2067 reveals a unique kinetic and structural signature for PPARγ partial agonism

    SciTech Connect

    van Marrewijk, Laura M.; Polyak, Steven W.; Hijnen, Marcel; Kuruvilla, Dana; Chang, Mi Ra; Shin, Youseung; Kamenecka, Theodore M.; Griffin, Patrick R.; Bruning, John B.

    2015-11-18

    Here, synthetic full agonists of PPARγ have been prescribed for the treatment of diabetes due to their ability to regulate glucose homeostasis and insulin sensitization. While the use of full agonists of PPARγ has been hampered due to severe side effects, partial agonists have shown promise due to their decreased incidence of such side effects in preclinical models. No kinetic information has been forthcoming in regard to the mechanism of full versus partial agonism of PPARγ to date. In this paper, we describe the discovery of a partial agonist, SR2067. A co-crystal structure obtained at 2.2 Å resolution demonstrates that interactions with the β-sheet are driven exclusively via hydrophobic interactions mediated through a naphthalene group, an observation that is unique from other partial agonists. Finally, surface plasmon resonance revealed that SR2067 binds to the receptor with higher affinity (KD = 513 nM) as compared to that of full agonist rosiglitazone, yet it has a much slower off rate compared to that of rosiglitazone.

  3. SR2067 reveals a unique kinetic and structural signature for PPARγ partial agonism

    DOE PAGES

    van Marrewijk, Laura M.; Polyak, Steven W.; Hijnen, Marcel; ...

    2015-11-18

    Here, synthetic full agonists of PPARγ have been prescribed for the treatment of diabetes due to their ability to regulate glucose homeostasis and insulin sensitization. While the use of full agonists of PPARγ has been hampered due to severe side effects, partial agonists have shown promise due to their decreased incidence of such side effects in preclinical models. No kinetic information has been forthcoming in regard to the mechanism of full versus partial agonism of PPARγ to date. In this paper, we describe the discovery of a partial agonist, SR2067. A co-crystal structure obtained at 2.2 Å resolution demonstrates thatmore » interactions with the β-sheet are driven exclusively via hydrophobic interactions mediated through a naphthalene group, an observation that is unique from other partial agonists. Finally, surface plasmon resonance revealed that SR2067 binds to the receptor with higher affinity (KD = 513 nM) as compared to that of full agonist rosiglitazone, yet it has a much slower off rate compared to that of rosiglitazone.« less

  4. GLP-1R and amylin agonism in metabolic disease: complementary mechanisms and future opportunities

    PubMed Central

    Roth, Jonathan D; Erickson, Mary R; Chen, Steve; Parkes, David G

    2012-01-01

    The discoveries of the incretin hormone glucagon-like peptide-1 (GLP-1) and the β-cell hormone amylin have translated into hormone-based therapies for diabetes. Both classes of molecules also exhibit weight-lowering effects and have been investigated for their anti-obesity potential. In the present review, we explore the mechanisms underlying the physiological and pharmacological actions of GLP-1 and amylin agonism. Despite their similarities (e.g. both molecular classes slow gastric emptying, decrease glucagon and inhibit food intake), there are important distinctions between the central and/or peripheral pathways that mediate their effects on glycaemia and energy balance. We suggest that understanding the similarities and differences between these molecules holds important implications for the development of novel, combination-based therapies, which are increasingly the norm for diabetes/metabolic disease. Finally, the future of GLP-1- and amylin agonist-based therapeutics is discussed. LINKED ARTICLES This article is part of a themed section on Secretin Family (Class B) G Protein-Coupled Receptors. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.166.issue-1 PMID:21671898

  5. Supernova progenitors, their variability and the Type IIP Supernova ASASSN-16fq in M66

    NASA Astrophysics Data System (ADS)

    Kochanek, C. S.; Fraser, M.; Adams, S. M.; Sukhbold, T.; Prieto, J. L.; Müller, T.; Bock, G.; Brown, J. S.; Dong, Subo; Holoien, T. W.-S.; Khan, R.; Shappee, B. J.; Stanek, K. Z.

    2017-05-01

    We identify a pre-explosion counterpart to the nearby Type IIP supernova ASASSN-16fq (SN 2016cok) in archival Hubble Space Telescope data. The source appears to be a blend of several stars that prevents obtaining accurate photometry. However, with reasonable assumptions about the stellar temperature and extinction, the progenitor almost certainly had an initial mass M* ≲ 17 M⊙, and was most likely in the mass range of M* = 8-12 M⊙. Observations once ASASSN-16fq has faded will have no difficulty accurately determining the properties of the progenitor. In 8 yr of Large Binocular Telescope (LBT) data, no significant progenitor variability is detected to rms limits of roughly 0.03 mag. Of the six nearby supernova (SN) with constraints on the low-level variability, SN 1987A, SN 1993J, SN 2008cn, SN 2011dh, SN 2013ej and ASASSN-16fq, only the slowly fading progenitor of SN 2011dh showed clear evidence of variability. Excluding SN 1987A, the 90 per cent confidence limit implied by these sources on the number of outbursts over the last decade before the SN that last longer than 0.1 yr (full width at half-maximum) and are brighter than MR < -8 mag is approximately Nout ≲ 3. Our continuing LBT monitoring programme will steadily improve constraints on pre-SN progenitor variability at amplitudes far lower than achievable by SN surveys.

  6. Evidence of ERalpha and ERbeta selectivity and partial estrogen agonism in traditional Chinese medicine.

    PubMed

    Tiosano, Dov; Paris, Françoise; Grimaldi, Marina; Georgescu, Vera; Servant, Nadège; Hochberg, Zeev; Balaguer, Patrick; Sultan, Charles

    2014-10-10

    The use of complementary and alternative medicine and herbal products, especially traditional Chinese medicines, is progressively rising for both adults and children. This increased use is based on the popular belief that these medicines are safe and harmless. In this report, we describe the results of a bedside-to-bench study that involved a short-statured 4-year-old boy with deficiencies in growth hormone, thyroid stimulating hormone, and adrenocorticotropic hormone due to an ectopic posterior pituitary gland and invisible pituitary stalk. Although the boy was given replacement therapy with hydrocortisone and L-thyroxin, the parents refused to treat him with growth hormone and consulted a naturopath who prescribed a traditional Chinese medicine (TCM) to stimulate the boy's growth. From the age of 20 months, the child's growth was regularly monitored while he was being treated with hydrocortisone, thyroxin, and the TCM. Over a 36-month period, the child's growth velocity accelerated (3 cm/year to 8 cm/year), his height increment substantially increased (-2 SD to -0.8 SD), and his bones matured. In the laboratory investigation, estrogen receptor (ER)alpha and ERbeta reporter cell lines were used to characterize the estrogenic activity of the TCM medicine and its 18 components, and the results established that the medicine and some of its components have estrogen receptor ERalpha and ERbeta selectivity and partial estrogen agonism. Partial estrogenic activity of the TCM was confirmed using whole-cell competitive binding, cell proliferation, and endogenous gene expression assays in the ERalpha-positive breast cancer cell lines. Although the presence of evidence is not always evidence of causality, we have concluded that this traditional Chinese medicine contains ingredients with estrogenic activity that can sustain bone growth and maturation without affecting other estrogen-dependent tissues.

  7. Selective V(1a) agonism attenuates vascular dysfunction and fluid accumulation in ovine severe sepsis.

    PubMed

    Rehberg, Sebastian; Yamamoto, Yusuke; Sousse, Linda; Bartha, Eva; Jonkam, Collette; Hasselbach, Anthony K; Traber, Lillian D; Cox, Robert A; Westphal, Martin; Enkhbaatar, Perenlei; Traber, Daniel L

    2012-11-15

    Vasopressin analogs are used as a supplement to norepinephrine in septic shock. The isolated effects of vasopressin agonists on sepsis-induced vascular dysfunction, however, remain controversial. Because V(2)-receptor stimulation induces vasodilation and procoagulant effects, a higher V(1a)- versus V(2)-receptor selectivity might be advantageous. We therefore hypothesized that a sole, titrated infusion of the selective V(1a)-agonist Phe(2)-Orn(8)-Vasotocin (POV) is more effective than the mixed V(1a)-/V(2)-agonist AVP for the treatment of vascular and cardiopulmonary dysfunction in methicillin resistant staphylococcus aureus pneumonia-induced, ovine sepsis. After the onset of hemodynamic instability, awake, chronically instrumented, mechanically ventilated, and fluid resuscitated sheep were randomly assigned to receive continuous infusions of either POV, AVP, or saline solution (control; each n = 6). AVP and POV were titrated to maintain mean arterial pressure above baseline - 10 mmHg. When compared with that of control animals, AVP and POV reduced neutrophil migration (myeloperoxidase activity, alveolar neutrophils) and plasma levels of nitric oxide, resulting in higher mean arterial pressures and a reduced vascular leakage (net fluid balance, chest and abdominal fluid, pulmonary bloodless wet-to-dry-weight ratio, alveolar and septal edema). Notably, POV stabilized hemodynamics at lower doses than AVP. In addition, POV, but not AVP, reduced myocardial and pulmonary tissue concentrations of 3-nitrotyrosine, VEGF, and angiopoietin-2, thereby leading to an abolishment of cumulative fluid accumulation (POV, 9 ± 15 ml/kg vs. AVP, 110 ± 13 ml/kg vs. control, 213 ± 16 ml/kg; P < 0.001 each) and an attenuated cardiopulmonary dysfunction (left ventricular stroke work index, PaO(2)-to-FiO(2) ratio) versus control animals. Highly selective V(1a)-agonism appears to be superior to unselective vasopressin analogs for the treatment of sepsis-induced vascular dysfunction.

  8. Selective V1a agonism attenuates vascular dysfunction and fluid accumulation in ovine severe sepsis

    PubMed Central

    Yamamoto, Yusuke; Sousse, Linda; Bartha, Eva; Jonkam, Collette; Hasselbach, Anthony K.; Traber, Lillian D.; Cox, Robert A.; Westphal, Martin; Enkhbaatar, Perenlei; Traber, Daniel L.

    2012-01-01

    Vasopressin analogs are used as a supplement to norepinephrine in septic shock. The isolated effects of vasopressin agonists on sepsis-induced vascular dysfunction, however, remain controversial. Because V2-receptor stimulation induces vasodilation and procoagulant effects, a higher V1a- versus V2-receptor selectivity might be advantageous. We therefore hypothesized that a sole, titrated infusion of the selective V1a-agonist Phe2-Orn8-Vasotocin (POV) is more effective than the mixed V1a-/V2-agonist AVP for the treatment of vascular and cardiopulmonary dysfunction in methicillin resistant staphylococcus aureus pneumonia-induced, ovine sepsis. After the onset of hemodynamic instability, awake, chronically instrumented, mechanically ventilated, and fluid resuscitated sheep were randomly assigned to receive continuous infusions of either POV, AVP, or saline solution (control; each n = 6). AVP and POV were titrated to maintain mean arterial pressure above baseline − 10 mmHg. When compared with that of control animals, AVP and POV reduced neutrophil migration (myeloperoxidase activity, alveolar neutrophils) and plasma levels of nitric oxide, resulting in higher mean arterial pressures and a reduced vascular leakage (net fluid balance, chest and abdominal fluid, pulmonary bloodless wet-to-dry-weight ratio, alveolar and septal edema). Notably, POV stabilized hemodynamics at lower doses than AVP. In addition, POV, but not AVP, reduced myocardial and pulmonary tissue concentrations of 3-nitrotyrosine, VEGF, and angiopoietin-2, thereby leading to an abolishment of cumulative fluid accumulation (POV, 9 ± 15 ml/kg vs. AVP, 110 ± 13 ml/kg vs. control, 213 ± 16 ml/kg; P < 0.001 each) and an attenuated cardiopulmonary dysfunction (left ventricular stroke work index, PaO2-to-FiO2 ratio) versus control animals. Highly selective V1a-agonism appears to be superior to unselective vasopressin analogs for the treatment of sepsis-induced vascular dysfunction. PMID:22961865

  9. MrgC agonism at central terminals of primary sensory neurons inhibits neuropathic pain.

    PubMed

    He, Shao-Qiu; Li, Zhe; Chu, Yu-Xia; Han, Liang; Xu, Qian; Li, Man; Yang, Fei; Liu, Qin; Tang, Zongxiang; Wang, Yun; Hin, Niyada; Tsukamoto, Takashi; Slusher, Barbara; Tiwari, Vinod; Shechter, Ronen; Wei, Feng; Raja, Srinivasa N; Dong, Xinzhong; Guan, Yun

    2014-03-01

    Chronic neuropathic pain is often refractory to current pharmacotherapies. The rodent Mas-related G-protein-coupled receptor subtype C (MrgC) shares substantial homogeneity with its human homologue, MrgX1, and is located specifically in small-diameter dorsal root ganglion neurons. However, evidence regarding the role of MrgC in chronic pain conditions has been disparate and inconsistent. Accordingly, the therapeutic value of MrgX1 as a target for pain treatment in humans remains uncertain. Here, we found that intrathecal injection of BAM8-22 (a 15-amino acid peptide MrgC agonist) and JHU58 (a novel dipeptide MrgC agonist) inhibited both mechanical and heat hypersensitivity in rats after an L5 spinal nerve ligation (SNL). Intrathecal JHU58-induced pain inhibition was dose dependent in SNL rats. Importantly, drug efficacy was lost in Mrg-cluster gene knockout (Mrg KO) mice and was blocked by gene silencing with intrathecal MrgC siRNA and by a selective MrgC receptor antagonist in SNL rats, suggesting that the drug action is MrgC dependent. Further, in a mouse model of trigeminal neuropathic pain, microinjection of JHU58 into ipsilateral subnucleus caudalis inhibited mechanical hypersensitivity in wild-type but not Mrg KO mice. Finally, JHU58 attenuated the miniature excitatory postsynaptic currents frequency both in medullary dorsal horn neurons of mice after trigeminal nerve injury and in lumbar spinal dorsal horn neurons of mice after SNL. We provide multiple lines of evidence that MrgC agonism at spinal but not peripheral sites may constitute a novel pain inhibitory mechanism that involves inhibition of peripheral excitatory inputs onto postsynaptic dorsal horn neurons in different rodent models of neuropathic pain.

  10. Attenuation of ethanol self-administration and of conditioned reinstatement of alcohol-seeking behaviour by the antiopioid peptide nociceptin/orphanin FQ in alcohol-preferring rats.

    PubMed

    Ciccocioppo, Roberto; Economidou, Daina; Fedeli, Amalia; Angeletti, Stefania; Weiss, Friedbert; Heilig, Markus; Massi, Maurizio

    2004-03-01

    Nociceptin/orphanin FQ (N/OFQ), the endogenous ligand of the opioid-like orphan receptor NOP, was shown to reduce home-cage ethanol consumption, ethanol-induced conditioned place preference and stress-induced reinstatement of alcohol-seeking behaviour. The present study, using genetically selected Marchigian Sardinian alcohol-preferring (msP) rats, was designed to evaluate the effect of this opioid peptide on 10% ethanol and 10% sucrose self-administration, under a fixed-ratio 1 (FR 1) or a progressive-ratio (PR) schedule of reinforcement. Furthermore, using an experimental model of relapse in which rats were trained to lever press for ethanol in the presence of the discriminative stimulus of an orange odour (S(+)) and a 1-s cue light (CS(+)) or for water in the presence of anise odour (S(-)) and 1-s white noise (CS(-)), the effect of N/oFQ on cue-induced reinstatement of extinguished ethanol responding was investigated. Sub-chronic (6 days) intracerebroventricular (i.c.v.) injection of 0.5 microg or 1.0 microg N/OFQ per rat significantly reduced alcohol self-administration under both the FR 1 and PR schedules of reinforcement. Conversely, i.c.v. administration of 0.5, 1.0 or 4.0 microg of the peptide per rat did not affect sucrose self-administration. In addition, i.c.v. N/OFQ (1.0-2.0 microg per rat) significantly inhibited the reinstatement of extinguished ethanol responding under an S(+)/CS(+) condition, whereas lever pressing under S(-)/CS(-) was not altered. The present study demonstrates that the reinforcing effects of ethanol are markedly blunted by activation of the opioidergic N/OFQ receptor system. Moreover, the data provide evidence of the efficacy of N/OFQ to prevent reinstatement of ethanol-seeking behaviour elicited by environmental conditioned stimuli.

  11. PPARgamma agonism increases rat adipose tissue lipolysis, expression of glyceride lipases, and the response of lipolysis to hormonal control.

    PubMed

    Festuccia, W T; Laplante, M; Berthiaume, M; Gélinas, Y; Deshaies, Y

    2006-10-01

    The aim of this study was to investigate the effect and mechanisms of action of in vivo peroxisome proliferator-activated receptor gamma (PPARgamma) activation on white adipose tissue (WAT) lipolysis and NEFA metabolism. Study rats were treated for 7 days with 15 mg/kg of rosiglitazone per day; control rats were not treated. After a 6-h fast, lipolysis and levels of mRNA for lipases were assessed in explants from various adipose depots. Rosiglitazone markedly increased basal and noradrenaline (norepinephrine)-stimulated glycerol and NEFA release from WAT explants, and amplified their inhibition by insulin. Primary adipocytes isolated from PPARgamma agonist-treated rats were also more responsive to noradrenaline stimulation expressed per cell, ruling out a contribution of an altered number of mature adipocytes in explants. Rosiglitazone concomitantly increased levels of mRNA transcripts for adipose triglyceride lipase (ATGL) and monoglyceride lipase (MGL) in subcutaneous and visceral WAT, and mRNA for hormone-sensitive lipase (HSL) in subcutaneous WAT. Lipase expression increased within 12 h of in vitro exposure of naïve explants to rosiglitazone, suggesting direct transcriptional activation. In parallel, chronic in vivo treatment with rosiglitazone lowered plasma NEFAs and in WAT its expected stimulatory action on glycerol and NEFA recycling, and on the expression of genes involved in NEFA uptake and retention by WAT, such processes counteracting net NEFA export. These findings demonstrate that, in the face of its plasma NEFA-lowering action, PPARgamma agonism stimulates WAT lipolysis, an effect that is compensated by lipid-retaining pathways. The results further suggest that PPARgamma agonism stimulates lipolysis by increasing the lipolytic potential, including the expression levels of the genes encoding adipose triglyceride lipase and monoglyceride lipase.

  12. Pharmacologically induced hypothermia via TRPV1 channel agonism provides neuroprotection following ischemic stroke when initiated 90 min after reperfusion.

    PubMed

    Cao, Zhijuan; Balasubramanian, Adithya; Marrelli, Sean P

    2014-01-15

    Traditional methods of therapeutic hypothermia show promise for neuroprotection against cerebral ischemia-reperfusion (I/R), however, with limitations. We examined effectiveness and specificity of pharmacological hypothermia (PH) by transient receptor potential vanilloid 1 (TRPV1) channel agonism in the treatment of focal cerebral I/R. Core temperature (T(core)) was measured after subcutaneous infusion of TRPV1 agonist dihydrocapsaicin (DHC) in conscious C57BL/6 WT and TRPV1 knockout (KO) mice. Acute measurements of heart rate (HR), mean arterial pressure (MAP), and cerebral perfusion were measured before and after DHC treatment. Focal cerebral I/R (1 h ischemia + 24 h reperfusion) was induced by distal middle cerebral artery occlusion. Hypothermia (>8 h) was initiated 90 min after start of reperfusion by DHC infusion (osmotic pump). Neurofunction (behavioral testing) and infarct volume (TTC staining) were measured at 24 h. DHC (1.25 mg/kg) produced a stable drop in T(core) (33°C) in naive and I/R mouse models but not in TRPV1 KO mice. DHC (1.25 mg/kg) had no measurable effect on HR and cerebral perfusion but produced a slight transient drop in MAP (<6 mmHg). In stroke mice, DHC infusion produced hypothermia, decreased infarct volume by 87%, and improved neurofunctional score. The hypothermic and neuroprotective effects of DHC were absent in TRPV1 KO mice or mice maintained normothermic with heat support. PH via TRPV1 agonist appears to be a well-tolerated and effective method for promoting mild hypothermia in the conscious mouse. Furthermore, TRPV1 agonism produces effective hypothermia in I/R mice and significantly improves outcome when initiated 90 min after start of reperfusion.

  13. Mitragynine/Corynantheidine Pseudoindoxyls As Opioid Analgesics with Mu Agonism and Delta Antagonism, Which Do Not Recruit β-Arrestin-2.

    PubMed

    Váradi, András; Marrone, Gina F; Palmer, Travis C; Narayan, Ankita; Szabó, Márton R; Le Rouzic, Valerie; Grinnell, Steven G; Subrath, Joan J; Warner, Evelyn; Kalra, Sanjay; Hunkele, Amanda; Pagirsky, Jeremy; Eans, Shainnel O; Medina, Jessica M; Xu, Jin; Pan, Ying-Xian; Borics, Attila; Pasternak, Gavril W; McLaughlin, Jay P; Majumdar, Susruta

    2016-09-22

    Natural products found in Mitragyna speciosa, commonly known as kratom, represent diverse scaffolds (indole, indolenine, and spiro pseudoindoxyl) with opioid activity, providing opportunities to better understand opioid pharmacology. Herein, we report the pharmacology and SAR studies both in vitro and in vivo of mitragynine pseudoindoxyl (3), an oxidative rearrangement product of the corynanthe alkaloid mitragynine. 3 and its corresponding corynantheidine analogs show promise as potent analgesics with a mechanism of action that includes mu opioid receptor agonism/delta opioid receptor antagonism. In vitro, 3 and its analogs were potent agonists in [(35)S]GTPγS assays at the mu opioid receptor but failed to recruit β-arrestin-2, which is associated with opioid side effects. Additionally, 3 developed analgesic tolerance more slowly than morphine, showed limited physical dependence, respiratory depression, constipation, and displayed no reward or aversion in CPP/CPA assays, suggesting that analogs might represent a promising new generation of novel pain relievers.

  14. Agonal gasps of cardiac arrest victim can aid in confirming tracheal intubation using Umesh's intubation detector.

    PubMed

    Umesh, Goneppanavar; Magazine, Rahul

    2013-09-01

    Several patients of cardiac arrest may be found in a state of agonal gasps that are of insufficient tidal volume and are not considered as a sign of life. However, this volume is sufficient enough to cause appreciable inflation and deflation of the reservoir bag of Umesh's intubation detector (UID) as evidenced in all 12 victims of cardiac arrest with gasping efforts in this study. Therefore, we conclude that the agonal gasps during cardiac arrest can reliably be used to confirm tracheal intubation using the UID device. Copyright © 2013. Published by Elsevier B.V.

  15. Agonal sequences in 14 filmed hangings with comments on the role of the type of suspension, ischemic habituation, and ethanol intoxication on the timing of agonal responses.

    PubMed

    Sauvageau, Anny; Laharpe, Romano; King, David; Dowling, Graeme; Andrews, Sam; Kelly, Sean; Ambrosi, Corinne; Guay, Jean-Pierre; Geberth, Vernon J

    2011-06-01

    The Working Group on Human Asphyxia has analyzed 14 filmed hangings: 9 autoerotic accidents, 4 suicides, and 1 homicide. The following sequence of agonal responses was observed: rapid loss of consciousness in 10 ± 3 seconds, mild generalized convulsions in 14 ± 3 seconds, decerebrate rigidity in 19 ± 5 seconds, beginning of deep rhythmic abdominal respiratory movements in 19 ± 5 seconds, decorticate rigidity in 38 ± 15 seconds, loss of muscle tone in 1 minute 17 seconds ± 25 seconds, end of deep abdominal respiratory movements in 1 minute 51 seconds ± 30 seconds, and last muscle movement in 4 minutes 12 seconds ± 2 minutes 29 seconds. The type of suspension and ethanol intoxication does not seem to influence the timing of the agonal responses, whereas ischemic habituation in autoerotic practitioner might decelerate the late responses to hanging.

  16. The nociceptin/orphanin FQ-like opioid peptide in nervous periesophageal ganglia of land snail Helix aspersa.

    PubMed

    León-Olea, Martha; Miller-Pérez, Carolina; Sánchez-Islas, Eduardo; Mendoza-Sotelo, José; Garduño-Gutiérrez, René; de Gortari, Patricia; Amaya, María Isabel

    2013-04-10

    The neuropeptide nociceptin/orphanin FQ (N/OFQ) and its receptor are members of the endogenous opioid peptide family. In mammals N/OFQ modulates a variety of biological functions such as nociception, food intake, endocrine, control of neurotransmitter release, among others. In the molluscs Cepea nemoralis and Helix aspersa the administration of N/OFQ produces a thermopronociceptive effect. However, little is known about its existence and anatomic distribution in invertebrates. The aim of this study was to provide a detailed anatomical distribution of N/OFQ like peptide immunoreactivity (N/OFQ-IL), to quantify the tissue content of this peptide, as well as to demostrate molecular evidence of N/OFQ mRNA in the nervous tissue of periesophageal ganglia of the land snail H. aspersa. Immunohistochemical, immunocytochemical, radioimmunoanalysis (RIA) and reverse transcription-polymerase chain reaction (RT-PCR) techniques were used. With regard to RT-PCR, the primers to detect expression of mRNA transcripts from H. aspersa were derived from the rat N/OFQ opioid peptide. We show a wide distribution of N/OFQ-IL in neurons and fibers in all perioesophageal ganglia, fibers of the neuropile, nerves, periganglionar connective tissue, aortic wall and neurohemal sinuses. The total amount of N/OFQ-IL in the perioesophageal ganglia (7.75 ± 1.75 pmol/g of tissue) quantified by RIA was similar to that found in mouse hypothalamus (10.1 ± 1.6 pmol/g of tissue). In this study, we present molecular evidence of N/OFQ mRNA expression. Some N/OFQ-IL neurons have been identified as neuroendocrine or involved in olfaction, hydro-electrolyte regulation, feeding, and thermonociception. Therefore, we suggest that N/OFQ may participate in these snail functions. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Empowering Young People through Conflict and Conciliation: Attending to the Political and Agonism in Democratic Education

    ERIC Educational Resources Information Center

    Lo, Jane C.

    2017-01-01

    Deliberative models of democratic education encourage the discussion of controversial issues in the classroom (e.g., Hess, 2009); however, they tend to curtail conflicts for the sake of consensus. Agonism, on the other hand, can help support the deliberative model by attending to antagonism in productive ways (Ruitenberg, 2009). In this paper, I…

  18. Imitation, Dominance, Agonism and Prosocial Behavior: A Meta-Aalysis of Sibling Behavior.

    ERIC Educational Resources Information Center

    Summers, Marcia

    The purpose of this paper is to elucidate processes involved in the sibling relationship in terms of four dimensions that are focal in the literature: imitation, dominance, agonism (negative behavior directed towards a sibling), and prosocial behavior. A number of findings on these dimensions were culled from 24 studies, 18 of which were done…

  19. Nociceptin/Orphanin FQ Blockade of Corticotropin-Releasing Factor-Induced Gamma-Aminobutyric Acid Release in Central Amygdala Is Enhanced After Chronic Ethanol Exposure

    PubMed Central

    Cruz, Maureen T.; Herman, Melissa A.; Kallupi, Marsida; Roberto, Marisa

    2013-01-01

    Background The central nucleus of the amygdala (CeA) mediates stress- and addiction-related processes. Corticotropin-releasing factor (CRF) and nociceptin/orphanin FQ (nociceptin) regulate ethanol intake and anxiety-like behavior. In the rat, CRF and ethanol significantly augment CeA gamma-aminobutyric acid (GABA) release, whereas nociceptin diminishes it. Methods Using electrophysiologic techniques in an in vitro slice preparation, we investigated the interaction of nociceptin and CRF on evoked and spontaneous GABAergic transmission in CeA slices of naive and ethanol-dependent rats and the mechanistic role of protein kinase A. Results In neurons from naive animals, nociceptin dose-dependently diminished basal-evoked GABAA receptor-mediated inhibitory postsynaptic potentials (IPSPs) by decreasing GABA release and prevented, as well as reversed, CRF-induced augmentation of IPSPs, actions that required PKA signaling. In neurons from ethanol-dependent animals, nociceptin decreased basal GABAergic transmission and blocked the CRF-induced increase in GABA release to a greater extent than in naive controls. Conclusions These data provide new evidence for an interaction between the nociceptin and CRF systems in the CeA. Nociceptin opposes CRF effects on CeA GABAergic transmission with sensitization of this effect in dependent animals. These properties of nociceptin may underlie its anti-alcohol and anxiolytic properties and identify the nociceptin receptor as a useful therapeutic target for alcoholism. PMID:22153590

  20. The hypothalamus-pituitary-adrenal axis does not influence the protective effects of nociceptin/orphanin FQ on the rat gastric mucosa.

    PubMed

    Grandi, Daniela; Solenghi, Elvira; Guerrini, Remo; Broccardo, Maria; Agostini, Simona; Petrella, Carla; Scaccianoce, Sergio; Improta, Giovanna; Morini, Giuseppina

    2009-04-10

    The participation of hypothalamus-pituitary-adrenal axis in the gastroprotective effects of nociceptin/orphanin FQ (N/OFQ) has been investigated. Gastric mucosal lesions were induced by intragastric administration of 50% ethanol, 1 ml/rat. Rats received N/OFQ either by the intracerebroventricular (icv) route, at 3 microg/rat, or by the intraperitoneal (ip) route, at 10 microg/kg, 30 min before ethanol administration. The protective effect of icv and ip administered N/OFQ was assessed in adrenalectomized rats and in rats pretreated with the glucocorticoid receptor antagonist, mifepristone, or with the CRF receptor antagonist, alpha-helical CRF(9-41). The damaging effect of ethanol was apparently not influenced by adrenalectomy. N/OFQ markedly reduced macroscopically and histologically assessed gastric mucosal damage. The extent of reduction by N/OFQ was comparable in adrenalectomized and in sham-operated rats, with either icv or ip route of administration. Pretreatment with mifepristone, both icv (80 microg/rat) and ip (10 mg/kg) injected, did not modify the response to icv and ip N/OFQ. Pretreatment with alpha-helical CRF(9-41) (25 microg/rat icv or 250 microg/kg ip), had no effect on the reduction of gastric damage produced by icv or ip N/OFQ. Present findings suggest that the gastroprotective effects of N/OFQ on ethanol-induced damage do not involve the endocrine pathway through the HPA axis.

  1. Bidirectional modulatory effect of orphanin FQ on morphine-induced analgesia: antagonism in brain and potentiation in spinal cord of the rat

    PubMed Central

    Tian, Jin-Hua; Xu, Wei; Fang, Yuan; Mogil, Jeffrey S; Grisel, Judith E; Grandy, David K; Han, Ji-Sheng

    1997-01-01

    The present study was designed to investigate further the effects of the newly discovered orphanin FQ (OFQ)–the endogenous ligand for the orphan opioid receptor (called, e.g., ORL1 and LC132)–on pain modulation in the rat. We used the tail-flick assay as a nociceptive index.When injected into a cerebral ventricle, OFQ (4 fmol–10 nmol) has no effect on basal tail-flick latency by itself at any dose, but dose-dependently antagonizes systemic morphine analgesia (400 fmol–50 nmol).Injected intrathecally, OFQ (3 and 10 nmol) displayed an analgesic effect without producing motor dysfunction, and potentiated morphine analgesia (1 and 10 nmol).The anti-opioid effect of OFQ in rat brain and the high level of expression of LC132/ORL1 receptor in the locus coeruleus indicated a possible role of OFQ in the precipitation of opiate withdrawal symptoms. However, no such precipitation was observed by OFQ in morphine-dependent rats. PMID:9051307

  2. Mitochondrial-related gene expression changes are sensitive to agonal-pH state: implications for brain disorders

    PubMed Central

    Vawter, MP; Tomita, H; Meng, F; Bolstad, B; Li, J; Evans, S; Choudary, P; Atz, M; Shao, L; Neal, C; Walsh, DM; Burmeister, M; Speed, T; Myers, R; Jones, EG; Watson, SJ; Akil, H; Bunney, WE

    2010-01-01

    Mitochondrial defects in gene expression have been implicated in the pathophysiology of bipolar disorder and schizophrenia. We have now contrasted control brains with low pH versus high pH and showed that 28% of genes in mitochondrial-related pathways meet criteria for differential expression. A majority of genes in the mitochondrial, chaperone and proteasome pathways of nuclear DNA-encoded gene expression were decreased with decreased brain pH, whereas a majority of genes in the apoptotic and reactive oxygen stress pathways showed an increased gene expression with a decreased brain pH. There was a significant increase in mitochondrial DNA copy number and mitochondrial DNA gene expression with increased agonal duration. To minimize effects of agonal-pH state on mood disorder comparisons, two classic approaches were used, removing all subjects with low pH and agonal factors from analysis, or grouping low and high pH as a separate variable. Three groups of potential candidate genes emerged that may be mood disorder related: (a) genes that showed no sensitivity to pH but were differentially expressed in bipolar disorder or major depressive disorder; (b) genes that were altered by agonal-pH in one direction but altered in mood disorder in the opposite direction to agonal-pH and (c) genes with agonal-pH sensitivity that displayed the same direction of changes in mood disorder. Genes from these categories such as NR4A1 and HSPA2 were confirmed with Q-PCR. The interpretation of postmortem brain studies involving broad mitochondrial gene expression and related pathway alterations must be monitored against the strong effect of agonal-pH state. Genes with the least sensitivity to agonal-pH could present a starting point for candidate gene search in neuropsychiatric disorders. PMID:16636682

  3. Structural basis for agonism and antagonism of hepatocyte growth factor

    SciTech Connect

    Tolbert, W. David; Daugherty-Holtrop, Jennifer; Gherardi, Ermanno; Vande Woude, George; Xu, H. Eric

    2010-11-01

    Hepatocyte growth factor (HGF) is an activating ligand of the Met receptor tyrosine kinase, whose activity is essential for normal tissue development and organ regeneration but abnormal activation of Met has been implicated in growth, invasion, and metastasis of many types of solid tumors. HGF has two natural splice variants, NK1 and NK2, which contain the N-terminal domain (N) and the first kringle (K1) or the first two kringle domains of HGF. NK1, which is a Met agonist, forms a head-to-tail dimer complex in crystal structures and mutations in the NK1 dimer interface convert NK1 to a Met antagonist. In contrast, NK2 is a Met antagonist, capable of inhibiting HGF's activity in cell proliferation without clear mechanism. Here we report the crystal structure of NK2, which forms a 'closed' monomeric conformation through interdomain interactions between the N- domain and the second kringle domain (K2). Mutations that were designed to open up the NK2 closed conformation by disrupting the N/K2 interface convert NK2 from a Met antagonist to an agonist. Remarkably, this mutated NK2 agonist can be converted back to an antagonist by a mutation that disrupts the NK1/NK1 dimer interface. These results reveal the molecular determinants that regulate the agonist/antagonist properties of HGF NK2 and provide critical insights into the dimerization mechanism that regulates the Met receptor activation by HGF.

  4. Selective Inhibition of PTP1B by Vitalboside A from Syzygium cumini Enhances Insulin Sensitivity and Attenuates Lipid Accumulation Via Partial Agonism to PPARγ: In Vitro and In Silico Investigation.

    PubMed

    Thiyagarajan, Gopal; Muthukumaran, Padmanaban; Sarath Kumar, Baskaran; Muthusamy, Velusamy Shanmuganathan; Lakshmi, Baddireddi Subhadra

    2016-08-01

    Although antidiabetic drugs show good insulin-sensitizing property for T2DM, they also exhibit undesirable side-effects. Partial peroxisome proliferator-activated receptor γ agonism with protein tyrosine phosphatase 1B inhibition is considered as an alternative therapeutic approach toward the development of a safe insulin sensitizer. Bioactivity-based fractionation and purification of Syzygium cumini seeds led to the isolation and identification of bifunctional Vitalboside A, which showed antidiabetic and anti-adipogenic activities, as measured by glucose uptake in L6 and 3T3-L1 adipocytes and Nile red assay. A non-competitive allosteric inhibition of protein tyrosine phosphatase 1B by Vitalboside A was observed, which was confirmed by docking studies. Inhibitor studies with wortmannin and genistein showed an IRTK- and PI3K-dependent glucose uptake. A PI3K/AKT-dependent activation of GLUT4 translocation and an inactivation of GSK3β were observed, confirming its insulin-sensitizing potential. Vitalboside A exhibited partial transactivation of peroxisome proliferator-activated receptor γ with an increase in adiponectin secretion, which was confirmed using docking analysis. Vitalboside A is a bifunctional molecule derived from edible plant showing inhibition of PTP1B and partial agonism to peroxisome proliferator-activated receptor γ which could be a promising therapeutic agent in the management of obesity and diabetes. © 2016 John Wiley & Sons A/S.

  5. User's Manual for Program PeakFQ, Annual Flood-Frequency Analysis Using Bulletin 17B Guidelines

    USGS Publications Warehouse

    Flynn, Kathleen M.; Kirby, William H.; Hummel, Paul R.

    2006-01-01

    Estimates of flood flows having given recurrence intervals or probabilities of exceedance are needed for design of hydraulic structures and floodplain management. Program PeakFQ provides estimates of instantaneous annual-maximum peak flows having recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years (annual-exceedance probabilities of 0.50, 0.20, 0.10, 0.04, 0.02, 0.01, 0.005, and 0.002, respectively). As implemented in program PeakFQ, the Pearson Type III frequency distribution is fit to the logarithms of instantaneous annual peak flows following Bulletin 17B guidelines of the Interagency Advisory Committee on Water Data. The parameters of the Pearson Type III frequency curve are estimated by the logarithmic sample moments (mean, standard deviation, and coefficient of skewness), with adjustments for low outliers, high outliers, historic peaks, and generalized skew. This documentation provides an overview of the computational procedures in program PeakFQ, provides a description of the program menus, and provides an example of the output from the program.

  6. Conditioned opioid withdrawal decreases nociceptin/orphanin FQ levels in the frontal cortex and olfactory tubercle.

    PubMed

    Walker, John R; Terenius, Lars; Koob, George F

    2002-08-01

    Clinical evidence suggests that individuals experiencing drug withdrawal can become conditioned to environmental situations, whereby previously neutral stimuli can produce symptoms of withdrawal. It is believed that this "conditioned withdrawal" can have motivational significance, but the neurobiological basis for conditioned withdrawal is unknown. The goal of this study was to determine adaptations in endogenous opioid systems that may be responsible for expression of conditioned withdrawal. Opioid-dependent rats trained to lever press for food were exposed to tone and scent cues in the presence of naloxone or saline. Naloxone but not saline predictably suppressed responding for food. One month later and in a post-dependent state, all rats again were exposed to the cues but not naloxone. The conditioned cues alone suppressed responding for food in the rats previously paired with naloxone, but no suppression was seen in rats previously paired with saline. Radioimmunoassay (RIA) analysis for nociceptin/orphanin FQ (nociceptin), met-enkephalin-Arg-Phe (MEAP), and dynorphin A (dyn A) was performed from dissections of various brain regions of the rats undergoing conditioned withdrawal. Significant reductions in nociceptin peptide levels were seen in the frontal cortex and olfactory tubercle of these rats. Unconditioned opioid withdrawal and unconditioned footshock stress produced different patterns of opioid peptide regulation in separate groups of rats. These results shed light on adaptations of endogenous opioid systems to conditioned cues, stress, and withdrawal, all factors that play a role in motivating drug intake.

  7. Epigenetic regulation of nociceptin/orphanin FQ and corticotropin-releasing factor system genes in frustration stress-induced binge-like palatable food consumption.

    PubMed

    Pucci, Mariangela; Micioni Di Bonaventura, Maria Vittoria; Giusepponi, Maria Elena; Romano, Adele; Filaferro, Monica; Maccarrone, Mauro; Ciccocioppo, Roberto; Cifani, Carlo; D'Addario, Claudio

    2016-11-01

    Evidence suggests that binge eating may be caused by a unique interaction between dieting and stress. We developed a binge-eating model in which female rats with a history of intermittent food restriction show binge-like palatable food consumption after a 15-minute exposure to the sight of the palatable food (frustration stress). The aim of the present study was to investigate the regulation of the stress neurohormone corticotropin-releasing factor (CRF) system and of the nociceptin/orphanin FQ (N/OFQ) system genes in selective rat brain regions, using our animal model. Food restriction by itself seems to be responsible in the hypothalamus for the downregulation on messenger RNA levels of CRF-1 receptor, N/OFQ and its receptor (NOP). For the latter, this alteration might be due to selective histone modification changes. Instead, CRF gene appears to be upregulated in the hypothalamus as well as in the ventral tegmental area only when rats are food restricted and exposed to frustration stress, and, of relevance, these changes appear to be due to a reduction in DNA methylation at gene promoters. Moreover, also CRF-1 receptor gene resulted to be differentially regulated in these two brain regions. Epigenetic changes may be viewed as adaptive mechanisms to environmental perturbations concurring to facilitate food consumption in adverse conditions, that is, in this study, under food restriction and stressful conditions. Our data on N/OFQ and CRF signaling provide insight on the use of this binge-eating model for the study of epigenetic modifications in controlled genetic and environmental backgrounds.

  8. GABAB Agonism Promotes Sleep and Reduces Cataplexy in Murine Narcolepsy

    PubMed Central

    Black, Sarah Wurts; Morairty, Stephen R.; Chen, Tsui-Ming; Leung, Andrew K.; Wisor, Jonathan P.

    2014-01-01

    γ-Hydroxybutyrate (GHB) is an approved therapeutic for the excessive sleepiness and sudden loss of muscle tone (cataplexy) characteristic of narcolepsy. The mechanism of action for these therapeutic effects is hypothesized to be GABAB receptor dependent. We evaluated the effects of chronic administration of GHB and the GABAB agonist R-baclofen (R-BAC) on arousal state and cataplexy in two models of narcolepsy: orexin/ataxin-3 (Atax) and orexin/tTA; TetO diphtheria toxin mice (DTA). Mice were implanted for EEG/EMG monitoring and dosed with GHB (150 mg/kg), R-BAC (2.8 mg/kg), or vehicle (VEH) bid for 15 d–a treatment paradigm designed to model the twice nightly GHB dosing regimen used by human narcoleptics. In both models, R-BAC increased NREM sleep time, intensity, and consolidation during the light period; wake bout duration increased and cataplexy decreased during the subsequent dark period. GHB did not increase NREM sleep consolidation or duration, although NREM delta power increased in the first hour after dosing. Cataplexy decreased from baseline in 57 and 86% of mice after GHB and R-BAC, respectively, whereas cataplexy increased in 79% of the mice after VEH. At the doses tested, R-BAC suppressed cataplexy to a greater extent than GHB. These results suggest utility of R-BAC-based therapeutics for narcolepsy. PMID:24806675

  9. Modeling of overloaded gradient elution of nociceptin/orphanin FQ in reversed-phase liquid chromatography.

    PubMed

    Marchetti, Nicola; Dondi, Francesco; Felinger, Attila; Guerrini, Remo; Salvadori, Severo; Cavazzini, Alberto

    2005-06-24

    The Reversed-phase (RP) gradient elution chromatography of nociceptin/orphanin FQ (N/OFQ), a neuropeptide with many biological effects, has been modeled under linear and non-linear conditions. In order to do this, the chromatographic behavior has been studied under both linear and nonliner conditions under isocratic mode at different mobile phase compositions--ranging from 16 to 19% (v/v) acetonitrile (ACN) in aqueous trifluoracetic acid (TFA) 0.1% (v/v)-on a C-8 column. Although the range of mobile phase compositions investigated was quite narrow, the retention factor of this relatively small polypeptide (N/OFQ is a heptadecapeptide) has been found to change by more than 400%. In these conditions, gradient operation resulted thus to be the optimum approach for non-linear elution. As the available amount of N/OFQ was extremely reduced (only a few milligrams), the adsorption isotherms of the peptide, at the different mobile phase compositions examined, have been measured through the so-called inverse method (IM) on a 5 cm long column. The adsorption data at different mobile phase compositions have been fitted to several models of adsorption. The dependence of the isotherm parameters on the mobile phase composition was modeled by using the linear solvent strength (LSS) model and a generalized Langmuir isotherm that includes the mobile phase composition dependence. The overloaded gradient separation of N/OFQ has been modeled by numerically solving the equilibrium-dispersive (ED) model of chromatography under a selected gradient elution mode, on the basis of the previously determined generalized Langmuir isotherm. The agreement between theoretical calculations and experimental overloaded band profiles appeared reasonably accurate.

