Sample records for fractal geometry concepts

  1. Fractal Patterns and Chaos Games

    ERIC Educational Resources Information Center

    Devaney, Robert L.

    2004-01-01

    Teachers incorporate the chaos game and the concept of a fractal into various areas of the algebra and geometry curriculum. The chaos game approach to fractals provides teachers with an opportunity to help students comprehend the geometry of affine transformations.

  2. An application of geostatistics and fractal geometry for reservoir characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aasum, Y.; Kelkar, M.G.; Gupta, S.P.

    1991-03-01

    This paper presents an application of geostatistics and fractal geometry concepts for 2D characterization of rock properties (k and {phi}) in a dolomitic, layered-cake reservoir. The results indicate that lack of closely spaced data yield effectively random distributions of properties. Further, incorporation of geology reduces uncertainties in fractal interpolation of wellbore properties.

  3. Fractal Geometry in the Arts: AN Overview across the Different Cultures

    NASA Astrophysics Data System (ADS)

    Sala, Nicoletta

    Fractal, in mathematics, is a geometric shape that is complex and detailed in structure at any level of magnification. The word "fractal" was coined less than thirty years ago by one of history's most creative and mathematicians, Benoit Mandelbrot, whose work, The Fractal Geometry of Nature, first introduced and explained concepts underlying this new vision of the geometry. Although other mathematical thinkers like Georg Cantor (1845-1918), Felix Hausdorff (1868-1942), Gaston Julia (1893-1978), Helge von Koch (1870-1924), Giuseppe Peano (1858-1932), Lewis Richardson (1891-1953), Waclaw Sierpinski (1882-1969) and others had attained isolated insights of fractal understanding, such ideas were largely ignored until Mandelbrot's genius forged them at a single blow into a gorgeously coherent and fascinating discipline. Fractal geometry is applied in different field now: engineering, physics, chemistry, biology, and architecture. The aim of this paper is to introduce an approach where the arts are analysed using a fractal point of view.

  4. Fractals and foods.

    PubMed

    Peleg, M

    1993-01-01

    Fractal geometry and related concepts have had only a very minor impact on food research. The very few reported food applications deal mainly with the characterization of the contours of agglomerated instant coffee particles, the surface morphology of treated starch particles, the microstructure of casein gels viewed as a product limited diffusion aggregation, and the jagged mechanical signatures of crunchy dry foods. Fractal geometry describes objects having morphological features that are scale invariant. A demonstration of the self-similarity of fractal objects can be found in the familiar morphology of cauliflower and broccoli, both foods. Processes regulated by nonlinear dynamics can exhibit a chaotic behavior that has fractal characteristics. Examples are mixing of viscous fluids, turbulence, crystallization, agglomeration, diffusion, and possibly food spoilage.

  5. Spatial Heterogeneity, Scale, Data Character and Sustainable Transport in the Big Data Era

    NASA Astrophysics Data System (ADS)

    Jiang, Bin

    2018-04-01

    In light of the emergence of big data, I have advocated and argued for a paradigm shift from Tobler's law to scaling law, from Euclidean geometry to fractal geometry, from Gaussian statistics to Paretian statistics, and - more importantly - from Descartes' mechanistic thinking to Alexander's organic thinking. Fractal geometry falls under the third definition of fractal - that is, a set or pattern is fractal if the scaling of far more small things than large ones recurs multiple times (Jiang and Yin 2014) - rather than under the second definition of fractal, which requires a power law between scales and details (Mandelbrot 1982). The new fractal geometry is more towards living geometry that "follows the rules, constraints, and contingent conditions that are, inevitably, encountered in the real world" (Alexander et al. 2012, p. 395), not only for understanding complexity, but also for creating complex or living structure (Alexander 2002-2005). This editorial attempts to clarify why the paradigm shift is essential and to elaborate on several concepts, including spatial heterogeneity (scaling law), scale (or the fourth meaning of scale), data character (in contrast to data quality), and sustainable transport in the big data era.

  6. Fractal vector optical fields.

    PubMed

    Pan, Yue; Gao, Xu-Zhen; Cai, Meng-Qiang; Zhang, Guan-Lin; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2016-07-15

    We introduce the concept of a fractal, which provides an alternative approach for flexibly engineering the optical fields and their focal fields. We propose, design, and create a new family of optical fields-fractal vector optical fields, which build a bridge between the fractal and vector optical fields. The fractal vector optical fields have polarization states exhibiting fractal geometry, and may also involve the phase and/or amplitude simultaneously. The results reveal that the focal fields exhibit self-similarity, and the hierarchy of the fractal has the "weeding" role. The fractal can be used to engineer the focal field.

  7. Benoit B. Mandelbrot (1924-2010)

    NASA Astrophysics Data System (ADS)

    Barton, Christopher C.; Lovejoy, Shaun; Schertzer, Daniel J.; Turcotte, Donald L.

    2012-01-01

    Benoit B. Mandelbrot, who advanced the concept of power law scaling as a fundamental property of a broad range of natural processes and patterns in geophysics, economics, mathematics, and virtually all of science, died on 14 October 2010 in Cambridge, Mass., at the age of 85. Mandelbrot, known as the "father of fractal geometry," was a mathematician who developed the scaling concepts of self-similarity and self-affinity and found examples in spatial, temporal, and size patterns across a broad spectrum of disciplines. He coined the term "fractal" (from the Latin noun "fractus," meaning fragmented) for shapes and patterns that exhibit self-similarity, meaning that they are statistically scale independent. Such shapes are characterized by fractional power law exponents, between the integer (Euclidean) dimensions. He is best known through his books, including Les Objets Fractals: Forme, Hasard et Dimension; Fractals: Form, Chance and Dimension; The Fractal Geometry of Nature; andMultifractals and 1/f Noise: Wild Self-Affinity in Physics [Mandelbrot, 1975, Mandelbrot 1977, Mandelbrot 1982, Mandelbrot 1999].

  8. The fractal geometry of life.

    PubMed

    Losa, Gabriele A

    2009-01-01

    The extension of the concepts of Fractal Geometry (Mandelbrot [1983]) toward the life sciences has led to significant progress in understanding complex functional properties and architectural / morphological / structural features characterising cells and tissues during ontogenesis and both normal and pathological development processes. It has even been argued that fractal geometry could provide a coherent description of the design principles underlying living organisms (Weibel [1991]). Fractals fulfil a certain number of theoretical and methodological criteria including a high level of organization, shape irregularity, functional and morphological self-similarity, scale invariance, iterative pathways and a peculiar non-integer fractal dimension [FD]. Whereas mathematical objects are deterministic invariant or self-similar over an unlimited range of scales, biological components are statistically self-similar only within a fractal domain defined by upper and lower limits, called scaling window, in which the relationship between the scale of observation and the measured size or length of the object can be established (Losa and Nonnenmacher [1996]). Selected examples will contribute to depict complex biological shapes and structures as fractal entities, and also to show why the application of the fractal principle is valuable for measuring dimensional, geometrical and functional parameters of cells, tissues and organs occurring within the vegetal and animal realms. If the criteria for a strict description of natural fractals are met, then it follows that a Fractal Geometry of Life may be envisaged and all natural objects and biological systems exhibiting self-similar patterns and scaling properties may be considered as belonging to the new subdiscipline of "fractalomics".

  9. Fractals in biology and medicine

    NASA Technical Reports Server (NTRS)

    Havlin, S.; Buldyrev, S. V.; Goldberger, A. L.; Mantegna, R. N.; Ossadnik, S. M.; Peng, C. K.; Simons, M.; Stanley, H. E.

    1995-01-01

    Our purpose is to describe some recent progress in applying fractal concepts to systems of relevance to biology and medicine. We review several biological systems characterized by fractal geometry, with a particular focus on the long-range power-law correlations found recently in DNA sequences containing noncoding material. Furthermore, we discuss the finding that the exponent alpha quantifying these long-range correlations ("fractal complexity") is smaller for coding than for noncoding sequences. We also discuss the application of fractal scaling analysis to the dynamics of heartbeat regulation, and report the recent finding that the normal heart is characterized by long-range "anticorrelations" which are absent in the diseased heart.

  10. Fractals in the neurosciences, Part II: clinical applications and future perspectives.

    PubMed

    Di Ieva, Antonio; Esteban, Francisco J; Grizzi, Fabio; Klonowski, Wlodzimierz; Martín-Landrove, Miguel

    2015-02-01

    It has been ascertained that the human brain is a complex system studied at multiple scales, from neurons and microcircuits to macronetworks. The brain is characterized by a hierarchical organization that gives rise to its highly topological and functional complexity. Over the last decades, fractal geometry has been shown as a universal tool for the analysis and quantification of the geometric complexity of natural objects, including the brain. The fractal dimension has been identified as a quantitative parameter for the evaluation of the roughness of neural structures, the estimation of time series, and the description of patterns, thus able to discriminate different states of the brain in its entire physiopathological spectrum. Fractal-based computational analyses have been applied to the neurosciences, particularly in the field of clinical neurosciences including neuroimaging and neuroradiology, neurology and neurosurgery, psychiatry and psychology, and neuro-oncology and neuropathology. After a review of the basic concepts of fractal analysis and its main applications to the basic neurosciences in part I of this series, here, we review the main applications of fractals to the clinical neurosciences for a holistic approach towards a fractal geometry model of the brain. © The Author(s) 2013.

  11. The fractal forest: fractal geometry and applications in forest science.

    Treesearch

    Nancy D. Lorimer; Robert G. Haight; Rolfe A. Leary

    1994-01-01

    Fractal geometry is a tool for describing and analyzing irregularity. Because most of what we measure in the forest is discontinuous, jagged, and fragmented, fractal geometry has potential for improving the precision of measurement and description. This study reviews the literature on fractal geometry and its applications to forest measurements.

  12. A Brief Historical Introduction to Fractals and Fractal Geometry

    ERIC Educational Resources Information Center

    Debnath, Lokenath

    2006-01-01

    This paper deals with a brief historical introduction to fractals, fractal dimension and fractal geometry. Many fractals including the Cantor fractal, the Koch fractal, the Minkowski fractal, the Mandelbrot and Given fractal are described to illustrate self-similar geometrical figures. This is followed by the discovery of dynamical systems and…

  13. A fractal model of effective stress of porous media and the analysis of influence factors

    NASA Astrophysics Data System (ADS)

    Li, Wei; Zhao, Huan; Li, Siqi; Sun, Wenfeng; Wang, Lei; Li, Bing

    2018-03-01

    The basic concept of effective stress describes the characteristics of fluid and solid interaction in porous media. In this paper, based on the theory of fractal geometry, a fractal model was built to analyze the relationship between the microstructure and the effective stress of porous media. From the microscopic point of view, the influence of effective stress on pore structure of porous media was demonstrated. Theoretical analysis and experimental results show that: (i) the fractal model of effective stress can be used to describe the relationship between effective stress and the microstructure of porous media; (ii) a linear increase in the effective stress leads to exponential increases in fractal dimension, porosity and pore number of the porous media, and causes a decreasing trend in the average pore radius.

  14. Materials and fractal designs for 3D multifunctional integumentary membranes with capabilities in cardiac electrotherapy.

    PubMed

    Xu, Lizhi; Gutbrod, Sarah R; Ma, Yinji; Petrossians, Artin; Liu, Yuhao; Webb, R Chad; Fan, Jonathan A; Yang, Zijian; Xu, Renxiao; Whalen, John J; Weiland, James D; Huang, Yonggang; Efimov, Igor R; Rogers, John A

    2015-03-11

    Advanced materials and fractal design concepts form the basis of a 3D conformal electronic platform with unique capabilities in cardiac electrotherapies. Fractal geometries, advanced electrode materials, and thin, elastomeric membranes yield a class of device capable of integration with the entire 3D surface of the heart, with unique operational capabilities in low power defibrillation. Co-integrated collections of sensors allow simultaneous monitoring of physiological responses. Animal experiments on Langendorff-perfused rabbit hearts demonstrate the key features of these systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fractals in the Classroom

    ERIC Educational Resources Information Center

    Fraboni, Michael; Moller, Trisha

    2008-01-01

    Fractal geometry offers teachers great flexibility: It can be adapted to the level of the audience or to time constraints. Although easily explained, fractal geometry leads to rich and interesting mathematical complexities. In this article, the authors describe fractal geometry, explain the process of iteration, and provide a sample exercise.…

  16. Deterministic chaos and fractal complexity in the dynamics of cardiovascular behavior: perspectives on a new frontier.

    PubMed

    Sharma, Vijay

    2009-09-10

    Physiological systems such as the cardiovascular system are capable of five kinds of behavior: equilibrium, periodicity, quasi-periodicity, deterministic chaos and random behavior. Systems adopt one or more these behaviors depending on the function they have evolved to perform. The emerging mathematical concepts of fractal mathematics and chaos theory are extending our ability to study physiological behavior. Fractal geometry is observed in the physical structure of pathways, networks and macroscopic structures such the vasculature and the His-Purkinje network of the heart. Fractal structure is also observed in processes in time, such as heart rate variability. Chaos theory describes the underlying dynamics of the system, and chaotic behavior is also observed at many levels, from effector molecules in the cell to heart function and blood pressure. This review discusses the role of fractal structure and chaos in the cardiovascular system at the level of the heart and blood vessels, and at the cellular level. Key functional consequences of these phenomena are highlighted, and a perspective provided on the possible evolutionary origins of chaotic behavior and fractal structure. The discussion is non-mathematical with an emphasis on the key underlying concepts.

  17. Deterministic Chaos and Fractal Complexity in the Dynamics of Cardiovascular Behavior: Perspectives on a New Frontier

    PubMed Central

    Sharma, Vijay

    2009-01-01

    Physiological systems such as the cardiovascular system are capable of five kinds of behavior: equilibrium, periodicity, quasi-periodicity, deterministic chaos and random behavior. Systems adopt one or more these behaviors depending on the function they have evolved to perform. The emerging mathematical concepts of fractal mathematics and chaos theory are extending our ability to study physiological behavior. Fractal geometry is observed in the physical structure of pathways, networks and macroscopic structures such the vasculature and the His-Purkinje network of the heart. Fractal structure is also observed in processes in time, such as heart rate variability. Chaos theory describes the underlying dynamics of the system, and chaotic behavior is also observed at many levels, from effector molecules in the cell to heart function and blood pressure. This review discusses the role of fractal structure and chaos in the cardiovascular system at the level of the heart and blood vessels, and at the cellular level. Key functional consequences of these phenomena are highlighted, and a perspective provided on the possible evolutionary origins of chaotic behavior and fractal structure. The discussion is non-mathematical with an emphasis on the key underlying concepts. PMID:19812706

  18. Curriculum Forms: On the Assumed Shapes of Knowing and Knowledge.

    ERIC Educational Resources Information Center

    Davis, Brent; Sumara, Dennis J.

    2000-01-01

    Draws on the new field of mathematical study called fractal geometry. Illustrates the pervasiveness and constraining tendencies of classical geometries. Suggests that fractal geometry is a mathematical analogue to fields such as post-modernism, post-structuralism, and ecological theory. Examines how fractal geometry can complement other emergent…

  19. Definition of fractal topography to essential understanding of scale-invariance

    NASA Astrophysics Data System (ADS)

    Jin, Yi; Wu, Ying; Li, Hui; Zhao, Mengyu; Pan, Jienan

    2017-04-01

    Fractal behavior is scale-invariant and widely characterized by fractal dimension. However, the cor-respondence between them is that fractal behavior uniquely determines a fractal dimension while a fractal dimension can be related to many possible fractal behaviors. Therefore, fractal behavior is independent of the fractal generator and its geometries, spatial pattern, and statistical properties in addition to scale. To mathematically describe fractal behavior, we propose a novel concept of fractal topography defined by two scale-invariant parameters, scaling lacunarity (P) and scaling coverage (F). The scaling lacunarity is defined as the scale ratio between two successive fractal generators, whereas the scaling coverage is defined as the number ratio between them. Consequently, a strictly scale-invariant definition for self-similar fractals can be derived as D = log F /log P. To reflect the direction-dependence of fractal behaviors, we introduce another parameter Hxy, a general Hurst exponent, which is analytically expressed by Hxy = log Px/log Py where Px and Py are the scaling lacunarities in the x and y directions, respectively. Thus, a unified definition of fractal dimension is proposed for arbitrary self-similar and self-affine fractals by averaging the fractal dimensions of all directions in a d-dimensional space, which . Our definitions provide a theoretical, mechanistic basis for understanding the essentials of the scale-invariant property that reduces the complexity of modeling fractals.

  20. Fractal Electronic Circuits Assembled From Nanoclusters

    NASA Astrophysics Data System (ADS)

    Fairbanks, M. S.; McCarthy, D.; Taylor, R. P.; Brown, S. A.

    2009-07-01

    Many patterns in nature can be described using fractal geometry. The effect of this fractal character is an array of properties that can include high internal connectivity, high dispersivity, and enhanced surface area to volume ratios. These properties are often desirable in applications and, consequently, fractal geometry is increasingly employed in technologies ranging from antenna to storm barriers. In this paper, we explore the application of fractal geometry to electrical circuits, inspired by the pervasive fractal structure of neurons in the brain. We show that, under appropriate growth conditions, nanoclusters of Sb form into islands on atomically flat substrates via a process close to diffusion-limited aggregation (DLA), establishing fractal islands that will form the basis of our fractal circuits. We perform fractal analysis of the islands to determine the spatial scaling properties (characterized by the fractal dimension, D) of the proposed circuits and demonstrate how varying growth conditions can affect D. We discuss fabrication approaches for establishing electrical contact to the fractal islands. Finally, we present fractal circuit simulations, which show that the fractal character of the circuit translates into novel, non-linear conduction properties determined by the circuit's D value.

  1. Human physiological benefits of viewing nature: EEG responses to exact and statistical fractal patterns.

    PubMed

    Hagerhall, C M; Laike, T; Küller, M; Marcheschi, E; Boydston, C; Taylor, R P

    2015-01-01

    Psychological and physiological benefits of viewing nature have been extensively studied for some time. More recently it has been suggested that some of these positive effects can be explained by nature's fractal properties. Virtually all studies on human responses to fractals have used stimuli that represent the specific form of fractal geometry found in nature, i.e. statistical fractals, as opposed to fractal patterns which repeat exactly at different scales. This raises the question of whether human responses like preference and relaxation are being driven by fractal geometry in general or by the specific form of fractal geometry found in nature. In this study we consider both types of fractals (statistical and exact) and morph one type into the other. Based on the Koch curve, nine visual stimuli were produced in which curves of three different fractal dimensions evolve gradually from an exact to a statistical fractal. The patterns were shown for one minute each to thirty-five subjects while qEEG was continuously recorded. The results showed that the responses to statistical and exact fractals differ, and that the natural form of the fractal is important for inducing alpha responses, an indicator of a wakefully relaxed state and internalized attention.

  2. Fractal dimension and nonlinear dynamical processes

    NASA Astrophysics Data System (ADS)

    McCarty, Robert C.; Lindley, John P.

    1993-11-01

    Mandelbrot, Falconer and others have demonstrated the existence of dimensionally invariant geometrical properties of non-linear dynamical processes known as fractals. Barnsley defines fractal geometry as an extension of classical geometry. Such an extension, however, is not mathematically trivial Of specific interest to those engaged in signal processing is the potential use of fractal geometry to facilitate the analysis of non-linear signal processes often referred to as non-linear time series. Fractal geometry has been used in the modeling of non- linear time series represented by radar signals in the presence of ground clutter or interference generated by spatially distributed reflections around the target or a radar system. It was recognized by Mandelbrot that the fractal geometries represented by man-made objects had different dimensions than the geometries of the familiar objects that abound in nature such as leaves, clouds, ferns, trees, etc. The invariant dimensional property of non-linear processes suggests that in the case of acoustic signals (active or passive) generated within a dispersive medium such as the ocean environment, there exists much rich structure that will aid in the detection and classification of various objects, man-made or natural, within the medium.

  3. A Hierarchical Approach to Fracture Mechanics

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Taasan, Shlomo

    2004-01-01

    Recent research conducted under NASA LaRC's Creativity and Innovation Program has led to the development of an initial approach for a hierarchical fracture mechanics. This methodology unites failure mechanisms occurring at different length scales and provides a framework for a physics-based theory of fracture. At the nanoscale, parametric molecular dynamic simulations are used to compute the energy associated with atomic level failure mechanisms. This information is used in a mesoscale percolation model of defect coalescence to obtain statistics of fracture paths and energies through Monte Carlo simulations. The mathematical structure of predicted crack paths is described using concepts of fractal geometry. The non-integer fractal dimension relates geometric and energy measures between meso- and macroscales. For illustration, a fractal-based continuum strain energy release rate is derived for inter- and transgranular fracture in polycrystalline metals.

  4. Fractal Geometry Enables Classification of Different Lung Morphologies in a Model of Experimental Asthma

    NASA Astrophysics Data System (ADS)

    Obert, Martin; Hagner, Stefanie; Krombach, Gabriele A.; Inan, Selcuk; Renz, Harald

    2015-06-01

    Animal models represent the basis of our current understanding of the pathophysiology of asthma and are of central importance in the preclinical development of drug therapies. The characterization of irregular lung shapes is a major issue in radiological imaging of mice in these models. The aim of this study was to find out whether differences in lung morphology can be described by fractal geometry. Healthy and asthmatic mouse groups, before and after an acute asthma attack induced by methacholine, were studied. In vivo flat-panel-based high-resolution Computed Tomography (CT) was used for mice's thorax imaging. The digital image data of the mice's lungs were segmented from the surrounding tissue. After that, the lungs were divided by image gray-level thresholds into two additional subsets. One subset contained basically the air transporting bronchial system. The other subset corresponds mainly to the blood vessel system. We estimated the fractal dimension of all sets of the different mouse groups using the mass radius relation (mrr). We found that the air transporting subset of the bronchial lung tissue enables a complete and significant differentiation between all four mouse groups (mean D of control mice before methacholine treatment: 2.64 ± 0.06; after treatment: 2.76 ± 0.03; asthma mice before methacholine treatment: 2.37 ± 0.16; after treatment: 2.71 ± 0.03; p < 0.05). We conclude that the concept of fractal geometry allows a well-defined, quantitative numerical and objective differentiation of lung shapes — applicable most likely also in human asthma diagnostics.

  5. Electro-chemical manifestation of nanoplasmonics in fractal media

    NASA Astrophysics Data System (ADS)

    Baskin, Emmanuel; Iomin, Alexander

    2013-06-01

    Electrodynamics of composite materials with fractal geometry is studied in the framework of fractional calculus. This consideration establishes a link between fractal geometry of the media and fractional integrodifferentiation. The photoconductivity in the vicinity of the electrode-electrolyte fractal interface is studied. The methods of fractional calculus are employed to obtain an analytical expression for the giant local enhancement of the optical electric field inside the fractal composite structure at the condition of the surface plasmon excitation. This approach makes it possible to explain experimental data on photoconductivity in the nano-electrochemistry.

  6. Emergence of fractal geometry on the surface of human cervical epithelial cells during progression towards cancer

    NASA Astrophysics Data System (ADS)

    Dokukin, M. E.; Guz, N. V.; Woodworth, C. D.; Sokolov, I.

    2015-03-01

    Despite considerable advances in understanding the molecular nature of cancer, many biophysical aspects of malignant development are still unclear. Here we study physical alterations of the surface of human cervical epithelial cells during stepwise in vitro development of cancer (from normal to immortal (premalignant), to malignant). We use atomic force microscopy to demonstrate that development of cancer is associated with emergence of simple fractal geometry on the cell surface. Contrary to the previously expected correlation between cancer and fractals, we find that fractal geometry occurs only at a limited period of development when immortal cells become cancerous; further cancer progression demonstrates deviation from fractal. Because of the connection between fractal behaviour and chaos (or far from equilibrium behaviour), these results suggest that chaotic behaviour coincides with the cancer transformation of the immortalization stage of cancer development, whereas further cancer progression recovers determinism of processes responsible for cell surface formation.

  7. Emerging of fractal geometry on surface of human cervical epithelial cells during progression towards cancer

    PubMed Central

    Dokukin, M. E.; Guz, N. V.; Woodworth, C.D.; Sokolov, I.

    2015-01-01

    Despite considerable advances in understanding the molecular nature of cancer, many biophysical aspects of malignant development are still unclear. Here we study physical alterations of the surface of human cervical epithelial cells during stepwise in vitro development of cancer (from normal to immortal (premalignant), to malignant). We use atomic force microscopy to demonstrate that development of cancer is associated with emergence of simple fractal geometry on the cell surface. Contrary to the previously expected correlation between cancer and fractals, we find that fractal geometry occurs only at a limited period of development when immortal cells become cancerous; further cancer progression demonstrates deviation from fractal. Because of the connection between fractal behaviour and chaos (or far from equilibrium behaviour), these results suggest that chaotic behaviour coincides with the cancer transformation of the immortalization stage of cancer development, whereas further cancer progression recovers determinism of processes responsible for cell surface formation. PMID:25844044

  8. A new approach of sensorial evaluation of cooked cereal foods: fractal analysis of rheological data

    NASA Astrophysics Data System (ADS)

    Scher, J.; Hardy, J.

    2002-11-01

    An analytical method based on a fractal geometry concept was developed through the relationship between structure-texture of solid-like crackers, flat bread and Bretzels. An universal testing machine was used to determine indentation tests. The graphs were irregularly shaped so that usual interpretation was made not possible. Nevertheless, the irregular shape, or “roughness" displays auto-similarity properties which can be interpreted in terms of apparent fractal dimension texture (D_T). A trained panel able to quantify the “hardness", “porous structure" and “crispness" descriptors carried out sensorial characterisation of products. High correlation between sensorial hardness and resistance to indentation, on one hand, and between crispness and D_T on the other hand was found. Modelling mathematics methods for complex systems allow useful contribution to Food Science.

  9. Pre-Service Teachers' Concept Images on Fractal Dimension

    ERIC Educational Resources Information Center

    Karakus, Fatih

    2016-01-01

    The analysis of pre-service teachers' concept images can provide information about their mental schema of fractal dimension. There is limited research on students' understanding of fractal and fractal dimension. Therefore, this study aimed to investigate the pre-service teachers' understandings of fractal dimension based on concept image. The…

  10. Effect of Fractal Dimension on the Strain Behavior of Particulate Media

    NASA Astrophysics Data System (ADS)

    Altun, Selim; Sezer, Alper; Goktepe, A. Burak

    2016-12-01

    In this study, the influence of several fractal identifiers of granular materials on dynamic behavior of a flexible pavement structure as a particulate stratum is considered. Using experimental results and numerical methods as well, 15 different grain-shaped sands obtained from 5 different sources were analyzed as pavement base course materials. Image analyses were carried out by use of a stereomicroscope on 15 different samples to obtain quantitative particle shape information. Furthermore, triaxial compression tests were conducted to determine stress-strain and shear strength parameters of sands. Additionally, the dynamic response of the particulate media to standard traffic loads was computed using finite element modeling (FEM) technique. Using area-perimeter, line divider and box counting methods, over a hundred grains for each sand type were subjected to fractal analysis. Relationships among fractal dimension descriptors and dynamic strain levels were established for assessment of importance of shape descriptors of sands at various scales on the dynamic behavior. In this context, the advantage of fractal geometry concept to describe irregular and fractured shapes was used to characterize the sands used as base course materials. Results indicated that fractal identifiers can be preferred to analyze the effect of shape properties of sands on dynamic behavior of pavement base layers.

  11. Evolving random fractal Cantor superlattices for the infrared using a genetic algorithm

    PubMed Central

    Bossard, Jeremy A.; Lin, Lan; Werner, Douglas H.

    2016-01-01

    Ordered and chaotic superlattices have been identified in Nature that give rise to a variety of colours reflected by the skin of various organisms. In particular, organisms such as silvery fish possess superlattices that reflect a broad range of light from the visible to the UV. Such superlattices have previously been identified as ‘chaotic’, but we propose that apparent ‘chaotic’ natural structures, which have been previously modelled as completely random structures, should have an underlying fractal geometry. Fractal geometry, often described as the geometry of Nature, can be used to mimic structures found in Nature, but deterministic fractals produce structures that are too ‘perfect’ to appear natural. Introducing variability into fractals produces structures that appear more natural. We suggest that the ‘chaotic’ (purely random) superlattices identified in Nature are more accurately modelled by multi-generator fractals. Furthermore, we introduce fractal random Cantor bars as a candidate for generating both ordered and ‘chaotic’ superlattices, such as the ones found in silvery fish. A genetic algorithm is used to evolve optimal fractal random Cantor bars with multiple generators targeting several desired optical functions in the mid-infrared and the near-infrared. We present optimized superlattices demonstrating broadband reflection as well as single and multiple pass bands in the near-infrared regime. PMID:26763335

  12. Fractal geometry of high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Mosolov, A. B.

    1989-10-01

    Results of a study of the microstructure geometry of superconducting composites prepared from cryochemically produced powders of YBa2Cu3O(x) and Ag are reported. It is found that the structure of the superconducting cermets is characterized by fractal geometry, which could be important in describing the electrophysical (e.g., transport) and mechanical properties of such materials.

  13. Experimental investigation of the flow field and power consumption characteristics of regular and fractal blade impellers in a dynamic mixer

    NASA Astrophysics Data System (ADS)

    Steiros, K.; Bruce, P. J. K.; Buxton, O. R. H.; Vassilicos, J. C.

    2015-11-01

    Experiments have been performed in an octagonal un-baffled water tank, stirred by three radial turbines with different geometry impellers: (1) regular rectangular blades; (2) single-iteration fractal blades; (3) two-iteration fractal blades. Shaft torque was monitored and the power number calculated for each case. Both impellers with fractal geometry blades exhibited a decrease of turbine power number compared to the regular one (15% decrease for single-iteration and 19% for two iterations). Phase locked PIV in the discharge region of the blades revealed that the vortices emanating from the regular blades are more coherent, have higher kinetic energy, and advect faster towards the tank's walls where they are dissipated, compared to their fractal counterparts. This suggests a strong link between vortex production and behaviour and the energy input for the different impellers. Planar PIV measurements in the bulk of the tank showed an increase of turbulence intensity of over 20% for the fractal geometry blades, suggesting higher mixing efficiency. Experiments with pressure measurements on the different geometry blade surfaces are ongoing to investigate the distribution of forces, and calculate hydrodynamic centres of pressure. The authors would like to acknowledge the financial support given by European Union FP7 Marie Curie MULTISOLVE project (Grant Agreement No. 317269).

  14. Self-stabilized Fractality of Sea-coasts Through Damped Erosion

    NASA Astrophysics Data System (ADS)

    Sapoval, B.; Baldassari, A.; Gabrielli, A.

    2004-05-01

    Coastline morphology is of current interest in geophysical research and coastline erosion has important economic consequences. At the same time, although the geometry of seacoasts is often used as an introductory archetype of fractal morphology in nature there has been no explanation about which physical mechanism could justify that empirical observation. The present work propose a minimal, but robust, model of evolution of rocky coasts towards fractality. The model describes how a stationary fractal geometry arises spontaneously from the mutual self-stabilization of a rocky coast morphology and sea eroding power. If, on one hand, erosion generally increases the geometrical irregularity of the coast, on the other hand this increase creates a stronger damping of the sea and a consequent diminution of its eroding power. The increased damping argument relies on the studies of fractal acoustical cavities, which have shown that viscous damping is augmented on a longer, irregular, surface. A minimal two-dimensional model of erosion is introduced which leads to the through a complex dynamics of the earth-sea interface, to the appearance of a stationary fractal seacoast with dimension close to 4/3. Fractal geometry plays here the role of a morphological attractor directly related to percolation geometry. The model reproduces at least qualitatively some of the features of real coasts using only simple ingredients: the randomness of the lithology and the decrease of the erosion power of the sea. B. Sapoval, Fractals (Aditech, Paris, 1989). B. Sapoval, O. Haeberlé, and S.Russ, J. Acoust. Soc. Am., 2014 (1997). B. Hébert B., B. Sapoval, and S.Russ, J. Acoust. Soc. Am., 1567 (1999).

  15. What is fractal, and why fractals should matter to the petroleum geologist. [The use of fractal geometry to determine the occurrence and movement of hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandelbrot, B.B.

    1991-03-01

    The following statements are obviously quite wrong: oil fields are circular; they are the same size and are distributed uniformly throughout the world; soil is of uniform porosity and permeability; after water has been pumped into a field it seeps through as an underground sphere. The preceding statements are so grossly incorrect that they do not even provide useful first approximations that one could improve upon by adding so-called corrective terms. For example, one gains little by starting with the notion of a uniform distribution of oil fields and then assuming it is perturbed by small Gaussian scatter. The flowmore » of water in a porous medium often fingers out in a pattern so diffuse that a sphere is not a useful point of departure in describing it. In summary, even the simplest data underlying petroleum geology exhibit very gross irregularity and unevenness. Fractal geometry is the proper geometry of manageable irregularity, fragmentation, and unevenness. It is the only workable alternative between the excessive order of the Euclidean geometry and unmanageable disorder. The main features of fractal geometry will be described and several techniques will be pointed out that show promise for the petroleum geologist.« less

  16. Fractal morphometry of cell complexity.

    PubMed

    Losa, Gabriele A

    2002-01-01

    Irregularity and self-similarity under scale changes are the main attributes of the morphological complexity of both normal and abnormal cells and tissues. In other words, the shape of a self-similar object does not change when the scale of measurement changes, because each part of it looks similar to the original object. However, the size and geometrical parameters of an irregular object do differ when it is examined at increasing resolution, which reveals more details. Significant progress has been made over the past three decades in understanding how irregular shapes and structures in the physical and biological sciences can be analysed. Dominant influences have been the discovery of a new practical geometry of Nature, now known as fractal geometry, and the continuous improvements in computation capabilities. Unlike conventional Euclidean geometry, which was developed to describe regular and ideal geometrical shapes which are practically unknown in nature, fractal geometry can be used to measure the fractal dimension, contour length, surface area and other dimension parameters of almost all irregular and complex biological tissues. We have used selected examples to illustrate the application of the fractal principle to measuring irregular and complex membrane ultrastructures of cells at specific functional and pathological stage.

  17. The Analysis of Leaf Shape Using Fractal Geometry.

    ERIC Educational Resources Information Center

    Hartvigsen, Gregg

    2000-01-01

    Describes ways to examine leaf structure and shape using fractal geometry. Students can test hypotheses using the leaves of replicated plants to look for non-linear trends in leaf shape along the stems of plants, across species, and under different environmental growth conditions. (SAH)

  18. Investigation into How 8th Grade Students Define Fractals

    ERIC Educational Resources Information Center

    Karakus, Fatih

    2015-01-01

    The analysis of 8th grade students' concept definitions and concept images can provide information about their mental schema of fractals. There is limited research on students' understanding and definitions of fractals. Therefore, this study aimed to investigate the elementary students' definitions of fractals based on concept image and concept…

  19. Fractal characterization of fracture surfaces in concrete

    USGS Publications Warehouse

    Saouma, V.E.; Barton, C.C.; Gamaleldin, N.A.

    1990-01-01

    Fractal geometry is used to characterize the roughness of cracked concrete surfaces through a specially built profilometer, and the fractal dimension is subsequently correlated to the fracture toughness and direction of crack propagation. Preliminary results indicate that the fracture surface is indeed fractal over two orders of magnitudes with a dimension of approximately 1.20. ?? 1990.

  20. Flat bands in fractal-like geometry

    NASA Astrophysics Data System (ADS)

    Pal, Biplab; Saha, Kush

    2018-05-01

    We report the presence of multiple flat bands in a class of two-dimensional lattices formed by Sierpinski gasket (SPG) fractal geometries as the basic unit cells. Solving the tight-binding Hamiltonian for such lattices with different generations of a SPG network, we find multiple degenerate and nondegenerate completely flat bands, depending on the configuration of parameters of the Hamiltonian. Moreover, we establish a generic formula to determine the number of such bands as a function of the generation index ℓ of the fractal geometry. We show that the flat bands and their neighboring dispersive bands have remarkable features, the most interesting one being the spin-1 conical-type spectrum at the band center without any staggered magnetic flux, in contrast to the kagome lattice. We furthermore investigate the effect of magnetic flux in these lattice settings and show that different combinations of fluxes through such fractal unit cells lead to a richer spectrum with a single isolated flat band or gapless electron- or holelike flat bands. Finally, we discuss a possible experimental setup to engineer such a fractal flat-band network using single-mode laser-induced photonic waveguides.

  1. Fractal geometry of music.

    PubMed Central

    Hsü, K J; Hsü, A J

    1990-01-01

    Music critics have compared Bach's music to the precision of mathematics. What "mathematics" and what "precision" are the questions for a curious scientist. The purpose of this short note is to suggest that the mathematics is, at least in part, Mandelbrot's fractal geometry and the precision is the deviation from a log-log linear plot. PMID:11607061

  2. A physically based connection between fractional calculus and fractal geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butera, Salvatore, E-mail: sg.butera@gmail.com; Di Paola, Mario, E-mail: mario.dipaola@unipa.it

    2014-11-15

    We show a relation between fractional calculus and fractals, based only on physical and geometrical considerations. The link has been found in the physical origins of the power-laws, ruling the evolution of many natural phenomena, whose long memory and hereditary properties are mathematically modelled by differential operators of non integer order. Dealing with the relevant example of a viscous fluid seeping through a fractal shaped porous medium, we show that, once a physical phenomenon or process takes place on an underlying fractal geometry, then a power-law naturally comes up in ruling its evolution, whose order is related to the anomalousmore » dimension of such geometry, as well as to the model used to describe the physics involved. By linearizing the non linear dependence of the response of the system at hand to a proper forcing action then, exploiting the Boltzmann superposition principle, a fractional differential equation is found, describing the dynamics of the system itself. The order of such equation is again related to the anomalous dimension of the underlying geometry.« less

  3. Fractal analysis as a potential tool for surface morphology of thin films

    NASA Astrophysics Data System (ADS)

    Soumya, S.; Swapna, M. S.; Raj, Vimal; Mahadevan Pillai, V. P.; Sankararaman, S.

    2017-12-01

    Fractal geometry developed by Mandelbrot has emerged as a potential tool for analyzing complex systems in the diversified fields of science, social science, and technology. Self-similar objects having the same details in different scales are referred to as fractals and are analyzed using the mathematics of non-Euclidean geometry. The present work is an attempt to correlate fractal dimension for surface characterization by Atomic Force Microscopy (AFM). Taking the AFM images of zinc sulphide (ZnS) thin films prepared by pulsed laser deposition (PLD) technique, under different annealing temperatures, the effect of annealing temperature and surface roughness on fractal dimension is studied. The annealing temperature and surface roughness show a strong correlation with fractal dimension. From the regression equation set, the surface roughness at a given annealing temperature can be calculated from the fractal dimension. The AFM images are processed using Photoshop and fractal dimension is calculated by box-counting method. The fractal dimension decreases from 1.986 to 1.633 while the surface roughness increases from 1.110 to 3.427, for a change of annealing temperature 30 ° C to 600 ° C. The images are also analyzed by power spectrum method to find the fractal dimension. The study reveals that the box-counting method gives better results compared to the power spectrum method.

  4. Fractal geometry in an expanding, one-dimensional, Newtonian universe.

    PubMed

    Miller, Bruce N; Rouet, Jean-Louis; Le Guirriec, Emmanuel

    2007-09-01

    Observations of galaxies over large distances reveal the possibility of a fractal distribution of their positions. The source of fractal behavior is the lack of a length scale in the two body gravitational interaction. However, even with new, larger, sample sizes from recent surveys, it is difficult to extract information concerning fractal properties with confidence. Similarly, three-dimensional N-body simulations with a billion particles only provide a thousand particles per dimension, far too small for accurate conclusions. With one-dimensional models these limitations can be overcome by carrying out simulations with on the order of a quarter of a million particles without compromising the computation of the gravitational force. Here the multifractal properties of two of these models that incorporate different features of the dynamical equations governing the evolution of a matter dominated universe are compared. For each model at least two scaling regions are identified. By employing criteria from dynamical systems theory it is shown that only one of them can be geometrically significant. The results share important similarities with galaxy observations, such as hierarchical clustering and apparent bifractal geometry. They also provide insights concerning possible constraints on length and time scales for fractal structure. They clearly demonstrate that fractal geometry evolves in the mu (position, velocity) space. The observed patterns are simply a shadow (projection) of higher-dimensional structure.

  5. Tearing Plastic: A Laboratory Exercise on Fractals and Hyperbolic Geometry

    ERIC Educational Resources Information Center

    Taylor, Ron; Timberlake, Todd

    2007-01-01

    In this article we describe a hands-on activity for a liberal arts mathematics course that focuses on the beauty and unity of mathematics. The purpose of the activity is to tie together several topics in the context of a "real-world" situation. These topics include: fractals, non-Euclidean geometry, symmetry, and Platonic solids. This activity…

  6. Langevin Equation on Fractal Curves

    NASA Astrophysics Data System (ADS)

    Satin, Seema; Gangal, A. D.

    2016-07-01

    We analyze random motion of a particle on a fractal curve, using Langevin approach. This involves defining a new velocity in terms of mass of the fractal curve, as defined in recent work. The geometry of the fractal curve, plays an important role in this analysis. A Langevin equation with a particular model of noise is proposed and solved using techniques of the Fα-Calculus.

  7. ABC of multi-fractal spacetimes and fractional sea turtles

    NASA Astrophysics Data System (ADS)

    Calcagni, Gianluca

    2016-04-01

    We clarify what it means to have a spacetime fractal geometry in quantum gravity and show that its properties differ from those of usual fractals. A weak and a strong definition of multi-scale and multi-fractal spacetimes are given together with a sketch of the landscape of multi-scale theories of gravitation. Then, in the context of the fractional theory with q-derivatives, we explore the consequences of living in a multi-fractal spacetime. To illustrate the behavior of a non-relativistic body, we take the entertaining example of a sea turtle. We show that, when only the time direction is fractal, sea turtles swim at a faster speed than in an ordinary world, while they swim at a slower speed if only the spatial directions are fractal. The latter type of geometry is the one most commonly found in quantum gravity. For time-like fractals, relativistic objects can exceed the speed of light, but strongly so only if their size is smaller than the range of particle-physics interactions. We also find new results about log-oscillating measures, the measure presentation and their role in physical observations and in future extensions to nowhere-differentiable stochastic spacetimes.

  8. Fractals: To Know, to Do, to Simulate.

    ERIC Educational Resources Information Center

    Talanquer, Vicente; Irazoque, Glinda

    1993-01-01

    Discusses the development of fractal theory and suggests fractal aggregates as an attractive alternative for introducing fractal concepts. Describes methods for producing metallic fractals and a computer simulation for drawing fractals. (MVL)

  9. Using Disney's "Frozen" to Motivate Mathematics: Bringing Fractals into the Classroom

    ERIC Educational Resources Information Center

    Piatek-Jimenez, Katrina; Phelps, Christine M.

    2016-01-01

    The movie "Frozen" took the world by storm and this global popularity of the movie and its music can be harnessed by teachers of mathematics. This article builds on the "frozen fractal" lyric from "Let It Go" to incorporate fractal geometry into primary mathematics classrooms.

  10. Fractal and Multifractal Models Applied to Porous Media - Editorial

    USDA-ARS?s Scientific Manuscript database

    Given the current high level of interest in the use of fractal geometry to characterize natural porous media, a special issue of the Vadose Zone Journal was organized in order to expose established fractal analysis techniques and cutting-edge new developments to a wider Earth science audience. The ...

  11. The art and science of hyperbolic tessellations.

    PubMed

    Van Dusen, B; Taylor, R P

    2013-04-01

    The visual impact of hyperbolic tessellations has captured artists' imaginations ever since M.C. Escher generated his Circle Limit series in the 1950s. The scaling properties generated by hyperbolic geometry are different to the fractal scaling properties found in nature's scenery. Consequently, prevalent interpretations of Escher's art emphasize the lack of connection with nature's patterns. However, a recent collaboration between the two authors proposed that Escher's motivation for using hyperbolic geometry was as a method to deliberately distort nature's rules. Inspired by this hypothesis, this year's cover artist, Ben Van Dusen, embeds natural fractals such as trees, clouds and lightning into a hyperbolic scaling grid. The resulting interplay of visual structure at multiple size scales suggests that hybridizations of fractal and hyperbolic geometries provide a rich compositional tool for artists.

  12. The Effect of Impeller Type on Floc Size and Structure during Shear-Induced Flocculation

    PubMed

    Spicer; Keller; Pratsinis

    1996-12-01

    The effect of impeller type and shear rate on the evolution of floc size and structure during shear-induced flocculation of polystyrene particles with aluminum sulfate is investigated by image analysis. One radial flow (six-blade Rushton turbine) and two axial flow (three-blade fluid foil, four-blade 45° pitch) impeller configurations are examined. The steady state average floc size is shown to depend on the frequency of recirculation to the impeller zone and its characteristic velocity gradient. The concepts of fractal geometry are used to characterize the floc structure. For all impellers, the two-dimensional floc fractal dimension, Dpf, increases during floc growth, indicating formation of more open structures. Later on, Dpf levels off at a steady state value as breakage becomes significant and the floc size distribution approaches steady state. The shear rate does not affect the steady state Dpf of the flocs within experimental uncertainty.

  13. Fractal nematic colloids

    NASA Astrophysics Data System (ADS)

    Hashemi, S. M.; Jagodič, U.; Mozaffari, M. R.; Ejtehadi, M. R.; Muševič, I.; Ravnik, M.

    2017-01-01

    Fractals are remarkable examples of self-similarity where a structure or dynamic pattern is repeated over multiple spatial or time scales. However, little is known about how fractal stimuli such as fractal surfaces interact with their local environment if it exhibits order. Here we show geometry-induced formation of fractal defect states in Koch nematic colloids, exhibiting fractal self-similarity better than 90% over three orders of magnitude in the length scales, from micrometers to nanometres. We produce polymer Koch-shaped hollow colloidal prisms of three successive fractal iterations by direct laser writing, and characterize their coupling with the nematic by polarization microscopy and numerical modelling. Explicit generation of topological defect pairs is found, with the number of defects following exponential-law dependence and reaching few 100 already at fractal iteration four. This work demonstrates a route for generation of fractal topological defect states in responsive soft matter.

  14. Spatial analysis of cities using Renyi entropy and fractal parameters

    NASA Astrophysics Data System (ADS)

    Chen, Yanguang; Feng, Jian

    2017-12-01

    The spatial distributions of cities fall into two groups: one is the simple distribution with characteristic scale (e.g. exponential distribution), and the other is the complex distribution without characteristic scale (e.g. power-law distribution). The latter belongs to scale-free distributions, which can be modeled with fractal geometry. However, fractal dimension is not suitable for the former distribution. In contrast, spatial entropy can be used to measure any types of urban distributions. This paper is devoted to generalizing multifractal parameters by means of dual relation between Euclidean and fractal geometries. The main method is mathematical derivation and empirical analysis, and the theoretical foundation is the discovery that the normalized fractal dimension is equal to the normalized entropy. Based on this finding, a set of useful spatial indexes termed dummy multifractal parameters are defined for geographical analysis. These indexes can be employed to describe both the simple distributions and complex distributions. The dummy multifractal indexes are applied to the population density distribution of Hangzhou city, China. The calculation results reveal the feature of spatio-temporal evolution of Hangzhou's urban morphology. This study indicates that fractal dimension and spatial entropy can be combined to produce a new methodology for spatial analysis of city development.

  15. Fractal nematic colloids

    PubMed Central

    Hashemi, S. M.; Jagodič, U.; Mozaffari, M. R.; Ejtehadi, M. R.; Muševič, I.; Ravnik, M.

    2017-01-01

    Fractals are remarkable examples of self-similarity where a structure or dynamic pattern is repeated over multiple spatial or time scales. However, little is known about how fractal stimuli such as fractal surfaces interact with their local environment if it exhibits order. Here we show geometry-induced formation of fractal defect states in Koch nematic colloids, exhibiting fractal self-similarity better than 90% over three orders of magnitude in the length scales, from micrometers to nanometres. We produce polymer Koch-shaped hollow colloidal prisms of three successive fractal iterations by direct laser writing, and characterize their coupling with the nematic by polarization microscopy and numerical modelling. Explicit generation of topological defect pairs is found, with the number of defects following exponential-law dependence and reaching few 100 already at fractal iteration four. This work demonstrates a route for generation of fractal topological defect states in responsive soft matter. PMID:28117325

  16. Fractal characterization of a fractured chalk reservoir - The Laegerdorf case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoelum, H.H.; Koestler, A.G.; Feder, J.

    1991-03-01

    What is the matrix block size distribution of a fractured reservoir In order to answer this question and assess the potential of fractal geometry as a method of characterization of fracture networks, a pilot study has been done of the fractured chalk quarry in Laegerdorf. The fractures seen on the quarry walls were traced in the field for a total area of {approximately}200 {times} 45 m. The digitized pictures have been analyzed by a standard box-counting method. This analysis gave a fractal dimension of similarity varying from 1.33 for fractured areas between faults, to 1.43 for the fault zone, andmore » 1.53 for the highly deformed fault gouge. The amplitude showed a similar trend. The fractal dimension for the whole system of fractures is {approximately}1.55. In other words, fracture networks in chalk have a nonlinear, fractal geometry, and so matrix block size is a scaling property of chalk reservoirs. In terms of rock mechanics, the authors interpret the variation of the fractal dimension as follows: A small fractal dimension and amplitude are associated with brittle deformation in the elastic regime, while a large fractal dimension and amplitude are associated with predominantly ductile, strain softening deformation in the plastic regime. The interaction between the two regimes of deformation in the rock body is a key element of successful characterization and may be approached by seeing the rock as a non-Newtonian viscoelastic medium. The fractal dimension for the whole is close to a material independent limit that constrains the development of fractures.« less

  17. Characterisation of human non-proliferative diabetic retinopathy using the fractal analysis

    PubMed Central

    Ţălu, Ştefan; Călugăru, Dan Mihai; Lupaşcu, Carmen Alina

    2015-01-01

    AIM To investigate and quantify changes in the branching patterns of the retina vascular network in diabetes using the fractal analysis method. METHODS This was a clinic-based prospective study of 172 participants managed at the Ophthalmological Clinic of Cluj-Napoca, Romania, between January 2012 and December 2013. A set of 172 segmented and skeletonized human retinal images, corresponding to both normal (24 images) and pathological (148 images) states of the retina were examined. An automatic unsupervised method for retinal vessel segmentation was applied before fractal analysis. The fractal analyses of the retinal digital images were performed using the fractal analysis software ImageJ. Statistical analyses were performed for these groups using Microsoft Office Excel 2003 and GraphPad InStat software. RESULTS It was found that subtle changes in the vascular network geometry of the human retina are influenced by diabetic retinopathy (DR) and can be estimated using the fractal geometry. The average of fractal dimensions D for the normal images (segmented and skeletonized versions) is slightly lower than the corresponding values of mild non-proliferative DR (NPDR) images (segmented and skeletonized versions). The average of fractal dimensions D for the normal images (segmented and skeletonized versions) is higher than the corresponding values of moderate NPDR images (segmented and skeletonized versions). The lowest values were found for the corresponding values of severe NPDR images (segmented and skeletonized versions). CONCLUSION The fractal analysis of fundus photographs may be used for a more complete undeTrstanding of the early and basic pathophysiological mechanisms of diabetes. The architecture of the retinal microvasculature in diabetes can be quantitative quantified by means of the fractal dimension. Microvascular abnormalities on retinal imaging may elucidate early mechanistic pathways for microvascular complications and distinguish patients with DR from healthy individuals. PMID:26309878

  18. Characterisation of human non-proliferative diabetic retinopathy using the fractal analysis.

    PubMed

    Ţălu, Ştefan; Călugăru, Dan Mihai; Lupaşcu, Carmen Alina

    2015-01-01

    To investigate and quantify changes in the branching patterns of the retina vascular network in diabetes using the fractal analysis method. This was a clinic-based prospective study of 172 participants managed at the Ophthalmological Clinic of Cluj-Napoca, Romania, between January 2012 and December 2013. A set of 172 segmented and skeletonized human retinal images, corresponding to both normal (24 images) and pathological (148 images) states of the retina were examined. An automatic unsupervised method for retinal vessel segmentation was applied before fractal analysis. The fractal analyses of the retinal digital images were performed using the fractal analysis software ImageJ. Statistical analyses were performed for these groups using Microsoft Office Excel 2003 and GraphPad InStat software. It was found that subtle changes in the vascular network geometry of the human retina are influenced by diabetic retinopathy (DR) and can be estimated using the fractal geometry. The average of fractal dimensions D for the normal images (segmented and skeletonized versions) is slightly lower than the corresponding values of mild non-proliferative DR (NPDR) images (segmented and skeletonized versions). The average of fractal dimensions D for the normal images (segmented and skeletonized versions) is higher than the corresponding values of moderate NPDR images (segmented and skeletonized versions). The lowest values were found for the corresponding values of severe NPDR images (segmented and skeletonized versions). The fractal analysis of fundus photographs may be used for a more complete undeTrstanding of the early and basic pathophysiological mechanisms of diabetes. The architecture of the retinal microvasculature in diabetes can be quantitative quantified by means of the fractal dimension. Microvascular abnormalities on retinal imaging may elucidate early mechanistic pathways for microvascular complications and distinguish patients with DR from healthy individuals.

  19. Space-Filling Supercapacitor Carpets: Highly scalable fractal architecture for energy storage

    NASA Astrophysics Data System (ADS)

    Tiliakos, Athanasios; Trefilov, Alexandra M. I.; Tanasǎ, Eugenia; Balan, Adriana; Stamatin, Ioan

    2018-04-01

    Revamping ground-breaking ideas from fractal geometry, we propose an alternative micro-supercapacitor configuration realized by laser-induced graphene (LIG) foams produced via laser pyrolysis of inexpensive commercial polymers. The Space-Filling Supercapacitor Carpet (SFSC) architecture introduces the concept of nested electrodes based on the pre-fractal Peano space-filling curve, arranged in a symmetrical equilateral setup that incorporates multiple parallel capacitor cells sharing common electrodes for maximum efficiency and optimal length-to-area distribution. We elucidate on the theoretical foundations of the SFSC architecture, and we introduce innovations (high-resolution vector-mode printing) in the LIG method that allow for the realization of flexible and scalable devices based on low iterations of the Peano algorithm. SFSCs exhibit distributed capacitance properties, leading to capacitance, energy, and power ratings proportional to the number of nested electrodes (up to 4.3 mF, 0.4 μWh, and 0.2 mW for the largest tested model of low iteration using aqueous electrolytes), with competitively high energy and power densities. This can pave the road for full scalability in energy storage, reaching beyond the scale of micro-supercapacitors for incorporating into larger and more demanding applications.

  20. Special issue of selected papers from the second UK-Japan bilateral Workshop and First ERCOFTAC Workshop on Turbulent Flows Generated/Designed in Multiscale/Fractal Ways, London, March 2012

    NASA Astrophysics Data System (ADS)

    Laizet, Sylvain; Sakai, Yasuhiko; Christos Vassilicos, J.

    2013-12-01

    This special issue of Fluid Dynamics Research includes nine papers which are based on nine of the presentations at the Second UK-Japan bilateral Workshop and First ERCOFTAC Workshop on 'Turbulent flows generated/designed in multiscale/fractal ways: fundamentals and applications' held from 26 to 27 March 2012 at Imperial College London, UK. The research area of fractal-generated turbulent flows started with a chapter published in 2001 in one of the conference proceedings which came out of the 1999 Isaac Newton Institute 6 month Programme on Turbulence in Cambridge (UK). However, the first results which formed the basis of much of the work reported in this special issue started appearing from 2007 onwards and progress since then could perhaps be described as not insignificant. Research in this area has resulted in the following six notable advances: (a) the definition of two new length-scales characterizing grid-generated turbulence; (b) enhanced and energy-efficient stirring and scalar transfer by fractal grid and fractal openings/flanges with applications, in particular, to improved turbulence generation for combustion; (c) the non-equilibrium turbulent dissipation law; (d) non-equilibrium axisymmetric wake laws; (e) insights into the dependence of drag forces and vortex shedding on the fractal geometry of fractal objects and simulation methods for the calculation of drag of fractal trees; and (f) the invention and successful proof of concept of fractal spoilers and fractal fences. The present special issue contains papers directly related to these advances and can be seen as a reflection of the current research in the field of fractal-generated turbulent flows and their differences and commonalities with other turbulent flows. The financial support from the Japan Society for the Promotion of Science has been decisive for the organization and success of this workshop. We are also grateful to ERCOFTAC who put in place the EU-wide Special Interest Group on multiscale-generated turbulence and for supporting the workshop both financially and by way of advertisement. Last but by no means least, we express our deep gratitude to the editors of FDR who handled this issue: M Funakoshi, A D Gilbert, L B Mydlarski and K Suga.

  1. Fractal Risk Assessment of ISS Propulsion Module in Meteoroid and Orbital Debris Environments

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.

    2001-01-01

    A unique and innovative risk assessment of the International Space Station (ISS) Propulsion Module is conducted using fractal modeling of the Module's response to the meteoroid and orbital debris environments. Both the environment models and structural failure modes due to the resultant hypervelocity impact phenomenology, as well as Module geometry, are investigated for fractal applicability. The fractal risk assessment methodology could produce a greatly simplified alternative to current methodologies, such as BUMPER analyses, while maintaining or increasing the number of complex scenarios that can be assessed. As a minimum, this innovative fractal approach will provide an independent assessment of existing methodologies in a unique way.

  2. Buried mine detection using fractal geometry analysis to the LWIR successive line scan data image

    NASA Astrophysics Data System (ADS)

    Araki, Kan

    2012-06-01

    We have engaged in research on buried mine/IED detection by remote sensing method using LWIR camera. A IR image of a ground, containing buried objects can be assumed as a superimposed pattern including thermal scattering which may depend on the ground surface roughness, vegetation canopy, and effect of the sun light, and radiation due to various heat interaction caused by differences in specific heat, size, and buried depth of the objects and local temperature of their surrounding environment. In this cumbersome environment, we introduce fractal geometry for analyzing from an IR image. Clutter patterns due to these complex elements have oftentimes low ordered fractal dimension of Hausdorff Dimension. On the other hand, the target patterns have its tendency of obtaining higher ordered fractal dimension in terms of Information Dimension. Random Shuffle Surrogate method or Fourier Transform Surrogate method is used to evaluate fractional statistics by applying shuffle of time sequence data or phase of spectrum. Fractal interpolation to each line scan was also applied to improve the signal processing performance in order to evade zero division and enhance information of data. Some results of target extraction by using relationship between low and high ordered fractal dimension are to be presented.

  3. Using Fractal And Morphological Criteria For Automatic Classification Of Lung Diseases

    NASA Astrophysics Data System (ADS)

    Vehel, Jacques Levy

    1989-11-01

    Medical Images are difficult to analyze by means of classical image processing tools because they are very complex and irregular. Such shapes are obtained for instance in Nuclear Medecine with the spatial distribution of activity for organs such as lungs, liver, and heart. We have tried to apply two different theories to these signals: - Fractal Geometry deals with the analysis of complex irregular shapes which cannot well be described by the classical Euclidean geometry. - Integral Geometry treats sets globally and allows to introduce robust measures. We have computed three parameters on three kinds of Lung's SPECT images: normal, pulmonary embolism and chronic desease: - The commonly used fractal dimension (FD), that gives a measurement of the irregularity of the 3D shape. - The generalized lacunarity dimension (GLD), defined as the variance of the ratio of the local activity by the mean activity, which is only sensitive to the distribution and the size of gaps in the surface. - The Favard length that gives an approximation of the surface of a 3-D shape. The results show that each slice of the lung, considered as a 3D surface, is fractal and that the fractal dimension is the same for each slice and for the three kind of lungs; as for the lacunarity and Favard length, they are clearly different for normal lungs, pulmonary embolisms and chronic diseases. These results indicate that automatic classification of Lung's SPECT can be achieved, and that a quantitative measurement of the evolution of the disease could be made.

  4. Modeling of frost crystal growth over a flat plate using artificial neural networks and fractal geometries

    NASA Astrophysics Data System (ADS)

    Tahavvor, Ali Reza

    2017-03-01

    In the present study artificial neural network and fractal geometry are used to predict frost thickness and density on a cold flat plate having constant surface temperature under forced convection for different ambient conditions. These methods are very applicable in this area because phase changes such as melting and solidification are simulated by conventional methods but frost formation is a most complicated phase change phenomenon consists of coupled heat and mass transfer. Therefore conventional mathematical techniques cannot capture the effects of all parameters on its growth and development because this process influenced by many factors and it is a time dependent process. Therefore, in this work soft computing method such as artificial neural network and fractal geometry are used to do this manner. The databases for modeling are generated from the experimental measurements. First, multilayer perceptron network is used and it is found that the back-propagation algorithm with Levenberg-Marquardt learning rule is the best choice to estimate frost growth properties due to accurate and faster training procedure. Second, fractal geometry based on the Von-Koch curve is used to model frost growth procedure especially in frost thickness and density. Comparison is performed between experimental measurements and soft computing methods. Results show that soft computing methods can be used more efficiently to determine frost properties over a flat plate. Based on the developed models, wide range of frost formation over flat plates can be determined for various conditions.

  5. Fractal-Like Materials Design with Optimized Radiative Properties for High-Efficiency Solar Energy Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Clifford K.; Ortega, Jesus D.; Christian, Joshua Mark

    Novel designs to increase light trapping and thermal efficiency of concentrating solar receivers at multiple length scales have been conceived, designed, and tested. The fractal-like geometries and features are introduced at both macro (meters) and meso (millimeters to centimeters) scales. Advantages include increased solar absorptance, reduced thermal emittance, and increased thermal efficiency. Radial and linear structures at the meso (tube shape and geometry) and macro (total receiver geometry and configuration) scales redirect reflected solar radiation toward the interior of the receiver for increased absorptance. Hotter regions within the interior of the receiver can reduce thermal emittance due to reduced localmore » view factors to the environment, and higher concentration ratios can be employed with similar surface irradiances to reduce the effective optical aperture, footprint, and thermal losses. Coupled optical/fluid/thermal models have been developed to evaluate the performance of these designs relative to conventional designs. Modeling results showed that fractal-like structures and geometries can increase the effective solar absorptance by 5 – 20% and the thermal efficiency by several percentage points at both the meso and macro scales, depending on factors such as intrinsic absorptance. Meso-scale prototypes were fabricated using additive manufacturing techniques, and a macro-scale bladed receiver design was fabricated using Inconel 625 tubes. On-sun tests were performed using the solar furnace and solar tower at the National Solar Thermal Test facility. The test results demonstrated enhanced solar absorptance and thermal efficiency of the fractal-like designs.« less

  6. The Legacy of Benoit Mandelbrot in Geophysics

    NASA Astrophysics Data System (ADS)

    Turcotte, D. L.

    2001-12-01

    The concept of fractals (fractional dimension) was introduced by Benoit Mandelbrot in his famous 1967 Science paper. The initial application was to the length of the coastline of Britain. A milestone in the appreciation of the fractal concept by geophysicists was the Union session of the AGU on fractals led off by Benoit in 1986. Although fractals have found important applications in almost every branch of the physical, biological, and social sciences, fractals have been particularly useful in geophysics. Drainage networks are fractal. The frequency-magnitude distribution of earthquakes is fractal. The scale invariance of landscapes and many other geological processes is due to the applicability of power-law (fractal) distributions. Clouds are often fractal. Porosity distributions are fractal. In an almost independent line of research, Benoit in collaboration with James Wallace and others developed the concept of self-affine fractals. The original applications were primarily to time series in hydrology and built on the foundation laid by Henry Hurst. Fractional Gaussian noises and fractional Brownian motions are ubiquitous in geophysics. These are expressed in terms of the power-law relation between the power-spectral density S and frequency f, S ~ f{ β }, examples are β = 0 (white noise), β = 1 (1/f noise), β = 2 (Brownian motion). Of particular importance in geophysics are fractional noises with β = 0.5, these are stationary but have long-range persistent and have a Hurst exponent H = 0.7. Examples include river flows, tree rings, sunspots, varves, etc. Two of Benoit Mandelbrot's major contributions in geophysics as in other fields are: (1) an appreciation of the importance of fat-tail, power-law (fractal) distributions and (2) an appreciation of the importance of self-similar long-range persistence in both stationary time series (noises) and nonstationary time series (walks).

  7. Relationship between the anomalous diffusion and the fractal dimension of the environment

    NASA Astrophysics Data System (ADS)

    Zhokh, Alexey; Trypolskyi, Andrey; Strizhak, Peter

    2018-03-01

    In this letter, we provide an experimental study highlighting a relation between the anomalous diffusion and the fractal dimension of the environment using the methanol anomalous transport through the porous solid pellets with various pores geometries and different chemical compositions. The anomalous diffusion exponent was derived from the non-integer order of the time-fractional diffusion equation that describes the methanol anomalous transport through the solid media. The surface fractal dimension was estimated from the nitrogen adsorption isotherms using the Frenkel-Halsey-Hill method. Our study shows that decreasing the fractal dimension leads to increasing the anomalous diffusion exponent, whereas the anomalous diffusion constant is independent on the fractal dimension. We show that the obtained results are in a good agreement with the anomalous diffusion model on a fractal mesh.

  8. From Mathematical Monsters to Generalized Scale Invariance in Geophysics: Highlights of the Multifractal Saga

    NASA Astrophysics Data System (ADS)

    Schertzer, D. J.; Tchiguirinskaia, I.; Lovejoy, S.

    2013-12-01

    Fractals and multifractals are very illustrative of the profound synergies between mathematics and geophysics. The book ';Fractal Geometry of Nature' (Mandelbrot, 1982) brilliantly demonstrated the genericity in geophysics of geometric forms like Cantor set, Peano curve and Koch snowflake, which were once considered as mathematical monsters. However, to tame the geophysical monsters (e.g. extreme weather, floods, earthquakes), it was required to go beyond geometry and a unique fractal dimension. The concept of multifractal was coined in the course of rather theoretical debates on intermittency in hydrodynamic turbulence, sometimes with direct links to atmospheric dynamics. The latter required a generalized notion of scale in order to deal both with scale symmetries and strong anisotropies (e.g. time vs. space, vertical vs. horizontal). It was thus possible to show that the consequences of intermittency are of first order, not just 'corrections' with respect to the classical non-intermittent modeling. This was in fact a radical paradigm shift for geophysics: the extreme variability of geophysical fields over wide ranges of scale, which had long been so often acknowledged and deplored, suddenly became handy. Recent illustrations are the possibility to track down in large date sets the Higgs boson of intermittence, i.e. a first order multifractal phase transition leading to self-organized criticality, and to simulate intermittent vector fields with the help of Lie cascades, based for instance on random Clifford algebra. It is rather significant that this revolution is no longer limited to fundamental and theoretical problems of geophysics, but now touches many applications including environmental management, in particular for urban management and resilience. These applications are particularly stimulating when taken in their full complexity.

  9. An Approach to Study Elastic Vibrations of Fractal Cylinders

    NASA Astrophysics Data System (ADS)

    Steinberg, Lev; Zepeda, Mario

    2016-11-01

    This paper presents our study of dynamics of fractal solids. Concepts of fractal continuum and time had been used in definitions of a fractal body deformation and motion, formulation of conservation of mass, balance of momentum, and constitutive relationships. A linearized model, which was written in terms of fractal time and spatial derivatives, has been employed to study the elastic vibrations of fractal circular cylinders. Fractal differential equations of torsional, longitudinal and transverse fractal wave equations have been obtained and solution properties such as size and time dependence have been revealed.

  10. Fractal dimension analysis of complexity in Ligeti piano pieces

    NASA Astrophysics Data System (ADS)

    Bader, Rolf

    2005-04-01

    Fractal correlation dimensional analysis has been performed with whole solo piano pieces by Gyrgy Ligeti at every 50ms interval of the pieces. The resulting curves of development of complexity represented by the fractal dimension showed up a very reasonable correlation with the perceptional density of events during these pieces. The seventh piece of Ligeti's ``Musica ricercata'' was used as a test case. Here, each new part of the piece was followed by an increase of the fractal dimension because of the increase of information at the part changes. The second piece ``Galamb borong,'' number seven of the piano Etudes was used, because Ligeti wrote these Etudes after studying fractal geometry. Although the piece is not fractal in the strict mathematical sense, the overall structure of the psychoacoustic event-density as well as the detailed event development is represented by the fractal dimension plot.

  11. Forest Fires, Oil Spills, and Fractal Geometry: An Investigation in Two Parts. Part 2: Using Fractal Complexity to Analyze Mathematical Models.

    ERIC Educational Resources Information Center

    Biehl, L. Charles

    1999-01-01

    Presents an activity that utilizes the mathematical models of forest fires and oil spills that were generated (in the first part of this activity, published in the November 1998 issue) by students using probability and cellular automata. (ASK)

  12. The Application of Fractal and Multifractal Theory in Hydraulic-Flow-Unit Characterization and Permeability Estimation

    NASA Astrophysics Data System (ADS)

    Chen, X.; Yao, G.; Cai, J.

    2017-12-01

    Pore structure characteristics are important factors in influencing the fluid transport behavior of porous media, such as pore-throat ratio, pore connectivity and size distribution, moreover, wettability. To accurately characterize the diversity of pore structure among HFUs, five samples selected from different HFUs (porosities are approximately equal, however permeability varies widely) were chosen to conduct micro-computerized tomography test to acquire direct 3D images of pore geometries and to perform mercury injection experiments to obtain the pore volume-radii distribution. To characterize complex and high nonlinear pore structure of all samples, three classic fractal geometry models were applied. Results showed that each HFU has similar box-counting fractal dimension and generalized fractal dimension in the number-area model, but there are significant differences in multifractal spectrums. In the radius-volume model, there are three obvious linear segments, corresponding to three fractal dimension values, and the middle one is proved as the actual fractal dimension according to the maximum radius. In the number-radius model, the spherical-pore size distribution extracted by maximum ball algorithm exist a decrease in the number of small pores compared with the fractal power rate rather than the traditional linear law. Among the three models, only multifractal analysis can classify the HFUs accurately. Additionally, due to the tightness and low-permeability in reservoir rocks, connate water film existing in the inner surface of pore channels commonly forms bound water. The conventional model which is known as Yu-Cheng's model has been proved to be typically not applicable. Considering the effect of irreducible water saturation, an improved fractal permeability model was also deduced theoretically. The comparison results showed that the improved model can be applied to calculate permeability directly and accurately in such unconventional rocks.

