A Tutorial Review on Fractal Spacetime and Fractional Calculus
NASA Astrophysics Data System (ADS)
He, Ji-Huan
2014-11-01
This tutorial review of fractal-Cantorian spacetime and fractional calculus begins with Leibniz's notation for derivative without limits which can be generalized to discontinuous media like fractal derivative and q-derivative of quantum calculus. Fractal spacetime is used to elucidate some basic properties of fractal which is the foundation of fractional calculus, and El Naschie's mass-energy equation for the dark energy. The variational iteration method is used to introduce the definition of fractional derivatives. Fractal derivative is explained geometrically and q-derivative is motivated by quantum mechanics. Some effective analytical approaches to fractional differential equations, e.g., the variational iteration method, the homotopy perturbation method, the exp-function method, the fractional complex transform, and Yang-Laplace transform, are outlined and the main solution processes are given.
The fractal geometry of Hartree-Fock
NASA Astrophysics Data System (ADS)
Theel, Friethjof; Karamatskou, Antonia; Santra, Robin
2017-12-01
The Hartree-Fock method is an important approximation for the ground-state electronic wave function of atoms and molecules so that its usage is widespread in computational chemistry and physics. The Hartree-Fock method is an iterative procedure in which the electronic wave functions of the occupied orbitals are determined. The set of functions found in one step builds the basis for the next iteration step. In this work, we interpret the Hartree-Fock method as a dynamical system since dynamical systems are iterations where iteration steps represent the time development of the system, as encountered in the theory of fractals. The focus is put on the convergence behavior of the dynamical system as a function of a suitable control parameter. In our case, a complex parameter λ controls the strength of the electron-electron interaction. An investigation of the convergence behavior depending on the parameter λ is performed for helium, neon, and argon. We observe fractal structures in the complex λ-plane, which resemble the well-known Mandelbrot set, determine their fractal dimension, and find that with increasing nuclear charge, the fragmentation increases as well.
Reducing the latency of the Fractal Iterative Method to half an iteration
NASA Astrophysics Data System (ADS)
Béchet, Clémentine; Tallon, Michel
2013-12-01
The fractal iterative method for atmospheric tomography (FRiM-3D) has been introduced to solve the wavefront reconstruction at the dimensions of an ELT with a low-computational cost. Previous studies reported the requirement of only 3 iterations of the algorithm in order to provide the best adaptive optics (AO) performance. Nevertheless, any iterative method in adaptive optics suffer from the intrinsic latency induced by the fact that one iteration can start only once the previous one is completed. Iterations hardly match the low-latency requirement of the AO real-time computer. We present here a new approach to avoid iterations in the computation of the commands with FRiM-3D, thus allowing low-latency AO response even at the scale of the European ELT (E-ELT). The method highlights the importance of "warm-start" strategy in adaptive optics. To our knowledge, this particular way to use the "warm-start" has not been reported before. Futhermore, removing the requirement of iterating to compute the commands, the computational cost of the reconstruction with FRiM-3D can be simplified and at least reduced to half the computational cost of a classical iteration. Thanks to simulations of both single-conjugate and multi-conjugate AO for the E-ELT,with FRiM-3D on Octopus ESO simulator, we demonstrate the benefit of this approach. We finally enhance the robustness of this new implementation with respect to increasing measurement noise, wind speed and even modeling errors.
NASA Astrophysics Data System (ADS)
Hashemi, S. M.; Jagodič, U.; Mozaffari, M. R.; Ejtehadi, M. R.; Muševič, I.; Ravnik, M.
2017-01-01
Fractals are remarkable examples of self-similarity where a structure or dynamic pattern is repeated over multiple spatial or time scales. However, little is known about how fractal stimuli such as fractal surfaces interact with their local environment if it exhibits order. Here we show geometry-induced formation of fractal defect states in Koch nematic colloids, exhibiting fractal self-similarity better than 90% over three orders of magnitude in the length scales, from micrometers to nanometres. We produce polymer Koch-shaped hollow colloidal prisms of three successive fractal iterations by direct laser writing, and characterize their coupling with the nematic by polarization microscopy and numerical modelling. Explicit generation of topological defect pairs is found, with the number of defects following exponential-law dependence and reaching few 100 already at fractal iteration four. This work demonstrates a route for generation of fractal topological defect states in responsive soft matter.
Small-angle scattering from the Cantor surface fractal on the plane and the Koch snowflake
NASA Astrophysics Data System (ADS)
Cherny, Alexander Yu.; Anitas, Eugen M.; Osipov, Vladimir A.; Kuklin, Alexander I.
The small-angle scattering (SAS) from the Cantor surface fractal on the plane and Koch snowflake is considered. We develop the construction algorithm for the Koch snowflake, which makes possible the recurrence relation for the scattering amplitude. The surface fractals can be decomposed into a sum of surface mass fractals for arbitrary fractal iteration, which enables various approximations for the scattering intensity. It is shown that for the Cantor fractal, one can neglect with a good accuracy the correlations between the mass fractal amplitudes, while for the Koch snowflake, these correlations are important. It is shown that nevertheless, the correlations can be build in the mass fractal amplitudes, which explains the decay of the scattering intensity $I(q)\\sim q^{D_{\\mathrm{s}}-4}$ with $1 < D_{\\mathrm{s}} < 2$ being the fractal dimension of the perimeter. The curve $I(q)q^{4-D_{\\mathrm{s}}}$ is found to be log-periodic in the fractal region with the period equal to the scaling factor of the fractal. The log-periodicity arises from the self-similarity of sizes of basic structural units rather than from correlations between their distances. A recurrence relation is obtained for the radius of gyration of Koch snowflake, which is solved in the limit of infinite iterations. The present analysis allows us to obtain additional information from SAS data, such as the edges of the fractal regions, the fractal iteration number and the scaling factor.
Hashemi, S. M.; Jagodič, U.; Mozaffari, M. R.; Ejtehadi, M. R.; Muševič, I.; Ravnik, M.
2017-01-01
Fractals are remarkable examples of self-similarity where a structure or dynamic pattern is repeated over multiple spatial or time scales. However, little is known about how fractal stimuli such as fractal surfaces interact with their local environment if it exhibits order. Here we show geometry-induced formation of fractal defect states in Koch nematic colloids, exhibiting fractal self-similarity better than 90% over three orders of magnitude in the length scales, from micrometers to nanometres. We produce polymer Koch-shaped hollow colloidal prisms of three successive fractal iterations by direct laser writing, and characterize their coupling with the nematic by polarization microscopy and numerical modelling. Explicit generation of topological defect pairs is found, with the number of defects following exponential-law dependence and reaching few 100 already at fractal iteration four. This work demonstrates a route for generation of fractal topological defect states in responsive soft matter. PMID:28117325
[Lithology feature extraction of CASI hyperspectral data based on fractal signal algorithm].
Tang, Chao; Chen, Jian-Ping; Cui, Jing; Wen, Bo-Tao
2014-05-01
Hyperspectral data is characterized by combination of image and spectrum and large data volume dimension reduction is the main research direction. Band selection and feature extraction is the primary method used for this objective. In the present article, the authors tested methods applied for the lithology feature extraction from hyperspectral data. Based on the self-similarity of hyperspectral data, the authors explored the application of fractal algorithm to lithology feature extraction from CASI hyperspectral data. The "carpet method" was corrected and then applied to calculate the fractal value of every pixel in the hyperspectral data. The results show that fractal information highlights the exposed bedrock lithology better than the original hyperspectral data The fractal signal and characterized scale are influenced by the spectral curve shape, the initial scale selection and iteration step. At present, research on the fractal signal of spectral curve is rare, implying the necessity of further quantitative analysis and investigation of its physical implications.
Unification of two fractal families
NASA Astrophysics Data System (ADS)
Liu, Ying
1995-06-01
Barnsley and Hurd classify the fractal images into two families: iterated function system fractals (IFS fractals) and fractal transform fractals, or local iterated function system fractals (LIFS fractals). We will call IFS fractals, class 2 fractals and LIFS fractals, class 3 fractals. In this paper, we will unify these two approaches plus another family of fractals, the class 5 fractals. The basic idea is given as follows: a dynamical system can be represented by a digraph, the nodes in a digraph can be divided into two parts: transient states and persistent states. For bilevel images, a persistent node is a black pixel. A transient node is a white pixel. For images with more than two gray levels, a stochastic digraph is used. A transient node is a pixel with the intensity of 0. The intensity of a persistent node is determined by a relative frequency. In this way, the two families of fractals can be generated in a similar way. In this paper, we will first present a classification of dynamical systems and introduce the transformation based on digraphs, then we will unify the two approaches for fractal binary images. We will compare the decoding algorithms of the two families. Finally, we will generalize the discussion to continuous-tone images.
NASA Astrophysics Data System (ADS)
Steiros, K.; Bruce, P. J. K.; Buxton, O. R. H.; Vassilicos, J. C.
2015-11-01
Experiments have been performed in an octagonal un-baffled water tank, stirred by three radial turbines with different geometry impellers: (1) regular rectangular blades; (2) single-iteration fractal blades; (3) two-iteration fractal blades. Shaft torque was monitored and the power number calculated for each case. Both impellers with fractal geometry blades exhibited a decrease of turbine power number compared to the regular one (15% decrease for single-iteration and 19% for two iterations). Phase locked PIV in the discharge region of the blades revealed that the vortices emanating from the regular blades are more coherent, have higher kinetic energy, and advect faster towards the tank's walls where they are dissipated, compared to their fractal counterparts. This suggests a strong link between vortex production and behaviour and the energy input for the different impellers. Planar PIV measurements in the bulk of the tank showed an increase of turbulence intensity of over 20% for the fractal geometry blades, suggesting higher mixing efficiency. Experiments with pressure measurements on the different geometry blade surfaces are ongoing to investigate the distribution of forces, and calculate hydrodynamic centres of pressure. The authors would like to acknowledge the financial support given by European Union FP7 Marie Curie MULTISOLVE project (Grant Agreement No. 317269).
Turbulence Enhancement by Fractal Square Grids: Effects of the Number of Fractal Scales
NASA Astrophysics Data System (ADS)
Omilion, Alexis; Ibrahim, Mounir; Zhang, Wei
2017-11-01
Fractal square grids offer a unique solution for passive flow control as they can produce wakes with a distinct turbulence intensity peak and a prolonged turbulence decay region at the expense of only minimal pressure drop. While previous studies have solidified this characteristic of fractal square grids, how the number of scales (or fractal iterations N) affect turbulence production and decay of the induced wake is still not well understood. The focus of this research is to determine the relationship between the fractal iteration N and the turbulence produced in the wake flow using well-controlled water-tunnel experiments. Particle Image Velocimetry (PIV) is used to measure the instantaneous velocity fields downstream of four different fractal grids with increasing number of scales (N = 1, 2, 3, and 4) and a conventional single-scale grid. By comparing the turbulent scales and statistics of the wake, we are able to determine how each iteration affects the peak turbulence intensity and the production/decay of turbulence from the grid. In light of the ability of these fractal grids to increase turbulence intensity with low pressure drop, this work can potentially benefit a wide variety of applications where energy efficient mixing or convective heat transfer is a key process.
Two Dimensional Drug Diffusion Between Nanoparticles and Fractal Tumors
NASA Astrophysics Data System (ADS)
Samioti, S. E.; Karamanos, K.; Tsiantis, A.; Papathanasiou, A.; Sarris, I.
2017-11-01
Drug delivery methods based on nanoparticles are some of the most promising medical applications in nanotechnology to treat cancer. It is observed that drug released by nanoparticles to the cancer tumors may be driven by diffusion. A fractal tumor boundary of triangular Von Koch shape is considered here and the diffusion mechanism is studied for different drug concentrations and increased fractality. A high order Finite Elements method based on the Fenics library is incorporated in fine meshes to fully resolve these irregular boundaries. Drug concentration, its transfer rates and entropy production are calculated in an up to forth order fractal iteration boundaries. We observed that diffusion rate diminishes for successive prefractal generations. Also, the entropy production around the system changes greatly as the order of the fractal curve increases. Results indicate with precision where the active sites are, in which most of the diffusion takes place and thus drug arrives to the tumor.
ERIC Educational Resources Information Center
Camp, Dane R.
1991-01-01
After introducing the two-dimensional Koch curve, which is generated by simple recursions on an equilateral triangle, the process is extended to three dimensions with simple recursions on a regular tetrahedron. Included, for both fractal sequences, are iterative formulae, illustrations of the first several iterations, and a sample PASCAL program.…
ERIC Educational Resources Information Center
Fraboni, Michael; Moller, Trisha
2008-01-01
Fractal geometry offers teachers great flexibility: It can be adapted to the level of the audience or to time constraints. Although easily explained, fractal geometry leads to rich and interesting mathematical complexities. In this article, the authors describe fractal geometry, explain the process of iteration, and provide a sample exercise.…
Self-Similarity of Plasmon Edge Modes on Koch Fractal Antennas.
Bellido, Edson P; Bernasconi, Gabriel D; Rossouw, David; Butet, Jérémy; Martin, Olivier J F; Botton, Gianluigi A
2017-11-28
We investigate the plasmonic behavior of Koch snowflake fractal geometries and their possible application as broadband optical antennas. Lithographically defined planar silver Koch fractal antennas were fabricated and characterized with high spatial and spectral resolution using electron energy loss spectroscopy. The experimental data are supported by numerical calculations carried out with a surface integral equation method. Multiple surface plasmon edge modes supported by the fractal structures have been imaged and analyzed. Furthermore, by isolating and reproducing self-similar features in long silver strip antennas, the edge modes present in the Koch snowflake fractals are identified. We demonstrate that the fractal response can be obtained by the sum of basic self-similar segments called characteristic edge units. Interestingly, the plasmon edge modes follow a fractal-scaling rule that depends on these self-similar segments formed in the structure after a fractal iteration. As the size of a fractal structure is reduced, coupling of the modes in the characteristic edge units becomes relevant, and the symmetry of the fractal affects the formation of hybrid modes. This analysis can be utilized not only to understand the edge modes in other planar structures but also in the design and fabrication of fractal structures for nanophotonic applications.
Drawing dynamical and parameters planes of iterative families and methods.
Chicharro, Francisco I; Cordero, Alicia; Torregrosa, Juan R
2013-01-01
The complex dynamical analysis of the parametric fourth-order Kim's iterative family is made on quadratic polynomials, showing the MATLAB codes generated to draw the fractal images necessary to complete the study. The parameter spaces associated with the free critical points have been analyzed, showing the stable (and unstable) regions where the selection of the parameter will provide us the excellent schemes (or dreadful ones).
Drawing Dynamical and Parameters Planes of Iterative Families and Methods
Chicharro, Francisco I.
2013-01-01
The complex dynamical analysis of the parametric fourth-order Kim's iterative family is made on quadratic polynomials, showing the MATLAB codes generated to draw the fractal images necessary to complete the study. The parameter spaces associated with the free critical points have been analyzed, showing the stable (and unstable) regions where the selection of the parameter will provide us the excellent schemes (or dreadful ones). PMID:24376386
Research on the generation of the background with sea and sky in infrared scene
NASA Astrophysics Data System (ADS)
Dong, Yan-zhi; Han, Yan-li; Lou, Shu-li
2008-03-01
It is important for scene generation to keep the texture of infrared images in simulation of anti-ship infrared imaging guidance. We studied the fractal method and applied it to the infrared scene generation. We adopted the method of horizontal-vertical (HV) partition to encode the original image. Basing on the properties of infrared image with sea-sky background, we took advantage of Local Iteration Function System (LIFS) to decrease the complexity of computation and enhance the processing rate. Some results were listed. The results show that the fractal method can keep the texture of infrared image better and can be used in the infrared scene generation widely in future.
Fractal dimension of microbead assemblies used for protein detection.