  10. The neuronal circuit between nociceptin/orphanin FQ and hypocretins/orexins coordinately modulates stress-induced analgesia and anxiety-related behavior.

    PubMed

    Xie, Xinmin Simon

    2015-01-01

    The neuropeptide nociceptin/orphanin FQ (N/OFQ), acting on its receptors (NOP), modulates a variety of biological functions and neurobehavior including nociception, stress responses, water and food-intake, locomotor activity, and spatial attention. N/OFQ is conventionally regarded as an "antiopiate" peptide in the brain because central administration of N/OFQ attenuates stress-induced analgesia (SIA) and produces anxiolytic effects. However, naloxone-irreversible SIA and anxiolytic action are unlikely to be mediated by the opiate system. Both N/OFQ and NOP receptors are expressed most abundantly in the hypothalamus, where two other neuropeptides, the hypocretins/orexins (Hcrts), are exclusively synthesized in the lateral hypothalamic area. N/OFQ and Hcrt regulate most cellular physiological responses in opposite directions (e.g., ion channel modulation and second messenger coupling), and produce differential modulations for almost all neurobehavior assessed, including sleep/wake, locomotion, and rewarding behaviors. This chapter focuses on recent studies that provide evidence at a neuroanatomical level showing that a local neuronal circuit linking N/OFQ to Hcrt neurons exists. Functionally, N/OFQ depresses Hcrt neuronal activity at the cellular level, and modulates stress responses, especially SIA and anxiety-related behavior in the whole organism. N/OFQ exerts its attenuation of SIA and anxiolytic action on fear-induced anxiety through direct modulation of Hcrt neuronal activity. The information obtained from these studies has provided insights into how interaction between the Hcrt and N/OFQ systems positively and negatively modulates the complex and integrated stress responses.

  11. Exploring LPS-induced sepsis in rats and mice as a model to study potential protective effects of the nociceptin/orphanin FQ system.

    PubMed

    Thomas, Roisin C; Bath, Michael F; Stover, Cordula M; Lambert, David G; Thompson, Jonathan P

    2014-11-01

    The nociceptin receptor (NOP) and its ligand nociceptin/orphanin FQ (N/OFQ) have been shown to exert a modulatory effect on immune cells during sepsis. We evaluated the suitability of an experimental lipopolysaccharide (LPS)-induced sepsis model for studying changes in the nociceptin system. C57BL/6 mice BALB/c mice and Wistar rats were inoculated with different doses of LPS with or without a nociceptin receptor antagonist (UFP-101 or SB-612111). In C57BL/6 mice LPS 0.85 mg/kg injection produced no septic response, whereas 1.2mg/kg produced a profound response within 5h. In BALB/c mice, LPS 4 mg/kg produced no response, whereas 7 mg/kg resulted in a profound response within 24h. In Wistar rats LPS 15 mg/kg caused no septic response in 6/10 animals, whereas 25mg/kg resulted in marked lethargy before 24h. Splenic interleukin-1β mRNA in BALB/c mice, and serum TNF-α concentrations in Wistar rats increased after LPS injection in a dose-dependent manner, but were undetectable in control animals, indicating that LPS had stimulated an inflammatory reaction. IL-1β and TNF-α concentrations in LPS-treated animals were unaffected by administration of a NOP antagonist. Similarly NOP antagonists had no effect on survival or expression of mRNA for NOP or ppN/OFQ (the N/OFQ precursor) in a variety of tissues. In these animal models, the dose-response curve for LPS was too steep to allow use in survival studies and no changes in the N/OFQ system occurred within 24h. We conclude that LPS-inoculation in rodents is an unsuitable model for studying possible changes in the NOP-N/OFQ system in sepsis.

  12. The PVH as a site of CB1-mediated stimulation of thermogenesis by MC4R agonism in male rats.

    PubMed

    Monge-Roffarello, Boris; Labbe, Sebastien M; Roy, Marie-Claude; Lemay, Marie-Laurence; Coneggo, Estelle; Samson, Pierre; Lanfray, Damien; Richard, Denis

    2014-09-01

    The present study was designed to investigate the involvement of the cannabinoid receptor 1 (CB1) in the stimulating effects of the melanocortin-4 receptor (MC4R) agonism on whole-body and brown adipose tissue (BAT) thermogenesis. In a first series of experiments, whole-body and BAT thermogenesis were investigated in rats infused in the third ventricle of the brain with the MC4R agonist melanotan II (MTII) and the CB1 agonist δ9-tetrahydrocannabinol (δ(9)-THC) or the CB1 antagonist AM251. Whole-body thermogenesis was measured by indirect calorimetry and BAT thermogenesis assessed from interscapular BAT (iBAT) temperature. δ(9)-THC blunted the effects of MTII on energy expenditure and iBAT temperature, whereas AM251 tended to potentiate the MTII effects. δ(9)-THC also blocked the stimulating effect of MTII on (14)C-bromopalmitate and (3)H-deoxyglucose uptakes in iBAT. Additionally, δ(9)-THC attenuated the stimulating effect of MTII on the expression of peroxisome proliferator-activated receptor-γ coactivator 1-α (Pgc1α), type II iodothyronine deiodinase (Dio2), carnitine palmitoyltransferase 1B (Cpt1b), and uncoupling protein 1 (Ucp1). In a second series of experiments, we addressed the involvement of the paraventricular hypothalamic nucleus (PVH) in the CB1-mediated effects of MTII on iBAT thermogenesis, which were assessed following the infusion of MTII in the PVH and δ(9)-THC or AM251 in the fourth ventricle of the brain. We demonstrated the ability of δ(9)-THC to blunt MTII-induced iBAT temperature elevation. δ(9)-THC also blocked the PVH effect of MTII on (14)C-bromopalmitate uptake as well as on Pgc1α and Dio2 expression in iBAT. Altogether the results of this study demonstrate the involvement of the PVH in the CB1-mediated stimulating effects of the MC4R agonist MTII on whole-body and BAT thermogenesis.

  13. 5-HT4 receptor agonism in the five-choice serial reaction time task.

    PubMed

    Hille, Christopher; Bate, Simon; Davis, John; Gonzalez, Maria I

    2008-12-16

    5-HT4 agonists are currently being developed for the treatment of Alzheimer's disease and have previously been demonstrated to improve cognitive performance in a variety of tests but none that specifically test attention. Here we characterise the 5-HT4 partial agonist SL65.0155 compared to the reference drug, nicotine, in a test that is used to measure attention in rats, the five-choice serial reaction time task (5CSRTT). SL65.0155 (0.1 or 1 mg/kg s.c) and nicotine (0.2 mg/kg s.c.) were tested in protocols using fixed or variable stimulus durations. SL65.0155 improved performance by virtue of reducing incorrect responses and increasing % correct trials. Perseverative responses were reduced by SL65.0155, and latency during incorrect trials was increased following treatment with 0.1 mg/kg SL65.0155. Nicotine, as previously reported, improved performance in several parameters in the 5CSRTT, including response latencies, errors of omission and correct responses in both the baseline and variable stimulus protocol. These data suggest 5-HT4 agonists may have beneficial effects on attention and thereby may be useful for the treatment of cognitive deficits.

  14. Ecdysone receptor agonism leading to lethal molting disruption in arthropods: Review and adverse outcome pathway development

    EPA Science Inventory

    Molting is a key biological process in growth, development, reproduction and survival in arthropods. Complex neuroendocrine pathways are involved in the regulation of molting and may potentially become targets of environmental endocrine disrupting compounds (EDCs). For example, s...

  15. PPARδ agonism inhibits skeletal muscle PDC activity, mitochondrial ATP production and force generation during prolonged contraction

    PubMed Central

    Constantin-Teodosiu, Dumitru; Baker, David J; Constantin, Despina; Greenhaff, Paul L

    2009-01-01

    We have recently shown that PPARδ agonism, used clinically to treat insulin resistance, increases fat oxidation and up-regulates mitochondrial PDK4 mRNA and protein expression in resting skeletal muscle. We hypothesized that PDK4 up-regulation, which inhibits pyruvate dehydrogenase complex (PDC)-dependent carbohydrate (CHO) oxidation, would negatively affect muscle function during sustained contraction where the demand on CHO is markedly increased. Three groups of eight male Wistar rats each received either vehicle or a PPARδ agonist (GW610742X) at two doses (5 and 100 mg (kg body mass (bm))−1 orally for 6 days. On the seventh day, the gastrocnemius–soleus–plantaris muscle group was isolated and snap frozen, or underwent 30 min of electrically evoked submaximal intensity isometric contraction using a perfused hindlimb model. During contraction, the rate of muscle PDC activation was significantly lower at 100 mg (kg bm)−1 compared with control (P < 0.01). Furthermore, the rates of muscle PCr hydrolysis and lactate accumulation were significantly increased at 100 mg (kg bm)−1 compared with control, reflecting lower mitochondrial ATP generation. Muscle tension development during contraction was significantly lower at 100 mg (kg bm)−1 compared with control (25%; P < 0.05). The present data demonstrate that PPARδ agonism inhibits muscle CHO oxidation at the level of PDC during prolonged contraction, and is paralleled by the activation of anaerobic metabolism, which collectively impair contractile function. PMID:19001043

  16. Restraint Stress Alters Nociceptin/Orphanin FQ and CRF Systems in the Rat Central Amygdala: Significance for Anxiety-Like Behaviors

    PubMed Central

    de Guglielmo, Giordano; Hansson, Anita C.; Ubaldi, Massimo; Kallupi, Marsida; Cruz, Maureen T.; Oleata, Christopher S.; Heilig, Markus

    2014-01-01

    Corticotropin releasing factor (CRF) is the primary mediator of stress responses, and nociceptin/orphanin FQ (N/OFQ) plays an important role in the modulation of these stress responses. Thus, in this multidisciplinary study, we explored the relationship between the N/OFQ and the CRF systems in response to stress. Using in situ hybridization (ISH), we assessed the effect of body restraint stress on the gene expression of CRF and N/OFQ-related genes in various subdivisions of the amygdala, a critical brain structure involved in the modulation of stress response and anxiety-like behaviors. We found a selective upregulation of the NOP and downregulation of the CRF1 receptor transcripts in the CeA and in the BLA after body restraint. Thus, we performed intracellular electrophysiological recordings of GABAA-mediated IPSPs in the central nucleus of the amygdala (CeA) to explore functional interactions between CRF and N/OFQ systems in this brain region. Acute application of CRF significantly increased IPSPs in the CeA, and this enhancement was blocked by N/OFQ. Importantly, in stress-restraint rats, baseline CeA GABAergic responses were elevated and N/OFQ exerted a larger inhibition of IPSPs compared with unrestraint rats. The NOP antagonist [Nphe1]-nociceptin(1–13)NH2 increased the IPSP amplitudes in restraint rats but not in unrestraint rats, suggesting a functional recruitment of the N/OFQ system after acute stress. Finally, we evaluated the anxiety-like response in rats subjected to restraint stress and nonrestraint rats after N/OFQ microinjection into the CeA. Intra-CeA injections of N/OFQ significantly and selectively reduced anxiety-like behavior in restraint rats in the elevated plus maze. These combined results demonstrate that acute stress increases N/OFQ systems in the CeA and that N/OFQ has antistress properties. PMID:24403138

  17. Low-dose Nociceptin/Orphanin FQ reduces anxiety-like performance in alcohol-withdrawn, but not alcohol-naïve, Male Wistar rats.

    PubMed

    Aujla, Harinder; Nedjadrasul, Daniel

    2015-06-01

    Alcohol withdrawal is associated with neuroadaptation of stress-regulatory systems, including transmission of neuropeptides that have been implicated in anxiety-like performance. Nociceptin/Orphanin FQ (N/OFQ), an endogenous neuropeptide ligand at the NOP receptor, has been implicated in stress and has previously been shown to attenuate or exacerbate anxiety-like performance in rats following a biphasic dose response function. In addition, divergent actions on anxiety-like performance have been observed in alcohol-withdrawn vs. control animals, suggesting alcohol-induced alteration of N/OFQ transmission. In order to differentiate between whether this divergence resulted from a "switch" in the actions of N/OFQ vs. increased sensitivity in N/OFQ transmission, we assessed the actions of low doses of N/OFQ (0, 0.125, 0.25, or 0.5 μg) on two tests of anxiety, the shock-probe defensive burying and elevated plus maze tests, three weeks after the termination of a six-day regimen of alcohol or vehicle administration via intragastric intubation. Consistent with increased sensitivity in N/OFQ resulting from a history of alcohol intake, administration of a low dose of N/OFQ (0.25 μg) selectively attenuated anxiety-like behaviors in animals with a history of alcohol intake while controls did not exhibit any changes in performance. The present results suggest that withdrawal from alcohol produces an enduring increase in sensitivity in N/OFQ transmission - a finding that is consistent with previous studies demonstrating altered transmission in related neuropeptide systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Agonizing Poe

    ERIC Educational Resources Information Center

    Kiskis, Michael J.

    2006-01-01

    This article discusses the author's experience of teaching Edgar Allan Poe as part of the American literature survey at Elmira College in Elmira, New York. While his specialty is Mark Twain, his students would be much happier if they could skip the colonial and national period, and move directly to studying Poe. In this article, the author…

  19. TRAV gene expression in PBMCs and TILs in patients with breast cancer analyzed by a DNA melting curve (FQ-PCR) technique for TCR α chain CDR3 spectratyping.

    PubMed

    He, X Y; Yang, W M; Tang, W T; Ma, R; Sun, Y P; Wang, P; Yao, X S

    2012-01-01

    To explore the expression of the TRAV gene in peripheral blood mononuclear cells (PBMCs) and in tumor-infiltrating lymphocytes (TILs) in the patients with breast cancer using a DNA melting curve (FQ-PCR) technique for T cell receptor (TCR) alpha chain CDR3 spectratyping. Peripheral blood samples and tissue samples were obtained from thirty breast cancer patients. Total RNA was extracted from PBMCs and tumor tissues and then reverse transcribed into cDNA. FQ-PCR was used to amplify the human TCR alpha chain CDR3 region with the primers to the TRAV and TRAC genes. TCR alpha chain CDR3 spectratyping and partial CDR3 sequencing were used to determine use of TRAV gene product in T cell responses. TCR alpha CDR3 spectratyping showed preferential usage of certain TRAV genes in the PBMCs and TILs of all patients with breast cancer. The frequencies of TRAV1.1, TRAV9, and TRAV29 exceeded 30% in PBMCs and the frequencies of TRAV1.1 and TRAV22 exceeded 30% in TILs. More than three quarters of the patients (23/30) overexpressed the same gene in both PBMCs and TILs; for example, patient-1 highly expressed TRAV9 in the PBMCs and TILs. Patients with positive or negative tumor markers of estrogen receptor (ER), progesterone receptor (PR), pS2, C-erbB-2, nm23, P53, and Ki-67 showed no significant common TRAV gene expression, but some TRAV gene preferential usage frequencies exceeded 20%. For example, five of seven patients positive for ER had high levels of expression of TRAV1.1 and TRAV3. Finally, the amino acid sequence of TCR CDR3 region showed some common motifs in some of the patients. TRAV gene expression was complex and diverse in the patients with breast cancer. The TRAV gene usage may be closely related to the diversity of breast tumor antigens and the differential immune responses observed in individual patients. Research into the immunological mechanism of T cells may provide guidance for individual T cell-directed therapy for breast cancer.

  20. Functional antagonism between nociceptin/orphanin FQ and corticotropin-releasing factor in rat anxiety-related behaviors: involvement of the serotonergic system.

    PubMed

    Filaferro, M; Ruggieri, V; Novi, C; Calò, G; Cifani, C; Micioni Di Bonaventura, M V; Sandrini, M; Vitale, G

    2014-08-01

    Nociceptin/orphanin FQ (N/OFQ) acts as an anxiolytic-like agent in the rat and behaves as a functional antagonist of corticotropin-releasing factor (CRF) due to its ability to oppose CRF biological actions. In response to stress, CRF triggers changes in neurotransmitter systems including serotonin (5-HT). The role of 5-HT1A receptor in anxiety has been supported by preclinical and clinical studies. The present study investigated the possible functional antagonism between N/OFQ (1nmol/rat) and CRF (0.2nmol/rat) in anxiety-related conditions in rats, using elevated plus maze and defensive burying tests, in order to confirm previous literature results. Moreover, possible changes in the serotonergic system were studied in areas rich of serotonergic neurons: frontal cortex and pons. In both tests N/OFQ showed anxiolytic-like effects while CRF displayed anxiogenic-like effects. N/OFQ before CRF treatment counteracted the anxiogenic-like effects evoked by CRF. In frontal cortex, N/OFQ significantly decreased 5-HT levels but did not modify the hydroxyindoleacetic acid (5-HIAA) ones; CRF modified neither 5-HT nor 5-HIAA content but counteracted changes induced by N/OFQ alone. In pons, N/OFQ induced no change in serotonergic activity while CRF significantly decreased 5-HT levels and increased 5-HIAA content. The two peptides' combination reinstated serotonergic parameters to controls. In frontal cortex, N/OFQ increased the 5HT1A receptor density but reduced its affinity, while CRF alone did not induce any change. In pons, CRF decreased 5HT1ABmax and KD whereas N/OFQ was ineffective. All biochemical modifications were reverted by N/OFQ plus CRF treatment. The present study confirms that N/OFQ counteracts CRF anxiogenic-like effects in the behavioral tests evaluated. These effects may involve central serotonergic mechanisms since N/OFQ plus CRF induces a reversion of serotonergic changes provoked by single peptide. Our data support the hypothesis that N/OFQ may behave as

  1. Supplemental site inspection for Air Force Plant 59, Johnson City, New York, Volume 3: Appendices F-Q

    SciTech Connect

    Nashold, B.; Rosenblatt, D.; Hau, J.

    1995-08-01

    This summary describes a Supplemental Site Inspection (SSI) conducted by Argonne National Laboratory (ANL) at Air Force Plant 59 (AFP 59) in Johnson City, New York. All required data pertaining to this project were entered by ANL into the Air Force-wide Installation Restoration Program Information System (IRPIMS) computer format and submitted to an appropriate authority. The work was sponsored by the United States Air Force as part of its Installation Restoration Program (IRP). Previous studies had revealed the presence of contaminants at the site and identified several potential contaminant sources. Argonne`s study was conducted to answer questions raised by earlier investigations. This volume consists of appendices F-Q, which contain the analytical data from the site characterization.

  2. Distinct effect of orphanin FQ in nucleus raphe magnus and nucleus reticularis gigantocellularis on the rat tail flick reflex.

    PubMed

    Yang, Z; Zhang, Y; Wu, G

    2001-06-22

    The aim of the present study is to investigate the effects of orphanin FQ (OFQ) microinjected into the nucleus raphe magnus (NRM) and the nucleus reticularis gigantocellularis (NGC) on pain modulation. The tail-flick latency (TFL) was used as a behavioral index of nociceptive responsiveness. The result showed microinjection of OFQ into the NRM significantly increased the TFL, whereas microinjection of OFQ into the NGC decreased the TFL, suggesting the analgesic effect of OFQ in the NRM and the hyperalgesic effect of OFQ in the NGC. As there are three classes of putative pain modulating neurons in the rostral ventromedial medulla (RVM), the hyperalgesic or analgesic effect of OFQ in the RVM might depend upon the different class of the neurons being acted.

  3. Small Molecules with Similar Structures Exhibit Agonist, Neutral Antagonist or Inverse Agonist Activity toward Angiotensin II Type 1 Receptor

    PubMed Central

    Hanzawa, Hiroyuki; Nakao, Naoki; Fujino, Masahiro; Imaizumi, Satoshi; Matsuo, Yoshino; Yanagisawa, Hiroaki; Koike, Hiroyuki; Komuro, Issei; Karnik, Sadashiva S.; Saku, Keijiro

    2012-01-01

    Small differences in the chemical structures of ligands can be responsible for agonism, neutral antagonism or inverse agonism toward a G-protein-coupled receptor (GPCR). Although each ligand may stabilize the receptor conformation in a different way, little is known about the precise conformational differences. We synthesized the angiotensin II type 1 receptor blocker (ARB) olmesartan, R239470 and R794847, which induced inverse agonism, antagonism and agonism, respectively, and then investigated the ligand-specific changes in the receptor conformation with respect to stabilization around transmembrane (TM)3. The results of substituted cysteine accessibility mapping studies support the novel concept that ligand-induced changes in the conformation of TM3 play a role in stabilizing GPCR. Although the agonist-, neutral antagonist and inverse agonist-binding sites in the AT1 receptor are similar, each ligand induced specific conformational changes in TM3. In addition, all of the experimental data were obtained with functional receptors in a native membrane environment (in situ). PMID:22719858

  4. Discovery of Natural Phenols as G Protein-Coupled Receptor-35 (GPR35) Agonists.

    PubMed

    Deng, Huayun; Hu, Haibei; Ling, Shizhang; Ferrie, Ann M; Fang, Ye

    2012-02-09

    We report the discovery and characterization of natural phenols as G protein-coupled receptor-35 (GPR35) agonists. Pharmacological characterization using label-free dynamic mass redistribution and Tango β-arrestin translocation assays revealed that GPR35-active natural phenols are divergent in their biased agonism.

  5. Discovery of Natural Phenols as G Protein-Coupled Receptor-35 (GPR35) Agonists

    PubMed Central

    2012-01-01

    We report the discovery and characterization of natural phenols as G protein-coupled receptor-35 (GPR35) agonists. Pharmacological characterization using label-free dynamic mass redistribution and Tango β-arrestin translocation assays revealed that GPR35-active natural phenols are divergent in their biased agonism. PMID:24900447

  6. [Regularity of agonal respiration after untreated cardiac arrest in a swine model].

    PubMed

    Tongying, Liu; Lixiang, Wang; Yahua, Liu; Ye, Cui; Chan, Chen; Yuanli, Jiang; Manhong, Zhou

    2015-12-01

    To explore the regularity of incidence of agonal respiration (AR) and agonal respiration frequency rate (ARFR) during untreated cardiac arrest (CA) after ventricular fibrillation (VF) in a swine model. Ten healthy male domestic pigs weighing (25.0 ± 3.0) kg were employed in this experiment. VF was induced by intraventricular shock with alternating current without treatment for 8 minutes. The incidence of AR and ARFR per minute were recorded for 8 minutes. Statistical analysis was performed using SPSS 19.0 system software. AR occurred in all animals after VF induced CA within 8 minutes. There was 1 animal showed AR at the first minute with ARFR (0.2 ± 0.1) times/min, 4 animals showed AR at the second minute with ARFR (1.2 ± 1.0) times/min, 7 animals showed AR at the third minute with ARFR (2.7 ± 1.4) times/min, all animals showed AR at the fourth to fifth minute with ARFR (3.7 ± 1.6) times/min and (3.2 ± 1.9) times/min, 7 animals showed AR at the sixth minute with ARFR (1.3 ± 1.0) times/min, no animal showed AR at the seventh minute, and 1 animal showed AR at the eighth minute with ARFR (0.2 ± 0.1) times/min. The first and the last AR were observed at (2.02 ± 0.84) minutes and (5.21 ± 1.12) minutes respectively. Occurrence of AR reached its peak at the fourth to fifth minute, and it was absent at the seventh minute. ARFR after CA showed a crescendo-decrescendo pattern, which increased from (0.2 ± 0.1) times/min to (3.7 ± 1.6) times/min followed by a fall to (0.2 ± 0.1) times/min. AR is one of the symbolic signs after CA. AR occurred in all animals during untreated VF, and it reaches its peak at the fourth to fifth minute, with a crescendo-decrescendo pattern of ARFR. Effective identification and treatment in victim with AR timely can help to improve the success rate of cardiopulmonary resuscitation and survival rate.

  7. Opioid Receptors: Toward Separation of Analgesic from Undesirable Effects

    PubMed Central

    Law, P.Y.; Reggio, Patricia H.; Loh, H.H.

    2013-01-01

    The use of opioid analgesics for pain has always been hampered by their many side effects; in particular, the addictive liability associated with chronic use. Recently, attempts to develop analgesic agents with reduced side effects have targeted either the putative opioid receptor splice variants or the receptor heterooligomers. This review discusses the potential for receptor splice variant- and the hetero-oligomer-based discovery of new opioid analgesics. We also examine an alternative approach of using receptor mutants for pain management. Finally, we discuss the role of the biased agonism observed and the recently reported opioid receptor crystal structures in guiding the future development of opioid analgesics PMID:23598157

  8. Opioid receptors: toward separation of analgesic from undesirable effects.

    PubMed

    Law, Ping-Yee; Reggio, Patricia H; Loh, Horace H

    2013-06-01

    The use of opioid analgesics for pain has always been hampered by their many side effects; in particular, the addictive liability associated with chronic use. Recently, attempts to develop analgesic agents with reduced side effects have targeted either the putative opioid receptor splice variants or the receptor hetero-oligomers. This review discusses the potential for receptor splice variant- and the hetero-oligomer-based discovery of new opioid analgesics. We also examine an alternative approach of using receptor mutants for pain management. Finally, we discuss the role of the biased agonism observed and the recently reported opioid receptor crystal structures in guiding the future development of opioid analgesics.

  9. Lipid agonism: The PIP2 paradigm of ligand-gated ion channels.

    PubMed

    Hansen, Scott B

    2015-05-01

    The past decade, membrane signaling lipids emerged as major regulators of ion channel function. However, the molecular nature of lipid binding to ion channels remained poorly described due to a lack of structural information and assays to quantify and measure lipid binding in a membrane. How does a lipid-ligand bind to a membrane protein in the plasma membrane, and what does it mean for a lipid to activate or regulate an ion channel? How does lipid binding compare to activation by soluble neurotransmitter? And how does the cell control lipid agonism? This review focuses on lipids and their interactions with membrane proteins, in particular, ion channels. I discuss the intersection of membrane lipid biology and ion channel biophysics. A picture emerges of membrane lipids as bona fide agonists of ligand-gated ion channels. These freely diffusing signals reside in the plasma membrane, bind to the transmembrane domain of protein, and cause a conformational change that allosterically gates an ion channel. The system employs a catalog of diverse signaling lipids ultimately controlled by lipid enzymes and raft localization. I draw upon pharmacology, recent protein structure, and electrophysiological data to understand lipid regulation and define inward rectifying potassium channels (Kir) as a new class of PIP2 lipid-gated ion channels.

  10. GLP-1R and amylin agonism in metabolic disease: complementary mechanisms and future opportunities.

    PubMed

    Roth, Jonathan D; Erickson, Mary R; Chen, Steve; Parkes, David G

    2012-05-01

    The discoveries of the incretin hormone glucagon-like peptide-1 (GLP-1) and the β-cell hormone amylin have translated into hormone-based therapies for diabetes. Both classes of molecules also exhibit weight-lowering effects and have been investigated for their anti-obesity potential. In the present review, we explore the mechanisms underlying the physiological and pharmacological actions of GLP-1 and amylin agonism. Despite their similarities (e.g. both molecular classes slow gastric emptying, decrease glucagon and inhibit food intake), there are important distinctions between the central and/or peripheral pathways that mediate their effects on glycaemia and energy balance. We suggest that understanding the similarities and differences between these molecules holds important implications for the development of novel, combination-based therapies, which are increasingly the norm for diabetes/metabolic disease. Finally, the future of GLP-1- and amylin agonist-based therapeutics is discussed. © 2011 Amylin Pharmaceuticals, Inc. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  11. Quantification of serum SOX2 DNA with FQ-PCR potentially provides a diagnostic biomarker for lung cancer.

    PubMed

    Wu, Yanfeng; Du, Xiao; Xue, Chengjun; Li, Detao; Zheng, Qian; Li, Xue; Chen, Hui

    2013-12-01

    Sex-determining region Y-box 2 (SOX2), as a subunit of transcription and reprogramming factor, plays a critical role in the development and progression of many malignancies, including lung cancer through gene amplification. In the present study, we aimed to quantify the levels of serum SOX2 DNA, analyze its diagnostic value and compare it with existing clinical parameters in lung cancer, and purpose to provide a novel tumor marker for lung cancer. Serum DNA was extracted from 94 lung cancer patients, 10 benign lung diseases, and 30 healthy volunteers, and then the levels of SOX2 DNA were quantified using real-time fluorescent quantitative polymerase chain reaction (FQ-PCR). The data were analyzed by statistical software SPSS14.0. The present results show that serum SOX2 DNA level in lung cancer group was higher compared to the levels in benign lung diseases group (u = 102.0, p < 0.001) or healthy group (u = 140.0, p < 0.001), and it was closely associated with TNM stage, histopathological type, and tumor size (p = 0.031, p = 0.012, and p = 0.010, respectively). However, serum SOX2 DNA levels of lung cancer patients were not associated with age, gender, smoking status, lymph node metastasis, or tumor differentiation (p > 0.05). ROC curve showed a sensitivity of 78.9% and a specificity of 82.5% for the ability of serum SOX2 DNA to detect lung cancer at the cutoff value of 1,078.3 copies/ul. Furthermore, we assessed the associations of serum SOX2 levels with clinical existing lung tumor markers, such as squamous cell carcinoma antigen, cytokeratin fragment 21-1, and neuron-specific enolase. The sensitivity was increased from 24.9, 66.1, and 39.1 to 84.2, 92.8, and 87.5%, respectively, by the combination of serum SOX2 DNA. Taken together, quantification of serum SOX2 DNA by FQ-PCR may serve as a novel accessory diagnostic tool for the clinical screening and detection of lung cancer.

  12. Plasma nociceptin/orphanin FQ levels rise after spontaneous episodes of angina, but not during induced myocardial ischemia.

    PubMed

    Fontana, Fiorella; Bernardi, Pasquale; Pizzi, Carmine; Spampinato, Santi; Bedini, Andrea; Pich, Emilio Merlo

    2009-09-01

    The aim of our study was to evaluate the effects of repeated episodes of angina and induced myocardial ischemia on plasma nociceptin/orphanin FQ (N/OFQ) levels. Patients with unstable angina (23 with new onset severe angina or accelerated angina and 18 with subacute angina at rest) who had had repeated spontaneous episodes of chest pain in the last week before the study underwent myocardial perfusion single-photon emission computed tomography using adenosine infusion. Twenty subjects without clinical symptoms of angina matched for age, sex and cardiac risk factors served as a control group. N/OFQ levels were significantly (P<0.01) higher in the patients (15.2+/-2.1 pg/ml) than in the control group (8.5+/-2.6 pg/ml). Blood pressure and heart rate did not significantly differ. All patients showed transient adenosine infusion myocardial ischemia that did not induce chest pain or significantly modify plasma N/OFQ levels or hemodynamic parameters. Our findings show that unstable angina is associated with a significant increase in circulating N/OFQ levels unrelated to intervening transient myocardial ischemia or hemodynamic changes. This increase is probably related to the chest pain repeatedly occurring in the course of coronary artery disease, but absent during transient adenosine-induced myocardial ischemia.

  13. The Dual NOD1/NOD2 Agonism of Muropeptides Containing a Meso-Diaminopimelic Acid Residue

    PubMed Central

    Dagil, Yulia A.; Arbatsky, Nikolai P.; Alkhazova, Biana I.; L’vov, Vyacheslav L.; Mazurov, Dmitriy V.; Pashenkov, Mikhail V.

    2016-01-01

    Muropeptides are fragments of peptidoglycan that trigger innate immune responses by activating nucleotide-binding oligomerization domain (NOD) 1 and NOD2. Muropeptides from Gram-negative bacteria contain a meso-diaminopimelic acid (meso-DAP) residue in either a terminal or a non-terminal position. While the former ones are known to be recognized by NOD1, much less is known about recognition of muropeptides with non-terminal meso-DAP, which are most abundant moieties of Gram-negative peptidoglycans. Here, we developed a novel system to assess biological activity of muropeptides, based on CRISPR/Cas9-mediated knockout (KO) of NOD1 and NOD2 genes in modified HEK293T cells. Using NOD1/NOD2 knockout and overexpression systems, as well as human monocytes and macrophages, we refine the current view of muropeptide recognition. We show that NOD2 can recognize different natural muropeptides containing a meso-DAP residue (preferably in a non-terminal position), provided they are present at micromolar concentrations. NOD2 accepts muropeptides with long and branched peptide chains and requires an intact N-acetylmuramyl residue. Muropeptides with non-terminal meso-DAP can activate NOD1 as well, but, in this case, probably require peptidase pre-processing to expose the meso-DAP residue. Depending on NOD1/NOD2 ratio in specific cell types, meso-DAP-containing muropeptides can be recognized either primarily via NOD2 (in monocytes) or via NOD1 (in monocyte-derived macrophages and HEK293T-derived cells). The dual NOD1/NOD2 agonism of meso-DAP-containing muropeptides should be taken into account when assessing cellular responses to muropeptides and designing muropeptide immunostimulants and vaccine adjuvants. PMID:27513337

  14. Sustained cardiovascular actions of APJ agonism during renin-angiotensin system activation and in patients with heart failure.

    PubMed

    Barnes, Gareth D; Alam, Shirjel; Carter, Gordon; Pedersen, Christian M; Lee, Kristina M; Hubbard, Thomas J; Veitch, Scott; Jeong, Herim; White, Audrey; Cruden, Nicholas L; Huson, Les; Japp, Alan G; Newby, David E

    2013-05-01

    To assess cardiovascular actions of APJ agonism during prolonged (Pyr(1))apelin-13 infusion and renin-angiotensin system activation. Forty-eight volunteers and 12 patients with chronic stable heart failure attended a series of randomized placebo-controlled studies. Forearm blood flow, cardiac index, left ventricular dimensions, and mean arterial pressure were measured using bilateral venous occlusion plethysmography, bioimpedance cardiography, transthoracic echocardiography, and sphygmomanometry, respectively, during brief local (0.3-3.0 nmol/min) and systemic (30-300 nmol/min) or prolonged systemic (30 nmol/min) (Pyr(1))apelin-13 infusions in the presence or absence of renin-angiotensin system activation with sodium depletion or angiotensin II coinfusion. During sodium depletion and angiotensin II coinfusion, (Pyr(1))apelin-13-induced vasodilatation was preserved (P<0.02 for both). Systemic intravenous (Pyr(1))apelin-13 infusion increased cardiac index, whereas reducing mean arterial pressure and peripheral vascular resistance index (P<0.001 for all) irrespective of sodium depletion or angiotensin II (0.5 ng/kg per minute) coinfusion (P>0.05 for all). Prolonged 6-hour (Pyr(1))apelin-13 infusion caused a sustained increase in cardiac index with increased left ventricular ejection fraction in patients with chronic heart failure (ANOVA; P<0.001 for all). APJ agonism has sustained cardiovascular effects that are preserved in the presence of renin-angiotensin system activation or heart failure. APJ agonism may hold major promise to complement current optimal medical therapy in patients with chronic heart failure. URL: http://www.clinicaltrials.gov. Unique identifiers: NCT00901719, NCT00901888, NCT01049646, NCT01179061.

  15. Comparative effect of lurasidone and blonanserin on cortical glutamate, dopamine, and acetylcholine efflux: role of relative serotonin (5-HT)2A and DA D2 antagonism and 5-HT1A partial agonism.

    PubMed

    Huang, Mei; Panos, John J; Kwon, Sunoh; Oyamada, Yoshihiro; Rajagopal, Lakshmi; Meltzer, Herbert Y

    2014-03-01

    Atypical antipsychotic drugs (AAPDs) have been suggested to be more effective in improving cognitive impairment in schizophrenia than typical APDs, a conclusion supported by differences in receptor affinities and neurotransmitter efflux in the cortex and the hippocampus. More potent serotonin (5-HT)2A than dopamine (DA) D2 receptors antagonism, and direct or indirect 5-HT1A agonism, characterize almost all AAPDs. Blonanserin, an AAPD, has slightly greater affinity for D2 than 5-HT2A receptors. Using microdialysis and ultra performance liquid chromatography-mass spectrometry/mass spectrometry, we compared the abilities of the typical APD, haloperidol, three AAPDs, blonanserin, lurasidone, and olanzapine, and a selective 5-HT1A partial agonist, tandospirone, and all, except haloperidol, were found to ameliorate the cognitive deficits produced by the N-methyl-d-aspartate antagonist, phencyclidine, altering the efflux of neurotransmitters and metabolites in the rat cortex and nucleus accumbens. Blonanserin, lurasidone, olanzapine, and tandospirone, but not haloperidol, increased the efflux of cortical DA and its metabolites, homovanillic acid and 3,4-dihydroxyphenylacetic acid. Olanzapine and lurasidone increased the efflux of acetylcholine; lurasidone increased glutamate as well. None of the compounds significantly altered the efflux of 5-HT or its metabolite, 5-hydroxyindole acetic acid, or GABA, serine, and glycine. The ability to increase cortical DA efflux was the only shared effect of the compounds which ameliorates the deficit in cognition in rodents following phencyclidine. © 2013 International Society for Neurochemistry.

  16. Improving the developability profile of pyrrolidine progesterone receptor partial agonists

    SciTech Connect

    Kallander, Lara S.; Washburn, David G.; Hoang, Tram H.; Frazee, James S.; Stoy, Patrick; Johnson, Latisha; Lu, Qing; Hammond, Marlys; Barton, Linda S.; Patterson, Jaclyn R.; Azzarano, Leonard M.; Nagilla, Rakesh; Madauss, Kevin P.; Williams, Shawn P.; Stewart, Eugene L.; Duraiswami, Chaya; Grygielko, Eugene T.; Xu, Xiaoping; Laping, Nicholas J.; Bray, Jeffrey D.; Thompson, Scott K.

    2010-09-17

    The previously reported pyrrolidine class of progesterone receptor partial agonists demonstrated excellent potency but suffered from serious liabilities including hERG blockade and high volume of distribution in the rat. The basic pyrrolidine amine was intentionally converted to a sulfonamide, carbamate, or amide to address these liabilities. The evaluation of the degree of partial agonism for these non-basic pyrrolidine derivatives and demonstration of their efficacy in an in vivo model of endometriosis is disclosed herein.

  17. Rational design of orally-active, pyrrolidine-based progesterone receptor partial agonists

    SciTech Connect

    Thompson, Scott K.; Washburn, David G.; Frazee, James S.; Madauss, Kevin P.; Hoang, Tram H.; Lapinski, Leahann; Grygielko, Eugene T.; Glace, Lindsay E.; Trizna, Walter; Williams, Shawn P.; Duraiswami, Chaya; Bray, Jeffrey D.; Laping, Nicholas J.

    2010-09-03

    Using the X-ray crystal structure of an amide-based progesterone receptor (PR) partial agonist bound to the PR ligand binding domain, a novel PR partial agonist class containing a pyrrolidine ring was designed. Members of this class of N-alkylpyrrolidines demonstrate potent and highly selective partial agonism of the progesterone receptor, and one of these analogs was shown to be efficacious upon oral dosing in the OVX rat model of estrogen opposition.

  18. Effect and mechanism of nociceptin/orphanin FQ reversing multi-drug resistance in K562/ADM cell.

    PubMed

    Li, Zhao; Zhou, Lan-Xia; Zhang, Bao-Hong; Yan, Xiang; Li, Juan; Peng, Ya-Li; Chang, Min; Dong, Shou-Liang; Wang, Rui

    2008-09-01

    To investigate the effect and mechanism of nociceptin/orphanin FQ (OFQ) reversing multi-drug resistance of K562/ADM cells in vitro. MTT assay, Wright staining, flow cytometry, transmission electron microscope and gel electrophoresis were used to evaluate the effect and mechanism of OFQ in reversing multi-drug resistance of K562/ADM cells. OFQ could time-dependently reverse the ADM resistance of K562/ADM cell. After treatment with OFQ (1 x 10(-7) mol x L(-1)), K562/ADM cells were cultured for 24, 48 and 72 h. The reversal index (RI) was 1.33, 1.42 and 1.53, respectively. Furthermore, OFQ significantly increased the intracellular accumulation of ADM in K562/ADM cells and percentage apoptosis in K562/ADM cells. OFQ down-regulated the level of P-gp time-dependently, while the level of Fas and FasL were up-regulated. There were evidently significant differences compared with the control (P < 0.01). After treating K562/ADM cells with OFQ (1 x 10(-7) mol x L(-1)) and ADM (20 microg x ml(-1)) for 48 hours, the cells showed apoptotic nuclear fragmentation, which was characterized by the appearance of a DNA ladder pattern in genomic DNA gel electrophoresis. OFQ can reverse the ADM resistance of K562/ADM cells. The mechanism involves OFQ up-regulating the expression of Fas/FasL, down-regulating the level of P-gp, and decreasing the intracellular level of calcium in K562/ADM cells.

  19. [Orphanin FQ combined with adriamycin reverses multi-drug resistance of K562/ADM and its molecular mechanism].

    PubMed

    Wang, Xiao-Xia; Liu, Xiao-Qin; Zhang, Wei; Chen, Xuan; Zhao, Li

    2012-06-01

    Our study have confirmed that orphanin FQ (OFQ) alone can reverse the multi-drug resistance of K562/ADM at the cellular level. Thus, this study was purposed to investigate the molecular mechanism of OFQ combined with ADM that reverses multi-drug resistance of K562/ADM, as well as its correlation with the expression of MDR1 mRNA and P-glycoprotein (P-gp). MTT method was used to detect the proliferation ability of K562/ADM treated with OFQ and ADM alone and their combination; flow cytometry was performed to measure the cell apoptosis rate; real time-PCR was applied to detect the MDR1 mRAN expression; Western blot was used to determine the P-gp expression. The results showed that OFQ (0.1 µmol/L) combined with ADM (15 mg/L) significantly inhibited the cell proliferation of K562/ADM, compared with ADM group; the date gained at 48 h was statistically significant (P < 0.05), and cell apoptosis rate was significantly raised (P < 0.01); MDR1 mRNA and P-gp expression levels of OFR combined with ADM were significantly lower than that of ADM alone, and were time-dependent within 48 h. It is concluded that OFQ combined with ADM can reverse the multi-drug resistance of K562/ADM in time-dependent manner, and the 48 h after treatment with these 2 drugs is the best reverse time, which may be related with down regulating the expression of MDR1 mRNA and P-gp.

