Science.gov

Sample records for fr07se10n aluminum extrusions

  1. 75 FR 80527 - Aluminum Extrusions From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ... COMMISSION Aluminum Extrusions From China AGENCY: United States International Trade Commission. ACTION... retarded, by reason of subsidized and less-than-fair-value imports from China of aluminum extrusions... contained in Aluminum Extrusions From the People's Republic of China: Notice of Preliminary Determination...

  2. 75 FR 34482 - Certain Aluminum Extrusions From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... COMMISSION Certain Aluminum Extrusions From China Determinations On the basis of the record \\1\\ developed in... reason of imports from China of certain aluminum extrusions, provided for in subheadings 7604.21, 7604.29... Commerce by the Aluminum Extrusions Fair Trade Committee \\2\\ and the United Steel, Paper and...

  3. 76 FR 29007 - Certain Aluminum Extrusions From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-19

    ... COMMISSION Certain Aluminum Extrusions From China Determinations On the basis of the record \\1\\ developed in... certain aluminum extrusions from ] China other than finished heat sinks, provided for in subheadings 7604... by Aluminum Extrusions Fair Trade Committee and the United Steel, Paper and Forestry,...

  4. 75 FR 34982 - Aluminum Extrusions from the People's Republic of China: Notice of Postponement of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... International Trade Administration Aluminum Extrusions from the People's Republic of China: Notice of... countervailing duty investigation of aluminum extrusions from the People's Republic of China. See Aluminum..., Benada Aluminum of Florida, Inc., William L. Bonnell Company, Inc., Frontier Aluminum Corporation,...

  5. 75 FR 73041 - Aluminum Extrusions From the People's Republic of China: Postponement of Final Determination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... International Trade Administration Aluminum Extrusions From the People's Republic of China: Postponement of... Commerce (``Department'') initiated the antidumping duty investigation of aluminum extrusions from the... antidumping duty investigation is currently due on January 10, 2011. \\1\\ See Aluminum Extrusions from...

  6. Numerical simulation of aluminum extrusion processes

    NASA Astrophysics Data System (ADS)

    Hughes, T. J.; Muller, A.

    1995-04-01

    This presentation describes a research program directed towards the development of automated design procedures for aluminum extrusion technology. The objective is to eliminate costly trial and error by being able to simultaneously design the product, die, billet, and process (e.g.. extrusion temperatures and speeds, uniformizing metal flow, etc.), within constraints of feasibility, and satisfying objectives including, but not limited to, optimizing shape, surface finish, and properties of the product, processing costs, time to market, and full utilization of capabilities. The approach is based on the development of efficient and effective analysis of the whole processing system employing newly developed finite element solution technologies for complex, multi region, multiphysical behavior. Generalizations of these methodologies to include Arbitrary Lagrangian-Eulerian (ALE) mesh descriptions for nonlinear, elastic viscoplastic mechanical constitution equations will allow the faithful modeling of the metal flow within the die system and the accurate attainment of final shape upon exit. Automatic meshing and adaptive remeshing will insure efficient and accurate simulation of the entire forming process. New element technologies facilitating the use of general meshing procedures for difficult metal-forming processes involving a variety of kinematical constraints, such as incompressibility, contact, etc., are utilized. Feature based design methodologies, parametric modeling, and knowledge-based engineering techniques will constitute the fundamental methodologies for representing designs, managing the hierarchy of analysis models, performing model reduction and feature removal, and effectively utilizing design knowledge.

  7. Analysis of Material Flow in Screw Extrusion of Aluminum

    SciTech Connect

    Haugen, Bjoern; Oernskar, Magnus; Welo, Torgeir; Wideroee, Fredrik

    2010-06-15

    Screw extrusion of aluminum is a new process for production of aluminum profiles. The commercial potential could be large. Little experimental and numerical work has been done with respect to this process.The material flow of hot aluminum in a screw extruder has been analyzed using finite element formulations for the non-Newtonian Navier-Stokes equations. Aluminum material properties are modeled using the Zener-Holloman material model. Effects of stick-slip conditions are investigated with respect to pressure build up and mixing quality of the extrusion process.The numerical results are compared with physical experiments using an experimental screw extruder.

  8. 75 FR 57441 - Aluminum Extrusions From the People's Republic of China: Alignment of Final Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... International Trade Administration Aluminum Extrusions From the People's Republic of China: Alignment of Final...) is aligning the final determination in the countervailing duty investigation of aluminum extrusions... 20, 2010, the Department initiated the countervailing and antidumping duty investigations on...

  9. 76 FR 30650 - Aluminum Extrusions from the People's Republic of China: Antidumping Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... forms, produced by an extrusion process, made from aluminum alloys having metallic elements corresponding to the alloy series designations published by The Aluminum Association commencing with the numbers... subject merchandise made from aluminum alloy with an Aluminum Association series designation...

  10. 78 FR 34649 - Aluminum Extrusions From the People's Republic of China: Preliminary Results of Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... International Trade Administration Aluminum Extrusions From the People's Republic of China: Preliminary Results...) is conducting an administrative review of the countervailing duty (CVD) order on aluminum extrusions... Aluminum Co., Ltd. (Alnan Aluminum), Alnan Aluminum Foil Co., Ltd. (Alnan Foil), Alnan (Shanglin)...

  11. 78 FR 67116 - Aluminum Extrusions From the People's Republic of China: Notice of Partial Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... Foshan City Nanhai Hongjia Aluminum Alloy Co. Foshan Guancheng Aluminum Co., Ltd Foshan Jinlan Aluminum... International Trade Administration Aluminum Extrusions From the People's Republic of China: Notice of Partial... on aluminum extrusions from the People's Republic of China (PRC).\\1\\ Pursuant to requests...

  12. 75 FR 51243 - Aluminum Extrusions from the People's Republic of China: Postponement of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-19

    ... International Trade Administration Aluminum Extrusions from the People's Republic of China: Postponement of... antidumping duty investigation on Aluminum Extrusions from the People's Republic of China.\\1\\ The notice of... later than September 7, 2010. \\1\\ See Aluminum Extrusions from the People's Republic of...

  13. Computer-Aided Design and Manufacturing for Extrusion of Aluminum, Titanium, and Steel Structural Parts (Phase I)

    DTIC Science & Technology

    1976-03-01

    Indirect Extrusion of Aluminum Alloys without a Lubricant 1-4 1-2. Relation Between Extrusion Rate and Flow Stress for Various Aluminum Alloy...RELATION BETWEEN EXTRUSION RATE AND FLOW STRESS FOR VARIOUS ALUMINUM ALLOYS*** 1-6 By far, the greater proportion of all Aluminum extrusions consists of...for extrusion, can cause ruptures on the surface of the extrusion, and even local melting in the extru- ded material. To overcome this problem

  14. 77 FR 65671 - Aluminum Extrusions From the People's Republic of China: Notice of Partial Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ... International Trade Administration Aluminum Extrusions From the People's Republic of China: Notice of Partial... administrative review of the countervailing duty order on aluminum extrusions from the People's Republic of China...); on September 9, 2012, Foshan City Nanhai Hongjia Aluminum Alloy Co., Ltd. (Hongjia) and...

  15. 78 FR 34986 - Aluminum Extrusions From the People's Republic of China: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ... International Trade Administration Aluminum Extrusions From the People's Republic of China: Preliminary Results... (``the Department'') is conducting an administrative review of the antidumping duty order on aluminum... respondents: Kromet International, Inc. (``Kromet''); and a single entity comprised of Guang Ya...

  16. Computer simulation of combination extrusion of ENAW1050A aluminum

    NASA Astrophysics Data System (ADS)

    Thomas, P.

    2017-02-01

    Computer simulation of the combination extrusion process for ENAW-1050A aluminum alloy is presented. The tests were carried out for three values of relative strain in forward direction ε1: 0.77, 0.69 and 0.59. For each value of relative strain ε1, three different values of strain in backward direction, ε2, were taken: 0.41, 0.52, 0.64. The effect of the relative strain degree on the development and values of the punch force was determined. It was demonstrated that the punch force increases with the increasing degree of relative strain in both forward and backward directions.

  17. 78 FR 67115 - Aluminum Extrusions From the People's Republic of China: Intent To Rescind 2012 Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Aluminum Extrusions From the People's Republic of China: Intent To Rescind... countervailing duty (CVD) order on aluminum extrusions from the People's Republic of China (PRC) for the...

  18. 76 FR 323 - Aluminum Extrusions From the People's Republic of China: Notice of Amended Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... which are shapes and forms, produced by an extrusion process, made from aluminum alloys having metallic elements corresponding to the alloy series designations published by The Aluminum Association commencing...). Specifically, the subject merchandise made from aluminum alloy with an Aluminum Association series...

  19. 76 FR 20627 - Aluminum Extrusions From the People's Republic of China: Notice of Correction to the Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... International Trade Administration Aluminum Extrusions From the People's Republic of China: Notice of Correction... percent to 29 separate-rate companies. \\1\\ See Aluminum Extrusions from the People's Republic of China... proceeding, is appropriate. \\2\\ See Aluminum Extrusions From the People's Republic of China:...

  20. 77 FR 74466 - Aluminum Extrusions From the People's Republic of China: Notice of Court Decision Not in Harmony...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-14

    ... International Trade Administration Aluminum Extrusions From the People's Republic of China: Notice of Court... recalculated the all others subsidy rate in the countervailing duty (CVD) investigation of aluminum extrusions... its Final Determination. \\1\\ See Aluminum Extrusions From the People's Republic of China:...

  1. 76 FR 18524 - Aluminum Extrusions From the People's Republic of China: Final Determination of Sales at Less...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... procedures, including the examination of relevant accounting and production records, as appropriate, as well... extrusions which are shapes and forms, produced by an extrusion process, made from aluminum alloys having... scope also excludes aluminum alloy sheet or plates produced by other than the extrusion process, such...

  2. High cycle fatigue of AA6082 and AA6063 aluminum extrusions

    NASA Astrophysics Data System (ADS)

    Nanninga, Nicholas E.

    The high cycle fatigue behavior of hollow extruded AA6082 and AA6063 aluminum extrusions has been studied. Hollow extruded aluminum profiles can be processed into intricate shapes, and may be suitable replacements for fatigue critical automotive applications requiring reduced weight. There are several features inherent in hollow aluminum extrusions, such as seam welds, charge welds, microstructural variations and die lines. The effects of such extrusion variables on high cycle fatigue properties were studied by taking specimens from an actual car bumper extrusion. It appears that extrusion die lines create large anisotropy differences in fatigue properties, while welds themselves have little effect on fatigue lives. Removal of die lines greatly increased fatigue properties of AA6082 specimens taken transverse to the extrusion direction. Without die lines, anisotropy in fatigue properties between AA6082 specimens taken longitudinal and transverse to the extrusion direction, was significantly reduced, and properties associated with the orientation of the microstructure appears to be isotropic. A fibrous microstructure for AA6082 specimens showed great improvements in fatigue behavior. The effects of elevated temperatures and exposure of specimens to NaCl solutions was also studied. Exposure to the salt solution greatly reduced the fatigue lives of specimens, while elevated temperatures showed more moderate reductions in fatigue lives.

  3. Physical Simulation Method for the Investigation of Weld Seam Formation During the Extrusion of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Fang, Gang; Nguyen, Duc-Thien; Zhou, Jie

    2016-12-01

    Extrusion through the porthole die is a predominant forming process used in the production of hollow aluminum alloy profiles across the aluminum extrusion industry. Longitudinal weld seams formed during the process may negatively influence the quality of extruded profiles. It is therefore of great importance to understand the formation of weld seams inside the welding chamber during extrusion, as affected by extrusion process variables and die design. Previously developed physical simulation methods could not fully reproduce the thermomechanical conditions inside the welding chamber of porthole die. In this research, a novel physical simulation method for the investigation of weld seam formation during extrusion was developed. With a tailor-designed tooling set mounted on a universal testing machine, the effects of temperature, speed, and strain on the weld seam quality of the 6063 alloy were investigated. The strains inside the welding chamber were found to be of paramount importance for the bonding of metal streams, accompanied by microstructural changes, i.e., recovery or recrystallization, depending on the local deformation condition. The method was shown to be able to provide guidelines for the design of porthole dies and choice of extrusion process variables, thereby reducing the scrap rate of aluminum extrusion operation.

  4. 75 FR 54302 - Aluminum Extrusions From the People's Republic of China: Preliminary Affirmative Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ...The Department of Commerce (the Department) preliminarily determines that countervailable subsidies are being provided to producers and exporters of aluminum extrusions from the People's Republic of China (the PRC). For information on the estimated subsidy rates, see the ``Suspension of Liquidation'' section of this...

  5. Energy absorption in aluminum extrusions for a spaceframe chassis

    SciTech Connect

    Logan, R.W.; Perfect, S.A.; Parkinson, R.D.

    1994-09-19

    This work describes the design, finite-element analysis, and verifications performed by LLNL and Kaiser Aluminum for the prototype design of the CALSTART Running Chassis purpose-built electric vehicle. Component level studies, along with our previous experimental and finite-element works, provided the confidence to study the crashworthiness of a complete aluminum spaceframe. Effects of rail geometry, size, and thickness were studied in order to achieve a controlled crush of the front end structure. These included the performance of the spaceframe itself, and the additive effects of the powertrain cradle and powertrain (motor/controller in this case) as well as suspension. Various design iterations for frontal impact at moderate and high speed are explored.

  6. Finite Element Analysis and Die Design of Non-specific Engineering Structure of Aluminum Alloy during Extrusion

    SciTech Connect

    Chen, D.-C.; Lu, Y.-Y.

    2010-06-15

    Aluminum extension applies to industrial structure, light load, framework rolls and conveyer system platform. Many factors must be controlled in processing the non-specific engineering structure (hollow shape) of the aluminum alloy during extrusion, to obtain the required plastic strain and desired tolerance values. The major factors include the forming angle of the die and temperature of billet and various materials. This paper employs rigid-plastic finite element (FE) DEFORM 3D software to investigate the plastic deformation behavior of an aluminum alloy (A6061, A5052, A3003) workpiece during extrusion for the engineering structure of the aluminum alloy. This work analyzes effective strain, effective stress, damage and die radius load distribution of the billet under various conditions. The analytical results confirm the suitability of the current finite element software for the non-specific engineering structure of aluminum alloy extrusion.

  7. Co-extrusion of Discontinuously, Non-centric Steel-reinforced Aluminum

    SciTech Connect

    Foydl, A.; Haase, M.; Khalifa, N. Ben; Tekkaya, A. E.

    2011-05-04

    The process of manufacturing discontinuously non-centric steel reinforced aluminum by means of co-extrusion has been examined. By this process semi-finished reinforced profiles can be fabricated for further treatment through forging techniques. Therefore, steel reinforcement elements consisting of E295GC were inserted into conventional aluminum billets and co-extruded into two different solid profiles; a rectangle one by an extrusion ratio of 10.1:1 and a round one by 4.8:1. The used aluminum alloy is EN AW-6060. The billet temperature as well as the ram speed were varied to investigate their influence on the position of the reinforcement elements inside the strand. The measurement was done by a video measurement system, called Optomess A250, after milling off the strand. The distances between the elements in longitudinal direction were nearly constant, apart from the rear part of the strand. The same was observed for the distance of the steel elements to the profile edge. This due to the inhomogeneous material flow in the transverse weld, related to the billet-to-billet extrusion. The rotation of the reinforcement elements occurs because the elements flow nearby the shear zone. Further, micrographs were made to investigate the embedding situation and the grain size distribution. The embedding of the reinforcement elements were good in the solid round profile, but in the rectangle profile were found some kind of air pocket. The grain size of the aluminum alloy close to the steel elements is much smaller than in the other parts of the solid round profile.

  8. An investigation on diffusion bonding of aluminum to copper using equal channel angular extrusion process

    PubMed Central

    Eslami, P.; Taheri, A. Karimi

    2011-01-01

    A new method for production of bimetallic rods, utilizing the equal channel angular extrusion (ECAE) process has been introduced before by previous researchers, but no attempt has been made to assess the effect of different temperatures and holding times in order to achieve a diffusional bond between the mating surfaces. In present research copper sheathed aluminum rods have been ECAEed at room temperature and subsequently held at a constant ECAE pressure, at different temperatures and holding times to produce a diffusional bond between the copper sheath and the aluminum core. The bonding quality of the joints was examined by shear strength test and a sound bonding interface was achieved. Based on the results, a bonding temperature of 200 °C and holding time of 60–80 min yielded the highest shear strength value. PMID:21760654

  9. An optimizing process of profiled cross-sectional aluminum alloy porthole die extrusion using response surface methodology

    NASA Astrophysics Data System (ADS)

    Zhou, Fujian; Li, Feng; Shi, Liansheng; Jiang, Hongwei

    2016-03-01

    The porthole die extrusion process of profiled cross-section hollow aluminum alloy is influenced by numerous factors, which brings inconvenience to the process design. In this paper, 7075 aluminum alloy is taken as an example, the fitting model of the ultimate load is analyzed by variance and regression analysis using response surface method (RSM). The influences of extrusion speed, friction factor and initial temperature on the change of extruded ultimate load are investigated systematically, and the important influence factors (initial temperature > friction factor > extrusion speed) to the load are determined eventually. By comparison, the error between the ultimate load model obtained after fitting and the calculated value is only 2.4%, further verifying the reliability of this model. The optimal objective is to minimize the ultimate load, then the optimum technological parameters are obtained by optimizing the process, where the initial temperature, the extrusion speed and the friction factor are 430∘C, 2.28mm/s and 0.31, respectively. The results provide a theoretical basis for the scientific design of the porthole die extrusion process of profiled cross-section hollow aluminum alloy.

  10. Extrusion of spark plasma sintered aluminum-carbon nanotube composites at various sintering temperatures.

    PubMed

    Kwon, Hansang; Kawasaki, Akira

    2009-11-01

    The combined processes of spark plasma sintering and hot extrusion were used to fabricate a multi-walled carbon nanotube (MWCNT) reinforced aluminum (Al) matrix composite. The structural defects of carbon nanotubes (CNT) at various sintering temperatures were investigated by Raman spectroscopy. A small amount of Al liquid phase was generated and it reacted with disordered CNTs, even during the solid-state spark plasma sintering process. The influence of Al carbides generated by the reaction between Al and disordered CNTs is discussed from a microstructural viewpoint and in relation to tensile strength. We conclude that structurally controlled CNTs could potentially be attractive for metal matrix applications, and could significantly improve the mechanical properties of AI-CNT composites.

  11. Development and application of constitutive equation for the hot extrusion of 7A04 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Xiao, Yanhong; Cui, Zhenshan; Guo, Cheng

    2013-05-01

    The high-temperature deformation behavior of 7A04 aluminum alloy was investigated by hot compression tests in the temperature range of 300 - 450° and the strain rate range of 0.01-10 s-1. The true stress - true strain curves show that the stress level decreases with increasing temperature and decreasing strain rate. A modified JC model was developed by means of fitting the experimental data and optimizing the material constants. Then, based on the established constitutive equation of 7A04, the hot extrusion process of fuze shell was analyzed using DEFORM-3D and the flow law of metal was obtained. Finally, the validity of this research results was proved by practice, which provides some references for engineering application.

  12. Validation of a systematic approach to modeling spray quenching of aluminum alloy extrusions, composites, and continuous castings

    SciTech Connect

    Hall, D.D.; Mudawar, I.; Morgan, R.E.; Ehlers, S.L.

    1997-02-01

    Optimal cooling of aluminum alloys following the high-temperature extrusion process suppresses precipitation of intermetallic compounds and results in a part capable of possessing maximum strength and hardness after the subsequent age-hardening process. Rapid quenching suppresses precipitation but can lad to large spatial temperature gradients in complex-shaped parts, causing distortion, cracking, high residual stress, and/or nonuniform mechanical properties. Conversely, slow cooling significantly reduces or eliminates these undesirable conditions but allows considerable precipitation, resulting in low strength, soft spots, and/or low corrosion resistance. This study presents a systematic method of locating and operating multiple spray nozzles for any shaped extrusion such that uniform, rapid cooling and superior mechanical and metallurgical properties are achieved. New correlations, offering increased accuracy and less computational time, were formulated for the high-temperature boiling regimes which have a critical influence on final mechanical properties. The quench factor technique related predicted thermal history to metallurgical transformations occurring within the extrusion to predict hardness distribution. The validity of this unique approach was demonstrated by comparing model predictions to the temperature response (and hardness after artificial aging) of an L-shaped Al2024-T6 extrusion to quenches with multiple, overlapping water sprays. The validation study reported herein concludes by exploring the possibility of applying quenching technology to improving the properties of extruded metal-matrix composites such as SiC{sub p}/Al6061 and cast alloys.

  13. Validation of a systematic approach to modeling spray quenching of aluminum alloy extrusions, composites, and continuous castings

    SciTech Connect

    Hall, D.; Mudawar, I.; Morgan, R.E.; Ehlers, S.L.

    1996-12-31

    Optimal cooling of aluminum alloys following the high temperature extrusion process suppresses precipitation of intermetallic compounds and results in a part capable of possessing maximum strength and hardness after the subsequent age-hardening process. Rapid quenching suppresses precipitation but can lead to large spatial temperature gradients in complex-shaped parts causing distortion, cracking, high residual stress, and/or nonuniform mechanical properties. Conversely, slow cooling significantly reduces or eliminates these undesirable conditions but allows considerable precipitation resulting in low strength, soft spots, and/or low corrosion resistance. This study presents a systematic method of locating and operating multiple spray nozzles for any shaped extrusion such that uniform, rapid cooling and superior mechanical and metallurgical properties are achieved. A spray nozzle database was compiled by measuring the distribution of spray hydrodynamic parameters (volumetric spray flux, mean drop diameter, and mean drop velocity) throughout the spray field of various industrial nozzles. Spray heat transfer correlations, which link the local spray hydrodynamic parameters to the heat transfer rate in each of the boiling regimes experienced by the surface, defined the spatially nonuniform boundary conditions in a numerical model of the quenching process which also accounted for interference between adjacent spray fields. The quench factor technique relates, predicted thermal history to metallurgical transformations occurring within the extrusion to predict hardness distribution. The validity of this unique approach was demonstrated by comparing model predictions to the temperature response (and hardness after artificial aging) of an L-shaped Al 2024-T6 extrusion to quenches with multiple, overlapping water sprays.

  14. Carbon nanofiber reinforced aluminum matrix composite fabricated by combined process of spark plasma sintering and hot extrusion.

    PubMed

    Kwon, Hansang; Kurita, Hiroki; Leparoux, Marc; Kawasaki, Akira

    2011-05-01

    Spark plasma sintering and hot extrusion processes have been employed for fabricating carbon nanofiber (CNF)-aluminum (Al) matrix bulk materials. The Al powder and the CNFs were mixed in a mixing medium of natural rubber. The CNFs were well dispersed onto the Al particles. After removal of the natural rubber, the Al-CNF mixture powders were highly densified. From the microstructural viewpoint, the composite materials were observed by optical, field-emission scanning electron, and high-resolution transmission electron microscopies. The CNFs were found to be located on every grain boundary and aligned with the extrusion direction of the Al-CNF bulk materials. Some Al carbides (Al4C3) were also observed at the surface of the CNFs. This carbide was created by a reaction between the Al and the disordered CNF. The CNFs and the formation of Al4C3 play an important role in the enhancement of the mechanical properties of the Al-CNF bulk material. The CNFs can also be used for engineering reinforcement of other matrix materials such as ceramics, polymers and more complex matrices.

  15. Numerical Modeling of Frictional Stress in the Contact Zone of Direct Extrusion of Aluminum Alloys under Starved Lubrication

    NASA Astrophysics Data System (ADS)

    Tomar, P.; Pandey, R. K.; Nath, Y.

    2013-11-01

    The objective of this article is to investigate numerically frictional stress in the contact zone at the die/billet interface in the direct extrusion of aluminum alloys considering starved lubricated conditions. In the modeling, both the inlet and work zones have been investigated by coupled solution of the governing equations. The influences of the billet material's strain hardening and its heating due to the plastic deformation are accounted for in the numerical computation. The frictional shear stress at the die/billet interface is computed using three different lubricating oils. Numerical results have been presented herein for the various operating parameters viz. starvation factor ( ψ = 0.2-0.6), lubricants' viscosities ( η 0 = 0.05 Pa s-0.2 Pa s), semi die angle ( β = 10°-20°), and material parameter ( G = 0.56-2.25). It has been observed that the frictional stress increases with an increase in the severity of the lubricant's starvation for the given values of semi-die angle, extrusion speed, and material parameter.

  16. Characterization of ultra-fine grained aluminum produced by accumulative back extrusion (ABE)

    SciTech Connect

    Alihosseini, H.; Faraji, G.; Dizaji, A.F.; Dehghani, K.

    2012-06-15

    In the present work, the microstructural evolutions and microhardness of AA1050 subjected to one, two and three passes of accumulative back extrusion (ABE) were investigated. The microstructural evolutions were characterized using transmission electron microscopy. The results revealed that applying three passes of accumulative back extrusion led to significant grain refinement. The initial grain size of 47 {mu}m was refined to the grains of 500 nm after three passes of ABE. Increasing the number of passes resulted in more decrease in grain size, better microstructure homogeneity and increase in the microhardness. The cross-section of ABEed specimen consisted of two different zones: (i) shear deformation zone, and (ii) normal deformation zone. The microhardness measurements indicated that the hardness increased from the initial value of 31 Hv to 67 Hv, verifying the significant microstructural refinement via accumulative back extrusion. - Highlights: Black-Right-Pointing-Pointer A significant grain refinement can be achieved in AA1050, Al alloy by applying ABE. Black-Right-Pointing-Pointer Microstructural homogeneity of ABEed samples increased by increasing the number of ABE cycles. Black-Right-Pointing-Pointer A substantial increase in the hardness, from 31 Hv to 67 Hv, was recorded.

  17. Microstructure and mechanical properties of 7075 aluminum alloy nanostructured composites processed by mechanical milling and indirect hot extrusion

    SciTech Connect

    Flores-Campos, R.; Estrada-Guel, I.; Miki-Yoshida, M.; Martinez-Sanchez, R.; Herrera-Ramirez, J.M.

    2012-01-15

    Nanostructured composites of 7075 aluminum alloy and carbon coated silver nanoparticles were produced by mechanical milling and indirect hot extrusion. The milling products were obtained in a high energy SPEX ball mill, and then were compacted by uniaxial load and pressure-less sintered under argon atmosphere. Finally, the sintered product was hot extruded. Carbon coated silver nanoparticles were well distributed in the matrix of the extruded material. Tensile tests were carried out to corroborate the hypothesis that second phase particles, well dispersed in the matrix, improve the strength of the material. High resolution transmission electron microscopy was employed to locate and make sure that the silver nanoparticles were homogeneously and finely dispersed. Highlights: Black-Right-Pointing-Pointer 7075 Al nanostructured composites can be produced by mechanical milling. Black-Right-Pointing-Pointer Carbon coated silver nanoparticles are well dispersed into aluminum matrix. Black-Right-Pointing-Pointer Ductile Ag-C NP's improve the mechanical properties of the 7075 Al-alloy. Black-Right-Pointing-Pointer Ag-C NP's content has an important effect in the particle and crystallite size. Black-Right-Pointing-Pointer Ag-C NP's keep their morphology after milling and conformation processes.

  18. Mechanical Property Data on P/M Aluminum X7091-T7E69 Extrusion.

    DTIC Science & Technology

    1982-10-01

    block number) Powder-Metallurgy Notched Fatigue 7091-T7E69 Fracture Extrusion Fatigue Crack Growth Alyinum Stress Corrosion 20. AT RACT (Continue an...fatigue crack growth, and stress corrosion cracking. For notched fatigue investigations, stress concentration factors as high as 10 were examined...sensitivity to stress corrosion cracking under such conditions. UNCLASSIFIED SAZCu~rI1 V C.. Alit FC kVI0% 00~i u* £2(’hu Oee £e PREFACE This interim

  19. 75 FR 69403 - Aluminum Extrusions From the People's Republic of China: Notice of Preliminary Determination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-12

    ...\\ In the Initiation Notice, the Department notified parties of the application process by which.... The process requires exporters and producers to submit a separate-rate status application (``SRA'') \\4... process, made from aluminum alloys having metallic elements corresponding to the alloy series...

  20. 75 FR 22109 - Aluminum Extrusions from the People's Republic of China: Initiation of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ... designations are representative of aluminum alloys for casting: 208.0, 295.0, 308.0, 355.0, C355.0, 356.0, A356... the major alloying element, with manganese accounting for not more than 3.0 percent of total materials... magnesium accounting for at least 0.1 percent but not more than 2.0 percent of total materials by......

  1. 77 FR 54900 - Aluminum Extrusions From the People's Republic of China: Final Results of Changed Circumstances...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... aluminum alloys for casting: 208.0, 295.0, 308.0, 355.0, C355.0, 356.0, A356.0, A357.0, 360.0, 366.0, 380.0..., with manganese accounting for not more than 3.0 percent of total materials by weight. The subject... least 0.1 percent but not more than 2.0 percent of total materials by weight,......

  2. 77 FR 39683 - Aluminum Extrusions From the People's Republic of China: Preliminary Results of Changed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... aluminum alloys for casting: 208.0, 295.0, 308.0, 355.0, C355.0, 356.0, A356.0, A357.0, 360.0, 366.0, 380.0... manganese accounting for not more than 3.0 percent of total materials by weight. The subject merchandise is... least 0.1 percent but not more than 2.0 percent of total materials......

  3. 76 FR 18521 - Aluminum Extrusions From the People's Republic of China: Final Affirmative Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... designations are representative of aluminum alloys for casting: 208.0, 295.0, 308.0, 355.0, C355.0, 356.0, A356... not more than 3.0 percent of total materials by weight. The subject merchandise is made from an... magnesium and silicon as the major alloying elements, with magnesium accounting for at least 0.1 percent...

  4. Parameters Controlling Dimensional Accuracy of Aluminum Extrusions Formed in Stretch Bending

    NASA Astrophysics Data System (ADS)

    Baringbing, Henry Ako; Welo, Torgeir

    2007-04-01

    For stretch formed components used in the automotive industry, such as bumper beams, it is of primary importance to control parameters affecting dimensional accuracy. The variations in geometry and mechanical properties induced in extrusion and stretch forming lead to subsequent dimensional inaccuracy of the final product. In this work, tensile and compression samples were taken at three different positions along AA7108W extruded profiles in order to determine material parameters for a constitutive model particularly suited for strong texture materials. In addition, geometry were measured and analyzed statistically in order to study its impact on local cross sectional distortions (sagging) and springback in stretch bending of a bumper beam. These full scale experiments were combined with analytical and numerical simulations to quantify the impact of each basic parameter on product quality. It is concluded that this methodology provides a means to systematically control the product quality by focusing on reducing the acceptance limits of the main parameters controlling basic mechanisms in stretch forming. Despite the assumptions and simplifications made in order to make the analytical expressions solvable, the approach has proven its capability in establishing accurate closed-form expressions including the main influential parameters.

  5. Development of lightweight aluminum compression panels reinforced by boron-epoxy infiltrated extrusions

    NASA Technical Reports Server (NTRS)

    Roy, P. A.; Mcelman, J. A.; Henshaw, J.

    1973-01-01

    Analytical and experimental studies were performed to evaluate the structural efficiencies afforded by the selective reinforcement of conventional aluminum compression panels with unidirectional boron epoxy composite materials. A unique approach for selective reinforcement was utilized called boron/epoxy infiltration. This technique uses extruded metal sections with preformed hollow voids into which unidirectional boron filaments are drawn and subsequently infiltrated with resin to form an integral part. Simplified analytical models were developed to investigate the behavior of stiffener webs with reinforced flanges. Theoretical results are presented demonstrating the effects of transverse shear, of the reinforcement, flange eccentricity and torsional stiffness in such construction. A series of 55 tests were conducted on boron-infiltrated rods and extruded structural sections.

  6. Aluminum Alloy 7050 Extrusions.

    DTIC Science & Technology

    1977-03-01

    standard deviations suggest that future problems in meeting these limits will be minimal. Impurity contents ranged from 0.08 to 0.13% Fe and 0.04 to...Front Rear fe . C, V.S., E. C, Y.S., S. No. Ratio 32 •F hr* 6 8 % I ACS 36.1 36.9 ksi 88.0 n.d. % I ACS 35.8 36.3 ksi 437686-6 775...o & <^ CD (D GD 0Ü r- CT^ o4 o^ m m o 04 f*! oi ^ *T in r-4 <J^ •* O GO vO ON oo CD ao r^ r* >-» O- f*> OD »O «H ^ r

  7. An Improved Modeling of Friction for Extrusion Simulations

    SciTech Connect

    Karadogan, Celalettin; Tong, Longchang; Hora, Pavel

    2007-04-07

    Realistic representation of friction is important in extrusion simulations. Purposefully designed multi-hole die aluminum extrusion experiments showed that the conventional friction models, like the Coulomb and the shear friction models, are deficient to represent the boundary phenomena that occur during aluminum extrusion. Based on the observations, phenomenological and implementational improvements are made in the friction modeling.

  8. A Processing Map for Hot Deformation of an Ultrafine-Grained Aluminum-Magnesium-Silicon Alloy Prepared by Mechanical Milling and Hot Extrusion

    NASA Astrophysics Data System (ADS)

    Asgharzadeh, Hamed; Rahbar Niazi, Masoud; Simchi, Abdolreza

    2015-12-01

    Uniaxial compression test at different temperatures [573 K to 723 K (300 °C to 450 °C)] and strain rates (0.01 to 1 s-1) was employed to study the hot deformation behavior of an ultrafine-grained (UFG) Al6063 alloy prepared by the powder metallurgy route. The UFG alloy with an average grain size of ~0.3 µm was prepared by mechanical milling of a gas-atomized aluminum alloy powder for 20 hours followed by hot powder extrusion at 723 K (450 °C). To elaborate the effect of grain size, the aluminum alloy powder was extruded without mechanical milling to attain a coarse-grained (CG) structure with an average grain size of about 2.2 µm. By employing the dynamic materials model, processing maps for the hot deformation of the UFG and CG Al alloy were constructed. For investigation of microstructural evolutions and deformation instability occurring upon hot working, optical microscopy, scanning electron microscopy coupled with electron backscattered diffraction and transmission electron microscopy were utilized. It is shown that the grain refinement increases the deformation flow stress while reducing the strain hardening and power dissipation efficiency during the deformation process at the elevated temperatures. Restoration mechanisms, including dynamic recovery and recrystallization are demonstrated to control microstructural evolutions and thus the deformation behavior. Coarsening of the grain structure in the UFG alloy is illustrated, particularly when the deformation is performed at high temperatures and low strain rates. The manifestations of instability are observed in the form of cracking and void formation.

  9. Tensile Properties of Nano AL2O3 Particulate-Reinforced Aluminum Matrix Composites by Mechanical Alloying and Hot Extrusion

    NASA Astrophysics Data System (ADS)

    Mehdinia, M.; Jenabali Jahromi, S. A.

    The powder of the micro Al and variant volume fractions of nano Al2O3 were milled by a high energy planetary ball-mill. By milling, a homogenous distribution of nano Al2O3 particles in the metal matrix were developed. Then the milled powder was cold compressed and sintered at 545°C for one hr. The mold and the sintered sample hold in a furnace until the temperature reached 545°C. Then the hot 27mm diameter sample was extruded to 6mm diameter. From the extruded specimens, tensile, hardness and microstructure of the prepared specimens were determined. By these tests the effect of milling time, the percent of nano-particles and the microstructure were evaluated. The hardness and tensile behaviors of aluminum matrix composites reinforced with nano Al2O3 particulate have been found to increase remarkably with the volume fraction of the reinforcement.

  10. Characterization of the Microstructure, Fracture, and Mechanical Properties of Aluminum Alloys 7085-O and 7175-T7452 Hollow Cylinder Extrusions

    NASA Astrophysics Data System (ADS)

    Benoit, Samuel G.; Chalivendra, Vijaya B.; Rice, Matthew A.; Doleski, Robert F.

    2016-09-01

    Microstructural, tensile, and fracture characterizations of cylindrically forged forms of aluminum alloys AA7085-O and AA7175-T7452 were performed. Mechanical and fracture properties were investigated along radial, circumferential, and longitudinal directions to determine directional dependency. American Society for Testing and Materials (ASTM) test methods (ASTM E8-04 and ASTM E1820) were employed for both the tensile and fracture characterizations, respectively. The tensile and fracture properties were related to microstructure in each direction. The strength, elongation at break, and ultimate tensile strength of AA7085-O were higher than those of AA7175-T7452. AA7175-T7452 alloy failed in a brittle manner during fracture studies. AA7085-O outperformed AA7175-T7452 on fracture energy in all of the orientations studied. Smaller grain sizes on the planes normal to circumferential and longitudinal directions showed improvement in both elongation at break and fracture energy values compared to those of radial direction. Scanning electron microscopy images demonstrated cleavage fracture in AA7175-T7452 and transgranular fracture in AA7085-O.

  11. Effect of extrusion ratio on paraffinic mineral oil lubricant in cold forward extrusion

    NASA Astrophysics Data System (ADS)

    Hafis, S. M.; Ridzuan, M. J. M.; Imaduddin Helmi, W. N.; Syahrullail, S.

    2012-06-01

    A finite element (FE) analysis is made for steady-state two-dimensional forward extrusion with three different extrusion ratio values. Predicting extrusion force of aluminum billet extruded with palm oil lubricant will definitely be helpful in deciding the right extrusion ratio. Hence, the finite element method was applied to investigate the influence of extrusion ratio on palm oil lubricant. The extrusion ratios evaluated were 1.5, 2, and 3. The reference of the study was in accordance to the experiment results of 0.1 mg paraffinic mineral oil grade 95 (Pr95) with kinematic viscosity of 90.12 mm2/s at 40 °C for the extrusion ratio of 3. The result was found to be reliable once the FE model was validated by the established work. The extrusion force for each extrusion ratio was described and evaluated. The FE analysis also accounts for plasticity material flow and equivalent plastic strains in the deformation region. The analysis agreed that the extrusion ratio of 1.5 reduced the extrusion force compared to the extrusion ratio of 2 and 3. This was confirmed by the plotted equivalent plastic strain deformation which shows that the high value of equivalent plastic strain near the extrusion die surface was decreased. As a result, the extrusion force becomes greater with the increasing of extrusion ratio.

  12. GRAPHITE EXTRUSIONS

    DOEpatents

    Benziger, T.M.

    1959-01-20

    A new lubricant for graphite extrusion is described. In the past, graphite extrusion mixtures have bcen composed of coke or carbon black, together with a carbonaceous binder such as coal tar pitch, and a lubricant such as petrolatum or a colloidal suspension of graphite in glycerin or oil. Sinee sueh a lubricant is not soluble in, or compatible with the biiider liquid, such mixtures were difficult to extrude, and thc formed pieees lacked strength. This patent teaches tbe use of fatty acids as graphite extrusion lubricants and definite improvemcnts are realized thereby since the fatty acids are soluble in the binder liquid.

  13. Food extrusion.

    PubMed

    Harper, J M

    1978-01-01

    Extrusion processing has become an important food process in the manufacture of pasta, ready-to-eat cereals, snacks, pet foods, and textured vegetable protein (TVP). An extruder consists of tightly fitting screw rotating within a stationary barrel. Preground and conditioned ingredients enter the screw where they are conveyed, mixed, and heated by a variety of processes. The product exits the extruder through a die where it usually puffs and changes texture from the release of steam and normal forces. Mathematical models for extruder flow and torque have been found useful in describing exclusion operations. Scale-up can be facilitated by the application of these models. A variety of food extruder designs have developed. The differences and similarity of design are discussed. Pertinent literature on the extrusion of cereal/snack products, full-fat soy, TVP, pet foods (dry and semi-moist), pasta, and beverage or other food bases are discussed. In many of these applications, the extruder is a high temperature, short time process which minimizes losses in vitamins and amino acids. Color, flavor, and product shape and texture are also affected by the extrusion process. Extrusion has been widely applied in the production of nutritious foods. Emphasis is placed on the use of extrusion to denature antinutritional factors and the improvement of protein quality and digestibility.

  14. 40 CFR 467.30 - Applicability; description of the extrusion subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... extrusion subcategory. 467.30 Section 467.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ALUMINUM FORMING POINT SOURCE CATEGORY Extrusion Subcategory § 467.30 Applicability; description of the extrusion subcategory. This subpart applies...

  15. 40 CFR 467.30 - Applicability; description of the extrusion subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... extrusion subcategory. 467.30 Section 467.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ALUMINUM FORMING POINT SOURCE CATEGORY Extrusion Subcategory § 467.30 Applicability; description of the extrusion subcategory. This subpart applies...

  16. 40 CFR 467.30 - Applicability; description of the extrusion subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... extrusion subcategory. 467.30 Section 467.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ALUMINUM FORMING POINT SOURCE CATEGORY Extrusion Subcategory § 467.30 Applicability; description of the extrusion subcategory. This subpart applies...

  17. 40 CFR 467.30 - Applicability; description of the extrusion subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... extrusion subcategory. 467.30 Section 467.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ALUMINUM FORMING POINT SOURCE CATEGORY Extrusion Subcategory § 467.30 Applicability; description of the extrusion subcategory. This subpart applies to discharges...

  18. 40 CFR 467.30 - Applicability; description of the extrusion subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... extrusion subcategory. 467.30 Section 467.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ALUMINUM FORMING POINT SOURCE CATEGORY Extrusion Subcategory § 467.30 Applicability; description of the extrusion subcategory. This subpart applies to discharges...

  19. Optimizing the seamless tube extrusion process using the finite element method

    NASA Astrophysics Data System (ADS)

    Li, Feng; Li, Li; Wang, Xiang; Ma, Xu Liang

    2010-03-01

    In order to reveal the mechanism of extrusion forming for large-scale aluminum alloy seamless pipe, in this research the rigid-viscous plastic finite element method was used to analyze the effect of the technological parameters of the aluminum alloy pipe extrusion process, consistent with the use requirements.

  20. Extrusion cooking: Legume pulses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extrusion is used commercially to produce high value breakfast and snack foods based on cereals such as wheat or corn. However, this processing method is not being commercially used for legume pulses seeds due to the perception that they do not expand well in extrusion. Extrusion cooking of pulses (...

  1. Extrusion of aluminium alloys

    SciTech Connect

    Sheppard, T.

    1999-01-01

    In recent years the importance of extruded alloys has increased due to the decline in copper extrusion, increased use in structural applications, environmental impact and reduced energy consumption. There have also been huge technical advances. This text provides comprehensive coverage of the metallurgical, mathematical and practical features of the process. The contents include: continuum principles; metallurgical features affecting the extrusion of Al-alloys; extrusion processing; homogenization and extrusion conditions for specific alloys; processing of 6XXX alloys; plant utilization; Appendix A: specification of AA alloys and DIN equivalents; Appendix B: chemical compositions; and Appendix C: typical properties.

  2. Effects of Purity Level on the Mechanical Properties of 7000-Series Aluminums

    DTIC Science & Technology

    1980-10-01

    grorh rate properties were not affected in a systematic manner. Stress corrosion cracking tests showed there does not appear to be a corrosion problem...Aluminum Extrusions 30 26 Stress Corrosion Test Results for 7XXX-T7351i Aluminum Extrusions 31 ix AFWAL-TR-80-4079 SECTION I INTRODUCTION Aluminum... STRESS CORROSION CRACKING Stress corrosion cracking test results for the seven extrusions are presented in Table 26. It can be observed that most of the

  3. Extrusion die and method

    DOEpatents

    Lipp, G. Daniel

    1994-04-26

    A method and die apparatus for manufacturing a honeycomb body of rhombic cell cross-section by extrusion through an extrusion die of triangular cell discharge slot configuration, the die incorporating feedholes at selected slot intersections only, such that slot segments communicating directly with the feedholes discharge web material and slot segments not so connected do not discharge web material, whereby a rhombic cell cross-section in the extruded body is provided.

  4. Extrusion of compound refractive x-ray lenses.

    SciTech Connect

    Young, K.; Khounsary, A.; Experimental Facilities Division; IIT

    2004-01-01

    Compound refractive lenses (CRLs) are arrays of lenses designed to focus x-rays. The advantage of a focused x-ray beam is improvement in imaging resolution for applications such as microscopy and tomography. CRLs are desirable due to their simple designs and ease in implementation and alignment. One method of fabricating CRLs is extrusion. Extrusion can be employed to produce, for example, aluminum CRLs for high-energy applications because many aluminum products are produced in this manner. Multiple lenses can be extruded in an array in a single run. This method is relatively cost effective compared to others methods of fabricating CRLs. Two generations of extruded aluminum CRLs have been manufactured to date with lens wall thicknesses of 200 and 100 {micro}m, respectively. The first-generation CRL yielded focusing and established the potential to produce high gain if reduced wall thicknesses could be achieved. Testing of the second generation is reported here.

  5. Extrusion cast explosive

    DOEpatents

    Scribner, Kenneth J.

    1985-01-01

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants.

  6. Extrusion die and method

    DOEpatents

    Lipp, G. Daniel

    1994-05-03

    A method and die apparatus for manufacturing a honeycomb body of triangular cell cross-section and high cell density, the die having a combination of (i) feedholes feeding slot intersections and (ii) feedholes feeding slot segments not supplied from slot intersections, whereby a reduction in feedhole count is achieved while still retaining good extrusion efficiency and extrudate uniformity.

  7. Control of Extrusion

    NASA Astrophysics Data System (ADS)

    Zhuromskii, V. M.

    2016-03-01

    The principle and engineering of a system for automatic control of the tension of the thread and the productivity of the process of extrusion of polyacrylonitrile fibers have been presented. The control system is based on the use of functional features of a modern frequency controlled electric drive.

  8. Thermoplastic Extrusion for Ceramic Bodies

    NASA Astrophysics Data System (ADS)

    Clemens, Frank

    Originally for the extrusion of ceramic bricks and tiles, clay and water were used to endow ceramic particle mixtures with sufficient plastic behaviour to permit practical shaping of the ceramic bodies. High-performance ceramics, however, often require the elimination of clay from extrusion formulations because the chemistry of the clay is incompatible with that of the desired ceramic materials. Therefore organic materials are frequently used in ceramic extrusion to provide plastic flow. Not only plastic behaviour is important for the extrusion of ceramic bodies. There are many other characteristics that can be tailored by the suitable addition of organics in a ceramic extrusion paste, or feedstock.

  9. Extrusion cast explosive

    DOEpatents

    Scribner, K.J.

    1985-01-29

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

  10. Extrusion cast explosive

    DOEpatents

    Scribner, K.J.

    1985-11-26

    Disclosed is an improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

  11. Providing plastic zone extrusion

    DOEpatents

    Manchiraju, Venkata Kiran; Feng, Zhili; David, Stan A.; Yu, Zhenzhen

    2017-04-11

    Plastic zone extrusion may be provided. First, a compressor may generate frictional heat in stock to place the stock in a plastic zone of the stock. Then, a conveyer may receive the stock in its plastic zone from the compressor and transport the stock in its plastic zone from the compressor. Next, a die may receive the stock in its plastic zone from the conveyer and extrude the stock to form a wire.

  12. Cryomilled Aluminum Stabilized by Diamondoid Nanoparticles

    NASA Astrophysics Data System (ADS)

    Maung, Khinlay

    Nanocrystalline aluminum powder with an average grain size of 22nm was prepared via cryomilling. Hot Isostatic Pressing was used to consolidate the powder followed by hot extrusion to homogenize the consolidated material. The high homologous temperature processes tend to increase the average grain diameter beyond the nanoscle classification, which is less than 100 nm. Diamantane was added during cryomilling to enhance the thermal stability in nanocrystalline aluminum. The thermal stability test data show that aluminum reinforced with 1 wt% diamantane exhibit two to three fold better thermal stability than non-reinforced aluminum when annealed at 773K (0.84 Tm) for ten hours. A similar trend is shown for the samples consolidated at 693K. This finding is explained through Burke's model for grain growth in materials containing secondary particles to inhibit grain boundary motion. The mechanical properties of cryomilled aluminum stabilized by 0.5 wt% and 1 wt% diamantane particles are compared with cryomilled commercial purity (CP) aluminum with no diamantane after high strain rate deformation (trap extrusion). The grain size of cryomilled CP aluminum is 0.6 to 1.2 times larger than the samples containing diamantane. In contrast to Hall-petch predictions, cryomilled aluminum with diamantane has relatively lower flow stress while demonstrating a 2.7-3.7 time higher ductility compared to cryomilled CP aluminum. Possible reasons for this behavior are suggested in mechnical property section. A combination of higher temperature and pressure resulted in formation of Aluminum tris (Al(C9H6NO)3) precipitates from diamantane in the cryomilled aluminum matrix. The precipitates were formed during trap extrusion process but only seen in samples containing 1 wt% diamantane and HIP'ed at 521°C. Therefore, the HIP'ng temperature plays an important role in formation of these precipitates.

  13. LINER FOR EXTRUSION BILLET CONTAINERS

    DTIC Science & Technology

    Rokide-process alumina and zirconia coatings and a Udimet 700 superalloy liner were evaluated by extrusion of 3 1/2-in. billets of Inconel 713C...One coating did with stand extrusion at 3450 F without apparent wear. The Udimet 700 liner did not show wear at 2000 F, but did react with the TZM

  14. High-temperature ''hydrostatic'' extrusion

    NASA Technical Reports Server (NTRS)

    Hunt, J. G.; Rice, R. W.

    1970-01-01

    Quasi-fluids permit hydrostatic extrusion of solid materials. The use of sodium chloride, calcium fluoride, or glasses as quasi-fluids reduces handling, corrosion, and sealing problems, these materials successfully extrude steel, molybdenum, ceramics, calcium carbonate, and calcium oxide. This technique also permits fluid-to-fluid extrusion.

  15. LINER FOR EXTRUSION BILLET CONTAINERS

    DTIC Science & Technology

    Shrink-fit assembly device for buildup of ceramic-coated liner and sleeve assemblies was tested and modified to develop desired temperatures and...preliminary evaluation of suitability for extrusion liner use. Procedures were developed for welding short, hollow ceramic cylinders of high-strength metal...carbides and borides to form a ceramic extrusion liner of suitable length. Disassembly tooling for rapid separation of shrink-fitted sleeves from a worn

  16. Extrusion of AlSi/SiCp composite alloys in the semi-solid state

    SciTech Connect

    Laplante, S.; Ajersch, F.; Legros, N.

    1995-10-01

    Semi-solid A356 alloys with 15 vol % SiC particles (10--15{micro}m) were extruded through cylindrical dies of variable dimension in order to evaluate the resistance to extrusion of these composites. The samples were first prepared by isothermal mixing in the semi-solid state for controlled periods of time and shear rates in order to obtain 20, 30 and 40 vol% primary fraction of the alloy ({alpha}-aluminum) generating a consistent globular-agglomerated structure. The quenched samples were introduced into the die chamber of a computer controlled extrusion press where the temperature was again raised to the semi-solid state and then extruded at a constant rate. Extrusions were carried out to evaluate the effect of extrusion rate, die length and diameter and variable solid fraction. All examples exhibited a sharp rise in extrusion force, and then reaching a plateau for the duration of the extrusion. Die entrance resistance was found to be the predominant force measured. Analysis of sections of the extruded material showed that the primary phase particles are deformed axially along the extrusion direction resulting in a non-isotropic structure with increased tensile strength and ductility.