Hecht, Ariel; Commiskey, Patrick; Lazaridis, Filippos; Argyrakis, Panos; Kopelman, Raoul
2014-11-10
We use fractal analysis to calculate the protein concentration in a rotating magnetic assembly of microbeads of size 1 μm, which has optimized parameters of sedimentation, binding sites and magnetic volume. We utilize the original Forrest-Witten method, but due to the relatively small number of bead particles, which is of the order of 500, we use a large number of origins and also a large number of algorithm iterations. We find a value of the fractal dimension in the range 1.70-1.90, as a function of the thrombin concentration, which plays the role of binding the microbeads together. This is in good agreement with previous results from magnetorotation studies. The calculation of the fractal dimension using multiple points of reference can be used for any assembly with a relatively small number of particles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Space-Filling Supercapacitor Carpets: Highly scalable fractal architecture for energy storage
NASA Astrophysics Data System (ADS)
Tiliakos, Athanasios; Trefilov, Alexandra M. I.; Tanasǎ, Eugenia; Balan, Adriana; Stamatin, Ioan
2018-04-01
Revamping ground-breaking ideas from fractal geometry, we propose an alternative micro-supercapacitor configuration realized by laser-induced graphene (LIG) foams produced via laser pyrolysis of inexpensive commercial polymers. The Space-Filling Supercapacitor Carpet (SFSC) architecture introduces the concept of nested electrodes based on the pre-fractal Peano space-filling curve, arranged in a symmetrical equilateral setup that incorporates multiple parallel capacitor cells sharing common electrodes for maximum efficiency and optimal length-to-area distribution. We elucidate on the theoretical foundations of the SFSC architecture, and we introduce innovations (high-resolution vector-mode printing) in the LIG method that allow for the realization of flexible and scalable devices based on low iterations of the Peano algorithm. SFSCs exhibit distributed capacitance properties, leading to capacitance, energy, and power ratings proportional to the number of nested electrodes (up to 4.3 mF, 0.4 μWh, and 0.2 mW for the largest tested model of low iteration using aqueous electrolytes), with competitively high energy and power densities. This can pave the road for full scalability in energy storage, reaching beyond the scale of micro-supercapacitors for incorporating into larger and more demanding applications.
Iterated function systems for DNA replication
NASA Astrophysics Data System (ADS)
Gaspard, Pierre
2017-10-01
The kinetic equations of DNA replication are shown to be exactly solved in terms of iterated function systems, running along the template sequence and giving the statistical properties of the copy sequences, as well as the kinetic and thermodynamic properties of the replication process. With this method, different effects due to sequence heterogeneity can be studied, in particular, a transition between linear and sublinear growths in time of the copies, and a transition between continuous and fractal distributions of the local velocities of the DNA polymerase along the template. The method is applied to the human mitochondrial DNA polymerase γ without and with exonuclease proofreading.
Small-angle scattering from 3D Sierpinski tetrahedron generated using chaos game
NASA Astrophysics Data System (ADS)
Slyamov, Azat
2017-12-01
We approximate a three dimensional version of deterministic Sierpinski gasket (SG), also known as Sierpinski tetrahedron (ST), by using the chaos game representation (CGR). Structural properties of the fractal, generated by both deterministic and CGR algorithms are determined using small-angle scattering (SAS) technique. We calculate the corresponding monodisperse structure factor of ST, using an optimized Debye formula. We show that scattering from CGR of ST recovers basic fractal properties, such as fractal dimension, iteration number, scaling factor, overall size of the system and the number of units composing the fractal.
Fractal Based Triple Band High Gain Monopole Antenna
NASA Astrophysics Data System (ADS)
Pandey, Shashi Kant; Pandey, Ganga Prasad; Sarun, P. M.
2017-10-01
A novel triple-band microstrip fed planar monopole antenna is proposed and investigated. A fractal antenna is created by iterating a narrow pulse (NP) generator model at upper side of modified ground plane, which has a rhombic patch, for enhancing the bandwidth and gain. Three iterations are carried out to study the effects of fractal geometry on the antenna performance. The proposed antenna can operate over three frequency ranges viz, 3.34-4.8 GHz, 5.5-10.6 GHz and 13-14.96 GHz suitable for WLAN 5.2/5.8 GHz, WiMAX 3.5/5.5 GHz and X band applications respectively. Simulated and measured results are in good agreements with each others. Results show that antenna provides wide/ultra wide bandwidths, monopole like radiation patterns and very high antenna gains over the operating frequency bands.
Paradigms of Complexity: Fractals and Structures in the Sciences
NASA Astrophysics Data System (ADS)
Novak, Miroslav M.
The Table of Contents for the book is as follows: * Preface * The Origin of Complexity (invited talk) * On the Existence of Spatially Uniform Scaling Laws in the Climate System * Multispectral Backscattering: A Fractal-Structure Probe * Small-Angle Multiple Scattering on a Fractal System of Point Scatterers * Symmetric Fractals Generated by Cellular Automata * Bispectra and Phase Correlations for Chaotic Dynamical Systems * Self-Organized Criticality Models of Neural Development * Altered Fractal and Irregular Heart Rate Behavior in Sick Fetuses * Extract Multiple Scaling in Long-Term Heart Rate Variability * A Semi-Continous Box Counting Method for Fractal Dimension Measurement of Short Single Dimension Temporal Signals - Preliminary Study * A Fractional Brownian Motion Model of Cracking * Self-Affine Scaling Studies on Fractography * Coarsening of Fractal Interfaces * A Fractal Model of Ocean Surface Superdiffusion * Stochastic Subsurface Flow and Transport in Fractal Fractal Conductivity Fields * Rendering Through Iterated Function Systems * The σ-Hull - The Hull Where Fractals Live - Calculating a Hull Bounded by Log Spirals to Solve the Inverse IFS-Problem by the Detected Orbits * On the Multifractal Properties of Passively Convected Scalar Fields * New Statistical Textural Transforms for Non-Stationary Signals: Application to Generalized Mutlifractal Analysis * Laplacian Growth of Parallel Needles: Their Mullins-Sekerka Instability * Entropy Dynamics Associated with Self-Organization * Fractal Properties in Economics (invited talk) * Fractal Approach to the Regional Seismic Event Discrimination Problem * Fractal and Topological Complexity of Radioactive Contamination * Pattern Selection: Nonsingular Saffman-Taylor Finger and Its Dynamic Evolution with Zero Surface Tension * A Family of Complex Wavelets for the Characterization of Singularities * Stabilization of Chaotic Amplitude Fluctuations in Multimode, Intracavity-Doubled Solid-State Lasers * Chaotic Dynamics of Elastic-Plastic Beams * The Riemann Non-Differentiable Function and Identities for the Gaussian Sums * Revealing the Multifractal Nature of Failure Sequence * The Fractal Nature of wood Revealed by Drying * Squaring the Circle: Diffusion Volume and Acoustic Behaviour of a Fractal Structure * Relationship Between Acupuncture Holographic Units and Fetus Development; Fractal Features of Two Acupuncture Holographic Unit Systems * The Fractal Properties of the Large-Scale Magnetic Fields on the Sun * Fractal Analysis of Tide Gauge Data * Author Index
Distance-weighted city growth.
Rybski, Diego; García Cantú Ros, Anselmo; Kropp, Jürgen P
2013-04-01
Urban agglomerations exhibit complex emergent features of which Zipf's law, i.e., a power-law size distribution, and fractality may be regarded as the most prominent ones. We propose a simplistic model for the generation of citylike structures which is solely based on the assumption that growth is more likely to take place close to inhabited space. The model involves one parameter which is an exponent determining how strongly the attraction decays with the distance. In addition, the model is run iteratively so that existing clusters can grow (together) and new ones can emerge. The model is capable of reproducing the size distribution and the fractality of the boundary of the largest cluster. Although the power-law distribution depends on both, the imposed exponent and the iteration, the fractality seems to be independent of the former and only depends on the latter. Analyzing land-cover data, we estimate the parameter-value γ≈2.5 for Paris and its surroundings.
Technology Tips: Using the Iterate Command to Construct Recursive Geometric Sketches
ERIC Educational Resources Information Center
Harper, Suzanne R.; Driskell, Shannon
2006-01-01
How to iterate geometric shapes to construct Baravelle spirals and Pythagorean trees is demonstrated in this article. The "Surfing Note" sends readers to a site with applets that will generate fractals such as the Sierpinski gasket or the Koch snowflake.
NASA Astrophysics Data System (ADS)
Zotos, Euaggelos E.
2018-06-01
The circular Sitnikov problem, where the two primary bodies are prolate or oblate spheroids, is numerically investigated. In particular, the basins of convergence on the complex plane are revealed by using a large collection of numerical methods of several order. We consider four cases, regarding the value of the oblateness coefficient which determines the nature of the roots (attractors) of the system. For all cases we use the iterative schemes for performing a thorough and systematic classification of the nodes on the complex plane. The distribution of the iterations as well as the probability and their correlations with the corresponding basins of convergence are also discussed. Our numerical computations indicate that most of the iterative schemes provide relatively similar convergence structures on the complex plane. However, there are some numerical methods for which the corresponding basins of attraction are extremely complicated with highly fractal basin boundaries. Moreover, it is proved that the efficiency strongly varies between the numerical methods.
How children perceive fractals: Hierarchical self-similarity and cognitive development
Martins, Maurício Dias; Laaha, Sabine; Freiberger, Eva Maria; Choi, Soonja; Fitch, W. Tecumseh
2014-01-01
The ability to understand and generate hierarchical structures is a crucial component of human cognition, available in language, music, mathematics and problem solving. Recursion is a particularly useful mechanism for generating complex hierarchies by means of self-embedding rules. In the visual domain, fractals are recursive structures in which simple transformation rules generate hierarchies of infinite depth. Research on how children acquire these rules can provide valuable insight into the cognitive requirements and learning constraints of recursion. Here, we used fractals to investigate the acquisition of recursion in the visual domain, and probed for correlations with grammar comprehension and general intelligence. We compared second (n = 26) and fourth graders (n = 26) in their ability to represent two types of rules for generating hierarchical structures: Recursive rules, on the one hand, which generate new hierarchical levels; and iterative rules, on the other hand, which merely insert items within hierarchies without generating new levels. We found that the majority of fourth graders, but not second graders, were able to represent both recursive and iterative rules. This difference was partially accounted by second graders’ impairment in detecting hierarchical mistakes, and correlated with between-grade differences in grammar comprehension tasks. Empirically, recursion and iteration also differed in at least one crucial aspect: While the ability to learn recursive rules seemed to depend on the previous acquisition of simple iterative representations, the opposite was not true, i.e., children were able to acquire iterative rules before they acquired recursive representations. These results suggest that the acquisition of recursion in vision follows learning constraints similar to the acquisition of recursion in language, and that both domains share cognitive resources involved in hierarchical processing. PMID:24955884
Constructing Easily Iterated Functions with Interesting Properties
ERIC Educational Resources Information Center
Sprows, David J.
2009-01-01
A number of schools have recently introduced new courses dealing with various aspects of iteration theory or at least have found ways of including topics such as chaos and fractals in existing courses. In this note, we will consider a family of functions whose members are especially well suited to illustrate many of the concepts involved in these…
The Generalization of Rook Number r2 for the Fractal Chessboard
NASA Astrophysics Data System (ADS)
Sangeetha, R.; Jayalalitha, G.
2018-04-01
In this paper we develop a generalized formula of r 2, the number of ways of placing two non-attacking Rooks for the Fractal Chessboard which is defined as a board that grows progressively in a consistent manner using a 2 × 2 chessboard to its sides and corners. The board is disintegrated into small sub boards based on their position in the whole Fractal Chessboard (FC). The board is disintegrated into sub boards based on their position in the whole board FC. By finding the value of r 2 for each of these sub boards and adding them, the r 2 value of the whole board FC is obtained. Finally the r 2 value is generalized the Fractal Chessboard at any iteration I ≥ 4 .
Losa, Gabriele A
2009-01-01
The extension of the concepts of Fractal Geometry (Mandelbrot [1983]) toward the life sciences has led to significant progress in understanding complex functional properties and architectural / morphological / structural features characterising cells and tissues during ontogenesis and both normal and pathological development processes. It has even been argued that fractal geometry could provide a coherent description of the design principles underlying living organisms (Weibel [1991]). Fractals fulfil a certain number of theoretical and methodological criteria including a high level of organization, shape irregularity, functional and morphological self-similarity, scale invariance, iterative pathways and a peculiar non-integer fractal dimension [FD]. Whereas mathematical objects are deterministic invariant or self-similar over an unlimited range of scales, biological components are statistically self-similar only within a fractal domain defined by upper and lower limits, called scaling window, in which the relationship between the scale of observation and the measured size or length of the object can be established (Losa and Nonnenmacher [1996]). Selected examples will contribute to depict complex biological shapes and structures as fractal entities, and also to show why the application of the fractal principle is valuable for measuring dimensional, geometrical and functional parameters of cells, tissues and organs occurring within the vegetal and animal realms. If the criteria for a strict description of natural fractals are met, then it follows that a Fractal Geometry of Life may be envisaged and all natural objects and biological systems exhibiting self-similar patterns and scaling properties may be considered as belonging to the new subdiscipline of "fractalomics".
Function representation with circle inversion map systems
NASA Astrophysics Data System (ADS)
Boreland, Bryson; Kunze, Herb
2017-01-01
The fractals literature develops the now well-known concept of local iterated function systems (using affine maps) with grey-level maps (LIFSM) as an approach to function representation in terms of the associated fixed point of the so-called fractal transform. While originally explored as a method to achieve signal (and 2-D image) compression, more recent work has explored various aspects of signal and image processing using this machinery. In this paper, we develop a similar framework for function representation using circle inversion map systems. Given a circle C with centre õ and radius r, inversion with respect to C transforms the point p˜ to the point p˜', such that p˜ and p˜' lie on the same radial half-line from õ and d(õ, p˜)d(õ, p˜') = r2, where d is Euclidean distance. We demonstrate the results with an example.
Launching the chaotic realm of iso-fractals: A short remark
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Schmidt, Nathan; Katebi, Reza; Corda, Christian
In this brief note, we introduce the new, emerging sub-discipline of iso-fractals by highlighting and discussing the preliminary results of recent works. First, we note the abundance of fractal, chaotic, non-linear, and self-similar structures in nature while emphasizing the importance of studying such systems because fractal geometry is the language of chaos. Second, we outline the iso-fractal generalization of the Mandelbrot set to exemplify the newly generated Mandelbrot iso-sets. Third, we present the cutting-edge notion of dynamic iso-spaces and explain how a mathematical space can be iso-topically lifted with iso-unit functions that (continuously or discretely) change; in the discrete casemore » examples, we mention that iteratively generated sequences like Fibonacci’s numbers and (the complex moduli of) Mandelbrot’s numbers can supply a deterministic chain of iso-units to construct an ordered series of (magnified and/or de-magnified) iso-spaces that are locally iso-morphic. Fourth, we consider the initiation of iso-fractals with Inopin’s holographic ring (IHR) topology and fractional statistics for 2D and 3D iso-spaces. In total, the reviewed iso-fractal results are a significant improvement over traditional fractals because the application of Santilli’s iso-mathematics arms us an extra degree of freedom for attacking problems in chaos. Finally, we conclude by proposing some questions and ideas for future research work.« less
Efficient fractal-based mutation in evolutionary algorithms from iterated function systems
NASA Astrophysics Data System (ADS)
Salcedo-Sanz, S.; Aybar-Ruíz, A.; Camacho-Gómez, C.; Pereira, E.
2018-03-01
In this paper we present a new mutation procedure for Evolutionary Programming (EP) approaches, based on Iterated Function Systems (IFSs). The new mutation procedure proposed consists of considering a set of IFS which are able to generate fractal structures in a two-dimensional phase space, and use them to modify a current individual of the EP algorithm, instead of using random numbers from different probability density functions. We test this new proposal in a set of benchmark functions for continuous optimization problems. In this case, we compare the proposed mutation against classical Evolutionary Programming approaches, with mutations based on Gaussian, Cauchy and chaotic maps. We also include a discussion on the IFS-based mutation in a real application of Tuned Mass Dumper (TMD) location and optimization for vibration cancellation in buildings. In both practical cases, the proposed EP with the IFS-based mutation obtained extremely competitive results compared to alternative classical mutation operators.
Research on complex 3D tree modeling based on L-system
NASA Astrophysics Data System (ADS)
Gang, Chen; Bin, Chen; Yuming, Liu; Hui, Li
2018-03-01
L-system as a fractal iterative system could simulate complex geometric patterns. Based on the field observation data of trees and knowledge of forestry experts, this paper extracted modeling constraint rules and obtained an L-system rules set. Using the self-developed L-system modeling software the L-system rule set was parsed to generate complex tree 3d models.The results showed that the geometrical modeling method based on l-system could be used to describe the morphological structure of complex trees and generate 3D tree models.
ERIC Educational Resources Information Center
Dewdney, A. K.
1989-01-01
Discussed are three examples of computer graphics including biomorphs, Truchet tilings, and fractal popcorn. The graphics are shown and the basic algorithm using multiple iteration of a particular function or mathematical operation is described. An illustration of a snail shell created by computer graphics is presented. (YP)
Iterative variational mode decomposition based automated detection of glaucoma using fundus images.