  13. Fundamental Fractal Antenna Design Process

    NASA Astrophysics Data System (ADS)

    Zhu, L. P.; Kim, T. C.; Kakas, G. D.

    2017-12-01

    Antenna designers are always looking to come up with new ideas to push the envelope for new antennas, using a smaller volume while striving for higher bandwidth, wider bandwidth, and antenna gain. One proposed method of increasing bandwidth or shrinking antenna size is via the use of fractal geometry, which gives rise to fractal antennas. Fractals are those fun shapes that if one zooms in or zoom out, the structure is always the same. Design a new type of antenna based on fractal antenna design by utilize the Design of Experiment (DOE) will be shown in fractal antenna design process. Investigate conformal fractal antenna design for patterns, dimensions, and size, of the antenna but maintaining or improving the antenna performance. Research shows an antenna designer how to create basic requirements of the fractal antenna through a step by step process, and provides how to optimize the antenna design with the model prediction, lab measurement, and actual results from the compact range measurement on the antenna patterns.

  14. Fractal characteristic in the wearing of cutting tool

    NASA Astrophysics Data System (ADS)

    Mei, Anhua; Wang, Jinghui

    1995-11-01

    This paper studies the cutting tool wear with fractal geometry. The wearing image of the flank has been collected by machine vision which consists of CCD camera and personal computer. After being processed by means of preserving smoothing, binary making and edge extracting, the clear boundary enclosing the worn area has been obtained. The fractal dimension of the worn surface is calculated by the methods called `Slit Island' and `Profile'. The experiments and calciating give the conclusion that the worn surface is enclosed by a irregular boundary curve with some fractal dimension and characteristics of self-similarity. Furthermore, the relation between the cutting velocity and the fractal dimension of the worn region has been submitted. This paper presents a series of methods for processing and analyzing the fractal information in the blank wear, which can be applied to research the projective relation between the fractal structure and the wear state, and establish the fractal model of the cutting tool wear.

  15. Numerical investigation on the Ångström exponent of black carbon aerosol

    NASA Astrophysics Data System (ADS)

    Li, Ji; Liu, Chao; Yin, Yan; Kumar, K. Raghavendra

    2016-04-01

    Black carbon (BC) plays an important role on the global and regional climate, whereas there are significant uncertainties on its optical properties. Among various optical properties, the Ångström exponent (AE) indicates the spectral variation of the particle-optic interaction and is widely used to understand the aerosol properties. We consider the influence of BC geometry on its optical properties and assess the sensitivity of the AE to particle geometry and size distribution. The fractal aggregates with different fractal dimensions are used to represent realistic BC particles, and popular equivalent volume spherical and spheroidal models are also considered for comparison. Even if the fractal aggregates become highly compact and spherical, their optical properties are still significantly different from those of equivalent volume spheres or spheroids. Meanwhile, the Rayleigh-Debye-Gans approximation can hardly provide accurate results for all optical quantities of aggregates with different dimensions. The extinction Ångström exponent (EAE) and absorption Ångström exponent (AAE) are sensitive to both particle geometry and size distribution. With BC becoming more compact (from fractal aggregate to spheroid and to sphere), the AE becomes more sensitive to particle size distribution. The EAE and AAE of aggregates with different size distributions vary between 1.10-1.63 and 0.87-1.50, respectively, whereas those of the spheres or spheroids have wider ranges. Furthermore, the AE at smaller wavelengths (between 0.35 µm and 0.55 µm) is more sensitive to geometry and size distribution than that given by optical properties at larger wavelengths (between 0.55 µm and 0.88 µm).

  16. Self-Similarity of Plasmon Edge Modes on Koch Fractal Antennas.

    PubMed

    Bellido, Edson P; Bernasconi, Gabriel D; Rossouw, David; Butet, Jérémy; Martin, Olivier J F; Botton, Gianluigi A

    2017-11-28

    We investigate the plasmonic behavior of Koch snowflake fractal geometries and their possible application as broadband optical antennas. Lithographically defined planar silver Koch fractal antennas were fabricated and characterized with high spatial and spectral resolution using electron energy loss spectroscopy. The experimental data are supported by numerical calculations carried out with a surface integral equation method. Multiple surface plasmon edge modes supported by the fractal structures have been imaged and analyzed. Furthermore, by isolating and reproducing self-similar features in long silver strip antennas, the edge modes present in the Koch snowflake fractals are identified. We demonstrate that the fractal response can be obtained by the sum of basic self-similar segments called characteristic edge units. Interestingly, the plasmon edge modes follow a fractal-scaling rule that depends on these self-similar segments formed in the structure after a fractal iteration. As the size of a fractal structure is reduced, coupling of the modes in the characteristic edge units becomes relevant, and the symmetry of the fractal affects the formation of hybrid modes. This analysis can be utilized not only to understand the edge modes in other planar structures but also in the design and fabrication of fractal structures for nanophotonic applications.

  17. The fractal heart — embracing mathematics in the cardiology clinic

    PubMed Central

    Captur, Gabriella; Karperien, Audrey L.; Hughes, Alun D.; Francis, Darrel P.; Moon, James C.

    2017-01-01

    For clinicians grappling with quantifying the complex spatial and temporal patterns of cardiac structure and function (such as myocardial trabeculae, coronary microvascular anatomy, tissue perfusion, myocyte histology, electrical conduction, heart rate, and blood-pressure variability), fractal analysis is a powerful, but still underused, mathematical tool. In this Perspectives article, we explain some fundamental principles of fractal geometry and place it in a familiar medical setting. We summarize studies in the cardiovascular sciences in which fractal methods have successfully been used to investigate disease mechanisms, and suggest potential future clinical roles in cardiac imaging and time series measurements. We believe that clinical researchers can deploy innovative fractal solutions to common cardiac problems that might ultimately translate into advancements for patient care. PMID:27708281

  18. Condition of Mechanical Equilibrium at the Phase Interface with Arbitrary Geometry

    NASA Astrophysics Data System (ADS)

    Zubkov, V. V.; Zubkova, A. V.

    2017-09-01

    The authors produced an expression for the mechanical equilibrium condition at the phase interface within the force definition of surface tension. This equilibrium condition is the most general one from the mathematical standpoint and takes into account the three-dimensional aspect of surface tension. Furthermore, the formula produced allows describing equilibrium on the fractal surface of the interface. The authors used the fractional integral model of fractal distribution and took the fractional order integrals over Euclidean space instead of integrating over the fractal set.

  19. Fractal Image Filters for Specialized Image Recognition Tasks

    DTIC Science & Technology

    2010-02-11

    butter sets of fractal geometers, such as Sierpinski triangles, twin- dragons , Koch curves, Cantor sets, fractal ferns, and so on. The geometries and...K is a centrally symmetric convex body in R m, then the function ‖x‖K defines a norm on R m. Moreover, the set K is the unit ball with respect to the...positive numbers r and R such that K contains a ball of radius r and is contained in a ball of radius R, the following proposition is clear

  20. Applications of fractals in ecology.

    PubMed

    Sugihara, G; M May, R

    1990-03-01

    Fractal models describe the geometry of a wide variety of natural objects such as coastlines, island chains, coral reefs, satellite ocean-color images and patches of vegetation. Cast in the form of modified diffusion models, they can mimic natural and artificial landscapes having different types of complexity of shape. This article provides a brief introduction to fractals and reports on how they can be used by ecologists to answer a variety of basic questions, about scale, measurement and hierarchy in, ecological systems. Copyright © 1990. Published by Elsevier Ltd.

  1. A new numerical approximation of the fractal ordinary differential equation

    NASA Astrophysics Data System (ADS)

    Atangana, Abdon; Jain, Sonal

    2018-02-01

    The concept of fractal medium is present in several real-world problems, for instance, in the geological formation that constitutes the well-known subsurface water called aquifers. However, attention has not been quite devoted to modeling for instance, the flow of a fluid within these media. We deem it important to remind the reader that the concept of fractal derivative is not to represent the fractal sharps but to describe the movement of the fluid within these media. Since this class of ordinary differential equations is highly complex to solve analytically, we present a novel numerical scheme that allows to solve fractal ordinary differential equations. Error analysis of the method is also presented. Application of the method and numerical approximation are presented for fractal order differential equation. The stability and the convergence of the numerical schemes are investigated in detail. Also some exact solutions of fractal order differential equations are presented and finally some numerical simulations are presented.

  2. Fractal pharmacokinetics of the drug mibefradil in the liver

    NASA Astrophysics Data System (ADS)

    Fuite, J.; Marsh, R.; Tuszyński, J.

    2002-08-01

    We explore the ramifications of the fractal geometry of the key organ for drug elimination, the liver, on pharmacokinetic data analysis. A formalism is developed for the use of a combination of well-stirred Euclidean and fractal compartments in the body. Perturbation analysis is carried out to obtain analytical solutions for the drug concentration time evolution. These results are then fitted to experimental data collected from clinically instrumented dogs [see, A. Skerjanec et al., J. Pharm. Sci. 85, 189 (1995)] using the drug mibefradil. The thus obtained spectral fractal dimension has a range of values that is consistent with the value found in independently performed ultrasound experiments on the liver.

  3. Anomalous Oxidative Diffusion in Titanium Pyrotechnic Powders

    DOE PAGES

    Erikson, William W.; Coker, Eric N.

    2016-11-10

    It has long been observed that oxidation processes in metals tend to follow a parabolic rate law associated with the growth of a surface oxide layer. Here we observe that for certain titanium powders, the expected parabolic law (∝t 1/2) is recovered, yet for others, the exponent differs significantly. One explanation for this non-parabolic, anomalous diffusion arises from fractal geometry. Theoretical considerations indicate that the time response of diffusion-limited processes in an object closely follow a power-law in time (t n) with n=(E–D)/2, where E is the object's Euclidean dimension and D is its boundary's Hausdorff dimension. Non-integer, (fractal) valuesmore » of D will result in n≠1/2. Finite element simulations of several canonical fractal objects were performed to verify the application of this theory; the results matched the theory well. Two different types of titanium powder were tested in isothermal thermogravimetric tests under dilute oxygen. Time-dependent mass uptake data were fit with power-law forms and the associated exponents were used to determine an equivalent fractal dimension. One Ti powder type has an implied surface dimension of ca. 2.3 to 2.5, suggesting fractal geometry may be operative. Finally, the other has a dimension near 2.0, indicating it behaves like traditional material.« less

  4. Surface Fractal Analysis for Estimating the Fracture Energy Absorption of Nanoparticle Reinforced Composites

    PubMed Central

    Pramanik, Brahmananda; Tadepalli, Tezeswi; Mantena, P. Raju

    2012-01-01

    In this study, the fractal dimensions of failure surfaces of vinyl ester based nanocomposites are estimated using two classical methods, Vertical Section Method (VSM) and Slit Island Method (SIM), based on the processing of 3D digital microscopic images. Self-affine fractal geometry has been observed in the experimentally obtained failure surfaces of graphite platelet reinforced nanocomposites subjected to quasi-static uniaxial tensile and low velocity punch-shear loading. Fracture energy and fracture toughness are estimated analytically from the surface fractal dimensionality. Sensitivity studies show an exponential dependency of fracture energy and fracture toughness on the fractal dimensionality. Contribution of fracture energy to the total energy absorption of these nanoparticle reinforced composites is demonstrated. For the graphite platelet reinforced nanocomposites investigated, surface fractal analysis has depicted the probable ductile or brittle fracture propagation mechanism, depending upon the rate of loading. PMID:28817017

  5. Navigation performance in virtual environments varies with fractal dimension of landscape.

    PubMed

    Juliani, Arthur W; Bies, Alexander J; Boydston, Cooper R; Taylor, Richard P; Sereno, Margaret E

    2016-09-01

    Fractal geometry has been used to describe natural and built environments, but has yet to be studied in navigational research. In order to establish a relationship between the fractal dimension (D) of a natural environment and humans' ability to navigate such spaces, we conducted two experiments using virtual environments that simulate the fractal properties of nature. In Experiment 1, participants completed a goal-driven search task either with or without a map in landscapes that varied in D. In Experiment 2, participants completed a map-reading and location-judgment task in separate sets of fractal landscapes. In both experiments, task performance was highest at the low-to-mid range of D, which was previously reported as most preferred and discriminable in studies of fractal aesthetics and discrimination, respectively, supporting a theory of visual fluency. The applicability of these findings to architecture, urban planning, and the general design of constructed spaces is discussed.

  6. Application of Fractal Geometry in Evaluation of Effective Stimulated Reservoir Volume in Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Sheng, Guanglong; Su, Yuliang; Wang, Wendong; Javadpour, Farzam; Tang, Meirong

    According to hydraulic-fracturing practices conducted in shale reservoirs, effective stimulated reservoir volume (ESRV) significantly affects the production of hydraulic fractured well. Therefore, estimating ESRV is an important prerequisite for confirming the success of hydraulic fracturing and predicting the production of hydraulic fracturing wells in shale reservoirs. However, ESRV calculation remains a longstanding challenge in hydraulic-fracturing operation. In considering fractal characteristics of the fracture network in stimulated reservoir volume (SRV), this paper introduces a fractal random-fracture-network algorithm for converting the microseismic data into fractal geometry. Five key parameters, including bifurcation direction, generating length (d), deviation angle (α), iteration times (N) and generating rules, are proposed to quantitatively characterize fracture geometry. Furthermore, we introduce an orthogonal-fractures coupled dual-porosity-media representation elementary volume (REV) flow model to predict the volumetric flux of gas in shale reservoirs. On the basis of the migration of adsorbed gas in porous kerogen of REV with different fracture spaces, an ESRV criterion for shale reservoirs with SRV is proposed. Eventually, combining the ESRV criterion and fractal characteristic of a fracture network, we propose a new approach for evaluating ESRV in shale reservoirs. The approach has been used in the Eagle Ford shale gas reservoir, and results show that the fracture space has a measurable influence on migration of adsorbed gas. The fracture network can contribute to enhancement of the absorbed gas recovery ratio when the fracture space is less than 0.2 m. ESRV is evaluated in this paper, and results indicate that the ESRV accounts for 27.87% of the total SRV in shale gas reservoirs. This work is important and timely for evaluating fracturing effect and predicting production of hydraulic fracturing wells in shale reservoirs.

  7. Implementation for wideband applications using UWB fractal patch antenna

    NASA Astrophysics Data System (ADS)

    Kumar, D. Naresh

    2018-04-01

    This paper defines in detail about the diverse fractal patch antenna. Microstrip patch antennas has evolved in the field of research and development extending its impact across wide range of applications. A combination of patch antenna with fractal patterns has become a tryout to outspread it further. Because of its low profile nature patch antennas have added to a lot of prominence. Apart from have this property it can also be renovated further for wide bandwidth (2929 MHz) applications, as it exhibits self-analogous property. This antenna is premeditated on a patch using Sierpinski(4.040 GHz, 6.566 GHz) and Koch fractal geometries respectively. The antenna is designed using HFSS software.

  8. Plasmon confinement in fractal quantum systems

    NASA Astrophysics Data System (ADS)

    Westerhout, Tom; van Veen, Edo; Katsnelson, Mikhail I.; Yuan, Shengjun

    2018-05-01

    Recent progress in the fabrication of materials has made it possible to create arbitrary nonperiodic two-dimensional structures in the quantum plasmon regime. This paves the way for exploring the quantum plasmonic properties of electron gases in complex geometries. In this work we study systems with a fractal dimension. We calculate the full dielectric functions of two prototypical fractals with different ramification numbers, namely the Sierpinski carpet and gasket. We show that the Sierpinski carpet has a dispersion comparable to a square lattice, but the Sierpinski gasket features highly localized plasmon modes with a flat dispersion. This strong plasmon confinement in finitely ramified fractals can provide a novel setting for manipulating light at the quantum level.

  9. Mathematics of Failures in Complex Systems: Characterization and Mitigation of Service Failures in Complex Dynamic Systems

    DTIC Science & Technology

    2007-06-30

    fractal dimensions and Lyapunov exponents . Fractal dimensions characterize geometri- cal complexity of dynamics (e.g., spatial distribution of points along...ant classi3ers (e.g., Lyapunov exponents , and fractal dimensions). The 3rst three steps show how chaotic systems may be separated from stochastic...correlated random walk in which a ¼ 2H, where H is the Hurst exponen interval 0pHp1 with the case H ¼ 0:5 corresponding to a simple rando This model has been

  10. Electromagnetism on anisotropic fractal media

    NASA Astrophysics Data System (ADS)

    Ostoja-Starzewski, Martin

    2013-04-01

    Basic equations of electromagnetic fields in anisotropic fractal media are obtained using a dimensional regularization approach. First, a formulation based on product measures is shown to satisfy the four basic identities of the vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Ampère laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, so as to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions in three different directions and reduce to conventional forms for continuous media with Euclidean geometries upon setting these each of dimensions equal to unity.

  11. Fractals in physiology and medicine

    NASA Technical Reports Server (NTRS)

    Goldberger, Ary L.; West, Bruce J.

    1987-01-01

    The paper demonstrates how the nonlinear concepts of fractals, as applied in physiology and medicine, can provide an insight into the organization of such complex structures as the tracheobronchial tree and heart, as well as into the dynamics of healthy physiological variability. Particular attention is given to the characteristics of computer-generated fractal lungs and heart and to fractal pathologies in these organs. It is shown that alterations in fractal scaling may underlie a number of pathophysiological disturbances, including sudden cardiac death syndromes.

  12. Interactions between a fractal tree-like object and hydrodynamic turbulence: flow structure and characteristic mixing length

    NASA Astrophysics Data System (ADS)

    Meneveau, C. V.; Bai, K.; Katz, J.

    2011-12-01

    The vegetation canopy has a significant impact on various physical and biological processes such as forest microclimate, rainfall evaporation distribution and climate change. Most scaled laboratory experimental studies have used canopy element models that consist of rigid vertical strips or cylindrical rods that can be typically represented through only one or a few characteristic length scales, for example the diameter and height for cylindrical rods. However, most natural canopies and vegetation are highly multi-scale with branches and sub-branches, covering a wide range of length scales. Fractals provide a convenient idealization of multi-scale objects, since their multi-scale properties can be described in simple ways (Mandelbrot 1982). While fractal aspects of turbulence have been studied in several works in the past decades, research on turbulence generated by fractal objects started more recently. We present an experimental study of boundary layer flow over fractal tree-like objects. Detailed Particle-Image-Velocimetry (PIV) measurements are carried out in the near-wake of a fractal-like tree. The tree is a pre-fractal with five generations, with three branches and a scale reduction factor 1/2 at each generation. Its similarity fractal dimension (Mandelbrot 1982) is D ~ 1.58. Detailed mean velocity and turbulence stress profiles are documented, as well as their downstream development. We then turn attention to the turbulence mixing properties of the flow, specifically to the question whether a mixing length-scale can be identified in this flow, and if so, how it relates to the geometric length-scales in the pre-fractal object. Scatter plots of mean velocity gradient (shear) and Reynolds shear stress exhibit good linear relation at all locations in the flow. Therefore, in the transverse direction of the wake evolution, the Boussinesq eddy viscosity concept is appropriate to describe the mixing. We find that the measured mixing length increases with increasing streamwise locations. Conversely, the measured eddy viscosity and mixing length decrease with increasing elevation, which differs from eddy viscosity and mixing length behaviors of traditional boundary layers or canopies studied before. In order to find an appropriate length for the flow, several models based on the notion of superposition of scales are proposed and examined. One approach is based on spectral distributions. Another more practical approach is based on length-scale distributions evaluated using fractal geometry tools. These proposed models agree well with the measured mixing length. The results indicate that information about multi-scale clustering of branches as it occurs in fractals has to be incorporated into models of the mixing length for flows through canopies with multiple scales. The research is supported by National Science Foundation grant ATM-0621396 and AGS-1047550.

  13. A stress sensitivity model for the permeability of porous media based on bi-dispersed fractal theory

    NASA Astrophysics Data System (ADS)

    Tan, X.-H.; Liu, C.-Y.; Li, X.-P.; Wang, H.-Q.; Deng, H.

    A stress sensitivity model for the permeability of porous media based on bidispersed fractal theory is established, considering the change of the flow path, the fractal geometry approach and the mechanics of porous media. It is noted that the two fractal parameters of the porous media construction perform differently when the stress changes. The tortuosity fractal dimension of solid cluster DcTσ become bigger with an increase of stress. However, the pore fractal dimension of solid cluster Dcfσ and capillary bundle Dpfσ remains the same with an increase of stress. The definition of normalized permeability is introduced for the analyzation of the impacts of stress sensitivity on permeability. The normalized permeability is related to solid cluster tortuosity dimension, pore fractal dimension, solid cluster maximum diameter, Young’s modulus and Poisson’s ratio. Every parameter has clear physical meaning without the use of empirical constants. Predictions of permeability of the model is accordant with the obtained experimental data. Thus, the proposed model can precisely depict the flow of fluid in porous media under stress.

  14. Analysis of Geographical Distribution Patterns in Plants Using Fractals

    NASA Astrophysics Data System (ADS)

    Bari, A.; Ayad, G.; Padulosi, S.; Hodgkin, T.; Martin, A.; Gonzalez-Andujar, J. L.; Brown, A. H. D.

    Geographical distribution patterns in plants have been observed since primeval times and have been used by plant explorers to trace the origin of plants species. These patterns embody the effects of fundamental law-like processes. Diversity in plants has also been found to be proportionate with the area, and this scaling behavior is also known as fractal behavior. In the present study, we use fractal geometry to analyze the distribution patterns of wild taxa of cowpea with the objective to locate where their diversity would be the highest to aid in the planning of targeted explorations and conservation measures.

  15. Pond fractals in a tidal flat.

    PubMed

    Cael, B B; Lambert, Bennett; Bisson, Kelsey

    2015-11-01

    Studies over the past decade have reported power-law distributions for the areas of terrestrial lakes and Arctic melt ponds, as well as fractal relationships between their areas and coastlines. Here we report similar fractal structure of ponds in a tidal flat, thereby extending the spatial and temporal scales on which such phenomena have been observed in geophysical systems. Images taken during low tide of a tidal flat in Damariscotta, Maine, reveal a well-resolved power-law distribution of pond sizes over three orders of magnitude with a consistent fractal area-perimeter relationship. The data are consistent with the predictions of percolation theory for unscreened perimeters and scale-free cluster size distributions and are robust to alterations of the image processing procedure. The small spatial and temporal scales of these data suggest this easily observable system may serve as a useful model for investigating the evolution of pond geometries, while emphasizing the generality of fractal behavior in geophysical surfaces.

  16. Pond fractals in a tidal flat

    NASA Astrophysics Data System (ADS)

    Cael, B. B.; Lambert, Bennett; Bisson, Kelsey

    2015-11-01

    Studies over the past decade have reported power-law distributions for the areas of terrestrial lakes and Arctic melt ponds, as well as fractal relationships between their areas and coastlines. Here we report similar fractal structure of ponds in a tidal flat, thereby extending the spatial and temporal scales on which such phenomena have been observed in geophysical systems. Images taken during low tide of a tidal flat in Damariscotta, Maine, reveal a well-resolved power-law distribution of pond sizes over three orders of magnitude with a consistent fractal area-perimeter relationship. The data are consistent with the predictions of percolation theory for unscreened perimeters and scale-free cluster size distributions and are robust to alterations of the image processing procedure. The small spatial and temporal scales of these data suggest this easily observable system may serve as a useful model for investigating the evolution of pond geometries, while emphasizing the generality of fractal behavior in geophysical surfaces.

  17. Stiffness Indices and Fractal Dimension relationship in Arterial Pressure and Diameter Time Series in-Vitro

    NASA Astrophysics Data System (ADS)

    Cymberknop, L.; Legnani, W.; Pessana, F.; Bia, D.; Zócalo, Y.; Armentano, R. L.

    2011-12-01

    The advent of vascular diseases, such as hypertension and atherosclerosis, is associated to significant alterations in the physical properties of arterial vessels. Evaluation of arterial biomechanical behaviour is related to the assessment of three representative indices: arterial compliance, arterial distensibility and arterial stiffness index. Elasticity is the most important mechanical property of the arterial wall, whose natures is strictly non-linear. Intervention of elastin and collagen fibres, passive constituent elements of the arterial wall, is related to the applied wall stress level. Concerning this, appropriate tools are required to analyse the temporal dynamics of the signals involved, in order to characterize the whole phenomenon. Fractal geometry can be mentioned as one of those techniques. The aim of this study consisted on arterial pressure and diameter signals processing, by means of nonlinear techniques based on fractal geometry. Time series morphology was related to different arterial stiffness states, generated by means of blood flow variations, during experiences performed in vitro.

  18. Using fractal analysis of thermal signatures for thyroid disease evaluation

    NASA Astrophysics Data System (ADS)

    Gavriloaia, Gheorghe; Sofron, Emil; Gavriloaia, Mariuca-Roxana; Ghemigean, Adina-Mariana

    2010-11-01

    The skin is the largest organ of the body and it protects against heat, light, injury and infection. Skin temperature is an important parameter for diagnosing diseases. Thermal analysis is non-invasive, painless, and relatively inexpensive, showing a great potential research. Since the thyroid regulates metabolic rate it is intimately connected to body temperature, more than, any modification of its function generates a specific thermal image on the neck skin. The shapes of thermal signatures are often irregular in size and shape. Euclidean geometry is not able to evaluate their shape for different thyroid diseases, and fractal geometry is used in this paper. Different thyroid diseases generate different shapes, and their complexity are evaluated by specific mathematical approaches, fractal analysis, in order to the evaluate selfsimilarity and lacunarity. Two kinds of thyroid diseases, hyperthyroidism and papillary cancer are analyzed in this paper. The results are encouraging and show the ability to continue research for thermal signature to be used in early diagnosis of thyroid diseases.

  19. Complexity theory, time series analysis and Tsallis q-entropy principle part one: theoretical aspects

    NASA Astrophysics Data System (ADS)

    Pavlos, George P.

    2017-12-01

    In this study, we present the highlights of complexity theory (Part I) and significant experimental verifications (Part II) and we try to give a synoptic description of complexity theory both at the microscopic and at the macroscopic level of the physical reality. Also, we propose that the self-organization observed macroscopically is a phenomenon that reveals the strong unifying character of the complex dynamics which includes thermodynamical and dynamical characteristics in all levels of the physical reality. From this point of view, macroscopical deterministic and stochastic processes are closely related to the microscopical chaos and self-organization. The scientific work of scientists such as Wilson, Nicolis, Prigogine, Hooft, Nottale, El Naschie, Castro, Tsallis, Chang and others is used for the development of a unified physical comprehension of complex dynamics from the microscopic to the macroscopic level. Finally, we provide a comprehensive description of the novel concepts included in the complexity theory from microscopic to macroscopic level. Some of the modern concepts that can be used for a unified description of complex systems and for the understanding of modern complexity theory, as it is manifested at the macroscopic and the microscopic level, are the fractal geometry and fractal space-time, scale invariance and scale relativity, phase transition and self-organization, path integral amplitudes, renormalization group theory, stochastic and chaotic quantization and E-infinite theory, etc.

  20. Acoustic Emission from Breaking a Bamboo Chopstick

    NASA Astrophysics Data System (ADS)

    Tsai, Sun-Ting; Wang, Li-Min; Huang, Panpan; Yang, Zhengning; Chang, Chin-De; Hong, Tzay-Ming

    2016-01-01

    The acoustic emission from breaking a bamboo chopstick or a bundle of spaghetti is found to exhibit similar behavior as the famous seismic laws of Gutenberg and Richter, Omori, and Båth. By the use of a force-sensing detector, we establish a positive correlation between the statistics of sound intensity and the magnitude of a tremor. We also manage to derive these laws analytically without invoking the concept of a phase transition, self-organized criticality, or fractal. Our model is deterministic and relies on the existence of a structured cross section, either fibrous or layered. This success at explaining the power-law behavior supports the proposal that geometry is sometimes more important than mechanics.

  1. Micromorphological characterization of zinc/silver particle composite coatings.

    PubMed

    Méndez, Alia; Reyes, Yolanda; Trejo, Gabriel; StĘpień, Krzysztof; Ţălu, Ştefan

    2015-12-01

    The aim of this study was to evaluate the three-dimensional (3D) surface micromorphology of zinc/silver particles (Zn/AgPs) composite coatings with antibacterial activity prepared using an electrodeposition technique. These 3D nanostructures were investigated over square areas of 5 μm × 5 μm by atomic force microscopy (AFM), fractal, and wavelet analysis. The fractal analysis of 3D surface roughness revealed that (Zn/AgPs) composite coatings have fractal geometry. Triangulation method, based on the linear interpolation type, applied for AFM data was employed in order to characterise the surfaces topographically (in amplitude, spatial distribution and pattern of surface characteristics). The surface fractal dimension Df , as well as height values distribution have been determined for the 3D nanostructure surfaces. © 2015 The Authors published by Wiley Periodicals, Inc.

  2. Fractals and Transformations.

    ERIC Educational Resources Information Center

    Bannon, Thomas J.

    1991-01-01

    Discussed are several different transformations based on the generation of fractals including self-similar designs, the chaos game, the koch curve, and the Sierpinski Triangle. Three computer programs which illustrate these concepts are provided. (CW)

  3. Investigation of the Fractal Geometry of Tundra Lake Patterns using Historical Topographic Maps and Satellite Imagery.

    NASA Astrophysics Data System (ADS)

    Kariyawasam, T.; Essa, A.; Gong, M.; Sudakov, I.

    2017-12-01

    Greenhouse gas emissions from tundra lakes are a significant positive feedback to the atmosphere in a changing climate as a pronounced growth of the numbers of tundra lake patterns has been observed in the Arctic region. Detailed knowledge of spatial dynamics of lake patterns in a changing arctic tundra landscape and their geometrical properties is therefore potentially valuable, in order to understand and accurately model the sources of greenhouse gas emissions from boreal permafrost. Our goal is to use a collection of historical topographic maps and satellite imagery of tundra lakes to conduct computational image analyses for examining spatial dynamics of Tundra lake patterns. Our approach is based upon analyzing area-perimeter data of thousands of tundra lakes to compute the fractal dimension to study the tundra lake pattern geometry, which have been used to classify pollen grains by textual patterning (Mander, 2016), vegetation in dryland ecosystems (Mander, 2017) and melt pond patterns (Hohenegger, 2012). By analyzing area - perimeter data for over 900 lakes we find that for both historical topographic maps and current satellite imagery, the fractal dimension D is stable at 1.6 for Tundra lakes with area less than about 100km2. For Tundra lake sizes bigger than 100 km2 fractal dimension takes values close to 2 and less than one indicative of structural changes in Tundra lake pattern geometry. Furthermore the current study did not reveal any percolation transition above some critical threshold in Tundra lake evolution. The results of the study will provide scientists with new data on these aspects of tundra lakes to help characterize the geomorphology of spatial patterns in arctic tundra lakes.

  4. [Recent progress of research and applications of fractal and its theories in medicine].

    PubMed

    Cai, Congbo; Wang, Ping

    2014-10-01

    Fractal, a mathematics concept, is used to describe an image of self-similarity and scale invariance. Some organisms have been discovered with the fractal characteristics, such as cerebral cortex surface, retinal vessel structure, cardiovascular network, and trabecular bone, etc. It has been preliminarily confirmed that the three-dimensional structure of cells cultured in vitro could be significantly enhanced by bionic fractal surface. Moreover, fractal theory in clinical research will help early diagnosis and treatment of diseases, reducing the patient's pain and suffering. The development process of diseases in the human body can be expressed by the fractal theories parameter. It is of considerable significance to retrospectively review the preparation and application of fractal surface and its diagnostic value in medicine. This paper gives an application of fractal and its theories in the medical science, based on the research achievements in our laboratory.

  5. Enhanced Graphene Photodetector with Fractal Metasurface.

    PubMed

    Fang, Jieran; Wang, Di; DeVault, Clayton T; Chung, Ting-Fung; Chen, Yong P; Boltasseva, Alexandra; Shalaev, Vladimir M; Kildishev, Alexander V

    2017-01-11

    Graphene has been demonstrated to be a promising photodetection material because of its ultrabroadband optical absorption, compatibility with CMOS technology, and dynamic tunability in optical and electrical properties. However, being a single atomic layer thick, graphene has intrinsically small optical absorption, which hinders its incorporation with modern photodetecting systems. In this work, we propose a gold snowflake-like fractal metasurface design to realize broadband and polarization-insensitive plasmonic enhancement in graphene photodetector. We experimentally obtain an enhanced photovoltage from the fractal metasurface that is an order of magnitude greater than that generated at a plain gold-graphene edge and such an enhancement in the photovoltage sustains over the entire visible spectrum. We also observed a relatively constant photoresponse with respect to polarization angles of incident light, as a result of the combination of two orthogonally oriented concentric hexagonal fractal geometries in one metasurface.

  6. Active tectonics on Deception Island (West-Antarctica): A new approach by using the fractal anisotropy of lineaments, fault slip measurements and the caldera collapse shape

    USGS Publications Warehouse

    Pérez-López, R.; Giner-Robles, J.L.; Martínez-Díaz, J.J.; Rodríguez-Pascua, M.A.; Bejar, M.; Paredes, C.; González-Casado, J.M.

    2007-01-01

    The tectonic field on Deception Island (South Shetlands, West Antarctica) is determined from structural and fractal analyses. Three different analyses are applied to the study of the strain and stress fields in the area: (1) field measurements of faults (strain analysis), (2) fractal geometry of the spatial distribution of lineaments and (3) the caldera shape (stress analyses). In this work, the identified strain field is extensional with the maximum horizontal shortening trending NE-SW and NW-SE. The fractal technique applied to the spatial distribution of lineaments indicates a stress field with SHMAX oriented NE-SW. The elliptical caldera of Deception Island, determined from field mapping, satellite imagery, vents and fissure eruptions, has an elongate shape and a stress field with SHMAX trending NE-SW.

  7. Fabrication of Multscale Fractal-Like Structures by Controlling Fluid Interface Instability

    PubMed Central

    Islam, Tanveer ul; Gandhi, Prasanna S.

    2016-01-01

    Nature, in quest for the best designs has shaped its vital systems into fractal geometries. Effectual way of spontaneous fabrication of scalable, ordered fractal-like structures by controlling Saffman-Taylor instability in a lifted Hele-Shaw cell is deployed here. In lifted Hele-Shaw cell uncontrolled penetration of low-viscosity fluid into its high-viscosity counterpart is known to develop irregular, non-repeatable, normally short-lived, branched patterns. We propose and characterize experimentally anisotropies in a form of spatially distributed pits on the cell plates to control initiation and further penetration of non-splitting fingers. The proposed control over shielding mechanism yields recipes for fabrication of families of ordered fractal-like patterns of multiple generations. As an example, we demonstrate and characterize fabrication of a Cayley tree fractal-like pattern. The patterns, in addition, are retained permanently by employing UV/thermally curable fluids. The proposed technique thus establishes solid foundation for bio-mimicking natural structures spanning multiple-scales for scientific and engineering use. PMID:27849003

  8. Fabrication of Multscale Fractal-Like Structures by Controlling Fluid Interface Instability

    NASA Astrophysics Data System (ADS)

    Islam, Tanveer Ul; Gandhi, Prasanna S.

    2016-11-01

    Nature, in quest for the best designs has shaped its vital systems into fractal geometries. Effectual way of spontaneous fabrication of scalable, ordered fractal-like structures by controlling Saffman-Taylor instability in a lifted Hele-Shaw cell is deployed here. In lifted Hele-Shaw cell uncontrolled penetration of low-viscosity fluid into its high-viscosity counterpart is known to develop irregular, non-repeatable, normally short-lived, branched patterns. We propose and characterize experimentally anisotropies in a form of spatially distributed pits on the cell plates to control initiation and further penetration of non-splitting fingers. The proposed control over shielding mechanism yields recipes for fabrication of families of ordered fractal-like patterns of multiple generations. As an example, we demonstrate and characterize fabrication of a Cayley tree fractal-like pattern. The patterns, in addition, are retained permanently by employing UV/thermally curable fluids. The proposed technique thus establishes solid foundation for bio-mimicking natural structures spanning multiple-scales for scientific and engineering use.

  9. Singularity analysis: theory and further developments

    NASA Astrophysics Data System (ADS)

    Cheng, Qiuming

    2015-04-01

    Since the concept of singularity and local singularity analysis method (LSA) were originally proposed by the author for characterizing the nonlinear property of hydrothermal mineralization processes, the local singularity analysis technique has been successfully applied for identification of geochemical and geophysical anomalies related to various types of mineral deposits. It has also been shown that the singularity is the generic property of singular geo-processes which result in anomalous amounts of energy release or material accumulation within a narrow spatial-temporal interval. In the current paper we introduce several new developments about singularity analysis. First is a new concept of 'fractal density' which describes the singularity of complex phenomena of fractal nature. While the ordinary density possesses a unit of ratio of mass and volume (e.g. g/cm3, kg/m3) or ratio of energy over volume or time (e.g. J/cm3, w/L3, w/s), the fractal density has a unit of ratio of mass over fractal set or energy over fractal set (e.g. g/cmα, kg/mα, J/ mα, w/Lα, where α can be a non-integer). For the matter with fractal density (a non-integer α), the ordinary density of the phenomena (mass or energy) no longer exists and depicts singularity. We demonstrate that most of extreme geo-processes occurred in the earth crust originated from cascade earth dynamics (mental convection, plate tectonics, orogeny and weathering etc) may cause fractal density of mass accumulation or energy release. The examples to be used to demonstrate the concepts of fractal density and singularity are earthquakes, floods, volcanos, hurricanes, heat flow over oceanic ridge, hydrothermal mineralization in orogenic belt, and anomalies in regolith over mine caused by ore and toxic elements vertical migration. Other developments of singularity theory and methodologies including singular Kriging and singularity weights of evidence model for information integration will also be introduced.

  10. Electrochemical Evaluations of Fractal Microelectrodes for Energy Efficient Neurostimulation.

    PubMed

    Park, Hyunsu; Takmakov, Pavel; Lee, Hyowon

    2018-03-12

    Advancements in microfabrication has enabled manufacturing of microscopic neurostimulation electrodes with smaller footprint than ever possible. The smaller electrodes can potentially reduce tissue damage and allow better spatial resolution for neural stimulation. Although electrodes of any shape can easily be fabricated, substantial effort have been focused on identification and characterization of new materials and surface morphology for efficient charge injection, while maintaining simple circular or rectangular Euclidean electrode geometries. In this work we provide a systematic electrochemical evaluation of charge injection capacities of serpentine and fractal-shaped platinum microelectrodes and compare their performance with traditional circular microelectrodes. Our findings indicate that the increase in electrode perimeter leads to an increase in maximum charge injection capacity. Furthermore, we found that the electrode geometry can have even more significant impact on electrode performance than having a larger perimeter for a given surface area. The fractal-shaped microelectrodes, despite having smaller perimeter than other designs, demonstrated superior charge injection capacity. Our results suggest that electrode design can significantly affect both Faradaic and non-Faradaic electrochemical processes, which may be optimized to enable a more energy efficient design for neurostimulation.

  11. Theory and discretization of ideal magnetohydrodynamic equilibria with fractal pressure profiles

    NASA Astrophysics Data System (ADS)

    Kraus, B. F.; Hudson, S. R.

    2017-09-01

    In three-dimensional ideal magnetohydrodynamics, closed flux surfaces cannot maintain both rational rotational-transform and pressure gradients, as these features together produce unphysical, infinite currents. A proposed set of equilibria nullifies these currents by flattening the pressure on sufficiently wide intervals around each rational surface. Such rational surfaces exist at every scale, which characterizes the pressure profile as self-similar and thus fractal. The pressure profile is approximated numerically by considering a finite number of rational regions and analyzed mathematically by classifying the irrational numbers that support gradients into subsets. Applying these results to a given rotational-transform profile in cylindrical geometry, we find magnetic field and current density profiles compatible with the fractal pressure.

  12. Launching the chaotic realm of iso-fractals: A short remark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Schmidt, Nathan; Katebi, Reza; Corda, Christian

    In this brief note, we introduce the new, emerging sub-discipline of iso-fractals by highlighting and discussing the preliminary results of recent works. First, we note the abundance of fractal, chaotic, non-linear, and self-similar structures in nature while emphasizing the importance of studying such systems because fractal geometry is the language of chaos. Second, we outline the iso-fractal generalization of the Mandelbrot set to exemplify the newly generated Mandelbrot iso-sets. Third, we present the cutting-edge notion of dynamic iso-spaces and explain how a mathematical space can be iso-topically lifted with iso-unit functions that (continuously or discretely) change; in the discrete casemore » examples, we mention that iteratively generated sequences like Fibonacci’s numbers and (the complex moduli of) Mandelbrot’s numbers can supply a deterministic chain of iso-units to construct an ordered series of (magnified and/or de-magnified) iso-spaces that are locally iso-morphic. Fourth, we consider the initiation of iso-fractals with Inopin’s holographic ring (IHR) topology and fractional statistics for 2D and 3D iso-spaces. In total, the reviewed iso-fractal results are a significant improvement over traditional fractals because the application of Santilli’s iso-mathematics arms us an extra degree of freedom for attacking problems in chaos. Finally, we conclude by proposing some questions and ideas for future research work.« less

  13. A modified abstraction of Sierpiński fractals towards enhanced sensitivity of a cross-coupled bow-tie nanostructure

    NASA Astrophysics Data System (ADS)

    Hasan, Dihan; Lee, Chengkuo

    2018-06-01

    We experimentally demonstrate a modified abstraction of a fractal geometry (up to order M = 2), namely the Sierpiński fractal, with intrinsic self-similarity for a multitude of infrared sensing applications. The modification particularly strengthens the dipolar resonance and enables optical magnetism at longer wavelengths on a relatively miniaturized footprint. In contrast to the conventional resonant sensing, we harness the broadband electric field enhancement of the modified fractal patterns originating from the lightning rod effect in the non-resonant regime. We demonstrate strong enhancement of molecular absorption at mid-IR by the fractal patterns in the non-resonant regime even under extreme thermal broadening. Finally, we extend the work towards the functional study of the molecular fingerprint of ultra-thin film (∼5 nm) on a non-complementary metamaterial platform in the non-resonant regime. With the help of the solid state chemical dewetting of the monolayer, we also successfully demonstrate a new type of cross-coupling mediated sensitivity of the multispectral and mutually coupled fractal patterns. The research clearly indicates the usefulness of broadband electric field enhancement by the second order fractal pattern for on chip, complete profiling of mid-IR fingerprints of biological elements, i.e. cell, and protein monolayer on a limited footprint and under versatile morphological states.

  14. Fractual interrelationships in field and seismic data. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-01-07

    Fractals provide a description of physical patterns over a range of scales in both time and space. Studies presented herein examine the fractal characteristics of various geological variables such as deformed bed-lengths, fold relief, seismic reflection arrival time variations, drainage and topographic patterns, and fracture systems. The studies are also extended to consider the possibility that the fractal characteristics of these variables are interrelated. Fractal interrelationships observed in these studies provide a method for relating variations in the fractal characteristics of seismic reflection events from reservoir intervals to the fractal characteristics of reservoir fracture systems, faults, and fold distributions. Themore » work is motivated by current exploration and development interests to detect fractured reservoirs and to accurately predict flow rates and flow patterns within the fractured reservoir. Accurate prediction requires an understanding of several reservoir properties including the fractal geometry of the reservoir fracture network. Results of these studies provide a method to remotely assess the fractal characteristics of a fractured reservoir, and help guide field development activities. The most significant outgrowth of this research is that the fractal properties of structural relief inferred from seismic data and structural cross sections provide a quantitative means to characterize and compare complex structural patterns. Production from fractured reservoirs is the result of complex structural and stratigraphic controls; hence, the import of fractal characterization to the assessment of fractured reservoirs lies in its potential to quantitatively define interrelationships between subtle structural variation and production. The potential uses are illustrated using seismic data from the Granny Creek oil field in the Appalachian Plateau.« less

  15. Micromorphological characterization of zinc/silver particle composite coatings

    PubMed Central

    Méndez, Alia; Reyes, Yolanda; Trejo, Gabriel; StĘpień, Krzysztof

    2015-01-01

    ABSTRACT The aim of this study was to evaluate the three‐dimensional (3D) surface micromorphology of zinc/silver particles (Zn/AgPs) composite coatings with antibacterial activity prepared using an electrodeposition technique. These 3D nanostructures were investigated over square areas of 5 μm × 5 μm by atomic force microscopy (AFM), fractal, and wavelet analysis. The fractal analysis of 3D surface roughness revealed that (Zn/AgPs) composite coatings have fractal geometry. Triangulation method, based on the linear interpolation type, applied for AFM data was employed in order to characterise the surfaces topographically (in amplitude, spatial distribution and pattern of surface characteristics). The surface fractal dimension D f, as well as height values distribution have been determined for the 3D nanostructure surfaces. Microsc. Res. Tech. 78:1082–1089, 2015. © 2015 The Authors published by Wiley Periodicals, Inc. PMID:26500164

  16. Noteworthy fractal features and transport properties of Cantor tartans

    NASA Astrophysics Data System (ADS)

    Balankin, Alexander S.; Golmankhaneh, Alireza K.; Patiño-Ortiz, Julián; Patiño-Ortiz, Miguel

    2018-06-01

    This Letter is focused on the impact of fractal topology on the transport processes governed by different kinds of random walks on Cantor tartans. We establish that the spectral dimension of the infinitely ramified Cantor tartan ds is equal to its fractal (self-similarity) dimension D. Consequently, the random walk on the Cantor tartan leads to a normal diffusion. On the other hand, the fractal geometry of Cantor tartans allows for a natural definition of power-law distributions of the waiting times and step lengths of random walkers. These distributions are Lévy stable if D > 1.5. Accordingly, we found that the random walk with rests leads to sub-diffusion, whereas the Lévy walk leads to ballistic diffusion. The Lévy walk with rests leads to super-diffusion, if D >√{ 3 }, or sub-diffusion, if 1.5 < D <√{ 3 }.

  17. A conservation law, entropy principle and quantization of fractal dimensions in hadron interactions

    NASA Astrophysics Data System (ADS)

    Zborovský, I.

    2018-04-01

    Fractal self-similarity of hadron interactions demonstrated by the z-scaling of inclusive spectra is studied. The scaling regularity reflects fractal structure of the colliding hadrons (or nuclei) and takes into account general features of fragmentation processes expressed by fractal dimensions. The self-similarity variable z is a function of the momentum fractions x1 and x2 of the colliding objects carried by the interacting hadron constituents and depends on the momentum fractions ya and yb of the scattered and recoil constituents carried by the inclusive particle and its recoil counterpart, respectively. Based on entropy principle, new properties of the z-scaling concept are found. They are conservation of fractal cumulativity in hadron interactions and quantization of fractal dimensions characterizing hadron structure and fragmentation processes at a constituent level.

  18. Analysis of the fractal dimension of volcano geomorphology through Synthetic Aperture Radar (SAR) amplitude images acquired in C and X band.

    NASA Astrophysics Data System (ADS)

    Pepe, S.; Di Martino, G.; Iodice, A.; Manzo, M.; Pepe, A.; Riccio, D.; Ruello, G.; Sansosti, E.; Tizzani, P.; Zinno, I.

    2012-04-01

    In the last two decades several aspects relevant to volcanic activity have been analyzed in terms of fractal parameters that effectively describe natural objects geometry. More specifically, these researches have been aimed at the identification of (1) the power laws that governed the magma fragmentation processes, (2) the energy of explosive eruptions, and (3) the distribution of the associated earthquakes. In this paper, the study of volcano morphology via satellite images is dealt with; in particular, we use the complete forward model developed by some of the authors (Di Martino et al., 2012) that links the stochastic characterization of amplitude Synthetic Aperture Radar (SAR) images to the fractal dimension of the imaged surfaces, modelled via fractional Brownian motion (fBm) processes. Based on the inversion of such a model, a SAR image post-processing has been implemented (Di Martino et al., 2010), that allows retrieving the fractal dimension of the observed surfaces, dictating the distribution of the roughness over different spatial scales. The fractal dimension of volcanic structures has been related to the specific nature of materials and to the effects of active geodynamic processes. Hence, the possibility to estimate the fractal dimension from a single amplitude-only SAR image is of fundamental importance for the characterization of volcano structures and, moreover, can be very helpful for monitoring and crisis management activities in case of eruptions and other similar natural hazards. The implemented SAR image processing performs the extraction of the point-by-point fractal dimension of the scene observed by the sensor, providing - as an output product - the map of the fractal dimension of the area of interest. In this work, such an analysis is performed on Cosmo-SkyMed, ERS-1/2 and ENVISAT images relevant to active stratovolcanoes in different geodynamic contexts, such as Mt. Somma-Vesuvio, Mt. Etna, Vulcano and Stromboli in Southern Italy, Shinmoe in Japan, Merapi in Indonesia. Preliminary results reveal that the fractal dimension of natural areas, being related only to the roughness of the observed surface, is very stable as the radar illumination geometry, the resolution and the wavelength change, thus holding a very unique property in SAR data inversion. Such a behavior is not verified in case of non-natural objects. As a matter of fact, when the fractal estimation is performed in the presence of either man-made objects or SAR image features depending on geometrical distortions due to the SAR system acquisition (i.e. layover, shadowing), fractal dimension (D) values outside the range of fractality of natural surfaces (2 < D < 3) are retrieved. These non-fractal characteristics show to be heavily dependent on sensor acquisition parameters (e.g. view angle, resolution). In this work, the behaviour of the maps generated starting from the C- and X- band SAR data, relevant to all the considered volcanoes, is analyzed: the distribution of the obtained fractal dimension values is investigated on different zones of the maps. In particular, it is verified that the fore-slope and back-slope areas of the image share a very similar fractal dimension distribution that is placed around the mean value of D=2.3. We conclude that, in this context, the fractal dimension could be considered as a signature of the identification of the volcano growth as a natural process. The COSMO-SkyMed data used in this study have been processed at IREA-CNR within the SAR4Volcanoes project under Italian Space Agency agreement n. I/034/11/0.

  19. Temporal and spatial variation of morphological descriptors for atmospheric aerosols collected in Mexico City

    NASA Astrophysics Data System (ADS)

    China, S.; Mazzoleni, C.; Dubey, M. K.; Chakrabarty, R. K.; Moosmuller, H.; Onasch, T. B.; Herndon, S. C.

    2010-12-01

    We present an analysis of morphological characteristics of atmospheric aerosol collected during the MILAGRO (Megacity Initiative: Local and Global Research Observations) field campaign that took place in Mexico City in March 2006. The sampler was installed on the Aerodyne mobile laboratory. The aerosol samples were collected on nuclepore clear polycarbonate filters mounted in Costar pop-top membrane holders. More than one hundred filters were collected at different ground sites with different atmospheric and geographical characteristics (urban, sub-urban, mountain-top, industrial, etc.) over a month period. Selected subsets of these filters were analyzed for aerosol morphology using a scanning electron microscope and image analysis techniques. In this study we investigate spatial and temporal variations of aerosol shape descriptors, morphological parameters, and fractal dimension. We also compare the morphological results with other aerosol measurements such as aerosol optical properties(scattering and absorption) and size distribution data. Atmospheric aerosols have different morphological characteristics depending on many parameters such as emission sources, atmospheric formation pathways, aging processes, and aerosol mixing state. The aerosol morphology influences aerosol chemical and mechanical interactions with the environment, physical properties, and radiative effects. In this study, ambient aerosol particles have been classified in different shape groups as spherical, irregularly shaped, and fractal-like aggregates. Different morphological parameters such as aspect ratio, roundness, feret diameter, etc. have been estimated for irregular shaped and spherical particles and for different kinds of soot particles including fresh soot, collapsed and coated soot. Fractal geometry and image processing have been used to obtain morphological characteristics of different soot particles. The number of monomers constituting each aggregate and their diameters were measured and used to estimate an ensemble three-dimensional (3-d) fractal dimension. One-dimensional (1-d) and two-dimensional (2-d) fractal geometries have been measured using a power-law scaling relationship between 1-d and 2-d properties of projected images. Temporal variations in fractal dimension of soot-like aggregates have been observed at the mountaintop site and spatial variation of fractal dimension and other morphological descriptors of different shaped particles have been investigated for the different ground sites.

  20. Sierpinski triangles as a tool to introduce fractal geometry to children and their parents

    NASA Astrophysics Data System (ADS)

    Gires, Auguste; Schertzer, Daniel

    2017-04-01

    There are currently two somehow contradictory trends in the public debates involving scientific issues. On the one hand there is a need to address topics of increasing complexity, while on the other hand simple(istic) solutions are suggested by numerous people (including high level ones). Meanwhile there seems to be growing defiance towards science findings. Such problems are faced in numerous fields including geosciences where famous examples are the debates dealing with climate change, or water / air contamination. Such unfortunate trends means that the input of scientists in the society and public debates is strongly required. Although it not actually their job, scientists should get involved as a citizens. They should try to explain the complexity of the issues at stake, and take the necessary time to achieve this; not all problems can be explained with the help of a 140 characters tweet! Rather than hiding the uncertainties, they should try to explain this notion often not well understood, and admit the current limitations of knowledge. In the meantime it would be positive if this dialogue could help children and their parents to get familiarized with science and scientists, show that science is not obscure and actually present in everyday life. Scientists obviously also have the hope of fostering a desire for understanding, enhancing scientific culture and even promoting careers in this field. Fractals and fractal geometry are actually a rather good tool to achieve this. Indeed through numerous iterations of a simple process, one can easily obtain a rather complex shape, exhibiting some of the features observed in the nature. Fractal shapes are scale invariant, i.e. the more you zoom in, the more details you see; a portion of the shape is similar to the full one. This paper aims at presenting a series of activities presenting fractals to young people developed primarily around the famous Sierpinski triangles. Two types of activities were carefully designed: (i) Classroom introduction to fractals. The idea here is to use children rather than computers to carry out numerous iterations of a process (:-)), i.e. each child does a small part of a greater shape. Fractals are intrinsically build this way. Such activities were implemented in 4 class of children between 4 and 10, with means of drawing or collage according to their age. Activities were prepared in collaboration with the teachers. (ii) "Fract'art : randomness and geometry for all", an open workshop in the science museum "L'exploradôme" in Vitry. Target audience was 8-12 years children (and their parents were welcomed!). Randomness, a unfortunately much neglected notion, was introduced within the fractal shapes. The use of random fractals and colour gave an aesthetic aspect to the studied shapes. A user friendly software was created for this workshop so that everyone was able to create its own fractal shape starting from well known simple shapes (triangle, rectangle, segment, circle). After a very short introduction, people were able to plot their own shapes and print them. An exchange during the implementation phase lead to questions on how such shapes are used in geosciences. An evaluation quizz was distributed at the end of the two sessions of this workshop. This paper will discuss and analyse the preparation and outcome of these activities.

  1. Experimental Study and Fractal Analysis on the Anisotropic Performance of Explosively Welded Interfaces of 304 Stainless Steel/245 Carbon Steel

    NASA Astrophysics Data System (ADS)

    Fu, Yanshu; Qiu, Yaohui; Li, Yulong

    2018-03-01

    The mechanical anisotropy of an explosive welding composite plate made of 304 stainless steel/245 steel was studied through shear experiments performed on explosively welded wavy interfaces along several orientation angles. The results indicated that the strength and the fracture energy of samples significantly varied with the orientation angles. The fracture surfaces of all samples were observed using a scanning electron microscope and through three-dimensional structure microscopy. The periodic features of all the fracture surfaces were clearly shown in different fracture modes. The fractal dimension of the fracture surfaces was calculated based on the fractal geometry by the box-counting method in MATLAB. The cohesive element model was used to analyze the fracture energy according to the physical dependence of the fractal dimension on thermodynamic entropy and interface separation energy. The fracture energy was an exponential function of the fractal dimension value, which was in good agreement with the experimental results. All results were validated for effective use in the application of anisotropy analysis to the welded interface and structural optimization of explosively welded composite plates.

  2. Experimental Study and Fractal Analysis on the Anisotropic Performance of Explosively Welded Interfaces of 304 Stainless Steel/245 Carbon Steel

    NASA Astrophysics Data System (ADS)

    Fu, Yanshu; Qiu, Yaohui; Li, Yulong

    2018-05-01

    The mechanical anisotropy of an explosive welding composite plate made of 304 stainless steel/245 steel was studied through shear experiments performed on explosively welded wavy interfaces along several orientation angles. The results indicated that the strength and the fracture energy of samples significantly varied with the orientation angles. The fracture surfaces of all samples were observed using a scanning electron microscope and through three-dimensional structure microscopy. The periodic features of all the fracture surfaces were clearly shown in different fracture modes. The fractal dimension of the fracture surfaces was calculated based on the fractal geometry by the box-counting method in MATLAB. The cohesive element model was used to analyze the fracture energy according to the physical dependence of the fractal dimension on thermodynamic entropy and interface separation energy. The fracture energy was an exponential function of the fractal dimension value, which was in good agreement with the experimental results. All results were validated for effective use in the application of anisotropy analysis to the welded interface and structural optimization of explosively welded composite plates.

  3. Theory and discretization of ideal magnetohydrodynamic equilibria with fractal pressure profiles

    DOE PAGES

    Kraus, B. F.; Hudson, S. R.

    2017-09-29

    In three-dimensional ideal magnetohydrodynamics, closed flux surfaces cannot maintain both rational rotational-transform and pressure gradients, as these features together produce unphysical, infinite currents. A proposed set of equilibria nullifies these currents by flattening the pressure on sufficiently wide intervals around each rational surface. Such rational surfaces exist at every scale, which characterizes the pressure profile as self-similar and thus fractal. The pressure profile is approximated numerically by considering a finite number of rational regions and analyzed mathematically by classifying the irrational numbers that support gradients into subsets. As a result, applying these results to a given rotational-transform profile in cylindricalmore » geometry, we find magnetic field and current density profiles compatible with the fractal pressure.« less

  4. Theory and discretization of ideal magnetohydrodynamic equilibria with fractal pressure profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, B. F.; Hudson, S. R.

    In three-dimensional ideal magnetohydrodynamics, closed flux surfaces cannot maintain both rational rotational-transform and pressure gradients, as these features together produce unphysical, infinite currents. A proposed set of equilibria nullifies these currents by flattening the pressure on sufficiently wide intervals around each rational surface. Such rational surfaces exist at every scale, which characterizes the pressure profile as self-similar and thus fractal. The pressure profile is approximated numerically by considering a finite number of rational regions and analyzed mathematically by classifying the irrational numbers that support gradients into subsets. As a result, applying these results to a given rotational-transform profile in cylindricalmore » geometry, we find magnetic field and current density profiles compatible with the fractal pressure.« less

  5. Implications of convection in the Moon and the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Turcotte, Donald L.

    1987-01-01

    The early thermal and chemical evolution of the Moon is discussed. The rubidium-strontium, neodymium-samarium, and uranium-thorium-lead systems were studied. The relation of source region heterogeneity to the mixing associated with mantle convection is considered. Work on the application of fractal concepts to planetary geology and geophysics is also discussed. The fractal concept was applied to fragmentation, including the frequency-size distribution of meteorites, asteroids and particulate matter produced by impacts.

  6. Broadband High Efficiency Fractal-Like and Diverse Geometry Silicon Nanowire Arrays for Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    AL-Zoubi, Omar H.

    Solar energy has many advantages over conventional sources of energy. It is abundant, clean and sustainable. One way to convert solar energy directly into electrical energy is by using the photovoltaic solar cells (PVSC). Despite PVSC are becoming economically competitive, they still have high cost and low light to electricity conversion efficiency. Therefore, increasing the efficiency and reducing the cost are key elements for producing economically more competitive PVSC that would have significant impact on energy market and saving environment. A significant percentage of the PVSC cost is due to the materials cost. For that, thin films PVSC have been proposed which offer the benefits of the low amount of material and fabrication costs. Regrettably, thin film PVSC show poor light to electricity conversion efficiency because of many factors especially the high optical losses. To enhance conversion efficiency, numerous techniques have been proposed to reduce the optical losses and to enhance the absorption of light in thin film PVSC. One promising technique is the nanowire (NW) arrays in general and the silicon nanowire (SiNW) arrays in particular. The purpose of this research is to introduce vertically aligned SiNW arrays with enhanced and broadband absorption covering the entire solar spectrum while simultaneously reducing the amount of material used. To this end, we apply new concept for designing SiNW arrays based on employing diversity of physical dimensions, especially radial diversity within certain lattice configurations. In order to study the interaction of light with SiNW arrays and compute their optical properties, electromagnetic numerical modeling is used. A commercial numerical electromagnetic solver software package, high frequency structure simulation (HFSS), is utilized to model the SiNW arrays and to study their optical properties. We studied different geometries factors that affect the optical properties of SiNW arrays. Based on this study, we found that the optical properties of SiNW arrays are strongly affected by the radial diversity, the arrangement of SiNW in a lattice, and the configuration of such lattice. The proper selection of these parameters leads to broaden and enhance the light absorption of the SiNW arrays. Inspired by natural configurations, fractal geometry and diamond lattice structures, we introduced two lattice configurations: fractal-like array (FLA) that is inspired by fractal geometry, and diamond-like array (DLA) that is inspired by diamond crystal lattice structure. Optimization, using parametric analysis, of the introduced arrays parameters for the light absorption level and the amount of used material has been performed. Both of the introduced SiNW arrays show broadband, strong light absorption coupled with reduction of the amount of the used material. DLA in specific showed significantly enhanced absorption covering the entire solar spectrum of interest, where near-unity absorption spectrum could be achieved. We studied the optical properties of complete PVSC devices that are based on SiNW array. Moreover, the performance of PVSC device that is based on SiNW has been investigated by using numerical modeling. SILVACO software package is used for performing the numerical simulation of the PVSC device performance, which can simultaneously handle the different coupled physical mechanisms contributing to the photovoltaic effect. The effect of the geometry of PVSC device that is based on SiNW is investigated, which shows that the geometry of such PVSC has a role in enhancing its electrical properties. The outcome of this study introduces new SiNW array configurations that have enhanced optical properties using a low amount of material that can be utilized for producing higher efficiency thin film PVCS. The overall conclusion of this work is that a weak absorption indirect band gap material, silicon, in the form of properly designed SiNW and SiNC arrays has the potentials to achieve near-unity ideal absorption spectrum using reduced amount of material, which can lead to produce new generation of lower cost and enhanced efficiency thin film PVSC.

  7. Computer simulation of viscous fingering in Sierpinski carpet

    NASA Astrophysics Data System (ADS)

    Ju-ping, Tian; Kai-lun, Yao

    1998-09-01

    A new method-mapping dilation method is proposed in this paper to construct Sierpinski carpet. Viscous fingering (VF) in Sierpinski carpet, based on the assumption that bond radii are beta distribution, is investigated by means of successive over-relaxation techniques. The topology and the geometry of the porous media have a strong effect on displacement processes. In the Sierpinski network, the VF pattern of porous media in the limit M → ∞ is found to be similar to the diffusion-limited-aggregation pattern. The fractal dimension for VF in fractal space is calculated and the fractal dimension D can be reasonably regarded as a useful parameter to evaluate the sweep efficiencies and oil recoveries. We have also found that the geometry of the porous medium also has strong effects on the displacement processes and the structure of the VF. Moreover, we find that the sweep efficiency of the displacement processes mainly depends upon the length of the network system and also on the viscosity ratio M. This shows that the current method can be used to solve VF problems in complex structures if the structures are self-similar, or they can be reduced to a self-similar structure.

  8. Geometry of modified release formulations during dissolution--influence on performance of dosage forms with diclofenac sodium.

    PubMed

    Dorożyński, Przemysław; Kulinowski, Piotr; Jamróz, Witold; Juszczyk, Ewelina

    2014-12-30

    The objectives of the work included: presentation of magnetic resonance imaging (MRI) and fractal analysis based approach to comparison of dosage forms of different composition, structure, and assessment of the influence of the compositional factors i.e., matrix type, excipients etc., on properties and performance of the dosage form during drug dissolution. The work presents the first attempt to compare MRI data obtained for tablet formulations of different composition and characterized by distinct differences in hydration and drug dissolution mechanisms. The main difficulty, in such a case stems from differences in hydration behavior and tablet's geometry i.e., swelling, cracking, capping etc. A novel approach to characterization of matrix systems i.e., quantification of changes of geometrical complexity of the matrix shape during drug dissolution has been developed. Using three chosen commercial modified release tablet formulations with diclofenac sodium we present the method of parameterization of their geometrical complexity on the base of fractal analysis. The main result of the study is the correlation between the hydrating tablet behavior and drug dissolution - the increase of geometrical complexity expressed as fractal dimension relates to the increased variability of drug dissolution results. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Benoit Mandelbrot, films, and me: a tribute

    NASA Astrophysics Data System (ADS)

    Lesmoir-Gordon, Nigel

    2015-03-01

    Back in the early 1990s I was researching topics for possible science TV documentaries and reading Ian Stewart's book Does God Play Dice? [1] I came across the chapter he called The Gingerbread Man. It was about the Mandelbrot set. Reading that chapter I could see that here was the perfect subject for a film. The Mandelbrot set is a fractal (Fig. 13.1) and fractal geometry is the geometry of nature (Figs. 13.2 to 13.4). So here I had the stunning visual beauty of the set itself and the natural world to point my camera at. It was a science story I could tell in pictures. It wasn't the Big Bang or gravity or quantum mechanics, it was something you could actually see and which could be filmed directly without recourse to endless and expensive CGI...

  10. Engineering the shape and structure of materials by fractal cut.

    PubMed

    Cho, Yigil; Shin, Joong-Ho; Costa, Avelino; Kim, Tae Ann; Kunin, Valentin; Li, Ju; Lee, Su Yeon; Yang, Shu; Han, Heung Nam; Choi, In-Suk; Srolovitz, David J

    2014-12-09

    In this paper we discuss the transformation of a sheet of material into a wide range of desired shapes and patterns by introducing a set of simple cuts in a multilevel hierarchy with different motifs. Each choice of hierarchical cut motif and cut level allows the material to expand into a unique structure with a unique set of properties. We can reverse-engineer the desired expanded geometries to find the requisite cut pattern to produce it without changing the physical properties of the initial material. The concept was experimentally realized and applied to create an electrode that expands to >800% the original area with only very minor stretching of the underlying material. The generality of our approach greatly expands the design space for materials so that they can be tuned for diverse applications.

  11. Fractal Measure and Microscopic Modeling of Osseointegration.

    PubMed

    Santos, Leonardo Cavalcanti Bezerra; Carvalho, Alessandra Albuquerque; Leão, Jair Carneiro; Neto, Paulo Jose; Stosic, Tatijana; Stosic, Borko

    2015-01-01

    In this study, the process of osseointegration on titanium implant surfaces with different physicochemical treatments subjected to a simulated corporal fluid submersion was evaluated using the concept of fractal dimension. It was found that different treatments led to rather different calcium phosphate crystal growth patterns, with fractal dimension ranging from 1.68 to 1.93. The observed crystal patterns may be explained by a general deposition, diffusion, and aggregation growth mechanism, where diffusing particle sticking probability plays a fundamental role.

  12. Fractals, Coherence and Brain Dynamics

    NASA Astrophysics Data System (ADS)

    Vitiello, Giuseppe

    2010-11-01

    I show that the self-similarity property of deterministic fractals provides a direct connection with the space of the entire analytical functions. Fractals are thus described in terms of coherent states in the Fock-Bargmann representation. Conversely, my discussion also provides insights on the geometrical properties of coherent states: it allows to recognize, in some specific sense, fractal properties of coherent states. In particular, the relation is exhibited between fractals and q-deformed coherent states. The connection with the squeezed coherent states is also displayed. In this connection, the non-commutative geometry arising from the fractal relation with squeezed coherent states is discussed and the fractal spectral properties are identified. I also briefly discuss the description of neuro-phenomenological data in terms of squeezed coherent states provided by the dissipative model of brain and consider the fact that laboratory observations have shown evidence that self-similarity characterizes the brain background activity. This suggests that a connection can be established between brain dynamics and the fractal self-similarity properties on the basis of the relation discussed in this report between fractals and squeezed coherent states. Finally, I do not consider in this paper the so-called random fractals, namely those fractals obtained by randomization processes introduced in their iterative generation. Since self-similarity is still a characterizing property in many of such random fractals, my conjecture is that also in such cases there must exist a connection with the coherent state algebraic structure. In condensed matter physics, in many cases the generation by the microscopic dynamics of some kind of coherent states is involved in the process of the emergence of mesoscopic/macroscopic patterns. The discussion presented in this paper suggests that also fractal generation may provide an example of emergence of global features, namely long range correlation at mesoscopic/macroscopic level, from microscopic local deformation processes. In view of the wide spectrum of application of both, fractal studies and coherent state physics, spanning from solid state physics to laser physics, quantum optics, complex dynamical systems and biological systems, the results presented in the present report may lead to interesting practical developments in many research sectors.

  13. Nontrivial paths and periodic orbits of the T-fractal billiard table

    NASA Astrophysics Data System (ADS)

    Lapidus, Michel L.; Miller, Robyn L.; Niemeyer, Robert G.

    2016-07-01

    We introduce and prove numerous new results about the orbits of the T-fractal billiard. Specifically, in section 3, we give a variety of sufficient conditions for the existence of a sequence of compatible periodic orbits. In section 4, we examine the limiting behavior of particular sequences of compatible periodic orbits. Additionally, sufficient conditions for the existence of particular nontrivial paths are given in section 4. The proofs of two results of Lapidus and Niemeyer (2013 The current state of fractal billiards Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics II: Fractals in Applied Mathematics (Contemporary Mathematics vol 601) ed D Carfi et al (Providence, RI: American Mathematical Society) pp 251-88 (e-print: arXiv:math.DS.1210.0282v2, 2013) appear here for the first time, as well. In section 5, an orbit with an irrational initial direction reaches an elusive point in a way that yields a nontrivial path of finite length, yet, by our convention, constitutes a singular orbit of the fractal billiard table. The existence of such an orbit seems to indicate that the classification of orbits may not be so straightforward. A discussion of our results and directions for future research is then given in section 6.