  17. Experimental Investigation and Numerical Simulation During Backward Extrusion of a Semi-Solid Al-Si Hypoeutectic Alloy

    SciTech Connect

    Neag, Adriana; Favier, Veronique; Bigot, Regis; Canta, Traian; Frunza, Dan

    2007-04-07

    This work has been performed along two main directions. First of all we present the experimental results and effects obtained by backward extrusion tests on semi-solid aluminum alloy at three different forming temperatures and different holding times in isothermal conditions. The semi-solid billets were fabricated by the re-melting heat treatment method. Semi-solid extrusion tests were carried out to investigate the load-displacement curves and the deformation behaviour at different temperatures. The load level clearly decreases with increasing temperature and increasing holding time. Numerical simulations of semi-solid extrusion has been made too, using Forge 2005,. Experimental and simulated results are compared and discussed.

  18. DESIGN MECHANICAL PROPERTIES, FRACTURE TOUGHNESS, FATIGUE PROPERTIES, EXFOLIATION AND STRESS-CORROSION RESISTANCE OF 7050 SHEET, PLATE, HAND FORGINGS, DIE FORGINGS AND EXTRUSIONS

    DTIC Science & Technology

    1975-07-01

    Cracking, of Stress- Relieved Stretched Aluminum Alloy Extrusions", Technical Report AFML-TR-68-34, Fabruary 1968. 11. D. J. Brownhill, C. F. Babilon , 0. E...Rates of Stress-Relieved Aluminum Alloy Hand Forgings", Technical Report AFML-TR-70-10, February 1970. 12. C. F. Babilon , R. H. Wygonik, G. E

  19. Aluminum Hydroxide

    MedlinePlus

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  20. Ideal-viscoplastic extrusion model

    NASA Astrophysics Data System (ADS)

    Groth, C. P. T.; Gottlieb, J. J.

    An approximate one-dimensional analysis is presented for the extrusion of incompressible ideal-viscoplastic material through converging axisymmetric dies. The extrusion model incorporates the fundamental effects of inertia, plastic deformation, strain-rate behavior, and surface friction by employing the constitutive relations for a Bingham-type body to describe the stress-strain-rate behavior of the extrudite, an appropriate quasi-steady localy-spherical kinematically-admissible velocity field to represent the actual flowfield, and a combination Coulomb and constant-shear-factor laws to estimate the frictional forces along the die surface. Comparisons of the predictions of the theory to experimental data and finite-element computations demonstrate that it is a useful and economical tool for predicting many extrusion processes.

  1. Means of determining extrusion temperatures

    DOEpatents

    McDonald, Robert E.; Canonico, Domenic A.

    1977-01-01

    In an extrusion process comprising the steps of fabricating a metal billet, heating said billet for a predetermined time and at a selected temperature to increase its plasticity and then forcing said heated billet through a small orifice to produce a desired extruded object, the improvement comprising the steps of randomly inserting a plurality of small metallic thermal tabs at different cross sectional depths in said billet as a part of said fabricating step, and examining said extruded object at each thermal tab location for determining the crystal structure at each extruded thermal tab thus revealing the maximum temperature reached during extrusion in each respective tab location section of the extruded object, whereby the thermal profile of said extruded object during extrusion may be determined.

  2. Guide for extrusion dies eliminates straightening operation

    NASA Technical Reports Server (NTRS)

    Gyorgak, C. A.; Hoover, R. J.

    1964-01-01

    To prevent distortion of extruded metal, a guidance assembly is aligned with the die. As the metal emerges from the extrusion dies, it passes directly into the receiver and straightening tube system, and the completed extrusion is withdrawn.

  3. Extrusion Process by Finite Volume Method Using OpenFoam Software

    SciTech Connect

    Matos Martins, Marcelo; Tonini Button, Sergio; Divo Bressan, Jose; Ivankovic, Alojz

    2011-01-17

    The computational codes are very important tools to solve engineering problems. In the analysis of metal forming process, such as extrusion, this is not different because the computational codes allow analyzing the process with reduced cost. Traditionally, the Finite Element Method is used to solve solid mechanic problems, however, the Finite Volume Method (FVM) have been gaining force in this field of applications. This paper presents the velocity field and friction coefficient variation results, obtained by numerical simulation using the OpenFoam Software and the FVM to solve an aluminum direct cold extrusion process.

  4. Ultrasonic-assisted extrusion of ZK60Mg alloy micropins at room temperature.

    PubMed

    Lou, Yan; Liu, Xiao; He, Jinsong; Long, Min

    2017-03-18

    A new model of ZK60 magnesium micropins formed through ultrasonic-assisted extrusion at room temperature was developed. The billet was transmitted by the ultrasonic wave during the micropin-forming process. A self-designed apparatus was applied for the ultrasonic-assisted extrusion experiments. The effects of amplitude on the load-displacement curve, load reduction, temperature, microstructure, diameter after extrusion, microhardness, and compressibility of micropins were investigated. The results showed that the punch was always in contact with the billet when the displacement of the punch was larger than the amplitude. The maximum reduction of load was approximately 80% because of the dynamic recrystallization and ultrasonic softening. In addition, load reduction was almost similar under different amplitudes when the diameters of micropins after extrusion were 0.3 and 0.5mm as a result of the size effect. The microhardness of the micropins increased at the amplitude of 39 and 42μm as compared with the traditional extrusion. This finding was inconsistent with the results for copper and aluminum. The compression ratio of micropins prepared through ultrasonic-assisted extrusion improved by 14-20% on average at room temperature.

  5. Characterization of Al-Cu-Li Alloy 2090 Near Net Shape Extrusion

    NASA Technical Reports Server (NTRS)

    Birt, M. J.; Domack, M. S.; Hafley, R. A.; Pollock, W. D.

    1998-01-01

    Aluminum-lithium (Al-Li) alloys near net shape extrusions are being evaluated for potential application in launch vehicle structures. The objective of this study was to determine tensile and fracture properties, corrosion resistance, and weldability of integrally stiffened panels of Al-Cu-Li alloy 2090 in the T8 temper. The microstructure was pre-dominantly unrecrystallized. Texture analyses revealed the presence of fiber components in the stiffeners and a combination of fiber and rolling components in the skin. Variations in grain morphology and texture through the extruded cross section were correlated with the tensile, fracture, and corrosion behavior. Tensile strengths at room and cryogenic temperatures of the 2090 extrusions were similar to other 2090 product forms and were higher than 2219-T87, the primary structural material in the Space Shuttle external tank; however, ductilities were lower. The fracture resistance of the 2090 extrusion was lower than 2219-T87 plate at room temperature. At cryogenic temperatures, tensile ductility and fracture behavior of the 2090 extrusion were similar to other 2090 product forms but were lower than 2219-T87 plate. The exfoliation and stress corrosion resistance of the 2090 extrusion compared favorably with the characteristics of other 2090 product forms. The weldability and weldment properties of the extrusions were similar to 2090 and 2219 plates.

  6. Low-aluminum content iron-aluminum alloys

    SciTech Connect

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J.

    1995-06-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  7. 75 FR 17436 - Certain Aluminum Extrusions From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... of China. Unless the Department of Commerce extends the time for initiation pursuant to sections 702..., or in this case by Monday, May 17, 2010. The Commission's views are due at Commerce within five business days thereafter, or by Monday, May 24, 2010. For further information concerning the conduct...

  8. Lubricating oils for cold forward extrusion of aluminum

    SciTech Connect

    Komatsuzaki, S.; Uematsu, T.

    1995-08-01

    In cold metal-forming applications, where processing is carried out continuously at high speeds, the die temperature rises due to accumulation of heat generated by friction and deformation. This heat leads to lubricant film breakdown and, subsequently, to seizure between the die and the workpiece. Actual process conditions were taken into consideration in evaluating antiseizure properties of lubricants by their maximum workable die temperature (MWT), where workpieces were formed without seizure. MWTs of lubricating oils were as follows: mineral oils: 100{degrees}-120{degrees}C; poly-{alpha}-olefin oils: 160{degrees}-170{degrees}C; polybutene oil: 150{degrees}C; ester oils: 90{degrees}C. MWTs of mineral oils or poly-{alpha}-olefins could be enhanced to around 300{degrees}C by combining them with phosphorous extreme pressure (EP) agents. An ordinary chemical conversion film, the lubricating film formed on the workpiece surface prior to working, was examined for reference. This film had an MWT of over 360{degrees}C. In addition to good antiseizure properties than lubricating oils, it had an unavoidable drawback of a color change to dark gray. With lubricating oils, the products had good luster, as long as seizure did not occur. However, in the case of oils containing phosphorus EP agents, surface degradation was recognized when the die temperature was over 250{degrees}C due to the reaction between the EP agent and the workpieces. 13 refs., 11 figs., 3 tabs.

  9. Paste mechanics for fine extrusion

    NASA Astrophysics Data System (ADS)

    Hurysz, Kevin Michael

    Lightweight metallic honeycomb structures having low density and high strength are potentially useful materials in a wide variety of applications. These materials can be employed as replacements for bearing and support structures, for impact and sound absorption, for thermal management, and in multifunctional capacities where the benefits of both metallic character and low density are required. Extrusion of these architectures represents a novel and economical alternative to conventional honeycomb fabrication. Extrusion is a material forming process that allows the shaping of cohesive plastic body into a linear form having constant cross section. The plastic body is a paste; well mixed material composed of solids, liquids, and processing aids. Control of paste rheology and optimization of flow and die variables are necessary to the extrusion of articles having complex geometry. By extruding paste compositions of raw material powders, mixed in the appropriate proportion to produce alloy materials upon reduction, lightweight ceramic honeycomb can be formed. The green ceramic honeycomb is then reduced to alloy in a controlled atmosphere heat treatment. In this investigation, high quality, green extruded honeycomb structures were fabricated. The model equations used to describe high viscosity suspension behavior were applied to paste formulations to predict properties. To accomplish the goals of this research, it was necessary to consider: (1) Raw material characterization, ensuring consistency between batches and allowing prediction of paste behavior; (2) Mechanics of the fluid phase and the paste, using capillary rheometry to determine paste properties; (3) Characteristics of the fluid phase and the paste, including methods to estimate and experimentally determine maximum solids content and the hydrodynamic constant; (4) Model development, applying the equations that describe high viscosity suspensions to pastes, allowing prediction of extrusion variables over a wide

  10. The Cryogenic Tensile Properties of an Extruded Aluminum-Beryllium Alloy

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.

    2002-01-01

    Basic mechanical properties; i.e., ultimate tensile strength, yield strength, percent elongation, and elastic modulus, were obtained for the aluminum-beryllium alloy, AlBeMet162, at cryogenic (-195.5 C (-320 F) and -252.8 C (-423 F)) temperatures. The material evaluated was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions."

  11. High temperature, high strain rate extrusion of ultrahigh-carbon steels

    SciTech Connect

    Lesuer, D R; Syn, C K; Sherby, O D

    2000-08-23

    It is shown that high rate extrusion is a viable production process for obtaining desirable microstructures and mechanical properties in ultrahigh carbon steels (UHCSs). The coefficient of friction for extrusion was determined for the UHCSs as well as five other materials and shown to be a function of stress--decreasing with increasing stress. The extruded UHCSs deform by a diffusion-controlled dislocation creep process. Stacking fault energies have been calculated from the extrusion data and observed to decrease with increasing concentrations of silicon, aluminum and chromium. Microstructures are either ultrafine pearlite when extruded above the eutectoid temperature or ultrafine spheroidite when extruded below the eutectoid temperature. The resulting strength--ductility properties are shown to be superior to those obtained in high-strength low alloy steels.

  12. Two-sided friction stir riveting by extrusion: A process for joining dissimilar materials

    SciTech Connect

    Evans, William T.; Cox, Chase D.; Strauss, Alvin M.; Cook, George E.; Gibson, Brian T.

    2016-06-25

    Two-sided friction stir riveting (FSR) by extrusion is an innovative process developed to rapidly, efficiently, and securely join dissimilar materials. This process extends a previously developed one sided friction stir extrusion process to create a strong and robust joint by producing a continuous, rivet-like structure through a preformed hole in one of the materials with a simultaneous, two-sided friction stir spot weld. The two-sided FSR by extrusion process securely joins the dissimilar materials together and effectively locks them in place without the use of any separate materials or fasteners. Lastly, in this paper we demonstrate the process by joining aluminum to steel and illustrate its potential application to automotive and aerospace manufacturing processes.

  13. Environmentally Assisted Cracking Properties of AA7249 Extrusions for Aerospace Applications

    DTIC Science & Technology

    2007-11-02

    USNA Chemistry Department for allowing me access to their DSC unit. Dr. Iulian Gheorghe ( ALU Menziken Aerospace / Universal Alloy Corporation) not...that environmental attacks is now becoming a significant concern. Structural components in the P-3C are currently composed of aluminum alloy AA7075-T6...effects of processing on wide panel extrusions. The results of this study will contribute to the ongoing evaluation of these alloys for replacement

  14. Solid State Bonding Mechanics In Extrusion And FSW: Experimental Tests And Numerical Analyses

    SciTech Connect

    Buffa, G.; Fratini, L.; Donati, L.; Tomesani, L.

    2007-04-07

    In the paper the authors compare the different solid state bonding mechanics for both the processes of hollow profiles extrusion and Friction Stir Welding (FSW), through the results obtained from a wide experimental campaign on AA6082-T6 aluminum alloys. Microstructure evaluation, tensile tests and micro-hardness measurements realized on specimens extracted by samples of the two processes are discussed also by means of the results obtained from coupled FEM simulation of the processes.

  15. Numerical and experimental investigations on an extrusion process for a newly developed ultra-high-carbon lightweight steel for the automotive industry

    NASA Astrophysics Data System (ADS)

    Behrens, B.-A.; Bouguecha, A.; Bonk, C.; Yarcu, D.; Kazhai, M.

    2017-02-01

    In this study the material flow of a newly developed ultra-high-carbon lightweight steel (uhc-steel) with a high amount of aluminum was investigated in an extrusion process. Cylinder compression tests were performed for material characterization and frictional behaviour was determined by using ring compression tests. Numerical simulations were carried to determine the optimal die geometry as well as to calculate the process loads and dominated stresses in the die occurring during the process. Based on the numerical results, an extrusion process was designed and implemented. Experiments showed that the uhc-steel can be formed by extrusion however it is associated with a high wear rate.

  16. Aluminum Analysis.

    ERIC Educational Resources Information Center

    Sumrall, William J.

    1998-01-01

    Presents three problems based on the price of aluminum designed to encourage students to be cooperative and to use an investigative approach to learning. Students collect and synthesize information, analyze results, and draw conclusions. (AIM)

  17. The effect of extrusion processing on zein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extrusion processing has been carried out on zein where extrusion temperatures were varied between 100 and 300 deg. C. By differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) thermal degradation begins around 220 deg. C. The color of the extrudate changed the most above tempe...

  18. The Igwisi Hills extrusive 'kimberlites'

    NASA Technical Reports Server (NTRS)

    Reid, A. M.; Donaldson, C. H.; Dawson, J. B.; Brown, R. W.; Ridley, W. I.

    1975-01-01

    The petrography and mineral chemistry of volcanic rocks from the Igwisi Hills in Tanzania are discussed. There is considerable evidence to suggest that the Igwisi rocks are extrusive kimberlites: a two-component nature with high P-T minerals in a low P-T matrix; the presence of chrome pyrope, Al enstatite, chrome diopside, chromite and olivine; a highly oxidized, volatile-rich matrix with serpentine, calcite, magnetite, perovskite; high Sr, Zr, and Nb contents; occurrence in a narrow isolated vent within a stable shield area. The Igwisi rocks differ from kimberlite in the lack of magnesian ilmenite, the scarcity of matrix phlogopite, and the overall low alkali content. They apparently contain material from phlogopite-bearing garnet peridotites with a primary mineral assemblage indicative of equilibrium at upper mantle temperatures and pressures. This primary assemblage was brought rapidly to the surface in a gas-charged, carbonate-rich fluid. Rapid upward transport, extrusion, and rapid cooling have tended to prevent reaction between inclusions and the carbonate-rich matrix that might otherwise have yielded a more typical kimberlite.

  19. Bicomponent extrusion of ceramic fibers

    SciTech Connect

    Curran, G.

    1995-11-01

    One of the main problems facing composite fabricators is finding high-temperature ceramic reinforcement fibers that are compatible with their matrices. Unlike metal-matrix composites, which require relatively large diameter fibers and a good bond between fibber and matrix, ceramic-matrix composites requires small diameter fibers having a weaker bond between fiber and matrix. Furthermore, they require an interfacial barrier that dissipates crack propagation energy without being absorbed by the matrix. Process speed is another important concern, because it influences the ultimate cost of the reinforcement fiber. To overcome these problems, a process has been developed to extrude, in a one-pass operation, a bicomponent (core/sheath) fiber system. It is designed to handle either oxide or non-oxide reinforcement core material, with a matching sheath material that acts as an interface between the core and its matrix, and also absorbs crack propagation energy. This article provides a closer look at the patented bicomponent extrusion process, which was developed by the author. Initial development has been undertaken with simple laboratory equipment. Therefore, only the very smallest scale extrusion has been attempted, and no characterizations have been made apart from simple bend tests against such commercially available fibers as Sigma (DRA), Tyranno (Ube), and Nicalon NL607 (Nippon Carbon).

  20. Modelling highly deformable metal extrusion using SPH

    NASA Astrophysics Data System (ADS)

    Prakash, Mahesh; Cleary, Paul W.

    2015-05-01

    Computational modelling is often used to reduce trial extrusions through accurate defect prediction. Traditionally, metal extrusion is modelled using mesh based finite element methods. However, large plastic deformations can lead to heavy re-meshing and numerical diffusion. Here we use the mesh-less smoothed particle hydrodynamics method since it allows simulation of large deformations without re-meshing and the tracking of history dependent properties such as plastic strain making it suitable for defect prediction. The variation in plastic strain and deformation for aluminium alloy in a cylindrical 3D geometry with extrusion ratio and die angle is evaluated. The extrusion process is found to have three distinct phases consisting of an initial sharp rise in extrusion force, a steady phase requiring constant force and terminating in a sharp decline in force as metal is completely extruded. Deformation and plastic strain increased significantly with extrusion ratio but only moderately with die angle. Extrusion force increased by 150 % as the extrusion ratio increased from 2:1 to 4:1 but had only a marginal change with die angle. A low strain zone in the centre of the extruded product was found to be a function of extrusion ratio but was persistent and did not vary with die angle. Simulation of a complex 3D building industry component showed large variations in plastic strain along the length of the product at two scales. These were due to change in metal behaviour as extrusion progressed from phase 1 to phase 2. A stagnation zone at the back of the die was predicted that could lead to the "funnel" or "pipe" defect.

  1. Aluminum alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  2. A Study of Tube Extrusion Process

    SciTech Connect

    Haghighat, H.; Mohammadinoori, S.

    2011-01-17

    An upper bound solution for tube extrusion is developed in this paper. The dead zone is assumed to have the sine profile and a kinematically admissible velocity field is proposed. From the proposed velocity field, the upper bound solution on relative punch pressure and extrusion load is determined with respect to chosen process parameters. The results are compared with theoretical and experimental results from a reference to illustrate the validity of the proposed velocity field. This indicates that the analysis presented here renders better upper bound solution than that given by Ebrahimi et al.. [An upper-bound analysis of the tube extrusion process (2008) J. Mater. Process. Technol. 99:214-220].

  3. Process optimization for continuous extrusion wet granulation.

    PubMed

    Tan, Li; Carella, Anthony J; Ren, Yukun; Lo, Julian B

    2011-08-01

    Three granulating binders in high drug-load acetaminophen blends were evaluated using high shear granulation and extrusion granulation. A polymethacrylate binder enhanced tablet tensile strength with rapid disintegration in simulated gastric fluid, whereas polyvinylpyrrolidone and hydroxypropyl cellulose binders produced less desirable tablets. Using the polymethacrylate binder, the extrusion granulation process was studied regarding the effects of granulating liquid, injection rate and screw speed on granule properties. A full factorial experimental design was conducted to allow the statistical analysis of interactions between extrusion process parameters. Response variables considered in the study included extruder power consumption (screw loading), granule bulk/tapped density, particle size distribution, tablet hardness, friability, disintegration time and dissolution.

  4. Aluminum phosphide

    Integrated Risk Information System (IRIS)

    Aluminum phosphide ; CASRN 20859 - 73 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  5. Possibility of Extrusion of Wood Powders

    NASA Astrophysics Data System (ADS)

    Miki, Tsunehisa; Takakura, Norio; Iizuka, Takashi; Yamaguchi, Katsuhiko; Kanayama, Kouzou

    Extrusion tests of mixed wood powders of cryptomeria with the Japanese cypress are carried out at various temperatures in order to confirm the possibility of near net shape forming of wood powders. Effects of extrusion temperature, extrusion ratio, moisture content and particle size of the mixed wood powders on the flow characteristics, bending strength, hardness and bulk density of extruded products are discussed. The experimental results show that the fluidity of the mixed powders and the bending strength and bulk density of extruded products increase with increasing temperature and moisture content of powders. However, when the extrusion temperature is too high, the bending strength and bulk density of extruded products tend to decrease due to bubbles generated in the extruded product.

  6. Evaluation of Extrusion Technique for Nanosizing Liposomes.

    PubMed

    Ong, Sandy Gim Ming; Chitneni, Mallikarjun; Lee, Kah Seng; Ming, Long Chiau; Yuen, Kah Hay

    2016-12-21

    The aim of the present study was to study the efficiency of different techniques used for nanosizing liposomes. Further, the aim was also to evaluate the effect of process parameters of extrusion techniques used for nanosizing liposomes on the size and size distribution of the resultant liposomes. To compare the efficiency of different nanosizing techniques, the following techniques were used to nanosize the liposomes: extrusion, ultrasonication, freeze-thaw sonication (FTS), sonication and homogenization. The extrusion technique was found to be the most efficient, followed by FTS, ultrasonication, sonication and homogenization. The extruder used in the present study was fabricated using readily available and relatively inexpensive apparatus. Process parameters were varied in extrusion technique to study their effect on the size and size distribution of extruded liposomes. The results obtained indicated that increase in the flow rate of the extrusion process decreased the size of extruded liposomes however the size homogeneity was negatively impacted. Furthermore, the liposome size and distribution was found to decline with decreasing membrane pore size. It was found that by extruding through a filter with a pore size of 0.2 µm and above, the liposomes produced were smaller than the pore size, whereas, when they were extruded through a filter with a pore size of less than 0.2 µm the resultant liposomes were slightly bigger than the nominal pore size. Besides that, increment of extrusion temperature above transition temperature of the pro-liposome had no effect on the size and size distribution of the extruded liposomes. In conclusion, the extrusion technique was reproducible and effective among all the methods evaluated. Furthermore, processing parameters used in extrusion technique would affect the size and size distribution of liposomes. Therefore, the process parameters need to be optimized to obtain a desirable size range and homogeneity, reproducible for

  7. Evaluation of Extrusion Technique for Nanosizing Liposomes

    PubMed Central

    Ong, Sandy Gim Ming; Chitneni, Mallikarjun; Lee, Kah Seng; Ming, Long Chiau; Yuen, Kah Hay

    2016-01-01

    The aim of the present study was to study the efficiency of different techniques used for nanosizing liposomes. Further, the aim was also to evaluate the effect of process parameters of extrusion techniques used for nanosizing liposomes on the size and size distribution of the resultant liposomes. To compare the efficiency of different nanosizing techniques, the following techniques were used to nanosize the liposomes: extrusion, ultrasonication, freeze-thaw sonication (FTS), sonication and homogenization. The extrusion technique was found to be the most efficient, followed by FTS, ultrasonication, sonication and homogenization. The extruder used in the present study was fabricated using readily available and relatively inexpensive apparatus. Process parameters were varied in extrusion technique to study their effect on the size and size distribution of extruded liposomes. The results obtained indicated that increase in the flow rate of the extrusion process decreased the size of extruded liposomes however the size homogeneity was negatively impacted. Furthermore, the liposome size and distribution was found to decline with decreasing membrane pore size. It was found that by extruding through a filter with a pore size of 0.2 µm and above, the liposomes produced were smaller than the pore size, whereas, when they were extruded through a filter with a pore size of less than 0.2 µm the resultant liposomes were slightly bigger than the nominal pore size. Besides that, increment of extrusion temperature above transition temperature of the pro-liposome had no effect on the size and size distribution of the extruded liposomes. In conclusion, the extrusion technique was reproducible and effective among all the methods evaluated. Furthermore, processing parameters used in extrusion technique would affect the size and size distribution of liposomes. Therefore, the process parameters need to be optimized to obtain a desirable size range and homogeneity, reproducible for

  8. HIGH ENERGY RATE EXTRUSION OF URANIUM

    DOEpatents

    Lewis, L.

    1963-07-23

    A method of extruding uranium at a high energy rate is described. Conditions during the extrusion are such that the temperature of the metal during extrusion reaches a point above the normal alpha to beta transition, but the metal nevertheless remains in the alpha phase in accordance with the Clausius- Clapeyron equation. Upon exiting from the die, the metal automatically enters the beta phase, after which the metal is permitted to cool. (AEC)

  9. Cleaning of aluminum after machining with coolants

    SciTech Connect

    Roop, B.

    1995-07-01

    An x-ray photoemission spectroscopic study was undertaken to compare the cleaning of the Advanced Photon Source (APS) aluminum extrusion storage ring vacuum chambers after machining with and without water soluble coolants. While there was significant contamination left by the coolants, the cleaning process was capable of removing the residue. The variation of the surface and near surface composition of samples machined either dry or with coolants was negligible after cleaning. The use of such coolants in the machining process is therefore recommended.

  10. Extrusion and Extruded Products: Changes in Quality Attributes as Affected by Extrusion Process Parameters: A Review.

    PubMed

    Alam, M S; Kaur, Jasmeen; Khaira, Harjot; Gupta, Kalika

    2016-01-01

    Extrusion of foods is an emerging technology for the food industries to process and market a large number of products of varying size, shape, texture, and taste. Extrusion cooking technology has led to production of wide variety of products like pasta, breakfast cereals, bread crumbs, biscuits, crackers, croutons, baby foods, snack foods, confectionery items, chewing gum, texturized vegetable protein (TVP), modified starch, pet foods, dried soups, dry beverage mixes etc. The functional properties of extruded foods plays an important role for their acceptability which include water absorption, water solubility, oil absorption indexes, expansion index, bulk density and viscosity of the dough. The aim of this review is to give the detailed outlines about the potential of extrusion technology in development of different types of products and the role of extrusion-operating conditions and their effect on product development resulting in quality changes i.e physical, chemical, and nutritional, experienced during the extrusion process.

  11. Investigation on the effect of titanium (Ti) addition to the Mg- AZ31 alloy in the as cast and after extrusion conditions on its metallurgical and mechanical characteristics

    NASA Astrophysics Data System (ADS)

    Zaid, Adnan I. O.; Raghad; Hememat, S.

    2016-08-01

    Magnesium-aluminum alloys are versatile materials which are used in manufacturing a number of engineering and industrial parts in the automobile and aircraft industries due to their strength - to -weight -ratios. Against these preferable characteristics, magnesium is difficult to deform at room temperature; therefore it is alloyed with other elements mainly aluminum and zinc to add some required properties particularly to achieve high strength -to- weight ratio. Grain refinement is an important technology to improve the mechanical propertiesand the microstructure uniformity of the alloys. Most of the published work on grain refinement was directed toward grain refining aluminum and zinc alloys; however, the effect of the addition of rare earth material on the grain size or the mechanical behavior of Mg alloys is rare. In this paper the effect of Ti addition on the grain size, mechanical behavior, ductility, extrusion force and energy, of Mg-AZ31 alloy both in the as cast condition and after direct extrusion is investigated.

  12. Recrystallization behaviour of AA6063 extrusions

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Pettersen, T.; Paulsen, C. O.; Marthinsen, K.; Holmedal, B.; Segatori, A.

    2015-08-01

    Cylindrical profiles of an AA6063 aluminium alloy were produced in a lab-scale direct extrusion set-up. The extrusion was performed at 300 °C, 450 °C and 550 °C, respectively, with the same ram speed. Immediate water quenching was applied to the profiles and the end of billet (butt-end) after extrusion. Microstructure and texture of the material in different states were measured by electron back-scattered diffraction. Only the profile extruded at 300 °C, was found in the deformed state after extrusion, featuring a fibrous grain structure and a strong <111> and weak <100> double fibre texture. Post-extrusion annealing of this profile at 450 °C resulted in an almost fully recrystallized structure (recrystallized fraction of 87%) and with a texture similar to that of the as-deformed state. The profile extruded at 450 °C was almost fully recrystallized (recrystallization fraction 91%) already after quenching, and with a texture characterized by a weak <111> and strong <100> double fibre. The profile extruded at 550 °C showed a partially recrystallized grain structure with recrystallization fraction of 71%, and with a texture dominated by a <100> fibre. The influence of the deformation conditions on the recrystallization behaviour, in terms of recrystallization kinetics and mechanisms, are discussed in view of these results.

  13. TIG welding of aluminum alloys for the APS storage ring - a UHV application

    SciTech Connect

    Goeppner, G.A.

    1996-05-29

    The Advanced Photon Source (APS) incorporates a 7-GeV positron storage ring 1104 meters in circumference. The storage ring vacuum system is designed to maintain a pressure of 1 nTorr or less with a circulating current of 300 mA to enable beam lifetimes of greater than 10 hours. The vacuum chamber is an aluminum extrusion of 6063T5 alloy. There are 235 separate aluminum vacuum chambers in the storage ring connected by stainless steel bellows assemblies. Aluminum was chosen for the vacuum chamber because it can be economically extruded and machined, has good thermal conductivity, low thermal emissivity, a low outgassing rate, low residual radioactivity, and is non-magnetic. The 6063 aluminum-silicon-magnesium alloy provides high strength combined with good machining and weldability characteristics. The extrusion process provides the interior surface finish needed for the ultrahigh vacuum (UHV) environments There are six different vacuum chambers with the same extrusion cross section. The average vacuum chamber length is 171.6 inches. The extruded vacuum chambers are welded to flange assemblies made up of machined 2219 aluminum alloy pieces and 2219 aluminum vacuum flanges from a commercial source.

  14. Improvement of dissolution behavior for poorly water-soluble drug by application of cyclodextrin in extrusion process: comparison between melt extrusion and wet extrusion.

    PubMed

    Yano, Hideki; Kleinebudde, Peter

    2010-06-01

    The purpose of this study was to improve dissolution behavior of poorly water-soluble drugs by application of cyclodextrin in extrusion processes, which were melt extrusion process and wet extrusion process. Indomethacin (IM) was employed as a model drug. Extrudates containing IM and 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CyD) in 1:1 w/w ratio were manufactured by both melt extrusion process and wet extrusion process. In vitro drug release properties of IM from extrudates and physiochemical properties of extrudates were investigated. The dissolution rates of IM from extrudates manufactured by melt extrusion and wet extrusion with HP-beta-CyD were significantly higher than that of the physical mixture of IM and HP-beta-CyD. In extrudate manufactured by melt extrusion, gamma-form of IM changed to amorphous completely during melt extrusion due to heating above melting point of IM. On the other hand, in extrudate manufactured by wet extrusion, gamma-form of IM changed to amorphous partially due to interaction between IM and HP-beta-CyD and mechanical agitating force during process. Application of HP-beta-CyD in extrusion process is useful for the enhancement of dissolution rate for poorly water-soluble drugs.

  15. Closed cycle cryogenic fiber extrusion system

    SciTech Connect

    Rahman, H.U.; Ruden, E.L.; Strohmaier, K.D.; Wessel, F.J.; Yur, G.

    1996-10-01

    A fiber extrusion system is described that produces frozen fibers of almost any condensible gas. This extruder has the advantage of employing a closed-refrigeration system. To date, this system has produced fibers of H{sub 2}, D{sub 2}, and Ne of a diameter ranging from 100 to 130 {mu}m. The extrusion occurs at a specific temperature which is several degrees below the triple point of these gases. Once the fiber is extruded it can survive in vacuum for 20 min if the nozzle (extrusion) temperature is lowered to 8 K. The length of these fibers can be of the order of 1 m. D{sub 2} fibers will be used in a staged {ital Z}-pinch experiment as a fuel for thermonuclear fusion. For this application a guiding structure is needed to position the fiber between the electrodes with millimeter precision, without significantly affecting its quality. {copyright} {ital 1996 American Institute of Physics.}

  16. Epithelial cell extrusion: Pathways and pathologies.

    PubMed

    Gudipaty, Swapna Aravind; Rosenblatt, Jody

    2016-05-19

    To remove dying or unwanted cells from an epithelium while preserving the barrier function of the layer, epithelia use a unique process called cell extrusion. To extrude, the cell fated to die emits the lipid Sphingosine 1 Phosphate (S1P), which binds the G-protein-coupled receptor Sphingosine 1 Phosphate receptor 2 (S1P2) in the neighboring cells that activates Rho-mediated contraction of an actomyosin ring circumferentially and basally. This contraction acts to squeeze the cell out apically while drawing together neighboring cells and preventing any gaps to the epithelial barrier. Epithelia can extrude out cells targeted to die by apoptotic stimuli to repair the barrier in the face of death or extrude live cells to promote cell death when epithelial cells become too crowded. Indeed, because epithelial cells naturally turn over by cell death and division at some of the highest rates in the body, epithelia depend on crowding-induced live cell extrusion to preserve constant cell numbers. If extrusion is defective, epithelial cells rapidly lose contact inhibition and form masses. Additionally, because epithelia act as the first line of defense in innate immunity, preservation of this barrier is critical for preventing pathogens from invading the body. Given its role in controlling constant cell numbers and maintaining barrier function, a number of different pathologies can result when extrusion is disrupted. Here, we review mechanisms and signaling pathways that control epithelial extrusion and discuss how defects in these mechanisms can lead to multiple diseases. We also discuss tactics pathogens have devised to hijack the extrusion process to infect and colonize epithelia.

  17. Test Methods for Plasticity and Extrusion Behaviour

    NASA Astrophysics Data System (ADS)

    Göhlert, Katrin; Uebel, Maren

    There is no generally acknowledged method or measuring unit to specify the extrusion behaviour of ceramic bodies. In order to obtain an adequately precise description of the extrusion behaviour, numerous specific methods do exist, which have to be chosen according to the material, for example for bodies to produce bricks and tiles or bodies for the manufacture of catalytic converters, as well as methods relating to specific application requirements, be it, for example, for the purposes of production, quality control or development of the body.

  18. Manufacturing of SiCp Reinforced Magnesium Composite Tubes by Hot Extrusion Processes

    SciTech Connect

    Hwang, Yeong-Maw; Huang, Song-Jeng; Huang, Yu-San

    2011-05-04

    Magnesium alloys have higher specific strength compared with other metals, such as aluminum, copper and steel. Nevertheless, their ductility is still not good for further metal forming and their strength is not large enough for real structure applications. The aim of this paper is to develop magnesium alloy composite tubes reinforced with SiC particulates by the stir-casting method and hot extrusion processes. At first, AZ61/SiCp composite ingots reinforced with 5 wt% SiC particulates are fabricated by the melt-stirring technique. Then, finite element simulations are conducted to analyze the plastic flow of magnesium alloy AZ61 within the die and the temperature distribution of the products. AZ61/SiCp composite tubes are manufactured by hot extrusion using a specially designed die-set for obtaining uniform thickness distribution tubes. Finally, the mechanical properties of the reinforced AZ61/SiCp composite and Mg alloy AZ61 tubes are compared with those of the billets to manifest the advantages of extrusion processes and reinforcement of SiC particulates. The microstructures of the billet and extruded tubes are also observed. Through the improvement of the strength of the tube product, its life cycle can be extended and the energy consumption can be reduced, and eventually the environmental sustainability is achieved.

  19. Manufacturing of SiCp Reinforced Magnesium Composite Tubes by Hot Extrusion Processes

    NASA Astrophysics Data System (ADS)

    Hwang, Yeong-Maw; Huang, Song-Jeng; Huang, Yu-San

    2011-05-01

    Magnesium alloys have higher specific strength compared with other metals, such as aluminum, copper and steel. Nevertheless, their ductility is still not good for further metal forming and their strength is not large enough for real structure applications. The aim of this paper is to develop magnesium alloy composite tubes reinforced with SiC particulates by the stir-casting method and hot extrusion processes. At first, AZ61/SiCp composite ingots reinforced with 5 wt% SiC particulates are fabricated by the melt-stirring technique. Then, finite element simulations are conducted to analyze the plastic flow of magnesium alloy AZ61 within the die and the temperature distribution of the products. AZ61/SiCp composite tubes are manufactured by hot extrusion using a specially designed die-set for obtaining uniform thickness distribution tubes. Finally, the mechanical properties of the reinforced AZ61/SiCp composite and Mg alloy AZ61 tubes are compared with those of the billets to manifest the advantages of extrusion processes and reinforcement of SiC particulates. The microstructures of the billet and extruded tubes are also observed. Through the improvement of the strength of the tube product, its life cycle can be extended and the energy consumption can be reduced, and eventually the environmental sustainability is achieved.

  20. Effects of extrusion conditions on the extrusion responses and the quality of brown rice pasta.

    PubMed

    Wang, Li; Duan, Wei; Zhou, Sumei; Qian, Haifeng; Zhang, Hui; Qi, Xiguang

    2016-08-01

    This research investigated the effects of extrusion temperature and screw speed on the extrusion system parameters and the qualities of brown rice pasta. The die pressure and motor torque value reached a maximum at 90°C but decreased when the screw speed increased from 80 to 120rpm. The extrusion temperature and screw speed also significantly affected the cooking quality and textural properties of brown rice pasta. The pasta produced at an extrusion temperature of 120°C and screw speed of 120rpm had the best quality with a cooking loss, hardness and adhesiveness of 6.7%, 2387.2g and -7.0g⋅s, respectively, similar to those of pasta made from gluten-free flour. The results indicated that brown rice can be used to produce gluten-free pasta with improved nutrition.

  1. Improved corn protein (zein) extrusion processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Melt processing using a single and twin screw extruder has been carried out on zein where extrusion temperatures were varied between 100ºC and 300ºC. In addition, melt reprocessing (up to seven times) of zein was undertaken using a single screw extruder. Differential scanning calorimetry (DSC) and t...

  2. Formation of Chromosomal Domains by Loop Extrusion.

    PubMed

    Fudenberg, Geoffrey; Imakaev, Maxim; Lu, Carolyn; Goloborodko, Anton; Abdennur, Nezar; Mirny, Leonid A

    2016-05-31

    Topologically associating domains (TADs) are fundamental structural and functional building blocks of human interphase chromosomes, yet the mechanisms of TAD formation remain unclear. Here, we propose that loop extrusion underlies TAD formation. In this process, cis-acting loop-extruding factors, likely cohesins, form progressively larger loops but stall at TAD boundaries due to interactions with boundary proteins, including CTCF. Using polymer simulations, we show that this model produces TADs and finer-scale features of Hi-C data. Each TAD emerges from multiple loops dynamically formed through extrusion, contrary to typical illustrations of single static loops. Loop extrusion both explains diverse experimental observations-including the preferential orientation of CTCF motifs, enrichments of architectural proteins at TAD boundaries, and boundary deletion experiments-and makes specific predictions for the depletion of CTCF versus cohesin. Finally, loop extrusion has potentially far-ranging consequences for processes such as enhancer-promoter interactions, orientation-specific chromosomal looping, and compaction of mitotic chromosomes.

  3. Tubing extrusion made easier, Part II.

    PubMed

    Ferrandino, Mike

    2004-11-01

    An increased understanding of the primary elements will lead to greater control of the extrusion process. In the ongoing quest to produce tubing with consistent properties. Part II of this two-part article makes recommendations on best practice in barrel and screw design, compression ratios and dies.

  4. Robo-Enabled Tumor Cell Extrusion.

    PubMed

    Richardson, Helena E; Portela, Marta

    2016-12-19

    How aberrant cells are removed from a tissue to prevent tumor formation is a key question in cancer biology. Reporting in this issue of Developmental Cell, Vaughen and Igaki (2016) show that a pathway with an important role in neural guidance also directs extrusion of tumor cells from epithelial tissues.

  5. Reactive Extrusion of Zein with Glyoxal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cross-linked zein has been produced using glyoxal as the cross-linking reagent via reactive extrusion for the first time in a twin screw extruder using dilute sodium hydroxide as catalyst. Tri(ethylene glycol) was used as a plasticizer for various items. The extrudate was then ground and processed...

  6. Impact of various extrusion processes on zein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn protein (zein) is one of the main co-products of corn bio-ethanol production. Extrusion processing of zein continues to be the preferred route to provide improved articles having lower cost and improved properties. There is a lack of information regarding the conditions which can be employed to...

  7. Effect of multiple extrusion passes on zein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zein was repeatedly processed up to seven times using a single screw extruder at a temperature of 145 °C and at approximately 15 grams per minute to determine the extent of degradation that occurs with multiple extrusion passes. SDS-PAGE shows that with the second pass, and each additional pass, the...

  8. Design for aluminum recycling

    SciTech Connect

    Not Available

    1993-10-01

    This article describes the increasing use of aluminum in automobiles and the need to recycle to benefit further growth of aluminum applications by assuring an economical, high-quality source of metal. The article emphasizes that coordination of material specifications among designers can raise aluminum scrap value and facilitate recycling. Applications of aluminum in automobile construction are discussed.

  9. Apical extrusion of root canal irrigants when using Er:YAG and Er,Cr:YSGG lasers with optical fibers: an in vitro dye study.

    PubMed

    George, Roy; Walsh, Laurence J

    2008-06-01

    Because of the potential for irritant reactions in the periapical region, irrigant solutions must be constrained within the root canal. We examined fluid extrusion beyond the apical constriction by pressure waves generated by pulsed middle infrared lasers using needles and Max-I-Probes (Dentsply) as controls. Both free-running pulsed Erbium: Yttrium Aluminum Garnet (Er:YAG) and Erbium, Chromium: Yttrium Scandium Gallium Garnet (Er,Cr:YSGG) lasers with bare or conical fiber tips at distances of 5 or 10 mm from the apex displaced fluid past the apex. Larger apical openings showed greater extrusion of fluid. The volume of extruded fluid was similar to conventional 25-G needles, but fluid was distributed further from the apex. Because pulsed lasers create pressure waves in irrigant fluids within the root canal, the potential for extrusion of fluid from the apex should be considered when assessing intracanal laser treatments in endodontics.

  10. Noise-induced variability of volcanic extrusions

    NASA Astrophysics Data System (ADS)

    Alexandrov, D. V.; Bashkirtseva, I. A.; Ryashko, L. B.

    2016-11-01

    Motivated by important physical applications, we study a non-linear dynamics of volcanic extrusions on the basis of a simple pressure-mass flow model. We demonstrate that the deterministic phase portrait represents either the bulbous-type curves or closed paths stretched to their left depending on the initial conditions. The period of phase trajectories therewith increases when the pressure drop between the conduit top and bottom compensates the lava column pressure in it. Stochastic forcing changes the system dynamics drastically. We show that a repetitive scenario of volcanic behaviour with intermittency of stochastic oscillations of different extrusion amplitudes and frequencies appears in the presence of noises. As this takes place, the mean values of interspike intervals characterizing the system periodicity have a tendency to grow with increasing the noise intensity. The probability distribution functions confirming this dynamic behaviour are constructed.

  11. Equal Channel Angular Extrusion of AA 6063 Using Conventional Direct Extrusion Press

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Hsien; Lin, Hsin-Chih

    2015-11-01

    In the present work, an extrusion-equal channel angular extrusion (Ex-ECAE) process composed of two processes, extrusion and ECAE, is developed. The Ex-ECAE die contains three segments and is used directly in the conventional direct extrusion press to refine the microstructure, specifically the coarse grain layer (CGL) on the surface of the extrudate. The first segment in the die is designed to perform the normal extrusion process and the second and third segments to perform the process of ECAE. The study reveals that the CGL can be eliminated (refined) completely at the macroscale. At the microscale, the original grain is subdivided into subgrain, which contains many smaller cells. The results can be explained by the grain subdivision mechanism. The textures of the Ex-ECAE sample at various segments are measured using EBSD (Electron Backscatter Diffraction). The results reveal that the first segment of the Ex-ECAE sample has a perfect fiber texture which consists of a mixture of strong <001> and weak <111> fiber components. The texture of the second segment is a mixture of strong (1 1 0) [1 -2 1] and weak (0 1 1) [2 -1 0] fiber components. However, the main component of the second segment is a typical texture of the "alloy" or "brass" type. Finally, the texture of the extrudate (the third segment) is reversed to an incomplete fiber texture which consists of strong (0 0 1) [-1 -1 0] and weak (1 1 1) [1 -1 0].

  12. Downdraw Extrusion of ULE(TM) Glass.

    DTIC Science & Technology

    1984-12-01

    34 diameter orifice and a 7" inner diameter muffle plate. E. Glass Loading After removing the plastic and tissue paper from the cleaned feedstock glass , the...Final Technical Report December 1964 DOWNDRAW EXTRUSION OF ULETM GLASS0 Corning Glass Works P. M. Smith and C. E. Peters APPROVED FOR PUBLIC RELEASE...PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION (If Gpptieabte ) "Corning Glass Works Rome Air Development Center (OCSE

  13. Late extrusion of alloplastic orbital floor implants.

    PubMed

    Brown, A E; Banks, P

    1993-06-01

    Complications following the use of alloplastic orbital floor implants are well documented but it is not widely recognised that these can occur many years after initial treatment. Three patients who presented with late extrusion of an implant through the facial skin are reported. This complication occurred 10, 16 and 17 years respectively after treatment of the orbital floor fracture. The tissue reaction to silicone rubber and Teflon inplants is reviewed and the possible cause for this late complication is discussed.

  14. Coal extrusion in the plastic state

    NASA Technical Reports Server (NTRS)

    England, C.; Ryason, P. R.

    1977-01-01

    Continuous feeding of coal in a compressing screw extruder is described as a method of introducing coal into pressurized systems. The method utilizes the property of many bituminous coals of softening at temperatures from 350 to 425 C. Coal is then fed, much in the manner of common thermoplastics, using screw extruders. Data on the viscosity and extruder parameters for extrusion of Illinois No. 6 coal are presented.

  15. Dynamic-tensile-extrusion response of fluoropolymers

    SciTech Connect

    Brown, Eric N; Trujillo, Carl P; Gray, George T

    2009-01-01

    The current work applies the recently developed Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) technique to polytetrafluoroethylene (PTFE) and polychlorotrifluoroethylene (PCTFE). Similar to the Taylor Impact Rod, Dynamic-Tensile-Extrusion is a strongly integrated test, probing a wide range of strain rates and stress states. However, the stress state is primarily tensile enabling investigation of dynamic tensile failure modes. Here we investigate the influence of this propensity to neck or not between PCTFE and PTFE on their response under dynamic tensile extrusion loading. The results of the Dyn-Ten-Ext technique are compared with two classic techniques. Both polymers have been investigated using Tensile Split Hopkinson Pressure Bar. The quasistatic and dynamic responses of both fluoro-polymers have been extensively characterized. The two polymers exhibit significantly different failure behavior under tensile loading at moderate strain rates. Polytetrafluoroethylene resists formation of a neck and exhibits significant strain hardening. Independent of temperature or strain rate, PTFE sustains true strains to failure of approximately 1.5. Polychlorotrifluoroethylene, on the other hand, consistently necks at true strains of approximately 0.05.

  16. Evolution of microstructure and precipitates in 2xxx aluminum alloy after severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Adamczyk-Cieslak, B.; Zdunek, J.; Mizera, J.

    2016-04-01

    This paper investigates the influence of precipitation on the microstructure development in a 2xxx aluminum alloy subjected to hydrostatic extrusion. A three step reduction of the diameter was performed using hydrostatic extrusion (HE) process: from 20mm (initial state) to 10 mm, 5 mm and 3 mm, which corresponds to the logarithmic deformations ɛ = 1.4, ɛ = 2.8 and ɛ = 3.8 respectively. The microstructure and precipitation analysis before and after deformation was performed using transmission electron microscope (TEM), and scanning electron microscopy (SEM). As a result of the tests, a very significant influence of precipitation on the degree of refinement and mechanism of microstructure transformation was stated.

  17. Fatigue performance of welded aluminum deck structures

    SciTech Connect

    Haagensen, P.J.; Ranes, M.; Kluken, A.O.; Kvale, I.

    1996-12-01

    Aluminum alloys are used increasingly in load carrying structures where low weight and low maintenance costs are at a premium. Helicopter decks, structures for living quarters and personnel transfer bridges between platforms are examples of offshore applications. While these structures are not usually subjected to high fatigue loads, the increasing use of aluminum in high speed ships, and more recently in highway bridge structures, makes the question of fatigue performance more important. In this paper the fatigue properties of small scale weldments in an AA6005 alloy are compared with the results of fatigue tests on full scale sections of welded extrusions in the same material, which were used in an aluminum bridge deck structure. The fatigue performance is also compared with the fatigue clauses in the new British design code BS8118 for aluminium structures and the proposed Eurocode 9. The prospects of using a new joining technique, friction stir welding (FSW), in the production of large scale panels for deck and ship hull structures is discussed. The FSW process is described briefly, and some fatigue test data are presented.

  18. Processing and response of aluminum-lithium alloy composites reinforced with copper-coated silicon carbide particulates

    NASA Astrophysics Data System (ADS)

    Khor, K. A.; Cao, Y.; Boey, F. Y. C.; Hanada, K.; Murakoshi, Y.; Sudarshan, T. S.; Srivatsan, T. S.

    1998-02-01

    Lithium-containing aluminum alloys have shown promise for demanding aerospace applications because of their light weight, high strength, and good damage tolerance characteristics. Additions of ceramic reinforcements to an aluminum-lithium alloy can significantly enhance specific strength, and specific modulus while concurrently offering acceptable performance at elevated temperatures. The processing and fabrication of aluminum-lithium alloy-based composites are hampered by particulate agglomeration or clustering and the existence of poor interfacial relationships between the reinforcing phase and the matrix. The problem of distribution of the reinforcing phase in the metal matrix can be alleviated by mechanical alloying. This article presents the results of a study aimed at addressing and improving the interfacial relationship between the host matrix and the reinforcing phase. Copper-coated silicon carbide particulates are introduced as the particulate reinforcing phase, and the resultant composite mixture is processed by conventional milling followed by hot pressing and hot extrusion. The influence of extrusion ratio and extrusion temperature on microstructure and mechanical properties was established. Post extrusion processing by hot isostatic pressing was also examined. Results reveal the increase in elastic modulus of the aluminum-lithium alloy matrix reinforced with copper-coated SiC to be significantly more than the mechanically alloyed Al-Li/SiC counterpart. This suggests the possible contributions of interfacial strengthening on mechanical response in direct comparison with a uniform distribution of the reinforcing ceramic particulates.

  19. Corrosion of aluminum and aluminum alloys

    SciTech Connect

    Davis, J.R.

    1999-01-01

    This new handbook presents comprehensive coverage of the corrosion behavior of aluminum and aluminum alloys, with emphasis on practical information about how to select and process these materials in order to prevent corrosion attack. Described are the characteristics of these materials and the influences of composition, mechanical working, heat treatment, joining methods, microstructure, and environmental variables on their corrosion.

  20. ALUMINUM-CONTAINING POLYMERS

    DTIC Science & Technology

    ALUMINUM COMPOUNDS, *ORGANOMETALLIC COMPOUNDS, *POLYMERIZATION, *POLYMERS, ACRYLIC RESINS, ALKYL RADICALS, CARBOXYLIC ACIDS, COPOLYMERIZATION, LIGHT TRANSMISSION, STABILITY, STYRENES, TRANSPARENT PANELS.

  1. Advanced powder metallurgy aluminum alloys via rapid solidification technology

    NASA Technical Reports Server (NTRS)

    Ray, R.