  20. Gonadal steroids differentially modulate the actions of orphanin FQ/nociceptin at a physiologically relevant circuit controlling female sexual receptivity

    PubMed Central

    Borgquist, Amanda; Rivas, Virginia Mela; Kachani, Malika; Sinchak, Kevin; Wagner, Edward J.

    2014-01-01

    Orphanin FQ/nociceptin (OFQ/N) inhibits the activity of proopiomelanocortin (POMC) neurones located in the hypothalamic arcuate nucleus (ARH) that regulate female sexual behaviour and energy balance. We tested the hypothesis that gonadal steroids differentially modulate the ability of OFQ/N to inhibit these cells via presynaptic inhibition of transmitter release and postsynaptic activation of G protein-gated, inwardly-rectifying K+ (GIRK)-1 channels. Whole-cell patch clamp recordings were performed in hypothalamic slices prepared from ovariectomised rats. OFQ/N (1 μM) decreased the frequency of miniature excitatory postsynaptic currents (mEPSCs) and inhibitory postsynaptic currents (mIPSCs), and also caused a robust outward current in the presence of tetrodotoxin, in ARH neurones from vehicle- treated animals. A priming dose of oestradiol benzoate (EB; 2 μg) increased basal mEPSC frequency, markedly diminished both the OFQ/N-induced decrease in mEPSC frequency and the activation of GIRK-1 currents, and potentiated the OFQ/N-induced decrease in mIPSC frequency. Steroid treatment regimens that facilitate sexual receptivity reinstate the basal mEPSC frequency, the OFQ/N-induced decrease in mEPSC frequency and the activation of GIRK-1 currents to levels observed in vehicle-treated controls, and largely abolish the ability of OFQ/N to decrease mIPSC frequency. These effects were observed in an appreciable population of identified POMC neurones, nearly one-half of which projected to the medial preoptic nucleus. Taken together, these data reveal that gonadal steroids influence the pleiotropic actions of OFQ/N on ARH neurones, including POMC neurones, in a disparate manner. These temporal changes in OFQ/N responsiveness further implicate this neuropeptide system as a critical mediator of the gonadal steroid regulation of reproductive behaviour. PMID:24617903

  1. It takes two to tango: combined amylin/leptin agonism as a potential approach to obesity drug development.

    PubMed

    Chan, Jean L; Roth, Jonathan D; Weyer, Christian

    2009-10-01

    The discovery of leptin in 1994 was a seminal event in obesity research. It helped to establish that body weight is tightly regulated by a complex neurohormonal feedback system and that obesity should be viewed as a disorder with a strong biological basis rather than simply the result of poor lifestyle choices and lack of willpower.Leptin, secreted from adipocytes, acts as a prototypic long-term (tonic) adiposity signal. Although nonclinical and clinical studies have provided unequivocal evidence that leptin plays a unique, pivotal role in body weight regulation, efforts to develop recombinant leptin (metreleptin) as a monotherapy for obesity have proven unsuccessful. Amylin, secreted from pancreatic beta-cells, fulfills the criteria for a short-term (episodic) satiety signal. The amylin analog pramlintide elicits sustained reductions in food intake and body weight in obese rodents and humans.A translational research program aimed at elucidating the interaction between different islet-, gut-, and adipocyte-derived hormones led to the discovery that combined amylin/leptin agonism induces marked, synergistic, fat-specific weight loss in leptin-resistant diet-induced obese rodents. In obese humans, combination treatment with pramlintide/metreleptin led to an approximately 13% weight loss after 24 weeks, significantly more than after treatment with pramlintide or metreleptin alone.Collectively, these findings suggest that combined amylin/leptin agonism may have therapeutic utility as part of an integrated, neurohormonal approach to obesity pharmacotherapy.

  2. Nocistatin and prepro-nociceptin/orphanin FQ 160-187 cause nociception through activation of Gi/o in capsaicin-sensitive and of Gs in capsaicin-insensitive nociceptors, respectively.

    PubMed

    Inoue, Makoto; Kawashima, Toshiko; Allen, Richard G; Ueda, Hiroshi

    2003-07-01

    Nociceptin/orphanin FQ (N/OFQ), nocistatin, and prepro-N/OFQ 160-187 (C-peptide) are all derived from the same precursor protein. We examine the pharmacological mechanisms of nocistatin- and C-peptide-induced pronociceptive responses in a novel algogenic-induced nociceptive flexion test in mice. The intraplantar (i.pl.) injection of nocistatin- and C-peptide induced pronociceptive responses in a range of 0.01 to 10 or 1 pmol, respectively, which showed 100- to 1000-fold less potent effects than the N/OFQ. The nociceptive effects of both peptides were not affected by 1-[(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazole-2-one (J-113397) (i.pl.), an N/OFQ receptor antagonist, indicating that they are mediated by a novel mechanism independent of activation of N/OFQ receptor. Like N/OFQ, nocistatin-induced nociception was abolished by i.pl. injection of pertussis toxin, phospholipase C inhibitor, or CP-99994, a neurokinin 1 receptor antagonist, indicating that nocistatin may elicit nociception through a substance P release from nociceptor endings via activation of Gi/o and phospholipase C. The nociception was abolished by neonatal pretreatment (s.c.) with capsaicin or by i.t. pretreatment with CP-99994, but not MK-801 (i.t.), an N-methyl-d-aspartate receptor antagonist. In contrast, C-peptide-induced nociception was attenuated by the pretreatment with antisense oligodeoxynucleotide for Galphas (i.t.) and with KT-5720 (i.pl.), a cyclic AMP-dependent protein kinase inhibitor, but not with pertussis toxin. The nociception was neither attenuated by neonatal capsaicin nor by i.t. injection with CP-99994, but it was attenuated by i.t. injection with MK-801. These results suggest that nocistatin and C-peptide derived from prepro-N/OFQ stimulate distinct nociceptive fibers through different in vivo signaling mechanisms.

  3. Adenosine Signaling Increases Proinflammatory and Profibrotic Mediators through Activation of a Functional Adenosine 2B Receptor in Renal Fibroblasts.

    PubMed

    Wilkinson, Patrick F; Farrell, Francis X; Morel, Diane; Law, William; Murphy, Suzanne

    2016-07-01

    Interstitial renal fibrosis is a major pathophysiological manifestation of patients diagnosed with Chronic Kidney Disease (CKD), Diabetic Nephropathy (DN) and other inflammatory diseases. Adenosine signaling is an innate autocrine and paracrine cellular signaling pathway involving several key mediators that are elevated in the blood and kidneys of patients with DN. In these studies, we hypothesized that extracellular adenosine signals through one or more functional adenosine GPCRs on renal fibroblasts which increases profibrotic and proinflammatory mediators by inducing an activated fibroblast phenotype. Utilizing the renal fibroblast cell line NRK-49F, the presence and relative abundance of adenosine receptors (AR) A1, A2A, A2B, and A3 were quantified by RT-PCR. Under normal homeostatic conditions, only AR1 and AR2B were detected. The functionality of each receptor was then assessed by receptor specific pharmacological agonism and antagonism and assessed for modulation of the GPCR associated secondary messenger molecule, cyclic adenosine monophosphate (cAMP). Agonism of the AR2B receptor resulted in increased intracellular cAMP while agonism of the AR1 receptor inhibited cAMP modulation. Upon direct agonism of the AR2B receptor, transcripts for profibrotic and inflammatory mediators including SMA-α, IL-6, TGF-β, CTGF, and fibronectin were elevated between 2-4 fold. These data indicate that renal fibroblasts express a functional AR1 receptor that inhibits cAMP upon stimulation, leading to a functional AR2B receptor that increases cAMP upon stimulation and also induces an activated fibroblast phenotype resulting in increased fibrotic and inflammatory mediators.

  4. Calcium Channel Blockade and Peroxisome Proliferator Activated Receptor γ Agonism Diminish Cognitive Loss and Preserve Endothelial Function During Diabetes Mellitus.

    PubMed

    Jain, Swati; Sharma, B M; Sharma, Bhupesh

    2016-01-01

    Diabetes mellitus is considered as a main risk factor for vascular dementia. In the past, we have reported the induction of vascular dementia (VaD) by experimental diabetes. This study investigates the efficacy of a nifedipine, a calcium channel blocker and pioglitazone in the pharmacological interdiction of pancreatectomy diabetes (PaD) induced vascular endothelial dysfunction and subsequent VaD in rats. Attentional set shifting (ASST) and Morris water-maze (MWM) test were used for assessment of learning and memory. Vascular endothelial function, blood brain barrier permeability, serum glucose, serum nitrite/nitrate, oxidative stress (viz. aortic superoxide anion, brain thiobarbituric acid reactive species and brain glutathione), brain calcium and inflammation (myeloperoxidase) were also estimated. PaD rats have shown impairment of endothelial function, blood brain barrier permeability, learning and memory along with an increase in brain inflammation, oxidative stress and calcium. Administration of nifedipine and pioglitazone significantly attenuated PaD induced impairment of learning, memory, blood brain barrier permeability, endothelial function and biochemical parameters. It may be concluded that nifedipine, a calcium channel blocker may be considered as a potent pharmacological agent for the management of PaD induced endothelial dysfunction and subsequent VaD.

  5. A REACTIVITY PATTERN OF DISCRIMINATION OF ER AGONISM AND ANTAGONISM BASED ON 3-D MOLECULAR ATTRIBUTES

    EPA Science Inventory

    Various models have been developed to predict the relative binding affinity (RBA) of chemicals to estrogen receptors (ER). These models are important for prioritizing chemicals for screening in biological assays assessing the potential for endocrine disruption. One shortcoming of...

  6. Agonal sequences in a filmed suicidal hanging: analysis of respiratory and movement responses to asphyxia by hanging.

    PubMed

    Sauvageau, Anny; Racette, Stéphanie

    2007-07-01

    The forensic literature on the pathophysiology of human hanging is still limited. Therefore, forensic pathologists often feel uncomfortable when confronted with related questions. Here presented is the filmed suicidal hanging of a 37-year-old man. This recording allows a unique analysis of agonal movement sequences: loss of consciousness (13 sec), convulsions (15 sec), decortication rigidity (21 sec), decerebration rigidity (46 sec), second decortication rigidity (1 min 11 sec), loss of muscle tone, (1 min 38 sec) and last isolated muscle movement (4 min 10 sec). As for respiratory responses, very deep respiratory attempts started at 20 sec. Respiratory movements progressively decreased and completely stopped at 2 min. Despite the fact that extending the presented data on all cases of hanging asphyxia would be a mistake, this case gives a very interesting insight into movement and respiratory response to asphyxia by hanging.

  7. Combined remediation of Cd-phenanthrene co-contaminated soil by Pleurotus cornucopiae and Bacillus thuringiensis FQ1 and the antioxidant responses in Pleurotus cornucopiae.

    PubMed

    Jiang, Juan; Liu, Hongying; Li, Qiao; Gao, Ni; Yao, Yuan; Xu, Heng

    2015-10-01

    Remediation of soil co-contaminated with heavy metals and PAHs by mushroom and bacteria is a novel technique. In this study, the combined remediation effect of mushroom (Pleurotus cornucopiae) and bacteria (FQ1, Bacillus thuringiensis) on Cd and phenanthrene co-contaminated soil was investigated. The effect of bacteria (B. thuringiensis) on mushroom growth, Cd accumulation, phenanthrene degradation by P. cornucopiae and antioxidative responses of P. cornucopiae were studied. P. cornucopiae could adapt easily and grow well in Cd-phenanthrene co-contaminated soil. It was found that inoculation of FQ1 enhanced mushroom growth (biomass) and Cd accumulation with the increment of 26.68-43.58% and 14.29-97.67% respectively. Up to 100% and 95.07% of phenanthrene were removed in the bacteria-mushroom (B+M) treatment respectively spiked with 200mg/kg and 500mg/kg phenanthrene. In addition, bacterial inoculation alleviated oxidative stress caused by co-contamination with relative decreases in lipid peroxidation and enzyme activity, including malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). This study demonstrated that the integrated remediation strategy of bacteria and mushroom is an effective and promising method for Cd-phenanthrene co-contaminated soil bioremediation.

  8. Modulation of nerve-evoked contractions by β3-adrenoceptor agonism in human and rat isolated urinary bladder.

    PubMed

    Rouget, Céline; Rekik, Moèz; Camparo, Philippe; Botto, Henry; Rischmann, Pascal; Lluel, Philippe; Palea, Stefano; Westfall, Timothy D

    2014-02-01

    Activation of β3-adrenoceptors has been shown to have a direct relaxant effect on urinary bladder smooth muscle from both rats and humans, however there are very few studies investigating the effects of β3-adrenoceptor agonists on nerve-evoked bladder contractions. Therefore in the current study, the role of β3-adrenoceptors in modulating efferent neurotransmission was evaluated. The effects of β3-adrenoceptor agonism on neurogenic contractions induced by electrical field stimulation (EFS) were compared with effects on contractions induced by exogenous acetylcholine (Ach) and αβ-methylene adenosine triphosphate (αβ-meATP) in order to determine the site of action. Isoproterenol inhibited EFS-induced neurogenic contractions of human bladder (pD2=6.79; Emax=65%). The effect of isoproterenol was selectively inhibited by the β3-adrenoceptor antagonist L-748,337 (pKB=7.34). Contractions induced by exogenous Ach (0.5-1μM) were inhibited 25% by isoproterenol (3μM) while contractions to 10Hz in the same strip were inhibited 67%. The selective β3-adrenoceptor agonist CL-316,243 inhibited EFS-induced neurogenic contractions of rat bladder (pD2=7.83; Emax=65%). The effects of CL-316,243 were inhibited in a concentration dependent manner by L-748,337 (pA2=6.42). Contractions induced by exogenous Ach and αβ-meATP were significantly inhibited by CL-316,243, 29% and 40%, respectively. These results demonstrate that the activation of β3-adrenoceptors inhibits neurogenic contractions of both rat and human urinary bladder. Contractions induced by exogenously applied parasympathetic neurotransmitters are also inhibited by β3-agonism however the effect is clearly less than on neurogenic contractions (particularly in human), suggesting that in addition to a direct effect on smooth muscle, activation of prejunctional β3-adrenoceptors may inhibit neurotransmitter release.

  9. A family of photoswitchable NMDA receptors

    PubMed Central

    Berlin, Shai; Szobota, Stephanie; Reiner, Andreas; Carroll, Elizabeth C; Kienzler, Michael A; Guyon, Alice; Xiao, Tong; Trauner, Dirk; Isacoff, Ehud Y

    2016-01-01

    NMDA receptors, which regulate synaptic strength and are implicated in learning and memory, consist of several subtypes with distinct subunit compositions and functional properties. To enable spatiotemporally defined, rapid and reproducible manipulation of function of specific subtypes, we engineered a set of photoswitchable GluN subunits ('LiGluNs'). Photo-agonism of GluN2A or GluN2B elicits an excitatory drive to hippocampal neurons that can be shaped in time to mimic synaptic activation. Photo-agonism of GluN2A at single dendritic spines evokes spine-specific calcium elevation and expansion, the morphological correlate of LTP. Photo-antagonism of GluN2A alone, or in combination with photo-antagonism of GluN1a, reversibly blocks excitatory synaptic currents, prevents the induction of long-term potentiation and prevents spine expansion. In addition, photo-antagonism in vivo disrupts synaptic pruning of developing retino-tectal projections in larval zebrafish. By providing precise and rapidly reversible optical control of NMDA receptor subtypes, LiGluNs should help unravel the contribution of specific NMDA receptors to synaptic transmission, integration and plasticity. DOI: http://dx.doi.org/10.7554/eLife.12040.001 PMID:26929991

  10. Recent advances in drug action and therapeutics: relevance of novel concepts in G-protein-coupled receptor and signal transduction pharmacology.

    PubMed

    Brink, C B; Harvey, B H; Bodenstein, J; Venter, D P; Oliver, D W

    2004-04-01

    During especially the past two decades many discoveries in biological sciences, and in particular at the molecular and genetic level, have greatly impacted on our knowledge and understanding of drug action and have helped to develop new drugs and therapeutic strategies. Furthermore, many exciting new drugs acting via novel pharmacological mechanisms are expected to be in clinical use in the not too distant future. In this educational review, these concepts are explained and their relevance illustrated by examples of drugs used commonly in the clinical setting, with special reference to the pharmacology of G-protein-coupled receptors. The review also addresses the basic theoretical concepts of full and partial agonism, neutral antagonism, inverse agonism and protean and ligand-selective agonism, and the relevance of these concepts in current rational drug therapy. Moreover, the mechanisms whereby receptor signalling (and eventually response to drugs) is fine-tuned, such as receptor promiscuity, agonist-directed trafficking of receptor signalling, receptor trafficking, receptor 'cross-talk' and regulators of G-protein signalling (RGSs) are discussed, from theory to proposed therapeutic implications. It is concluded that the understanding of molecular receptor and signal transduction pharmacology enables clinicians to improve their effective implementation of current and future pharmacotherapy, ultimately enhancing the quality of life of their patients.

  11. Recent advances in drug action and therapeutics: Relevance of novel concepts in G-protein-coupled receptor and signal transduction pharmacology

    PubMed Central

    Brink, C B; Harvey, B H; Bodenstein, J; Venter, D P; Oliver, D W

    2004-01-01

    Problem statement During especially the past two decades many discoveries in biological sciences, and in particular at the molecular and genetic level, have greatly impacted on our knowledge and understanding of drug action and have helped to develop new drugs and therapeutic strategies. Furthermore, many exciting new drugs acting via novel pharmacological mechanisms are expected to be in clinical use in the not too distant future. Scope and contents of review In this educational review, these concepts are explained and their relevance illustrated by examples of drugs used commonly in the clinical setting, with special reference to the pharmacology of G-protein-coupled receptors. The review also addresses the basic theoretical concepts of full and partial agonism, neutral antagonism, inverse agonism and protean and ligand-selective agonism, and the relevance of these concepts in current rational drug therapy. Moreover, the mechanisms whereby receptor signalling (and eventually response to drugs) is fine-tuned, such as receptor promiscuity, agonist-directed trafficking of receptor signalling, receptor trafficking, receptor ‘cross-talk’ and regulators of G-protein signalling (RGSs) are discussed, from theory to proposed therapeutic implications. Conclusions It is concluded that the understanding of molecular receptor and signal transduction pharmacology enables clinicians to improve their effective implementation of current and future pharmacotherapy, ultimately enhancing the quality of life of their patients. PMID:15025734

  12. A REACTIVITY PATTERN FOR DISCRIMINATION OF ER AGONISM AND ANTAGONISM BASED ON 3-D MOLECULAR ATTRIBUTES

    EPA Science Inventory

    Various models have been developed to predict the relative binding affinity (RBA) of chemicals to estrogen receptors (ER). These models can be used prioritize chemicals for further tiered biological testing to assess the potential for endocrine disruption. One shortcoming of mode...

  13. The evolution of vertebrate opioid receptors

    PubMed Central

    Stevens, Craig W.

    2011-01-01

    The proteins that mediate the analgesic and other effects of opioid drugs and endogenous opioid peptides are known as opioid receptors. Opioid receptors consist of a family of four closely-related proteins belonging to the large superfamily of G-protein coupled receptors. The three types of opioid receptors shown unequivocally to mediate analgesia in animal models are the mu (MOR), delta (DOR), and kappa (KOR) opioid receptor proteins. The role of the fourth member of the opioid receptor family, the nociceptin or orphanin FQ receptor (ORL), is not as clear as hyperalgesia, analgesia, and no effect was reported after administration of ORL agonists. There are now cDNA sequences for all four types of opioid receptors that are expressed in the brain of six species from three different classes of vertebrates. This review presents a comparative analysis of vertebrate opioid receptors using bioinformatics and data from recent human genome studies. Results indicate that opioid receptors arose by gene duplication, that there is a vector of opioid receptor divergence, and that MOR shows evidence of rapid evolution. PMID:19273128

  14. A novel mode-of-action mediated by the fetal muscle nicotinic acetylcholine receptor resulting in developmental toxicity in rats.

    PubMed

    Rasoulpour, Reza J; Ellis-Hutchings, Robert G; Terry, Claire; Millar, Neil S; Zablotny, Carol L; Gibb, Alasdair; Marshall, Valerie; Collins, Toby; Carney, Edward W; Billington, Richard

    2012-06-01

    Sulfoxaflor (X11422208), a novel agricultural molecule, induced fetal effects (forelimb flexure, hindlimb rotation, and bent clavicle) and neonatal death in rats at high doses (≥ 400 ppm in diet); however, no such effects occurred in rabbit dietary studies despite achieving similar maternal and fetal plasma exposure levels. Mode-of-action (MoA) studies were conducted to test the hypothesis that the effects in rats had a single MoA induced by sulfoxaflor agonism on the fetal rat muscle nicotinic acetylcholine receptor (nAChR). The studies included cross-fostering and critical windows of exposure studies in rats, fetal ((α1)(2)β1γδ) and adult ((α1)(2)β1δε) rat and human muscle nAChR in vitro agonism experiments, and neonatal rat phrenic nerve-hemidiaphragm contracture studies. The weight of evidence from these studies supported a novel MoA where sulfoxaflor is an agonist to the fetal, but not adult, rat muscle nAChR and that prolonged agonism on this receptor in fetal/neonatal rats causes sustained striated muscle contracture resulting in concomitant reduction in muscle responsiveness to physiological nerve stimulation. Fetal effects were inducible with as little as 1 day of exposure at the end of gestation, but were rapidly reversible after birth, consistent with a pharmacological MoA. With respect to human relevance, sulfoxaflor was shown to have no agonism on human fetal or adult muscle nAChRs. Taken together, the data support the hypothesis that the developmental effects of sulfoxaflor in rats are mediated via sustained agonism on the fetal muscle nAChR during late fetal development and are considered not relevant to humans.

  15. Arrestin-biased AT1R agonism induces acute catecholamine secretion through TRPC3 coupling

    PubMed Central

    Liu, Chun-Hua; Gong, Zheng; Liang, Zong-Lai; Liu, Zhi-Xin; Yang, Fan; Sun, Yu-Jing; Ma, Ming-Liang; Wang, Yi-Jing; Ji, Chao-Ran; Wang, Yu-Hong; Wang, Mei-Jie; Cui, Fu-Ai; Lin, Amy; Zheng, Wen-Shuai; He, Dong-Fang; Qu, Chang-xiu; Xiao, Peng; Liu, Chuan-Yong; Thomsen, Alex R. B.; Joseph Cahill, Thomas; Kahsai, Alem W.; Yi, Fan; Xiao, Kun-Hong; Xue, Tian; Zhou, Zhuan; Yu, Xiao; Sun, Jin-Peng

    2017-01-01

    Acute hormone secretion triggered by G protein-coupled receptor (GPCR) activation underlies many fundamental physiological processes. GPCR signalling is negatively regulated by β-arrestins, adaptor molecules that also activate different intracellular signalling pathways. Here we reveal that TRV120027, a β-arrestin-1-biased agonist of the angiotensin II receptor type 1 (AT1R), stimulates acute catecholamine secretion through coupling with the transient receptor potential cation channel subfamily C 3 (TRPC3). We show that TRV120027 promotes the recruitment of TRPC3 or phosphoinositide-specific phospholipase C (PLCγ) to the AT1R-β-arrestin-1 signalling complex. Replacing the C-terminal region of β-arrestin-1 with its counterpart on β-arrestin-2 or using a specific TAT-P1 peptide to block the interaction between β-arrestin-1 and PLCγ abolishes TRV120027-induced TRPC3 activation. Taken together, our results show that the GPCR-arrestin complex initiates non-desensitized signalling at the plasma membrane by coupling with ion channels. This fast communication pathway might be a common mechanism of several cellular processes. PMID:28181498

  16. Impact of pre-hospital care on the outcome of children arriving with agonal breathing to a pediatric emergency service in South India

    PubMed Central

    Adhikari, Debasis Das; Mahathi, Krishna; Ghosh, Urmi; Agarwal, Indira; Chacko, Anila; Jacob, Ebor; Ebenezer, Kala

    2016-01-01

    Background: Data on the prehospital interventions received by critically ill children at arrival to Paediatric Emergency Services (PES) is limited in developing countries. This study aims to describe the pre-hospital care scenario, transport and their impact on outcome in non-traumatic, acutely ill children presenting in PES with agonal breathing. Methods: Prospective observational study done on children aged below 15 years arriving in PES with agonal breathing due to non-trauma related causes. Results: Out of 75 children studied, 69% were infants. The duration of illness among 65% of them (75) was less than 3 days. Majority of them (81%) had received treatment prior to arrival. Government sector physicians (72%), half of them (51%) being pediatricians were the major treating doctors. 37% of the children had arrived to the Emergency in an ambulance. Cardiopulmonary Resuscitation (CPR) was given to 27% on arrival in PES. Other interventions included fluid boluses to correct shock (92%) and inotrope infusion (56%). Sepsis (24%) and pneumonia (24%) were the most common diagnoses. Out of 75, 57 (76%) children who were stabilized and shifted to PICU and among them 27 (47%) survived to discharge. Normal blood pressure (p=0.0410) and non-requirement of CPR (0.0047) and inotropic infusion (0.0459) in PES were associated with a higher chance of survival. Conclusion: 36% (27/75) of children who arrived to our PES with agonal breathing survived to hospital discharge. Survival was significantly better among those who did not need CPR. PMID:28217595

  17. Inverse agonism at α2A adrenoceptors augments the hypophagic effect of sibutramine in rats.

    PubMed

    Janhunen, Sanna K; van der Zwaal, Esther M; la Fleur, Susanne E; Adan, Roger A H

    2011-10-01

    Because the use of monoamine reuptake inhibitors as weight-reducing agents is limited by adverse effects, novel antiobesity drugs are needed. We studied acute effects of the noradrenaline (NA) and serotonin (5-HT) reuptake inhibitor sibutramine (SIB), alone and after pretreatment with α1- and α2-adrenoceptor (AR), and 5-HT1/2/7, 5-HT1B and 5-HT2C receptor antagonists in order to determine which ARs and 5-HT receptors act downstream of SIB on feeding and locomotion. Acute effects on caloric and water intake, meal microstructure and locomotion were assessed, using an automated weighing system and telemetry in male rats with restricted 18-h access to Western style diet. SIB 3 mg/kg reduced meal size and frequency, which suggests enhanced within- and postmeal satiety. Imiloxan (α2B-AR), WB4101 (α1-AR), SB-224289 (5-HT1B), and modestly BRL 44408 (α2A/D-AR) attenuated SIB's effect on meal size, suggesting that α2B- and α1-ARs and 5-HT1B receptors mediate within-meal satiety, with a modest role for α2A/D-ARs. Only prazosin (α1/2B/2C-AR) counteracted SIB's effect on meal frequency. At 3 mg/kg, SIB modestly increased locomotion. This effect was blocked by metergoline (5-HT1/2/7), WB4101 (α1-AR), and RX821002 (α2-AR). Interestingly, the α2-AR antagonists atipamezole and RX821002 enhanced SIB's effect on caloric intake, probably due to inverse agonistic actions at α2A-autoreceptors that further enhanced release of NA that regulates caloric intake. Thus, an inverse agonist of presynaptic α2A-ARs might beneficially enhance SIB's weight-reducing effect and offer novel treatment for obesity. All in all, the present data supports the ARs and 5-HT receptors involved in the effects of SIB on different aspects of caloric intake and locomotion.

  18. Health risk assessment for the consumption of fresh and preserved fish (Alosa agone) from Lago di Como (Northern Italy).

    PubMed

    Quadroni, Silvia; Bettinetti, Roberta

    2017-07-01

    Although banned in many countries for decades, DDTs and PCBs still represent a global threat to food safety. As these contaminants are still present in aquatic ecosystems, fish can be an important contributor to their total dietary intake. Alosa agone specimens were sampled over a period of 10 years (from 2006 to 2015) to provide a representative overview of the DDT and PCB levels of Lago di Como, a deep Italian lake where a DDT input due to secondary sources was observed in recent years. The potential health risk from the consumption of both fresh and preserved fish was evaluated. While DDT levels have generally decreased during the monitored period, reaching quite stable levels, PCB concentrations were variable, with values exceeding, in some cases, the European Union limit for human consumption and enabling potential carcinogenic effects. However, typical local processing of this fish species markedly appeared to decrease these contaminant levels, thus making the fish product (called missoltino) a safer food. The results of this work highlighted the need of continuous biomonitoring of those contaminants considered a past issue along with the emergent ones. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Leptin responsiveness restored by amylin agonism in diet-induced obesity: Evidence from nonclinical and clinical studies

    PubMed Central

    Roth, Jonathan D.; Roland, Barbara L.; Cole, Rebecca L.; Trevaskis, James L.; Weyer, Christian; Koda, Joy E.; Anderson, Christen M.; Parkes, David G.; Baron, Alain D.

    2008-01-01

    Body weight is regulated by complex neurohormonal interactions between endocrine signals of long-term adiposity (e.g., leptin, a hypothalamic signal) and short-term satiety (e.g., amylin, a hindbrain signal). We report that concurrent peripheral administration of amylin and leptin elicits synergistic, fat-specific weight loss in leptin-resistant, diet-induced obese rats. Weight loss synergy was specific to amylin treatment, compared with other anorexigenic peptides, and dissociable from amylin's effect on food intake. The addition of leptin after amylin pretreatment elicited further weight loss, compared with either monotherapy condition. In a 24-week randomized, double-blind, clinical proof-of-concept study in overweight/obese subjects, coadministration of recombinant human leptin and the amylin analog pramlintide elicited 12.7% mean weight loss, significantly more than was observed with either treatment alone (P < 0.01). In obese rats, amylin pretreatment partially restored hypothalamic leptin signaling (pSTAT3 immunoreactivity) within the ventromedial, but not the arcuate nucleus and up-regulated basal and leptin-stimulated signaling in the hindbrain area postrema. These findings provide both nonclinical and clinical evidence that amylin agonism restored leptin responsiveness in diet-induced obesity, suggesting that integrated neurohormonal approaches to obesity pharmacotherapy may facilitate greater weight loss by harnessing naturally occurring synergies. PMID:18458326

  20. Cathepsin S Causes Inflammatory Pain via Biased Agonism of PAR2 and TRPV4*

    PubMed Central

    Zhao, Peishen; Lieu, TinaMarie; Barlow, Nicholas; Metcalf, Matthew; Veldhuis, Nicholas A.; Jensen, Dane D.; Kocan, Martina; Sostegni, Silvia; Haerteis, Silke; Baraznenok, Vera; Henderson, Ian; Lindström, Erik; Guerrero-Alba, Raquel; Valdez-Morales, Eduardo E.; Liedtke, Wolfgang; McIntyre, Peter; Vanner, Stephen J.; Korbmacher, Christoph; Bunnett, Nigel W.

    2014-01-01

    Serine proteases such as trypsin and mast cell tryptase cleave protease-activated receptor-2 (PAR2) at R36↓S37 and reveal a tethered ligand that excites nociceptors, causing neurogenic inflammation and pain. Whether proteases that cleave PAR2 at distinct sites are biased agonists that also induce inflammation and pain is unexplored. Cathepsin S (Cat-S) is a lysosomal cysteine protease of antigen-presenting cells that is secreted during inflammation and which retains activity at extracellular pH. We observed that Cat-S cleaved PAR2 at E56↓T57, which removed the canonical tethered ligand and prevented trypsin activation. In HEK and KNRK cell lines and in nociceptive neurons of mouse dorsal root ganglia, Cat-S and a decapeptide mimicking the Cat-S-revealed tethered ligand-stimulated PAR2 coupling to Gαs and formation of cAMP. In contrast to trypsin, Cat-S did not mobilize intracellular Ca2+, activate ERK1/2, recruit β-arrestins, or induce PAR2 endocytosis. Cat-S caused PAR2-dependent activation of transient receptor potential vanilloid 4 (TRPV4) in Xenopus laevis oocytes, HEK cells and nociceptive neurons, and stimulated neuronal hyperexcitability by adenylyl cyclase and protein kinase A-dependent mechanisms. Intraplantar injection of Cat-S caused inflammation and hyperalgesia in mice that was attenuated by PAR2 or TRPV4 deletion and adenylyl cyclase inhibition. Cat-S and PAR2 antagonists suppressed formalin-induced inflammation and pain, which implicates endogenous Cat-S and PAR2 in inflammatory pain. Our results identify Cat-S as a biased agonist of PAR2 that causes PAR2- and TRPV4-dependent inflammation and pain. They expand the role of PAR2 as a mediator of protease-driven inflammatory pain. PMID:25118282

  1. Cathepsin S causes inflammatory pain via biased agonism of PAR2 and TRPV4.

    PubMed

    Zhao, Peishen; Lieu, TinaMarie; Barlow, Nicholas; Metcalf, Matthew; Veldhuis, Nicholas A; Jensen, Dane D; Kocan, Martina; Sostegni, Silvia; Haerteis, Silke; Baraznenok, Vera; Henderson, Ian; Lindström, Erik; Guerrero-Alba, Raquel; Valdez-Morales, Eduardo E; Liedtke, Wolfgang; McIntyre, Peter; Vanner, Stephen J; Korbmacher, Christoph; Bunnett, Nigel W

    2014-09-26

    Serine proteases such as trypsin and mast cell tryptase cleave protease-activated receptor-2 (PAR2) at R(36)↓S(37) and reveal a tethered ligand that excites nociceptors, causing neurogenic inflammation and pain. Whether proteases that cleave PAR2 at distinct sites are biased agonists that also induce inflammation and pain is unexplored. Cathepsin S (Cat-S) is a lysosomal cysteine protease of antigen-presenting cells that is secreted during inflammation and which retains activity at extracellular pH. We observed that Cat-S cleaved PAR2 at E(56)↓T(57), which removed the canonical tethered ligand and prevented trypsin activation. In HEK and KNRK cell lines and in nociceptive neurons of mouse dorsal root ganglia, Cat-S and a decapeptide mimicking the Cat-S-revealed tethered ligand-stimulated PAR2 coupling to Gαs and formation of cAMP. In contrast to trypsin, Cat-S did not mobilize intracellular Ca(2+), activate ERK1/2, recruit β-arrestins, or induce PAR2 endocytosis. Cat-S caused PAR2-dependent activation of transient receptor potential vanilloid 4 (TRPV4) in Xenopus laevis oocytes, HEK cells and nociceptive neurons, and stimulated neuronal hyperexcitability by adenylyl cyclase and protein kinase A-dependent mechanisms. Intraplantar injection of Cat-S caused inflammation and hyperalgesia in mice that was attenuated by PAR2 or TRPV4 deletion and adenylyl cyclase inhibition. Cat-S and PAR2 antagonists suppressed formalin-induced inflammation and pain, which implicates endogenous Cat-S and PAR2 in inflammatory pain. Our results identify Cat-S as a biased agonist of PAR2 that causes PAR2- and TRPV4-dependent inflammation and pain. They expand the role of PAR2 as a mediator of protease-driven inflammatory pain. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Nociceptin/orphanin FQ antagonizes lipopolysaccharide-stimulated proliferation, migration and inflammatory signaling in human glioblastoma U87 cells.

    PubMed

    Bedini, Andrea; Baiula, Monica; Vincelli, Gabriele; Formaggio, Francesco; Lombardi, Sara; Caprini, Marco; Spampinato, Santi

    2017-09-15

    Glioblastoma is among the most aggressive brain tumors and has an exceedingly poor prognosis. Recently, the importance of the tumor microenvironment in glioblastoma cell growth and progression has been emphasized. Toll-like receptor 4 (TLR4) recognizes bacterial lipopolysaccharide (LPS) and endogenous ligands originating from dying cells or the extracellular matrix involved in host defense and in inflammation. G-protein coupled receptors (GPCRs) have gained interest in anti-tumor drug discovery due to the role that they directly or indirectly play by transactivating other receptors, causing cell migration and proliferation. A proteomic analysis showed that the nociceptin receptor (NOPr) is among the GPCRs significantly expressed in glioblastoma cells, including U87 cells. We describe a novel role of the peptide nociceptin (N/OFQ), the endogenous ligand of the NOPr that counteracts cell migration, proliferation and increase in IL-1β mRNA elicited by LPS via TLR4 in U87 glioblastoma cells. Signaling pathways through which N/OFQ inhibits LPS-mediated cell migration and elevation of [Ca(2+)]i require β-arrestin 2 and are sensitive to TNFR-associated factor 6, c-Src and protein kinase C (PKC). LPS-induced cell proliferation and increase in IL-1β mRNA are counteracted by N/OFQ via β-arrestin 2, PKC and extracellular signal-regulated kinase 1/2; furthermore, the contributions of the transcription factors NF-kB and AP-1 were investigated. Independent of LPS, N/OFQ induces a significant increase in cell apoptosis. Contrary to what was observed in other cell models, a prolonged exposure to this endotoxin did not promote any tolerance of the cellular effects above described, including NOPr down-regulation while N/OFQ loses its inhibitory role. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Ligand-directed trafficking of the δ-opioid receptor in vivo: two paths toward analgesic tolerance.

    PubMed

    Pradhan, Amynah A A; Walwyn, Wendy; Nozaki, Chihiro; Filliol, Dominique; Erbs, Eric; Matifas, Audrey; Evans, Christopher; Kieffer, Brigitte L

    2010-12-08

    δ-Opioid receptors are G-protein-coupled receptors that regulate nociceptive and emotional responses. It has been well established that distinct agonists acting at the same G-protein-coupled receptor can engage different signaling or regulatory responses. This concept, known as biased agonism, has important biological and therapeutic implications. Ligand-biased responses are well described in cellular models, however, demonstrating the physiological relevance of biased agonism in vivo remains a major challenge. The aim of this study was to investigate the long-term consequences of ligand-biased trafficking of the δ-opioid receptor, at both the cellular and behavioral level. We used δ agonists with similar binding and analgesic properties, but high [SNC80 ((+)-4-[(αR)-α-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide)]- or low [ARM390 (N,N-diethyl-4-(phenyl-piperidin-4-ylidenemethyl)-benzamide)]-internalization potencies. As we found previously, a single SNC80-but not ARM390-administration triggered acute desensitization of the analgesic response in mice. However, daily injections of either compound over 5 d produced full analgesic tolerance. SNC80-tolerant animals showed widespread receptor downregulation, and tolerance to analgesic, locomotor and anxiolytic effects of the agonist. Hence, internalization-dependent tolerance developed, as a result of generalized receptor degradation. In contrast, ARM390-tolerant mice showed intact receptor expression, but δ-opioid receptor coupling to Ca²+ channels was abolished in dorsal root ganglia. Concomitantly, tolerance developed for agonist-induced analgesia, but not locomotor or anxiolytic responses. Therefore, internalization-independent tolerance was produced by anatomically restricted adaptations leading to pain-specific tolerance. Hence, ligand-directed receptor trafficking of the δ-opioid receptor engages distinct adaptive responses, and this study reveals a novel aspect of

  4. Ligand-Directed Trafficking of the δ-Opioid Receptor In Vivo: Two Paths Toward Analgesic Tolerance

    PubMed Central

    Pradhan, Amynah A. A.; Walwyn, Wendy; Nozaki, Chihiro; Filliol, Dominique; Erbs, Eric; Matifas, Audrey; Evans, Christopher; Kieffer, Brigitte L.

    2011-01-01

    δ-Opioid receptors are G-protein-coupled receptors that regulate nociceptive and emotional responses. It has been well established that distinct agonists acting at the same G-protein-coupled receptor can engage different signaling or regulatory responses. This concept, known as biased agonism, has important biological and therapeutic implications. Ligand-biased responses are well described in cellular models, however, demonstrating the physiological relevance of biased agonism in vivo remains a major challenge. The aim of this study was to investigate the long-term consequences of ligand-biased trafficking of the δ-opioid receptor, at both the cellular and behavioral level. We used δ agonists with similar binding and analgesic properties, but high [SNC80 ((+)-4-[(αR)-α-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide)]- or low [ARM390 (N,N-diethyl-4-(phenyl-piperidin-4-ylidenemethyl)-benzamide)]-internalization potencies. As we found previously, a single SNC80—but not ARM390—administration triggered acute desensitization of the analgesic response in mice. However, daily injections of either compound over 5 d produced full analgesic tolerance. SNC80-tolerant animals showed widespread receptor downregulation, and tolerance to analgesic, locomotor and anxiolytic effects of the agonist. Hence, internalization-dependent tolerance developed, as a result of generalized receptor degradation. In contrast, ARM390-tolerant mice showed intact receptor expression, but δ-opioid receptor coupling to Ca2+ channels was abolished in dorsal root ganglia. Concomitantly, tolerance developed for agonist-induced analgesia, but not locomotor or anxiolytic responses. Therefore, internalization-independent tolerance was produced by anatomically restricted adaptations leading to pain-specific tolerance. Hence, ligand-directed receptor trafficking of the δ-opioid receptor engages distinct adaptive responses, and this study reveals a novel aspect of

  5. Farnesoid-X Receptor (FXR) as a Promising Pharmaceutical Target in Atherosclerosis.

    PubMed

    Moris, Demetrios; Giaginis, Constantinos; Tsourouflis, Gerasimos; Theocharis, Stamatios

    2017-05-31

    Atherosclerosis (AS) is a major cause of death and morbidity in Western world and is strongly connected with atherogenic lipoproteins and inflammation. Bile acids (BA) act as activating signals of endogenous ligands such as Farnesoid-X receptor (FXR). Primary data indicate a potential role of FXR in AS. The therapeutic value of FXR ligands in AS is unknown. With the present review, we analyzed the efficacy of FXR agonists as a therapeutic modalities against AS. In this aspect, we performed an electronic search through Pub- Med/MEDLINE database by using the key terms: FXR*, Farnesoid X receptor*, atherosclerosis*, bile acids* and agonism*. According to our analysis, the FXR seems to be a promising therapeutic target in the atherosclerosis natural history. FXR agonism could exert protective effects in the development and evolution of AS. However, concomitant side effects such as the reduction of plasma HDL have been reported. Finally, results from undergoing clinical trials with synthetic FXR agonists will shed more light to the precise role of FXR agonism in AS treatment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK.

    PubMed

    Beiroa, Daniel; Imbernon, Monica; Gallego, Rosalía; Senra, Ana; Herranz, Daniel; Villarroya, Francesc; Serrano, Manuel; Fernø, Johan; Salvador, Javier; Escalada, Javier; Dieguez, Carlos; Lopez, Miguel; Frühbeck, Gema; Nogueiras, Ruben

    2014-10-01

    GLP-1 receptor (GLP-1R) is widely located throughout the brain, but the precise molecular mechanisms mediating the actions of GLP-1 and its long-acting analogs on adipose tissue as well as the brain areas responsible for these interactions remain largely unknown. We found that central injection of a clinically used GLP-1R agonist, liraglutide, in mice stimulates brown adipose tissue (BAT) thermogenesis and adipocyte browning independent of nutrient intake. The mechanism controlling these actions is located in the hypothalamic ventromedial nucleus (VMH), and the activation of AMPK in this area is sufficient to blunt both central liraglutide-induced thermogenesis and adipocyte browning. The decreased body weight caused by the central injection of liraglutide in other hypothalamic sites was sufficiently explained by the suppression of food intake. In a longitudinal study involving obese type 2 diabetic patients treated for 1 year with GLP-1R agonists, both exenatide and liraglutide increased energy expenditure. Although the results do not exclude the possibility that extrahypothalamic areas are also modulating the effects of GLP-1R agonists, the data indicate that long-acting GLP-1R agonists influence body weight by regulating either food intake or energy expenditure through various hypothalamic sites and that these mechanisms might be clinically relevant. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  7. Free-fatty acid receptor-4 (GPR120): Cellular and molecular function and its role in metabolic disorders.