  14. The role of the circadian system in fractal neurophysiological control

    PubMed Central

    Pittman-Polletta, Benjamin R.; Scheer, Frank A.J.L.; Butler, Matthew P.; Shea, Steven A.; Hu, Kun

    2013-01-01

    Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations - similar temporal fluctuation patterns at different time scales. These fractal patterns contain information about health, as many pathological conditions are accompanied by their alteration or absence. In physical systems, such fluctuations are characteristic of critical states on the border between randomness and order, frequently arising from nonlinear feedback interactions between mechanisms operating on multiple scales. Thus, the existence of fractal fluctuations in physiology challenges traditional conceptions of health and disease, suggesting that high levels of integrity and adaptability are marked by complex variability, not constancy, and are properties of a neurophysiological network, not individual components. Despite the subject's theoretical and clinical interest, the neurophysiological mechanisms underlying fractal regulation remain largely unknown. The recent discovery that the circadian pacemaker (suprachiasmatic nucleus) plays a crucial role in generating fractal patterns in motor activity and heart rate sheds an entirely new light on both fractal control networks and the function of this master circadian clock, and builds a bridge between the fields of circadian biology and fractal physiology. In this review, we sketch the emerging picture of the developing interdisciplinary field of fractal neurophysiology by examining the circadian system’s role in fractal regulation. PMID:23573942

  15. The Common Evolution of Geometry and Architecture from a Geodetic Point of View

    NASA Astrophysics Data System (ADS)

    Bellone, T.; Fiermonte, F.; Mussio, L.

    2017-05-01

    Throughout history the link between geometry and architecture has been strong and while architects have used mathematics to construct their buildings, geometry has always been the essential tool allowing them to choose spatial shapes which are aesthetically appropriate. Sometimes it is geometry which drives architectural choices, but at other times it is architectural innovation which facilitates the emergence of new ideas in geometry. Among the best known types of geometry (Euclidean, projective, analytical, Topology, descriptive, fractal,…) those most frequently employed in architectural design are: - Euclidean Geometry - Projective Geometry - The non-Euclidean geometries. Entire architectural periods are linked to specific types of geometry. Euclidean geometry, for example, was the basis for architectural styles from Antiquity through to the Romanesque period. Perspective and Projective geometry, for their part, were important from the Gothic period through the Renaissance and into the Baroque and Neo-classical eras, while non-Euclidean geometries characterize modern architecture.

  16. Mixing and the fractal geometry of piecewise isometries.

    PubMed

    Park, Paul P; Lynn, Thomas F; Umbanhowar, Paul B; Ottino, Julio M; Lueptow, Richard M

    2017-04-01

    Mathematical concepts often have applicability in areas that may have surprised their original developers. This is the case with piecewise isometries (PWIs), which transform an object by cutting it into pieces that are then rearranged to reconstruct the original object, and which also provide a paradigm to study mixing via cutting and shuffling in physical sciences and engineering. Every PWI is characterized by a geometric structure called the exceptional set, E, whose complement comprises nonmixing regions in the domain. Varying the parameters that define the PWI changes both the structure of E as well as the degree of mixing the PWI produces, which begs the question of how to determine which parameters produce the best mixing. Motivated by mixing of yield stress materials, for example granular media, in physical systems, we use numerical simulations of PWIs on a hemispherical shell and examine how the fat fractal properties of E relate to the degree of mixing for any particular PWI. We present numerical evidence that the fractional coverage of E negatively correlates with the intensity of segregation, a standard measure for the degree of mixing, which suggests that fundamental properties of E such as fractional coverage can be used to predict the effectiveness of a particular PWI as a mixing mechanism.

  17. Wavelet-based 3D reconstruction of microcalcification clusters from two mammographic views: new evidence that fractal tumors are malignant and Euclidean tumors are benign.

    PubMed

    Batchelder, Kendra A; Tanenbaum, Aaron B; Albert, Seth; Guimond, Lyne; Kestener, Pierre; Arneodo, Alain; Khalil, Andre

    2014-01-01

    The 2D Wavelet-Transform Modulus Maxima (WTMM) method was used to detect microcalcifications (MC) in human breast tissue seen in mammograms and to characterize the fractal geometry of benign and malignant MC clusters. This was done in the context of a preliminary analysis of a small dataset, via a novel way to partition the wavelet-transform space-scale skeleton. For the first time, the estimated 3D fractal structure of a breast lesion was inferred by pairing the information from two separate 2D projected mammographic views of the same breast, i.e. the cranial-caudal (CC) and mediolateral-oblique (MLO) views. As a novelty, we define the "CC-MLO fractal dimension plot", where a "fractal zone" and "Euclidean zones" (non-fractal) are defined. 118 images (59 cases, 25 malignant and 34 benign) obtained from a digital databank of mammograms with known radiologist diagnostics were analyzed to determine which cases would be plotted in the fractal zone and which cases would fall in the Euclidean zones. 92% of malignant breast lesions studied (23 out of 25 cases) were in the fractal zone while 88% of the benign lesions were in the Euclidean zones (30 out of 34 cases). Furthermore, a Bayesian statistical analysis shows that, with 95% credibility, the probability that fractal breast lesions are malignant is between 74% and 98%. Alternatively, with 95% credibility, the probability that Euclidean breast lesions are benign is between 76% and 96%. These results support the notion that the fractal structure of malignant tumors is more likely to be associated with an invasive behavior into the surrounding tissue compared to the less invasive, Euclidean structure of benign tumors. Finally, based on indirect 3D reconstructions from the 2D views, we conjecture that all breast tumors considered in this study, benign and malignant, fractal or Euclidean, restrict their growth to 2-dimensional manifolds within the breast tissue.

  18. The concept of a hierarchical cosmos

    NASA Astrophysics Data System (ADS)

    Grujić, P. V.

    2003-10-01

    The idea of a hierachically structured cosmos can be traced back to the Presocratic Hellada. In the fifth century BC Anaxagoras from Clazomenae developed an idea of a sort of fractal material world, by introducing the concept of seeds (spermata), or homoeomeries as Aristotle dubbed it later (Grujić 2001). Anaxagoras ideas have been grossly neglected during the Middle Ages, to be invoked by a number of post-Renaissance thinkers, like Leibniz, Kant, etc, though neither of them referred to their Greek predecessor. But the real resurrections of the hierarchical paradigm started at the beginning of the last century, with Fournier and Charlier (Grujić 2002). Second half of the 20th century witnessed an intensive development of the theoretical models based on the (multi)fractal paradigm, as well as a considerable body of the observational evidence in favour of the hierarchical cosmos (Saar 1988). We overview the state of the art of the cosmological fractal concept, both within the astrophysical (Sylos Labini et al 1998), methodological (Ribeiro 2001) and epistemological (Ribeiro and Videira 1998) context.

  19. On the design and optimisation of new fractal antenna using PSO

    NASA Astrophysics Data System (ADS)

    Rani, Shweta; Singh, A. P.

    2013-10-01

    An optimisation technique for newly shaped fractal structure using particle swarm optimisation with curve fitting is presented in this article. The aim of particle swarm optimisation is to find the geometry of the antenna for the required user-defined frequency. To assess the effectiveness of the presented method, a set of representative numerical simulations have been done and the results are compared with the measurements from experimental prototypes built according to the design specifications coming from the optimisation procedure. The proposed fractal antenna resonates at the 5.8 GHz industrial, scientific and medical band which is suitable for wireless telemedicine applications. The antenna characteristics have been studied using extensive numerical simulations and are experimentally verified. The antenna exhibits well-defined radiation patterns over the band.

  20. Microscopic insight into the bilateral formation of carbon spirals from a symmetric iron core

    PubMed Central

    Shiozawa, Hidetsugu; Bachmatiuk, Alicja; Stangl, Andreas; Cox, David C.; Silva, S. Ravi P.; Rümmeli, Mark H.; Pichler, Thomas

    2013-01-01

    Mirrored carbon-spirals have been produced from pressured ferrocene via the bilateral extrusion of the spiral pairs from an iron core. A parametric plot of the surface geometry displays the fractal growth of the conical helix made with the logarithmic spiral. Electron microscopy studies show the core is a crystalline cementite which grows and transforms its shape from spherical to biconical as it extrudes two spiralling carbon arms. In a cross section along the arms we observe graphitic flakes arranged in a herringbone structure, normal to which defects propagate. Local-wave-pattern analysis reveals nanoscale defect patterns of two-fold symmetry around the core. The data suggest that the bilateral growth originates from a globular cementite crystal with molten surfaces and the nano-defects shape emerging hexagonal carbon into a fractal structure. Understanding and knowledge obtained provide a basis for the controlled production of advanced carbon materials with designed geometries. PMID:23670649

  1. Microtopographic Inspection and Fractal Analysis of Skin Neoplasia

    NASA Astrophysics Data System (ADS)

    Costa, Manuel F. M.; Hipolito, Alberto Valencia; Gutierrez, Gustavo Fidel; Chanona, Jorge; Gallegos, Eva Ramón

    2008-04-01

    Early detection of skin cancer is fundamental to a successful treatment. Changes in the shape, including the relief, of skin lesions are an indicator of a possible malignity. Optical microtopographic inspection of skin lesions can be used to identify diagnostic patterns of benign and malign skin' lesions. Statistical parameters like the mean roughness (Ra) may allow the discrimination between different types of lesions and degree of malignity. Fractal analysis of bi-dimensional and 3D images of skin lesions can validate or complement that assessment by calculation of its fractal dimensions (FD). On the study herein reported the microtopographic inspection of the skin lesions were performed using the optical triangulation based microtopographer developed at the Physics Department of the University of Minho, MICROTOP.03.MFC. The patients that participated in this research work were men and women older than 15 years with the clinical and histopathology diagnoses of: melanoma, basocellular carcinoma, epidermoide carcinoma, actinic keratosis, keratoacantosis and benign nevus. Latex impressions of the lesions were taken and microtopographically analyzed. Characteristic information for each type of studied lesion was obtained. For melanoma it was observed that on the average these tumors present an increased roughness of around 67 percent compared to the roughness of the healthy skin. This feature allows the distinction from other tumors as basocellular carcinoma (were the roughness increase was in the average of 49 percent) and benign lesions as the epidermoide cyst (37 percent) or the seborrhea keratosis (4 percent). Tumor size and roughness are directly proportional to the grade of malignality. The characterization of the fractal geometry of 2D (histological slides) and 3D images of skin lesions was performed by obtaining its FD evaluated by means of the Box counting method. Results obtained showed that the average fractal dimension of histological slide images (FDh) corresponding to some neoplasia is higher (1.334+/-0.072) than those for healthy skin (1.091+/-0.082). A significant difference between the fractal dimensions of neoplasia and healhty skin (>0.001) was registered. The FD of microtopography maps (FDm) can also distinguish between healthy and malignant tissue in general (2.277+/-0.070 to 2.309+/-0.040), but not discriminate the different types of skin neoplasias. The combination of the rugometric evaluation and fractal geometry characterization provides valuable information about the malignity of skin lesions and type of lesion.

  2. Fractal analysis of MRI data for the characterization of patients with schizophrenia and bipolar disorder.

    PubMed

    Squarcina, Letizia; De Luca, Alberto; Bellani, Marcella; Brambilla, Paolo; Turkheimer, Federico E; Bertoldo, Alessandra

    2015-02-21

    Fractal geometry can be used to analyze shape and patterns in brain images. With this study we use fractals to analyze T1 data of patients affected by schizophrenia or bipolar disorder, with the aim of distinguishing between healthy and pathological brains using the complexity of brain structure, in particular of grey matter, as a marker of disease. 39 healthy volunteers, 25 subjects affected by schizophrenia and 11 patients affected by bipolar disorder underwent an MRI session. We evaluated fractal dimension of the brain cortex and its substructures, calculated with an algorithm based on the box-count algorithm. We modified this algorithm, with the aim of avoiding the segmentation processing step and using all the information stored in the image grey levels. Moreover, to increase sensitivity to local structural changes, we computed a value of fractal dimension for each slice of the brain or of the particular structure. To have reference values in comparing healthy subjects with patients, we built a template by averaging fractal dimension values of the healthy volunteers data. Standard deviation was evaluated and used to create a confidence interval. We also performed a slice by slice t-test to assess the difference at slice level between the three groups. Consistent average fractal dimension values were found across all the structures in healthy controls, while in the pathological groups we found consistent differences, indicating a change in brain and structures complexity induced by these disorders.

  3. Fractal analysis of MRI data for the characterization of patients with schizophrenia and bipolar disorder

    NASA Astrophysics Data System (ADS)

    Squarcina, Letizia; De Luca, Alberto; Bellani, Marcella; Brambilla, Paolo; Turkheimer, Federico E.; Bertoldo, Alessandra

    2015-02-01

    Fractal geometry can be used to analyze shape and patterns in brain images. With this study we use fractals to analyze T1 data of patients affected by schizophrenia or bipolar disorder, with the aim of distinguishing between healthy and pathological brains using the complexity of brain structure, in particular of grey matter, as a marker of disease. 39 healthy volunteers, 25 subjects affected by schizophrenia and 11 patients affected by bipolar disorder underwent an MRI session. We evaluated fractal dimension of the brain cortex and its substructures, calculated with an algorithm based on the box-count algorithm. We modified this algorithm, with the aim of avoiding the segmentation processing step and using all the information stored in the image grey levels. Moreover, to increase sensitivity to local structural changes, we computed a value of fractal dimension for each slice of the brain or of the particular structure. To have reference values in comparing healthy subjects with patients, we built a template by averaging fractal dimension values of the healthy volunteers data. Standard deviation was evaluated and used to create a confidence interval. We also performed a slice by slice t-test to assess the difference at slice level between the three groups. Consistent average fractal dimension values were found across all the structures in healthy controls, while in the pathological groups we found consistent differences, indicating a change in brain and structures complexity induced by these disorders.

  4. From Fractal Trees to Deltaic Networks

    NASA Astrophysics Data System (ADS)

    Cazanacli, D.; Wolinsky, M. A.; Sylvester, Z.; Cantelli, A.; Paola, C.

    2013-12-01

    Geometric networks that capture many aspects of natural deltas can be constructed from simple concepts from graph theory and normal probability distributions. Fractal trees with symmetrical geometries are the result of replicating two simple geometric elements, line segments whose lengths decrease and bifurcation angles that are commonly held constant. Branches could also have a thickness, which in the case of natural distributary systems is the equivalent of channel width. In river- or wave-dominated natural deltas, the channel width is a function of discharge. When normal variations around the mean values for length, bifurcating angles, and discharge are applied, along with either pruning of 'clashing' branches or merging (equivalent to channel confluence), fractal trees start resembling natural deltaic networks, except that the resulting channels are unnaturally straight. Introducing a bifurcation probability fewer, naturally curved channels are obtained. If there is no bifurcation, the direction of each new segment depends on the direction the previous segment upstream (correlated random walk) and, to a lesser extent, on a general direction of growth (directional bias). When bifurcation occurs, the resulting two directions also depend on the bifurcation angle and the discharge split proportions, with the dominant branch following the direction of the upstream parent channel closely. The bifurcation probability controls the channel density and, in conjunction with the variability of the directional angles, the overall curvature of the channels. The growth of the network in effect is associated with net delta progradation. The overall shape and shape evolution of the delta depend mainly on the bifurcation angle average size and angle variability coupled with the degree of dominant direction dependency (bias). The proposed algorithm demonstrates how, based on only a few simple rules, a wide variety of channel networks resembling natural deltas, can be replicated. Network Example

  5. Scale relativity theory and integrative systems biology: 1. Founding principles and scale laws.

    PubMed

    Auffray, Charles; Nottale, Laurent

    2008-05-01

    In these two companion papers, we provide an overview and a brief history of the multiple roots, current developments and recent advances of integrative systems biology and identify multiscale integration as its grand challenge. Then we introduce the fundamental principles and the successive steps that have been followed in the construction of the scale relativity theory, and discuss how scale laws of increasing complexity can be used to model and understand the behaviour of complex biological systems. In scale relativity theory, the geometry of space is considered to be continuous but non-differentiable, therefore fractal (i.e., explicitly scale-dependent). One writes the equations of motion in such a space as geodesics equations, under the constraint of the principle of relativity of all scales in nature. To this purpose, covariant derivatives are constructed that implement the various effects of the non-differentiable and fractal geometry. In this first review paper, the scale laws that describe the new dependence on resolutions of physical quantities are obtained as solutions of differential equations acting in the scale space. This leads to several possible levels of description for these laws, from the simplest scale invariant laws to generalized laws with variable fractal dimensions. Initial applications of these laws to the study of species evolution, embryogenesis and cell confinement are discussed.

  6. Fractal Feature of Particle-Size Distribution in the Rhizospheres and Bulk Soils during Natural Recovery on the Loess Plateau, China

    PubMed Central

    Song, Zilin; Zhang, Chao; Liu, Guobin; Qu, Dong; Xue, Sha

    2015-01-01

    The application of fractal geometry to describe soil structure is an increasingly useful tool for better understanding the performance of soil systems. Only a few studies, however, have focused on the structure of rhizospheric zones, where energy flow and nutrient recycling most frequently occur. We used fractal dimensions to investigate the characteristics of particle-size distribution (PSD) in the rhizospheres and bulk soils of six croplands abandoned for 1, 5, 10, 15, 20, and 30 years on the Loess Plateau of China and evaluated the changes over successional time. The PSDs of the rhizospheres and the fractal dimensions between rhizosphere soil and bulk soils during the natural succession differed significantly due to the influence of plant roots. The rhizospheres had higher sand (0.05–1.00 mm) contents, lower silt (<0.002 mm) contents, and lower fractal dimensions than the bulk soils during the early and intermediate successional stages (1–15 years). The fractal dimensions of the rhizosphere soil and bulk soil ranged from 2.102 to 2.441 and from 2.214 to 2.459, respectively, during the 30-year restoration. Rhizospheric clay and silt contents and fractal dimension tended to be higher and sand content tended to be lower as abandonment age increased, but the bulk soils had the opposite trend. Linear regression analysis indicated that the fractal dimensions of both the rhizospheres and bulk soils were significantly linearly correlated with clay, sand, organic-carbon, and total-nitrogen contents, with R 2 ranging from 0.526 to 0.752 (P<0.001). In conclusion, PSD differed significantly between the rhizosphere soil and bulk soil. The fractal dimension was a sensitive and useful index for quantifying changes in the properties of the different soil zones. This study will greatly aid the application of the fractal method for describing soil structure and nutrient status and the understanding of the performance of rhizospheric zones during ecological restoration. PMID:26368339

  7. Fractal Based Triple Band High Gain Monopole Antenna

    NASA Astrophysics Data System (ADS)

    Pandey, Shashi Kant; Pandey, Ganga Prasad; Sarun, P. M.

    2017-10-01

    A novel triple-band microstrip fed planar monopole antenna is proposed and investigated. A fractal antenna is created by iterating a narrow pulse (NP) generator model at upper side of modified ground plane, which has a rhombic patch, for enhancing the bandwidth and gain. Three iterations are carried out to study the effects of fractal geometry on the antenna performance. The proposed antenna can operate over three frequency ranges viz, 3.34-4.8 GHz, 5.5-10.6 GHz and 13-14.96 GHz suitable for WLAN 5.2/5.8 GHz, WiMAX 3.5/5.5 GHz and X band applications respectively. Simulated and measured results are in good agreements with each others. Results show that antenna provides wide/ultra wide bandwidths, monopole like radiation patterns and very high antenna gains over the operating frequency bands.

  8. Adaptive Schools in a Quantum Universe.

    ERIC Educational Resources Information Center

    Garmston, Robert; Wellman, Bruce

    1995-01-01

    Information from quantum mechanics, chaos theory, fractal geometry, and the new biology can help educators rethink school-improvement approaches. Chaos and order exist simultaneously. Adaptability, the central operating principle of successful organizations, stems from five human energy fields: efficacy, flexibility, craftsmanship, consciousness,…

  9. The fourth dimension of life: fractal geometry and allometric scaling of organisms.

    PubMed

    West, G B; Brown, J H; Enquist, B J

    1999-06-04

    Fractal-like networks effectively endow life with an additional fourth spatial dimension. This is the origin of quarter-power scaling that is so pervasive in biology. Organisms have evolved hierarchical branching networks that terminate in size-invariant units, such as capillaries, leaves, mitochondria, and oxidase molecules. Natural selection has tended to maximize both metabolic capacity, by maximizing the scaling of exchange surface areas, and internal efficiency, by minimizing the scaling of transport distances and times. These design principles are independent of detailed dynamics and explicit models and should apply to virtually all organisms.

  10. Fractal and topological sustainable methods of overcoming expected uncertainty in the radiolocation of low-contrast targets and in the processing of weak multi-dimensional signals on the background of high-intensity noise: A new direction in the statistical decision theory

    NASA Astrophysics Data System (ADS)

    Potapov, A. A.

    2017-11-01

    The main purpose of this work is to interpret the main directions of radio physics, radio engineering and radio location in “fractal” language that makes new ways and generalizations on future promising radio systems. We introduce a new kind and approach of up-to-date radiolocation: fractal-scaling or scale-invariant radiolocation. The new topologic signs and methods of detecting the low-contrast objects against the high-intensity noise background are presented. It leads to basic changes in the theoretical radiolocation structure itself and also in its mathematical apparatus. The fractal radio systems conception, sampling topology, global fractal-scaling approach and the fractal paradigm underlie the scientific direction established by the author in Russia and all over the world for the first time ever.

  11. The fractal geometry of Hartree-Fock

    NASA Astrophysics Data System (ADS)

    Theel, Friethjof; Karamatskou, Antonia; Santra, Robin

    2017-12-01

    The Hartree-Fock method is an important approximation for the ground-state electronic wave function of atoms and molecules so that its usage is widespread in computational chemistry and physics. The Hartree-Fock method is an iterative procedure in which the electronic wave functions of the occupied orbitals are determined. The set of functions found in one step builds the basis for the next iteration step. In this work, we interpret the Hartree-Fock method as a dynamical system since dynamical systems are iterations where iteration steps represent the time development of the system, as encountered in the theory of fractals. The focus is put on the convergence behavior of the dynamical system as a function of a suitable control parameter. In our case, a complex parameter λ controls the strength of the electron-electron interaction. An investigation of the convergence behavior depending on the parameter λ is performed for helium, neon, and argon. We observe fractal structures in the complex λ-plane, which resemble the well-known Mandelbrot set, determine their fractal dimension, and find that with increasing nuclear charge, the fragmentation increases as well.

  12. Benoit Mandelbrot: The Euclid of Fractal Geometry.

    ERIC Educational Resources Information Center

    Camp, Dane R.

    2000-01-01

    Cites Mandelbrot as an example of one who learned the language of mathematics, biding his time until he could employ his knowledge both as a means of creative expression and as a tool for comprehending the intricacies of the world around us. (KHR)

  13. Layout and cabling considerations for a large communications antenna array

    NASA Technical Reports Server (NTRS)

    Logan, R. T., Jr.

    1993-01-01

    Layout considerations for a large deep space communications antenna array are discussed. A fractal geometry for the antenna layout is described that provides optimal packing of antenna elements, efficient cable routing, and logical division of the array into identical sub-arrays.

  14. Classical evolution of fractal measures on the lattice

    NASA Astrophysics Data System (ADS)

    Antoniou, N. G.; Diakonos, F. K.; Saridakis, E. N.; Tsolias, G. A.

    2007-04-01

    We consider the classical evolution of a lattice of nonlinear coupled oscillators for a special case of initial conditions resembling the equilibrium state of a macroscopic thermal system at the critical point. The displacements of the oscillators define initially a fractal measure on the lattice associated with the scaling properties of the order parameter fluctuations in the corresponding critical system. Assuming a sudden symmetry breaking (quench), leading to a change in the equilibrium position of each oscillator, we investigate in some detail the deformation of the initial fractal geometry as time evolves. In particular, we show that traces of the critical fractal measure can be sustained for large times, and we extract the properties of the chain that determine the associated time scales. Our analysis applies generally to critical systems for which, after a slow developing phase where equilibrium conditions are justified, a rapid evolution, induced by a sudden symmetry breaking, emerges on time scales much shorter than the corresponding relaxation or observation time. In particular, it can be used in the fireball evolution in a heavy-ion collision experiment, where the QCD critical point emerges, or in the study of evolving fractals of astrophysical and cosmological scales, and may lead to determination of the initial critical properties of the Universe through observations in the symmetry-broken phase.

  15. Nuclear patterns of human breast cancer cells during apoptosis: characterisation by fractal dimension and co-occurrence matrix statistics.

    PubMed

    Losa, Gabriele A; Castelli, Christian

    2005-11-01

    An analytical strategy combining fractal geometry and grey-level co-occurrence matrix (GLCM) statistics was devised to investigate ultrastructural changes in oestrogen-insensitive SK-BR3 human breast cancer cells undergoing apoptosis in vitro. Apoptosis was induced by 1 microM calcimycin (A23187 Ca(2+) ionophore) and assessed by measuring conventional cellular parameters during the culture period. SK-BR3 cells entered the early stage of apoptosis within 24 h of treatment with calcimycin, which induced detectable changes in nuclear components, as documented by increased values of most GLCM parameters and by the general reduction of the fractal dimensions. In these affected cells, morphonuclear traits were accompanied by the reduction of distinct gangliosides and loss of unidentifiable glycolipid molecules at the cell surface. All these changes were shown to be involved in apoptosis before the detection of conventional markers, which were only measurable during the active phases of apoptotic cell death. In overtly apoptotic cells treated with 1 microM calcimycin for 72 h, most nuclear components underwent dramatic ultrastructural changes, including marginalisation and condensation of chromatin, as reflected in a significant reduction of their fractal dimensions. Hence, both fractal and GLCM analyses confirm that the morphological reorganisation of nuclei, attributable to a loss of structural complexity, occurs early in apoptosis.

  16. Lorenz, Gödel and Penrose: new perspectives on determinism and causality in fundamental physics

    NASA Astrophysics Data System (ADS)

    Palmer, T. N.

    2014-07-01

    Despite being known for his pioneering work on chaotic unpredictability, the key discovery at the core of meteorologist Ed Lorenz's work is the link between space-time calculus and state-space fractal geometry. Indeed, properties of Lorenz's fractal invariant set relate space-time calculus to deep areas of mathematics such as Gödel's Incompleteness Theorem. Could such properties also provide new perspectives on deep unsolved issues in fundamental physics? Recent developments in cosmology motivate what is referred to as the 'cosmological invariant set postulate': that the universe ? can be considered a deterministic dynamical system evolving on a causal measure-zero fractal invariant set ? in its state space. Symbolic representations of ? are constructed explicitly based on permutation representations of quaternions. The resulting 'invariant set theory' provides some new perspectives on determinism and causality in fundamental physics. For example, while the cosmological invariant set appears to have a rich enough structure to allow a description of (quantum) probability, its measure-zero character ensures it is sparse enough to prevent invariant set theory being constrained by the Bell inequality (consistent with a partial violation of the so-called measurement independence postulate). The primacy of geometry as embodied in the proposed theory extends the principles underpinning general relativity. As a result, the physical basis for contemporary programmes which apply standard field quantisation to some putative gravitational lagrangian is questioned. Consistent with Penrose's suggestion of a deterministic but non-computable theory of fundamental physics, an alternative 'gravitational theory of the quantum' is proposed based on the geometry of ?, with new perspectives on the problem of black-hole information loss and potential observational consequences for the dark universe.

  17. Nature of size effects in compact models of field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torkhov, N. A., E-mail: trkf@mail.ru; Scientific-Research Institute of Semiconductor Devices, Tomsk 634050; Tomsk State University of Control Systems and Radioelectronics, Tomsk 634050

    Investigations have shown that in the local approximation (for sizes L < 100 μm), AlGaN/GaN high electron mobility transistor (HEMT) structures satisfy to all properties of chaotic systems and can be described in the language of fractal geometry of fractional dimensions. For such objects, values of their electrophysical characteristics depend on the linear sizes of the examined regions, which explain the presence of the so-called size effects—dependences of the electrophysical and instrumental characteristics on the linear sizes of the active elements of semiconductor devices. In the present work, a relationship has been established for the linear model parameters of themore » equivalent circuit elements of internal transistors with fractal geometry of the heteroepitaxial structure manifested through a dependence of its relative electrophysical characteristics on the linear sizes of the examined surface areas. For the HEMTs, this implies dependences of their relative static (A/mm, mA/V/mm, Ω/mm, etc.) and microwave characteristics (W/mm) on the width d of the sink-source channel and on the number of sections n that leads to a nonlinear dependence of the retrieved parameter values of equivalent circuit elements of linear internal transistor models on n and d. Thus, it has been demonstrated that the size effects in semiconductors determined by the fractal geometry must be taken into account when investigating the properties of semiconductor objects on the levels less than the local approximation limit and designing and manufacturing field effect transistors. In general, the suggested approach allows a complex of problems to be solved on designing, optimizing, and retrieving the parameters of equivalent circuits of linear and nonlinear models of not only field effect transistors but also any arbitrary semiconductor devices with nonlinear instrumental characteristics.« less

  18. Diagnosis of cervical cells based on fractal and Euclidian geometrical measurements: Intrinsic Geometric Cellular Organization

    PubMed Central

    2014-01-01

    Background Fractal geometry has been the basis for the development of a diagnosis of preneoplastic and neoplastic cells that clears up the undetermination of the atypical squamous cells of undetermined significance (ASCUS). Methods Pictures of 40 cervix cytology samples diagnosed with conventional parameters were taken. A blind study was developed in which the clinic diagnosis of 10 normal cells, 10 ASCUS, 10 L-SIL and 10 H-SIL was masked. Cellular nucleus and cytoplasm were evaluated in the generalized Box-Counting space, calculating the fractal dimension and number of spaces occupied by the frontier of each object. Further, number of pixels occupied by surface of each object was calculated. Later, the mathematical features of the measures were studied to establish differences or equalities useful for diagnostic application. Finally, the sensibility, specificity, negative likelihood ratio and diagnostic concordance with Kappa coefficient were calculated. Results Simultaneous measures of the nuclear surface and the subtraction between the boundaries of cytoplasm and nucleus, lead to differentiate normality, L-SIL and H-SIL. Normality shows values less than or equal to 735 in nucleus surface and values greater or equal to 161 in cytoplasm-nucleus subtraction. L-SIL cells exhibit a nucleus surface with values greater than or equal to 972 and a subtraction between nucleus-cytoplasm higher to 130. L-SIL cells show cytoplasm-nucleus values less than 120. The rank between 120–130 in cytoplasm-nucleus subtraction corresponds to evolution between L-SIL and H-SIL. Sensibility and specificity values were 100%, the negative likelihood ratio was zero and Kappa coefficient was equal to 1. Conclusions A new diagnostic methodology of clinic applicability was developed based on fractal and euclidean geometry, which is useful for evaluation of cervix cytology. PMID:24742118

  19. Understanding soft glassy materials using an energy landscape approach

    NASA Astrophysics Data System (ADS)

    Hwang, Hyun Joo; Riggleman, Robert A.; Crocker, John C.

    2016-09-01

    Many seemingly different soft materials--such as soap foams, mayonnaise, toothpaste and living cells--display strikingly similar viscoelastic behaviour. A fundamental physical understanding of such soft glassy rheology and how it can manifest in such diverse materials, however, remains unknown. Here, by using a model soap foam consisting of compressible spherical bubbles, whose sizes slowly evolve and whose collective motion is simply dictated by energy minimization, we study the foam's dynamics as it corresponds to downhill motion on an energy landscape function spanning a high-dimensional configuration space. We find that these downhill paths, when viewed in this configuration space, are, surprisingly, fractal. The complex behaviour of our model, including power-law rheology and non-diffusive bubble motion and avalanches, stems directly from the fractal dimension and energy function of these paths. Our results suggest that ubiquitous soft glassy rheology may be a consequence of emergent fractal geometry in the energy landscapes of many complex fluids.

  20. Dual-band and polarization-insensitive terahertz absorber based on fractal Koch curves

    NASA Astrophysics Data System (ADS)

    Ma, Yan-Bing; Zhang, Huai-Wu; Li, Yuan-Xun; Wang, Yi-Cheng; Lai, Wei-En; Li, Jie

    2014-05-01

    We report the design, fabrication, and characterization of a dual-band and polarization-insensitive metamaterial absorber (MA), which consists of periodically arranged fractal Koch curves acting as the top resonator array and a metallic ground plane separated by a dielectric spacer. Compared with conventional MAs, a more compact size and multi-frequency operation are achieved by using fractal geometry as the unit cell of the MA. Both the effective medium theory and the multi-reflection interference theory are employed to investigate the underlying physical mechanism of the proposed terahertz MA, and results indicate that the latter theory is not suitable for explaining the absorption mechanism in our investigated structure. Two absorption peaks are observed at 0.226 THz and 0.622 THz with absorptivities of 91.3% and 95.6% respectively and good agreements between the full-wave simulation and experimental results are achieved.

  1. Comparison of caprock pore networks which potentially will be impacted by carbon sequestration projects.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCray, John; Navarre-Sitchler, Alexis; Mouzakis, Katherine

    Injection of CO2 into underground rock formations can reduce atmospheric CO2 emissions. Caprocks present above potential storage formations are the main structural trap inhibiting CO2 from leaking into overlying aquifers or back to the Earth's surface. Dissolution and precipitation of caprock minerals resulting from reaction with CO2 may alter the pore network where many pores are of the micrometer to nanometer scale, thus altering the structural trapping potential of the caprock. However, the distribution, geometry and volume of pores at these scales are poorly characterized. In order to evaluate the overall risk of leakage of CO2 from storage formations, amore » first critical step is understanding the distribution and shape of pores in a variety of different caprocks. As the caprock is often comprised of mudstones, we analyzed samples from several mudstone formations with small angle neutron scattering (SANS) and high-resolution transmission electron microscopy (TEM) imaging to compare the pore networks. Mudstones were chosen from current or potential sites for carbon sequestration projects including the Marine Tuscaloosa Group, the Lower Tuscaloosa Group, the upper and lower shale members of the Kirtland Formation, and the Pennsylvanian Gothic shale. Expandable clay contents ranged from 10% to approximately 40% in the Gothic shale and Kirtland Formation, respectively. During SANS, neutrons effectively scatter from interfaces between materials with differing scattering length density (i.e., minerals and pores). The intensity of scattered neutrons, I(Q), where Q is the scattering vector, gives information about the volume and arrangement of pores in the sample. The slope of the scattering data when plotted as log I(Q) vs. log Q provides information about the fractality or geometry of the pore network. On such plots slopes from -2 to -3 represent mass fractals while slopes from -3 to -4 represent surface fractals. Scattering data showed surface fractal dimensions for the Kirtland formation and one sample from the Tuscaloosa formation close to 3, indicating very rough surfaces. In contrast, scattering data for the Gothic shale formation exhibited mass fractal behavior. In one sample of the Tuscaloosa formation the data are described by a surface fractal at low Q (larger pores) and a mass fractal at high Q (smaller pores), indicating two pore populations contributing to the scattering behavior. These small angle neutron scattering results, combined with high-resolution TEM imaging, provided a means for both qualitative and quantitative analysis of the differences in pore networks between these various mudstones.« less

  2. Towards thermomechanics of fractal media

    NASA Astrophysics Data System (ADS)

    Ostoja-Starzewski, Martin

    2007-11-01

    Hans Ziegler’s thermomechanics [1,2,3], established half a century ago, is extended to fractal media on the basis of a recently introduced continuum mechanics due to Tarasov [14,15]. Employing the concept of internal (kinematic) variables and internal stresses, as well as the quasiconservative and dissipative stresses, a field form of the second law of thermodynamics is derived. In contradistinction to the conventional Clausius Duhem inequality, it involves generalized rates of strain and internal variables. Upon introducing a dissipation function and postulating the thermodynamic orthogonality on any lengthscale, constitutive laws of elastic-dissipative fractal media naturally involving generalized derivatives of strain and stress can then be derived. This is illustrated on a model viscoelastic material. Also generalized to fractal bodies is the Hill condition necessary for homogenization of their constitutive responses.

  3. Universal Inverse Power-Law Distribution for Fractal Fluctuations in Dynamical Systems: Applications for Predictability of Inter-Annual Variability of Indian and USA Region Rainfall

    NASA Astrophysics Data System (ADS)

    Selvam, A. M.

    2017-01-01

    Dynamical systems in nature exhibit self-similar fractal space-time fluctuations on all scales indicating long-range correlations and, therefore, the statistical normal distribution with implicit assumption of independence, fixed mean and standard deviation cannot be used for description and quantification of fractal data sets. The author has developed a general systems theory based on classical statistical physics for fractal fluctuations which predicts the following. (1) The fractal fluctuations signify an underlying eddy continuum, the larger eddies being the integrated mean of enclosed smaller-scale fluctuations. (2) The probability distribution of eddy amplitudes and the variance (square of eddy amplitude) spectrum of fractal fluctuations follow the universal Boltzmann inverse power law expressed as a function of the golden mean. (3) Fractal fluctuations are signatures of quantum-like chaos since the additive amplitudes of eddies when squared represent probability densities analogous to the sub-atomic dynamics of quantum systems such as the photon or electron. (4) The model predicted distribution is very close to statistical normal distribution for moderate events within two standard deviations from the mean but exhibits a fat long tail that are associated with hazardous extreme events. Continuous periodogram power spectral analyses of available GHCN annual total rainfall time series for the period 1900-2008 for Indian and USA stations show that the power spectra and the corresponding probability distributions follow model predicted universal inverse power law form signifying an eddy continuum structure underlying the observed inter-annual variability of rainfall. On a global scale, man-made greenhouse gas related atmospheric warming would result in intensification of natural climate variability, seen immediately in high frequency fluctuations such as QBO and ENSO and even shorter timescales. Model concepts and results of analyses are discussed with reference to possible prediction of climate change. Model concepts, if correct, rule out unambiguously, linear trends in climate. Climate change will only be manifested as increase or decrease in the natural variability. However, more stringent tests of model concepts and predictions are required before applications to such an important issue as climate change. Observations and simulations with climate models show that precipitation extremes intensify in response to a warming climate (O'Gorman in Curr Clim Change Rep 1:49-59, 2015).

  4. Determination of Uniaxial Compressive Strength of Ankara Agglomerate Considering Fractal Geometry of Blocks

    NASA Astrophysics Data System (ADS)

    Coskun, Aycan; Sonmez, Harun; Ercin Kasapoglu, K.; Ozge Dinc, S.; Celal Tunusluoglu, M.

    2010-05-01

    The uniaxial compressive strength (UCS) of rock material is a crucial parameter to be used for design stages of slopes, tunnels and foundations to be constructed in/on geological medium. However, preparation of high quality cores from geological mixtures or fragmented rocks such as melanges, fault rocks, coarse pyroclastic rocks, breccias and sheared serpentinites is often extremely difficult. According to the studies performed in literature, this type of geological materials may be grouped as welded and unwelded birmocks. Success of preparation of core samples from welded bimrocks is slightly better than unwelded ones. Therefore, some studies performed on the welded bimrocks to understand the mechanical behavior of geological mixture materials composed of stronger and weaker components (Gokceoglu, 2002; Sonmez et al., 2004; Sonmez et al., 2006; Kahraman, et al., 2008). The overall strength of bimrocks are generally depends on strength contrast between blocks and matrix; types and strength of matrix; type, size, strength, shape and orientation of blocks and volumetric block proportion. In previously proposed prediction models, while UCS of unwelded bimrocks may be determined by decreasing the UCS of matrix considering the volumetric block proportion, the welded ones can be predicted by considering both UCS of matrix and blocks together (Lindquist, 1994; Lindquist and Goodman, 1994; Sonmez et al., 2006 and Sonmez et al., 2009). However, there is a few attempts were performed about the effect of blocks shape and orientation on the strength of bimrock (Linqduist, 1994 and Kahraman, et al., 2008). In this study, Ankara agglomerate, which is composed of andesite blocks and surrounded weak tuff matrix, was selected as study material. Image analyses were performed on bottom, top and side faces of cores to identify volumetric block portions. In addition to the image analyses, andesite blocks on bottom, top and side faces were digitized for determination of fractal dimensions. To determine fractal dimensions of more than hundred andesite blocks in cores, a computer program namely FRACRUN were developed. Fractal geometry has been used as practical and popular tool to define particularly irregular shaped bodies in literature since the theory of fractal was developed by Mandelbrot (1967) (Hyslip and Vallejo, 1997; Kruhl and Nega, 1996; Bagde etal., 2002; Gulbin and Evangulova, 2003; Pardini, 2003; Kolay and Kayabali, 2006; Hamdi, 2008; Zorlu, 2009 and Sezer, 2009). Although there are some methods to determine fractal dimensions, square grid-cell count method for 2D and segment count method for 1D were followed in the algorithm of FRACRUN. FRACRUN has capable of determine fractal dimensions of many closed polygons on a single surface. In the study, a database composed of uniaxial compressive strength, volumetric block proportion, fractal dimensions and number of blocks for each core was established. Finally, prediction models were developed by regression analyses and compared with the empirical equations proposed by Sonmez et al. (2006). Acknowledgement This study is a product of ongoing project supported by TUBITAK (The Scientific and Technological Research Council of Turkey - Project No: 108Y002). References Bagde, M.N., Raina, A.K., Chakraborty, A.K., Jethwa, J.L., 2002. Rock mass characterization by fractal dimension. Engineering Geology 63, 141-155. Gokceoglu, C., 2002. A fuzzy triangular chart to predict the uniaxial compressive strength of the Ankara agglomerates from their petrographic composition. Engineering Geology, 66 (1-2), 39-51. Gulbin, Y.L., Evangulova, E.B., 2003. Morphometry of quartz aggregates in granites: fractal images referring to nucleation and growth processes. Mathematical Geology 35 (7), 819-833 Hamdi, E., 2008. A fractal description of simulated 3D discontinuity networks. Rock Mechanics and Rock Engineering 41, 587-599. Hyslip, J.P., Vallejo, L.E., 1997. Fractals analysis of the roughness and size distribution of granular materials. Engineering Geology 48, 231-244. Kahraman, S., Alber, M., Fener, M. and Gunaydin, O. 2008. Evaluating the geomechanical properties of Misis fault breccia (Turkey). Int. J. Rock Mech. Min. Sci, 45, (8), 1469-1479. Kolay, E., Kayabali, K., 2006. Investigation of the effect of aggregate shape and surface roughness on the slake durability index using the fractal dimension approach. Engineering Geology 86, 271-294. Kruhl, J.H., Nega, M., 1996. The fractal shape of sutured quartz grain boundaries: application as a geothermometer. Geologische Rundschau 85, 38-43. Lindquist E.S. 1994. The strength, deformation properties of melange. PhD thesis, University of California, Berkeley, 1994. 264p. Lindquist E.S. and Goodman R.E. 1994. The strength and deformation properties of the physical model m!elange. In: Nelson PP, Laubach SE, editors. Proceedings of the First North American Rock Mechanics Conference (NARMS), Austin, Texas. Rotterdam: AA Balkema; 1994. Pardini, G., 2003. Fractal scaling of surface roughness in artificially weathered smectite rich soil regoliths. Geoderma 117, 157-167. Sezer E., 2009. A computer program for fractal dimension (FRACEK) with application on type of mass movement characterization. Computers and Geosciences (doi:10.1016/j.cageo.2009.04.006). Sonmez H, Tuncay E, and Gokceoglu C., 2004. Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara Agglomerate. Int. J. Rock Mech. Min. Sci., 41 (5), 717-729. Sonmez, H., Gokceoglu, C., Medley, E.W., Tuncay, E., and Nefeslioglu, H.A., 2006. Estimating the uniaxial compressive strength of a volcanic bimrock. Int. J. Rock Mech. Min. Sci., 43 (4), 554-561. Zorlu K., 2008. Description of the weathering states of building stones by fractal geometry and fuzzy inference system in the Olba ancient city (Southern Turkey). Engineering Geology 101 (2008) 124-133.

  5. Optimized multilayered wideband absorbers with graded fractal FSS

    NASA Astrophysics Data System (ADS)

    Vinoy, K. J.; Jose, K. A.; Varadan, Vijay K.; Varadan, Vasundara V.

    2001-08-01

    Various approaches have been followed for the reduction of radar cross section (RCS), especially of aircraft and missiles. In this paper we present the use of multiple layers of FSS-like fractal geometries printed on dielectric substrates for the same goal. The experimental results shown here indicate 15 dB reduction in the reflection of a flat surface, by the use of this configuration with low loss dielectrics. An extensive optimization scheme is required for extending the angle coverage as well as the bandwidth of the absorber. A brief investigation of such a scheme involving genetic algorithm for this purpose is also presented here.

  6. Fractal density modeling of crustal heterogeneity from the KTB deep hole

    NASA Astrophysics Data System (ADS)

    Chen, Guoxiong; Cheng, Qiuming

    2017-03-01

    Fractal or multifractal concepts have significantly enlightened our understanding of crustal heterogeneity. Much attention has focused on 1/f scaling natures of physicochemical heterogeneity of Earth crust from fractal increment perspective. In this study, fractal density model from fractal clustering point of view is used to characterize the scaling behaviors of heterogeneous sources recorded at German Continental Deep Drilling Program (KTB) main hole, and of special contribution is the local and global multifractal analysis revisited by using Haar wavelet transform (HWT). Fractal density modeling of mass accumulation generalizes the unit of rock density from integer (e.g., g/cm3) to real numbers (e.g., g/cmα), so that crustal heterogeneities with respect to source accumulation are quantified by singularity strength of fractal density in α-dimensional space. From that perspective, we found that the bulk densities of metamorphic rocks exhibit fractal properties but have a weak multifractality, decreasing with the depth. The multiscaling natures of chemical logs also have been evidenced, and the observed distinct fractal laws for mineral contents are related to their different geochemical behaviors within complex lithological context. Accordingly, scaling distributions of mineral contents have been recognized as a main contributor to the multifractal natures of heterogeneous density for low-porosity crystalline rocks. This finally allows us to use de Wijs cascade process to explain the mechanism of fractal density. In practice, the proposed local singularity analysis based on HWT is suggested as an attractive high-pass filtering to amplify weak signatures of well logs as well as to delineate microlithological changes.

  7. Effect of Dust Coagulation Dynamics on the Geometry of Aggregates

    NASA Technical Reports Server (NTRS)

    Nakamura, R.

    1996-01-01

    Master equation gives a more fundamental description of stochastic coagulation processes rather than popular Smoluchowski's equation. In order to examine the effect of the dynamics on the geometry of resulting aggregates, we study Master equation with a rigorous Monte Carlo algorithm. It is found that Cluster-Cluster aggregation model is a good approximation of orderly growth and the aggregates have fluffy structures with a fractal dimension approx. 2. A scaling analysis of Smoluchowski's equation also supports this conclusion.

  8. A New Fractal Model of Chromosome and DNA Processes

    NASA Astrophysics Data System (ADS)

    Bouallegue, K.

    Dynamic chromosome structure remains unknown. Can fractals and chaos be used as new tools to model, identify and generate a structure of chromosomes?Fractals and chaos offer a rich environment for exploring and modeling the complexity of nature. In a sense, fractal geometry is used to describe, model, and analyze the complex forms found in nature. Fractals have also been widely not only in biology but also in medicine. To this effect, a fractal is considered an object that displays self-similarity under magnification and can be constructed using a simple motif (an image repeated on ever-reduced scales).It is worth noting that the problem of identifying a chromosome has become a challenge to find out which one of the models it belongs to. Nevertheless, the several different models (a hierarchical coiling, a folded fiber, and radial loop) have been proposed for mitotic chromosome but have not reached a dynamic model yet.This paper is an attempt to solve topological problems involved in the model of chromosome and DNA processes. By combining the fractal Julia process and the numerical dynamical system, we have finally found out four main points. First, we have developed not only a model of chromosome but also a model of mitosis and one of meiosis. Equally important, we have identified the centromere position through the numerical model captured below. More importantly, in this paper, we have discovered the processes of the cell divisions of both mitosis and meiosis. All in all, the results show that this work could have a strong impact on the welfare of humanity and can lead to a cure of genetic diseases.

  9. Concept of Fractal Dimension use of Multifractal Cloud Liquid Models Based on Real Data as Input to Monte Carlo Radiation Models

    NASA Technical Reports Server (NTRS)

    Wiscombe, W.

    1999-01-01

    The purpose of this paper is discuss the concept of fractal dimension; multifractal statistics as an extension of this; the use of simple multifractal statistics (power spectrum, structure function) to characterize cloud liquid water data; and to understand the use of multifractal cloud liquid water models based on real data as input to Monte Carlo radiation models of shortwave radiation transfer in 3D clouds, and the consequences of this in two areas: the design of aircraft field programs to measure cloud absorptance; and the explanation of the famous "Landsat scale break" in measured radiance.

  10. Screening effects in flow through rough channels.

    PubMed

    Andrade, J S; Araújo, A D; Filoche, M; Sapoval, B

    2007-05-11

    A surprising similarity is found between the distribution of hydrodynamic stress on the wall of an irregular channel and the distribution of flux from a purely Laplacian field on the same geometry. This finding is a direct outcome of numerical simulations of the Navier-Stokes equations for flow at low Reynolds numbers in two-dimensional channels with rough walls presenting either deterministic or random self-similar geometries. For high Reynolds numbers, the distribution of wall stresses on deterministic and random fractal rough channels becomes substantially dependent on the microscopic details of the walls geometry. Finally, the effects on the flow behavior of the channel symmetry and aspect ratio are also investigated.

  11. Fractal mechanisms in the electrophysiology of the heart

    NASA Technical Reports Server (NTRS)

    Goldberger, A. L.

    1992-01-01

    The mathematical concept of fractals provides insights into complex anatomic branching structures that lack a characteristic (single) length scale, and certain complex physiologic processes, such as heart rate regulation, that lack a single time scale. Heart rate control is perturbed by alterations in neuro-autonomic function in a number of important clinical syndromes, including sudden cardiac death, congestive failure, cocaine intoxication, fetal distress, space sickness and physiologic aging. These conditions are associated with a loss of the normal fractal complexity of interbeat interval dynamics. Such changes, which may not be detectable using conventional statistics, can be quantified using new methods derived from "chaos theory.".

  12. Can fractal objects operate as efficient inline mixers?

    NASA Astrophysics Data System (ADS)

    Laizet, Sylvain; Vassilicos, John; Turbulence, Mixing; Flow Control Group Team

    2011-11-01

    Recently, Hurst & Vassilicos, PoF 2007, Seoud & Vassilicos, PoF 2007, Mazellier & Vassilicos, PoF, 2010 used different multiscale grids to generate turbulence in a wind tunnel and have shown that complex multiscale boundary/initial conditions can drastically influence the behaviour of a turbulent flow, but that the detailled specific nature of the multiscale geometry matters too. Multiscale (fractal) objects can be designed to be immersed in any fluid flow where there is a need to control and design the turbulence generated by the object. Different types of multiscale objects can be designed as different types of energy-efficient mixers with varying degrees of high turbulent intensities, small pressure drop and downstream distance from the grid where the turbulence is most vigorous. Here, we present a 3D DNS study of the stirring and mixing of a passive scalar by turbulence generated with either a fractal square grid or a regular grid in the presence of a mean scalar gradient. The results show that: (1) there is a linear increase for the passive scalar variance for both grids, (2) the passive scalar variance is ten times bigger for the fractal grid, (3) the passive scalar flux is constant after the production region for both grids, (4) the passive scalar flux is enhanced by an order of magnitude for the fractal grid. We acknowledge support from EPSRC, UK.

  13. Improvements in RF Shimming in High Field MRI Using High Permittivity Materials With Low Order Pre-Fractal Geometries.

    PubMed

    Schmidt, Rita; Webb, Andrew

    2016-08-01

    Ultra-high field MRI is an area of great interest for clinical research and basic science due to the increased signal-to-noise, spatial resolution and magnetic-susceptibility-based contrast. However, the fact that the electromagnetic wavelength in tissue is comparable to the relevant body dimensions means that the uniformity of the excitation field is much poorer than at lower field strengths. In addition to techniques such as transmit arrays, one simple but effective method to counteract this effect is to use high permittivity "pads". Very high permittivities enable thinner, flexible pads to be used, but the limiting factor is wavelength effects within the pads themselves, which can lead to image artifacts. So far, all studies have used simple continuous rectangular/circular pad geometries. In this work we investigate how the wavelength effects can be partially mitigated utilizing shaped pad with holes. Several arrangements have been simulated, including low order pre-fractal geometries, which maintain the overall coverage of the pad, but can provide better image homogeneity in the region of interest or higher sensitivity depending on the setup. Experimental data in the form of in vivo human images at 7T were acquired to validate the simulation results.

  14. Miniature thermal matches: from nanoheaters to reactive fractals

    NASA Astrophysics Data System (ADS)

    Rebholz, Claus; Emre Gunduz, Ibrahim; Ando, Teiichi; Doumanidis, Charalabos C.

    2015-04-01

    Fine thermal actuation by miniature heat sources enables applications from electronics fabrication to tumor cauterization. This paper introduces the concept of nanoheaters, i.e., reactive bimetallic material dots (0D), ignited electrically to exothermically release precise heat amounts where and when needed. This concept is extended to nanoheater wires (1D) and foils (2D), as well as bulk nanoheaters (3D) manufactured via ball milling and ultrasonic consolidation of nickel and aluminum powders. The fractal structure of such powders and consolidates, with self-similar, multiscale Apollonian or lamellar packaging, is discovered to hold the key for their ignition sensitivity: nanoscale structures ignite first, to produce enough heat and raise the temperature of submicron formations, which then ignite microscale regions and so on; while inert areas quench and arrest the self-propagating exothermic reaction. Therefore, such engineered fractal reactive heaters lend themselves to affordable, high-throughput manufacture and controllable, safe, efficient, supplyless in situ thermal release. This can be transformative for innovations from self-healing composites and self-heating packages to underwater construction and mining.

  15. 3D printing of wearable fractal-based sensor systems for neurocardiology and healthcare

    NASA Astrophysics Data System (ADS)

    Ramasamy, Mouli; Varadan, Vijay K.

    2017-04-01

    Neurocardiology is the pathophysiological interplay of nervous and cardiovascular systems. The communication between the heart and brain has revealed various methodologies in healthcare that could be investigated to study the heart-brain interactions and other cardiovascular and neurological diseases. A textile based wearable nanosensor system in the form of e-bra, e-shirt, e-headband, e-brief, underwear etc, was presented in this SPIE conferences earlier for noninvasive recording of EEG and EKG, and showing the correlation between the brain and heart signals. In this paper, the technology is expanded further using fractal based geometries using 3D printing system for low cost and flexible wearable sensor system for healthcare.

  16. Gas flow through rough microchannels in the transition flow regime.

    PubMed

    Deng, Zilong; Chen, Yongping; Shao, Chenxi

    2016-01-01

    A multiple-relaxation-time lattice Boltzmann model of Couette flow is developed to investigate the rarified gas flow through microchannels with roughness characterized by fractal geometry, especially to elucidate the coupled effects of roughness and rarefaction on microscale gas flow in the transition flow regime. The results indicate that the surface roughness effect on gas flow behavior becomes more significant in rarefied gas flow with the increase of Knudsen number. We find the gas flow behavior in the transition flow regime is more sensitive to roughness height than that in the slip flow regime. In particular, the influence of fractal dimension on rarefied gas flow behavior is less significant than roughness height.

  17. Fractal Clustering and Knowledge-driven Validation Assessment for Gene Expression Profiling.

    PubMed

    Wang, Lu-Yong; Balasubramanian, Ammaiappan; Chakraborty, Amit; Comaniciu, Dorin

    2005-01-01

    DNA microarray experiments generate a substantial amount of information about the global gene expression. Gene expression profiles can be represented as points in multi-dimensional space. It is essential to identify relevant groups of genes in biomedical research. Clustering is helpful in pattern recognition in gene expression profiles. A number of clustering techniques have been introduced. However, these traditional methods mainly utilize shape-based assumption or some distance metric to cluster the points in multi-dimension linear Euclidean space. Their results shows poor consistence with the functional annotation of genes in previous validation study. From a novel different perspective, we propose fractal clustering method to cluster genes using intrinsic (fractal) dimension from modern geometry. This method clusters points in such a way that points in the same clusters are more self-affine among themselves than to the points in other clusters. We assess this method using annotation-based validation assessment for gene clusters. It shows that this method is superior in identifying functional related gene groups than other traditional methods.

  18. Fractal design concepts for stretchable electronics.

    PubMed

    Fan, Jonathan A; Yeo, Woon-Hong; Su, Yewang; Hattori, Yoshiaki; Lee, Woosik; Jung, Sung-Young; Zhang, Yihui; Liu, Zhuangjian; Cheng, Huanyu; Falgout, Leo; Bajema, Mike; Coleman, Todd; Gregoire, Dan; Larsen, Ryan J; Huang, Yonggang; Rogers, John A

    2014-01-01

    Stretchable electronics provide a foundation for applications that exceed the scope of conventional wafer and circuit board technologies due to their unique capacity to integrate with soft materials and curvilinear surfaces. The range of possibilities is predicated on the development of device architectures that simultaneously offer advanced electronic function and compliant mechanics. Here we report that thin films of hard electronic materials patterned in deterministic fractal motifs and bonded to elastomers enable unusual mechanics with important implications in stretchable device design. In particular, we demonstrate the utility of Peano, Greek cross, Vicsek and other fractal constructs to yield space-filling structures of electronic materials, including monocrystalline silicon, for electrophysiological sensors, precision monitors and actuators, and radio frequency antennas. These devices support conformal mounting on the skin and have unique properties such as invisibility under magnetic resonance imaging. The results suggest that fractal-based layouts represent important strategies for hard-soft materials integration.

  19. Fractal design concepts for stretchable electronics

    NASA Astrophysics Data System (ADS)

    Fan, Jonathan A.; Yeo, Woon-Hong; Su, Yewang; Hattori, Yoshiaki; Lee, Woosik; Jung, Sung-Young; Zhang, Yihui; Liu, Zhuangjian; Cheng, Huanyu; Falgout, Leo; Bajema, Mike; Coleman, Todd; Gregoire, Dan; Larsen, Ryan J.; Huang, Yonggang; Rogers, John A.

    2014-02-01

    Stretchable electronics provide a foundation for applications that exceed the scope of conventional wafer and circuit board technologies due to their unique capacity to integrate with soft materials and curvilinear surfaces. The range of possibilities is predicated on the development of device architectures that simultaneously offer advanced electronic function and compliant mechanics. Here we report that thin films of hard electronic materials patterned in deterministic fractal motifs and bonded to elastomers enable unusual mechanics with important implications in stretchable device design. In particular, we demonstrate the utility of Peano, Greek cross, Vicsek and other fractal constructs to yield space-filling structures of electronic materials, including monocrystalline silicon, for electrophysiological sensors, precision monitors and actuators, and radio frequency antennas. These devices support conformal mounting on the skin and have unique properties such as invisibility under magnetic resonance imaging. The results suggest that fractal-based layouts represent important strategies for hard-soft materials integration.

  20. On uses, misuses and potential abuses of fractal analysis in zooplankton behavioral studies: A review, a critique and a few recommendations

    NASA Astrophysics Data System (ADS)

    Seuront, Laurent

    2015-08-01

    Fractal analysis is increasingly used to describe, and provide further understanding to, zooplankton swimming behavior. This may be related to the fact that fractal analysis and the related fractal dimension D have the desirable properties to be independent of measurement scale and to be very sensitive to even subtle behavioral changes that may be undetectable to other behavioral variables. As early claimed by Coughlin et al. (1992), this creates "the need for fractal analysis" in behavioral studies, which has hence the potential to become a valuable tool in zooplankton behavioral ecology. However, this paper stresses that fractal analysis, as well as the more elaborated multifractal analysis, is also a risky business that may lead to irrelevant results, without paying extreme attention to a series of both conceptual and practical steps that are all likely to bias the results of any analysis. These biases are reviewed and exemplified on the basis of the published literature, and remedial procedures are provided not only for geometric and stochastic fractal analyses, but also for the more complicated multifractal analysis. The concept of multifractals is finally introduced as a direct, objective and quantitative tool to identify models of motion behavior, such as Brownian motion, fractional Brownian motion, ballistic motion, Lévy flight/walk and multifractal random walk. I finally briefly review the state of this emerging field in zooplankton behavioral research.

  1. On Allometry Relations

    NASA Astrophysics Data System (ADS)

    West, Damien; West, Bruce J.

    2012-07-01

    There are a substantial number of empirical relations that began with the identification of a pattern in data; were shown to have a terse power-law description; were interpreted using existing theory; reached the level of "law" and given a name; only to be subsequently fade away when it proved impossible to connect the "law" with a larger body of theory and/or data. Various forms of allometry relations (ARs) have followed this path. The ARs in biology are nearly two hundred years old and those in ecology, geophysics, physiology and other areas of investigation are not that much younger. In general if X is a measure of the size of a complex host network and Y is a property of a complex subnetwork embedded within the host network a theoretical AR exists between the two when Y = aXb. We emphasize that the reductionistic models of AR interpret X and Y as dynamic variables, albeit the ARs themselves are explicitly time independent even though in some cases the parameter values change over time. On the other hand, the phenomenological models of AR are based on the statistical analysis of data and interpret X and Y as averages to yield the empirical AR: = ab. Modern explanations of AR begin with the application of fractal geometry and fractal statistics to scaling phenomena. The detailed application of fractal geometry to the explanation of theoretical ARs in living networks is slightly more than a decade old and although well received it has not been universally accepted. An alternate perspective is given by the empirical AR that is derived using linear regression analysis of fluctuating data sets. We emphasize that the theoretical and empirical ARs are not the same and review theories "explaining" AR from both the reductionist and statistical fractal perspectives. The probability calculus is used to systematically incorporate both views into a single modeling strategy. We conclude that the empirical AR is entailed by the scaling behavior of the probability density, which is derived using the probability calculus.

  2. Fractal Interfaces for Stimulating and Recording Neural Implants

    NASA Astrophysics Data System (ADS)

    Watterson, William James

    From investigating movement in an insect to deciphering cognition in a human brain to treating Parkinson's disease, hearing loss, or even blindness, electronic implants are an essential tool for understanding the brain and treating neural diseases. Currently, the stimulating and recording resolution of these implants remains low. For instance, they can record all the neuron activity associated with movement in an insect, but are quite far from recording, at an individual neuron resolution, the large volumes of brain tissue associated with cognition. Likewise, there is remarkable success in the cochlear implant restoring hearing due to the relatively simple anatomy of the auditory nerves, but are failing to restore vision to the blind due to poor signal fidelity and transmission in stimulating the more complex anatomy of the visual nerves. The critically important research needed to improve the resolution of these implants is to optimize the neuron-electrode interface. This thesis explores geometrical and material modifications to both stimulating and recording electrodes which can improve the neuron-electrode interface. First, we introduce a fractal electrode geometry which radically improves the restored visual acuity achieved by retinal implants and leads to safe, long-term operation of the implant. Next, we demonstrate excellent neuron survival and neurite outgrowth on carbon nanotube electrodes, thus providing a safe biomaterial which forms a strong connection between the electrode and neurons. Additional preliminary evidence suggests carbon nanotubes patterned into a fractal geometry will provide further benefits in improving the electrode-neuron interface. Finally, we propose a novel implant based off field effect transistor technology which utilizes an interconnecting fractal network of semiconducting carbon nanotubes to record from thousands of neurons simutaneously at an individual neuron resolution. Taken together, these improvements have the potential to radically improve our understanding of the brain and our ability to restore function to patients of neural diseases.

  3. Pore-wall roughness as a fractal surface and theoretical simulation of mercury intrusion/retraction in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsakiroglou, C.D.; Payatakes, A.C.

    The mercury intrusion/retraction curves of many types of porous materials (e.g., sandstones) have sections of finite slope in the region of high and very high pressure. This feature is attributed to the existence of microroughness on the pore walls. In the present work pore-wall roughness features are added to a three-dimensional primary network of chambers-and-throats using ideas of fractal geometry. The roughness of the throats is modeled with a finite number of self-similar triangular prisms of progressively smaller sizes. The roughness of the chambers is modeled in a similar way using right circular cones instead of prisms. Three parameters sufficemore » for the complete characterization of the model of fractal roughness, namely, the number of features per unit length, the common angle of sharpness, and the number of layers (which is taken to be the same for throats and chambers). Analytical relations that give the surface area, pore volume, and mercury saturation of the pore network as functions of the fractal roughness parameters are developed for monolayer and multilayer arrangements. The chamber-and-throat network with fractal pore-wall roughness is used to develop an extended version of the computer-aided simulator of mercury porosimetry that has been reported in previous publications. This new simulator is used to investigate the effects of the roughness features on the form of mercury intrusion/retraction curves. It turns out that the fractal model of the porewall roughness gives an adequate representation of real porous media, and capillary pressure curves which are similar to the experimental ones for many typical porous materials such as sandstones. The method is demonstrated with the analysis of a Greek sandstone.« less

  4. Fractal analysis of urban catchments and their representation in semi-distributed models: imperviousness and sewer system

    NASA Astrophysics Data System (ADS)

    Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Ochoa-Rodriguez, Susana; Willems, Patrick; Ichiba, Abdellah; Wang, Lipen; Pina, Rui; Van Assel, Johan; Bruni, Guendalina; Murla Tuyls, Damian; ten Veldhuis, Marie-Claire

    2017-04-01

    Land use distribution and sewer system geometry exhibit complex scale dependent patterns in urban environment. This scale dependency is even more visible in a rasterized representation where only a unique class is affected to each pixel. Such features are well grasped with fractal tools, which are based scale invariance and intrinsically designed to characterise and quantify the space filled by a geometrical set exhibiting complex and tortuous patterns. Fractal tools have been widely used in hydrology but seldom in the specific context of urban hydrology. In this paper, they are used to analyse surface and sewer data from 10 urban or peri-urban catchments located in 5 European countries in the framework of the NWE Interreg RainGain project (www.raingain.eu). The aim was to characterise urban catchment properties accounting for the complexity and inhomogeneity typical of urban water systems. Sewer system density and imperviousness (roads or buildings), represented in rasterized maps of 2 m x 2 m pixels, were analysed to quantify their fractal dimension, characteristic of scaling invariance. It appears that both sewer density and imperviousness exhibit scale invariant features that can be characterized with the help of fractal dimensions ranging from 1.6 to 2, depending on the catchment. In a given area, consistent results were found for the two geometrical features, yielding a robust and innovative way of quantifying the level of urbanization. The representation of imperviousness in operational semi-distributed hydrological models for these catchments was also investigated by computing fractal dimensions of the geometrical sets made up of the sub-catchments with coefficients of imperviousness greater than a range of thresholds. It enables to quantify how well spatial structures of imperviousness are represented in the urban hydrological models.

  5. Beyond maximum entropy: Fractal Pixon-based image reconstruction

    NASA Technical Reports Server (NTRS)

    Puetter, Richard C.; Pina, R. K.

    1994-01-01

    We have developed a new Bayesian image reconstruction method that has been shown to be superior to the best implementations of other competing methods, including Goodness-of-Fit methods such as Least-Squares fitting and Lucy-Richardson reconstruction, as well as Maximum Entropy (ME) methods such as those embodied in the MEMSYS algorithms. Our new method is based on the concept of the pixon, the fundamental, indivisible unit of picture information. Use of the pixon concept provides an improved image model, resulting in an image prior which is superior to that of standard ME. Our past work has shown how uniform information content pixons can be used to develop a 'Super-ME' method in which entropy is maximized exactly. Recently, however, we have developed a superior pixon basis for the image, the Fractal Pixon Basis (FPB). Unlike the Uniform Pixon Basis (UPB) of our 'Super-ME' method, the FPB basis is selected by employing fractal dimensional concepts to assess the inherent structure in the image. The Fractal Pixon Basis results in the best image reconstructions to date, superior to both UPB and the best ME reconstructions. In this paper, we review the theory of the UPB and FPB pixon and apply our methodology to the reconstruction of far-infrared imaging of the galaxy M51. The results of our reconstruction are compared to published reconstructions of the same data using the Lucy-Richardson algorithm, the Maximum Correlation Method developed at IPAC, and the MEMSYS ME algorithms. The results show that our reconstructed image has a spatial resolution a factor of two better than best previous methods (and a factor of 20 finer than the width of the point response function), and detects sources two orders of magnitude fainter than other methods.

  6. Decoding the Margins: What Can the Fractal Geometry of Basaltic Flow Margins Tell Us?

    NASA Astrophysics Data System (ADS)

    Schaefer, E. I.; Hamilton, C.; Neish, C.; Beard, S. P.; Bramson, A. M.; Sori, M.; Rader, E. L.

    2016-12-01

    Studying lava flows on other planetary bodies is essential to characterizing eruption styles and constraining the bodies' thermal evolution. Although planetary basaltic flows are common, many key features are not resolvable in orbital imagery. We are thus developing a technique to characterize basaltic flow type, sub-meter roughness, and sediment mantling from these data. We will present the results from upcoming fieldwork at Craters of the Moon National Monument and Preserve with FINESSE (August) and at Hawai'i Volcanoes National Park (September). We build on earlier work that showed that basaltic flow margins are approximately fractal [Bruno et al., 1992; Gaonac'h et al., 1992] and that their fractal dimensions (D) have distinct `a`ā and pāhoehoe ranges under simple conditions [Bruno et al., 1994]. Using a differential GPS rover, we have recently shown that the margin of Iceland's 2014 Holuhraun flow exhibits near-perfect (R2=0.9998) fractality for ≥24 km across dm to km scales [Schaefer et al., 2016]. This finding suggests that a fractal-based technique has significant potential to characterize flows at sub-resolution scales. We are simultaneously seeking to understand how margin fractality can be modified. A preliminary result for an `a'ā flow in Hawaii's Ka'ū Desert suggests that although aeolian mantling obscures the original flow margin, the apparent margin (i.e., sediment-lava interface) remains fractal [Schaefer et al., 2015]. Further, the apparent margin's D is likely significantly modified from that of the original margin. Other factors that we are exploring include erosion, transitional flow types, and topographic confinement. We will also rigorously test the intriguing possibility that margin D correlates with the sub-meter Hurst exponent H of the flow surface, a common metric of roughness scaling [e.g., Shepard et al., 2001]. This hypothesis is based on geometric arguments [Turcotte, 1997] and is qualitatively consistent with all results so far.

  7. Lévy processes on a generalized fractal comb

    NASA Astrophysics Data System (ADS)

    Sandev, Trifce; Iomin, Alexander; Méndez, Vicenç

    2016-09-01

    Comb geometry, constituted of a backbone and fingers, is one of the most simple paradigm of a two-dimensional structure, where anomalous diffusion can be realized in the framework of Markov processes. However, the intrinsic properties of the structure can destroy this Markovian transport. These effects can be described by the memory and spatial kernels. In particular, the fractal structure of the fingers, which is controlled by the spatial kernel in both the real and the Fourier spaces, leads to the Lévy processes (Lévy flights) and superdiffusion. This generalization of the fractional diffusion is described by the Riesz space fractional derivative. In the framework of this generalized fractal comb model, Lévy processes are considered, and exact solutions for the probability distribution functions are obtained in terms of the Fox H-function for a variety of the memory kernels, and the rate of the superdiffusive spreading is studied by calculating the fractional moments. For a special form of the memory kernels, we also observed a competition between long rests and long jumps. Finally, we considered the fractal structure of the fingers controlled by a Weierstrass function, which leads to the power-law kernel in the Fourier space. This is a special case, when the second moment exists for superdiffusion in this competition between long rests and long jumps.