Maheshwari, Shishir; Pachori, Ram Bilas; Kanhangad, Vivek; Bhandary, Sulatha V; Acharya, U Rajendra
2017-09-01
Glaucoma is one of the leading causes of permanent vision loss. It is an ocular disorder caused by increased fluid pressure within the eye. The clinical methods available for the diagnosis of glaucoma require skilled supervision. They are manual, time consuming, and out of reach of common people. Hence, there is a need for an automated glaucoma diagnosis system for mass screening. In this paper, we present a novel method for an automated diagnosis of glaucoma using digital fundus images. Variational mode decomposition (VMD) method is used in an iterative manner for image decomposition. Various features namely, Kapoor entropy, Renyi entropy, Yager entropy, and fractal dimensions are extracted from VMD components. ReliefF algorithm is used to select the discriminatory features and these features are then fed to the least squares support vector machine (LS-SVM) for classification. Our proposed method achieved classification accuracies of 95.19% and 94.79% using three-fold and ten-fold cross-validation strategies, respectively. This system can aid the ophthalmologists in confirming their manual reading of classes (glaucoma or normal) using fundus images. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ultrametric properties of the attractor spaces for random iterated linear function systems
NASA Astrophysics Data System (ADS)
Buchovets, A. G.; Moskalev, P. V.
2018-03-01
We investigate attractors of random iterated linear function systems as independent spaces embedded in the ordinary Euclidean space. The introduction on the set of attractor points of a metric that satisfies the strengthened triangle inequality makes this space ultrametric. Then inherent in ultrametric spaces the properties of disconnectedness and hierarchical self-similarity make it possible to define an attractor as a fractal. We note that a rigorous proof of these properties in the case of an ordinary Euclidean space is very difficult.
NASA Astrophysics Data System (ADS)
La Torre, Davide; Marsiglio, Simone; Mendivil, Franklin; Privileggi, Fabio
2018-05-01
We analyze a multi-sector growth model subject to random shocks affecting the two sector-specific production functions twofold: the evolution of both productivity and factor shares is the result of such exogenous shocks. We determine the optimal dynamics via Euler-Lagrange equations, and show how these dynamics can be described in terms of an iterated function system with probability. We also provide conditions that imply the singularity of the invariant measure associated with the fractal attractor. Numerical examples show how specific parameter configurations might generate distorted copies of the Barnsley's fern attractor.
Fractals, Coherence and Brain Dynamics
NASA Astrophysics Data System (ADS)
Vitiello, Giuseppe
2010-11-01
I show that the self-similarity property of deterministic fractals provides a direct connection with the space of the entire analytical functions. Fractals are thus described in terms of coherent states in the Fock-Bargmann representation. Conversely, my discussion also provides insights on the geometrical properties of coherent states: it allows to recognize, in some specific sense, fractal properties of coherent states. In particular, the relation is exhibited between fractals and q-deformed coherent states. The connection with the squeezed coherent states is also displayed. In this connection, the non-commutative geometry arising from the fractal relation with squeezed coherent states is discussed and the fractal spectral properties are identified. I also briefly discuss the description of neuro-phenomenological data in terms of squeezed coherent states provided by the dissipative model of brain and consider the fact that laboratory observations have shown evidence that self-similarity characterizes the brain background activity. This suggests that a connection can be established between brain dynamics and the fractal self-similarity properties on the basis of the relation discussed in this report between fractals and squeezed coherent states. Finally, I do not consider in this paper the so-called random fractals, namely those fractals obtained by randomization processes introduced in their iterative generation. Since self-similarity is still a characterizing property in many of such random fractals, my conjecture is that also in such cases there must exist a connection with the coherent state algebraic structure. In condensed matter physics, in many cases the generation by the microscopic dynamics of some kind of coherent states is involved in the process of the emergence of mesoscopic/macroscopic patterns. The discussion presented in this paper suggests that also fractal generation may provide an example of emergence of global features, namely long range correlation at mesoscopic/macroscopic level, from microscopic local deformation processes. In view of the wide spectrum of application of both, fractal studies and coherent state physics, spanning from solid state physics to laser physics, quantum optics, complex dynamical systems and biological systems, the results presented in the present report may lead to interesting practical developments in many research sectors.
Template-Directed Copolymerization, Random Walks along Disordered Tracks, and Fractals
NASA Astrophysics Data System (ADS)
Gaspard, Pierre
2016-12-01
In biology, template-directed copolymerization is the fundamental mechanism responsible for the synthesis of DNA, RNA, and proteins. More than 50 years have passed since the discovery of DNA structure and its role in coding genetic information. Yet, the kinetics and thermodynamics of information processing in DNA replication, transcription, and translation remain poorly understood. Challenging issues are the facts that DNA or RNA sequences constitute disordered media for the motion of polymerases or ribosomes while errors occur in copying the template. Here, it is shown that these issues can be addressed and sequence heterogeneity effects can be quantitatively understood within a framework revealing universal aspects of information processing at the molecular scale. In steady growth regimes, the local velocities of polymerases or ribosomes along the template are distributed as the continuous or fractal invariant set of a so-called iterated function system, which determines the copying error probabilities. The growth may become sublinear in time with a scaling exponent that can also be deduced from the iterated function system.
Iterated Function Systems in the Classroom
ERIC Educational Resources Information Center
Waiveris, Charles
2007-01-01
The title may appear daunting, but the exercises, which can be presented to students from middle school to graduate school, are not. The exercises center on creating fractal images in the xy-plane with free. easy-to-use software and questions appropriate to the level of the student.
Group Chaos Theory: A Metaphor and Model for Group Work
ERIC Educational Resources Information Center
Rivera, Edil Torres; Wilbur, Michael; Frank-Saraceni, James; Roberts-Wilbur, Janice; Phan, Loan T.; Garrett, Michael T.
2005-01-01
Group phenomena and interactions are described through the use of the chaos theory constructs and characteristics of sensitive dependence on initial conditions, phase space, turbulence, emergence, self-organization, dissipation, iteration, bifurcation, and attractors and fractals. These constructs and theoretical tenets are presented as applicable…
a New Method for Calculating Fractal Dimensions of Porous Media Based on Pore Size Distribution
NASA Astrophysics Data System (ADS)
Xia, Yuxuan; Cai, Jianchao; Wei, Wei; Hu, Xiangyun; Wang, Xin; Ge, Xinmin
Fractal theory has been widely used in petrophysical properties of porous rocks over several decades and determination of fractal dimensions is always the focus of researches and applications by means of fractal-based methods. In this work, a new method for calculating pore space fractal dimension and tortuosity fractal dimension of porous media is derived based on fractal capillary model assumption. The presented work establishes relationship between fractal dimensions and pore size distribution, which can be directly used to calculate the fractal dimensions. The published pore size distribution data for eight sandstone samples are used to calculate the fractal dimensions and simultaneously compared with prediction results from analytical expression. In addition, the proposed fractal dimension method is also tested through Micro-CT images of three sandstone cores, and are compared with fractal dimensions by box-counting algorithm. The test results also prove a self-similar fractal range in sandstone when excluding smaller pores.
L. Linsen; B.J. Karis; E.G. McPherson; B. Hamann
2005-01-01
In computer graphics, models describing the fractal branching structure of trees typically exploit the modularity of tree structures. The models are based on local production rules, which are applied iteratively and simultaneously to create a complex branching system. The objective is to generate three-dimensional scenes of often many realistic- looking and non-...
Comparison of two fractal interpolation methods
NASA Astrophysics Data System (ADS)
Fu, Yang; Zheng, Zeyu; Xiao, Rui; Shi, Haibo
2017-03-01
As a tool for studying complex shapes and structures in nature, fractal theory plays a critical role in revealing the organizational structure of the complex phenomenon. Numerous fractal interpolation methods have been proposed over the past few decades, but they differ substantially in the form features and statistical properties. In this study, we simulated one- and two-dimensional fractal surfaces by using the midpoint displacement method and the Weierstrass-Mandelbrot fractal function method, and observed great differences between the two methods in the statistical characteristics and autocorrelation features. From the aspect of form features, the simulations of the midpoint displacement method showed a relatively flat surface which appears to have peaks with different height as the fractal dimension increases. While the simulations of the Weierstrass-Mandelbrot fractal function method showed a rough surface which appears to have dense and highly similar peaks as the fractal dimension increases. From the aspect of statistical properties, the peak heights from the Weierstrass-Mandelbrot simulations are greater than those of the middle point displacement method with the same fractal dimension, and the variances are approximately two times larger. When the fractal dimension equals to 1.2, 1.4, 1.6, and 1.8, the skewness is positive with the midpoint displacement method and the peaks are all convex, but for the Weierstrass-Mandelbrot fractal function method the skewness is both positive and negative with values fluctuating in the vicinity of zero. The kurtosis is less than one with the midpoint displacement method, and generally less than that of the Weierstrass-Mandelbrot fractal function method. The autocorrelation analysis indicated that the simulation of the midpoint displacement method is not periodic with prominent randomness, which is suitable for simulating aperiodic surface. While the simulation of the Weierstrass-Mandelbrot fractal function method has strong periodicity, which is suitable for simulating periodic surface.
Chimera states in networks of logistic maps with hierarchical connectivities
NASA Astrophysics Data System (ADS)
zur Bonsen, Alexander; Omelchenko, Iryna; Zakharova, Anna; Schöll, Eckehard
2018-04-01
Chimera states are complex spatiotemporal patterns consisting of coexisting domains of coherence and incoherence. We study networks of nonlocally coupled logistic maps and analyze systematically how the dilution of the network links influences the appearance of chimera patterns. The network connectivities are constructed using an iterative Cantor algorithm to generate fractal (hierarchical) connectivities. Increasing the hierarchical level of iteration, we compare the resulting spatiotemporal patterns. We demonstrate that a high clustering coefficient and symmetry of the base pattern promotes chimera states, and asymmetric connectivities result in complex nested chimera patterns.
Rapid sampling of stochastic displacements in Brownian dynamics simulations
NASA Astrophysics Data System (ADS)
Fiore, Andrew M.; Balboa Usabiaga, Florencio; Donev, Aleksandar; Swan, James W.
2017-03-01
We present a new method for sampling stochastic displacements in Brownian Dynamics (BD) simulations of colloidal scale particles. The method relies on a new formulation for Ewald summation of the Rotne-Prager-Yamakawa (RPY) tensor, which guarantees that the real-space and wave-space contributions to the tensor are independently symmetric and positive-definite for all possible particle configurations. Brownian displacements are drawn from a superposition of two independent samples: a wave-space (far-field or long-ranged) contribution, computed using techniques from fluctuating hydrodynamics and non-uniform fast Fourier transforms; and a real-space (near-field or short-ranged) correction, computed using a Krylov subspace method. The combined computational complexity of drawing these two independent samples scales linearly with the number of particles. The proposed method circumvents the super-linear scaling exhibited by all known iterative sampling methods applied directly to the RPY tensor that results from the power law growth of the condition number of tensor with the number of particles. For geometrically dense microstructures (fractal dimension equal three), the performance is independent of volume fraction, while for tenuous microstructures (fractal dimension less than three), such as gels and polymer solutions, the performance improves with decreasing volume fraction. This is in stark contrast with other related linear-scaling methods such as the force coupling method and the fluctuating immersed boundary method, for which performance degrades with decreasing volume fraction. Calculations for hard sphere dispersions and colloidal gels are illustrated and used to explore the role of microstructure on performance of the algorithm. In practice, the logarithmic part of the predicted scaling is not observed and the algorithm scales linearly for up to 4 ×106 particles, obtaining speed ups of over an order of magnitude over existing iterative methods, and making the cost of computing Brownian displacements comparable to the cost of computing deterministic displacements in BD simulations. A high-performance implementation employing non-uniform fast Fourier transforms implemented on graphics processing units and integrated with the software package HOOMD-blue is used for benchmarking.
Zhonggang, Liang; Hong, Yan
2006-10-01
A new method of calculating fractal dimension of short-term heart rate variability signals is presented. The method is based on wavelet transform and filter banks. The implementation of the method is: First of all we pick-up the fractal component from HRV signals using wavelet transform. Next, we estimate the power spectrum distribution of fractal component using auto-regressive model, and we estimate parameter 7 using the least square method. Finally according to formula D = 2- (gamma-1)/2 estimate fractal dimension of HRV signal. To validate the stability and reliability of the proposed method, using fractional brown movement simulate 24 fractal signals that fractal value is 1.6 to validate, the result shows that the method has stability and reliability.
Depth to Curie temperature across the central Red Sea from magnetic data using the de-fractal method
NASA Astrophysics Data System (ADS)
Salem, Ahmed; Green, Chris; Ravat, Dhananjay; Singh, Kumar Hemant; East, Paul; Fairhead, J. Derek; Mogren, Saad; Biegert, Ed
2014-06-01
The central Red Sea rift is considered to be an embryonic ocean. It is characterised by high heat flow, with more than 90% of the heat flow measurements exceeding the world mean and high values extending to the coasts - providing good prospects for geothermal energy resources. In this study, we aim to map the depth to the Curie isotherm (580 °C) in the central Red Sea based on magnetic data. A modified spectral analysis technique, the “de-fractal spectral depth method” is developed and used to estimate the top and bottom boundaries of the magnetised layer. We use a mathematical relationship between the observed power spectrum due to fractal magnetisation and an equivalent random magnetisation power spectrum. The de-fractal approach removes the effect of fractal magnetisation from the observed power spectrum and estimates the parameters of depth to top and depth to bottom of the magnetised layer using iterative forward modelling of the power spectrum. We applied the de-fractal approach to 12 windows of magnetic data along a profile across the central Red Sea from onshore Sudan to onshore Saudi Arabia. The results indicate variable magnetic bottom depths ranging from 8.4 km in the rift axis to about 18.9 km in the marginal areas. Comparison of these depths with published Moho depths, based on seismic refraction constrained 3D inversion of gravity data, showed that the magnetic bottom in the rift area corresponds closely to the Moho, whereas in the margins it is considerably shallower than the Moho. Forward modelling of heat flow data suggests that depth to the Curie isotherm in the centre of the rift is also close to the Moho depth. Thus Curie isotherm depths estimated from magnetic data may well be imaging the depth to the Curie temperature along the whole profile. Geotherms constrained by the interpreted Curie isotherm depths have subsequently been calculated at three points across the rift - indicating the variation in the likely temperature profile with depth.
Fractals: To Know, to Do, to Simulate.
ERIC Educational Resources Information Center
Talanquer, Vicente; Irazoque, Glinda
1993-01-01
Discusses the development of fractal theory and suggests fractal aggregates as an attractive alternative for introducing fractal concepts. Describes methods for producing metallic fractals and a computer simulation for drawing fractals. (MVL)
Sierpinski triangles as a tool to introduce fractal geometry to children and their parents
NASA Astrophysics Data System (ADS)
Gires, Auguste; Schertzer, Daniel
2017-04-01
There are currently two somehow contradictory trends in the public debates involving scientific issues. On the one hand there is a need to address topics of increasing complexity, while on the other hand simple(istic) solutions are suggested by numerous people (including high level ones). Meanwhile there seems to be growing defiance towards science findings. Such problems are faced in numerous fields including geosciences where famous examples are the debates dealing with climate change, or water / air contamination. Such unfortunate trends means that the input of scientists in the society and public debates is strongly required. Although it not actually their job, scientists should get involved as a citizens. They should try to explain the complexity of the issues at stake, and take the necessary time to achieve this; not all problems can be explained with the help of a 140 characters tweet! Rather than hiding the uncertainties, they should try to explain this notion often not well understood, and admit the current limitations of knowledge. In the meantime it would be positive if this dialogue could help children and their parents to get familiarized with science and scientists, show that science is not obscure and actually present in everyday life. Scientists obviously also have the hope of fostering a desire for understanding, enhancing scientific culture and even promoting careers in this field. Fractals and fractal geometry are actually a rather good tool to achieve this. Indeed through numerous iterations of a simple process, one can easily obtain a rather complex shape, exhibiting some of the features observed in the nature. Fractal shapes are scale invariant, i.e. the more you zoom in, the more details you see; a portion of the shape is similar to the full one. This paper aims at presenting a series of activities presenting fractals to young people developed primarily around the famous Sierpinski triangles. Two types of activities were carefully designed: (i) Classroom introduction to fractals. The idea here is to use children rather than computers to carry out numerous iterations of a process (:-)), i.e. each child does a small part of a greater shape. Fractals are intrinsically build this way. Such activities were implemented in 4 class of children between 4 and 10, with means of drawing or collage according to their age. Activities were prepared in collaboration with the teachers. (ii) "Fract'art : randomness and geometry for all", an open workshop in the science museum "L'exploradôme" in Vitry. Target audience was 8-12 years children (and their parents were welcomed!). Randomness, a unfortunately much neglected notion, was introduced within the fractal shapes. The use of random fractals and colour gave an aesthetic aspect to the studied shapes. A user friendly software was created for this workshop so that everyone was able to create its own fractal shape starting from well known simple shapes (triangle, rectangle, segment, circle). After a very short introduction, people were able to plot their own shapes and print them. An exchange during the implementation phase lead to questions on how such shapes are used in geosciences. An evaluation quizz was distributed at the end of the two sessions of this workshop. This paper will discuss and analyse the preparation and outcome of these activities.