    PubMed

    Moniri, Nader H

    2016-06-15

    Over the last decade, a subfamily of G protein-coupled receptors that are agonized by endogenous and dietary free-fatty acids (FFA) has been discovered. These free-fatty acid receptors include FFA2 and FFA3, which are agonized by short-chained FFA, as well as FFA1 and FFA4, which are agonized by medium-to-long chained FFA. Ligands for FFA1 and FFA4 comprise the family of long chain polyunsaturated omega-3 fatty acids including α-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), suggesting that many of the long-known beneficial effects of these fats may be receptor mediated. In this regard, FFA4 has gathered considerable interest due to its role in ameliorating inflammation, promoting insulin sensitization, and regulating energy metabolism in response to FFA ligands. The goal of this review is to summarize the body of evidence in regard to FFA4 signal transduction, its mechanisms of regulation, and its functional role in a variety of tissues. In addition, recent endeavors toward discovery of small molecules that modulate FFA4 activity are also presented. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Screening and Evaluation of the Bioremediation Potential of Cu/Zn-Resistant, Autochthonous Acinetobacter sp. FQ-44 from Sonchus oleraceus L.

    PubMed Central

    Fang, Qing; Fan, Zhengqiu; Xie, Yujing; Wang, Xiangrong; Li, Kun; Liu, Yafeng

    2016-01-01

    The quest for new, promising and indigenous plant growth-promoting rhizobacteria and a deeper understanding of their relationship with plants are important considerations in the improvement of phytoremediation. This study focuses on the screening of plant beneficial Cu/Zn-resistant strains and assessment of their bioremediation potential (metal solubilization/tolerance/biosorption and effects on growth of Brassica napus seedlings) to identify suitable rhizobacteria and examine their roles in microbes-assisted phytoremediation. Sixty Cu/Zn-resistant rhizobacteria were initially isolated from Sonchus oleraceus grown at a multi-metal-polluted site in Shanghai, China. From these strains, 19 isolates that were all resistant to 300 mg⋅L-1 Cu as well as 300 mg⋅L-1 Zn, and could simultaneously grow on Dworkin–Foster salt minimal medium containing 1-aminocyclopropane-1-carboxylic acid were preliminarily selected. Of those 19 isolates, 10 isolates with superior plant growth-promoting properties (indole-3-acetic acid production, siderophore production, and insoluble phosphate solubilization) were secondly chosen and further evaluated to identify those with the highest bioremediation potential and capacity for bioaugmentation. Strain S44, identified as Acinetobacter sp. FQ-44 based on 16S rDNA sequencing, was specifically chosen as the most favorable strain owing to its strong capabilities to (1) promote the growth of rape seedlings (significantly increased root length, shoot length, and fresh weight by 92.60%, 31.00%, and 41.96%, respectively) under gnotobiotic conditions; (2) tolerate up to 1000 mg⋅L-1 Cu and 800 mg⋅L-1 Zn; (3) mobilize the highest concentrations of water-soluble Cu, Zn, Pb, and Fe (16.99, 0.98, 0.08, and 3.03 mg⋅L-1, respectively); and (4) adsorb the greatest quantities of Cu and Zn (7.53 and 6.61 mg⋅g-1 dry cell, respectively). Our findings suggest that Acinetobacter sp. FQ-44 could be exploited for bacteria-assisted phytoextraction. Moreover

  9. Screening and Evaluation of the Bioremediation Potential of Cu/Zn-Resistant, Autochthonous Acinetobacter sp. FQ-44 from Sonchus oleraceus L.

    PubMed

    Fang, Qing; Fan, Zhengqiu; Xie, Yujing; Wang, Xiangrong; Li, Kun; Liu, Yafeng

    2016-01-01

    The quest for new, promising and indigenous plant growth-promoting rhizobacteria and a deeper understanding of their relationship with plants are important considerations in the improvement of phytoremediation. This study focuses on the screening of plant beneficial Cu/Zn-resistant strains and assessment of their bioremediation potential (metal solubilization/tolerance/biosorption and effects on growth of Brassica napus seedlings) to identify suitable rhizobacteria and examine their roles in microbes-assisted phytoremediation. Sixty Cu/Zn-resistant rhizobacteria were initially isolated from Sonchus oleraceus grown at a multi-metal-polluted site in Shanghai, China. From these strains, 19 isolates that were all resistant to 300 mg⋅L(-1) Cu as well as 300 mg⋅L(-1) Zn, and could simultaneously grow on Dworkin-Foster salt minimal medium containing 1-aminocyclopropane-1-carboxylic acid were preliminarily selected. Of those 19 isolates, 10 isolates with superior plant growth-promoting properties (indole-3-acetic acid production, siderophore production, and insoluble phosphate solubilization) were secondly chosen and further evaluated to identify those with the highest bioremediation potential and capacity for bioaugmentation. Strain S44, identified as Acinetobacter sp. FQ-44 based on 16S rDNA sequencing, was specifically chosen as the most favorable strain owing to its strong capabilities to (1) promote the growth of rape seedlings (significantly increased root length, shoot length, and fresh weight by 92.60%, 31.00%, and 41.96%, respectively) under gnotobiotic conditions; (2) tolerate up to 1000 mg⋅L(-1) Cu and 800 mg⋅L(-1) Zn; (3) mobilize the highest concentrations of water-soluble Cu, Zn, Pb, and Fe (16.99, 0.98, 0.08, and 3.03 mg⋅L(-1), respectively); and (4) adsorb the greatest quantities of Cu and Zn (7.53 and 6.61 mg⋅g(-1) dry cell, respectively). Our findings suggest that Acinetobacter sp. FQ-44 could be exploited for bacteria-assisted phytoextraction

  10. Reduction in arterial stiffness and vascular age by naltrexone-induced interruption of opiate agonism: a cohort study

    PubMed Central

    Reece, Albert Stuart; Hulse, Gary Kenneth

    2013-01-01

    Objective To prospectively assess if opiate antagonist treatment or the opiate-free status could reverse opiate-related vasculopathy. Design Longitudinal Open Observational, Serial ‘N of One’, over 6.5 years under various treatment conditions: opiate dependence, naltrexone and opiate-free. Setting Primary care, Australia. Participants 20 opiate-dependent patients (16 males: 16 cases of buprenorphine 4.11±1.17 mg, two of methadone 57.5±12.5 mg and two of heroin 0.75±0.25 g). Intervention Studies of central arterial stiffness and vascular reference age (RA) were performed longitudinally by SphygmoCor Pulse Wave Analysis (AtCor, Sydney). Primary outcomes Primary outcome was vascular age and arterial stiffness accrual under different treatment conditions. Results The mean chronological age (CA) was 33.62±2.03 years. The opiate-free condition was associated with a lower apparent vascular age both in itself (males: p=0.0402 and females: p=0.0360) and in interaction with time (males: p=0.0001 and females: p=0.0004), and confirmed with other measures of arterial stiffness. The mean modelled RA was 38.82, 37.73 and 35.05 years in the opiate, naltrexone and opiate-free conditions, respectively. The opiate-free condition was superior to opiate agonism after full multivariate adjustment (p=0.0131), with modelled RA/CA of 1.0173, 0.9563 and 0.8985 (reductions of 6.1% and 11.9%, respectively). Conclusions Data demonstrate that opiate-free status improves vascular age and arterial stiffness in previous chronic opiate users. The role of opiate antagonist treatment in achieving these outcomes requires future clarification and offers hope of novel therapeutic remediation. PMID:23524044

  11. TRPV1 agonism inhibits endothelial cell inflammation via activation of eNOS/NO pathway.

    PubMed

    Wang, Youping; Cui, Lin; Xu, Hui; Liu, Suxiao; Zhu, Feiyun; Yan, Fengna; Shen, Si; Zhu, Mingjun

    2017-05-01

    Transient receptor potential vanilloid type 1 channel (TRPV1) is found to be expressed in endothelial cells (ECs) and activate endothelial nitric oxide synthase (eNOS). Recent studies implicate TRPV1 in attenuating inflammatory responses. However, the mechanisms underlying the beneficial effects remain unclear. In this study, we investigated whether TRPV1 suppresses inflammatory responses of ECs via eNOS/NO pathway. Human umbilical vein endothelial cells (HUVECs) and renal microvascular endothelial cells (MVECs) isolated from deoxycorticosterone (DOCA)-salt hypertensive mice were cultured in the presence of capsaicin (CAP, a specific TRPV1 agonist) with or without the specific inhibitor of TRPV1, NOS, or Ca(2+)-dependent phosphatidylinositol 3-kinase (PI3K)/Akt pathway, before lipopolysaccharide (LPS) stimulation. NO metabolites, protein expression, and inflammatory molecules were evaluated by Griess assay and immune assay-based multiplex analysis, respectively. Monocyte adhesion was determined by measuring the fluorescently labeled human monocytes attached to LPS-stimulated ECs. In HUVECs, treatment with CAP increased NO production, and CAP-induced NO production was accompanied by increased eNOS(ser1177) phosphorylation. Additionally, CAP attenuated LPS-induced cytokine and chemokine production, adhesion molecule expression, activation of NF-κB, and monocyte adhesion in HUVECs, and these effects were abrogated by the inhibition of TRPV1, NOS, or Ca(2+)-dependent PI3K/Akt pathway. Moreover, these protective actions of TRPV1 were also observed in renal MVECs isolated from DOCA-salt hypertensive mice. Our results indicate that TRPV1 activation suppresses the inflammatory response of ECs via the activation of Ca(2+)/PI3K/Akt/eNOS/NO pathway, the protective effects are also documented in ECs derived from salt-sensitive hypertensive mice. Copyright © 2017. Published by Elsevier B.V.

  12. Oxaliplatin neurotoxicity involves peroxisome alterations. PPARγ agonism as preventive pharmacological approach.

    PubMed

    Zanardelli, Matteo; Micheli, Laura; Cinci, Lorenzo; Failli, Paola; Ghelardini, Carla; Di Cesare Mannelli, Lorenzo

    2014-01-01

    The development of neuropathic syndromes is an important, dose limiting side effect of anticancer agents like platinum derivates, taxanes and vinca alkaloids. The causes of neurotoxicity are still unclear but the impairment of the oxidative equilibrium is strictly related to pain. Two intracellular organelles, mitochondria and peroxisomes cooperate to the maintaining of the redox cellular state. Whereas a relationship between chemotherapy-dependent mitochondrial alteration and neuropathy has been established, the role of peroxisome is poor explored. In order to study the mechanisms of oxaliplatin-induced neurotoxicity, peroxisomal involvement was evaluated in vitro and in vivo. In primary rat astrocyte cell culture, oxaliplatin (10 µM for 48 h or 1 µM for 5 days) increased the number of peroxisomes, nevertheless expression and functionality of catalase, the most important antioxidant defense enzyme in mammalian peroxisomes, were significantly reduced. Five day incubation with the selective Peroxisome Proliferator Activated Receptor-γ (PPAR-γ) antagonist G3335 (30 µM) induced a similar peroxisomal impairment suggesting a relationship between PPARγ signaling and oxaliplatin neurotoxicity. The PPARγ agonist rosiglitazone (10 µM) reduced the harmful effects induced both by G3335 and oxaliplatin. In vivo, in a rat model of oxaliplatin induced neuropathy, a repeated treatment with rosiglitazone (3 and 10 mg kg(-1) per os) significantly reduced neuropathic pain evoked by noxious (Paw pressure test) and non-noxious (Cold plate test) stimuli. The behavioral effect paralleled with the prevention of catalase impairment induced by oxaliplatin in dorsal root ganglia. In the spinal cord, catalase protection was showed by the lower rosiglitazone dosage without effect on the astrocyte density increase induced by oxaliplatin. Rosiglitazone did not alter the oxaliplatin-induced mortality of the human colon cancer cell line HT-29. These results highlight the role of

  13. Agonist-directed signaling of serotonin 5-HT2C receptors: differences between serotonin and lysergic acid diethylamide (LSD).

    PubMed

    Backstrom, J R; Chang, M S; Chu, H; Niswender, C M; Sanders-Bush, E

    1999-08-01

    For more than 40 years the hallucinogen lysergic acid diethylamide (LSD) has been known to modify serotonin neurotransmission. With the advent of molecular and cellular techniques, we are beginning to understand the complexity of LSD's actions at the serotonin 5-HT2 family of receptors. Here, we discuss evidence that signaling of LSD at 5-HT2C receptors differs from the endogenous agonist serotonin. In addition, RNA editing of the 5-HT2C receptor dramatically alters the ability of LSD to stimulate phosphatidylinositol signaling. These findings provide a unique opportunity to understand the mechanism(s) of partial agonism.

  14. Genome shuffling of Bacillus amyloliquefaciens for improving antimicrobial lipopeptide production and an analysis of relative gene expression using FQ RT-PCR.

    PubMed

    Zhao, Junfeng; Li, Yuanhong; Zhang, Chong; Yao, Zhengying; Zhang, Li; Bie, Xiaomei; Lu, Fengxia; Lu, Zhaoxin

    2012-06-01

    Genome shuffling is an efficient approach for the rapid improvement of the yield of secondary metabolites. This study was undertaken to enhance the yield of surfactin produced by Bacillus amyloliquefaciens ES-2-4 using genome shuffling and to examine changes in SrfA expression of the improved phenotype at the transcriptional level. Six strains with subtle improvements in lipopeptide yield were obtained from populations generated by ultraviolet irradiation, nitrosoguanidine, and ion beam mutagenesis. These strains were then subjected to recursive protoplast fusion. A strain library that was likely to yield positive colonies was created by fusing the lethal protoplasts obtained from both ultraviolet irradiation and heat treatments. After two rounds of genome shuffling, a high-yield recombinant F2-38 strain that exhibited 3.5- and 10.3-fold increases in surfactin production in shake flask and fermenter respectively, was obtained. Comparative analysis of synthetase gene expression was conducted between the initial and shuffled strains using FQ (fluorescent quantitation) RT-PCR. Delta CT (threshold cycle) relative quantitation analysis revealed that surfactin synthetase gene (srfA) expression at the transcriptional level in the F2-38 strain was 15.7-fold greater than in the ES-2-4 wild-type. The shuffled strain has a potential application in food and pharmaceutical industries. At the same time, the analysis of improved phenotypes will provide more valuable data for inverse metabolic engineering.

  15. Functional optimization of agonistic antibodies to OX40 receptor with novel Fc mutations to promote antibody multimerization.

    PubMed

    Zhang, Di; Armstrong, Anthony A; Tam, Susan H; McCarthy, Stephen G; Luo, Jinquan; Gilliland, Gary L; Chiu, Mark L

    2017-10-01

    Immunostimulatory receptors belonging to the tumor necrosis factor receptor (TNFR) superfamily are emerging as promising targets for cancer immunotherapies. To optimize the agonism of therapeutic antibodies to these receptors, Fc engineering of antibodies was applied to facilitate the clustering of cell surface TNFRs to activate downstream signaling pathways. One engineering strategy is to identify Fc mutations that facilitate antibody multimerization on the cell surface directly. From the analyses of the crystal packing of IgG1 structures, we identified a novel set of Fc mutations, T437R and K248E, that facilitated antibody multimerization upon binding to antigens on cell surface. In a NF-κB reporter assay, the engineered T437R/K248E mutations could facilitate enhanced agonism of an anti-OX40 antibody without the dependence on FcγRIIB crosslinking. Nonetheless, the presence of cells expressing FcγRIIB could facilitate a boost of the agonism of the engineered antibody with mutations on IgG1 Fc, but not on the silent IgG2σ Fc. The Fc engineered antibody also showed enhanced effector functions, including antibody-dependent cell-meditated cytotoxicity, antibody-dependent cellular phagocytosis, and complement-dependent cytotoxicity, depending on the IgG subtypes. Also, the engineered antibodies showed normal FcRn binding and pharmacokinetic profiles in mice. In summary, this study elucidated a novel Fc engineering approach to promote antibody multimerization on a cell surface, which could enhance agonism and improve effector function for anti-TNFR antibodies as well as other therapeutic antibodies.

  16. Agonist signalling properties of radiotracers used for imaging of dopamine D2/3 receptors

    PubMed Central

    2014-01-01

    Background Dopamine D2/3 receptor (D2/3R) agonist radiopharmaceuticals are considered superior to antagonists to detect dopamine release, e.g. induced by amphetamines. Agonists bind preferentially to the high-affinity state of the dopamine D2R, which has been proposed as the reason why agonists are more sensitive to detect dopamine release than antagonist radiopharmaceuticals, but this theory has been challenged. Interestingly, not all agonists similarly activate the classic cyclic adenosine mono phosphate (cAMP) and the ?-arrestin-2 pathway, some stimulate preferentially one of these pathways; a phenomenon called biased agonism. Because these pathways can be affected separately by pathologies or drugs (including dopamine releasers), it is important to know how agonist radiotracers act on these pathways. Therefore, we characterized the intracellular signalling of the well-known D2/3R agonist radiopharmaceuticals NPA and PHNO and of several novel D2/3R agonists. Methods cAMP accumulation and ?-arrestin-2 recruitment were measured on cells expressing human D2R. Results All tested agonists showed (almost) full agonism in both pathways. Conclusions The tested D2/3R agonist radiopharmaceuticals did not exhibit biased agonism in vitro. Consequently, it is likely that drugs (including psychostimulants like amphetamines) and/or pathologies that influence the cAMP and/or the ?-arrestin-2 pathway may influence the binding of these radiopharmaceuticals. PMID:25977878

  17. Central N/OFQ-NOP Receptor System in Pain Modulation

    PubMed Central

    Kiguchi, Norikazu; Ding, Huiping; Ko, Mei-Chuan

    2016-01-01

    It has been two decades since the peptide, nociceptin/orphanin FQ (N/OFQ), and its cognate (NOP) receptor were discovered. Although NOP receptor activation causes a similar pattern of intracellular actions as mu opioid (MOP) receptors, NOP receptor-mediated pain modulation in rodents are more complicated than MOP receptor activation. In this review, we highlight the functional evidence of spinal, supraspinal, and systemic actions of NOP receptor agonists for regulating pain. In rodents, effects of the N/OFQ-NOP receptor system in spinal and supraspinal sites for modulating pain are bidirectional depending on the doses, assays, and pain modalities. The net effect of systemically administered NOP receptor agonists may depend on relative contribution of spinal and supraspinal actions of the N/OFQ-NOP receptor signaling in rodents under different pain states. In stark contrast, NOP receptor agonists produce only antinociception and antihypersensitivity in spinal and supraspinal regions of nonhuman primates regardless of doses and assays. More importantly, NOP receptor agonists and a few bifunctional NOP/MOP receptor agonists do not exhibit reinforcing effects (abuse liability), respiratory depression, itch pruritus, nor do they delay the gastrointestinal transit function (constipation) in nonhuman primates. Depending upon their intrinsic efficacies for activating NOP and MOP receptors, bifunctional NOP/MOP receptor agonists warrant additional investigation in primates regarding their side effect profiles. Nevertheless, NOP receptor-related agonists display a much wider therapeutic window as compared to that of MOP receptor agonists in primates. Both selective NOP receptor agonists and bifunctional NOP/MOP receptor agonists hold a great potential as effective and safe analgesics without typical opioid-associated side effects in humans. PMID:26920014

  18. Central N/OFQ-NOP Receptor System in Pain Modulation.

    PubMed

    Kiguchi, Norikazu; Ding, Huiping; Ko, Mei-Chuan

    2016-01-01

    Two decades have passed since the peptide, nociceptin/orphanin FQ (N/OFQ), and its cognate (NOP) receptor were discovered. Although NOP receptor activation causes a similar pattern of intracellular actions as mu-opioid (MOP) receptors, NOP receptor-mediated pain modulation in rodents are more complicated than MOP receptor activation. This review highlights the functional evidence of spinal, supraspinal, and systemic actions of NOP receptor agonists for regulating pain. In rodents, effects of the N/OFQ-NOP receptor system in spinal and supraspinal sites for modulating pain are bidirectional depending on the doses, assays, and pain modalities. The net effect of systemically administered NOP receptor agonists may depend on relative contribution of spinal and supraspinal actions of the N/OFQ-NOP receptor signaling in rodents under different pain states. In stark contrast, NOP receptor agonists produce only antinociception and antihypersensitivity in spinal and supraspinal regions of nonhuman primates regardless of doses and assays. More importantly, NOP receptor agonists and a few bifunctional NOP/MOP receptor agonists do not exhibit reinforcing effects (abuse liability), respiratory depression, itch pruritus, nor do they delay the gastrointestinal transit function (constipation) in nonhuman primates. Depending upon their intrinsic efficacies for activating NOP and MOP receptors, bifunctional NOP/MOP receptor agonists warrant additional investigation in primates regarding their side effect profiles. Nevertheless, NOP receptor-related agonists display a much wider therapeutic window as compared to that of MOP receptor agonists in primates. Both selective NOP receptor agonists and bifunctional NOP/MOP receptor agonists hold great potential as effective and safe analgesics without typical opioid-associated side effects in humans.

  19. Agonist versus antagonist action of ATP at the P2Y4 receptor is determined by the second extracellular loop.

    PubMed

    Herold, Christopher L; Qi, Ai-Dong; Harden, T Kendall; Nicholas, Robert A

    2004-03-19

    UTP is a potent full agonist at both the human P2Y(4) (hP2Y(4)) and rat P2Y(4) (rP2Y(4)) receptor. In contrast, ATP is a potent full agonist at the rP2Y(4) receptor but is a similarly potent competitive antagonist at the hP2Y(4) receptor. To delineate the structural determinants of agonism versus antagonism in these species homologues, we expressed a series of human/rat P2Y(4) receptor chimeras in 1321N1 human astrocytoma cells and assessed the capacity of ATP and UTP to mobilize intracellular Ca(2+). Replacement of the NH(2) terminus of the hP2Y(4) receptor with the corresponding region of the rP2Y(4) receptor resulted in a receptor that was activated weakly by ATP, whereas replacement of the second extracellular loop (EL2) of the hP2Y(4) receptor with that of the rP2Y(4) receptor yielded a chimeric receptor that was activated fully by UTP and near fully by ATP, albeit with lower potencies than those observed at the rP2Y(4) receptor. These potencies were increased, and ATP was converted to a full agonist by replacing both the NH(2) terminus and EL2 in the hP2Y(4) receptor with the corresponding regions from the rP2Y(4) receptor. Mutational analysis of the five divergent amino acids in EL2 between the two receptors revealed that three amino acids, Asn-177, Ile-183, and Leu-190, contribute to the capacity of EL2 to impart ATP agonism. Taken together, these results suggest that the second extracellular loop and the NH(2) terminus form a functional motif that plays a key role in determining whether ATP functions as an agonist or antagonist at mammalian P2Y(4) receptors.

  20. Agonist-directed desensitization of the β2-adrenergic receptor.

    PubMed

    Goral, Vasiliy; Jin, Yan; Sun, Haiyan; Ferrie, Ann M; Wu, Qi; Fang, Ye

    2011-04-26

    The β(2)-adrenergic receptor (β(2)AR) agonists with reduced tachyphylaxis may offer new therapeutic agents with improved tolerance profile. However, receptor desensitization assays are often inferred at the single signaling molecule level, thus ligand-directed desensitization is poorly understood. Here we report a label-free biosensor whole cell assay with microfluidics to determine ligand-directed desensitization of the β(2)AR. Together with mechanistic deconvolution using small molecule inhibitors, the receptor desensitization and resensitization patterns under the short-term agonist exposure manifested the long-acting agonism of salmeterol, and differentiated the mechanisms of agonist-directed desensitization between a full agonist epinephrine and a partial agonist pindolol. This study reveals the cellular mechanisms of agonist-selective β(2)AR desensitization at the whole cell level.

  1. Agonist-Directed Desensitization of the β2-Adrenergic Receptor

    PubMed Central

    Goral, Vasiliy; Jin, Yan; Sun, Haiyan; Ferrie, Ann M.; Wu, Qi; Fang, Ye

    2011-01-01

    The β2-adrenergic receptor (β2AR) agonists with reduced tachyphylaxis may offer new therapeutic agents with improved tolerance profile. However, receptor desensitization assays are often inferred at the single signaling molecule level, thus ligand-directed desensitization is poorly understood. Here we report a label-free biosensor whole cell assay with microfluidics to determine ligand-directed desensitization of the β2AR. Together with mechanistic deconvolution using small molecule inhibitors, the receptor desensitization and resensitization patterns under the short-term agonist exposure manifested the long-acting agonism of salmeterol, and differentiated the mechanisms of agonist-directed desensitization between a full agonist epinephrine and a partial agonist pindolol. This study reveals the cellular mechanisms of agonist-selective β2AR desensitization at the whole cell level. PMID:21541288

  2. [Agonism and antagonism].

    PubMed

    Rey, Anne-Lise

    2016-12-01

    This essay considers dissensus as the starting point for the construction of a common epistemic space rather than as the acknowledgement of an irreducible disagreement. In the argumentative confrontation and disagreements, we do not want to identify a process which might lead to agreement through rational debate. The aim of this essay is rather to understand how dissensus leads to the constitution of plural communities. It discusses a certain number of texts of political philosophy (Habermas, Mouffe, etc.), where the notion of agreement is crucial to an analysis of argumentative confrontations. This essay uses the hypothesis to analyse the circulation of Leibniz's dynamics in his correspondence with De Volder. This perspective shows eventually that dissensus is not an obstacle but the basis on which multiple circulations of theories are possible.

  3. Functional plasticity of the N/OFQ-NOP receptor system determines analgesic properties of NOP receptor agonists

    PubMed Central

    Schröder, W; Lambert, D G; Ko, M C; Koch, T

    2014-01-01

    Despite high sequence similarity between NOP (nociceptin/orphanin FQ opioid peptide) and opioid receptors, marked differences in endogenous ligand selectivity, signal transduction, phosphorylation, desensitization, internalization and trafficking have been identified; underscoring the evolutionary difference between NOP and opioid receptors. Activation of NOP receptors affects nociceptive transmission in a site-specific manner, with antinociceptive effects prevailing after peripheral and spinal activation, and pronociceptive effects after supraspinal activation in rodents. The net effect of systemically administered NOP receptor agonists on nociception is proposed to depend on the relative contribution of peripheral, spinal and supraspinal activation, and this may depend on experimental conditions. Functional expression and regulation of NOP receptors at peripheral and central sites of the nociceptive pathway exhibits a high degree of plasticity under conditions of neuropathic and inflammatory pain. In rodents, systemically administered NOP receptor agonists exerted antihypersensitive effects in models of neuropathic and inflammatory pain. However, they were largely ineffective in acute pain while concomitantly evoking severe motor side effects. In contrast, systemic administration of NOP receptor agonists to non-human primates (NHPs) exerted potent and efficacious antinociception in the absence of motor and sedative side effects. The reason for this species difference with respect to antinociceptive efficacy and tolerability is not clear. Moreover, co-activation of NOP and μ-opioid peptide (MOP) receptors synergistically produced antinociception in NHPs. Hence, both selective NOP receptor as well as NOP/MOP receptor agonists may hold potential for clinical use as analgesics effective in conditions of acute and chronic pain. PMID:24762001

  4. Buprenorphine-induced antinociception is mediated by mu-opioid receptors and compromised by concomitant activation of opioid receptor-like receptors.

    PubMed

    Lutfy, Kabirullah; Eitan, Shoshana; Bryant, Camron D; Yang, Yu C; Saliminejad, Nazli; Walwyn, Wendy; Kieffer, Brigitte L; Takeshima, Hiroshi; Carroll, F Ivy; Maidment, Nigel T; Evans, Christopher J

    2003-11-12

    Buprenorphine is a mixed opioid receptor agonist-antagonist used clinically for maintenance therapy in opiate addicts and pain management. Dose-response curves for buprenorphine-induced antinociception display ceiling effects or are bell shaped, which have been attributed to the partial agonist activity of buprenorphine at opioid receptors. Recently, buprenorphine has been shown to activate opioid receptor-like (ORL-1) receptors, also known as OP4 receptors. Here we demonstrate that buprenorphine, but not morphine, activates mitogen-activated protein kinase and Akt via ORL-1 receptors. Because the ORL-1 receptor agonist orphanin FQ/nociceptin blocks opioid-induced antinociception, we tested the hypothesis that buprenorphine-induced antinociception might be compromised by concomitant activation of ORL-1 receptors. In support of this hypothesis, the antinociceptive effect of buprenorphine, but not morphine, was markedly enhanced in mice lacking ORL-1 receptors using the tail-flick assay. Additional support for a modulatory role for ORL-1 receptors in buprenorphine-induced antinociception was that coadministration of J-113397, an ORL-1 receptor antagonist, enhanced the antinociceptive efficacy of buprenorphine in wild-type mice but not in mice lacking ORL-1 receptors. The ORL-1 antagonist also eliminated the bell-shaped dose-response curve for buprenorphine-induced antinociception in wild-type mice. Although buprenorphine has been shown to interact with multiple opioid receptors, mice lacking micro-opioid receptors failed to exhibit antinociception after buprenorphine administration. Our results indicate that the antinociceptive effect of buprenorphine in mice is micro-opioid receptor-mediated yet severely compromised by concomitant activation of ORL-1 receptors.

  5. Nuclear receptors regulate lipid metabolism and oxidative stress markers in chondrocytes.

    PubMed

    Ratneswaran, Anusha; Sun, Margaret Man-Ger; Dupuis, Holly; Sawyez, Cynthia; Borradaile, Nica; Beier, Frank

    2017-04-01

    Joint homeostasis failure can result in osteoarthritis (OA). Currently, there are no treatments to alter disease progression in OA, but targeting early changes in cellular behavior has great potential. Recent data show that nuclear receptors contribute to the pathogenesis of OA and could be viable therapeutic targets, but their molecular mechanisms in cartilage are incompletely understood. This study examines global changes in gene expression after treatment with agonists for four nuclear receptor implicated in OA (LXR, PPARδ, PPARγ, and RXR). Murine articular chondrocytes were treated with agonists for LXR, PPARδ, PPARγ, or RXR and underwent microarray, qPCR, and cellular lipid analyses to evaluate changes in gene expression and lipid profile. Immunohistochemistry was conducted to compare two differentially expressed targets (Txnip, Gsta4) in control and cartilage-specific PPARδ knockout mice subjected to surgical destabilization of the medial meniscus (DMM). Nuclear receptor agonists induced different gene expression profiles with many responses affecting lipid metabolism. LXR activation downregulated gene expression of proteases involved in OA, whereas RXR agonism decreased expression of ECM components and increased expression of Mmp13. Functional assays indicate increases in cell triglyceride accumulation after PPARγ, LXR, and RXR agonism but a decrease after PPARδ agonism. PPARδ and RXR downregulate the antioxidant Gsta4, and PPARδ upregulates Txnip. Wild-type, but not PPARδ-deficient mice, display increased staining for Txnip after DMM. Collectively, these data demonstrate that nuclear receptor activation in chondrocytes primarily affects lipid metabolism. In the case of PPARδ, this change might lead to increased oxidative stress, possibly contributing to OA-associated changes.

  6. PPARδ agonism induces a change in fuel metabolism and activation of an atrophy programme, but does not impair mitochondrial function in rat skeletal muscle

    PubMed Central

    Constantin, Despina; Constantin-Teodosiu, Dumitru; Layfield, Robert; Tsintzas, Kostas; Bennett, Andrew J; Greenhaff, Paul L

    2007-01-01

    PPARα agonism impairs mitochondrial function, but the effect of PPARδ agonism on mitochondrial function is equivocal. Furthermore, PPARα and δ agonism increases muscle fatty acid oxidation, potentially via activation of FOXO1 signalling and PDK4 transcription. Since FOXO1 activation has also been suggested to increase transcription of MAFbx and MuRF-1, and thereby the activation of ubiquitin–proteasome mediated muscle proteolysis, this raises the possibility that muscle fuel selection and the induction of a muscle atrophy programme could be regulated by a single common signalling pathway. We therefore investigated the effect of PPARδ (delta) agonist, GW610742, administration on muscle mitochondrial function, fuel regulation, and atrophy and growth related signalling pathways in vivo. Twenty-four male Wistar rats received vehicle or GW610742 (5 and 100 mg per kg body mass (bm)) orally for 6 days. Soleus muscle was used to determine maximal rates of ATP production (MRATP) in isolated mitochondria, gene and protein expression, and enzyme activities. MRATP were unchanged by GW610742. Muscle PDK2 and PDK4 mRNA expression increased with GW610742 (100 mg (kg bm)−1) compared to vehicle (P < 0.05), and was paralleled by a twofold increase in PDK4 protein expression (P < 0.05). The activity of β-hydroxyacyl-CoA dehydrogenase increased with GW610742 (P < 0.05). Muscle MuRF1 and MAFbx mRNA expression was increased by GW610742 (100 mg (kg bm)−1) compared to vehicle (P < 0.05), and was matched by increased protein expression (P < 0.001), whilst Akt1 protein declined (P < 0.05). There was no effect of GW610742 on 20S proteasome activity and mRNA expression, or the muscle DNA: protein ratio. GW610742 switched muscle fuel metabolism towards decreased carbohydrate use and enhanced lipid utilization, but did not induce mitochondrial dysfunction. Furthermore, GW610742 initiated a muscle atrophy programme, possibly via changes in the Akt1/FOXO/MAFbx and MuRF1 signalling

  7. Evaluation of the Dmt-Tic pharmacophore: conversion of a potent delta-opioid receptor antagonist into a potent delta agonist and ligands with mixed properties.

    PubMed

    Balboni, Gianfranco; Guerrini, Remo; Salvadori, Severo; Bianchi, Clementina; Rizzi, Daniela; Bryant, Sharon D; Lazarus, Lawrence H

    2002-01-31

    Analogues of the 2',6'-dimethyl-L-tyrosine (Dmt)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) pharmacophore were prepared to test the hypothesis that a "spacer" and a third aromatic center in opioid peptides are required to convert a delta-antagonist into ligands with delta-agonist or with mixed delta-antagonist/mu-agonist properties. Potent delta-agonists and bifunctional compounds with high delta- and mu-opioid receptor affinities were obtained by varying the spacer length [none, NH-CH(2), NH-CH(2)-CH(2), Gly-NH-CH(2)] and C-terminal aromatic nucleus [1H-benzimidazole-2-yl, phenyl (Ph) and benzyl groups]. C-terminal modification primarily affected mu-opioid receptor affinities, which increased maximally 1700-fold relative to the prototype delta-antagonist H-Dmt-Tic-NH(2) and differentially modified bioactivity. In the absence of a spacer (1), the analogue exhibited dual delta-agonism (pEC(50), 7.28) and delta-antagonism (pA(2), 7.90). H-Dmt-Tic-NH-CH(2)-1H-benzimidazole-2-yl (Bid) (2) became a highly potent delta-agonist (pEC(50), 9.90), slightly greater than deltorphin C (pEC(50), 9.56), with mu-agonism (pE(50), 7.57), while H-Dmt-Tic-Gly-NH-CH(2)-Bid (4) retained potent delta-antagonism (pA(2), 9.0) but with an order of magnitude less mu-agonism. Similarly, H-Dmt-Tic-Gly-NH-Ph (5) had nearly equivalent high delta-agonism (pEC(50), 8.52) and mu-agonism (pEC(50), 8.59), while H-Dmt-Tic-Gly-NH-CH(2)-Ph (6) whose spacer was longer by a single methylene group exhibited potent delta-antagonism (pA(2), 9.25) and very high mu-agonism (pEC(50), 8.57). These data confirm that the distance between the Dmt-Tic pharmacophore and a third aromatic nucleus is an important criterion in converting Dmt-Tic from a highly potent delta-antagonist into a potent delta-agonist or into ligands with mixed delta- and mu-opioid properties.

  8. Targeting multiple opioid receptors - improved analgesics with reduced side effects?

    PubMed

    Günther, Thomas; Dasgupta, Pooja; Mann, Anika; Miess, Elke; Kliewer, Andrea; Fritzwanker, Sebastian; Steinborn, Ralph; Schulz, Stefan

    2017-04-05

    Classical opioid analgesics, including morphine, mediate all of their desired and undesired effects by specific activation of the μ-opioid receptorreceptor). The use of morphine for treating chronic pain, however, is limited by the development of constipation, respiratory depression, tolerance and dependence. Analgesic effects can also be mediated through other members of the opioid receptor family such as the κ-opioid receptorreceptor), δ-opioid receptorreceptor) and the nociceptin/orphanin FQ peptide receptor (NOP receptor). Currently, a new generation of opioid analgesics is being developed that can simultaneously bind with high affinity to multiple opioid receptors. With this new action profile, it is hoped that additional analgesic effects and fewer side effects can be achieved. Recent research is mainly focused on the development of bifunctional μ/NOP receptor agonists, which has already led to novel lead structures such as the spiroindole-based cebranopadol and a compound class with a piperidin-4-yl-1,3-dihydroindol-2-one backbone (SR16835/AT-202 and SR14150/AT-200). In addition, the ornivol BU08028 is an analogue of the clinically well-established buprenorphine. Moreover, the morphinan-based nalfurafine exerts its effect with a dominant κ receptor-component and is therefore utilized in the treatment of pruritus. The very potent dihydroetorphine is a true multi-receptor opioid ligand in that it binds to μ, κ and δ receptor. The main focus of this review is to assess the paradigm of opioid ligands targeting multiple receptors with a single chemical entity. We reflect on this rationale by discussing the biological actions of selected multi-opioid receptor ligands, but not on their medicinal chemistry and design.

  9. Knock-In Mice with NOP-eGFP Receptors Identify Receptor Cellular and Regional Localization

    PubMed Central

    Ozawa, Akihiko; Brunori, Gloria; Mercatelli, Daniela; Wu, Jinhua; Cippitelli, Andrea; Zou, Bende; Xie, Xinmin (Simon); Williams, Melissa; Zaveri, Nurulain T.; Low, Sarah; Scherrer, Grégory; Kieffer, Brigitte L.

    2015-01-01

    The nociceptin/orphanin FQ (NOP) receptor, the fourth member of the opioid receptor family, is involved in many processes common to the opioid receptors including pain and drug abuse. To better characterize receptor location and trafficking, knock-in mice were created by inserting the gene encoding enhanced green fluorescent protein (eGFP) into the NOP receptor gene (Oprl1) and producing mice expressing a functional NOP-eGFP C-terminal fusion in place of the native NOP receptor. The NOP-eGFP receptor was present in brain of homozygous knock-in animals in concentrations somewhat higher than in wild-type mice and was functional when tested for stimulation of [35S]GTPγS binding in vitro and in patch-clamp electrophysiology in dorsal root ganglia (DRG) neurons and hippocampal slices. Inhibition of morphine analgesia was equivalent when tested in knock-in and wild-type mice. Imaging revealed detailed neuroanatomy in brain, spinal cord, and DRG and was generally consistent with in vitro autoradiographic imaging of receptor location. Multicolor immunohistochemistry identified cells coexpressing various spinal cord and DRG cellular markers, as well as coexpression with μ-opioid receptors in DRG and brain regions. Both in tissue slices and primary cultures, the NOP-eGFP receptors appear throughout the cell body and in processes. These knock-in mice have NOP receptors that function both in vitro and in vivo and appear to be an exceptional tool to study receptor neuroanatomy and correlate with NOP receptor function. SIGNIFICANCE STATEMENT The NOP receptor, the fourth member of the opioid receptor family, is involved in pain, drug abuse, and a number of other CNS processes. The regional and cellular distribution has been difficult to determine due to lack of validated antibodies for immunohistochemical analysis. To provide a new tool for the investigation of receptor localization, we have produced knock-in mice with a fluorescent-tagged NOP receptor in place of the native

  10. Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function.

    PubMed

    Eglen, R M

    2006-07-01

    1 Muscarinic M1-M5 receptors mediate the metabotropic actions of acetylcholine in the nervous system. A growing body of data indicate they also mediate autocrine functions of the molecule. The availability of novel and selective muscarinic agonists and antagonists, as well as in vivo gene disruption techniques, has clarified the roles of muscarinic receptors in mediating both functions of acetylcholine. 2 Selective M1 agonists or mixed M1 agonists/M2 antagonists may provide an approach to the treatment of cognitive disorders, while M3 antagonism, or mixed M2/M3 antagonists, are approved for the treatment of contractility disorders including overactive bladder and chronic obstructive pulmonary disease. Preclinical data suggest that selective agonism of the M4 receptor will provide novel anti-nociceptive agents, while therapeutics-based upon agonism or antagonism of the muscarinic M5 receptor have yet to be reported. 3 The autocrine functions of muscarinic receptors broadly fall into two areas - control of cell growth or proliferation and mediation of the release of chemical mediators from epithelial cells, ultimately causing muscle relaxation. The former particularly are involved in embryological development, oncogenesis, keratinocyte function and immune responsiveness. The latter regulate contractility of smooth muscle in the vasculature, airways and urinary bladder. 4 Most attention has focused on muscarinic M1 or M3 receptors which mediate lymphocyte immunoresponsiveness, cell migration and release of smooth muscle relaxant factors. Muscarinic M4 receptors are implicated in the regulation of keratinocyte adhesion and M2 receptors in stem cell proliferation and development. Little data are available concerning the M5 receptor, partly due to the difficulties in defining the subtype pharmacologically. 5 The autocrine functions of acetylcholine, like those in the nervous system, involve activation of several muscarinic receptor subtypes. Consequently, the role of

  11. The antipsychotic potential of l-stepholidine--a naturally occurring dopamine receptor D1 agonist and D2 antagonist.

    PubMed

    Natesan, Sridhar; Reckless, Greg E; Barlow, Karen B L; Odontiadis, John; Nobrega, José N; Baker, Glen B; George, Susan R; Mamo, David; Kapur, Shitij

    2008-08-01

    l-Stepholidine, a dopamine D(2) antagonist with D(1) agonist activity, should in theory control psychosis and treat cognitive symptoms by enhancing cortical dopamine transmission. Though several articles describe its impact on the dopamine system, it has not been systematically evaluated and compared to available antipsychotics. We examined its in vitro interaction with dopamine D(2) and D(1) receptors and compared its in vivo pharmacokinetic profile to haloperidol (typical) and clozapine (atypical) in animal models predictive of antipsychotic activity. In vitro, l-stepholidine showed significant activity on dopamine receptors, and in vivo, l-stepholidine demonstrated a dose-dependent striatal receptor occupancy (RO) at D(1) and D(2) receptors (D(1) 9-77%, 0.3-30 mg/kg; D(2) 44-94%, 1-30 mg/kg), though it showed a rather rapid decline of D(2) occupancy related to its quick elimination. In tests of antipsychotic efficacy, it was effective in reducing amphetamine- and phencyclidine-induced locomotion as well as conditioned avoidance response, whereas catalepsy and prolactin elevation, the main side effects, appeared only at high D(2)RO (>80%). This preferential therapeutic profile was supported by a preferential immediate early gene (Fos) induction in the nucleus accumbens over dorsolateral striatum. We confirmed its D(1) agonism in vitro, and then using D(2) receptor, knockout mice showed that l-stepholidine shows D(1) agonism in the therapeutic dose range. Thus, l-stepholidine shows efficacy like an "atypical" antipsychotic in traditional animal models predictive of antipsychotic activity and shows in vitro and in vivo D(1) agonism, and, if its rapid elimination does not limit its actions, it could provide a unique therapeutic approach to schizophrenia.