  8. Analytical model of brittle destruction based on hypothesis of scale similarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arakcheev, A. S., E-mail: asarakcheev@gmail.com; Lotov, K. V.

    2012-08-15

    The size distribution of dust particles in thermonuclear (fusion) devices is closely described by a power law, which may be related to the brittle destruction of materials. The hypothesis of scale similarity leads to the conclusion that the size distribution of particles formed as a result of a brittle destruction is described by a power law with the exponent -{alpha} that can range from -4 to -1. The model of brittle destruction is described in terms of the fractal geometry, and the distribution exponent is expressed via the fractal dimension of packing. Under additional assumptions, it is possible to refinemore » the {alpha} value and, vice versa, to determine the type of destruction using the measured size distribution of particles.« less

  9. Broadband Focusing Acoustic Lens Based on Fractal Metamaterials

    PubMed Central

    Song, Gang Yong; Huang, Bei; Dong, Hui Yuan; Cheng, Qiang; Cui, Tie Jun

    2016-01-01

    Acoustic metamaterials are artificial structures which can manipulate sound waves through their unconventional effective properties. Different from the locally resonant elements proposed in earlier studies, we propose an alternate route to realize acoustic metamaterials with both low loss and large refractive indices. We describe a new kind of acoustic metamaterial element with the fractal geometry. Due to the self-similar properties of the proposed structure, broadband acoustic responses may arise within a broad frequency range, making it a good candidate for a number of applications, such as super-resolution imaging and acoustic tunneling. A flat acoustic lens is designed and experimentally verified using this approach, showing excellent focusing abilities from 2 kHz and 5 kHz in the measured results. PMID:27782216

  10. More about How to Teach Fractal Geometry with Music

    ERIC Educational Resources Information Center

    Padula, Janice

    2009-01-01

    Padula, J. (2005) described how mathematics teachers can channel the passion of students interested in electronic music by teaching the mathematics that has been used to create it. She hypothesised that the study and enjoyment of music may help the study of mathematics since both mathematics and music are symbol systems and pattern (and its…

  11. Fractal Geometry in Physics

    DTIC Science & Technology

    1993-09-30

    AD-A273 271 OFFICE OF NAVAL RESEARCH 3-0 1993 CONTRACT NUMBER: N00014-90-J- 1 30 MODIFICATION NO: P00005 19 R&T PROJECT: 4123041-10 & 11 A S.O. CODE...investigated. Indirectly related to these topics is a papaer by D. Stauffer, A. Aharony and B. Man- delbrot in Phy•sica A 196, 1993, 1-5. It evaluates

  12. Reflections from the Lesson Study for the Development of Techno-Pedagogical Competencies in Teaching Fractal Geometry

    ERIC Educational Resources Information Center

    Yildiz, Avni; Baltaci, Serdal

    2017-01-01

    Technological Pedagogical Content Knowledge (TPACK) is a model that explains how teachers use technology more effectively in the context of technological, pedagogical, and content knowledge. Teachers' TPACK competencies play great importance in this regard. Lesson study has also been playing significant roles in the development of teachers'…

  13. Fractality of sensations and the brain health: the theory linking neurodegenerative disorder with distortion of spatial and temporal scale-invariance and fractal complexity of the visible world

    PubMed Central

    Zueva, Marina V.

    2015-01-01

    The theory that ties normal functioning and pathology of the brain and visual system with the spatial–temporal structure of the visual and other sensory stimuli is described for the first time in the present study. The deficit of fractal complexity of environmental influences can lead to the distortion of fractal complexity in the visual pathways of the brain and abnormalities of development or aging. The use of fractal light stimuli and fractal stimuli of other modalities can help to restore the functions of the brain, particularly in the elderly and in patients with neurodegenerative disorders or amblyopia. Non-linear dynamics of these physiological processes have a strong base of evidence, which is seen in the impaired fractal regulation of rhythmic activity in aged and diseased brains. From birth to old age, we live in a non-linear world, in which objects and processes with the properties of fractality and non-linearity surround us. Against this background, the evolution of man took place and all periods of life unfolded. Works of art created by man may also have fractal properties. The positive influence of music on cognitive functions is well-known. Insufficiency of sensory experience is believed to play a crucial role in the pathogenesis of amblyopia and age-dependent diseases. The brain is very plastic in its early development, and the plasticity decreases throughout life. However, several studies showed the possibility to reactivate the adult’s neuroplasticity in a variety of ways. We propose that a non-linear structure of sensory information on many spatial and temporal scales is crucial to the brain health and fractal regulation of physiological rhythms. Theoretical substantiation of the author’s theory is presented. Possible applications and the future research that can experimentally confirm or refute the theoretical concept are considered. PMID:26236232

  14. Fractal analysis of Xylella fastidiosa biofilm formation

    NASA Astrophysics Data System (ADS)

    Moreau, A. L. D.; Lorite, G. S.; Rodrigues, C. M.; Souza, A. A.; Cotta, M. A.

    2009-07-01

    We have investigated the growth process of Xylella fastidiosa biofilms inoculated on a glass. The size and the distance between biofilms were analyzed by optical images; a fractal analysis was carried out using scaling concepts and atomic force microscopy images. We observed that different biofilms show similar fractal characteristics, although morphological variations can be identified for different biofilm stages. Two types of structural patterns are suggested from the observed fractal dimensions Df. In the initial and final stages of biofilm formation, Df is 2.73±0.06 and 2.68±0.06, respectively, while in the maturation stage, Df=2.57±0.08. These values suggest that the biofilm growth can be understood as an Eden model in the former case, while diffusion-limited aggregation (DLA) seems to dominate the maturation stage. Changes in the correlation length parallel to the surface were also observed; these results were correlated with the biofilm matrix formation, which can hinder nutrient diffusion and thus create conditions to drive DLA growth.

  15. Introducing geometry concept based on history of Islamic geometry

    NASA Astrophysics Data System (ADS)

    Maarif, S.; Wahyudin; Raditya, A.; Perbowo, K. S.

    2018-01-01

    Geometry is one of the areas of mathematics interesting to discuss. Geometry also has a long history in mathematical developments. Therefore, it is important integrated historical development of geometry in the classroom to increase’ knowledge of how mathematicians earlier finding and constructing a geometric concept. Introduction geometrical concept can be started by introducing the Muslim mathematician who invented these concepts so that students can understand in detail how a concept of geometry can be found. However, the history of mathematics development, especially history of Islamic geometry today is less popular in the world of education in Indonesia. There are several concepts discovered by Muslim mathematicians that should be appreciated by the students in learning geometry. Great ideas of mathematicians Muslim can be used as study materials to supplement religious character values taught by Muslim mathematicians. Additionally, by integrating the history of geometry in teaching geometry are expected to improve motivation and geometrical understanding concept.

  16. Pitfalls in Fractal Time Series Analysis: fMRI BOLD as an Exemplary Case

    PubMed Central

    Eke, Andras; Herman, Peter; Sanganahalli, Basavaraju G.; Hyder, Fahmeed; Mukli, Peter; Nagy, Zoltan

    2012-01-01

    This article will be positioned on our previous work demonstrating the importance of adhering to a carefully selected set of criteria when choosing the suitable method from those available ensuring its adequate performance when applied to real temporal signals, such as fMRI BOLD, to evaluate one important facet of their behavior, fractality. Earlier, we have reviewed on a range of monofractal tools and evaluated their performance. Given the advance in the fractal field, in this article we will discuss the most widely used implementations of multifractal analyses, too. Our recommended flowchart for the fractal characterization of spontaneous, low frequency fluctuations in fMRI BOLD will be used as the framework for this article to make certain that it will provide a hands-on experience for the reader in handling the perplexed issues of fractal analysis. The reason why this particular signal modality and its fractal analysis has been chosen was due to its high impact on today’s neuroscience given it had powerfully emerged as a new way of interpreting the complex functioning of the brain (see “intrinsic activity”). The reader will first be presented with the basic concepts of mono and multifractal time series analyses, followed by some of the most relevant implementations, characterization by numerical approaches. The notion of the dichotomy of fractional Gaussian noise and fractional Brownian motion signal classes and their impact on fractal time series analyses will be thoroughly discussed as the central theme of our application strategy. Sources of pitfalls and way how to avoid them will be identified followed by a demonstration on fractal studies of fMRI BOLD taken from the literature and that of our own in an attempt to consolidate the best practice in fractal analysis of empirical fMRI BOLD signals mapped throughout the brain as an exemplary case of potentially wide interest. PMID:23227008

  17. Radiotherapy and chemotherapy change vessel tree geometry and metastatic spread in a small cell lung cancer xenograft mouse tumor model

    PubMed Central

    Bethge, Anja; Schumacher, Udo

    2017-01-01

    Background Tumor vasculature is critical for tumor growth, formation of distant metastases and efficiency of radio- and chemotherapy treatments. However, how the vasculature itself is affected during cancer treatment regarding to the metastatic behavior has not been thoroughly investigated. Therefore, the aim of this study was to analyze the influence of hypofractionated radiotherapy and cisplatin chemotherapy on vessel tree geometry and metastasis formation in a small cell lung cancer xenograft mouse tumor model to investigate the spread of malignant cells during different treatments modalities. Methods The biological data gained during these experiments were fed into our previously developed computer model “Cancer and Treatment Simulation Tool” (CaTSiT) to model the growth of the primary tumor, its metastatic deposit and also the influence on different therapies. Furthermore, we performed quantitative histology analyses to verify our predictions in xenograft mouse tumor model. Results According to the computer simulation the number of cells engrafting must vary considerably to explain the different weights of the primary tumor at the end of the experiment. Once a primary tumor is established, the fractal dimension of its vasculature correlates with the tumor size. Furthermore, the fractal dimension of the tumor vasculature changes during treatment, indicating that the therapy affects the blood vessels’ geometry. We corroborated these findings with a quantitative histological analysis showing that the blood vessel density is depleted during radiotherapy and cisplatin chemotherapy. The CaTSiT computer model reveals that chemotherapy influences the tumor’s therapeutic susceptibility and its metastatic spreading behavior. Conclusion Using a system biological approach in combination with xenograft models and computer simulations revealed that the usage of chemotherapy and radiation therapy determines the spreading behavior by changing the blood vessel geometry of the primary tumor. PMID:29107953

  18. Path Complexity in Virtual Water Maze Navigation: Differential Associations with Age, Sex, and Regional Brain Volume.

    PubMed

    Daugherty, Ana M; Yuan, Peng; Dahle, Cheryl L; Bender, Andrew R; Yang, Yiqin; Raz, Naftali

    2015-09-01

    Studies of human navigation in virtual maze environments have consistently linked advanced age with greater distance traveled between the start and the goal and longer duration of the search. Observations of search path geometry suggest that routes taken by older adults may be unnecessarily complex and that excessive path complexity may be an indicator of cognitive difficulties experienced by older navigators. In a sample of healthy adults, we quantify search path complexity in a virtual Morris water maze with a novel method based on fractal dimensionality. In a two-level hierarchical linear model, we estimated improvement in navigation performance across trials by a decline in route length, shortening of search time, and reduction in fractal dimensionality of the path. While replicating commonly reported age and sex differences in time and distance indices, a reduction in fractal dimension of the path accounted for improvement across trials, independent of age or sex. The volumes of brain regions associated with the establishment of cognitive maps (parahippocampal gyrus and hippocampus) were related to path dimensionality, but not to the total distance and time. Thus, fractal dimensionality of a navigational path may present a useful complementary method of quantifying performance in navigation. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. International trade network: fractal properties and globalization puzzle.

    PubMed

    Karpiarz, Mariusz; Fronczak, Piotr; Fronczak, Agata

    2014-12-12

    Globalization is one of the central concepts of our age. The common perception of the process is that, due to declining communication and transport costs, distance becomes less and less important. However, the distance coefficient in the gravity model of trade, which grows in time, indicates that the role of distance increases rather than decreases. This, in essence, captures the notion of the globalization puzzle. Here, we show that the fractality of the international trade system (ITS) provides a simple solution for the puzzle. We argue that the distance coefficient corresponds to the fractal dimension of ITS. We provide two independent methods, the box counting method and spatial choice model, which confirm this statement. Our results allow us to conclude that the previous approaches to solving the puzzle misinterpreted the meaning of the distance coefficient in the gravity model of trade.

  20. International Trade Network: Fractal Properties and Globalization Puzzle

    NASA Astrophysics Data System (ADS)

    Karpiarz, Mariusz; Fronczak, Piotr; Fronczak, Agata

    2014-12-01

    Globalization is one of the central concepts of our age. The common perception of the process is that, due to declining communication and transport costs, distance becomes less and less important. However, the distance coefficient in the gravity model of trade, which grows in time, indicates that the role of distance increases rather than decreases. This, in essence, captures the notion of the globalization puzzle. Here, we show that the fractality of the international trade system (ITS) provides a simple solution for the puzzle. We argue that the distance coefficient corresponds to the fractal dimension of ITS. We provide two independent methods, the box counting method and spatial choice model, which confirm this statement. Our results allow us to conclude that the previous approaches to solving the puzzle misinterpreted the meaning of the distance coefficient in the gravity model of trade.

  1. Chaos, Fractals and Their Applications

    NASA Astrophysics Data System (ADS)

    Thompson, J. Michael T.

    2016-12-01

    This paper gives an up-to-date account of chaos and fractals, in a popular pictorial style for the general scientific reader. A brief historical account covers the development of the subject from Newton’s laws of motion to the astronomy of Poincaré and the weather forecasting of Lorenz. Emphasis is given to the important underlying concepts, embracing the fractal properties of coastlines and the logistics of population dynamics. A wide variety of applications include: NASA’s discovery and use of zero-fuel chaotic “superhighways” between the planets; erratic chaotic solutions generated by Euler’s method in mathematics; atomic force microscopy; spontaneous pattern formation in chemical and biological systems; impact mechanics in offshore engineering and the chatter of cutting tools; controlling chaotic heartbeats. Reference is made to a number of interactive simulations and movies accessible on the web.

  2. An "ASYMPTOTIC FRACTAL" Approach to the Morphology of Malignant Cell Nuclei

    NASA Astrophysics Data System (ADS)

    Landini, Gabriel; Rippin, John W.

    To investigate quantitatively nuclear membrane irregularity, 672 nuclei from 10 cases of oral cancer (squamous cell carcinoma) and normal cells from oral mucosa were studied in transmission electron micrographs. The nuclei were photographed at ×1400 magnification and transferred to computer memory (1 pixel = 35 nm). The perimeter of the profiles was analysed using the "yardstick method" of fractal dimension estimation, and the log-log plot of ruler size vs. boundary length demonstrated that there exists a significant effect of resolution on length measurement. However, this effect seems to disappear at higher resolutions. As this observation is compatible with the concept of asymptotic fractal, we estimated the parameters c, L and Bm from the asymptotic fractal formula Br = Bm {1 + (r / L)c}-1 , where Br is the boundary length measured with a ruler of size r, Bm is the maximum boundary for r → 0, L is a constant, and c = asymptotic fractal dimension minus topological dimension (D - Dt) for r → ∞. Analyses of variance showed c to be significantly higher in the normal than malignant cases (P < 0.001), but log(L) and Bm to be significantly higher in the malignant cases (P < 0.001). A multivariate linear discrimination analysis on c, log(L) and Bm re-classified 76.6% of the cells correctly (84.8% of the normal and 67.5% of the tumor). Furthermore, this shows that asymptotic fractal analysis applied to nuclear profiles has great potential for shape quantification in diagnosis of oral cancer.

  3. Texture segmentation of non-cooperative spacecrafts images based on wavelet and fractal dimension

    NASA Astrophysics Data System (ADS)

    Wu, Kanzhi; Yue, Xiaokui

    2011-06-01

    With the increase of on-orbit manipulations and space conflictions, missions such as tracking and capturing the target spacecrafts are aroused. Unlike cooperative spacecrafts, fixing beacons or any other marks on the targets is impossible. Due to the unknown shape and geometry features of non-cooperative spacecraft, in order to localize the target and obtain the latitude, we need to segment the target image and recognize the target from the background. The data and errors during the following procedures such as feature extraction and matching can also be reduced. Multi-resolution analysis of wavelet theory reflects human beings' recognition towards images from low resolution to high resolution. In addition, spacecraft is the only man-made object in the image compared to the natural background and the differences will be certainly observed between the fractal dimensions of target and background. Combined wavelet transform and fractal dimension, in this paper, we proposed a new segmentation algorithm for the images which contains complicated background such as the universe and planet surfaces. At first, Daubechies wavelet basis is applied to decompose the image in both x axis and y axis, thus obtain four sub-images. Then, calculate the fractal dimensions in four sub-images using different methods; after analyzed the results of fractal dimensions in sub-images, we choose Differential Box Counting in low resolution image as the principle to segment the texture which has the greatest divergences between different sub-images. This paper also presents the results of experiments by using the algorithm above. It is demonstrated that an accurate texture segmentation result can be obtained using the proposed technique.

  4. Bio-inspired patterned networks (BIPS) for development of wearable/disposable biosensors

    NASA Astrophysics Data System (ADS)

    McLamore, E. S.; Convertino, M.; Hondred, John; Das, Suprem; Claussen, J. C.; Vanegas, D. C.; Gomes, C.

    2016-05-01

    Here we demonstrate a novel approach for fabricating point of care (POC) wearable electrochemical biosensors based on 3D patterning of bionanocomposite networks. To create Bio-Inspired Patterned network (BIPS) electrodes, we first generate fractal network in silico models that optimize transport of network fluxes according to an energy function. Network patterns are then inkjet printed onto flexible substrate using conductive graphene ink. We then deposit fractal nanometal structures onto the graphene to create a 3D nanocomposite network. Finally, we biofunctionalize the surface with biorecognition agents using covalent bonding. In this paper, BIPS are used to develop high efficiency, low cost biosensors for measuring glucose as a proof of concept. Our results on the fundamental performance of BIPS sensors show that the biomimetic nanostructures significantly enhance biosensor sensitivity, accuracy, response time, limit of detection, and hysteresis compared to conventional POC non fractal electrodes (serpentine, interdigitated, and screen printed electrodes). BIPs, in particular Apollonian patterned BIPS, represent a new generation of POC biosensors based on nanoscale and microscale fractal networks that significantly improve electrical connectivity, leading to enhanced sensor performance.

  5. Fractal Physiology and the Fractional Calculus: A Perspective

    PubMed Central

    West, Bruce J.

    2010-01-01

    This paper presents a restricted overview of Fractal Physiology focusing on the complexity of the human body and the characterization of that complexity through fractal measures and their dynamics, with fractal dynamics being described by the fractional calculus. Not only are anatomical structures (Grizzi and Chiriva-Internati, 2005), such as the convoluted surface of the brain, the lining of the bowel, neural networks and placenta, fractal, but the output of dynamical physiologic networks are fractal as well (Bassingthwaighte et al., 1994). The time series for the inter-beat intervals of the heart, inter-breath intervals and inter-stride intervals have all been shown to be fractal and/or multifractal statistical phenomena. Consequently, the fractal dimension turns out to be a significantly better indicator of organismic functions in health and disease than the traditional average measures, such as heart rate, breathing rate, and stride rate. The observation that human physiology is primarily fractal was first made in the 1980s, based on the analysis of a limited number of datasets. We review some of these phenomena herein by applying an allometric aggregation approach to the processing of physiologic time series. This straight forward method establishes the scaling behavior of complex physiologic networks and some dynamic models capable of generating such scaling are reviewed. These models include simple and fractional random walks, which describe how the scaling of correlation functions and probability densities are related to time series data. Subsequently, it is suggested that a proper methodology for describing the dynamics of fractal time series may well be the fractional calculus, either through the fractional Langevin equation or the fractional diffusion equation. A fractional operator (derivative or integral) acting on a fractal function, yields another fractal function, allowing us to construct a fractional Langevin equation to describe the evolution of a fractal statistical process. Control of physiologic complexity is one of the goals of medicine, in particular, understanding and controlling physiological networks in order to ensure their proper operation. We emphasize the difference between homeostatic and allometric control mechanisms. Homeostatic control has a negative feedback character, which is both local and rapid. Allometric control, on the other hand, is a relatively new concept that takes into account long-time memory, correlations that are inverse power law in time, as well as long-range interactions in complex phenomena as manifest by inverse power-law distributions in the network variable. We hypothesize that allometric control maintains the fractal character of erratic physiologic time series to enhance the robustness of physiological networks. Moreover, allometric control can often be described using the fractional calculus to capture the dynamics of complex physiologic networks. PMID:21423355

  6. Detection of crossover time scales in multifractal detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Ge, Erjia; Leung, Yee

    2013-04-01

    Fractal is employed in this paper as a scale-based method for the identification of the scaling behavior of time series. Many spatial and temporal processes exhibiting complex multi(mono)-scaling behaviors are fractals. One of the important concepts in fractals is crossover time scale(s) that separates distinct regimes having different fractal scaling behaviors. A common method is multifractal detrended fluctuation analysis (MF-DFA). The detection of crossover time scale(s) is, however, relatively subjective since it has been made without rigorous statistical procedures and has generally been determined by eye balling or subjective observation. Crossover time scales such determined may be spurious and problematic. It may not reflect the genuine underlying scaling behavior of a time series. The purpose of this paper is to propose a statistical procedure to model complex fractal scaling behaviors and reliably identify the crossover time scales under MF-DFA. The scaling-identification regression model, grounded on a solid statistical foundation, is first proposed to describe multi-scaling behaviors of fractals. Through the regression analysis and statistical inference, we can (1) identify the crossover time scales that cannot be detected by eye-balling observation, (2) determine the number and locations of the genuine crossover time scales, (3) give confidence intervals for the crossover time scales, and (4) establish the statistically significant regression model depicting the underlying scaling behavior of a time series. To substantive our argument, the regression model is applied to analyze the multi-scaling behaviors of avian-influenza outbreaks, water consumption, daily mean temperature, and rainfall of Hong Kong. Through the proposed model, we can have a deeper understanding of fractals in general and a statistical approach to identify multi-scaling behavior under MF-DFA in particular.

  7. Instability mechanisms in microfluidics and nanomaterials

    NASA Astrophysics Data System (ADS)

    Thamida, Sunil Kumar

    Recent scientific advances in chemical engineering are leading to synthesis of micro-scale and nano-scale functional devices and materials. However, optimal design and performance of these devices and materials requires a fundamental under standing of the interfacial phenomena at micro-scale and nano-scale. Due to new physical forces unique to small scales, new phenomena appear that are unexpected at large scales. A study of new interfacial patterns that arise from various interfacial instabilities at these scales is carried out in this dissertation. Nevertheless, interfacial patterns ranging from micro to macro scale are ubiquitous in multiphase systems and material synthesis involving a surface reaction. Fractal break up of a thin viscous oil film dewetting between two separating plates is studied experimentally. Unlike the classical patterns of pores and dendrites, it forms a fractal pattern like a branching tree with its origin at the center of the circular film. Lubrication theory is extended to such a fractal geometry, which is unlike the circular geometry of a classical dewetting problem. A power law scaling is obtained for the radial air finger length distribution to construct an idealized Cayley fractal structure. Our theory yields a result that the plate detach time decreases by half in the limit of a fully fractal pattern that is confirmed experimentally. Nanopore formation in anodized alumina is also found to bear similarities to the interfacial pattern formation of the dewetting film between two separating plates. The oxide layer formed on the aluminum during the initial stages of anodizing is found to be unstable to perturbations on the scale of a few nanometers and hence it leads to the nanopore formation. A linear stability analysis of the dual interfacial dynamics followed by a leading mode projection produces a single evolution equation for the pores. Numerical simulations of the nonlinear model reveals the hexagonal packing and self-organization dynamics of the pores. In microfluidic devices, electrokinetic flow produces spiral vortices and corner aggregation of particles and proteins at an inner corner of a channel turn that is unexplained by the short ranged DLVO forces. Field leakage effect due to the non perfectly insulating wall reveals a nonlinear singular and ejecting slip velocity condition at an acute angled sharp corner. The complete flow streamlines, vortices and the corner entrainment are revealed by conformal mapping, harmonic analysis and numerical simulation using Lattice-Boltzmann-Method (LBM). The method of hodograph transform developed for the earlier projects to solve the Laplace equation is also applied to find optimum shapes of dispersion free turns for electro-osmotic microfluidic channels.

  8. Discovery of superconductivity in quasicrystal.

    PubMed

    Kamiya, K; Takeuchi, T; Kabeya, N; Wada, N; Ishimasa, T; Ochiai, A; Deguchi, K; Imura, K; Sato, N K

    2018-01-11

    Superconductivity is ubiquitous as evidenced by the observation in many crystals including carrier-doped oxides and diamond. Amorphous solids are no exception. However, it remains to be discovered in quasicrystals, in which atoms are ordered over long distances but not in a periodically repeating arrangement. Here we report electrical resistivity, magnetization, and specific-heat measurements of Al-Zn-Mg quasicrystal, presenting convincing evidence for the emergence of bulk superconductivity at a very low transition temperature of [Formula: see text] K. We also find superconductivity in its approximant crystals, structures that are periodic, but that are very similar to quasicrystals. These observations demonstrate that the effective interaction between electrons remains attractive under variation of the atomic arrangement from periodic to quasiperiodic one. The discovery of the superconducting quasicrystal, in which the fractal geometry interplays with superconductivity, opens the door to a new type of superconductivity, fractal superconductivity.

  9. Fifth dimension of life and the 4/5 allometric scaling law for human brain.

    PubMed

    He, Ji-Huan; Zhang, Juan

    2004-01-01

    Brain cells are not spherical. The basal metabolic rate (B) of a spherical cell scales as B approximately r2, where r is the radius of the cell; that of a brain cell scales as B approximately r(d), where r is the characteristic radius of the cell and d is the fractal dimensionality of its contour. The fractal geometry of the cell leads to a 4/5 allometric scaling law for human brain, uniquely endowing humans with a 5th dimension and successfully explains why the scaling exponent varies during rest and exercise. A striking analogy between Kleiber's 3/4 law and Newton's second law is heuristically illustrated. A physical explanation is given for the 4th dimension of life for three-dimensional organisms and the 5th dimension for human brain.

  10. High-Directivity Emissions with Flexible Beam Numbers and Beam Directions Using Gradient-Refractive-Index Fractal Metamaterial

    PubMed Central

    Xu, He-Xiu; Wang, Guang-Ming; Tao, Zui; Cui, Tie Jun

    2014-01-01

    A three-dimensional (3D) highly-directive emission system is proposed to enable beam shaping and beam steering capabilities in wideband frequencies. It is composed of an omnidirectional source antenna and several 3D gradient-refractive-index (GRIN) lenses. To engineer a broadband impedance match, the design method for these 3D lenses is established under the scenario of free-space excitation by using a planar printed monopole. For realizations and demonstrations, a kind of GRIN metamaterial is proposed, which is constructed by non-uniform fractal geometries. Due to the non-resonant and deep-subwavelength features of the fractal elements, the resulting 3D GRIN metamaterial lenses have extra wide bandwidth (3 to 7.5 GHz), and are capable of manipulating electromagnetic wavefronts accurately, advancing the state of the art of available GRIN lenses. The proposal for the versatile highly-directive emissions has been confirmed by simulations and measurements, showing that not only the number of beams can be arbitrarily tailored but also the beam directions can be steerable. The proposal opens a new way to control broadband highly-directive emissions with pre-designed directions, promising great potentials in modern wireless communication systems. PMID:25034268

  11. The Impact of The Fractal Paradigm on Geography

    NASA Astrophysics Data System (ADS)

    De Cola, L.

    2001-12-01

    Being itself somewhat fractal, Benoit Mandelbrot's magnum opus THE FRACTAL GEOMETRY OF NATURE may be deconstructed in many ways, including geometrically, systematically, and epistemologically. Viewed as a work of geography it may be used to organize the major topics of interest to scientists preoccupied with the understanding of real-world space in astronomy, geology, meteorology, hydrology, and biology. We shall use it to highlight such recent geographic accomplishments as automated feature detection, understanding urban growth, and modeling the spread of disease in space and time. However, several key challenges remain unsolved, among them: 1. It is still not possible to move continuously from one map scale to another so that objects change their dimension smoothly. I.e. as a viewer zooms in on a map the zero-dimensional location of a city should gradually become a 2-dimensional polygon, then a network of 1-dimensional streets, then 3-dimensional buildings, etc. 2. Spatial autocorrelation continues to be regarded more as an econometric challenge than as a problem of scaling. Similarities of values among closely-spaced observation is not so much a problem to be overcome as a source of information about spatial structure. 3. Although the fractal paradigm is a powerful model for data analysis, its ideas and techniques need to be brought to bear on the problems of understanding such hierarchies as ecosystems (the flow networks of energy and matter), taxonomies (biological classification), and knowledge (hierarchies of bureaucratic information, networks of linked data, etc).

  12. Feature extraction algorithm for space targets based on fractal theory

    NASA Astrophysics Data System (ADS)

    Tian, Balin; Yuan, Jianping; Yue, Xiaokui; Ning, Xin

    2007-11-01

    In order to offer a potential for extending the life of satellites and reducing the launch and operating costs, satellite servicing including conducting repairs, upgrading and refueling spacecraft on-orbit become much more frequently. Future space operations can be more economically and reliably executed using machine vision systems, which can meet real time and tracking reliability requirements for image tracking of space surveillance system. Machine vision was applied to the research of relative pose for spacecrafts, the feature extraction algorithm was the basis of relative pose. In this paper fractal geometry based edge extraction algorithm which can be used in determining and tracking the relative pose of an observed satellite during proximity operations in machine vision system was presented. The method gets the gray-level image distributed by fractal dimension used the Differential Box-Counting (DBC) approach of the fractal theory to restrain the noise. After this, we detect the consecutive edge using Mathematical Morphology. The validity of the proposed method is examined by processing and analyzing images of space targets. The edge extraction method not only extracts the outline of the target, but also keeps the inner details. Meanwhile, edge extraction is only processed in moving area to reduce computation greatly. Simulation results compared edge detection using the method which presented by us with other detection methods. The results indicate that the presented algorithm is a valid method to solve the problems of relative pose for spacecrafts.

  13. Spectral action models of gravity on packed swiss cheese cosmology

    NASA Astrophysics Data System (ADS)

    Ball, Adam; Marcolli, Matilde

    2016-06-01

    We present a model of (modified) gravity on spacetimes with fractal structure based on packing of spheres, which are (Euclidean) variants of the packed swiss cheese cosmology models. As the action functional for gravity we consider the spectral action of noncommutative geometry, and we compute its expansion on a space obtained as an Apollonian packing of three-dimensional spheres inside a four-dimensional ball. Using information from the zeta function of the Dirac operator of the spectral triple, we compute the leading terms in the asymptotic expansion of the spectral action. They consist of a zeta regularization of the divergent sum of the leading terms of the spectral actions of the individual spheres in the packing. This accounts for the contribution of points 1 and 3 in the dimension spectrum (as in the case of a 3-sphere). There is an additional term coming from the residue at the additional point in the real dimension spectrum that corresponds to the packing constant, as well as a series of fluctuations coming from log-periodic oscillations, created by the points of the dimension spectrum that are off the real line. These terms detect the fractality of the residue set of the sphere packing. We show that the presence of fractality influences the shape of the slow-roll potential for inflation, obtained from the spectral action. We also discuss the effect of truncating the fractal structure at a certain scale related to the energy scale in the spectral action.

  14. Influence of material ductility and crack surface roughness on fracture instability

    NASA Astrophysics Data System (ADS)

    Khezrzadeh, Hamed; Wnuk, Michael P.; Yavari, Arash

    2011-10-01

    This paper presents a stability analysis for fractal cracks. First, the Westergaard stress functions are proposed for semi-infinite and finite smooth cracks embedded in the stress fields associated with the corresponding self-affine fractal cracks. These new stress functions satisfy all the required boundary conditions and according to Wnuk and Yavari's (2003 Eng. Fract. Mech. 70 1659-74) embedded crack model they are used to derive the stress and displacement fields generated around a fractal crack. These results are then used in conjunction with the final stretch criterion to study the quasi-static stable crack extension, which in ductile materials precedes the global failure. The material resistance curves are determined by solving certain nonlinear differential equations and then employed in predicting the stress levels at the onset of stable crack growth and at the critical point, where a transition to the catastrophic failure occurs. It is shown that the incorporation of the fractal geometry into the crack model, i.e. accounting for the roughness of the crack surfaces, results in (1) higher threshold levels of the material resistance to crack propagation and (2) higher levels of the critical stresses associated with the onset of catastrophic fracture. While the process of quasi-static stable crack growth (SCG) is viewed as a sequence of local instability states, the terminal instability attained at the end of this process is identified with the global instability. The phenomenon of SCG can be used as an early warning sign in fracture detection and prevention.

  15. Transition from Connected to Fragmented Vegetation across an Environmental Gradient: Scaling Laws in Ecotone Geometry.

    PubMed

    Gastner, Michael T; Oborny, Beata; Zimmermann, D K; Pruessner, Gunnar

    2009-07-01

    A change in the environmental conditions across space-for example, altitude or latitude-can cause significant changes in the density of a vegetation type and, consequently, in spatial connectivity. We use spatially explicit simulations to study the transition from connected to fragmented vegetation. A static (gradient percolation) model is compared to dynamic (gradient contact process) models. Connectivity is characterized from the perspective of various species that use this vegetation type for habitat and differ in dispersal or migration range, that is, "step length" across the landscape. The boundary of connected vegetation delineated by a particular step length is termed the " hull edge." We found that for every step length and for every gradient, the hull edge is a fractal with dimension 7/4. The result is the same for different spatial models, suggesting that there are universal laws in ecotone geometry. To demonstrate that the model is applicable to real data, a hull edge of fractal dimension 7/4 is shown on a satellite image of a piñon-juniper woodland on a hillside. We propose to use the hull edge to define the boundary of a vegetation type unambiguously. This offers a new tool for detecting a shift of the boundary due to a climate change.

  16. Proteins as sponges: a statistical journey along protein structure organization principles.

    PubMed

    Paola, Luisa Di; Paci, Paola; Santoni, Daniele; Ruvo, Micol De; Giuliani, Alessandro

    2012-02-27

    The analysis of a large database of protein structures by means of topological and shape indexes inspired by complex network and fractal analysis shed light on some organizational principles of proteins. Proteins appear much more similar to "fractal" sponges than to closely packed spheres, casting doubts on the tenability of the hydrophobic core concept. Principal component analysis highlighted three main order parameters shaping the protein universe: (1) "size", with the consequent generation of progressively less dense and more empty structures at an increasing number of residues, (2) "microscopic structuring", linked to the existence of a spectrum going from the prevalence of heterologous (different hydrophobicity) to the prevalence of homologous (similar hydrophobicity) contacts, and (3) "fractal shape", an organizing protein data set along a continuum going from approximately linear to very intermingled structures. Perhaps the time has come for seriously taking into consideration the real relevance of time-honored principles like the hydrophobic core and hydrophobic effect.

  17. Fractals, malware, and data models

    NASA Astrophysics Data System (ADS)

    Jaenisch, Holger M.; Potter, Andrew N.; Williams, Deborah; Handley, James W.

    2012-06-01

    We examine the hypothesis that the decision boundary between malware and non-malware is fractal. We introduce a novel encoding method derived from text mining for converting disassembled programs first into opstrings and then filter these into a reduced opcode alphabet. These opcodes are enumerated and encoded into real floating point number format and used for characterizing frequency of occurrence and distribution properties of malware functions to compare with non-malware functions. We use the concept of invariant moments to characterize the highly non-Gaussian structure of the opcode distributions. We then derive Data Model based classifiers from identified features and interpolate and extrapolate the parameter sample space for the derived Data Models. This is done to examine the nature of the parameter space classification boundary between families of malware and the general non-malware category. Preliminary results strongly support the fractal boundary hypothesis, and a summary of our methods and results are presented here.

  18. Characterizing Tityus discrepans scorpion venom from a fractal perspective: Venom complexity, effects of captivity, sexual dimorphism, differences among species.

    PubMed

    D'Suze, Gina; Sandoval, Moisés; Sevcik, Carlos

    2015-12-15

    A characteristic of venom elution patterns, shared with many other complex systems, is that many their features cannot be properly described with statistical or euclidean concepts. The understanding of such systems became possible with Mandelbrot's fractal analysis. Venom elution patterns were produced using the reversed phase high performance liquid chromatography (HPLC) with 1 mg of venom. One reason for the lack of quantitative analyses of the sources of venom variability is parametrizing the venom chromatograms' complexity. We quantize this complexity by means of an algorithm which estimates the contortedness (Q) of a waveform. Fractal analysis was used to compare venoms and to measure inter- and intra-specific venom variability. We studied variations in venom complexity derived from gender, seasonal and environmental factors, duration of captivity in the laboratory, technique used to milk venom. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Loss of 'complexity' and aging. Potential applications of fractals and chaos theory to senescence

    NASA Technical Reports Server (NTRS)

    Lipsitz, L. A.; Goldberger, A. L.

    1992-01-01

    The concept of "complexity," derived from the field of nonlinear dynamics, can be adapted to measure the output of physiologic processes that generate highly variable fluctuations resembling "chaos." We review data suggesting that physiologic aging is associated with a generalized loss of such complexity in the dynamics of healthy organ system function and hypothesize that such loss of complexity leads to an impaired ability to adapt to physiologic stress. This hypothesis is supported by observations showing an age-related loss of complex variability in multiple physiologic processes including cardiovascular control, pulsatile hormone release, and electroencephalographic potentials. If further research supports this hypothesis, measures of complexity based on chaos theory and the related geometric concept of fractals may provide new ways to monitor senescence and test the efficacy of specific interventions to modify the age-related decline in adaptive capacity.

  20. A brief history of the most remarkable numbers e, i and γ in mathematical sciences with applications

    NASA Astrophysics Data System (ADS)

    Debnath, Lokenath

    2015-08-01

    This paper deals with a brief history of the most remarkable Euler numbers e, i and γ in mathematical sciences. Included are many properties of the constants e, i and γ and their applications in algebra, geometry, physics, chemistry, ecology, business and industry. Special attention is given to the growth and decay phenomena in many real-world problems including stability and instability of their solutions. Some specific and modern applications of logarithms, complex numbers and complex exponential functions to electrical circuits and mechanical systems are presented with examples. Included are the use of complex numbers and complex functions in the description and analysis of chaos and fractals with the aid of modern computer technology. In addition, the phasor method is described with examples of applications in engineering science. The major focus of this paper is to provide basic information through historical approach to mathematics teaching and learning of the fundamental knowledge and skills required for students and teachers at all levels so that they can understand the concepts of mathematics, and mathematics education in science and technology.

  1. Antenna analysis using properties of metamaterials

    NASA Astrophysics Data System (ADS)

    Mitra, Atindra K.; Hu, Colin; Maxwell, Kasandra

    2010-04-01

    As part of the Student Internship Programs at Wright-Patterson Air Force Base, including the AFRL Wright Scholar Program for High School Students and the AFRL STEP Program, sample results from preliminary investigation and analysis of integrated antenna structures are reported. Investigation of these novel integrated antenna geometries can be interpreted as a continuation of systems analysis under the general topic area of potential integrated apertures for future software radar/radio solutions [1] [2]. Specifically, the categories of novel integrated aperture geometries investigated in this paper include slotted-fractal structures on microstrip rectangular patch antenna models in tandem with the analysis of exotic substrate materials comprised of a type of synthesized electromagnetic structure known as metamaterials [8] - [10].

  2. Dimensional flow and fuzziness in quantum gravity: Emergence of stochastic spacetime

    NASA Astrophysics Data System (ADS)

    Calcagni, Gianluca; Ronco, Michele

    2017-10-01

    We show that the uncertainty in distance and time measurements found by the heuristic combination of quantum mechanics and general relativity is reproduced in a purely classical and flat multi-fractal spacetime whose geometry changes with the probed scale (dimensional flow) and has non-zero imaginary dimension, corresponding to a discrete scale invariance at short distances. Thus, dimensional flow can manifest itself as an intrinsic measurement uncertainty and, conversely, measurement-uncertainty estimates are generally valid because they rely on this universal property of quantum geometries. These general results affect multi-fractional theories, a recent proposal related to quantum gravity, in two ways: they can fix two parameters previously left free (in particular, the value of the spacetime dimension at short scales) and point towards a reinterpretation of the ultraviolet structure of geometry as a stochastic foam or fuzziness. This is also confirmed by a correspondence we establish between Nottale scale relativity and the stochastic geometry of multi-fractional models.

  3. A fractal approach to dynamic inference and distribution analysis

    PubMed Central

    van Rooij, Marieke M. J. W.; Nash, Bertha A.; Rajaraman, Srinivasan; Holden, John G.

    2013-01-01

    Event-distributions inform scientists about the variability and dispersion of repeated measurements. This dispersion can be understood from a complex systems perspective, and quantified in terms of fractal geometry. The key premise is that a distribution's shape reveals information about the governing dynamics of the system that gave rise to the distribution. Two categories of characteristic dynamics are distinguished: additive systems governed by component-dominant dynamics and multiplicative or interdependent systems governed by interaction-dominant dynamics. A logic by which systems governed by interaction-dominant dynamics are expected to yield mixtures of lognormal and inverse power-law samples is discussed. These mixtures are described by a so-called cocktail model of response times derived from human cognitive performances. The overarching goals of this article are twofold: First, to offer readers an introduction to this theoretical perspective and second, to offer an overview of the related statistical methods. PMID:23372552

  4. Modeling small cell lung cancer (SCLC) biology through deterministic and stochastic mathematical models.

    PubMed

    Salgia, Ravi; Mambetsariev, Isa; Hewelt, Blake; Achuthan, Srisairam; Li, Haiqing; Poroyko, Valeriy; Wang, Yingyu; Sattler, Martin

    2018-05-25

    Mathematical cancer models are immensely powerful tools that are based in part on the fractal nature of biological structures, such as the geometry of the lung. Cancers of the lung provide an opportune model to develop and apply algorithms that capture changes and disease phenotypes. We reviewed mathematical models that have been developed for biological sciences and applied them in the context of small cell lung cancer (SCLC) growth, mutational heterogeneity, and mechanisms of metastasis. The ultimate goal is to develop the stochastic and deterministic nature of this disease, to link this comprehensive set of tools back to its fractalness and to provide a platform for accurate biomarker development. These techniques may be particularly useful in the context of drug development research, such as combination with existing omics approaches. The integration of these tools will be important to further understand the biology of SCLC and ultimately develop novel therapeutics.

  5. Multi-year encoding of daily rainfall and streamflow via the fractal-multifractal method

    NASA Astrophysics Data System (ADS)

    Puente, C. E.; Maskey, M.; Sivakumar, B.

    2017-12-01

    A deterministic geometric approach, the fractal-multifractal (FM) method, which has been proven to be faithful in encoding daily geophysical sets over a year, is used to describe records over multiple years at a time. Looking for FM parameter trends over longer periods, the present study shows FM descriptions of daily rainfall and streamflow gathered over five consecutive years optimizing deviations on accumulated sets. The results for 100 and 60 sets of five years for rainfall streamflow, respectively, near Sacramento, California illustrate that: (a) encoding of both types of data sets may be accomplished with relatively small errors; and (b) predicting the geometry of both variables appears to be possible, even five years ahead, training neural networks on the respective FM parameters. It is emphasized that the FM approach not only captures the accumulated sets over successive pentades but also preserves other statistical attributes including the overall "texture" of the records.

  6. Fractal dynamics in physiology: Alterations with disease and aging

    PubMed Central

    Goldberger, Ary L.; Amaral, Luis A. N.; Hausdorff, Jeffrey M.; Ivanov, Plamen Ch.; Peng, C.-K.; Stanley, H. Eugene

    2002-01-01

    According to classical concepts of physiologic control, healthy systems are self-regulated to reduce variability and maintain physiologic constancy. Contrary to the predictions of homeostasis, however, the output of a wide variety of systems, such as the normal human heartbeat, fluctuates in a complex manner, even under resting conditions. Scaling techniques adapted from statistical physics reveal the presence of long-range, power-law correlations, as part of multifractal cascades operating over a wide range of time scales. These scaling properties suggest that the nonlinear regulatory systems are operating far from equilibrium, and that maintaining constancy is not the goal of physiologic control. In contrast, for subjects at high risk of sudden death (including those with heart failure), fractal organization, along with certain nonlinear interactions, breaks down. Application of fractal analysis may provide new approaches to assessing cardiac risk and forecasting sudden cardiac death, as well as to monitoring the aging process. Similar approaches show promise in assessing other regulatory systems, such as human gait control in health and disease. Elucidating the fractal and nonlinear mechanisms involved in physiologic control and complex signaling networks is emerging as a major challenge in the postgenomic era. PMID:11875196

  7. Antenna with Dielectric Having Geometric Patterns

    NASA Technical Reports Server (NTRS)

    Dudley, Kenneth L. (Inventor); Cravey, Robin L. (Inventor); Connell, John W. (Inventor); Ghose, Sayata (Inventor); Watson, Kent A. (Inventor); Smith, Jr., Joseph G. (Inventor); Elliott, Holly A. (Inventor)

    2013-01-01

    An antenna includes a ground plane, a dielectric disposed on the ground plane, and an electrically-conductive radiator disposed on the dielectric. The dielectric includes at least one layer of a first dielectric material and a second dielectric material that collectively define a dielectric geometric pattern, which may comprise a fractal geometry. The radiator defines a radiator geometric pattern, and the dielectric geometric pattern is geometrically identical, or substantially geometrically identical, to the radiator geometric pattern.

  8. Fractal-like thickness and topography of the salt layer in a pillows province of the southern North Sea

    NASA Astrophysics Data System (ADS)

    Hernandez Maya, K.; Mitchell, N. C.; Huuse, M.

    2017-12-01

    Salt topography and thickness variations are important for testing theories of how halokinetic deformation proceeds. The ability to predict thickness variations of salt at small scale is also important for reservoir evaluations, as breach of the salt layer can lead to loss of petroleum fluids and can be difficult to evaluate from seismic reflection data. Relevant to these issues, we here report analysis of data on salt layer topography and thickness from the southern North Sea, where the salt is organized into pillows. These data were derived by the Geological Survey of the Netherlands (TNO) from industry 3D seismic reflection data combined with a dense network of well information. Highs and lows in the topography of the upper salt interface occur spaced over a variety of lengthscales. Power spectral analysis of the interface topography reveals a simple inverse power law relationship between power spectral density and spatial wave number. The relationship suggests that the interface is a self-affine fractal with a fractal dimension of 2.85. A similar analysis of the salt layer thickness also suggests a fractal-like power law. Whereas the layer thickness power law is unsurprising as the underlying basement topography dominates the thickness and it also has a fractal-like power spectrum, the salt topography is not so easily explained as not all the basement faults are overlaid by salt pillows, instead some areas of the dataset salt thinning overlies faults. We consider instead whether a spatially varied loading of the salt layer may have caused this fractal-like geometry. Varied density and thickness of overburdening layers seem unlikely causes, as thicknesses of layers and their reflectivities do not vary sympathetically with the topography of the interface. The composition of the salt layer varies with the relative proportions of halite and denser anhydrite and other minerals. Although limited in scope and representing the mobilized salt layer, the information from the well data could potentially support the loading originating initially from within the salt. Such internal loading needs to be considered in modelling salt deformation for a variety of practical and academic purposes.

  9. A Complex Story: Universal Preference vs. Individual Differences Shaping Aesthetic Response to Fractals Patterns.

    PubMed

    Street, Nichola; Forsythe, Alexandra M; Reilly, Ronan; Taylor, Richard; Helmy, Mai S

    2016-01-01

    Fractal patterns offer one way to represent the rough complexity of the natural world. Whilst they dominate many of our visual experiences in nature, little large-scale perceptual research has been done to explore how we respond aesthetically to these patterns. Previous research (Taylor et al., 2011) suggests that the fractal patterns with mid-range fractal dimensions (FDs) have universal aesthetic appeal. Perceptual and aesthetic responses to visual complexity have been more varied with findings suggesting both linear (Forsythe et al., 2011) and curvilinear (Berlyne, 1970) relationships. Individual differences have been found to account for many of the differences we see in aesthetic responses but some, such as culture, have received little attention within the fractal and complexity research fields. This two-study article aims to test preference responses to FD and visual complexity, using a large cohort (N = 443) of participants from around the world to allow universality claims to be tested. It explores the extent to which age, culture and gender can predict our preferences for fractally complex patterns. Following exploratory analysis that found strong correlations between FD and visual complexity, a series of linear mixed-effect models were implemented to explore if each of the individual variables could predict preference. The first tested a linear complexity model (likelihood of selecting the more complex image from the pair of images) and the second a mid-range FD model (likelihood of selecting an image within mid-range). Results show that individual differences can reliably predict preferences for complexity across culture, gender and age. However, in fitting with current findings the mid-range models show greater consistency in preference not mediated by gender, age or culture. This article supports the established theory that the mid-range fractal patterns appear to be a universal construct underlying preference but also highlights the fragility of universal claims by demonstrating individual differences in preference for the interrelated concept of visual complexity. This highlights a current stalemate in the field of empirical aesthetics.

  10. A novel fractal approach for predicting G-protein-coupled receptors and their subfamilies with support vector machines.

    PubMed

    Nie, Guoping; Li, Yong; Wang, Feichi; Wang, Siwen; Hu, Xuehai

    2015-01-01

    G-protein-coupled receptors (GPCRs) are seven membrane-spanning proteins and regulate many important physiological processes, such as vision, neurotransmission, immune response and so on. GPCRs-related pathways are the targets of a large number of marketed drugs. Therefore, the design of a reliable computational model for predicting GPCRs from amino acid sequence has long been a significant biomedical problem. Chaos game representation (CGR) reveals the fractal patterns hidden in protein sequences, and then fractal dimension (FD) is an important feature of these highly irregular geometries with concise mathematical expression. Here, in order to extract important features from GPCR protein sequences, CGR algorithm, fractal dimension and amino acid composition (AAC) are employed to formulate the numerical features of protein samples. Four groups of features are considered, and each group is evaluated by support vector machine (SVM) and 10-fold cross-validation test. To test the performance of the present method, a new non-redundant dataset was built based on latest GPCRDB database. Comparing the results of numerical experiments, the group of combined features with AAC and FD gets the best result, the accuracy is 99.22% and Matthew's correlation coefficient (MCC) is 0.9845 for identifying GPCRs from non-GPCRs. Moreover, if it is classified as a GPCR, it will be further put into the second level, which will classify a GPCR into one of the five main subfamilies. At this level, the group of combined features with AAC and FD also gets best accuracy 85.73%. Finally, the proposed predictor is also compared with existing methods and shows better performances.

  11. Organization of complex networks

    NASA Astrophysics Data System (ADS)

    Kitsak, Maksim

    Many large complex systems can be successfully analyzed using the language of graphs and networks. Interactions between the objects in a network are treated as links connecting nodes. This approach to understanding the structure of networks is an important step toward understanding the way corresponding complex systems function. Using the tools of statistical physics, we analyze the structure of networks as they are found in complex systems such as the Internet, the World Wide Web, and numerous industrial and social networks. In the first chapter we apply the concept of self-similarity to the study of transport properties in complex networks. Self-similar or fractal networks, unlike non-fractal networks, exhibit similarity on a range of scales. We find that these fractal networks have transport properties that differ from those of non-fractal networks. In non-fractal networks, transport flows primarily through the hubs. In fractal networks, the self-similar structure requires any transport to also flow through nodes that have only a few connections. We also study, in models and in real networks, the crossover from fractal to non-fractal networks that occurs when a small number of random interactions are added by means of scaling techniques. In the second chapter we use k-core techniques to study dynamic processes in networks. The k-core of a network is the network's largest component that, within itself, exhibits all nodes with at least k connections. We use this k-core analysis to estimate the relative leadership positions of firms in the Life Science (LS) and Information and Communication Technology (ICT) sectors of industry. We study the differences in the k-core structure between the LS and the ICT sectors. We find that the lead segment (highest k-core) of the LS sector, unlike that of the ICT sector, is remarkably stable over time: once a particular firm enters the lead segment, it is likely to remain there for many years. In the third chapter we study how epidemics spread though networks. Our results indicate that a virus is more likely to infect a large area of a network if it originates at a node contained within k-core of high index k.

  12. Optimization and photomodification of extremely broadband optical response of plasmonic core-shell obscurants.

    PubMed

    de Silva, Vashista C; Nyga, Piotr; Drachev, Vladimir P

    2016-12-15

    Plasmonic resonances of the metallic shells depend on their nanostructure and geometry of the core, which can be optimized for the broadband extinction normalized by mass. The fractal nanostructures can provide a broadband extinction. It allows as well for a laser photoburning of holes in the extinction spectra and consequently windows of transparency in a controlled manner. The studied core-shell microparticles synthesized using colloidal chemistry consist of gold fractal nanostructures grown on precipitated calcium carbonate (PCC) microparticles or silica (SiO 2 ) microspheres. The optimization includes different core sizes and shapes, and shell nanostructures. It shows that the rich surface of the PCC flakes is the best core for the fractal shells providing the highest mass normalized extinction over the extremely broad spectral range. The mass normalized extinction cross section up to 3m 2 /g has been demonstrated in the broad spectral range from the visible to mid-infrared. Essentially, the broadband response is a characteristic feature of each core-shell microparticle in contrast to a combination of several structures resonant at different wavelengths, for example nanorods with different aspect ratios. The photomodification at an IR wavelength makes the window of transparency at the longer wavelength side. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Microvascular fractal dimension predicts prognosis and response to chemotherapy in glioblastoma: an automatic image analysis study.

    PubMed

    Chen, Cong; He, Zhi-Cheng; Shi, Yu; Zhou, Wenchao; Zhang, Xia; Xiao, Hua-Liang; Wu, Hai-Bo; Yao, Xiao-Hong; Luo, Wan-Chun; Cui, You-Hong; Bao, Shideng; Kung, Hsiang-Fu; Bian, Xiu-Wu; Ping, Yi-Fang

    2018-05-15

    The microvascular profile has been included in the WHO glioma grading criteria. Nevertheless, microvessels in gliomas of the same WHO grade, e.g., WHO IV glioblastoma (GBM), exhibit heterogeneous and polymorphic morphology, whose possible clinical significance remains to be determined. In this study, we employed a fractal geometry-derived parameter, microvascular fractal dimension (mvFD), to quantify microvessel complexity and developed a home-made macro in Image J software to automatically determine mvFD from the microvessel-stained immunohistochemical images of GBM. We found that mvFD effectively quantified the morphological complexity of GBM microvasculature. Furthermore, high mvFD favored the survival of GBM patients as an independent prognostic indicator and predicted a better response to chemotherapy of GBM patients. When investigating the underlying relations between mvFD and tumor growth by deploying Ki67/mvFD as an index for microvasculature-normalized tumor proliferation, we discovered an inverse correlation between mvFD and Ki67/mvFD. Furthermore, mvFD inversely correlated with the expressions of a glycolytic marker, LDHA, which indicated poor prognosis of GBM patients. Conclusively, we developed an automatic approach for mvFD measurement, and demonstrated that mvFD could predict the prognosis and response to chemotherapy of GBM patients.

  14. Fractal Dimension Analysis of Subcortical Gray Matter Structures in Schizophrenia

    PubMed Central

    Sehatpour, Pejman; Long, Jun; Gui, Weihua; Qiao, Jianping; Javitt, Daniel C.; Wang, Zhishun

    2016-01-01

    A failure of adaptive inference—misinterpreting available sensory information for appropriate perception and action—is at the heart of clinical manifestations of schizophrenia, implicating key subcortical structures in the brain including the hippocampus. We used high-resolution, three-dimensional (3D) fractal geometry analysis to study subtle and potentially biologically relevant structural alterations (in the geometry of protrusions, gyri and indentations, sulci) in subcortical gray matter (GM) in patients with schizophrenia relative to healthy individuals. In particular, we focus on utilizing Fractal Dimension (FD), a compact shape descriptor that can be computed using inputs with irregular (i.e., not necessarily smooth) surfaces in order to quantify complexity (of geometrical properties and configurations of structures across spatial scales) of subcortical GM in this disorder. Probabilistic (entropy-based) information FD was computed based on the box-counting approach for each of the seven subcortical structures, bilaterally, as well as the brainstem from high-resolution magnetic resonance (MR) images in chronic patients with schizophrenia (n = 19) and age-matched healthy controls (n = 19) (age ranges: patients, 22.7–54.3 and healthy controls, 24.9–51.6 years old). We found a significant reduction of FD in the left hippocampus (median: 2.1460, range: 2.07–2.18 vs. median: 2.1730, range: 2.15–2.23, p<0.001; Cohen’s effect size, U3 = 0.8158 (95% Confidence Intervals, CIs: 0.6316, 1.0)), the right hippocampus (median: 2.1430, range: 2.05–2.19 vs. median: 2.1760, range: 2.12–2.21, p = 0.004; U3 = 0.8421 (CIs: 0.5263, 1)), as well as left thalamus (median: 2.4230, range: 2.40–2.44, p = 0.005; U3 = 0.7895 (CIs: 0.5789, 0.9473)) in schizophrenia patients, relative to healthy individuals. Our findings provide in-vivo quantitative evidence for reduced surface complexity of hippocampus, with reduced FD indicating a less complex, less regular GM surface detected in schizophrenia. PMID:27176232

  15. Developing the Concept of a Parabola in Taxicab Geometry

    ERIC Educational Resources Information Center

    Ada, Tuba; Kurtulus, Aytaç; Yanik, H. Bahadir

    2015-01-01

    The aim of this study was to observe the development process of the concept of a parabola in Taxicab geometry. The study was carried out in two stages. First, some activities related to Euclidean geometry and Taxicab geometry were designed based on concept development and real-life applications, and they were administered to a ninth-grade student.…

  16. Fractal symmetry of protein interior: what have we learned?

    PubMed

    Banerji, Anirban; Ghosh, Indira

    2011-08-01

    The application of fractal dimension-based constructs to probe the protein interior dates back to the development of the concept of fractal dimension itself. Numerous approaches have been tried and tested over a course of (almost) 30 years with the aim of elucidating the various facets of symmetry of self-similarity prevalent in the protein interior. In the last 5 years especially, there has been a startling upsurge of research that innovatively stretches the limits of fractal-based studies to present an array of unexpected results on the biophysical properties of protein interior. In this article, we introduce readers to the fundamentals of fractals, reviewing the commonality (and the lack of it) between these approaches before exploring the patterns in the results that they produced. Clustering the approaches in major schools of protein self-similarity studies, we describe the evolution of fractal dimension-based methodologies. The genealogy of approaches (and results) presented here portrays a clear picture of the contemporary state of fractal-based studies in the context of the protein interior. To underline the utility of fractal dimension-based measures further, we have performed a correlation dimension analysis on all of the available non-redundant protein structures, both at the level of an individual protein and at the level of structural domains. In this investigation, we were able to separately quantify the self-similar symmetries in spatial correlation patterns amongst peptide-dipole units, charged amino acids, residues with the π-electron cloud and hydrophobic amino acids. The results revealed that electrostatic environments in the interiors of proteins belonging to 'α/α toroid' (all-α class) and 'PLP-dependent transferase-like' domains (α/β class) are highly conducive. In contrast, the interiors of 'zinc finger design' ('designed proteins') and 'knottins' ('small proteins') were identified as folds with the least conducive electrostatic environments. The fold 'conotoxins' (peptides) could be unambiguously identified as one type with the least stability. The same analyses revealed that peptide-dipoles in the α/β class of proteins, in general, are more correlated to each other than are the peptide-dipoles in proteins belonging to the all-α class. Highly favorable electrostatic milieu in the interiors of TIM-barrel, α/β-hydrolase structures could explain their remarkably conserved (evolutionary) stability from a new light. Finally, we point out certain inherent limitations of fractal constructs before attempting to identify the areas and problems where the implementation of fractal dimension-based constructs can be of paramount help to unearth latent information on protein structural properties.

  17. Navy Collaborative Integrated Information Technology Initiative (NAVCIITI)

    DTIC Science & Technology

    2004-09-01

    We investigated a new type of antenna array consisting of sub- elements that are excited together to form the primary element. All of the sub...elements of the array are excited for the highest operating band. Only the primary elements are excited for the low frequency band. This fractal geometry has...fully active array. The fully active input impedance is the input impedance of an element in an array when all elements are excited . It is a function

  18. A contact angle hysteresis model based on the fractal structure of contact line.

    PubMed

    Wu, Shuai; Ma, Ming

    2017-11-01

    Contact angle is one of the most popular concept used in fields such as wetting, transport and microfludics. In practice, different contact angles such as equilibrium, receding and advancing contact angles are observed due to hysteresis. The connection among these contact angles is important in revealing the chemical and physical properties of surfaces related to wetting. Inspired by the fractal structure of contact line, we propose a single parameter model depicting the connection of the three angles. This parameter is decided by the fractal structure of the contact line. The results of this model agree with experimental observations. In certain cases, it can be reduced to other existing models. It also provides a new point of view in understanding the physical nature of the contact angle hysteresis. Interestingly, some counter-intuitive phenomena, such as the binary receding angles, are indicated in this model, which are waited to be validated by experiments. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Dynamical Mechanism of Scaling Behaviors in Multifractal Structure

    NASA Astrophysics Data System (ADS)

    Kim, Kyungsik; Jung, Jae Won; Kim, Soo Yong

    2010-03-01

    The pattern of stone distribution in the game of Go (Baduk, Weiqi, or Igo) can be treated in the mathematical and physical languages of multifractals. The concepts of fractals and multifractals have relevance to many fields of science and even arts. A significant and fascinating feature of this approach is that it provides a proper interpretation for the pattern of the two-colored (black and white) stones in terms of the numerical values of the generalized dimension and the scaling exponent. For our case, these statistical quantities can be estimated numerically from the black, white, and mixed stones, assuming the excluded edge effect that the cell form of the Go game has the self-similar structure. The result from the multifractal structure allows us to find a definite and reliable fractal dimension, and it precisely verifies that the fractal dimension becomes larger, as the cell of grids increases. We also find the strength of multifractal structures from the difference in the scaling exponents in the black, white, and mixed stones.

  20. Surface layer protein characterization by small angle x-ray scattering and a fractal mean force concept: from protein structure to nanodisk assemblies.

    PubMed

    Horejs, Christine; Pum, Dietmar; Sleytr, Uwe B; Peterlik, Herwig; Jungbauer, Alois; Tscheliessnig, Rupert

    2010-11-07

    Surface layers (S-layers) are the most commonly observed cell surface structure of prokaryotic organisms. They are made up of proteins that spontaneously self-assemble into functional crystalline lattices in solution, on various solid surfaces, and interfaces. While classical experimental techniques failed to recover a complete structural model of an unmodified S-layer protein, small angle x-ray scattering (SAXS) provides an opportunity to study the structure of S-layer monomers in solution and of self-assembled two-dimensional sheets. For the protein under investigation we recently suggested an atomistic structural model by the use of molecular dynamics simulations. This structural model is now refined on the basis of SAXS data together with a fractal assembly approach. Here we show that a nondiluted critical system of proteins, which crystallize into monomolecular structures, might be analyzed by SAXS if protein-protein interactions are taken into account by relating a fractal local density distribution to a fractal local mean potential, which has to fulfill the Poisson equation. The present work demonstrates an important step into the elucidation of the structure of S-layers and offers a tool to analyze the structure of self-assembling systems in solution by means of SAXS and computer simulations.

  1. Surface layer protein characterization by small angle x-ray scattering and a fractal mean force concept: From protein structure to nanodisk assemblies

    NASA Astrophysics Data System (ADS)

    Horejs, Christine; Pum, Dietmar; Sleytr, Uwe B.; Peterlik, Herwig; Jungbauer, Alois; Tscheliessnig, Rupert

    2010-11-01

    Surface layers (S-layers) are the most commonly observed cell surface structure of prokaryotic organisms. They are made up of proteins that spontaneously self-assemble into functional crystalline lattices in solution, on various solid surfaces, and interfaces. While classical experimental techniques failed to recover a complete structural model of an unmodified S-layer protein, small angle x-ray scattering (SAXS) provides an opportunity to study the structure of S-layer monomers in solution and of self-assembled two-dimensional sheets. For the protein under investigation we recently suggested an atomistic structural model by the use of molecular dynamics simulations. This structural model is now refined on the basis of SAXS data together with a fractal assembly approach. Here we show that a nondiluted critical system of proteins, which crystallize into monomolecular structures, might be analyzed by SAXS if protein-protein interactions are taken into account by relating a fractal local density distribution to a fractal local mean potential, which has to fulfill the Poisson equation. The present work demonstrates an important step into the elucidation of the structure of S-layers and offers a tool to analyze the structure of self-assembling systems in solution by means of SAXS and computer simulations.

  2. Surface layer protein characterization by small angle x-ray scattering and a fractal mean force concept: From protein structure to nanodisk assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horejs, Christine; Pum, Dietmar; Sleytr, Uwe B.

    2010-11-07

    Surface layers (S-layers) are the most commonly observed cell surface structure of prokaryotic organisms. They are made up of proteins that spontaneously self-assemble into functional crystalline lattices in solution, on various solid surfaces, and interfaces. While classical experimental techniques failed to recover a complete structural model of an unmodified S-layer protein, small angle x-ray scattering (SAXS) provides an opportunity to study the structure of S-layer monomers in solution and of self-assembled two-dimensional sheets. For the protein under investigation we recently suggested an atomistic structural model by the use of molecular dynamics simulations. This structural model is now refined on themore » basis of SAXS data together with a fractal assembly approach. Here we show that a nondiluted critical system of proteins, which crystallize into monomolecular structures, might be analyzed by SAXS if protein-protein interactions are taken into account by relating a fractal local density distribution to a fractal local mean potential, which has to fulfill the Poisson equation. The present work demonstrates an important step into the elucidation of the structure of S-layers and offers a tool to analyze the structure of self-assembling systems in solution by means of SAXS and computer simulations.« less

  3. National Aeronautics and Space Administration (nasa)/american Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1991, Volume 1

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Goldstein, Stanley H. (Editor)

    1991-01-01

    Presented here is a compilation of the final reports of the research projects done by the faculty members during the summer of 1991. Topics covered include optical correlation; lunar production and application of solar cells and synthesis of diamond film; software quality assurance; photographic image resolution; target detection using fractal geometry; evaluation of fungal metabolic compounds released to the air in a restricted environment; and planning and resource management in an intelligent automated power management system.

  4. Ethical Frameworks, Moral Practices and Outdoor Education.

    ERIC Educational Resources Information Center

    Fox, Karen M.; Lautt, Mick

    Insights from quantum physics and chaos theory help create new metaphors about ethical frameworks and moral practices in outdoor education. The seemingly straightforward concept of values is analogous to the initial simple nonlinear equation of a fractal. The value claims of outdoor education--trust, cooperation, environmental awareness,…

  5. Chaos and Crisis: Propositions for a General Theory of Crisis Communication.

    ERIC Educational Resources Information Center

    Seeger, Matthew W.

    2002-01-01

    Presents key concepts of chaos theory (CT) as a general framework for describing organizational crisis and crisis communication. Discusses principles of predictability, sensitive dependence on initial conditions, bifurcation as system breakdown, emergent self-organization, and fractals and strange attractors as principles of organization. Explores…

  6. Spatial Distribution of the Relationship Between Soil Moisture and Soil Particle Size in Typical Plots on Loess Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhao, W.; Liu, Y.; Fang, X.

    2017-12-01

    Soil water overconsumption is threatening the sustainability of regional vegetation rehabilitation in the Loess Plateau of China. The use of fractal geometry theory in describing soil quality improves the accuracy of the relevant research. Typical grasslands, shrublands, forests, cropland and orchards under different precipitation regimes were selected, and in this study, the spatial distribution of the relationship between soil moisture and soil particle size in typical slopes on Loess Plateau were investigated to provide support for the predict of soil moisture by using soil physical characteristics in the Loess Plateau. During the sampling year, the mean annual precipitation gradients were divided at an interval of 70 mm from 370mm to 650mm. Grasslands with Medicago sativa L. or Stipa bungeana Trin., shrublands with Caragana Korshinskii Kom. or Hippophae rhamnoides L., forests with Robinia pseudoacacia Linn., orchards with apple trees and croplands with corn or potatoes were chosen to represent the natural grassland. A soil auger with a diameter of 5 cm was used to obtain soil samples at depths of 0-5 m at intervals of 20 cm.The Van Genuchten model, fractal theory and redundancy analysis (RDA) were used to estimate and analyze the soil water characteristic curve, soil particle size distribution, and fractal dimension and the correlations between the relevant parameters. The results showed that (1) the change of the singular fractal dimension is positively correlated with soil water content, while D0 (capacity dimension) is negatively correlated with soil water content as the depth increases; (2) the relationship between soil moisture and soil particle size shows differences under different plants and precipitation gradient.

  7. Fractal-Inspired Subwavelength Geometric Inclusions for Improvement of High-Frequency Electromagnetic Devices

    NASA Astrophysics Data System (ADS)

    Smith, Kathryn Leigh

    This dissertation presents research results demonstrating the efficacy of fractal-inspired subwavelength geometric inclusions for improvement of high-frequency electromagnetic devices. It begins with a review of the open literature in the area of fractal applications in antennas and metamaterials. This is followed by a detailed discussion of three high-frequency electromagnetic devices that demonstrate performance improvement through incorporation of subwavelength geometric design elements. The first of these devices is a spherical spiral metamaterial unit cell that was developed as a three-dimensional fractal expansion of the traditional split ring resonator, and is shown to be capable of producing broadband negative permeability, negative permittivity, or both, depending solely on the orientation of the unit cells with respect to the incident electric field. The second device is a ringed rectangular patch antenna that has four resonant frequencies. All four of these operative frequencies are shown to produce similar radiation patterns, which also closely match the pattern of a traditional patch antenna. Several minor geometric modifications of the basic shape of the device are also presented, and are shown to enable modification of the number of resonances, as well as tuning of frequencies of resonance. The third and final topic is a modified horn antenna that incorporates a spiral metamaterial as a phase-shifting device in order to achieve circularly polarized radiation. The handedness of the radiated wave is shown to be tunable through simple reorientation of the loading unit cells. In each of these cases, electrically-small geometric modification of existing device geometries is shown to greatly affect performance, either by increasing bandwidth, by inducing multiband behavior, or by enabling exotic radiation characteristics.