Three-Dimensional Surface Parameters and Multi-Fractal Spectrum of Corroded Steel
Shanhua, Xu; Songbo, Ren; Youde, Wang
2015-01-01
To study multi-fractal behavior of corroded steel surface, a range of fractal surfaces of corroded surfaces of Q235 steel were constructed by using the Weierstrass-Mandelbrot method under a high total accuracy. The multi-fractal spectrum of fractal surface of corroded steel was calculated to study the multi-fractal characteristics of the W-M corroded surface. Based on the shape feature of the multi-fractal spectrum of corroded steel surface, the least squares method was applied to the quadratic fitting of the multi-fractal spectrum of corroded surface. The fitting function was quantitatively analyzed to simplify the calculation of multi-fractal characteristics of corroded surface. The results showed that the multi-fractal spectrum of corroded surface was fitted well with the method using quadratic curve fitting, and the evolution rules and trends were forecasted accurately. The findings can be applied to research on the mechanisms of corroded surface formation of steel and provide a new approach for the establishment of corrosion damage constitutive models of steel. PMID:26121468
Three-Dimensional Surface Parameters and Multi-Fractal Spectrum of Corroded Steel.
Shanhua, Xu; Songbo, Ren; Youde, Wang
2015-01-01
To study multi-fractal behavior of corroded steel surface, a range of fractal surfaces of corroded surfaces of Q235 steel were constructed by using the Weierstrass-Mandelbrot method under a high total accuracy. The multi-fractal spectrum of fractal surface of corroded steel was calculated to study the multi-fractal characteristics of the W-M corroded surface. Based on the shape feature of the multi-fractal spectrum of corroded steel surface, the least squares method was applied to the quadratic fitting of the multi-fractal spectrum of corroded surface. The fitting function was quantitatively analyzed to simplify the calculation of multi-fractal characteristics of corroded surface. The results showed that the multi-fractal spectrum of corroded surface was fitted well with the method using quadratic curve fitting, and the evolution rules and trends were forecasted accurately. The findings can be applied to research on the mechanisms of corroded surface formation of steel and provide a new approach for the establishment of corrosion damage constitutive models of steel.
NASA Technical Reports Server (NTRS)
Lam, Nina Siu-Ngan; Qiu, Hong-Lie; Quattrochi, Dale A.; Emerson, Charles W.; Arnold, James E. (Technical Monitor)
2001-01-01
The rapid increase in digital data volumes from new and existing sensors necessitates the need for efficient analytical tools for extracting information. We developed an integrated software package called ICAMS (Image Characterization and Modeling System) to provide specialized spatial analytical functions for interpreting remote sensing data. This paper evaluates the three fractal dimension measurement methods: isarithm, variogram, and triangular prism, along with the spatial autocorrelation measurement methods Moran's I and Geary's C, that have been implemented in ICAMS. A modified triangular prism method was proposed and implemented. Results from analyzing 25 simulated surfaces having known fractal dimensions show that both the isarithm and triangular prism methods can accurately measure a range of fractal surfaces. The triangular prism method is most accurate at estimating the fractal dimension of higher spatial complexity, but it is sensitive to contrast stretching. The variogram method is a comparatively poor estimator for all of the surfaces, particularly those with higher fractal dimensions. Similar to the fractal techniques, the spatial autocorrelation techniques are found to be useful to measure complex images but not images with low dimensionality. These fractal measurement methods can be applied directly to unclassified images and could serve as a tool for change detection and data mining.
Exploring fractal behaviour of blood oxygen saturation in preterm babies
NASA Astrophysics Data System (ADS)
Zahari, Marina; Hui, Tan Xin; Zainuri, Nuryazmin Ahmat; Darlow, Brian A.
2017-04-01
Recent evidence has been emerging that oxygenation instability in preterm babies could lead to an increased risk of retinal injury such as retinopathy of prematurity. There is a potential that disease severity could be better understood using nonlinear methods for time series data such as fractal theories [1]. Theories on fractal behaviours have been employed by researchers in various disciplines who were motivated to look into the behaviour or structure of irregular fluctuations in temporal data. In this study, an investigation was carried out to examine whether fractal behaviour could be detected in blood oxygen time series. Detection for the presence of fractals in oxygen data of preterm infants was performed using the methods of power spectrum, empirical probability distribution function and autocorrelation function. The results from these fractal identification methods indicate the possibility that these data exhibit fractal nature. Subsequently, a fractal framework for future research was suggested for oxygen time series.
Passenger flow analysis of Beijing urban rail transit network using fractal approach
NASA Astrophysics Data System (ADS)
Li, Xiaohong; Chen, Peiwen; Chen, Feng; Wang, Zijia
2018-04-01
To quantify the spatiotemporal distribution of passenger flow and the characteristics of an urban rail transit network, we introduce four radius fractal dimensions and two branch fractal dimensions by combining a fractal approach with passenger flow assignment model. These fractal dimensions can numerically describe the complexity of passenger flow in the urban rail transit network and its change characteristics. Based on it, we establish a fractal quantification method to measure the fractal characteristics of passenger follow in the rail transit network. Finally, we validate the reasonability of our proposed method by using the actual data of Beijing subway network. It has been shown that our proposed method can effectively measure the scale-free range of the urban rail transit network, network development and the fractal characteristics of time-varying passenger flow, which further provides a reference for network planning and analysis of passenger flow.
Introduction to the fractality principle of consciousness and the sentyon postulate
Bieberich, Erhard
2013-01-01
Recently, consciousness research has gained much attention. Indeed, the question at stake is significant: why is the brain not just a computing device, but generates a perception from within? Ambitious endeavors trying to simulate the entire human brain assume that the algorithm will do the trick: as soon as we assemble the brain in a computer and increase the number of operations per time, consciousness will emerge by itself. I disagree with this simplistic representation. My argument emerges from the “atomism paradox”: the irreducible space of the consciously perceived world, the endospace is incompatible with the reducible and decomposable architecture of the brain or a computer. I will first discuss the fundamental challenges in current consciousness models and then propose a new model based on the fractality principle: “the whole is in each of its parts”. This new model copes with the atomism paradox by implementing an iterative mapping of information from higher order brain structures to smaller scales on the cellular and molecular level, which I will refer to as “fractalization”. This information fractalization gives rise to a new form of matter that is conscious (“bright matter”). Bright matter is composed of conscious particles or units named “sentyons”. The internal fractality of these sentyons will close a loop (the “psychic loop”) in a recurrent fractal neural network (RFNN) that allows for continuous and complete information transformation and sharing between higher order brain structures and the endpoint substrate of consciousness at the molecular level. PMID:23950765
Fractal analysis as a potential tool for surface morphology of thin films
NASA Astrophysics Data System (ADS)
Soumya, S.; Swapna, M. S.; Raj, Vimal; Mahadevan Pillai, V. P.; Sankararaman, S.
2017-12-01
Fractal geometry developed by Mandelbrot has emerged as a potential tool for analyzing complex systems in the diversified fields of science, social science, and technology. Self-similar objects having the same details in different scales are referred to as fractals and are analyzed using the mathematics of non-Euclidean geometry. The present work is an attempt to correlate fractal dimension for surface characterization by Atomic Force Microscopy (AFM). Taking the AFM images of zinc sulphide (ZnS) thin films prepared by pulsed laser deposition (PLD) technique, under different annealing temperatures, the effect of annealing temperature and surface roughness on fractal dimension is studied. The annealing temperature and surface roughness show a strong correlation with fractal dimension. From the regression equation set, the surface roughness at a given annealing temperature can be calculated from the fractal dimension. The AFM images are processed using Photoshop and fractal dimension is calculated by box-counting method. The fractal dimension decreases from 1.986 to 1.633 while the surface roughness increases from 1.110 to 3.427, for a change of annealing temperature 30 ° C to 600 ° C. The images are also analyzed by power spectrum method to find the fractal dimension. The study reveals that the box-counting method gives better results compared to the power spectrum method.
NASA Astrophysics Data System (ADS)
Drobny, Jon; Curreli, Davide; Ruzic, David; Lasa, Ane; Green, David; Canik, John; Younkin, Tim; Blondel, Sophie; Wirth, Brian
2017-10-01
Surface roughness greatly impacts material erosion, and thus plays an important role in Plasma-Surface Interactions. Developing strategies for efficiently introducing rough surfaces into ion-solid interaction codes will be an important step towards whole-device modeling of plasma devices and future fusion reactors such as ITER. Fractal TRIDYN (F-TRIDYN) is an upgraded version of the Monte Carlo, BCA program TRIDYN developed for this purpose that includes an explicit fractal model of surface roughness and extended input and output options for file-based code coupling. Code coupling with both plasma and material codes has been achieved and allows for multi-scale, whole-device modeling of plasma experiments. These code coupling results will be presented. F-TRIDYN has been further upgraded with an alternative, statistical model of surface roughness. The statistical model is significantly faster than and compares favorably to the fractal model. Additionally, the statistical model compares well to alternative computational surface roughness models and experiments. Theoretical links between the fractal and statistical models are made, and further connections to experimental measurements of surface roughness are explored. This work was supported by the PSI-SciDAC Project funded by the U.S. Department of Energy through contract DOE-DE-SC0008658.
Fuss, Franz Konstantin
2013-01-01
Standard methods for computing the fractal dimensions of time series are usually tested with continuous nowhere differentiable functions, but not benchmarked with actual signals. Therefore they can produce opposite results in extreme signals. These methods also use different scaling methods, that is, different amplitude multipliers, which makes it difficult to compare fractal dimensions obtained from different methods. The purpose of this research was to develop an optimisation method that computes the fractal dimension of a normalised (dimensionless) and modified time series signal with a robust algorithm and a running average method, and that maximises the difference between two fractal dimensions, for example, a minimum and a maximum one. The signal is modified by transforming its amplitude by a multiplier, which has a non-linear effect on the signal's time derivative. The optimisation method identifies the optimal multiplier of the normalised amplitude for targeted decision making based on fractal dimensions. The optimisation method provides an additional filter effect and makes the fractal dimensions less noisy. The method is exemplified by, and explained with, different signals, such as human movement, EEG, and acoustic signals.
2013-01-01
Standard methods for computing the fractal dimensions of time series are usually tested with continuous nowhere differentiable functions, but not benchmarked with actual signals. Therefore they can produce opposite results in extreme signals. These methods also use different scaling methods, that is, different amplitude multipliers, which makes it difficult to compare fractal dimensions obtained from different methods. The purpose of this research was to develop an optimisation method that computes the fractal dimension of a normalised (dimensionless) and modified time series signal with a robust algorithm and a running average method, and that maximises the difference between two fractal dimensions, for example, a minimum and a maximum one. The signal is modified by transforming its amplitude by a multiplier, which has a non-linear effect on the signal's time derivative. The optimisation method identifies the optimal multiplier of the normalised amplitude for targeted decision making based on fractal dimensions. The optimisation method provides an additional filter effect and makes the fractal dimensions less noisy. The method is exemplified by, and explained with, different signals, such as human movement, EEG, and acoustic signals. PMID:24151522
Fractal Analysis of Rock Joint Profiles
NASA Astrophysics Data System (ADS)
Audy, Ondřej; Ficker, Tomáš
2017-10-01
Surface reliefs of rock joints are analyzed in geotechnics when shear strength of rocky slopes is estimated. The rock joint profiles actually are self-affine fractal curves and computations of their fractal dimensions require special methods. Many papers devoted to the fractal properties of these profiles were published in the past but only a few of those papers employed a convenient computational method that would have guaranteed a sound value of that dimension. As a consequence, anomalously low dimensions were presented. This contribution deals with two computational modifications that lead to sound fractal dimensions of the self-affine rock joint profiles. These are the modified box-counting method and the modified yard-stick method sometimes called the compass method. Both these methods are frequently applied to self-similar fractal curves but the self-affine profile curves due to their self-affine nature require modified computational procedures implemented in computer programs.
The Fractal Patterns of Words in a Text: A Method for Automatic Keyword Extraction.
Najafi, Elham; Darooneh, Amir H
2015-01-01
A text can be considered as a one dimensional array of words. The locations of each word type in this array form a fractal pattern with certain fractal dimension. We observe that important words responsible for conveying the meaning of a text have dimensions considerably different from one, while the fractal dimensions of unimportant words are close to one. We introduce an index quantifying the importance of the words in a given text using their fractal dimensions and then ranking them according to their importance. This index measures the difference between the fractal pattern of a word in the original text relative to a shuffled version. Because the shuffled text is meaningless (i.e., words have no importance), the difference between the original and shuffled text can be used to ascertain degree of fractality. The degree of fractality may be used for automatic keyword detection. Words with the degree of fractality higher than a threshold value are assumed to be the retrieved keywords of the text. We measure the efficiency of our method for keywords extraction, making a comparison between our proposed method and two other well-known methods of automatic keyword extraction.
The Fractal Patterns of Words in a Text: A Method for Automatic Keyword Extraction
Najafi, Elham; Darooneh, Amir H.
2015-01-01
A text can be considered as a one dimensional array of words. The locations of each word type in this array form a fractal pattern with certain fractal dimension. We observe that important words responsible for conveying the meaning of a text have dimensions considerably different from one, while the fractal dimensions of unimportant words are close to one. We introduce an index quantifying the importance of the words in a given text using their fractal dimensions and then ranking them according to their importance. This index measures the difference between the fractal pattern of a word in the original text relative to a shuffled version. Because the shuffled text is meaningless (i.e., words have no importance), the difference between the original and shuffled text can be used to ascertain degree of fractality. The degree of fractality may be used for automatic keyword detection. Words with the degree of fractality higher than a threshold value are assumed to be the retrieved keywords of the text. We measure the efficiency of our method for keywords extraction, making a comparison between our proposed method and two other well-known methods of automatic keyword extraction. PMID:26091207
Recurrence Quantification of Fractal Structures
Webber, Charles L.
2012-01-01
By definition, fractal structures possess recurrent patterns. At different levels repeating patterns can be visualized at higher magnifications. The purpose of this chapter is threefold. First, general characteristics of dynamical systems are addressed from a theoretical mathematical perspective. Second, qualitative and quantitative recurrence analyses are reviewed in brief, but the reader is directed to other sources for explicit details. Third, example mathematical systems that generate strange attractors are explicitly defined, giving the reader the ability to reproduce the rich dynamics of continuous chaotic flows or discrete chaotic iterations. The challenge is then posited for the reader to study for themselves the recurrent structuring of these different dynamics. With a firm appreciation of the power of recurrence analysis, the reader will be prepared to turn their sights on real-world systems (physiological, psychological, mechanical, etc.). PMID:23060808
Fractal tomography and its application in 3D vision
NASA Astrophysics Data System (ADS)
Trubochkina, N.
2018-01-01
A three-dimensional artistic fractal tomography method that implements a non-glasses 3D visualization of fractal worlds in layered media is proposed. It is designed for the glasses-free 3D vision of digital art objects and films containing fractal content. Prospects for the development of this method in art galleries and the film industry are considered.
Image encryption based on fractal-structured phase mask in fractional Fourier transform domain
NASA Astrophysics Data System (ADS)
Zhao, Meng-Dan; Gao, Xu-Zhen; Pan, Yue; Zhang, Guan-Lin; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian
2018-04-01
We present an optical encryption approach based on the combination of fractal Fresnel lens (FFL) and fractional Fourier transform (FrFT). Our encryption approach is in fact a four-fold encryption scheme, including the random phase encoding produced by the Gerchberg–Saxton algorithm, a FFL, and two FrFTs. A FFL is composed of a Sierpinski carpet fractal plate and a Fresnel zone plate. In our encryption approach, the security is enhanced due to the more expandable key spaces and the use of FFL overcomes the alignment problem of the optical axis in optical system. Only using the perfectly matched parameters of the FFL and the FrFT, the plaintext can be recovered well. We present an image encryption algorithm that from the ciphertext we can get two original images by the FrFT with two different phase distribution keys, obtained by performing 100 iterations between the two plaintext and ciphertext, respectively. We test the sensitivity of our approach to various parameters such as the wavelength of light, the focal length of FFL, and the fractional orders of FrFT. Our approach can resist various attacks.