  12. Distinct cortical and striatal actions of a β-arrestin-biased dopamine D2 receptor ligand reveal unique antipsychotic-like properties.

    PubMed

    Urs, Nikhil M; Gee, Steven M; Pack, Thomas F; McCorvy, John D; Evron, Tama; Snyder, Joshua C; Yang, Xiaobao; Rodriguiz, Ramona M; Borrelli, Emiliana; Wetsel, William C; Jin, Jian; Roth, Bryan L; O'Donnell, Patricio; Caron, Marc G

    2016-12-13

    The current dopamine (DA) hypothesis of schizophrenia postulates striatal hyperdopaminergia and cortical hypodopaminergia. Although partial agonists at DA D2 receptors (D2Rs), like aripiprazole, were developed to simultaneously target both phenomena, they do not effectively improve cortical dysfunction. In this study, we investigate the potential for newly developed β-arrestin2 (βarr2)-biased D2R partial agonists to simultaneously target hyper- and hypodopaminergia. Using neuron-specific βarr2-KO mice, we show that the antipsychotic-like effects of a βarr2-biased D2R ligand are driven through both striatal antagonism and cortical agonism of D2R-βarr2 signaling. Furthermore, βarr2-biased D2R agonism enhances firing of cortical fast-spiking interneurons. This enhanced cortical agonism of the biased ligand can be attributed to a lack of G-protein signaling and elevated expression of βarr2 and G protein-coupled receptor (GPCR) kinase 2 in the cortex versus the striatum. Therefore, we propose that βarr2-biased D2R ligands that exert region-selective actions could provide a path to develop more effective antipsychotic therapies.

  13. Distinct cortical and striatal actions of a β-arrestin–biased dopamine D2 receptor ligand reveal unique antipsychotic-like properties

    PubMed Central

    Urs, Nikhil M.; Gee, Steven M.; Pack, Thomas F.; McCorvy, John D.; Evron, Tama; Snyder, Joshua C.; Yang, Xiaobao; Rodriguiz, Ramona M.; Borrelli, Emiliana; Wetsel, William C.; Jin, Jian; Roth, Bryan L.; O’Donnell, Patricio; Caron, Marc G.

    2016-01-01

    The current dopamine (DA) hypothesis of schizophrenia postulates striatal hyperdopaminergia and cortical hypodopaminergia. Although partial agonists at DA D2 receptors (D2Rs), like aripiprazole, were developed to simultaneously target both phenomena, they do not effectively improve cortical dysfunction. In this study, we investigate the potential for newly developed β-arrestin2 (βarr2)-biased D2R partial agonists to simultaneously target hyper- and hypodopaminergia. Using neuron-specific βarr2-KO mice, we show that the antipsychotic-like effects of a βarr2-biased D2R ligand are driven through both striatal antagonism and cortical agonism of D2R-βarr2 signaling. Furthermore, βarr2-biased D2R agonism enhances firing of cortical fast-spiking interneurons. This enhanced cortical agonism of the biased ligand can be attributed to a lack of G-protein signaling and elevated expression of βarr2 and G protein-coupled receptor (GPCR) kinase 2 in the cortex versus the striatum. Therefore, we propose that βarr2-biased D2R ligands that exert region-selective actions could provide a path to develop more effective antipsychotic therapies. PMID:27911814

  14. Treatment of Type 2 Diabetes by Free Fatty Acid Receptor Agonists

    PubMed Central

    Watterson, Kenneth R.; Hudson, Brian D.; Ulven, Trond; Milligan, Graeme

    2014-01-01

    Dietary free fatty acids (FFAs), such as ω-3 fatty acids, regulate metabolic and anti-inflammatory processes, with many of these effects attributed to FFAs interacting with a family of G protein-coupled receptors. Selective synthetic ligands for free fatty acid receptors (FFA1-4) have consequently been developed as potential treatments for type 2 diabetes (T2D). In particular, clinical studies show that Fasiglifam, an agonist of the long-chain FFA receptor, FFA1, improved glycemic control and reduced HbA1c levels in T2D patients, with a reduced risk of hypoglycemia. However, this ligand was removed from clinical trials due to potential liver toxicity and determining if this is a target or a ligand-specific feature is now of major importance. Pre-clinical studies also show that FFA4 agonism increases insulin sensitivity, induces weight loss, and reduces inflammation and the metabolic and anti-inflammatory effects of short chain fatty acids (SCFAs) are linked with FFA2 and FFA3 activation. In this review, we therefore show that FFA receptor agonism is a potential clinical target for T2D treatment and discuss ongoing drug development programs within industry and academia aimed at improving the safety and effectiveness of these potential treatments. PMID:25221541

  15. The potential role of dopamine D₃ receptor neurotransmission in cognition.

    PubMed

    Nakajima, Shinichiro; Gerretsen, Philip; Takeuchi, Hiroyoshi; Caravaggio, Fernando; Chow, Tiffany; Le Foll, Bernard; Mulsant, Benoit; Pollock, Bruce; Graff-Guerrero, Ariel

    2013-08-01

    Currently available treatments have limited pro-cognitive effects for neuropsychiatric disorders, such as schizophrenia, Parkinson's disease and Alzheimer's disease. The primary objective of this work is to review the literature on the role of dopamine D₃ receptors in cognition, and propose dopamine D₃ receptor antagonists as possible cognitive enhancers for neuropsychiatric disorders. A literature search was performed to identify animal and human studies on D₃ receptors and cognition using PubMed, MEDLINE and EMBASE. The search terms included "dopamine D₃ receptor" and "cognition". The literature search identified 164 articles. The results revealed: (1) D₃ receptors are associated with cognitive functioning in both healthy individuals and those with neuropsychiatric disorders; (2) D₃ receptor blockade appears to enhance while D₃ receptor agonism seems to impair cognitive function, including memory, attention, learning, processing speed, social recognition and executive function independent of age; and (3) D₃ receptor antagonists may exert their pro-cognitive effect by enhancing the release of acetylcholine in the prefrontal cortex, disinhibiting the activity of dopamine neurons projecting to the nucleus accumbens or prefrontal cortex, or activating CREB signaling in the hippocampus. These findings suggest that D₃ receptor blockade may enhance cognitive performance in healthy individuals and treat cognitive dysfunction in individuals with a neuropsychiatric disorder. Clinical trials are needed to confirm these effects.

  16. Morphine and DAMGO produce an opposite effect on presynaptic glutamate release via different downstream pathways of μ opioid receptors in the basolateral amygdala.

    PubMed

    Yang, Jinhui; Yang, Hualan; Du, Xiaowei; Ma, Qianqian; Song, Jiaojiao; Chen, Ming; Dong, Yi; Ma, Lan; Zheng, Ping

    2014-11-01

    Increasing evidence demonstrates that different opioids, while acting μ opioid receptors, can activate distinct downstream responses, a phenomenon termed functional selectivity or biased agonism. The present study designed experiments to test whether the μ receptor agonist morphine and D-Ala(2), N-Me-Phe(4), Gly(5)-ol-enkephalin (DAMGO) had a different effect on presynaptic glutamate release in the basolateral amygdala (BLA) and whether this difference was due to their biased agonism at μ receptors. The results showed that DAMGO markedly decreased the frequency of sEPSCs in pyramidal cells of BLA. The concentration-dependence experiment showed that DAMGO dose-dependently decreased the frequency of sEPSCs. Morphine markedly increased the frequency of sEPSCs in pyramidal cells of BLA. The concentration-dependence experiment showed that morphine dose-dependently increased the frequency of sEPSCs. We also used PPF of EPSC as another indicator of presynaptic glutamate release to confirm the opposite effect of morphine and DAMGO on the glutamate release. Further mechanism studies showed that the opposite effect of morphine and DAMGO on the glutamate release was via the activation of μ receptors, but the downstream signaling pathways of μ receptors were different: DAMGO inhibited the glutamate release via μ receptor-Gi protein- PLA2-AA signaling pathway, whereas morphine promoted the glutamate release via μ receptor-Gi protein-PKC-ERK1/2-synapsin I signaling pathway.

  17. A receptor theory-based semimechanistic PD model for the CCR5 noncompetitive antagonist maraviroc

    PubMed Central

    Jacqmin, Philippe; McFadyen, Lynn; Wade, Janet R

    2008-01-01

    Aim To develop a novel combined viral dynamics/operational model of (ant-)agonism that describes the pharmacodynamic effects of maraviroc, a noncompetitive CCR5 inhibitor, on viral load. Methods A common theoretical framework based on receptor theory and the operational model of (ant-)agonism has been developed to describe the binding of maraviroc to the CCR5 receptor and the subsequent decrease in viral load. The anchor point of the operational model in the differential equations of the viral dynamic model is the infection rate constant; this is assumed to be dependent on the number of free activated receptors on each target cell. Results The new model provides one explanation for the apparent discrepancy between the in vivo binding of maraviroc to the CCR5 receptor (KD = 0.089 ng ml−1) and the estimated in vivo inhibition (IC50 = 8 ng ml−1) of the infection rate. The estimated KE value of the operational model indicates that only 1.2% of free activated receptors are utilized to elicit 50% of the maximum infection rate. Conclusions The developed model suggests that the target cells, when activated, express more receptors (spare receptors) than needed. In the presence of maraviroc these spare receptors first require blocking before any decrease in the infection rate, and consequently in the viral load at equilibrium, can be detected. The model allows the simultaneous simulation of the binding of maraviroc to the CCR5 receptor and the change in viral load after both short- and long-term treatment. PMID:18333871

  18. Cariprazine, an orally active D2/D3 receptor antagonist, for the potential treatment of schizophrenia, bipolar mania and depression.

    PubMed

    Gründer, Gerhard

    2010-07-01

    Cariprazine (RGH-188), which is being codeveloped by Gedeon Richter Ltd, Forest Laboratories Inc and Mitsubishi Tanabe Pharma Corp, is a novel putative antipsychotic drug that exerts partial agonism at dopamine D2/D3 receptors, with preferential binding to D3 receptors, and partial agonism at serotonin 5-HT1A receptors. Its activity at D2/D3 receptors may be lower than that of the prototype partial agonist aripiprazole. The antipsychotic activity of cariprazine was demonstrated in animal models, and data also suggest that the propensity for extrapyramidal side effects is low and that the drug may have procognitive properties. Cariprazine is rapidly absorbed, with high oral bioavailability and a long plasma elimination t1/2. Cariprazine is in phase III clinical trials in patients with schizophrenia and in patients with bipolar disorder. Data from phase II trials in patients with schizophrenia and bipolar mania indicate that the drug has antipsychotic and antimanic properties that are superior to placebo. With its unique receptor affinity profile, cariprazine may represent a potential enrichment of the therapeutic armamentarium for schizophrenia and affective disorders. Its activity against the cognitive deficits associated with schizophrenia has to be carefully investigated.

  19. Production of recombinant TRAIL and TRAIL receptor: Fc chimeric proteins.

    PubMed

    Schneider, P

    2000-01-01

    The tumor necrosis factor (TNF)/TNF receptor (TNFR) families of ligands and receptors are implicated in a variety of physiological and pathological processes and regulate cellular functions as diverse as proliferation, differentiation, and death. Recombinant forms of these ligands and receptors can act to agonize or antagonize these functions and are therefore useful for laboratory studies and may have clinical applications. A protocol is presented for the expression and purification of dimeric soluble receptors fused to the Fc portion of human IgG1 and of soluble, N-terminally Flag-tagged ligands. Soluble recombinant proteins are easier to handle than membrane-bound proteins and the use of tags greatly facilitates their detection and purification. In addition, some tags may provide enhanced biological activity to the recombinant proteins (mainly by oligomerization and stabilization effects) and facilitate their functional characterization. Expression in bacterial (for selected ligands) and eukaryotic expression systems (for ligands and receptors) was performed using M15 pREP4 bacteria and human embryonic kidney 293 cells, respectively. The yield of purified protein is about 1 mg/liter for the mammalian expression system and several milligrams per liter for the bacterial expression system. Protocols are given for a specific ligand-receptor pair, namely TRAIL (Apo-2L) and TRAIL receptor 2 (DR5), but can be applied to other ligands and receptors of the TNF family.

  20. LRP2, an auxiliary receptor that controls sonic hedgehog signaling in development and disease.

    PubMed

    Christ, Annabel; Herzog, Katja; Willnow, Thomas E

    2016-05-01

    To fulfill their multiple roles in organ development and adult tissue homeostasis, hedgehog (HH) morphogens act through their receptor Patched (PTCH) on target cells. However, HH actions also require HH binding proteins, auxiliary cell surface receptors that agonize or antagonize morphogen signaling in a context-dependent manner. Here, we discuss recent findings on the LDL receptor-related protein 2 (LRP2), an exemplary HH binding protein that modulates sonic hedgehog activities in stem and progenitor cell niches in embryonic and adult tissues. LRP2 functions are crucial for developmental processes in a number of tissues, including the brain, the eye, and the heart, and defects in this receptor pathway are the cause of devastating congenital diseases in humans. Developmental Dynamics 245:569-579, 2016. © 2016 Wiley Periodicals, Inc.

  1. Histone Deacetylase Inhibitors Equipped with Estrogen Receptor Modulation Activity

    PubMed Central

    Gryder, Berkley E.; Rood, Michael K.; Johnson, Kenyetta A.; Patil, Vishal; Raftery, Eric D.; Yao, Li-Pan D.; Rice, Marcie; Azizi, Bahareh; Doyle, Donald F.; Oyelere, Adegboyega K.

    2013-01-01

    We described a set of novel histone deacetylase inhibitors (HDACi) equipped with either an antagonist or an agonist of the estrogen receptor (ER) to confer selective activity against breast cancers. These bifunctional compounds potently inhibit HDAC at nanomolar concentrations, and either agonize or antagonize ERα and ERβ. The ER antagonist activities of tamoxifen-HDACi conjugates (Tam-HDACi) are nearly identical to those of tamoxifen. Conversely, ethynyl-estradiol HDACi conjugates (EED-HDACi) have attenuated ER agonist activities relative to the parent ethynyl-estradiol. In silico docking analysis provides structural basis for the trends of ER agonism/antagonism and ER subtype selectivity. Excitingly, lead Tam-HDACi conjugates show anticancer activity that is selectively more potent against MCF-7 (ERα positive breast) compared to MDA-MB-231 (triple negative breast cancer), DU145 (prostate cancer) or Vero (non-cancerous cell line). This dual-targeting approach illustrates the utility of designing small molecules with an emphasis on cell-type selectivity, not merely improved potency, working towards a higher therapeutic index at the earliest stages of drug development. PMID:23786452

  2. Characterization of cannabinoid receptor ligands in tissues natively expressing cannabinoid CB2 receptors

    PubMed Central

    Marini, Pietro; Cascio, Maria-Grazia; King, Angela; Pertwee, Roger G; Ross, Ruth A

    2013-01-01

    Background and Purpose Although cannabinoid CB2 receptor ligands have been widely characterized in recombinant systems in vitro, little pharmacological characterization has been performed in tissues natively expressing CB2 receptors. The aim of this study was to compare the pharmacology of CB2 receptor ligands in tissue natively expressing CB2 receptors (human, rat and mouse spleen) and hCB2-transfected CHO cells. Experimental Approach We tested the ability of well-known cannabinoid CB2 receptor ligands to stimulate or inhibit [35S]GTPγS binding to mouse, rat and human spleen membranes and to hCB2-transfected CHO cell membranes. cAMP assays were also performed in hCB2-CHO cells. Key Results The data presented demonstrate that: (i) CP 55,940, WIN 55,212-2 and JWH 133 behave as CB2 receptor full agonists both in spleen and hCB2-CHO cells, in both [35S]GTPγS and cAMP assays; (ii) JWH 015 behaves as a low-efficacy agonist in spleen as well as in hCB2-CHO cells when tested in the [35S]GTPγS assay, while it displays full agonism when tested in the cAMP assay using hCB2-CHO cells; (iii) (R)-AM 1241 and GW 405833 behave as agonists in the [35S]GTPγS assay using spleen, instead it behaves as a low-efficacy inverse agonist in hCB2-CHO cells; and (iv) SR 144528, AM 630 and JTE 907 behave as CB2 receptor inverse agonists in all the tissues. Conclusion and Implications Our results demonstrate that CB2 receptor ligands can display differential pharmacology when assays are conducted in tissues that natively express CB2 receptors and imply that conclusions from recombinant CB2 receptors should be treated with caution. PMID:23711022

  3. The nuclear receptor PPARγ individually responds to serotonin- and fatty acid-metabolites

    PubMed Central

    Waku, Tsuyoshi; Shiraki, Takuma; Oyama, Takuji; Maebara, Kanako; Nakamori, Rinna; Morikawa, Kosuke

    2010-01-01

    The nuclear receptor, peroxisome proliferator-activated receptor γ (PPARγ), recognizes various synthetic and endogenous ligands by the ligand-binding domain. Fatty-acid metabolites reportedly activate PPARγ through conformational changes of the Ω loop. Here, we report that serotonin metabolites act as endogenous agonists for PPARγ to regulate macrophage function and adipogenesis by directly binding to helix H12. A cyclooxygenase inhibitor, indomethacin, is a mimetic agonist of these metabolites. Crystallographic analyses revealed that an indole acetate functions as a common moiety for the recognition by the sub-pocket near helix H12. Intriguingly, a serotonin metabolite and a fatty-acid metabolite each bind to distinct sub-pockets, and the PPARγ antagonist, T0070907, blocked the fatty-acid agonism, but not that of the serotonin metabolites. Mutational analyses on receptor-mediated transcription and coactivator binding revealed that each metabolite individually uses coregulator and/or heterodimer interfaces in a ligand-type-specific manner. Furthermore, the inhibition of the serotonin metabolism reduced the expression of the endogenous PPARγ-target gene. Collectively, these results suggest a novel agonism, in which PPARγ functions as a multiple sensor in response to distinct metabolites. PMID:20717101

  4. Characteristics of myocardial US -adrenergic receptors during endotoxicosis in the rat

    SciTech Connect

    Romano, F.D.; Jones, S.B.

    1986-08-01

    The effects of in vivo endotoxin administration on US -adrenergic receptors in rat ventricle membranes were studied using (TH)dihydroalprenolol as a radioligand. Nonlinear regression analysis of saturation binding indicated one-site binding of antagonist in both control and endotoxic tissues. There was no change in maximum binding or dissociation constant of (TH)dihydroalprenolol at 0.5 or 3 h after endotoxin administration or when the rats were in the agonal stage of shock. Isoproterenol competition studies revealed that there was an increase in the slope of the curve from endotoxic tissues at the agonal stages and that there was a decrease in affinity for isoproterenol binding. Control binding modeled to a two-state fit, whereas binding to endotoxin-exposed membranes modeled to one state of lower affinity. These data suggest that there is an alteration in receptor-adenylate cyclase coupling, which may account for an attenuation of agonist-stimulated cyclase activity. A modification in the US -adrenergic receptor may contribute to the decrease in myocardial performance during shock.

  5. Systematic errors in detecting biased agonism: Analysis of current methods and development of a new model-free approach.

    PubMed

    Onaran, H Ongun; Ambrosio, Caterina; Uğur, Özlem; Madaras Koncz, Erzsebet; Grò, Maria Cristina; Vezzi, Vanessa; Rajagopal, Sudarshan; Costa, Tommaso

    2017-03-14

    Discovering biased agonists requires a method that can reliably distinguish the bias in signalling due to unbalanced activation of diverse transduction proteins from that of differential amplification inherent to the system being studied, which invariably results from the non-linear nature of biological signalling networks and their measurement. We have systematically compared the performance of seven methods of bias diagnostics, all of which are based on the analysis of concentration-response curves of ligands according to classical receptor theory. We computed bias factors for a number of β-adrenergic agonists by comparing BRET assays of receptor-transducer interactions with Gs, Gi and arrestin. Using the same ligands, we also compared responses at signalling steps originated from the same receptor-transducer interaction, among which no biased efficacy is theoretically possible. In either case, we found a high level of false positive results and a general lack of correlation among methods. Altogether this analysis shows that all tested methods, including some of the most widely used in the literature, fail to distinguish true ligand bias from "system bias" with confidence. We also propose two novel semi quantitative methods of bias diagnostics that appear to be more robust and reliable than currently available strategies.

  6. Systematic errors in detecting biased agonism: Analysis of current methods and development of a new model-free approach

    PubMed Central

    Onaran, H. Ongun; Ambrosio, Caterina; Uğur, Özlem; Madaras Koncz, Erzsebet; Grò, Maria Cristina; Vezzi, Vanessa; Rajagopal, Sudarshan; Costa, Tommaso

    2017-01-01

    Discovering biased agonists requires a method that can reliably distinguish the bias in signalling due to unbalanced activation of diverse transduction proteins from that of differential amplification inherent to the system being studied, which invariably results from the non-linear nature of biological signalling networks and their measurement. We have systematically compared the performance of seven methods of bias diagnostics, all of which are based on the analysis of concentration-response curves of ligands according to classical receptor theory. We computed bias factors for a number of β-adrenergic agonists by comparing BRET assays of receptor-transducer interactions with Gs, Gi and arrestin. Using the same ligands, we also compared responses at signalling steps originated from the same receptor-transducer interaction, among which no biased efficacy is theoretically possible. In either case, we found a high level of false positive results and a general lack of correlation among methods. Altogether this analysis shows that all tested methods, including some of the most widely used in the literature, fail to distinguish true ligand bias from “system bias” with confidence. We also propose two novel semi quantitative methods of bias diagnostics that appear to be more robust and reliable than currently available strategies. PMID:28290478

  7. Structural basis of ligand interaction with atypical chemokine receptor 3

    NASA Astrophysics Data System (ADS)

    Gustavsson, Martin; Wang, Liwen; van Gils, Noortje; Stephens, Bryan S.; Zhang, Penglie; Schall, Thomas J.; Yang, Sichun; Abagyan, Ruben; Chance, Mark R.; Kufareva, Irina; Handel, Tracy M.

    2017-01-01

    Chemokines drive cell migration through their interactions with seven-transmembrane (7TM) chemokine receptors on cell surfaces. The atypical chemokine receptor 3 (ACKR3) binds chemokines CXCL11 and CXCL12 and signals exclusively through β-arrestin-mediated pathways, without activating canonical G-protein signalling. This receptor is upregulated in numerous cancers making it a potential drug target. Here we collected over 100 distinct structural probes from radiolytic footprinting, disulfide trapping, and mutagenesis to map the structures of ACKR3:CXCL12 and ACKR3:small-molecule complexes, including dynamic regions that proved unresolvable by X-ray crystallography in homologous receptors. The data are integrated with molecular modelling to produce complete and cohesive experimentally driven models that confirm and expand on the existing knowledge of the architecture of receptor:chemokine and receptor:small-molecule complexes. Additionally, we detected and characterized ligand-induced conformational changes in the transmembrane and intracellular regions of ACKR3 that elucidate fundamental structural elements of agonism in this atypical receptor.

  8. Structural basis of ligand interaction with atypical chemokine receptor 3

    PubMed Central

    Gustavsson, Martin; Wang, Liwen; van Gils, Noortje; Stephens, Bryan S.; Zhang, Penglie; Schall, Thomas J.; Yang, Sichun; Abagyan, Ruben; Chance, Mark R.; Kufareva, Irina; Handel, Tracy M.

    2017-01-01

    Chemokines drive cell migration through their interactions with seven-transmembrane (7TM) chemokine receptors on cell surfaces. The atypical chemokine receptor 3 (ACKR3) binds chemokines CXCL11 and CXCL12 and signals exclusively through β-arrestin-mediated pathways, without activating canonical G-protein signalling. This receptor is upregulated in numerous cancers making it a potential drug target. Here we collected over 100 distinct structural probes from radiolytic footprinting, disulfide trapping, and mutagenesis to map the structures of ACKR3:CXCL12 and ACKR3:small-molecule complexes, including dynamic regions that proved unresolvable by X-ray crystallography in homologous receptors. The data are integrated with molecular modelling to produce complete and cohesive experimentally driven models that confirm and expand on the existing knowledge of the architecture of receptor:chemokine and receptor:small-molecule complexes. Additionally, we detected and characterized ligand-induced conformational changes in the transmembrane and intracellular regions of ACKR3 that elucidate fundamental structural elements of agonism in this atypical receptor. PMID:28098154

  9. NMDA Receptor Modulators in the Treatment of Drug Addiction.

    PubMed

    Tomek, Seven E; Lacrosse, Amber L; Nemirovsky, Natali E; Olive, M Foster

    2013-02-06

    Glutamate plays a pivotal role in drug addiction, and the N-methyl-D-aspartate (NMDA) glutamate receptor subtype serves as a molecular target for several drugs of abuse. In this review, we will provide an overview of NMDA receptor structure and function, followed by a review of the mechanism of action, clinical efficacy, and side effect profile of NMDA receptor ligands that are currently in use or being explored for the treatment of drug addiction. These ligands include the NMDA receptor modulators memantine and acamprosate, as well as the partial NMDA agonist D-cycloserine. Data collected to date suggest that direct NMDA receptor modulators have relatively limited efficacy in the treatment of drug addiction, and that partial agonism of NMDA receptors may have some efficacy with regards to extinction learning during cue exposure therapy. However, the lack of consistency in results to date clearly indicates that additional studies are needed, as are studies examining novel ligands with indirect mechanisms for altering NMDA receptor function.

  10. Unravelling intrinsic efficacy and ligand bias at G protein coupled receptors: A practical guide to assessing functional data.

    PubMed

    Stott, Lisa A; Hall, David A; Holliday, Nicholas D

    2016-02-01

    Stephenson's empirical definition of an agonist, as a ligand with binding affinity and intrinsic efficacy (the ability to activate the receptor once bound), underpins classical receptor pharmacology. Quantifying intrinsic efficacy using functional concentration response relationships has always presented an experimental challenge. The requirement for realistic determination of efficacy is emphasised by recent developments in our understanding of G protein coupled receptor (GPCR) agonists, with recognition that some ligands stabilise different active conformations of the receptor, leading to pathway-selective, or biased agonism. Biased ligands have potential as therapeutics with improved selectivity and clinical efficacy, but there are also pitfalls to the identification of pathway selective effects. Here we explore the basics of concentration response curve analysis, beginning with the need to distinguish ligand bias from other influences of the functional system under study. We consider the different approaches that have been used to quantify and compare biased ligands, many of which are based on the Black and Leff operational model of agonism. Some of the practical issues that accompany these analyses are highlighted, with opportunities to improve estimates in future, particularly in the separation of true agonist intrinsic efficacy from the contributions of system dependent coupling efficiency. Such methods are by their nature practical approaches, and all rely on Stephenson's separation of affinity and efficacy parameters, which are interdependent at the mechanistic level. Nevertheless, operational analysis methods can be justified by mechanistic models of GPCR activation, and if used wisely are key elements to biased ligand identification.

  11. Bioinformatics and evolution of vertebrate nociceptin and opioid receptors.

    PubMed

    Stevens, Craig W

    2015-01-01

    G protein-coupled receptors (GPCRs) are ancestrally related membrane proteins on cells that mediate the pharmacological effect of most drugs and neurotransmitters. GPCRs are the largest group of membrane receptor proteins encoded in the human genome. One of the most famous types of GPCRs is the opioid receptors. Opioid family receptors consist of four closely related proteins expressed in all vertebrate brains and spinal cords examined to date. The three classical types of opioid receptors shown unequivocally to mediate analgesia in animal models and in humans are the mu- (MOR), delta- (DOR), and kappa-(KOR) opioid receptor proteins. The fourth and most recent member of the opioid receptor family discovered is the nociceptin or orphanin FQ receptor (ORL). The role of ORL and its ligands in producing analgesia is not as clear, with both analgesic and hyperalgesic effects reported. All four opioid family receptor genes were cloned from expressed mRNA in a number of vertebrate species, and there are enough sequences presently available to carry out bioinformatic analysis. This chapter presents the results of a comparative analysis of vertebrate opioid receptors using pharmacological studies, bioinformatics, and the latest data from human whole-genome studies. Results confirm our initial hypotheses that the four opioid receptor genes most likely arose by whole-genome duplication, that there is an evolutionary vector of opioid receptor type divergence in sequence and function, and that the hMOR gene shows evidence of positive selection or adaptive evolution in Homo sapiens. © 2015 Elsevier Inc. All rights reserved.

  12. Human monomeric antibody fragments to TRAIL-R1 and TRAIL-R2 that display potent in vitro agonism

    PubMed Central

    Main, Sarah; Newton, Philip; Chodorge, Matthieu; Cadwallader, Karen; Humphreys, Robin; Albert, Vivian; Vaughan, Tristan J; Minter, Ralph R; Edwards, Bryan M

    2009-01-01

    Apoptosis through the TRAIL receptor pathway can be induced via agonistic IgG to either TRAIL-R1 or TRAIL-R2. Here we describe the use of phage display to isolate a substantive panel of fully human anti-TRAIL receptor single chain Fv fragments (scFvs); 234 and 269 different scFvs specific for TRAIL-R1 and TRAIL-R2 respectively. In addition, 134 different scFvs that were cross-reactive for both receptors were isolated. To facilitate screening of all 637 scFvs for potential agonistic activity in vitro, a novel high-throughput surrogate apoptosis assay was developed. Ten TRAIL-R1 specific scFv and 6 TRAIL-R2 specific scFv were shown to inhibit growth of tumor cells in vitro in the absence of any cross-linking agents. These scFv were all highly specific for either TRAIL-R1 or TRAIL-R2, potently inhibited tumor cell proliferation, and were antagonists of TRAIL binding. Moreover, further characterization of TRAIL-R1 agonistic scFv demonstrated significant anti-tumor activity when expressed and purified as a monomeric Fab fragment. Thus, scFv and Fab fragments, in addition to whole IgG, can be agonistic and induce tumor cell death through specific binding to either TRAIL-R1 or TRAIL-R2. These potent agonistic scFv were all isolated directly from the starting phage antibody library and demonstrated significant tumor cell killing properties without any requirement for affinity maturation. Some of these selected scFv have been converted to IgG format and are being studied extensively in clinical trials to investigate their potential utility as human monoclonal antibody therapeutics for the treatment of human cancer. PMID:20068388

  13. Discovery of substituted (4-phenyl-1H-imidazol-2-yl)methanamine as potent somatostatin receptor 3 agonists.

    PubMed

    Lai, Zhong; He, Shuwen; Sherer, Edward C; Wu, Zhicai; Yu, Yang; Ball, Richard; Hong, Qingmei; Yang, David X; Guo, Liangqing; Li, Derun; Tuang, Quang; Chicchi, Gary G; Trusca, Dorina; Tsao, Kwei-Lan; Zhou, Yun-Ping; Howard, Andrew D; Nargund, Ravi P; Hagmann, William K

    2015-09-01

    We report SAR studies on a novel non-peptidic somatostatin receptor 3 (SSTR3) agonist lead series derived from (4-phenyl-1H-imidazol-2-yl)methanamine. This effort led to the discovery of a highly potent low molecular weight SSTR3 agonist 5c (EC50=5.2 nM, MW=359). The results from molecular overlays of 5c onto the L-129 structure indicate good alignment, and two main differences of the proposed overlays of the antagonist MK-4256 onto the conformation of 5c lead to inversion of antagonism to agonism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Highly selective and potent agonists of sphingosine-1-phosphate 1 (S1P1) receptor.

    PubMed

    Vachal, Petr; Toth, Leslie M; Hale, Jeffrey J; Yan, Lin; Mills, Sander G; Chrebet, Gary L; Koehane, Carol A; Hajdu, Richard; Milligan, James A; Rosenbach, Mark J; Mandala, Suzanne

    2006-07-15

    Novel series of sphingosine-1-phosphate (S1P) receptor agonists were developed through a systematic SAR aimed to achieve high selectivity for a single member of the S1P family of receptors, S1P1. The optimized structure represents a highly S1P1-selective and efficacious agonist: S1P1/S1P2, S1P1/S1P3, S1P1/S1P4>10,000-fold, S1P1/S1P5>600-fold, while EC50 (S1P1) <0.2 nM. In vivo experiments are consistent with S1P1 receptor agonism alone being sufficient for achieving desired lymphocyte-lowering effect.

  15. Selection of multiple agonist antibodies from intracellular combinatorial libraries reveals that cellular receptors are functionally pleiotropic.

    PubMed

    Yea, Kyungmoo; Xie, Jia; Zhang, Hongkai; Zhang, Wei; Lerner, Richard A

    2015-06-01

    The main purpose of this perspective is to build on the unexpected outcomes of previous laboratory experiments using antibody agonists to raise questions concerning how activation of a given receptor can be involved in inducing differentiation of cells along different pathways some of which may even derive from different lineages. While not yet answered, the question illustrates how the advent of agonists not present in nature may give a different dimension to the important problem of signal transduction. Thus, if one studies a natural agonist-receptor system one can learn details about its signal transduction pathway. However, if one has a set of orthogonal agonists, one may learn about the yet undiscovered potential of the system that, in the end, may necessitate refinements to the currently used models. Thus, we wonder why receptors conventionally linked to a given pathway induce a different pattern of differentiation when agonized in another way.

  16. Novel Oxazolidinone-Based Peroxisome Proliferator Activated Receptor Agonists: Molecular Modeling, Synthesis, and Biological Evaluation.

    PubMed

    Fresno, N; Macías-González, M; Torres-Zaguirre, A; Romero-Cuevas, M; Sanz-Camacho, P; Elguero, J; Pavón, F J; Rodríguez de Fonseca, F; Goya, P; Pérez-Fernández, R

    2015-08-27

    A series of new peroxisome proliferator activated receptors (PPARs) chiral ligands have been designed following the accepted three-module structure comprising a polar head, linker, and hydrophobic tail. The majority of the ligands incorporate the oxazolidinone moiety as a novel polar head, and the nature of the hydrophobic tail has also been varied. Docking studies using the crystal structure of an agonist bound to the ligand binding domain of the PPARα receptor have been performed as a tool for their design. Suitable synthetic procedures have been developed, and compounds with different stereochemistries have been prepared. Evaluation of basal and ligand-induced activity proved that several compounds showed agonist activity at the PPARα receptor, thus validating the oxazolidinone template for PPAR activity. In addition, two compounds, 2 and 4, showed dual PPARα/PPARγ agonism and interesting food intake reduction in rats.

  17. Modelling the changes induced by chronic desipramine treatment on the factors governing the agonism at prejunctional alpha 2-adrenoceptors.

    PubMed Central

    Sallés, J.; Giraldo, J.; Vila, E.; Badia, A.

    1996-01-01

    1. The adaptational changes induced after chronic desipramine treatment on functional responsiveness of alpha 2-adrenoceptor activation were investigated in prostatic portions of the rat vas deferens. 2. For this purpose, clonidine and xylazine were studied for their effects on twitch contractions elicited by electrical field stimulation of prostatic portions removed 48 h after the last injection to the animals of vehicle or desipramine (10 mg kg-1, i.p.; 14 days). Operational model-fitting and the nested hyperbolic method were used to analyse the effects of irreversible receptor alkylation by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ, 300 nM) on the alpha 2-adrenoceptor-mediated effects of clonidine, either in vehicle- or in desipramine-treated animals. 3. Treatment with desipramine decreased the potency (increased the EC50) of clonidine and xylazine by about 12 and 9 fold respectively. However, the treatment did not modify the maximal effect (alpha) elicited by either agonist. The estimates of apparent affinity for clonidine did not depend on the method of calculation as the 'null' method and the 'operational' method gave similar answers. Estimates of tau values for both agonists revealed that chronic desipramine treatment resulted in significant decreases in the efficacy of agonists. However, desipramine treatment was not associated with significant changes in the affinity constant for clonidine while for xylazine, the operational model provided a higher estimate of KA (lower affinity) after desipramine treatment. 4. The results indicate a large receptor reserve at prejunctional alpha 2-adrenoceptors which is modulated by chronic desipramine treatment. 5. The comparison of results obtained after chronic desipramine exposure with those by using EEDQ suggests that chronic desipramine treatment is not a useful experimental intervention for the purpose of estimating agonist affinities and efficacies. PMID:8882627

  18. GLP-1 Receptor Activation Inhibits VLDL Production and Reverses Hepatic Steatosis by Decreasing Hepatic Lipogenesis in High-Fat-Fed APOE*3-Leiden Mice

    PubMed Central

    Geerling, Janine J.; Schröder-Van der Elst, Janny P.; Picha, Kristen; O'Neil, Karyn; Stojanovic-Susulic, Vedrana; Ort, Tatiana; Havekes, Louis M.; Romijn, Johannes A.; Pijl, Hanno; Rensen, Patrick C. N.

    2012-01-01

    Objective In addition to improve glucose intolerance, recent studies suggest that glucagon-like peptide-1 (GLP-1) receptor agonism also decreases triglyceride (TG) levels. The aim of this study was to evaluate the effect of GLP-1 receptor agonism on very-low-density lipoprotein (VLDL)-TG production and liver TG metabolism. Experimental Approach The GLP-1 peptide analogues CNTO3649 and exendin-4 were continuously administered subcutaneously to high fat diet-fed APOE*3-Leiden transgenic mice. After 4 weeks, hepatic VLDL production, lipid content, and expression profiles of selected genes involved in lipid metabolism were determined. Results CNTO3649 and exendin-4 reduced fasting plasma glucose (up to −30% and −28% respectively) and insulin (−43% and −65% respectively). In addition, these agents reduced VLDL-TG production (−36% and −54% respectively) and VLDL-apoB production (−36% and −43% respectively), indicating reduced production of VLDL particles rather than reduced lipidation of apoB. Moreover, they markedly decreased hepatic content of TG (−39% and −55% respectively), cholesterol (−30% and −55% respectively), and phospholipids (−23% and −36% respectively), accompanied by down-regulation of expression of genes involved in hepatic lipogenesis (Srebp-1c, Fasn, Dgat1) and apoB synthesis (Apob). Conclusion GLP-1 receptor agonism reduces VLDL production and hepatic steatosis in addition to an improvement of glycemic control. These data suggest that GLP-receptor agonists could reduce hepatic steatosis and ameliorate dyslipidemia in patients with type 2 diabetes mellitus. PMID:23133675

  19. Selective κ receptor partial agonist HS666 produces potent antinociception without inducing aversion after i.c.v. administration in mice

    PubMed Central

    Eans, Shainnel O; Ganno, Michelle L; Lantero, Aquilino; Mairegger, Michael; Toll, Lawrence; Schmidhammer, Helmut

    2017-01-01

    Background and purpose The κ receptor has a central role in modulating neurotransmission in central and peripheral neuronal circuits that subserve pain and other behavioural responses. Although κ receptor agonists do not produce euphoria or lead to respiratory suppression, they induce dysphoria and sedation. We hypothesized that brain‐penetrant κ receptor ligands possessing biased agonism towards G protein signalling over β‐arrestin2 recruitment would produce robust antinociception with fewer associated liabilities. Experimental approach Two new diphenethylamines with high κ receptor selectivity, HS665 and HS666, were assessed following i.c.v. administration in mouse assays of antinociception with the 55°C warm‐water tail withdrawal test, locomotor activity in the rotorod and conditioned place preference. The [35S]‐GTPγS binding and β‐arrestin2 recruitment in vitro assays were used to characterize biased agonism. Key results HS665 (κ receptor agonist) and HS666 (κ receptor partial agonist) demonstrated dose‐dependent antinociception after i.c.v. administration mediated by the κ receptor. These highly selective κ receptor ligands displayed varying biased signalling towards G protein coupling in vitro, consistent with a reduced liability profile, reflected by reduced sedation and absence of conditioned place aversion for HS666. Conclusions and implications HS665 and HS666 activate central κ receptors to produce potent antinociception, with HS666 displaying pharmacological characteristics of a κ receptor analgesic with reduced liability for aversive effects correlating with its low efficacy in the β‐arrestin2 signalling pathway. Our data provide further understanding of the contribution of central κ receptors in pain suppression, and the prospect of dissociating the antinociceptive effects of HS665 and HS666 from κ receptor‐mediated adverse effects. PMID:28494108

  20. Histamine H3 receptors and its antagonism as a novel mechanism for antipsychotic effect: a current preclinical & clinical perspective

    PubMed Central

    Mahmood, Danish

    2016-01-01

    Histamine H3 receptors are present as autoreceptors on histaminergic neurons and as heteroreceptors on nonhistaminergic neurones. They control the release and synthesis of histamine and several other key neurotransmitters in the brain. H3 antagonism may be a novel approach to develop a new class of antipsychotic medications given the gathering evidence reporting therapeutic efficacy in several central nervous system disorders. Several medications such as cariprazine, lurasidone, LY214002, bexarotene, rasagiline, raloxifene, BL-1020 and ITI-070 are being developed to treat the negative symptoms and cognitive impairments of schizophrenia. These medications works through diverse mechanisms which include agonism at metabotropic glutamate receptor (mGluR2/3), partial agonism at dopamine D2, D3 and serotonin 5-HT1A receptors, antagonism at D2, 5-HT2A, 5-HT2B and 5-HT7 receptors, combined dopamine antagonism with GABA agonist activity, inhibition of monoamine oxidase-B, modulation of oestrogen receptor, and activation of nuclear retinoid X receptor. However, still specific safe therapy for psychosis remains at large. Schizophrenia is a severe neuropsychiatric disorder result both from hyper- and hypo-dopaminergic transmission causing positive and negative symptoms, respectively. Pharmacological stimulation of dopamine release in the prefrontal cortex has been a viable approach in treating negative symptoms and cognitive deficits of schizophrenia symptoms that are currently not well treated and continue to represent significant unmet medical challenges. Administration of H3 antagonists/inverse agonists increase extracellular dopamine concentrations in rat prefrontal cortex, but not in the striatum suggesting that antagonism via H3 receptor may be a potential target for treating negative symptoms and cognitive deficits associated with schizophrenia. Further, insights are emerging into the potential role of histamine H3 receptors as a target of antiobesity therapeutics which

  1. Computer-aided discovery, validation, and mechanistic characterization of novel neolignan activators of peroxisome proliferator-activated receptor gamma.

    PubMed

    Fakhrudin, Nanang; Ladurner, Angela; Atanasov, Atanas G; Heiss, Elke H; Baumgartner, Lisa; Markt, Patrick; Schuster, Daniela; Ellmerer, Ernst P; Wolber, Gerhard; Rollinger, Judith M; Stuppner, Hermann; Dirsch, Verena M

    2010-04-01

    Peroxisome proliferator-activated receptor gamma (PPAR gamma) agonists are used for the treatment of type 2 diabetes and metabolic syndrome. However, the currently used PPAR gamma agonists display serious side effects, which has led to a great interest in the discovery of novel ligands with favorable properties. The aim of our study was to identify new PPARgamma agonists by a PPAR gamma pharmacophore-based virtual screening of 3D natural product libraries. This in silico approach led to the identification of several neolignans predicted to bind the receptor ligand binding domain (LBD). To confirm this prediction, the neolignans dieugenol, tetrahydrodieugenol, and magnolol were isolated from the respective natural source or synthesized and subsequently tested for PPAR gamma receptor binding. The neolignans bound to the PPAR gamma LBD with EC(50) values in the nanomolar range, exhibiting a binding pattern highly similar to the clinically used agonist pioglitazone. In intact cells, dieugenol and tetrahydrodieugenol selectively activated human PPAR gamma-mediated, but not human PPAR alpha- or -beta/delta-mediated luciferase reporter expression, with a pattern suggesting partial PPAR gamma agonism. The coactivator recruitment study also demonstrated partial agonism of the tested neolignans. Dieugenol, tetrahydrodieugenol, and magnolol but not the structurally related eugenol induced 3T3-L1 preadipocyte differentiation, confirming effectiveness in a cell model with endogenous PPAR gamma expression. In conclusion, we identified neolignans as novel ligands for PPAR gamma, which exhibited interesting activation profiles, recommending them as potential pharmaceutical leads or dietary supplements.