  8. Characterizing the structure of diffuse emission in Hi-GAL maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elia, D.; Molinari, S.; Rygl, K. L. J.

    We present a study of the structure of the Galactic interstellar medium (ISM) through the Δ-variance technique, related to the power spectrum and the fractal properties of infrared/submillimeter maps. Through this method, it is possible to provide quantitative parameters, which are useful for characterizing different morphological and physical conditions, and better constraining the theoretical models. In this respect, the Herschel Infrared Galactic Plane Survey, carried out at five photometric bands from 70 to 500 μm, constitutes a unique database for applying statistical tools to a variety of regions across the Milky Way. In this paper, we derive a robust estimatemore » of the power-law portion of the power spectrum of four contiguous 2° × 2° Hi-GAL tiles located in the third Galactic quadrant (217° ≲ ℓ ≲ 225°, –2° ≲ b ≲ 0°). The low level of confusion along the line of sight, testified by CO observations, makes this region an ideal case. We find very different values for the power spectrum slope from tile to tile but also from wavelength to wavelength (2 ≲ β ≲ 3), with similarities between fields attributable to components located at the same distance. Thanks to comparisons with models of turbulence, an explanation of the determined slopes in terms of the fractal geometry is also provided, and possible relations with the underlying physics are investigated. In particular, an anti-correlation between ISM fractal dimension and star formation efficiency is found for the two main distance components observed in these fields. A possible link between the fractal properties of the diffuse emission and the resulting clump mass function is discussed.« less

  9. Morphological characterization of diesel soot agglomerates based on the Beer-Lambert law

    NASA Astrophysics Data System (ADS)

    Lapuerta, Magín; Martos, Francisco J.; José Expósito, Juan

    2013-03-01

    A new method is proposed for the determination of the number of primary particles composing soot agglomerates emitted from diesel engines as well as their individual fractal dimension. The method is based on the Beer-Lambert law and it is applied to micro-photographs taken in high resolution transmission electron microscopy. Differences in the grey levels of the images lead to a more accurate estimation of the geometry of the agglomerate (in this case radius of gyration) than other methods based exclusively on the planar projections of the agglomerates. The method was validated by applying it to different images of the same agglomerate observed from different angles of incidence, and proving that the effect of the angle of incidence is minor, contrary to other methods. Finally, the comparisons with other methods showed that the size, number of primary particles and fractal dimension (the latter depending on the particle size) are usually underestimated when only planar projections of the agglomerates are considered.

  10. Beyond maximum entropy: Fractal pixon-based image reconstruction

    NASA Technical Reports Server (NTRS)

    Puetter, R. C.; Pina, R. K.

    1994-01-01

    We have developed a new Bayesian image reconstruction method that has been shown to be superior to the best implementations of other methods, including Goodness-of-Fit (e.g. Least-Squares and Lucy-Richardson) and Maximum Entropy (ME). Our new method is based on the concept of the pixon, the fundamental, indivisible unit of picture information. Use of the pixon concept provides an improved image model, resulting in an image prior which is superior to that of standard ME.

  11. Derivation of the Freundlich Adsorption Isotherm from Kinetics

    ERIC Educational Resources Information Center

    Skopp, Joseph

    2009-01-01

    The Freundlich adsorption isotherm is a useful description of adsorption phenomena. It is frequently presented as an empirical equation with little theoretical basis. In fact, a variety of derivations exist. Here a new derivation is presented using the concepts of fractal reaction kinetics. This derivation provides an alternative basis for…

  12. Virtual Libraries: Interactive Support Software and an Application in Chaotic Models.

    ERIC Educational Resources Information Center

    Katsirikou, Anthi; Skiadas, Christos; Apostolou, Apostolos; Rompogiannakis, Giannis

    This paper begins with a discussion of the characteristics and the singularity of chaotic systems, including dynamic systems theory, chaotic orbit, fractals, chaotic attractors, and characteristics of chaotic systems. The second section addresses the digital libraries (DL) concept and the appropriateness of chaotic models, including definition and…

  13. A Complex Story: Universal Preference vs. Individual Differences Shaping Aesthetic Response to Fractals Patterns

    PubMed Central

    Street, Nichola; Forsythe, Alexandra M.; Reilly, Ronan; Taylor, Richard; Helmy, Mai S.

    2016-01-01

    Fractal patterns offer one way to represent the rough complexity of the natural world. Whilst they dominate many of our visual experiences in nature, little large-scale perceptual research has been done to explore how we respond aesthetically to these patterns. Previous research (Taylor et al., 2011) suggests that the fractal patterns with mid-range fractal dimensions (FDs) have universal aesthetic appeal. Perceptual and aesthetic responses to visual complexity have been more varied with findings suggesting both linear (Forsythe et al., 2011) and curvilinear (Berlyne, 1970) relationships. Individual differences have been found to account for many of the differences we see in aesthetic responses but some, such as culture, have received little attention within the fractal and complexity research fields. This two-study article aims to test preference responses to FD and visual complexity, using a large cohort (N = 443) of participants from around the world to allow universality claims to be tested. It explores the extent to which age, culture and gender can predict our preferences for fractally complex patterns. Following exploratory analysis that found strong correlations between FD and visual complexity, a series of linear mixed-effect models were implemented to explore if each of the individual variables could predict preference. The first tested a linear complexity model (likelihood of selecting the more complex image from the pair of images) and the second a mid-range FD model (likelihood of selecting an image within mid-range). Results show that individual differences can reliably predict preferences for complexity across culture, gender and age. However, in fitting with current findings the mid-range models show greater consistency in preference not mediated by gender, age or culture. This article supports the established theory that the mid-range fractal patterns appear to be a universal construct underlying preference but also highlights the fragility of universal claims by demonstrating individual differences in preference for the interrelated concept of visual complexity. This highlights a current stalemate in the field of empirical aesthetics. PMID:27252634

  14. Influence of Landscape Coverage on Measuring Spatial and Length Properties of Rock Fracture Networks: Insights from Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Cao, Wenzhuo; Lei, Qinghua

    2018-01-01

    Natural fractures are ubiquitous in the Earth's crust and often deeply buried in the subsurface. Due to the difficulty in accessing to their three-dimensional structures, the study of fracture network geometry is usually achieved by sampling two-dimensional (2D) exposures at the Earth's surface through outcrop mapping or aerial photograph techniques. However, the measurement results can be considerably affected by the coverage of forests and other plant species over the exposed fracture patterns. We quantitatively study such effects using numerical simulation. We consider the scenario of nominally isotropic natural fracture systems and represent them using 2D discrete fracture network models governed by fractal and length scaling parameters. The groundcover is modelled as random patches superimposing onto the 2D fracture patterns. The effects of localisation and total coverage of landscape patches are further investigated. The fractal dimension and length exponent of the covered fracture networks are measured and compared with those of the original non-covered patterns. The results show that the measured length exponent increases with the reduced localisation and increased coverage of landscape patches, which is more evident for networks dominated by very large fractures (i.e. small underlying length exponent). However, the landscape coverage seems to have a minor impact on the fractal dimension measurement. The research findings of this paper have important implications for field survey and statistical analysis of geological systems.

  15. Monitoring the soil degradation by Metastatistical Analysis

    NASA Astrophysics Data System (ADS)

    Oleschko, K.; Gaona, C.; Tarquis, A.

    2009-04-01

    The effectiveness of fractal toolbox to capture the critical behavior of soil structural patterns during the chemical and physical degradation was documented by our numerous experiments (Oleschko et al., 2008 a; 2008 b). The spatio-temporal dynamics of these patterns was measured and mapped with high precision in terms of fractal descriptors. All tested fractal techniques were able to detect the statistically significant differences in structure between the perfect spongy and massive patterns of uncultivated and sodium-saline agricultural soils, respectively. For instance, the Hurst exponent, extracted from the Chernozeḿ micromorphological images and from the time series of its physical and mechanical properties measured in situ, detected the roughness decrease (and therefore the increase in H - from 0.17 to 0.30 for images) derived from the loss of original structure complexity. The combined use of different fractal descriptors brings statistical precision into the quantification of natural system degradation and provides a means for objective soil structure comparison (Oleschko et al., 2000). The ability of fractal parameters to capture critical behavior and phase transition was documented for different contrasting situations, including from Andosols deforestation and erosion, to Vertisols high fructuring and consolidation. The Hurst exponent is used to measure the type of persistence and degree of complexity of structure dynamics. We conclude that there is an urgent need to select and adopt a standardized toolbox for fractal analysis and complexity measures in Earth Sciences. We propose to use the second-order (meta-) statistics as subtle measures of complexity (Atmanspacher et al., 1997). The high degree of correlation was documented between the fractal and high-order statistical descriptors (four central moments of stochastic variable distribution) used to the system heterogeneity and variability analysis. We proposed to call this combined fractal/statistical toolbox Metastatistical Analysis and recommend it to the projects directed to soil degradation monitoring. References: 1. Oleschko, K., B.S. Figueroa, M.E. Miranda, M.A. Vuelvas and E.R. Solleiro, Soil & Till. Res. 55, 43 (2000). 2. Oleschko, K., Korvin, G., Figueroa S. B., Vuelvas, M.A., Balankin, A., Flores L., Carreño, D. Fractal radar scattering from soil. Physical Review E.67, 041403, 2003. 3. Zamora-Castro S., Oleschko, K. Flores, L., Ventura, E. Jr., Parrot, J.-F., 2008. Fractal mapping of pore and solids attributes. Vadose Zone Journal, v. 7, Issue2: 473-492. 4. Oleschko, K., Korvin, G., Muñoz, A., Velásquez, J., Miranda, M.E., Carreon, D., Flores, L., Martínez, M., Velásquez-Valle, M., Brambilla, F., Parrot, J.-F. Ronquillo, G., 2008. Fractal mapping of soil moisture content from remote sensed multi-scale data. Nonlinear Proceses in Geophysics Journal, 15: 711-725. 5. Atmanspacher, H., Räth, Ch., Wiedenmann, G., 1997. Statistics and meta-statistics in the concept of complexity. Physica A, 234: 819-829.

  16. Learning Geometry through Dynamic Geometry Software

    ERIC Educational Resources Information Center

    Forsythe, Sue

    2007-01-01

    In this article, the author investigates effective teaching and learning of geometrical concepts using dynamic geometry software (DGS). Based from her students' reactions to her project, the author found that her students' understanding of the concepts was better than if they had learned geometry through paper-based tasks. However, mixing computer…

  17. The Use of Geometry Learning Media Based on Augmented Reality for Junior High School Students

    NASA Astrophysics Data System (ADS)

    Rohendi, D.; Septian, S.; Sutarno, H.

    2018-02-01

    Understanding the geometry especially of three-dimensional space is still considered difficult by some students. Therefore, a learning innovation is required to overcome students’ difficulties in learning geometry. In this research, we developed geometry learning media based on augmented reality in android flatform’s then it was implemented in teaching three-dimensional objects for some junior high school students to find out: how is the students response in using this new media in geometry and is this media can solve the student’s difficulties in understanding geometry concept. The results showed that the use of geometry learning media based on augmented reality in android flatform is able to get positive responses from the students in learning geometry concepts especially three-dimensional objects and students more easy to understand concept of diagonal in geometry than before using this media.

  18. Macroscopic Quantum-Type Potentials in Theoretical Systems Biology

    PubMed Central

    Nottale, Laurent

    2014-01-01

    We review in this paper the use of the theory of scale relativity and fractal space-time as a tool particularly well adapted to the possible development of a future genuine systems theoretical biology. We emphasize in particular the concept of quantum-type potentials, since, in many situations, the effect of the fractality of space—or of the underlying medium—can be reduced to the addition of such a potential energy to the classical equations of motion. Various equivalent representations—geodesic, quantum-like, fluid mechanical, stochastic—of these equations are given, as well as several forms of generalized quantum potentials. Examples of their possible intervention in high critical temperature superconductivity and in turbulence are also described, since some biological processes may be similar in some aspects to these physical phenomena. These potential extra energy contributions could have emerged in biology from the very fractal nature of the medium, or from an evolutive advantage, since they involve spontaneous properties of self-organization, morphogenesis, structuration and multi-scale integration. Finally, some examples of applications of the theory to actual biological-like processes and functions are also provided. PMID:24709901

  19. Trabecular Bone Mechanical Properties and Fractal Dimension

    NASA Technical Reports Server (NTRS)

    Hogan, Harry A.

    1996-01-01

    Countermeasures for reducing bone loss and muscle atrophy due to extended exposure to the microgravity environment of space are continuing to be developed and improved. An important component of this effort is finite element modeling of the lower extremity and spinal column. These models will permit analysis and evaluation specific to each individual and thereby provide more efficient and effective exercise protocols. Inflight countermeasures and post-flight rehabilitation can then be customized and targeted on a case-by-case basis. Recent Summer Faculty Fellowship participants have focused upon finite element mesh generation, muscle force estimation, and fractal calculations of trabecular bone microstructure. Methods have been developed for generating the three-dimensional geometry of the femur from serial section magnetic resonance images (MRI). The use of MRI as an imaging modality avoids excessive exposure to radiation associated with X-ray based methods. These images can also detect trabecular bone microstructure and architecture. The goal of the current research is to determine the degree to which the fractal dimension of trabecular architecture can be used to predict the mechanical properties of trabecular bone tissue. The elastic modulus and the ultimate strength (or strain) can then be estimated from non-invasive, non-radiating imaging and incorporated into the finite element models to more accurately represent the bone tissue of each individual of interest. Trabecular bone specimens from the proximal tibia are being studied in this first phase of the work. Detailed protocols and procedures have been developed for carrying test specimens through all of the steps of a multi-faceted test program. The test program begins with MRI and X-ray imaging of the whole bones before excising a smaller workpiece from the proximal tibia region. High resolution MRI scans are then made and the piece further cut into slabs (roughly 1 cm thick). The slabs are X-rayed again and also scanned using dual-energy X-ray absorptiometry (DEXA). Cube specimens are then cut from the slabs and tested mechanically in compression. Correlations between mechanical properties and fractal dimension will then be examined to assess and quantify the predictive capability of the fractal calculations.

  20. DETERMINING EFFECTIVE INTERFACIAL TENSION AND PREDICTING FINGER SPACING FOR DNAPL PENETRATION INTO WATER-SATURATED POROUS MEDIA. (R826157)

    EPA Science Inventory

    The difficulty in determining the effective interfacial tension limits the prediction of the wavelength of fingering of immiscible fluids in porous media. A method to estimate the effective interfacial tension using fractal concepts was presented by Chang et al. [Water Resour. Re...

  1. Optimization and experimental validation of electrostatic adhesive geometry

    NASA Astrophysics Data System (ADS)

    Ruffatto, D.; Shah, J.; Spenko, M.

    This paper introduces a method to optimize the electrode geometry of electrostatic adhesives for robotic gripping, attachment, and manipulation applications. Electrostatic adhesion is achieved by applying a high voltage potential, on the order of kV, to a set of electrodes, which generates an electric field. The electric field polarizes the substrate material and creates an adhesion force. Previous attempts at creating electro-static adhesives have shown them to be effective, but researchers have made no effort to optimize the electrode configuration and geometry. We have shown that by optimizing the geometry of the electrode configuration, the electric field strength, and therefore the adhesion force, is enhanced. To accomplish this, Comsol Multiphysics was utilized to evaluate the average electric field generated by a given electrode geometry. Several electrode patterns were evaluated, including parallel conductors, concentric circles, Hilbert curves (a fractal geometry) and spirals. The arrangement of the electrodes in concentric circles with varying electrode widths proved to be the most effective. The most effective sizing was to use the smallest gap spacing allowable coupled with a variable electrode width. These results were experimentally validated on several different surfaces including drywall, wood, tile, glass, and steel. A new manufacturing process allowing for the fabrication of thin, conformal electro-static adhesive pads was utilized. By combining the optimized electrode geometry with the new fabrication process we are able to demonstrate a marked improvement of up to 500% in shear pressure when compared to previously published values.

  2. Using 3D Geometric Models to Teach Spatial Geometry Concepts.

    ERIC Educational Resources Information Center

    Bertoline, Gary R.

    1991-01-01

    An explanation of 3-D Computer Aided Design (CAD) usage to teach spatial geometry concepts using nontraditional techniques is presented. The software packages CADKEY and AutoCAD are described as well as their usefulness in solving space geometry problems. (KR)

  3. Super periodic potential

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammd; Mandal, Bhabani Prasad

    2018-04-01

    In this paper we introduce the concept of super periodic potential (SPP) of arbitrary order n, n ∈I+, in one dimension. General theory of wave propagation through SPP of order n is presented and the reflection and transmission coefficients are derived in their closed analytical form by transfer matrix formulation. We present scattering features of super periodic rectangular potential and super periodic delta potential as special cases of SPP. It is found that the symmetric self-similarity is the special case of super periodicity. Thus by identifying a symmetric fractal potential as special cases of SPP, one can obtain the tunnelling amplitude for a particle from such fractal potential. By using the formalism of SPP we obtain the close form expression of tunnelling amplitude of a particle for general Cantor and Smith-Volterra-Cantor potentials.

  4. Investigation of non-premixed flame combustion characters in GO2/GH2 shear coaxial injectors using non-intrusive optical diagnostics

    NASA Astrophysics Data System (ADS)

    Dai, Jian; Yu, NanJia; Cai, GuoBiao

    2015-12-01

    Single-element combustor experiments are conducted for three shear coaxial geometry configuration injectors by using gaseous oxygen and gaseous hydrogen (GO2/GH2) as propellants. During the combustion process, several spatially and timeresolved non-intrusive optical techniques, such as OH planar laser induced fluorescence (PLIF), high speed imaging, and infrared imaging, are simultaneously employed to observe the OH radical concentration distribution, flame fluctuations, and temperature fields. The results demonstrate that the turbulent flow phenomenon of non-premixed flame exhibits a remarkable periodicity, and the mixing ratio becomes a crucial factor to influence the combustion flame length. The high speed and infrared images have a consistent temperature field trend. As for the OH-PLIF images, an intuitionistic local flame structure is revealed by single-shot instantaneous images. Furthermore, the means and standard deviations of OH radical intensity are acquired to provide statistical information regarding the flame, which may be helpful for validation of numerical simulations in future. Parameters of structure configurations, such as impinging angle and oxygen post thickness, play an important role in the reaction zone distribution. Based on a successful flame contour extraction method assembled with non-linear anisotropic diffusive filtering and variational level-set, it is possible to implement a fractal analysis to describe the fractal characteristics of the non-premixed flame contour. As a result, the flame front cannot be regarded as a fractal object. However, this turbulent process presents a self-similarity characteristic.

  5. Constructing Easily Iterated Functions with Interesting Properties

    ERIC Educational Resources Information Center

    Sprows, David J.

    2009-01-01

    A number of schools have recently introduced new courses dealing with various aspects of iteration theory or at least have found ways of including topics such as chaos and fractals in existing courses. In this note, we will consider a family of functions whose members are especially well suited to illustrate many of the concepts involved in these…

  6. Increasing Communication in Geometry by Using a Personal Math Concept Chart

    ERIC Educational Resources Information Center

    Friedman, Rhonda; Kazerouni, Gety; Lax, Stacey; Weisdorf, Elli

    2011-01-01

    The action research team developed a "Personal Math Concept Chart". This chart required students to describe the mathematical concepts that they were studying in the Geometry strand of Mathematics using their own images and words. In this study, students were encouraged to express their own understanding of geometric concepts in order to…

  7. Applying Fractal Dimensions and Energy-Budget Analysis to Characterize Fracturing Processes During Magma Migration and Eruption: 2011-2012 El Hierro (Canary Islands) Submarine Eruption

    NASA Astrophysics Data System (ADS)

    López, Carmen; Martí, Joan; Abella, Rafael; Tarraga, Marta

    2014-07-01

    The impossibility of observing magma migration inside the crust obliges us to rely on geophysical data and mathematical modelling to interpret precursors and to forecast volcanic eruptions. Of the geophysical signals that may be recorded before and during an eruption, deformation and seismicity are two of the most relevant as they are directly related to its dynamic. The final phase of the unrest episode that preceded the 2011-2012 eruption on El Hierro (Canary Islands) was characterized by local and accelerated deformation and seismic energy release indicating an increasing fracturing and a migration of the magma. Application of time varying fractal analysis to the seismic data and the characterization of the seismicity pattern and the strain and the stress rates allow us to identify different stages in the source mechanism and to infer the geometry of the path used by the magma and associated fluids to reach the Earth's surface. The results obtained illustrate the relevance of such studies to understanding volcanic unrest and the causes that govern the initiation of volcanic eruptions.

  8. Role of rough surface topography on gas slip flow in microchannels.

    PubMed

    Zhang, Chengbin; Chen, Yongping; Deng, Zilong; Shi, Mingheng

    2012-07-01

    We conduct a lattice Boltzmann simulation of gas slip flow in microchannels incorporating rough surface effects as characterized by fractal geometry with a focus on gas-solid interaction. The gas slip flow in rough microchannels, which is characterized by Poiseuille number and mass flow rate, is evaluated and compared with smooth microchannels. The effects of roughness height, surface fractal dimension, and Knudsen number on slip behavior of gas flow in microchannels are all investigated and discussed. The results indicate that the presence of surface roughness reduces boundary slip for gas flow in microchannels with respect to a smooth surface. The gas flows at the valleys of rough walls are no-slip while velocity slips are observed over the top of rough walls. We find that the gas flow behavior in rough microchannels is insensitive to the surface topography irregularity (unlike the liquid flow in rough microchannels) but is influenced by the statistical height of rough surface and rarefaction effects. In particular, decrease in roughness height or increase in Knudsen number can lead to large wall slip for gas flow in microchannels.

  9. Automatic localization of cerebral cortical malformations using fractal analysis.

    PubMed

    De Luca, A; Arrigoni, F; Romaniello, R; Triulzi, F M; Peruzzo, D; Bertoldo, A

    2016-08-21

    Malformations of cortical development (MCDs) encompass a variety of brain disorders affecting the normal development and organization of the brain cortex. The relatively low incidence and the extreme heterogeneity of these disorders hamper the application of classical group level approaches for the detection of lesions. Here, we present a geometrical descriptor for a voxel level analysis based on fractal geometry, then define two similarity measures to detect the lesions at single subject level. The pipeline was applied to 15 normal children and nine pediatric patients affected by MCDs following two criteria, maximum accuracy (WACC) and minimization of false positives (FPR), and proved that our lesion detection algorithm is able to detect and locate abnormalities of the brain cortex with high specificity (WACC  =  85%, FPR  =  96%), sensitivity (WACC  =  83%, FPR  =  63%) and accuracy (WACC  =  85%, FPR  =  90%). The combination of global and local features proves to be effective, making the algorithm suitable for the detection of both focal and diffused malformations. Compared to other existing algorithms, this method shows higher accuracy and sensitivity.

  10. Automatic localization of cerebral cortical malformations using fractal analysis

    NASA Astrophysics Data System (ADS)

    De Luca, A.; Arrigoni, F.; Romaniello, R.; Triulzi, F. M.; Peruzzo, D.; Bertoldo, A.

    2016-08-01

    Malformations of cortical development (MCDs) encompass a variety of brain disorders affecting the normal development and organization of the brain cortex. The relatively low incidence and the extreme heterogeneity of these disorders hamper the application of classical group level approaches for the detection of lesions. Here, we present a geometrical descriptor for a voxel level analysis based on fractal geometry, then define two similarity measures to detect the lesions at single subject level. The pipeline was applied to 15 normal children and nine pediatric patients affected by MCDs following two criteria, maximum accuracy (WACC) and minimization of false positives (FPR), and proved that our lesion detection algorithm is able to detect and locate abnormalities of the brain cortex with high specificity (WACC  =  85%, FPR  =  96%), sensitivity (WACC  =  83%, FPR  =  63%) and accuracy (WACC  =  85%, FPR  =  90%). The combination of global and local features proves to be effective, making the algorithm suitable for the detection of both focal and diffused malformations. Compared to other existing algorithms, this method shows higher accuracy and sensitivity.

  11. Influence of coherent structures on the evolution of an axisymmetric turbulent jet

    NASA Astrophysics Data System (ADS)

    Breda, Massimiliano; Buxton, Oliver R. H.

    2018-03-01

    The role of initial conditions in affecting the evolution toward self-similarity of an axisymmetric turbulent jet is examined. The jet's near-field coherence was manipulated by non-circular exit geometries of identical open area, De2, including a square and a fractal exit, for comparison with a classical round orifice jet. Hot-wire anemometry and 2D-planar particle image velocimetry experiments were performed between the exit and a location 26De downstream, where the Reynolds stress profiles are self-similar. This study shows that a fractal geometry significantly changes the near-field structure of the jet, breaking up the large-scale coherent structures, thereby affecting the entrainment rate of the background fluid into the jet stream. It is found that many of the jet's turbulent characteristics scale with the number of eddy turnover times rather than simply the streamwise coordinate, with the entrainment rate (amongst others) found to be comparable across the different jets after approximately 3-4 eddies have been overturned. The study is concluded by investigating the jet's evolution toward a self-similar state. No differences are found for the large-scale spreading rate of the jets in the weakly self-similar region, so defined as the region for which some, but not all of the terms of the mean turbulent kinetic energy equation are self-similar. However, the dissipation rate of the turbulent kinetic energy was found to vary more gradually in x than predicted according to the classical equilibrium theories of Kolmogorov. Instead, the dissipation was found to vary in a non-equilibrium fashion for all three jets tested.

  12. Unification of two fractal families

    NASA Astrophysics Data System (ADS)

    Liu, Ying

    1995-06-01

    Barnsley and Hurd classify the fractal images into two families: iterated function system fractals (IFS fractals) and fractal transform fractals, or local iterated function system fractals (LIFS fractals). We will call IFS fractals, class 2 fractals and LIFS fractals, class 3 fractals. In this paper, we will unify these two approaches plus another family of fractals, the class 5 fractals. The basic idea is given as follows: a dynamical system can be represented by a digraph, the nodes in a digraph can be divided into two parts: transient states and persistent states. For bilevel images, a persistent node is a black pixel. A transient node is a white pixel. For images with more than two gray levels, a stochastic digraph is used. A transient node is a pixel with the intensity of 0. The intensity of a persistent node is determined by a relative frequency. In this way, the two families of fractals can be generated in a similar way. In this paper, we will first present a classification of dynamical systems and introduce the transformation based on digraphs, then we will unify the two approaches for fractal binary images. We will compare the decoding algorithms of the two families. Finally, we will generalize the discussion to continuous-tone images.

  13. Spatial model of the gecko foot hair: functional significance of highly specialized non-uniform geometry.

    PubMed

    Filippov, Alexander E; Gorb, Stanislav N

    2015-02-06

    One of the important problems appearing in experimental realizations of artificial adhesives inspired by gecko foot hair is so-called clusterization. If an artificially produced structure is flexible enough to allow efficient contact with natural rough surfaces, after a few attachment-detachment cycles, the fibres of the structure tend to adhere one to another and form clusters. Normally, such clusters are much larger than original fibres and, because they are less flexible, form much worse adhesive contacts especially with the rough surfaces. Main problem here is that the forces responsible for the clusterization are the same intermolecular forces which attract fibres to fractal surface of the substrate. However, arrays of real gecko setae are much less susceptible to this problem. One of the possible reasons for this is that ends of the seta have more sophisticated non-uniformly distributed three-dimensional structure than that of existing artificial systems. In this paper, we simulated three-dimensional spatial geometry of non-uniformly distributed branches of nanofibres of the setal tip numerically, studied its attachment-detachment dynamics and discussed its advantages versus uniformly distributed geometry.

  14. Using Art to Enhance the Learning of Math and Science: Developing an Educational Art-Science Kit about Fractal Patterns in Nature

    NASA Astrophysics Data System (ADS)

    Rao, Deepa

    This study documents the development of an educational art-science kit about natural fractals, whose aim is to unite artistic and scientific inquiry in the informal learning of science and math. Throughout this research, I argue that having an arts-integrated approach can enhance the learner of science and math concepts. A guiding metaphor in this thesis is the Enlightenment-era cabinet of curiosities that represents a time when art and science were unified in the process of inquiry about the natural world. Over time, increased specialization in the practice of arts and science led to a growing divergence between the disciplines in the educational system. Recently, initiatives like STEAM are underway at the national level to integrate "Arts and Design" into the Science, Technology, Engineering, and Math (STEM) formal education agenda. Learning artifacts like science kits present an opportunity to unite artistic and scientific inquiry in informal settings. Although science kits have been introduced to promote informal learning, presently, many science kits have a gap in their design, whereby the activities consist of recipe-like instructions that do not encourage further inquiry-based learning. In the spirit of the cabinet of curiosities, this study seeks to unify visual arts and science in the process of inquiry. Drawing from educational theories of Dewey, Piaget, and Papert, I developed a novel, prototype "art-science kit" that promotes experiential, hands-on, and active learning, and encourages inquiry, exploration, creativity, and reflection through a series of art-based activities to help users learn science and math concepts. In this study, I provide an overview of the design and development process of the arts-based educational activities. Furthermore, I present the results of a pilot usability study (n=10) conducted to receive user feedback on the designed materials for use in improving future iterations of the art-science fractal kit. The fractal kit booklet that I designed can be found in the supplemental materials to this thesis.

  15. Nonlinear Field Equations and Solitons as Particles

    NASA Astrophysics Data System (ADS)

    Maccari, Attilio

    2006-05-01

    Profound advances have recently interested nonlinear field theories and their exact or approximate solutions. We review the last results and point out some important unresolved questions. It is well known that quantum field theories are based upon Fourier series and the identification of plane waves with free particles. On the contrary, nonlinear field theories admit the existence of coherent solutions (dromions, solitons and so on). Moreover, one can construct lower dimensional chaotic patterns, periodic-chaotic patterns, chaotic soliton and dromion patterns. In a similar way, fractal dromion and lump patterns as well as stochastic fractal excitations can appear in the solution. We discuss in some detail a nonlinear Dirac field and a spontaneous symmetry breaking model that are reduced by means of the asymptotic perturbation method to a system of nonlinear evolution equations integrable via an appropriate change of variables. Their coherent, chaotic and fractal solutions are examined in some detail. Finally, we consider the possible identification of some types of coherent solutions with extended particles along the de Broglie-Bohm theory. However, the last findings suggest an inadequacy of the particle concept that appears only as a particular case of nonlinear field theories excitations.

  16. An organic jelly made fractal logic gate with an infinite truth table

    PubMed Central

    Ghosh, Subrata; Fujita, Daisuke; Bandyopadhyay, Anirban

    2015-01-01

    Widely varying logic gates invented over a century are all finite. As data deluge problem looms large on the information processing and communication industry, the thrust to explore radical concepts is increasing rapidly. Here, we design and synthesis a molecule, wherein, the input energy transmits in a cycle inside the molecular system, just like an oscillator, then, we use the molecule to make a jelly that acts as chain of oscillators with a fractal like resonance band. Hence, with the increasing detection resolution, in the vacant space between two energy levels of a given resonance band, a new band appears, due to fractal nature, generation of newer energy levels never stops. This is natural property of a linear chain oscillator. As we correlate each energy level of the resonance band of organic jelly, as a function of pH and density of the jelly, we realize a logic gate, whose truth table is finite, but if we zoom any small part, a new truth table appears. In principle, zooming of truth table would continue forever. Thus, we invent a new class of infinite logic gate for the first time. PMID:26086417

  17. Theoretical study of nanoparticle formation in thermal plasma processing: Nucleation, coagulation and aggregation

    NASA Astrophysics Data System (ADS)

    Mendoza Gonzalez, Norma Yadira

    This work presents a mathematical modeling study of the synthesis of nanoparticles in radio frequency (RF) inductively coupled plasma (ICP) reactors. The purpose is to further investigate the influence of process parameters on the final size and morphology of produced particles. The proposed model involves the calculation of flow and temperature fields of the plasma gas. Evaporation of raw particles is also accounted with the particle trajectory and temperature history calculated with a Lagrangian approach. The nanoparticle formation is considered by homogeneous nucleation and the growth is caused by condensation and Brownian coagulation. The growth of fractal aggregates is considered by introducing a power law exponent Df. Transport of nanoparticles occurs by convection, thermophoresis and Brownian diffusion. The method of moments is used to solve the particle dynamics equation. The model is validated using experimental results from plasma reactors at laboratory scale. The results are presented in the following manner. First, use is made of the computational fluid dynamics software (CFD), Fluent 6.1 with a commercial companion package specifically developped for aerosols named: Fine Particle Model (FPM). This package is used to study the relationship between the operating parameters effect and the properties of the end products at the laboratory scale. Secondly, a coupled hybrid model for the synthesis of spherical particles and fractal aggregates is developped in place of the FPM package. Results obtained from this model will allow to identify the importance of each parameter in defining the morphology of spherical primary particles and fractal aggregates of nanoparticles. The solution of the model was made using the geometries and operating conditions of existing reactors at the Centre de Recherche en Energie, Plasma et Electrochimie (CREPE) of the Universite de Sherbrooke, for which experimental results were obtained experimentally. Additionally, this study demonstrates the importance of the flow and temperature fields on the growth of fractal particles; namely the aggregates.

  18. A fractal model of the Universe

    NASA Astrophysics Data System (ADS)

    Gottlieb, Ioan

    The book represents a revisioned, extended, completed and translated version of the book "Superposed Universes. A scientific novel and a SF story" (1995). The book contains a hypothesis by the author concerning the complexity of the Nature. An introduction to the theories of numbers, manyfolds and topology is given. The possible connection with the theory of evolution of the Universe is discussed. The book contains also in the last chapter a SF story based on the hypothesis presented. A connection with fractals theory is given. A part of his earlier studies (1955-1956) were subsequently published without citation by Ali Kyrala (Phys. Rev. vol.117, No.5, march 1, 1960). The book contains as an important appendix the early papers (some of which are published in the coauthoprship with his scientific advisors): 1) T.T. Vescan, A. Weiszmann and I.Gottlieb, Contributii la studiul problemelor geometrice ale teoriei relativitatii restranse. Academia R.P.R. Baza Timisoara. Lucrarile consfatuirii de geometrie diferentiala din 9-12 iunie 1955. In this paper the authors show a new method of the calculation of the metrics. 2) Jean Gottlieb, L'hyphotese d'un modele de la structure de la matiere, Revista Matematica y Fisica Teorica, Serie A, Volumen XY, No.1, y.2, 1964 3) I. Gottlieb, Some hypotheses on space, time and gravitation, Studies in Gravitation Theory, CIP Press, Bucharest, 1988, pp.227-234 as well as some recent papers (published in the coauthorship with his disciples): 4)M. Agop, Gottlieb speace-time. A fractal axiomatic model of the Universe. in Particles and Fields, Editors: M.Agop and P.D. Ioannou, Athens University Press, 2005, pp. 59-141 5) I. Gottlieb, M.Agop and V.Enache, Games with Cantor's dust. Chaos, Solitons and Fractals, vol.40 (2009) pp. 940-945 6) I. Gottlieb, My picture over the World, Bull. of the Polytechnic Institute of Iasi. Tom LVI)LX, Fasc. 1, 2010, pp. 1-18. The book contains also a dedication to father Vasile Gottlieb and wife Cleopatra Mociutchi.

  19. Fluvial drainage networks: the fractal approach as an improvement of quantitative geomorphic analyses

    NASA Astrophysics Data System (ADS)

    Melelli, Laura; Liucci, Luisa; Vergari, Francesca; Ciccacci, Sirio; Del Monte, Maurizio

    2014-05-01

    Drainage basins are primary landscape units for geomorphological investigations. Both hillslopes and river drainage system are fundamental components in drainage basins analysis. As other geomorphological systems, also the drainage basins aim to an equilibrium condition where the sequence of erosion, transport and sedimentation approach to a condition of minimum energy effort. This state is revealed by a typical geometry of landforms and of drainage net. Several morphometric indexes can measure how much a drainage basin is far from the theoretical equilibrium configuration, revealing possible external disarray. In active tectonic areas, the drainage basins have a primary importance in order to highlight style, amount and rate of tectonic impulses, and morphometric indexes allow to estimate the tectonic activity classes of different sectors in a study area. Moreover, drainage rivers are characterized by a self-similarity structure; this promotes the use of fractals theory to investigate the system. In this study, fractals techniques are employed together with quantitative geomorphological analysis to study the Upper Tiber Valley (UTV), a tectonic intermontane basin located in northern Apennines (Umbria, central Italy). The area is the result of different tectonic phases. From Late Pliocene until present time the UTV is strongly controlled by a regional uplift and by an extensional phase with different sets of normal faults playing a fundamental role in basin morphology. Thirty-four basins are taken into account for the quantitative analysis, twenty on the left side of the basin, the others on the right side. Using fractals dimension of drainage networks, Horton's laws results, concavity and steepness indexes, and hypsometric curves, this study aims to obtain an evolutionary model of the UTV, where the uplift is compared to local subsidence induced by normal fault activity. The results highlight a well defined difference between western and eastern tributary basins, suggesting a greater disequilibrium in the last ones. The quantitative analysis points out the segments of the basin boundaries where the fault activity is more efficient and the resulting geomorphological implications.

  20. Triboelectricity: macroscopic charge patterns formed by self-arraying ions on polymer surfaces.

    PubMed

    Burgo, Thiago A L; Ducati, Telma R D; Francisco, Kelly R; Clinckspoor, Karl J; Galembeck, Fernando; Galembeck, Sergio E

    2012-05-15

    Tribocharged polymers display macroscopically patterned positive and negative domains, verifying the fractal geometry of electrostatic mosaics previously detected by electric probe microscopy. Excess charge on contacting polyethylene (PE) and polytetrafluoroethylene (PTFE) follows the triboelectric series but with one caveat: net charge is the arithmetic sum of patterned positive and negative charges, as opposed to the usual assumption of uniform but opposite signal charging on each surface. Extraction with n-hexane preferentially removes positive charges from PTFE, while 1,1-difluoroethane and ethanol largely remove both positive and negative charges. Using suitable analytical techniques (electron energy-loss spectral imaging, infrared microspectrophotometry and carbonization/colorimetry) and theoretical calculations, the positive species were identified as hydrocarbocations and the negative species were identified as fluorocarbanions. A comprehensive model is presented for PTFE tribocharging with PE: mechanochemical chain homolytic rupture is followed by electron transfer from hydrocarbon free radicals to the more electronegative fluorocarbon radicals. Polymer ions self-assemble according to Flory-Huggins theory, thus forming the experimentally observed macroscopic patterns. These results show that tribocharging can only be understood by considering the complex chemical events triggered by mechanical action, coupled to well-established physicochemical concepts. Patterned polymers can be cut and mounted to make macroscopic electrets and multipoles.

  1. A complex-network perspective on Alexander's wholeness

    NASA Astrophysics Data System (ADS)

    Jiang, Bin

    2016-12-01

    The wholeness, conceived and developed by Christopher Alexander, is what exists to some degree or other in space and matter, and can be described by precise mathematical language. However, it remains somehow mysterious and elusive, and therefore hard to grasp. This paper develops a complex network perspective on the wholeness to better understand the nature of order or beauty for sustainable design. I bring together a set of complexity-science subjects such as complex networks, fractal geometry, and in particular underlying scaling hierarchy derived by head/tail breaks - a classification scheme and a visualization tool for data with a heavy-tailed distribution, in order to make Alexander's profound thoughts more accessible to design practitioners and complexity-science researchers. Through several case studies (some of which Alexander studied), I demonstrate that the complex-network perspective helps reduce the mystery of wholeness and brings new insights to Alexander's thoughts on the concept of wholeness or objective beauty that exists in fine and deep structure. The complex-network perspective enables us to see things in their wholeness, and to better understand how the kind of structural beauty emerges from local actions guided by the 15 fundamental properties, and in particular by differentiation and adaptation processes. The wholeness goes beyond current complex network theory towards design or creation of living structures.

  2. Students' Conceptions of Congruency through the Use of Dynamic Geometry Software

    ERIC Educational Resources Information Center

    Gonzalez, Gloriana; Herbst, Patricio G.

    2009-01-01

    This paper describes students' interactions with dynamic diagrams in the context of an American geometry class. Students used the dragging tool and the measuring tool in Cabri Geometry to make mathematical conjectures. The analysis, using the cK[cent sign] model of conceptions, suggests that incorporating technology in mathematics classrooms…

  3. Human development I: twenty fundamental problems of biology, medicine, and neuro-psychology related to biological information.

    PubMed

    Hermansen, Tyge Dahl; Ventegodt, Søren; Rald, Erik; Clausen, Birgitte; Nielsen, Maj Lyck; Merrick, Joav

    2006-07-06

    In a new series of papers, we address a number of unsolved problems in biology today. First of all, the unsolved enigma concerning how the differentiation from a single zygote to an adult individual happens has been object for severe research for decades. By uncovering a new holistic biological paradigm that introduces an energetic-informational interpretation of reality as a new way to experience biology, these papers will try to solve the problems connected with the events of biological ontogenesis involving a fractal hierarchy, from a single cell to the function of the human brain. The problems discussed are interpreted within the frames of a universe of roomy fractal structures containing energetic patterns that are able to deliver biological information. We think biological organization is guided by energetic changes on the level of quantum mechanics, interacting with the intention that again guides the energetic conformation of the fractal structures to gain disorders or healthiness. Furthermore, we introduce two new concepts: "metamorphous top down" evolution and "adult human metamorphosis". The first is a new evolutionary theory involving metamorphosis as a main concept of evolution. The last is tightly linked to the evolutionary principle and explains how human self-recovery is governed. Other subjects of special interest that we shall look deeper into are the immunological self-nonself discrimination, the structure and function of the human brain, the etiology and salutogenesis of mental and somatic diseases, and the structure of the consciousness of a human being. We shall criticize Szentagothai's model for the modulated structure of the human cerebral cortex and Jerne's theory of the immunological regulatory anti-idiotypic network.

  4. a New Method for Calculating Fractal Dimensions of Porous Media Based on Pore Size Distribution

    NASA Astrophysics Data System (ADS)

    Xia, Yuxuan; Cai, Jianchao; Wei, Wei; Hu, Xiangyun; Wang, Xin; Ge, Xinmin

    Fractal theory has been widely used in petrophysical properties of porous rocks over several decades and determination of fractal dimensions is always the focus of researches and applications by means of fractal-based methods. In this work, a new method for calculating pore space fractal dimension and tortuosity fractal dimension of porous media is derived based on fractal capillary model assumption. The presented work establishes relationship between fractal dimensions and pore size distribution, which can be directly used to calculate the fractal dimensions. The published pore size distribution data for eight sandstone samples are used to calculate the fractal dimensions and simultaneously compared with prediction results from analytical expression. In addition, the proposed fractal dimension method is also tested through Micro-CT images of three sandstone cores, and are compared with fractal dimensions by box-counting algorithm. The test results also prove a self-similar fractal range in sandstone when excluding smaller pores.

  5. Learning Computer Programming: Implementing a Fractal in a Turing Machine

    ERIC Educational Resources Information Center

    Pereira, Hernane B. de B.; Zebende, Gilney F.; Moret, Marcelo A.

    2010-01-01

    It is common to start a course on computer programming logic by teaching the algorithm concept from the point of view of natural languages, but in a schematic way. In this sense we note that the students have difficulties in understanding and implementation of the problems proposed by the teacher. The main idea of this paper is to show that the…

  6. Self-similar and fractal design for stretchable electronics

    DOEpatents

    Rogers, John A.; Fan, Jonathan; Yeo, Woon-Hong; Su, Yewang; Huang, Yonggang; Zhang, Yihui

    2017-04-04

    The present invention provides electronic circuits, devices and device components including one or more stretchable components, such as stretchable electrical interconnects, electrodes and/or semiconductor components. Stretchability of some of the present systems is achieved via a materials level integration of stretchable metallic or semiconducting structures with soft, elastomeric materials in a configuration allowing for elastic deformations to occur in a repeatable and well-defined way. The stretchable device geometries and hard-soft materials integration approaches of the invention provide a combination of advance electronic function and compliant mechanics supporting a broad range of device applications including sensing, actuation, power storage and communications.

  7. Can Black Hole Relax Unitarily?

    NASA Astrophysics Data System (ADS)

    Solodukhin, S. N.

    2005-03-01

    We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.

  8. Reducing the Mismatch of Geometry Concept Definitions and Concept Images Held by Pre-Service Teachers

    ERIC Educational Resources Information Center

    Cunningham, Robert F.; Roberts, Allison

    2010-01-01

    Twenty-three female elementary pre-service teachers were assessed on their ability to answer questions involving geometry concepts. Despite being given the definitions of the altitude of a triangle and the diagonal of a polygon on the pretest, limited understanding of these concepts was evident. A treatment using both graphic organizer and concept…

  9. QUANTITATIVE METHODS FOR RESERVOIR CHARACTERIZATION AND IMPROVED RECOVERY: APPLICATION TO HEAVY OIL SANDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James W. Castle; Fred J. Molz; Ronald W. Falta

    2002-10-30

    Improved prediction of interwell reservoir heterogeneity has the potential to increase productivity and to reduce recovery cost for California's heavy oil sands, which contain approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley. This investigation involves application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation, particularly in heavy oil sands. The investigation was performed in collaboration with Chevron Production Company U.S.A. as an industrial partner, and incorporates data from the Temblor Formation in Chevron's West Coalinga Field. Observations of lateral variabilitymore » and vertical sequences observed in Temblor Formation outcrops has led to a better understanding of reservoir geology in West Coalinga Field. Based on the characteristics of stratigraphic bounding surfaces in the outcrops, these surfaces were identified in the subsurface using cores and logs. The bounding surfaces were mapped and then used as reference horizons in the reservoir modeling. Facies groups and facies tracts were recognized from outcrops and cores of the Temblor Formation and were applied to defining the stratigraphic framework and facies architecture for building 3D geological models. The following facies tracts were recognized: incised valley, estuarine, tide- to wave-dominated shoreline, diatomite, and subtidal. A new minipermeameter probe, which has important advantages over previous methods of measuring outcrop permeability, was developed during this project. The device, which measures permeability at the distal end of a small drillhole, avoids surface weathering effects and provides a superior seal compared with previous methods for measuring outcrop permeability. The new probe was used successfully for obtaining a high-quality permeability data set from an outcrop in southern Utah. Results obtained from analyzing the fractal structure of permeability data collected from the southern Utah outcrop and from core permeability data provided by Chevron from West Coalinga Field were used in distributing permeability values in 3D reservoir models. Spectral analyses and the Double Trace Moment method (Lavallee et al., 1991) were used to analyze the scaling and multifractality of permeability data from cores from West Coalinga Field. T2VOC, which is a numerical flow simulator capable of modeling multiphase, multi-component, nonisothermal flow, was used to model steam injection and oil production for a portion of section 36D in West Coalinga Field. The layer structure and permeability distributions of different models, including facies group, facies tract, and fractal permeability models, were incorporated into the numerical flow simulator. The injection and production histories of wells in the study area were modeled, including shutdowns and the occasional conversion of production wells to steam injection wells. The framework provided by facies groups provides a more realistic representation of the reservoir conditions than facies tracts, which is revealed by a comparison of the history-matching for the oil production. Permeability distributions obtained using the fractal results predict the high degree of heterogeneity within the reservoir sands of West Coalinga Field. The modeling results indicate that predictions of oil production are strongly influenced by the geologic framework and by the boundary conditions. The permeability data collected from the southern Utah outcrop, support a new concept for representing natural heterogeneity, which is called the fractal/facies concept. This hypothesis is one of the few potentially simplifying concepts to emerge from recent studies of geological heterogeneity. Further investigation of this concept should be done to more fully apply fractal analysis to reservoir modeling and simulation. Additional outcrop permeability data sets and further analysis of the data from distinct facies will be needed in order to fully develop this new concept.« less

  10. New Techniques in Time-Frequency Analysis: Adaptive Band, Ultra-Wide Band and Multi-Rate Signal Processing

    DTIC Science & Technology

    2016-03-02

    Nyquist tiles and sampling groups in Euclidean geometry, and discussed the extension of these concepts to hyperbolic and spherical geometry and...hyperbolic or spherical spaces. We look to develop a structure for the tiling of frequency spaces in both Euclidean and non-Euclidean domains. In particular...we establish Nyquist tiles and sampling groups in Euclidean geometry, and discuss the extension of these concepts to hyperbolic and spherical geometry

  11. Music and fractals

    NASA Astrophysics Data System (ADS)

    Wuorinen, Charles

    2015-03-01

    Any of the arts may produce exemplars that have fractal characteristics. There may be fractal painting, fractal poetry, and the like. But these will always be specific instances, not necessarily displaying intrinsic properties of the art-medium itself. Only music, I believe, of all the arts possesses an intrinsically fractal character, so that its very nature is fractally determined. Thus, it is reasonable to assert that any instance of music is fractal...

  12. Effective degrees of freedom of a random walk on a fractal

    NASA Astrophysics Data System (ADS)

    Balankin, Alexander S.

    2015-12-01

    We argue that a non-Markovian random walk on a fractal can be treated as a Markovian process in a fractional dimensional space with a suitable metric. This allows us to define the fractional dimensional space allied to the fractal as the ν -dimensional space Fν equipped with the metric induced by the fractal topology. The relation between the number of effective spatial degrees of freedom of walkers on the fractal (ν ) and fractal dimensionalities is deduced. The intrinsic time of random walk in Fν is inferred. The Laplacian operator in Fν is constructed. This allows us to map physical problems on fractals into the corresponding problems in Fν. In this way, essential features of physics on fractals are revealed. Particularly, subdiffusion on path-connected fractals is elucidated. The Coulomb potential of a point charge on a fractal embedded in the Euclidean space is derived. Intriguing attributes of some types of fractals are highlighted.

  13. Fractal geometry as a new approach for proving nanosimilarity: a reflection note.

    PubMed

    Demetzos, Costas; Pippa, Natassa

    2015-04-10

    Nanosimilars are considered as new medicinal outcomes combining the generic drugs and the nanocarrier as an innovative excipient, in order to evaluate them as final products. They belong to the grey area - concerning the evaluation process - between generic drugs and biosimilar medicinal products. Generic drugs are well documented and a huge number of them are in market, replacing effectively the off-patent drugs. The scientific approach for releasing them to the market is based on bioequivalence studies, which are well documented and accepted by the regulatory agencies. On the other hand, the structural complexity of biological/biotechnology-derived products demands a new approach for the approval process taking into consideration that bioequivalence studies are not considered as sufficient as in generic drugs, and new clinical trials are needed to support their approval process of the product to the market. In proportion, due to technological complexity of nanomedicines, the approaches for proving the statistical identity or the similarity for generic and biosimilar products, respectively, with those of prototypes, are not considered as effective for nanosimilar products. The aim of this note is to propose a complementary approach which can provide realistic evidences concerning the nanosimilarity, based on fractal analysis. This approach is well fit with the structural complexity of nanomedicines and smooths the difficulties for proving the similarity between off-patent and nanosimilar products. Fractal analysis could be considered as the approach that completely characterizes the physicochemical/morphological characteristics of nanosimilar products and could be proposed as a start point for a deep discussion on nanosimilarity. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Theoretical Study on Stress Sensitivity of Fractal Porous Media with Irreducible Water

    NASA Astrophysics Data System (ADS)

    Lei, Gang; Dong, Zhenzhen; Li, Weirong; Wen, Qingzhi; Wang, Cai

    The couple flow deformation behavior in porous media has drawn tremendous attention in various scientific and engineering fields. However, though the coupled flow deformation mechanism has been intensively investigated in the last decades, the essential controls on stress sensitivity are not determined. It is of practical significance to use analytic methods to study stress sensitivity of porous media. Unfortunately, because of the disordered and extremely complicated microstructures of porous media, the theoretical model for stress sensitivity is scarce. The goal of this work is to establish a novel and reasonable quantitative model to determine the essential controls on stress sensitivity. The predictions of the theoretical model, derived from the Hertzian contact theory and fractal geometry, agree well with the available experimental data. Compared with the previous models, our model takes into account more factors, including the influence of the water saturation and the microstructural parameters of the pore space. The proposed models can reveal more mechanisms that affect the coupled flow deformation behavior in fractal porous media. The results show that the irreducible water saturation increases with the increase of effective stress, and decreases with the increased rock elastic modulus (or increased power law index) at a given effective stress. The effect of stress variation on porosity is smaller than that on permeability. Under a given effective stress, the normalized permeability (or the normalized porosity) becomes smaller with the decrease of rock elastic modulus (or the decrease of power law index). And a lower capillary pressure will correspond to an increased rock elastic modulus (or an increased power law index) under a given water saturation.

  15. Elasticity of fractal materials using the continuum model with non-integer dimensional space

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2015-01-01

    Using a generalization of vector calculus for space with non-integer dimension, we consider elastic properties of fractal materials. Fractal materials are described by continuum models with non-integer dimensional space. A generalization of elasticity equations for non-integer dimensional space, and its solutions for the equilibrium case of fractal materials are suggested. Elasticity problems for fractal hollow ball and cylindrical fractal elastic pipe with inside and outside pressures, for rotating cylindrical fractal pipe, for gradient elasticity and thermoelasticity of fractal materials are solved.

  16. Advanced Covariance-Based Stochastic Inversion and Neuro-Genetic Optimization for Rosetta CONSERT Radar Data to Improve Spatial Resolution of Multi-Fractal Depth Profiles for Cometary Nucleus

    NASA Astrophysics Data System (ADS)

    Edenhofer, Peter; Ulamec, Stephan

    2015-04-01

    The paper is devoted to results of doctoral research work at University of Bochum as applied to the radar transmission experiment CONSERT of the ESA cometary mission Rosetta. This research aims at achieving the limits of optimum spatial (and temporal) resolution for radar remote sensing by implementation of covariance informations concerned with error-balanced control as well as coherence of wave propagation effects through random composite media involved (based on Joel Franklin's approach of extended stochastic inversion). As a consequence the well-known inherent numerical instabilities of remote sensing are significantly reduced in a robust way by increasing the weight of main diagonal elements of the resulting composite matrix to be inverted with respect to off-diagonal elements following synergy relations as to the principle of correlation receiver in wireless telecommunications. It is shown that the enhancement of resolution for remote sensing holds for an integral and differential equation approach of inversion as well. In addition to that the paper presents a discussion on how the efficiency of inversion for radar data gets achieved by an overall optimization of inversion due to a novel neuro-genetic approach. Such kind of approach is in synergy with the priority research program "Organic Computing" of DFG / German Research Organization. This Neuro-Genetic Optimization (NGO) turns out, firstly, to take into account more detailed physical informations supporting further improved resolution such as the process of accretion for cometary nucleus, wave propagation effects from rough surfaces, ground clutter, nonlinear focusing, etc. as well as, secondly, to accelerate the computing process of inversion in a really significantly enhanced and fast way, e.g., enabling online-control of autonomous processes such as detection of unknown objects, navigation, etc. The paper describes in some detail how this neuro-genetic approach of optimization is incorporated into the procedure of data inversion by combining inverted artificial neural networks of adequately chosen topology and learning routines for short access times with the concept of genetic algorithms enabling to achieve a multi-dimensional global optimum subject to a properly constructed and problem-oriented target function, ensemble selection rules, etc. Finally the paper discusses how the power of realistic simulation of the structures of the interior of a cometary nucleus can be improved by applying Benoit Mandelbrot's concept of fractal structures. It is shown how the fractal volumetric modelling of the nucleus of a comet can be accomplished by finite 3D elements of flexibility (serving topography and morphology as well) such as of tetrahedron shape with specific scaling factors of self similarity and a Maxwellian type of distribution function. By applying the widely accepted fBm-concept of fractal Brownian motion basically each of the corresponding Hurst exponents 0 (rough) < H < 1 (smooth) can be derived for the multi-fractal depth (and terrain) profiles of the equivalent dielectric constant per tomographic angular orbital segment of intersection by transmissive radar ray paths with the nucleus of the comet. Cooperative efforts and work are in progress to achieve numerical results of depth profiles for the nucleus of comet 67P/Churyumov-Gerasimenko.

  17. Building Students' Understanding of Quadratic Equation Concept Using Naïve Geometry

    ERIC Educational Resources Information Center

    Fachrudin, Achmad Dhany; Putri, Ratu Ilma Indra; Darmawijoyo

    2014-01-01

    The purpose of this research is to know how Naïve Geometry method can support students' understanding about the concept of solving quadratic equations. In this article we will discuss one activities of the four activities we developed. This activity focused on how students linking the Naïve Geometry method with the solving of the quadratic…

  18. Application to recognition of ferrography image with fractal neural network

    NASA Astrophysics Data System (ADS)

    Tian, Xianzhong; Hu, Tongsen; Zhang, Jian

    2005-10-01

    Because wear particles have fractal characteristics, it is necessary that adding fractal parameters to studying wear particles and diagnosing machine troubles. This paper discusses fractal parameters of wear particles, presents arithmetic calculating fractal dimension, and constructs a fractal neural network which can recognize wear particles image. It is proved by experiments that this fractal neural network can recognize some characteristics of wear particles image, and can also classify wear types.

  19. Re-Turning Feminist Methodologies: From a Social to an Ecological Epistemology

    ERIC Educational Resources Information Center

    Hughes, Christina; Lury, Celia

    2013-01-01

    This paper proposes an ecological methodology in order to re-think the concept of situatedness in ways that can take into account that we live in relation to, and are of, a more-and-other-than-human world. In doing so, the paper proposes that situatedness should be understood in terms of processes of co-invention that, fractally and recursively,…

  20. Strong light absorption capability directed by structured profile of vertical Si nanowires

    NASA Astrophysics Data System (ADS)

    Chaliyawala, Harsh A.; Ray, Abhijit; Pati, Ranjan K.; Mukhopadhyay, Indrajit

    2017-11-01

    Si nanowire arrays (SiNWAs) with random fractal geometry was fabricated using fast, mask-less, non-lithographic and facile approach by incorporating metal assisted electroless etching of n-type Si (111) substrates. The FESEM images demonstrate the formation of nano-porous surfaces that provide effective path for the incoming light to get trapped into the cavity of nanowires. The length of NWs increases from ∼1 to 10 μm with increase in the etching time having a diameter in the range of ∼25-82 nm. A transformation from zero to first order kinetics after a prolonged etching has been determined. The synthesized SiNWAs show high light trapping properties, including a maximum photon absorption across the entire visible and near IR range below the band gap of Si. The SiNWAs etched for 15 min exhibit extremely low specular and total reflectance of ∼0.2% and 4.5%, respectively over a broadband of wavelength. The reduction in the reflection loss is accompanied with the gradient of refractive index from air to Si substrate as well as due to the sub-wavelength structures, which manifests the light scattering effect. The COMSOL multiphysics simulation has been performed to study the high broadband light absorption capability in terms of the strong localized light field confinement by varying the length of the nanowire. Moreover, the SiNWs induces the dewetting ability at the solid/liquid interface and enhances the superhydrophobicity. Furthermore, a maximum length scale of 100-200 nm manifests a strong heterogeneity along the planar section of the surface of SiNWs. The study thus provides an insight on the light propagation into the random fractal geometries of Si nanowires. These outstanding properties should contribute to the structural optimization of various optoelectronic and photonic devices.

  1. Discrete angle radiative transfer. 3. Numerical results and meteorological applications

    NASA Astrophysics Data System (ADS)

    Davis, Anthony; Gabriel, Philip; Lovejoy, Shuan; Schertzer, Daniel; Austin, Geoffrey L.

    1990-07-01

    In the first two installments of this series, various cloud models were studied with angularly discretized versions of radiative transfer. This simplification allows the effects of cloud inhomogeneity to be studied in some detail. The families of scattering media investigated were those whose members are related to each other by scale changing operations that involve only ratios of their sizes (``scaling'' geometries). In part 1 it was argued that, in the case of conservative scattering, the reflection and transmission coefficients of these families should vary algebraically with cloud size in the asymptotically thick regime, thus allowing us to define scaling exponents and corresponding ``universality'' classes. In part 2 this was further justified (by using analytical renormalization methods) for homogeneous clouds in one, two, and three spatial dimensions (i.e., slabs, squares, or triangles and cubes, respectively) as well as for a simple deterministic fractal cloud. Here the same systems are studied numerically. The results confirm (1) that renormalization is qualitatively correct (while quantitatively poor), and (2) more importantly, they support the conjecture that the universality classes of discrete and continuous angle radiative transfer are generally identical. Additional numerical results are obtained for a simple class of scale invariant (fractal) clouds that arises when modeling the concentration of cloud liquid water into ever smaller regions by advection in turbulent cascades. These so-called random ``β models'' are (also) characterized by a single fractal dimension. Both open and cyclical horizontal boundary conditions are considered. These and previous results are constrasted with plane-parallel predictions, and measures of systematic error are defined as ``packing factors'' which are found to diverge algebraically with average optical thickness and are significant even when the scaling behavior is very limited in range. Several meteorological consequences, especially concerning the ``albedo paradox'' and global climate models, are discussed, and future directions of investigation are outlined. Throughout this series it is shown that spatial variability of the optical density field (i.e., cloud geometry) determines the exponent of optical thickness (hence universality class), whereas changes in phase function can only affect the multiplicative prefactors. It is therefore argued that much more emphasis should be placed on modeling spatial inhomogeneity and investigating its radiative signature, even if this implies crude treatment of the angular aspect of the radiative transfer problem.

  2. Micro and MACRO Fractals Generated by Multi-Valued Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Banakh, T.; Novosad, N.

    2014-08-01

    Given a multi-valued function Φ : X \\mumap X on a topological space X we study the properties of its fixed fractal \\malteseΦ, which is defined as the closure of the orbit Φω(*Φ) = ⋃n∈ωΦn(*Φ) of the set *Φ = {x ∈ X : x ∈ Φ(x)} of fixed points of Φ. A special attention is paid to the duality between micro-fractals and macro-fractals, which are fixed fractals \\maltese Φ and \\maltese {Φ -1} for a contracting compact-valued function Φ : X \\mumap X on a complete metric space X. With help of algorithms (described in this paper) we generate various images of macro-fractals which are dual to some well-known micro-fractals like the fractal cross, the Sierpiński triangle, Sierpiński carpet, the Koch curve, or the fractal snowflakes. The obtained images show that macro-fractals have a large-scale fractal structure, which becomes clearly visible after a suitable zooming.

  3. Effective degrees of freedom of a random walk on a fractal.

    PubMed

    Balankin, Alexander S

    2015-12-01

    We argue that a non-Markovian random walk on a fractal can be treated as a Markovian process in a fractional dimensional space with a suitable metric. This allows us to define the fractional dimensional space allied to the fractal as the ν-dimensional space F(ν) equipped with the metric induced by the fractal topology. The relation between the number of effective spatial degrees of freedom of walkers on the fractal (ν) and fractal dimensionalities is deduced. The intrinsic time of random walk in F(ν) is inferred. The Laplacian operator in F(ν) is constructed. This allows us to map physical problems on fractals into the corresponding problems in F(ν). In this way, essential features of physics on fractals are revealed. Particularly, subdiffusion on path-connected fractals is elucidated. The Coulomb potential of a point charge on a fractal embedded in the Euclidean space is derived. Intriguing attributes of some types of fractals are highlighted.

  4. Fractal analysis of the hydraulic conductivity on a sandy porous media reproduced in a laboratory facility.

    NASA Astrophysics Data System (ADS)

    de Bartolo, S.; Fallico, C.; Straface, S.; Troisi, S.; Veltri, M.

    2009-04-01

    The complexity characterization of the porous media structure, in terms of the "pore" phase and the "solid" phase, can be carried out by means of the fractal geometry which is able to put in relationship the soil structural properties and the water content. It is particularly complicated to describe analytically the hydraulic conductivity for the irregularity of the porous media structure. However these can be described by many fractal models considering the soil structure as the distribution of particles dimensions, the distribution of the solid aggregates, the surface of the pore-solid interface and the fractal mass of the "pore" and "solid" phases. In this paper the fractal model of Yu and Cheng (2002) and Yu and Liu (2004), for a saturated bidispersed porous media, was considered. This model, using the Sierpinsky-type gasket scheme, doesn't contain empiric constants and furnishes a well accord with the experimental data. For this study an unconfined aquifer was reproduced by means of a tank with a volume of 10 Ã- 7 Ã- 3 m3, filled with a homogeneous sand (95% of SiO2), with a high percentage (86.4%) of grains between 0.063mm and 0.125mm and a medium-high permeability. From the hydraulic point of view, 17 boreholes, a pumping well and a drainage ring around its edge were placed. The permeability was measured utilizing three different methods, consisting respectively in pumping test, slug test and laboratory analysis of an undisturbed soil cores, each of that involving in the measurement a different support volume. The temporal series of the drawdown obtained by the pumping test were analyzed by the Neuman-type Curve method (1972), because the saturated part above the bottom of the facility represents an unconfined aquifer. The data analysis of the slug test were performed by the Bouwer & Rice (1976) method and the laboratory analysis were performed on undisturbed saturated soil samples utilizing a falling head permeameter. The obtained values either of the fractal dimension of the area of the pores (Df) or of the fractal dimension of capillary tortuosity (DT), very similar to those reported in literature (Yu and Cheng, 2002; Yu and Liu, 2004; Yu, 2005) and falling in the range of definition (1 < Df < 2), resulted very close to those carried out in a previous study performed on the same apparatus but with a limited number of values (De Bartolo et al., in review). In fact in the present study the laboratory analysis were performed on other 10 undisturbed soil samples and moreover three new values of slug test and 12 new of pumping test were considered. Moreover the trend of DT growing with the scale length (L) was confirmed, as well as the invariability of, due to the homogeneity of the considered porous media. The linear scaling law of the permeability (k) close to scale length was investigated furnishing more reliable results. However for a better definition of a law of scale for Df, DT and k several number of scale length are need and a greater number of experimental data should be carried out. For this purpose the considered experimental apparatus is limited from its restricted dimensions and geometric bounds; therefore further investigations in experimental field are desirable. Bibliografy Bouwer, H. & Rice, R. C. 1976. A Slug Test for Hydraulic Conductivity of Unconfined Aquifers With Completely or Partially Penetrating Wells, Water Resources Research, 12(3). De Bartolo, S., Fallico, C., Straface, S., Troisi, S. & Veltri M. (in review). Scaling of the hydraulic conductivity measurements by a fractal analysis on an unconfined aquifer reproduced in a laboratory facility, Geoderma Special Issue 2008. Neuman, S.P. 1972. Theory of flow in unconfined aquifers considering delayed response of the water table, Water Resources Research, 8(4), 1031-1045. Yu, B.M. 2005. Fractal Character for Tortuous Streamtubes in Porous Media, Chin. Phis. Lett., 22(1), 158. Yu, B.M. & Cheng, P. 2002. A Fractal Permeability Model for Bi-Dispersed Porous Media, Int. J. Heat Mass Transfer 45(14), 2983. Yu, B.M. & Liu W. 2004. Fractal Analysis of Permeabilities for Porous Media, American Institute of Chemical Engineers 50(1), 46-57.

  5. Chemical weathering from the CoDA (Compositional Data Analysis) point of view: new insights for the Alpine rivers geochemistry

    NASA Astrophysics Data System (ADS)

    Gozzi, Caterina; Buccianti, Antonella; Frondini, Francesco

    2017-04-01

    The aim of this contribution is to explore the relationship among weathering reactions, the sample space of compositional data and fractals by means of distributional analysis. Weathering reactions represent the transfer of heat and entropy to the environment in geochemical cycles. Chemical weathering is a key process for understanding the global cycle of elements, both on long and short-terms and chemical weathering rates are complex functions of many factors including dissolution kinetics of minerals, mechanical erosion, lithology. Compositional data express the relative (proportional) abundance of chemical elements/species in a given total (i.e. volume or weight) so that compositions pertaining to the peculiar geometry of the simplex sample space. Fractals are temporal or spatial objects with self-similarity and scale invariance, so that internal structures repeat themselves over multiple levels of magnification or scales of measurement. Gibbs's free energy and the application of the Law Mass Action can be used to model weathering reactions, under the hypothesis of chemical equilibrium. Compositional data are obtained in the analytical phase after the determination of the concentrations of chemicals in sampled solid, liquid or gaseous materials. Fractals can be measured by using their fractal dimensions. The presence of fractal structures can be observed when the frequency distribution of isometric log-ratio coordinates is investigated, showing the logarithm of the cumulative number of samples exceeding a certain coordinate value plotted against the coordinate value itself. Isometric log-ratio coordinates (or balances) can be constructed by using the sequential binary partition (SBP) method. The balances can be identified to maintain, as far as possible, the similarity with a corresponding weathering reaction (Buccianti & Zuo, 2016). As an alternative, balances can be derived after the multivariate investigation of the variance-covariance structure of the compositional matrix. In both cases the idea is to probe the behaviour of geochemical processes to be analysed in time or space. An application example is presented for the chemistry of the surficial waters of the Alpine region (Donnini et al., 2016). The emergence of fractal structures indicates the presence of dissipative systems, which require complexity, large numbers of inter-connected elements and stochasticity requiring caution in the use of classical spatial methods to represent geochemical phenomena. Buccianti A. & Zuo R., 2016. Weathering reactions and isometric log-ratio coordinates: Do they speak to each other? Applied Geochemistry, 75, 189-199. Donnini M., Frondini F., Probst J.L., Probst A., Cardellini C., Marchesini I., Guzzetti F., 2016. Chemical weathering and consumption of atmospheric carbon dioxide in the Alpine region. Global and Planetary Change, 136 (2016) 65-81.

  6. Aesthetic Responses to Exact Fractals Driven by Physical Complexity

    PubMed Central

    Bies, Alexander J.; Blanc-Goldhammer, Daryn R.; Boydston, Cooper R.; Taylor, Richard P.; Sereno, Margaret E.