NASA Astrophysics Data System (ADS)
Julaiti, Alafate; Wu, Bin; Zhang, Zhongzhi
2013-05-01
The eigenvalues of the normalized Laplacian matrix of a network play an important role in its structural and dynamical aspects associated with the network. In this paper, we study the spectra and their applications of normalized Laplacian matrices of a family of fractal trees and dendrimers modeled by Cayley trees, both of which are built in an iterative way. For the fractal trees, we apply the spectral decimation approach to determine analytically all the eigenvalues and their corresponding multiplicities, with the eigenvalues provided by a recursive relation governing the eigenvalues of networks at two successive generations. For Cayley trees, we show that all their eigenvalues can be obtained by computing the roots of several small-degree polynomials defined recursively. By using the relation between normalized Laplacian spectra and eigentime identity, we derive the explicit solution to the eigentime identity for random walks on the two treelike networks, the leading scalings of which follow quite different behaviors. In addition, we corroborate the obtained eigenvalues and their degeneracies through the link between them and the number of spanning trees.
Iterons, fractals and computations of automata
NASA Astrophysics Data System (ADS)
Siwak, Paweł
1999-03-01
Processing of strings by some automata, when viewed on space-time (ST) diagrams, reveals characteristic soliton-like coherent periodic objects. They are inherently associated with iterations of automata mappings thus we call them the iterons. In the paper we present two classes of one-dimensional iterons: particles and filtrons. The particles are typical for parallel (cellular) processing, while filtrons, introduced in (32) are specific for serial processing of strings. In general, the images of iterated automata mappings exhibit not only coherent entities but also the fractals, and quasi-periodic and chaotic dynamics. We show typical images of such computations: fractals, multiplication by a number, and addition of binary numbers defined by a Turing machine. Then, the particles are presented as iterons generated by cellular automata in three computations: B/U code conversion (13, 29), majority classification (9), and in discrete version of the FPU (Fermi-Pasta-Ulam) dynamics (7, 23). We disclose particles by a technique of combinational recoding of ST diagrams (as opposed to sequential recoding). Subsequently, we recall the recursive filters based on FCA (filter cellular automata) window operators, and considered by Park (26), Ablowitz (1), Fokas (11), Fuchssteiner (12), Bruschi (5) and Jiang (20). We present the automata equivalents to these filters (33). Some of them belong to the class of filter automata introduced in (30). We also define and illustrate some properties of filtrons. Contrary to particles, the filtrons interact nonlocally in the sense that distant symbols may influence one another. Thus their interactions are very unusual. Some examples have been given in (32). Here we show new examples of filtron phenomena: multifiltron solitonic collisions, attracting and repelling filtrons, trapped bouncing filtrons (which behave like a resonance cavity) and quasi filtrons.
Risović, Dubravko; Pavlović, Zivko
2013-01-01
Processing of gray scale images in order to determine the corresponding fractal dimension is very important due to widespread use of imaging technologies and application of fractal analysis in many areas of science, technology, and medicine. To this end, many methods for estimation of fractal dimension from gray scale images have been developed and routinely used. Unfortunately different methods (dimension estimators) often yield significantly different results in a manner that makes interpretation difficult. Here, we report results of comparative assessment of performance of several most frequently used algorithms/methods for estimation of fractal dimension. To that purpose, we have used scanning electron microscope images of aluminum oxide surfaces with different fractal dimensions. The performance of algorithms/methods was evaluated using the statistical Z-score approach. The differences between performances of six various methods are discussed and further compared with results obtained by electrochemical impedance spectroscopy on the same samples. The analysis of results shows that the performance of investigated algorithms varies considerably and that systematically erroneous fractal dimensions could be estimated using certain methods. The differential cube counting, triangulation, and box counting algorithms showed satisfactory performance in the whole investigated range of fractal dimensions. Difference statistic is proved to be less reliable generating 4% of unsatisfactory results. The performances of the Power spectrum, Partitioning and EIS were unsatisfactory in 29%, 38%, and 75% of estimations, respectively. The results of this study should be useful and provide guidelines to researchers using/attempting fractal analysis of images obtained by scanning microscopy or atomic force microscopy. © Wiley Periodicals, Inc.
Methods of nanoassembly of a fractal polymer and materials formed thereby
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newkome, George R; Moorefield, Charles N
2012-07-24
The invention relates to the formation of synthesized fractal constructs and the methods of chemical self-assembly for the preparation of a non-dendritic, nano-scale, fractal constructs or molecules. More particularly, the invention relates to fractal constructs formed by molecular self-assembly, to create synthetic, nanometer-scale fractal shapes. In an embodiment, a nanoscale Sierpinski hexagonal gasket is formed. This non-dendritic, perfectly self-similar fractal macromolecule is comprised of bisterpyridine building blocks that are bound together by coordination to 36 Ru and 6 Fe ions to form a nearly planar array of increasingly larger hexagons around a hollow center.
Methods of nanoassembly of a fractal polymer and materials formed thereby
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newkome, George R; Moorefield, Charles N
2014-09-23
The invention relates to the formation of synthesized fractal constructs and the methods of chemical self-assembly for the preparation of a non-dendritic, nano-scale, fractal constructs or molecules. More particularly, the invention relates to fractal constructs formed by molecular self-assembly, to create synthetic, nanometer-scale fractal shapes. In an embodiment, a nanoscale Sierpinski hexagonal gasket is formed. This non-dendritic, perfectly self-similar fractal macromolecule is comprised of bisterpyridine building blocks that are bound together by coordination to (36) Ru and (6) Fe ions to form a nearly planar array of increasingly larger hexagons around a hollow center.
Fractal-Based Image Analysis In Radiological Applications
NASA Astrophysics Data System (ADS)
Dellepiane, S.; Serpico, S. B.; Vernazza, G.; Viviani, R.
1987-10-01
We present some preliminary results of a study aimed to assess the actual effectiveness of fractal theory and to define its limitations in the area of medical image analysis for texture description, in particular, in radiological applications. A general analysis to select appropriate parameters (mask size, tolerance on fractal dimension estimation, etc.) has been performed on synthetically generated images of known fractal dimensions. Moreover, we analyzed some radiological images of human organs in which pathological areas can be observed. Input images were subdivided into blocks of 6x6 pixels; then, for each block, the fractal dimension was computed in order to create fractal images whose intensity was related to the D value, i.e., texture behaviour. Results revealed that the fractal images could point out the differences between normal and pathological tissues. By applying histogram-splitting segmentation to the fractal images, pathological areas were isolated. Two different techniques (i.e., the method developed by Pentland and the "blanket" method) were employed to obtain fractal dimension values, and the results were compared; in both cases, the appropriateness of the fractal description of the original images was verified.
Fractal analysis of bone structure with applications to osteoporosis and microgravity effects
NASA Astrophysics Data System (ADS)
Acharya, Raj S.; LeBlanc, Adrian; Shackelford, Linda; Swarnakar, Vivek; Krishnamurthy, Ram; Hausman, E.; Lin, Chin-Shoou
1995-05-01
We characterize the trabecular structure with the aid of fractal dimension. We use alternating sequential filters (ASF) to generate a nonlinear pyramid for fractal dimension computations. We do not make any assumptions of the statistical distributions of the underlying fractal bone structure. The only assumption of our scheme is the rudimentary definition of self-similarity. This allows us the freedom of not being constrained by statistical estimation schemes. With mathematical simulations, we have shown that the ASF methods outperform other existing methods for fractal dimension estimation. We have shown that the fractal dimension remains the same when computed with both the x-ray images and the MRI images of the patella. We have shown that the fractal dimension of osteoporotic subjects is lower than that of the normal subjects. In animal models, we have shown that the fractal dimension of osteoporotic rats was lower than that of the normal rats. In a 17 week bedrest study, we have shown that the subject's prebedrest fractal dimension is higher than that of the postbedrest fractal dimension.
Fractal analysis of bone structure with applications to osteoporosis and microgravity effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acharya, R.S.; Swarnarkar, V.; Krishnamurthy, R.
1995-12-31
The authors characterize the trabecular structure with the aid of fractal dimension. The authors use Alternating Sequential filters to generate a nonlinear pyramid for fractal dimension computations. The authors do not make any assumptions of the statistical distributions of the underlying fractal bone structure. The only assumption of the scheme is the rudimentary definition of self similarity. This allows them the freedom of not being constrained by statistical estimation schemes. With mathematical simulations, the authors have shown that the ASF methods outperform other existing methods for fractal dimension estimation. They have shown that the fractal dimension remains the same whenmore » computed with both the X-Ray images and the MRI images of the patella. They have shown that the fractal dimension of osteoporotic subjects is lower than that of the normal subjects. In animal models, the authors have shown that the fractal dimension of osteoporotic rats was lower than that of the normal rats. In a 17 week bedrest study, they have shown that the subject`s prebedrest fractal dimension is higher than that of the postbedrest fractal dimension.« less
Wang, Qiuyan; Zhao, Wenxiang; Liang, Zhiqiang; Wang, Xibin; Zhou, Tianfeng; Wu, Yongbo; Jiao, Li
2018-03-01
The wear behaviors of grinding wheel have significant influence on the work-surface topography. However, a comprehensive and quantitative method is lacking for evaluating the wear conditions of grinding wheel. In this paper, a fractal analysis method is used to investigate the wear behavior of resin-bonded diamond wheel in Elliptical Ultrasonic Assisted Grinding (EUAG) of monocrystal sapphire, and a series of experiments on EUAG and conventional grinding (CG) are performed. The results show that the fractal dimension of grinding wheel topography is highly correlated to the wear behavior, i.e., grain fracture, grain pullout, and wheel loading. An increase in cutting edge density on the wheel surface results in an increase of the fractal dimension, but an increase in the grain pullout and wheel loading results in a decrease in the fractal dimension. The wheel topography in EUAG has a higher fractal dimension than that in CG before 60 passes due to better self-sharpening behavior, and then has a smaller fractal dimension because of more serious wheel loadings after 60 passes. By angle-dependent distribution analysis of profile fractal dimensions, the wheel surface topography is transformed from isotropic to anisotropic. These indicated that the fractal analysis method could be further used in monitoring of a grinding wheel performance in EUAG. Copyright © 2017 Elsevier B.V. All rights reserved.
A simple method for estimating the size of nuclei on fractal surfaces
NASA Astrophysics Data System (ADS)
Zeng, Qiang
2017-10-01
Determining the size of nuclei on complex surfaces remains a big challenge in aspects of biological, material and chemical engineering. Here the author reported a simple method to estimate the size of the nuclei in contact with complex (fractal) surfaces. The established approach was based on the assumptions of contact area proportionality for determining nucleation density and the scaling congruence between nuclei and surfaces for identifying contact regimes. It showed three different regimes governing the equations for estimating the nucleation site density. Nuclei in the size large enough could eliminate the effect of fractal structure. Nuclei in the size small enough could lead to the independence of nucleation site density on fractal parameters. Only when nuclei match the fractal scales, the nucleation site density is associated with the fractal parameters and the size of the nuclei in a coupling pattern. The method was validated by the experimental data reported in the literature. The method may provide an effective way to estimate the size of nuclei on fractal surfaces, through which a number of promising applications in relative fields can be envisioned.
Beyond multi-fractals: surrogate time series and fields
NASA Astrophysics Data System (ADS)
Venema, V.; Simmer, C.
2007-12-01
Most natural complex are characterised by variability on a large range of temporal and spatial scales. The two main methodologies to generate such structures are Fourier/FARIMA based algorithms and multifractal methods. The former is restricted to Gaussian data, whereas the latter requires the structure to be self-similar. This work will present so-called surrogate data as an alternative that works with any (empirical) distribution and power spectrum. The best-known surrogate algorithm is the iterative amplitude adjusted Fourier transform (IAAFT) algorithm. We have studied six different geophysical time series (two clouds, runoff of a small and a large river, temperature and rain) and their surrogates. The power spectra and consequently the 2nd order structure functions were replicated accurately. Even the fourth order structure function was more accurately reproduced by the surrogates as would be possible by a fractal method, because the measured structure deviated too strong from fractal scaling. Only in case of the daily rain sums a fractal method could have been more accurate. Just as Fourier and multifractal methods, the current surrogates are not able to model the asymmetric increment distributions observed for runoff, i.e., they cannot reproduce nonlinear dynamical processes that are asymmetric in time. Furthermore, we have found differences for the structure functions on small scales. Surrogate methods are especially valuable for empirical studies, because the time series and fields that are generated are able to mimic measured variables accurately. Our main application is radiative transfer through structured clouds. Like many geophysical fields, clouds can only be sampled sparsely, e.g. with in-situ airborne instruments. However, for radiative transfer calculations we need full 3-dimensional cloud fields. A first study relating the measured properties of the cloud droplets and the radiative properties of the cloud field by generating surrogate cloud fields yielded good results within the measurement error. A further test of the suitability of the surrogate clouds for radiative transfer is evaluated by comparing the radiative properties of model cloud fields of sparse cumulus and stratocumulus with their surrogate fields. The bias and root mean square error in various radiative properties is small and the deviations in the radiances and irradiances are not statistically significant, i.e. these deviations can be attributed to the Monte Carlo noise of the radiative transfer calculations. We compared these results with optical properties of synthetic clouds that have either the correct distribution (but no spatial correlations) or the correct power spectrum (but a Gaussian distribution). These clouds did show statistical significant deviations. For more information see: http://www.meteo.uni-bonn.de/venema/themes/surrogates/
Comprehensive Fractal Description of Porosity of Coal of Different Ranks
Ren, Jiangang; Zhang, Guocheng; Song, Zhimin; Liu, Gaofeng; Li, Bing
2014-01-01
We selected, as the objects of our research, lignite from the Beizao Mine, gas coal from the Caiyuan Mine, coking coal from the Xiqu Mine, and anthracite from the Guhanshan Mine. We used the mercury intrusion method and the low-temperature liquid nitrogen adsorption method to analyze the structure and shape of the coal pores and calculated the fractal dimensions of different aperture segments in the coal. The experimental results show that the fractal dimension of the aperture segment of lignite, gas coal, and coking coal with an aperture of greater than or equal to 10 nm, as well as the fractal dimension of the aperture segment of anthracite with an aperture of greater than or equal to 100 nm, can be calculated using the mercury intrusion method; the fractal dimension of the coal pore, with an aperture range between 2.03 nm and 361.14 nm, can be calculated using the liquid nitrogen adsorption method, of which the fractal dimensions bounded by apertures of 10 nm and 100 nm are different. Based on these findings, we defined and calculated the comprehensive fractal dimensions of the coal pores and achieved the unity of fractal dimensions for full apertures of coal pores, thereby facilitating, overall characterization for the heterogeneity of the coal pore structure. PMID:24955407
Fractal analysis of mandibular trabecular bone: optimal tile sizes for the tile counting method
Huh, Kyung-Hoe; Baik, Jee-Seon; Heo, Min-Suk; Lee, Sam-Sun; Choi, Soon-Chul; Lee, Sun-Bok; Lee, Seung-Pyo
2011-01-01
Purpose This study was performed to determine the optimal tile size for the fractal dimension of the mandibular trabecular bone using a tile counting method. Materials and Methods Digital intraoral radiographic images were obtained at the mandibular angle, molar, premolar, and incisor regions of 29 human dry mandibles. After preprocessing, the parameters representing morphometric characteristics of the trabecular bone were calculated. The fractal dimensions of the processed images were analyzed in various tile sizes by the tile counting method. Results The optimal range of tile size was 0.132 mm to 0.396 mm for the fractal dimension using the tile counting method. The sizes were closely related to the morphometric parameters. Conclusion The fractal dimension of mandibular trabecular bone, as calculated with the tile counting method, can be best characterized with a range of tile sizes from 0.132 to 0.396 mm. PMID:21977478
Pramanik, Brahmananda; Tadepalli, Tezeswi; Mantena, P. Raju
2012-01-01
In this study, the fractal dimensions of failure surfaces of vinyl ester based nanocomposites are estimated using two classical methods, Vertical Section Method (VSM) and Slit Island Method (SIM), based on the processing of 3D digital microscopic images. Self-affine fractal geometry has been observed in the experimentally obtained failure surfaces of graphite platelet reinforced nanocomposites subjected to quasi-static uniaxial tensile and low velocity punch-shear loading. Fracture energy and fracture toughness are estimated analytically from the surface fractal dimensionality. Sensitivity studies show an exponential dependency of fracture energy and fracture toughness on the fractal dimensionality. Contribution of fracture energy to the total energy absorption of these nanoparticle reinforced composites is demonstrated. For the graphite platelet reinforced nanocomposites investigated, surface fractal analysis has depicted the probable ductile or brittle fracture propagation mechanism, depending upon the rate of loading. PMID:28817017
Fractal characteristic in the wearing of cutting tool
NASA Astrophysics Data System (ADS)
Mei, Anhua; Wang, Jinghui
1995-11-01
This paper studies the cutting tool wear with fractal geometry. The wearing image of the flank has been collected by machine vision which consists of CCD camera and personal computer. After being processed by means of preserving smoothing, binary making and edge extracting, the clear boundary enclosing the worn area has been obtained. The fractal dimension of the worn surface is calculated by the methods called `Slit Island' and `Profile'. The experiments and calciating give the conclusion that the worn surface is enclosed by a irregular boundary curve with some fractal dimension and characteristics of self-similarity. Furthermore, the relation between the cutting velocity and the fractal dimension of the worn region has been submitted. This paper presents a series of methods for processing and analyzing the fractal information in the blank wear, which can be applied to research the projective relation between the fractal structure and the wear state, and establish the fractal model of the cutting tool wear.