    1984-01-01

    Aluminum alloys containing 10 to 11.5 wt. pct. of iron and 1.5 to 3 wt. pct. of chromium using the technique of rapid solidification powder metallurgy were studied. Alloys were prepared as thin ribbons (.002 inch thick) rapidly solidified at uniform rate of 10(6) C/second by the melt spinning process. The melt spun ribbons were pulverized into powders (-60 to 400 mesh) by a rotating hammer mill. The powders were consolidated by hot extrusion at a high reduction ratio of 50:1. The powder extrusion temperature was varied to determine the range of desirable processing conditions necessary to yield useful properties. Powders and consolidated alloys were characterized by SEM and optical metallography. The consolidated alloys were evaluated for (1) thermal stability, (2) tensile properties in the range, room temperature to 450 F, and (3) notch toughness in the range, room temperature to 450 F.

  2. Aluminum and Young Artists.

    ERIC Educational Resources Information Center

    Anderson, Thomas

    1980-01-01

    The author suggests a variety of ways in which aluminum and aluminum foil can be used in elementary and junior high art classes: relief drawing and rubbing; printing; repousse; sculpture; mobiles; foil sculpture; and three dimensional design. Sources of aluminum supplies are suggested. (SJL)

  3. Aging Optimization of Aluminum-Lithium Alloy L277 for Application to Cryotank Structures

    NASA Technical Reports Server (NTRS)

    Sova, B. J.; Sankaran, K. K.; Babel, H.; Farahmand, B.; Cho, A.

    2003-01-01

    Compared with aluminum alloys such as 2219, which is widely used in space vehicle for cryogenic tanks and unpressurized structures, aluminum-lithium alloys possess attractive combinations of lower density and higher modulus along with comparable mechanical properties and improved damage tolerance. These characteristics have resulted in the successful use of the aluminum-lithium alloy 2195 for the Space Shuttle External Tank, and the consideration of newer U.S. aluminum-lithium alloys such as L277 and C458 for future space vehicles. A design of experiments aging study was conducted for plate and a limited study on extrusions. To achieve the T8 temper, Alloy L277 is typically aged at 290 F for 40 hours. In the study for plate, a two-step aging treatment was developed through a design of experiments study and the one step aging used as a control. Based on the earlier NASA studies on 2195, the first step aging temperature was varied between 220 F and 260 F. The second step aging temperatures was varied between 290 F and 310 F, which is in the range of the single-step aging temperature. For extrusions, two, single-step, and one two-step aging condition were evaluated. The results of the design of experiments used for the T8 temper as well as a smaller set of experiments for the T6 temper for plate and the results for extrusions will be presented.

  4. Conservation of extrusion as an exit mechanism for Chlamydia.

    PubMed

    Zuck, Meghan; Sherrid, Ashley; Suchland, Robert; Ellis, Tisha; Hybiske, Kevin

    2016-10-01

    Chlamydiae exit via membrane-encased extrusion or through lysis of the host cell. Extrusions are novel, pathogen-containing structures that confer infectious advantages to Chlamydia, and are hypothesized to promote cell-to-cell spread, dissemination to distant tissues and facilitate immune evasion. The extrusion phenomenon has been characterized for several Chlamydia trachomatis serovars, but a thorough investigation of extrusion for additional clinically relevant C. trachomatis strains and Chlamydia species has yet to be performed. The key parameters investigated in this study were: (i) the conservation of extrusion across the Chlamydia genus, (ii) the functional requirement for candidate Chlamydia genes in extrusion formation i.e. IncA and CT228 and (iii) extrusion-mediated uptake, and consequent survival of Chlamydia inside macrophages. Inclusion morphology was characterized by live fluorescence microscopy, using an inverted GFP strategy, at early and mid-stages of infection. Enriched extrusions were used to infect bone marrow-derived macrophages, and bacterial viability was measured following macrophage engulfment. Our results demonstrate that extrusion is highly conserved across chlamydiae, including ocular, STD and LGV biovars and divergent Chlamydia species. Consequently, this exit mechanism for Chlamydia may fulfill common advantages important for pathogenesis.

  5. Direct extrusion process analysis with proposed numerical modeling improvements - product quality, process parameters, and microstructure prediction

    NASA Astrophysics Data System (ADS)

    de Pari, Luigi, Jr.

    2009-11-01

    entry in DEFORM(TM) 3-D. The third case study assessed an aluminum alloy's microstructure response to hot-direct extrusion processing conditions. The DEFORM(TM) 3-D simulated state variables were incorporated into a dynamic recrystallization (DRX) model that with reasonable accuracy predicted the surface grain structure evolution when compared to experimental results. By knowing the grain structure response the surface physical properties of the extrudate can be deduced.

  6. Aluminum reference electrode

    DOEpatents

    Sadoway, D.R.

    1988-08-16

    A stable reference electrode is described for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na[sub 3]AlF[sub 6], wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution. 1 fig.

  7. Aluminum reference electrode

    DOEpatents

    Sadoway, Donald R.

    1988-01-01

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

  8. Updated Life-Cycle Assessment of Aluminum Production and Semi-fabrication for the GREET Model

    SciTech Connect

    Dai, Qiang; Kelly, Jarod C.; Burnham, Andrew; Elgowainy, Amgad

    2015-09-01

    This report serves as an update for the life-cycle analysis (LCA) of aluminum production based on the most recent data representing the state-of-the-art of the industry in North America. The 2013 Aluminum Association (AA) LCA report on the environmental footprint of semifinished aluminum products in North America provides the basis for the update (The Aluminum Association, 2013). The scope of this study covers primary aluminum production, secondary aluminum production, as well as aluminum semi-fabrication processes including hot rolling, cold rolling, extrusion and shape casting. This report focuses on energy consumptions, material inputs and criteria air pollutant emissions for each process from the cradle-to-gate of aluminum, which starts from bauxite extraction, and ends with manufacturing of semi-fabricated aluminum products. The life-cycle inventory (LCI) tables compiled are to be incorporated into the vehicle cycle model of Argonne National Laboratory’s Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model for the release of its 2015 version.

  9. Gas extrusion in natural products total synthesis.

    PubMed

    Jiang, Xuefeng; Shi, Lei; Liu, Hui; Khan, Akbar H; Chen, Jason S

    2012-11-14

    The thermodynamic driving force from the release of a gaseous molecule drives a broad range of synthetic transformations. This review focuses on gas expulsion in key reactions within natural products total syntheses, selected from the past two decades. The highlighted examples survey transformations that generate sulfur dioxide, carbon dioxide, carbonyl sulfide, or nitrogen through polar, radical, pericyclic, photochemical, or organometallic mechanisms. Of particular interest are applications wherein the gas extrusion enables formation of a synthetically challenging motif, such as an unusually hindered or strained bond.

  10. Extrusion cycles during dome-building eruptions

    NASA Astrophysics Data System (ADS)

    de' Michieli Vitturi, M.; Clarke, A. B.; Neri, A.; Voight, B.

    2013-06-01

    We identify and quantify controls on the timescales and magnitudes of cyclic (periodic) volcanic eruptions using the numerical model DOMEFLOW (de' Michieli Vitturi et al., 2010) which was developed by the authors for magma systems of intermediate composition. DOMEFLOW treats the magma mixture as a liquid continuum with dispersed gas bubbles and crystals in thermodynamic equilibrium with the melt and assumes a modified Poiseuille form of the viscous term for fully developed laminar flow in a conduit of cylindrical cross-section. During ascent, magma pressure decreases and water vapor exsolves and partially degasses from the melt as the melt simultaneously crystallizes, causing changes in mixture density and viscosity. Two mechanisms previously proposed to cause periodic eruption behavior have been implemented in the model and their corresponding timescales explored. The first applies a stick-slip model in which motion of a shallow solid plug is resisted by static/dynamic friction, as described in Iverson et al. (2006). For a constant magma supply rate at depth, this mechanism yields cyclic extrusion with timescales of seconds to tens of seconds with values generally depending on assumed friction coefficients. The second mechanism does not consider friction but treats the plug as a high-viscosity Newtonian fluid. During viscous resistance, pressure beneath the degassed plug can increase sufficiently to overcome dome overburden, plug weight, and viscous forces, and ultimately drive the plug from the conduit. In this second model cycle periods are on the order of hours, and decrease with increasing magma supply rate until a threshold is reached, at which point periodicity disappears and extrusion rate becomes steady (vanishingly short periods). Magma volatile content for fixed chamber pressure has little effect on cycle timescales, but increasing volatile content increases mass flow rate and cycle magnitude as defined by the difference between maximum and minimum

  11. Rapid billet loader aids extrusion of refractory metals

    NASA Technical Reports Server (NTRS)

    Dolinshek, A. F.; Herman, L. E.

    1964-01-01

    A combination gravity and manually powered rapid billet loader reduces the time required for transferring hot metal billets from a heating furnace to an extrusion press. Positioned between the furnace and extrusion press, this loader is a simple slide-delivery device.

  12. Extracellular cleavage of E-cadherin promotes epithelial cell extrusion.

    PubMed

    Grieve, Adam G; Rabouille, Catherine

    2014-08-01

    Epithelial cell extrusion and subsequent apoptosis is a key mechanism to prevent the accumulation of excess cells. By contrast, when driven by oncogene expression, apical cell extrusion is followed by proliferation and represents an initial step of tumorigenesis. E-cadherin (E-cad), the main component of adherens junctions, has been shown to be essential for epithelial cell extrusion, but its mechanistic contribution remains unclear. Here, we provide clear evidence that cell extrusion can be driven by the cleavage of E-cad, both in a wild-type and an oncogenic environment. We first show that CDC42 activation in a single epithelial cell results in its efficient matrix metalloproteinase (MMP)-sensitive extrusion through MEK signalling activation and this is supported by E-cad cleavage. Second, using an engineered cleavable form of E-cad, we demonstrate that, by itself, truncation of extracellular E-cad at the plasma membrane promotes apical extrusion. We propose that extracellular cleavage of E-cad generates a rapid change in cell-cell adhesion that is sufficient to drive apical cell extrusion. Whereas in normal epithelia, extrusion is followed by apoptosis, when combined with active oncogenic signalling, it is coupled to cell proliferation.

  13. Extrusion of small-diameter, thin-wall tungsten tubing

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P.; Gyorgak, C. A.

    1967-01-01

    Small-diameter, thin-wall seamless tubing of tungsten has been fabricated in lengths of up to 10 feet by hot extrusion over a floating mandrel. Extrusion of 0.50-inch-diameter tubing over 0.4-inch-diameter mandrels was accomplished at temperatures ranging from 3000 degrees to 4000 degrees F.

  14. Outgassing measurement of the aluminum alloy UHV chamber

    NASA Technical Reports Server (NTRS)

    Miyamoto, M.; Itoh, T.; Komaki, S.; Narushima, K.; Ishimaru, H.

    1986-01-01

    A large vacuum chamber (580 mm diameter) was fabricated from an aluminum alloy surface treated by a special process normally used on small chambers. The chamber was tested unbaked and baked at various temperatures, pressures, and holding periods. The chamber was filled with N2 gas, and the outgassing rate was measured after one hour. Then the ultimate pressure was measured. Outgassing rates for baked and unbaked groups were compared. It is concluded that the same surface treatment technique can be used on both large and small chambers produced by the same special extrusion process.

  15. Aluminum: Recycling of Aluminum Dross/Saltcake

    SciTech Connect

    Blazek, S.

    1999-01-29

    As this NICE3 publication details, the objective of this project is to commercialize the process technology to eliminate all landfill waste associated with black dross and saltcake generated from aluminum recycling in the United States.

  16. Dynamic-tensile-extrusion of polyurea

    NASA Astrophysics Data System (ADS)

    Furmanski, Jevan; Cady, Carl; Rae, Philip; Trujillo, Carl P.; Gray, George Thompson, III; Brown, Eric

    2012-03-01

    Polyurea was investigated under Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) loading where spherical projectiles were propelled at 440 to 509 ms-1 through a conical extrusion die with an area reduction of 87%. Momentum of the leading edge imposes a rapid tensile deformation on the extruded jet of material. Polyurea is an elastomer with outstanding high-rate tensile performance of interest in the shock regime. Previous Dyn-Ten-Ext work on semi-crystalline fluoropolymers (PTFE, PCTFE) elucidated irregular deformation and profuse stochastic-based damage and failure mechanisms, but with limited insight into damage inception or progression in those polymers. The polyurea behaved very differently; the polymer first extruded a jet of apparently intact material, which then broke down via void coalescence, followed by fibrillation and tearing of the material. Most of the material in the jet elastically retracted back into the die, and only a few unique fragments were formed. The surface texture of all failed surfaces was found to be tortuous and covered with drawn hair-like filaments, implying a considerable amount of energy was absorbed during damage progression.

  17. Dynamic-Tensile-Extrusion of Polyurea

    NASA Astrophysics Data System (ADS)

    Furmanski, Jevan; Cady, Carl; Rae, Philip; Trujillo, Carl; Gray, G. T., III; Brown, Eric

    2011-06-01

    Polyurea was investigated under Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) loading where spherical projectiles were propelled at 440-509 m/s through an extrusion die with an area reduction of 87%. Momentum of the leading edge imposes a rapid tensile deformation on the extruding material. Polyurea is an elastomer with outstanding high-rate tensile performance of interest in the shock regime. Previous Dyn-Ten-Ext work on semi-crystalline polymers (PTFE, PCTFE) resulted in small-scale fragmentation of the polymer, and did not provide clear information on the evolution of tensile damage in those materials. The polyurea behaved very differently; the polymer first extruded a jet of apparently intact material, which then broke down via void formation and coalescence, followed by fibrillation and tearing of the material. Most of the material in the jet elastically retracted back into the die, and only a few fragments of torn material were liberated from the sample. The surface texture of all failed surfaces was rough indicating a considerable amount of energy was absorbed by sub-critical failure mechanisms. It is interesting to note that while damage nucleation appeared pervasive in the extruded jet, the samples were nevertheless recovered largely intact, with limited fragmentation.

  18. Tube extrusion from permeabilized giant vesicles

    NASA Astrophysics Data System (ADS)

    Borghi, N.; Kremer, S.; Askovic, V.; Brochard-Wyart, F.

    2006-08-01

    This letter reports the permeabilization effects of chemical additives on mechanical properties of Giant Unilamellar Vesicles (GUVs). We use a surfactant, Tween 20, inducing transient pores and a protein, Streptolysin O, inducing permanent pores in the membrane. Lipid tubes are extracted from GUVs anchored onto the tip of a micro-needle and submitted to hydrodynamic flows. On bare vesicles, tube extrusion is governed by the entropic elasticity of the membrane. The vesicle tension increases until it balances the flow velocity U and the tube reaches a stationary length. In permeabilized vesicles, the membrane tension is maintained at a constant value σp by the permeation of inner solution through nanometric pores. This allows extrusion of "infinite" tubes at constant velocity that never reach a stationary length. Tween-20 preliminary results suggest that σp strongly depends on surfactant concentration. For Streptolysin O, we have measured σp vs. U and found two regimes: a "high-porosity" regime for U > Up0 and a "low-porosity" regime for U < Up0, where Up0 is related to the number of pores on the vesicle surface.

  19. Method of extruding and packaging a thin sample of reactive material, including forming the extrusion die

    DOEpatents

    Lewandowski, E.F.; Peterson, L.L.

    1981-11-30

    This invention teaches a method of cutting a narrow slot in an extrusion die with an electrical discharge machine by first drilling spaced holes at the ends of where the slot will be, whereby the oil can flow through the holes and slot to flush the material eroded away as the slot is being cut. The invention further teaches a method of extruding a very thin ribbon of solid highly reactive material such as lithium or sodium through the die in an inert atmosphere of nitrogen, argon, or the like as in a glovebox. The invention further teaches a method of stamping out sample discs from the ribbon and of packaging each disc by sandwiching it between two aluminum sheets and cold welding the sheets together along an annular seam beyond the outer periphery of the disc. This provides a sample of high purity reactive material that can have a long shelf life.

  20. Method of extruding and packaging a thin sample of reactive material including forming the extrusion die

    DOEpatents

    Lewandowski, Edward F.; Peterson, Leroy L.

    1985-01-01

    This invention teaches a method of cutting a narrow slot in an extrusion die with an electrical discharge machine by first drilling spaced holes at the ends of where the slot will be, whereby the oil can flow through the holes and slot to flush the material eroded away as the slot is being cut. The invention further teaches a method of extruding a very thin ribbon of solid highly reactive material such as lithium or sodium through the die in an inert atmosphere of nitrogen, argon or the like as in a glovebox. The invention further teaches a method of stamping out sample discs from the ribbon and of packaging each disc by sandwiching it between two aluminum sheets and cold welding the sheets together along an annular seam beyond the outer periphery of the disc. This provides a sample of high purity reactive material that can have a long shelf life.

  1. Preparation of chalcogenide glass fiber using an improved extrusion method

    NASA Astrophysics Data System (ADS)

    Jiang, Chen; Wang, Xunsi; Zhu, Minming; Xu, Huijuan; Nie, Qiuhua; Dai, Shixun; Tao, Guangming; Shen, Xiang; Cheng, Ci; Zhu, Qingde; Liao, Fangxing; Zhang, Peiquan; Zhang, Peiqing; Liu, Zijun; Zhang, Xianghua

    2016-05-01

    We developed the extrusion method to prepare arsenic-free chalcogenide glass fibers with glass cladding. By using the double nested extrusion molds and the corresponding isolated stacked extrusion method, the utilization rate of glass materials was greatly improved compared with the conventional extrusion method. Fiber preforms with optimal stability of core/cladding ratio throughout the 160 mm length were prepared using the developed extrusion method. Typical fiber structure defects between the core/cladding interface, such as bubbles, cracks, and core diameter variation, were effectively eliminated. Ge-Sb-Se/S chalcogenide glasses were used to form a core/cladding pair and fibers with core/cladding structure were prepared by thermally drawing the extruded preforms. The transmission loss, fiber bending loss, and other optical characters of the fibers were also investigated.

  2. Abl suppresses cell extrusion and intercalation during epithelium folding.

    PubMed

    Jodoin, Jeanne N; Martin, Adam C

    2016-09-15

    Tissue morphogenesis requires control over cell shape changes and rearrangements. In the Drosophila mesoderm, linked epithelial cells apically constrict, without cell extrusion or intercalation, to fold the epithelium into a tube that will then undergo epithelial-to-mesenchymal transition (EMT). Apical constriction drives tissue folding or cell extrusion in different contexts, but the mechanisms that dictate the specific outcomes are poorly understood. Using live imaging, we found that Abelson (Abl) tyrosine kinase depletion causes apically constricting cells to undergo aberrant basal cell extrusion and cell intercalation. abl depletion disrupted apical-basal polarity and adherens junction organization in mesoderm cells, suggesting that extruding cells undergo premature EMT. The polarity loss was associated with abnormal basolateral contractile actomyosin and Enabled (Ena) accumulation. Depletion of the Abl effector Enabled (Ena) in abl-depleted embryos suppressed the abl phenotype, consistent with cell extrusion resulting from misregulated ena Our work provides new insight into how Abl loss and Ena misregulation promote cell extrusion and EMT.

  3. Effect of equal channel angular extrusion on Al-6063 bending fatigue characteristics

    NASA Astrophysics Data System (ADS)

    Nemati, J.; Majzoobi, G. H.; Sulaiman, S.; Baharudin, B. T. H. T.; Azmah Hanim, M. A.

    2015-04-01

    The purpose of this investigation was to refine the grains of annealed 6063 aluminum alloy and to improve its yield stress and ultimate strength. This was accomplished via the equal channel angular extrusion (ECAE) process at a temperature of 200°C using route A, with a constant ram speed of 30 mm/min through a die angle of 90° between the die channels for as many as 6 passes. The experiments were conducted on an Avery universal testing machine. The results showed that the grain diameter decreased from 45 μm to 2.8 μm after 6 extrusion passes. The results also indicated that the major improvement in fatigue resistance occurred after the first pass. The subsequent passes improved the fatigue life but at a considerably lower rate. A maximum increase of 1100% in the case of low applied stresses and an approximately 2200% increase in fatigue resistance in the case of high applied stresses were observed after 5 passes. The improvement of fatigue resistance is presumed to be due to (1) a reduction in the size and the number of Si crystals with increasing number of ECAE passes, (2) the aggregation of Cu during the ECAE process, (3) the formation and growth of CuAl2 grains, and (4) grain refinement of the Al-6063 alloy during the ECAE process.

  4. Aspects of aluminum toxicity

    SciTech Connect

    Hewitt, C.D.; Savory, J.; Wills, M.R. )

    1990-06-01

    Aluminum is the most abundant metal in the earth's crust. The widespread occurrence of aluminum, both in the environment and in foodstuffs, makes it virtually impossible for man to avoid exposure to this metal ion. Attention was first drawn to the potential role of aluminum as a toxic metal over 50 years ago, but was dismissed as a toxic agent as recently as 15 years ago. The accumulation of aluminum, in some patients with chronic renal failure, is associated with the development of toxic phenomena; dialysis encephalopathy, osteomalacic dialysis osteodystrophy, and an anemia. Aluminum accumulation also occurs in patients who are not on dialysis, predominantly infants and children with immature or impaired renal function. Aluminum has also been implicated as a toxic agent in the etiology of Alzheimer's disease, Guamiam amyotrophic lateral sclerosis, and parkinsonism-dementia. 119 references.

  5. Fine Grain Aluminum Superplasticity

    DTIC Science & Technology

    1980-02-01

    time at elevated temperature for 7475 aluminum alloy 5 2 Optical micrographs of 7075 aluminum alloy after exposure to 5160C (960oF) for times...applied to Al-Zn-Mg-Cu ( 7075 Al) alloy. Subsequent developments by Waldman et al. (refs. 8-11) resulted in the demonstration that 7000 series alloys...a number of aluminum alloys. With such a fine grain structure, high temperature deformation character- istics approaching superplastic behavior

  6. BONDING ALUMINUM METALS

    DOEpatents

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  7. Aluminum powder metallurgy processing

    SciTech Connect

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  8. Mechanical Properties of Solid-State Recycled 4xxx Aluminum Alloy Chips

    NASA Astrophysics Data System (ADS)

    Tokarski, Tomasz

    2016-08-01

    The direct production of aluminum from bauxite ores is known to be a very energetic-intensive operation compared to other metallurgical processes. Due to energy issues and the rapid increase in aluminum demand, new kinds of aluminum production processes are required. Aluminum waste recycling, which has an advantage of lowering the cost of electric power consumption, is considered to be an alternative route for material manufacturing. In this work, the way of reusing aluminum EN-AC 44000 alloy scraps by hot extrusion was presented. Metal chips of different sizes and morphology were cold compacted into billet form and then hot extruded. Mechanical properties investigations combined with microstructure observations were performed. Mechanical anisotropy behavior of material was evaluated on the base of tensile test experiments performed on samples machined at 0°, 45°, and 90°, respectively, to the extrusion direction. It was found that the initial size of the chips has an influence on the mechanical properties of the received profiles. Samples produced from fine chips revealed higher tensile strength in comparison to larger chips, which can be attributed to a refined microstructure containing fine, hard Si particles and Fe-rich intermetallic phases. Finally, it was found that anisotropic behavior of chip-based profiles is similar to conventionally cast and extruded materials which prove good bonding quality between chips.

  9. Carbothermic Aluminum Production Using Scrap Aluminum As A Coolant

    DOEpatents

    LaCamera, Alfred F.

    2002-11-05

    A process for producing aluminum metal by carbothermic reduction of alumina ore. Alumina ore is heated in the presence of carbon at an elevated temperature to produce an aluminum metal body contaminated with about 10-30% by wt. aluminum carbide. Aluminum metal or aluminum alloy scrap then is added to bring the temperature to about 900-1000.degree. C. and precipitate out aluminum carbide. The precipitated aluminum carbide is filtered, decanted, or fluxed with salt to form a molten body having reduced aluminum carbide content.

  10. Extrusion Pretreatment of Lignocellulosic Biomass: A Review

    PubMed Central

    Zheng, Jun; Rehmann, Lars

    2014-01-01

    Bioconversion of lignocellulosic biomass to bioethanol has shown environmental, economic and energetic advantages in comparison to bioethanol produced from sugar or starch. However, the pretreatment process for increasing the enzymatic accessibility and improving the digestibility of cellulose is hindered by many physical-chemical, structural and compositional factors, which make these materials difficult to be used as feedstocks for ethanol production. A wide range of pretreatment methods has been developed to alter or remove structural and compositional impediments to (enzymatic) hydrolysis over the last few decades; however, only a few of them can be used at commercial scale due to economic feasibility. This paper will give an overview of extrusion pretreatment for bioethanol production with a special focus on twin-screw extruders. An economic assessment of this pretreatment is also discussed to determine its feasibility for future industrial cellulosic ethanol plant designs. PMID:25334065

  11. Turbine airfoil fabricated from tapered extrusions

    DOEpatents

    Marra, John J

    2013-07-16

    An airfoil (30) and fabrication process for turbine blades with cooling channels (26). Tapered tubes (32A-32D) are bonded together in a parallel sequence, forming a leading edge (21), a trailing edge (22), and pressure and suction side walls (23, 24) connected by internal ribs (25). The tapered tubes may be extruded without camber to simplify the extrusion process, then bonded along matching surfaces (34), forming a non-cambered airfoil (28), which may be cambered in a hot forming process and cut (48) to length. The tubes may have tapered walls that are thinner at the blade tip (T1) than at the base (T2), reducing mass. A cap (50) may be attached to the blade tip. A mounting lug (58) may be forged (60) on the airfoil base and then machined, completing the blade for mounting in a turbine rotor disk.

  12. Hot-melt extrusion--basic principles and pharmaceutical applications.

    PubMed

    Lang, Bo; McGinity, James W; Williams, Robert O

    2014-09-01

    Originally adapted from the plastics industry, the use of hot-melt extrusion has gained favor in drug delivery applications both in academia and the pharmaceutical industry. Several commercial products made by hot-melt extrusion have been approved by the FDA, demonstrating its commercial feasibility for pharmaceutical processing. A significant number of research articles have reported on advances made regarding the pharmaceutical applications of the hot-melt extrusion processing; however, only limited articles have been focused on general principles regarding formulation and process development. This review provides an in-depth analysis and discussion of the formulation and processing aspects of hot-melt extrusion. The impact of physicochemical properties of drug substances and excipients on formulation development using a hot-melt extrusion process is discussed from a material science point of view. Hot-melt extrusion process development, scale-up, and the interplay of formulation and process attributes are also discussed. Finally, recent applications of hot-melt extrusion to a variety of dosage forms and drug substances have also been addressed.

  13. Eulerian hydrocode modeling of a dynamic tensile extrusion experiment (u)

    SciTech Connect

    Burkett, Michael W; Clancy, Sean P

    2009-01-01

    Eulerian hydrocode simulations utilizing the Mechanical Threshold Stress flow stress model were performed to provide insight into a dynamic extrusion experiment. The dynamic extrusion response of copper (three different grain sizes) and tantalum spheres were simulated with MESA, an explicit, 2-D Eulerian continuum mechanics hydrocode and compared with experimental data. The experimental data consisted of high-speed images of the extrusion process, recovered extruded samples, and post test metallography. The hydrocode was developed to predict large-strain and high-strain-rate loading problems. Some of the features of the features of MESA include a high-order advection algorithm, a material interface tracking scheme and a van Leer monotonic advection-limiting. The Mechanical Threshold Stress (MTS) model was utilized to evolve the flow stress as a function of strain, strain rate and temperature for copper and tantalum. Plastic strains exceeding 300% were predicted in the extrusion of copper at 400 m/s, while plastic strains exceeding 800% were predicted for Ta. Quantitative comparisons between the predicted and measured deformation topologies and extrusion rate were made. Additionally, predictions of the texture evolution (based upon the deformation rate history and the rigid body rotations experienced by the copper during the extrusion process) were compared with the orientation imaging microscopy measurements. Finally, comparisons between the calculated and measured influence of the initial texture on the dynamic extrusion response of tantalum was performed.

  14. MTBE OXIDATION BY BIFUNCTIONAL ALUMINUM

    EPA Science Inventory

    Bifunctional aluminum, prepared by sulfating zero-valent aluminum with sulfuric acid, has a dual functionality of simultaneously decomposing both reductively- and oxidatively-degradable contaminants. In this work, the use of bifunctional aluminum for the degradation of methyl te...

  15. High energy density aluminum battery

    SciTech Connect

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  16. Calibrator device for the extrusion of cable coatings

    NASA Astrophysics Data System (ADS)

    Garbacz, Tomasz; Dulebová, Ľudmila; Spišák, Emil; Dulebová, Martina

    2016-05-01

    This paper presents selected results of theoretical and experimental research works on a new calibration device (calibrators) used to produce coatings of electric cables. The aim of this study is to present design solution calibration equipment and present a new calibration machine, which is an important element of the modernized technology extrusion lines for coating cables. As a result of the extrusion process of PVC modified with blowing agents, an extrudate in the form of an electrical cable was obtained. The conditions of the extrusion process were properly selected, which made it possible to obtain a product with solid external surface and cellular core.

  17. [Enucleation: causes of extrusion of orbital implants (author's transl)].

    PubMed

    Hanselmayer, H; Ritzinger, I

    1978-02-01

    The frequency and the causes of extrusion of orbital implants have been investigated. Of the 294 patients in which enucleation was done, in 17 cases (5.8%) extrusion of the first implant developed; in 9 cases with second or third implantations another 5 implants have been extruded. The extrusion of implants is caused mainly by the operative technique and only rarely by intolerance reactions. For a reliable healing exact sutures of the muscles and also exact closure of the implant with plenty of covering tissue is important.

  18. Hot extrusion of B2 iron aluminide powders

    NASA Technical Reports Server (NTRS)

    Strothers, S.; Vedula, K.

    1987-01-01

    The objective of the study was to investigate the effect of powder and processing variables on the microstructure and resultant tensile properties of an extruded FeAlZrB alloy. For a given powder particle size, increasing the extrusion temperature from 1250 to 1450 K is found to increase the grain size and produce a more uniform microstructure. At high extrusion temperatures, where grain boundary mobility is high, powder size is not critical in determining the grain size. The addition of Y2O3 dispersion (1 vol pct) by mechanical alloying makes it possible to obtain very fine-grained materials at low and high extrusion temperatures.

  19. Analysis of Solid State Bonding in the Extrusion Process of Magnesium Alloys --Numerical Prediction and Experimental Verification

    NASA Astrophysics Data System (ADS)

    Alharthi, Nabeel H.

    The automotive industry developments focused on increasing fuel efficiency are accomplished by weight reduction of vehicles, which consequently results in less negative environmental impact. Usage of low density materials such as Magnesium alloys is an approach to replace heavier structural components. One of the challenges in deformation processing of Magnesium is its low formability attributed to the hexagonal close packed (hcp) crystal structure. The extrusion process is one of the most promising forming processes for Magnesium because it applies a hydrostatic compression state of stress during deformation resulting in improved workability. Many researchers have attempted to fully understand solid state bonding during deformation in different structural materials such as Aluminum, Copper and other metals and alloys. There is a lack of sufficient understanding of the extrusion welding in these materials as well as very limited knowledge on this subject for hollow profiles made from Magnesium alloys. The weld integrity and the characteristic of the welding microstructure are generally unknown. In this dissertation three related research projects are investigated by using different tools such as microstructure characterization, mechanical testing, thermo-mechanical physical simulation and finite element numerical modeling. Project 1: Microstructure characterization supported by mechanical testing of the extrusion welding regions in Magnesium alloy AM30 extrudate. The microstructure characterization was conducted using Light Optical Microscopy (LOM), in addition to LOM the electron backscattered diffraction (EBSD) technique was implemented to characterize in depth the deformed and welded microstructure. Project 2: Finite element numerical simulation of AM30 extrudate to model different process parameters and their influence on localized state variables such as strain, strain rate, temperature and normal pressure within the weld zone. Project 3: Physical simulation

  20. Is the Aluminum Hypothesis Dead?

    PubMed Central

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed with concern by some of the public. This review article discusses reasons that mainstream science has largely abandoned the Aluminum Hypothesis and explores a possible reason for some in the general public continuing to view aluminum with mistrust. PMID:24806729

  1. Anodizing Aluminum with Frills.

    ERIC Educational Resources Information Center

    Doeltz, Anne E.; And Others

    1983-01-01

    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are…

  2. Ultra-high strength Mg-9Gd-4Y-0.5Zr alloy with bi-modal structure processed by traditional extrusion

    NASA Astrophysics Data System (ADS)

    Hong, M.; Shah, S. S. A.; Wu, D.; Chen, R. S.; Du, X. H.; Hu, N. T.; Zhang, Y. F.

    2016-11-01

    It is usual to observe that multi-scale structures can lead to combined strength and ductility both in aluminum alloys and steels, but related research has been seldom reported yet in magnesium alloys. In this study, applying traditional one step extrusion, we have successfully obtained a bimodal (Mg-9Gd-4Y-0.5Zr) alloy capable of ultra-high strength. The characterized sample reveal a bi-modal microstructure with two constitutions, i.e. stretched coarse-grain region with strong basal fiber texture and recrystallization fine-grain region. The bi-modal structured sample exhibit excellent mechanical properties with an ultimate strength 508 MPa and elongation 8% via 400 °C extrusion and subsequently 200 °C-60 h peak aging process. Ultra-high strength can be attributed to its strong extrusion texture in stretched coarse grains and dispersed nano-scale precipitates. This unique bimodal structure could be produced easily by one step extrusion, which is quite reliable and low costs in industrial applications of magnesium alloys with ultra-high strength as well as ideal ductility.

  3. The Aluminum Smelting Process

    PubMed Central

    2014-01-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development. PMID:24806722

  4. Studies in reactive extrusion processing of biodegradable polymeric materials

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Sunder

    Various reaction chemistries such as Polymerization, Polymer cross-linking and Reactive grafting were investigated in twin-screw extruders. Poly (1,4-dioxan-2-one) (PPDX) was manufactured in melt by the continuous polymerization of 1,4-dioxan-2-one (PDX) monomer in a twin-screw extruder using Aluminum tri-sec butoxide (ATSB) initiator. Good and accurate control over molecular weight was obtained by controlling the ratio of monomer to initiator. A screw configuration consisting of only conveying elements was used for the polymerization. The polymerization reaction was characterized by a monomer-polymer dynamic equilibrium, above the melting temperature of the polymer, limiting the equilibrium conversion to 78-percent. Near complete (˜100-percent) conversion was obtained on co-polymerizing PDX monomer with a few mol-percent (around 8-percent) Caprolactone (CL) monomer in a twin-screw extruder using ATSB initiator. The co-polymers exhibited improved thermal stability with reduction in glass transition temperature. The extruder was modeled as an Axial Dispersed Plug Flow Reactor for the polymerization of CL monomer using Residence Time Distribution (RTD) Analysis. The model provided a good fit to the experimental RTD and conversion data. Aliphatic and aliphatic-aromatic co-polyesters, namely Polycaprolactone (PCL) and Poly butylenes (adipate-co-terephthalate) (Ecoflex) were cross-linked in a twin-screw extruder using radical initiator to form micro-gel reinforced biodegradable polyesters. Cross-linked Ecoflex was further extrusion blended with talc to form blends suitable to be blown into films. A screw configuration consisting of conveying and kneading elements was found to be effective in dispersion of the talc particles (5--10 microns) in the polyester matrix. While the rates of crystallization increased for the talc filled polyester blends, overall crystallinity reduced. Mechanical, tear and puncture properties of films made using the talc filled polyester blends

  5. A new technique for the strengthening of aluminum tungsten inert gas weld metals: using carbon nanotube/aluminum composite as a filler metal.

    PubMed

    Fattahi, M; Nabhani, N; Rashidkhani, E; Fattahi, Y; Akhavan, S; Arabian, N

    2013-01-01

    The effect of multi-walled carbon nanotube (MWCNT) on the mechanical properties of aluminum multipass weld metal prepared by the tungsten inert gas (TIG) welding process was investigated. High energy ball milling was used to disperse MWCNT in the aluminum powder. Carbon nanotube/aluminum composite filler metal was fabricated for the first time by hot extrusion of ball-milled powders. After welding, the tensile strength, microhardness and MWCNT distribution in the weld metal were investigated. The test results showed that the tensile strength and microhardness of weld metal was greatly increased when using the filler metal containing 1.5 wt.% MWCNT. Therefore, according to the results presented in this paper, it can be concluded that the filler metal containing MWCNT can serve as a super filler metal to improve the mechanical properties of TIG welds of Al and its alloys.

  6. Finite Element Analysis of Extrusion of Multifilamentary Superconductor Precursor

    SciTech Connect

    Peng, X.; Sumption, M.D.; Collings, E.W.

    2004-06-28

    The extrusion of multifilamentary superconductor precursor billets has been modeled using finite element analysis. The billet configuration was 6 around 1, with the subelement consisting of Nb rods, and the outer can or sleeve was Cu. Two general cases were investigated, those in which the re-stack rods were initially; (i) round, and (ii) hexed. A thermo-mechanical, elasto-plastic, finite-element method was used to analyze the extrusion process. In this 3D FEM model, the initial state of the billet was assumed to be absent of bonding. A typical die angle (2{alpha}=45 deg.) and a series of extrusion ratios were selected to perform the simulation and the corresponding stress and strain distributions of the two billet variants processed were compared. Based on the stress and deformation created at the rod/rod and rod/sleeve interfaces, the bonding conditions generated through the extrusion were investigated.

  7. Encapsulation of orange terpenes investigating a plasticisation extrusion process.

    PubMed

    Tackenberg, Markus W; Krauss, Ralph; Schuchmann, Heike P; Kleinebudde, Peter

    2015-01-01

    Extrusion is widely used for flavour encapsulation. However, there is a lack of process understanding. This study is aimed at improving the understanding of a counter rotating twin screw extrusion process. Orange terpenes as model flavour, maltodextrin and sucrose as matrix materials, and a water feed rate between 4.0% and 5.7% were applied. Product temperatures < 80 °C and specific mechanical energy inputs <260 Wh/kg resulted. Amorphous and partly crystalline samples were obtained. The loss of crystalline sucrose was linked to a dissolution process of the sugar in the available water amount. Melting of the excipients did not arise, resulting in a plasticisation extrusion process. Maximally 67% of the flavour was retained (corresponding to a 4.1% product flavour load). The flavour loss correlated with insufficient mixing during the process and flavour evaporation after extrusion. Based on these results, recommendations for an improved encapsulation process are given.

  8. Historical review of die drool phenomenon during plastics extrusion

    NASA Astrophysics Data System (ADS)

    Musil, Jan; Zatloukal, Martin

    2013-04-01

    Die drool phenomenon is defined as unwanted spontaneous accumulation of extruded polymer melt on open faces of extrusion die during extrusion process. Such accumulated material builds up on the die exit and frequently or continually sticks onto the extruded product and thus damages it. Since die drool appears, extrusion process must be shut down and die exit must be manually cleaned which is time and money consuming. Although die drool is complex phenomenon and its formation mechanism is not fully understood yet, variety of proposed explanations of its formation mechanism and also many ways to its elimination can be found in open literature. Our review presents in historical order breakthrough works in the field of die drool research, shows many ways to suppress it, introduces methods for its quantitative evaluation and composition analysis and summarizes theories of die drool formation mechanism which can be helpful for extrusion experts.

  9. Initiator Effects in Reactive Extrusion of Starch Graft Copolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Graft copolymers of starch with water-soluble polymers such as polyacrylamide have potential applications including hydrogels, superabsorbents, and thickening agents. Reactive extrusion is a rapid, continuous method for production of starch graft copolymers with high reaction and grafting efficienc...

  10. Method and Apparatus for Die Forming Metal Sheets and Extrusions.

    DTIC Science & Technology

    of a variety of die blocks for introducing a variety of angled joggles in the metal sheets and extrusions. Relatively low melting temperature material is used for the castings. Keywords: Patents; Aircraft parts. (kt)

  11. Some studies on hot extrusion of rapidly solidified Mg alloys

    NASA Astrophysics Data System (ADS)

    Kumar, Surendra

    2006-02-01

    Rapidly solidified magnesium alloys show great potential for application in automotive and aerospace industries. In this study, Mg-Al-Zn alloys (AZ91) were rapidly solidified by a melt-spinning process to form ribbons. Pulverized ribbons were cold-compacted and then hot-extruded to form rods. During extrusion, a specially designed die with constant strain rate profile was used and found to be advantageous. By properly establishing the complete process, extruded rods of rapidly solidified AZ91 alloys exhibiting good combination of room temperature strength and ductility were produced. Microstructural investigations were carried out on melt-spun ribbons and extruded rods. Effects of extrusion die shape, extrusion ratio, and extrusion temperature on mechanical properties of the extruded rods were also investigated.

  12. FORMING TUBES AND RODS OF URANIUM METAL BY EXTRUSION

    DOEpatents

    Creutz, E.C.

    1959-01-27

    A method and apparatus are presented for the extrusion of uranium metal. Since uranium is very brittle if worked in the beta phase, it is desirable to extrude it in the gamma phase. However, in the gamma temperature range thc uranium will alloy with the metal of the extrusion dic, and is readily oxidized to a great degree. According to this patent, uranium extrusion in thc ganmma phase may be safely carried out by preheating a billet of uranium in an inert atmosphere to a trmperature between 780 C and 1100 C. The heated billet is then placed in an extrusion apparatus having dies which have been maintained at an elevated temperature for a sufficient length of time to produce an oxide film, and placing a copper disc between the uranium billet and the die.

  13. Applications of polymer extrusion technology to coal processing

    NASA Technical Reports Server (NTRS)

    Lewis, D. W.

    1981-01-01

    Upon heating, many of the middle-aged bituminous coals exhibit a plasticity very similar to polyethylene for a few minutes. Plastic coal can be extruded, pelletized or molded using common plastics technology and equipment. Investigations concerning the plastic state of coals are conducted with the objective to develop techniques which will make useful commercial applications of this property possible. Experiments which show the characteristics of plastic-state coal are discussed, and problems related to a continuous extrusion of coal are considered. Probably the most significant difference between the continuous extrusion of coal and the extrusion of a thermoplastic polymer is that volatiles are continuously being released from the coal. Attention is given to aspects of dragflow, solids feeding, and melt pumping. Application potentials for plastic coal extrusion might be related to coal gasification, direct liquefaction, and coal combustion.

  14. Extrusion of complex preforms for microstructured optical fibers.

    PubMed

    Ebendorff-Heidepriem, Heike; Monro, Tanya M

    2007-11-12

    We report a significant advance in preform extrusion and die design, which has allowed for the first time the fabrication of complex structured preforms using soft glass and polymer billets. Structural preform distortions are minimized by adjustment of the material flow within the die. The low propagation loss of an extruded complex bismuth glass fiber demonstrates the potential of this advanced extrusion technique for the fabrication of novel soft glass and polymer microstructured fiber designs.

  15. Making Ceramic/Polymer Parts By Extrusion Stereolithography

    NASA Technical Reports Server (NTRS)

    Stuffle, Kevin; Mulligan, A.; Creegan, P.; Boulton, J. M.; Lombardi, J. L.; Calvert, P. D.

    1996-01-01

    Extrusion stereolithography developmental method of computer-controlled manufacturing of objects out of ceramic/polymer composite materials. Computer-aided design/computer-aided manufacturing (CAD/CAM) software used to create image of desired part and translate image into motion commands for combination of mechanisms moving resin dispenser. Extrusion performed in coordination with motion of dispenser so buildup of extruded material takes on size and shape of desired part. Part thermally cured after deposition.

  16. VIEW OF THE INSTALLATION OF AN EXTRUSION PRESS IN THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE INSTALLATION OF AN EXTRUSION PRESS IN THE HIGH BAY AREA OF BUILDING 865. THE EXTRUSION PRESS WAS USED TO PRODUCE CYLINDRICAL BARS, HOLLOW TUBES, AND SHAPES WITH IRREGULAR CROSS-SECTIONS BY FORCING PREHEATED METAL THROUGH A DIE ORIFICE UNDER HIGH PRESSURE. (5/22/70) - Rocky Flats Plant, Metal Research & Development Laboratory, South of Central Avenue at south end of terminus of Ninth Avenue, Golden, Jefferson County, CO

  17. Clinical biochemistry of aluminum

    SciTech Connect

    King, S.W.; Savory, J.; Wills, M.R.

    1981-05-01

    Aluminum toxicity has been implicated in the pathogenesis of a number of clinical disorders in patients with chronic renal failure on long-term intermittent hemodialysis treatment. The predominant disorders have been those involving either bone (osteomalacic dialysis osteodystrophy) or brain (dialysis encephalopathy). In nonuremic patients, an increased brain aluminum concentration has been implicated as a neurotoxic agent in the pathogenesis of Alzheimer's disease and was associated with experimental neurofibrillary degeneration in animals. The brain aluminum concentrations of patients dying with the syndrome of dialysis encephalopathy (dialysis dementia) are significantly higher than in dialyzed patients without the syndrome and in nondialyzed patients. Two potential sources for the increased tissue content of aluminum in patients on hemodialysis have been proposed: (1) intestinal absorption from aluminum containing phosphate-binding gels, and (2) transfer across the dialysis membrane from aluminum in the water used to prepare the dialysate. These findings, coupled with our everyday exposure to the ubiquitous occurrence of aluminum in nature, have created concerns over the potential toxicity of this metal.

  18. Encapsulation of Liquids Via Extrusion--A Review.

    PubMed

    Tackenberg, Markus W; Kleinebudde, Peter

    2015-01-01

    Various encapsulation techniques are known for pharmaceutical applications. Extrusion is of minor importance. However, extrusion is used to obtain granules with encapsulate liquid active ingredients (AI) like essential oils and flavours for food applications since decades. Many of these AIs can be used for agrochemical, home care, and pharmaceutical products, too. Thus, the focus of this review is on the interdisciplinary presentation and evaluation of the available knowledge about the encapsulation process via extrusion. The desired microcapsule structure is discussed at the outset. The microcapsule is compared to the alternative glassy solid solution system, before an overview of suitable excipients is given. In the next section the development of the extrusion technique, used for encapsulation processes, is presented. Thereby, the focus is on encapsulation using twin-screw extruders. Additionally, the influence of the downstream processes on the products is discussed, too. The understanding of the physical processes during extrusion is essential for specifically adjustment of the desired product properties and thus, highlighted in this paper. Unfortunately not all processes, especially the mixing process, are well studied. Suggestions for further studies, to improve process understanding and product quality, are given, too. The last part of this review focuses on the characterization of the obtained granules, especially AI content, encapsulation efficiency, and storage stability. In conclusion, extrusion is a standard technique for flavour encapsulation, but future studies, may lead to more (pharmaceutical) applications and new products.

  19. Experimental and numerical investigation of ram extrusion of bread dough

    NASA Astrophysics Data System (ADS)

    Mohammed, M. A. P.; Wanigasooriya, L.; Charalambides, M. N.

    2016-10-01

    An experimental and numerical study on ram extrusion of bread dough was conducted. A laboratory ram extrusion rig was designed and manufactured, where dies with different angles and exit radii were employed. Rate dependent behaviour was observed from tests conducted at different extrusion speeds, and higher extrusion pressure was reported for dies with decreasing exit radius. A finite element simulation of extrusion was performed using the adaptive meshing technique in Abaqus. Simulations using a frictionless contact between the billet and die wall showed that the model underestimates the response at high entry angles. On the other hand, when the coefficient of friction value was set to 0.09 as measured from friction experiments, the dough response was overestimated, i.e. the model extrusion pressure was much higher than the experimentally measured values. When a critical shear stress limit, τmax, was used, the accuracy of the model predictions improved. The results showed that higher die angles require higher τmax values for the model and the experiments to agree.

  20. Residence time modeling of hot melt extrusion processes.

    PubMed

    Reitz, Elena; Podhaisky, Helmut; Ely, David; Thommes, Markus

    2013-11-01

    The hot melt extrusion process is a widespread technique to mix viscous melts. The residence time of material in the process frequently determines the product properties. An experimental setup and a corresponding mathematical model were developed to evaluate residence time and residence time distribution in twin screw extrusion processes. The extrusion process was modeled as the convolution of a mass transport process described by a Gaussian probability function, and a mixing process represented by an exponential function. The residence time of the extrusion process was determined by introducing a tracer at the extruder inlet and measuring the tracer concentration at the die. These concentrations were fitted to the residence time model, and an adequate correlation was found. Different parameters were derived to characterize the extrusion process including the dead time, the apparent mixing volume, and a transport related axial mixing. A 2(3) design of experiments was performed to evaluate the effect of powder feed rate, screw speed, and melt viscosity of the material on the residence time. All three parameters affect the residence time of material in the extruder. In conclusion, a residence time model was developed to interpret experimental data and to get insights into the hot melt extrusion process.

  1. Effect of Zr addition on the mechanical characteristics and wear resistance of Al grain refined by Ti after extrusion

    NASA Astrophysics Data System (ADS)

    Zaid, Adnan I. O.; Al-Qawabah, S. M. A.

    2016-08-01

    Aluminum and its alloys are normally grain refined by Ti or Ti+B to transfer their columnar structure during solidification into equiaxed one which improves their mechanical behavior and surface quality. In this paper, the effect of addition of Zr on the metallurgical, and mechanical aspects, hardness, ductility and wear resistance of commercially pure aluminum grain refined by Ti after extrusion is investigated. Zr was added at a level of 0.1% which corresponds to the peretectic limit at the Al-Zr phase diagram. The experimental work was carried out on the specimens after direct extrusion. It was found that addition of Ti resulted in decrease of Al grain size, whereas addition of Zr alone or in the presence of Ti, resulted in reduction of Al grain size. This led to increase of Al hardness. The effect of the addition of Ti or Zr alone resulted almost in the same enhancement of Al mechanical characteristics. As for the strain hardening index,n, increase was obtained when Zr was added alone or in the presence of Ti. Hence pronounced improvement of its formability. Regarding the effect of Zr addition on the wear resistance of aluminum; it was found that at small loads and speeds addition of Ti or Zr or both together resulted in deterioration of its wear resistance whereas at higher loads and speeds resulted in pronounced improvement of its wear resistance. Finally, the available Archard model and the other available models which consider only the mass loss failed to describe the wear mechanism of Al and its micro-alloys because they do not consider the mushrooming effect at the worn end.

  2. The effect of gas assisted length on polymer melt extrusion based on the gas-assisted extrusion technique

    NASA Astrophysics Data System (ADS)

    Wan, B.; Ren, Z.; Liu, G. D.; Huang, X. Y.

    2017-02-01

    In this study, the gas-assisted technique was used into the process of polymer melt extrusion to overcome the extrudate swell problem. The gas length is an important factors in the gas-assisted extrusion technique. To ascertain the mechanism of the gas-assisted extrusion technique, and to determine the optimal gas length, the effect of gas length on the extrudate swell ratio of melt was numerically investigated. In finite element numerical simulation, PTT constitutive model and full slip boundary condition were used to achieve the gas-assisted mode. Compared with the traditional no gas-assisted extrusion, numerical results showed that the extrudate swell problem was well eliminated by the gas-assisted method. Moreover, the extrudate swell of melt decreased with the increasing of the gas length because the pressure and shear stress of melt were greatly decreased. Moreover, the flow velocity of melt is uniform at the die outlet.

  3. 78 FR 66895 - Aluminum Extrusions From the People's Republic of China: Preliminary Results of Changed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ....0, 295.0, 308.0, 355.0, C355.0, 356.0, A356.0, A357.0, 360.0, 366.0, 380.0, A380.0, 413.0, 443.0... not more than 3.0 percent of total materials by weight. The subject merchandise is made from an... magnesium and silicon as the major alloying elements, with magnesium accounting for......

  4. 78 FR 51143 - Aluminum Extrusions From the People's Republic of China: Initiation of Changed Circumstances...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-20

    ....0, 295.0, 308.0, 355.0, C355.0, 356.0, A356.0, A357.0, 360.0, 366.0, 380.0, A380.0, 413.0, 443.0... manganese accounting for not more than 3.0 percent of total materials by weight. The subject merchandise is... least 0.1 percent but not more than 2.0 percent of total......