    2016-01-01

    Fractals are physically complex due to their repetition of patterns at multiple size scales. Whereas the statistical characteristics of the patterns repeat for fractals found in natural objects, computers can generate patterns that repeat exactly. Are these exact fractals processed differently, visually and aesthetically, than their statistical counterparts? We investigated the human aesthetic response to the complexity of exact fractals by manipulating fractal dimensionality, symmetry, recursion, and the number of segments in the generator. Across two studies, a variety of fractal patterns were visually presented to human participants to determine the typical response to exact fractals. In the first study, we found that preference ratings for exact midpoint displacement fractals can be described by a linear trend with preference increasing as fractal dimension increases. For the majority of individuals, preference increased with dimension. We replicated these results for other exact fractal patterns in a second study. In the second study, we also tested the effects of symmetry and recursion by presenting asymmetric dragon fractals, symmetric dragon fractals, and Sierpinski carpets and Koch snowflakes, which have radial and mirror symmetry. We found a strong interaction among recursion, symmetry and fractal dimension. Specifically, at low levels of recursion, the presence of symmetry was enough to drive high preference ratings for patterns with moderate to high levels of fractal dimension. Most individuals required a much higher level of recursion to recover this level of preference in a pattern that lacked mirror or radial symmetry, while others were less discriminating. This suggests that exact fractals are processed differently than their statistical counterparts. We propose a set of four factors that influence complexity and preference judgments in fractals that may extend to other patterns: fractal dimension, recursion, symmetry and the number of segments in a pattern. Conceptualizations such as Berlyne’s and Redies’ theories of aesthetics also provide a suitable framework for interpretation of our data with respect to the individual differences that we detect. Future studies that incorporate physiological methods to measure the human aesthetic response to exact fractal patterns would further elucidate our responses to such timeless patterns. PMID:27242475

  7. Paradigms of Complexity: Fractals and Structures in the Sciences

    NASA Astrophysics Data System (ADS)

    Novak, Miroslav M.

    The Table of Contents for the book is as follows: * Preface * The Origin of Complexity (invited talk) * On the Existence of Spatially Uniform Scaling Laws in the Climate System * Multispectral Backscattering: A Fractal-Structure Probe * Small-Angle Multiple Scattering on a Fractal System of Point Scatterers * Symmetric Fractals Generated by Cellular Automata * Bispectra and Phase Correlations for Chaotic Dynamical Systems * Self-Organized Criticality Models of Neural Development * Altered Fractal and Irregular Heart Rate Behavior in Sick Fetuses * Extract Multiple Scaling in Long-Term Heart Rate Variability * A Semi-Continous Box Counting Method for Fractal Dimension Measurement of Short Single Dimension Temporal Signals - Preliminary Study * A Fractional Brownian Motion Model of Cracking * Self-Affine Scaling Studies on Fractography * Coarsening of Fractal Interfaces * A Fractal Model of Ocean Surface Superdiffusion * Stochastic Subsurface Flow and Transport in Fractal Fractal Conductivity Fields * Rendering Through Iterated Function Systems * The σ-Hull - The Hull Where Fractals Live - Calculating a Hull Bounded by Log Spirals to Solve the Inverse IFS-Problem by the Detected Orbits * On the Multifractal Properties of Passively Convected Scalar Fields * New Statistical Textural Transforms for Non-Stationary Signals: Application to Generalized Mutlifractal Analysis * Laplacian Growth of Parallel Needles: Their Mullins-Sekerka Instability * Entropy Dynamics Associated with Self-Organization * Fractal Properties in Economics (invited talk) * Fractal Approach to the Regional Seismic Event Discrimination Problem * Fractal and Topological Complexity of Radioactive Contamination * Pattern Selection: Nonsingular Saffman-Taylor Finger and Its Dynamic Evolution with Zero Surface Tension * A Family of Complex Wavelets for the Characterization of Singularities * Stabilization of Chaotic Amplitude Fluctuations in Multimode, Intracavity-Doubled Solid-State Lasers * Chaotic Dynamics of Elastic-Plastic Beams * The Riemann Non-Differentiable Function and Identities for the Gaussian Sums * Revealing the Multifractal Nature of Failure Sequence * The Fractal Nature of wood Revealed by Drying * Squaring the Circle: Diffusion Volume and Acoustic Behaviour of a Fractal Structure * Relationship Between Acupuncture Holographic Units and Fetus Development; Fractal Features of Two Acupuncture Holographic Unit Systems * The Fractal Properties of the Large-Scale Magnetic Fields on the Sun * Fractal Analysis of Tide Gauge Data * Author Index

  8. An Affect-Centered Model of the Psyche and its Consequences for a New Understanding of Nonlinear Psychodynamics

    NASA Astrophysics Data System (ADS)

    Ciompi, Luc

    At variance with a purely cognitivistic approach, an affect-centered model of mental functioning called `fractal affect-logic' is presented on the basis of current emotional-psychological and neurobiological research. Functionally integrated feeling-thinking-behaving programs generated by action appear in this model as the basic `building blocks' of the psyche. Affects are understood as the essential source of energy that mobilises and organises both linear and nonlinear affective-cognitive dynamics, under the influence of appropriate control parameters and order parameters. Global patterns of affective-cognitive functioning form dissipative structures in the sense of Prigogine, with affect-specific attractors and repulsors, bifurcations, high sensitivity for initial conditions and a fractal overall structure that may be represented in a complex potential landscape of variable configuration. This concept opens new possibilities of understanding normal and pathological psychodynamics and sociodynamics, with numerous practical and theoretical implications.

  9. Using the concept of pseudo amino acid composition to predict resistance gene against Xanthomonas oryzae pv. oryzae in rice: an approach from chaos games representation.

    PubMed

    Jingbo, Xia; Silan, Zhang; Feng, Shi; Huijuan, Xiong; Xuehai, Hu; Xiaohui, Niu; Zhi, Li

    2011-09-07

    To evaluate the possibility of an unknown protein to be a resistant gene against Xanthomonas oryzae pv. oryzae, a different mode of pseudo amino acid composition (PseAAC) is proposed to formulate the protein samples by integrating the amino acid composition, as well as the Chaos games representation (CGR) method. Some numerical comparisons of triangle, quadrangle and 12-vertex polygon CGR are carried to evaluate the efficiency of using these fractal figures in classifiers. The numerical results show that among the three polygon methods, triangle method owns a good fractal visualization and performs the best in the classifier construction. By using triangle + 12-vertex polygon CGR as the mathematical feature, the classifier achieves 98.13% in Jackknife test and MCC achieves 0.8462. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Function representation with circle inversion map systems

    NASA Astrophysics Data System (ADS)

    Boreland, Bryson; Kunze, Herb

    2017-01-01

    The fractals literature develops the now well-known concept of local iterated function systems (using affine maps) with grey-level maps (LIFSM) as an approach to function representation in terms of the associated fixed point of the so-called fractal transform. While originally explored as a method to achieve signal (and 2-D image) compression, more recent work has explored various aspects of signal and image processing using this machinery. In this paper, we develop a similar framework for function representation using circle inversion map systems. Given a circle C with centre õ and radius r, inversion with respect to C transforms the point p˜ to the point p˜', such that p˜ and p˜' lie on the same radial half-line from õ and d(õ, p˜)d(õ, p˜') = r2, where d is Euclidean distance. We demonstrate the results with an example.

  11. Extreme value laws for fractal intensity functions in dynamical systems: Minkowski analysis

    NASA Astrophysics Data System (ADS)

    Mantica, Giorgio; Perotti, Luca

    2016-09-01

    Typically, in the dynamical theory of extremal events, the function that gauges the intensity of a phenomenon is assumed to be convex and maximal, or singular, at a single, or at most a finite collection of points in phase-space. In this paper we generalize this situation to fractal landscapes, i.e. intensity functions characterized by an uncountable set of singularities, located on a Cantor set. This reveals the dynamical rôle of classical quantities like the Minkowski dimension and content, whose definition we extend to account for singular continuous invariant measures. We also introduce the concept of extremely rare event, quantified by non-standard Minkowski constants and we study its consequences to extreme value statistics. Limit laws are derived from formal calculations and are verified by numerical experiments. Dedicated to the memory of Joseph Ford, on the twentieth anniversary of his departure.

  12. Coupled local facilitation and global hydrologic inhibition drive landscape geometry in a patterned peatland

    NASA Astrophysics Data System (ADS)

    Acharya, S.; Kaplan, D. A.; Casey, S.; Cohen, M. J.; Jawitz, J. W.

    2015-05-01

    Self-organized landscape patterning can arise in response to multiple processes. Discriminating among alternative patterning mechanisms, particularly where experimental manipulations are untenable, requires process-based models. Previous modeling studies have attributed patterning in the Everglades (Florida, USA) to sediment redistribution and anisotropic soil hydraulic properties. In this work, we tested an alternate theory, the self-organizing-canal (SOC) hypothesis, by developing a cellular automata model that simulates pattern evolution via local positive feedbacks (i.e., facilitation) coupled with a global negative feedback based on hydrology. The model is forced by global hydroperiod that drives stochastic transitions between two patch types: ridge (higher elevation) and slough (lower elevation). We evaluated model performance using multiple criteria based on six statistical and geostatistical properties observed in reference portions of the Everglades landscape: patch density, patch anisotropy, semivariogram ranges, power-law scaling of ridge areas, perimeter area fractal dimension, and characteristic pattern wavelength. Model results showed strong statistical agreement with reference landscapes, but only when anisotropically acting local facilitation was coupled with hydrologic global feedback, for which several plausible mechanisms exist. Critically, the model correctly generated fractal landscapes that had no characteristic pattern wavelength, supporting the invocation of global rather than scale-specific negative feedbacks.

  13. Coupled local facilitation and global hydrologic inhibition drive landscape geometry in a patterned peatland

    NASA Astrophysics Data System (ADS)

    Acharya, S.; Kaplan, D. A.; Casey, S.; Cohen, M. J.; Jawitz, J. W.

    2015-01-01

    Self-organized landscape patterning can arise in response to multiple processes. Discriminating among alternative patterning mechanisms, particularly where experimental manipulations are untenable, requires process-based models. Previous modeling studies have attributed patterning in the Everglades (Florida, USA) to sediment redistribution and anisotropic soil hydraulic properties. In this work, we tested an alternate theory, the self-organizing canal (SOC) hypothesis, by developing a cellular automata model that simulates pattern evolution via local positive feedbacks (i.e., facilitation) coupled with a global negative feedback based on hydrology. The model is forced by global hydroperiod that drives stochastic transitions between two patch types: ridge (higher elevation) and slough (lower elevation). We evaluated model performance using multiple criteria based on six statistical and geostatistical properties observed in reference portions of the Everglades landscape: patch density, patch anisotropy, semivariogram ranges, power-law scaling of ridge areas, perimeter area fractal dimension, and characteristic pattern wavelength. Model results showed strong statistical agreement with reference landscapes, but only when anisotropically acting local facilitation was coupled with hydrologic global feedback, for which several plausible mechanisms exist. Critically, the model correctly generated fractal landscapes that had no characteristic pattern wavelength, supporting the invocation of global rather than scale-specific negative feedbacks.

  14. DichotomY IdentitY: Euler-Bernoulli Numbers, Sets-Multisets, FD-BE Quantum-Statistics, 1 /f0 - 1 /f1 Power-Spectra, Ellipse-Hyperbola Conic-Sections, Local-Global Extent: ``Category-Semantics''

    NASA Astrophysics Data System (ADS)

    Rota, G.-C.; Siegel, Edward Carl-Ludwig

    2011-03-01

    Seminal Apostol[Math.Mag.81,3,178(08);Am.Math.Month.115,9,795(08)]-Rota[Intro.Prob. Thy.(95)-p.50-55] DichotomY equivalence-class: set-theory: sets V multisets; closed V open; to Abromowitz-Stegun[Hdbk.Math.Fns.(64)]-ch.23,p.803!]: numbers/polynomials generating-functions: Euler V Bernoulli; to Siegel[Schrodinger Cent.Symp.(87); Symp.Fractals, MRS Fall Mtg.,(1989)-5-papers!] power-spectrum: 1/ f {0}-White V 1/ f {1}-Zipf/Pink (Archimedes) HYPERBOLICITY INEVITABILITY; to analytic-geometry Conic-Sections: Ellipse V (via Parabola) V Hyperbola; to Extent/Scale/Radius: Locality V Globality, Root-Causes/Ultimate-Origins: Dimensionality: odd-Z V (via fractal) V even-Z, to Symmetries/(Noether's-theorem connected)/Conservation-Laws Dichotomy: restored/conservation/convergence=0- V broken/non-conservation/divergence=/=0: with asymptotic-limit antipodes morphisms/ crossovers: Eureka!!!; "FUZZYICS"=''CATEGORYICS''!!! Connection to Kummer(1850) Bernoulli-numbers proof of FLT is via Siegel(CCNY;1964) < (1994)[AMS Joint Mtg. (2002)-Abs.973-60-124] short succinct physics proof: FLT = Least-Action Principle!!!

  15. Hydrophobicity of silver surfaces with microparticle geometry

    NASA Astrophysics Data System (ADS)

    Macko, Ján; Oriňaková, Renáta; Oriňak, Andrej; Kovaľ, Karol; Kupková, Miriam; Erdélyi, Branislav; Kostecká, Zuzana; Smith, Roger M.

    2016-11-01

    The effect of the duration of the current deposition cycle and the number of current pulses on the geometry of silver microstructured surfaces and on the free surface energy, polarizability, hydrophobicity and thus adhesion force of the silver surfaces has been investigated. The changes in surface hydrophobicity were entirely dependent on the size and density of the microparticles on the surface. The results showed that formation of the silver microparticles was related to number of current pulses, while the duration of one current pulse played only a minor effect on the final surface microparticle geometry and thus on the surface tension and hydrophobicity. The conventional geometry of the silver particles has been transformed to the fractal dimension D. The surface hydrophobicity depended predominantly on the length of the dendrites not on their width. The highest silver surface hydrophobicity was observed on a surface prepared by 30 current pulses with a pulse duration of 1 s, the lowest one when deposition was performed by 10 current pulses with a duration of 0.1 s. The partial surface tension coefficients γDS and polarizability kS of the silver surfaces were calculated. Both parameters can be applied in future applications in living cells adhesion prediction and spectral method selection. Silver films with microparticle geometry showed a lower variability in final surface hydrophobicity when compared to nanostructured surfaces. The comparisons could be used to modify surfaces and to modulate human cells and bacterial adhesion on body implants, surgery instruments and clean surfaces.

  16. Verifying the Dependence of Fractal Coefficients on Different Spatial Distributions

    NASA Astrophysics Data System (ADS)

    Gospodinov, Dragomir; Marekova, Elisaveta; Marinov, Alexander

    2010-01-01

    A fractal distribution requires that the number of objects larger than a specific size r has a power-law dependence on the size N(r) = C/rD∝r-D where D is the fractal dimension. Usually the correlation integral is calculated to estimate the correlation fractal dimension of epicentres. A `box-counting' procedure could also be applied giving the `capacity' fractal dimension. The fractal dimension can be an integer and then it is equivalent to a Euclidean dimension (it is zero of a point, one of a segment, of a square is two and of a cube is three). In general the fractal dimension is not an integer but a fractional dimension and there comes the origin of the term `fractal'. The use of a power-law to statistically describe a set of events or phenomena reveals the lack of a characteristic length scale, that is fractal objects are scale invariant. Scaling invariance and chaotic behavior constitute the base of a lot of natural hazards phenomena. Many studies of earthquakes reveal that their occurrence exhibits scale-invariant properties, so the fractal dimension can characterize them. It has first been confirmed that both aftershock rate decay in time and earthquake size distribution follow a power law. Recently many other earthquake distributions have been found to be scale-invariant. The spatial distribution of both regional seismicity and aftershocks show some fractal features. Earthquake spatial distributions are considered fractal, but indirectly. There are two possible models, which result in fractal earthquake distributions. The first model considers that a fractal distribution of faults leads to a fractal distribution of earthquakes, because each earthquake is characteristic of the fault on which it occurs. The second assumes that each fault has a fractal distribution of earthquakes. Observations strongly favour the first hypothesis. The fractal coefficients analysis provides some important advantages in examining earthquake spatial distribution, which are:—Simple way to quantify scale-invariant distributions of complex objects or phenomena by a small number of parameters.—It is becoming evident that the applicability of fractal distributions to geological problems could have a more fundamental basis. Chaotic behaviour could underlay the geotectonic processes and the applicable statistics could often be fractal. The application of fractal distribution analysis has, however, some specific aspects. It is usually difficult to present an adequate interpretation of the obtained values of fractal coefficients for earthquake epicenter or hypocenter distributions. That is why in this paper we aimed at other goals—to verify how a fractal coefficient depends on different spatial distributions. We simulated earthquake spatial data by generating randomly points first in a 3D space - cube, then in a parallelepiped, diminishing one of its sides. We then continued this procedure in 2D and 1D space. For each simulated data set we calculated the points' fractal coefficient (correlation fractal dimension of epicentres) and then checked for correlation between the coefficients values and the type of spatial distribution. In that way one can obtain a set of standard fractal coefficients' values for varying spatial distributions. These then can be used when real earthquake data is analyzed by comparing the real data coefficients values to the standard fractal coefficients. Such an approach can help in interpreting the fractal analysis results through different types of spatial distributions.

  17. Dimensional flow in discrete quantum geometries

    NASA Astrophysics Data System (ADS)

    Calcagni, Gianluca; Oriti, Daniele; Thürigen, Johannes

    2015-04-01

    In various theories of quantum gravity, one observes a change in the spectral dimension from the topological spatial dimension d at large length scales to some smaller value at small, Planckian scales. While the origin of such a flow is well understood in continuum approaches, in theories built on discrete structures a firm control of the underlying mechanism is still missing. We shed some light on the issue by presenting a particular class of quantum geometries with a flow in the spectral dimension, given by superpositions of states defined on regular complexes. For particular superposition coefficients parametrized by a real number 0 <α

  18. Fractal electrodynamics via non-integer dimensional space approach

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2015-09-01

    Using the recently suggested vector calculus for non-integer dimensional space, we consider electrodynamics problems in isotropic case. This calculus allows us to describe fractal media in the framework of continuum models with non-integer dimensional space. We consider electric and magnetic fields of fractal media with charges and currents in the framework of continuum models with non-integer dimensional spaces. An application of the fractal Gauss's law, the fractal Ampere's circuital law, the fractal Poisson equation for electric potential, and equation for fractal stream of charges are suggested. Lorentz invariance and speed of light in fractal electrodynamics are discussed. An expression for effective refractive index of non-integer dimensional space is suggested.

  19. 3-D in vivo brain tumor geometry study by scaling analysis

    NASA Astrophysics Data System (ADS)

    Torres Hoyos, F.; Martín-Landrove, M.

    2012-02-01

    A new method, based on scaling analysis, is used to calculate fractal dimension and local roughness exponents to characterize in vivo 3-D tumor growth in the brain. Image acquisition was made according to the standard protocol used for brain radiotherapy and radiosurgery, i.e., axial, coronal and sagittal magnetic resonance T1-weighted images, and comprising the brain volume for image registration. Image segmentation was performed by the application of the k-means procedure upon contrasted images. We analyzed glioblastomas, astrocytomas, metastases and benign brain tumors. The results show significant variations of the parameters depending on the tumor stage and histological origin.

  20. A smooth exit from eternal inflation?

    NASA Astrophysics Data System (ADS)

    Hawking, S. W.; Hertog, Thomas

    2018-04-01

    The usual theory of inflation breaks down in eternal inflation. We derive a dual description of eternal inflation in terms of a deformed Euclidean CFT located at the threshold of eternal inflation. The partition function gives the amplitude of different geometries of the threshold surface in the no-boundary state. Its local and global behavior in dual toy models shows that the amplitude is low for surfaces which are not nearly conformal to the round three-sphere and essentially zero for surfaces with negative curvature. Based on this we conjecture that the exit from eternal inflation does not produce an infinite fractal-like multiverse, but is finite and reasonably smooth.

  1. Three-Dimensional Surface Parameters and Multi-Fractal Spectrum of Corroded Steel

    PubMed Central

    Shanhua, Xu; Songbo, Ren; Youde, Wang

    2015-01-01

    To study multi-fractal behavior of corroded steel surface, a range of fractal surfaces of corroded surfaces of Q235 steel were constructed by using the Weierstrass-Mandelbrot method under a high total accuracy. The multi-fractal spectrum of fractal surface of corroded steel was calculated to study the multi-fractal characteristics of the W-M corroded surface. Based on the shape feature of the multi-fractal spectrum of corroded steel surface, the least squares method was applied to the quadratic fitting of the multi-fractal spectrum of corroded surface. The fitting function was quantitatively analyzed to simplify the calculation of multi-fractal characteristics of corroded surface. The results showed that the multi-fractal spectrum of corroded surface was fitted well with the method using quadratic curve fitting, and the evolution rules and trends were forecasted accurately. The findings can be applied to research on the mechanisms of corroded surface formation of steel and provide a new approach for the establishment of corrosion damage constitutive models of steel. PMID:26121468

  2. Three-Dimensional Surface Parameters and Multi-Fractal Spectrum of Corroded Steel.

    PubMed

    Shanhua, Xu; Songbo, Ren; Youde, Wang

    2015-01-01

    To study multi-fractal behavior of corroded steel surface, a range of fractal surfaces of corroded surfaces of Q235 steel were constructed by using the Weierstrass-Mandelbrot method under a high total accuracy. The multi-fractal spectrum of fractal surface of corroded steel was calculated to study the multi-fractal characteristics of the W-M corroded surface. Based on the shape feature of the multi-fractal spectrum of corroded steel surface, the least squares method was applied to the quadratic fitting of the multi-fractal spectrum of corroded surface. The fitting function was quantitatively analyzed to simplify the calculation of multi-fractal characteristics of corroded surface. The results showed that the multi-fractal spectrum of corroded surface was fitted well with the method using quadratic curve fitting, and the evolution rules and trends were forecasted accurately. The findings can be applied to research on the mechanisms of corroded surface formation of steel and provide a new approach for the establishment of corrosion damage constitutive models of steel.

  3. BOOK REVIEW: Mathematica for Theoretical Physics: Electrodynamics, Quantum Mechanics, General Relativity and Fractals

    NASA Astrophysics Data System (ADS)

    Heusler, Stefan

    2006-12-01

    The main focus of the second, enlarged edition of the book Mathematica for Theoretical Physics is on computational examples using the computer program Mathematica in various areas in physics. It is a notebook rather than a textbook. Indeed, the book is just a printout of the Mathematica notebooks included on the CD. The second edition is divided into two volumes, the first covering classical mechanics and nonlinear dynamics, the second dealing with examples in electrodynamics, quantum mechanics, general relativity and fractal geometry. The second volume is not suited for newcomers because basic and simple physical ideas which lead to complex formulas are not explained in detail. Instead, the computer technology makes it possible to write down and manipulate formulas of practically any length. For researchers with experience in computing, the book contains a lot of interesting and non-trivial examples. Most of the examples discussed are standard textbook problems, but the power of Mathematica opens the path to more sophisticated solutions. For example, the exact solution for the perihelion shift of Mercury within general relativity is worked out in detail using elliptic functions. The virial equation of state for molecules' interaction with Lennard-Jones-like potentials is discussed, including both classical and quantum corrections to the second virial coefficient. Interestingly, closed solutions become available using sophisticated computing methods within Mathematica. In my opinion, the textbook should not show formulas in detail which cover three or more pages—these technical data should just be contained on the CD. Instead, the textbook should focus on more detailed explanation of the physical concepts behind the technicalities. The discussion of the virial equation would benefit much from replacing 15 pages of Mathematica output with 15 pages of further explanation and motivation. In this combination, the power of computing merged with physical intuition would be of benefit even for newcomers. In summary, this book shows in a convincing manner how classical problems in physics can be attacked with modern computing technology. The second volume is interesting for experienced users of Mathematica. For students, the textbook can be very useful in combination with a seminar.

  4. Automating pattern quantification: new tools for analysing anisotropy and inhomogeneity of 2d patterns

    NASA Astrophysics Data System (ADS)

    Gerik, A.; Kruhl, J. H.

    2006-12-01

    The quantitative analysis of patterns as a geometric arrangement of material domains with specific geometric or crystallographic properties such as shape, size or crystallographic orientation has been shown to be a valuable tool with a wide field of applications in geo- and material sciences. Pattern quantification allows an unbiased comparison of experimentally generated or theoretical patterns with patterns of natural origin. In addition to this, the application of different methods can also provide information about different pattern forming processes. This information includes the distribution of crystals in a matrix - to analyze i.e. the nature and orientation of flow within a melt - or the governing shear strain regime at the point of time the pattern was formed as well as nature of fracture patterns of different scales, all of which are of great interest not only in structural and engineering geology, but also in material sciences. Different approaches to this problem have been discussed over the past fifteen years, yet only few of the methods were applied successfully at least to single examples (i.e. Velde et al., 1990; Harris et al., 1991; Peternell et al., 2003; Volland &Kruhl, 2004). One of the reasons for this has been the high expenditure of time that was necessary to prepare and analyse the samples. To overcome this problem, a first selection of promising methods have been implemented into a growing collection of software tools: (1) The modifications that Harris et al. (1991) have suggested for the Cantor's dust method (Velde et al., 1990) and which have been applied by Volland &Kruhl (2004) to show the anisotropy in a breccia sample. (2) A map-counting method that uses local box-counting dimensions to map the inhomogeneity of a crystal distribution pattern. Peternell et al. (2003) have used this method to analyze the distribution of phenocrysts in a porphyric granite. (3) A modified perimeter method that relates the directional dependence of the perimeter of grain boundaries to the anisotropy of the pattern (Peternell et al., 2003). We have used the resulting new possibilities to analyze numerous patterns of natural, experimental and mathematical origin in order to determine the scope of applicability of the different methods and present these results along with an evaluation of their individual sensitivities and limitations. References: Harris, C., Franssen, R. &Loosveld, R. (1991): Fractal analysis of fractures in rocks: the Cantor's Dust method comment. Tectonophysics 198: 107-111. Peternell, M., Andries, F. &Kruhl, J.H. (2003): Magmatic flow-pattern anisotropies - analyzed on the basis of a new 'map-mounting' fractal geometry method. DRT Tectonics conference, St. Malo, Book of Abstracts. Velde, B., Dubois, J., Touchard, G. &Badri, A. (1990): Fractal analysis of fractures in rocks: the Cantor's Dust method. Tectonophysics (179): 345-352. Volland, S. &Kruhl, J.H. (2004): Anisotropy quantification: the application of fractal geometry methods on tectonic fracture patterns of a Hercynian fault zone in NW-Sardinia. Journal of Structural Geology 26: 1499- 1510.

  5. Hierarchical socioeconomic fractality: The rich, the poor, and the middle-class

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo; Cohen, Morrel H.

    2014-05-01

    Since the seminal work of the Italian economist Vilfredo Pareto, the study of wealth and income has been a topic of active scientific exploration engaging researches ranging from economics and political science to econophysics and complex systems. This paper investigates the intrinsic fractality of wealth and income. To that end we introduce and characterize three forms of socioeconomic scale-invariance-poor fractality, rich fractality, and middle-class fractality-and construct hierarchical fractal approximations of general wealth and income distributions, based on the stitching of these three forms of fractality. Intertwining the theoretical results with real-world empirical data we then establish that the three forms of socioeconomic fractality-amalgamated into a composite hierarchical structure-underlie the distributions of wealth and income in human societies. We further establish that the hierarchical socioeconomic fractality of wealth and income is also displayed by empirical rank distributions observed across the sciences.

  6. Small-angle scattering from the Cantor surface fractal on the plane and the Koch snowflake

    NASA Astrophysics Data System (ADS)

    Cherny, Alexander Yu.; Anitas, Eugen M.; Osipov, Vladimir A.; Kuklin, Alexander I.

    The small-angle scattering (SAS) from the Cantor surface fractal on the plane and Koch snowflake is considered. We develop the construction algorithm for the Koch snowflake, which makes possible the recurrence relation for the scattering amplitude. The surface fractals can be decomposed into a sum of surface mass fractals for arbitrary fractal iteration, which enables various approximations for the scattering intensity. It is shown that for the Cantor fractal, one can neglect with a good accuracy the correlations between the mass fractal amplitudes, while for the Koch snowflake, these correlations are important. It is shown that nevertheless, the correlations can be build in the mass fractal amplitudes, which explains the decay of the scattering intensity $I(q)\\sim q^{D_{\\mathrm{s}}-4}$ with $1 < D_{\\mathrm{s}} < 2$ being the fractal dimension of the perimeter. The curve $I(q)q^{4-D_{\\mathrm{s}}}$ is found to be log-periodic in the fractal region with the period equal to the scaling factor of the fractal. The log-periodicity arises from the self-similarity of sizes of basic structural units rather than from correlations between their distances. A recurrence relation is obtained for the radius of gyration of Koch snowflake, which is solved in the limit of infinite iterations. The present analysis allows us to obtain additional information from SAS data, such as the edges of the fractal regions, the fractal iteration number and the scaling factor.

  7. Multiscale plant wakes, turbulence and non linear scaling flexible effects

    NASA Astrophysics Data System (ADS)

    Vila, Teresa; Redondo, Jose M.; Velasco, David

    2010-05-01

    We present velocity ADV measurements and flow visualization of the turbulent wakes behind plant arrays, as these are often fractal in nature, we compare the multifractal spectra and the turbulence structure behind the wakes. Both statistical measures allowing to calculate integral lengthscales and their profiles modified by the plant cannopies [1,2] as well as intermittency and spectral behaviour are also measured [3,4]. We distinguish several momentum transfer mechanisms between the cannopy and the flow, an internal one where lateral turbulent tensions are dominant, and another one just above the plant average height dominated by vertical Reynolds stresses. Visualization of flow over individual plant models show the role of coherent vortices triggered by plant elasticity. The deformation rate of the plants and their Youngs modulus may be correlated with overal plant drag and geometry. This is modified strongly in fractal canopies. Large turbulent integral scales are linked to rugosity and the scaling of the waves.[5,6] Pearlescence experiments where local shear is visualized and numerical simulations of Fractal grids are compared following [7]. [1] Nepf,H.M. Drag, turbulence and diffusion in flow through emergent vegetation. Water Resources Res. 35(2)(1999) [2] Ben Mahjoub,O., Redondo J.M. and Babiano A. Jour.Structure functions in complex flows. Flow Turbulence and Combustion 59, 299-313. [3] El-Hakim, O. Salama, M. Velocity distribution inside and above branched flexible roughness. ASCE Journal of Irrigation and Drainage Engineering, Vol. 118, No 6, (November/December 1992) 914-927. [4] Finnigan,J. Turbulence in plant canopies. Annu. Rev. Fluid Mech. 2000 , Vol. 32: 519-571. [5] Ikeda, S., Kanazawa, M. Three- dimensional organized vortices above flexible water plants. ASCE Journal of Hydraulic Engineering, Vol. 122, No 11, (1996) 634-640. [6] Velasco, D.,Bateman A.,Redondo J.M and Medina V. An open channel flow experimental and theorical study of resistance and turbulent characterization over flexible vegetated linnings. Flow, Turbulence and Combustion. 70, 69-88. [7] Layzet S. Vassilicos C. Vila T and Redondo J.M. I.O.P Fractal grids and wakes, Proceedings on Earth sciences (2009)

  8. A numerical retroaction model relates rocky coast erosion to percolation theory

    NASA Astrophysics Data System (ADS)

    Sapoval, B.; Baldassarri, A.

    2011-12-01

    Rocky coasts are estimated to represent 75% of the world's shorelines [1]. We discuss various situations where the formation of rocky coast morphology could be attributed to the retroaction of the coast morphology on the erosive power of the see. In the case of rocky coasts, erosion can spontaneously create irregular seashores. But, in turn, the geometrical irregularity participates to the damping of sea-waves, decreasing the average wave amplitude and erosive power. There may then exist a mutual self-stabilization of the waves amplitude together with the irregular morphology of the coast. A simple model of such stabilization is discussed. It leads, through a complex avalanche dynamics of the earth-sea interface, to the spontaneous appearance of an irregular sea-shore. The final coast morphology is found to depend on the morphology/damping coupling of the coast and on the possible existence of built-in correlations within the coast lithologic properties. In the limit case where the morphology/damping coupling is weak and when the earth lithology distribution exhibit only short range correlations, the process spontaneously build fractal morphologies with a dimension close to 4/3 [2]. This dimension refers to the dimension of the accessible perimeter in percolation theory. However, even rugged but non-fractal sea-coasts morphology may emerge for strong damping or during the erosion process. When the distributions of the lithologies exhibit long range correlations, a variety of complex morphologies are obtained which mimics observed coastline complexity, well beyond simple fractality. This approach, which links erosion of rocky coasts to percolation theory, provide a natural frame to explain the frequent field observation that the statistics of erosion events follow power law behavior. In a somewhat different perspective, the design of breakwaters is suggested to be improved by using global irregular geometry with features sizes of the order of the wave-length of the sea oscillations. [1] R. A. Davis, Jr, D. M. Fitzgerald, Beaches and Coasts,(Blackwell, Oxford 2004). [2] B. Sapoval, A. Baldassarri, A. Gabrielli, Self-stabilized Fractality of Sea-coasts through Erosion, Phys. Rev. Lett. 93, 098501 (2004).

  9. Retro-action model for the erosion of rocky coasts

    NASA Astrophysics Data System (ADS)

    Sapoval, B.; Baldassarri, A.

    2009-12-01

    Rocky coasts are estimated to represent 75% of the world’s shorelines [1]. We discuss various situations where the formation of rocky coast morphology could be attributed to the retro-action of the coast morphology on the erosive power of the see. In the case of rocky coasts, erosion can spontaneously create irregular seashores. But, in turn, the geometrical irregularity participates to the damping of sea-waves, decreasing the average wave amplitude and erosive power. There may then exist a mutual self-stabilization of the waves amplitude together with the irregular morphology of the coast. A simple model of such stabilization is discussed. It leads, through a complex dynamics of the earth-sea interface, to the spontaneous appearance of an irregular sea-shore. The final coast morphology is found to depend on the morphology/damping coupling of the coast and on the possible existence of built-in correlations within the coast lithologic properties. This is illustrated in the figure. In the limit case where the morphology/damping coupling is weak and when the earth lithology distribution exhibit only short range correlations, the process spontaneously build fractal morphologies with a dimension close to 4/3 [2]. It is shown that this dimension refers to the dimension of the so-called accessible perimeter in gradient percolation. However, even rugged but non-fractal sea-coasts morphology may emerge for strong damping or during the erosion process. When the distributions of the lithologies exhibit long range correlations, a variety of complex morphologies are obtained which mimics observed coastline complexity, well beyond simple fractality. On a somewhat different perspective, the design of breakwaters is suggested to be improved by using global irregular geometry with features sizes of the order of the wave-length of the sea oscillations. [1] R. A. Davis, Jr, D. M. Fitzgerald, Beaches and Coasts,(Blackwell, Oxford 2004). [2] B. Sapoval, A. Baldassarri, A. Gabrielli, Self-stabilized Fractality of Sea-coasts through Erosion, Phys. Rev. Lett. 93, 098501 (2004). Time evolution of the coastline morphology starting with a flat sea-shore. Left and right columns correspond respectively to weak and strong coupling. Top to bottom: suc- cessive morphologies with the final morphologies at the bottom.

  10. Fractal Analysis of Brain Blood Oxygenation Level Dependent (BOLD) Signals from Children with Mild Traumatic Brain Injury (mTBI).

    PubMed

    Dona, Olga; Noseworthy, Michael D; DeMatteo, Carol; Connolly, John F

    2017-01-01

    Conventional imaging techniques are unable to detect abnormalities in the brain following mild traumatic brain injury (mTBI). Yet patients with mTBI typically show delayed response on neuropsychological evaluation. Because fractal geometry represents complexity, we explored its utility in measuring temporal fluctuations of brain resting state blood oxygen level dependent (rs-BOLD) signal. We hypothesized that there could be a detectable difference in rs-BOLD signal complexity between healthy subjects and mTBI patients based on previous studies that associated reduction in signal complexity with disease. Fifteen subjects (13.4 ± 2.3 y/o) and 56 age-matched (13.5 ± 2.34 y/o) healthy controls were scanned using a GE Discovery MR750 3T MRI and 32-channel RF-coil. Axial FSPGR-3D images were used to prescribe rs-BOLD (TE/TR = 35/2000ms), acquired over 6 minutes. Motion correction was performed and anatomical and functional images were aligned and spatially warped to the N27 standard atlas. Fractal analysis, performed on grey matter, was done by estimating the Hurst exponent using de-trended fluctuation analysis and signal summation conversion methods. Voxel-wise fractal dimension (FD) was calculated for every subject in the control group to generate mean and standard deviation maps for regional Z-score analysis. Voxel-wise validation of FD normality across controls was confirmed, and non-Gaussian voxels (3.05% over the brain) were eliminated from subsequent analysis. For each mTBI patient, regions where Z-score values were at least 2 standard deviations away from the mean (i.e. where |Z| > 2.0) were identified. In individual patients the frequently affected regions were amygdala (p = 0.02), vermis(p = 0.03), caudate head (p = 0.04), hippocampus(p = 0.03), and hypothalamus(p = 0.04), all previously reported as dysfunctional after mTBI, but based on group analysis. It is well known that the brain is best modeled as a complex system. Therefore a measure of complexity using rs-BOLD signal FD could provide an additional method to grade and monitor mTBI. Furthermore, this approach can be personalized thus providing unique patient specific assessment.

  11. Scale relativity theory and integrative systems biology: 2. Macroscopic quantum-type mechanics.

    PubMed

    Nottale, Laurent; Auffray, Charles

    2008-05-01

    In these two companion papers, we provide an overview and a brief history of the multiple roots, current developments and recent advances of integrative systems biology and identify multiscale integration as its grand challenge. Then we introduce the fundamental principles and the successive steps that have been followed in the construction of the scale relativity theory, which aims at describing the effects of a non-differentiable and fractal (i.e., explicitly scale dependent) geometry of space-time. The first paper of this series was devoted, in this new framework, to the construction from first principles of scale laws of increasing complexity, and to the discussion of some tentative applications of these laws to biological systems. In this second review and perspective paper, we describe the effects induced by the internal fractal structures of trajectories on motion in standard space. Their main consequence is the transformation of classical dynamics into a generalized, quantum-like self-organized dynamics. A Schrödinger-type equation is derived as an integral of the geodesic equation in a fractal space. We then indicate how gauge fields can be constructed from a geometric re-interpretation of gauge transformations as scale transformations in fractal space-time. Finally, we introduce a new tentative development of the theory, in which quantum laws would hold also in scale space, introducing complexergy as a measure of organizational complexity. Initial possible applications of this extended framework to the processes of morphogenesis and the emergence of prokaryotic and eukaryotic cellular structures are discussed. Having founded elements of the evolutionary, developmental, biochemical and cellular theories on the first principles of scale relativity theory, we introduce proposals for the construction of an integrative theory of life and for the design and implementation of novel macroscopic quantum-type experiments and devices, and discuss their potential applications for the analysis, engineering and management of physical and biological systems and properties, and the consequences for the organization of transdisciplinary research and the scientific curriculum in the context of the SYSTEMOSCOPE Consortium research and development agenda.

  12. Fractal-Based Image Analysis In Radiological Applications

    NASA Astrophysics Data System (ADS)

    Dellepiane, S.; Serpico, S. B.; Vernazza, G.; Viviani, R.

    1987-10-01

    We present some preliminary results of a study aimed to assess the actual effectiveness of fractal theory and to define its limitations in the area of medical image analysis for texture description, in particular, in radiological applications. A general analysis to select appropriate parameters (mask size, tolerance on fractal dimension estimation, etc.) has been performed on synthetically generated images of known fractal dimensions. Moreover, we analyzed some radiological images of human organs in which pathological areas can be observed. Input images were subdivided into blocks of 6x6 pixels; then, for each block, the fractal dimension was computed in order to create fractal images whose intensity was related to the D value, i.e., texture behaviour. Results revealed that the fractal images could point out the differences between normal and pathological tissues. By applying histogram-splitting segmentation to the fractal images, pathological areas were isolated. Two different techniques (i.e., the method developed by Pentland and the "blanket" method) were employed to obtain fractal dimension values, and the results were compared; in both cases, the appropriateness of the fractal description of the original images was verified.

  13. Fractal analysis of bone structure with applications to osteoporosis and microgravity effects

    NASA Astrophysics Data System (ADS)

    Acharya, Raj S.; LeBlanc, Adrian; Shackelford, Linda; Swarnakar, Vivek; Krishnamurthy, Ram; Hausman, E.; Lin, Chin-Shoou

    1995-05-01

    We characterize the trabecular structure with the aid of fractal dimension. We use alternating sequential filters (ASF) to generate a nonlinear pyramid for fractal dimension computations. We do not make any assumptions of the statistical distributions of the underlying fractal bone structure. The only assumption of our scheme is the rudimentary definition of self-similarity. This allows us the freedom of not being constrained by statistical estimation schemes. With mathematical simulations, we have shown that the ASF methods outperform other existing methods for fractal dimension estimation. We have shown that the fractal dimension remains the same when computed with both the x-ray images and the MRI images of the patella. We have shown that the fractal dimension of osteoporotic subjects is lower than that of the normal subjects. In animal models, we have shown that the fractal dimension of osteoporotic rats was lower than that of the normal rats. In a 17 week bedrest study, we have shown that the subject's prebedrest fractal dimension is higher than that of the postbedrest fractal dimension.

  14. Fractal analysis of bone structure with applications to osteoporosis and microgravity effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acharya, R.S.; Swarnarkar, V.; Krishnamurthy, R.

    1995-12-31

    The authors characterize the trabecular structure with the aid of fractal dimension. The authors use Alternating Sequential filters to generate a nonlinear pyramid for fractal dimension computations. The authors do not make any assumptions of the statistical distributions of the underlying fractal bone structure. The only assumption of the scheme is the rudimentary definition of self similarity. This allows them the freedom of not being constrained by statistical estimation schemes. With mathematical simulations, the authors have shown that the ASF methods outperform other existing methods for fractal dimension estimation. They have shown that the fractal dimension remains the same whenmore » computed with both the X-Ray images and the MRI images of the patella. They have shown that the fractal dimension of osteoporotic subjects is lower than that of the normal subjects. In animal models, the authors have shown that the fractal dimension of osteoporotic rats was lower than that of the normal rats. In a 17 week bedrest study, they have shown that the subject`s prebedrest fractal dimension is higher than that of the postbedrest fractal dimension.« less

  15. Reply to "Comment on 'Hydrodynamics of fractal continuum flow' and 'Map of fluid flow in fractal porous medium into fractal continuum flow'".

    PubMed

    Balankin, Alexander S; Elizarraraz, Benjamin Espinoza

    2013-11-01

    The aim of this Reply is to elucidate the difference between the fractal continuum models used in the preceding Comment and the models of fractal continuum flow which were put forward in our previous articles [Phys. Rev. E 85, 025302(R) (2012); 85, 056314 (2012)]. In this way, some drawbacks of the former models are highlighted. Specifically, inconsistencies in the definitions of the fractal derivative, the Jacobian of transformation, the displacement vector, and angular momentum are revealed. The proper forms of the Reynolds' transport theorem and angular momentum principle for the fractal continuum are reaffirmed in a more illustrative manner. Consequently, we emphasize that in the absence of any internal angular momentum, body couples, and couple stresses, the Cauchy stress tensor in the fractal continuum should be symmetric. Furthermore, we stress that the approach based on the Cartesian product measured and used in the preceding Comment cannot be employed to study the path-connected fractals, such as a flow in a fractally permeable medium. Thus, all statements of our previous works remain unchallenged.

  16. Fractal Bread.

    ERIC Educational Resources Information Center

    Esbenshade, Donald H., Jr.

    1991-01-01

    Develops the idea of fractals through a laboratory activity that calculates the fractal dimension of ordinary white bread. Extends use of the fractal dimension to compare other complex structures as other breads and sponges. (MDH)

  17. Soapy Science. Teaching Science.

    ERIC Educational Resources Information Center

    Leyden, Michael

    1997-01-01

    Describes a science and math activity that involves bubbles, shapes, colors, and solid geometry. Students build geometric shapes with soda straws and submerge the shapes in soapy water, allowing them to review basic geometry concepts, test hypotheses, and learn about other concepts such as diffraction, interference colors, and evaporation. (TJQ)

  18. Influence of Turbulent Flow and Fractal Scaling on Effective Permeability of Fracture Network

    NASA Astrophysics Data System (ADS)

    Zhu, J.

    2017-12-01

    A new approach is developed to calculate hydraulic gradient dependent effective permeability of a fractal fracture network where both laminar and turbulent flows may occur in individual fractures. A critical fracture length is used to distinguish flow characteristics in individual fractures. The developed new solutions can be used for the case of a general scaling relationship, an extension to the linear scaling. We examine the impact on the effective permeability of the network of fractal fracture network characteristics, which include the fractal scaling coefficient and exponent, fractal dimension, ratio of minimum over maximum fracture lengths. Results demonstrate that the developed solution can explain more variations of the effective permeability in relation to the fractal dimensions estimated from the field observations. At high hydraulic gradient the effective permeability decreases with the fractal scaling exponent, but increases with the fractal scaling exponent at low gradient. The effective permeability increases with the scaling coefficient, fractal dimension, fracture length ratio and maximum fracture length.

  19. Emergence of fractal scaling in complex networks

    NASA Astrophysics Data System (ADS)

    Wei, Zong-Wen; Wang, Bing-Hong

    2016-09-01

    Some real-world networks are shown to be fractal or self-similar. It is widespread that such a phenomenon originates from the repulsion between hubs or disassortativity. Here we show that this common belief fails to capture the causality. Our key insight to address it is to pinpoint links critical to fractality. Those links with small edge betweenness centrality (BC) constitute a special architecture called fractal reference system, which gives birth to the fractal structure of those reported networks. In contrast, a small amount of links with high BC enable small-world effects, hiding the intrinsic fractality. With enough of such links removed, fractal scaling spontaneously arises from nonfractal networks. Our results provide a multiple-scale view on the structure and dynamics and place fractality as a generic organizing principle of complex networks on a firmer ground.

  20. Geometry-Related Children's Literature Improves the Geometry Achievement and Attitudes of Second-Grade Students

    ERIC Educational Resources Information Center

    McAndrew, Erica M.; Morris, Wendy L.; Fennell, Francis

    2017-01-01

    Use of mathematics-related literature can engage students' interest and increase their understanding of mathematical concepts. A quasi-experimental study of two second-grade classrooms assessed whether daily inclusion of geometry-related literature in the classroom improved attitudes toward geometry and achievement in geometry. Consistent with the…

  1. Band structures in fractal grading porous phononic crystals

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Liu, Ying; Liang, Tianshu; Wang, Bin

    2018-05-01

    In this paper, a new grading porous structure is introduced based on a Sierpinski triangle routine, and wave propagation in this fractal grading porous phononic crystal is investigated. The influences of fractal hierarchy and porosity on the band structures in fractal graidng porous phononic crystals are clarified. Vibration modes of unit cell at absolute band gap edges are given to manifest formation mechanism of absolute band gaps. The results show that absolute band gaps are easy to form in fractal structures comparatively to the normal ones with the same porosity. Structures with higher fractal hierarchies benefit multiple wider absolute band gaps. This work provides useful guidance in design of fractal porous phononic crystals.

  2. Fractals in geology and geophysics

    NASA Technical Reports Server (NTRS)

    Turcotte, Donald L.

    1989-01-01

    The definition of a fractal distribution is that the number of objects N with a characteristic size greater than r scales with the relation N of about r exp -D. The frequency-size distributions for islands, earthquakes, fragments, ore deposits, and oil fields often satisfy this relation. This application illustrates a fundamental aspect of fractal distributions, scale invariance. The requirement of an object to define a scale in photograhs of many geological features is one indication of the wide applicability of scale invariance to geological problems; scale invariance can lead to fractal clustering. Geophysical spectra can also be related to fractals; these are self-affine fractals rather than self-similar fractals. Examples include the earth's topography and geoid.

  3. Comparison of two fractal interpolation methods

    NASA Astrophysics Data System (ADS)

    Fu, Yang; Zheng, Zeyu; Xiao, Rui; Shi, Haibo

    2017-03-01

    As a tool for studying complex shapes and structures in nature, fractal theory plays a critical role in revealing the organizational structure of the complex phenomenon. Numerous fractal interpolation methods have been proposed over the past few decades, but they differ substantially in the form features and statistical properties. In this study, we simulated one- and two-dimensional fractal surfaces by using the midpoint displacement method and the Weierstrass-Mandelbrot fractal function method, and observed great differences between the two methods in the statistical characteristics and autocorrelation features. From the aspect of form features, the simulations of the midpoint displacement method showed a relatively flat surface which appears to have peaks with different height as the fractal dimension increases. While the simulations of the Weierstrass-Mandelbrot fractal function method showed a rough surface which appears to have dense and highly similar peaks as the fractal dimension increases. From the aspect of statistical properties, the peak heights from the Weierstrass-Mandelbrot simulations are greater than those of the middle point displacement method with the same fractal dimension, and the variances are approximately two times larger. When the fractal dimension equals to 1.2, 1.4, 1.6, and 1.8, the skewness is positive with the midpoint displacement method and the peaks are all convex, but for the Weierstrass-Mandelbrot fractal function method the skewness is both positive and negative with values fluctuating in the vicinity of zero. The kurtosis is less than one with the midpoint displacement method, and generally less than that of the Weierstrass-Mandelbrot fractal function method. The autocorrelation analysis indicated that the simulation of the midpoint displacement method is not periodic with prominent randomness, which is suitable for simulating aperiodic surface. While the simulation of the Weierstrass-Mandelbrot fractal function method has strong periodicity, which is suitable for simulating periodic surface.

  4. Creating Dynamic Learning Environment to Enhance Students’ Engagement in Learning Geometry

    NASA Astrophysics Data System (ADS)

    Sariyasa

    2017-04-01

    Learning geometry gives many benefits to students. It strengthens the development of deductive thinking and reasoning; it also provides an opportunity to improve visualisation and spatial ability. Some studies, however, have pointed out the difficulties that students encountered when learning geometry. A preliminary study by the author in Bali revealed that one of the main problems was teachers’ difficulties in delivering geometry instruction. It was partly due to the lack of appropriate instructional media. Coupling with dynamic geometry software, dynamic learning environments is a promising solution to this problem. Employing GeoGebra software supported by the well-designed instructional process may result in more meaningful learning, and consequently, students are motivated to engage in the learning process more deeply and actively. In this paper, we provide some examples of GeoGebra-aided learning activities that allow students to interactively explore and investigate geometry concepts and the properties of geometry objects. Thus, it is expected that such learning environment will enhance students’ internalisation process of geometry concepts.

  5. Order-fractal transitions in abstract paintings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calleja, E.M. de la, E-mail: elsama79@gmail.com; Cervantes, F.; Calleja, J. de la

    2016-08-15

    In this study, we determined the degree of order for 22 Jackson Pollock paintings using the Hausdorff–Besicovitch fractal dimension. Based on the maximum value of each multi-fractal spectrum, the artworks were classified according to the year in which they were painted. It has been reported that Pollock’s paintings are fractal and that this feature was more evident in his later works. However, our results show that the fractal dimension of these paintings ranges among values close to two. We characterize this behavior as a fractal-order transition. Based on the study of disorder-order transition in physical systems, we interpreted the fractal-ordermore » transition via the dark paint strokes in Pollock’s paintings as structured lines that follow a power law measured by the fractal dimension. We determined self-similarity in specific paintings, thereby demonstrating an important dependence on the scale of observations. We also characterized the fractal spectrum for the painting entitled Teri’s Find. We obtained similar spectra for Teri’s Find and Number 5, thereby suggesting that the fractal dimension cannot be rejected completely as a quantitative parameter for authenticating these artworks. -- Highlights: •We determined the degree of order in Jackson Pollock paintings using the Hausdorff–Besicovitch dimension. •We detected a fractal-order transition from Pollock’s paintings between 1947 and 1951. •We suggest that Jackson Pollock could have painted Teri’s Find.« less

  6. Fractality à la carte: a general particle aggregation model.

    PubMed

    Nicolás-Carlock, J R; Carrillo-Estrada, J L; Dossetti, V

    2016-01-19

    In nature, fractal structures emerge in a wide variety of systems as a local optimization of entropic and energetic distributions. The fractality of these systems determines many of their physical, chemical and/or biological properties. Thus, to comprehend the mechanisms that originate and control the fractality is highly relevant in many areas of science and technology. In studying clusters grown by aggregation phenomena, simple models have contributed to unveil some of the basic elements that give origin to fractality, however, the specific contribution from each of these elements to fractality has remained hidden in the complex dynamics. Here, we propose a simple and versatile model of particle aggregation that is, on the one hand, able to reveal the specific entropic and energetic contributions to the clusters' fractality and morphology, and, on the other, capable to generate an ample assortment of rich natural-looking aggregates with any prescribed fractal dimension.

  7. Exploring fractal behaviour of blood oxygen saturation in preterm babies

    NASA Astrophysics Data System (ADS)

    Zahari, Marina; Hui, Tan Xin; Zainuri, Nuryazmin Ahmat; Darlow, Brian A.

    2017-04-01

    Recent evidence has been emerging that oxygenation instability in preterm babies could lead to an increased risk of retinal injury such as retinopathy of prematurity. There is a potential that disease severity could be better understood using nonlinear methods for time series data such as fractal theories [1]. Theories on fractal behaviours have been employed by researchers in various disciplines who were motivated to look into the behaviour or structure of irregular fluctuations in temporal data. In this study, an investigation was carried out to examine whether fractal behaviour could be detected in blood oxygen time series. Detection for the presence of fractals in oxygen data of preterm infants was performed using the methods of power spectrum, empirical probability distribution function and autocorrelation function. The results from these fractal identification methods indicate the possibility that these data exhibit fractal nature. Subsequently, a fractal framework for future research was suggested for oxygen time series.

  8. Passenger flow analysis of Beijing urban rail transit network using fractal approach

    NASA Astrophysics Data System (ADS)

    Li, Xiaohong; Chen, Peiwen; Chen, Feng; Wang, Zijia

    2018-04-01

    To quantify the spatiotemporal distribution of passenger flow and the characteristics of an urban rail transit network, we introduce four radius fractal dimensions and two branch fractal dimensions by combining a fractal approach with passenger flow assignment model. These fractal dimensions can numerically describe the complexity of passenger flow in the urban rail transit network and its change characteristics. Based on it, we establish a fractal quantification method to measure the fractal characteristics of passenger follow in the rail transit network. Finally, we validate the reasonability of our proposed method by using the actual data of Beijing subway network. It has been shown that our proposed method can effectively measure the scale-free range of the urban rail transit network, network development and the fractal characteristics of time-varying passenger flow, which further provides a reference for network planning and analysis of passenger flow.

  9. Poiseuille equation for steady flow of fractal fluid

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2016-07-01

    Fractal fluid is considered in the framework of continuous models with noninteger dimensional spaces (NIDS). A recently proposed vector calculus in NIDS is used to get a description of fractal fluid flow in pipes with circular cross-sections. The Navier-Stokes equations of fractal incompressible viscous fluids are used to derive a generalization of the Poiseuille equation of steady flow of fractal media in pipe.

  10. Improving the signal subtle feature extraction performance based on dual improved fractal box dimension eigenvectors

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Li, Jingchao; Han, Hui; Ying, Yulong

    2018-05-01

    Because of the limitations of the traditional fractal box-counting dimension algorithm in subtle feature extraction of radiation source signals, a dual improved generalized fractal box-counting dimension eigenvector algorithm is proposed. First, the radiation source signal was preprocessed, and a Hilbert transform was performed to obtain the instantaneous amplitude of the signal. Then, the improved fractal box-counting dimension of the signal instantaneous amplitude was extracted as the first eigenvector. At the same time, the improved fractal box-counting dimension of the signal without the Hilbert transform was extracted as the second eigenvector. Finally, the dual improved fractal box-counting dimension eigenvectors formed the multi-dimensional eigenvectors as signal subtle features, which were used for radiation source signal recognition by the grey relation algorithm. The experimental results show that, compared with the traditional fractal box-counting dimension algorithm and the single improved fractal box-counting dimension algorithm, the proposed dual improved fractal box-counting dimension algorithm can better extract the signal subtle distribution characteristics under different reconstruction phase space, and has a better recognition effect with good real-time performance.

  11. Roughness Perception of Haptically Displayed Fractal Surfaces

    NASA Technical Reports Server (NTRS)

    Costa, Michael A.; Cutkosky, Mark R.; Lau, Sonie (Technical Monitor)

    2000-01-01

    Surface profiles were generated by a fractal algorithm and haptically rendered on a force feedback joystick, Subjects were asked to use the joystick to explore pairs of surfaces and report to the experimenter which of the surfaces they felt was rougher. Surfaces were characterized by their root mean square (RMS) amplitude and their fractal dimension. The most important factor affecting the perceived roughness of the fractal surfaces was the RMS amplitude of the surface. When comparing surfaces of fractal dimension 1.2-1.35 it was found that the fractal dimension was negatively correlated with perceived roughness.

  12. A fractal growth model: Exploring the connection pattern of hubs in complex networks

    NASA Astrophysics Data System (ADS)

    Li, Dongyan; Wang, Xingyuan; Huang, Penghe

    2017-04-01

    Fractal is ubiquitous in many real-world networks. Previous researches showed that the strong disassortativity between the hub-nodes on all length scales was the key principle that gave rise to the fractal architecture of networks. Although fractal property emerged in some models, there were few researches about the fractal growth model and quantitative analyses about the strength of the disassortativity for fractal model. In this paper, we proposed a novel inverse renormalization method, named Box-based Preferential Attachment (BPA), to build the fractal growth models in which the Preferential Attachment was performed at box level. The proposed models provided a new framework that demonstrated small-world-fractal transition. Also, we firstly demonstrated the statistical characteristic of connection patterns of the hubs in fractal networks. The experimental results showed that, given proper growing scale and added edges, the proposed models could clearly show pure small-world or pure fractal or both of them. It also showed that the hub connection ratio showed normal distribution in many real-world networks. At last, the comparisons of connection pattern between the proposed models and the biological and technical networks were performed. The results gave useful reference for exploring the growth principle and for modeling the connection patterns for real-world networks.

  13. Assessment of the spatial pattern of colorectal tumour perfusion estimated at perfusion CT using two-dimensional fractal analysis.

    PubMed

    Goh, Vicky; Sanghera, Bal; Wellsted, David M; Sundin, Josefin; Halligan, Steve

    2009-06-01

    The aim was to evaluate the feasibility of fractal analysis for assessing the spatial pattern of colorectal tumour perfusion at dynamic contrast-enhanced CT (perfusion CT). Twenty patients with colorectal adenocarcinoma underwent a 65-s perfusion CT study from which a perfusion parametric map was generated using validated commercial software. The tumour was identified by an experienced radiologist, segmented via thresholding and fractal analysis applied using in-house software: fractal dimension, abundance and lacunarity were assessed for the entire outlined tumour and for selected representative areas within the tumour of low and high perfusion. Comparison was made with ten patients with normal colons, processed in a similar manner, using two-way mixed analysis of variance with statistical significance at the 5% level. Fractal values were higher in cancer than normal colon (p < or = 0.001): mean (SD) 1.71 (0.07) versus 1.61 (0.07) for fractal dimension and 7.82 (0.62) and 6.89 (0.47) for fractal abundance. Fractal values were lower in 'high' than 'low' perfusion areas. Lacunarity curves were shifted to the right for cancer compared with normal colon. In conclusion, colorectal cancer mapped by perfusion CT demonstrates fractal properties. Fractal analysis is feasible, potentially providing a quantitative measure of the spatial pattern of tumour perfusion.

  14. A fractal analysis of quaternary, Cenozoic-Mesozoic, and Late Pennsylvanian sea level changes

    NASA Technical Reports Server (NTRS)

    Hsui, Albert T.; Rust, Kelly A.; Klein, George D.

    1993-01-01

    Sea level changes are related to both climatic variations and tectonic movements. The fractal dimensions of several sea level curves were compared to a modern climatic fractal dimension of 1.26 established for annual precipitation records. A similar fractal dimension (1.22) based on delta(O-18/O-16) in deep-sea sediments has been suggested to characterize climatic change during the past 2 m.y. Our analysis indicates that sea level changes over the past 150,000 to 250,000 years also exhibit comparable fractal dimensions. Sea level changes for periods longer than about 30 m.y. are found to produce fractal dimensions closer to unity and Missourian (Late Pennsylvanian) sea level changes yield a fractal dimension of 1.41. The fact that these sea level curves all possess fractal dimensions less than 1.5 indicates that sea level changes exhibit nonperiodic, long-run persistence. The different fractal dimensions calculated for the various time periods could be the result of a characteristic overprinting of the sediment recored by prevailing processes during deposition. For example, during the Quaternary, glacio-eustatic sea level changes correlate well with the present climatic signature. During the Missourian, however, mechanisms such as plate reorganization may have dominated, resulting in a significantly different fractal dimension.

  15. Relativity of Scales: Application to AN Endo-Perspective of Temporal Structures

    NASA Astrophysics Data System (ADS)

    Nottale, Laurent; Timar, Pierre

    The theory of scale relativity is an extension of the principle of relativity to scale transformations of the reference system, in a fractal geometry framework where coordinates become explicitly dependent on resolutions. Applied to an observer perspective, it means that the scales of length and of time, usually attributed to the observed object as being intrinsic to it, have actually no existence by themselves, since only the ratio between an external scale and an internal scale, which serves as unit, is meaningful. Oliver Sacks' observations on patients suffering from temporal and spatial distortions in Parkinson's and encephalitis lethargica disease offer a particularly relevant field of application for such a scale-relativistic view.

  16. Spectral dimension of the universe in quantum gravity at a lifshitz point.

    PubMed

    Horava, Petr

    2009-04-24

    We extend the definition of "spectral dimension" d_{s} (usually defined for fractal and lattice geometries) to theories in spacetimes with anisotropic scaling. We show that in gravity with dynamical critical exponent z in D+1 dimensions, the spectral dimension of spacetime is d_{s}=1+D/z. In the case of gravity in 3+1 dimensions with z=3 in the UV which flows to z=1 in the IR, the spectral dimension changes from d_{s}=4 at large scales to d_{s}=2 at short distances. Remarkably, this is the behavior found numerically by Ambjørn et al. in their causal dynamical triangulations approach to quantum gravity.

  17. Turbulence

    NASA Astrophysics Data System (ADS)

    Frisch, Uriel

    1996-01-01

    Written five centuries after the first studies of Leonardo da Vinci and half a century after A.N. Kolmogorov's first attempt to predict the properties of flow, this textbook presents a modern account of turbulence, one of the greatest challenges in physics. "Fully developed turbulence" is ubiquitous in both cosmic and natural environments, in engineering applications and in everyday life. Elementary presentations of dynamical systems ideas, probabilistic methods (including the theory of large deviations) and fractal geometry make this a self-contained textbook. This is the first book on turbulence to use modern ideas from chaos and symmetry breaking. The book will appeal to first-year graduate students in mathematics, physics, astrophysics, geosciences and engineering, as well as professional scientists and engineers.

  18. Le Chatelier's Principle in Sensation and Perception: Fractal-Like Enfolding at Different Scales

    PubMed Central

    Norwich, Kenneth H.

    2010-01-01

    Le Chatelier's principle asserts that a disturbance, when applied to a resting system may drive the system away from its equilibrium state, but will invoke a countervailing influence that will counteract the effect of the disturbance. When applied to the field of sensation and perception, a generalized stimulus will displace the system from equilibrium, and a generalized adaptation process will serve as the countervailing influence tending to reduce the impact of the stimulus. The principle applies at all levels, from the behavioral to the neural, the larger enfolding the smaller in fractal-like form. Le Chatelier's principle, so applied, leads to the unification of many concepts in sensory science. Ideas as diverse as sensory adaptation, reflex arcs, and simple deductive logic can be brought under the umbrella of a single orienting principle. Beyond unification, this principle allows us to approach many questions in pathophysiology from a different perspective. For example, we find new direction toward the reduction of phantom-limb pain and possibly of vertigo. PMID:21423359

  19. Impact of triacylglycerol composition on shear-induced textural changes in highly saturated fats.

    PubMed

    Gregersen, Sandra B; Andersen, Morten D; Hammershøj, Marianne; Wiking, Lars

    2017-01-15

    This study demonstrates a strong interaction between triacylglycerol (TAG) composition and effects of shear rate on the microstructure and texture of fats. Cocoa butter alternatives with similar saturated fat content, but different major TAGs (PPO-, PSO-, SSO-, POP- and SOS-rich blends) were evaluated. Results show how shear can create a harder texture in fat blends based on symmetric monounsaturated TAGs (up to ∼200%), primarily due to reduction in crystal size, whereas shear has little effect on hardness of asymmetric monounsaturated TAGs. Such differences could not be ascribed to differences in the degree of supercooling, but was found to be a consequence of differences in the crystallisation behaviour of different TAGs. The fractal dimension was evaluated by dimensional detrended fluctuation analysis and Fourier transformation of microscopy images. However, the concept of fractal patterns was found to be insufficient to describe microstructural changes of fat blends with high solid fat content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Classification of microscopic images of breast tissue

    NASA Astrophysics Data System (ADS)

    Ballerini, Lucia; Franzen, Lennart

    2004-05-01

    Breast cancer is the most common form of cancer among women. The diagnosis is usually performed by the pathologist, that subjectively evaluates tissue samples. The aim of our research is to develop techniques for the automatic classification of cancerous tissue, by analyzing histological samples of intact tissue taken with a biopsy. In our study, we considered 200 images presenting four different conditions: normal tissue, fibroadenosis, ductal cancer and lobular cancer. Methods to extract features have been investigated and described. One method is based on granulometries, which are size-shape descriptors widely used in mathematical morphology. Applications of granulometries lead to distribution functions whose moments are used as features. A second method is based on fractal geometry, that seems very suitable to quantify biological structures. The fractal dimension of binary images has been computed using the euclidean distance mapping. Image classification has then been performed using the extracted features as input of a back-propagation neural network. A new method that combines genetic algorithms and morphological filters has been also investigated. In this case, the classification is based on a correlation measure. Very encouraging results have been obtained with pilot experiments using a small subset of images as training set. Experimental results indicate the effectiveness of the proposed methods. Cancerous tissue was correctly classified in 92.5% of the cases.

  1. Evidence of diffusive fractal aggregation of TiO2 nanoparticles by femtosecond laser ablation at ambient conditions

    NASA Astrophysics Data System (ADS)

    Celardo, G. L.; Archetti, D.; Ferrini, G.; Gavioli, L.; Pingue, P.; Cavaliere, E.

    2017-01-01

    The specific mechanisms which lead to the formation of fractal nanostructures by pulsed laser deposition remain elusive despite intense research efforts, motivated mainly by the technological interest in obtaining tailored nanostructures with simple and scalable production methods. Here we focus on fractal nanostructures of titanium dioxide, TiO2, a strategic material for many applications, obtained by femtosecond laser ablation at ambient conditions. We compare a theoretical model of fractal formation with experimental data. The comparison of theory and experiment confirms that fractal aggregates are formed after landing of the ablated material on the substrate surface by a simple diffusive mechanism. We model the fractal formation through extensive Monte Carlo simulations based on a set of minimal assumptions: TiO2 nanoparticles arrive already formed on the substrate, then they diffuse in a size/mass independent way and stick irreversibly upon touching, thus forming fractal clusters. Despite its simplicity, our model explains the main features of the fractal structures arising from the complex interaction of large TiO2 nanoparticles with different substrates. Indeed our model is able to reproduce both the fractal dimensions and the area distributions of the nanostructures for different densities of the ablated material. Finally we discuss the role of the thermal conductivity of the substrate and the laser fluence on the properties of the fractal nanostructures. Our results represent an advancement towards controlling the production of fractal nanostructures by pulsed laser deposition.

  2. Time and Measurement Days

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.

    2017-01-01

    Questions in data analysis involving the concepts of time and measurement are often pushed into the background or reserved for a philosophical discussion. Some examples are: a) Is causality a consequence of the laws of physics, or can the arrow of time be reversed? b) Can we determine the arrow of time of an event? c) Do we need the continuum hypothesis for the underlying function in any measurement process? d) Can we say anything about the analyticity of the underlying process of an event? e) Would it be valid to model a non-analytical process as function of time? f) What are the implications of all these questions for classical Fourier techniques? However, in the age of big data gathered either from space missions supplying ultra-precise long time series, or e.g. LIGO data from the ground, the moment to bring these questions to the foreground seems arrived. The limitations of our understanding of some fundamental processes is emphasized by the lack of solution for problems open for more than 2 decades, such as the non-detection of solar g-modes, or the modal identification of main sequence stellar pulsators like delta Scuti stars. Flicker noise or 1/f noise, for example, attributed in solar-like stars to granulation, is analyzed mostly only to apply noise reduction techniques, neither considering the classical problem of 1/f noise that was introduced a 100 years ago, nor taking into account ergodic or non-ergodic solutions that make inapplicable spectral analysis techniques in practice. This topic was discussed by Nicholas W. Watkins during the ITISE meeting held in Granada in 2016. There he presented preliminary results of his research on Mandelbrot's related work. We reproduce here his quotation of Mandelbrot (1999) "There is a sharp contrast between a highly anomalous ("non-white") noise that proceeds in ordinary clock time and a noise whose principal anomaly is that it is restricted to fractal time", suggesting a connection with the above proposed topics that could be phrased as the following additional questions:a) Is self-organized criticality (SOC) frequent in astrophysical phenomena? b) Could all fractals in nature be considered stochastic? c) Could we establish mathematical/physical relationships between chaotic and fractal behaviors in time series? d) Could the differences between fractals and chaos in terms of analyticity be used to understand the residuals of the fitting of stellar light curves? In this meeting we would like to approximate these problems from a holistic and multidisciplinary perspective, taking into account not only technical issues but also the deeper implications. In particular the concept of connectivity (introduced in Pascual-Granado et al. A&A, 2015) could be used to implement, within the framework of ARMA processes, an "arrow of time" (see attached document), and so studying the possible implications in the concept of time as envisaged by Watkins.

  3. A fractal process of hydrogen diffusion in a-Si:H with exponential energy distribution

    NASA Astrophysics Data System (ADS)

    Hikita, Harumi; Ishikawa, Hirohisa; Morigaki, Kazuo

    2017-04-01

    Hydrogen diffusion in a-Si:H with exponential distribution of the states in energy exhibits the fractal structure. It is shown that a probability P(t) of the pausing time t has a form of tα (α: fractal dimension). It is shown that the fractal dimension α = Tr/T0 (Tr: hydrogen temperature, T0: a temperature corresponding to the width of exponential distribution of the states in energy) is in agreement with the Hausdorff dimension. A fractal graph for the case of α ≤ 1 is like the Cantor set. A fractal graph for the case of α > 1 is like the Koch curves. At α = ∞, hydrogen migration exhibits Brownian motion. Hydrogen diffusion in a-Si:H should be the fractal process.