Fractal analysis of mandibular trabecular bone: optimal tile sizes for the tile counting method.
Huh, Kyung-Hoe; Baik, Jee-Seon; Yi, Won-Jin; Heo, Min-Suk; Lee, Sam-Sun; Choi, Soon-Chul; Lee, Sun-Bok; Lee, Seung-Pyo
2011-06-01
This study was performed to determine the optimal tile size for the fractal dimension of the mandibular trabecular bone using a tile counting method. Digital intraoral radiographic images were obtained at the mandibular angle, molar, premolar, and incisor regions of 29 human dry mandibles. After preprocessing, the parameters representing morphometric characteristics of the trabecular bone were calculated. The fractal dimensions of the processed images were analyzed in various tile sizes by the tile counting method. The optimal range of tile size was 0.132 mm to 0.396 mm for the fractal dimension using the tile counting method. The sizes were closely related to the morphometric parameters. The fractal dimension of mandibular trabecular bone, as calculated with the tile counting method, can be best characterized with a range of tile sizes from 0.132 to 0.396 mm.
A spectrum fractal feature classification algorithm for agriculture crops with hyper spectrum image
NASA Astrophysics Data System (ADS)
Su, Junying
2011-11-01
A fractal dimension feature analysis method in spectrum domain for hyper spectrum image is proposed for agriculture crops classification. Firstly, a fractal dimension calculation algorithm in spectrum domain is presented together with the fast fractal dimension value calculation algorithm using the step measurement method. Secondly, the hyper spectrum image classification algorithm and flowchart is presented based on fractal dimension feature analysis in spectrum domain. Finally, the experiment result of the agricultural crops classification with FCL1 hyper spectrum image set with the proposed method and SAM (spectral angle mapper). The experiment results show it can obtain better classification result than the traditional SAM feature analysis which can fulfill use the spectrum information of hyper spectrum image to realize precision agricultural crops classification.
A general method for computing Tutte polynomials of self-similar graphs
NASA Astrophysics Data System (ADS)
Gong, Helin; Jin, Xian'an
2017-10-01
Self-similar graphs were widely studied in both combinatorics and statistical physics. Motivated by the construction of the well-known 3-dimensional Sierpiński gasket graphs, in this paper we introduce a family of recursively constructed self-similar graphs whose inner duals are of the self-similar property. By combining the dual property of the Tutte polynomial and the subgraph-decomposition trick, we show that the Tutte polynomial of this family of graphs can be computed in an iterative way and in particular the exact expression of the formula of the number of their spanning trees is derived. Furthermore, we show our method is a general one that is easily extended to compute Tutte polynomials for other families of self-similar graphs such as Farey graphs, 2-dimensional Sierpiński gasket graphs, Hanoi graphs, modified Koch graphs, Apollonian graphs, pseudofractal scale-free web, fractal scale-free network, etc.
NASA Astrophysics Data System (ADS)
Sheng, Guanglong; Su, Yuliang; Wang, Wendong; Javadpour, Farzam; Tang, Meirong
According to hydraulic-fracturing practices conducted in shale reservoirs, effective stimulated reservoir volume (ESRV) significantly affects the production of hydraulic fractured well. Therefore, estimating ESRV is an important prerequisite for confirming the success of hydraulic fracturing and predicting the production of hydraulic fracturing wells in shale reservoirs. However, ESRV calculation remains a longstanding challenge in hydraulic-fracturing operation. In considering fractal characteristics of the fracture network in stimulated reservoir volume (SRV), this paper introduces a fractal random-fracture-network algorithm for converting the microseismic data into fractal geometry. Five key parameters, including bifurcation direction, generating length (d), deviation angle (α), iteration times (N) and generating rules, are proposed to quantitatively characterize fracture geometry. Furthermore, we introduce an orthogonal-fractures coupled dual-porosity-media representation elementary volume (REV) flow model to predict the volumetric flux of gas in shale reservoirs. On the basis of the migration of adsorbed gas in porous kerogen of REV with different fracture spaces, an ESRV criterion for shale reservoirs with SRV is proposed. Eventually, combining the ESRV criterion and fractal characteristic of a fracture network, we propose a new approach for evaluating ESRV in shale reservoirs. The approach has been used in the Eagle Ford shale gas reservoir, and results show that the fracture space has a measurable influence on migration of adsorbed gas. The fracture network can contribute to enhancement of the absorbed gas recovery ratio when the fracture space is less than 0.2 m. ESRV is evaluated in this paper, and results indicate that the ESRV accounts for 27.87% of the total SRV in shale gas reservoirs. This work is important and timely for evaluating fracturing effect and predicting production of hydraulic fracturing wells in shale reservoirs.
Local orientational mobility in regular hyperbranched polymers.
Dolgushev, Maxim; Markelov, Denis A; Fürstenberg, Florian; Guérin, Thomas
2016-07-01
We study the dynamics of local bond orientation in regular hyperbranched polymers modeled by Vicsek fractals. The local dynamics is investigated through the temporal autocorrelation functions of single bonds and the corresponding relaxation forms of the complex dielectric susceptibility. We show that the dynamic behavior of single segments depends on their remoteness from the periphery rather than on the size of the whole macromolecule. Remarkably, the dynamics of the core segments (which are most remote from the periphery) shows a scaling behavior that differs from the dynamics obtained after structural average. We analyze the most relevant processes of single segment motion and provide an analytic approximation for the corresponding relaxation times. Furthermore, we describe an iterative method to calculate the orientational dynamics in the case of very large macromolecular sizes.
Teaching and learning recursive programming: a review of the research literature
NASA Astrophysics Data System (ADS)
McCauley, Renée; Grissom, Scott; Fitzgerald, Sue; Murphy, Laurie
2015-01-01
Hundreds of articles have been published on the topics of teaching and learning recursion, yet fewer than 50 of them have published research results. This article surveys the computing education research literature and presents findings on challenges students encounter in learning recursion, mental models students develop as they learn recursion, and best practices in introducing recursion. Effective strategies for introducing the topic include using different contexts such as recurrence relations, programming examples, fractal images, and a description of how recursive methods are processed using a call stack. Several studies compared the efficacy of introducing iteration before recursion and vice versa. The paper concludes with suggestions for future research into how students learn and understand recursion, including a look at the possible impact of instructor attitude and newer pedagogies.
a Fractal Analysis for Net Present Value of Multi-Stage Hydraulic Fractured Horizontal Well
NASA Astrophysics Data System (ADS)
Lu, Hong-Lin; Zhang, Ji-Jun; Tan, Xiao-Hua; Li, Xiao-Ping; Zhao, Jia-Hui
Because of the low permeability, multi-stage hydraulic fractured horizontal wells (MHFHWs) occupy a dominant position among production wells in tight gas reservoir. However, net present value (NPV) estimation method for MHFHW in tight gas reservoirs often ignores the effect of heterogeneity in microscopic pore structure. Apart from that, a new fractal model is presented for NPV of MHFHW, based on the fractal expressions of formation parameters. First, with the aid of apparent permeability model, a pseudo pressure expression considering both reservoir fractal features and slippage effect is derived, contributing to establish the productivity model. Secondly, economic assessment method is built based on the fractal productivity model, in order to obtain the NPV of MHFHW. Thirdly, the type curves are illustrated and the influences of different fractal parameters are discussed. The pore fractal dimensions Df and the capillary tortuosity fractal dimensions DT have significant effects on the NPV of an MHFHW. Finally, the proposed model in this paper provides a new methodology for analyzing and predicting the NPV of an MHFHW and may be conducive to a better understanding of the optimal design of MHFHW.
Ulam method and fractal Weyl law for Perron-Frobenius operators
NASA Astrophysics Data System (ADS)
Ermann, L.; Shepelyansky, D. L.
2010-06-01
We use the Ulam method to study spectral properties of the Perron-Frobenius operators of dynamical maps in a chaotic regime. For maps with absorption we show numerically that the spectrum is characterized by the fractal Weyl law recently established for nonunitary operators describing poles of quantum chaotic scattering with the Weyl exponent ν = d-1, where d is the fractal dimension of corresponding strange set of trajectories nonescaping in future times. In contrast, for dissipative maps we numerically find the Weyl exponent ν = d/2 where d is the fractal dimension of strange attractor. The Weyl exponent can be also expressed via the relation ν = d0/2 where d0 is the fractal dimension of the invariant sets. We also discuss the properties of eigenvalues and eigenvectors of such operators characterized by the fractal Weyl law.
A new numerical approximation of the fractal ordinary differential equation
NASA Astrophysics Data System (ADS)
Atangana, Abdon; Jain, Sonal
2018-02-01
The concept of fractal medium is present in several real-world problems, for instance, in the geological formation that constitutes the well-known subsurface water called aquifers. However, attention has not been quite devoted to modeling for instance, the flow of a fluid within these media. We deem it important to remind the reader that the concept of fractal derivative is not to represent the fractal sharps but to describe the movement of the fluid within these media. Since this class of ordinary differential equations is highly complex to solve analytically, we present a novel numerical scheme that allows to solve fractal ordinary differential equations. Error analysis of the method is also presented. Application of the method and numerical approximation are presented for fractal order differential equation. The stability and the convergence of the numerical schemes are investigated in detail. Also some exact solutions of fractal order differential equations are presented and finally some numerical simulations are presented.
Characterisation of human non-proliferative diabetic retinopathy using the fractal analysis
Ţălu, Ştefan; Călugăru, Dan Mihai; Lupaşcu, Carmen Alina
2015-01-01
AIM To investigate and quantify changes in the branching patterns of the retina vascular network in diabetes using the fractal analysis method. METHODS This was a clinic-based prospective study of 172 participants managed at the Ophthalmological Clinic of Cluj-Napoca, Romania, between January 2012 and December 2013. A set of 172 segmented and skeletonized human retinal images, corresponding to both normal (24 images) and pathological (148 images) states of the retina were examined. An automatic unsupervised method for retinal vessel segmentation was applied before fractal analysis. The fractal analyses of the retinal digital images were performed using the fractal analysis software ImageJ. Statistical analyses were performed for these groups using Microsoft Office Excel 2003 and GraphPad InStat software. RESULTS It was found that subtle changes in the vascular network geometry of the human retina are influenced by diabetic retinopathy (DR) and can be estimated using the fractal geometry. The average of fractal dimensions D for the normal images (segmented and skeletonized versions) is slightly lower than the corresponding values of mild non-proliferative DR (NPDR) images (segmented and skeletonized versions). The average of fractal dimensions D for the normal images (segmented and skeletonized versions) is higher than the corresponding values of moderate NPDR images (segmented and skeletonized versions). The lowest values were found for the corresponding values of severe NPDR images (segmented and skeletonized versions). CONCLUSION The fractal analysis of fundus photographs may be used for a more complete undeTrstanding of the early and basic pathophysiological mechanisms of diabetes. The architecture of the retinal microvasculature in diabetes can be quantitative quantified by means of the fractal dimension. Microvascular abnormalities on retinal imaging may elucidate early mechanistic pathways for microvascular complications and distinguish patients with DR from healthy individuals. PMID:26309878
Using Peano Curves to Construct Laplacians on Fractals
NASA Astrophysics Data System (ADS)
Molitor, Denali; Ott, Nadia; Strichartz, Robert
2015-12-01
We describe a new method to construct Laplacians on fractals using a Peano curve from the circle onto the fractal, extending an idea that has been used in the case of certain Julia sets. The Peano curve allows us to visualize eigenfunctions of the Laplacian by graphing the pullback to the circle. We study in detail three fractals: the pentagasket, the octagasket and the magic carpet. We also use the method for two nonfractal self-similar sets, the torus and the equilateral triangle, obtaining appealing new visualizations of eigenfunctions on the triangle. In contrast to the many familiar pictures of approximations to standard Peano curves, that do no show self-intersections, our descriptions of approximations to the Peano curves have self-intersections that play a vital role in constructing graph approximations to the fractal with explicit graph Laplacians that give the fractal Laplacian in the limit.
GENERATING FRACTAL PATTERNS BY USING p-CIRCLE INVERSION
NASA Astrophysics Data System (ADS)
Ramírez, José L.; Rubiano, Gustavo N.; Zlobec, Borut Jurčič
2015-10-01
In this paper, we introduce the p-circle inversion which generalizes the classical inversion with respect to a circle (p = 2) and the taxicab inversion (p = 1). We study some basic properties and we also show the inversive images of some basic curves. We apply this new transformation to well-known fractals such as Sierpinski triangle, Koch curve, dragon curve, Fibonacci fractal, among others. Then we obtain new fractal patterns. Moreover, we generalize the method called circle inversion fractal be means of the p-circle inversion.
Crack image segmentation based on improved DBC method
NASA Astrophysics Data System (ADS)
Cao, Ting; Yang, Nan; Wang, Fengping; Gao, Ting; Wang, Weixing
2017-11-01
With the development of computer vision technology, crack detection based on digital image segmentation method arouses global attentions among researchers and transportation ministries. Since the crack always exhibits the random shape and complex texture, it is still a challenge to accomplish reliable crack detection results. Therefore, a novel crack image segmentation method based on fractal DBC (differential box counting) is introduced in this paper. The proposed method can estimate every pixel fractal feature based on neighborhood information which can consider the contribution from all possible direction in the related block. The block moves just one pixel every time so that it could cover all the pixels in the crack image. Unlike the classic DBC method which only describes fractal feature for the related region, this novel method can effectively achieve crack image segmentation according to the fractal feature of every pixel. The experiment proves the proposed method can achieve satisfactory results in crack detection.
NASA Astrophysics Data System (ADS)
García, Constantino A.; Otero, Abraham; Félix, Paulo; Presedo, Jesús; Márquez, David G.
2018-07-01
In the past few decades, it has been recognized that 1 / f fluctuations are ubiquitous in nature. The most widely used mathematical models to capture the long-term memory properties of 1 / f fluctuations have been stochastic fractal models. However, physical systems do not usually consist of just stochastic fractal dynamics, but they often also show some degree of deterministic behavior. The present paper proposes a model based on fractal stochastic and deterministic components that can provide a valuable basis for the study of complex systems with long-term correlations. The fractal stochastic component is assumed to be a fractional Brownian motion process and the deterministic component is assumed to be a band-limited signal. We also provide a method that, under the assumptions of this model, is able to characterize the fractal stochastic component and to provide an estimate of the deterministic components present in a given time series. The method is based on a Bayesian wavelet shrinkage procedure that exploits the self-similar properties of the fractal processes in the wavelet domain. This method has been validated over simulated signals and over real signals with economical and biological origin. Real examples illustrate how our model may be useful for exploring the deterministic-stochastic duality of complex systems, and uncovering interesting patterns present in time series.
Method for non-referential defect characterization using fractal encoding and active contours
Gleason, Shaun S [Knoxville, TN; Sari-Sarraf, Hamed [Lubbock, TX
2007-05-15
A method for identification of anomalous structures, such as defects, includes the steps of providing a digital image and applying fractal encoding to identify a location of at least one anomalous portion of the image. The method does not require a reference image to identify the location of the anomalous portion. The method can further include the step of initializing an active contour based on the location information obtained from the fractal encoding step and deforming an active contour to enhance the boundary delineation of the anomalous portion.
Electro-chemical manifestation of nanoplasmonics in fractal media
NASA Astrophysics Data System (ADS)
Baskin, Emmanuel; Iomin, Alexander
2013-06-01
Electrodynamics of composite materials with fractal geometry is studied in the framework of fractional calculus. This consideration establishes a link between fractal geometry of the media and fractional integrodifferentiation. The photoconductivity in the vicinity of the electrode-electrolyte fractal interface is studied. The methods of fractional calculus are employed to obtain an analytical expression for the giant local enhancement of the optical electric field inside the fractal composite structure at the condition of the surface plasmon excitation. This approach makes it possible to explain experimental data on photoconductivity in the nano-electrochemistry.