  5. 76 FR 30653 - Aluminum Extrusions From the People's Republic of China: Countervailing Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ..., 308.0, 355.0, C355.0, 356.0, A356.0, A357.0, 360.0, 366.0, 380.0, A380.0, 413.0, 443.0, 514.0, 518.1... contains manganese as the major alloying element, with manganese accounting for not more than 3.0 percent... alloying elements, with magnesium accounting for at least 0.1 percent......

  6. 76 FR 80887 - Antidumping Order on Aluminum Extrusions from the People's Republic of China: Initiation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ..., 355.0, C355.0, 356.0, A356.0, A357.0, 360.0, 366.0, 380.0, A380.0, 413.0, 443.0, 514.0, 518.1, and 712... contains manganese as the major alloying element, with manganese accounting for not more than 3.0 percent... alloying elements, with magnesium accounting for at least 0.1 percent but......

  7. 75 FR 22114 - Aluminum Extrusions from the People's Republic of China: Initiation of Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ... subsidies and that such imports are causing, or threaten to cause, material injury to the domestic industry..., declining capacity, production, shipments, underselling and price depression or suppression, reduced... to cause material injury, to a U.S. industry. See section 703(a)(2) of the Act. A negative...

  8. Cast Aluminum Bonding Study

    DTIC Science & Technology

    1988-05-01

    fabricated using P?-’r;est11 bur)ld II19 te(hnll I Oly with 6 cIsL nqs. The cast a lumi num alloy used was A357 . The sur- face preparation was phosphoric acid...from a cast aluminum alloy designated A357 . The bonding surfaces of the adherends were prepared using PAA. One primer and two adhesives considered...System, Cast Aluminum Lap Shear 18 11 Bond Area of 350°F Adhesive System, Cast Aluminum Lap Shear 19 vi LIST OF TABLES TABLE PAGE 1 A357 Chemical

  9. Purifying Aluminum by Vacuum Distillation

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1985-01-01

    Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.

  10. A cryogenic fiber maker for continuous extrusion

    NASA Astrophysics Data System (ADS)

    Aliaga-Rossel, R.; Bayley, J.

    1998-06-01

    A cryogenic fiber maker that continuously extrudes fibers is presented. The design of the fiber maker is based on the use of two cooling stages maintained at different temperatures. The fiber maker consists of two copper reservoirs that are connected in series and are kept at different temperatures. The first reservoir is used to liquefy the gas coming in from an external gas line. The second reservoir is colder than the first; here, the liquid that comes from the first reservoir is frozen and later extruded using the pressure of the external line gas supply. A two-stage closed-cycle refrigerator (a Gifford-McMahon cooler), which uses helium as a working fluid, is used as a cooling system. The frozen gas is extruded through a stainless-steel capillary nozzle with internal diameters between 50 and 250 μm and a length of 2 mm. The temperature of the two reservoirs is set independently, which permits the extrusion rate of the fibers to be controlled and to produce the fibers continuously. Using this system, hydrogen, deuterium, nitrogen, and argon fibers of various diameters were extruded.

  11. Orthodontic extrusion of horizontally impacted mandibular molars

    PubMed Central

    Ma, Zhigui; Yang, Chi; Zhang, Shanyong; Xie, Qianyang; Shen, Yuqing; Shen, Pei

    2014-01-01

    Objective: To introduce and evaluate a novel approach in treating horizontally impacted mandibular second and third molars. Materials and methods: An orthodontic technique was applied for treatment of horizontally impacted mandibular second and third molars, which included a push-type spring for rotation first, and then a cantilever for extrusion. There were 8 mandibular third molars (M3s) and 2 second molars (M2s) in this study. Tooth mobility, extraction time, the inclination and parallelism of the impacted tooth, alveolar bone height of the adjacent tooth, and the relationship of impacted M3 and the inferior alveolar nerve (IAN) were evaluated. Results: Two horizontally impacted M2s could be upright in the arch and good occlusal relationships were obtained after treatment. All impacted M3s were successfully separated from the IAN, without any neurologic consequences. The average extraction time was 5 minutes. There was a significant change in the inclination and parallelism of the impacted tooth after treatment. A new bone apposition with the average height of 3.2 mm was noted distal to the adjacent tooth. Conclusions: This two-step orthodontic technique as presented here may be a safe and feasible alternative in management of severely horizontally impacted mandibular molars, which achieves a successful separation of M3s from the IAN and an excellent position for M2s. PMID:25419364

  12. Melt extrusion with poorly soluble drugs.

    PubMed

    Shah, Sejal; Maddineni, Sindhuri; Lu, Jiannan; Repka, Michael A

    2013-08-30

    Melt extrusion (ME) over recent years has found widespread application as a viable drug delivery option in the drug development process. ME applications include taste masking, solid-state stability enhancement, sustained drug release and solubility enhancement. While ME can result in amorphous or crystalline solid dispersions depending upon several factors, solubility enhancement applications are centered around generating amorphous dispersions, primarily because of the free energy benefits they offer. In line with the purview of the current issue, this review assesses the utility of ME as a means of enhancing solubility of poorly soluble drugs/chemicals. The review describes major processing aspects of ME technology, definition and understanding of the amorphous state, manufacturability, analytical characterization and biopharmaceutical performance testing to better understand the strength and weakness of this formulation strategy for poorly soluble drugs. In addition, this paper highlights the potential advantages of employing a fusion of techniques, including pharmaceutical co-crystals and spray drying/solvent evaporation, facilitating the design of formulations of API exhibiting specific physico-chemical characteristics. Finally, the review presents some successful case studies of commercialized ME based products.

  13. Mitotic chromosome compaction via active loop extrusion

    NASA Astrophysics Data System (ADS)

    Goloborodko, Anton; Imakaev, Maxim; Marko, John; Mirny, Leonid; MIT-Northwestern Team

    During cell division, two copies of each chromosome are segregated from each other and compacted more than hundred-fold into the canonical X-shaped structures. According to earlier microscopic observations and the recent Hi-C study, chromosomes are compacted into arrays of consecutive loops of ~100 kilobases. Mechanisms that lead to formation of such loop arrays are largely unknown. Here we propose that, during cell division, chromosomes can be compacted by enzymes that extrude loops on chromatin fibers. First, we use computer simulations and analytical modeling to show that a system of loop-extruding enzymes on a chromatin fiber self-organizes into an array of consecutive dynamic loops. Second, we model the process of loop extrusion in 3D and show that, coupled with the topo II strand-passing activity, it leads to robust compaction and segregation of sister chromatids. This mechanism of chromosomal condensation and segregation does not require additional proteins or specific DNA markup and is robust against variations in the number and properties of such loop extruding enzymes. Work at NU was supported by the NSF through Grants DMR-1206868 and MCB-1022117, and by the NIH through Grants GM105847 and CA193419. Work at MIT was supported by the NIH through Grants GM114190 R01HG003143.

  14. Corrosion Inhibitors for Aluminum.

    ERIC Educational Resources Information Center

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  15. Walnut Hulls Clean Aluminum

    NASA Technical Reports Server (NTRS)

    Colberg, W. R.; Gordon, G. H.; Jackson, C. H.

    1984-01-01

    Hulls inflict minimal substrate damage. Walnut hulls found to be best abrasive for cleaning aluminum surfaces prior to painting. Samples blasted with walnut hulls showed no compressive stress of surface.

  16. Aluminum powder applications

    SciTech Connect

    Gurganus, T.B.

    1995-08-01

    Aluminum powders have physical and metallurgical characteristics related to their method of manufacture that make them extremely important in a variety of applications. They can propel rockets, improve personal hygiene, increase computer reliability, refine exotic alloys, and reduce weight in the family sedan or the newest Air Force fighter. Powders formed into parts for structural and non-structural applications hold the key to some of the most exciting new developments in the aluminum future.

  17. CORROSION PROTECTION OF ALUMINUM

    DOEpatents

    Dalrymple, R.S.; Nelson, W.B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  18. Corrosion Protection of Aluminum

    DOEpatents

    Dalrymple, R. S.; Nelson, W. B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred.

  19. Microstructure evolution and thixoforming behavior of 7075 aluminum alloy in the semi-solid state prepared by RAP method

    NASA Astrophysics Data System (ADS)

    Fu, Jin-long; Wang, Kai-kun; Li, Xiao-wei; Zhang, Hai-kuan

    2016-12-01

    The effects of isothermal treatments on the microstructural evolution and coarsening rate of semi-solid 7075 aluminum alloy produced via the recrystallization and partial remelting (RAP) process were investigated. Samples of 7075 aluminum alloy were subjected to cold extrusion, and semi-solid treatment was carried out for 5-30 min at temperatures ranging from 580 to 605°C. A backward-extrusion experiment was conducted to investigate liquid segregation during the thixoforming process. The results revealed that obvious grain coarsening and spheroidization occurred during prolonged isothermal treatments. In addition, higher soaking temperatures promoted the spheroidization and coarsening process because of the increased liquid fraction and the melting of second phases. Segregation of the liquid phase caused by the difference in fluidity between the liquid and the solid phases was observed in different regions of the thixoformed specimens.

  20. Sediment Core Extrusion Method at Millimeter Resolution Using a Calibrated, Threaded-rod

    PubMed Central

    Schwing, Patrick T.; Romero, Isabel C.; Larson, Rebekka A.; O'Malley, Bryan J.; Fridrik, Erika E.; Goddard, Ethan A.; Brooks, Gregg R.; Hastings, David W.; Rosenheim, Brad E.; Hollander, David J.; Grant, Guy; Mulhollan, Jim

    2016-01-01

    Aquatic sediment core subsampling is commonly performed at cm or half-cm resolution. Depending on the sedimentation rate and depositional environment, this resolution provides records at the annual to decadal scale, at best. An extrusion method, using a calibrated, threaded-rod is presented here, which allows for millimeter-scale subsampling of aquatic sediment cores of varying diameters. Millimeter scale subsampling allows for sub-annual to monthly analysis of the sedimentary record, an order of magnitude higher than typical sampling schemes. The extruder consists of a 2 m aluminum frame and base, two core tube clamps, a threaded-rod, and a 1 m piston. The sediment core is placed above the piston and clamped to the frame. An acrylic sampling collar is affixed to the upper 5 cm of the core tube and provides a platform from which to extract sub-samples. The piston is rotated around the threaded-rod at calibrated intervals and gently pushes the sediment out the top of the core tube. The sediment is then isolated into the sampling collar and placed into an appropriate sampling vessel (e.g., jar or bag). This method also preserves the unconsolidated samples (i.e., high pore water content) at the surface, providing a consistent sampling volume. This mm scale extrusion method was applied to cores collected in the northern Gulf of Mexico following the Deepwater Horizon submarine oil release. Evidence suggests that it is necessary to sample at the mm scale to fully characterize events that occur on the monthly time-scale for continental slope sediments. PMID:27585268

  1. Sediment Core Extrusion Method at Millimeter Resolution Using a Calibrated, Threaded-rod.

    PubMed

    Schwing, Patrick T; Romero, Isabel C; Larson, Rebekka A; O'Malley, Bryan J; Fridrik, Erika E; Goddard, Ethan A; Brooks, Gregg R; Hastings, David W; Rosenheim, Brad E; Hollander, David J; Grant, Guy; Mulhollan, Jim

    2016-08-17

    Aquatic sediment core subsampling is commonly performed at cm or half-cm resolution. Depending on the sedimentation rate and depositional environment, this resolution provides records at the annual to decadal scale, at best. An extrusion method, using a calibrated, threaded-rod is presented here, which allows for millimeter-scale subsampling of aquatic sediment cores of varying diameters. Millimeter scale subsampling allows for sub-annual to monthly analysis of the sedimentary record, an order of magnitude higher than typical sampling schemes. The extruder consists of a 2 m aluminum frame and base, two core tube clamps, a threaded-rod, and a 1 m piston. The sediment core is placed above the piston and clamped to the frame. An acrylic sampling collar is affixed to the upper 5 cm of the core tube and provides a platform from which to extract sub-samples. The piston is rotated around the threaded-rod at calibrated intervals and gently pushes the sediment out the top of the core tube. The sediment is then isolated into the sampling collar and placed into an appropriate sampling vessel (e.g., jar or bag). This method also preserves the unconsolidated samples (i.e., high pore water content) at the surface, providing a consistent sampling volume. This mm scale extrusion method was applied to cores collected in the northern Gulf of Mexico following the Deepwater Horizon submarine oil release. Evidence suggests that it is necessary to sample at the mm scale to fully characterize events that occur on the monthly time-scale for continental slope sediments.

  2. Influence of degassing on hot-melt extrusion process.

    PubMed

    Alshahrani, Saad M; Morott, Joseph T; Alshetaili, Abdullah S; Tiwari, Roshan V; Majumdar, Soumyajit; Repka, Michael A

    2015-12-01

    The present study aimed to evaluate the effect of degassing on an extrusion process, with respect to extrudate quality and drug release properties. Processed formulations were extruded with and without a degassing vent port at various locations along the barrel. All the experiments were performed under constant processing temperature, feeding rate, and screw speed. During the extrusion process, torque and pressure were monitored and recorded. The degassing process was beneficial when used over a conveying section after a mixing section. This is attributed to the large surface area available on the conveying elements, which minimizes the internal volume of the processed material, thereby facilitating the escape of entrapped gases. Degassing enhanced the homogeneity, physical appearance, and drug release properties of all the formulations. Furthermore, the degassing process also enhanced the cross-sectional uniformity of the extruded material, which is beneficial for visual monitoring during processing. Degassing considerably reduced the post-extrusion moisture content of Formula D3, which contains the highly hygroscopic polymer Kollidon® 17 PF, suggesting that the greatest influence of this process is on hygroscopic materials. The reduction in post-extrusion moisture content resulting from the inclusion of a degassing vent port, reduced fluctuations in the values of in-line monitoring parameters such as pressure and torque. Employing a degassing unit during hot-melt extrusion processing could help increase process efficacy and product quality.

  3. Abl suppresses cell extrusion and intercalation during epithelium folding

    PubMed Central

    Jodoin, Jeanne N.; Martin, Adam C.

    2016-01-01

    Tissue morphogenesis requires control over cell shape changes and rearrangements. In the Drosophila mesoderm, linked epithelial cells apically constrict, without cell extrusion or intercalation, to fold the epithelium into a tube that will then undergo epithelial-to-mesenchymal transition (EMT). Apical constriction drives tissue folding or cell extrusion in different contexts, but the mechanisms that dictate the specific outcomes are poorly understood. Using live imaging, we found that Abelson (Abl) tyrosine kinase depletion causes apically constricting cells to undergo aberrant basal cell extrusion and cell intercalation. abl depletion disrupted apical–basal polarity and adherens junction organization in mesoderm cells, suggesting that extruding cells undergo premature EMT. The polarity loss was associated with abnormal basolateral contractile actomyosin and Enabled (Ena) accumulation. Depletion of the Abl effector Enabled (Ena) in abl-depleted embryos suppressed the abl phenotype, consistent with cell extrusion resulting from misregulated ena. Our work provides new insight into how Abl loss and Ena misregulation promote cell extrusion and EMT. PMID:27440923

  4. A new method to maintain lubricant layer in extrusion process

    NASA Astrophysics Data System (ADS)

    Norhayati, A.; Wira, J. Y.; Zin, H. M.; Syahrullail, S.

    2012-06-01

    The present research concerns on the study of the effects of micro-pits arrays formed on the taper die surface. The micro-pits are diamond in shape. The evaluation of micro-pits was carried out by cold forward plane strain extrusion experiments. The experimental results were compared with the results obtained from the plane strain extrusion experimental works with taper die without micro-pits. The lubricant used in this experimental works is additive free paraffinic mineral oil. The experimental results are focusing on the extrusion load, billet surface roughness and grid pattern observation. From the result, the existence of the micro-pits influenced the extrusion load. At the same time, the micro-pits array affected the work piece surface roughness after the extrusion process. The lubricant viscosity also manipulates the quality of work piece after the experiments. From this works, we could conclude that the micro-pits formed on the taper die would create different frictional constraint compared to those without the micro-pits.

  5. Mitochondrial Extrusion through the cytoplasmic vacuoles during cell death.

    PubMed

    Nakajima, Akihito; Kurihara, Hidetake; Yagita, Hideo; Okumura, Ko; Nakano, Hiroyasu

    2008-08-29

    Under various conditions, noxious stimuli damage mitochondria, resulting in mitochondrial fragmentation; however, the mechanisms by which fragmented mitochondria are eliminated from the cells remain largely unknown. Here we show that cytoplasmic vacuoles originating from the plasma membrane engulfed fragmented mitochondria and subsequently extruded them into the extracellular spaces in undergoing acute tumor necrosis factor alpha-induced cell death in a caspase-dependent fashion. Notably, upon fusion of the membrane encapsulating mitochondria to the plasma membrane, naked mitochondria were released into the extracellular spaces in an exocytotic manner. Mitochondrial extrusion was specific to tumor necrosis factor alpha-induced cell death, because a genotoxic stress-inducing agent such as cisplatin did not elicit mitochondrial extrusion. Moreover, intact actin and tubulin cytoskeletons were required for mitochondrial extrusion as well as membrane blebbing. Furthermore, fragmented mitochondria were engulfed by cytoplasmic vacuoles and extruded from hepatocytes of mice injected with anti-Fas antibody, suggesting that mitochondrial extrusion can be observed in vivo under pathological conditions. Mitochondria are eliminated during erythrocyte maturation under physiological conditions, and anti-mitochondrial antibody is detected in some autoimmune diseases. Thus, elucidating the mechanism underlying mitochondrial extrusion will open a novel avenue leading to better understanding of various diseases caused by mitochondrial malfunction as well as mitochondrial biology.

  6. Aluminum, parathyroid hormone, and osteomalacia

    SciTech Connect

    Burnatowska-Hledin, M.A.; Kaiser, L.; Mayor, G.H.

    1983-01-01

    Aluminum exposure in man is unavoidable. The occurrence of dialysis dementia, vitamin D-resistant osteomalacia, and hypochromic microcytic anemia in dialysis patients underscores the potential for aluminum toxicity. Although exposure via dialysate and hyperalimentation leads to significant tissue aluminum accumulation, the ubiquitous occurrence of aluminum and the severe pathology associated with large aluminum burdens suggest that smaller exposures via the gastrointestinal tract and lungs could represent an important, though largely unrecognized, public health problem. It is clear that some aluminum absorption occurs with the ingestion of small amounts of aluminum in the diet and medicines, and even greater aluminum absorption is seen in individuals consuming large amounts of aluminum present in antacids. Aluminum absorption is enhanced in the presence of elevated circulating parathyroid hormone. In addition, elevated PTH leads to the preferential deposition of aluminum in brain and bone. Consequently, PTH is likely to be involved in the pathogenesis of toxicities in those organs. PTH excess also seems to lead to the deposition of aluminum in the parathyroid gland. The in vitro demonstration that aluminum inhibits parathyroid hormone release is consistent with the findings of a euparathyroid state in dialysis patients with aluminum related vitamin D-resistant osteomalacia. Nevertheless, it seems likely that hyperparathyroidism is at least initially involved in the pathogenesis of aluminum neurotoxicity and osteomalacia; the increases in tissue aluminum stores are followed by suppression of parathyroid hormone release, which is required for the evolution of osteomalacia. Impaired renal function is not a prerequisite for increased tissue aluminum burdens, nor for aluminum-related organ toxicity. Consequently, it is likely that these diseases will be observed in populations other than those with chronic renal disease.

  7. Fatal aluminum phosphide poisoning.

    PubMed

    Anger, F; Paysant, F; Brousse, F; Le Normand, I; Develay, P; Gaillard, Y; Baert, A; Le Gueut, M A; Pepin, G; Anger, J P

    2000-03-01

    A 39-year-old man committed suicide by ingestion of aluminum phosphide, a potent mole pesticide, which was available at the victim's workplace. The judicial authority ordered an autopsy, which ruled out any other cause of death. The victim was discovered 10 days after the ingestion of the pesticide. When aluminum phosphide comes into contact with humidity, it releases large quantities of hydrogen phosphine (PH3), a very toxic gas. Macroscopic examination during the autopsy revealed a very important asphyxia syndrome with major visceral congestion. Blood, urine, liver, kidney, adrenal, and heart samples were analyzed. Phosphine gas was absent in the blood and urine but present in the brain (94 mL/g), the liver (24 mL/g), and the kidneys (41 mL/g). High levels of phosphorus were found in the blood (76.3 mg/L) and liver (8.22 mg/g). Aluminum concentrations were very high in the blood (1.54 mg/L), brain (36 microg/g), and liver (75 microg/g) compared to the usual published values. Microscopic examination revealed congestion of all the organs studied and obvious asphyxia lesions in the pulmonary parenchyma. All these results confirmed a diagnosis of poisoning by aluminum phosphide. This report points out that this type of poisoning is rare and that hydrogen phosphine is very toxic. The phosphorus and aluminum concentrations observed and their distribution in the different viscera are discussed in relation to data in the literature.

  8. Microfabrication of three-dimensional filters for liposome extrusion

    NASA Astrophysics Data System (ADS)

    Baldacchini, Tommaso; Nuñez, Vicente; LaFratta, Christopher N.; Grech, Joseph S.; Vullev, Valentine I.; Zadoyan, Ruben

    2015-03-01

    Liposomes play a relevant role in the biomedical field of drug delivery. The ability of these lipid vesicles to encapsulate and transport a variety of bioactive molecules has fostered their use in several therapeutic applications, from cancer treatments to the administration of drugs with antiviral activities. Size and uniformity are key parameters to take into consideration when preparing liposomes; these factors greatly influence their effectiveness in both in vitro and in vivo experiments. A popular technique employed to achieve the optimal liposome dimension (around 100 nm in diameter) and uniform size distribution is repetitive extrusion through a polycarbonate filter. We investigated two femtosecond laser direct writing techniques for the fabrication of three-dimensional filters within a microfluidics chip for liposomes extrusion. The miniaturization of the extrusion process in a microfluidic system is the first step toward a complete solution for lab-on-a-chip preparation of liposomes from vesicles self-assembly to optical characterization.

  9. Development of extrusion molded Nd-Fe-B magnets

    SciTech Connect

    Sakata, M.; Ikuma, K. ); Watanabe, R.; Iwasa, T.; Miyadera, H.; McAloon, K.

    1993-01-01

    A new manufacturing process for extrusion molded magnets, composed of isotropic Nd-Fe-B powder and Nylon-12, has been developed. This newly developed extrusion molding process has several interesting features. First, the extruded product contains 72% by volume magnetic powder and yields a (BH)[sub max] of 8.0 MGO[sub e]. Second, through the addition of an anti-oxidant, the viscosity of the magnetic powder-nylon compound remains almost constant during molding. Third, by means of a specially cooled outlet, which is separated from the heated die by a thermal insulator, an optimized temperature profile is obtained which yields uniformly smooth extrusion molded magnets. Both long thin-walled magnets and small arc-shaped (kawala) magnets are easily molded by this new process.

  10. Diffusion between glass and metals for optical fiber preform extrusion

    NASA Astrophysics Data System (ADS)

    Yeo, Felicia Yan Xin; Zhang, Zhifeng; Kumar Chakkathara Janardhanan Nair, Dileep; Zhang, Yilei

    2015-07-01

    When silica is extruded, diffusion of metal atoms into silica results contamination to the silica being heated, and thus is a serious concern for the glass extrusion process, such as extrusion of glass fiber preform. This paper examines diffusion between fused silica and two high strength metals, the stainless steel SS410 and the superalloy Inconel 718, at 1000 °C and under the normal atmosphere condition by SEM and Electron Dispersion Spectrum. It is found that diffusion occurs between silica and SS410, and at the same time, SS410 is severely oxidized during diffusion experiment. On the contrary, the diffusion between Inconel 718 and silica is unnoticeable, suggesting excellent high temperature performance of Inconel 718 for glass extrusion.

  11. Hot melt extrusion versus spray drying: hot melt extrusion degrades albendazole.

    PubMed

    Hengsawas Surasarang, Soraya; Keen, Justin M; Huang, Siyuan; Zhang, Feng; McGinity, James W; Williams, Robert O

    2017-05-01

    The purpose of this study was to enhance the dissolution properties of albendazole (ABZ) by the use of amorphous solid dispersions. Phase diagrams of ABZ-polymer binary mixtures generated from Flory-Huggins theory were used to assess miscibility and processability. Forced degradation studies showed that ABZ degraded upon exposure to hydrogen peroxide and 1 N NaOH at 80 °C for 5 min, and the degradants were albendazole sulfoxide (ABZSX), and ABZ impurity A, respectively. ABZ was chemically stable following exposure to 1 N HCl at 80 °C for one hour. Thermal degradation profiles show that ABZ, with and without Kollidon(®) VA 64, degraded at 180 °C and 140 °C, respectively, which indicated that ABZ could likely be processed by thermal processing. Following hot melt extrusion, ABZ degraded up to 97.4%, while the amorphous ABZ solid dispersion was successfully prepared by spray drying. Spray-dried ABZ formulations using various types of acids (methanesulfonic acid, sulfuric acid and hydrochloric acid) and polymers (Kollidon(®) VA 64, Soluplus(®) and Eudragit(®) E PO) were studied. The spray-dried ABZ with methanesulfonic acid and Kollidon(®) VA 64 substantially improved non-sink dissolution in acidic media as compared to bulk ABZ (8-fold), physical mixture of ABZ:Kollidon(®) VA 64 (5.6-fold) and ABZ mesylate salt (1.6-fold). No degradation was observed in the spray-dried product for up to six months and less than 5% after one-year storage. In conclusion, amorphous ABZ solid dispersions in combination with an acid and polymer can be prepared by spray drying to enhance dissolution and shelf-stability, whereas those made by melt extrusion are degraded.

  12. A novel polymer extrusion micropelletization process

    NASA Astrophysics Data System (ADS)

    Aquite, William

    Polymer micropellets provide a variety of potential applications for different processes in the polymer industry. Conventional pellets are in the size range of 2.5 mm to 5 mm, while micropellets are at least ten times smaller, in the size range of 50 μm to 1000 μm. The potential benefits to a processor using micropellets include: high surface to volume ratio, high bulk density, fast and even melting rates in extrusion, improved dry flow properties, faster injection molding cycles, and consequently lower energy consumption during processing. More specialized sintering processes that require polymer powders, such as selective sintering techniques, microporous plastics parts manufacturing, and other powder sintering methods would benefit from the production of polymer micropellets since these exhibit the advantages of pellets yet have a lower average size. This work focuses on the study of a technique developed at the Polymer Engineering Center. The technique uses a microcapillary die for the production of micropellets by causing instabilities in extruded polymer threads deformed using an air stream. Tuning of process conditions allow the development of surface disturbances that promote breakup of the threads into pellets, which are subsequently cooled and collected. Although micropellets with high sphericity and a narrow size distribution can be produced using this technique, minimal changes in process conditions also lead to the production of lenticular pellets as well as pellets, fibers and threads with a wide range of size and shape distributions. This work shows how changing processing conditions achieve a variety of shapes and sizes of micropellets, broadening its application for the production of powders from a variety of polymer resins. Different approaches were used, including dimensional analysis and numerical simulation of the micropelletization process. This research reveals the influence of non-linear viscoelastic effects on the dispersion of a polymer

  13. Satellite Based Extrusion Rates for the 2006 Augustine Eruption

    NASA Astrophysics Data System (ADS)

    Dehn, J.; Bailey, J. E.; Dean, K. G.; Skoog, R.; Valcic, L.

    2006-12-01

    Extrusion rates were calculated from polar orbiting infrared satellite data for the 2006 eruption of Augustine Volcano, Alaska. The pixel integrated brightness temperatures from the satellite data were converted to estimates of ground temperature by making assumptions and using first hand observations about the geometry of the hot area (lava dome, flows and pyroclastic flow deposits) relative to the cold area in the kilometer scale pixels. Extrusion rate is calculated by assuming that at a given temperature, a lava emits an amount of radiation proportional to its volume. On ten occasions during the activity, helicopter based infrared imagers were used to validate the satellite observations. The pre-January 11 thermal activity was not significantly above background in satellite data. The first strong thermal anomalies were recorded during the first explosive phase on January 11. During successive explosive phases in January, bright thermal signals were observed, often saturating the sensors. Large areas (many km2) were observed to be warm in the satellite data, indicative of pyroclastic flows. Sometime during or after January 29, during a phase of sustained ash emission, the thermal signal became persistent, suggesting the beginning of lava effusion. The extrusion rates derived from satellite data varied from 0 to nearly 7 m3/s, giving an eruption rate of 2.7 m3/s. The extrusion event produced two blocky lava flows which moved down the north flank of the volcano. Extrusion occurred through at least March 15 (day 76) when a sharp drop in extrusion rate and thermal signal is observed. Based on the derived extrusion rates, it is estimated that 18 million m3 of lava was extruded during the course of the eruption. This value agreed well with photogrammetric measurements, but does not agree with volumes derived through subtraction of digital elevation models post- and pre- eruption. It should be noted that the thermal approach only works for hot lavas, and does not

  14. The effect of grain size on dynamic tensile extrusion behaviour

    NASA Astrophysics Data System (ADS)

    Park, Leeju; Kim, Hack Jun; Kim, Seok Bong

    2015-09-01

    Dynamic tensile extrusion (DTE) tests were conducted on coarse grained and ultrafine grained (UFG) OFHC Cu, Interstitial free (IF) Steel, and pure Ta. Equal channel angular pressing (ECAP) of 16passes with Bc for Cu, IF Steel and 4 passes for Ta was employed to fabricated UFG materials. DTE tests were carried out by launching the sphere samples (Dia. 7.62 mm) to the conical extrusion die at a speed of ˜500 m/sec. The fragmentation behavior of the soft-recovered fragments were examined and compared with each other. The DTE fragmentation behavior of CG and UFG was numerically simulated by the LS-DYNA FEM code.

  15. Formation of high-stress phase and extrusion of polyethylene due to nanoconfinements during Ziegler-Natta polymerization inside nanochannels.

    PubMed

    Nair, Sujith; Naredi, Prabhat; Kim, Seong H

    2005-06-30

    Polyethylene nanofibers were synthesized by heterogeneous Ziegler-Natta polymerization inside nanochannels of robust anodized aluminum oxide (AAO) membranes. The polymerization catalysts were chemisorbed at the inner wall of the nanochannels and monomers were provided through diffusion from the outside. Polyethylene is produced inside the nanochannels in the 10-20 mum region from the channel entrance. Polyethylene fibers were extruded from the nanochannels up to 3-5 mum during the polymerization. X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared analyses indicated formation of a highly stressed crystalline structure although the polymerization was carried out without any external pressure or mechanical work. The highly stressed phase formation inside nanochannels and some degree of polyethylene nanofiber extrusion from nanochannels were attributed to catalytic production of excess amounts of polyethylene inside nanoconfined templates.

  16. Effects of processing parameters on the extrusion by continuous variable cross-section direct extrusion with 7A09 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Li, Feng; Wu, Hongbin; Qin, Minghan

    2016-02-01

    In order to study the effects of processing parameters on the continuous variable cross-section direct extrusion (CVCDE), taking 7A09 aluminium alloy for example, the extrusion speed and forming temperature and the friction factor as key processing parameters are applied to research by finite element (FE) simulation. The research result showed that the extrusion speed had a significant influence on the maximum temperature of the billet, at the same time, both decreasing the friction factor and increasing forming temperature within a certain range were beneficial to reduce extrusion load. Both forming temperature and the extrusion speed were inversely linked to extrusion load, but the friction factor was directly proportional to extrusion load. Forming temperature had a far more important influence on extrusion load by comparison: when forming temperature increased from 380∘ to 430∘C, the peak value of extrusion load decreased by 25.6% and the flow uniformity of extruded product got improved. The process window based on both the press limit and surface defects limit was established and the most reasonable forming temperature was 405∘C under this process condition, which provided theoretical basis for formulation process of 7A09 aluminium alloy on the CVCDE extrusion.

  17. Factors Contributing to Pilot Valve Fuel Seal Extrusion in Orbiter PRCS Thrusters

    NASA Technical Reports Server (NTRS)

    Waller, J.M.; Saulsberry, R.L.; Albright, John D.

    2000-01-01

    Extrusion of the polytetrafluoroethylene (PTFE) pilot seal used in the monomethylhydrazine (fuel) valve of the Orbiter Primary Reaction Control System (PRCS) thrusters has been implicated in numerous on-orbit thruster failures and on-ground valve failures. Two extrusion mechanisms have been proposed, one or both may be occurring. The first mechanism is attributed to thermal expansion mismatch between adjacent PTFE and metal parts used in the fuel valve, and is referred to as thermal extrusion. The second mechanism is attributed to nitrogen tetroxide (oxidizer) leakage from the adjacent oxidizer valve on the same thruster during ground turnaround, and is referred to as oxidizer-induced extrusion. Model calculations of PTFE pilot seal in an exact pilot valve configuration show that extrusion can be caused by differential thermal expansion, without the intervening influence of oxidizer. Experimental data on semitrapped PTFE and TFM (modified PTFE) specimens simulating a fuel pilot valve configuration show that thermal extrusion 1) is incremental and irreversible, 2) increases with the size of the thermal excursion, 3) decreases with successive thermal cycling, and 4) is accompanied by gap formation. Both PTFE and TFM exhibit a higher affinity for oxidizer than fuel. The property changes associated with oxidizer uptake may explain why oxidizer seals do not exhibit extrusion. Impression replicas of fuel pilot seals removed from the Orbiter fleet show two types of extrusion: extrusion of the entire seal (loaded extrusion), or extrusion of non-sealing surface (unloaded extrusion). Both extrusion types may arise from differences in service history, rather than in failure mechanism. The plausibility oxidizer-induced extrusion was evaluated. Preliminary calculations suggest that enough energy, heat, or gas may be liberated under certain operational scenarios to cause catastrophic extrusion. However, given the lack of supporting data, conclusions implicating oxidizer leakage

  18. Regeneration of aluminum hydride

    DOEpatents

    Graetz, Jason Allan; Reilly, James J; Wegrzyn, James E

    2012-09-18

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, and by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  19. Regeneration of aluminum hydride

    DOEpatents

    Graetz, Jason Allan; Reilly, James J.

    2009-04-21

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  20. PROCESS FOR REMOVING ALUMINUM COATINGS

    DOEpatents

    Flox, J.

    1959-07-01

    A process is presented for removing aluminum jackets or cans from uranium slugs. This is accomplished by immersing the aluminum coated uranium slugs in an aqueous solution of 9 to 20% sodium hydroxide and 35 to 12% sodium nitrate to selectively dissolve the aluminum coating, the amount of solution being such as to obtain a molar ratio of sodium hydroxide to aluminum of at least

  1. Melting, casting, and alpha-phase extrusion of the uranium-2. 4 weight percent niobium alloy

    SciTech Connect

    Anderson, R C; Beck, D E; Kollie, T G; Zorinsky, E J; Jones, J M

    1981-10-01

    The experimental details of the melting, casting, homogenization, and alpha-phase extrusion process used to fabricate the uranium-2.4 wt % niobium alloy into 46-mm-diameter rods is described. Extrusion defects that were detected by an ultrasonic technique were eliminated by proper choice of extrusion parameters; namely, reduction ratio, ram speed, die angle, and billet preheat temperature.

  2. [Process and mechanism of plants in overcoming acid soil aluminum stress].

    PubMed

    Zhao, Tian-Long; Xie, Guang-Ning; Zhang, Xiao-Xia; Qiu, Lin-Quan; Wang, Na; Zhang, Su-Zhi

    2013-10-01

    Aluminum (Al) stress is one of the most important factors affecting the plant growth on acid soil. Currently, global soil acidification further intensifies the Al stress. Plants can detoxify Al via the chelation of ionic Al and organic acids to store the ionic Al in vacuoles and extrude it from roots. The Al extrusion is mainly performed by the membrane-localized anion channel proteins Al(3+)-activated malate transporter (ALMT) and multi-drug and toxin extrusion (MATE). The genes encoding ABC transporter and zinc-finger protein conferred plant Al tolerance have also been found. The identification of these Al-resistant genes makes it possible to increase the Al resistance of crop plants and enhance their production by the biological methods such as gene transformation and mark-associated breeding. The key problems needed to be solved and the possible directions in the researches of plant Al stress resistance were proposed.

  3. Electrically conductive anodized aluminum coatings

    NASA Technical Reports Server (NTRS)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  4. Equal Channel Angular Extrusion Progress Report for March 1998 - May 1999

    SciTech Connect

    Macheret, Yevgeny; Watkins, Arthur Deloss; Korth, Gary Elvan; Lillo, Thomas Martin; Flinn, John Elwood Jr.; Herling, D. R.; Smith, M. T.; Schwarz, R. B.

    1999-10-01

    Pure copper and Alloy 5083 aluminum were processed by equal channel angular extrusion (ECAE); their microstructural evolution and corresponding mechanical properties were investigated. Work also began on the possible use of ECAE to synthesize advanced materials or to consolidate metal powders or powder mixtures. The die tooling used for ECAE is described and selected microstructural and mechanical property results for ECAE-processed copper and cold-rolled (conventionally-processed) copper in the as-processed and annealed condition are compared. Results thus far show that the “pure” metal is prone to low temperature recrystallization after large strain hardening—more beneficial effects are expected in the dispersion-strengthened and precipitation-hardening alloys. The large range of tensile properties and grain sizes from the copper allowed a flow stress analysis to be performed. From this analysis, a new model for flow stress behavior is proposed. An evaluation of ECAE processing of material for spot welding electrodes began. Results to date include electrodes of ECAE-processed commercially pure copper (Alloy 101). Future work involving Glidcop® (Al2O3 oxide dispersionstrengthened copper) and CuCrZr (Cr-Zr precipitation dispersion) materials will be required to fully investigate the benefits of ECAE for electrode life extension. Initial work on Aluminum Alloy 5083 showed that ECAE led to grain refinement as well as broke up and more uniformly dispersed the hardening precipitates. This is desirable for enhancing superplastic behavior. Study of ECAE for consolidating metal powder began. Early results with a Cu-Ag powder indicate that near 100% density was achieved with room temperature consolidation.

  5. REMOVAL OF ALUMINUM COATINGS

    DOEpatents

    Peterson, J.H.

    1959-08-25

    A process is presented for dissolving aluminum jackets from uranium fuel elements without attack of the uranium in a boiling nitric acid-mercuric nitrate solution containing up to 50% by weight of nitrtc acid and mercuric nitrate in a concentration of between 0.05 and 1% by weight.

  6. Markets for recovered aluminum

    SciTech Connect

    Not Available

    1993-04-01

    The study describes the operation of the markets for scrap aluminum as an example of how recycling markets are structured, what factors influence the supply of and demand for materials, what projections can be made about recycling markets, and how government policies to increase recycling may affect these markets.

  7. Building an aluminum car

    SciTech Connect

    Ashley, S.

    1994-05-01

    This article examines the increasing use of aluminum in automobiles to decrease weight and consequently increase fuel economy. The topics of the article include federal fuel economy goals, the development of optimum body structure and manufacturing techniques, comparison with steel, cost of materials, weight reduction and recycling of materials.

  8. Fluxless aluminum brazing

    DOEpatents

    Werner, W.J.

    1974-01-01

    This invention relates to a fluxless brazing alloy for use in forming brazed composites made from members of aluminum and its alloys. The brazing alloy consists of 35-55% Al, 10--20% Si, 25-60% Ge; 65-88% Al, 2-20% Si, 2--18% In; 65--80% Al, 15-- 25% Si, 5- 15% Y. (0fficial Gazette)

  9. Aluminum battery alloys

    DOEpatents

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  10. Aluminum battery alloys

    DOEpatents

    Thompson, D.S.; Scott, D.H.

    1984-09-28

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  11. Aluminum Sulfate 18 Hydrate

    ERIC Educational Resources Information Center

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  12. Bonding aluminum beam leads

    NASA Technical Reports Server (NTRS)

    Burkett, F. S.

    1978-01-01

    Report makes it relatively easy for hybrid-circuit manufacturers to convert integrated circuit chips with aluminum bead leads. Report covers: techniques for handling tiny chips; proper geometries for ultrasonic bonding tips; best combinations of pressure, pulse time, and ultrasonic energy for bonding; and best thickness for metal films to which beam leads are bonded.

  13. Reactive extrusion of zein with glyoxal and polyethylene maleic anhydride

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order for zein, a potentially significant co-product of the bio-ethanol industry, to be used in new markets, improved zein based products are needed. These products need to be produced by the most economical means possible. In the traditional plastics industry, extrusion techniques are the most e...

  14. Extrusion, slide, and rupture of an elastomeric seal

    NASA Astrophysics Data System (ADS)

    Wang, Zhengjin; Chen, Chao; Liu, Qihan; Lou, Yucun; Suo, Zhigang

    2017-02-01

    Elastomeric seals are essential to two great technological advances in oilfields: horizontal drilling and hydraulic fracturing. This paper describes a method to study elastomeric seals by using the pressure-extrusion curve (i.e., the relation between the drop of pressure across a seal and the volume of extrusion of the elastomer). Emphasis is placed on a common mode of failure found in oilfields: leak caused by a crack across the length of a long seal. We obtain an analytical solution of large elastic deformation, which is analogous to the Poiseuille flow of viscous liquids. We further obtain analytical expressions for the energy release rate of a crack and the critical pressure for the onset of its propagation. The theory predicts the pressure-extrusion curve using material parameters (elastic modulus, sliding stress, and fracture energy) and geometric parameters (thickness, length, and precompression). We fabricate seals of various parameters in transparent chambers on a desktop, and watch the seals extrude, slide, rupture and leak. The experimentally measured pressure-extrusion curves agree with theoretical predictions remarkably well.

  15. Extrusion cooking with glucose supplementation reduced fumonisin concentrations and toxicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extrusion cooking involves forcing material through a heated barrel under high pressure using one (single-screw configuration) or two (twin-screw configuration) augers. We previously demonstrated (Bullerman et al., Journal of Agricultural and Food Chemistry 56:2400-2405, 2008; Voss et al., Journal o...

  16. Load beam unit replaceable inserts for dry coal extrusion pumps

    DOEpatents

    Saunders, Timothy; Brady, John D.

    2012-11-13

    A track assembly for a particulate material extrusion pump according to an exemplary aspect of the present disclosure includes a link assembly with a roller bearing. An insert mounted to a load beam located such that the roller bearing contacts the insert.

  17. Track with overlapping links for dry coal extrusion pumps

    DOEpatents

    Saunders, Timothy; Brady, John D

    2014-01-21

    A chain for a particulate material extrusion pump includes a plurality of links, each of the plurality of links having a link body and a link ledge, wherein each link ledge of the plurality of links at least partially overlaps the link body of an adjacent one of the plurality of links.

  18. SOLDERING OF ALUMINUM BASE METALS

    DOEpatents

    Erickson, G.F.

    1958-02-25

    This patent deals with the soldering of aluminum to metals of different types, such as copper, brass, and iron. This is accomplished by heating the aluminum metal to be soldered to slightly above 30 deg C, rubbing a small amount of metallic gallium into the part of the surface to be soldered, whereby an aluminum--gallium alloy forms on the surface, and then heating the aluminum piece to the melting point of lead--tin soft solder, applying lead--tin soft solder to this alloyed surface, and combining the aluminum with the other metal to which it is to be soldered.

  19. Apical extrusion of debris: a literature review of an inherent occurrence during root canal treatment.

    PubMed

    Tanalp, J; Güngör, T

    2014-03-01

    Extrusion of intracanal debris as well as irrigants is a common occurrence during root canal treatment, and no instrument or technique has thoroughly solved this problem. Because flare-ups may arise with any irritation directed towards periapical tissues, a shaping or irrigation technique should minimize the risk of apical extrusion, even though it may not be prevented. There has been a rapid evolution of root canal instruments and irrigation systems through the last decade, and many have been assessed for their debris extrusion potential. The purpose of this review was to identify publications regarding the evaluation of debris, bacteria and irrigant extrusion during root canal treatment. A PubMed, Ovid and MEDLINE search was conducted using the keywords "apical extrusion", "debris extrusion" and "endodontic treatment". The literature search extended over a period of more than 30 years up to 2012. Content of the review was limited to apical extrusion of debris and irrigants, extrusion of liquid by irrigation methods and bacterial extrusion. Issues relevant to apical extrusion were obtained by further search in the reference sections of the retrieved articles. The review provides an update on the current status of apical extrusion.

  20. Aluminum Carbothermic Technology

    SciTech Connect

    Bruno, Marshall J.

    2005-03-31

    This report documents the non-proprietary research and development conducted on the Aluminum Carbothermic Technology (ACT) project from contract inception on July 01, 2000 to termination on December 31, 2004. The objectives of the program were to demonstrate the technical and economic feasibility of a new carbothermic process for producing commercial grade aluminum, designated as the ''Advanced Reactor Process'' (ARP). The scope of the program ranged from fundamental research through small scale laboratory experiments (65 kW power input) to larger scale test modules at up to 1600 kW power input. The tasks included work on four components of the process, Stages 1 and 2 of the reactor, vapor recovery and metal alloy decarbonization; development of computer models; and economic analyses of capital and operating costs. Justification for developing a new, carbothermic route to aluminum production is defined by the potential benefits in reduced energy, lower costs and more favorable environmental characteristics than the conventional Hall-Heroult process presently used by the industry. The estimated metrics for these advantages include energy rates at approximately 10 kWh/kg Al (versus over 13 kWh/kg Al for Hall-Heroult), capital costs as low as $1250 per MTY (versus 4,000 per MTY for Hall-Heroult), operating cost reductions of over 10%, and up to 37% reduction in CO2 emissions for fossil-fuel power plants. Realization of these benefits would be critical to sustaining the US aluminum industries position as a global leader in primary aluminum production. One very attractive incentive for ARP is its perceived ability to cost effectively produce metal over a range of smelter sizes, not feasible for Hall-Heroult plants which must be large, 240,000 TPY or more, to be economical. Lower capacity stand alone carbothermic smelters could be utilized to supply molten metal at fabrication facilities similar to the mini-mill concept employed by the steel industry. Major

  1. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  2. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  3. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  4. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  5. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  6. Deuterium fiber extrusion and handling system for neutron production experiment

    NASA Astrophysics Data System (ADS)

    Ruden, Edward L.; Gale, Donald G.; Rahman, Hafiz U.

    2001-10-01

    A frozen D2 fiber fragment extrusion and handling system has been developed at AFRL to provide a central target for a wire array implosion on SNL's Z machine. The system, though, can be modified for use in Magnetized Target Fusion research. As presently configured, it extrudes a 0.5 mm diameter fiber, cuts the fiber to a length of 7 cm, and drops the fiber fragment into an LN2 refrigerated support structure where the fiber remains intact for about 7 minutes. A heavy hydraulically actuated blast shutter protects the extrusion system after the fragment is dropped. Design and performance information, including detailed images of the fiber during the various phases of operation, will be provided.

  7. Impact of the extrusion process on xanthan gum behaviour.

    PubMed

    Sereno, Nuno M; Hill, Sandra E; Mitchell, John R

    2007-07-23

    Processing xanthan gum by extrusion and subsequent drying produces a biopolymer showing particulate, rather than molecular behaviour in aqueous solution. This form of xanthan disperses very readily to give a viscosity that is strongly dependent on salt concentration. On heating above the temperature of the order-disorder transition as determined by calorimetry, there is a viscosity transition that is indicative of the irreversible loss of the particulate structure. It is suggested that the extrusion process melts and aligns xanthan macromolecules. On cooling reordering will occur but in the highly concentrated environment in the extruder ( approximately 45% water w/w), inter-molecular association between neighbouring macromolecules cannot proceed to completion due to kinetic trapping. As a consequence a network structure is created maintained by associations involving ordered regions. A xanthan solution can be prepared from this particulate material by dispersing and subsequent heating far more readily than can be achieved with non-processed xanthan.

  8. Extrusion process optimization for toughness in balloon films

    NASA Technical Reports Server (NTRS)

    Cantor, K. M.; Harrison, I. R.

    1993-01-01

    An experimental optimization process for blown film extrusion is described and examined in terms of the effects of the technique on the toughness of balloon films. The optimization technique by Cantor (1990) is employed which involves the identification of key process variables including screw speed, nip speed, bubble diameter, and frost-line height for analysis to optimize the merit function. The procedure is employed in the extrusion of a low-density polyethylene polymer, and the resulting optimized materials are toughness- and puncture-tested. Balloon toughness is optimized in the analytical relationship, and the process parameters are modified to attain optimal toughness. The film produced is shown to have an average toughness of 24.5 MPa which is a good value for this key property of balloon materials for high-altitude flights.

  9. Hot-melt extrusion of sugar-starch-pellets.

    PubMed

    Yeung, Chi-Wah; Rein, Hubert

    2015-09-30

    Sugar-starch-pellets (syn. sugar spheres) are usually manufactured through fluidized bed granulation or wet extrusion techniques. This paper introduces hot-melt extrusion (HME) as an alternative method to manufacture sugar-starch-pellets. A twin-screw extruder coupled with a Leistritz Micro Pelletizer (LMP) cutting machine was utilized for the extrusion of different types (normal-, waxy-, and high-amlyose) of corn starch, blended with varying amounts of sucrose. Pellets were characterized for their physicochemical properties including crystallinity, particle size distribution, tensile strength, and swelling expansion. Furthermore, the influence of sugar content and humidity on the product was investigated. Both sucrose and water lowered the Tg of the starch system allowing a convenient extrusion process. Mechanical strength and swelling behavior could be associated with varying amylose and amylopectin. X-ray powder diffractometric (XRPD) peaks of increasing sucrose contents appeared above 30%. This signified the oversaturation of the extruded starch matrix system with sucrose. Otherwise, had the dissolved sucrose been embedded into the molten starch matrix, no crystalline peak could have been recognized. The replacement of starch with sucrose reduced the starch pellets' swelling effect, which resulted in less sectional expansion (SEI) and changed the surface appearance. Further, a nearly equal tensile strength could be detected for sugar spheres with more than 40% sucrose. This observation stands in good relation with the analyzed values of the commercial pellets. Both techniques (fluidized bed and HME) allowed a high yield of spherical pellets (less friability) for further layering processes. Thermal influence on the sugar-starch system is still an obstacle to be controlled.

  10. Mineral of the month: aluminum

    USGS Publications Warehouse

    Plunkert, Patricia A.

    2005-01-01

    Aluminum is the second most abundant metallic element in Earth’s crust after silicon. Even so, it is a comparatively new industrial metal that has been produced in commercial quantities for little more than 100 years. Aluminum is lightweight, ductile, malleable and corrosion resistant, and is a good conductor of heat and electricity. Weighing about one-third as much as steel or copper per unit of volume, aluminum is used more than any other metal except iron. Aluminum can be fabricated into desired forms and shapes by every major metalworking technique to add to its versatility.

  11. Laser welding of aluminum alloys

    SciTech Connect

    Leong, K.H.; Sabo, K.R.; Sanders, P.G.; Spawr, W.J.

    1997-03-01

    Recent interest in reducing the weight of automobiles to increase fuel mileage has focused attention on the use of aluminum and associated joining technologies. Laser beam welding is one of the more promising methods for high speed welding of aluminum. Consequently, substantial effort has been expended in attempting to develop a robust laser beam welding process. Early results have not been very consistent in the process requirements but more definitive data has been produced recently. This paper reviews the process parameters needed to obtain consistent laser welds on 5,000 series aluminum alloys and discusses the research necessary to make laser processing of aluminum a reality for automotive applications.