  2. Impaired firing properties of dentate granule neurons in an Alzheimer's disease animal model are rescued by PPARγ agonism

    PubMed Central

    Nenov, Miroslav N.; Denner, Larry; Dineley, Kelly T.

    2014-01-01

    Early cognitive impairment in Alzheimer's disease (AD) correlates with medial temporal lobe dysfunction, including two areas essential for memory formation: the entorhinal cortex and dentate gyrus (DG). In the Tg2576 animal model for AD amyloidosis, activation of the peroxisome proliferator-activated receptor-gamma (PPARγ) with rosiglitazone (RSG) ameliorates hippocampus-dependent cognitive impairment and restores aberrant synaptic activity at the entorhinal cortex to DG granule neuron inputs. It is unknown, however, whether intrinsic firing properties of DG granule neurons in these animals are affected by amyloid-β pathology and if they are sensitive to RSG treatment. Here, we report that granule neurons from 9-mo-old wild-type and Tg2576 animals can be segregated into two cell types with distinct firing properties and input resistance that correlate with less mature type I and more mature type II neurons. The DG type I cell population was greater than type II in wild-type littermates. In the Tg2576 animals, the type I and type II cell populations were nearly equal but could be restored to wild-type levels through cognitive enhancement with RSG. Furthermore, Tg2576 cell firing frequency and spike after depolarization were decreased in type I and increased in type II cells, both of which could also be restored to wild-type levels upon RSG treatment. That these parameters were restored by PPARγ activation emphasizes the therapeutic value of RSG against early AD cognitive impairment. PMID:25540218

  3. 5-HT2 Receptor Regulation of Mitochondrial Genes: Unexpected Pharmacological Effects of Agonists and Antagonists.

    PubMed

    Harmon, Jennifer L; Wills, Lauren P; McOmish, Caitlin E; Demireva, Elena Y; Gingrich, Jay A; Beeson, Craig C; Schnellmann, Rick G

    2016-04-01

    In acute organ injuries, mitochondria are often dysfunctional, and recent research has revealed that recovery of mitochondrial and renal functions is accelerated by induction of mitochondrial biogenesis (MB). We previously reported that the nonselective 5-HT2 receptor agonist DOI [1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine] induced MB in renal proximal tubular cells (RPTCs). The goal of this study was to determine the role of 5-HT2 receptors in the regulation of mitochondrial genes and oxidative metabolism in the kidney. The 5-HT2C receptor agonist CP-809,101 [2-[(3-chlorophenyl)methoxy]-6-(1-piperazinyl)pyrazine] and antagonist SB-242,084 [6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxyamide dihydrochloride] were used to examine the induction of renal mitochondrial genes and oxidative metabolism in RPTCs and in mouse kidneys in the presence and absence of the 5-HT2C receptor. Unexpectedly, both CP-809,101 and SB-242,084 increased RPTC respiration and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA expression in RPTCs at 1-10 nM. In addition, CP-809,101 and SB-242,084 increased mRNA expression of PGC-1α and the mitochondrial proteins NADH dehydrogenase subunit 1 and NADH dehydrogenase (ubiquinone) β subcomplex 8 in mice. These compounds increased mitochondrial genes in RPTCs in which the 5-HT2C receptor was downregulated with small interfering RNA and in the renal cortex of mice lacking the 5-HT2C receptor. By contrast, the ability of these compounds to increase PGC-1α mRNA and respiration was blocked in RPTCs treated with 5-HT2A receptor small interfering RNA or the 5-HT2A receptor antagonist eplivanserin. In addition, the 5-HT2A receptor agonist NBOH-2C-CN [4-[2-[[(2-hydroxyphenyl)methyl]amino]ethyl]-2,5-dimethoxybenzonitrile] increased RPTC respiration at 1-100 nM. These results suggest that agonism of the 5-HT2A receptor induces MB and that the classic 5-HT2C receptor agonist CP

  4. The phosphorylated form of FTY720 activates PP2A, represses inflammation and is devoid of S1P agonism in A549 lung epithelial cells.

    PubMed

    Rahman, Md Mostafizur; Prünte, Laura; Lebender, Leonard F; Patel, Brijeshkumar S; Gelissen, Ingrid; Hansbro, Philip M; Morris, Jonathan C; Clark, Andrew R; Verrills, Nicole M; Ammit, Alaina J

    2016-11-16

    Protein phosphatase 2A (PP2A) activity can be enhanced pharmacologically by PP2A-activating drugs (PADs). The sphingosine analog FTY720 is the best known PAD and we have shown that FTY720 represses production of pro-inflammatory cytokines responsible for respiratory disease pathogenesis. Whether its phosphorylated form, FTY720-P, also enhances PP2A activity independently of the sphingosine 1-phosphate (S1P) pathway was unknown. Herein, we show that FTY720-P enhances TNF-induced PP2A phosphatase activity and significantly represses TNF-induced interleukin 6 (IL-6) and IL-8 mRNA expression and protein secretion from A549 lung epithelial cells. Comparing FTY720 and FTY720-P with S1P, we show that unlike S1P, the sphingosine analogs do not induce cytokine production on their own. In fact, FTY720 and FTY720-P significantly repress S1P-induced IL-6 and IL-8 production. We then examined their impact on expression of cyclooxygenase 2 (COX-2) and resultant prostaglandin E2 (PGE2) production. S1P did not increase production of this pro-inflammatory enzyme because COX-2 mRNA gene expression is NF-κB-dependent, and unlike TNF, S1P did not activate NF-κB. However, TNF-induced COX-2 mRNA expression and PGE2 secretion is repressed by FTY720 and FTY720-P. Hence, FTY720-P enhances PP2A activity and that PADs can repress production of pro-inflammatory cytokines and enzymes in A549 lung epithelial cells in a manner devoid of S1P agonism.

  5. Gene Expression Ratios Lead to Accurate and Translatable Predictors of DR5 Agonism across Multiple Tumor Lineages.

    PubMed

    Reddy, Anupama; Growney, Joseph D; Wilson, Nick S; Emery, Caroline M; Johnson, Jennifer A; Ward, Rebecca; Monaco, Kelli A; Korn, Joshua; Monahan, John E; Stump, Mark D; Mapa, Felipa A; Wilson, Christopher J; Steiger, Janine; Ledell, Jebediah; Rickles, Richard J; Myer, Vic E; Ettenberg, Seth A; Schlegel, Robert; Sellers, William R; Huet, Heather A; Lehár, Joseph

    2015-01-01

    Death Receptor 5 (DR5) agonists demonstrate anti-tumor activity in preclinical models but have yet to demonstrate robust clinical responses. A key limitation may be the lack of patient selection strategies to identify those most likely to respond to treatment. To overcome this limitation, we screened a DR5 agonist Nanobody across >600 cell lines representing 21 tumor lineages and assessed molecular features associated with response. High expression of DR5 and Casp8 were significantly associated with sensitivity, but their expression thresholds were difficult to translate due to low dynamic ranges. To address the translational challenge of establishing thresholds of gene expression, we developed a classifier based on ratios of genes that predicted response across lineages. The ratio classifier outperformed the DR5+Casp8 classifier, as well as standard approaches for feature selection and classification using genes, instead of ratios. This classifier was independently validated using 11 primary patient-derived pancreatic xenograft models showing perfect predictions as well as a striking linearity between prediction probability and anti-tumor response. A network analysis of the genes in the ratio classifier captured important biological relationships mediating drug response, specifically identifying key positive and negative regulators of DR5 mediated apoptosis, including DR5, CASP8, BID, cFLIP, XIAP and PEA15. Importantly, the ratio classifier shows translatability across gene expression platforms (from Affymetrix microarrays to RNA-seq) and across model systems (in vitro to in vivo). Our approach of using gene expression ratios presents a robust and novel method for constructing translatable biomarkers of compound response, which can also probe the underlying biology of treatment response.

  6. Gene Expression Ratios Lead to Accurate and Translatable Predictors of DR5 Agonism across Multiple Tumor Lineages

    PubMed Central

    Reddy, Anupama; Growney, Joseph D.; Wilson, Nick S.; Emery, Caroline M.; Johnson, Jennifer A.; Ward, Rebecca; Monaco, Kelli A.; Korn, Joshua; Monahan, John E.; Stump, Mark D.; Mapa, Felipa A.; Wilson, Christopher J.; Steiger, Janine; Ledell, Jebediah; Rickles, Richard J.; Myer, Vic E.; Ettenberg, Seth A.; Schlegel, Robert; Sellers, William R.

    2015-01-01

    Death Receptor 5 (DR5) agonists demonstrate anti-tumor activity in preclinical models but have yet to demonstrate robust clinical responses. A key limitation may be the lack of patient selection strategies to identify those most likely to respond to treatment. To overcome this limitation, we screened a DR5 agonist Nanobody across >600 cell lines representing 21 tumor lineages and assessed molecular features associated with response. High expression of DR5 and Casp8 were significantly associated with sensitivity, but their expression thresholds were difficult to translate due to low dynamic ranges. To address the translational challenge of establishing thresholds of gene expression, we developed a classifier based on ratios of genes that predicted response across lineages. The ratio classifier outperformed the DR5+Casp8 classifier, as well as standard approaches for feature selection and classification using genes, instead of ratios. This classifier was independently validated using 11 primary patient-derived pancreatic xenograft models showing perfect predictions as well as a striking linearity between prediction probability and anti-tumor response. A network analysis of the genes in the ratio classifier captured important biological relationships mediating drug response, specifically identifying key positive and negative regulators of DR5 mediated apoptosis, including DR5, CASP8, BID, cFLIP, XIAP and PEA15. Importantly, the ratio classifier shows translatability across gene expression platforms (from Affymetrix microarrays to RNA-seq) and across model systems (in vitro to in vivo). Our approach of using gene expression ratios presents a robust and novel method for constructing translatable biomarkers of compound response, which can also probe the underlying biology of treatment response. PMID:26378449

  7. MiR-132 Regulates Rem Expression in Cardiomyocytes During Long-Term β-Adrenoceptor Agonism.

    PubMed

    Carrillo, Elba D; Sampieri, Raúl; Hernández, Ascención; García, María C; Sánchez, Jorge A

    2015-01-01

    To characterize the effects of long-term β-adrenergic receptor stimulation on Rem protein and mRNA expression in rat heart and possible involvement of miR-132. Adult rats were treated with isoproterenol (ISO, 150 µg.kg.h(-1)) for 2 d and Rem, miR-132, and α1c (the principal subunit of Cav1.2 channels) were measured at protein and mRNA levels with western blot and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) experiments, respectively. Ca(2+) currents and intracellular Ca(2+) signals were evaluated in isolated cardiomyocytes. Systemic administration of ISO led to decreases in Rem protein and mRNA levels (down to 49%). Furthermore, levels of the microRNAs (miRs) miR-132 and miR-214 were upregulated 5- and 9-fold, respectively. Transfection of miR-132, but not miR-214, into HEK293 cells reduced the expression of a luciferase reporter gene controlled by a conserved 3´-untranslated region (UTR) of Rem by half. Chronic ISO administration also led to a 25% decrease in the amplitude of peak L-type Ca(2+) currents, a 40% decrease in α1c subunit protein abundance at the membrane level, and a 60% decrease in expression of α1c channel subunit mRNA. These results suggest that Rem expression is down-regulated posttranscriptionally by miR-132 in response to long-term activation of β-adrenergic signaling, but this down-regulation does not produce a larger Ca(2+) influx through Cav1.2 channels.

  8. A prototypical Sigma-1 receptor antagonist protects against brain ischemia.

    PubMed

    Schetz, John A; Perez, Evelyn; Liu, Ran; Chen, Shiuhwei; Lee, Ivan; Simpkins, James W

    2007-11-21

    Previous studies indicate that the Sigma-1 ligand 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP) protects the brain from ischemia. Less clear is whether protection is mediated by agonism or antagonism of the Sigma-1 receptor, and whether drugs already in use for other indications and that interact with the Sigma-1 receptor might also prevent oxidative damage due to conditions such as cerebral ischemic stroke. The antipsychotic drug haloperidol is an antagonist of Sigma-1 receptors and in this study it potently protects against oxidative stress-related cell death in vitro at low concentrations. The protective potency of haloperidol and a number of other butyrophenone compounds positively correlate with their affinity for a cloned Sigma-1 receptor, and the protection is mimicked by a Sigma-1 receptor-selective antagonist (BD1063), but not an agonist (PRE-084). In vivo, an acute low dose (0.05 mg/kg s.c.) of haloperidol reduces by half the ischemic lesion volume induced by a transient middle cerebral artery occlusion. These in vitro and in vivo pre-clinical results suggest that a low dose of acutely administered haloperidol might have a novel application as a protective agent against ischemic cerebral stroke and other types of brain injury with an ischemic component.

  9. Can the sigma-1 receptor agonist fluvoxamine prevent schizophrenia?

    PubMed

    Hashimoto, Kenji

    2009-12-01

    In the past decade there has been increasing interest in the potential benefit of early pharmacological intervention in schizophrenia. Patients with schizophrenia show nonpsychotic and nonspecific prodromal symptoms (e.g., depression and cognitive deficits) for several years preceding the onset of frank psychosis. Several studies have demonstrated that medication with atypical antipsychotic drugs in people with prodromal symptoms may reduce the risk of subsequent transition to schizophrenia. Furthermore, a naturalistic treatment study in young people with prodromal symptoms demonstrated that medication with antidepressants could prevent the development of psychosis. Although the sample in this study was small, the results were striking. Some antidepressants, including selective serotonin reuptake inhibitors (SSRIs), had high to moderate affinities at the endoplasmic reticulum protein sigma-1 receptors, which are implicated in neuroprotection and neuronal plasticity. Among all antidepressants, fluvoxamine was the most potent sigma-1 receptor agonist. Since the effects of fluroxaming were antagonized by the selective sigma-1 receptor antagonist NE-100. Based on the role of sigma-1 receptors in the pathophysiology of cognition and depression, the author would like to propose a hypothesis that SSRIs (e.g., fluvoxamine) with sigma-1 receptor agonism may reduce the risk of subsequent transition to schizophrenia.

  10. Structure and Function of Serotonin G protein Coupled Receptors

    PubMed Central

    McCorvy, John D.; Roth, Bryan L.

    2015-01-01

    Serotonin receptors are prevalent throughout the nervous system and the periphery, and remain one of the most lucrative and promising drug discovery targets for disorders ranging from migraine headaches to neuropsychiatric disorders such as schizophrenia and depression. There are 14 distinct serotonin receptors, of which 13 are G protein coupled receptors (GPCRs), which are targets for approximately 40% of the approved medicines. Recent crystallographic and biochemical evidence has provided a converging understanding of the basic structure and functional mechanics of GPCR activation. Currently, two GPCR crystal structures exist for the serotonin family, the 5-HT1B and 5-HT2B receptor, with the antimigraine and valvulopathic drug ergotamine bound. The first serotonin crystal structures not only provide the first evidence of serotonin receptor topography but also provide mechanistic explanations into functional selectivity or biased agonism. This review will detail the findings of these crystal structures from a molecular and mutagenesis perspective for driving rational drug design for novel therapeutics incorporating biased signaling. PMID:25601315

  11. Delta opioid receptors in brain function and diseases

    PubMed Central

    Chung, Paul Chu Sin; Kieffer, Brigitte L.

    2013-01-01

    Evidence that the delta opioid receptor (DOR) is an attractive target for the treatment of brain disorders has strengthened in recent years. This receptor is broadly expressed in the brain, binds endogenous opioid peptides, and shows as functional profile highly distinct from those of mu and kappa opioid receptors. Our knowledge of DOR function has enormously progressed from in vivo studies using pharmacological tools and genetic approaches. The important role of this receptor in reducing chronic pain has been extensively overviewed; therefore this review focuses on facets of delta receptor activity relevant to psychiatric and other neurological disorders. Beneficial effects of DOR agonists are now well established in the context of emotional responses and mood disorders. DOR activation also regulates drug reward, inhibitory controls and learning processes, but whether delta compounds may represent useful drugs in the treatment of drug abuse remains open. Epileptogenic and locomotor-stimulating effects of delta agonists appear drug-dependent, and the possibility of biased agonism at DOR for these effects is worthwhile further investigations to increase benefit/risk ratio of delta therapies. Neuroprotective effects of DOR activity represent a forthcoming research area. Future developments in DOR research will benefit from in-depth investigations of DOR function at cellular and circuit levels. PMID:23764370

  12. Synthesis and biological activity of small peptides as NOP and opioid receptors' ligands: view on current developments.

    PubMed

    Naydenova, Emilia; Todorov, Petar; Zamfirova, Rositza

    2015-01-01

    The heptadecapeptide nociceptin, also called orphanin FQ (N/OFQ), is the endogenous agonist of the N/OFQ peptide receptor (NOP receptor) and is involved in several central nervous system pathways, such as nociception, reward, tolerance, and feeding. The discovery of small molecule ligands for NOP is being actively pursued for several therapeutic applications. This review presents overview of the several recently reported NOP ligands (agonists and antagonists), with an emphasis of the structural features that may be important for modulating the intrinsic activity of these ligands. In addition, a brief account on the characterization of newly synthesized ligands of NOP receptor with aminophosphonate moiety and β-tryptophan analogues will be presented.

  13. The endogenous mu-opioid receptor agonists endomorphins 1 and 2 have novel hypotensive activity in the rabbit.

    PubMed

    Champion, H C; Zadina, J E; Kastin, A J; Hackler, L; Ge, L J; Kadowitz, P J

    1997-06-27

    The endogenous peptides endomorphins 1 and 2 are newly isolated, potent, and selective mu-opioid receptor agonists. In the present study, responses to the endomorphin peptides were investigated in the systemic vascular bed of the rabbit. Endomorphins 1 and 2 induced dose-related decreases in systemic arterial pressure when injected in doses of 1-30 nmol/kg i.v. In terms of relative vasodepressor activity, endomorphins 1 and 2 were similar to the ORL1 receptor ligand, nociceptin (Orphanin FQ), and met-enkephalin in decreasing systemic arterial pressure. Vasodepressor responses to endomorphins 1 and 2 were inhibited by the opioid receptor antagonist, naloxone, in a dose of 2 mg/kg i.v. These results demonstrate that endomorphins 1 and 2 have significant naloxone-sensitive, vasodepressor activity in the rabbit.

  14. G Protein-Coupled Receptors in Cancer.

    PubMed

    Bar-Shavit, Rachel; Maoz, Myriam; Kancharla, Arun; Nag, Jeetendra Kumar; Agranovich, Daniel; Grisaru-Granovsky, Sorina; Uziely, Beatrice

    2016-08-12

    Despite the fact that G protein-coupled receptors (GPCRs) are the largest signal-conveying receptor family and mediate many physiological processes, their role in tumor biology is underappreciated. Numerous lines of evidence now associate GPCRs and their downstream signaling targets in cancer growth and development. Indeed, GPCRs control many features of tumorigenesis, including immune cell-mediated functions, proliferation, invasion and survival at the secondary site. Technological advances have further substantiated GPCR modifications in human tumors. Among these are point mutations, gene overexpression, GPCR silencing by promoter methylation and the number of gene copies. At this point, it is imperative to elucidate specific signaling pathways of "cancer driver" GPCRs. Emerging data on GPCR biology point to functional selectivity and "biased agonism"; hence, there is a diminishing enthusiasm for the concept of "one drug per GPCR target" and increasing interest in the identification of several drug options. Therefore, determining the appropriate context-dependent conformation of a functional GPCR as well as the contribution of GPCR alterations to cancer development remain significant challenges for the discovery of dominant cancer genes and the development of targeted therapeutics.

  15. Biased mu-opioid receptor ligands: a promising new generation of pain therapeutics.

    PubMed

    Siuda, Edward R; Carr, Richard; Rominger, David H; Violin, Jonathan D

    2016-12-06

    Opioid chemistry and biology occupy a pivotal place in the history of pharmacology and medicine. Morphine offers unmatched efficacy in alleviating acute pain, but is also associated with a host of adverse side effects. The advent of biased agonism at G protein-coupled receptors has expanded our understanding of intracellular signaling and highlighted the concept that certain ligands are able to differentially modulate downstream pathways. The ability to target one pathway over another has allowed for the development of biased ligands with robust clinical efficacy and fewer adverse events. In this review we summarize these concepts with an emphasis on biased mu opioid receptor pharmacology and highlight how far opioid pharmacology has evolved.

  16. Fluorescent Approaches for Understanding Interactions of Ligands with G Protein Coupled Receptors

    PubMed Central

    Sridharan, Rajashri; Zuber, Jeffrey; Connelly, Sara M.; Mathew, Elizabeth; Dumont, Mark E.

    2014-01-01

    G Protein Coupled Receptors (GPCRs) are responsible for a wide variety of signaling responses in diverse cell types. Despite major advances in the determination of structures of this class of receptors, the underlying mechanisms by which binding of different types of ligands specifically elicits particular signaling responses remains unclear. The use of fluorescence spectroscopy can provide important information about the process of ligand binding and ligand dependent conformational changes in receptors, especially kinetic aspects of these processes, that can be difficult to extract from x-ray structures. We present an overview of the extensive array of fluorescent ligands that have been used in studies of GPCRs and describe spectroscopic approaches for assaying binding and probing the environment of receptor-bound ligands with particular attention to examples involving yeast pheromone receptors. In addition, we discuss the use of fluorescence spectroscopy for detecting and characterizing conformational changes in receptors induced by the binding of ligands. Such studies have provided strong evidence for diversity of receptor conformations elicited by different ligands, consistent with the idea that GPCRs are not simple on and off switches. This diversity of states constitutes an underlying mechanistic basis for biased agonism, the observation that different stimuli can produce different responses from a single receptor. It is likely that continued technical advances will allow fluorescence spectroscopy to play an important role in continued probing of structural transitions in GPCRs. PMID:24055822

  17. Label-free integrative pharmacology on-target of opioid ligands at the opioid receptor family

    PubMed Central

    2013-01-01

    Background In vitro pharmacology of ligands is typically assessed using a variety of molecular assays based on predetermined molecular events in living cells. Many ligands including opioid ligands pose the ability to bind more than one receptor, and can also provide distinct operational bias to activate a specific receptor. Generating an integrative overview of the binding and functional selectivity of ligands for a receptor family is a critical but difficult step in drug discovery and development. Here we applied a newly developed label-free integrative pharmacology on-target (iPOT) approach to systematically survey the selectivity of a library of fifty-five opioid ligands against the opioid receptor family. All ligands were interrogated using dynamic mass redistribution (DMR) assays in both recombinant and native cell lines that express specific opioid receptor(s). The cells were modified with a set of probe molecules to manifest the binding and functional selectivity of ligands. DMR profiles were collected and translated to numerical coordinates that was subject to similarity analysis. A specific set of opioid ligands were then selected for quantitative pharmacology determination. Results Results showed that among fifty-five opioid ligands examined most ligands displayed agonist activity in at least one opioid receptor expressing cell line under different conditions. Further, many ligands exhibited pathway biased agonism. Conclusion We demonstrate that the iPOT effectively sorts the ligands into distinct clusters based on their binding and functional selectivity at the opioid receptor family. PMID:23497702

  18. The potential role of dopamine D3 receptor neurotransmission in cognition

    PubMed Central

    Nakajima, Shinichiro; Gerretsen, Philip; Takeuchi, Hiroyoshi; Caravaggio, Fernando; Chow, Tiffany; Le Foll, Bernard; Mulsant, Benoit; Pollock, Bruce; Graff-Guerrero, Ariel

    2013-01-01

    Currently available treatments have limited pro-cognitive effects for neuropsychiatric disorders, such as schizophrenia, Parkinson’s disease and Alzheimer’s disease. The primary objective of this work is to review the literature on the role of dopamine D3 receptors in cognition, and propose dopamine D3 receptor antagonists as possible cognitive enhancers for neuropsychiatric disorders. A literature search was performed to identify animal and human studies on D3 receptors and cognition using PubMed, MEDLINE and EMBASE. The search terms included “dopamine D3 receptor” and “cognition”. The literature search identified 164 articles. The results revealed: (1) D3 receptors are associated with cognitive functioning in both healthy individuals and those with neuropsychiatric disorders; (2) D3 receptor blockade appears to enhance while D3 receptor agonism seems to impair cognitive function, including memory, attention, learning, processing speed, social recognition and executive function independent of age; and (3) D3 receptor antagonists may exert their pro-cognitive effect by enhancing the release of acetylcholine in the prefrontal cortex, disinhibiting the activity of dopamine neurons projecting to the nucleus accumbens or prefrontal cortex, or activating CREB signaling in the hippocampus. These findings suggest that D3 receptor blockade may enhance cognitive performance in healthy individuals and treat cognitive dysfunction in individuals with a neuropsychiatric disorder. Clinical trials are needed to confirm these effects. PMID:23791072

  19. Involvement of NMDA receptors in the ventrolateral striatum of rats in apomorphine-induced jaw movements.

    PubMed

    Fujita, Satoshi; Kiguchi, Motori; Kobayashi, Masayuki; Koshikawa, Noriaki; Waddington, John L

    2010-03-31

    The role of NMDA receptors in the ventrolateral striatum to modulate dopamine receptor-mediated jaw movements was investigated in freely moving rats, using a magnetic sensor system combined with intracerebral microinjection of drugs. Apomorphine (1mg/kg i.v.) induced repetitive jaw movements that were reduced, in a dose-dependent manner, by bilateral microinjections of the NMDA receptor agonist NMDA (0.1 and 1mug/0.2mul bilaterally) into the ventrolateral striatum. Apomorphine-induced repetitive jaw movements were also reduced, in a dose-dependent manner, by bilateral microinjections of the NMDA receptor antagonists d-APV (0.01 and 0.1mug) or MK-801 (0.5 and 5mug). The inhibitory effect of NMDA (1mug) was reduced by co-administration of MK-801 (0.5mug). Microinjections of drugs into the ventrolateral striatum in the absence of apomorphine did not affect jaw movements. These results suggest that NMDA receptors in the ventrolateral striatum play an important modulatory role in the expression of dopamine receptor-mediated jaw movements. However, similar effects of NMDA and NMDA antagonists echo previous paradoxical findings and indicate that interactions between dopamine and NMDA receptors are complex and multifaceted. Cellular mechanism(s) may involve differential effects of NMDA agonism and antagonism on dopamine D1-like vs D2-like receptors and, possibly, on related GABAergic processes. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Electroacupuncture Inhibition of Hyperalgesia in Rats with Adjuvant Arthritis: Involvement of Cannabinoid Receptor 1 and Dopamine Receptor Subtypes in Striatum

    PubMed Central

    Shou, Yin; Yang, Yang; Xu, Ming-Shu; Zhao, Ying-Qian; Ge, Lin-Bao; Zhang, Bi-Meng

    2013-01-01

    Electroacupuncture (EA) has been regarded as an alternative treatment for inflammatory pain for several decades. However, the molecular mechanisms underlying the antinociceptive effect of EA have not been thoroughly clarified. Previous studies have shown that cannabinoid CB1 receptors are related to pain relief. Accumulating evidence has shown that the CB1 and dopamine systems sometimes interact and may operate synergistically in rat striatum. To our knowledge, dopamine D1/D2 receptors are involved in EA analgesia. In this study, we found that repeated EA at Zusanli (ST36) and Kunlun (BL60) acupoints resulted in marked improvements in thermal hyperalgesia. Both western blot assays and FQ-PCR analysis results showed that the levels of CB1 expression in the repeated-EA group were much higher than those in any other group (P = 0.001). The CB1-selective antagonist AM251 inhibited the effects of repeated EA by attenuating the increases in CB1 expression. The two kinds of dopamine receptors imparted different actions on the EA-induced CB1 upregulation in AA rat model. These results suggested that the strong activation of the CB1 receptor after repeated EA resulted in the concomitant phenomenon of the upregulation of D1 and D2 levels of gene expression. PMID:23762129

  1. Pharmacological Investigations of N-Substituent Variation in Morphine and Oxymorphone: Opioid Receptor Binding, Signaling and Antinociceptive Activity

    PubMed Central

    Ben Haddou, Tanila; Béni, Szabolcs; Hosztafi, Sándor; Malfacini, Davide; Calo, Girolamo; Schmidhammer, Helmut; Spetea, Mariana

    2014-01-01

    Morphine and structurally related derivatives are highly effective analgesics, and the mainstay in the medical management of moderate to severe pain. Pharmacological actions of opioid analgesics are primarily mediated through agonism at the µ opioid peptide (MOP) receptor, a G protein-coupled receptor. Position 17 in morphine has been one of the most manipulated sites on the scaffold and intensive research has focused on replacements of the 17-methyl group with other substituents. Structural variations at the N-17 of the morphinan skeleton led to a diversity of molecules appraised as valuable and potential therapeutics and important research probes. Discovery of therapeutically useful morphine-like drugs has also targeted the C-6 hydroxyl group, with oxymorphone as one of the clinically relevant opioid analgesics, where a carbonyl instead of a hydroxyl group is present at position 6. Herein, we describe the effect of N-substituent variation in morphine and oxymorphone on in vitro and in vivo biological properties and the emerging structure-activity relationships. We show that the presence of a N-phenethyl group in position 17 is highly favorable in terms of improved affinity and selectivity at the MOP receptor, potent agonism and antinociceptive efficacy. The N-phenethyl derivatives of morphine and oxymorphone were very potent in stimulating G protein coupling and intracellular calcium release through the MOP receptor. In vivo, they were highly effective against acute thermal nociception in mice with marked increased antinociceptive potency compared to the lead molecules. It was also demonstrated that a carbonyl group at position 6 is preferable to a hydroxyl function in these N-phenethyl derivatives, enhancing MOP receptor affinity and agonist potency in vitro and in vivo. These results expand the understanding of the impact of different moieties at the morphinan nitrogen on ligand-receptor interaction, molecular mode of action and signaling, and may be

  2. Computational methods for studying G protein-coupled receptors (GPCRs).

    PubMed

    Kaczor, Agnieszka A; Rutkowska, Ewelina; Bartuzi, Damian; Targowska-Duda, Katarzyna M; Matosiuk, Dariusz; Selent, Jana

    2016-01-01

    The functioning of GPCRs is classically described by the ternary complex model as the interplay of three basic components: a receptor, an agonist, and a G protein. According to this model, receptor activation results from an interaction with an agonist, which translates into the activation of a particular G protein in the intracellular compartment that, in turn, is able to initiate particular signaling cascades. Extensive studies on GPCRs have led to new findings which open unexplored and exciting possibilities for drug design and safer and more effective treatments with GPCR targeting drugs. These include discovery of novel signaling mechanisms such as ligand promiscuity resulting in multitarget ligands and signaling cross-talks, allosteric modulation, biased agonism, and formation of receptor homo- and heterodimers and oligomers which can be efficiently studied with computational methods. Computer-aided drug design techniques can reduce the cost of drug development by up to 50%. In particular structure- and ligand-based virtual screening techniques are a valuable tool for identifying new leads and have been shown to be especially efficient for GPCRs in comparison to water-soluble proteins. Modern computer-aided approaches can be helpful for the discovery of compounds with designed affinity profiles. Furthermore, homology modeling facilitated by a growing number of available templates as well as molecular docking supported by sophisticated techniques of molecular dynamics and quantitative structure-activity relationship models are an excellent source of information about drug-receptor interactions at the molecular level.

  3. Role of innate and drug-induced dysregulation of brain stress and arousal systems in addiction: Focus on corticotropin-releasing factor, nociceptin/orphanin FQ, and orexin/hypocretin

    PubMed Central

    Martin-Fardon, Rémi; Zorrilla, Eric P.; Ciccocioppo, Roberto; Weiss, Friedbert

    2010-01-01

    Stress-like symptoms are an integral part of acute and protracted drug withdrawal, and several lines of evidence have shown that dysregulation of brain stress systems, including the extrahypothalamic corticotropin-releasing factor (CRF) system, following long-term drug use is of major importance in maintaining drug and alcohol addiction. Recently, two other neuropeptide systems have attracted interest, the nociceptin/orphanin FQ (N/OFQ) and orexin/hypocretin (Orx/Hcrt) systems. N/OFQ participates in a wide range of physiological responses, and the hypothalamic Orx/Hcrt system helps regulate several physiological processes, including feeding, energy metabolism, and arousal. Moreover, these two systems have been suggested to participate in psychiatric disorders, including anxiety and drug addiction. Dysregulation of these systems by chronic drug exposure has been hypothesized to play a role in the maintenance of addiction and dependence. Recent evidence demonstrated that interactions between CRF-N/OFQ and CRF-Orx/Hcrt systems may be functionally relevant for the control of stress-related addictive behavior. The present review discusses recent findings that support the hypotheses of the participation and dysregulation of these systems in drug addiction and evaluates the current understanding of interactions among these stress-regulatory peptides. PMID:20026088

  4. Pharmacological properties and predicted binding mode of arylmethylene quinuclidine-like derivatives at the α3β4 nicotinic acetylcholine receptor (nAChR).

    PubMed

    Kombo, David C; Hauser, Terry A; Grinevich, Vladimir P; Melvin, Matthew S; Strachan, Jon-Paul; Sidach, Serguei S; Chewning, Joseph; Fedorov, Nikolai; Tallapragada, Kartik; Breining, Scott R; Miller, Craig H

    2013-03-01

    We have carried out a pharmacological evaluation of arylmethylene quinuclidine derivatives interactions with human α3β4 nAChRs subtype, using cell-based receptor binding, calcium-influx, electrophysiological patch-clamp assays and molecular modeling techniques. We have found that the compounds bind competitively to the α3β4 receptor with micromolar affinities and some of the compounds behave as non-competitive antagonists (compounds 1, 2 and 3), displaying submicromolar IC(50) values. These evidences suggest a mixed mode of action for these compounds, having interactions at the orthosteric site and more pronounced interactions at an allosteric site to block agonist effects. One of the compounds, 1-benzyl-3-(diphenylmethylene)-1-azoniabicyclo[2.2.2]octane chloride (compound 3), exhibited poorly reversible use-dependent block of α3β4 channels. We also found that removal of a phenyl group from compound 1 confers a partial agonism to the derived analog (compound 6). Introducing a hydrogen-bond acceptor into the 3-benzylidene quinuclidine derivative (compound 7) increases agonism potency at the α3β4 receptor subtype. Docking into the orthosteric binding site of a α3β4 protein structure derived by comparative modeling accurately predicted the experimentally-observed trend in binding affinity. Results supported the notion that binding requires a hydrogen bond formation between the ligand basic nitrogen and the backbone carbonyl oxygen atom of the conserved Trp-149.

  5. Renal effects of chronic pharmacological manipulation of CB2 receptors in rats with diet-induced obesity.

    PubMed

    Jenkin, K A; O'Keefe, L; Simcocks, A C; Briffa, J F; Mathai, M L; McAinch, A J; Hryciw, D H

    2016-04-01

    In diabetic nephropathy agonism of CB2 receptors reduces albuminuria and podocyte loss; however, the role of CB2 receptors in obesity-related nephropathy is unknown. The aim of this study was to determine the role of CB2 receptors in a model of diet-induced obesity (DIO) and characterize the hallmark signs of renal damage in response to agonism (AM1241) and antagonism (AM630) of CB2 receptors. Male Sprague Dawley rats were fed a high-fat diet (HFD: 40% digestible energy from lipids) for 10 weeks. In another cohort, after 9 weeks on a HFD, rats were injected daily with either 3 mg·kg(-1) AM1241, 0.3 mg·kg(-1) AM630 or saline for 6 weeks. Ten weeks on a HFD significantly reduced renal expression of CB2 receptors and renal function. Treatment with AM1241 or AM630 did not reduce weight gain or food consumption in DIO. Despite this, AM1241 significantly reduced systolic BP, peri-renal adipose accumulation, plasma leptin, urinary protein, urinary albumin, urinary sodium excretion and the fibrotic markers TGF-β1, collagen IV and VEGF in kidney lysate. Treatment with AM630 of DIO rats significantly reduced creatinine clearance and increased glomerular area and kidney weight (gross and standardized for body weight). Diastolic BP, glucose tolerance, insulin sensitivity, plasma creatinine, plasma TGF-β1 and kidney expression of fibronectin and α-smooth muscle actin were not altered by either AM1241 or AM630 in DIO. This study demonstrates that while agonism of CB2 receptors with AM1241 treatment for 6 weeks does not reduce weight gain in obese rats, it leads to improvements in obesity-related renal dysfunction. This article is part of a themed section on Endocannabinoids. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.7/issuetoc. © 2014 The British Pharmacological Society.

  6. Differentiated effects of the multimodal antidepressant vortioxetine on sleep architecture: Part 2, pharmacological interactions in rodents suggest a role of serotonin-3 receptor antagonism.

    PubMed

    Leiser, Steven C; Iglesias-Bregna, Deborah; Westrich, Ligia; Pehrson, Alan L; Sanchez, Connie

    2015-10-01

    Antidepressants often disrupt sleep. Vortioxetine, a multimodal antidepressant acting through serotonin (5-HT) transporter (SERT) inhibition, 5-HT3, 5-HT7 and 5-HT1D receptor antagonism, 5-HT1B receptor partial agonism, and 5-HT1A receptor agonism, had fewer incidences of sleep-related adverse events reported in depressed patients. In the accompanying paper a polysomnographic electroencephalography (sleep-EEG) study of vortioxetine and paroxetine in healthy subjects indicated that at low/intermediate levels of SERT occupancy, vortioxetine affected rapid eye movement (REM) sleep differently than paroxetine. Here we investigated clinically meaningful doses (80-90% SERT occupancy) of vortioxetine and paroxetine on sleep-EEG in rats to further elucidate the serotoninergic receptor mechanisms mediating this difference. Cortical EEG, electromyography (EMG), and locomotion were recorded telemetrically for 10 days, following an acute dose, from rats receiving vortioxetine-infused chow or paroxetine-infused water and respective controls. Sleep stages were manually scored into active wake, quiet wake, and non-REM or REM sleep. Acute paroxetine or vortioxetine delayed REM onset latency (ROL) and decreased REM episodes. After repeated administration, vortioxetine yielded normal sleep-wake rhythms while paroxetine continued to suppress REM. Paroxetine, unlike vortioxetine, increased transitions from non-REM to wake, suggesting fragmented sleep. Next, we investigated the role of 5-HT3 receptors in eliciting these differences. The 5-HT3 receptor antagonist ondansetron significantly reduced paroxetine's acute effects on ROL, while the 5-HT3 receptor agonist SR57227A significantly increased vortioxetine's acute effect on ROL. Overall, our data are consistent with the clinical findings that vortioxetine impacts REM sleep differently than paroxetine, and suggests a role for 5-HT3 receptor antagonism in mitigating these differences.

  7. Differentiated effects of the multimodal antidepressant vortioxetine on sleep architecture: Part 2, pharmacological interactions in rodents suggest a role of serotonin-3 receptor antagonism

    PubMed Central

    Leiser, Steven C; Iglesias-Bregna, Deborah; Westrich, Ligia; Pehrson, Alan L; Sanchez, Connie

    2015-01-01

    Antidepressants often disrupt sleep. Vortioxetine, a multimodal antidepressant acting through serotonin (5-HT) transporter (SERT) inhibition, 5-HT3, 5-HT7 and 5-HT1D receptor antagonism, 5-HT1B receptor partial agonism, and 5-HT1A receptor agonism, had fewer incidences of sleep-related adverse events reported in depressed patients. In the accompanying paper a polysomnographic electroencephalography (sleep-EEG) study of vortioxetine and paroxetine in healthy subjects indicated that at low/intermediate levels of SERT occupancy, vortioxetine affected rapid eye movement (REM) sleep differently than paroxetine. Here we investigated clinically meaningful doses (80–90% SERT occupancy) of vortioxetine and paroxetine on sleep-EEG in rats to further elucidate the serotoninergic receptor mechanisms mediating this difference. Cortical EEG, electromyography (EMG), and locomotion were recorded telemetrically for 10 days, following an acute dose, from rats receiving vortioxetine-infused chow or paroxetine-infused water and respective controls. Sleep stages were manually scored into active wake, quiet wake, and non-REM or REM sleep. Acute paroxetine or vortioxetine delayed REM onset latency (ROL) and decreased REM episodes. After repeated administration, vortioxetine yielded normal sleep-wake rhythms while paroxetine continued to suppress REM. Paroxetine, unlike vortioxetine, increased transitions from non-REM to wake, suggesting fragmented sleep. Next, we investigated the role of 5-HT3 receptors in eliciting these differences. The 5-HT3 receptor antagonist ondansetron significantly reduced paroxetine’s acute effects on ROL, while the 5-HT3 receptor agonist SR57227A significantly increased vortioxetine’s acute effect on ROL. Overall, our data are consistent with the clinical findings that vortioxetine impacts REM sleep differently than paroxetine, and suggests a role for 5-HT3 receptor antagonism in mitigating these differences. PMID:26174134

  8. Identification of Neuropeptide Receptors Expressed by Melanin-Concentrating Hormone Neurons

    PubMed Central

    Parks, Gregory S.; Wang, Lien; Wang, Zhiwei; Civelli, Olivier

    2014-01-01

    Melanin-concentrating Hormone (MCH) is a 19 amino acid cyclic neuropeptide that acts in rodents via the MCH receptor 1 (MCHR1) to regulate a wide variety of physiological functions. MCH is produced by a distinct population of neurons located in the lateral hypothalamus (LH) and zona incerta (ZI) but MCHR1 mRNA is widely expressed throughout the brain. The physiological responses and behaviors regulated by the MCH system have been investigated, but less is known about how MCH neurons are regulated. The effects of most classical neurotransmitters on MCH neurons have been studied, but those of neuropeptides are poorly understood. In order to gain insight into how neuropeptides regulate the MCH system, we investigated which neuropeptide receptors are expressed by MCH neurons using double in situ hybridization. In all, twenty receptors, selected based upon either a suspected interaction with the MCH system or demonstrated high expression levels in the LH and ZI, were tested to determine whether they are expressed by MCH neurons. Overall, eleven neuropeptide receptors were found to exhibit significant colocalization with MCH neurons: Nociceptin / Orphanin FQ Opioid receptor (NOP), MCHR1, both Orexin receptors (ORX), Somatostatin receptor 1 and 2 (SSTR1, SSTR2), the Kisspeptin receotor (KissR1), Neurotensin receptor 1 (NTSR1), Neuropeptide S receptor (NPSR), Cholecystokinin receptor A (CCKAR) and the κ-opioid receptor (KOR). Of these receptors, six have never before been linked to the MCH system. Surprisingly, several receptors thought to regulate MCH neurons displayed minimal colocalization with MCH, suggesting that they may not directly regulate the MCH system. PMID:24978951

  9. Characterisation of AmphiAmR11, an amphioxus (Branchiostoma floridae) D2-dopamine-like G protein-coupled receptor.

    PubMed

    Bayliss, Asha L; Evans, Peter D

    2013-01-01

    The evolution of the biogenic amine signalling system in vertebrates is unclear. However, insights can be obtained from studying the structures and signalling properties of biogenic amine receptors from the protochordate, amphioxus, which is an invertebrate species that exists at the base of the chordate lineage. Here we describe the signalling properties of AmphiAmR11, an amphioxus (Branchiostoma floridae) G protein-coupled receptor which has structural similarities to vertebrate α2-adrenergic receptors but which functionally acts as a D2 dopamine-like receptor when expressed in Chinese hamster ovary -K1 cells. AmphiAmR11 inhibits forskolin-stimulated cyclic AMP levels with tyramine, phenylethylamine and dopamine being the most potent agonists. AmphiAmR11 also increases mitogen-activated protein kinase activity and calcium mobilisation, and in both pathways, dopamine was found to be more potent than tyramine. Thus, differences in the relative effectiveness of various agonists in the different second messenger assay systems suggest that the receptor displays agonist-specific coupling (biased agonism) whereby different agonists stabilize different conformations of the receptor which lead to the enhancement of one signalling pathway over another. The present study provides insights into the evolution of α2-adrenergic receptor signalling and support the hypothesis that α2-adrenergic receptors evolved from D2-dopamine receptors. The AmphiAmR11 receptor may represent a transition state between D2-dopamine receptors and α2-adrenergic receptors.