New methodology for evaluating osteoclastic activity induced by orthodontic load
ARAÚJO, Adriele Silveira; FERNANDES, Alline Birra Nolasco; MACIEL, José Vinicius Bolognesi; NETTO, Juliana de Noronha Santos; BOLOGNESE, Ana Maria
2015-01-01
Orthodontic tooth movement (OTM) is a dynamic process of bone modeling involving osteoclast-driven resorption on the compression side. Consequently, to estimate the influence of various situations on tooth movement, experimental studies need to analyze this cell. Objectives The aim of this study was to test and validate a new method for evaluating osteoclastic activity stimulated by mechanical loading based on the fractal analysis of the periodontal ligament (PDL)-bone interface. Material and Methods The mandibular right first molars of 14 rabbits were tipped mesially by a coil spring exerting a constant force of 85 cN. To evaluate the actual influence of osteoclasts on fractal dimension of bone surface, alendronate (3 mg/Kg) was injected weekly in seven of those rabbits. After 21 days, the animals were killed and their jaws were processed for histological evaluation. Osteoclast counts and fractal analysis (by the box counting method) of the PDL-bone interface were performed in histological sections of the right and left sides of the mandible. Results An increase in the number of osteoclasts and in fractal dimension after OTM only happened when alendronate was not administered. Strong correlation was found between the number of osteoclasts and fractal dimension. Conclusions Our results suggest that osteoclastic activity leads to an increase in bone surface irregularity, which can be quantified by its fractal dimension. This makes fractal analysis by the box counting method a potential tool for the assessment of osteoclastic activity on bone surfaces in microscopic examination. PMID:25760264
NASA Astrophysics Data System (ADS)
Wang, Heming; Liu, Yu; Song, Yongchen; Zhao, Yuechao; Zhao, Jiafei; Wang, Dayong
2012-11-01
Pore structure is one of important factors affecting the properties of porous media, but it is difficult to describe the complexity of pore structure exactly. Fractal theory is an effective and available method for quantifying the complex and irregular pore structure. In this paper, the fractal dimension calculated by box-counting method based on fractal theory was applied to characterize the pore structure of artificial cores. The microstructure or pore distribution in the porous material was obtained using the nuclear magnetic resonance imaging (MRI). Three classical fractals and one sand packed bed model were selected as the experimental material to investigate the influence of box sizes, threshold value, and the image resolution when performing fractal analysis. To avoid the influence of box sizes, a sequence of divisors of the image was proposed and compared with other two algorithms (geometric sequence and arithmetic sequence) with its performance of partitioning the image completely and bringing the least fitted error. Threshold value selected manually and automatically showed that it plays an important role during the image binary processing and the minimum-error method can be used to obtain an appropriate or reasonable one. Images obtained under different pixel matrices in MRI were used to analyze the influence of image resolution. Higher image resolution can detect more quantity of pore structure and increase its irregularity. With benefits of those influence factors, fractal analysis on four kinds of artificial cores showed the fractal dimension can be used to distinguish the different kinds of artificial cores and the relationship between fractal dimension and porosity or permeability can be expressed by the model of D = a - bln(x + c).
Fractal scaling in bottlenose dolphin (Tursiops truncatus) echolocation: A case study
NASA Astrophysics Data System (ADS)
Perisho, Shaun T.; Kelty-Stephen, Damian G.; Hajnal, Alen; Houser, Dorian; Kuczaj, Stan A., II
2016-02-01
Fractal scaling patterns, which entail a power-law relationship between magnitude of fluctuations in a variable and the scale at which the variable is measured, have been found in many aspects of human behavior. These findings have led to advances in behavioral models (e.g. providing empirical support for cascade-driven theories of cognition) and have had practical medical applications (e.g. providing new methods for early diagnosis of medical conditions). In the present paper, fractal analysis is used to investigate whether similar fractal scaling patterns exist in inter-click interval and peak-peak amplitude measurements of bottlenose dolphin click trains. Several echolocation recordings taken from two male bottlenose dolphins were analyzed using Detrended Fluctuation Analysis and Higuchi's (1988) method for determination of fractal dimension. Both animals were found to exhibit fractal scaling patterns near what is consistent with persistent long range correlations. These findings suggest that recent advances in human cognition and medicine may have important parallel applications to echolocation as well.
Shul'ts, E V; Baburin, I N; Karavaeva, T A; Karvasarskiĭ, B D; Slezin, V B
2011-01-01
Fifty-five patients with neurotic and neurosis-like disorders and 20 healthy controls, aged 17-64 years, have been examined. The basic research method was electroencephalography (EEG) with the fractal analysis of alpha power fluctuations. In patients, the changes in the fractal structure were of the same direction: the decrease of fractal indexes of low-frequency fluctuations and the increase of fractal indexes of mid-frequency fluctuations. Patients with neurosis-like disorders, in comparison to those with neurotic disorders, were characterized by more expressed (quantitative) changes in fractal structures of more extended character. It suggests the presence of deeper pathological changes in patients with neurosis-like disorders.
Transport properties of electrons in fractal magnetic-barrier structures
NASA Astrophysics Data System (ADS)
Sun, Lifeng; Fang, Chao; Guo, Yong
2010-09-01
Quantum transport properties in fractal magnetically modulated structures are studied by the transfer-matrix method. It is found that the transmission spectra depend sensitively not only on the incident energy and the direction of the wave vector but also on the stage of the fractal structures. Resonance splitting, enhancement, and position shift of the resonance peaks under different magnetic modulation are observed at four different fractal stages, and the relationship between the conductance in the fractal structure and magnetic modulation is also revealed. The results indicate the spectra of the transmission can be considered as fingerprints for the fractal structures, which show the subtle correspondence between magnetic structures and transport behaviors.
Fractual interrelationships in field and seismic data. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-01-07
Fractals provide a description of physical patterns over a range of scales in both time and space. Studies presented herein examine the fractal characteristics of various geological variables such as deformed bed-lengths, fold relief, seismic reflection arrival time variations, drainage and topographic patterns, and fracture systems. The studies are also extended to consider the possibility that the fractal characteristics of these variables are interrelated. Fractal interrelationships observed in these studies provide a method for relating variations in the fractal characteristics of seismic reflection events from reservoir intervals to the fractal characteristics of reservoir fracture systems, faults, and fold distributions. Themore » work is motivated by current exploration and development interests to detect fractured reservoirs and to accurately predict flow rates and flow patterns within the fractured reservoir. Accurate prediction requires an understanding of several reservoir properties including the fractal geometry of the reservoir fracture network. Results of these studies provide a method to remotely assess the fractal characteristics of a fractured reservoir, and help guide field development activities. The most significant outgrowth of this research is that the fractal properties of structural relief inferred from seismic data and structural cross sections provide a quantitative means to characterize and compare complex structural patterns. Production from fractured reservoirs is the result of complex structural and stratigraphic controls; hence, the import of fractal characterization to the assessment of fractured reservoirs lies in its potential to quantitatively define interrelationships between subtle structural variation and production. The potential uses are illustrated using seismic data from the Granny Creek oil field in the Appalachian Plateau.« less
Fractal dynamics of heartbeat time series of young persons with metabolic syndrome
NASA Astrophysics Data System (ADS)
Muñoz-Diosdado, A.; Alonso-Martínez, A.; Ramírez-Hernández, L.; Martínez-Hernández, G.
2012-10-01
Many physiological systems have been in recent years quantitatively characterized using fractal analysis. We applied it to study heart variability of young subjects with metabolic syndrome (MS); we examined the RR time series (time between two R waves in ECG) with the detrended fluctuation analysis (DFA) method, the Higuchi's fractal dimension method and the multifractal analysis to detect the possible presence of heart problems. The results show that although the young persons have MS, the majority do not present alterations in the heart dynamics. However, there were cases where the fractal parameter values differed significantly from the healthy people values.
A Fractal Analysis of CT Liver Images for the Discrimination of Hepatic Lesions: A Comparative Study
2001-10-25
liver images in order to estimate their fractal dimension and to differentiate normal liver parenchyma from hepatocellular carcinoma . Four fractal...methods; thus discriminating up to 93% of the normal parenchyma and up to 82% of the hepatocellular carcinoma , correctly.
Schaefer, Alexander; Brach, Jennifer S.; Perera, Subashan; Sejdić, Ervin
2013-01-01
Background The time evolution and complex interactions of many nonlinear systems, such as in the human body, result in fractal types of parameter outcomes that exhibit self similarity over long time scales by a power law in the frequency spectrum S(f) = 1/fβ. The scaling exponent β is thus often interpreted as a “biomarker” of relative health and decline. New Method This paper presents a thorough comparative numerical analysis of fractal characterization techniques with specific consideration given to experimentally measured gait stride interval time series. The ideal fractal signals generated in the numerical analysis are constrained under varying lengths and biases indicative of a range of physiologically conceivable fractal signals. This analysis is to complement previous investigations of fractal characteristics in healthy and pathological gait stride interval time series, with which this study is compared. Results The results of our analysis showed that the averaged wavelet coefficient method consistently yielded the most accurate results. Comparison with Existing Methods: Class dependent methods proved to be unsuitable for physiological time series. Detrended fluctuation analysis as most prevailing method in the literature exhibited large estimation variances. Conclusions The comparative numerical analysis and experimental applications provide a thorough basis for determining an appropriate and robust method for measuring and comparing a physiologically meaningful biomarker, the spectral index β. In consideration of the constraints of application, we note the significant drawbacks of detrended fluctuation analysis and conclude that the averaged wavelet coefficient method can provide reasonable consistency and accuracy for characterizing these fractal time series. PMID:24200509
Scaling Linguistic Characterization of Precipitation Variability
NASA Astrophysics Data System (ADS)
Primo, C.; Gutierrez, J. M.
2003-04-01
Rainfall variability is influenced by changes in the aggregation of daily rainfall. This problem is of great importance for hydrological, agricultural and ecological applications. Rainfall averages, or accumulations, are widely used as standard climatic parameters. However different aggregation schemes may lead to the same average or accumulated values. In this paper we present a fractal method to characterize different aggregation schemes. The method provides scaling exponents characterizing weekly or monthly rainfall patterns for a given station. To this aim, we establish an analogy with linguistic analysis, considering precipitation as a discrete variable (e.g., rain, no rain). Each weekly, or monthly, symbolic precipitation sequence of observed precipitation is then considered as a "word" (in this case, a binary word) which defines a specific weekly rainfall pattern. Thus, each site defines a "language" characterized by the words observed in that site during a period representative of the climatology. Then, the more variable the observed weekly precipitation sequences, the more complex the obtained language. To characterize these languages, we first applied the Zipf's method obtaining scaling histograms of rank ordered frequencies. However, to obtain significant exponents, the scaling must be maintained some orders of magnitude, requiring long sequences of daily precipitation which are not available at particular stations. Thus this analysis is not suitable for applications involving particular stations (such as regionalization). Then, we introduce an alternative fractal method applicable to data from local stations. The so-called Chaos-Game method uses Iterated Function Systems (IFS) for graphically representing rainfall languages, in a way that complex languages define complex graphical patterns. The box-counting dimension and the entropy of the resulting patterns are used as linguistic parameters to quantitatively characterize the complexity of the patterns. We illustrate the high climatological discrimination power of the linguistic parameters in the Iberian peninsula, when compared with other standard techniques (such as seasonal mean accumulated precipitation). As an example, standard and linguistic parameters are used as inputs for a clustering regionalization method, comparing the resulting clusters.
Improved visibility graph fractality with application for the diagnosis of Autism Spectrum Disorder
NASA Astrophysics Data System (ADS)
Ahmadlou, Mehran; Adeli, Hojjat; Adeli, Amir
2012-10-01
Recently, the visibility graph (VG) algorithm was proposed for mapping a time series to a graph to study complexity and fractality of the time series through investigation of the complexity of its graph. The visibility graph algorithm converts a fractal time series to a scale-free graph. VG has been used for the investigation of fractality in the dynamic behavior of both artificial and natural complex systems. However, robustness and performance of the power of scale-freeness of VG (PSVG) as an effective method for measuring fractality has not been investigated. Since noise is unavoidable in real life time series, the robustness of a fractality measure is of paramount importance. To improve the accuracy and robustness of PSVG to noise for measurement of fractality of time series in biological time-series, an improved PSVG is presented in this paper. The proposed method is evaluated using two examples: a synthetic benchmark time series and a complicated real life Electroencephalograms (EEG)-based diagnostic problem, that is distinguishing autistic children from non-autistic children. It is shown that the proposed improved PSVG is less sensitive to noise and therefore more robust compared with PSVG. Further, it is shown that using improved PSVG in the wavelet-chaos neural network model of Adeli and c-workers in place of the Katz fractality dimension results in a more accurate diagnosis of autism, a complicated neurological and psychiatric disorder.
Characterisation of human non-proliferative diabetic retinopathy using the fractal analysis.
Ţălu, Ştefan; Călugăru, Dan Mihai; Lupaşcu, Carmen Alina
2015-01-01
To investigate and quantify changes in the branching patterns of the retina vascular network in diabetes using the fractal analysis method. This was a clinic-based prospective study of 172 participants managed at the Ophthalmological Clinic of Cluj-Napoca, Romania, between January 2012 and December 2013. A set of 172 segmented and skeletonized human retinal images, corresponding to both normal (24 images) and pathological (148 images) states of the retina were examined. An automatic unsupervised method for retinal vessel segmentation was applied before fractal analysis. The fractal analyses of the retinal digital images were performed using the fractal analysis software ImageJ. Statistical analyses were performed for these groups using Microsoft Office Excel 2003 and GraphPad InStat software. It was found that subtle changes in the vascular network geometry of the human retina are influenced by diabetic retinopathy (DR) and can be estimated using the fractal geometry. The average of fractal dimensions D for the normal images (segmented and skeletonized versions) is slightly lower than the corresponding values of mild non-proliferative DR (NPDR) images (segmented and skeletonized versions). The average of fractal dimensions D for the normal images (segmented and skeletonized versions) is higher than the corresponding values of moderate NPDR images (segmented and skeletonized versions). The lowest values were found for the corresponding values of severe NPDR images (segmented and skeletonized versions). The fractal analysis of fundus photographs may be used for a more complete undeTrstanding of the early and basic pathophysiological mechanisms of diabetes. The architecture of the retinal microvasculature in diabetes can be quantitative quantified by means of the fractal dimension. Microvascular abnormalities on retinal imaging may elucidate early mechanistic pathways for microvascular complications and distinguish patients with DR from healthy individuals.
Fundamental Fractal Antenna Design Process
NASA Astrophysics Data System (ADS)
Zhu, L. P.; Kim, T. C.; Kakas, G. D.
2017-12-01
Antenna designers are always looking to come up with new ideas to push the envelope for new antennas, using a smaller volume while striving for higher bandwidth, wider bandwidth, and antenna gain. One proposed method of increasing bandwidth or shrinking antenna size is via the use of fractal geometry, which gives rise to fractal antennas. Fractals are those fun shapes that if one zooms in or zoom out, the structure is always the same. Design a new type of antenna based on fractal antenna design by utilize the Design of Experiment (DOE) will be shown in fractal antenna design process. Investigate conformal fractal antenna design for patterns, dimensions, and size, of the antenna but maintaining or improving the antenna performance. Research shows an antenna designer how to create basic requirements of the fractal antenna through a step by step process, and provides how to optimize the antenna design with the model prediction, lab measurement, and actual results from the compact range measurement on the antenna patterns.
NASA Astrophysics Data System (ADS)
Potapov, A. A.
2017-11-01
The main purpose of this work is to interpret the main directions of radio physics, radio engineering and radio location in “fractal” language that makes new ways and generalizations on future promising radio systems. We introduce a new kind and approach of up-to-date radiolocation: fractal-scaling or scale-invariant radiolocation. The new topologic signs and methods of detecting the low-contrast objects against the high-intensity noise background are presented. It leads to basic changes in the theoretical radiolocation structure itself and also in its mathematical apparatus. The fractal radio systems conception, sampling topology, global fractal-scaling approach and the fractal paradigm underlie the scientific direction established by the author in Russia and all over the world for the first time ever.
NASA Astrophysics Data System (ADS)
Zhang, Qian; Harman, Ciaran J.; Kirchner, James W.