  12. Pharmaceutical applications of hot-melt extrusion: part I.

    PubMed

    Crowley, Michael M; Zhang, Feng; Repka, Michael A; Thumma, Sridhar; Upadhye, Sampada B; Battu, Sunil Kumar; McGinity, James W; Martin, Charles

    2007-09-01

    Interest in hot-melt extrusion techniques for pharmaceutical applications is growing rapidly with well over 100 papers published in the pharmaceutical scientific literature in the last 12 years. Hot-melt extrusion (HME) has been a widely applied technique in the plastics industry and has been demonstrated recently to be a viable method to prepare several types of dosage forms and drug delivery systems. Hot-melt extruded dosage forms are complex mixtures of active medicaments, functional excipients, and processing aids. HME also offers several advantages over traditional pharmaceutical processing techniques including the absence of solvents, few processing steps, continuous operation, and the possibility of the formation of solid dispersions and improved bioavailability. This article, Part I, reviews the pharmaceutical applications of hot-melt extrusion, including equipment, principles of operation, and process technology. The raw materials processed using this technique are also detailed and the physicochemical properties of the resultant dosage forms are described. Part II of this review will focus on various applications of HME in drug delivery such as granules, pellets, immediate and modified release tablets, transmucosal and transdermal systems, and implants.

  13. Extrusion of metal oxide superconducting wire, tube or ribbon

    DOEpatents

    Dusek, Joseph T.

    1993-01-01

    A process for extruding a superconducting metal oxide composition YBa.sub.2 Cu.sub.3 O.sub.7-x provides a wire (tube or ribbon) having a cohesive mass and a degree of flexibility together with enhanced electrical properties. Wire diameters in the range of 6-85 mils have been produced with smaller wires on the order of 10 mils in diameter exhibiting enhanced flexibility for forming braided, or multistrand, configurations for greater current carrying capacity. The composition for extrusion contains a polymeric binder to provide a cohesive mass to bind the particles together during the extrusion process with the binder subsequently removed at lower temperatures during sintering. The composition for extrusion further includes a deflocculent, an organic plasticizer and a solvent which also are subsequently removed during sintering. Electrically conductive tubing with an inner diameter of 52 mil and an outer diameter of 87-355 mil has also been produced. Flat ribbons have been produced in the range of 10-125 mil thick by 100-500 mil wide. The superconducting wire, tube or ribbon may include an outer ceramic insulating sheath co-extruded with the wire, tubing or ribbon.

  14. Extrusion of metal oxide superconducting wire, tube or ribbon

    DOEpatents

    Dusek, Joseph T.

    1993-10-05

    A process for extruding a superconducting metal oxide composition YBa.sub.2 Cu.sub.3 O.sub.7-x provides a wire (tube or ribbon) having a cohesive mass and a degree of flexibility together with enhanced electrical properties. Wire diameters in the range of 6-85 mils have been produced with smaller wires on the order of 10 mils in diameter exhibiting enhanced flexibility for forming braided, or multistrand, configurations for greater current carrying capacity. The composition for extrusion contains a polymeric binder to provide a cohesive mass to bind the particles together during the extrusion process with the binder subsequently removed at lower temperatures during sintering. The composition for extrusion further includes a deflocculent, an organic plasticizer and a solvent which also are subsequently removed during sintering. Electrically conductive tubing with an inner diameter of 52 mil and an outer diameter of 87-355 mil has also been produced. Flat ribbons have been produced in the range of 10-125 mil thick by 100-500 mil wide. The superconducting wire, tube or ribbon may include an outer ceramic insulating sheath co-extruded with the wire, tubing or ribbon.

  15. Intrusion and extrusion of a liquid on nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Amabili, M.; Giacomello, A.; Meloni, S.; Casciola, C. M.

    2017-01-01

    Superhydrophobicity is connected to the presence of gas pockets within surface asperities. Upon increasing the pressure this ‘suspended’ state may collapse, causing the complete wetting of the rough surface. In order to quantitatively characterize this process on nanostructured surfaces, we perform rare-event atomistic simulations at different pressures and for several texture geometries. Such an approach allows us to identify for each pressure the stable and metastable states and the free energy barriers separating them. Results show that, by starting from the superhydrophobic state and increasing the pressure, the suspended state abruptly collapses at a critical intrusion pressure. If the pressure is subsequently decreased, the system remains trapped in the metastable state corresponding to the wet surface. The liquid can be extruded from the nanostructures only at very negative pressures, by reaching the critical extrusion pressure (spinodal for the confined liquid). The intrusion and extrusion curves form a hysteresis cycle determined by the large free energy barriers separating the suspended and wet states. These barriers, which grow very quickly for pressures departing from the intrusion/extrusion pressure, are shown to strongly depend on the texture geometry.

  16. Tailoring properties of commercially pure titanium by gradation extrusion

    NASA Astrophysics Data System (ADS)

    Bergmann, Markus; Rautenstrauch, Anja; Selbmann, René; de Oliveira, Raoni Barreto; Coelho, Rodrigo Santiago; Landgrebe, Dirk

    2016-10-01

    Commercially pure titanium (CP Ti) is of great importance in medical applications due to its attractive properties, such as high biocompatibility, excellent corrosion resistance and relatively low density and suitable stiffness. Compared to the commonly used Ti-6Al-4V alloy, its lower strength has to be increased. The most attractive approach is to subject CP Ti to severe plastic deformation (SPD) processes such as Equal Channel Angular Pressing (ECAP). The resulting decreased grain size in CP Ti yields a significant increase in hardness and strength. Common SPD-processes typically provide a uniform modification of the material. Their material efficiency and productivity are critical and limiting factors. A new approach is to tailor the material properties by using Gradation Extrusion, which produces a distinct gradient in microstructure and strength. The forming process combines a regular impact extrusion process and severe plastic deformation in the lateral area of the material. This efficient process can be integrated easily into forming process chains, for instance for dental implants. This paper presents the forming process and the applied die geometry. The results of numerical simulations are used to illustrate the potential of the process to modify and strengthen the titanium material. Experiments show that the material is successfully processed by gradation extrusion. By characterizing the hardness and its distribution within the formed parts the effects of the process are investigated.

  17. Propulsion at low Reynolds number via beam extrusion

    NASA Astrophysics Data System (ADS)

    Gosselin, Frederick; Neetzow, Paul

    2014-03-01

    We present experimental and theoretical results on the extrusion of a slender beam in a viscous fluid. We are particularly interested in the force necessary to extrude the beam as it buckles with large amplitude due to viscous friction. The problem is inspired by the propulsion of Paramecium via trichocyst extrusion. Self-propulsion in micro-organisms is mostly achieved through the beating of flagella or cilia. However, to avoid a severe aggression, unicellular Paramecium has been observed to extrude trichocysts in the direction of the aggression to burst away. These trichocysts are rod-like organelles which, upon activation, grow to about 40 μm in length in 3 milliseconds before detaching from the animal. The drag force created by these extruding rods pushing against the viscous fluid generates thrust in the opposite direction. We developed an experimental setup to measure the force required to push a steel piano wire into an aquarium filled with corn syrup. This setup offers a near-zero Reynolds number, and allows studying deployments for a range of constant extrusion speeds. The experimental results are reproduced with a numerical model coupling a large amplitude Euler-Bernoulli beam theory with a fluid load model proportional to the local beam velocity. This study was funded in part by the The Natural Sciences and Engineering Research Council of Canada.

  18. Extrusion of metal oxide superconducting wire, tube or ribbon

    SciTech Connect

    Dusek, J.T.

    1990-01-01

    A process and apparatus for extruding a superconducting metal oxide composition YBa{sub 2}Cu{sub 3}O{sub 7-x} provides a wire (tube or ribbon) having a cohesive mass and a degree of flexibility together with enhanced electrical properties. Wire diameters in the range of 6--85 mils have been produced with smaller wires on the order of 10 mils in diameter exhibiting enhanced flexibility for forming braided, or multistrand, configurations for greater current carrying capacity. The composition for extrusion contains a polymeric binder to provide a cohesive mass to bind the particles together during the extrusion process with the binder subsequently removed at lower temperatures during sintering. The composition for extrusion further includes a deflocculent, an organic plasticizer and a solvent which also are subsequently removed during sintering. Electrically conductive tubing with an inner diameter of 52 mil and an outer diameter of 87--335 mil has also been produced. Flat ribbons have been produced in the range of 10--125 mil thick by 100--500 mil wide. The superconducting wire, tube or ribbon may include an outer ceramic insulating sheath co-extruded with the wire, tubing or ribbon.

  19. Initial strength of highpressed extrusion poly-L-lactide screw.

    PubMed

    Matsushita, T; Nakamura, K; Shiro, R; Takazawa, H; Tsuji, K; Kurokawa, T

    2000-01-01

    We developed a poly-L-lactide material strengthened by a highpressed extrusion technique. The bending strength of a rod made of that material is higher than that of the same size rods made of poly-L-lactide strengthened by drawing technique, which has been used in clinical cases. The purposes of this study were, first to clarify if the initial strength of extrusion-strengthened poly-L-lactide screws is higher than that of draw-strengthened poly-L-lactide screws, and, secondly to investigate the safe torque for driving the screws in clinical usage. In accordance with AO screw design, five kinds of screws were manufactured. In a pull-out test and a twisting test using a DYRACON blocks, the strength of the highpressed extrusion-strengthened poly-L-lactide material was also higher than that of the draw-strengthened poly-L-lactide material after milling into screws. In the simulation using minipig bones and the 4.5 mm psi cortical screws, when the thickness was below 0.5 mm, between 0.5 and 2 mm or over 3 mm, the break locations were in the cortical bone, the thread of the screw and the under head fillet respectively. In the simulation using minipig bones and the 4.0 mm psi cancellous screws, breakage occurred not on the screws but on the cancellous bone in all screws.

  20. Directing collagen fibers using counter-rotating cone extrusion.

    PubMed

    Hoogenkamp, Henk R; Bakker, Gert-Jan; Wolf, Louis; Suurs, Patricia; Dunnewind, Bertus; Barbut, Shai; Friedl, Peter; van Kuppevelt, Toin H; Daamen, Willeke F

    2015-01-01

    The bio-inspired engineering of tissue equivalents should take into account anisotropic morphology and the mechanical properties of the extracellular matrix. This especially applies to collagen fibrils, which have various, but highly defined, orientations throughout tissues and organs. There are several methods available to control the alignment of soluble collagen monomers, but the options to direct native insoluble collagen fibers are limited. Here we apply a controlled counter-rotating cone extrusion technology to engineer tubular collagen constructs with defined anisotropy. Driven by diverging inner and outer cone rotation speeds, collagen fibrils from bovine skin were extruded and precipitated onto mandrels as tubes with oriented fibers and bundles, as examined by second harmonic generation microscopy and quantitative image analysis. A clear correlation was found whereby the direction and extent of collagen fiber alignment during extrusion were a function of the shear forces caused by a combination of the cone rotation and flow direction. A gradual change in the fiber direction, spanning +50 to -40°, was observed throughout the sections of the sample, with an average decrease ranging from 2.3 to 2.6° every 10μm. By varying the cone speeds, the collagen constructs showed differences in elasticity and toughness, spanning 900-2000kPa and 19-35mJ, respectively. Rotational extrusion presents an enabling technology to create and control the (an)isotropic architecture of collagen constructs for application in tissue engineering and regenerative medicine.

  1. How subaerial salt extrusions influence water quality in adjacent aquifers

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Razieh; Zarei, Mehdi; Raeisi, Ezzat

    2015-12-01

    Brines supplied from salt extrusions cause significant groundwater salinization in arid and semi-arid regions where salt rock is exposed to dissolution by episodic rainfalls. Here we focus on 62 of the 122 diapirs of Hormuz salt emergent in the southern Iran. To consider managing the degradation effect that salt extrusions have on the quality of adjoining aquifers, it is first necessary to understand how they influence adjacent water resources. We evaluate here the impacts that these diapirs have on adjacent aquifers based on investigating their geomorphologies, geologies, hydrologies and hydrogeologies. The results indicate that 28/62 (45%) of our sample of salt diapirs have no significant impact on the quality of groundwater in adjoining aquifers (namely Type N), while the remaining 34/62 (55%) degrade nearby groundwater quality. We offer simple conceptual models that account for how brines flowing from each of these types of salt extrusions contaminate adjacent aquifers. We identify three main mechanisms that lead to contamination: surface impact (Type A), subsurface intrusion (Type B) and indirect infiltration (Type C). A combination of all these mechanisms degrades the water quality in nearby aquifers in 19/62 (31%) of the salt diapirs studied. Having characterized the mechanism(s) by which each diapir affects the adjacent aquifer, we suggest a few possible remediation strategies to be considered. For instance, engineering the surface runoff of diapirs Types A and C into nearby evaporation basins would improve groundwater quality.

  2. Formation of chromosomal domains in interphase by loop extrusion

    NASA Astrophysics Data System (ADS)

    Fudenberg, Geoffrey

    While genomes are often considered as one-dimensional sequences, interphase chromosomes are organized in three dimensions with an essential role for regulating gene expression. Recent studies have shown that Topologically Associating Domains (TADs) are fundamental structural and functional building blocks of human interphase chromosomes. Despite observations that architectural proteins, including CTCF, demarcate and maintain the borders of TADs, the mechanisms underlying TAD formation remain unknown. Here we propose that loop extrusion underlies the formation TADs. In this process, cis-acting loop-extruding factors, likely cohesins, form progressively larger loops, but stall at TAD boundaries due to interactions with boundary proteins, including CTCF. This process dynamically forms loops of various sizes within but not between TADs. Using polymer simulations, we find that loop extrusion can produce TADs as determined by our analyses of the highest-resolution experimental data. Moreover, we find that loop extrusion can explain many diverse experimental observations, including: the preferential orientation of CTCF motifs and enrichments of architectural proteins at TAD boundaries; TAD boundary deletion experiments; and experiments with knockdown or depletion of CTCF, cohesin, and cohesin-loading factors. Together, the emerging picture from our work is that TADs are formed by rapidly associating, growing, and dissociating loops, presenting a clear framework for understanding interphase chromosomal organization.

  3. Hot-melt extrusion technology and pharmaceutical application.

    PubMed

    Wilson, Matthew; Williams, Marcia A; Jones, David S; Andrews, Gavin P

    2012-06-01

    The use of hot-melt extrusion (HME) within the pharmaceutical industry is steadily increasing, due to its proven ability to efficiently manufacture novel products. The process has been utilized readily in the plastics industry for over a century and has been used to manufacture medical devices for several decades. The development of novel drugs with poor solubility and bioavailability brought the application of HME into the realm of drug-delivery systems. This has specifically been shown in the development of drug-delivery systems of both solid dosage forms and transdermal patches. HME involves the application of heat, pressure and agitation through an extrusion channel to mix materials together, and subsequently forcing them out through a die. Twin-screw extruders are most popular in solid dosage form development as it imparts both dispersive and distributive mixing. It blends materials while also imparting high shear to break-up particles and disperse them. HME extrusion has been shown to molecularly disperse poorly soluble drugs in a polymer carrier, increasing dissolution rates and bioavailability. The most common difficulty encountered in producing such dispersions is stabilization of amorphous drugs, which prevents them from recrystallization during storage. Pharmaceutical industrial suppliers, of both materials and equipment, have increased their development of equipment and chemicals for specific use with HME. Clearly, HME has been identified as an important and significant process to further enhance drug solubility and solid-dispersion production.

  4. Reduction of Fumonisin Toxicity by Extrusion and Nixtamalization (Alkaline Cooking).

    PubMed

    Voss, Kenneth; Ryu, Dojin; Jackson, Lauren; Riley, Ronald; Gelineau-van Waes, Janee

    2017-02-07

    Fumonisins are mycotoxins found in corn. They are toxic to animals and cause cancer in rodents and neural tube defects in LM/Bc mice. Reducing their concentrations in corn-based foods is therefore desirable. Chemical analysis or in vitro bioassays of food extracts might not detect toxic fumonisin reaction products that are unknown or unextractable from food matrices, thus potentially underestimating in vivo toxicity. The effectiveness of two common cooking methods, extrusion and nixtamalization (alkaline cooking), to reduce the toxicity of fumonisin-contaminated corn grits (extrusion) and whole kernel corn (nixtamalization) was shown by means of rat feeding bioassays using fumonisin-specific kidney effects as indicators of potential toxicity. A third bioassay showed that in contrast to fumonisin B1 (FB1), hydrolyzed fumonisin B1 (HFB1; formed from FB1 during nixtamalization) did not cause neural tube defects in LM/Bc mice. The findings indicate that extrusion and nixtamalization reduce the potential toxicity of FB1-contaminated corn.

  5. Investigation on grain size effect in high strain rate ductility of 1100 pure aluminum

    NASA Astrophysics Data System (ADS)

    Bonora, N.; Bourne, N.; Ruggiero, A.; Iannitti, G.; Testa, G.

    2017-01-01

    The effect of the initial grain size on the material ductility at high strain rates in 1100 pure aluminum was investigated. Dynamic tensile extrusion (DTE) tests, at different impact velocities, were performed. Samples have been annealed at 350°C for different exposure times to induce grain growth. Extruded fragments were soft-recovered and the overall length of the extruded jets was used as a measure of material ductility at high strain rates. Numerical simulation of DTE test at different velocity was performed using the modified Rusinek-Klepaczko constitutive model. Results indicates that, as reported for pure copper, the overall ductility of the aluminum increases when grain size decreases. Numerical simulation results were in quite good agreement with experimental data.

  6. Cryogenic Properties of Aluminum Beryllium and Beryllium Materials

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Ultimate tensile strength, yield strength, and elongation were obtained for the aluminum-beryllium alloy, AlBeMetl62 (38%Al-62%Be), at cryogenic (-195.5 C (-320 F) and (-252.8 C) (-423 F)) temperatures, and for an optical grade beryllium, O-30H (99%Be), at -252.8 C. AlBeMetl62 material was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions." O-30H material was purchased to the requirements of Brush Wellman Inc. specification O-30H Optical Grade Beryllium. The ultimate tensile and yield strengths for extruded AlBeMetl62 material increased with decreasing temperature, and the percent elongation decreased with decreasing temperature. Design properties for the ultimate tensile strength, yield strength, and percent elongation for extruded AlBeMetl62 were generated. It was not possible to distinguish a difference in the room and cryogenic ultimate strength for the hot isostatically pressed (HIP'ed) O-30H material. The O30H elongation decreased with decreasing temperature.

  7. Cryogenic Properties of Aluminum-Beryllium and Beryllium Materials

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Ultimate tensile strength, yield strength, and elongation were obtained for the aluminum- beryllium alloy, AlBeMetl62 (38%Al-62%Be), at cryogenic (-195.5 C (-32O F) and (- 252.8 C) (-423 F)) temperatures, and for an optical grade beryllium, O-30H (99%Be), at -252.8 C. AlBeMet162 material was purchased to the requirements of SAE- AMs7912, "Aluminum-Beryllium Alloy, Extrusions". O-30H material was purchased to the requirements of Brush Wellman Inc. specification O-30H Optical Grade Beryllium. The ultimate tensile and yield strengths for extruded AlBeMet162 material increased with decreasing temperature, and the percent elongation decreased with decreasing temperature. Design properties for the ultimate tensile strength, yield strength, and percent elongation for extruded AlBeMetl62 were generated. It was not possible to distinguish a difference in the room and cryogenic ultimate strength for the hot isostatically pressed (HIP'ed) O-30H material. The O-30H elongation decreased with decreasing temperature.

  8. Bearing Strengths of Some Wrought-aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Moore, R L; Wescoat, C

    1943-01-01

    Although a number of investigations of the bearing strength of aluminum alloys have been made, the problem remains one of considerable interest to the aircraft industry. For this reason it has seemed advisable to make additional tests of the commonly used aircraft alloys in an effort to establish a better basis for the selection of allowable bearing values. Current design practice does not recognize the effect of edge distance upon bearing strengths, and for this reason edge distance was one of the principal variables considered in this investigation. The increasing emphasis being placed upon permanent set limitations makes it essential that more information on bearing yield phenomena be obtained. The object of this investigation was to determine bearing yield and ultimate strengths of the following aluminum alloy products: 17S-T, 24S-T, Alclad 24S-T, 24S-RT, 52S-0, 52S-1/2H, 52S-H, 53S-T, and 61S-T extrusions. Ratios of these bearing properties to tensile properties were also determined.

  9. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1982-04-01

    Metallic aluminum may be produced by the electrolysis of Al/sub 2/S/sub 3/ at 700 to 800/sup 0/C in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  10. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  11. Aluminum nitride grating couplers.

    PubMed

    Ghosh, Siddhartha; Doerr, Christopher R; Piazza, Gianluca

    2012-06-10

    Grating couplers in sputtered aluminum nitride, a piezoelectric material with low loss in the C band, are demonstrated. Gratings and a waveguide micromachined on a silicon wafer with 600 nm minimum feature size were defined in a single lithography step without partial etching. Silicon dioxide (SiO(2)) was used for cladding layers. Peak coupling efficiency of -6.6 dB and a 1 dB bandwidth of 60 nm have been measured. This demonstration of wire waveguides and wideband grating couplers in a material that also has piezoelectric and elasto-optic properties will enable new functions for integrated photonics and optomechanics.

  12. Characterization of ultradispersed aluminum

    SciTech Connect

    Simpson, R.L.; Maienschein, J.L.; Swansiger, R.W.; Garcia, F.; Darling, D.H.

    1994-12-08

    Samples of ultradispersed Al were received, which were produced by electrically exploding Al wires in argon. These samples comprised very small particles that were not significantly oxidized and that were stable in air. Particle morphology were studied with SE, micropycnometry, and gas adsorption surface area. Composition were determined using various techniques, as were thermal stability and reaction exotherms. The inexplicable reports of an Al-Ar compound and of an exothermic reaction were not confirmed. The material is a stable, nonoxidized, small-particle, highly reactive form of aluminum that is of interest in energetic materials formulations.

  13. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    SciTech Connect

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  14. The Benefits of Aluminum Windows.

    ERIC Educational Resources Information Center

    Goyal, R. C.

    2002-01-01

    Discusses benefits of aluminum windows for college construction and renovation projects, including that aluminum is the most successfully recycled material, that it meets architectural glass deflection standards, that it has positive thermal energy performance, and that it is a preferred exterior surface. (EV)

  15. Lost-Soap Aluminum Casting.

    ERIC Educational Resources Information Center

    Mihalow, Paula

    1980-01-01

    Lost-wax casting in sterling silver is a costly experience for the average high school student. However, this jewelry process can be learned at no cost if scrap aluminum is used instead of silver, and soap bars are used instead of wax. This lost-soap aluminum casting process is described. (Author/KC)

  16. Aluminum Nanoholes for Optical Biosensing

    PubMed Central

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor; Herranz, Sonia; Urraca, Javier; Moreno-Bondi, María Cruz; Avella-Oliver, Miquel; Maquieira, Ángel; Puchades, Rosa

    2015-01-01

    Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs. PMID:26184330

  17. Primary Aluminum Plants Worldwide - 1998

    USGS Publications Warehouse

    1999-01-01

    The 1990 U.S. Bureau of Mines publication, Primary Aluminum Plants Worldwide, has been updated and is now available. The 1998 USGS edition of Primary Aluminum Plants Worldwide is published in two parts. Part I—Detail contains information on individual primary smelter capacity, location, ownership, sources of energy, and other miscellaneous information. Part II—Summary summarizes the capacity data by country

  18. Wettability of Aluminum on Alumina

    NASA Astrophysics Data System (ADS)

    Bao, Sarina; Tang, Kai; Kvithyld, Anne; Tangstad, Merete; Engh, Thorvald Abel

    2011-12-01

    The wettability of molten aluminum on solid alumina substrate has been investigated by the sessile drop technique in a 10-8 bar vacuum or under argon atmosphere in the temperature range from 1273 K to 1673 K (1000 °C to 1400 °C). It is shown that the reduction of oxide skin on molten aluminum is slow under normal pressures even with ultralow oxygen potential, but it is enhanced in high vacuum. To describe the wetting behavior of the Al-Al2O3 system at lower temperatures, a semiempirical calculation was employed. The calculated contact angle at 973 K (700 °C) is approximately 97 deg, which indicates that aluminum does not wet alumina at aluminum casting temperatures. Thus, a priming height is required for aluminum to infiltrate a filter. Wetting in the Al-Al2O3 system increases with temperature.

  19. A mathematical model to predict the strength of aluminum alloys subjected to precipitation hardening

    SciTech Connect

    Qureshi, F.S.; Sheikh, A.K.; Rashid, M.

    1999-06-01

    A number of alloys, notably most of the aluminum alloys, can be heat treated by aging. This aging due to time-dependent precipitation hardening increases the strength and hardness as well as modifying other mechanical properties. Precipitation hardening has been a popular strengthening mechanism for many decades; therefore, extensive information is available in literature about the precipitation-hardening response of various series of aluminum alloys. The age-hardening response of these alloys is usually represented in graphical form as plotted between property changes and aging time for different temperatures. In designing a suitable precipitation-hardening strategy, one can refer to these graphs. However, for automatic control of aging furnaces, as well as for decision making regarding optimal selection of aging conditions (time/temperature combination), it is desirable to express these relationships in a formal mathematical structure. A mathematical model is developed in this article for widely used heat treatable aluminum alloys used in the extrusion industry. This model is a condensed representation of all {sigma} = f(T,t) curves in different series of aluminum alloys, and the parameters of this model characterize the various compositions of the alloys in the series.

  20. A comparison of different irrigation systems and gravitational effect on final extrusion of the irrigant

    PubMed Central

    Görduysus, Melahat; Görduysus, Ömer

    2015-01-01

    Background The aim of this study was to compare manual needle irrigation (MNI), RinsEndo (RE), and passive ultrasonic irrigation (PUI), and assess the effect of gravity on extrusion from the apex in vitro. Material and Methods The distobuccal roots of molars were used and the canals were instrumented up to F2. Teeth were mounted on models, which permitted visualization and manipulation of the apices for necessary procedures. The models were placed in articulator to simulate the jaw. Six groups (G) were formed as: G1, G2 and G3 represented mandibular positioning of teeth and were irrigated with MNI, RE, and PUI, respectively, while G4, G5, and G6 represented maxillary positioning of teeth and were also irrigated in same sequence. Prior to the final irrigation, 72 cube-shaped foam pieces covered with aluminum foil were weighed and the values were recorded as the initial weights. The cubes were then placed on the apical part of each sample. Final irrigation was performed with distilled water and the cubes were weighed again to determine their final weight. Data were analyzed using Kruskal-Wallis and Mann-Whitney U post-hoc test (p<0.05). Results Irrespective of the irrigation technique used, the amount of irrigant extruded from the apex showed a statistically significant difference related to the effect of gravity (p<0.05). There was no statistically significant difference between irrigation methods (p>0.05). When the irrigation systems were compared to examine the effect of gravity, the significant difference was found between G2 and G5 (p<0.05). Conclusions Within the limitations of this study, MNI and PUI were found to be reliable irrigation systems. Caution should be exercised when using RinsEndo. Key words:Final irrigation, manual needle irrigation, passive ultrasonic irrigation, RinsEndo. PMID:26155336

  1. Microemulsion extrusion technique: a new method to produce lipid nanoparticles

    NASA Astrophysics Data System (ADS)

    de Jesus, Marcelo Bispo; Radaic, Allan; Zuhorn, Inge S.; de Paula, Eneida

    2013-10-01

    Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) have been intensively investigated for different applications, including their use as drug and gene delivery systems. Different techniques have been employed to produce lipid nanoparticles, of which high pressure homogenization is the standard technique that is adopted nowadays. Although this method has a high efficiency, does not require the use of organic solvents, and allows large-scale production, some limitations impede its application at laboratory scale: the equipment is expensive, there is a need of huge amounts of surfactants and co-surfactants during the preparation, and the operating conditions are energy intensive. Here, we present the microemulsion extrusion technique as an alternative method to prepare lipid nanoparticles. The parameters to produce lipid nanoparticles using microemulsion extrusion were established, and the lipid particles produced (SLN, NLC, and liposomes) were characterized with regard to size (from 130 to 190 nm), zeta potential, and drug (mitoxantrone) and gene (pDNA) delivery properties. In addition, the particles' in vitro co-delivery capacity (to carry mitoxantrone plus pDNA encoding the phosphatase and tensin homologue, PTEN) was tested in normal (BALB 3T3 fibroblast) and cancer (PC3 prostate and MCF-7 breast) cell lines. The results show that the microemulsion extrusion technique is fast, inexpensive, reproducible, free of organic solvents, and suitable for small volume preparations of lipid nanoparticles. Its application is particularly interesting when using rare and/or costly drugs or ingredients (e.g., cationic lipids for gene delivery or labeled lipids for nanoparticle tracking/diagnosis).

  2. Optical monitoring of thin oil film thickness in extrusion processes

    NASA Astrophysics Data System (ADS)

    Bogdanowicz, Robert; Wroczyński, Piotr; Graczyk, Jan; Gnyba, Marcin

    2005-09-01

    We have used reflectance spectroscopy for the in-situ, non-invasive monitoring of a thin oil film thickness during extrusion process of ceramic paste in capillary rheometer. Investigated pastes are disperse solid liquid systems prepared from the silicone oil AK106 (Wacker) and ceramic powder AlOOH. The thin oil film, extracted from the extruded paste, appears on walls of the rheometer die. A borosilicate view-port-glass provides optical access to the thin film inside the die. Reflectance spectroscopy enables the thin film thickness measurements by wideband spectral analysis of light back reflected from the sample. This spectrum includes extremes, which results from interference between beams reflected from glass-oil boundary and oil-paste boundary. Position and intensity of this extremes were determined by thickness of the thin film as well as refractive indices of the oil and the paste. Optoelectronic system dedicated for process monitoring by means of reflectance spectroscopy had been designed and built. The system comprises tungsten halogen lamp and fiber optic spectrometer. Optical signals are transmitted through bifurcated fibers, focusing optics and the view-port-window. Spectroscopic monitoring was carried out in VIS-NIR range from 400 to 900 nm as a function of extrusion velocity (0.01-5mm/s) and paste particle granulation (5-20 μm). Computer calculation, performed using dedicated software, enables fast determination of thickness even for reflectance spectra interfered by high noise level. Fast development of ceramic components technology requires detailed description of complex rheometric processes. Monitoring of the most important process parameter - oil layer thickness - enables pre-determination of rheometric factors required for proper paste extrusion and accurate shape filling.

  3. Alkaline twin-screw extrusion pretreatment for fermentable sugar production

    PubMed Central

    2013-01-01

    Background The inevitable depletion of fossil fuels has resulted in an increasing worldwide interest in exploring alternative and sustainable energy sources. Lignocellulose, which is the most abundant biomass on earth, is widely regarded as a promising raw material to produce fuel ethanol. Pretreatment is an essential step to disrupt the recalcitrance of lignocellulosic matrix for enzymatic saccharification and bioethanol production. This paper established an ATSE (alkaline twin-screw extrusion pretreatment) process using a specially designed twin-screw extruder in the presence of alkaline solution to improve the enzymatic hydrolysis efficiency of corn stover for the production of fermentable sugars. Results The ATSE pretreatment was conducted with a biomass/liquid ratio of 1/2 (w/w) at a temperature of 99°C without heating equipment. The results indicated that ATSE pretreatment is effective in improving the enzymatic digestibility of corn stover. Sodium hydroxide loading is more influential factor affecting both sugar yield and lignin degradation than heat preservation time. After ATSE pretreatment under the proper conditions (NaOH loading of 0.06 g/g biomass during ATSE and 1 hour heat preservation after extrusion), 71% lignin removal was achieved and the conversions of glucan and xylan in the pretreated biomass can reach to 83% and 89% respectively via subsequent enzymatic hydrolysis (cellulase loading of 20 FPU/g-biomass and substrate consistency of 2%). About 78% of the original polysaccharides were converted into fermentable sugars. Conclusions With the physicochemical functions in extrusion, the ATSE method can effectively overcome the recalcitrance of lignocellulose for the production of fermentable sugars from corn stover. This process can be considered as a promising pretreatment method due to its relatively low temperature (99°C), high biomass/liquid ratio (1/2) and satisfied total sugar yield (78%), despite further study is needed for process

  4. The Limits of Extrusion in the Western Himalaya

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Webb, A. G.; Donaldson, D.; Johnson, S.; Elorriaga, T.

    2014-12-01

    Himalayan orogenesis is commonly explained by 1) extrusion models, involving expulsion of high-grade rocks southwards from beneath Tibet and up towards the High Himalayan orographic front, and/or 2) duplexing models, involving accretion of thrust horses from the downgoing Indian plate to the over-riding orogenic wedge. Most extrusion models predict exhumation and erosion of upper-amphibolite facies metamorphic rocks between the Main Central thrust (MCT) and a structurally higher normal fault, and therefore can be tested by determining if such high grade rocks occur between the MCT and the Indus-Yalu suture to the north. Prior qualitative studies suggest that such rocks are missing across the east Ladakh / Chamba and Kashmir regions of the western Himalaya. Here we present new quantitative and semi-quantitative results that document low peak metamorphic temperatures along a northeast-trending transect across the east Ladakh / Chamba Himalaya. We performed illite crystallinity (IC) and quartz grain boundary analyses to determine metamorphic and deformation temperatures, respectively. Calibrated IC values of structurally high samples range from 0.25 to 0.54, indicating temperatures of ~100 ˚C to ~300 ˚C. In structurally lower, muscovite +/- biotite-bearing meta-pelitic and meta-psammitic rocks, quartz grain boundaries show bulging recrystallization fabrics, corresponding to deformation temperatures of <~450 ˚C. Local exceptions occur along the southeast margin of the study region near a dome, where quartz sub-grain rotation fabrics indicate deformation temperatures between ~450 ˚C and ~550 ˚C. Our results, combined with similar IC values to the north from Girard et al. [2001, Clay Minerals v. 36, p. 237-247], demonstrate that a continuous strip of <~450 ˚C rocks extends from the MCT to the Indus-Yalu suture here. Therefore the predictions of extrusion models are not met in this portion of the Himalaya; we present alternative duplexing models.

  5. Salmonella Inactivation During Extrusion of an Oat Flour Model Food.

    PubMed

    Anderson, Nathan M; Keller, Susanne E; Mishra, Niharika; Pickens, Shannon; Gradl, Dana; Hartter, Tim; Rokey, Galen; Dohl, Christopher; Plattner, Brian; Chirtel, Stuart; Grasso-Kelley, Elizabeth M

    2017-03-01

    Little research exists on Salmonella inactivation during extrusion processing, yet many outbreaks associated with low water activity foods since 2006 were linked to extruded foods. The aim of this research was to study Salmonella inactivation during extrusion of a model cereal product. Oat flour was inoculated with Salmonella enterica serovar Agona, an outbreak strain isolated from puffed cereals, and processed using a single-screw extruder at a feed rate of 75 kg/h and a screw speed of 500 rpm. Extrudate samples were collected from the barrel outlet in sterile bags and immediately cooled in an ice-water bath. Populations were determined using standard plate count methods or a modified most probable number when populations were low. Reductions in population were determined and analyzed using a general linear model. The regression model obtained for the response surface tested was Log (NR /NO ) = 20.50 + 0.82T - 141.16aw - 0.0039T(2) + 87.91aw(2) (R(2) = 0.69). The model showed significant (p < 0.05) linear and quadratic effects of aw and temperature and enabled an assessment of critical control parameters. Reductions of 0.67 ± 0.14 to 7.34 ± 0.02 log CFU/g were observed over ranges of aw (0.72 to 0.96) and temperature (65 to 100 °C) tested. Processing conditions above 82 °C and 0.89 aw achieved on average greater than a 5-log reduction of Salmonella. Results indicate that extrusion is an effective means for reducing Salmonella as most processes commonly employed to produce cereals and other low water activity foods exceed these parameters. Thus, contamination of an extruded food product would most likely occur postprocessing as a result of environmental contamination or through the addition of coatings and flavorings.

  6. Physics based modeling and control of reactive extrusion

    NASA Astrophysics Data System (ADS)

    Elkouss, Paul F.

    2004-11-01

    Kinematic modeling has been shown to be important for the understanding and control of co-rotating twin screw extruders. The residence time distribution (RTD) is often used to characterize the steady-state behavior of an extrusion process. Due to the complex rheological behavior of polymer flow in the extruder, few have felt that the RTD would be independent of changes in operating conditions for the same screw configuration. To investigate, we are asserting that resident distributions could be independent of operating conditions for certain types of polymers. Four different polymers, two polyethylenes and two polypropylenes, were processed on the same 30mm Werner and Pfleiderer co-rotating twin-screw extruder (CoTSE) equipped with reflectance optical probes to compare their RTD's. Additionally, each material was tested to determine its complex viscosity, to better understand the phenomena involved. Using physically motivated models to control reactive extrusion processes is attractive because of the flexibility and robustness it could provide. This thesis uses residence distribution analyses to characterize the material flow through a co-rotating twin-screw extruder. Furthermore, we examine the applicability of residence distributions as the basis for kinematic modeling of the extrusion process. This demonstration of using a steady-state model---the residence distribution---as a basis for kinematic behavior is unique. The signals have been deconvoluted to kinematically characterize the flow in the different regions of the extruder, such as the melting, mixing and metering zones. Studies of step changes have shown that the steady state value of extrudate viscosity is dependent on the peroxide concentration, volume mixing, and on the residence time from the specific throughput. This data has also provided plant models of the peroxide initiated degradation reaction using system identification techniques. Although a specific example of vis-breaking of polypropylene is

  7. Aluminum plasmonic photocatalysis

    PubMed Central

    Hao, Qi; Wang, Chenxi; Huang, Hao; Li, Wan; Du, Deyang; Han, Di; Qiu, Teng; Chu, Paul K.

    2015-01-01

    The effectiveness of photocatalytic processes is dictated largely by plasmonic materials with the capability to enhance light absorption as well as the energy conversion efficiency. Herein, we demonstrate how to improve the plasmonic photocatalytic properties of TiO2/Al nano-void arrays by overlapping the localized surface plasmon resonance (LSPR) modes with the TiO2 band gap. The plasmonic TiO2/Al arrays exhibit superior photocatalytic activity boasting an enhancement of 7.2 folds. The underlying mechanisms concerning the radiative energy transfer and interface energy transfer processes are discussed. Both processes occur at the TiO2/Al interface and their contributions to photocatalysis are evaluated. The results are important to the optimization of aluminum plasmonic materials in photocatalytic applications. PMID:26497411

  8. Enhancing restorative, periodontal, and esthetic outcomes through orthodontic extrusion.

    PubMed

    Fakhry, Ali

    2007-01-01

    Traumatic tooth fractures, dental caries, and overzealous tooth preparations can lead to the loss of coronal tooth structure, thus complicating the definitive prosthetic plan. Although exposure of additional clinical tooth structure by surgical crown lengthening is often recommended, such an approach is usually discouraged because of the possible adverse periodontal changes to the adjacent teeth and compromised esthetics, especially in the presence of an otherwise intact arch. This article discusses the application of orthodontic extrusion to conservatively restore a single tooth with minimal coronal tooth structure in the esthetic zone. A detailed description of the prosthetic approach used before, during, and after orthodontic therapy is presented.

  9. Method and apparatus for die forming metal sheets and extrusions

    NASA Astrophysics Data System (ADS)

    Darter, John L.

    1986-06-01

    The invention comprises an apparatus for die forming metal sheets and extrusions which utilizes die blocks of low melting temperature metallic material. The die blocks are formed in an adjustable mold which comprises a mold box, a pivotable dam within the mold box and blocking means for locking the pivotable dam member in a desired angular position. Once a desired die block angle is ascertained for a particular joggle, the pivotable member of the mold box is adjusted to produce the desired angle in the die casting made in the mold box.

  10. Short fiber-reinforced cementitious composites manufactured by extrusion technology

    NASA Astrophysics Data System (ADS)

    Mu, Bin

    The use of short fibers in the cement-based composites is more preferable due to the simplicity and economic nature in fabrication. The short fiber-reinforced cementitious composite (SFRCC) manufactured by the extrusion method show a great improvement in both strength and toughness as compared to the fiber-reinforced composites made by traditional casting methods. This improvement can be attributed to the achievement of low porosity and good interfacial bond in SFRCC under high shear and compressive stress during the extrusion process. In the present study, products of cylinders, sheets, pipes and honeycomb panels incorporating various mineral admixtures such as slag, silica fume, and metakaolin have been manufactured by the extrusion technology. Two kinds of short fibers, ductile polyvinyl alcohol (PVA) fibers and stronger but less ductile glass fibers, were used as the reinforcement in the products. After the specimens were extruded, tension, bending and impact tests were performed to study the mechanical properties of these products. The rheology test was performed for each mix to determine its viscoelastic properties. In addition, X-ray diffraction (XRD) and scanning electronic microscopy (SEM) technology were employed to get an insight view of the mechanism. A freezing and thawing experiment (ASTM C666) was also carried to investigate the durability of the specimens. Based on these experimental results, the reinforcing behaviors of these two short fibers were investigated. The enhancing effects of silica fume and metakaolin on the extrudates were compared and discussed. Finally, the optimum amount of silica fume and slag was proposed. Since the key point for a successful extrusion is the properly designed rheology which controls both internal and external flow properties of extrudate, a nonlinear viscoelastic model was applied to investigate the rheological behavior of a movable fresh cementitious composite in an extruder channel. The velocity profile of the

  11. Aqueous-Based Extrusion Fabrication of Ceramics on Demand

    DTIC Science & Technology

    2007-07-01

    utilizing a plastic syringe and hypodermic needles is shown in Figure 3. Single lines were deposited at table velocities of 25 mm/s and 30 mm/s with a...extrusion mechanism utilizing a plastic syringe and hypodermic needles . 3 0 2 4 6 8 10 12 20 40 60 80 100 120 140 E xc es s D ep os iti on L...the plastic syringe and hypodermic needles with a two-piece metal reservoir. The metal reservoir reduces variability in the internal pressure due

  12. Hydrostatic extrusion of Cu-Ag melt spun ribbon

    DOEpatents

    Hill, Mary Ann; Bingert, John F.; Bingert, Sherri A.; Thoma, Dan J.

    1998-01-01

    The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process.

  13. Hydrostatic extrusion of Cu-Ag melt spun ribbon

    DOEpatents

    Hill, M.A.; Bingert, J.F.; Bingert, S.A.; Thoma, D.J.

    1998-09-08

    The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process. 5 figs.

  14. Aluminum: Industry of the future

    SciTech Connect

    1998-11-01

    For over a century, the US aluminum industry has led the global market with advances in technology, product development, and marketing. Industry leaders recognize both the opportunities and challenges they face as they head into the 21st century, and that cooperative R and D is key to their success. In a unique partnership, aluminum industry leaders have teamed with the US Department of Energy`s Office of Industrial Technologies (OIT) to focus on innovative technologies that will help to strengthen the competitive position of the US aluminum industry and, at the same time, further important national goals. This industry-led partnership, the Aluminum Industry of the Future, promotes technologies that optimize the use of energy and materials in operations and reduce wastes and energy-related emissions. Led by The Aluminum Association, industry leaders began by developing a unified vision of future market, business, energy, and environmental goals. Their vision document, Partnerships for the Future, articulates a compelling vision for the next 20 years: to maintain and grow the aluminum industry through the manufacture and sale of competitively priced, socially desirable, and ecologically sustainable products. Continued global leadership in materials markets will require the combined resources of industry, universities, and government laboratories. By developing a unified vision, the aluminum industry has provided a framework for the next step in the Industries of the Future process, the development of a technology roadmap designed to facilitate cooperative R and D.

  15. Spray Rolling Aluminum Strip

    SciTech Connect

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  16. [Microbiological corrosion of aluminum alloys].

    PubMed

    Smirnov, V F; Belov, D V; Sokolova, T N; Kuzina, O V; Kartashov, V R

    2008-01-01

    Biological corrosion of ADO quality aluminum and aluminum-based construction materials (alloys V65, D16, and D16T) was studied. Thirteen microscopic fungus species and six bacterial species proved to be able to attack aluminum and its alloys. It was found that biocorrosion of metals by microscopic fungi and bacteria was mediated by certain exometabolites. Experiments on biocorrosion of the materials by the microscopic fungus Alternaria alternata, the most active biodegrader, demonstrated that the micromycete attack started with the appearance of exudate with pH 8-9 on end faces of the samples.

  17. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  18. Non-Chromate Aluminum Pretreatments, Phase 2

    DTIC Science & Technology

    2004-09-01

    September 2004 78 ALUMINUM AL2024-T3 ALUMINUM AL7075 -T6 PNL ID 4 Control 5...ALUMINUM - AL2024-T3 192 ALUMINUM - AL7075 -T6 112 Table 5.13: AMCOM – NAVAIR PANEL TEST MATRIX OCTOBER 2003 NCAP Phase II Interim Report

  19. 75 FR 70689 - Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum-Greenwood Forge Division; Currently...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-18

    ... Employment and Training Administration Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum- Greenwood... Aluminum Fabricated Products, LLC, Kaiser Aluminum-Greenwood Forge Division, including on- site leased... are engaged in the production of aluminum alloy forgings. Information shows that on July 28,...

  20. Spontaneous extrusion of staghorn renal calculus with nephrocutaneous fistula in a child.

    PubMed

    Purkait, Bimalesh; Sinha, Rahul Janak; Bansal, Ankur; Singh, Vishwajeet

    2016-04-11

    Renal stone disease may present as nephrocutaneous fistula. Spontaneous extrusion of renal stone with nephrocutaneous fistula is rare. Most of the cases have been reported in adults. We present a case of nephrocutaneous fistula with spontaneous extrusion of staghorn renal calculus in a paediatric patient.

  1. Two-step solid lipid extrusion as a process to modify dissolution behavior.

    PubMed

    Windbergs, Maike; Gueres, Sinan; Strachan, Clare J; Kleinebudde, Peter

    2010-03-01

    Extrudates based on varying ratios of the triglyceride tripalmitin and the hydrophilic polymer polyethylene glycol as matrix formers were produced as oral dosage forms with controlled release characteristics. The extrudates were processed below the melting points of the excipients and contained the hydrophobic model drug chloramphenicol. The influence of the ratio of the matrix formers on drug dissolution was investigated, with an increase in the water-soluble polymer content increasing the drug release rate. In addition, the effect of varying the extrusion process on the extrudate structure and drug dissolution was investigated. Two-step extrusion was performed, which comprised an initial extrusion step of drug and one matrix component followed by milling these extrudates and a second extrusion step for the milled extrudates mixed with the second matrix component. Initial extrusion with polyethylene glycol led to increased dissolution rates, while initial extrusion with tripalmitin led to decreased dissolution rates compared to the dissolution characteristics of extrudates containing the same composition produced by one-step extrusion. Thus, two-step solid lipid extrusion can successfully be used as a process to modify the dissolution behavior of extrudates.

  2. Physical properties, molecular structures and protein quality of texturized whey protein isolate: effect of extrusion temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extrusion is a powerful food processing operation, which utilizes high temperature and high shear force to produce a product with unique physical and chemical characteristics. Texturization of whey protein isolate (WPI) through extrusion for the production of protein fortified snack foods has provid...

  3. Extrusion cooking using a twin-screw apparatus reduces toxicity of fumonisin-contaminated corn grits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extrusion cooking using a single screw configuration reduced fumonisin concentrations of corn grits in an earlier study. Adding glucose before cooking enhanced reductions and, in one of three trials, partially reversed in vivo toxicity. To determine the effectiveness of extrusion using the more effi...

  4. Finite element simulation of extrusion of optical fiber preforms: Effects of wall slip

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi Feng; Zhang, Yilei

    2016-03-01

    Extrusion has been successfully used to fabricate optical fiber preforms, especially microstructured ones. Although simplified mathematical model has been used to calculate the extrusion pressure or speed, more frequently die design and extrusion process optimization depend on trial and error, which is especially true for complex die and preform design. This paper employs the finite element method (FEM) to simulate the billet extrusion process to investigate the relationship between the extruding pressure, the billet viscosity, the wall slip condition and the extruding speed for extrusion of rod preforms. The slipping wall boundary condition is taken into account of the finite element model, and the simulated extruding pressure agrees with the one experimental value reported preciously. Then the dependence of the extruding speed on the extruding pressure, billet viscosity and the slip speed is systematically simulated. Simulated data is fitted to a second order polynomial model to describe their relationship, and the terms of the model are reduced from nine to five by using a statistical method while maintaining the fitting accuracy. The FEM simulation and the fitted model provide a convenient and dependable way to calculate the extrusion pressure, speed or other process parameters, which could be used to guide experimental design for future preform extrusion. Furthermore, the same simulation could be used to optimize die design and extrusion process to improve quality of extruded preforms.

  5. Ultrasound assessment of medial meniscal extrusion: a validation study using MRI as reference standard.

    PubMed

    Nogueira-Barbosa, Marcello H; Gregio-Junior, Everaldo; Lorenzato, Mario M; Guermazi, Ali; Roemer, Frank W; Chagas-Neto, Francisco A; Crema, Michel D

    2015-03-01

    OBJECTIVE. The purpose of this article is to validate both semiquantitative and quantitative ultrasound assessment of medial meniscal extrusion using MRI assessment as the reference standard. SUBJECTS AND METHODS. Ninety-three consecutive patients with chronic knee pain referred for knee MRI were evaluated by ultrasound and MRI on the same day. Two musculoskeletal radiologists assessed meniscal extrusion on ultrasound and MRI separately and independently and graded it semiquantitatively as follows: 0 (< 2 mm), 1 (≥ 2 mm and < 4 mm), and 2 (≥ 4 mm). Agreement between the ultrasound and MRI evaluations was determined using weighted kappa statistics. Intraclass correlation coefficients were used to evaluate agreement using the absolute values of extrusion (quantitative assessment). We further evaluated the diagnostic performance of ultrasound for the detection of medial meniscal extrusion using MRI as the reference standard. RESULTS. For semiquantitative grading, agreement between ultrasound and MRI was moderate for reader 1 (κ = 0.57) and substantial for reader 2 (κ = 0.64). Substantial agreement was found for both readers (intraclass correlation coefficients, 0.73 and 0.70) when comparing quantitative assessment of meniscal extrusion between ultrasound and MRI. Ultrasound showed excellent sensitivity (95% and 96% for each reader) and good specificity (82% and 70% for each reader) in the detection of meniscal extrusion. CONCLUSION. Ultrasound assessment of meniscal extrusion is reliable and can be used for both quantitative and semiquantitative assessment, exhibiting excellent diagnostic performance for the detection of meniscal extrusion compared with MRI.

  6. Numerical simulation of burst defects in cold extrusion process

    NASA Astrophysics Data System (ADS)

    Labergère, C.; Lestriez, P.; Saanouni, K.

    2007-05-01

    The formation of the central bursts in axisymmetric cold extrusion is numerically simulated by using 2D finite element analysis (FEA) accounting for the mixed isotropic and kinematic hardening together with the ductile damage effect. The coupling between the ductile damage and the elastoplastic constitutive equations is formulated in the framework of the thermodynamics of irreversible processes together with the Continuum Damage Mechanics (CDM) theory. An isotropic ductile damage model is fully coupled with elastoplastic constitutive equations including non linear isotropic and kinematic hardening. A modified ductile damage criterion based on linear combination of the stress tensor invariants is used in order to predict the occurrence of micro-crack initiation as a discontinuous central bursts along the bar axis. The implicit integration scheme of the fully coupled constitutive equations and the Dynamic Explicit resolution scheme to solve the associated initial and boundary value problem are outlined. Application is made to the prediction of the chevron shaped cracks in cold extrusion of a round bar. The effect of various process parameters, as the diameter reduction ratio, the die semi-angle, the friction coefficient and the material ductility, on the central bursts occurrence are discussed.

  7. Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots.