  10. Characterisation of AmphiAmR11, an Amphioxus (Branchiostoma floridae) D2-Dopamine-Like G Protein-Coupled Receptor

    PubMed Central

    Bayliss, Asha L.; Evans, Peter D.

    2013-01-01

    The evolution of the biogenic amine signalling system in vertebrates is unclear. However, insights can be obtained from studying the structures and signalling properties of biogenic amine receptors from the protochordate, amphioxus, which is an invertebrate species that exists at the base of the chordate lineage. Here we describe the signalling properties of AmphiAmR11, an amphioxus (Branchiostoma floridae) G protein-coupled receptor which has structural similarities to vertebrate α2-adrenergic receptors but which functionally acts as a D2 dopamine-like receptor when expressed in Chinese hamster ovary -K1 cells. AmphiAmR11 inhibits forskolin-stimulated cyclic AMP levels with tyramine, phenylethylamine and dopamine being the most potent agonists. AmphiAmR11 also increases mitogen-activated protein kinase activity and calcium mobilisation, and in both pathways, dopamine was found to be more potent than tyramine. Thus, differences in the relative effectiveness of various agonists in the different second messenger assay systems suggest that the receptor displays agonist-specific coupling (biased agonism) whereby different agonists stabilize different conformations of the receptor which lead to the enhancement of one signalling pathway over another. The present study provides insights into the evolution of α2-adrenergic receptor signalling and support the hypothesis that α2-adrenergic receptors evolved from D2-dopamine receptors. The AmphiAmR11 receptor may represent a transition state between D2-dopamine receptors and α2-adrenergic receptors. PMID:24265838

  11. Activation of membrane estrogen receptors attenuates opioid receptor-like1 receptor-mediated antinociception via an ERK-dependent non-genomic mechanism.

    PubMed

    Small, K M; Nag, S; Mokha, S S

    2013-01-01

    To our knowledge, the present data are the first to demonstrate that activation of membrane estrogen receptors (mERs) abolishes opioid receptor-like 1 (ORL1) receptor-mediated analgesia via extracellular signal-regulated kinase (ERK)-dependent non-genomic mechanisms. Estrogen was shown previously to both attenuate ORL1-mediated antinociception and down-regulate the ORL1 gene expression. The present study investigated whether non-genomic mechanisms contribute to estrogen-induced attenuation of ORL1-mediated antinociception by the mERs GPR30, Gq-coupled mER, ERα, and ERβ. E2BSA [β-estradiol-6-(O-carboxymethyl)oxime: bovine serum albumin] (0.5mM), a membrane impermeant analog of estradiol, injected intrathecally immediately prior to orphanin FQ (OFQ;10 nmol), the endogenous ligand for the ORL1 receptor, abolished OFQ's antinociceptive effect in both male and ovariectomized (OVX) female rats, assessed using the heat-induced tail-flick assay. This effect was not altered by protein synthesis inhibitor, anisomycin (125 μg), given intrathecally 15 min prior to E2BSA and OFQ. Intrathecal application of selective receptor agonists permitted the relative contributions of various estrogen receptors in mediating this blockade of the antinociceptive response of OFQ. Activation of GPR30, Gq-mER, ERα, but not ERβ abolished ORL1-mediated antinociception in males and OVX females. E2BSA produced a parallel and significant increase in the phosphorylation of ERK 2 only in OVX females, and pre-treatment with MEK/ERK 1/2 inhibitor, U0126 (10 μg), blocked the mER-mediated abolition of ORL1-mediated antinociception in OVX females. Taken together, the data are consistent with the interpretations that mER activation attenuates ORL1-mediated antinociception through a non-genomic, ERK 2-dependent mechanism in females. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Basic sciences agonize in Turkey!

    NASA Astrophysics Data System (ADS)

    Akdemir, Fatma; Araz, Asli; Akman, Ferdi; Durak, Rıdvan

    2016-04-01

    In this study, changes from past to present in the departments of physics, chemistry, biology and mathematics, which are considered as the basic sciences in Turkey, are shown. The importance of basic science for the country emphasized and the status of our country was discussed with a critical perspective. The number of academic staff, the number of students, opened quotas according to years for these four departments at universities were calculated and analysis of the resulting changes were made. In examined graphics changes to these four departments were similar. Especially a significant change was observed in the physics department. Lack of jobs employing young people who have graduated from basic science is also an issue that must be discussed. There are also qualitative results of this study that we have discussed as quantitative. Psychological problems caused by unemployment have become a disease among young people. This study was focused on more quantitative results. We have tried to explain the causes of obtained results and propose solutions.

  13. Identification of the Kappa-Opioid Receptor as a Therapeutic Target for Oligodendrocyte Remyelination

    PubMed Central

    Mei, Feng; Mayoral, Sonia R.; Nobuta, Hiroko; Wang, Fei; Desponts, Caroline; Lorrain, Daniel S.; Xiao, Lan; Green, Ari J.; Rowitch, David; Whistler, Jennifer

    2016-01-01

    Remyelinating therapies seek to promote restoration of function and normal cellular architecture following demyelination in diseases, such as multiple sclerosis (MS). Functional screening for small molecules or novel targets for remyelination is a major hurdle to the identification and development of rational therapeutics for MS. Recent findings and technical advances provide us with a unique opportunity to provide insight into the cell autonomous mechanisms for remyelination and address this unmet need. Upon screening a G-protein-coupled receptor small-molecule library, we report the identification of a cluster of κ-opioid receptor (KOR) agonists that significantly promotes oligodendrocyte differentiation and myelination. KOR agonists were validated in purified rat oligodendroglial cultures, and the (±)U-50488 compound proved to be most effective for differentiation. (±)U-50488 treatment significantly enhances differentiation and myelination in purified oligodendroglial cocultures and greatly accelerates the kinetics of remyelination in vivo after focal demyelination with lysolecithin. The effect of (±)U-50488 is attenuated by KOR antagonists and completely abolished in KOR-null oligodendroglia. Conditional deletion of KOR in murine oligodendrocyte precursor cells (OPCs) greatly inhibits remyelination after focal demyelination lacking any response to (±)U-50488 treatment. To determine whether agonism of KOR represents a feasible therapeutic approach, human induced pluripotent stem cell-derived OPCs were treated with (±)U-50488. Consistent with findings, differentiation of human OPCs into mature oligodendrocytes was significantly enhanced. Together, KOR is a therapeutic target to consider for future remyelination therapy. SIGNIFICANCE STATEMENT Remyelination represents a promising strategy to achieve functional recovery in demyelinating diseases, like MS. Thus, identification of potent compounds and targets that promote remyelination represents a critically

  14. Potent Dmt-Tic pharmacophoric delta- and mu-opioid receptor antagonists.

    PubMed

    Li, Tingyou; Fujita, Yoshio; Shiotani, Kimitaka; Miyazaki, Anna; Tsuda, Yuko; Ambo, Akihiro; Sasaki, Yusuke; Jinsmaa, Yunden; Marczak, Ewa; Bryant, Sharon D; Salvadori, Severo; Lazarus, Lawrence H; Okada, Yoshio

    2005-12-15

    A series of dimeric Dmt-Tic (2',6'-dimethyl-L-tyrosyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) analogues (8-14, 18-22) were covalently linked through diaminoalkane and symmetric or asymmetric 3,6-diaminoalkyl-2(1H)-pyrazinone moieties. All the compounds exhibited high affinity for both delta-opioid receptors [Ki(delta) = 0.06-1.53 nM] and mu-opioid receptors [Ki(mu) = 1.37-5.72 nM], resulting in moderate delta-receptor selectivity [Ki(mu)/Ki(delta) = 3-46]. Regardless of the type of linker between the Dmt-Tic pharmacophores, delta-opioid-mediated antagonism was extraordinarily high in all analogues (pA2 = 10.42-11.28), while in vitro agonism (MVD and GPI bioassays) was essentially absent (ca. 3 to >10 microM). While an unmodified N-terminus (9, 13, 18) revealed weak mu-opioid antagonism (pA2 = 6.78-6.99), N,N'-dimethylation (21, 22), which negatively impacts on mu-opioid-associated agonism (Balboni et al., Bioorg. Med. Chem. 2003, 11, 5435-5441), markedly enhanced mu-opioid antagonism (pA2 = 8.34 and 7.71 for 21 and 22, respectively) without affecting delta-opioid activity. These data are the first evidence that a single dimeric opioid ligand containing the Dmt-Tic pharmacophore exhibits highly potent delta- and mu-opioid antagonist activities.

  15. Methanocarba Analogues of Purine Nucleosides as Potent and Selective Adenosine Receptor Agonists

    PubMed Central

    Jacobson, Kenneth A.; Ji, Xiao-duo; Li, An-Hu; Melman, Neli; Siddiqui, Maqbool A.; Shin, Kye-Jung; Marquez, Victor E.; Ravi, R. Gnana

    2012-01-01

    Adenosine receptor agonists have cardioprotective, cerebroprotective, and antiinflammatory properties. We report that a carbocyclic modification of the ribose moiety incorporating ring constraints is a general approach for the design of A1 and A3 receptor agonists having favorable pharmacodynamic properties. While simple carbocyclic substitution of adenosine agonists greatly diminishes potency, methanocarba-adenosine analogues have now defined the role of sugar puckering in stabilizing the active adenosine receptor-bound conformation and thereby have allowed identification of a favored isomer. In such analogues a fused cyclopropane moiety constrains the pseudosugar ring of the nucleoside to either a Northern (N) or Southern (S) conformation, as defined in the pseudorotational cycle. In binding assays at A1, A2A, and A3 receptors, (N)-methanocarba-adenosine was of higher affinity than the (S)-analogue, particularly at the human A3 receptor (N/S affinity ratio of 150). (N)-Methanocarba analogues of various N6-substituted adenosine derivatives, including cyclopentyl and 3-iodobenzyl, in which the parent compounds are potent agonists at either A1 or A3 receptors, respectively, were synthesized. The N6-cyclopentyl derivatives were A1 receptor-selective and maintained high efficacy at recombinant human but not rat brain A1 receptors, as indicated by stimulation of binding of [35S]GTP-γ-S. The (N)-methanocarba-N6-(3-iodobenzyl)adenosine and its 2-chloro derivative had Ki values of 4.1 and 2.2 nM at A3 receptors, respectively, and were highly selective partial agonists. Partial agonism combined with high functional potency at A3 receptors (EC50 < 1 nM) may produce tissue selectivity. In conclusion, as for P2Y1 receptors, at least three adenosine receptors favor the ribose (N)-conformation. PMID:10841798

  16. Ligand chain length drives activation of lipid G protein-coupled receptors.

    PubMed

    Troupiotis-Tsaïlaki, Anastassia; Zachmann, Julian; González-Gil, Inés; Gonzalez, Angel; Ortega-Gutiérrez, Silvia; López-Rodríguez, Maria L; Pardo, Leonardo; Govaerts, Cedric

    2017-05-17

    Sphingosine-1-phosphate (S1P) is a lipid mediator that can activate five cell membrane G protein-coupled receptors (GPCRs) which carry a variety of essential functions and are promising drug targets. S1P is composed of a polar zwitterionic head-group and a hydrophobic alkyl chain. This implies an activation mechanism of its cognate receptor that must be significantly different from what is known for prototypical GPCRs (ie receptor to small hydrophilic ligands). Here we aim to identify the structural features responsible for S1P agonism by combining molecular dynamics simulations and functional assays using S1P analogs of different alkyl chain lengths. We propose that high affinity binding involves polar interactions between the lipid head-group and receptor side chains while activation is due to hydrophobic interactions between the lipid tail and residues in a distinct binding site. We observe that ligand efficacy is directly related to alkyl chain length but also varies with receptor subtypes in correlation with the size of this binding pocket. Integrating experimental and computational data, we propose an activation mechanism for the S1P receptors involving agonist-induced conformational events that are conserved throughout class A GPCRs.

  17. A Conserved Aspartic Acid Is Important for Agonist (VUAA1) and Odorant/Tuning Receptor-Dependent Activation of the Insect Odorant Co-Receptor (Orco)

    PubMed Central

    Kumar, Brijesh N.; Taylor, Robert W.; Pask, Gregory M.; Zwiebel, Laurence J.; Newcomb, Richard D.; Christie, David L.

    2013-01-01

    Insect odorant receptors function as heteromeric odorant-gated cation channels comprising a conventional odorant-sensitive tuning receptor, and a conserved co-receptor (Orco). An Orco agonist, VUAA1, is able to activate both heteromeric and homomeric Orco-containing channels. Very little is known about specific residues in Orco that contribute to cation permeability and gating. We investigated the importance of two conserved Asp residues, one in each of transmembrane domains 5 and 7, for channel function by mutagenesis. Drosophila melanogaster Orco and its substitution mutants were expressed in HEK cells and VUAA1-stimulated channel activity was determined by Ca2+ influx and whole-cell patch clamp electrophysiology. Substitution of D466 in transmembrane 7 with amino acids other than glutamic acid resulted in a substantial reduction in channel activity. The D466E Orco substitution mutant was ∼2 times more sensitive to VUAA1. The permeability of the D466E Orco mutant to cations was unchanged relative to wild-type Orco. When D466E Orco is co-expressed with a conventional tuning odorant receptor, the heteromeric complex also shows increased sensitivity to an odorant. Thus, the effect of the D466E mutation is not specific to VUAA1 agonism or dependent on homomeric Orco assembly. We suggest the gain-of-activation characteristic of the D466E mutant identifies an amino acid that is likely to be important for activation of both heteromeric and homomeric insect odorant receptor channels. PMID:23894621

  18. Stimulation of glutamate receptors in the ventral tegmental area is necessary for serotonin-2 receptor-induced increases in mesocortical dopamine release

    PubMed Central

    Pehek, E.A.; Hernan, A.E.

    2017-01-01

    Modulation of dopamine (DA) released by serotonin-2 (5-HT2) receptors has been implicated in the mechanism of action of antipsychotic drugs. The mesocortical DA system has been implicated particularly in the cognitive deficits observed in schizophrenia. Agonism at 5-HT2A receptors in the prefrontal cortex is associated with increases in cortical DA release. Evidence indicates that 5-HT2A receptors in the cortex regulate mesocortical DA release through stimulation of a “long-loop” feedback system from the PFC to the VTA and back. However, a causal role for VTA glutamate in the 5-HT2-induced increases in PFC DA has not been established. The present study does so by measuring 5-HT2 agonist-induced DA release in the cortex after infusions of glutamate antagonists into the VTA. Infusions of a combination of a NMDA (AP-5: 2-amino-5-phosphopentanoic acid) and an AMPA/kainate (CNQX: 6-cyano-7-nitroquinoxaline-2,3-dione) receptor antagonist into the VTA blocked the increases in cortical DA produced by administration of the 5-HT2 agonist DOI [(±)-2,5-Dimethoxy-4-iodoamphetamine] (2.5 mg/kg s.c.). These results demonstrate that stimulation of glutamate receptors in the VTA is necessary for 5-HT2 agonist-induced increases in cortical DA. PMID:25637799

  19. Small-molecule-biased formyl peptide receptor agonist compound 17b protects against myocardial ischaemia-reperfusion injury in mice

    PubMed Central

    Qin, Cheng Xue; May, Lauren T.; Li, Renming; Cao, Nga; Rosli, Sarah; Deo, Minh; Alexander, Amy E.; Horlock, Duncan; Bourke, Jane E.; Yang, Yuan H.; Stewart, Alastair G.; Kaye, David M.; Du, Xiao-Jun; Sexton, Patrick M.; Christopoulos, Arthur; Gao, Xiao-Ming; Ritchie, Rebecca H.

    2017-01-01

    Effective treatment for managing myocardial infarction (MI) remains an urgent, unmet clinical need. Formyl peptide receptors (FPR) regulate inflammation, a major contributing mechanism to cardiac injury following MI. Here we demonstrate that FPR1/FPR2-biased agonism may represent a novel therapeutic strategy for the treatment of MI. The small-molecule FPR1/FPR2 agonist, Compound 17b (Cmpd17b), exhibits a distinct signalling fingerprint to the conventional FPR1/FPR2 agonist, Compound-43 (Cmpd43). In Chinese hamster ovary (CHO) cells stably transfected with human FPR1 or FPR2, Compd17b is biased away from potentially detrimental FPR1/2-mediated calcium mobilization, but retains the pro-survival signalling, ERK1/2 and Akt phosphorylation, relative to Compd43. The pathological importance of the biased agonism of Cmpd17b is demonstrable as superior cardioprotection in both in vitro (cardiomyocytes and cardiofibroblasts) and MI injury in mice in vivo. These findings reveal new insights for development of small molecule FPR agonists with an improved cardioprotective profile for treating MI. PMID:28169296

  20. Small-molecule-biased formyl peptide receptor agonist compound 17b protects against myocardial ischaemia-reperfusion injury in mice.

    PubMed

    Qin, Cheng Xue; May, Lauren T; Li, Renming; Cao, Nga; Rosli, Sarah; Deo, Minh; Alexander, Amy E; Horlock, Duncan; Bourke, Jane E; Yang, Yuan H; Stewart, Alastair G; Kaye, David M; Du, Xiao-Jun; Sexton, Patrick M; Christopoulos, Arthur; Gao, Xiao-Ming; Ritchie, Rebecca H

    2017-02-07

    Effective treatment for managing myocardial infarction (MI) remains an urgent, unmet clinical need. Formyl peptide receptors (FPR) regulate inflammation, a major contributing mechanism to cardiac injury following MI. Here we demonstrate that FPR1/FPR2-biased agonism may represent a novel therapeutic strategy for the treatment of MI. The small-molecule FPR1/FPR2 agonist, Compound 17b (Cmpd17b), exhibits a distinct signalling fingerprint to the conventional FPR1/FPR2 agonist, Compound-43 (Cmpd43). In Chinese hamster ovary (CHO) cells stably transfected with human FPR1 or FPR2, Compd17b is biased away from potentially detrimental FPR1/2-mediated calcium mobilization, but retains the pro-survival signalling, ERK1/2 and Akt phosphorylation, relative to Compd43. The pathological importance of the biased agonism of Cmpd17b is demonstrable as superior cardioprotection in both in vitro (cardiomyocytes and cardiofibroblasts) and MI injury in mice in vivo. These findings reveal new insights for development of small molecule FPR agonists with an improved cardioprotective profile for treating MI.

  1. Asymmetric regulation of quorum-sensing receptors drives autoinducer-specific gene expression programs in Vibrio cholerae

    PubMed Central

    Hurley, Amanda

    2017-01-01

    Quorum sensing (QS) is a mechanism of chemical communication that bacteria use to monitor cell-population density and coordinate group behaviors. QS relies on the production, detection, and group-wide response to extracellular signal molecules called autoinducers. Vibrio cholerae employs parallel QS circuits that converge into a shared signaling pathway. At high cell density, the CqsS and LuxPQ QS receptors detect the intra-genus and inter-species autoinducers CAI-1 and AI-2, respectively, to repress virulence factor production and biofilm formation. We show that positive feedback, mediated by the QS pathway, increases CqsS but not LuxQ levels during the transition into QS-mode, which amplifies the CAI-1 input into the pathway relative to the AI-2 input. Asymmetric feedback on CqsS enables responses exclusively to the CAI-1 autoinducer. Because CqsS exhibits the dominant QS signaling role in V. cholerae, agonism of CqsS with synthetic compounds could be used to control pathogenicity and host dispersal. We identify nine compounds that share no structural similarity to CAI-1, yet potently agonize CqsS via inhibition of CqsS autokinase activity. PMID:28552952

  2. Biased ligand quantification in drug discovery: from theory to high throughput screening to identify new biased μ opioid receptor agonists

    PubMed Central

    Winpenny, David; Clark, Mellissa

    2016-01-01

    Background and Purpose Biased GPCR ligands are able to engage with their target receptor in a manner that preferentially activates distinct downstream signalling and offers potential for next generation therapeutics. However, accurate quantification of ligand bias in vitro is complex, and current best practice is not amenable for testing large numbers of compound. We have therefore sought to apply ligand bias theory to an industrial scale screening campaign for the identification of new biased μ receptor agonists. Experimental Approach μ receptor assays with appropriate dynamic range were developed for both Gαi‐dependent signalling and β‐arrestin2 recruitment. Δlog(Emax/EC50) analysis was validated as an alternative for the operational model of agonism in calculating pathway bias towards Gαi‐dependent signalling. The analysis was applied to a high throughput screen to characterize the prevalence and nature of pathway bias among a diverse set of compounds with μ receptor agonist activity. Key Results A high throughput screening campaign yielded 440 hits with greater than 10‐fold bias relative to DAMGO. To validate these results, we quantified pathway bias of a subset of hits using the operational model of agonism. The high degree of correlation across these biased hits confirmed that Δlog(Emax/EC50) was a suitable method for identifying genuine biased ligands within a large collection of diverse compounds. Conclusions and Implications This work demonstrates that using Δlog(Emax/EC50), drug discovery can apply the concept of biased ligand quantification on a large scale and accelerate the deliberate discovery of novel therapeutics acting via this complex pharmacology. PMID:26791140

  3. Classification of platelet and vascular prostaglandin D2 (DP) receptors: estimation of affinities and relative efficacies for a series of novel bicyclic ligands. With an appendix on goodness-of-fit analyses.

    PubMed Central

    Leff, P.; Giles, H.

    1992-01-01

    1. The DP receptors located on platelets and vasculature were examined in a human washed platelet preparation and in isolated rings of rabbit external jugular vein. 2. A series of eight novel bicyclic compounds were studied for their effects in the two assays. Seven produced agonism, inhibition of aggregation or vascular relaxation, and one compound was 'silent' in both assays. 3. The operational model of agonism (Black & Leff, 1983) was fitted simultaneously to concentration-effect curve data for the seven agonist compounds. The affinity and efficacy estimates so obtained were tested for similarity between the two tissues by analysis of variance, showing that the model could be fitted to both sets of data by assuming the same relative affinity and efficacy values. However, absolute affinity estimates were consistently lower in the vascular preparation. 4. Analysis of two of the seven agonists as antagonists was also possible. This provided pKB estimates which supported the agonist affinity estimates. The eighth compound was also analysed as an antagonist. It, like the other seven, demonstrated a difference in affinity between the two tissues. 5. The results of this study support the view that platelet and vascular DP receptors are similar, assuming that the systematic difference in affinity estimates for the series of compounds between the two tissues is the consequence of receptor micro-environment and/or accessory binding site differences. PMID:1393297

  4. NOP Receptor Mediates Anti-analgesia Induced by Agonist-Antagonist Opioids

    PubMed Central

    Gear, Robert W.; Bogen, Oliver; Ferrari, Luiz F.; Green, Paul G.; Levine, Jon D.

    2014-01-01

    Clinical studies have shown that agonist-antagonist opioid analgesics that produce their analgesic effect via action on the kappa-opioid receptor, produce a delayed-onset anti-analgesia in men but not women, an effect blocked by co-administration of a low dose of naloxone. We now report the same time-dependent anti-analgesia and its underlying mechanism in an animal model. Using the Randall-Selitto paw-withdrawal assay in male rats, we found that nalbuphine, pentazocine, and butorphanol each produced analgesia during the first hour followed by anti-analgesia starting at ~90 minutes after administration in males but not females, closely mimicking its clinical effects. As observed in humans, co-administration of nalbuphine with naloxone in a dose ratio of 12.5:1 blocked anti-analgesia but not analgesia. Administration of the highly selective kappa-opioid receptor agonist U69,593 produced analgesia without subsequent anti-analgesia, and confirmed by the failure of the selective kappa antagonist nor-binaltorphimine to block nalbuphine-induced anti-analgesia, indicating that anti-analgesia is not mediated by kappa-opioid receptors. We therefore tested the role of other receptors in nalbuphine anti-analgesia. Nociceptin/orphanin FQ (NOP) and sigma-1 and sigma-2 receptors were chosen on the basis of their known anti-analgesic effects and receptor binding studies. The selective NOP receptor antagonists, JTC801, and J113397, but not the sigma receptor antagonist, BD 1047, antagonized nalbuphine anti-analgesia. Furthermore, the NOP receptor agonist NNC 63-0532 produced anti-analgesia with the same delay in onset observed with the three agonist-antagonists, but without producing preceding analgesia and this anti-analgesia was also blocked by naloxone. These results strongly support the suggestion that clinically used agonist-antagonists act at the NOP receptor to produce anti-analgesia. PMID:24188792

  5. Pharmacological Activation of Thyroid Hormone Receptors Elicits a Functional Conversion of White to Brown Fat.

    PubMed

    Lin, Jean Z; Martagón, Alexandro J; Cimini, Stephanie L; Gonzalez, Daniel D; Tinkey, David W; Biter, Amadeo; Baxter, John D; Webb, Paul; Gustafsson, Jan-Åke; Hartig, Sean M; Phillips, Kevin J

    2015-11-24

    The functional conversion of white adipose tissue (WAT) into a tissue with brown adipose tissue (BAT)-like activity, often referred to as "browning," represents an intriguing strategy for combating obesity and metabolic disease. We demonstrate that thyroid hormone receptor (TR) activation by a synthetic agonist markedly induces a program of adaptive thermogenesis in subcutaneous WAT that coincides with a restoration of cold tolerance to cold-intolerant mice. Distinct from most other browning agents, pharmacological TR activation dissociates the browning of WAT from activation of classical BAT. TR agonism also induces the browning of white adipocytes in vitro, indicating that TR-mediated browning is cell autonomous. These data establish TR agonists as a class of browning agents, implicate the TRs in the browning of WAT, and suggest a profound pharmacological potential of this action. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Neurosteroids shift partial agonist activation of GABA(A) receptor channels from low- to high-efficacy gating patterns.

    PubMed

    Bianchi, Matt T; Macdonald, Robert L

    2003-11-26

    Although GABA activates synaptic (alphabetagamma) GABA(A) receptors with high efficacy, partial agonist activation of alphabetagamma isoforms and GABA activation of the primary extrasynaptic (alphabetadelta) GABA(A) receptors are limited to low-efficacy activity, characterized by minimal desensitization and brief openings. The unusual sensitivity of alphabetadelta receptor channels to neurosteroid modulation prompted investigation of whether this high sensitivity was dependent on the delta subunit or the low-efficacy channel function that it confers. We show that the isoform specificity (alphabetadelta > alphabetagamma) of neurosteroid modulation could be reversed by conditions that reversed isoform-specific activity modes, including the use of beta-alanine to achieve increased efficacy with alphabetadelta receptors and taurine to render alphabetagamma receptors low efficacy. We suggest that neurosteroids preferentially enhance low-efficacy GABA(A) receptor activity independent of subunit composition. Allosteric conversion of partial to full agonism may be a general mechanism for reversibly scaling the efficacy of GABA(A) receptors to endogenous partial agonists.

  7. agr receptor mutants reveal distinct modes of inhibition by staphylococcal autoinducing peptides

    PubMed Central

    Geisinger, Edward; Muir, Tom W.; Novick, Richard P.

    2009-01-01

    Through the agr quorum-sensing system, staphylococci secrete unique autoinducing peptides (AIPs) and detect their concentration via the AgrC transmembrane receptor, coordinating local bacterial population density with global changes in gene expression. Unique AIP and AgrC variants exist within and between species, and although autologous interactions lead to agr activation, heterologous interactions usually lead to cross-inhibition, resulting in natural quorum-sensing interference. To gain insight into the mechanisms responsible for these phenomena at the level of the receptor, we used random mutagenesis to isolate variants of Staphylococcus aureus AgrC-I with constitutive activity. Constitutive mutations in the sensor domain of the receptor were localized to the last transmembrane helix, whereas those in the histidine kinase domain were mostly clustered to a region near the phosphorylation site histidine. Analysis of these mutants with a range of noncognate AIPs revealed that inhibition is manifested by inverse agonism in certain heterologous pairings and by neutral antagonism in others. In addition, we isolated and characterized an AgrC sensor domain mutant with dramatically broadened activation specificity and reduced sensitivity to inhibition, identifying a single amino acid as a critical determinant of ligand-mediated inhibition. These results suggest that certain noncognate AIPs stabilize an inhibitory receptor conformation that may be a critical feature of the ligand–receptor interaction not initially appreciated in previous analyses of agr inhibition. PMID:19147840

  8. Molecular imaging of the 5-HT(1A) receptor in relation to human cognition.

    PubMed

    Borg, Jacqueline

    2008-12-16

    Animal studies and pharmacological studies in man have suggested that the serotonin 5-HT(1A) receptor may serve as a biomarker for cognitive functioning and a target for treatment of cognitive impairment. Consistent findings in man have nonetheless hitherto remained sparse. Positron emission tomography (PET) imaging of the 5-HT(1A) receptor in patients with Alzheimer's disease, schizophrenia and depression implicate an alteration in 5-HT(1A) receptor binding compared to control subjects, but it is yet unknown whether these alterations are related to the cognitive impairment associated with these disorders. Pharmacological challenge studies using 5-HT(1A) agonism and antagonism to manipulate the serotonin system support involvement of the 5-HT(1A) receptor in human cognition, mainly in verbal memory functioning. However, the effect varies across studies and it remains unclear if the 5-HT(1A) receptor serves as a validated target for treatment of cognitive deficits. This lack of confirmation of experimental preclinical data, calls for increased efforts in translational research. Molecular imaging techniques such as PET, holds the potential to facilitate translational neuroscience by confirming observations from animal models in man, and aid development of validated animal models of use for advancement of pharmacological treatment. Furthermore, in combination with molecular genetics, molecular imaging may suggest novel strategies for prevention and intervention, based on an understanding of the molecular mechanisms involved in disease pathogenesis of major neuropsychiatric disorder and associated cognitive impairment.

  9. Muscarinic receptors as model targets and antitargets for structure-based ligand discovery.

    PubMed

    Kruse, Andrew C; Weiss, Dahlia R; Rossi, Mario; Hu, Jianxin; Hu, Kelly; Eitel, Katrin; Gmeiner, Peter; Wess, Jürgen; Kobilka, Brian K; Shoichet, Brian K

    2013-10-01

    G protein-coupled receptors (GPCRs) regulate virtually all aspects of human physiology and represent an important class of therapeutic drug targets. Many GPCR-targeted drugs resemble endogenous agonists, often resulting in poor selectivity among receptor subtypes and restricted pharmacologic profiles. The muscarinic acetylcholine receptor family exemplifies these problems; thousands of ligands are known, but few are receptor subtype-selective and nearly all are cationic in nature. Using structure-based docking against the M2 and M3 muscarinic receptors, we screened 3.1 million molecules for ligands with new physical properties, chemotypes, and receptor subtype selectivities. Of 19 docking-prioritized molecules tested against the M2 subtype, 11 had substantial activity and 8 represented new chemotypes. Intriguingly, two were uncharged ligands with low micromolar to high nanomolar Ki values, an observation with few precedents among aminergic GPCRs. To exploit a single amino-acid substitution among the binding pockets between the M2 and M3 receptors, we selected molecules predicted by docking to bind to the M3 and but not the M2 receptor. Of 16 molecules tested, 8 bound to the M3 receptor. Whereas selectivity remained modest for most of these, one was a partial agonist at the M3 receptor without measurable M2 agonism. Consistent with this activity, this compound stimulated insulin release from a mouse β-cell line. These results support the ability of structure-based discovery to identify new ligands with unexplored chemotypes and physical properties, leading to new biologic functions, even in an area as heavily explored as muscarinic pharmacology.

  10. Neurotransmitter GABA activates muscle but not α7 nicotinic receptors.

    PubMed

    Dionisio, Leonardo; Bergé, Ignacio; Bravo, Matías; Esandi, María Del Carmen; Bouzat, Cecilia

    2015-01-01

    Cys-loop receptors are neurotransmitter-activated ion channels involved in synaptic and extrasynaptic transmission in the brain and are also present in non-neuronal cells. As GABAA and nicotinic receptors (nAChR) belong to this family, we explored by macroscopic and single-channel recordings whether the inhibitory neurotransmitter GABA has the ability to activate excitatory nAChRs. GABA differentially activates nAChR subtypes. It activates muscle nAChRs, with maximal peak currents of about 10% of those elicited by acetylcholine (ACh) and 15-fold higher EC50 with respect to ACh. At the single-channel level, the weak agonism is revealed by the requirement of 20-fold higher concentration of GABA for detectable channel openings, a major population of brief openings, and absence of clusters of openings when compared with ACh. Mutations at key residues of the principal binding-site face of muscle nAChRs (αY190 and αG153) affect GABA activation similarly as ACh activation, whereas a mutation at the complementary face (εG57) shows a selective effect for GABA. Studies with subunit-lacking receptors show that GABA can activate muscle nAChRs through the α/δ interface. Interestingly, single-channel activity elicited by GABA is similar to that elicited by ACh in gain-of-function nAChR mutants associated to congenital myasthenic syndromes, which could be important in the progression of the disorders due to steady exposure to serum GABA. In contrast, GABA cannot elicit single-channel or macroscopic currents of α7 or the chimeric α7-serotonin-type 3 receptor, a feature important for preserving an adequate excitatory/inhibitory balance in the brain as well as for avoiding activation of non-neuronal receptors by serum GABA. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  11. Discovery of diarylhydantoins as new selective androgen receptor modulators.

    PubMed

    Nique, François; Hebbe, Séverine; Peixoto, Christophe; Annoot, Denis; Lefrançois, Jean-Michel; Duval, Eric; Michoux, Laurence; Triballeau, Nicolas; Lemoullec, Jean-Michel; Mollat, Patrick; Thauvin, Maxime; Prangé, Thierry; Minet, Dominique; Clément-Lacroix, Philippe; Robin-Jagerschmidt, Catherine; Fleury, Damien; Guédin, Denis; Deprez, Pierre

    2012-10-11

    A novel selective androgen receptor modulator scaffold has been discovered through structural modifications of hydantoin antiandrogens. Several 4-(4-hydroxyphenyl)-N-arylhydantoins displayed partial agonism with nanomolar in vitro potency in transactivation experiments using androgen receptor (AR) transfected cells. In a standard castrated male rat model, several compounds showed good anabolic activity on levator ani muscle, dissociated from the androgenic activity on ventral prostate, after oral dosing at 30 mg/kg. (+)-4-[3,4-Dimethyl-2,5-dioxo-4-(4-hydroxyphenyl)imidazolidin-1-yl]-2-(trifluoromethyl)benzonitrile ((+)-11b) displayed anabolic potency with a strong dissociation between levator ani muscle and ventral prostate (A(50) = 0.5 mg/kg vs 70 mg/kg). The binding modes of two compounds, including (+)-11b, within the AR ligand-binding domain have been studied by cocrystallization experiments using a coactivator-like peptide. Both compounds bound to the same site, and the overall structures of the AR were very similar.

  12. Protease-Activated Receptor-1 Supports Locomotor Recovery by Biased Agonist Activated Protein C after Contusive Spinal Cord Injury

    PubMed Central

    Whetstone, William D.; Walker, Breset; Trivedi, Alpa; Lee, Sangmi; Noble-Haeusslein, Linda J.; Hsu, Jung-Yu C.

    2017-01-01

    Thrombin-induced secondary injury is mediated through its receptor, protease activated receptor-1 (PAR-1), by "biased agonism." Activated protein C (APC) acts through the same PAR-1 receptor but functions as an anti-coagulant and anti-inflammatory protein, which counteracts many of the effects of thrombin. Although the working mechanism of PAR-1 is becoming clear, the functional role of PAR-1 and its correlation with APC in the injured spinal cord remains to be elucidated. Here we investigated if PAR-1 and APC are determinants of long-term functional recovery after a spinal cord contusive injury using PAR-1 null and wild-type mice. We found that neutrophil infiltration and disruption of the blood-spinal cord barrier were significantly reduced in spinal cord injured PAR-1 null mice relative to the wild-type group. Both locomotor recovery and ability to descend an inclined grid were significantly improved in the PAR-1 null group 42 days after injury and this improvement was associated with greater long-term sparing of white matter and a reduction in glial scarring. Wild-type mice treated with APC acutely after injury showed a similar level of improved locomotor recovery to that of PAR-1 null mice. However, improvement of APC-treated PAR-1 null mice was indistinguishable from that of vehicle-treated PAR-1 null mice, suggesting that APC acts through PAR-1. Collectively, our findings define a detrimental role of thrombin-activated PAR-1 in wound healing and further validate APC, also acting through the PAR-1 by biased agonism, as a promising therapeutic target for spinal cord injury. PMID:28122028

  13. Neutrophil Elastase Activates Protease-activated Receptor-2 (PAR2) and Transient Receptor Potential Vanilloid 4 (TRPV4) to Cause Inflammation and Pain.

    PubMed

    Zhao, Peishen; Lieu, TinaMarie; Barlow, Nicholas; Sostegni, Silvia; Haerteis, Silke; Korbmacher, Christoph; Liedtke, Wolfgang; Jimenez-Vargas, Nestor N; Vanner, Stephen J; Bunnett, Nigel W

    2015-05-29

    Proteases that cleave protease-activated receptor-2 (PAR(2)) at Arg(36)↓Ser(37) reveal a tethered ligand that binds to the cleaved receptor. PAR(2) activates transient receptor potential (TRP) channels of nociceptive neurons to induce neurogenic inflammation and pain. Although proteases that cleave PAR(2) at non-canonical sites can trigger distinct signaling cascades, the functional importance of the PAR(2)-biased agonism is uncertain. We investigated whether neutrophil elastase, a biased agonist of PAR(2), causes inflammation and pain by activating PAR2 and TRP vanilloid 4 (TRPV4). Elastase cleaved human PAR(2) at Ala(66)↓Ser(67) and Ser(67)↓Val(68). Elastase stimulated PAR(2)-dependent cAMP accumulation and ERK1/2 activation, but not Ca(2+) mobilization, in KNRK cells. Elastase induced PAR(2) coupling to Gαs but not Gαq in HEK293 cells. Although elastase did not promote recruitment of G protein-coupled receptor kinase-2 (GRK(2)) or β-arrestin to PAR(2), consistent with its inability to promote receptor endocytosis, elastase did stimulate GRK6 recruitment. Elastase caused PAR(2)-dependent sensitization of TRPV4 currents in Xenopus laevis oocytes by adenylyl cyclase- and protein kinase A (PKA)-dependent mechanisms. Elastase stimulated PAR(2)-dependent cAMP formation and ERK1/2 phosphorylation, and a PAR(2)- and TRPV4-mediated influx of extracellular Ca(2+) in mouse nociceptors. Adenylyl cyclase and PKA-mediated elastase-induced activation of TRPV4 and hyperexcitability of nociceptors. Intraplantar injection of elastase to mice caused edema and mechanical hyperalgesia by PAR(2)- and TRPV4-mediated mechanisms. Thus, the elastase-biased agonism of PAR(2) causes Gαs-dependent activation of adenylyl cyclase and PKA, which activates TRPV4 and sensitizes nociceptors to cause inflammation and pain. Our results identify a novel mechanism of elastase-induced activation of TRPV4 and expand the role of PAR(2) as a mediator of protease-driven inflammation and pain.

  14. Blonanserin reverses the phencyclidine (PCP)-induced impairment in novel object recognition (NOR) in rats: role of indirect 5-HT(1A) partial agonism.

    PubMed

    Horiguchi, M; Meltzer, H Y

    2013-06-15

    Blonanserin is an atypical antipsychotic drug (APD) which, compared to other atypical APDs, is a relatively selective serotonin (5-HT)2A and dopamine D2 antagonist. Comparing blonanserin with more broadly acting atypical APDs could be useful to test the contributions of actions at other monoamine receptors, e.g. 5-HT1A receptors, to the reversal of PCP-induced novel object recognition (NOR) deficit. In this study, we tested the effect of blonanserin alone, and in combination with 5-HT1A agents, on NOR deficit induced by subchronic treatment with the N-methyl-D-aspartate (NMDA) receptor antagonist, phencyclidine (PCP; 2 mg/kg), b.i.d., for 7 days. Blonanserin, 1mg/kg, but not 0.3mg/kg, improved the PCP-induced NOR deficit. However, at 1mg/kg, object exploration was diminished. Co-administration of sub-effective doses of blonanserin (0.3 mg/kg) and the 5-HT1A partial agonist, tandospirone (0.2 mg/kg), significantly reversed the NOR deficit without diminishing activity during the acquisition or retention periods. The combination of WAY100635 (0.6 mg/kg), a 5-HT1A antagonist, and blonanserin (1 mg/kg), also diminished object exploration which prevented assessment of the effect of this combination on NOR. WAY100635 (0.6 mg/kg) blocked the ameliorating effect of risperidone (0.1 mg/kg), another atypical APD with low affinity for 5-HT1A receptors, but did not impair exploration. These results suggest that blonansein and risperidone, atypical APDs which lack a direct action on 5-HT1A receptors require 5-HT1A receptor stimulation to reverse the subchronic PCP-induced NOR deficit and provide a support for clinical trial of blonanserin in combination with tandospirone to ameliorate cognitive impairment in schizophrenia and to have fewer side effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. New 2',6'-dimethyl-L-tyrosine (Dmt) opioid peptidomimetics based on the Aba-Gly scaffold. Development of unique mu-opioid receptor ligands.