  4. Analysis of Fractional Flow for Transient Two-Phase Flow in Fractal Porous Medium

    NASA Astrophysics Data System (ADS)

    Lu, Ting; Duan, Yonggang; Fang, Quantang; Dai, Xiaolu; Wu, Jinsui

    2016-03-01

    Prediction of fractional flow in fractal porous medium is important for reservoir engineering and chemical engineering as well as hydrology. A physical conceptual fractional flow model of transient two-phase flow is developed in fractal porous medium based on the fractal characteristics of pore-size distribution and on the approximation that porous medium consist of a bundle of tortuous capillaries. The analytical expression for fractional flow for wetting phase is presented, and the proposed expression is the function of structural parameters (such as tortuosity fractal dimension, pore fractal dimension, maximum and minimum diameters of capillaries) and fluid properties (such as contact angle, viscosity and interfacial tension) in fractal porous medium. The sensitive parameters that influence fractional flow and its derivative are formulated, and their impacts on fractional flow are discussed.

  5. [A method to estimate the short-term fractal dimension of heart rate variability based on wavelet transform].

    PubMed

    Zhonggang, Liang; Hong, Yan

    2006-10-01

    A new method of calculating fractal dimension of short-term heart rate variability signals is presented. The method is based on wavelet transform and filter banks. The implementation of the method is: First of all we pick-up the fractal component from HRV signals using wavelet transform. Next, we estimate the power spectrum distribution of fractal component using auto-regressive model, and we estimate parameter 7 using the least square method. Finally according to formula D = 2- (gamma-1)/2 estimate fractal dimension of HRV signal. To validate the stability and reliability of the proposed method, using fractional brown movement simulate 24 fractal signals that fractal value is 1.6 to validate, the result shows that the method has stability and reliability.

  6. Non-extensivity and complexity in the earthquake activity at the West Corinth rift (Greece)

    NASA Astrophysics Data System (ADS)

    Michas, Georgios; Vallianatos, Filippos; Sammonds, Peter

    2013-04-01

    Earthquakes exhibit complex phenomenology that is revealed from the fractal structure in space, time and magnitude. For that reason other tools rather than the simple Poissonian statistics seem more appropriate to describe the statistical properties of the phenomenon. Here we use Non-Extensive Statistical Physics [NESP] to investigate the inter-event time distribution of the earthquake activity at the west Corinth rift (central Greece). This area is one of the most seismotectonically active areas in Europe, with an important continental N-S extension and high seismicity rates. NESP concept refers to the non-additive Tsallis entropy Sq that includes Boltzmann-Gibbs entropy as a particular case. This concept has been successfully used for the analysis of a variety of complex dynamic systems including earthquakes, where fractality and long-range interactions are important. The analysis indicates that the cumulative inter-event time distribution can be successfully described with NESP, implying the complexity that characterizes the temporal occurrences of earthquakes. Further on, we use the Tsallis entropy (Sq) and the Fischer Information Measure (FIM) to investigate the complexity that characterizes the inter-event time distribution through different time windows along the evolution of the seismic activity at the West Corinth rift. The results of this analysis reveal a different level of organization and clusterization of the seismic activity in time. Acknowledgments. GM wish to acknowledge the partial support of the Greek State Scholarships Foundation (IKY).

  7. Static internal performance characteristics of two thrust reverser concepts for axisymmetric nozzles

    NASA Technical Reports Server (NTRS)

    Leavitt, L. D.; Re, R. J.

    1982-01-01

    The statis performance of two axisymmetric nozzle thrust reverser concepts was investigated. A rotating vane thrust reverser represented a concept in which reversing is accomplished upstream of the nozzle throat, and a three door reverser concept provided reversing downstream of the nozzle throat. Nozzle pressure ratio was varied from 2.0 to approximately 6.0. The results of this investigation indicate that both the rotating vane and three door reverser concepts were effective static thrust spoilers with the landing approach nozzle geometry and were capable of providing at least a 50 percent reversal of static thrust when fully deployed with the ground roll nozzle geometry.

  8. A Whirlwind Tour of Computational Geometry.

    ERIC Educational Resources Information Center

    Graham, Ron; Yao, Frances

    1990-01-01

    Described is computational geometry which used concepts and results from classical geometry, topology, combinatorics, as well as standard algorithmic techniques such as sorting and searching, graph manipulations, and linear programing. Also included are special techniques and paradigms. (KR)

  9. Towards a physics on fractals: Differential vector calculus in three-dimensional continuum with fractal metric

    NASA Astrophysics Data System (ADS)

    Balankin, Alexander S.; Bory-Reyes, Juan; Shapiro, Michael

    2016-02-01

    One way to deal with physical problems on nowhere differentiable fractals is the mapping of these problems into the corresponding problems for continuum with a proper fractal metric. On this way different definitions of the fractal metric were suggested to account for the essential fractal features. In this work we develop the metric differential vector calculus in a three-dimensional continuum with a non-Euclidean metric. The metric differential forms and Laplacian are introduced, fundamental identities for metric differential operators are established and integral theorems are proved by employing the metric version of the quaternionic analysis for the Moisil-Teodoresco operator, which has been introduced and partially developed in this paper. The relations between the metric and conventional operators are revealed. It should be emphasized that the metric vector calculus developed in this work provides a comprehensive mathematical formalism for the continuum with any suitable definition of fractal metric. This offers a novel tool to study physics on fractals.

  10. A tale of two fractals: The Hofstadter butterfly and the integral Apollonian gaskets

    NASA Astrophysics Data System (ADS)

    Satija, Indubala I.

    2016-11-01

    This paper unveils a mapping between a quantum fractal that describes a physical phenomena, and an abstract geometrical fractal. The quantum fractal is the Hofstadter butterfly discovered in 1976 in an iconic condensed matter problem of electrons moving in a two-dimensional lattice in a transverse magnetic field. The geometric fractal is the integer Apollonian gasket characterized in terms of a 300 BC problem of mutually tangent circles. Both of these fractals are made up of integers. In the Hofstadter butterfly, these integers encode the topological quantum numbers of quantum Hall conductivity. In the Apollonian gaskets an infinite number of mutually tangent circles are nested inside each other, where each circle has integer curvature. The mapping between these two fractals reveals a hidden D3 symmetry embedded in the kaleidoscopic images that describe the asymptotic scaling properties of the butterfly. This paper also serves as a mini review of these fractals, emphasizing their hierarchical aspects in terms of Farey fractions.

  11. Methods of nanoassembly of a fractal polymer and materials formed thereby

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newkome, George R; Moorefield, Charles N

    2012-07-24

    The invention relates to the formation of synthesized fractal constructs and the methods of chemical self-assembly for the preparation of a non-dendritic, nano-scale, fractal constructs or molecules. More particularly, the invention relates to fractal constructs formed by molecular self-assembly, to create synthetic, nanometer-scale fractal shapes. In an embodiment, a nanoscale Sierpinski hexagonal gasket is formed. This non-dendritic, perfectly self-similar fractal macromolecule is comprised of bisterpyridine building blocks that are bound together by coordination to 36 Ru and 6 Fe ions to form a nearly planar array of increasingly larger hexagons around a hollow center.

  12. Methods of nanoassembly of a fractal polymer and materials formed thereby

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newkome, George R; Moorefield, Charles N

    2014-09-23

    The invention relates to the formation of synthesized fractal constructs and the methods of chemical self-assembly for the preparation of a non-dendritic, nano-scale, fractal constructs or molecules. More particularly, the invention relates to fractal constructs formed by molecular self-assembly, to create synthetic, nanometer-scale fractal shapes. In an embodiment, a nanoscale Sierpinski hexagonal gasket is formed. This non-dendritic, perfectly self-similar fractal macromolecule is comprised of bisterpyridine building blocks that are bound together by coordination to (36) Ru and (6) Fe ions to form a nearly planar array of increasingly larger hexagons around a hollow center.

  13. Optimal spinneret layout in Von Koch curves of fractal theory based needleless electrospinning process

    NASA Astrophysics Data System (ADS)

    Yang, Wenxiu; Liu, Yanbo; Zhang, Ligai; Cao, Hong; Wang, Yang; Yao, Jinbo

    2016-06-01

    Needleless electrospinning technology is considered as a better avenue to produce nanofibrous materials at large scale, and electric field intensity and its distribution play an important role in controlling nanofiber diameter and quality of the nanofibrous web during electrospinning. In the current study, a novel needleless electrospinning method was proposed based on Von Koch curves of Fractal configuration, simulation and analysis on electric field intensity and distribution in the new electrospinning process were performed with Finite element analysis software, Comsol Multiphysics 4.4, based on linear and nonlinear Von Koch fractal curves (hereafter called fractal models). The result of simulation and analysis indicated that Second level fractal structure is the optimal linear electrospinning spinneret in terms of field intensity and uniformity. Further simulation and analysis showed that the circular type of Fractal spinneret has better field intensity and distribution compared to spiral type of Fractal spinneret in the nonlinear Fractal electrospinning technology. The electrospinning apparatus with the optimal Von Koch fractal spinneret was set up to verify the theoretical analysis results from Comsol simulation, achieving more uniform electric field distribution and lower energy cost, compared to the current needle and needleless electrospinning technologies.

  14. Variability of fractal dimension of solar radio flux

    NASA Astrophysics Data System (ADS)

    Bhatt, Hitaishi; Sharma, Som Kumar; Trivedi, Rupal; Vats, Hari Om

    2018-04-01

    In the present communication, the variation of the fractal dimension of solar radio flux is reported. Solar radio flux observations on a day to day basis at 410, 1415, 2695, 4995, and 8800 MHz are used in this study. The data were recorded at Learmonth Solar Observatory, Australia from 1988 to 2009 covering an epoch of two solar activity cycles (22 yr). The fractal dimension is calculated for the listed frequencies for this period. The fractal dimension, being a measure of randomness, represents variability of solar radio flux at shorter time-scales. The contour plot of fractal dimension on a grid of years versus radio frequency suggests high correlation with solar activity. Fractal dimension increases with increasing frequency suggests randomness increases towards the inner corona. This study also shows that the low frequency is more affected by solar activity (at low frequency fractal dimension difference between solar maximum and solar minimum is 0.42) whereas, the higher frequency is less affected by solar activity (here fractal dimension difference between solar maximum and solar minimum is 0.07). A good positive correlation is found between fractal dimension averaged over all frequencies and yearly averaged sunspot number (Pearson's coefficient is 0.87).

  15. The Fractal Patterns of Words in a Text: A Method for Automatic Keyword Extraction.

    PubMed

    Najafi, Elham; Darooneh, Amir H

    2015-01-01

    A text can be considered as a one dimensional array of words. The locations of each word type in this array form a fractal pattern with certain fractal dimension. We observe that important words responsible for conveying the meaning of a text have dimensions considerably different from one, while the fractal dimensions of unimportant words are close to one. We introduce an index quantifying the importance of the words in a given text using their fractal dimensions and then ranking them according to their importance. This index measures the difference between the fractal pattern of a word in the original text relative to a shuffled version. Because the shuffled text is meaningless (i.e., words have no importance), the difference between the original and shuffled text can be used to ascertain degree of fractality. The degree of fractality may be used for automatic keyword detection. Words with the degree of fractality higher than a threshold value are assumed to be the retrieved keywords of the text. We measure the efficiency of our method for keywords extraction, making a comparison between our proposed method and two other well-known methods of automatic keyword extraction.

  16. The Fractal Patterns of Words in a Text: A Method for Automatic Keyword Extraction

    PubMed Central

    Najafi, Elham; Darooneh, Amir H.

    2015-01-01

    A text can be considered as a one dimensional array of words. The locations of each word type in this array form a fractal pattern with certain fractal dimension. We observe that important words responsible for conveying the meaning of a text have dimensions considerably different from one, while the fractal dimensions of unimportant words are close to one. We introduce an index quantifying the importance of the words in a given text using their fractal dimensions and then ranking them according to their importance. This index measures the difference between the fractal pattern of a word in the original text relative to a shuffled version. Because the shuffled text is meaningless (i.e., words have no importance), the difference between the original and shuffled text can be used to ascertain degree of fractality. The degree of fractality may be used for automatic keyword detection. Words with the degree of fractality higher than a threshold value are assumed to be the retrieved keywords of the text. We measure the efficiency of our method for keywords extraction, making a comparison between our proposed method and two other well-known methods of automatic keyword extraction. PMID:26091207

  17. Some problems in fractal differential equations

    NASA Astrophysics Data System (ADS)

    Su, Weiyi

    2016-06-01

    Based upon the fractal calculus on local fields, or p-type calculus, or Gibbs-Butzer calculus ([1],[2]), we suggest a constructive idea for "fractal differential equations", beginning from some special examples to a general theory. However, this is just an original idea, it needs lots of later work to support. In [3], we show example "two dimension wave equations with fractal boundaries", and in this note, other examples, as well as an idea to construct fractal differential equations are shown.

  18. Fractal analysis of scatter imaging signatures to distinguish breast pathologies

    NASA Astrophysics Data System (ADS)

    Eguizabal, Alma; Laughney, Ashley M.; Krishnaswamy, Venkataramanan; Wells, Wendy A.; Paulsen, Keith D.; Pogue, Brian W.; López-Higuera, José M.; Conde, Olga M.

    2013-02-01

    Fractal analysis combined with a label-free scattering technique is proposed for describing the pathological architecture of tumors. Clinicians and pathologists are conventionally trained to classify abnormal features such as structural irregularities or high indices of mitosis. The potential of fractal analysis lies in the fact of being a morphometric measure of the irregular structures providing a measure of the object's complexity and self-similarity. As cancer is characterized by disorder and irregularity in tissues, this measure could be related to tumor growth. Fractal analysis has been probed in the understanding of the tumor vasculature network. This work addresses the feasibility of applying fractal analysis to the scattering power map (as a physical modeling) and principal components (as a statistical modeling) provided by a localized reflectance spectroscopic system. Disorder, irregularity and cell size variation in tissue samples is translated into the scattering power and principal components magnitude and its fractal dimension is correlated with the pathologist assessment of the samples. The fractal dimension is computed applying the box-counting technique. Results show that fractal analysis of ex-vivo fresh tissue samples exhibits separated ranges of fractal dimension that could help classifier combining the fractal results with other morphological features. This contrast trend would help in the discrimination of tissues in the intraoperative context and may serve as a useful adjunct to surgeons.

  19. Vector calculus in non-integer dimensional space and its applications to fractal media

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2015-02-01

    We suggest a generalization of vector calculus for the case of non-integer dimensional space. The first and second orders operations such as gradient, divergence, the scalar and vector Laplace operators for non-integer dimensional space are defined. For simplification we consider scalar and vector fields that are independent of angles. We formulate a generalization of vector calculus for rotationally covariant scalar and vector functions. This generalization allows us to describe fractal media and materials in the framework of continuum models with non-integer dimensional space. As examples of application of the suggested calculus, we consider elasticity of fractal materials (fractal hollow ball and fractal cylindrical pipe with pressure inside and outside), steady distribution of heat in fractal media, electric field of fractal charged cylinder. We solve the correspondent equations for non-integer dimensional space models.

  20. Multispectral image fusion based on fractal features

    NASA Astrophysics Data System (ADS)

    Tian, Jie; Chen, Jie; Zhang, Chunhua

    2004-01-01

    Imagery sensors have been one indispensable part of the detection and recognition systems. They are widely used to the field of surveillance, navigation, control and guide, et. However, different imagery sensors depend on diverse imaging mechanisms, and work within diverse range of spectrum. They also perform diverse functions and have diverse circumstance requires. So it is unpractical to accomplish the task of detection or recognition with a single imagery sensor under the conditions of different circumstances, different backgrounds and different targets. Fortunately, the multi-sensor image fusion technique emerged as important route to solve this problem. So image fusion has been one of the main technical routines used to detect and recognize objects from images. While, loss of information is unavoidable during fusion process, so it is always a very important content of image fusion how to preserve the useful information to the utmost. That is to say, it should be taken into account before designing the fusion schemes how to avoid the loss of useful information or how to preserve the features helpful to the detection. In consideration of these issues and the fact that most detection problems are actually to distinguish man-made objects from natural background, a fractal-based multi-spectral fusion algorithm has been proposed in this paper aiming at the recognition of battlefield targets in the complicated backgrounds. According to this algorithm, source images are firstly orthogonally decomposed according to wavelet transform theories, and then fractal-based detection is held to each decomposed image. At this step, natural background and man-made targets are distinguished by use of fractal models that can well imitate natural objects. Special fusion operators are employed during the fusion of area that contains man-made targets so that useful information could be preserved and features of targets could be extruded. The final fused image is reconstructed from the composition of source pyramid images. So this fusion scheme is a multi-resolution analysis. The wavelet decomposition of image can be actually considered as special pyramid decomposition. According to wavelet decomposition theories, the approximation of image (formula available in paper) at resolution 2j+1 equal to its orthogonal projection in space , that is, where Ajf is the low-frequency approximation of image f(x, y) at resolution 2j and , , represent the vertical, horizontal and diagonal wavelet coefficients respectively at resolution 2j. These coefficients describe the high-frequency information of image at direction of vertical, horizontal and diagonal respectively. Ajf, , and are independent and can be considered as images. In this paper J is set to be 1, so the source image is decomposed to produce the son-images Af, D1f, D2f and D3f. To solve the problem of detecting artifacts, the concepts of vertical fractal dimension FD1, horizontal fractal dimension FD2 and diagonal fractal dimension FD3 are proposed in this paper. The vertical fractal dimension FD1 corresponds to the vertical wavelet coefficients image after the wavelet decomposition of source image, the horizontal fractal dimension FD2 corresponds to the horizontal wavelet coefficients and the diagonal fractal dimension FD3 the diagonal one. These definitions enrich the illustration of source images. Therefore they are helpful to classify the targets. Then the detection of artifacts in the decomposed images is a problem of pattern recognition in 4-D space. The combination of FD0, FD1, FD2 and FD3 make a vector of (FD0, FD1, FD2, FD3), which can be considered as a united feature vector of the studied image. All the parts of the images are classified in the 4-D pattern space created by the vector of (FD0, FD1, FD2, FD3) so that the area that contains man-made objects could be detected. This detection can be considered as a coarse recognition, and then the significant areas in each son-images are signed so that they can be dealt with special rules. There has been various fusion rules developed with each one aiming at a special problem. These rules have different performance, so it is very important to select an appropriate rule during the design of an image fusion system. Recent research denotes that the rule should be adjustable so that it is always suitable to extrude the features of targets and to preserve the pixels of useful information. In this paper, owing to the consideration that fractal dimension is one of the main features to distinguish man-made targets from natural objects, the fusion rule was defined that if the studied region of image contains man-made target, the pixels of the source image whose fractal dimension is minimal are saved to be the pixels of the fused image, otherwise, a weighted average operator is adopted to avoid loss of information. The main idea of this rule is to store the pixels with low fractal dimensions, so it can be named Minimal Fractal dimensions (MFD) fusion rule. This fractal-based algorithm is compared with a common weighted average fusion algorithm. An objective assessment is taken to the two fusion results. The criteria of Entropy, Cross-Entropy, Peak Signal-to-Noise Ratio (PSNR) and Standard Gray Scale Difference are defined in this paper. Reversely to the idea of constructing an ideal image as the assessing reference, the source images are selected to be the reference in this paper. It can be deemed that this assessment is to calculate how much the image quality has been enhanced and the quantity of information has been increased when the fused image is compared with the source images. The experimental results imply that the fractal-based multi-spectral fusion algorithm can effectively preserve the information of man-made objects with a high contrast. It is proved that this algorithm could well preserve features of military targets because that battlefield targets are most man-made objects and in common their images differ from fractal models obviously. Furthermore, the fractal features are not sensitive to the imaging conditions and the movement of targets, so this fractal-based algorithm may be very practical.

  1. Relationship between mathematical abstraction in learning parallel coordinates concept and performance in learning analytic geometry of pre-service mathematics teachers: an investigation

    NASA Astrophysics Data System (ADS)

    Nurhasanah, F.; Kusumah, Y. S.; Sabandar, J.; Suryadi, D.

    2018-05-01

    As one of the non-conventional mathematics concepts, Parallel Coordinates is potential to be learned by pre-service mathematics teachers in order to give them experiences in constructing richer schemes and doing abstraction process. Unfortunately, the study related to this issue is still limited. This study wants to answer a research question “to what extent the abstraction process of pre-service mathematics teachers in learning concept of Parallel Coordinates could indicate their performance in learning Analytic Geometry”. This is a case study that part of a larger study in examining mathematical abstraction of pre-service mathematics teachers in learning non-conventional mathematics concept. Descriptive statistics method is used in this study to analyze the scores from three different tests: Cartesian Coordinate, Parallel Coordinates, and Analytic Geometry. The participants in this study consist of 45 pre-service mathematics teachers. The result shows that there is a linear association between the score on Cartesian Coordinate and Parallel Coordinates. There also found that the higher levels of the abstraction process in learning Parallel Coordinates are linearly associated with higher student achievement in Analytic Geometry. The result of this study shows that the concept of Parallel Coordinates has a significant role for pre-service mathematics teachers in learning Analytic Geometry.

  2. Fractal 1/f Dynamics Suggest Entanglement of Measurement and Human Performance

    ERIC Educational Resources Information Center

    Holden, John G.; Choi, Inhyun; Amazeen, Polemnia G.; Van Orden, Guy

    2011-01-01

    Variability of repeated measurements in human performances exhibits fractal 1/f noise. Yet the relative strength of this fractal pattern varies widely across conditions, tasks, and individuals. Four experiments illustrate how subtle details of the conditions of measurement change the fractal patterns observed across task conditions. The results…

  3. Stories about Benoit

    NASA Astrophysics Data System (ADS)

    Frame, Michael; Cohen, Nathan

    2015-03-01

    The Yale University mathematics department hosted a memorial for Benoit on April 29 and 30, 2011. The first day of the meeting consisted of three technical talks on some aspects of fractals, Benoit's principal intellectual legacy. Bernard Sapoval spoke on fractals in physics, Peter Jones on fractals in mathematics, and Nassim Taleb on fractals in finance...

  4. Fractals and the irreducibility of consciousness in plants and animals

    PubMed Central

    Gardiner, John

    2013-01-01

    In both plants and animals consciousness is fractal. Since fractals can only pass information in one direction it is impossible to extrapolate backward to find the rule that governs the fractal. Thus, similarly, it will be impossible to completely determine the rule or rules that govern consciousness. PMID:23759545

  5. Fractals and the irreducibility of consciousness in plants and animals.

    PubMed

    Gardiner, John

    2013-08-01

    In both plants and animals consciousness is fractal. Since fractals can only pass information in one direction it is impossible to extrapolate backward to find the rule that governs the fractal. Thus, similarly, it will be impossible to completely determine the rule or rules that govern consciousness.

  6. Fractal analysis of time varying data

    DOEpatents

    Vo-Dinh, Tuan; Sadana, Ajit

    2002-01-01

    Characteristics of time varying data, such as an electrical signal, are analyzed by converting the data from a temporal domain into a spatial domain pattern. Fractal analysis is performed on the spatial domain pattern, thereby producing a fractal dimension D.sub.F. The fractal dimension indicates the regularity of the time varying data.

  7. Using the Cambridge Structural Database to Teach Molecular Geometry Concepts in Organic Chemistry

    ERIC Educational Resources Information Center

    Wackerly, Jay Wm.; Janowicz, Philip A.; Ritchey, Joshua A.; Caruso, Mary M.; Elliott, Erin L.; Moore, Jeffrey S.

    2009-01-01

    This article reports a set of two homework assignments that can be used in a second-year undergraduate organic chemistry class. These assignments were designed to help reinforce concepts of molecular geometry and to give students the opportunity to use a technological database and data mining to analyze experimentally determined chemical…

  8. The Effect of Various Media Scaffolding on Increasing Understanding of Students' Geometry Concepts

    ERIC Educational Resources Information Center

    Sutiarso, Sugeng; Coesamin, M.; Nurhanurawati

    2018-01-01

    This study is a quasi-experimental research with pretest-posttest control group design, which aims to determine (1) the tendency of students in using various media scaffolding based on gender, and (2) effect of media scaffolding on increasing understanding of students' geometry concepts. Media scaffolding used this study is chart, props, and…

  9. Assigned and unassigned distance geometry: applications to biological molecules and nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billinge, Simon J. L.; Duxbury, Phillip M.; Gonçalves, Douglas S.

    2016-04-04

    Here, considering geometry based on the concept of distance, the results found by Menger and Blumenthal originated a body of knowledge called distance geometry. This survey covers some recent developments for assigned and unassigned distance geometry and focuses on two main applications: determination of three-dimensional conformations of biological molecules and nanostructures.

  10. A novel small-angle neutron scattering detector geometry

    PubMed Central

    Kanaki, Kalliopi; Jackson, Andrew; Hall-Wilton, Richard; Piscitelli, Francesco; Kirstein, Oliver; Andersen, Ken H.

    2013-01-01

    A novel 2π detector geometry for small-angle neutron scattering (SANS) applications is presented and its theoretical performance evaluated. Such a novel geometry is ideally suited for a SANS instrument at the European Spallation Source (ESS). Motivated by the low availability and high price of 3He, the new concept utilizes gaseous detectors with 10B as the neutron converter. The shape of the detector is inspired by an optimization process based on the properties of the conversion material. Advantages over the detector geometry traditionally used on SANS instruments are discussed. The angular and time resolutions of the proposed detector concept are shown to satisfy the requirements of the particular SANS instrument. PMID:24046504

  11. GENERATING FRACTAL PATTERNS BY USING p-CIRCLE INVERSION

    NASA Astrophysics Data System (ADS)

    Ramírez, José L.; Rubiano, Gustavo N.; Zlobec, Borut Jurčič

    2015-10-01

    In this paper, we introduce the p-circle inversion which generalizes the classical inversion with respect to a circle (p = 2) and the taxicab inversion (p = 1). We study some basic properties and we also show the inversive images of some basic curves. We apply this new transformation to well-known fractals such as Sierpinski triangle, Koch curve, dragon curve, Fibonacci fractal, among others. Then we obtain new fractal patterns. Moreover, we generalize the method called circle inversion fractal be means of the p-circle inversion.

  12. Multi-scale characterization of pore evolution in a combustion metamorphic complex, Hatrurim basin, Israel: Combining (ultra) small-angle neutron scattering and image analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsiu-Wen; Anovitz, Lawrence; Burg, Avihu

    Backscattered scanning electron micrograph and ultra small- and small-angle neutron scattering data have been combined to provide statistically meaningful data on the pore/grain structure and pore evolution of combustion metamorphic complexes from the Hatrurim basin, Israel. Three processes, anti-sintering roughening, alteration of protolith (dehydration, decarbonation, and oxidation) and crystallization of high-temperature minerals, occurred simultaneously, leading to significant changes in observed pore/grain structures. Pore structures in the protoliths, and in lowand high-grade metamorphic rocks show surface (Ds) and mass (Dm) pore fractal geometries with gradual increases in both Ds and Dm values as a function of metamorphic grade. This suggests thatmore » increases in pore volume and formation of less branching pore networks are accompanied by a roughening of pore/grain interfaces. Additionally, pore evolution during combustion metamorphism is also characterized by reduced contributions from small-scale pores to the cumulative porosity in the high-grade rocks. At high temperatures, small-scale pores may be preferentially closed by the formation of high-temperature minerals, producing a rougher morphology with increasing temperature. Alternatively, large-scale pores may develop at the expense of small-scale pores. These observations (pore fractal geometry and cumulative porosity) indicate that the evolution of pore/grain structures is correlated with the growth of high-temperature phases and is a consequence of the energy balance between pore/grain surface energy and energy arising from heterogeneous phase contacts. The apparent pore volume density further suggests that the localized time/temperature development of the high-grade Hatrurim rocks is not simply an extension of that of the low-grade rocks. The former likely represents the "hot spots (burning foci)" in the overall metamorphic terrain while the latter may represent contact aureoles.« less

  13. [Features of fractal dynamics EEG of alpha-rhythm in patients with neurotic and neurosis-like disorders].

    PubMed

    Shul'ts, E V; Baburin, I N; Karavaeva, T A; Karvasarskiĭ, B D; Slezin, V B

    2011-01-01

    Fifty-five patients with neurotic and neurosis-like disorders and 20 healthy controls, aged 17-64 years, have been examined. The basic research method was electroencephalography (EEG) with the fractal analysis of alpha power fluctuations. In patients, the changes in the fractal structure were of the same direction: the decrease of fractal indexes of low-frequency fluctuations and the increase of fractal indexes of mid-frequency fluctuations. Patients with neurosis-like disorders, in comparison to those with neurotic disorders, were characterized by more expressed (quantitative) changes in fractal structures of more extended character. It suggests the presence of deeper pathological changes in patients with neurosis-like disorders.

  14. Transport properties of electrons in fractal magnetic-barrier structures

    NASA Astrophysics Data System (ADS)

    Sun, Lifeng; Fang, Chao; Guo, Yong

    2010-09-01

    Quantum transport properties in fractal magnetically modulated structures are studied by the transfer-matrix method. It is found that the transmission spectra depend sensitively not only on the incident energy and the direction of the wave vector but also on the stage of the fractal structures. Resonance splitting, enhancement, and position shift of the resonance peaks under different magnetic modulation are observed at four different fractal stages, and the relationship between the conductance in the fractal structure and magnetic modulation is also revealed. The results indicate the spectra of the transmission can be considered as fingerprints for the fractal structures, which show the subtle correspondence between magnetic structures and transport behaviors.

  15. a Fractal Permeability Model Coupling Boundary-Layer Effect for Tight Oil Reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, Fuyong; Liu, Zhichao; Jiao, Liang; Wang, Congle; Guo, Hu

    A fractal permeability model coupling non-flowing boundary-layer effect for tight oil reservoirs was proposed. Firstly, pore structures of tight formations were characterized with fractal theory. Then, with the empirical equation of boundary-layer thickness, Hagen-Poiseuille equation and fractal theory, a fractal torturous capillary tube model coupled with boundary-layer effect was developed, and verified with experimental data. Finally, the parameters influencing effective liquid permeability were quantitatively investigated. The research results show that effective liquid permeability of tight formations is not only decided by pore structures, but also affected by boundary-layer distributions, and effective liquid permeability is the function of fluid type, fluid viscosity, pressure gradient, fractal dimension, tortuosity fractal dimension, minimum pore radius and maximum pore radius. For the tight formations dominated with nanoscale pores, boundary-layer effect can significantly reduce effective liquid permeability, especially under low pressure gradient.

  16. a Fractal Analysis for Net Present Value of Multi-Stage Hydraulic Fractured Horizontal Well

    NASA Astrophysics Data System (ADS)

    Lu, Hong-Lin; Zhang, Ji-Jun; Tan, Xiao-Hua; Li, Xiao-Ping; Zhao, Jia-Hui

    Because of the low permeability, multi-stage hydraulic fractured horizontal wells (MHFHWs) occupy a dominant position among production wells in tight gas reservoir. However, net present value (NPV) estimation method for MHFHW in tight gas reservoirs often ignores the effect of heterogeneity in microscopic pore structure. Apart from that, a new fractal model is presented for NPV of MHFHW, based on the fractal expressions of formation parameters. First, with the aid of apparent permeability model, a pseudo pressure expression considering both reservoir fractal features and slippage effect is derived, contributing to establish the productivity model. Secondly, economic assessment method is built based on the fractal productivity model, in order to obtain the NPV of MHFHW. Thirdly, the type curves are illustrated and the influences of different fractal parameters are discussed. The pore fractal dimensions Df and the capillary tortuosity fractal dimensions DT have significant effects on the NPV of an MHFHW. Finally, the proposed model in this paper provides a new methodology for analyzing and predicting the NPV of an MHFHW and may be conducive to a better understanding of the optimal design of MHFHW.

  17. Fractal Theory and Field Cover Experiments: Implications for the Fractal Characteristics and Radon Diffusion Behavior of Soils and Rocks.

    PubMed

    Tan, Wanyu; Li, Yongmei; Tan, Kaixuan; Duan, Xianzhe; Liu, Dong; Liu, Zehua

    2016-12-01

    Radon diffusion and transport through different media is a complex process affected by many factors. In this study, the fractal theories and field covering experiments were used to study the fractal characteristics of particle size distribution (PSD) of six kinds of geotechnical materials (e.g., waste rock, sand, laterite, kaolin, mixture of sand and laterite, and mixture of waste rock and laterite) and their effects on radon diffusion. In addition, the radon diffusion coefficient and diffusion length were calculated. Moreover, new formulas for estimating diffusion coefficient and diffusion length functional of fractal dimension d of PSD were proposed. These results demonstrate the following points: (1) the fractal dimension d of the PSD can be used to characterize the property of soils and rocks in the studies of radon diffusion behavior; (2) the diffusion coefficient and diffusion length decrease with increasing fractal dimension of PSD; and (3) the effectiveness of final covers in reducing radon exhalation of uranium tailings impoundments can be evaluated on the basis of the fractal dimension of PSD of materials.

  18. Anisotropic fractal media by vector calculus in non-integer dimensional space

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2014-08-01

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.

  19. Prediction of pork quality parameters by applying fractals and data mining on MRI.

    PubMed

    Caballero, Daniel; Pérez-Palacios, Trinidad; Caro, Andrés; Amigo, José Manuel; Dahl, Anders B; ErsbØll, Bjarne K; Antequera, Teresa

    2017-09-01

    This work firstly investigates the use of MRI, fractal algorithms and data mining techniques to determine pork quality parameters non-destructively. The main objective was to evaluate the capability of fractal algorithms (Classical Fractal algorithm, CFA; Fractal Texture Algorithm, FTA and One Point Fractal Texture Algorithm, OPFTA) to analyse MRI in order to predict quality parameters of loin. In addition, the effect of the sequence acquisition of MRI (Gradient echo, GE; Spin echo, SE and Turbo 3D, T3D) and the predictive technique of data mining (Isotonic regression, IR and Multiple linear regression, MLR) were analysed. Both fractal algorithm, FTA and OPFTA are appropriate to analyse MRI of loins. The sequence acquisition, the fractal algorithm and the data mining technique seems to influence on the prediction results. For most physico-chemical parameters, prediction equations with moderate to excellent correlation coefficients were achieved by using the following combinations of acquisition sequences of MRI, fractal algorithms and data mining techniques: SE-FTA-MLR, SE-OPFTA-IR, GE-OPFTA-MLR, SE-OPFTA-MLR, with the last one offering the best prediction results. Thus, SE-OPFTA-MLR could be proposed as an alternative technique to determine physico-chemical traits of fresh and dry-cured loins in a non-destructive way with high accuracy. Copyright © 2017. Published by Elsevier Ltd.

  20. The fractal nature of vacuum arc cathode spots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anders, Andre

    2005-05-27

    Cathode spot phenomena show many features of fractals, for example self-similar patterns in the emitted light and arc erosion traces. Although there have been hints on the fractal nature of cathode spots in the literature, the fractal approach to spot interpretation is underutilized. In this work, a brief review of spot properties is given, touching the differences between spot type 1 (on cathodes surfaces with dielectric layers) and spot type 2 (on metallic, clean surfaces) as well as the known spot fragment or cell structure. The basic properties of self-similarity, power laws, random colored noise, and fractals are introduced. Severalmore » points of evidence for the fractal nature of spots are provided. Specifically power laws are identified as signature of fractal properties, such as spectral power of noisy arc parameters (ion current, arc voltage, etc) obtained by fast Fourier transform. It is shown that fractal properties can be observed down to the cutoff by measurement resolution or occurrence of elementary steps in physical processes. Random walk models of cathode spot motion are well established: they go asymptotically to Brownian motion for infinitesimal step width. The power spectrum of the arc voltage noise falls as 1/f {sup 2}, where f is frequency, supporting a fractal spot model associated with Brownian motion.« less

  1. Quantitative assessment of early diabetic retinopathy using fractal analysis.

    PubMed

    Cheung, Ning; Donaghue, Kim C; Liew, Gerald; Rogers, Sophie L; Wang, Jie Jin; Lim, Shueh-Wen; Jenkins, Alicia J; Hsu, Wynne; Li Lee, Mong; Wong, Tien Y

    2009-01-01

    Fractal analysis can quantify the geometric complexity of the retinal vascular branching pattern and may therefore offer a new method to quantify early diabetic microvascular damage. In this study, we examined the relationship between retinal fractal dimension and retinopathy in young individuals with type 1 diabetes. We conducted a cross-sectional study of 729 patients with type 1 diabetes (aged 12-20 years) who had seven-field stereoscopic retinal photographs taken of both eyes. From these photographs, retinopathy was graded according to the modified Airlie House classification, and fractal dimension was quantified using a computer-based program following a standardized protocol. In this study, 137 patients (18.8%) had diabetic retinopathy signs; of these, 105 had mild retinopathy. Median (interquartile range) retinal fractal dimension was 1.46214 (1.45023-1.47217). After adjustment for age, sex, diabetes duration, A1C, blood pressure, and total cholesterol, increasing retinal vascular fractal dimension was significantly associated with increasing odds of retinopathy (odds ratio 3.92 [95% CI 2.02-7.61] for fourth versus first quartile of fractal dimension). In multivariate analysis, each 0.01 increase in retinal vascular fractal dimension was associated with a nearly 40% increased odds of retinopathy (1.37 [1.21-1.56]). This association remained after additional adjustment for retinal vascular caliber. Greater retinal fractal dimension, representing increased geometric complexity of the retinal vasculature, is independently associated with early diabetic retinopathy signs in type 1 diabetes. Fractal analysis of fundus photographs may allow quantitative measurement of early diabetic microvascular damage.

  2. Multifractal analysis of line-edge roughness

    NASA Astrophysics Data System (ADS)

    Constantoudis, Vassilios; Papavieros, George; Lorusso, Gian; Rutigliani, Vito; van Roey, Frieda; Gogolides, Evangelos

    2018-03-01

    In this paper, we propose to rethink the issue of LER characterization on the basis of the fundamental concept of symmetries. In LER one can apply two kinds of symmetries: a) the translation symmetry characterized by periodicity and b) the scaling symmetry quantified by the fractal dimension. Up to now, a lot of work has been done on the first symmetry since the Power Spectral Density (PSD), which has been extensively studied recently, is a decomposition of LER signal into periodic edges and quantification of the `power' of each periodicity at the real LER. The aim of this paper is to focus on the second symmetry of scaling invariance. Similarly to PSD, we introduce the multifractal approach in LER analysis which generalizes the scaling analysis of standard (mono)fractal theory and decomposes LER into fractal edges characterized by specific fractal dimensions. The main benefit of multifractal analysis is that it enables the characterization of the multi-scaling contributions of different mechanisms involved in LER formation. In the first part of our work, we present concisely the multifractal theory of line edges and utilize the Box Counting method for its implementation and the extraction of the multifractal spectrum. Special emphasis is given on the explanation of the physical meaning of the obtained multifractal spectrum whose asymmetry quantifies the degree of multifractality. In addition, we propose the distinction between peak-based and valley-based multifractality according to whether the asymmetry of the multifractal spectrum is coming from the sharp line material peaks to space regions or from the cavities of line materis (edge valleys). In the second part, we study systematically the evolution of LER multifractal spectrum during the first successive steps of a multiple (quadruple) patterning lithography technique and find an interesting transition from a peak-based multifractal behavior in the first litho resist LER to a valley-based multifractality caused mainly by the effects of etch pattern transfer steps.

  3. Investigation of changes in fractal dimension from layered retinal structures of healthy and diabetic eyes with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Zakharov, Valery P.; Myakinin, Oleg O.; Bratchenko, Ivan A.; Artemyev, Dmitry N.; Kornilin, Dmitry V.

    2015-07-01

    Optical coherence tomography (OCT) is usually employed for the measurement of retinal thickness characterizing the structural changes of tissue. However, fractal dimension (FD) could also character the structural changes of tissue. Therefore, fractal dimension changes may provide further information regarding cellular layers and early damage in ocular diseases. We investigated the possibility of OCT in detecting changes in fractal dimension from layered retinal structures. OCT images were obtained from diabetic patients without retinopathy (DM, n = 38 eyes) or mild diabetic retinopathy (MDR, n = 43 eyes) and normal healthy subjects (Controls, n = 74 eyes). Fractal dimension was calculated using the differentiate box counting methodology. We evaluated the usefulness of quantifying fractal dimension of layered structures in the detection of retinal damage. Generalized estimating equations considering within-subject intereye relations were used to test for differences between the groups. A modified p value of <0.001 was considered statistically significant. Receiver operating characteristic (ROC) curves were constructed to describe the ability of fractal dimension to discriminate between the eyes of DM, MDR and healthy eyes. Significant decreases of fractal dimension were observed in all layers in the MDR eyes compared with controls except in the inner nuclear layer (INL). Significant decreases of fractal dimension were also observed in all layers in the MDR eyes compared with DM eyes. The highest area under receiver operating characteristic curve (AUROC) values estimated for fractal dimension were observed for the outer plexiform layer (OPL) and outer segment photoreceptors (OS) when comparing MDR eyes with controls. The highest AUROC value estimated for fractal dimension were also observed for the retinal nerve fiber layer (RNFL) and OS when comparing MDR eyes with DM eyes. Our results suggest that fractal dimension of the intraretinal layers may provide useful information to differentiate pathological from healthy eyes. Further research is warranted to determine how this approach may be used to improve diagnosis of early retinal neurodegeneration.

  4. Complex Systems

    PubMed Central

    Goldberger, Ary L.

    2006-01-01

    Physiologic systems in health and disease display an extraordinary range of temporal behaviors and structural patterns that defy understanding based on linear constructs, reductionist strategies, and classical homeostasis. Application of concepts and computational tools derived from the contemporary study of complex systems, including nonlinear dynamics, fractals and “chaos theory,” is having an increasing impact on biology and medicine. This presentation provides a brief overview of an emerging area of biomedical research, including recent applications to cardiopulmonary medicine and chronic obstructive lung disease. PMID:16921107

  5. Interdisciplinary Investigations in Support of Project DI-MOD

    NASA Technical Reports Server (NTRS)

    Starks, Scott A. (Principal Investigator)

    1996-01-01

    Various concepts from time series analysis are used as the basis for the development of algorithms to assist in the analysis and interpretation of remote sensed imagery. An approach to trend detection that is based upon the fractal analysis of power spectrum estimates is presented. Additionally, research was conducted toward the development of a software architecture to support processing tasks associated with databases housing a variety of data. An algorithmic approach which provides for the automation of the state monitoring process is presented.

  6. Templates in Action

    ERIC Educational Resources Information Center

    Serow, Penelope; Inglis, Michaela

    2010-01-01

    Circle Geometry, a senior mathematics topic, is often regarded as time-consuming and associated relational concepts difficult for students to grasp. Units of work that introduce students to circle geometry theorems are frequently described as a string of tedious constructions. This article explores teacher-designed dynamic geometry software…

  7. Fractal tomography and its application in 3D vision

    NASA Astrophysics Data System (ADS)

    Trubochkina, N.

    2018-01-01

    A three-dimensional artistic fractal tomography method that implements a non-glasses 3D visualization of fractal worlds in layered media is proposed. It is designed for the glasses-free 3D vision of digital art objects and films containing fractal content. Prospects for the development of this method in art galleries and the film industry are considered.

  8. FAST TRACK COMMUNICATION: Weyl law for fat fractals

    NASA Astrophysics Data System (ADS)

    Spina, María E.; García-Mata, Ignacio; Saraceno, Marcos

    2010-10-01

    It has been conjectured that for a class of piecewise linear maps the closure of the set of images of the discontinuity has the structure of a fat fractal, that is, a fractal with positive measure. An example of such maps is the sawtooth map in the elliptic regime. In this work we analyze this problem quantum mechanically in the semiclassical regime. We find that the fraction of states localized on the unstable set satisfies a modified fractal Weyl law, where the exponent is given by the exterior dimension of the fat fractal.

  9. Holographic Characterization of Colloidal Fractal Aggregates

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Cheong, Fook Chiong; Ruffner, David B.; Zhong, Xiao; Ward, Michael D.; Grier, David G.

    In-line holographic microscopy images of micrometer-scale fractal aggregates can be interpreted with the Lorenz-Mie theory of light scattering and an effective-sphere model to obtain each aggregate's size and the population-averaged fractal dimension. We demonstrate this technique experimentally using model fractal clusters of polystyrene nanoparticles and fractal protein aggregates composed of bovine serum albumin and bovine pancreas insulin. This technique can characterize several thousand aggregates in ten minutes and naturally distinguishes aggregates from contaminants such as silicone oil droplets. Work supported by the SBIR program of the NSF.

  10. Study on Conversion Between Momentum and Contrarian Based on Fractal Game

    NASA Astrophysics Data System (ADS)

    Wu, Xu; Song, Guanghui; Deng, Yan; Xu, Lin

    2015-06-01

    Based on the fractal game which is performed by the majority and the minority, the fractal market theory (FMT) is employed to describe the features of investors' decision-making. Accordingly, the process of fractal games is formed in order to analyze the statistical features of conversion between momentum and contrarian. The result shows that among three fractal game mechanisms, the statistical feature of simulated return rate series is much more similar to log returns on actual series. In addition, the conversion between momentum and contrarian is also extremely similar to real situation, which can reflect the effectiveness of using fractal game in analyzing the conversion between momentum and contrarian. Moreover, it also provides decision-making reference which helps investors develop effective investment strategy.

  11. Numerical study of electromagnetic scattering from one-dimensional nonlinear fractal sea surface

    NASA Astrophysics Data System (ADS)

    Xie, Tao; He, Chao; William, Perrie; Kuang, Hai-Lan; Zou, Guang-Hui; Chen, Wei

    2010-02-01

    In recent years, linear fractal sea surface models have been developed for the sea surface in order to establish an electromagnetic backscattering model. Unfortunately, the sea surface is always nonlinear, particularly at high sea states. We present a nonlinear fractal sea surface model and derive an electromagnetic backscattering model. Using this model, we numerically calculate the normalized radar cross section (NRCS) of a nonlinear sea surface. Comparing the averaged NRCS between linear and nonlinear fractal models, we show that the NRCS of a linear fractal sea surface underestimates the NRCS of the real sea surface, especially for sea states with high fractal dimensions, and for dominant ocean surface gravity waves that are either very short or extremely long.

  12. Estimation of soil saturated hydraulic conductivity by artificial neural networks ensemble in smectitic soils

    NASA Astrophysics Data System (ADS)

    Sedaghat, A.; Bayat, H.; Safari Sinegani, A. A.

    2016-03-01

    The saturated hydraulic conductivity ( K s ) of the soil is one of the main soil physical properties. Indirect estimation of this parameter using pedo-transfer functions (PTFs) has received considerable attention. The Purpose of this study was to improve the estimation of K s using fractal parameters of particle and micro-aggregate size distributions in smectitic soils. In this study 260 disturbed and undisturbed soil samples were collected from Guilan province, the north of Iran. The fractal model of Bird and Perrier was used to compute the fractal parameters of particle and micro-aggregate size distributions. The PTFs were developed by artificial neural networks (ANNs) ensemble to estimate K s by using available soil data and fractal parameters. There were found significant correlations between K s and fractal parameters of particles and microaggregates. Estimation of K s was improved significantly by using fractal parameters of soil micro-aggregates as predictors. But using geometric mean and geometric standard deviation of particles diameter did not improve K s estimations significantly. Using fractal parameters of particles and micro-aggregates simultaneously, had the most effect in the estimation of K s . Generally, fractal parameters can be successfully used as input parameters to improve the estimation of K s in the PTFs in smectitic soils. As a result, ANNs ensemble successfully correlated the fractal parameters of particles and micro-aggregates to K s .

  13. Investigation of diamond wheel topography in Elliptical Ultrasonic Assisted Grinding (EUAG) of monocrystal sapphire using fractal analysis method.

    PubMed

    Wang, Qiuyan; Zhao, Wenxiang; Liang, Zhiqiang; Wang, Xibin; Zhou, Tianfeng; Wu, Yongbo; Jiao, Li

    2018-03-01

    The wear behaviors of grinding wheel have significant influence on the work-surface topography. However, a comprehensive and quantitative method is lacking for evaluating the wear conditions of grinding wheel. In this paper, a fractal analysis method is used to investigate the wear behavior of resin-bonded diamond wheel in Elliptical Ultrasonic Assisted Grinding (EUAG) of monocrystal sapphire, and a series of experiments on EUAG and conventional grinding (CG) are performed. The results show that the fractal dimension of grinding wheel topography is highly correlated to the wear behavior, i.e., grain fracture, grain pullout, and wheel loading. An increase in cutting edge density on the wheel surface results in an increase of the fractal dimension, but an increase in the grain pullout and wheel loading results in a decrease in the fractal dimension. The wheel topography in EUAG has a higher fractal dimension than that in CG before 60 passes due to better self-sharpening behavior, and then has a smaller fractal dimension because of more serious wheel loadings after 60 passes. By angle-dependent distribution analysis of profile fractal dimensions, the wheel surface topography is transformed from isotropic to anisotropic. These indicated that the fractal analysis method could be further used in monitoring of a grinding wheel performance in EUAG. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Not just fractal surfaces, but surface fractal aggregates: Derivation of the expression for the structure factor and its applications

    NASA Astrophysics Data System (ADS)

    Besselink, R.; Stawski, T. M.; Van Driessche, A. E. S.; Benning, L. G.

    2016-12-01

    Densely packed surface fractal aggregates form in systems with high local volume fractions of particles with very short diffusion lengths, which effectively means that particles have little space to move. However, there are no prior mathematical models, which would describe scattering from such surface fractal aggregates and which would allow the subdivision between inter- and intraparticle interferences of such aggregates. Here, we show that by including a form factor function of the primary particles building the aggregate, a finite size of the surface fractal interfacial sub-surfaces can be derived from a structure factor term. This formalism allows us to define both a finite specific surface area for fractal aggregates and the fraction of particle interfacial sub-surfaces at the perimeter of an aggregate. The derived surface fractal model is validated by comparing it with an ab initio approach that involves the generation of a "brick-in-a-wall" von Koch type contour fractals. Moreover, we show that this approach explains observed scattering intensities from in situ experiments that followed gypsum (CaSO4 ṡ 2H2O) precipitation from highly supersaturated solutions. Our model of densely packed "brick-in-a-wall" surface fractal aggregates may well be the key precursor step in the formation of several types of mosaic- and meso-crystals.

  15. Analysis of fractal dimensions of rat bones from film and digital images

    NASA Technical Reports Server (NTRS)

    Pornprasertsuk, S.; Ludlow, J. B.; Webber, R. L.; Tyndall, D. A.; Yamauchi, M.

    2001-01-01

    OBJECTIVES: (1) To compare the effect of two different intra-oral image receptors on estimates of fractal dimension; and (2) to determine the variations in fractal dimensions between the femur, tibia and humerus of the rat and between their proximal, middle and distal regions. METHODS: The left femur, tibia and humerus from 24 4-6-month-old Sprague-Dawley rats were radiographed using intra-oral film and a charge-coupled device (CCD). Films were digitized at a pixel density comparable to the CCD using a flat-bed scanner. Square regions of interest were selected from proximal, middle, and distal regions of each bone. Fractal dimensions were estimated from the slope of regression lines fitted to plots of log power against log spatial frequency. RESULTS: The fractal dimensions estimates from digitized films were significantly greater than those produced from the CCD (P=0.0008). Estimated fractal dimensions of three types of bone were not significantly different (P=0.0544); however, the three regions of bones were significantly different (P=0.0239). The fractal dimensions estimated from radiographs of the proximal and distal regions of the bones were lower than comparable estimates obtained from the middle region. CONCLUSIONS: Different types of image receptors significantly affect estimates of fractal dimension. There was no difference in the fractal dimensions of the different bones but the three regions differed significantly.

  16. a Fractal Network Model for Fractured Porous Media

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Li, Cuihong; Qiu, Shuxia; Sasmito, Agus Pulung

    2016-04-01

    The transport properties and mechanisms of fractured porous media are very important for oil and gas reservoir engineering, hydraulics, environmental science, chemical engineering, etc. In this paper, a fractal dual-porosity model is developed to estimate the equivalent hydraulic properties of fractured porous media, where a fractal tree-like network model is used to characterize the fracture system according to its fractal scaling laws and topological structures. The analytical expressions for the effective permeability of fracture system and fractured porous media, tortuosity, fracture density and fraction are derived. The proposed fractal model has been validated by comparisons with available experimental data and numerical simulation. It has been shown that fractal dimensions for fracture length and aperture have significant effect on the equivalent hydraulic properties of fractured porous media. The effective permeability of fracture system can be increased with the increase of fractal dimensions for fracture length and aperture, while it can be remarkably lowered by introducing tortuosity at large branching angle. Also, a scaling law between the fracture density and fractal dimension for fracture length has been found, where the scaling exponent depends on the fracture number. The present fractal dual-porosity model may shed light on the transport physics of fractured porous media and provide theoretical basis for oil and gas exploitation, underground water, nuclear waste disposal and geothermal energy extraction as well as chemical engineering, etc.

  17. Self-Organized Criticality Systems

    NASA Astrophysics Data System (ADS)

    Aschwanden, M. J.

    2013-07-01

    Contents: (1) Introduction - Norma B. Crosby --- (2) Theoretical Models of SOC Systems - Markus J. Aschwanden --- (3) SOC and Fractal Geometry - R. T. James McAteer --- (4) Percolation Models of Self-Organized Critical Phenomena - Alexander V. Milovanov --- (5) Criticality and Self-Organization in Branching Processes: Application to Natural Hazards - Álvaro Corral, Francesc Font-Clos --- (6) Power Laws of Recurrence Networks - Yong Zou, Jobst Heitzig, Jürgen Kurths --- (7) SOC computer simolations - Gunnar Pruessner --- (8) SOC Laboratory Experiments - Gunnar Pruessner --- (9) Self-Organizing Complex Earthquakes: Scaling in Data, Models, and Forecasting - Michael K. Sachs et al. --- (10) Wildfires and the Forest-Fire Model - Stefan Hergarten --- (11) SOC in Landslides - Stefan Hergarten --- (12) SOC and Solar Flares - Paul Charbonneau --- (13) SOC Systems in Astrophysics - Markus J. Aschwanden ---

  18. Target annihilation by diffusing particles in inhomogeneous geometries

    NASA Astrophysics Data System (ADS)

    Cassi, Davide

    2009-09-01

    The survival probability of immobile targets annihilated by a population of random walkers on inhomogeneous discrete structures, such as disordered solids, glasses, fractals, polymer networks, and gels, is analytically investigated. It is shown that, while it cannot in general be related to the number of distinct visited points as in the case of homogeneous lattices, in the case of bounded coordination numbers its asymptotic behavior at large times can still be expressed in terms of the spectral dimension d˜ and its exact analytical expression is given. The results show that the asymptotic survival probability is site-independent of recurrent structures (d˜≤2) , while on transient structures (d˜>2) it can strongly depend on the target position, and such dependence is explicitly calculated.

  19. Human Development IX: A Model of the Wholeness of Man, His Consciousness, and Collective Consciousness

    PubMed Central

    Ventegodt, Søren; Hermansen, Tyge Dahl; Flensborg-Madsen, Trine; Rald, Erik; Nielsen, Maj Lyck; Merrick, Joav

    2006-01-01

    In this paper we look at the rational and the emotional interpretation of reality in the human brain and being, and discuss the representation of the brain-mind (ego), the body-mind (Id), and the outer world in the human wholeness (the I or “soul”). Based on this we discuss a number of factors including the coherence between perception, attention and consciousness, and the relation between thought, fantasies, visions and dreams. We discuss and explain concepts as intent, will, morals and ethics. The Jungian concept of the human collective conscious and unconscious is also analyzed. We also hypothesis on the nature of intuition and consider the source of religious experience of man. These phenomena are explained based on the concept of deep quantum chemistry and infinite dancing fractal spirals making up the energetic backbone of the world. In this paper we consider man as a real wholeness and debate the concepts of subjectivity, consciousness and intent that can be deduced from such a perspective. PMID:17115085

  20. Anisotropic fractal media by vector calculus in non-integer dimensional space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru

    2014-08-15

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensionalmore » space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.« less

  1. Fractal dust constrains the collisional history of comets

    NASA Astrophysics Data System (ADS)

    Fulle, M.; Blum, J.

    2017-07-01

    The fractal dust particles observed by Rosetta cannot form in the physical conditions observed today in comet 67P/Churyumov-Gerasimenko (67P hereinafter), being instead consistent with models of the pristine dust aggregates coagulated in the solar nebula. Since bouncing collisions in the protoplanetary disc restructure fractals into compact aggregates (pebbles), the only way to preserve fractals in a comet is the gentle gravitational collapse of a mixture of pebbles and fractals, which must occur before their mutual collision speeds overcome ≈1 m s-1. This condition fixes the pebble radius to ≲1 cm, as confirmed by Comet Nucleus Infrared and Visible Analyser onboard Philae. Here, we show that the flux of fractal particles measured by Rosetta constrains the 67P nucleus in a random packing of cm-sized pebbles, with all the voids among them filled by fractal particles. This structure is inconsistent with any catastrophic collision, which would have compacted or dispersed most fractals, thus leaving empty most voids in the reassembled nucleus. Comets are less numerous than current estimates, as confirmed by lacking small craters on Pluto and Charon. Bilobate comets accreted at speeds <1 m s-1 from cometesimals born in the same disc stream.

  2. Large Engine Technology Program. Task 22: Variable Geometry Concepts for Rich-Quench-Lean Combustors

    NASA Technical Reports Server (NTRS)

    Tacina, Robert R. (Technical Monitor); Cohen, J. M.; Padget, F. C.; Kwoka, D.; Wang, Q.; Lohmann, R. P.

    2005-01-01

    The objective of the task reported herein was to define, evaluate, and optimize variable geometry concepts suitable for use with a Rich-Quench-Lean (RQL) combustor. The specific intent was to identify approaches that would satisfy High Speed Civil Transport (HSCT) cycle operational requirements with regard to fuel-air ratio turndown capability, ignition, and stability margin without compromising the stringent emissions, performance, and reliability goals that this combustor would have to achieve. Four potential configurations were identified and three of these were refined and tested in a high-pressure modular RQL combustor rig. The tools used in the evolution of these concepts included models built with rapid fabrication techniques that were tested for airflow characteristics to confirm sizing and airflow management capability, spray patternation, and atomization characterization tests of these models and studies that were supported by Computational Fluid Dynamics analyses. Combustion tests were performed with each of the concepts at supersonic cruise conditions and at other critical conditions in the flight envelope, including the transition points of the variable geometry system, to identify performance, emissions, and operability impacts. Based upon the cold flow characterization, emissions results, acoustic behavior observed during the tests and consideration of mechanical, reliability, and implementation issues, the tri-swirler configuration was selected as the best variable geometry concept for incorporation in the RQL combustor evolution efforts for the HSCT.

  3. Fractal continuum model for tracer transport in a porous medium.

    PubMed

    Herrera-Hernández, E C; Coronado, M; Hernández-Coronado, H

    2013-12-01

    A model based on the fractal continuum approach is proposed to describe tracer transport in fractal porous media. The original approach has been extended to treat tracer transport and to include systems with radial and uniform flow, which are cases of interest in geoscience. The models involve advection due to the fluid motion in the fractal continuum and dispersion whose mathematical expression is taken from percolation theory. The resulting advective-dispersive equations are numerically solved for continuous and for pulse tracer injection. The tracer profile and the tracer breakthrough curve are evaluated and analyzed in terms of the fractal parameters. It has been found in this work that anomalous transport frequently appears, and a condition on the fractal parameter values to predict when sub- or superdiffusion might be expected has been obtained. The fingerprints of fractality on the tracer breakthrough curve in the explored parameter window consist of an early tracer breakthrough and long tail curves for the spherical and uniform flow cases, and symmetric short tailed curves for the radial flow case.

  4. The analysis of the influence of fractal structure of stimuli on fractal dynamics in fixational eye movements and EEG signal

    NASA Astrophysics Data System (ADS)

    Namazi, Hamidreza; Kulish, Vladimir V.; Akrami, Amin

    2016-05-01

    One of the major challenges in vision research is to analyze the effect of visual stimuli on human vision. However, no relationship has been yet discovered between the structure of the visual stimulus, and the structure of fixational eye movements. This study reveals the plasticity of human fixational eye movements in relation to the ‘complex’ visual stimulus. We demonstrated that the fractal temporal structure of visual dynamics shifts towards the fractal dynamics of the visual stimulus (image). The results showed that images with higher complexity (higher fractality) cause fixational eye movements with lower fractality. Considering the brain, as the main part of nervous system that is engaged in eye movements, we analyzed the governed Electroencephalogram (EEG) signal during fixation. We have found out that there is a coupling between fractality of image, EEG and fixational eye movements. The capability observed in this research can be further investigated and applied for treatment of different vision disorders.

  5. Temporal fractals in seabird foraging behaviour: diving through the scales of time

    PubMed Central

    MacIntosh, Andrew J. J.; Pelletier, Laure; Chiaradia, Andre; Kato, Akiko; Ropert-Coudert, Yan

    2013-01-01

    Animal behaviour exhibits fractal structure in space and time. Fractal properties in animal space-use have been explored extensively under the Lévy flight foraging hypothesis, but studies of behaviour change itself through time are rarer, have typically used shorter sequences generated in the laboratory, and generally lack critical assessment of their results. We thus performed an in-depth analysis of fractal time in binary dive sequences collected via bio-logging from free-ranging little penguins (Eudyptula minor) across full-day foraging trips (216 data points; 4 orders of temporal magnitude). Results from 4 fractal methods show that dive sequences are long-range dependent and persistent across ca. 2 orders of magnitude. This fractal structure correlated with trip length and time spent underwater, but individual traits had little effect. Fractal time is a fundamental characteristic of penguin foraging behaviour, and its investigation is thus a promising avenue for research on interactions between animals and their environments. PMID:23703258

  6. Perceptual and Physiological Responses to Jackson Pollock's Fractals

    PubMed Central

    Taylor, Richard P.; Spehar, Branka; Van Donkelaar, Paul; Hagerhall, Caroline M.

    2011-01-01

    Fractals have been very successful in quantifying the visual complexity exhibited by many natural patterns, and have captured the imagination of scientists and artists alike. Our research has shown that the poured patterns of the American abstract painter Jackson Pollock are also fractal. This discovery raises an intriguing possibility – are the visual characteristics of fractals responsible for the long-term appeal of Pollock's work? To address this question, we have conducted 10 years of scientific investigation of human response to fractals and here we present, for the first time, a review of this research that examines the inter-relationship between the various results. The investigations include eye tracking, visual preference, skin conductance, and EEG measurement techniques. We discuss the artistic implications of the positive perceptual and physiological responses to fractal patterns. PMID:21734876

  7. Fractal fluctuations in gaze speed visual search.

    PubMed

    Stephen, Damian G; Anastas, Jason

    2011-04-01

    Visual search involves a subtle coordination of visual memory and lower-order perceptual mechanisms. Specifically, the fluctuations in gaze may provide support for visual search above and beyond what may be attributed to memory. Prior research indicates that gaze during search exhibits fractal fluctuations, which allow for a wide sampling of the field of view. Fractal fluctuations constitute a case of fast diffusion that may provide an advantage in exploration. We present reanalyses of eye-tracking data collected by Stephen and Mirman (Cognition, 115, 154-165, 2010) for single-feature and conjunction search tasks. Fluctuations in gaze during these search tasks were indeed fractal. Furthermore, the degree of fractality predicted decreases in reaction time on a trial-by-trial basis. We propose that fractality may play a key role in explaining the efficacy of perceptual exploration.

  8. A Fractal Dimension Survey of Active Region Complexity

    NASA Technical Reports Server (NTRS)

    McAteer, R. T. James; Gallagher, Peter; Ireland, Jack

    2005-01-01

    A new approach to quantifying the magnetic complexity of active regions using a fractal dimension measure is presented. This fully-automated approach uses full disc MDI magnetograms of active regions from a large data set (2742 days of the SoHO mission; 9342 active regions) to compare the calculated fractal dimension to both Mount Wilson classification and flare rate. The main Mount Wilson classes exhibit no distinct fractal dimension distribution, suggesting a self-similar nature of all active regions. Solar flare productivity exhibits an increase in both the frequency and GOES X-ray magnitude of flares from regions with higher fractal dimensions. Specifically a lower threshold fractal dimension of 1.2 and 1.25 exists as a necessary, but not sufficient, requirement for an active region to produce M- and X-class flares respectively .

  9. A Tutorial Review on Fractal Spacetime and Fractional Calculus

    NASA Astrophysics Data System (ADS)

    He, Ji-Huan

    2014-11-01

    This tutorial review of fractal-Cantorian spacetime and fractional calculus begins with Leibniz's notation for derivative without limits which can be generalized to discontinuous media like fractal derivative and q-derivative of quantum calculus. Fractal spacetime is used to elucidate some basic properties of fractal which is the foundation of fractional calculus, and El Naschie's mass-energy equation for the dark energy. The variational iteration method is used to introduce the definition of fractional derivatives. Fractal derivative is explained geometrically and q-derivative is motivated by quantum mechanics. Some effective analytical approaches to fractional differential equations, e.g., the variational iteration method, the homotopy perturbation method, the exp-function method, the fractional complex transform, and Yang-Laplace transform, are outlined and the main solution processes are given.

  10. Contour fractal analysis of grains

    NASA Astrophysics Data System (ADS)

    Guida, Giulia; Casini, Francesca; Viggiani, Giulia MB

    2017-06-01

    Fractal analysis has been shown to be useful in image processing to characterise the shape and the grey-scale complexity in different applications spanning from electronic to medical engineering (e.g. [1]). Fractal analysis consists of several methods to assign a dimension and other fractal characteristics to a dataset describing geometric objects. Limited studies have been conducted on the application of fractal analysis to the classification of the shape characteristics of soil grains. The main objective of the work described in this paper is to obtain, from the results of systematic fractal analysis of artificial simple shapes, the characterization of the particle morphology at different scales. The long term objective of the research is to link the microscopic features of granular media with the mechanical behaviour observed in the laboratory and in situ.

  11. Study of supersonic wings employing the attainable leading-edge thrust concept

    NASA Technical Reports Server (NTRS)

    Middleton, W. D.

    1982-01-01

    A theoretical study was made of supersonic wing geometries at Mach 1.8, using the attainable leading-edge thrust concept. The attainable thrust method offers a powerful means to improve overall aerodynamic efficiency by identifying wing leading-edge geometries that promote attached flow and by defining a local angle-of-attack range over which attached flow may be obtained. The concept applies to flat and to cambered wings, which leads to the consideration of drooped-wing leading edges for attached flow at high lift coefficients.

  12. Using Origami Boxes to Explore Concepts of Geometry and Calculus

    ERIC Educational Resources Information Center

    Wares, Arsalan

    2011-01-01

    The purpose of this classroom note is to provide an example of how a simple origami box can be used to explore important concepts of geometry and calculus. This article describes how an origami box can be folded, then it goes on to describe how its volume and surface area can be calculated. Finally, it describes how the box could be folded to…

  13. Editorial

    NASA Astrophysics Data System (ADS)

    Liu, Shuai

    Fractal represents a special feature of nature and functional objects. However, fractal based computing can be applied to many research domains because of its fixed property resisted deformation, variable parameters and many unpredictable changes. Theoretical research and practical application of fractal based computing have been hotspots for 30 years and will be continued. There are many pending issues awaiting solutions in this domain, thus this thematic issue containing 14 papers publishes the state-of-the-art developments in theorem and application of fractal based computing, including mathematical analysis and novel engineering applications. The topics contain fractal and multifractal features in application and solution of nonlinear odes and equation.

  14. Cascade model for fluvial geomorphology

    NASA Technical Reports Server (NTRS)

    Newman, W. I.; Turcotte, D. L.

    1990-01-01

    Erosional landscapes are generally scale invariant and fractal. Spectral studies provide quantitative confirmation of this statement. Linear theories of erosion will not generate scale-invariant topography. In order to explain the fractal behavior of landscapes a modified Fourier series has been introduced that is the basis for a renormalization approach. A nonlinear dynamical model has been introduced for the decay of the modified Fourier series coefficients that yield a fractal spectra. It is argued that a physical basis for this approach is that a fractal (or nearly fractal) distribution of storms (floods) continually renews erosional features on all scales.

  15. Size distribution of dust grains: A problem of self-similarity

    NASA Technical Reports Server (NTRS)

    Henning, TH.; Dorschner, J.; Guertler, J.

    1989-01-01

    Distribution functions describing the results of natural processes frequently show the shape of power laws, e.g., mass functions of stars and molecular clouds, velocity spectrum of turbulence, size distributions of asteroids, micrometeorites and also interstellar dust grains. It is an open question whether this behavior is a result simply coming about by the chosen mathematical representation of the observational data or reflects a deep-seated principle of nature. The authors suppose the latter being the case. Using a dust model consisting of silicate and graphite grains Mathis et al. (1977) showed that the interstellar extinction curve can be represented by taking a grain radii distribution of power law type n(a) varies as a(exp -p) with 3.3 less than or equal to p less than or equal to 3.6 (example 1) as a basis. A different approach to understanding power laws like that in example 1 becomes possible by the theory of self-similar processes (scale invariance). The beta model of turbulence (Frisch et al., 1978) leads in an elementary way to the concept of the self-similarity dimension D, a special case of Mandelbrot's (1977) fractal dimension. In the frame of this beta model, it is supposed that on each stage of a cascade the system decays to N clumps and that only the portion beta N remains active further on. An important feature of this model is that the active eddies become less and less space-filling. In the following, the authors assume that grain-grain collisions are such a scale-invarient process and that the remaining grains are the inactive (frozen) clumps of the cascade. In this way, a size distribution n(a) da varies as a(exp -(D+1))da (example 2) results. It seems to be highly probable that the power law character of the size distribution of interstellar dust grains is the result of a self-similarity process. We can, however, not exclude that the process leading to the interstellar grain size distribution is not fragmentation at all. It could be, e.g., diffusion-limited growth discussed by Sander (1986), who applied the theory of fractal geometry to the classification of non-equilibrium growth processes. He received D=2.4 for diffusion-limited aggregation in 3d-space.

  16. The Beauty of Geometry

    ERIC Educational Resources Information Center

    Morris, Barbara H.

    2004-01-01

    This article describes a geometry project that used the beauty of stained-glass-window designs to teach middle school students about geometric figures and concepts. Three honors prealgebra teachers and a middle school mathematics gifted intervention specialist created a geometry project that covered the curriculum and also assessed students'…

  17. Multi-Scale Fractal Analysis of Image Texture and Pattern

    NASA Technical Reports Server (NTRS)

    Emerson, Charles W.