    PubMed

    Santi, Simonetta; Schmidt, Wolfgang

    2009-01-01

    Here, we have analysed the H(+)-ATPase-mediated extrusion of protons across the plasma membrane (PM) of rhizodermic cells, a process that is inducible by iron (Fe) deficiency and thought to serve in the mobilization of sparingly soluble Fe sources. The induction and function of Fe-responsive PM H(+)-ATPases in Arabidopsis roots was investigated by gene expression analysis and by using mutants defective in the expression or function of one of the isogenes. In addition, the expression of the most responsive isogenes was investigated in natural Arabidopsis accessions that have been selected for their in vivo proton extrusion activity. Our data suggest that the rhizosphere acidification in response to Fe deficiency is chiefly mediated by AHA2, while AHA1 functions as a housekeeping isoform. The aha7 knock-out mutant plants showed a reduced frequency of root hairs, suggesting an involvement of AHA7 in the differentiation of rhizodermic cells. Acidification capacity varied among Arabidopsis accessions and was associated with a high induction of AHA2 and IRT1, a high relative growth rate and a shoot-root ratio that was unaffected by the external Fe supply. An effective regulation of the Fe-responsive genes and a stable shoot-root ratio may represent important characteristics for the Fe uptake efficiency.

  8. Solid lipid extrusion of sustained release dosage forms.

    PubMed

    Reitz, Claudia; Kleinebudde, Peter

    2007-09-01

    The applicability of the solid lipid extrusion process as preparations method for sustained release dosage forms was investigated in this study. Two lipids with similar melting ranges but of different composition, glyceryl palmitostearate (Precirol ATO 5) and glyceryl trimyristate (Dynasan 114), and mixtures of each lipid with 50% or 75% theophylline were extruded at temperatures below their melting ranges. Extrudates were analyzed using differential scanning calorimetry, scanning electron microscopy, porosity measurements and in vitro drug dissolution studies. The possibility of processing lipids by softening instead of complete melting and without subsequent formation of low-melting, metastable polymorphs could be demonstrated. Extrudates based on formulations of glyceryl palmitostearate/theophylline (50:50) and glyceryl trimyristate/theophylline (50:50) showed sustained release properties. An influence of extrusion conditions on the matrix structure was shown for extrudates based on a mixture of glyceryl trimyristate and theophylline (50:50). Glyceryl trimyristate tended to solidify in porous structures after melting. Exceeding a material temperature of 50.5 degrees C led to porous extrudate matrices with a faster drug release. The production of novel, non porous sustained release matrices was possible at a material temperature of 49.5 degrees C. Extrudates based on glyceryl trimyristate/theophylline (50:50) only slight changes in melting enthalpy and stable drug release profiles.

  9. Revascularization of immature permanent incisors after severe extrusive luxation injury.

    PubMed

    Cehreli, Zafer C; Sara, Sezgi; Aksoy, Burak

    2012-07-01

    Pulp necrosis is an uncommon sequel to extrusive luxation in immature teeth with incomplete apical closure. In this report, we describe the management of severely extruded immature maxillary incisors and the outcome of revascularization to treat subsequent pulp necrosis. An 8.5-year-old boy with severe dentoalveolar trauma to the anterior maxillary region as a result of a fall was provided emergency treatment consisting of reduction of the dislodged labial cortical bone and repositioning of the central incisors, which had suffered extrusive luxation. When he presented with spontaneous pain involving the traumatized incisors a week later, the teeth were treated via a revascularization protocol using sodium hypochlorite irrigation followed by 3 weeks of intracanal calcium hydroxide, then a coronal seal of mineral trioxide aggregate and resin composite. Complete periradicular healing was observed after 3 months, followed by progressive thickening of the root walls and apical closure. Follow-up observations confirmed the efficacy of the regenerative treatment as a viable alternative to conventional apexification in endodontically involved, traumatized immature teeth.

  10. Revascularization of immature permanent incisors after severe extrusive luxation injury.

    PubMed

    Cehreli, Zafer C; Sara, Sezgi; Aksoy, Burak

    2012-01-01

    Pulp necrosis is an uncommon sequel to extrusive luxation in immature teeth with incomplete apical closure. In this report, we describe the management of severely extruded immature maxillary incisors and the outcome of revascularization to treat subsequent pulp necrosis. An 8.5-Year-old boy with severe dentoalveolar trauma to the anterior maxillary region as a result of a fall was provided emergency treatment consisting of reduction of the dislodged labial cortical bone and repositioning of the central incisors, which had suffered extrusive luxation. When he presented with spontaneous pain involving the traumatized incisors a week later, the teeth were treated via a revascularization protocol using sodium hypochlorite irrigation followed by 3 weeks of intracanal calcium hydroxide, then a coronal seal of mineral trioxide aggregate and resin composite. Complete periradicular healing was observed after 3 Months, followed by progressive thickening of the root walls and apical closure. Follow-up observations confirmed the efficacy of the regenerative treatment as a viable alternative to conventional apexification in endodontically involved, traumatized immature teeth.

  11. Continuous manufacturing of solid lipid nanoparticles by hot melt extrusion.

    PubMed

    Patil, Hemlata; Kulkarni, Vijay; Majumdar, Soumyajit; Repka, Michael A

    2014-08-25

    Solid lipid nanoparticles (SLN) can either be produced by hot homogenization of melted lipids at higher temperatures or by a cold homogenization process. This paper proposes and demonstrates the formulation of SLN for pharmaceutical applications by combining two processes: hot melt extrusion (HME) technology for melt-emulsification and high-pressure homogenization (HPH) for size reduction. This work aimed at developing continuous and scalable processes for SLN by mixing a lipid and aqueous phase containing an emulsifier in the extruder barrel at temperatures above the melting point of the lipid and further reducing the particle size of emulsion by HPH linked to HME in a sequence. The developed novel platform demonstrated better process control and size reduction compared to the conventional process of hot homogenization (batch process). Varying the process parameters enabled the production of SLN below 200 nm (for 60 mg/ml lipid solution at a flow rate of 100ml/min). Among the several process parameters investigated, the lipid concentration, residence time and screw design played major roles in influencing the size of the SLN. This new process demonstrates the potential use of hot melt extrusion technology for continuous and large-scale production of SLN.

  12. Phenomenological model of maize starches expansion by extrusion

    NASA Astrophysics Data System (ADS)

    Kristiawan, M.; Della Valle, G.; Kansou, K.; Ndiaye, A.; Vergnes, B.

    2016-10-01

    During extrusion of starchy products, the molten material is forced through a die so that the sudden abrupt pressure drop causes part of the water to vaporize giving an expanded, cellular structure. The objective of this work was to elaborate a phenomenological model of expansion and couple it with Ludovic® mechanistic model of twin screw extrusion process. From experimental results that cover a wide range of thermomechanical conditions, a concept map of influence relationships between input and output variables was built. It took into account the phenomena of bubbles nucleation, growth, coalescence, shrinkage and setting, in a viscoelastic medium. The input variables were the moisture content MC, melt temperature T, specific mechanical energy SME, shear viscosity η at the die exit, computed by Ludovic®, and the melt storage moduli E'(at T > Tg). The outputs of the model were the macrostructure (volumetric expansion index VEI, anisotropy) and cellular structure (fineness F) of solid foams. Then a general model was established: VEI = α (η/η0)n in which α and n depend on T, MC, SME and E' and the link between anisotropy and fineness was established.

  13. Analysis on dynamic tensile extrusion behavior of UFG OFHC Cu

    NASA Astrophysics Data System (ADS)

    Park, Kyung-Tae; Park, Leeju; Kim, Hak Jun; Kim, Seok Bong; Lee, Chong Soo

    2014-08-01

    Dynamic tensile extrusion (DTE) tests with the strain rate order of ~105 s-1 were conducted on coarse grained (CG) Cu and ultrafine grained (UFG) Cu. ECAP of 16 passes with route Bc was employed to fabricate UFG Cu. DTE tests were carried out by launching the sphere samples to the conical extrusion die at a speed of ~475 m/sec in a vacuumed gas gun system. UFG Cu was fragmented into 3 pieces and showed a DTE elongation of ~340%. CG Cu exhibited a larger DTE elongation of ~490% with fragmentation of 4 pieces. During DTE tests, dynamic recrystallization occurred in UFG Cu, but not in CG Cu. In order to examine the DTE behavior of CG Cu and UFG Cu under very high strain rates, a numerical analysis was undertaken by using a commercial finite element code (LS-DYNA 2D axis-symmetric model) with the Johnson - Cook model. The numerical analysis correctly predicted fragmentation and DTE elongation of CG Cu. But, the experimental DTE elongation of UFG Cu was much smaller than that predicted by the numerical analysis. This difference is discussed in terms of microstructural evolution of UFG Cu during DTE tests.

  14. Emulsifiers and thickeners on extrusion-cooked instant rice product.

    PubMed

    Wang, Jin Peng; An, Hong Zhou; Jin, Zheng Yu; Xie, Zheng Jun; Zhuang, Hai Ning; Kim, Jin Moon

    2013-08-01

    Extrusion-cooked instant rice was prepared by optimizing the formulation with emulsifiers, glycerol monostearate (GMS), soybean lecithin (LC), and sodiumstearoyl lactylate (SSL), and thickeners, gum Arabic (GA), sodium alginate (SA), and sticky rice (SR). The emulsifiers addition caused increase of degree of gelatinization (DG), and decrease of water soluble carbohydrate (WSC), α-amylase sensitivity, water soluble index (WAI) and adhesive for extrudates, while the thickeners addition increased extrudates DG, bulk density (BD), WSC, α-amylase sensitivity, WAI, hydration rate (HR) and adhesiveness. Based on the data generated by a single additive at various levels, optimum formulation was obtained employing orthogonal matrix system with combination of the selected additives for extrusion cooking. Extrudates were evaluated for optimum hydration time followed by drying to prepare the finished product. Texture profile analysis and sensory evaluation indicate that quality of the finished product is equivalent to that of the round shaped rice and superior to a commercial instant rice product. This study also demonstrates possibility of value-added and versatile instant rice product development using broken rice.

  15. Extrusion foaming of protein-based thermoplastic and polyethylene blends

    NASA Astrophysics Data System (ADS)

    Gavin, Chanelle; Lay, Mark C.; Verbeek, Casparus J. R.

    2016-03-01

    Currently the extrusion foamability of Novatein® Thermoplastic Protein (NTP) is being investigated at the University of Waikato in collaboration with the Biopolymer Network Ltd (NZ). NTP has been developed from bloodmeal (>86 wt% protein), a co-product of the meat industry, by adding denaturants and plasticisers (tri-ethylene glycol and water) allowing it to be extruded and injection moulded. NTP alone does not readily foam when sodium bicarbonate is used as a chemical blowing agent as its extensional viscosity is too high. The thermoplastic properties of NTP were modified by blending it with different weight fractions of linear low density polyethylene (LLDPE) and polyethylene grafted maleic anhydride (PE-g-MAH) compatibiliser. Extrusion foaming was conducted in two ways, firstly using the existing water content in the material as the blowing agent and secondly by adding sodium bicarbonate. When processed in a twin screw extruder (L/D 25 and 10 mm die) the material readily expanded due to the internal moisture content alone, with a conditioned expansion ratio of up to ± 0.13. Cell structure was non-uniform exhibiting a broad range cell sizes at various stages of formation with some coalescence. The cell size reduced through the addition of sodium bicarbonate, overall more cells were observed and the structure was more uniform, however ruptured cells were also visible on the extrudate skin. Increasing die temperature and introducing water cooling reduced cell size, but the increased die temperature resulted in surface degradation.

  16. Whole process modeling of joining of flareless AA 6061-T4 tube by extrusion-bulging forming using a polyurethane elastomer medium

    NASA Astrophysics Data System (ADS)

    Yang, J. C.; Li, H.; Yang, H.; Li, G. J.

    2016-08-01

    The tube joining by plastic deformation proves to be a more efficient and environmentally friendly way to achieve the tube-tube joining compared with other traditional types, such as metallurgical joining and mechanical joining. In this study, to reveal the effects of the processing parameters on the filling quality and residual contact stress, an axisymmetric finite element (FE) model of the whole joining process, including extrusion-bulging forming and unloading, was established and validated. The aluminum alloy (AA) 6061-T4 tubes, the stainless steel (ST) 15-5PH sleeve and polyurethane (PU) elastomer medium were characterized and modeled. And the implicit algorithm was adopted by comparing the prediction results between explicit and implicit FE models. The characteristics of stress distribution and plastic strain for the tube, PU elastomer and sleeve were discussed.

  17. Was the Himalayan crystalline core emplaced by extrusion or underplating?

    NASA Astrophysics Data System (ADS)

    He, D.; Webb, A. G.; Larson, K.; Schmitt, A. K.

    2012-12-01

    Models of Himalayan mountain-building are generally dominated by one of two end-member processes: extrusion and underplating. Extrusion requires exhumation of mid-crustal material between surface-breaching faults: a thrust fault below and a normal fault above. Underplating involves mid-crustal accretion of material from underthrusting India to the over-riding Himalayan orogen. There is a key structure in the Himalaya for differentiating the models - the South Tibet detachment (STD): is it a normal fault (consistent with extrusion) or a backthrust (consistent with underplating)? We test the underplating model by examining two regions in the Nepal Himalaya where the STD is proposed to merge with the fault system bounding the base of the crystalline core, i.e., the Main Central thrust (MCT). These study regions are along the northern margins of the Dadeldhura klippe and Kathmandu nappe. Field mapping, microstructural, quartz c-axis fabric, and geochronological studies were integrated to analyze transects across these two regions. Our structural mapping reveals top-north shear zones along the north margin of the Kathmandu Nappe (the Galchi shear zone) and along the Tila river (the Tila shear zone) on the northeast margin of the Dadeldhura klippe. Gneisses between these shear zones and MCT pinch out to the south. Asymmetric quartz c-axis fabrics indicate consistent top-north shearing in both shear zones. Quartz microstructures and opening angles of quartz c-axis fabrics indicate deformation temperatures of ~650 -350 °C from the base to the immediate hanging wall of the Tila shear zone. Zircon U-Pb dating of rims for crosscutting leucogranites yields age clusters ~30-17 Ma for the Tila shear zone and ~35-14 Ma for the Galchi shear zone. These ages constrain the motion of the two shear zones as Early to Middle Miocene. All characteristics of the two shear zones including the sense of shear, structural position, thermal profile, and timing of motion are consistent with

  18. Electrolyte treatment for aluminum reduction

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-01-01

    A method of treating an electrolyte for use in the electrolytic reduction of alumina to aluminum employing an anode and a cathode, the alumina dissolved in the electrolyte, the treating improving wetting of the cathode with molten aluminum during electrolysis. The method comprises the steps of providing a molten electrolyte comprised of ALF.sub.3 and at least one salt selected from the group consisting of NaF, KF and LiF, and treating the electrolyte by providing therein 0.004 to 0.2 wt. % of a transition metal or transition metal compound for improved wettability of the cathode with molten aluminum during subsequent electrolysis to reduce alumina to aluminum.

  19. Parametric Optimization of Simulated Extrusion of Square to Square Section Through Linear Converging Die

    NASA Astrophysics Data System (ADS)

    Mohapatra, S. K.; Maity, K. P.

    2016-02-01

    The effect of various process parameters for determining extrusion load has been studied for square to square extrusion of Al-6061 alloy, a most used aluminium alloy series in forming industries. Parameters like operating temperature, friction condition, ram velocity, extrusion ratio and die length have been chosen as an input variable for the above study. Twenty five combinations of parameters were set for the investigation by considering aforementioned five parameters in five levels. The simulations have been carried out by Deform-3D software for predicting maximum load requirement for the complete extrusion process. Effective stress and strain distribution across the billet has been checked. Operating temperature, extrusion ratio, friction factor, ram velocity and die length have the significant effect in decreasing order on the maximum load requirement.

  20. Crystal plasticity finite element modelling of the extrusion texture of a magnesium alloy

    NASA Astrophysics Data System (ADS)

    Shao, Yichuan; Tang, Tao; Li, Dayong; Tang, Weiqin; Peng, Yinghong

    2015-07-01

    In this paper, a crystal plasticity finite-element model (CPFEM) is developed to simulate the hot extrusion texture of the magnesium alloy AZ31. The crystal plasticity model is implemented in ABAQUS™ via user interface VUMAT subroutine. The elasto-plastic self-consistent (EPSC) model is used as the basic polycrystal framework to simulate the slip and twinning during the extrusion. Furthermore, this framework is extended to account for the effects of the dynamically recrystallized (DRX) grains on the extrusion textures. Good agreement is found between the experimentally measured and simulated textures. The simulation results show that the presence of a secondary texture component around < 11.0> || extrusion direction (ED) can be attributed to the lattice rotation around the c-axis during the formation of the DRX grains. In addition, the shear strain imposed on the extruded material affects the resulting texture by enhancing the basal < a> slip mode as the material passes through the extrusion opening.

  1. Effect of banana flour, screw speed and temperature on extrusion behaviour of corn extrudates.

    PubMed

    Kaur, Amritpal; Kaur, Seeratpreet; Singh, Mrinal; Singh, Narpinder; Shevkani, Khetan; Singh, Baljit

    2015-07-01

    Effect of extrusion parameters (banana flour, screw speed, extrusion temperature) on extrusion behaviour of corn grit extrudates were studied. Second order quadratic equations for extrusion properties as function of banana flour (BF), screwspeed (SS) and extrusion temperature (ET) were computed. BF had predominant effect on the Hunter color (L*, a*, b*) parameters of the extrudates. Addition of BF resulted in corn extrudates with higher L* and lower a* and b* values. Higher ET resulted in dark colored extrudates with lower L* and a* value. Higher SS enhanced the lightness of the extrudates. Expansion of the extrudates increased with increase in the level of BF and ET. WAI of the extrudates decreased with BF whereas increased with SS. However, reversed effect of BF and SS on WSI was observed. Flextural strength of the extrudates increased with increase in SS followed by BF and ET. The addition of BF and higher ET resulted in extrudates with higher oil uptake.

  2. Ballistic Evaluation of 7085 Aluminum

    DTIC Science & Technology

    2012-03-01

    tempers of aluminum alloy (AA) 7085 produced by Alcoa. The tempers included a high-strength variant, 7085-T7E01, for utilization as an appliqué against...temper. The V50 was then compared to other ballistic-grade aluminum alloys , namely AA7039 and AA2139. The results of these tests were used to derive... alloy 7085-T7E01 and 7085-T7E02. ......................................1 Table 2. Chemistry of AAs, weight-percent ranges

  3. Chrome - Free Aluminum Coating System

    NASA Technical Reports Server (NTRS)

    Bailey, John H.; Gugel, Jeffrey D.

    2010-01-01

    This slide presentation concerns the program to qualify a chrome free coating for aluminum. The program was required due to findings by OSHA and EPA, that hexavalent chromium, used to mitigate corrosion in aerospace aluminum alloys, poses hazards for personnel. This qualification consisted of over 4,000 tests. The tests revealed that a move away from Cr+6, required a system rather than individual components and that the maximum corrosion protection required pretreatment, primer and topcoat.

  4. Evaluation and Characterization of In-Line Annealed Continuous Cast Aluminum Sheet

    SciTech Connect

    Dr Subodh K. Das

    2006-01-17

    This R&D program will develop optimized, energy-efficient thermo-mechanical processing procedures for in-line annealing of continuously cast hot bands of two 5000 series aluminum alloys (5754 and 5052). The implementation of the R&D will result in the production of sheet with improved formability at high levels of productivity consistency and quality. The proposed R&D involves the following efforts: (1) Design and build continuous in-line annealing equipment for plant-scale trials; (2) Carry out plant-scale trials at Commonwealth Aluminum Corp.'s (CAC) plant in Carson; (3) Optimize the processing variables utilizing a metallurgical model for the kinetics of microstructure and texture evolution during thermo-mechanical processing; (4) Determine the effects of processing variables on the microstructure, texture, mechanical properties, and formability of aluminum sheet; (5) Develop design parameters for commercial implementation; and (6) Conduct techno-economic studies of the recommended process equipment to identify impacts on production costs. The research and development is appropriate for the domestic industry as it will result in improved aluminum processing capabilities and thus lead to greater application of aluminum in various industries including the automotive market. A teaming approach is critical to the success of this effort as no single company alone possesses the breadth of technical and financial resources for successfully carrying out the effort. This program will enable more energy efficient aluminum sheet production technology, produce consistent high quality product, and have The proposal addresses the needs of the aluminum industry as stated in the aluminum industry roadmap by developing new and improved aluminum processes utilizing energy efficient techniques. The effort is primarily related to the subsection on Rolling and Extrusion with the R&D to address energy and environmental efficiencies in aluminum manufacturing and will provide

  5. Optomechanics of Single Aluminum Nanodisks.

    PubMed

    Su, Man-Nung; Dongare, Pratiksha D; Chakraborty, Debadi; Zhang, Yue; Yi, Chongyue; Wen, Fangfang; Chang, Wei-Shun; Nordlander, Peter; Sader, John E; Halas, Naomi J; Link, Stephan

    2017-04-12

    Aluminum nanostructures support tunable surface plasmon resonances and have become an alternative to gold nanoparticles. Whereas gold is the most-studied plasmonic material, aluminum has the advantage of high earth abundance and hence low cost. In addition to understanding the size and shape tunability of the plasmon resonance, the fundamental relaxation processes in aluminum nanostructures after photoexcitation must be understood to take full advantage of applications such as photocatalysis and photodetection. In this work, we investigate the relaxation following ultrafast pulsed excitation and the launching of acoustic vibrations in individual aluminum nanodisks, using single-particle transient extinction spectroscopy. We find that the transient extinction signal can be assigned to a thermal relaxation of the photoexcited electrons and phonons. The ultrafast heating-induced launching of in-plane acoustic vibrations reveals moderate binding to the glass substrate and is affected by the native aluminum oxide layer. Finally, we compare the behavior of aluminum nanodisks to that of similarly prepared and sized gold nanodisks.

  6. A Virtual Aluminum Reduction Cell

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Zhou, Chenn Q.; Wu, Bing; Li, Jie

    2013-11-01

    The most important component in the aluminum industry is the aluminum reduction cell; it has received considerable interests and resources to conduct research to improve its productivity and energy efficiency. The current study focused on the integration of numerical simulation data and virtual reality technology to create a scientifically and practically realistic virtual aluminum reduction cell by presenting complex cell structures and physical-chemical phenomena. The multiphysical field simulation models were first built and solved in ANSYS software (ANSYS Inc., Canonsburg, PA, USA). Then, the methodology of combining the simulation results with virtual reality was introduced, and a virtual aluminum reduction cell was created. The demonstration showed that a computer-based world could be created in which people who are not analysis experts can see the detailed cell structure in a context that they can understand easily. With the application of the virtual aluminum reduction cell, even people who are familiar with aluminum reduction cell operations can gain insights that make it possible to understand the root causes of observed problems and plan design changes in much less time.

  7. Managing aluminum phosphide poisonings.

    PubMed

    Gurjar, Mohan; Baronia, Arvind K; Azim, Afzal; Sharma, Kalpana

    2011-07-01

    Aluminum phosphide (AlP) is a cheap, effective and commonly used pesticide. However, unfortunately, it is now one of the most common causes of poisoning among agricultural pesticides. It liberates lethal phosphine gas when it comes in contact either with atmospheric moisture or with hydrochloric acid in the stomach. The mechanism of toxicity includes cellular hypoxia due to the effect on mitochondria, inhibition of cytochrome C oxidase and formation of highly reactive hydroxyl radicals. The signs and symptoms are nonspecific and instantaneous. The toxicity of AlP particularly affects the cardiac and vascular tissues, which manifest as profound and refractory hypotension, congestive heart failure and electrocardiographic abnormalities. The diagnosis of AlP usually depends on clinical suspicion or history, but can be made easily by the simple silver nitrate test on gastric content or on breath. Due to no known specific antidote, management remains primarily supportive care. Early arrival, resuscitation, diagnosis, decrease the exposure of poison (by gastric lavage with KMnO(4), coconut oil), intensive monitoring and supportive therapy may result in good outcome. Prompt and adequate cardiovascular support is important and core in the management to attain adequate tissue perfusion, oxygenation and physiologic metabolic milieu compatible with life until the tissue poison levels are reduced and spontaneous circulation is restored. In most of the studies, poor prognostic factors were presence of acidosis and shock. The overall outcome improved in the last decade due to better and advanced intensive care management.

  8. Managing aluminum phosphide poisonings

    PubMed Central

    Gurjar, Mohan; Baronia, Arvind K; Azim, Afzal; Sharma, Kalpana

    2011-01-01

    Aluminum phosphide (AlP) is a cheap, effective and commonly used pesticide. However, unfortunately, it is now one of the most common causes of poisoning among agricultural pesticides. It liberates lethal phosphine gas when it comes in contact either with atmospheric moisture or with hydrochloric acid in the stomach. The mechanism of toxicity includes cellular hypoxia due to the effect on mitochondria, inhibition of cytochrome C oxidase and formation of highly reactive hydroxyl radicals. The signs and symptoms are nonspecific and instantaneous. The toxicity of AlP particularly affects the cardiac and vascular tissues, which manifest as profound and refractory hypotension, congestive heart failure and electrocardiographic abnormalities. The diagnosis of AlP usually depends on clinical suspicion or history, but can be made easily by the simple silver nitrate test on gastric content or on breath. Due to no known specific antidote, management remains primarily supportive care. Early arrival, resuscitation, diagnosis, decrease the exposure of poison (by gastric lavage with KMnO4, coconut oil), intensive monitoring and supportive therapy may result in good outcome. Prompt and adequate cardiovascular support is important and core in the management to attain adequate tissue perfusion, oxygenation and physiologic metabolic milieu compatible with life until the tissue poison levels are reduced and spontaneous circulation is restored. In most of the studies, poor prognostic factors were presence of acidosis and shock. The overall outcome improved in the last decade due to better and advanced intensive care management. PMID:21887030

  9. Molecularly designed lipid microdomains for solid dispersions using a polymer/inorganic carrier matrix produced by hot-melt extrusion.

    PubMed

    Adler, Camille; Schönenberger, Monica; Teleki, Alexandra; Kuentz, Martin

    2016-02-29

    Amorphous solid dispersions have for many years been a focus in oral formulations, especially in combination with a hot-melt extrusion process. The present work targets a novel approach with a system based on a fatty acid, a polymer and an inorganic carrier. It was intended to adsorb the acidic lipid by specific molecular interactions onto the solid carrier to design disorder in the alkyl chains of the lipid. Such designed lipid microdomains (DLM) were created as a new microstructure to accommodate a compound in a solid dispersion. Vibrational spectroscopy, X-ray powder diffraction, atomic force microscopy as well as electron microscopic imaging were employed to study a system of stearic acid, hydroxypropylcellulose and aluminum magnesium silicate. β-carotene was used as a poorly water-soluble model substance that is difficult to formulate with conventional solid dispersion formulations. The results indicated that the targeted molecular excipient interactions indeed led to DLMs for specific compositions. The different methods provided complementary aspects and important insights into the created microstructure. The novel delivery system appeared to be especially promising for the formulation of oral compounds that exhibit both high crystal energy and lipophilicity.

  10. Experimental determination of plastic strain in the extrusion process

    NASA Astrophysics Data System (ADS)

    Kronsteiner, J.; Horwatitsch, D.; Hinterer, A.; Gusenbauer, C.; Zeman, K.

    2016-10-01

    Simulating strain requires experimental validation. In this work, a method for the non-destructive determination of plastic strain in an extruded tube profile is presented. A copper coating, which deforms with the billet material, was used in the developed non-destructive method and was detected by computed tomography (CT) to analyze the deformation. The pattern was applied on cast billet halves (in the longitudinal direction) by a plasma coating technology. It was thus possible to determine the deformation of the pattern during the extrusion process in the billet as well as in the final profile without disassembling the extruded parts. A comparison of specimen using two different patterns shows the superiority of the simpler pattern consisting of only cross markers.

  11. Optimization of an Extrusion Die for Polymer Flow

    NASA Astrophysics Data System (ADS)

    Ridene, Y. Chahbani; Graebling, D.; Boujelbene, M.

    2011-01-01

    In this work, we used the CFD software PolyFlow to optimize the extrusion process of polystyrene flow. In this process, the flow of the molten polymer through the die can be viewed as a critical step for the material in terms of shear rate, self heating by viscous dissipation and temperature reached. The simulation is focused on the flow and heat transfer in the die to obtain a uniform velocity profile and a uniform temperature profile. The rheological behavior of polymer melt was described by the nonlinear Giesekus model. The dependence of the viscosity has also to be taken into account for a correct description of the flow. The design of the die has been validated by our numerical simulation.

  12. Dissolution characteristics of extrusion freeformed hydroxyapatite-tricalcium phosphate scaffolds.

    PubMed

    Yang, H Y; Thompson, I; Yang, S F; Chi, X P; Evans, J R G; Cook, R J

    2008-11-01

    The dissolution behaviour of calcium phosphate filaments made by extrusion freeforming for hard tissue scaffolds was measured. The solubility of filaments with different HA/beta-TCP ratios sintered at temperatures from 1,100 to 1,300 degrees C was measured under simulated physiological conditions (tris buffer solution: tris(hydroxyl) methyl-aminomethane-HCl), pH 7.4, 37 degrees C). Calcium and phosphate concentrations were measured separately by inductively coupled plasma (ICP) atomic emission spectroscopy. Surface morphologies and composition before and after immersion were analyzed by SEM and EDS. The results clearly show that as the beta-TCP content increased, the dissolution increased. Higher sintering temperatures, with consequent closure of surface pores, resulted in lower dissolution. Examination of the surface suggested dissolution on preferred sites by pitting.

  13. Modelling the extrusion of preforms for microstructured optical fibres

    NASA Astrophysics Data System (ADS)

    Tronnolone, Hayden; Stokes, Yvonne; Crowdy, Darren

    2013-11-01

    Owing to a novel design, microstructured optical fibres (MOFs) promise the realisation of fibres with effectively any desired optical properties. MOFs are typically constructed from glass and employ a series of air channels aligned along the fibre axis to form a waveguide. The construction of MOFs by first extruding a preform and then drawing this into the final fibre has the potential to produce fibres on an industrial scale; however, this is hindered by a limited understanding of the fluid flow that arises during this process. We focus on the extrusion stage of fabrication and discuss a model of the fibre evolution based upon complex-variable techniques. The relative influence of the various physical processes involved is discussed, along with limitations of the model.

  14. Polymer microstructured fibers by one-step extrusion

    NASA Astrophysics Data System (ADS)

    Mignanelli, M.; Wani, K.; Ballato, J.; Foulger, S.; Brown, P.

    2007-05-01

    For the first time to our knowledge, polymer-based microstructured fibers with complex cross-sections are directly produced via melt extrusion. Two principal types of fibers were fabricated: a microstructured fiber of a single polymer with a hexagonal array of air holes and a bicomponent fiber consisting of approximately 60 coaxial rings. From the latter, strong visible iridescence was observed and is shown to exhibit a mechanochromic response. This approach, the mainstay of the textile trade for decades, offers a means of continuous high-volume low-cost manufacturing of polymer (and conceivably soft-glass) fibers. For example, in the present effort, 128 coaxially microstructured fibers were fabricated simultaneously at rates exceeding 1200 m/min from industrially mainstream polymers. This approach offers an important step forward towards commoditizing microstructured fibers and open new doors for optical engineering in fashion, marking/identification, and numerous military applications.

  15. Polymer microstructured fibers by one-step extrusion.

    PubMed

    Mignanelli, M; Wani, K; Ballato, J; Foulger, S; Brown, P

    2007-05-14

    For the first time to our knowledge, polymer-based microstructured fibers with complex cross-sections are directly produced via melt extrusion. Two principal types of fibers were fabricated: a microstructured fiber of a single polymer with a hexagonal array of air holes and a bicomponent fiber consisting of approximately 60 coaxial rings. From the latter, strong visible iridescence was observed and is shown to exhibit a mechanochromic response. This approach, the mainstay of the textile trade for decades, offers a means of continuous high-volume low-cost manufacturing of polymer (and conceivably soft-glass) fibers. For example, in the present effort, 128 coaxially microstructured fibers were fabricated simultaneously at rates exceeding 1200 m/min from industrially mainstream polymers. This approach offers an important step forward towards commoditizing microstructured fibers and open new doors for optical engineering in fashion, marking/identification, and numerous military applications.

  16. Scalable Approach for Extrusion and Perfusion of Tubular, Heterotypic Biomaterials

    NASA Astrophysics Data System (ADS)

    Jeronimo, Mark David

    Soft material tubes are critical in the vasculature of mammalian tissues, forming networks of blood vessels and airways. Homogeneous and heterogeneous hydrogel tubes were extruded in a one-step process using a three layer microfluidic device. Co-axial cylindrical flow of crosslinking solutions and an alginate matrix is generated by a radial arrangement of microfluidic channels at the device's vertical extrusion outlet. The flow is confined and begins a sol-gel transition immediately as it extrudes at velocities upwards of 4 mm/s. This approach allows for predictive control over the dimensions of the rapidly formed tubular structures for outer diameters from 600 microm to 3 mm. A second microfluidic device hosts tube segments for controlled perfusion and pressurization using a reversible vacuum seal. On-chip tube deflection is observed and modeled as a measure of material compliance and circumferential elasticity. I anticipate applications of these devices for perfusion cell culture of cell-laden hydrogel tubes.

  17. 78 FR 42491 - Aluminum Extrusions from the People's Republic of China: Notice of Court Decision Not in Harmony...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ... automotive heating/cooling systems'') imported by Valeo, Inc., Valeo Engine Cooling Inc., and Valeo Climate... Engine Cooling, Inc., and Valeo Climate Control Corp. v. United States, Court No. 12-00381 (CIT February... Pursuant to Court Remand, Valeo, Inc., Valeo Engine Cooling, Inc., and Valeo Climate Control Corp....

  18. 78 FR 34984 - Aluminum Extrusions From the People's Republic of China: Notice of Court Decision Not in Harmony...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ... Diamond Sawblades Mfrs. Coalition v. United States, 626 F.3d 1374 (Fed. Cir. 2010) (Diamond Sawblades... Timken, 893 F.2d at 341, as clarified by Diamond Sawblades, the CAFC held that, pursuant to section...

  19. A novel role for Bcl-2 in regulation of cellular calcium extrusion.

    PubMed

    Ferdek, Pawel E; Gerasimenko, Julia V; Peng, Shuang; Tepikin, Alexei V; Petersen, Ole H; Gerasimenko, Oleg V

    2012-07-10

    The antiapoptotic protein Bcl-2 plays important roles in Ca(2+) signaling by influencing inositol triphosphate receptors and regulating Ca(2+)-induced Ca(2+) release. Here we investigated whether Bcl-2 affects Ca(2+) extrusion in pancreatic acinar cells. We specifically blocked the Ca(2+) pumps in the endoplasmic reticulum and assessed the rate at which the cells reduced an elevated cytosolic Ca(2+) concentration after a period of enhanced Ca(2+) entry. Because external Ca(2+) was removed and endoplasmic reticulum Ca(2+) pumps were blocked, Ca(2+) extrusion was the only process responsible for recovery. Cells lacking Bcl-2 restored the basal cytosolic Ca(2+) level much faster than control cells. The enhanced Ca(2+) extrusion in cells from Bcl-2 knockout (Bcl-2 KO) mice was not due to increased Na(+)/Ca(2+) exchange activity, because removal of external Na(+) did not influence the Ca(2+) extrusion rate. Overexpression of Bcl-2 in the pancreatic acinar cell line AR42J decreased Ca(2+) extrusion, whereas silencing Bcl-2 expression (siRNA) had the opposite effect. Loss of Bcl-2, while increasing Ca(2+) extrusion, dramatically decreased necrosis and promoted apoptosis induced by oxidative stress, whereas specific inhibition of Ca(2+) pumps in the plasma membrane (PMCA) with caloxin 3A1 reduced Ca(2+) extrusion and increased necrosis. Bcl-2 regulates PMCA function in pancreatic acinar cells and thereby influences cell fate.

  20. Weld Repair of Thin Aluminum Sheet

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Mitchell, M. J.

    1986-01-01

    Weld repairing of thin aluminum sheets now possible, using niobium shield and copper heat sinks. Refractory niobium shield protects aluminum adjacent to hole, while copper heat sinks help conduct heat away from repair site. Technique limits tungsten/inert-gas (TIG) welding bombardment zone to melt area, leaving surrounding areas around weld unaffected. Used successfully to repair aluminum cold plates on Space Shuttle, Commercial applications, especially in sealing fractures, dents, and holes in thin aluminum face sheets or clad brazing sheet in cold plates, heat exchangers, coolers, and Solar panels. While particularly suited to thin aluminum sheet, this process also used in thicker aluminum material to prevent surface damage near weld area.

  1. Continuous twin screw extrusion for the wet granulation of lactose.

    PubMed

    Keleb, E I; Vermeire, A; Vervaet, C; Remon, J P

    2002-06-04

    The suitability of continuous twin screw extrusion for the wet granulation of alpha-lactose monohydrate was studied and compared with conventional high shear granulation. The influence of process parameters (screw speed and total input rate) and formulation variables (water and polyvinylpyrrolidone (PVP) concentration) on the properties of granules (yield, particle size distribution, friability and compressibility) and tablets (tablet tensile strength, friability and disintegration time) was investigated. Variation of the formulation and process parameters had a major effect on the process feasibility. Optimization of these parameters is required to allow continuous processing and to ensure a high yield. Total input rate, screw speed and water concentration had a minor influence on the granule and the tablet properties. The addition of PVP had no major influence on the granule properties, but significantly affected the tablet characteristics. For granules formulated with and without PVP a yield above 50%, a friability below 30% and a compressibility below 15% was obtained. Tablets without PVP showed a tensile strength below 0.6 MPa, a friability above 1% and a disintegration time below 3 min, whereas tablets with PVP showed a tensile strength above 0.6 MPa, a friability below 1% and a disintegration time ranging from 8 to 15 min. High shear granulation was only possible when PVP was added and it required a higher amount of water. It was concluded that wet granulation of alpha-lactose monohydrate using continuous twin screw extrusion is a robust process and might offer a suitable alternative for high shear granulation in the pharmaceutical industry.

  2. Silurian Extrusion Wedge Tectonics in the Central Scandinavian Caledonides

    NASA Astrophysics Data System (ADS)

    Grimmer, J. C.; Glodny, J.; Drüppel, K.; Greiling, R. O.

    2015-12-01

    The Scandian fold-thrust belt of the central Scandinavian Caledonides host the high-grade metamorphic Seve Nappe Complex bounded on top by a normal sense shear zone and at the base by a reverse sense shear zone. Rb-Sr multimineral geochronology in synkinematic assemblages indicates simultaneous movements at the normal-sense roof shear zone and at the reverse-sense floor shear zone between 434 Ma and 429 Ma. Pressure temperature pseudosection calculations provide evidence for eclogite facies metamorphic conditions and nearly isothermal decompression at ~670 ± 50 °C from 17.5 to 14.5 kbar in garnet-kyanite mica schists during reverse-sense shearing, and from 15 to 11 kbar in garnet mica schists during normal-sense shearing. These and other published data and the presence of decompression-related pegmatites dated at 434 Ma and 429 Ma indicate that the Seve nappes form a 1-2 km thin extrusion wedge that extends along strike for at least 150 km. Devonian ductile extensional to transtensional deformation of the more internal parts of the orogen did not affect the early to mid-Silurian extrusion wedge that was preserved in the more external parts of the orogen due to foreland-directed nappe displacements in the order of >400 km. This wedge marks an early stage of exhumation of (ultra-)high-pressure metamorphic rocks and orogenic wedge formation in this part of the Scandinavian Caledonides predating the ≥10 km thick, post-415 Ma exhumation processes of ultrahigh-pressure rocks in southwestern Norway.

  3. Extrusion properties of porcine intestines and surrogate materials for ventral hernia modelling.

    PubMed

    Lyons, Mathew; Winter, Des C; Simms, Ciaran K

    2013-02-01

    A physical model of the abdomen can be a clean and cheap surrogate environment to assess new and existing closure solutions for post-laparoscopic wound closure, but a particular challenge is finding a surrogate material to replicate intestines which may protrude through a hernia. The literature shows no focus on this topic, and this paper therefore presents an investigation of the extrusion properties of fresh porcine intestines compared to a number of potential surrogate materials: silicone, edible gelatine, dough and reconstituted powdered potatoes (RPP). An extrusion rig was developed to simulate the mechanical environment of a post-operative hernia formation. Displacement controlled extrusion tests were performed, and the force-extrusion relationships at different extrusion velocities were compared for the intestines and the surrogate materials. The intestines showed a peak extrusion force ranging from 9 N to 14.8 N when pushed through a 13 mm hole, and similar extrusion properties between cleaned and uncleaned fresh porcine intestines were observed. The tests on surrogate materials showed that the surface tension properties of silicone gel resulted in high friction, that edible gelatine extruded like a liquid and that dough is very stiff, rendering all three materials unsuitable for use as surrogates. However, the RPP mix showed very similar force-extrusion properties compared to both the cleaned and uncleaned intestines. Viscoelastic testing (7.5 mm/min, 15 mm/min and 30 mm/min) showed little rate dependency in the extrusion properties for either the porcine intestines or the RPP. Despite the complexity of intestinal tissue and the obvious physical differences between intestine and RPP, it was found that there is no statistical difference between the yield strength of intestines and RPP (P values ranged between 0.14 and 0.3) at the rates tested.

  4. [Changes of the periodontal vascular network, periodontal fiber and alveolar bone incident to tooth extrusion].

    PubMed

    Kawato, F

    1989-06-01

    During the application of orthodontic force to a tooth, the surrounding tissues undergo changes of bone resorption and apposition, thereby resulting in tooth movement. The purpose of this study was to investigate the interrelationship between alveolar bone changes and the periodontal vascular network caused by extrusive orthodontic force using a scanning electron microscopy. Extrusive orthodontic force was applied to the mandibular 2nd and 3rd premolars of adult dogs. At the completion of the loading process, the inferior alveolar arteries were injected with a low viscosity MMA resin (Mercox). The following results were obtained. 1) At 3 days post-extrusion, various types of vascular network showing a loop pattern were seen along the direction of the tooth movement. 2) At 7 days post-extrusion, various types of vascular network with a hairpin loop pattern along the direction of the tooth movement were observed. Histologically, the fibers of periodontal ligament were stretched in the direction of the extrusion, Vascular hairpin loop formations were observed within the fibers of periodontal ligament. Bone apposition was not observed on the surface of alveolar bone. 3) At 14 days post-extrusion, a much more extensive and developed hairpin loop pattern occurred. Furthermore, new bone apposition was seen on the alveolar bone beneath under the hairpin loops. The periodontal ligament space was retained in the same width, even after bony apposition. 4) At 21 days post-extrusion, the tooth side microvascular network showed abundant low hairpin loops which anastomosed each other, and new spinous bony apposition was observed right below the periodontal vascular network. 5) At 30 days post-extrusion, the periodontal vascular network showed a almost normal appearance, with the rearrangement of vascular network. The surface of the spinous bony apposition became flat. The appositional bone had a lower degree of calcification than the alveolar bone in control group. 6) At 60 days

  5. Co-extrusion as manufacturing technique for multilayer mini-matrices with dual drug release.

    PubMed

    Dierickx, L; Remon, J P; Vervaet, C

    2013-11-01

    The aim of this work was to develop by means of co-extrusion a multilayered dosage form characterized by a dual release profile of the same drug. Co-extrudates consisted of two concentric polymer matrices: a core having a lipophilic character and a coat with a hydrophilic character. Diclofenac sodium (DS) was incorporated as model drug in both layers. Several polymers were screened on the basis of their processability via hot melt extrusion (HME) and in vitro drug release. Polymer combinations with suitable properties (i.e., similar extrusion temperature, appropriate drug release profile) were processed via co-extrusion. (Co-) extruded samples were characterized in terms of solid state (XRD, SEM), in vitro drug release, core/coat adhesion, and bioavailability. Based on the polymer screening, two polymer combinations were selected for co-extrusion: ethylcellulose (core) combined with Soluplus® (coat) and polycaprolactone (core) with PEO (coat). These combinations were successfully co-extruded. XRD revealed that DS remained crystalline during extrusion in ethylcellulose, Soluplus®, polycaprolactone, and PEO. The polycaprolactone/PEO combination could be processed at a lower temperature (70 °C), vs. 140 °C for ethylcellulose/Soluplus®. The maximum drug load in core and coat depended on the extrusion temperature and the die dimensions, while adhesion between core and coat was mainly determined by the drug load and by the extrusion temperature. In vitro drug release from the co-extruded formulations was reflected in the in vivo behavior: formulations with a higher DS content in the coat (i.e., faster drug release) resulted in higher Cmax and higher AUC values. Co-extrusion is a viable method to produce in a single step a multilayer dosage form with dual drug release.

  6. Aluminum industry applications for OTEC

    SciTech Connect

    Jones, M.S.; Leshaw, D.; Sathyanarayana, K.; Sprouse, A.M.; Thiagarajan, V.

    1980-12-01

    The objective of the program is to study the integration issues which must be resolved to realize the market potential of ocean thermal energy conversion (OTEC) power for the aluminum industry. The study established, as a baseline, an OTEC plant with an electrical output of 100 MWe which would power an aluminum reduction plant. The reduction plant would have a nominal annual output of about 60,000 metric tons of aluminum metal. Three modes of operation were studied, viz: 1. A reduction plant on shore and a floating OTEC power plant moored offshore supplying energy by cable. 2. A reduction plant on shore and a floating OTEC power plant at sea supplying energy by means of an ''energy bridge.'' 3. A floating reduction plant on the same platform as the OTEC power plant. For the floating OTEC/aluminum plantship, three reduction processes were examined. 1. The conventional Hall process with prebaked anodes. 2. The drained cathode Hall cell process. 3. The aluminum chloride reduction process.

  7. Criterion for the prevention of core fracture during extrusion of bimetal rods

    SciTech Connect

    Avitzur, B.; Wu, R.; Talbert, S.; Chou, Y.T.

    1980-09-01

    Based on the upper-bound theorem in limit analysis, a theoretical model for core fracture in bimetal rods during extrusion has been developed and a fracture criterion established. The variables affecting core fracture are: reduction in area (r%), die geometry, friction (m), relative size of the core and relative strength of the core. Within the wide range of possible combinations of these process variables, only a small range permits extrusion without fracture. With suitable modifications the present analysis can be extended to develop criteria for sleeve fracture during extrusion and for both core and sleeve fracture during drawing.

  8. Some properties of thermoplastic mixtures for forming ceramics by extrusion

    SciTech Connect

    Mosin, Yu.M.; Leonov, V.G.

    1995-11-01

    The change in the rheological properties of mixtures for plastic forming based on cordierite and aluminum nitride as a function of the composition of the thermoplastic binder and the temperature is considered. A supposition on the influence of the ratio between the crystalline and the amorphous components of the thermoplastic dispersion medium on the properties of the mixture is made. Some recommendations on forming of ceramic pieces are given.

  9. Advanced powder metallurgy aluminum alloys via rapid solidification technology, phase 2

    NASA Technical Reports Server (NTRS)

    Ray, Ranjan; Jha, Sunil C.

    1987-01-01

    Marko's rapid solidification technology was applied to processing high strength aluminum alloys. Four classes of alloys, namely, Al-Li based (class 1), 2124 type (class 2), high temperature Al-Fe-Mo (class 3), and PM X7091 type (class 4) alloy, were produced as melt-spun ribbons. The ribbons were pulverized, cold compacted, hot-degassed, and consolidated through single or double stage extrusion. The mechanical properties of all four classes of alloys were measured at room and elevated temperatures and their microstructures were investigated optically and through electron microscopy. The microstructure of class 1 Al-Li-Mg alloy was predominantly unrecrystallized due to Zr addition. Yield strengths to the order of 50 Ksi were obtained, but tensile elongation in most cases remained below 2 percent. The class 2 alloys were modified composition of 2124 aluminum alloy, through addition of 0.6 weight percent Zr and 1 weight percent Ni. Nickel addition gave rise to a fine dispersion of intermetallic particles resisting coarsening during elevated temperature exposure. The class 2 alloy showed good combination of tensile strength and ductility and retained high strength after 1000 hour exposure at 177 C. The class 3 Al-Fe-Mo alloy showed high strength and good ductility both at room and high temperatures. The yield and tensile strength of class 4 alloy exceeded those of the commercial 7075 aluminum alloy.

  10. Rechargeable Aluminum-Ion Batteries

    SciTech Connect

    Paranthaman, Mariappan Parans; Liu, Hansan; Sun, Xiao-Guang; Dai, Sheng; Brown, Gilbert M

    2015-01-01

    This chapter reports on the development of rechargeable aluminum-ion batteries. A possible concept of rechargeable aluminum/aluminum-ion battery based on low-cost, earth-abundant Al anode, ionic liquid EMImCl:AlCl3 (1-ethyl-3-methyl imidazolium chloroaluminate) electrolytes and MnO2 cathode has been proposed. Al anode has been reported to show good reversibility in acid melts. However, due to the problems in demonstrating the reversibility in cathodes, alternate battery cathodes and battery concepts have also been presented. New ionic liquid electrolytes for reversible Al dissolution and deposition are needed in the future for replacing corrosive EMImCl:AlCl3 electrolytes.

  11. PREPARATION OF DIBASIC ALUMINUM NITRATE

    DOEpatents

    Gresky, A.T.; Nurmi, E.O.; Foster, D.L.; Wischow, R.P.; Savolainen, J.E.

    1960-04-01

    A method is given for the preparation and recovery of basic aluminum nltrates having an OH: Al ratio of at least two, comprising two steps. First, metallic aluminum is dissolved in aqueous Al(NO/sub 3/)/sub 3/, in the presence of a small quantity of elemental or ionic mercury, to increase its Al: NO/sub 3/ ratio into the range 1 to 1.2. The resulting aqueous solution is then added to an excess of a special organic solvent, typically a mixture of five parts methanol and six parts diethyl ether, whereupon the basic aluminum nitrate, e.g. Al/sub 6/(OH)/sub 13/-(NO/sub 3/)/sub 5/, recoverably precipitates.

  12. Dissolution and Separation of Aluminum and Aluminosilicates

    SciTech Connect

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W.; Felker, Leslie Kevin; Mattus, Catherine H.

    2015-12-19

    The selection of an aluminum alloy for target irradiation affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the dissolver, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. Aluminosilicate dissolution presents challenges in a number of different areas, metals extraction from minerals, flyash treatment, and separations from aluminum alloys. We present experimental work that attempts to maximize dissolution of aluminum metal, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. Our data have been compared with published calculations of aluminum phase diagrams. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  13. Dissolution and Separation of Aluminum and Aluminosilicates

    DOE PAGES

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W.; ...

    2015-12-19

    The selection of an aluminum alloy for target irradiation affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the dissolver, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. Aluminosilicate dissolution presents challenges in a number of different areas, metals extraction from minerals, flyash treatment, and separations from aluminum alloys. We present experimental work that attempts to maximize dissolution of aluminum metal, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as amore » function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. Our data have been compared with published calculations of aluminum phase diagrams. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.« less

  14. Aluminum-carbon composite electrode

    DOEpatents

    Farahmandi, C. Joseph; Dispennette, John M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

  15. Aluminum-carbon composite electrode

    DOEpatents

    Farahmandi, C.J.; Dispennette, J.M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg. 3 figs.

  16. The effect of zinc on the aluminum anode of the aluminum-air battery

    NASA Astrophysics Data System (ADS)

    Tang, Yougen; Lu, Lingbin; Roesky, Herbert W.; Wang, Laiwen; Huang, Baiyun

    Aluminum is an ideal material for batteries, due to its excellent electrochemical performance. Herein, the effect of zinc on the aluminum anode of the aluminum-air battery, as an additive for aluminum alloy and electrolytes, has been studied. The results show that zinc can decrease the anodic polarization, restrain the hydrogen evolution and increase the anodic utilization rate.