    PubMed

    Ballet, Steven; Salvadori, Severo; Trapella, Claudio; Bryant, Sharon D; Jinsmaa, Yunden; Lazarus, Lawrence H; Negri, Lucia; Giannini, Elisa; Lattanzi, Roberta; Tourwé, Dirk; Balboni, Gianfranco

    2006-06-29

    The Aba-Gly scaffold, incorporated into Dmt-Tic ligands (H-Dmt-Tic-Gly-NH-CH2-Ph, H-Dmt-Tic-Gly-NH-Ph, H-Dmt-Tic-NH-CH2-Bid), exhibited mixed micro/delta or delta opioid receptor activities with micro agonism. Substitution of Tic by Aba-Gly coupled to -NH-CH2-Ph (1), -NH-Ph (2), or -Bid (Bid=1H-benzimidazole-2-yl) (3) shifted affinity (Ki(micro)=0.46, 1.48, and 19.9 nM, respectively), selectivity, and bioactivity to micro-opioid receptors. These compounds represent templates for a new class of lead opioid agonists that are easily synthesized and suitable for therapeutic pain relief.

  16. μ-Opioid receptor activation and noradrenaline transport inhibition by tapentadol in rat single locus coeruleus neurons.

    PubMed

    Sadeghi, Mahsa; Tzschentke, Thomas M; Christie, MacDonald J

    2015-01-01

    Tapentadol is a novel analgesic that combines moderate μ-opioid receptor agonism and noradrenaline reuptake inhibition in a single molecule. Both mechanisms of action are involved in producing analgesia; however, the potency and efficacy of tapentadol in individual neurons has not been characterized. Whole-cell patch-clamp recordings of G-protein-coupled inwardly rectifying K(+) (KIR 3.x) currents were made from rat locus coeruleus neurons in brain slices to investigate the potency and relative efficacy of tapentadol and compare its intrinsic activity with other clinically used opioids. Tapentadol showed agonist activity at μ receptors and was approximately six times less potent than morphine with respect to KIR 3.x current modulation. The intrinsic activity of tapentadol was lower than [Met]enkephalin, morphine and oxycodone, but higher than buprenorphine and pentazocine. Tapentadol inhibited the noradrenaline transporter (NAT) with potency similar to that at μ receptors. The interaction between these two mechanisms of action was additive in individual LC neurons. Tapentadol displays similar potency for both µ receptor activation and NAT inhibition in functioning neurons. The intrinsic activity of tapentadol at the μ receptor lies between that of buprenorphine and oxycodone, potentially explaining the favourable profile of side effects, related to μ receptors. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2013 The British Pharmacological Society.

  17. The psychostimulant d-threo-(R,R)-methylphenidate binds as an agonist to the 5HT(1A) receptor.

    PubMed

    Markowitz, J S; DeVane, C L; Ramamoorthy, S; Zhu, Hao-Jie

    2009-02-01

    The present study was undertaken to determine whether d-threo-(R,R)-methylphenidate (MPH) was exerting binding activity as an agonist or antagonist of 5-HT1A and 5-HT2B receptors. [35S]guanosine5'[gamma-thio]triphosphate ([35S]GTPgammaS) binding assay and field-stimulated Guinea pig ileum assay were used to determine 5-HT(1A) receptor agonism and antagonism activity of d-threo-(R,R)-MPH. The results suggested d-threo-(R,R)-MPH induced 5-HT(1A) receptor agonist activity at 100 microM. The Guinea pig ileum functional assay showed that d-threo-(R,R)-MPH produced agonist-like reduction of neurogenic twitch with an EC50 5.65 +/- 0.36 microM. At 30 microM concentrations, d-threo-(R,R)-MPH produced 171 +/- 4.24% of the relaxation relative to that caused by 0.12 microM 8-OH-DPAT. However, d-threo-(R,R)-MPH exhibited no significant pharmacological activity in rat stomach fundus 5-HT(2B) receptor functional assay. Thus, d-threo-(R,R)-MPH appears to act as a selective 5-HT(1A) receptor agonist in vitro. It is speculated that the activation of 5-HT(1A) receptor might play a partial role in d-threo-(R,R)-MPH mediated dopamine (DA) release in the brain.

  18. Quantitative encoding of a partial agonist effect on individual opioid receptors by multi-site phosphorylation and threshold detection

    PubMed Central

    Lau, Elaine K.; Trester-Zedlitz, Michelle; Trinidad, Jonathan C.; Kotowski, Sarah J.; Krutchinsky, Andrew N.; Burlingame, Alma L.; von Zastrow, Mark

    2013-01-01

    Many drugs act as partial agonists of seven-transmembrane signaling receptors when compared to endogenous ligands. Partial agonism is well described as a 'macroscopic' property manifest at the level of physiological systems or cell populations, but it is not known whether partial agonists encode discrete regulatory information at the 'microscopic' level of individual receptors. We addressed this question by focusing on morphine, a partial agonist drug for µ-type opioid peptide receptors, and combining quantitative mass spectrometry with cell biological analysis to investigate morphine's reduced efficacy for promoting receptor endocytosis when compared to a peptide full agonist. We show that these chemically distinct ligands produce a complex, and qualitatively similar mixture of phosphorylated opioid receptor forms in intact cells. Quantitatively, however, the agonists promote markedly disproportional production of multi-site phosphorylation involving a specific Ser/Thr motif, whose modification at more than one residue is essential for efficient recruitment of the adaptor protein β-arrestin to clathrin-coated pits that mediate subsequent endocytosis of MORs. These results reveal quantitative encoding of agonist-selective endocytosis at the level of individual opioid receptors, based on the conserved biochemical principles of multi-site phosphorylation and threshold detection. PMID:21868358

  19. Screening and identification of Caulis Sinomenii bioactive ingredients with dual-target NF-κB inhibition and β2- AR agonizing activities.

    PubMed

    Sun, Dan; Han, Yanqi; Wang, Weiya; Wang, Zengyong; Ma, Xiaoyao; Hou, Yuanyuan; Bai, Gang

    2016-11-01

    Caulis Sinomenii (CS) is a valuable traditional medicine in China. Its extract can act as an anti-inflammatory agent and a vascular smooth muscle relaxant. However, the underlying mechanisms remain unknown. In this study, we developed a simple dual-target method based on ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry combined with a dual-target bioactive screening assay for anti-inflammatory and antispasmodic activities to characterize the chemical structure of various bioactive compounds of CS rapidly. Seven potential NF-κB inhibitors were identified, including laudanosoline-1-O-xylopyranose, 6-O-methyl-laudanosoline-1-O-glucopyranoside, menisperine, sinomenine, laurifoline, magnoflorine and norsinoacutin. Furthermore, IL-6 and IL-8 assays confirmed the anti-inflammatory effects of these potential NF-κB inhibitors, in which laudanosoline-1-O-d-xylopyranose and menisperine were revealed as novel NF-κB inhibitors. Among the seven identified alkaloids, three potential β2 -adrenergic receptor agonists, including sinomenine, magnoflorine and laurifoline, were characterized using a luciferase reporter system to measure for the activity of β2 -adrenergic receptor agonists. Finally, sinomenine, magnoflorine and laurifoline were identified not only as potential NF-κB inhibitors but also as potential β2 -adrenegic receptor agonists, which is the first time this has been reported. Molecular dynamic simulation and docking results suggest that the three dual-bioactive constituents could not only inhibit Pseudomonas aeruginosa PAK strain-induced inflammatory responses via a negative regulation of the Braf protein that participates in MAPK signaling pathway but also activate the β2 -adrenegic receptor. These results suggest that CS extract has dual signaling activities with potential clinical application as a novel drug for asthma.

  20. Anti-dyskinetic mechanisms of amantadine and dextromethorphan in the 6-OHDA rat model of Parkinson’s disease: role of NMDA vs. 5-HT1A receptors

    PubMed Central

    Paquette, Melanie A.; Martinez, Alex A.; Macheda, Teresa; Meshul, Charles K.; Johnson, Steven W.; Berger, S. Paul; Giuffrida, Andrea

    2013-01-01

    Amantadine and dextromethorphan suppress levodopa (L-DOPA)-induced dyskinesia (LID) in patients with Parkinson’s disease (PD) and abnormal involuntary movements (AIMs) in the unilateral 6-hydroxydopamine (6-OHDA) rat model. These effects have been attributed to N-methyl-d-aspartate (NMDA) antagonism. However, amantadine and dextromethorphan are also thought to block serotonin (5-HT) uptake and cause 5-HT overflow, leading to stimulation of 5-HT1A receptors, which has been shown to reduce LID. We undertook a study in 6-OHDA rats to determine whether the anti-dyskinetic effects of these two compounds are mediated by NMDA antagonism and/or 5-HT1A agonism. In addition, we assessed the sensorimotor effects of these drugs using the Vibrissae-Stimulated Forelimb Placement and Cylinder tests. Our data show that the AIM-suppressing effect of amantadine was not affected by the 5-HT1A antagonist WAY-100635, but was partially reversed by the NMDA agonist d-cycloserine. Conversely, the AIM-suppressing effect of dextromethorphan was prevented by WAY-100635 but not by d-cycloserine. Neither amantadine nor dextromethorphan affected the therapeutic effects of L-DOPA in sensorimotor tests. We conclude that the anti-dyskinetic effect of amantadine is partially dependent on NMDA antagonism, while dextromethorphan suppresses AIMs via indirect 5-HT1A agonism. Combined with previous work from our group, our results support the investigation of 5-HT1A agonists as pharmacotherapies for LID in PD patients. PMID:22861201

  1. Direct activation of Transient Receptor Potential Vanilloid 1(TRPV1) by Diacylglycerol (DAG)

    PubMed Central

    Woo, Dong Ho; Jung, Sung Jun; Zhu, Mei Hong; Park, Chul-Kyu; Kim, Yong Ho; Oh, Seog Bae; Lee, C Justin

    2008-01-01

    The capsaicin receptor, known as transient receptor potential channel vanilloid subtype 1 (TRPV1), is activated by a wide range of noxious stimulants and putative ligands such as capsaicin, heat, pH, anandamide, and phosphorylation by protein kinase C (PKC). However, the identity of endogenous activators for TRPV1 under physiological condition is still debated. Here, we report that diacylglycerol (DAG) directly activates TRPV1 channel in a membrane-delimited manner in rat dorsal root ganglion (DRG) neurons. 1-oleoyl-2-acetyl-sn-glycerol (OAG), a membrane-permeable DAG analog, elicited intracellular Ca2+ transients, cationic currents and cobalt uptake that were blocked by TRPV1-selective antagonists, but not by inhibitors of PKC and DAG lipase in rat DRG neurons or HEK 293 cells heterologously expressing TRPV1. OAG induced responses were about one fifth of capsaicin induced signals, suggesting that OAG displays partial agonism. We also found that endogenously produced DAG can activate rat TRPV1 channels. Mutagenesis of rat TRPV1 revealed that DAG-binding site is at Y511, the same site for capsaicin binding, and PtdIns(4,5)P2binding site may not be critical for the activation of rat TRPV1 by DAG in heterologous system. We propose that DAG serves as an endogenous ligand for rat TRPV1, acting as an integrator of Gq/11-coupled receptors and receptor tyrosine kinases that are linked to phospholipase C. PMID:18826653

  2. Chronic 5-HT6 receptor modulation by E-6837 induces hypophagia and sustained weight loss in diet-induced obese rats

    PubMed Central

    Fisas, Angels; Codony, Xavier; Romero, Gonzalo; Dordal, Alberto; Giraldo, Jesus; Mercé, Ramon; Holenz, Jörg; Heal, David; Buschmann, Helmut; Pauwels, Petrus Johan

    2006-01-01

    E-6837 is a novel, selective and high-affinity 5-HT6 receptor ligand (pKi: 9.13) which in vitro demonstrates partial agonism at a presumably silent rat 5-HT6 receptor and full agonism at a constitutively active human 5-HT6 receptor by monitoring the cAMP signaling pathway. The effects of chronic treatment with E-6837 were determined in diet-induced obese (DIO)-rats on changes in body weight, food and water intake, plasma indices of comorbid risk factors, and weight regain on compound withdrawal. The centrally acting antiobesity drug, sibutramine, was used as the reference comparator. Sustained body weight loss and decreased cumulative food intake of DIO-rats was observed with E-6837 (30 mg kg−1, p.o., twice a day) during the 4-week treatment period. The onset of the E-6837 effect on body weight was slower than that of sibutramine (5 mg kg−1, p.o.), while its maximal effect was greater, that is −15.7 versus −11.0%. E-6837-induced weight loss was exclusively mediated by a decrease (31.7%) in fat mass, with a concomitant reduction (49.6%) in plasma leptin. Reduced obesity was also reflected in improved glycemic control. Although weight regain occurred after withdrawal from either compound, the body weights after E-6837 (−6.6%) remained lower than after sibutramine (−3.8%) indicating that the greater efficacy of the former did not result in profound rebound hyperphagia/weight gain. These results show that the 5-HT6 receptor partial agonist, E-6837, is a promising new approach to the management of obesity with the potential to produce greater sustained weight loss than sibutramine. PMID:16783408

  3. ∆(9)-Tetrahydrocannabinol decreases NOP receptor density and mRNA levels in human SH-SY5Y cells.

    PubMed

    Cannarsa, Rosalia; Carretta, Donatella; Lattanzio, Francesca; Candeletti, Sanzio; Romualdi, Patrizia

    2012-02-01

    Several studies demonstrated a cross-talk between the opioid and cannabinoid system. The NOP receptor and its endogenous ligand nociceptin/orphanin FQ represent an opioid-related functional entity that mediates some non-classical opioid effects. The relationship between cannabinoid and nociceptin/NOP system is yet poorly explored. In this study, we used the neuroblastoma SH-SY5Y cell line to investigate the effect of delta-9-tetrahydrocannabinol (∆(9)-THC) on nociceptin/NOP system. Results revealed that the exposure to ∆(9)-THC (100, 150, and 200 nM) for 24 h produces a dose-dependent NOP receptor B (max) down-regulation. Moreover, ∆(9)-THC caused a dose-dependent decrease in NOP mRNA levels. The selective cannabinoid receptor CB1 antagonist AM251 (1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide) reduces both effects, suggesting that ∆(9)-THC activation of CB1 receptor is involved in the observed effects. These data show evidence of a cross-talk between NOP and CB1 receptors, thus suggesting a possible interplay between cannabinoid and nociceptin/NOP system.

  4. Soluble (pro)renin receptor via β-catenin enhances urine concentration capability as a target of liver X receptor

    PubMed Central

    Lu, Xiaohan; Wang, Fei; Xu, Chuanming; Soodvilai, Sunny; Peng, Kexin; Su, Jiahui; Zhao, Long; Yang, Kevin T.; Feng, Yumei; Zhou, Shu-Feng; Gustafsson, Jan-Åke; Yang, Tianxin

    2016-01-01

    The extracellular domain of the (pro)renin receptor (PRR) is cleaved to produce a soluble (pro)renin receptor (sPRR) that is detected in biological fluid and elevated under certain pathological conditions. The present study was performed to define the antidiuretic action of sPRR and its potential interaction with liver X receptors (LXRs), which are known regulators of urine-concentrating capability. Water deprivation consistently elevated urinary sPRR excretion in mice and humans. A template-based algorithm for protein–protein interaction predicted the interaction between sPRR and frizzled-8 (FZD8), which subsequently was confirmed by coimmunoprecipitation. A recombinant histidine-tagged sPRR (sPRR-His) in the nanomolar range induced a remarkable increase in the abundance of renal aquaporin 2 (AQP2) protein in primary rat inner medullary collecting duct cells. The AQP2 up-regulation relied on sequential activation of FZD8-dependent β-catenin signaling and cAMP–PKA pathways. Inhibition of FZD8 or tankyrase in rats induced polyuria, polydipsia, and hyperosmotic urine. Administration of sPRR-His alleviated the symptoms of diabetes insipidus induced in mice by vasopressin 2 receptor antagonism. Administration of the LXR agonist TO901317 to C57/BL6 mice induced polyuria and suppressed renal AQP2 expression associated with reduced renal PRR expression and urinary sPRR excretion. Administration of sPRR-His reversed most of the effects of TO901317. In cultured collecting duct cells, TO901317 suppressed PRR protein expression, sPRR release, and PRR transcriptional activity. Overall we demonstrate, for the first time to our knowledge, that sPRR exerts antidiuretic action via FZD8-dependent stimulation of AQP2 expression and that inhibition of this pathway contributes to the pathogenesis of diabetes insipidus induced by LXR agonism. PMID:26984496

  5. Soluble (pro)renin receptor via β-catenin enhances urine concentration capability as a target of liver X receptor.

    PubMed

    Lu, Xiaohan; Wang, Fei; Xu, Chuanming; Soodvilai, Sunny; Peng, Kexin; Su, Jiahui; Zhao, Long; Yang, Kevin T; Feng, Yumei; Zhou, Shu-Feng; Gustafsson, Jan-Åke; Yang, Tianxin

    2016-03-29

    The extracellular domain of the (pro)renin receptor (PRR) is cleaved to produce a soluble (pro)renin receptor (sPRR) that is detected in biological fluid and elevated under certain pathological conditions. The present study was performed to define the antidiuretic action of sPRR and its potential interaction with liver X receptors (LXRs), which are known regulators of urine-concentrating capability. Water deprivation consistently elevated urinary sPRR excretion in mice and humans. A template-based algorithm for protein-protein interaction predicted the interaction between sPRR and frizzled-8 (FZD8), which subsequently was confirmed by coimmunoprecipitation. A recombinant histidine-tagged sPRR (sPRR-His) in the nanomolar range induced a remarkable increase in the abundance of renal aquaporin 2 (AQP2) protein in primary rat inner medullary collecting duct cells. The AQP2 up-regulation relied on sequential activation of FZD8-dependent β-catenin signaling and cAMP-PKA pathways. Inhibition of FZD8 or tankyrase in rats induced polyuria, polydipsia, and hyperosmotic urine. Administration of sPRR-His alleviated the symptoms of diabetes insipidus induced in mice by vasopressin 2 receptor antagonism. Administration of the LXR agonist TO901317 to C57/BL6 mice induced polyuria and suppressed renal AQP2 expression associated with reduced renal PRR expression and urinary sPRR excretion. Administration of sPRR-His reversed most of the effects of TO901317. In cultured collecting duct cells, TO901317 suppressed PRR protein expression, sPRR release, and PRR transcriptional activity. Overall we demonstrate, for the first time to our knowledge, that sPRR exerts antidiuretic action via FZD8-dependent stimulation of AQP2 expression and that inhibition of this pathway contributes to the pathogenesis of diabetes insipidus induced by LXR agonism.

  6. Structural determinants of D-cycloserine efficacy at the NR1/NR2C NMDA receptors

    PubMed Central

    Dravid, Shashank M.; Burger, Pieter B.; Prakash, Anand; Geballe, Matthew T.; Yadav, Roopali; Le, Phuong; Vellano, Kimberly; Snyder, James P.; Traynelis, Stephen F.

    2010-01-01

    We have studied relative efficacies of NR1 agonists glycine and D-cycloserine (DCS), and found efficacy to be dependent on the NR2 subunit. DCS shows partial agonism at NR1/NR2B but has higher relative efficacy than glycine at NR1/NR2C receptor. Molecular dynamics (MD) simulations of the NR1/NR2B and NR1/NR2C agonist binding domain dimer suggest only subtle differences in the interactions of DCS with NR1 binding site residues relative to glycine. The most pronounced differences were observed in the NR1/NR2C simulation between the orientation of helix F and G of the NR1 subunit. Interestingly, Helix F was previously proposed to influence receptor gating and to adopt an orientation depending on agonist efficacy. MD simulations and site-directed mutagenesis further suggest a role for residues at the agonist binding domain dimer interface in regulating DCS efficacy. To relate the structural rearrangements to receptor gating, we recorded single-channel currents from outside-out patches containing a single active NR1/NR2C receptor. DCS increased the mean open time and open probability of NR1/NR2C receptors in comparison to glycine. Maximum likelihood fitting of a gating model for NR1/NR2C receptor activation to the single channel data suggests that DCS specifically accelerates the rate constant governing a fast gating step and reduces the closing rate. These changes appear to reflect a decreased activation energy for a pregating step and increased stability of the open states. We suggest that the higher efficacy of DCS at NR1/NR2C receptors involves structural rearrangements at the dimer interface and an effect on NR1/NR2C receptor pre-gating conformational changes. PMID:20164358

  7. Electrophysiological examination of the effects of sustained flibanserin administration on serotonin receptors in rat brain

    PubMed Central

    Rueter, Lynne E; Blier, Pierre

    1999-01-01

    5-HT1A receptor agonists have proven to be effective antidepressant medications, however they suffer from a significant therapeutic lag before depressive symptoms abate. Flibanserin is a 5-HT1A receptor agonist and 5-HT2A receptor antagonist developed to possibly induce a more rapid onset of antidepressant action through its preferential postsynaptic 5-HT1A receptor agonism. Flibanserin antagonized the effect of microiontophoretically-applied DOI in the medial prefrontal cortex (mPFC) following 2 days of administration, indicating antagonism of postsynaptic 5-HT2A receptors. This reduction in the effect of locally-applied DOI was no longer present following 7-day flibanserin administration. Two-day flibanserin administration only marginally reduced the firing activity of dorsal raphe (DRN) 5-HT neurons. Following 7 days of administration, 5-HT neuronal firing activity had returned to normal and the somatodendritic 5-HT1A autoreceptors were desensitized. The responsiveness of postsynaptic 5-HT1A receptors located on CA3 hippocampus pyramidal neurons and mPFC neurons, examined using microiontophoretically-applied 5-HT and gepirone, was unchanged following a 7-day flibanserin treatment. As demonstrated by the ability of the 5-HT1A receptor antagonist WAY 100635 to selectively increase the firing of hippocampal neurons in 2- and 7-day treated rats, flibanserin enhanced the tonic activation of postsynaptic 5-HT1A receptors in this brain region. The results suggest that flibanserin could be a therapeutically useful compound putatively endowed with a more rapid onset of antidepressant action. PMID:10188973

  8. Potentiation of Nerve Growth Factor-Induced Neurite Outgrowth by Fluvoxamine: Role of Sigma-1 Receptors, IP3 Receptors and Cellular Signaling Pathways

    PubMed Central

    Nishimura, Tomoko; Ishima, Tamaki; Iyo, Masaomi; Hashimoto, Kenji

    2008-01-01

    Background Selective serotonin reuptake inhibitors (SSRIs) have been widely used and are a major therapeutic advance in psychopharmacology. However, their pharmacology is quite heterogeneous. The SSRI fluvoxamine, with sigma-1 receptor agonism, is shown to potentiate nerve-growth factor (NGF)-induced neurite outgrowth in PC 12 cells. However, the precise cellular and molecular mechanisms underlying potentiation by fluvoxamine are not fully understood. In this study, we examined the roles of cellular signaling pathways in the potentiation of NGF-induced neurite outgrowth by fluvoxamine and sigma-1 receptor agonists. Methods and Findings The effects of three SSRIs (fluvoxamine, sertraline, paroxetine) and three sigma-1 receptor agonists (SA4503, 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP), and dehydroepiandrosterone (DHEA)-sulfate) on NGF-induced neurite outgrowth in PC12 cells were examined. Also examined were the effects of the sigma-1 receptor antagonist NE-100, inositol 1,4,5-triphosphate (IP3) receptor antagonist, and specific inhibitors of signaling pathways in the potentiation of NGF-induced neurite outgrowth by selective sigma-1 receptor agonist SA4503. Fluvoxamine (but not sertraline or paroxetine) and the sigma-1 receptor agonists SA4503, PPBP, and DHEA-sulfate significantly potentiated NGF-induced neurite outgrowth in PC12 cells in a concentration-dependent manner. The potentiation by fluvoxamine and the three sigma-1 receptor agonists was blocked by co-administration of the selective sigma-1 receptor antagonist NE-100, suggesting that sigma-1 receptors play a role in blocking the enhancement of NGF-induced neurite outgrowth. Moreover, the potentiation by SA4503 was blocked by co-administration of the IP3 receptor antagonist xestospongin C. In addition, the specific inhibitors of phospholipase C (PLC-γ), phosphatidylinositol 3-kinase (PI3K), p38MAPK, c-Jun N-terminal kinase (JNK), and the Ras/Raf/mitogen-activated protein kinase (MAPK) signaling pathways

  9. Telmisartan mediates anti-inflammatory and not cognitive function through PPAR-γ agonism via SARM and MyD88 signaling.

    PubMed

    Prathab Balaji, S; Vijay Chand, C; Justin, A; Ramanathan, M

    2015-10-01

    Telmisartan (TM), an angiotensin II receptor I (AT1) blocker, has been reported to have agonist property with respect to PPAR-γ. Activation of PPAR-γ receptor by TM attenuated the lipopolysaccharide (LPS) mediated TLR4 central downstream inflammatory responses. However, the missing link between PPAR-γ and TLR4 signaling with TM stimulation has not been clarified. Hence, the present study has been designed to evaluate the molecular mechanism involving PPARγ-TLR4 signaling with TM stimulation in LPS induced inflammatory model. LPS was administered in rats through ICV and the rats were treated with either PPAR-γ antagonist GW9662 (GW) or TM or both. After 14days of LPS administration, the rats were subjected to behavioral tests and their brains were isolated for blotting techniques. The protein study includes NF-κB, PPAR-γ receptors, and their downstream proteins (MyD88 & SARM). The pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) levels were measured by ELISA and cresyl violet staining in the hippocampus region to measure the neuroprotective activity. Results have shown that TM significantly increased the motor co-ordination, cognitive functions, and activated SARM and PPAR-γ protein levels. Also, TM treatment decreased the NF-κB, MyD88 activation, and cytokines release in LPS rats. The co-administration of GW attenuated the TM responses in the parameters studied except cognitive functions. TM (10mg/kg) has significantly reduced the LPS mediated inflammatory responses. This resulted in effective regeneration of hippocampal neurons as observed by cresyl violet staining. It can be concluded that the activation of PPAR-γ receptors may increase the SARM and decrease the MyD88 and NF-κB expression. This negative regulation of SARM dependent inflammation control could be a possible mechanism for TM anti-neuroinflammatory activity. This study of TM in neuro-inflammatory model may further confirm the dual activities of TM that controls hypertension and cognition

  10. The acute effect of a mineralocorticoid receptor agonist on corticotrope secretion in Addison's disease.

    PubMed

    Berardelli, R; Karamouzis, I; D'Angelo, V; Fussotto, B; Minetto, M A; Ghigo, E; Giordano, R; Arvat, E

    2016-05-01

    Mineralocorticoid receptors (MR) in the hippocampus display an important role in the control of hypothalamic-pituitary-adrenal (HPA) axis, mediating the ''proactive'' feedback of glucocorticoids (GC). Fludrocortisone (FC), a potent MR agonist, has been shown to decrease HPA activity through a hippocampal mechanism. Since it has been demonstrated that FC shows a significant inhibition of the HPA axis response to hCRH stimulus in normal subjects, also at doses usually administered as replacement therapy in patients with Addison's disease, an FC effect at MRs in human pituitary or a GR-pituitary agonism stronger than believed until now has been postulated. Ten patients affected by autoimmune Addison's disease received: (1) placebo p.o. + placebo i.v., (2) hydrocortisone (H) 10 mg p.o. + placebo i.v., (3) FC 0.1 mg p.o. + placebo i.v., (4) FC 0.1 mg and H 10 mg p.o. + placebo i.v. to verify a possible GR FC-mediated effect that might display a repercussion on the GC-replacement therapy. H reduced ACTH (p < 0.01) and increased cortisol levels (p < 0.01) with respect to the placebo session, while FC did not affect either ACTH or cortisol levels compared to placebo, and higher ACTH and lower cortisol levels (p < 0.03 and p < 0.01) were observed compared with the H session; furthermore the co-administration of FC + H showed ACTH and cortisol profiles similar to that observed during H alone. Our study showed a lack of FC effect on corticotrope secretion in Addison's disease, thus making unlikely the hypothesis of its GR pituitary agonism and the risk of glucocorticoid excess in primary adrenal insufficiency.

  11. Discovery of a series of imidazo[4,5-b]pyridines with dual activity at angiotensin II type 1 receptor and peroxisome proliferator-activated receptor-γ.

    PubMed

    Casimiro-Garcia, Agustin; Filzen, Gary F; Flynn, Declan; Bigge, Christopher F; Chen, Jing; Davis, Jo Ann; Dudley, Danette A; Edmunds, Jeremy J; Esmaeil, Nadia; Geyer, Andrew; Heemstra, Ronald J; Jalaie, Mehran; Ohren, Jeffrey F; Ostroski, Robert; Ellis, Teresa; Schaum, Robert P; Stoner, Chad

    2011-06-23

    Mining of an in-house collection of angiotensin II type 1 receptor antagonists to identify compounds with activity at the peroxisome proliferator-activated receptor-γ (PPARγ) revealed a new series of imidazo[4,5-b]pyridines 2 possessing activity at these two receptors. Early availability of the crystal structure of the lead compound 2a bound to the ligand binding domain of human PPARγ confirmed the mode of interaction of this scaffold to the nuclear receptor and assisted in the optimization of PPARγ activity. Among the new compounds, (S)-3-(5-(2-(1H-tetrazol-5-yl)phenyl)-2,3-dihydro-1H-inden-1-yl)-2-ethyl-5-isobutyl-7-methyl-3H-imidazo[4,5-b]pyridine (2l) was identified as a potent angiotensin II type I receptor blocker (IC(50) = 1.6 nM) with partial PPARγ agonism (EC(50) = 212 nM, 31% max) and oral bioavailability in rat. The dual pharmacology of 2l was demonstrated in animal models of hypertension (SHR) and insulin resistance (ZDF rat). In the SHR, 2l was highly efficacious in lowering blood pressure, while robust lowering of glucose and triglycerides was observed in the male ZDF rat.

  12. Discovery of a Series of Imidazo[4,5-b]pyridines with Dual Activity at Angiotensin II Type 1 Receptor and Peroxisome Proliferator-Activated Receptor-[gamma

    SciTech Connect

    Casimiro-Garcia, Agustin; Filzen, Gary F.; Flynn, Declan; Bigge, Christopher F.; Chen, Jing; Davis, Jo Ann; Dudley, Danette A.; Edmunds, Jeremy J.; Esmaeil, Nadia; Geyer, Andrew; Heemstra, Ronald J.; Jalaie, Mehran; Ohren, Jeffrey F.; Ostroski, Robert; Ellis, Teresa; Schaum, Robert P.; Stoner, Chad

    2013-03-07

    Mining of an in-house collection of angiotensin II type 1 receptor antagonists to identify compounds with activity at the peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) revealed a new series of imidazo[4,5-b]pyridines 2 possessing activity at these two receptors. Early availability of the crystal structure of the lead compound 2a bound to the ligand binding domain of human PPAR{gamma} confirmed the mode of interaction of this scaffold to the nuclear receptor and assisted in the optimization of PPAR{gamma} activity. Among the new compounds, (S)-3-(5-(2-(1H-tetrazol-5-yl)phenyl)-2,3-dihydro-1H-inden-1-yl)-2-ethyl-5-isobutyl-7-methyl-3H-imidazo[4,5-b]pyridine (2l) was identified as a potent angiotensin II type I receptor blocker (IC{sub 50} = 1.6 nM) with partial PPAR{gamma} agonism (EC{sub 50} = 212 nM, 31% max) and oral bioavailability in rat. The dual pharmacology of 2l was demonstrated in animal models of hypertension (SHR) and insulin resistance (ZDF rat). In the SHR, 2l was highly efficacious in lowering blood pressure, while robust lowering of glucose and triglycerides was observed in the male ZDF rat.

  13. Intrathecal injection of adenosine 2A receptor agonists reversed neuropathic allodynia through protein kinase (PK)A/PKC signaling.

    PubMed

    Loram, Lisa C; Taylor, Frederick R; Strand, Keith A; Harrison, Jacqueline A; Rzasalynn, Rachael; Sholar, Paige; Rieger, Jayson; Maier, Steven F; Watkins, Linda R

    2013-10-01

    A single intrathecal dose of adenosine 2A receptor (A2AR) agonist was previously reported to produce a multi-week reversal of allodynia in a chronic constriction injury (CCI) model of neuropathic pain. We aimed to determine if this long-term reversal was induced by A2AR agonism versus more generalized across adenosine receptor subtypes, and begin to explore the intracellular signaling cascades involved. In addition, we sought to identify whether the enduring effect could be extended to other models of neuropathic pain. We tested an A1R and A2BR agonist in CCI and found the same long duration effect with A2BR but not A1R agonism. An A2AR agonist (ATL313) produced a significant long-duration reversal of mechanical allodynia induced by long established CCI (administered 6 weeks after surgery), spinal nerve ligation and sciatic inflammatory neuropathy. To determine if ATL313 had a direct effect on glia, ATL313 was coadministered with lipopolysaccharide to neonatal microglia and astrocytes in vitro. ATL313 significantly attenuated TNFα production in both microglia and astrocytes but had no effect on LPS induced IL-10. Protein kinase C significantly reversed the ATL313 effects on TNFα in vitro in microglia and astrocytes, while a protein kinase A inhibitor only effected microglia. Both intrathecal PKA and PKC inhibitors significantly reversed the effect of the A2AR agonist on neuropathic allodynia. Therefore, A2AR agonists administered IT remain an exciting novel target for the treatment of neuropathic pain.

  14. Update on the Mechanism of Action of Aripiprazole: Translational Insights into Antipsychotic Strategies Beyond Dopamine Receptor Antagonism.

    PubMed

    de Bartolomeis, Andrea; Tomasetti, Carmine; Iasevoli, Felice

    2015-09-01

    Dopamine partial agonism and functional selectivity have been innovative strategies in the pharmacological treatment of schizophrenia and mood disorders and have shifted the concept of dopamine modulation beyond the established approach of dopamine D2 receptor (D2R) antagonism. Despite the fact that aripiprazole was introduced in therapy more than 12 years ago, many questions are still unresolved regarding the complexity of the effects of this agent on signal transduction and intracellular pathways, in part linked to its pleiotropic receptor profile. The complexity of the mechanism of action has progressively shifted the conceptualization of this agent from partial agonism to functional selectivity. From the induction of early genes to modulation of scaffolding proteins and activation of transcription factors, aripiprazole has been shown to affect multiple cellular pathways and several cortical and subcortical neurotransmitter circuitries. Growing evidence shows that, beyond the consequences of D2R occupancy, aripiprazole has a unique neurobiology among available antipsychotics. The effect of chronic administration of aripiprazole on D2R affinity state and number has been especially highlighted, with relevant translational implications for long-term treatment of psychosis. The hypothesized effects of aripiprazole on cell-protective mechanisms and neurite growth, as well as the differential effects on intracellular pathways [i.e. extracellular signal-regulated kinase (ERK)] compared with full D2R antagonists, suggest further exploration of these targets by novel and future biased ligand compounds. This review aims to recapitulate the main neurobiological effects of aripiprazole and discuss the potential implications for upcoming improvements in schizophrenia therapy based on dopamine modulation beyond D2R antagonism.

  15. Ligand-specific regulation of the endogenous mu-opioid receptor by chronic treatment with mu-opioid peptide agonists.

    PubMed

    Murányi, Marianna; Cinar, Resat; Kékesi, Orsolya; Birkás, Erika; Fábián, Gabriella; Bozó, Beáta; Zentai, András; Tóth, Géza; Kicsi, Emese Gabriella; Mácsai, Mónika; Dochnal, Roberta; Szabó, Gyula; Szücs, Mária

    2013-01-01

    Since the discovery of the endomorphins (EM), the postulated endogenous peptide agonists of the mu-opioid receptors, several analogues have been synthesized to improve their binding and pharmacological profiles. We have shown previously that a new analogue, cis-1S,2R-aminocyclohexanecarboxylic acid(2)-endomorphin-2 (ACHC-EM2), had elevated mu-receptor affinity, selectivity, and proteolytic stability over the parent compound. In the present work, we have studied its antinociceptive effects and receptor regulatory processes. ACHC-EM2 displayed a somewhat higher (60%) acute antinociceptive response than the parent peptide, EM2 (45%), which peaked at 10 min after intracerebroventricular (icv) administration in the rat tail-flick test. Analgesic tolerance developed to the antinociceptive effect of ACHC-EM2 upon its repeated icv injection that was complete by a 10-day treatment. This was accompanied by attenuated coupling of mu-sites to G-proteins in subcellular fractions of rat brain. Also, the density of mu-receptors was upregulated by about 40% in the light membrane fraction, with no detectable changes in surface binding. Distinct receptor regulatory processes were noted in subcellular fractions of rat brains made tolerant by the prototypic full mu-agonist peptide, DAMGO, and its chloromethyl ketone derivative, DAMCK. These results are discussed in light of the recently discovered phenomenon, that is, the "so-called biased agonism" or "functional selectivity".

  16. Xenobiotic pregnane X receptor (PXR) regulates innate immunity via activation of NLRP3 inflammasome in vascular endothelial cells.

    PubMed

    Wang, Shaolan; Lei, Ting; Zhang, Kang; Zhao, Wenxiang; Fang, Li; Lai, Baochang; Han, Jie; Xiao, Lei; Wang, Nanping

    2014-10-24

    Pregnane X receptor (PXR) is a member of nuclear receptor superfamily and responsible for the detoxification of xenobiotics. Our previously study demonstrated that PXR is expressed in endothelial cells (ECs) and acts as a master regulator of detoxification genes to protect ECs against xenobiotics. Vascular endothelial cells are key sentinel cells to sense the pathogens and xenobiotics. In this study, we examined the potential function of PXR in the regulation of innate immunity in vasculatures. Treatments with PXR agonists or overexpression of a constitutively active PXR in cultured ECs increased gene expression of the key pattern recognition receptors, including Toll-like receptors (TLR-2, -4, -9) and NOD-like receptors (NOD-1 and -2 and NLRP3). In particular, PXR agonism triggered the activation of NLRP3 inflammasome and the ensuing cleavage and maturation of caspase-1 and interleukin-1β (IL-1β). Conversely, selective antagonism or gene silencing of PXR abrogated NLRP3 inflammasome activation. In addition, we identified NLRP3 as a transcriptional target of PXR by using the promoter-reporter and ChIP assays. In summary, our findings revealed a novel regulatory mechanism of innate immune by PXR, which may act as a master transcription factor controlling the convergence between the detoxification of xenobiotics and the innate immunity against them.

  17. Homology modeling and molecular dynamics simulations of the active state of the nociceptin receptor reveal new insights into agonist binding and activation.

    PubMed

    Daga, Pankaj R; Zaveri, Nurulain T

    2012-08-01

    The opioid receptor-like receptor, also known as the nociceptin receptor (NOP), is a class A G protein-coupled receptor (GPCR) in the opioid receptor family. Although NOP shares a significant homology with the other opioid receptors, it does not bind known opioid ligands and has been shown to have a distinct mechanism of activation compared to the closely related opioid receptors mu, delta, and kappa. Previously reported homology models of the NOP receptor, based on the inactive-state GPCR crystal structures, give limited information on the activation and selectivity features of this fourth member of the opioid receptor family. We report here the first active-state homology model of the NOP receptor based on the opsin GPCR crystal structure. An inactive-state homology model of NOP was also built using a multiple template approach. Molecular dynamics simulation of the active-state NOP model and comparison to the inactive-state model suggest that NOP activation involves movements of transmembrane (TM)3 and TM6 and several activation microswitches, consistent with GPCR activation. Docking of the selective nonpeptidic NOP agonist ligand Ro 64-6198 into the active-state model reveals active-site residues in NOP that play a role in the high selectivity of this ligand for NOP over the other opioid receptors. Docking the shortest active fragment of endogenous agonist nociceptin/orphaninFQ (residues 1-13) shows that the NOP extracellular loop 2 (EL2) loop interacts with the positively charged residues (8-13) of N/OFQ. Both agonists show extensive polar interactions with residues at the extracellular end of the TM domain and EL2 loop, suggesting agonist-induced reorganization of polar networks, during receptor activation. Copyright © 2012 Wiley Periodicals, Inc.

  18. Retinoids induce integrin-independent lymphocyte adhesion through RAR-α nuclear receptor activity

    SciTech Connect

    Whelan, Jarrett T.; Wang, Lei; Chen, Jianming; Metts, Meagan E.; Nasser, Taj A.; McGoldrick, Liam J.; Bridges, Lance C.

    2014-11-28

    Highlights: • Transcription and translation are required for retinoid-induced lymphocyte adhesion. • RAR activation is sufficient to induced lymphocyte cell adhesion. • Vitamin D derivatives inhibit RAR-prompted lymphocyte adhesion. • Adhesion occurs through a novel binding site within ADAM disintegrin domains. • RARα is a key nuclear receptor for retinoid-dependent lymphocyte cell adhesion. - Abstract: Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid X receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH){sub 2}D{sub 3}, a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-α receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion.

  19. Biased G Protein-Coupled Receptor Signaling: New Player in Modulating Physiology and Pathology

    PubMed Central

    Bologna, Zuzana; Teoh, Jian-peng; Bayoumi, Ahmed S.; Tang, Yaoliang; Kim, Il-man

    2017-01-01

    G protein-coupled receptors (GPCRs) are a family of cell-surface proteins that play critical roles in regulating a variety of pathophysiological processes and thus are targeted by almost a third of currently available therapeutics. It was originally thought that GPCRs convert extracellular stimuli into intracellular signals through activating G proteins, whereas β-arrestins have important roles in internalization and desensitization of the receptor. Over the past decade, several novel functional aspects of β-arrestins in regulating GPCR signaling have been discovered. These previously unanticipated roles of β-arrestins to act as signal transducers and mediators of G protein-independent signaling have led to the concept of biased agonism. Biased GPCR ligands are able to engage with their target receptors in a manner that preferentially activates only G protein- or β-arrestin-mediated downstream signaling. This offers the potential for next generation drugs with high selectivity to therapeutically relevant GPCR signaling pathways. In this review, we provide a summary of the recent studies highlighting G protein- or β-arrestin-biased GPCR signaling and the effects of biased ligands on disease pathogenesis and regulation. PMID:28035079

  20. A Monod-Wyman-Changeux mechanism can explain G protein-coupled receptor (GPCR) allosteric modulation.

    PubMed

    Canals, Meritxell; Lane, J Robert; Wen, Adriel; Scammells, Peter J; Sexton, Patrick M; Christopoulos, Arthur

    2012-01-02

    The Monod-Wyman-Changeux (MWC) model was initially proposed to describe the allosteric properties of regulatory enzymes and subsequently extended to receptors. Yet despite GPCRs representing the largest family of receptors and drug targets, no study has systematically evaluated the MWC mechanism as it applies to GPCR allosteric ligands. We reveal how the recently described allosteric modulator, benzyl quinolone carboxylic acid (BQCA), behaves according to a strict, two-state MWC mechanism at the M1 muscarinic acetylcholine receptor (mAChR). Despite having a low affinity for the M1 mAChR, BQCA demonstrated state dependence, exhibiting high positive cooperativity with orthosteric agonists in a manner that correlated with efficacy but negative cooperativity with inverse agonists. The activity of BQCA was significantly increased at a constitutively active M1 mAChR but abolished at an inactive mutant. Interestingly, BQCA possessed intrinsic signaling efficacy, ranging from near-quiescence to full agonism depending on the coupling efficiency of the chosen intracellular pathway. This latter cellular property also determined the difference in magnitude of positive cooperativity between BQCA and the orthosteric agonist, carbachol, across pathways. The lack of additional, pathway-biased, allosteric modulation by BQCA was confirmed in genetically engineered yeast strains expressing different chimeras between the endogenous yeast G(pa1) protein and human Gα subunits. These findings define a chemical biological framework that can be applied to the study and classification of allosteric modulators across different GPCR families.