    1998-01-01

    Fractals embody important ideas of self-similarity, in which the spatial behavior or appearance of a system is largely independent of scale. Self-similarity is defined as a property of curves or surfaces where each part is indistinguishable from the whole, or where the form of the curve or surface is invariant with respect to scale. An ideal fractal (or monofractal) curve or surface has a constant dimension over all scales, although it may not be an integer value. This is in contrast to Euclidean or topological dimensions, where discrete one, two, and three dimensions describe curves, planes, and volumes. Theoretically, if the digital numbers of a remotely sensed image resemble an ideal fractal surface, then due to the self-similarity property, the fractal dimension of the image will not vary with scale and resolution. However, most geographical phenomena are not strictly self-similar at all scales, but they can often be modeled by a stochastic fractal in which the scaling and self-similarity properties of the fractal have inexact patterns that can be described by statistics. Stochastic fractal sets relax the monofractal self-similarity assumption and measure many scales and resolutions in order to represent the varying form of a phenomenon as a function of local variables across space. In image interpretation, pattern is defined as the overall spatial form of related features, and the repetition of certain forms is a characteristic pattern found in many cultural objects and some natural features. Texture is the visual impression of coarseness or smoothness caused by the variability or uniformity of image tone or color. A potential use of fractals concerns the analysis of image texture. In these situations it is commonly observed that the degree of roughness or inexactness in an image or surface is a function of scale and not of experimental technique. The fractal dimension of remote sensing data could yield quantitative insight on the spatial complexity and information content contained within these data. A software package known as the Image Characterization and Modeling System (ICAMS) was used to explore how fractal dimension is related to surface texture and pattern. The ICAMS software was verified using simulated images of ideal fractal surfaces with specified dimensions. The fractal dimension for areas of homogeneous land cover in the vicinity of Huntsville, Alabama was measured to investigate the relationship between texture and resolution for different land covers.

  18. Time Series Analysis OF SAR Image Fractal Maps: The Somma-Vesuvio Volcanic Complex Case Study

    NASA Astrophysics Data System (ADS)

    Pepe, Antonio; De Luca, Claudio; Di Martino, Gerardo; Iodice, Antonio; Manzo, Mariarosaria; Pepe, Susi; Riccio, Daniele; Ruello, Giuseppe; Sansosti, Eugenio; Zinno, Ivana

    2016-04-01

    The fractal dimension is a significant geophysical parameter describing natural surfaces representing the distribution of the roughness over different spatial scale; in case of volcanic structures, it has been related to the specific nature of materials and to the effects of active geodynamic processes. In this work, we present the analysis of the temporal behavior of the fractal dimension estimates generated from multi-pass SAR images relevant to the Somma-Vesuvio volcanic complex (South Italy). To this aim, we consider a Cosmo-SkyMed data-set of 42 stripmap images acquired from ascending orbits between October 2009 and December 2012. Starting from these images, we generate a three-dimensional stack composed by the corresponding fractal maps (ordered according to the acquisition dates), after a proper co-registration. The time-series of the pixel-by-pixel estimated fractal dimension values show that, over invariant natural areas, the fractal dimension values do not reveal significant changes; on the contrary, over urban areas, it correctly assumes values outside the natural surfaces fractality range and show strong fluctuations. As a final result of our analysis, we generate a fractal map that includes only the areas where the fractal dimension is considered reliable and stable (i.e., whose standard deviation computed over the time series is reasonably small). The so-obtained fractal dimension map is then used to identify areas that are homogeneous from a fractal viewpoint. Indeed, the analysis of this map reveals the presence of two distinctive landscape units corresponding to the Mt. Vesuvio and Gran Cono. The comparison with the (simplified) geological map clearly shows the presence in these two areas of volcanic products of different age. The presented fractal dimension map analysis demonstrates the ability to get a figure about the evolution degree of the monitored volcanic edifice and can be profitably extended in the future to other volcanic systems with very distinctive characteristics, with the aim to perform land classification, such as the identification of areas characterized by similar soil use, slopes and exposures.

  19. Does chaos theory have major implications for philosophy of medicine?

    PubMed

    Holm, S

    2002-12-01

    In the literature it is sometimes claimed that chaos theory, non-linear dynamics, and the theory of fractals have major implications for philosophy of medicine, especially for our analysis of the concept of disease and the concept of causation. This paper gives a brief introduction to the concepts underlying chaos theory and non-linear dynamics. It is then shown that chaos theory has only very minimal implications for the analysis of the concept of disease and the concept of causation, mainly because the mathematics of chaotic processes entail that these processes are fully deterministic. The practical unpredictability of chaotic processes, caused by their extreme sensitivity to initial conditions, may raise practical problems in diagnosis, prognosis, and treatment, but it raises no major theoretical problems. The relation between chaos theory and the problem of free will is discussed, and it is shown that chaos theory may remove the problem of predictability of decisions, but does not solve the problem of free will. Chaos theory may thus be very important for our understanding of physiological processes, and specific disease entities, without having any major implications for philosophy of medicine.

  20. Fractal Interrelationships in Field and Seismic Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, T.H.; Dominic, Jovita; Halverson, Joel

    1997-10-01

    Size scaling interrelationships are evaluated in this study using a fractal model. Fractal models of several geologic variables are examined and include fracture patterns, reflection travel times, structural relief, drainage, topographic relief and active fault patterns. The fractal properties of structural relief inferred from seismic data and structural cross sections provide a quantitative means to characterize and compare complex structural patterns. Studies were conducted using seismic data from the Granny Creek oil field in the Appalachian Plateau. Previous studies of the field reveal that subtle detached structures present on the limb of a larger structure are associated with enhanced productionmore » from the field. Vertical increases of fractal dimension across the zone of detachment provide a measure of the extent to which detachment has occurred. The increases of fractal dimension are greatest in the more productive areas of the field. A result with equally important ramifications is that fracture systems do not appear to be intrinsically fractal as is often suggested in the literature. While examples of nearly identical patterns can be found at different scales supporting the idea of self-similarity, these examples are often taken from different areas and from different lithologies. Examination of fracture systems at different scales in the Valley and Ridge Province suggest that their distribution become increasingly sparse with scale reduction, and therefore are dissimilar or non-fractal. Box counting data in all cases failed to yield a fractal regime. The results obtained from this analysis bring into question the general applicability of reservoir simulations employing fractal models of fracture distribution. The same conclusions were obtained from the analysis of 1D fracture patterns such as those that might appear in a horizontal well.« less

  1. Renormalization of the unitary evolution equation for coined quantum walks

    NASA Astrophysics Data System (ADS)

    Boettcher, Stefan; Li, Shanshan; Portugal, Renato

    2017-03-01

    We consider discrete-time evolution equations in which the stochastic operator of a classical random walk is replaced by a unitary operator. Such a problem has gained much attention as a framework for coined quantum walks that are essential for attaining the Grover limit for quantum search algorithms in physically realizable, low-dimensional geometries. In particular, we analyze the exact real-space renormalization group (RG) procedure recently introduced to study the scaling of quantum walks on fractal networks. While this procedure, when implemented numerically, was able to provide some deep insights into the relation between classical and quantum walks, its analytic basis has remained obscure. Our discussion here is laying the groundwork for a rigorous implementation of the RG for this important class of transport and algorithmic problems, although some instances remain unresolved. Specifically, we find that the RG fixed-point analysis of the classical walk, which typically focuses on the dominant Jacobian eigenvalue {λ1} , with walk dimension dw\\text{RW}={{log}2}{λ1} , needs to be extended to include the subdominant eigenvalue {λ2} , such that the dimension of the quantum walk obtains dw\\text{QW}={{log}2}\\sqrt{{λ1}{λ2}} . With that extension, we obtain analytically previously conjectured results for dw\\text{QW} of Grover walks on all but one of the fractal networks that have been considered.

  2. Surface scaling analysis of textured MgO thin films fabricated by energetic particle self-assisted deposition

    NASA Astrophysics Data System (ADS)

    Feng, Feng; Zhang, Xiangsong; Qu, Timing; Liu, Binbin; Huang, Junlong; Li, Jun; Xiao, Shaozhu; Han, Zhenghe; Feng, Pingfa

    2018-04-01

    In the fabrication of a high-temperature superconducting coated conductor, the surface roughness and texture of buffer layers can significantly affect the epitaxially grown superconductor layer. A biaxially textured MgO buffer layer fabricated by ion beam assisted deposition (IBAD) is widely used in the coated conductor manufacture due to its low thickness requirement. In our previous study, a new method called energetic particle self-assisted deposition (EPSAD), which employed only a sputtering deposition apparatus without an ion source, was proposed for fabricating biaxially textured MgO films on non-textured substrates. In this study, our aim was to investigate the deposition mechanism of EPSAD-MgO thin films. The behavior of the surface roughness (evaluated by Rq) was studied using atomic force microscopy (AFM) measurements with three scan scales, while the in-plane and out-of-plane textures were measured using X-ray diffraction (XRD). It was found that the variations of surface roughness and textures along with the increase in the thickness of EPSAD-MgO samples were very similar to those of IBAD-MgO reported in the literature, revealing the similarity of their deposition mechanisms. Moreover, fractal geometry was utilized to conduct the scaling analysis of EPSAD-MgO film's surface. Different scaling behaviors were found in two scale ranges, and the indications of the fractal properties in different scale ranges were discussed.

  3. The fractal dimension of cell membrane correlates with its capacitance: A new fractal single-shell model

    PubMed Central

    Wang, Xujing; Becker, Frederick F.; Gascoyne, Peter R. C.

    2010-01-01

    The scale-invariant property of the cytoplasmic membrane of biological cells is examined by applying the Minkowski–Bouligand method to digitized scanning electron microscopy images of the cell surface. The membrane is found to exhibit fractal behavior, and the derived fractal dimension gives a good description of its morphological complexity. Furthermore, we found that this fractal dimension correlates well with the specific membrane dielectric capacitance derived from the electrorotation measurements. Based on these findings, we propose a new fractal single-shell model to describe the dielectrics of mammalian cells, and compare it with the conventional single-shell model (SSM). We found that while both models fit with experimental data well, the new model is able to eliminate the discrepancy between the measured dielectric property of cells and that predicted by the SSM. PMID:21198103

  4. Ulam method and fractal Weyl law for Perron-Frobenius operators

    NASA Astrophysics Data System (ADS)

    Ermann, L.; Shepelyansky, D. L.

    2010-06-01

    We use the Ulam method to study spectral properties of the Perron-Frobenius operators of dynamical maps in a chaotic regime. For maps with absorption we show numerically that the spectrum is characterized by the fractal Weyl law recently established for nonunitary operators describing poles of quantum chaotic scattering with the Weyl exponent ν = d-1, where d is the fractal dimension of corresponding strange set of trajectories nonescaping in future times. In contrast, for dissipative maps we numerically find the Weyl exponent ν = d/2 where d is the fractal dimension of strange attractor. The Weyl exponent can be also expressed via the relation ν = d0/2 where d0 is the fractal dimension of the invariant sets. We also discuss the properties of eigenvalues and eigenvectors of such operators characterized by the fractal Weyl law.

  5. Correlation of Fractal Dimension Values with Implant Insertion Torque and Resonance Frequency Values at Implant Recipient Sites.

    PubMed

    Suer, Berkay Tolga; Yaman, Zekai; Buyuksarac, Bora

    2016-01-01

    Fractal analysis is a mathematical method used to describe the internal architecture of complex structures such as trabecular bone. Fractal analysis of panoramic radiographs of implant recipient sites could help to predict the quality of the bone prior to implant placement. This study investigated the correlations between the fractal dimension values obtained from panoramic radiographs and the insertion torque and resonance frequency values of mandibular implants. Thirty patients who received a total of 55 implants of the same brand, diameter, and length in the mandibular premolar and molar regions were included in the study. The same surgical procedures were applied to each patient, and the insertion torque and resonance frequency values were recorded for each implant at the time of placement. The radiographic fractal dimensions of the alveolar bone in the implant recipient area were calculated from preoperative panoramic radiographs using a box-counting algorithm. The insertion torque and resonance frequency values were compared with the fractal dimension values using the Spearman test. All implants were successful, and none were lost during the follow-up period. Linear correlations were observed between the fractal dimension and resonance frequency, between the fractal dimension and insertion torque, and between resonance frequency and insertion torque. These results suggest that the noninvasive measurement of the fractal dimension from panoramic radiographs might help to predict the bone quality, and thus the primary stability of dental implants, before implant surgery.

  6. Fractal Patterns of Neural Activity Exist within the Suprachiasmatic Nucleus and Require Extrinsic Network Interactions

    PubMed Central

    Hu, Kun; Meijer, Johanna H.; Shea, Steven A.; vanderLeest, Henk Tjebbe; Pittman-Polletta, Benjamin; Houben, Thijs; van Oosterhout, Floor; Deboer, Tom; Scheer, Frank A. J. L.

    2012-01-01

    The mammalian central circadian pacemaker (the suprachiasmatic nucleus, SCN) contains thousands of neurons that are coupled through a complex network of interactions. In addition to the established role of the SCN in generating rhythms of ∼24 hours in many physiological functions, the SCN was recently shown to be necessary for normal self-similar/fractal organization of motor activity and heart rate over a wide range of time scales—from minutes to 24 hours. To test whether the neural network within the SCN is sufficient to generate such fractal patterns, we studied multi-unit neural activity of in vivo and in vitro SCNs in rodents. In vivo SCN-neural activity exhibited fractal patterns that are virtually identical in mice and rats and are similar to those in motor activity at time scales from minutes up to 10 hours. In addition, these patterns remained unchanged when the main afferent signal to the SCN, namely light, was removed. However, the fractal patterns of SCN-neural activity are not autonomous within the SCN as these patterns completely broke down in the isolated in vitro SCN despite persistence of circadian rhythmicity. Thus, SCN-neural activity is fractal in the intact organism and these fractal patterns require network interactions between the SCN and extra-SCN nodes. Such a fractal control network could underlie the fractal regulation observed in many physiological functions that involve the SCN, including motor control and heart rate regulation. PMID:23185285

  7. Want to Play Geometry?

    ERIC Educational Resources Information Center

    Kaufmann, Matthew L.; Bomer, Megan A.; Powell, Nancy Norem

    2009-01-01

    Students enter the geometry classroom with a strong concept of fairness and a sense of what it means to "play by the rules," yet many students have difficulty understanding the postulates, or rules, of geometry and their implications. Although they may never have articulated the properties of an axiomatic system, they have gained a practical…

  8. Modelling groundwater fractal flow with fractional differentiation via Mittag-Leffler law

    NASA Astrophysics Data System (ADS)

    Ahokposi, D. P.; Atangana, Abdon; Vermeulen, D. P.

    2017-04-01

    Modelling the flow of groundwater within a network of fractures is perhaps one of the most difficult exercises within the field of geohydrology. This physical problem has attracted the attention of several scientists across the globe. Already two different types of differentiations have been used to attempt modelling this problem including the classical and the fractional differentiation. In this paper, we employed the most recent concept of differentiation based on the non-local and non-singular kernel called the generalized Mittag-Leffler function, to reshape the model of groundwater fractal flow. We presented the existence of positive solution of the new model. Using the fixed-point approach, we established the uniqueness of the positive solution. We solve the new model with three different numerical schemes including implicit, explicit and Crank-Nicholson numerical methods. Experimental data collected from four constant discharge tests conducted in a typical fractured crystalline rock aquifer of the Northern Limb (Bushveld Complex) in the Limpopo Province (South Africa) are compared with the numerical solutions. It is worth noting that the four boreholes (BPAC1, BPAC2, BPAC3, and BPAC4) are located on Faults.

  9. Variable geometry Darrieus wind machine

    NASA Astrophysics Data System (ADS)

    Pytlinski, J. T.; Serrano, D.

    1983-08-01

    A variable geometry Darrieus wind machine is proposed. The lower attachment of the blades to the rotor can move freely up and down the axle allowing the blades of change shape during rotation. Experimental data for a 17 m. diameter Darrieus rotor and a theoretical model for multiple streamtube performance prediction were used to develop a computer simulation program for studying parameters that affect the machine's performance. This new variable geometry concept is described and interrelated with multiple streamtube theory through aerodynamic parameters. The computer simulation study shows that governor behavior of a Darrieus turbine can not be attained by a standard turbine operating within normally occurring rotational velocity limits. A second generation variable geometry Darrieus wind turbine which uses a telescopic blade is proposed as a potential improvement on the studied concept.

  10. Errors Analysis of Students in Mathematics Department to Learn Plane Geometry

    NASA Astrophysics Data System (ADS)

    Mirna, M.

    2018-04-01

    This article describes the results of qualitative descriptive research that reveal the locations, types and causes of student error in answering the problem of plane geometry at the problem-solving level. Answers from 59 students on three test items informed that students showed errors ranging from understanding the concepts and principles of geometry itself to the error in applying it to problem solving. Their type of error consists of concept errors, principle errors and operational errors. The results of reflection with four subjects reveal the causes of the error are: 1) student learning motivation is very low, 2) in high school learning experience, geometry has been seen as unimportant, 3) the students' experience using their reasoning in solving the problem is very less, and 4) students' reasoning ability is still very low.

  11. Comprehensive Fractal Description of Porosity of Coal of Different Ranks

    PubMed Central

    Ren, Jiangang; Zhang, Guocheng; Song, Zhimin; Liu, Gaofeng; Li, Bing

    2014-01-01

    We selected, as the objects of our research, lignite from the Beizao Mine, gas coal from the Caiyuan Mine, coking coal from the Xiqu Mine, and anthracite from the Guhanshan Mine. We used the mercury intrusion method and the low-temperature liquid nitrogen adsorption method to analyze the structure and shape of the coal pores and calculated the fractal dimensions of different aperture segments in the coal. The experimental results show that the fractal dimension of the aperture segment of lignite, gas coal, and coking coal with an aperture of greater than or equal to 10 nm, as well as the fractal dimension of the aperture segment of anthracite with an aperture of greater than or equal to 100 nm, can be calculated using the mercury intrusion method; the fractal dimension of the coal pore, with an aperture range between 2.03 nm and 361.14 nm, can be calculated using the liquid nitrogen adsorption method, of which the fractal dimensions bounded by apertures of 10 nm and 100 nm are different. Based on these findings, we defined and calculated the comprehensive fractal dimensions of the coal pores and achieved the unity of fractal dimensions for full apertures of coal pores, thereby facilitating, overall characterization for the heterogeneity of the coal pore structure. PMID:24955407

  12. Fractal Characteristics of Soil Retention Curve and Particle Size Distribution with Different Vegetation Types in Mountain Areas of Northern China.

    PubMed

    Niu, Xiang; Gao, Peng; Wang, Bing; Liu, Yu

    2015-12-03

    Based on fractal theory, the fractal characteristics of soil particle size distribution (PSD) and soil water retention curve (WRC) under the five vegetation types were studied in the mountainous land of Northern China. Results showed that: (1) the fractal parameters of soil PSD and soil WRC varied greatly under each different vegetation type, with Quercus acutissima Carr. and Robina pseudoacacia Linn. mixed plantation (QRM) > Pinus thunbergii Parl. and Pistacia chinensis Bunge mixed plantation (PPM) > Pinus thunbergii Parl. (PTP) > Juglans rigia Linn. (JRL) > abandoned grassland (ABG); (2) the soil fractal dimensions of woodlands (QRM, PPM, PTP and JRL) were significantly higher than that in ABG, and mixed forests (QRM and PPM) were higher than that in pure forests (PTP and JRL); (3) the fractal dimension of soil was positively correlated with the silt and clay content but negatively correlated with the sand content; and (4) the fractal dimension of soil PSD was positively correlated with the soil WRC. These indicated that the fractal parameters of soil PSD and soil WRC could act as quantitative indices to reflect the physical properties of the soil, and could be used to describe the influences of the Return Farmland to Forests Projects on soil structure.

  13. Effects of Anisotropy on Scalar Field Ghost Dark Energy and the Non-Equilibrium Thermodynamics in Fractal Cosmology

    NASA Astrophysics Data System (ADS)

    Najafi, A.; Hossienkhani, H.

    2017-10-01

    Since the fractal cosmology has been created in early universe, therefore their models were mostly isotropic. The majority of previous studies had been based on FRW universe, while in the early universe, the best model for describing fractal cosmology is actually the anisotropic universe. Therefore in this work, by assuming the anisotropic universe, the cosmological implications of ghost and generalized ghost dark energy models with dark matter in fractal cosmology has been discussed. Moreover, the different kinds of dark energy models such as quintessence and tachyon field, with the generalized ghost dark energy in fractal universe has been investigated. In addition, we have reconstructed the Hubble parameter, H, the energy density, ρ, the deceleration parameter, q, the equations of state parameter, {ω }{{}D}, for both ghost and generalized ghost dark energy models. This correspondence allows us to reconstruct the potential and the dynamics of a fractal canonical scalar field according to the evolution of generalized ghost dark energy density. Eventually, thermodynamics of the cosmological apparent horizon in fractal cosmology was investigated and the validity of the Generalized second law of thermodynamics (GSLT) have been examined in an anisotropic universe. The results show the influence of the anisotropy on the GSLT of thermodynamics in a fractal cosmology.

  14. An Evaluation of Fractal Surface Measurement Methods for Characterizing Landscape Complexity from Remote-Sensing Imagery

    NASA Technical Reports Server (NTRS)

    Lam, Nina Siu-Ngan; Qiu, Hong-Lie; Quattrochi, Dale A.; Emerson, Charles W.; Arnold, James E. (Technical Monitor)

    2001-01-01

    The rapid increase in digital data volumes from new and existing sensors necessitates the need for efficient analytical tools for extracting information. We developed an integrated software package called ICAMS (Image Characterization and Modeling System) to provide specialized spatial analytical functions for interpreting remote sensing data. This paper evaluates the three fractal dimension measurement methods: isarithm, variogram, and triangular prism, along with the spatial autocorrelation measurement methods Moran's I and Geary's C, that have been implemented in ICAMS. A modified triangular prism method was proposed and implemented. Results from analyzing 25 simulated surfaces having known fractal dimensions show that both the isarithm and triangular prism methods can accurately measure a range of fractal surfaces. The triangular prism method is most accurate at estimating the fractal dimension of higher spatial complexity, but it is sensitive to contrast stretching. The variogram method is a comparatively poor estimator for all of the surfaces, particularly those with higher fractal dimensions. Similar to the fractal techniques, the spatial autocorrelation techniques are found to be useful to measure complex images but not images with low dimensionality. These fractal measurement methods can be applied directly to unclassified images and could serve as a tool for change detection and data mining.

  15. Fractal Characteristics of Soil Retention Curve and Particle Size Distribution with Different Vegetation Types in Mountain Areas of Northern China

    PubMed Central

    Niu, Xiang; Gao, Peng; Wang, Bing; Liu, Yu

    2015-01-01

    Based on fractal theory, the fractal characteristics of soil particle size distribution (PSD) and soil water retention curve (WRC) under the five vegetation types were studied in the mountainous land of Northern China. Results showed that: (1) the fractal parameters of soil PSD and soil WRC varied greatly under each different vegetation type, with Quercus acutissima Carr. and Robina pseudoacacia Linn. mixed plantation (QRM) > Pinus thunbergii Parl. and Pistacia chinensis Bunge mixed plantation (PPM) > Pinus thunbergii Parl. (PTP) > Juglans rigia Linn. (JRL) > abandoned grassland (ABG); (2) the soil fractal dimensions of woodlands (QRM, PPM, PTP and JRL) were significantly higher than that in ABG, and mixed forests (QRM and PPM) were higher than that in pure forests (PTP and JRL); (3) the fractal dimension of soil was positively correlated with the silt and clay content but negatively correlated with the sand content; and (4) the fractal dimension of soil PSD was positively correlated with the soil WRC. These indicated that the fractal parameters of soil PSD and soil WRC could act as quantitative indices to reflect the physical properties of the soil, and could be used to describe the influences of the Return Farmland to Forests Projects on soil structure. PMID:26633458

  16. Effect of fractal silver electrodes on charge collection and light distribution in semiconducting organic polymer films

    DOE PAGES

    Chamousis, Rachel L.; Chang, Lilian; Watterson, William J.; ...

    2014-08-21

    Living organisms use fractal structures to optimize material and energy transport across regions of differing size scales. Here we test the effect of fractal silver electrodes on light distribution and charge collection in organic semiconducting polymer films made of P3HT and PCBM. The semiconducting polymers were deposited onto electrochemically grown fractal silver structures (5000 nm × 500 nm; fractal dimension of 1.71) with PEDOT:PSS as hole-selective interlayer. The fractal silver electrodes appear black due to increased horizontal light scattering, which is shown to improve light absorption in the polymer. According to surface photovoltage spectroscopy, fractal silver electrodes outperform the flatmore » electrodes when the BHJ film thickness is large (>400 nm, 0.4 V photovoltage). Photocurrents of up to 200 microamperes cm -2 are generated from the bulk heterojunction (BHJ) photoelectrodes under 435 nm LED (10–20 mW cm -2) illumination in acetonitrile solution containing 0.005 M ferrocenium hexafluorophosphate as the electron acceptor. In conclusion, the low IPCE values (0.3–0.7%) are due to slow electron transfer to ferrocenium ion and due to shunting along the large metal–polymer interface. Overall, this work provides an initial assessment of the potential of fractal electrodes for organic photovoltaic cells.« less

  17. Power Scaling of the Mainland Shoreline of the Atlantic Coast of the United States

    NASA Astrophysics Data System (ADS)

    Vasko, E.; Barton, C. C.; Geise, G. R.; Rizki, M. M.

    2017-12-01

    The fractal dimension of the mainland shoreline of the Atlantic coast of the United Stated from Maine to Homestead, FL has been measured in 1000 km increments using the box-counting method. The shoreline analyzed is the NOAA Medium Resolution Shoreline (https://shoreline.noaa.gov/data/datasheets/medres.html). The shoreline was reconstituted into sequentially numbered X-Y coordinate points in UTM Zone 18N which are spaced 50 meters apart, as measured continuously along the shoreline. We created a MATLAB computer code to measure the fractal dimension by box counting while "walking" along the shoreline. The range of box sizes is 0.7 to 450 km. The fractal dimension ranges from 1.0 to1.5 along the mainland shoreline of the Atlantic coast. The fractal dimension is compared with beach particle sizes (bedrock outcrop, cobbles, pebbles, sand, clay), tidal range, rate of sea level rise, rate and direction of vertical crustal movement, and wave energy, looking for correlation with the measured fractal dimensions. The results show a correlation between high fractal dimensions (1.3 - 1.4) and tectonically emergent coasts, and low fractal dimensions (1.0 - 1.2) along submergent and stable coastal regions. Fractal dimension averages 1.3 along shorelines with shoreline protection structures such as seawalls, jetties, and groins.

  18. Turbulence Enhancement by Fractal Square Grids: Effects of the Number of Fractal Scales

    NASA Astrophysics Data System (ADS)

    Omilion, Alexis; Ibrahim, Mounir; Zhang, Wei

    2017-11-01

    Fractal square grids offer a unique solution for passive flow control as they can produce wakes with a distinct turbulence intensity peak and a prolonged turbulence decay region at the expense of only minimal pressure drop. While previous studies have solidified this characteristic of fractal square grids, how the number of scales (or fractal iterations N) affect turbulence production and decay of the induced wake is still not well understood. The focus of this research is to determine the relationship between the fractal iteration N and the turbulence produced in the wake flow using well-controlled water-tunnel experiments. Particle Image Velocimetry (PIV) is used to measure the instantaneous velocity fields downstream of four different fractal grids with increasing number of scales (N = 1, 2, 3, and 4) and a conventional single-scale grid. By comparing the turbulent scales and statistics of the wake, we are able to determine how each iteration affects the peak turbulence intensity and the production/decay of turbulence from the grid. In light of the ability of these fractal grids to increase turbulence intensity with low pressure drop, this work can potentially benefit a wide variety of applications where energy efficient mixing or convective heat transfer is a key process.

  19. Scattering from fractals

    NASA Astrophysics Data System (ADS)

    Hurd, Alan J.

    The realization that structures in Nature often can be described by Mandelbrot's fractals has led to a revolution in many areas of physics. The interaction of waves with fractal systems has, understandably, become intensely studied since scattering is the method of choice to probe delicate fractal structures such as chainlike particle aggregates. Not all of these waves are electromagnetic. Neutron scattering, for example, is an important complementary tool to structural studies by X-ray and light scattering. Since the phenomenology of small-angle neutron scattering (SANS), as it is applied to fractal systems, is identical to that of small-angle X-ray scattering (SAXS), it falls within the scope of this paper.

  20. Thermodynamics of photons on fractals.

    PubMed

    Akkermans, Eric; Dunne, Gerald V; Teplyaev, Alexander

    2010-12-03

    A thermodynamical treatment of a massless scalar field (a photon) confined to a fractal spatial manifold leads to an equation of state relating pressure to internal energy, PV(s) = U/d(s), where d(s) is the spectral dimension and V(s) defines the "spectral volume." For regular manifolds, V(s) coincides with the usual geometric spatial volume, but on a fractal this is not necessarily the case. This is further evidence that on a fractal, momentum space can have a different dimension than position space. Our analysis also provides a natural definition of the vacuum (Casimir) energy of a fractal. We suggest ways that these unusual properties might be probed experimentally.

  1. Chaos, Fractals, and Polynomials.

    ERIC Educational Resources Information Center

    Tylee, J. Louis; Tylee, Thomas B.

    1996-01-01

    Discusses chaos theory; linear algebraic equations and the numerical solution of polynomials, including the use of the Newton-Raphson technique to find polynomial roots; fractals; search region and coordinate systems; convergence; and generating color fractals on a computer. (LRW)

  2. A simple method for estimating the size of nuclei on fractal surfaces

    NASA Astrophysics Data System (ADS)

    Zeng, Qiang

    2017-10-01

    Determining the size of nuclei on complex surfaces remains a big challenge in aspects of biological, material and chemical engineering. Here the author reported a simple method to estimate the size of the nuclei in contact with complex (fractal) surfaces. The established approach was based on the assumptions of contact area proportionality for determining nucleation density and the scaling congruence between nuclei and surfaces for identifying contact regimes. It showed three different regimes governing the equations for estimating the nucleation site density. Nuclei in the size large enough could eliminate the effect of fractal structure. Nuclei in the size small enough could lead to the independence of nucleation site density on fractal parameters. Only when nuclei match the fractal scales, the nucleation site density is associated with the fractal parameters and the size of the nuclei in a coupling pattern. The method was validated by the experimental data reported in the literature. The method may provide an effective way to estimate the size of nuclei on fractal surfaces, through which a number of promising applications in relative fields can be envisioned.

  3. Diagnostics of multi-fractality of magnetized plasma inside coronal holes and quiet sun areas

    NASA Astrophysics Data System (ADS)

    Abramenko, Valentyna

    Turbulent and multi-fractal properties of magnetized plasma in solar Coronal Holes (CHs) and Quiet Sun (QS) photosphere were explored using high-resolution magnetograms measured with the New Solar Telescope (NST) at the Big Bear Solar Observatory (BBSO, USA), Hinode/SOT and SDO/HMI instruments. Distribution functions of size and magnetic flux measured for small-scale magnetic elements follow the log-normal law, which implies multi-fractal organization of the magnetic field and the absence of a unique power law for all scales. The magnetograms show multi-fractality in CHs on scales 400 - 10000 km, which becomes better pronounced as the spatial resolution of data improves. Photospheric granulation measured with NST exhibits multi-fractal properties on very small scales of 50 - 600 km. While multi-fractal nature of solar active regions is well known, newly established multi-fractality of weakest magnetic fields on the solar surface, i.e., in CHs and QS, leads us to a conclusion that the entire variety of solar magnetic fields is generated by a unique nonlinear dynamical process.

  4. Power dissipation in fractal AC circuits

    NASA Astrophysics Data System (ADS)

    Chen, Joe P.; Rogers, Luke G.; Anderson, Loren; Andrews, Ulysses; Brzoska, Antoni; Coffey, Aubrey; Davis, Hannah; Fisher, Lee; Hansalik, Madeline; Loew, Stephen; Teplyaev, Alexander

    2017-08-01

    We extend Feynman’s analysis of an infinite ladder circuit to fractal circuits, providing examples in which fractal circuits constructed with purely imaginary impedances can have characteristic impedances with positive real part. Using (weak) self-similarity of our fractal structures, we provide algorithms for studying the equilibrium distribution of energy on these circuits. This extends the analysis of self-similar resistance networks introduced by Fukushima, Kigami, Kusuoka, and more recently studied by Strichartz et al.

  5. Fractal astronomy.

    NASA Astrophysics Data System (ADS)

    Beech, M.

    1989-02-01

    The author discusses some of the more recent research on fractal astronomy and results presented in several astronomical studies. First, the large-scale structure of the universe is considered, while in another section one drops in scale to examine some of the smallest bodies in our solar system; the comets and meteoroids. The final section presents some thoughts on what influence the fractal ideology might have on astronomy, focusing particularly on the question recently raised by Kadanoff, "Fractals: where's the physics?"

  6. Using Peano Curves to Construct Laplacians on Fractals

    NASA Astrophysics Data System (ADS)

    Molitor, Denali; Ott, Nadia; Strichartz, Robert

    2015-12-01

    We describe a new method to construct Laplacians on fractals using a Peano curve from the circle onto the fractal, extending an idea that has been used in the case of certain Julia sets. The Peano curve allows us to visualize eigenfunctions of the Laplacian by graphing the pullback to the circle. We study in detail three fractals: the pentagasket, the octagasket and the magic carpet. We also use the method for two nonfractal self-similar sets, the torus and the equilateral triangle, obtaining appealing new visualizations of eigenfunctions on the triangle. In contrast to the many familiar pictures of approximations to standard Peano curves, that do no show self-intersections, our descriptions of approximations to the Peano curves have self-intersections that play a vital role in constructing graph approximations to the fractal with explicit graph Laplacians that give the fractal Laplacian in the limit.

  7. Multi-Scale Fractal Analysis of Image Texture and Pattern

    NASA Technical Reports Server (NTRS)

    Emerson, Charles W.; Lam, Nina Siu-Ngan; Quattrochi, Dale A.

    1999-01-01

    Analyses of the fractal dimension of Normalized Difference Vegetation Index (NDVI) images of homogeneous land covers near Huntsville, Alabama revealed that the fractal dimension of an image of an agricultural land cover indicates greater complexity as pixel size increases, a forested land cover gradually grows smoother, and an urban image remains roughly self-similar over the range of pixel sizes analyzed (10 to 80 meters). A similar analysis of Landsat Thematic Mapper images of the East Humboldt Range in Nevada taken four months apart show a more complex relation between pixel size and fractal dimension. The major visible difference between the spring and late summer NDVI images is the absence of high elevation snow cover in the summer image. This change significantly alters the relation between fractal dimension and pixel size. The slope of the fractal dimension-resolution relation provides indications of how image classification or feature identification will be affected by changes in sensor spatial resolution.

  8. Multi-Scale Fractal Analysis of Image Texture and Pattern

    NASA Technical Reports Server (NTRS)

    Emerson, Charles W.; Lam, Nina Siu-Ngan; Quattrochi, Dale A.

    1999-01-01

    Analyses of the fractal dimension of Normalized Difference Vegetation Index (NDVI) images of homogeneous land covers near Huntsville, Alabama revealed that the fractal dimension of an image of an agricultural land cover indicates greater complexity as pixel size increases, a forested land cover gradually grows smoother, and an urban image remains roughly self-similar over the range of pixel sizes analyzed (10 to 80 meters). A similar analysis of Landsat Thematic Mapper images of the East Humboldt Range in Nevada taken four months apart show a more complex relation between pixel size and fractal dimension. The major visible difference between the spring and late summer NDVI images of the absence of high elevation snow cover in the summer image. This change significantly alters the relation between fractal dimension and pixel size. The slope of the fractal dimensional-resolution relation provides indications of how image classification or feature identification will be affected by changes in sensor spatial resolution.

  9. Fractal Analysis of Rock Joint Profiles

    NASA Astrophysics Data System (ADS)

    Audy, Ondřej; Ficker, Tomáš

    2017-10-01

    Surface reliefs of rock joints are analyzed in geotechnics when shear strength of rocky slopes is estimated. The rock joint profiles actually are self-affine fractal curves and computations of their fractal dimensions require special methods. Many papers devoted to the fractal properties of these profiles were published in the past but only a few of those papers employed a convenient computational method that would have guaranteed a sound value of that dimension. As a consequence, anomalously low dimensions were presented. This contribution deals with two computational modifications that lead to sound fractal dimensions of the self-affine rock joint profiles. These are the modified box-counting method and the modified yard-stick method sometimes called the compass method. Both these methods are frequently applied to self-similar fractal curves but the self-affine profile curves due to their self-affine nature require modified computational procedures implemented in computer programs.

  10. Focusing behavior of the fractal vector optical fields designed by fractal lattice growth model.

    PubMed

    Gao, Xu-Zhen; Pan, Yue; Zhao, Meng-Dan; Zhang, Guan-Lin; Zhang, Yu; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian

    2018-01-22

    We introduce a general fractal lattice growth model, significantly expanding the application scope of the fractal in the realm of optics. This model can be applied to construct various kinds of fractal "lattices" and then to achieve the design of a great diversity of fractal vector optical fields (F-VOFs) combinating with various "bases". We also experimentally generate the F-VOFs and explore their universal focusing behaviors. Multiple focal spots can be flexibly enginnered, and the optical tweezers experiment validates the simulated tight focusing fields, which means that this model allows the diversity of the focal patterns to flexibly trap and manipulate micrometer-sized particles. Furthermore, the recovery performance of the F-VOFs is also studied when the input fields and spatial frequency spectrum are obstructed, and the results confirm the robustness of the F-VOFs in both focusing and imaging processes, which is very useful in information transmission.

  11. Noninvasive fractal biomarker of clock neurotransmitter disturbance in humans with dementia

    PubMed Central

    Hu, Kun; Harper, David G.; Shea, Steven A.; Stopa, Edward G.; Scheer, Frank A. J. L.

    2013-01-01

    Human motor activity has a robust, intrinsic fractal structure with similar patterns from minutes to hours. The fractal activity patterns appear to be physiologically important because the patterns persist under different environmental conditions but are significantly altered/reduced with aging and Alzheimer's disease (AD). Here, we report that dementia patients, known to have disrupted circadian rhythmicity, also have disrupted fractal activity patterns and that the disruption is more pronounced in patients with more amyloid plaques (a marker of AD severity). Moreover, the degree of fractal activity disruption is strongly associated with vasopressinergic and neurotensinergic neurons (two major circadian neurotransmitters) in postmortem suprachiasmatic nucleus (SCN), and can better predict changes of the two neurotransmitters than traditional circadian measures. These findings suggest that the SCN impacts human activity regulation at multiple time scales and that disrupted fractal activity may serve as a non-invasive biomarker of SCN neurodegeneration in dementia. PMID:23863985

  12. Fractals for Geoengineering

    NASA Astrophysics Data System (ADS)

    Oleshko, Klaudia; de Jesús Correa López, María; Romero, Alejandro; Ramírez, Victor; Pérez, Olga

    2016-04-01

    The effectiveness of fractal toolbox to capture the scaling or fractal probability distribution, and simply fractal statistics of main hydrocarbon reservoir attributes, was highlighted by Mandelbrot (1995) and confirmed by several researchers (Zhao et al., 2015). Notwithstanding, after more than twenty years, it's still common the opinion that fractals are not useful for the petroleum engineers and especially for Geoengineering (Corbett, 2012). In spite of this negative background, we have successfully applied the fractal and multifractal techniques to our project entitled "Petroleum Reservoir as a Fractal Reactor" (2013 up to now). The distinguishable feature of Fractal Reservoir is the irregular shapes and rough pore/solid distributions (Siler, 2007), observed across a broad range of scales (from SEM to seismic). At the beginning, we have accomplished the detailed analysis of Nelson and Kibler (2003) Catalog of Porosity and Permeability, created for the core plugs of siliciclastic rocks (around ten thousand data were compared). We enriched this Catalog by more than two thousand data extracted from the last ten years publications on PoroPerm (Corbett, 2012) in carbonates deposits, as well as by our own data from one of the PEMEX, Mexico, oil fields. The strong power law scaling behavior was documented for the major part of these data from the geological deposits of contrasting genesis. Based on these results and taking into account the basic principles and models of the Physics of Fractals, introduced by Per Back and Kan Chen (1989), we have developed new software (Muukíl Kaab), useful to process the multiscale geological and geophysical information and to integrate the static geological and petrophysical reservoir models to dynamic ones. The new type of fractal numerical model with dynamical power law relations among the shapes and sizes of mesh' cells was designed and calibrated in the studied area. The statistically sound power law relations were established for the reservoir' hydraulic units distribution in space and time, as well as for the corresponding well testing data. References: 1. Mandelbrot, B., 1995. Foreword to Fractals in Petroleum Geology and Earth Processes, Edited by: Christopher C. Barton and Paul R. La Pointe, Plenum Press, New York: vii-xii. 2. Jin-Zhou Zhao, Cui-Cui Sheng, Yong_Ming Li, and Shun-Chu Li, 2015. A Mathematical Model for the Analysis of the Pressure Transient Response of Fluid Flow in Fractal Reservoir. J. of Chemistry, ID 596597, 8p. 3. Siler, T. , 2007. Fractal Reactor. International Conference Series on Emerging Nuclear Energy Systems 4. Corbett, P. W. M., 2012. The Role of Geoengineering in field development. INTECH, Chapter 8: 181- 198. 5. Nelson, P.H. and J. Kibler, 2003. A Catalog of Porosity and Permeability from core plugs in siliciclastic rocks. U.S. Geological Survey. 6. Per Bak and Kan Chen, 1989. The Physics of Fractals. Physica D 38: 5-12.

  13. Fractal fluctuations in spatiotemporal variables when walking on a self-paced treadmill.

    PubMed

    Choi, Jin-Seung; Kang, Dong-Won; Seo, Jeong-Woo; Tack, Gye-Rae

    2017-12-08

    This study investigated the fractal dynamic properties of stride time (ST), stride length (SL) and stride speed (SS) during walking on a self-paced treadmill (STM) in which the belt speed is automatically controlled by the walking speed. Twelve healthy young subjects participated in the study. The subjects walked at their preferred walking speed under four conditions: STM, STM with a metronome (STM+met), fixed-speed (conventional) treadmill (FTM), and FTM with a metronome (FTM+met). To compare the fractal dynamics between conditions, the mean, variability, and fractal dynamics of ST, SL, and SS were compared. Moreover, the relationship among the variables was examined under each walking condition using three types of surrogates. The mean values of all variables did not differ between the two treadmills, and the variability of all variables was generally larger for STM than for FTM. The use of a metronome resulted in a decrease in variability in ST and SS for all conditions. The fractal dynamic characteristics of SS were maintained with STM, in contrast to FTM, and only the fractal dynamic characteristics of ST disappeared when using a metronome. In addition, the fractal dynamic patterns of the cross-correlated surrogate results were identical to those of all variables for the two treadmills. In terms of the fractal dynamic properties, STM walking was generally closer to overground walking than FTM walking. Although further research is needed, the present results will be useful in research on gait fractal dynamics and rehabilitation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Performance assessment of methods for estimation of fractal dimension from scanning electron microscope images.

    PubMed

    Risović, Dubravko; Pavlović, Zivko

    2013-01-01

    Processing of gray scale images in order to determine the corresponding fractal dimension is very important due to widespread use of imaging technologies and application of fractal analysis in many areas of science, technology, and medicine. To this end, many methods for estimation of fractal dimension from gray scale images have been developed and routinely used. Unfortunately different methods (dimension estimators) often yield significantly different results in a manner that makes interpretation difficult. Here, we report results of comparative assessment of performance of several most frequently used algorithms/methods for estimation of fractal dimension. To that purpose, we have used scanning electron microscope images of aluminum oxide surfaces with different fractal dimensions. The performance of algorithms/methods was evaluated using the statistical Z-score approach. The differences between performances of six various methods are discussed and further compared with results obtained by electrochemical impedance spectroscopy on the same samples. The analysis of results shows that the performance of investigated algorithms varies considerably and that systematically erroneous fractal dimensions could be estimated using certain methods. The differential cube counting, triangulation, and box counting algorithms showed satisfactory performance in the whole investigated range of fractal dimensions. Difference statistic is proved to be less reliable generating 4% of unsatisfactory results. The performances of the Power spectrum, Partitioning and EIS were unsatisfactory in 29%, 38%, and 75% of estimations, respectively. The results of this study should be useful and provide guidelines to researchers using/attempting fractal analysis of images obtained by scanning microscopy or atomic force microscopy. © Wiley Periodicals, Inc.

  15. Proliferative diabetic retinopathy characterization based on fractal features: Evaluation on a publicly available dataset.

    PubMed

    Orlando, José Ignacio; van Keer, Karel; Barbosa Breda, João; Manterola, Hugo Luis; Blaschko, Matthew B; Clausse, Alejandro

    2017-12-01

    Diabetic retinopathy (DR) is one of the most widespread causes of preventable blindness in the world. The most dangerous stage of this condition is proliferative DR (PDR), in which the risk of vision loss is high and treatments are less effective. Fractal features of the retinal vasculature have been previously explored as potential biomarkers of DR, yet the current literature is inconclusive with respect to their correlation with PDR. In this study, we experimentally assess their discrimination ability to recognize PDR cases. A statistical analysis of the viability of using three reference fractal characterization schemes - namely box, information, and correlation dimensions - to identify patients with PDR is presented. These descriptors are also evaluated as input features for training ℓ1 and ℓ2 regularized logistic regression classifiers, to estimate their performance. Our results on MESSIDOR, a public dataset of 1200 fundus photographs, indicate that patients with PDR are more likely to exhibit a higher fractal dimension than healthy subjects or patients with mild levels of DR (P≤1.3×10-2). Moreover, a supervised classifier trained with both fractal measurements and red lesion-based features reports an area under the ROC curve of 0.93 for PDR screening and 0.96 for detecting patients with optic disc neovascularizations. The fractal dimension of the vasculature increases with the level of DR. Furthermore, PDR screening using multiscale fractal measurements is more feasible than using their derived fractal dimensions. Code and further resources are provided at https://github.com/ignaciorlando/fundus-fractal-analysis. © 2017 American Association of Physicists in Medicine.

  16. Congruence of Meaning.

    ERIC Educational Resources Information Center

    Suppes, Patrick

    By looking at the history of geometry and the concept of congruence in geometry we can get a new perspective on how to think about the closeness in meaning of two sentences. As in the analysis of congruence in geometry, a definite and concrete set of proposals about congruence of meaning depends essentially on the kind of theoretical framework…

  17. A Case Example of Insect Gymnastics: How Is Non-Euclidean Geometry Learned?

    ERIC Educational Resources Information Center

    Junius, Premalatha

    2008-01-01

    The focus of the article is on the complex cognitive process involved in learning the concept of "straightness" in Non-Euclidean geometry. Learning new material is viewed through a conflict resolution framework, as a student questions familiar assumptions understood in Euclidean geometry. A case study reveals how mathematization of the straight…

  18. Geometry in the Adult Education Classroom.

    ERIC Educational Resources Information Center

    Markus, Nancy

    2001-01-01

    For many adults, geometry is a mathematics topic that immediately makes sense to them and gives them confidence in their ability to learn, while other adult learners identify geometry with failure. Most adults, however, do recognize the need for measurement, and many have a basic understanding of measurement concepts, although they may need to…

  19. New Metrics from a Fractional Gravitational Field

    NASA Astrophysics Data System (ADS)

    El-Nabulsi, Rami Ahmad

    2017-09-01

    Agop et al. proved in Commun. Theor. Phys. (2008) that, a Reissner-Nordstrom type metric is obtained, if gauge gravitational field in a fractal spacetime is constructed by means of concepts of scale relativity. We prove in this short communication that similar result is obtained if gravity in D-spacetime dimensions is fractionalized by means of the Glaeske-Kilbas-Saigo fractional. Besides, non-singular gravitational fields are obtained without using extra-dimensions. We present few examples to show that these gravitational fields hold a number of motivating features in spacetime physics.

  20. Surface areas of fractally rough particles studied by scattering

    NASA Astrophysics Data System (ADS)

    Hurd, Alan J.; Schaefer, Dale W.; Smith, Douglas M.; Ross, Steven B.; Le Méhauté, Alain; Spooner, Steven

    1989-05-01

    The small-angle scattering from fractally rough surfaces has the potential to give information on the surface area at a given resolution. By use of quantitative neutron and x-ray scattering, a direct comparison of surface areas of fractally rough powders was made between scattering and adsorption techniques. This study supports a recently proposed correction to the theory for scattering from fractal surfaces. In addition, the scattering data provide an independent calibration of molecular adsorbate areas.

  1. Two-Dimensional Animal-Like Fractals in Thin Films

    NASA Astrophysics Data System (ADS)

    Gao, Hong-jun; Xue, Zeng-quan; Wu, Quan-de; Pang, Shi-jin

    1996-02-01

    We present a few unique animal-like fractal patterns in ionized-cluster-beam deposited fullerene-tetracyanoquinodimethane thin films. The fractal patterns consisting of animal-like aggregates such as "fishes" and "quasi-seahorses" have been characterized by transmission electron microscopy. The results indicate that the small aggregates of the animal-like body are composed of many single crystals whose crystalline directions are generally different. The formation of the fractal patterns can be attributed to the cluster-diffusion-limited aggregation.

  2. Fractal dimension of turbulent black holes

    NASA Astrophysics Data System (ADS)

    Westernacher-Schneider, John Ryan

    2017-11-01

    We present measurements of the fractal dimension of a turbulent asymptotically anti-de Sitter black brane reconstructed from simulated boundary fluid data at the perfect fluid order using the fluid-gravity duality. We argue that the boundary fluid energy spectrum scaling as E (k )˜k-2 is a more natural setting for the fluid-gravity duality than the Kraichnan-Kolmogorov scaling of E (k )˜k-5 /3, but we obtain fractal dimensions D for spatial sections of the horizon H ∩Σ in both cases: D =2.584 (1 ) and D =2.645 (4 ), respectively. These results are consistent with the upper bound of D =3 , thereby resolving the tension with the recent claim in Adams et al. [Phys. Rev. Lett. 112, 151602 (2014), 10.1103/PhysRevLett.112.151602] that D =3 +1 /3 . We offer a critical examination of the calculation which led to their result, and show that their proposed definition of the fractal dimension performs poorly as a fractal dimension estimator on one-dimensional curves with known fractal dimension. Finally, we describe how to define and in principle calculate the fractal dimension of spatial sections of the horizon H ∩Σ in a covariant manner, and we speculate on assigning a "bootstrapped" value of fractal dimension to the entire horizon H when it is in a statistically quasisteady turbulent state.

  3. Improved visibility graph fractality with application for the diagnosis of Autism Spectrum Disorder

    NASA Astrophysics Data System (ADS)

    Ahmadlou, Mehran; Adeli, Hojjat; Adeli, Amir

    2012-10-01

    Recently, the visibility graph (VG) algorithm was proposed for mapping a time series to a graph to study complexity and fractality of the time series through investigation of the complexity of its graph. The visibility graph algorithm converts a fractal time series to a scale-free graph. VG has been used for the investigation of fractality in the dynamic behavior of both artificial and natural complex systems. However, robustness and performance of the power of scale-freeness of VG (PSVG) as an effective method for measuring fractality has not been investigated. Since noise is unavoidable in real life time series, the robustness of a fractality measure is of paramount importance. To improve the accuracy and robustness of PSVG to noise for measurement of fractality of time series in biological time-series, an improved PSVG is presented in this paper. The proposed method is evaluated using two examples: a synthetic benchmark time series and a complicated real life Electroencephalograms (EEG)-based diagnostic problem, that is distinguishing autistic children from non-autistic children. It is shown that the proposed improved PSVG is less sensitive to noise and therefore more robust compared with PSVG. Further, it is shown that using improved PSVG in the wavelet-chaos neural network model of Adeli and c-workers in place of the Katz fractality dimension results in a more accurate diagnosis of autism, a complicated neurological and psychiatric disorder.

  4. Effect of the Van Hiele Model in Geometric Concepts Acquisition: The Attitudes towards Geometry and Learning Transfer Effect of the First Three Grades Students in Jordan

    ERIC Educational Resources Information Center

    Al-ebous, Tahani

    2016-01-01

    This study aimed to investigate the effect of the van Hiele model in Geometric Concepts Acquisition, and the attitudes towards Geometry and learning transfer of the first three grades students in Jordan. Participants of the study consisted of 60 students from the third grade primary school students from the First Directorate, Amman, in the…

  5. Synthesis of the advances in and application of fractal characteristic of traffic flow.

    DOT National Transportation Integrated Search

    2013-07-01

    Fractals are irregular geometric objects that exhibit finite details at all scales, and once magnified, their basic structures remain the same regardless of the scale of magnification. Fractal theory has been successfully applied in different fields ...

  6. Synthesis of the advance in and application of fractal characteristics of traffic flow.

    DOT National Transportation Integrated Search

    2013-07-01

    Fractals are irregular geometric objects that exhibit finite details at all scales, and once magnified, their basic structures remain the same regardless of the scale of magnification. Fractal theory has been successfully applied in different fields ...

  7. A Fractal Permeability Model for Shale Oil Reservoir

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Dong, Mingzhe; Li, Yajun

    2018-01-01

    In this work, a fractal analytical model is proposed to predict the permeability of shale reservoir. The proposed model explicitly relates the permeability to the micro-structural parameters (tortuosity, pore area fractal dimensions, porosity and slip velocity coefficient) of shale.

  8. Applications of Fractal Analytical Techniques in the Estimation of Operational Scale

    NASA Technical Reports Server (NTRS)

    Emerson, Charles W.; Quattrochi, Dale A.

    2000-01-01

    The observational scale and the resolution of remotely sensed imagery are essential considerations in the interpretation process. Many atmospheric, hydrologic, and other natural and human-influenced spatial phenomena are inherently scale dependent and are governed by different physical processes at different spatial domains. This spatial and operational heterogeneity constrains the ability to compare interpretations of phenomena and processes observed in higher spatial resolution imagery to similar interpretations obtained from lower resolution imagery. This is a particularly acute problem, since longterm global change investigations will require high spatial resolution Earth Observing System (EOS), Landsat 7, or commercial satellite data to be combined with lower resolution imagery from older sensors such as Landsat TM and MSS. Fractal analysis is a useful technique for identifying the effects of scale changes on remotely sensed imagery. The fractal dimension of an image is a non-integer value between two and three which indicates the degree of complexity in the texture and shapes depicted in the image. A true fractal surface exhibits self-similarity, a property of curves or surfaces where each part is indistinguishable from the whole, or where the form of the curve or surface is invariant with respect to scale. Theoretically, if the digital numbers of a remotely sensed image resemble an ideal fractal surface, then due to the self-similarity property, the fractal dimension of the image will not vary with scale and resolution, and the slope of the fractal dimension-resolution relationship would be zero. Most geographical phenomena, however, are not self-similar at all scales, but they can be modeled by a stochastic fractal in which the scaling properties of the image exhibit patterns that can be described by statistics such as area-perimeter ratios and autocovariances. Stochastic fractal sets relax the self-similarity assumption and measure many scales and resolutions to represent the varying form of a phenomenon as the pixel size is increased in a convolution process. We have observed that for images of homogeneous land covers, the fractal dimension varies linearly with changes in resolution or pixel size over the range of past, current, and planned space-borne sensors. This relationship differs significantly in images of agricultural, urban, and forest land covers, with urban areas retaining the same level of complexity, forested areas growing smoother, and agricultural areas growing more complex as small pixels are aggregated into larger, mixed pixels. Images of scenes having a mixture of land covers have fractal dimensions that exhibit a non-linear, complex relationship to pixel size. Measuring the fractal dimension of a difference image derived from two images of the same area obtained on different dates showed that the fractal dimension increased steadily, then exhibited a sharp decrease at increasing levels of pixel aggregation. This breakpoint of the fractal dimension/resolution plot is related to the spatial domain or operational scale of the phenomenon exhibiting the predominant visible difference between the two images (in this case, mountain snow cover). The degree to which an image departs from a theoretical ideal fractal surface provides clues as to how much information is altered or lost in the processes of rescaling and rectification. The measured fractal dimension of complex, composite land covers such as urban areas also provides a useful textural index that can assist image classification of complex scenes.

  9. Detection and classification of Breast Cancer in Wavelet Sub-bands of Fractal Segmented Cancerous Zones.

    PubMed

    Shirazinodeh, Alireza; Noubari, Hossein Ahmadi; Rabbani, Hossein; Dehnavi, Alireza Mehri

    2015-01-01

    Recent studies on wavelet transform and fractal modeling applied on mammograms for the detection of cancerous tissues indicate that microcalcifications and masses can be utilized for the study of the morphology and diagnosis of cancerous cases. It is shown that the use of fractal modeling, as applied to a given image, can clearly discern cancerous zones from noncancerous areas. In this paper, for fractal modeling, the original image is first segmented into appropriate fractal boxes followed by identifying the fractal dimension of each windowed section using a computationally efficient two-dimensional box-counting algorithm. Furthermore, using appropriate wavelet sub-bands and image Reconstruction based on modified wavelet coefficients, it is shown that it is possible to arrive at enhanced features for detection of cancerous zones. In this paper, we have attempted to benefit from the advantages of both fractals and wavelets by introducing a new algorithm. By using a new algorithm named F1W2, the original image is first segmented into appropriate fractal boxes, and the fractal dimension of each windowed section is extracted. Following from that, by applying a maximum level threshold on fractal dimensions matrix, the best-segmented boxes are selected. In the next step, the segmented Cancerous zones which are candidates are then decomposed by utilizing standard orthogonal wavelet transform and db2 wavelet in three different resolution levels, and after nullifying wavelet coefficients of the image at the first scale and low frequency band of the third scale, the modified reconstructed image is successfully utilized for detection of breast cancer regions by applying an appropriate threshold. For detection of cancerous zones, our simulations indicate the accuracy of 90.9% for masses and 88.99% for microcalcifications detection results using the F1W2 method. For classification of detected mictocalcification into benign and malignant cases, eight features are identified and utilized in radial basis function neural network. Our simulation results indicate the accuracy of 92% classification using F1W2 method.

  10. A robust algorithm for optimisation and customisation of fractal dimensions of time series modified by nonlinearly scaling their time derivatives: mathematical theory and practical applications.

    PubMed

    Fuss, Franz Konstantin

    2013-01-01

    Standard methods for computing the fractal dimensions of time series are usually tested with continuous nowhere differentiable functions, but not benchmarked with actual signals. Therefore they can produce opposite results in extreme signals. These methods also use different scaling methods, that is, different amplitude multipliers, which makes it difficult to compare fractal dimensions obtained from different methods. The purpose of this research was to develop an optimisation method that computes the fractal dimension of a normalised (dimensionless) and modified time series signal with a robust algorithm and a running average method, and that maximises the difference between two fractal dimensions, for example, a minimum and a maximum one. The signal is modified by transforming its amplitude by a multiplier, which has a non-linear effect on the signal's time derivative. The optimisation method identifies the optimal multiplier of the normalised amplitude for targeted decision making based on fractal dimensions. The optimisation method provides an additional filter effect and makes the fractal dimensions less noisy. The method is exemplified by, and explained with, different signals, such as human movement, EEG, and acoustic signals.

  11. A Robust Algorithm for Optimisation and Customisation of Fractal Dimensions of Time Series Modified by Nonlinearly Scaling Their Time Derivatives: Mathematical Theory and Practical Applications

    PubMed Central

    2013-01-01

    Standard methods for computing the fractal dimensions of time series are usually tested with continuous nowhere differentiable functions, but not benchmarked with actual signals. Therefore they can produce opposite results in extreme signals. These methods also use different scaling methods, that is, different amplitude multipliers, which makes it difficult to compare fractal dimensions obtained from different methods. The purpose of this research was to develop an optimisation method that computes the fractal dimension of a normalised (dimensionless) and modified time series signal with a robust algorithm and a running average method, and that maximises the difference between two fractal dimensions, for example, a minimum and a maximum one. The signal is modified by transforming its amplitude by a multiplier, which has a non-linear effect on the signal's time derivative. The optimisation method identifies the optimal multiplier of the normalised amplitude for targeted decision making based on fractal dimensions. The optimisation method provides an additional filter effect and makes the fractal dimensions less noisy. The method is exemplified by, and explained with, different signals, such as human movement, EEG, and acoustic signals. PMID:24151522

  12. Relationship between Structural Characteristics of Activated Carbons and Their Concentrating Efficiency with Respect to Nitroorganics.

    PubMed

    Leboda, R.; Gun'ko, V. M.; Tomaszewski, W.; Trznadel, B. J.

    2001-07-15

    The relationships between structural properties of activated microporous, micro-mesoporous, mesoporous, and graphitized carbons determined on the basis of nitrogen adsorption at 77.4 K and the efficiency of concentrating (solid-phase extraction (SPE) technique) several nitroorganic compounds from polar solvents were investigated. Microporosity, mesoporosity, fractality, and other characteristics of adsorbents were analyzed to evaluate the dependence of the effectiveness of the SPE technique with respect to nitrate esters, cyclic nitroamines, and nitroaromatics on the origin and texture of carbons. The values of the free energy of solvation and dipole moment of nitroorganic compounds in polar liquids computed with the SM5.42/PM3 method with consideration of geometry relaxation in solution were utilized to elucidate features of their concentration of carbon adsorbents. Copyright 2001 Academic Press.

  13. Two-Phase Flow Simulations through Experimentally Studied Porous Media Analogies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crandall, D.M.; Ahmadi, G.; Smith, D.H.

    2007-07-01

    The amount of CO2 that can be sequestered in deep brine reservoirs is dependant on fluid-fluid-solid interactions within heterogeneous porous media. Displacement of an in-place fluid by a less viscous invading fluid does not displace 100% of the defending fluid, due to capillary and viscous fingering. This has been studied experimentally and numerically with the use of pore-throat flow cells and pore-level models, respectively, in the last two decades. This current work solves the full Navier-Stokes and continuity equations in a random pore-throat geometry using the Volume of Fluid (VOF) method. To verify that the VOF model can be accuratelymore » applied within narrow apertures, qualitative agreement with the well-documented phenomenon of viscous fingering in a Hele-Shaw cell is first presented. While this motion is similar to the fingering observed in geological media, the random structure of rock restricts flow patterns not captured by flow in Hele-Shaw cells. To mimic this heterogeneous natural geometry, a novel experimental flowcell was created. Experiments of constant-rate injection of air into the water saturated model are described. This situation, where a non-wetting, invading fluid displaces a surface-wetting, more-viscous fluid, is known as drainage. As the injection flow rate was increased, a change from stable displacement fronts to dendritic fingering structures was observed, with a corresponding decrease in the fractal dimension of the interface and a decrease in the final saturation of invading air. Predictions of the VOF computational modeling within the same flowcell geometry are then shown to be in good agreement with the experimental results. Percent saturation and the fractal dimension of the invading fluid were calculated from the numerical model and shown to be similar to the experimental findings for air invasion of a watersaturated domain. The fluid properties (viscosity and density) were than varied and the viscosity ratio and capillary number of the fluids were shown to affect the percent of displaced fluid, with lower capillary number and higher viscosity ratio displacing a greater amount of the wetting fluid. Displacement of a non-wetting, in-place fluid by a less viscous, wetting fluid (the case of imbibition; contact angle > 90°) is then studied with the numerical model. The invading fluid is shown to preferentially move into small throats and displace a larger percent of the in-place fluid than observed in the drainage case. The interface was also observed to have a higher fractal dimension, closer to 2. These results highlight the potential for greater fundamental understanding of liquid-gas-solid interactions in heterogeneous, porous media that can be obtained from computational fluid dynamics (CFD). Situations, which are difficult to experimentally study, can be examined with CFD in a manner that more accurately accounts for the geological conditions relevant to CO2 sequestration. This allows for greater accuracy in the prediction of storage capacity within known geological structures. This study shows that as the contact angle between the invading fluid and the defending fluid increase, a greater portion of the porous medium is invaded. Thus, a greater portion of CO2 can be sequestered in reservoirs that are not strongly water wet. Low flow rates are shown to increase the final percent saturation of the invading fluid as well, regardless of wetting conditions.« less

  14. Synthesis of the advances in and application of fractal characteristic of traffic flow : [summary].

    DOT National Transportation Integrated Search

    2013-07-01

    Fractals are geometric objects that are self-similar, meaning that their basic structure remains the same regardless of the scale of magnification. Self-similarity is readily seen in nature, for example, in trees, coastlines, clouds, etc. fractal...

  15. Topographic and Roughness Characteristics of the Vastitas Borealis Formation on Mars Described by Fractal Statistics

    NASA Technical Reports Server (NTRS)

    Garneau, S.; Plaut, J. J.

    2000-01-01

    The surface roughness of the Vastitas Borealis Formation on Mars was analyzed with fractal statistics. Root mean square slopes and fractal dimensions were calculated for 74 topographic profiles. Results have implications for radar scattering models.

  16. About Schrödinger Equation on Fractals Curves Imbedding in R 3

    NASA Astrophysics Data System (ADS)

    Golmankhaneh, Alireza Khalili; Golmankhaneh, Ali Khalili; Baleanu, Dumitru

    2015-04-01

    In this paper we introduced the quantum mechanics on fractal time-space. In a suggested formalism the time and space vary on Cantor-set and Von-Koch curve, respectively. Using Feynman path method in quantum mechanics and F α -calculus we find Schrëdinger equation on on fractal time-space. The Hamiltonian and momentum fractal operator has been indicated. More, the continuity equation and the probability density is given in view of F α -calculus.

  17. Fractal analysis and its impact factors on pore structure of artificial cores based on the images obtained using magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Wang, Heming; Liu, Yu; Song, Yongchen; Zhao, Yuechao; Zhao, Jiafei; Wang, Dayong

    2012-11-01

    Pore structure is one of important factors affecting the properties of porous media, but it is difficult to describe the complexity of pore structure exactly. Fractal theory is an effective and available method for quantifying the complex and irregular pore structure. In this paper, the fractal dimension calculated by box-counting method based on fractal theory was applied to characterize the pore structure of artificial cores. The microstructure or pore distribution in the porous material was obtained using the nuclear magnetic resonance imaging (MRI). Three classical fractals and one sand packed bed model were selected as the experimental material to investigate the influence of box sizes, threshold value, and the image resolution when performing fractal analysis. To avoid the influence of box sizes, a sequence of divisors of the image was proposed and compared with other two algorithms (geometric sequence and arithmetic sequence) with its performance of partitioning the image completely and bringing the least fitted error. Threshold value selected manually and automatically showed that it plays an important role during the image binary processing and the minimum-error method can be used to obtain an appropriate or reasonable one. Images obtained under different pixel matrices in MRI were used to analyze the influence of image resolution. Higher image resolution can detect more quantity of pore structure and increase its irregularity. With benefits of those influence factors, fractal analysis on four kinds of artificial cores showed the fractal dimension can be used to distinguish the different kinds of artificial cores and the relationship between fractal dimension and porosity or permeability can be expressed by the model of D = a - bln(x + c).

  18. Fractal cometary dust - a window into the early Solar system

    NASA Astrophysics Data System (ADS)

    Mannel, T.; Bentley, M. S.; Schmied, R.; Jeszenszky, H.; Levasseur-Regourd, A. C.; Romstedt, J.; Torkar, K.

    2016-11-01

    The properties of dust in the protoplanetary disc are key to understanding the formation of planets in our Solar system. Many models of dust growth predict the development of fractal structures which evolve into non-fractal, porous dust pebbles representing the main component for planetesimal accretion. In order to understand comets and their origins, the Rosetta orbiter followed comet 67P/Churyumov-Gerasimenko for over two years and carried a dedicated instrument suite for dust analysis. One of these instruments, the MIDAS (Micro-Imaging Dust Analysis System) atomic force microscope, recorded the 3D topography of micro- to nanometre-sized dust. All particles analysed to date have been found to be hierarchical agglomerates. Most show compact packing; however, one is extremely porous. This paper contains a structural description of a compact aggregate and the outstanding porous one. Both particles are tens of micrometres in size and show rather narrow subunit size distributions with noticeably similar mean values of 1.48^{+0.13}_{-0.59} μm for the porous particle and 1.36^{+0.15}_{-0.59} μm for the compact. The porous particle allows a fractal analysis, where a density-density correlation function yields a fractal dimension of Df = 1.70 ± 0.1. GIADA, another dust analysis instrument on board Rosetta, confirms the existence of a dust population with a similar fractal dimension. The fractal particles are interpreted as pristine agglomerates built in the protoplanetary disc and preserved in the comet. The similar subunits of both fractal and compact dust indicate a common origin which is, given the properties of the fractal, dominated by slow agglomeration of equally sized aggregates known as cluster-cluster agglomeration.

  19. Concept for Classifying Facade Elements Based on Material, Geometry and Thermal Radiation Using Multimodal Uav Remote Sensing

    NASA Astrophysics Data System (ADS)

    Ilehag, R.; Schenk, A.; Hinz, S.

    2017-08-01

    This paper presents a concept for classification of facade elements, based on the material and the geometry of the elements in addition to the thermal radiation of the facade with the usage of a multimodal Unmanned Aerial Vehicle (UAV) system. Once the concept is finalized and functional, the workflow can be used for energy demand estimations for buildings by exploiting existing methods for estimation of heat transfer coefficient and the transmitted heat loss. The multimodal system consists of a thermal, a hyperspectral and an optical sensor, which can be operational with a UAV. While dealing with sensors that operate in different spectra and have different technical specifications, such as the radiometric and the geometric resolution, the challenges that are faced are presented. Addressed are the different approaches of data fusion, such as image registration, generation of 3D models by performing image matching and the means for classification based on either the geometry of the object or the pixel values. As a first step towards realizing the concept, the result from a geometric calibration with a designed multimodal calibration pattern is presented.

  20. A spectrum fractal feature classification algorithm for agriculture crops with hyper spectrum image

    NASA Astrophysics Data System (ADS)

    Su, Junying

    2011-11-01

    A fractal dimension feature analysis method in spectrum domain for hyper spectrum image is proposed for agriculture crops classification. Firstly, a fractal dimension calculation algorithm in spectrum domain is presented together with the fast fractal dimension value calculation algorithm using the step measurement method. Secondly, the hyper spectrum image classification algorithm and flowchart is presented based on fractal dimension feature analysis in spectrum domain. Finally, the experiment result of the agricultural crops classification with FCL1 hyper spectrum image set with the proposed method and SAM (spectral angle mapper). The experiment results show it can obtain better classification result than the traditional SAM feature analysis which can fulfill use the spectrum information of hyper spectrum image to realize precision agricultural crops classification.

Top