  17. Mineral resource of the month: aluminum

    USGS Publications Warehouse

    Bray, E. Lee

    2012-01-01

    The article offers information on aluminum, a mineral resource which is described as the third-most abundant element in Earth's crust. According to the article, aluminum is the second-most used metal. Hans Christian Oersted, a Danish chemist, was the first to isolate aluminum in the laboratory. Aluminum is described as lightweight, corrosion-resistant and an excellent conductor of electricity and heat.

  18. RECOVERY OF ALUMINUM FROM FISSION PRODUCTS

    DOEpatents

    Blanco, R.E.; Higgins, I.R.

    1962-11-20

    A method is given for recovertng aluminum values from aqueous solutions containing said values together with fission products. A mixture of Fe/sub 2/O/ sub 3/ and MnO/sub 2/ is added to a solution containing aluminum and fission products. The resulting aluminum-containing supernatant is then separated from the fission product-bearing metal oxide precipitate and is contacted with a cation exchange resin. The aluminum sorbed on the resin is then eluted and recovered. (AEC)

  19. Blood aluminum levels as a function of aluminum intake from drinking water

    SciTech Connect

    Turnquest, E.M.; Hallenbeck, W.H. )

    1991-04-01

    Questions regarding the health effects of aluminum are still unanswered. The speciation, pharmacokinetics, and toxicity of aluminum are not well understood. Furthermore, no animal or human studies of aluminum absorption have been reported using drinking water as the source of aluminum. The following experiment attempted to reach a better understanding of the bioavailability of aluminum from drinking water. Its objective was to determine whether or not increased aluminum ingestion from drinking water would be reflected in increased serum and whole blood aluminum levels in the baboon experimental model.

  20. Liquid phase migration in the extrusion and squeezing of microcrystalline cellulose pastes.

    PubMed

    Mascia, S; Patel, M J; Rough, S L; Martin, P J; Wilson, D I

    2006-09-01

    Extensive movement of the liquid phase relative to the solids in solid-liquid pastes during extrusion forming is an undesirable process phenomenon. The impact of formulation and flow pattern on liquid phase migration (LPM) during extrusion of model pharmaceutical pastes (40-50 wt% microcrystalline cellulose/water) has been investigated by ram extrusion through square-entry and 45 degrees conical-entry dies, and by lubricated squeeze flow (extensional flow). Threshold velocities for LPM were observed in both configurations. Squeeze flow testing showed that dilation during extension can cause LPM, while ram extrusion featured both dilation effects and drainage due to compaction. The threshold velocities observed in the two configurations agreed when presented as characteristic shear rates. The threshold velocity increased with paste solids content.

  1. PVC Extrusion Development and Production for the NOvA Neutrino Experiment

    SciTech Connect

    Talaga, R. L.; Grudzinski, J. J.; Phan-Budd, S.; Pla-Dalmau, A.; Fagan, J. E.; Grozis, C.; Kephart, K. M.

    2016-01-05

    We have produced large and highly-reflective open-cell PVC extrusions for the NOvA neutrino oscillation experiment. The extrusions were sealed, instrumented, assembled into self-supporting detector blocks, and filled with liquid scintillator. Each Far Detector block stands 15.7 m high, is 15.7 m wide and 2.1 m thick. More than 22,000 extrusions were produced with high dimensional tolerance and robust mechanical strength. This paper provides an overview of the NOvA Far Detector, describes the preparation of the custom PVC powder, and the making of the extrusions. Quality control was a key element in the production and is described in detail.

  2. Modeling and numerical simulation of multiflux die in the multilayer co-extrusion process

    NASA Astrophysics Data System (ADS)

    Mun, Jun Ho; Kim, Ju Hyeon; Mun, Sang Ho; Kim, See Jo

    2017-02-01

    It is of great importance to understand the stretching and folding mechanism in the multiflux co-extrusion die to get uniform multilayer distribution at the end of die lip in the multilayer co-extrusion processes. In this work, to understand the mechanism of the layer distribution, modeling and numerical simulation were carried out for three-dimensional flow analysis in the multilayer co-extrusion die. The multilayer flow fields were numerically visualized and analyzed on the arbitrary cross-section of the multiflux die. In addition, numerical results for the multiflux die characteristics were obtained for non-Newtonian fluids in terms of power-law index for the cross model, which will be useful for the optimal design of screw and die, simultaneously, in the multilayer co-extrusion process.

  3. Production of pellets via extrusion-spheronisation without the incorporation of microcrystalline cellulose: a critical review.

    PubMed

    Dukić-Ott, A; Thommes, M; Remon, J P; Kleinebudde, P; Vervaet, C

    2009-01-01

    Microcrystalline cellulose (MCC) is the golden standard to manufacture spherical particles (pellets) via extrusion-spheronisation since wetted microcrystalline cellulose has the proper rheological properties, cohesiveness and plasticity to yield strong and spherical particles. However, microcrystalline cellulose is not universally applicable due to a number of limitations: prolonged drug release of poorly soluble drugs, chemical incompatibility with specific drugs, drug adsorption onto MCC fibers. Hence, several products have been evaluated to explore their application as extrusion-spheronisation aid, aiming to avoid the disadvantages of MCC and to provide a broad application platform for extrusion-spheronisation: powdered cellulose, starch, chitosan, kappa-carrageenan, pectinic acid, hydroxypropylmethyl cellulose, hydroxyethyl cellulose, polyethylene oxide, cross-linked polyvinylpyrrolidone, glycerol monostearate. To determine the true potential of the proposed alternatives for MCC this review critically discusses the properties of the different materials and the quality of the resulting pellets in relation to the properties required for an ideal extrusion-spheronisation aid.

  4. [New extrusion products in diet therapy of diseases of internal organs].

    PubMed

    Meshcheriakova, V A; Plotnikova, O A; Iatsyshina, T A; Sharafetdinov, Kh Kh; Faĭvishevskiĭ, M L; Lisina, T N

    1995-01-01

    Therapeutic effectiveness of 3 new extrusion foods was studied in control conditions of clinic of Institute of nutrition RAMS. The foods were produced by Institute of meat industry RAS on basis of meat resources and wheat brans. The samples of extrusion foods were differed by contents of protein (17-23 g%) and dietary fibers (up to 10%) and used in therapeutic diet for patients with insulin-dependent diabetes mellitus. It was shown that of all three extrusion foods caused decreasing of dyspeptic symptoms during first week of intake and normalisation of intestinal functions without using of laxatives unlike of control group of patients eating standard diabetic diet. It was shown also a decreasing of cholesterol in blood serum of patients received of extrusion foods No 1 and No 3. These samples are recommended for diet therapy and preventive nutrition of patients with metabolic disorders and hypomotoricity of intestinal tract as resources of dietary fibers and protein.

  5. Method for producing through extrusion an anisotropic magnet with high energy product

    DOEpatents

    Chandhok, Vijay K.

    2004-09-07

    A method for producing an anisotropic magnet with high energy product through extrusion and, more specifically, by placing a particle charge of a composition from the which magnet is to be produced in a noncircular container, heating the container and particle charge and extruding the container and particle charge through a noncircular extrusion die in such a manner that one of the cross-sectional axes or dimension of the container and particle charge is held substantially constant during the extrusion to compact the particle charge to substantially full density by mechanical deformation produced during the extrusion to achieve a magnet with anisotropic magnetic properties along the axes or dimension thereof and, more specifically, a high energy product along the transverse of the smallest cross-sectional dimension of the extruded magnet.

  6. A SUPG approach for determining frontlines in aluminium extrusion simulations and a comparison with experiments

    SciTech Connect

    Koopman, A. J.; Geijselaers, H. J. M.; Huetink, J.; Nilsen, K. E.; Koenis, P. T. G.

    2007-04-07

    In this paper we present a method to determine the frontlines inside the container and inside the extrusion die based on a steady state velocity field. Using this velocity field the convection equation is solved with a SUPG stabilized finite element method for a variable that represents the time it takes from the initial front to a certain point in the domain. When iso-lines in this field are plotted the development of fronts can be tracked. Extrusion experiments are performed with aluminium billets cut in slices. When extrusion is stopped the billet and extrudate are removed from the container and cut in half in the extrusion direction, copper foils between the slices show the frontlines. These lines show good agreement with the iso-lines from the numerical solution of convection equation.

  7. 76 FR 23490 - Aluminum tris (O

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    .... Also, EPA is revoking the tolerances for aluminum tris (O-ethylphosphonate) on pineapple fodder and... aluminum tris (O-ethylphosphonate) on pineapple fodder and forage because they are not considered to be... for aluminum tris (O-ethylphosphonate) on pineapple fodder and forage because they are not...

  8. 21 CFR 582.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  9. 21 CFR 582.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  10. 21 CFR 182.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  11. 21 CFR 182.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Aluminum sulfate. 182.1125 Section 182.1125 Food... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance is generally recognized as safe when used...

  12. 21 CFR 172.310 - Aluminum nicotinate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Aluminum nicotinate. 172.310 Section 172.310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Special Dietary and Nutritional Additives § 172.310 Aluminum nicotinate. Aluminum nicotinate may be...

  13. 21 CFR 73.2645 - Aluminum powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Aluminum powder. 73.2645 Section 73.2645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2645 Aluminum powder. (a) Identity and specifications. The color additive aluminum powder shall conform in identity and specifications to the requirements...

  14. 21 CFR 182.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  15. 21 CFR 73.2645 - Aluminum powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Aluminum powder. 73.2645 Section 73.2645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2645 Aluminum powder. (a) Identity and specifications. The color additive aluminum powder shall conform in identity and specifications to the requirements...

  16. 21 CFR 582.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  17. 21 CFR 582.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  18. 21 CFR 182.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  19. 21 CFR 172.310 - Aluminum nicotinate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum nicotinate. 172.310 Section 172.310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Special Dietary and Nutritional Additives § 172.310 Aluminum nicotinate. Aluminum nicotinate may be...

  20. 21 CFR 73.2645 - Aluminum powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Aluminum powder. 73.2645 Section 73.2645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2645 Aluminum powder. (a) Identity and specifications. The color additive aluminum powder shall conform in identity and specifications to the requirements...

  1. 21 CFR 182.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  2. 21 CFR 172.310 - Aluminum nicotinate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Aluminum nicotinate. 172.310 Section 172.310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Additives § 172.310 Aluminum nicotinate. Aluminum nicotinate may be safely used as a source of niacin...

  3. 21 CFR 172.310 - Aluminum nicotinate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Aluminum nicotinate. 172.310 Section 172.310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Special Dietary and Nutritional Additives § 172.310 Aluminum nicotinate. Aluminum nicotinate may be...

  4. 21 CFR 582.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This...

  5. 21 CFR 73.2645 - Aluminum powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Aluminum powder. 73.2645 Section 73.2645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2645 Aluminum powder. (a) Identity and specifications. The color additive aluminum powder shall conform in identity and specifications to the requirements...

  6. 21 CFR 172.310 - Aluminum nicotinate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Aluminum nicotinate. 172.310 Section 172.310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Special Dietary and Nutritional Additives § 172.310 Aluminum nicotinate. Aluminum nicotinate may be...

  7. 21 CFR 73.2645 - Aluminum powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Aluminum powder. 73.2645 Section 73.2645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2645 Aluminum powder. (a) Identity and specifications. The color additive aluminum powder shall conform in identity and specifications to the requirements...

  8. Extrusion and rheology of fine particulate ceramic pastes

    NASA Astrophysics Data System (ADS)

    Mazzeo, Fred Anthony

    A rheological study was conducted on an extruded blend of two alumina powders, Alcoa A-3500-SG and Reynolds ERC. These extruded blends were mixed in four compositions, varying in distribution modulus. This work focuses on the interaction of the composition components, mainly particle size distribution and amount of water at a constant binder amount. The rheological parameters of extruded pastes, Sigma, Tau, alpha and beta, were determined by using capillary rheometry modeling by the methodology set forth by Benbow and Bridgwater. This methodology makes use of capillary rheometer to determine extrusion parameters, which describe the flow behavior of a paste. The parameter values are indirectly determined by extrapolating high shear rate information obtained by the extrusion process. A goal of this research was to determine fundamental rheological properties directly from fundamental rheological equations of state. This was accomplished by assessing the material properties by using a dynamic stress rheometer. The rheological parameters used in this study to characterize the paste are elastic modulus, viscosity, tan delta, and relaxation time. This technique approaches a step closer in understanding the microstructural influence on flow behavior of a paste. This method directly determines rheological properties by using linear viscoelastic theory, giving a quantitative analysis of material properties. A strong correlation between the elastic modulus and sigma, and viscosity and alpha is shown to exist, indicating a relationship between these two techniques. Predictive process control methodology, based on particle packing modeling, quantitatively determined structural parameters useful in evaluating a composition. The determined parameters are: distribution modulus, interparticle separation distance, porosity, and particle crowding index, which are important to understand the extrudates packed state. A connection between the physical structure of the extrudate and its

  9. Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia.

    PubMed

    Eisenhoffer, George T; Loftus, Patrick D; Yoshigi, Masaaki; Otsuna, Hideo; Chien, Chi-Bin; Morcos, Paul A; Rosenblatt, Jody

    2012-04-15

    For an epithelium to provide a protective barrier, it must maintain homeostatic cell numbers by matching the number of dividing cells with the number of dying cells. Although compensatory cell division can be triggered by dying cells, it is unknown how cell death might relieve overcrowding due to proliferation. When we trigger apoptosis in epithelia, dying cells are extruded to preserve a functional barrier. Extrusion occurs by cells destined to die signalling to surrounding epithelial cells to contract an actomyosin ring that squeezes the dying cell out. However, it is not clear what drives cell death during normal homeostasis. Here we show in human, canine and zebrafish cells that overcrowding due to proliferation and migration induces extrusion of live cells to control epithelial cell numbers. Extrusion of live cells occurs at sites where the highest crowding occurs in vivo and can be induced by experimentally overcrowding monolayers in vitro. Like apoptotic cell extrusion, live cell extrusion resulting from overcrowding also requires sphingosine 1-phosphate signalling and Rho-kinase-dependent myosin contraction, but is distinguished by signalling through stretch-activated channels. Moreover, disruption of a stretch-activated channel, Piezo1, in zebrafish prevents extrusion and leads to the formation of epithelial cell masses. Our findings reveal that during homeostatic turnover, growth and division of epithelial cells on a confined substratum cause overcrowding that leads to their extrusion and consequent death owing to the loss of survival factors. These results suggest that live cell extrusion could be a tumour-suppressive mechanism that prevents the accumulation of excess epithelial cells.

  10. Carbon nanotube composites prepared by ultrasonically assisted twin screw extrusion

    NASA Astrophysics Data System (ADS)

    Lewis, Todd

    Two ultrasonic twin screw extrusion systems were designed and manufactured for the ultrasonic dispersion of multi-walled carbon nanotubes in viscous polymer matrices at residence times of the order of seconds in the ultrasonic treatment zones. The first design consisted of an ultrasonic slit die attachment in which nanocomposites were treated. A second design incorporated an ultrasonic treatment section into the barrel of the extruder to utilize the shearing of the polymer during extrusion while simultaneously applying treatment. High performance, high temperature thermoset phenylethynyl terminate imide oligomer (PETI-330) and two different polyetherether ketones (PEEK) were evaluated at CNT loadings up to 10 wt%. The effects of CNT loading and ultrasonic amplitude on the processing characteristics and rheological, mechanical, electrical, thermal and morphological properties of nanocomposites were investigated. PETI and PEEK nanocomposites showed a decrease in resistivity, an increase in modulus and strength and a decrease in strain at break and toughness with increased CNT loading. Ultrasonically treated samples showed a decrease in die pressure and extruder torque with increasing ultrasonic treatment and an increase in complex viscosity and storage modulus at certain ultrasonic treatment levels. Optical microscopy showed enhanced dispersion of the CNT bundles in ultrasonically treated samples. However, no significant improvement of mechanical properties was observed with ultrasonic treatment due to lack of adhesion between the CNT and matrix in the solid state. A curing model for PETI-330 was proposed that includes the induction and curing stages to predict the degree of cure of PETI-330 under non-isothermal conditions. Induction time parameters, rate constant and reaction order of the model were obtained based on differential scanning calorimetry (DSC) data. The model correctly predicted experimentally measured degrees of cure of compression molded plaques cured

  11. Aluminum alloys with improved strength

    NASA Technical Reports Server (NTRS)

    Deiasi, R.; Adler, P.

    1975-01-01

    Mechanical strength and stress corrosion of new BAR and 7050 alloys that include Zn instead of Cr have been studied and compared with those of 7075 aluminum alloy. Added mechanical strength of new alloys is attributed to finer grain size of 5 to 8 micrometers, however, susceptibility to stress corrosion attack is increased.

  12. Ballistic Evaluation of 6055 Aluminum

    DTIC Science & Technology

    2015-09-01

    alloy ( AA ) 6055-T651 produced by Alcoa as part of a Defense Acquisition Challenge Program. Ballistic evaluation was performed using armor-piercing...indicating the number of plates tested ............1 Table 2 Chemistry of AAs , weight-percent ranges .............................................2...aluminum alloy ( AA ) 6055, granting it full commercial availability as rolled plate from Davenport, Iowa. AA6055 remains under patent protection and is

  13. Aluminum and its light alloys

    NASA Technical Reports Server (NTRS)

    Merica, Paul D

    1920-01-01

    Report is a summary of research work which has been done here and abroad on the constitution and mechanical properties of the various alloy systems with aluminum. The mechanical properties and compositions of commercial light alloys for casting, forging, or rolling, obtainable in this country are described.

  14. Miniaturization in pharmaceutical extrusion technology: feeding as a challenge of downscaling.

    PubMed

    Muehlenfeld, Christian; Thommes, Markus

    2012-03-01

    In recent years, extrusion technology has shifted the focus of pharmaceutical research due to versatile applications like pelletization, bioavailability improvement or manipulation of solid-state properties of drugs, continuous granulation, and the development of novel solid dosage forms. Meanwhile, a major effort has been devoted to the miniaturization of equipment in pharmaceutical extrusion technology, particularly with regard to the requirements of the development of new chemical entities and formulations. In the present study, a lab-scale twin-screw extruder was investigated in order to determine the limitations imposed by the feeding systems. The wet extrusion process was considered as challenging because both a powder and a liquid feeder have to be considered. Initially, the accuracy and uniformity of the powder and liquid feeder were tested independently of the extrusion process. After modification of the powder feeder, both feeders were investigated in conjunction with extrusion. Based on this, an optimization of the liquid feeder was required and completed. Both feeder modifications reduced the variability of the moisture content in the extrudates 10-fold. This led to a reliable small-scale extrusion process.

  15. Medial Meniscal Extrusion Relates to Cartilage Loss in Specific Femorotibial Subregions- Data from the Osteoarthritis Initiative

    PubMed Central

    Bloecker, K.; Wirth, W.; Guermazi, A.; Hunter, DJ; Resch, H.; Hochreiter, J.; Eckstein, F.

    2015-01-01

    Objective Medial meniscal extrusion is known to be related to structural progression of knee OA. However, it is unclear whether medial meniscal extrusion is more strongly associated with cartilage loss in certain medial femorotibial subregions than to others. Methods Segmentation of the medial tibial and femoral cartilage (baseline; 1-year follow-up) and the medial meniscus (baseline) was performed in 60 participants with frequent knee pain (age 61.3±9.2y, BMI 31.3±3.9 kg/m2) and with unilateral medial radiographic joint space narrowing (JSN) grade 1–3, using double echo steady state MR-images. Medial meniscal extrusion distance and extrusion area (%) between the external meniscal and tibial margin at baseline, and longitudinal medial cartilage loss in eight anatomical subregions were determined. Results A significant association (Pearson correlation coefficient) was seen between medial meniscus extrusion area in JSN knees and cartilage loss over one year throughout the entire medial femorotibial compartment. The strongest correlation was with cartilage loss in the external medial tibia (r=−0.34 [p<0.01] in JSN, and r=−0.30 [p=0.02] in noJSN knees). Conclusion Medial meniscus extrusion was associated with subsequent medial cartilage loss. The external medial tibial cartilage may be particularly vulnerable to thinning once the meniscus extrudes and its surface is “exposed” to direct, non-physiological, cartilage-cartilage contact. PMID:25988986

  16. Melt rheology and molecular weight degradation of amylopectin during multiple pass extrusion of starch

    SciTech Connect

    Willett, J.L.; Millard, M.M.; Jasberg, B.K.

    1996-12-31

    The degradation of starch during extrusion and the role of specific mechanical energy (SME) in this process have been widely studied for single pass extrusion, Multiple extrusion histories are not uncommon in the plastics industry, but little if any has been reported on their effects on starch. Native waxy maize starch (app. 98% amylopectin) was initially converted to a thermoplastic by twin screw extrusion. This extrudate was equilibrated to either 18% or 23% moisture content, and subsequently re-extruded in a single screw extruder (3:1 compression screw) at 110{degrees}C or 130{degrees}C. Melt viscosity data were calculated using the output-pressure data from the second pass. The melts exhibited shear thinning behavior; the power law index increased with temperature, and slightly with moisture content. Molecular weights of selected second-pass extrudates, as well as the native starch and the first-pass extrudate, were measured by light scattering in dimethyl sulfoxide/water. The initial extrusion pass reduced the molecular weight from 300 million to 50 million. Molecular weight reductions in the second pass increased with increasing SME. A first order expression was shown to fit the MW-SME data with a correlation coefficient of 0.91. Implications of the degradation on extrusion processing of starch and the use of single screw extruders for rheological characterization will be discussed.

  17. Shuttle Primary Reaction Control Subsystem Thruster Fuel Valve Pilot Seal Extrusion: A Failure Correlation

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Saulsberry, Regor L.

    2003-01-01

    Pilot operated valves (POVs) are used to control the flow of hypergolic propellants monomethylhydrazine (fuel) and nitrogen tetroxide (oxidizer) to the Shuttle orbiter Primary Reaction Control Subsystem (PRCS) thrusters. The POV incorporates a two-stage design: a solenoid-actuated pilot stage, which in turn controls a pressure-actuated main stage. Isolation of propellant supply from the thruster chamber is accomplished in part by a captive polytetrafluoroethylene (PTFE) pilot seal retained inside a Custom 455.1 stainless steel cavity. Extrusion of the pilot seal restricts the flow of fuel around the pilot poppet, thus impeding or preventing the main valve stage from opening. It can also prevent the main stage from staying open with adequate force margin, particularly if there is gas in the main stage actuation cavity. During thruster operation on-orbit, fuel valve pilot seal extrusion is commonly indicated by low or erratic chamber pressure or failure of the thruster to fire upon command (Fail-Off). During ground turnaround, pilot seal extrusion is commonly indicated by slow gaseous nitrogen (GN2) main valve opening times (greater than 38 ms) or slow water main valve opening response times (greater than 33 ms). Poppet lift tests and visual inspection can also detect pilot seal extrusion during ground servicing; however, direct metrology on the pilot seat assembly provides the most quantitative and accurate means of identifying extrusion. Minimizing PRCS fuel valve pilot seal extrusion has become an important issue in the effort to improve PRCS reliability and reduce associated life cycle costs.

  18. Effect of extrusion variables (temperature, moisture) on the antinutrient components of cereal brans.

    PubMed

    Kaur, Satinder; Sharma, Savita; Singh, Baljit; Dar, B N

    2015-03-01

    The study was carried out, to explore the potentiality of extrusion technology for elimination of antinutritional components of cereal brans. Extrusion variables were moisture content (14, 17 and 20 %) and temperatures (115 °C, 140 °C, 165 °C). Phytic acid, polyphenols, oxalates, trypsin inhibitor, bulk density and color of brans after extrusion were analyzed. All four raw bran samples had high concentration of phytic acid, polyphenols, oxalates and trypsin inhibitors. Extrusion cooking was found effective in reduction of these antinutritients. Extrusion processing reduced the phytic acid by 54.51 %, polyphenol by 73.38 %, oxalates by 36.84 %, and trypsin inhibitor by 72.39 %. The heat treatment caused the highest reduction in polyphenols followed by trypsin inhibitors, phytic acid and oxalates. The highest reduction in antinutrients was observed at 140 °C and 20 % moisture content. Bulk density increased significantly compared to raw brans and increase in redness and decrease in yellowness of brans was observed after extrusion treatment.

  19. Aluminum-induced granulomas in a tattoo

    SciTech Connect

    McFadden, N.; Lyberg, T.; Hensten-Pettersen, A.

    1989-05-01

    A patient who developed localized, granulomatous reactions in a tattoo is described. With the use of scanning electron microscopy and energy dispersive x-ray microanalysis, both aluminum and titanium particles were found in the involved skin sections. Intradermal provocation testing with separate suspensions of aluminum and titanium induced a positive response only in the case of aluminum. Examination by scanning electron microscopy and energy dispersive x-ray microanalysis of the provoked response established aluminum as the only nonorganic element present in the test site tissue. This is the first report of confirmed aluminum-induced, delayed-hypersensitivity granulomas in a tattoo.

  20. The optimized mechanical properties of the new aluminum alloy AA 6069

    SciTech Connect

    Bergsma, S.C.; Kassner, M.E.; Li, X.; Delos-Reyes, M.A.; Hayes, T.A.

    1996-02-01

    AA 6069, a new aluminum alloy, has been developed for application in hot and cold extrusion and forging. It contains {approximately}2 Mg + Si, {approximately}1% Cu, 0.2% Cr, and 0.1% V. Nominal T6 properties of the ingot without hot or cold deformation are 415 MPa (60 ksi) ultimate tensile strength (UTS), 380 MPa (55 ksi) yield strength, and 12% elongation. Properties after hot and cold extrusion in the T6 condition rate from 380 to 490 MPa (55 to 71 ksi) UTS, 345 to 450 MPa (50 to 65 ksi) yield strength, and 10 to 22% elongation. This alloy also has favorable fatigue and corrosion-fatigue properties due to a combination of composition, high solidification rate, controlled homogenization, thermal and mechanical processing, and T6 practice. Current development applications include cold-impact air-bag components, high-pressure cylinders, and automotive suspension and drive-train parts. Unlike alloys 2024-T3 and 7129-T6, of comparable strength, diluted 6069 is scrap compatible with many other 5xxx and 6xxx alloys.

  1. Application of Electrostatic Extrusion – Flavour Encapsulation and Controlled Release

    PubMed Central

    Manojlovic, Verica; Rajic, Nevenka; Djonlagic, Jasna; Obradovic, Bojana; Nedovic, Viktor; Bugarski, Branko

    2008-01-01

    The subject of this study was the development of flavour alginate formulations aimed for thermally processed foods. Ethyl vanilline was used as the model flavour compound. Electrostatic extrusion was applied for the encapsulation of ethyl vanilline in alginate gel microbeads. The obtained microbeads with approx. 10 % w/w of ethyl vanilline encapsulated in about 2 % w/w alginate were uniformly sized spheres of about 450 μm. Chemical characterization by H-NMR spectroscopy revealed that the alginate used in this study had a high content (67 %) of guluronic residues and was rich in GG diad blocks (FGG = 55%) and thus presented a high-quality immobilisation matrix. The thermal behaviour of alginate beads encapsulating ethyl vanilline was investigated by thermogravimetric (TG) and differential scanning calorimetry measurements (TG-DSC) under heating conditions which mimicked usual food processing to provide information about thermal decomposition of alginate matrix and kinetics of aroma release. Two well resolved weight losses were observed. The first one was in the 50-150 °C temperature range with the maximum at approx. 112 °C, corresponding to the dehydration of the polymer network. The second loss in the 220-325 °C temperature range, with a maximum at ∼ 247 °C corresponded to the release of vanilline. The obtained results indicate that up to 230 °C most of the vanilline remained intacta, while prolonged heating at elevated temperatures led to the entire loss of the aroma compound. PMID:27879775

  2. Anterior extrusion of fusion cage in posttraumatic cervical disk disease.

    PubMed

    Amelot, Aymeric; Bouazza, Schahrazed; George, Bernard; Orabi, Mikael; Bresson, Damien

    2015-03-01

    Anterior interbody fusion of the cervical spine (ACDF) with bone grafts or cages has become the gold standard for treating cervical disk disease. Several technical modifications have been developed, but currently no consensus exists regarding the optimal technique. In addition, there is also evidence that complications are frequently associated with this procedure. A frequent cause for implant failure in monosegmental ACDF is cage migration into the vertebral end plates or the spinal canal. We report a patient admitted for sudden quadriparesis with complete motor deficit caused by posttraumatic cervical disk protrusion at C4-C5, resulting in spinal compression. ACDF using a titanium stand-alone cage was performed and cured the patient. At the 1-year follow-up visit, imaging showed asymptomatic anterior complete extrusion of the cage out of the disk space. To our knowledge, such an anterior cage migration without trauma has not been reported in the literature to date, and we tried to find technical reasons to explain this complication.

  3. Elucidation of spheroid formation with and without the extrusion step.

    PubMed

    Liew, Celine V; Chua, Siang Meng; Heng, Paul W S

    2007-02-09

    Spheroid formation mechanisms were investigated using extrusion-spheronization (ES) and rotary processing (RP). Using ES (cross-hatch), ES (teardrop), and RP (teardrop), spheroids with similar mass median diameter (MMD) and span were produced using equivalent formulation and spheronization conditions. During spheronization, the teardrop-studded rotating frictional surface, with increased peripheral tip speed and duration, produced spheroids of equivalent MMD and span to those produced by the cross-hatch rotating frictional plate surface. The roundness of these spheroids was also similar. RP required less water to produce spheroids of MMD similar to that of spheroids produced by ES. However, these RP spheroids were less spherical. Image analysis of 625 spheroids per batch indicated that the size distribution of RP spheroids had significantly greater SD, positive skewness, and kurtosis. Morphological examination of time-sampled spheroids produced by ES indicated that spheroid formation occurred predominantly by attrition and layering, while RP spheroids were formed by nucleation, agglomeration, layering, and coalescence. RP produced spheroids with higher crushing strength than that of ES-produced spheroids. The amount of moisture lost during spheronization for spheroids produced by ES had minimal influence on their eventual size. Differences in process and formulation parameters, in addition to size distribution and observed morphological changes, enabled a greater understanding of spheroid formation and methods to optimize spheroid production.

  4. Leavened dough processing by supercritical fluid extrusion (SCFX).

    PubMed

    Hicsasmaz, Zeynep; Dogan, Esref; Chu, Cindy; Rizvi, Syed S H

    2003-10-08

    Yeast-leavened dough processing is semicontinuous due to the requirement for fermentation at constant temperature and humidity. Also, new regulations on the emission of alcohols are becoming burdensome on the baking industry. Extrusion processing of dough with supercritical carbon dioxide (SC-CO(2)) is envisioned to alleviate emission problems and to decrease production time by eliminating fermentation. A bread dough formulation with 50% (w/w) moisture was leavened by injecting 1.5% (w/w) SC-CO(2) in a twin-screw extruder at 37 degrees C. Specific mechanical energy input was 260 kJ/kg. The operating apparent shear rate range was 60-260 s(-1). SCFX-leavened dough density (420-430 kg/m(3)) was in good agreement with values reported for similar doughs. The flow behavior index, obtained by an on-line slit rheometer, was 0.49 for the nonleavened control and 0.63 for the SCFX-leavened dough. Apparent viscosity of the SCFX-leavened dough varied from 37 to 23 Pa-s. This new continuous process offers attractive possibilities for industrial applications if further developed.

  5. Traumatic iridial extrusion mimicking a conjunctival melanocytic neoplasm

    PubMed Central

    Zoroquiain, Pablo; Ganimi, Maria SB; Alghamdi, Sarah; Burnier, Julia V; Aldrees, Sultan S; Burnier, Miguel N

    2016-01-01

    Conjunctival melanoma is a rare malignant tumour of the eye. Its diagnosis represents a challenge for general pathologists due to low exposure to ocular biopsies and a broad differential diagnosis. In addition, conjunctival samples are often small and are associated with a high frequency of artefacts due to their processing. Here, we present the first case to date of a traumatic iridial extrusion masquerading as a conjunctival melanocytic neoplasm. An 83-year-old Asian man presented with a conjunctival-pigmented nodule surrounded by an area of diffuse pigmentation. Histopathology revealed in the nodule a well-demarcated lesion composed of spindle shaped melanocytes with thick-walled blood vessels. At higher magnification, the blood vessels were composed of thick walls with collagen fibres in an onion-skin-like arrangement. The histological findings were consistent with extruded iridial tissue. The map biopsies of the flat, pigmented lesion showed melanocytic cell proliferation with dendritic processes restricted to the lamina propria without any epithelial involvement, consistent with ocular melanocytosis. The diagnosis of conjunctival melanocytic lesions is challenging, and non-neoplastic conditions should always be included in the differential diagnosis. Pathologists should correlate clinicopathological findings and be familiar with the normal histology in order to achieve the correct diagnosis. PMID:26913071

  6. Influence of ultrasonic vibration on micro-extrusion.

    PubMed

    Bunget, Cristina; Ngaile, Gracious

    2011-07-01

    Micro-forming is a miniaturization technology with great potential for high productivity. Some technical challenges, however, need to be addressed before micro-forming becomes a commercially viable manufacturing process. These challenges include severe tribological conditions, difficulty in achieving desired tolerances, and short tool-life due to inability of available die materials to withstand the forces exerted on miniature dies and punches. Some of these problems can be mitigated using ultrasonic technology. The principal objectives of this work were to investigate the possibility of applying ultrasonic vibrations in the micro-forming process, to design a set of tooling for ultrasonic micro-extrusion and to observe experimentally how ultrasonic oscillations influences the forming load and the surface finish. The test results showed a significant drop on the forming load when ultrasonic vibrations were imposed, and also a significant improvement in the surface of the micro-formed parts. Based on the preliminary test results, the study demonstrated high potential for using ultrasonic oscillations as a way to overcome the difficulties brought by the miniaturization.

  7. Bioavailability enhancement of atovaquone using hot melt extrusion technology.

    PubMed

    Kate, Laxman; Gokarna, Vinod; Borhade, Vivek; Prabhu, Priyanka; Deshpande, Vinita; Pathak, Sulabha; Sharma, Shobhona; Patravale, Vandana

    2016-04-30

    Emerging parasite resistance and poor oral bioavailability of anti-malarials are the two cardinal issues which hinder the clinical success of malaria chemotherapy. Atovaquone-Proguanil is a WHO approved fixed dose combination used to tackle the problem of emerging resistance. However, Atovaquone is a highly lipophilic drug having poor aqueous solubility (less than 0.2 μg/ml) thus reducing its oral bioavailability. The aim of the present investigation was to explore hot melt extrusion (HME) as a solvent-free technique to enhance solubility and oral bioavailability of Atovaquone and to develop an oral dosage form for Atovaquone-Proguanil combination. Solid dispersion of Atovaquone was successfully developed using HME. The solid dispersion was characterized for DSC, FTIR, XRD, SEM, and flow properties. It was filled in size 2 hard gelatin capsules. The formulation showed better release as compared to Malarone® tablets, and 3.2-fold and 4.6-fold higher bioavailability as compared to Malarone® tablets and Atovaquone respectively. The enhanced bioavailability also resulted in 100% anti-malarial activity in murine infection model at 1/8(th) therapeutic dose. Thus the developed methodology shows promising potential to solve the problems associated with Atovaquone therapy, namely its high cost and poor oral bioavailability, resulting in increased therapeutic efficacy of Atovaquone.

  8. A novel cryogenic fibre maker for continuous extrusion

    SciTech Connect

    Aliaga-Rossel, R.; Bayley, J.

    1997-05-05

    The results of a cryogenics fibre maker which extrudes fibres continuously are presented. The fibre maker is based on a simple concept of differential temperature. Two reservoirs are connected in cascade and are kept at different temperatures. The first reservoir is connected to an external gas line supply (the gas that will made the fibre) and is used to liquefy the gas. The second reservoir is colder that the first and the liquid that comes from the first reservoir is frozen and later is used to form the fibre. The pressure of external gas supply in the first reservoir is used to extrude the fibre. The system is cooled by a two stage closed cycle refrigerator, which uses liquid helium as a working fluid. The nozzles used to extrude the fibre are made of stainless steel capillary with diameters between 50 {mu}m and 250 {mu}m, with a length of 2 mm. The use of a system with two independent temperatures, permits to control the extrusion rate of the fibres and to produce the fibres continuously. Using this system, hydrogen deuterium, nitrogen and argon fibres of various diameters were extruded.

  9. Decarbonization process for carbothermically produced aluminum

    DOEpatents

    Bruno, Marshall J.; Carkin, Gerald E.; DeYoung, David H.; Dunlap, Sr., Ronald M.

    2015-06-30

    A method of recovering aluminum is provided. An alloy melt having Al.sub.4C.sub.3 and aluminum is provided. This mixture is cooled and then a sufficient amount of a finely dispersed gas is added to the alloy melt at a temperature of about 700.degree. C. to about 900.degree. C. The aluminum recovered is a decarbonized carbothermically produced aluminum where the step of adding a sufficient amount of the finely dispersed gas effects separation of the aluminum from the Al.sub.4C.sub.3 precipitates by flotation, resulting in two phases with the Al.sub.4C.sub.3 precipitates being the upper layer and the decarbonized aluminum being the lower layer. The aluminum is then recovered from the Al.sub.4C.sub.3 precipitates through decanting.

  10. Complex foamed aluminum parts as permanent cores in aluminum castings

    SciTech Connect

    Simancik, F.; Schoerghuber, F.

    1998-12-31

    The feasibility of complex shaped aluminum foam parts as permanent cores in aluminum castings has been investigated. The foamed samples were prepared by injection of the foam into sand molds. It turned out that sound castings can be produced if the foam core is properly preheated and/or surface treated before casting. The effect of the foam core on the performance of the casting was evaluated by in compression testing and by measuring structural damping. The gain in the related properties turned out to be much higher than the weight increase of the casting due to the presence of the core. The weight increase may be partially offset through a reduction of the wall-thickness of the shell.

  11. Reactively Deposited Aluminum Oxide and Fluoropolymer Filled Aluminum Oxide Protective Coatings for Polymers

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Banks, Bruce A.; Hunt, Jason

    1995-01-01

    Reactive ion beam sputter deposition of aluminum simultaneous with low energy arrival of oxygen ions at the deposition surface enables the formation of highly transparent aluminum oxide films. Thick (12 200 A), adherent, low stress, reactively deposited aluminum oxide films were found to provide some abrasion resistance to polycarbonate substrates. The reactively deposited aluminum oxide films are also slightly more hydrophobic and more transmitting in the UV than aluminum oxide deposited from an aluminum oxide target. Simultaneous reactive sputter deposition of aluminum along with polytetrafluoroethylene (PTFE Teflon) produces fluoropolymer-filled aluminum oxide films which are lower in stress, about the same in transmittance, but more wetting than reactively deposited aluminum oxide films. Deposition properties, processes and potential applications for these coatings will be discussed.

  12. Aluminum Alloys--Industrial Deformable, Sintered and Light Aluminum Alloys

    DTIC Science & Technology

    1974-10-30

    thin film on the particles of the highly dispersed aluminum powder when it is ground in spherical mills in a nitrogen atmosphere in which the...principal elements, certain small admixtures are introduced into the alloys, which have a considerable effect on the decay kinetics of the oversaturated...strengthened by the insoluble dispersed alumina particles. Fine grinding of the original powder provides the dispersion of the oxide films and particles

  13. Modeling dissolution in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Durbin, Tracie Lee

    2005-07-01

    Aluminum and its alloys are used in many aspects of modern life, from soda cans and household foil to the automobiles and aircraft in which we travel. Aluminum alloy systems are characterized by good workability that enables these alloys to be economically rolled, extruded, or forged into useful shapes. Mechanical properties such as strength are altered significantly with cold working, annealing, precipitation-hardening, and/or heat-treatments. Heat-treatable aluminum alloys contain one or more soluble constituents such as copper, lithium, magnesium, silicon and zinc that individually, or with other elements, can form phases that strengthen the alloy. Microstructure development is highly dependent on all of the processing steps the alloy experiences. Ultimately, the macroscopic properties of the alloy depend strongly on the microstructure. Therefore, a quantitative understanding of the microstructural changes that occur during thermal and mechanical processing is fundamental to predicting alloy properties. In particular, the microstructure becomes more homogeneous and secondary phases are dissolved during thermal treatments. Robust physical models for the kinetics of particle dissolution are necessary to predict the most efficient thermal treatment. A general dissolution model for multi-component alloys has been developed using the front-tracking method to study the dissolution of precipitates in an aluminum alloy matrix. This technique is applicable to any alloy system, provided thermodynamic and diffusion data are available. Treatment of the precipitate interface is explored using two techniques: the immersed-boundary method and a new technique, termed here the "sharp-interface" method. The sharp-interface technique is based on a variation of the ghost fluid method and eliminates the need for corrective source terms in the characteristic equations. In addition, the sharp-interface method is shown to predict the dissolution behavior of precipitates in aluminum

  14. Review of the Management of Peroral Extrusion of Ventriculoperitoneal Shunt Catheter

    PubMed Central

    2016-01-01

    Introduction Peroral extrusion of peritoneal part of Ventriculoperitoneal Shunt (VPS) catheter is an extremely rare complication following VPS implantation. Aim To review the options available for the management of peroral extrusion of VPS catheter. Materials and Methods PubMed, Medline, PMC (PubMed Central), Embase, Google scholar databases search was performed to retrieve the published/available data relating to the peroral extrusion of VPS catheter. The keywords employed were “peroral extrusion of ventriculoperitoneal shunt catheter”, “transoral extrusion of ventriculoperitoneal shunt catheter”, and “oral extrusion of ventriculoperitoneal shunt catheter”. The maiden description of peroral extrusion of VPS catheter was reported in the year 1987, and the data relating to peroral extrusion of VPS were retrieved from that period to June 30, 2016, and those were available in English literature. Results Twenty-two published manuscripts (n) were available on the topic relating to peroral extrusion of VPS catheter. All were cases and were included for the review. This review included n=10; 45.45% male and n=12; 54.54% female. All of them were reported in children below 12-year of the age, except two case reports in adult that occurred at the age of 27-year and 47-year, respectively. Overall, the mean age at the time of peroral extrusion of VPS catheter was 6.94 ± 10.87 years. The interval from VPS insertion or last shunt revision to the occurrence of peroral extrusion of VPS catheter ranged from 10-days to 10-year, with a mean of 20.31 ± 28.37 months. More than two-third (n=15; 68.18%) of the case occurred within one-year of VPS insertion/last shunt revision. Clinical diagnosis was obvious in all the cases due to peroral extrusion of VPS catheter. The site of perforation by the VPS catheter was stomach in 15, jejunum in 1, diaphragm/trachea in 1, while the site of bowel perforation was not mentioned in 5 cases. Surgical procedures opted by authors in order

  15. Blockage of intracellular proton extrusion with proton extrusions with proton pump inhibitor induces apoptosis in gastric cancer.

    PubMed

    Yeo, Marie; Kim, Dong-Kyu; Park, Hee Jin; Cho, Sung Won; Cheong, Jae Youn; Lee, Kwang Jae

    2008-01-01

    Proton pump inhibitors have been used for treatment of acid-related gastroesophageal diseases and they act as potent inhibitors of gastric acid pump, H(+)/K(+)-ATPase. Since cancer cells in vivo often exist in an ischemic microenvironment with a lower pH, maintenance of cellular pH is important for cell survival. In this study, we evaluated whether blocking of proton extrusion with proton pump inhibitors could inhibit the viability of gastric cancer cells. Treatment of human gastric cancer cells with proton pump inhibitors significantly attenuated cell viability in a time- and dose-dependent manner. The pro-apoptotic activity of proton pump inhibitors was mediated by release of cytochrome c and caspases activation. Gastric cancer cells showed the resistance to acidity of culture medium, which was related with a remarkable increase of extracellular signal-regulated protein kinase 1/2 (ERK1/2) phosphorylation in the acidic condition. This ERK1/2 phosphorylation was completely inhibited by pretreatment with proton pump inhibitors, suggesting that its inhibitory action on phosphorylation of ERK1/2 might contribute to the induction of apoptosis in gastric cancer cells. In conclusion, our results suggest novel therapeutic approaches for gastric cancer with proton pump inhibitors.

  16. Rheological Study Of The Mixture Of Acetaminophen And Polyethylene Oxide For Hot-Melt Extrusion Application (PREPRINT)

    DTIC Science & Technology

    2011-01-01

    molten polymer and obtain the mixture’s rheological prop- erties for the purpose of optimizing the extrusion process . The dynamic and steady viscosities ...to test the drug?s solubility in molten polymer and obtain the mixture?s rheological properties for the purpose of optimizing the extrusion process ...On the other hand, viscosity data at high shear rates are more representative of the materials? rheological properties during extrusion 15. SUBJECT

  17. The use of primary dross from the aluminum industry for manufacturing aluminum sulfate

    SciTech Connect

    Osborne, B.W.

    1995-12-31

    The use of primary dross as a source for aluminum ion in the manufacture of aluminum sulfate offers opportunities for an inexpensive raw material. The aluminum sulfate industry in the US is a mature market with numerous small plants operating close to major users. The majority of manufacturers use either bauxite or aluminum oxide trihydrate as a source for the aluminum ion. However, using process technology developed and patented by IWC, the oxides are removed from primary dross for use in manufacturing aluminum sulfate prior to metal recovery. This process offers the benefit of reducing costs for metal recovery. This paper discusses some of the methodology used in this process.

  18. The effect of high density electric pulses on sintered aluminum 201AB silicon carbide MMC PM compacts during plastic deformation

    NASA Astrophysics Data System (ADS)

    Dariavach, Nader Guseinovich

    The effect of high-density electrical pulses on mechanical and structural properties of sintered aluminum SiC metal-matrix composites, fabricated by standard powder-metallurgy compaction and sintering, was investigated. Three types of phenomena where investigated during transverse rupture testing of the samples: a consolidation effect (increasing of the transverse rupture strength (TRS)), an electroplastic effect (decreasing of the flow stresses), and an increasing of the stress intensity factor by electric pulse application. It was observed, that an increase in the TRS strength of sintered powder metallurgy (PM) aluminum and aluminum metal matrix composite (MMC) compacts is a result of the electric pulse consolidation effect due to non-uniform temperature distribution around the grain boundaries. Three analytical models of the thermal effect of electric pulses on aluminum samples where considered: total temperature change of the sample due to a one electric pulse, one-dimensional steady state model and transient 2D thermal analysis of the temperature distribution around the grain boundary. The 2D transient analysis shows that the temperature rise in the grain boundary of a sintered PM aluminum sample due to an electric pulse can exceed the melting point. At the same time the temperature of the bulk material has an insignificant (<28°C) change. It was found that the electroplastic effect, due to electric pulse application, can account for up to a 40% load drop in aluminum MMC PM compacts. Reduction of flow stresses during plastic deformation could reduce the risk of structural damage, micro-cracks, SiC particle fracture and delamination of the aluminum MMC. These results may find practical application for manufacturing processes such as forging, extrusion, rolling, which involve plastic deformation. It was experimentally proven that a non-uniform temperature distribution around the crack could re-melt the crack tip and increase the strength of the damaged material

  19. Extrusion granulation and high shear granulation of different grades of lactose and highly dosed drugs: a comparative study.

    PubMed

    Keleb, E I; Vermeire, A; Vervaet, C; Remon, Jean Paul

    2004-07-01

    Formulations containing different lactose grades, paracetamol, and cimetidine were granulated by extrusion granulation and high shear granulation. Granules were evaluated for yield, friability, and compressibility. Tablets were prepared from those granules and evaluated for tensile strength, friability, disintegration time, and dissolution. The different lactose grades had an important effect on the extrusion granulation process. Particle size and morphology affected powder feeding and power consumption, but had only a minor influence on the granule and tablet properties obtained by extrusion granulation. In contrast, the lactose grades had a major influence on the granule properties obtained by high shear granulation. Addition of polyvinylpyrrolidone (PVP) was required to process pure paracetamol and cimetidine by high shear granulation, whereas it was feasible to granulate these drugs without PVP by extrusion granulation. Granules prepared by extrusion granulation exhibited a higher yield and a lower friability than those produced by high shear granulation. Paracetamol and cimetidine tablets compressed from granules prepared by extrusion granulation showed a higher tensile strength, lower friability, and lower disintegration time than those prepared from granules produced by high shear granulation. Paracetamol tablets obtained via extrusion granulation exhibited faster dissolution than those obtained via high shear granulation. For all lactose grades studied, extrusion granulation resulted in superior granule and tablet properties in comparison with those obtained by high shear granulation. These results indicate that extrusion granulation is more efficient than high shear granulation.

  20. Biodiscovery of Aluminum Binding Peptides

    DTIC Science & Technology

    2013-08-01

    display scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the selfsustaining peptide libraries to be rapidly screened for high...scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the self- sustaining peptide libraries to be rapidly screened for high...removal. An eCPX peptide display library was grown and induced as described in the paragraph above. After rinsing samples briefly in PBS, the aluminum

  1. Electrically Conductive Anodized Aluminum Surfaces

    NASA Technical Reports Server (NTRS)

    Nguyen, Trung Hung

    2006-01-01

    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to < or = 10(exp 9) Omega-cm. The present treatment does this. The treatment is a direct electrodeposition process in which the outer anodized surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic

  2. Carbothermal synthesis of aluminum nitride

    SciTech Connect

    Silverman, L.D. )

    1988-07-01

    A synthetic route is described for making carbothermally reduced powders from colloidal oxide precursors trapped in a polymer matrix. The entrapping resin, which is formed by polymerization of a monomer dissolved in the colloid, serves both to minimize particle agglomeration during reaction and as the source of carbon for reduction. Following reduction, the remaining carbon matrix is removed by oxidation. This strategy was used to synthesize aluminum nitride powder via trapping of colloidal alumina in poly(furfuryl alcohol) resin.

  3. Terahertz inline wall thickness monitoring system for plastic pipe extrusion

    SciTech Connect

    Hauck, J. E-mail: d.stich@skz.de E-mail: m.bastian@skz.de Stich, D. E-mail: d.stich@skz.de E-mail: m.bastian@skz.de Heidemeyer, P. E-mail: d.stich@skz.de E-mail: m.bastian@skz.de Bastian, M. E-mail: d.stich@skz.de E-mail: m.bastian@skz.de Hochrein, T. E-mail: d.stich@skz.de E-mail: m.bastian@skz.de

    2014-05-15

    Conventional and commercially available inline wall thickness monitoring systems for pipe extrusion are usually based on ultrasonic or x-ray technology. Disadvantages of ultrasonic systems are the usual need of water as a coupling media and the high damping in thick walled or foamed pipes. For x-ray systems special safety requirements have to be taken into account because of the ionizing radiation. The terahertz (THz) technology offers a novel approach to solve these problems. THz waves have many properties which are suitable for the non-destructive testing of plastics. The absorption of electrical isolators is typically very low and the radiation is non-ionizing in comparison to x-rays. Through the electromagnetic origin of the THz waves they can be used for contact free measurements. Foams show a much lower absorption in contrast to acoustic waves. The developed system uses THz pulses which are generated by stimulating photoconductive switches with femtosecond laser pulses. The time of flight of THz pulses can be determined with a resolution in the magnitude of several ten femtoseconds. Hence the thickness of an object like plastic pipes can be determined with a high accuracy by measuring the time delay between two reflections on materials interfaces e.g. at the pipe's inner and outer surface, similar to the ultrasonic technique. Knowing the refractive index of the sample the absolute layer thickness from the transit time difference can be calculated easily. This method in principle also allows the measurement of multilayer systems and the characterization of foamed pipes.

  4. Terahertz inline wall thickness monitoring system for plastic pipe extrusion

    NASA Astrophysics Data System (ADS)

    Hauck, J.; Stich, D.; Heidemeyer, P.; Bastian, M.; Hochrein, T.

    2014-05-01

    Conventional and commercially available inline wall thickness monitoring systems for pipe extrusion are usually based on ultrasonic or x-ray technology. Disadvantages of ultrasonic systems are the usual need of water as a coupling media and the high damping in thick walled or foamed pipes. For x-ray systems special safety requirements have to be taken into account because of the ionizing radiation. The terahertz (THz) technology offers a novel approach to solve these problems. THz waves have many properties which are suitable for the non-destructive testing of plastics. The absorption of electrical isolators is typically very low and the radiation is non-ionizing in comparison to x-rays. Through the electromagnetic origin of the THz waves they can be used for contact free measurements. Foams show a much lower absorption in contrast to acoustic waves. The developed system uses THz pulses which are generated by stimulating photoconductive switches with femtosecond laser pulses. The time of flight of THz pulses can be determined with a resolution in the magnitude of several ten femtoseconds. Hence the thickness of an object like plastic pipes can be determined with a high accuracy by measuring the time delay between two reflections on materials interfaces e.g. at the pipe's inner and outer surface, similar to the ultrasonic technique. Knowing the refractive index of the sample the absolute layer thickness from the transit time difference can be calculated easily. This method in principle also allows the measurement of multilayer systems and the characterization of foamed pipes.

  5. Aluminum-lithium target behavior

    SciTech Connect

    McDonell, W.R.

    1989-10-01

    Information on physical properties and irradiation behavior of aluminum-lithium target alloys employed for the production of tritium in Savannah River reactors has been reviewed to support development of technology for the New Production Reactor (NPR). Phase compositions and microstructures, thermal conductivity, mechanical properties, and constituent diffusion phenomena of the alloys, established in prior site studies, are presented. Irradiation behavior, including distributions of product tritium and helium and related exposure limits due to swelling and cracking of the target alloys is discussed, along with gas release processes occurring during subsequent product recovery operations. The property review supports designation of the aluminum-lithium alloys as ideally well-suited target materials for low-temperature, tritium-producing reactors, demonstrated over 35 years of Savannah River reactor operation. Low temperature irradiation and reaction with lithium in the alloy promotes tritium retention during reactor exposure, and the aluminum provides a matrix from which the product is readily recovered on heating following irradiation. 33 refs., 26 figs., 8 tabs.

  6. Recycling of aluminum matrix composites

    SciTech Connect

    Nishida, Yoshinori; Izawa, Norihisa; Kuramasu, Yukio

    1999-03-01

    Separation of matrix metals in composites was tried on alumina short fiber-reinforced aluminum and 6061 alloy composites and SiC whisker-reinforced 6061 alloy composite for recycling. It is possible to separate molten matrix metals from fibers in the composites using fluxes that are used for melt treatment to remove inclusions. About 50 vol pct of the matrix metals was separated from the alumina short fiber-reinforced composites. The separation ratio of the matrix from the SiC whisker-reinforced 6061 alloy composite was low and about 20 vol pct. The separation mechanism was discussed thermodynamically using interface free energies. Since the flux/fiber interface energy is smaller than the aluminum/fiber interface energy, the replacement of aluminum with fluxes in composites takes place easily. Gases released by the decomposition of fluxes act an important role in pushing out the molten matrix metal from the composite. The role was confirmed by the great amount cavity formed in the composite after the matrix metal flowed out.

  7. [Effect of the extrusion process on the functional characteristics and protein quality of quinua (Chenopodium quinoa, Willd)].

    PubMed

    Romero, A; Bacigalupo, A; Bressani, R

    1985-03-01

    In order to have available a human food of high nutritive value, and conscious of the protein quality of the quinua, as well as its carbohydrate, vitamin and mineral content, its behavior during the extrusion process was tested in the present study. To eliminate saponins, a simple method was developed which consisted of washing the seeds through an aluminum container, using a wooden stirrer. Seven treatments were studied: washed quinua, washed and cooked quinua, washed and expanded quinua No. 1 and No. 2, and washed and texturized quinua No. 1 and No. 2; casein was used as control. Biological evaluation trials were carried out in Holtzman rats, following the PER method. To detect the possible effects of the processed quinua on the experimental animals, hematological as well as histopathological studies of the vital organs were performed. A maximum PER of 2.43 was obtained for the texturized quinua, 2.16 for the expanded quinua, 2.6 for the cooked quinua, while the casein control yielded a PER of 3.00. The physico-chemical characteristics of the quinua flour were determined, as well as those of the expanded and texturized products. The product obtained was subjected to an organoleptic trial and it can be stated that the results obtained were satisfactory. The product can be consumed directly without major modifications and has an acceptable flavor. The nutritive value of quinua was not impaired; it compared favorably with the best diets recommended for the population, especially of those with a lower income. The results obtained in the present study suggest the possibility of increasing the nutritional value of the product, as well as its acceptability.

  8. Optimization of pneumatic sheet extrusion of whole wheat flour poory dough using response surface methodology.

    PubMed

    Murthy, K Venkatesh; Sudha, M L; Ravi, R; Raghavarao, K S M S

    2015-07-01

    Pneumatic extrusion of whole wheat flour dough is a challenge in the preparation of Poory. In the present study, the pneumatic extrusion process variables (pneumatic pressure, rate of extrusion) and quality of deep fried product (oil uptake, frying time, puffed height) was evaluated to get Poory of maximum overall sensory quality, minimum shear and minimum oil uptake. These parameters depend on the moisture content of wheat dough. Response surface methodology was demonstrated to be an efficient tool for the optimization of process parameters of pneumatic extrusion. The results indicated that extrusion pressure ranging from 3 ~ 6 × 10(5) Pa for the whole wheat flour dough with added moisture of 56 ~ 60 % was found to give a uniform rate of extruded sheet. It was observed that submerged frying time for the extruded dough sheet was in the range of 35 ~ 40 s, with the temperature of the vegetable oil to be in the range of 180 ~ 185 °C. Oil uptake during frying was about 12 ± 1 % and the textural shear force was found to be 9.9 N with an overall sensory score of 7.2 ± 0.5 on nine point scale. The experimental errors for all attributes were non-significant (p > 0.05) and thus optimum variables predicted by the model are found suitable.

  9. Effect of extrusion rate on morphology of Kaolin/PolyEtherSulfone (PESf) membrane precursor

    NASA Astrophysics Data System (ADS)

    Misaran, M. S.; Sarbatly, R.; Bono, A.; Rahman, M. M.

    2016-11-01

    This study aims to investigate the influence of apparent viscosity induced by spinneret geometry and extrusion rate on morphology of Kaolin/PESf hollow fiber membranes. Different extrusion rates at two different rheology properties were introduced on a straight and conical spinneret resulting in various shear rates. The hollow fiber membrane precursors were spun using the wet spinning method to decouple the effect of shear and elongation stress due to gravity stretched drawing. The morphology of the spun hollow fiber was observed under Scanning Electron Microscope (SEM) and the overall porosity were measured using mercury intrusion porosimeter. Shear rate and apparent viscosity at the tip of the spinneret annulus were simulated using a computational fluid dynamics package; solidworks floworks. Simulation data shows that extrusion rate increment increases the shear rate at the spinneret wall which in turn reduce the apparent viscosity; consistent with a non Newtonian shear thinning fluid behavior. Thus, the outer finger-like region grows as the shear rate increases. Also, overall porosity of hollow fiber membrane decreases with extrusion rate increment which is caused by better molecular orientation; resulting in denser hollow fiber membrane. Thin outer finger-like region is achieved at low shear experience of 109.55 s-1 via a straight spinneret. Increasing the extrusion rate; thus shear rate will cause outer finger-like region growth which is not desirable in a separation process.

  10. Effect of extrusion process variables on physical and chemical properties of extruded oat products.

    PubMed

    Gutkoski, L C; El-Dash, A A

    1999-01-01

    The purpose of this research was to study the effects of initial moisture levels and extrusion temperatures on bulk density, water absorption and water solubility indexes, viscosity, and color of extruded oat products. The dehulled grains were ground in a Brabender Quadrumat Senior mill and the coarse fraction, with higher amounts of crude protein, lipids, and dietary fiber content, were conditioned to moisture levels of 15.5-25.5% and extruded in a Brabender single-screw laboratory extruder. The water absorption index of extrudates were relatively low (4.16-6.35 g gel/g sample) but increased as the initial moisture of the raw material as well as the extrusion temperature was elevated. The water solubility index was inversely proportional to the extrusion temperature. Initial viscosity of the paste increased with the increase of raw material moisture and extrusion temperature, while the maximum viscosity (at a constant temperature) diminished with the increase of temperature. Products with lower values of L* (luminosity) and greater values of a* (red) and b* (yellow) were obtained at high moisture rates and at a 120 degrees C extrusion temperature.

  11. Analysis of the flow imbalance on the profile shape during the extrusion of thin magnesium sheets

    SciTech Connect

    Gall, Sven; Müller, Sören; Reimers, Walter

    2013-12-16

    The extrusion process facilitates the production of magnesium sheets featuring a very thin thickness as well as excellent surface properties by using a single process step only. However, the extrusion of the magnesium sheets applying not optimized process parameters, e.g. low billet temperature or/ and poorly deformable magnesium alloy, produce pronounced buckling and waving of the extruded sheets as well as a variation of accuracy in profile shape along the cross section. The present investigation focuses on the FEM-simulation of the extrusion of magnesium sheets in order to clarify the origin of the mentioned effects. The simulations identify the flow imbalance during extrusion as the main critical factor. Due to the flow imbalance after passing the die a large compression stress zone is formed causing the buckling and waving of the thin sheets. Furthermore, the simulations of the magnesium sheet extrusion reveal that the interaction of the material flow gradients along the width and along the thickness direction near the die orifice lead to the variation of the accuracy in profile shape.

  12. Poly(ether ester) Ionomers as Water-Soluble Polymers for Material Extrusion Additive Manufacturing Processes.

    PubMed

    Pekkanen, Allison M; Zawaski, Callie; Stevenson, André T; Dickerman, Ross; Whittington, Abby R; Williams, Christopher B; Long, Timothy E

    2017-04-12

    Water-soluble polymers as sacrificial supports for additive manufacturing (AM) facilitate complex features in printed objects. Few water-soluble polymers beyond poly(vinyl alcohol) enable material extrusion AM. In this work, charged poly(ether ester)s with tailored rheological and mechanical properties serve as novel materials for extrusion-based AM at low temperatures. Melt transesterification of poly(ethylene glycol) (PEG, 8k) and dimethyl 5-sulfoisophthalate afforded poly(ether ester)s of sufficient molecular weight to impart mechanical integrity. Quantitative ion exchange provided a library of poly(ether ester)s with varying counterions, including both monovalent and divalent cations. Dynamic mechanical and tensile analysis revealed an insignificant difference in mechanical properties for these polymers below the melting temperature, suggesting an insignificant change in final part properties. Rheological analysis, however, revealed the advantageous effect of divalent countercations (Ca(2+), Mg(2+), and Zn(2+)) in the melt state and exhibited an increase in viscosity of two orders of magnitude. Furthermore, time-temperature superposition identified an elevation in modulus, melt viscosity, and flow activation energy, suggesting intramolecular interactions between polymer chains and a higher apparent molecular weight. In particular, extrusion of poly(PEG8k-co-CaSIP) revealed vast opportunities for extrusion AM of well-defined parts. The unique melt rheological properties highlighted these poly(ether ester) ionomers as ideal candidates for low-temperature material extrusion additive manufacturing of water-soluble parts.

  13. Comparison of Murine Cervicovaginal Infection by Chlamydial Strains: Identification of Extrusions Shed In vivo

    PubMed Central

    Shaw, Jennifer H.; Behar, Amanda R.; Snider, Timothy A.; Allen, Noah A.; Lutter, Erika I.

    2017-01-01

    Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections (STIs) and preventable blindness. Untreated, asymptomatic infection as well as frequent re-infection are common and may drive pelvic inflammatory disease, ectopic pregnancy, and infertility. In vivo models of chlamydial infection continue to be instrumental in progress toward a vaccine and further elucidating the pathogenesis of this intracellular bacterium, however significant gaps in our understanding remain. Chlamydial host cell exit occurs via two mechanisms, lysis and extrusion, although the latter has yet to be reported in vivo and its biological role is unclear. The objective of this study was to investigate whether chlamydial extrusions are shed in vivo following infection with multiple strains of Chlamydia. We utilized an established C3H/HeJ murine cervicovaginal infection model with C. trachomatis serovars D and L2 and the Chlamydia muridarum strain MoPn to monitor the (i) time course of infection and mode of host cell exit, (ii) mucosal and systemic immune response to infection, and (iii) gross and histopathology following clearance of active infection. The key finding herein is the first identification of chlamydial extrusions shed from host cells in an in vivo model. Extrusions, a recently appreciated mode of host cell exit and potential means of dissemination, had been previously observed solely in vitro. The results of this study demonstrate that chlamydial extrusions exist in vivo and thus warrant further investigation to determine their role in chlamydial pathogenesis. PMID:28217555

  14. Pharmaceutical approaches to preparing pelletized dosage forms using the extrusion-spheronization process.

    PubMed

    Trivedi, Namrata R; Rajan, Maria Gerald; Johnson, James R; Shukla, Atul J

    2007-01-01

    Pelletized dosage forms date back to the 1950s, when the first product was introduced to the market. Since then, these dosage forms have gained considerable popularity because of their distinct advantages, such as ease of capsule filling because of better flow properties of the spherical pellets; enhancement of drug dissolution; ease of coating; sustained, controlled, or site-specific delivery of the drug from coated pellets; uniform packing; even distribution in the GI tract; and less GI irritation. Pelletized dosage forms can be prepared by a number of techniques, including drug layering on nonpareil sugar or microcrystalline cellulose beads, spray drying, spray congealing, rotogranulation, hot-melt extrusion, and spheronization of low melting materials or extrusion-spheronization of a wet mass. This review discusses recent developments in the pharmaceutical approaches that have been used to prepare pelletized dosage forms using the extrusion-spheronization process over the last decade. The review is divided into three parts: the first part discusses the extrusion-spheronization process, the second part discusses the effect of varying formulation and process parameters on the properties of the pellets, and the last part discusses the different approaches that have been used to prepare pelletized dosage forms using the extrusion-spheronization process.

  15. Intrusion-extrusion spring performance of -COK-14 zeolite enhanced by structural changes.

    PubMed

    Kirschhock, Christine E A; De Prins, Michiel; Verheijen, Elke; Ryzhikov, Andrey; Jean Daou, T; Nouali, Habiba; Taulelle, Francis; Martens, Johan A; Patarin, Joël

    2016-07-28

    -COK-14 zeolite, the variant of COK-14 (OKO topology) with a systematically interrupted framework, exhibits unusual behaviour in high pressure intrusion-extrusion cycles of 20 M LiCl solution. After the first cycle with deviating behaviour and partially irreversible intrusion, subsequent cycles show stable reversible behaviour. The system behaves like a spring with unique progressive intrusion in the range of 10-120 MPa followed by enhanced uptake before saturation. While the intrusion-extrusion cycling leads to fragmented crystals, powder diffraction reveals high crystallinity of the fragments. Based on the detailed characterisation of the zeolite samples with XRD, Rietveld refinement, N2 adsorption, TGA and (29)Si MAS NMR before and after intrusion-extrusion experiments, a model of the structure of the intruded -COK-14 samples is proposed. Intrusion-extrusion of LiCl solution systematically breaks the most strained bonds in the structure which results in a new framework connectivity with enhanced stability, which persists during the harsh intrusion-extrusion conditions.

  16. The Effect of Impurities on the Processing of Aluminum Alloys

    SciTech Connect

    Zi-Kui Liu; Shengjun Zhang; Qingyou Han; Vinod Sikka

    2007-04-23

    database developed in this project, thermodynamic simulations were carried out to investigate the effect of sodium on the HTE of Al-Mg alloys. The simulation results indicated that the liquid miscibility gap resulting from the dissolved sodium in the molten material plays an important role in HTE. A liquid phase forms from the solid face-centered cubic (fcc) phase (most likely at grain boundaries) during cooling, resulting in the occurrence of HTE. Comparison of the thermodynamic simulation results with experimental measurements on the high-temperature ductility of an Al-5Mg-Na alloy shows that HTE occurs in the temperature range at which the liquid phase exists. Based on this fundamental understanding of the HTE mechanism during processing of aluminum alloy, an HTE sensitive zone and a hot-rolling safe zone of the Al-Mg-Na alloys are defined as functions of processing temperature and alloy composition. The tendency of HTE was evaluated based on thermodynamic simulations of the fraction of the intergranular sodium-rich liquid phase. Methods of avoiding HTE during rolling/extrusion of Al-Mg-based alloys were suggested. Energy and environmental benefits from the results of this project could occur through a number of avenues: (1) energy benefits accruing from reduced rejection rates of the aluminum sheet and bar, (2) reduced dross formation during the remelting of the aluminum rejects, and (3) reduced CO2 emission related to the energy savings. The sheet and extruded bar quantities produced in the United States during 2000 were 10,822 and 4,546 million pounds, respectively. It is assumed that 50% of the sheet and 10% of the bar will be affected by implementing the results of this project. With the current process, the rejection rate of sheet and bar is estimated at 5%. Assuming that at least half of the 5% rejection of sheet and bar will be eliminated by using the results of this project and that 4% of the aluminum will be lost through dross (Al2O3) during remelting of the

  17. Production of anhydrous aluminum chloride composition

    DOEpatents

    Vandergrift, G.F. III; Krumpelt, M.; Horwitz, E.P.

    1981-10-08

    A process is described for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

  18. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  19. Fabrication of Porous Aluminum Using Gases Intrinsically Contained in Aluminum Alloy Die Castings

    NASA Astrophysics Data System (ADS)

    Hangai, Yoshihiko; Utsunomiya, Takao

    2009-06-01

    Closed-cell porous aluminum was fabricated using gases intrinsically contained in aluminum alloy die castings without using a blowing agent. By incorporating the friction stir processing technique, porous aluminum with a porosity of more than 50 pct was successfully obtained at a holding temperature of 923 to 948 K and a holding time of 10 minutes. This proposed die-casting route has high potential for fabricating porous aluminum at a low cost by a higher productivity process.

  20. Aluminum-stabilized NB3SN superconductor

    DOEpatents

    Scanlan, Ronald M.

    1988-01-01

    An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  1. Nd:YAG laser welding aluminum alloys

    SciTech Connect

    Jimenez, E. Jr.

    1992-02-01

    Autogenous Nd:YAG laser welding wrought 4047, 1100, 3003, 2219, 5052, 5086, 5456, and 6061 and cast A356 aluminum alloys to cast A356 aluminum alloy in restrained annular weld joints was investigated. The welds were 12.7 mm (0.375 in.) and 9.5 mm (0.375 in.) diameter with approximately 0.30 mm (0.012 in.) penetration. This investigation determined 4047 aluminum alloy to be the optimum alloy for autogenous Nd:YAG laser welding to cast A356 aluminum alloy. This report describes the investigation and its results.

  2. Electrical Resistivity of Aluminum and Manganese.

    DTIC Science & Technology

    1983-03-01

    Aluminum Alloys ,’ J. Pliys. Soc. lpu., JIM(3, 684-91 (1975). 57 26Srivastava* S.K., ’Model Pseudopotentials and Eiectron4c Properties ...1965). 6 3Powell, R.W.. Tye, R.P., and Metcalf, S.C.. ’Molten Aluminum and an Aluminum Alloy .’ in 3rd Symposium on Thermophvsical Properties (Gratch, S...Transport Properties of Commercial Metals and Alloys . II. Aluminums ,’ J. Appl. Phys., Ul(3), 496-503 (1960). 73Bedgcock, F.T., Muir, W.B., and Wallingford,

  3. 40 CFR 180.1091 - Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Aluminum isopropoxide and aluminum... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1091 Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a tolerance. Aluminum isopropoxide (CAS Reg. No....

  4. 40 CFR 63.5753 - How do I calculate the combined organic HAP content of aluminum wipedown solvents and aluminum...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... HAP content of aluminum wipedown solvents and aluminum recreational boat surface coatings? 63.5753...) National Emission Standards for Hazardous Air Pollutants for Boat Manufacturing Standards for Aluminum... aluminum wipedown solvents and aluminum recreational boat surface coatings? (a) Use equation 1 of...

  5. 40 CFR 180.1091 - Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Aluminum isopropoxide and aluminum... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1091 Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a tolerance. Aluminum isopropoxide (CAS Reg. No....

  6. 40 CFR 180.1091 - Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Aluminum isopropoxide and aluminum... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1091 Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a tolerance. Aluminum isopropoxide (CAS Reg. No....

  7. 40 CFR 180.1091 - Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Aluminum isopropoxide and aluminum... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1091 Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a tolerance. Aluminum isopropoxide (CAS Reg. No....

  8. 40 CFR 180.1091 - Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Aluminum isopropoxide and aluminum... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1091 Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a tolerance. Aluminum isopropoxide (CAS Reg. No....

  9. 40 CFR 63.5753 - How do I calculate the combined organic HAP content of aluminum wipedown solvents and aluminum...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... organic HAP content of aluminum wipedown solvents and aluminum recreational boat surface coatings? 63.5753...) National Emission Standards for Hazardous Air Pollutants for Boat Manufacturing Standards for Aluminum... aluminum wipedown solvents and aluminum recreational boat surface coatings? (a) Use equation 1 of...

  10. 40 CFR 63.5753 - How do I calculate the combined organic HAP content of aluminum wipedown solvents and aluminum...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... organic HAP content of aluminum wipedown solvents and aluminum recreational boat surface coatings? 63.5753...) National Emission Standards for Hazardous Air Pollutants for Boat Manufacturing Standards for Aluminum... aluminum wipedown solvents and aluminum recreational boat surface coatings? (a) Use equation 1 of...

  11. Aluminum reclamation from dross. (Latest citations from the Aluminum Industry Abstracts database). Published Search

    SciTech Connect

    1996-06-01

    The bibliography contains citations concerning aluminum reclamation from dross. Topics include dross treatment technology, the environmental benefits of aluminum recovery from dross, and the economics of aluminum reclamation in dross processing systems. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  12. Thermoplastic starch/polyester films: effects of extrusion process and poly (lactic acid) addition.

    PubMed

    Shirai, Marianne Ayumi; Olivato, Juliana Bonametti; Garcia, Patrícia Salomão; Müller, Carmen Maria Olivera; Grossmann, Maria Victória Eiras; Yamashita, Fabio

    2013-10-01

    Biodegradable films were produced using the blown extrusion method from blends that contained cassava thermoplastic starch (TPS), poly(butylene adipate-co-terephthalate) (PBAT) and poly(lactic acid) (PLA) with two different extrusion processes. The choice of extrusion process did not have a significant effect on the mechanical properties, water vapor permeability (WVP) or viscoelasticity of the films, but the addition of PLA decreased the elongation, blow-up ratio (BUR) and opacity and increased the elastic modulus, tensile strength and viscoelastic parameters of the films. The films with 20% PLA exhibited a lower WVP due to the hydrophobic nature of this polymer. Morphological analyses revealed the incompatibility between the polymers used.

  13. Effects of extrusion cooking on the chemical composition and functional properties of dry common bean powders.

    PubMed

    Ai, Yongfeng; Cichy, Karen A; Harte, Janice B; Kelly, James D; Ng, Perry K W

    2016-11-15

    The impact of extrusion cooking on the chemical composition and functional properties of bean powders from four common bean varieties was investigated. The raw bean powders were extruded under eight different conditions, and the extrudates were then dried and ground (particle size⩽0.5mm). Compared with corresponding non-extruded (raw) bean powders (particle size⩽0.5mm), the extrusion treatments did not substantially change the protein and starch contents of the bean powders and showed inconsistent effects on the sucrose, raffinose and stachyose contents. The extrusion cooking did cause complete starch gelatinization and protein denaturation of the bean powders and thus changed their pasting properties and solvent-retention capacities. The starch digestibilities of the cooked non-extruded and cooked extruded bean powders were comparable. The extruded bean powders displayed functional properties similar to those of two commercial bean powders.

  14. Microstructure and Texture Evolution During the Alternate Extrusion of an AZ31 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Li, Feng; Jiang, Hong Wei; Liu, Yang

    2017-01-01

    In this study, a new extrusion process, alternate extrusion (AE), is proposed. We evaluated the reliability and superiority of this process in practical applications by conducting a simulation using the finite element method, which confirmed the experimental results. The microstructure characteristics of an AZ31 magnesium alloy produced by conventional extrusion (CE) and AE were investigated by electron backscattered diffraction and optical microscopy, and the effects of the microstructures on the mechanical properties were studied across the extruded specimens. The main advantage of AE is that the load is reduced to less than half that in the CE process; this results from the reduced cross-section of the split punches. Additionally, the grain size with AE is more refined than with CE because of the additional shear force, which improves the mechanical properties of the alloys. Furthermore, AE can also weaken the intensity of the basal plane texture.

  15. A multivariate analysis of the effects of multiple extrusion cycles on high density polyethylene bottle resin

    SciTech Connect

    Zahavich, A.

    1995-10-01

    The recycling of post consumer (PCR) high density polyethylene (HDPE) blow molding resins has increased dramatically over the past 5 years. The focus of research for this product has been on specific performance and processing properties such as tensile or melt strength. Little work has been done on studying the entire range of properties as a whole, particularly in the area of multiple extrusions. This paper describes a designed experiment study where multivariate statistical techniques were used to compare 2 HDPE and 2 HDPE PCR materials, in terms of changes in a number of properties with exposure to multiple extrusions. Virgin homopolymer and copolymer resins and PCR, mixed color bottle and natural, were passed through 4 extrusion cycles. Viscosity, swell, melt strength, crystallinity, polydispersity and ESCR properties were studied using principal component analysis.

  16. Effect of extrusion pressure and lipid properties on the size and polydispersity of lipid vesicles.

    PubMed

    Hunter, D G; Frisken, B J

    1998-06-01

    The production of vesicles, spherical shells formed from lipid bilayers, is an important aspect of their recent application to drug delivery technologies. One popular production method involves pushing a lipid suspension through cylindrical pores in polycarbonate membranes. However, the actual mechanism by which the polydisperse, multilamellar lipid suspension breaks up into a relatively monodisperse population of vesicles is not well understood. To learn about factors influencing this process, we have characterized vesicles produced under different extrusion parameters and from different lipids. We find that extruded vesicles are only produced above a certain threshold extrusion pressure and have sizes that depend on the extrusion pressure. The minimum pressure appears to be associated with the lysis tension of the lipid bilayer rather than any bending modulus of the system. The flow rate of equal concentration lipid solutions through the pores, after being corrected for the viscosity of water, is independent of lipid properties.

  17. Extrusion of hollow waveguide preforms with a one-dimensional photonic bandgap structure

    NASA Astrophysics Data System (ADS)

    Gibson, Daniel J.; Harrington, James A.

    2004-04-01

    An extrusion technique is used to make an all-dielectric, hollow waveguide preform. The structure consists of radially alternating dielectric layers of high/low refractive index pairs. By requiring that the two dielectric materials have a high index contrast, it is possible to make a preform that will have a photonic bandgap structure when drawn into a fiber optic. The preform is made by an extrusion process in which a stack-of-plates, composed of alternating disks of chalcogenide glass and a polymer, is extruded through a die into both solid and hollow-core structures. Laminar flow during extrusion forces the periodicity from an axial to a radial orientation in the final extruded preform. For these experiments the high index material was arsenic selenide glass (As2Se3,n=2.6) and the low index material was polysulfone (PSU,n=1.55), which gives an index contrast of 1.68.

  18. Adaptation of in-line ultrasonic velocimetry to melt flow measurement in polymer extrusion

    NASA Astrophysics Data System (ADS)

    Putz, V.; Burzic, I.; Miethlinger, J.; Maier, F.; Zagar, B. G.

    2013-10-01

    Pulsed wave velocimetry (PWV) is an ultrasonic technique for measuring velocity profiles in flowing liquids. In capillaries, PWV requires using ultrasound transducers with high center frequencies and a large bandwidth. This type of transducer is restricted to operating temperatures below 50 °C. However, in polymer extrusion, velocity profiles of flowing liquids with temperatures up to 250 °C are of interest. This contribution describes the development of a new ultrasonic measurement tool, which is fully integrated in a heated capillary die. It enables long-time measurement of the extrudate using the buffer rod technique and active cooling. The developed prototype was successfully validated in an extrusion experiment: the velocity profile of glass-fiber-filled polypropylene was measured immediately after extrusion in a capillary die.

  19. Extrusion – back to the future: Using an established technique to reform automated chemical synthesis

    PubMed Central

    2017-01-01

    Herein, the benefits which extrusion can provide for the automated continuous synthesis of organic compounds are highlighted. Extrusion is a well-established technique that has a vital role in the manufacturing processes of polymers, pharmaceuticals and food products. Furthermore, this technique has recently been applied to the solvent-free continuous synthesis of co-crystals and coordination compounds including metal-organic frameworks (MOFs). To date, a vast amount of research has already been conducted into reactive extrusion (REX), particularly in the polymer industry, which in many cases has involved organic transformations, however, it has not received significant recognition for this. This review highlights these transformations and discusses how this previous research can be applied to the future of organic compound manufacture. PMID:28179950

  20. Two-sided friction stir riveting by extrusion: A process for joining dissimilar materials

    DOE PAGES

    Evans, William T.; Cox, Chase D.; Strauss, Alvin M.; ...

    2016-06-25

    Two-sided friction stir riveting (FSR) by extrusion is an innovative process developed to rapidly, efficiently, and securely join dissimilar materials. This process extends a previously developed one sided friction stir extrusion process to create a strong and robust joint by producing a continuous, rivet-like structure through a preformed hole in one of the materials with a simultaneous, two-sided friction stir spot weld. The two-sided FSR by extrusion process securely joins the dissimilar materials together and effectively locks them in place without the use of any separate materials or fasteners. Lastly, in this paper we demonstrate the process by joining aluminummore » to steel and illustrate its potential application to automotive and aerospace manufacturing processes.« less

  1. Extrusion - back to the future: Using an established technique to reform automated chemical synthesis.

    PubMed

    Crawford, Deborah E

    2017-01-01

    Herein, the benefits which extrusion can provide for the automated continuous synthesis of organic compounds are highlighted. Extrusion is a well-established technique that has a vital role in the manufacturing processes of polymers, pharmaceuticals and food products. Furthermore, this technique has recently been applied to the solvent-free continuous synthesis of co-crystals and coordination compounds including metal-organic frameworks (MOFs). To date, a vast amount of research has already been conducted into reactive extrusion (REX), particularly in the polymer industry, which in many cases has involved organic transformations, however, it has not received significant recognition for this. This review highlights these transformations and discusses how this previous research can be applied to the future of organic compound manufacture.

  2. A Forming Load Prediction Model in BMG Micro Backward Extrusion Process Considering Size Effect

    NASA Astrophysics Data System (ADS)

    Xinyun, Wang; Mao, Zhang; Na, Tang; Ning, Li; Lin, Liu; Jianjun, Li

    The size effect was considered in order to improve the prediction accuracy of forming load in the micro backward extrusion process of a Zr55Cu30Al10Ni5 BMG cup-shaped specimen. The ratio of the billet surface to volume near the working land of backward extrusion punch was proposed as size effect factor. Then the size effect factor was complemented into a backward extrusion load prediction formula of conventional macroscopic parts. The micro-sized BMG cups with different sidewall thickness varying from 20 μm to 125 μm were deformed in supercooled liquid state. The initial diameter of the billets is 600 μm and the experiments were conducted at Zwick/Roell Z200 Press. The forming loads were recorded and compared with the calculated values from the proposed prediction model. The results showed that the proposed model can predict the forming load with very small deviation.

  3. Characterisation of the wall-slip during extrusion of heavy-clay products

    NASA Astrophysics Data System (ADS)

    Kocserha, I.; Gömze, A. L.; Kulkov, S.; Kalatur, E.; Buyakova, S. P.; Géber, R.; Buzimov, A. Y.

    2017-01-01

    During extrusion through the extrusion die, heavy-clay compounds are usually show plug flow with extensive slip at the wall of the die. In this study, the viscosity and the thickness of the slip layer were investigated. For the examination a brick-clay from Malyi (Hungary) deposit was applied as a raw material. The clay was characterised by XRPD, BET, SEM and granulometry. As the slip layer consists of suspension of the fine clay fraction so the clay minerals content of the clay (d<2µm) was separated by the help of sedimentation. The viscosity of suspension with different water content was measured by means of rotational viscosimeter. The thickness of the slip layer was calculated from the measured viscosity and other data obtained from an earlier study with capillary rheometer. The calculated thickness value showed a tendency to reach a limit value by increasing the extrusion speed.

  4. Hot-melt extrusion for enhanced delivery of drug particles.

    PubMed

    Miller, Dave A; McConville, Jason T; Yang, Wei; Williams, Robert O; McGinity, James W

    2007-02-01

    With the recent advent of nanotechnology for pharmaceutical applications, drug particle engineering is the focus of increasing interest as a viable approach for overcoming solubility limitations of poorly water-soluble drugs. Although these particle engineering techniques have been proven successful for enhancing the dissolution properties of many poorly water-soluble drugs, there are limitations associated with them such as particle aggregation, morphological instability, and poor wettability. The aim of this study was to demonstrate a processing technique in which hot-melt extrusion (HME) is utilized to overcome these limitations. Micronized particles of amorphous itraconazole (ITZ) stabilized with PVP or HPMC were produced and subsequently melt extruded with poloxamer 407 and PEO 200 M to deaggregate and disperse the particles into the hydrophilic polymer matrix. Differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy were used to demonstrate that the HME process did not alter the properties of the micronized particles. Dissolution testing conducted at sink conditions revealed that the dissolution rate of the micronized particles was improved by HME due to particle deaggregation and enhanced wetting. Supersaturation dissolution testing demonstrated that the ITZ-HPMC micronized particle extrudates provided superior supersaturation of ITZ compared to the ITZ-PVP micronized particle extrudates. Supersaturation dissolution testing incorporating a pH change (from pH 1.2 to 6.8 at 2 h) revealed that neither micronized particle extrudate formulation significantly reduced the rate of ITZ precipitation from supersaturated solution once pH was increased. Moreover, the two extrudate formulations performed very similarly when only considering dissolution testing from just before pH adjustment through the duration of testing at neutral pH. From oral dosing of rats, it was determined that the two extrudate formulations performed similarly in

  5. Co-Extrusion: Advanced Manufacturing for Energy Devices

    SciTech Connect

    Cobb, Corie Lynn

    2016-11-18

    The development of mass markets for large-format batteries, including electric vehicles (EVs) and grid support, depends on both cost reductions and performance enhancements to improve their economic viability. Palo Alto Research Center (PARC) has developed a multi-material, advanced manufacturing process called co-extrusion (CoEx) to remove multiple steps in a conventional battery coating process with the potential to simultaneously increase battery energy and power density. CoEx can revolutionize battery manufacturing across most chemistries, significantly lowering end-product cost and shifting the underlying economics to make EVs and other battery applications a reality. PARC’s scale-up of CoEx for electric vehicle (EV) batteries builds on a solid base of experience in applying CoEx to solar cell manufacturing, deposition of viscous ceramic pastes, and Li-ion battery chemistries. In the solar application, CoEx has been deployed commercially at production scale where multi-channel CoEx printheads are used to print viscous silver gridline pastes at full production speeds (>40 ft/min). This operational scale-up provided invaluable experience with the nuances of speed, yield, and maintenance inherent in taking a new technology to the factory floor. PARC has leveraged this experience, adapting the CoEx process for Lithium-ion (Li-ion) battery manufacturing. To date, PARC has worked with Li-ion battery materials and structured cathodes with high-density Li-ion regions and low-density conduction regions, documenting both energy and power performance. Modeling results for a CoEx cathode show a path towards a 10-20% improvement in capacity for an EV pouch cell. Experimentally, we have realized a co-extruded battery structure with a Lithium Nickel Manganese Cobalt (NMC) cathode at print speeds equivalent to conventional roll coating processes. The heterogeneous CoEx cathode enables improved capacity in thick electrodes at higher C-rates. The proof-of-principle coin cells

  6. Seismic wave propagation through an extrusive basalt sequence

    NASA Astrophysics Data System (ADS)

    Sanford, Oliver; Hobbs, Richard; Brown, Richard; Schofield, Nick

    2016-04-01

    Layers of basalt flows within sedimentary successions (e.g. in the Faeroe-Shetland Basin) cause complex scattering and attenuation of seismic waves during seismic exploration surveys. Extrusive basaltic sequences are highly heterogeneous and contain strong impedance contrasts between higher velocity crystalline flow cores (˜6 km s-1) and the lower velocity fragmented and weathered flow crusts (3-4 km s-1). Typically, the refracted wave from the basaltic layer is used to build a velocity model by tomography. This velocity model is then used to aid processing of the reflection data where direct determination of velocity is ambiguous, or as a starting point for full waveform inversion, for example. The model may also be used as part of assessing drilling risk of potential wells, as it is believed to constrain the total thickness of the sequence. In heterogeneous media, where the scatter size is of the order of the seismic wavelength or larger, scattering preferentially traps the seismic energy in the low velocity regions. This causes a build-up of energy that is guided along the low velocity layers. This has implications for the interpretation of the observed first arrival of the seismic wave, which may be a biased towards the low velocity regions. This will then lead to an underestimate of the velocity structure and hence the thickness of the basalt, with implications for the drilling of wells hoping to penetrate through the base of the basalts in search of hydrocarbons. Using 2-D acoustic finite difference modelling of the guided wave through a simple layered basalt sequence, we consider the relative importance of different parameters of the basalt on the seismic energy propagating through the layers. These include the proportion of high to low velocity material, the number of layers, their thickness and the roughness of the interfaces between the layers. We observe a non-linear relationship between the ratio of high to low velocity layers and the apparent velocity

  7. Brassica oleracea MATE encodes a citrate transporter and enhances aluminum tolerance in Arabidopsis thaliana.

    PubMed

    Wu, Xinxin; Li, Ren; Shi, Jin; Wang, Jinfang; Sun, Qianqian; Zhang, Haijun; Xing, Yanxia; Qi, Yan; Zhang, Na; Guo, Yang-Dong

    2014-08-01

    The secretion of organic acid anions from roots is an important mechanism for plant aluminum (Al) tolerance. Here we report cloning and characterizing BoMATE (KF031944), a multidrug and toxic compound extrusion (MATE) family gene from cabbage (Brassica oleracea). The expression of BoMATE was more abundant in roots than in shoots, and it was highly induced by Al treatment. The (14)C-citrate efflux experiments in oocytes demonstrated that BoMATE is a citrate transporter. Electrophysiological analysis and SIET analysis of Xenopus oocytes expressing BoMATE indicated BoMATE is activated by Al. Transient expression of BoMATE in onion epidermal cells demonstrated that it localized to the plasma membrane. Compared with the wild-type Arabidopsis, the transgenic lines constitutively overexpressing BoMATE enhanced Al tolerance and increased citrate secretion. In addition, Arabidopsis transgenic lines had a lower K(+) efflux and higher H(+) efflux, in the presence of Al, than control wild type in the distal elongation zone (DEZ). This is the first direct evidence that MATE protein is involved in the K(+) and H(+) flux in response to Al treatment. Taken together, our results show that BoMATE is an Al-induced citrate transporter and enhances aluminum tolerance in Arabidopsis thaliana.

  8. Oceanic corrosion test of bare and zinc-protected aluminum alloys for seawater heat exchangers

    NASA Technical Reports Server (NTRS)

    Sasscer, D. S.; Morgan, T. O.; Rivera, C.; Ernst, R.; Scott, A. C.; Summerson, T. J.

    1982-01-01

    Bare 3004 tubes, 7072 Alclad 3004 tubes, and bare and zinc diffusion treated 3003 extrusions from a brazed aluminum, plate-fin heat exchanger were exposed to 1.8 m/sec flowing seawater aboard an open ocean test facility moored 3.4 km off the southeast coast of Puerto Rico. After six months exposure, the average corrosion rates for most varieties of aluminum materials converged to a low value of 0.015 mm/yr (0.6 mils/yr). Pitting did not occur in bare 3003 and 3004 samples during the six month test. Pitting did occur to varying degrees in the Alclad and zinc diffusion treated material, but did not penetrate to the base metal. Biofouling countermeasures (intermittent chlorination and brushing) did not affect the corrosion rates to any significant extent. Intermittent chlorination at a level of 0.5 ppm for 28 minutes daily controlled microbiofouling of the samples but did not prevent the development of a macrobiofouling community in areas of the plumbing with low flow.

  9. Immediate release pellets with lipid binders obtained by solvent-free cold extrusion.

    PubMed

    Krause, Julia; Thommes, Markus; Breitkreutz, Jörg

    2009-01-01

    Lipid-based drug delivery systems have spread in their use in pharmaceutical drug development. This work focuses on the use of lipid binders as alternative non-toxic extrusion aid for pellet formulations. The preparation of immediate release pellets with solid lipid binders through a solvent-free cold extrusion/spheronisation process was investigated in this study. Various binary, ternary and quaternary mixtures of powdered lipids and the model drug sodium benzoate were investigated and compared to well-known wet extrusion binders like microcrystalline cellulose and kappa-carrageenan. The cold lipid extrusion process offers multiple advantages as it is suitable for thermal sensitive as well as for hygroscopic drugs, furthermore no drying process to evaporate the solvent is needed and the process is feasible for different extruder types. Some of the developed pellets showed favourable properties like spherical shape, narrow size distribution, a high drug load of 80% sodium benzoate and a drug release of more than 90% within 40 min. The stability of drug release, which can be problematic when using lipid excipients, was sufficient for some mixtures, as storage under elevated temperatures changed the release profiles only slightly and no formulation released less than 80% within the first 60 min. A formulation with a mixture of hard fat, glycerol distearate and glycerol trimyristate showed the best results, as pellets with a low aspect ratio, narrow size distribution and complete drug release were obtained. Using appropriate mixtures of acylglycerides it becomes possible to produce pharmaceutical pellets with immediate release characteristics by cold extrusion and subsequent spheronisation. Thus, lipids are very promising alternatives to commonly used extrusion/spheronisation binders.

  10. Structure development of polyamides (=nylons) in film extrusion and stretching processes

    NASA Astrophysics Data System (ADS)

    Rhee, Sangkeun

    2000-08-01

    A fundamental investigation of film formation characteristics and structure development of polyamide 6 (PA6), polyamide 612 (PA612), polyamide 11 (PA11) and polyamide 12 (PA12) in four different types of film formation processes (single bubble, double bubble, cast and biaxial stretching) was carried out. We made a careful study of film processing stability. The extrusion and cooling conditions were of special concern for single bubble films and extrusion cast films. To make first bubble and extrusion cast films which were suitable for additional stretching processes was another concern. In the sense of processibility and structure development, the stretching temperature and second air ring temperature were found to be important for uni- and biaxial stretching processes of extrusion cast films and for double bubble film blowing process, respectively. The crystallization rate of polyamides, which is related to the amide group concentration in their monomer units, provided a determining factor for double bubble inflation. As the distance between amide groups increases, the crystallization rate increases and film becomes increasingly unsuitable for double bubble processing. The aging behaviors of first bubble and unstretched extrusion cast films were studied using DSC heating scans. Changes of crystallinity, glass transition temperature and cold crystallization temperature were monitored during aging at room conditions. The existence of polymorphism in the crystalline structure of polyamide films was investigated with IR spectroscopy, WAXS flat film patterns, 2θ WAXS scanning and pole figure data. Effects of film formation conditions and of annealing on the crystal polymorphism were investigated. Molecular orientation was determined by birefringence measurements and crystalline biaxial orientation factor measurement (using pole figure data). The unstretched extrusion cast films were almost isotropic. Single bubble film ranged from isotropic to significant level of

  11. Periodontal tissue reactions to orthodontic extrusion. An experimental study in the dog.

    PubMed

    Berglundh, T; Marinello, C P; Lindhe, J; Thilander, B; Liljenberg, B

    1991-05-01

    Orthodontic tooth extrusion is used at crown lengthening procedures or in conjunction with periodontal therapy aimed at eliminating or reducing angular bone defects. A technique for orthodontic extrusion combined with resection of the supracrestal attachment fibers (fiberotomy) was recently proposed as an adjunct to certain restorative procedures. The aim of the present investigation was to analyze reactions of the periodontal tissues to orthodontic extrusion when combined with fiberotomy. In 5 beagle dogs, the mesial roots of the 2nd, 3rd and 4th hemisected mandibular premolar were used as target roots while the distal roots served as reference units. After a baseline examination, an orthodontic extrusion device (stent) was installed and reactivated at 2-week intervals during an 8-week period of active tooth movement. Immediately following the installation of the stent and once every 2nd week, the target roots were exposed to fiberotomy. After the active period, the teeth were retained in their new position for a period of 8 weeks. Clinical, radiographical and histological measurements were performed. The results from the investigation demonstrated that orthodontic extrusion combined with supracrestal fiberotomy resulted in a coronal displacement of the tooth and was associated with pronounced recession of the gingival margin and extensive loss of connective tissue attachment. The degree of gingival recession and the amount of loss of connective tissue attachment were, however, less extensive than the amount of tooth extrusion. Thus, repeated fiberotomy obviously failed to entirely prevent coronal migration of the attachment apparatus. It was also observed that undesired attachment loss had occurred at the reference roots.

  12. Profile extrusion of wood plastic cellular composites and formulation evaluation using compression molding

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad Rubyet

    Wood Plastic Composites (WPCs) have experienced a healthy growth during the last decade. However, improvement in properties is necessary to increase their utility for structural applications. The toughness of WPCs can be improved by creating a fine cellular structure while reducing the density. Extrusion processing is one of the most economical methods for profile formation. For our study, rectangular profiles were extruded using a twin-screw extrusion system with different grades of HDPE and with varying wood fibre and lubricant contents together with maleated polyethylene (MAPE) coupling agent to investigate their effects on WPC processing and mechanical properties. Work has been done to redesign the extrusion system setup to achieve smoother and stronger profiles. A guiding shaper, submerged in the water, has been designed to guide the material directly through water immediately after exiting the die; instead of passing it through a water cooled vacuum calibrator and then through water. In this way a skin was formed quickly that facilitated the production of smoother profiles. Later on chemical blowing agent (CBA) was used to generate cellular structure in the profile by the same extrusion system. CBA contents die temperatures, drawdown ratios (DDR) and wood fibre contents (WF) were varied for optimization of mechanical properties and morphology. Cell morphology and fibre alignment was characterized by a scanning electron microscope (SEM). A new compression molding system was developed to help in quick evaluation of different material formulations. This system forces the materials to flow in one direction to achieve higher net alignment of fibres during sample preparation, which is the case during profile extrusion. Operation parameters were optimized and improvements in WPC properties were observed compared to samples prepared by conventional hot press and profile extrusion.

  13. Aluminum core structures brazed without use of flux

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Aluminum alloy face sheets are brazed to aluminum alloy honeycomb cores without using corrosive flux by means of one or three methods. The completed brazed structure has the high-strength characteristics of heat treated aluminum alloys.

  14. EFFECT OF TEMPERATURE ON TEXTURE EVOLUTION IN TANTALUM DURING DYNAMIC-EXTRUSION

    SciTech Connect

    Trujillo, Carl P.; Escobedo-Diaza, Juan P.; Gray III, George T.; Cerreta, Ellen K.; Martinez, Daniel T.

    2012-06-20

    Motivation of this project is: (1) Build a furnace as a cross section of a gun barrel capable of temperatures up to 600 Celsius; (2) To examine the influence of temperature, texture, and extrusion velocity in Tantalum; (3) Constrain parameters to improve and assist in constitutive model development using high speed imaging & PDV (in-situ); (4) Understanding microstructural development in materials using the dynamic extrusion technique; and (5) Use as a validation test for developing fracture models important to industry, the DoD, and the DOE.

  15. Mechanical anisotropy of a gamma titanium aluminide alloy after hot extrusion

    SciTech Connect

    Oehring, M.; Lorenz, U.; Niefanger, R.; Appel, F.; Brokmeier, H.G.; Wagner, R.; Clemens, H.; Eberhardt, N.

    1999-07-01

    By hot extrusion below and above the {alpha} transus temperature equiaxed and predominantly lamellar microstructures were obtained in a Ti aluminide alloy. In order to examine a possible orientation dependence of mechanical properties the flow stress, the activation parameters of plastic deformation and the fracture toughness were determined parallel and perpendicular to the extrusion direction at room temperature and 700 C. The observed anisotropy in these properties may be mainly attributed to anisotropies in the microstructures, in particular to a preferential alignment of lamellae in lamellar microstructures.

  16. Computer modeling of wear in extrusion and forging of automotive exhaust valves

    NASA Astrophysics Data System (ADS)

    Tulsyan, R.; Shivpuri, R.

    1995-04-01

    In an automotive engine valve forging process, the billet is cold sheared, induction heated, and fed to a mechanical press for a two-stage forging operation with the first stage being extrusion. The main limiting factor in this operation is the wear of the dies during the first stage, extrusion. In this study. abrasive wear was identified as the primary mode of wear, and computer simulation was used to investigate the effect of process variables, such as press speed, initial billet temperature, and die preheat temperature upon abrasive wear. The result generated by this study should be applicable to other part geometry and not limited just to exhaust valves.

  17. Die swell as an objective in the design of polymer extrusion dies

    NASA Astrophysics Data System (ADS)

    Siegbert, Roland; Behr, Marek; Elgeti, Stefanie

    2016-10-01

    This paper focuses on developing a suitable objective function for the inverse form of profile extrusion die design. First, the problem is motivated by introducing the extrusion die design process. After describing how Computer Aided Engineering enhances the traditional design process, a set of applicable objective functions is introduced. The main criteria for identifying the most suitable are computational applicability, robustness and smoothness of the functional. After discussing the results of several simulations, an objective function is proposed for the implementation in an existing optimization framework utilizing parameter-based optimization.

  18. Cast Aluminum Primary Aircraft Structure

    DTIC Science & Technology

    1979-12-01

    ABSTRAC R A A A357 cast aluminum alloy forward fuselage pressure bulkhead has been developed and manufactured for the AMST-YC-14 aircraft. This work...urring in castings. Test coupons were! removed from castings containing defU-ts and subjected to repeated loads. The shift of the S-N curve for A357 ...selected for the casting is A357 . The cast bulkhead (Fig 2) measures approximately 2.29 m (7.5 ft) by 1.37 m (4.5 ft). It is designed to replace the

  19. Microstructure and wear properties of Al-20Si alloy prepared by spray deposition with following continuous extrusion forming technique

    NASA Astrophysics Data System (ADS)

    Liu, Yingli; Yin, Jiancheng; Zhong, Yi

    2016-10-01

    Spray deposition with following continuous extrusion forming technique (SD-CE) is an innovative manufacturing technique to produce high alloy net-shape products. Al-20Si alloy rods have been fabricated by SD-CE at different extrusion ratio. Microstructure, hardness and wear resistance of the alloy have been investigated in details. The results show that Al-20Si alloy can be refined effectively by SD-CE, and the size and shape of Si particles become fine and spherical with the increasing extrusion ratio. When the extrusion ratio reaches 20:1, fully dense material with uniform distribution of Si particles can be obtained. The Al-20Si alloys fabricated by SD-CE exhibit excellent wear resistance, which can be further improved by large extrusion ratio, due to increasing hardness and density. A mechanically mixed layer containing a considerable amount of oxygen and iron was formed on the worn surface.

  20. INTERIOR VIEW OF ENTRANCE TO LABORATORY, SHOWING HANDHAMMERED ALUMINUM DOORS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF ENTRANCE TO LABORATORY, SHOWING HAND-HAMMERED ALUMINUM DOORS AND MARBLE. NOTE ALUMINUM LIGHT FIXTURE - Alcoa Research Laboratory, Freeport Road, New Kensington, Westmoreland County, PA