2018-02-01
River water-quality time series often exhibit fractal scaling, which here refers to autocorrelation that decays as a power law over some range of scales. Fractal scaling presents challenges to the identification of deterministic trends because (1) fractal scaling has the potential to lead to false inference about the statistical significance of trends and (2) the abundance of irregularly spaced data in water-quality monitoring networks complicates efforts to quantify fractal scaling. Traditional methods for estimating fractal scaling - in the form of spectral slope (β) or other equivalent scaling parameters (e.g., Hurst exponent) - are generally inapplicable to irregularly sampled data. Here we consider two types of estimation approaches for irregularly sampled data and evaluate their performance using synthetic time series. These time series were generated such that (1) they exhibit a wide range of prescribed fractal scaling behaviors, ranging from white noise (β = 0) to Brown noise (β = 2) and (2) their sampling gap intervals mimic the sampling irregularity (as quantified by both the skewness and mean of gap-interval lengths) in real water-quality data. The results suggest that none of the existing methods fully account for the effects of sampling irregularity on β estimation. First, the results illustrate the danger of using interpolation for gap filling when examining autocorrelation, as the interpolation methods consistently underestimate or overestimate β under a wide range of prescribed β values and gap distributions. Second, the widely used Lomb-Scargle spectral method also consistently underestimates β. A previously published modified form, using only the lowest 5 % of the frequencies for spectral slope estimation, has very poor precision, although the overall bias is small. Third, a recent wavelet-based method, coupled with an aliasing filter, generally has the smallest bias and root-mean-squared error among all methods for a wide range of prescribed β values and gap distributions. The aliasing method, however, does not itself account for sampling irregularity, and this introduces some bias in the result. Nonetheless, the wavelet method is recommended for estimating β in irregular time series until improved methods are developed. Finally, all methods' performances depend strongly on the sampling irregularity, highlighting that the accuracy and precision of each method are data specific. Accurately quantifying the strength of fractal scaling in irregular water-quality time series remains an unresolved challenge for the hydrologic community and for other disciplines that must grapple with irregular sampling.
NASA Astrophysics Data System (ADS)
Zausner, Tobi
Chaos theory may provide models for creativity and for the personality of the artist. A collection of speculative hypotheses examines the connection between art and such fundamentals of non-linear dynamics as iteration, dissipative processes, open systems, entropy, sensitivity to stimuli, autocatalysis, subsystems, bifurcations, randomness, unpredictability, irreversibility, increasing levels of organization, far-from-equilibrium conditions, strange attractors, period doubling, intermittency and self-similar fractal organization. Non-linear dynamics may also explain why certain individuals suffer mental disorders while others remain intact during a lifetime of sustained creative output.
Moore's curve structuring of ferromagnetic composite PE-NiFe absorbers
NASA Astrophysics Data System (ADS)
Fernez, N.; Arbaoui, Y.; Maalouf, A.; Chevalier, A.; Agaciak, P.; Burgnies, L.; Queffelec, P.; Laur, V.; Lheurette, É.
2018-02-01
A ferromagnetic material involving nickel-iron particles embedded in a polyethylene matrix is synthesized and electrically characterized between 1 and 12 GHz. These measurements show the combination of electric and magnetic activity along with significant loss terms. We take benefit of these properties for the design of broadband electromagnetic absorbers. To this aim, we use a fractal structuring based on Moore curves. The advantage of etching patterns over metallic ones is clearly evidenced, and several pattern absorbers identified by their Moore's order iteration are designed and analyzed under oblique incidence.
A comparison of the fractal and JPEG algorithms
NASA Technical Reports Server (NTRS)
Cheung, K.-M.; Shahshahani, M.
1991-01-01
A proprietary fractal image compression algorithm and the Joint Photographic Experts Group (JPEG) industry standard algorithm for image compression are compared. In every case, the JPEG algorithm was superior to the fractal method at a given compression ratio according to a root mean square criterion and a peak signal to noise criterion.
Aqueous synthesis of LiFePO4 with Fractal Granularity.
Cabán-Huertas, Zahilia; Ayyad, Omar; Dubal, Deepak P; Gómez-Romero, Pedro
2016-06-03
Lithium iron phosphate (LiFePO4) electrodes with fractal granularity are reported. They were made from a starting material prepared in water by a low cost, easy and environmentally friendly hydrothermal method, thus avoiding the use of organic solvents. Our method leads to pure olivine phase, free of the impurities commonly found after other water-based syntheses. The fractal structures consisted of nanoparticles grown into larger micro-sized formations which in turn agglomerate leading to high tap density electrodes, which is beneficial for energy density. These intricate structures could be easily and effectively coated with a thin and uniform carbon layer for increased conductivity, as it is well established for simpler microstructures. Materials and electrodes were studied by means of XRD, SEM, TEM, SAED, XPS, Raman and TGA. Last but not least, lithium transport through fractal LiFePO4 electrodes was investigated based upon fractal theory. These water-made fractal electrodes lead to high-performance lithium cells (even at high rates) tested by CV and galvanostatic charge-discharge, their performance is comparable to state of the art (but less environmentally friendly) electrodes.
Aqueous synthesis of LiFePO4 with Fractal Granularity
Cabán-Huertas, Zahilia; Ayyad, Omar; Dubal, Deepak P.; Gómez-Romero, Pedro
2016-01-01
Lithium iron phosphate (LiFePO4) electrodes with fractal granularity are reported. They were made from a starting material prepared in water by a low cost, easy and environmentally friendly hydrothermal method, thus avoiding the use of organic solvents. Our method leads to pure olivine phase, free of the impurities commonly found after other water-based syntheses. The fractal structures consisted of nanoparticles grown into larger micro-sized formations which in turn agglomerate leading to high tap density electrodes, which is beneficial for energy density. These intricate structures could be easily and effectively coated with a thin and uniform carbon layer for increased conductivity, as it is well established for simpler microstructures. Materials and electrodes were studied by means of XRD, SEM, TEM, SAED, XPS, Raman and TGA. Last but not least, lithium transport through fractal LiFePO4 electrodes was investigated based upon fractal theory. These water-made fractal electrodes lead to high-performance lithium cells (even at high rates) tested by CV and galvanostatic charge-discharge, their performance is comparable to state of the art (but less environmentally friendly) electrodes. PMID:27256504
Aqueous synthesis of LiFePO4 with Fractal Granularity
NASA Astrophysics Data System (ADS)
Cabán-Huertas, Zahilia; Ayyad, Omar; Dubal, Deepak P.; Gómez-Romero, Pedro
2016-06-01
Lithium iron phosphate (LiFePO4) electrodes with fractal granularity are reported. They were made from a starting material prepared in water by a low cost, easy and environmentally friendly hydrothermal method, thus avoiding the use of organic solvents. Our method leads to pure olivine phase, free of the impurities commonly found after other water-based syntheses. The fractal structures consisted of nanoparticles grown into larger micro-sized formations which in turn agglomerate leading to high tap density electrodes, which is beneficial for energy density. These intricate structures could be easily and effectively coated with a thin and uniform carbon layer for increased conductivity, as it is well established for simpler microstructures. Materials and electrodes were studied by means of XRD, SEM, TEM, SAED, XPS, Raman and TGA. Last but not least, lithium transport through fractal LiFePO4 electrodes was investigated based upon fractal theory. These water-made fractal electrodes lead to high-performance lithium cells (even at high rates) tested by CV and galvanostatic charge-discharge, their performance is comparable to state of the art (but less environmentally friendly) electrodes.
Fractal Dimensions of Umbral and Penumbral Regions of Sunspots
NASA Astrophysics Data System (ADS)
Rajkumar, B.; Haque, S.; Hrudey, W.
2017-11-01
The images of sunspots in 16 active regions taken at the University College of the Cayman Islands (UCCI) Observatory on Grand Cayman during June-November 2015 were used to determine their fractal dimensions using the perimeter-area method for the umbral and the penumbral region. Scale-free fractal dimensions of 2.09 ±0.42 and 1.72 ±0.4 were found, respectively. This value was higher than the value determined by Chumak and Chumak ( Astron. Astrophys. Trans. 10, 329, 1996), who used a similar method, but only for the penumbral region of their sample set. The umbral and penumbral fractal dimensions for the specific sunspots are positively correlated with r = 0.58. Furthermore, a similar time-series analysis was performed on eight images of AR 12403, from 21 August 2015 to 28 August 2015 taken from the Debrecen Photoheliographic Data (DPD). The correlation is r = 0.623 between the umbral and penumbral fractal dimensions in the time series, indicating that the complexity in morphology indicated by the fractal dimension between the umbra and penumbra followed each other in time as well.
NASA Astrophysics Data System (ADS)
Walker, David Lee
1999-12-01
This study uses dynamical analysis to examine in a quantitative fashion the information coding mechanism in DNA sequences. This exceeds the simple dichotomy of either modeling the mechanism by comparing DNA sequence walks as Fractal Brownian Motion (fbm) processes. The 2-D mappings of the DNA sequences for this research are from Iterated Function System (IFS) (Also known as the ``Chaos Game Representation'' (CGR)) mappings of the DNA sequences. This technique converts a 1-D sequence into a 2-D representation that preserves subsequence structure and provides a visual representation. The second step of this analysis involves the application of Wavelet Packet Transforms, a recently developed technique from the field of signal processing. A multi-fractal model is built by using wavelet transforms to estimate the Hurst exponent, H. The Hurst exponent is a non-parametric measurement of the dynamism of a system. This procedure is used to evaluate gene- coding events in the DNA sequence of cystic fibrosis mutations. The H exponent is calculated for various mutation sites in this gene. The results of this study indicate the presence of anti-persistent, random walks and persistent ``sub-periods'' in the sequence. This indicates the hypothesis of a multi-fractal model of DNA information encoding warrants further consideration. This work examines the model's behavior in both pathological (mutations) and non-pathological (healthy) base pair sequences of the cystic fibrosis gene. These mutations both natural and synthetic were introduced by computer manipulation of the original base pair text files. The results show that disease severity and system ``information dynamics'' correlate. These results have implications for genetic engineering as well as in mathematical biology. They suggest that there is scope for more multi-fractal models to be developed.
Buried mine detection using fractal geometry analysis to the LWIR successive line scan data image
NASA Astrophysics Data System (ADS)
Araki, Kan
2012-06-01
We have engaged in research on buried mine/IED detection by remote sensing method using LWIR camera. A IR image of a ground, containing buried objects can be assumed as a superimposed pattern including thermal scattering which may depend on the ground surface roughness, vegetation canopy, and effect of the sun light, and radiation due to various heat interaction caused by differences in specific heat, size, and buried depth of the objects and local temperature of their surrounding environment. In this cumbersome environment, we introduce fractal geometry for analyzing from an IR image. Clutter patterns due to these complex elements have oftentimes low ordered fractal dimension of Hausdorff Dimension. On the other hand, the target patterns have its tendency of obtaining higher ordered fractal dimension in terms of Information Dimension. Random Shuffle Surrogate method or Fourier Transform Surrogate method is used to evaluate fractional statistics by applying shuffle of time sequence data or phase of spectrum. Fractal interpolation to each line scan was also applied to improve the signal processing performance in order to evade zero division and enhance information of data. Some results of target extraction by using relationship between low and high ordered fractal dimension are to be presented.
Fractal characterization of a fractured chalk reservoir - The Laegerdorf case
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoelum, H.H.; Koestler, A.G.; Feder, J.
1991-03-01
What is the matrix block size distribution of a fractured reservoir In order to answer this question and assess the potential of fractal geometry as a method of characterization of fracture networks, a pilot study has been done of the fractured chalk quarry in Laegerdorf. The fractures seen on the quarry walls were traced in the field for a total area of {approximately}200 {times} 45 m. The digitized pictures have been analyzed by a standard box-counting method. This analysis gave a fractal dimension of similarity varying from 1.33 for fractured areas between faults, to 1.43 for the fault zone, andmore » 1.53 for the highly deformed fault gouge. The amplitude showed a similar trend. The fractal dimension for the whole system of fractures is {approximately}1.55. In other words, fracture networks in chalk have a nonlinear, fractal geometry, and so matrix block size is a scaling property of chalk reservoirs. In terms of rock mechanics, the authors interpret the variation of the fractal dimension as follows: A small fractal dimension and amplitude are associated with brittle deformation in the elastic regime, while a large fractal dimension and amplitude are associated with predominantly ductile, strain softening deformation in the plastic regime. The interaction between the two regimes of deformation in the rock body is a key element of successful characterization and may be approached by seeing the rock as a non-Newtonian viscoelastic medium. The fractal dimension for the whole is close to a material independent limit that constrains the development of fractures.« less
NASA Astrophysics Data System (ADS)
Hurd, Alan J.
The realization that structures in Nature often can be described by Mandelbrot's fractals has led to a revolution in many areas of physics. The interaction of waves with fractal systems has, understandably, become intensely studied since scattering is the method of choice to probe delicate fractal structures such as chainlike particle aggregates. Not all of these waves are electromagnetic. Neutron scattering, for example, is an important complementary tool to structural studies by X-ray and light scattering. Since the phenomenology of small-angle neutron scattering (SANS), as it is applied to fractal systems, is identical to that of small-angle X-ray scattering (SAXS), it falls within the scope of this paper.
About Schrödinger Equation on Fractals Curves Imbedding in R 3
NASA Astrophysics Data System (ADS)
Golmankhaneh, Alireza Khalili; Golmankhaneh, Ali Khalili; Baleanu, Dumitru
2015-04-01
In this paper we introduced the quantum mechanics on fractal time-space. In a suggested formalism the time and space vary on Cantor-set and Von-Koch curve, respectively. Using Feynman path method in quantum mechanics and F α -calculus we find Schrëdinger equation on on fractal time-space. The Hamiltonian and momentum fractal operator has been indicated. More, the continuity equation and the probability density is given in view of F α -calculus.
Assessment of disintegrant efficacy with fractal dimensions from real-time MRI.
Quodbach, Julian; Moussavi, Amir; Tammer, Roland; Frahm, Jens; Kleinebudde, Peter
2014-11-20
An efficient disintegrant is capable of breaking up a tablet in the smallest possible particles in the shortest time. Until now, comparative data on the efficacy of different disintegrants is based on dissolution studies or the disintegration time. Extending these approaches, this study introduces a method, which defines the evolution of fractal dimensions of tablets as surrogate parameter for the available surface area. Fractal dimensions are a measure for the tortuosity of a line, in this case the upper surface of a disintegrating tablet. High-resolution real-time MRI was used to record videos of disintegrating tablets. The acquired video images were processed to depict the upper surface of the tablets and a box-counting algorithm was used to estimate the fractal dimensions. The influence of six different disintegrants, of different relative tablet density, and increasing disintegrant concentration was investigated to evaluate the performance of the novel method. Changing relative densities hardly affect the progression of fractal dimensions, whereas an increase in disintegrant concentration causes increasing fractal dimensions during disintegration, which are also reached quicker. Different disintegrants display only minor differences in the maximal fractal dimension, yet the kinetic in which the maximum is reached allows a differentiation and classification of disintegrants. Copyright © 2014 Elsevier B.V. All rights reserved.
Relationship between the anomalous diffusion and the fractal dimension of the environment
NASA Astrophysics Data System (ADS)
Zhokh, Alexey; Trypolskyi, Andrey; Strizhak, Peter
2018-03-01
In this letter, we provide an experimental study highlighting a relation between the anomalous diffusion and the fractal dimension of the environment using the methanol anomalous transport through the porous solid pellets with various pores geometries and different chemical compositions. The anomalous diffusion exponent was derived from the non-integer order of the time-fractional diffusion equation that describes the methanol anomalous transport through the solid media. The surface fractal dimension was estimated from the nitrogen adsorption isotherms using the Frenkel-Halsey-Hill method. Our study shows that decreasing the fractal dimension leads to increasing the anomalous diffusion exponent, whereas the anomalous diffusion constant is independent on the fractal dimension. We show that the obtained results are in a good agreement with the anomalous diffusion model on a fractal mesh.
Contour fractal analysis of grains
NASA Astrophysics Data System (ADS)
Guida, Giulia; Casini, Francesca; Viggiani, Giulia MB
2017-06-01
Fractal analysis has been shown to be useful in image processing to characterise the shape and the grey-scale complexity in different applications spanning from electronic to medical engineering (e.g. [1]). Fractal analysis consists of several methods to assign a dimension and other fractal characteristics to a dataset describing geometric objects. Limited studies have been conducted on the application of fractal analysis to the classification of the shape characteristics of soil grains. The main objective of the work described in this paper is to obtain, from the results of systematic fractal analysis of artificial simple shapes, the characterization of the particle morphology at different scales. The long term objective of the research is to link the microscopic features of granular media with the mechanical behaviour observed in the laboratory and in situ.
[Fractal research of neurite growth in immunofluorescent images].
Tang, Min; Wang, Huinan
2008-12-01
Fractal dimension has been widely used in medical images processing and analysis. The neurite growth of cultured dorsal root ganglion (DRG) was detected by fluorescent immunocytochemistry treated with nerve regeneration factor (0.1, 0.5, 2.0 mg/L). A novel method based on triangular prism surface area (TPSA) was introduced and adopted to calculate the fractal dimension of the two-dimensional immunofluorescent images. Experimental results demonstrate that this method is easy to understand and convenient to operate, and the quantititve results are concordant with the observational findings under microscope. This method can be guidelines for analyzing and deciding experimental results.
Fractal Theory for Permeability Prediction, Venezuelan and USA Wells
NASA Astrophysics Data System (ADS)
Aldana, Milagrosa; Altamiranda, Dignorah; Cabrera, Ana
2014-05-01
Inferring petrophysical parameters such as permeability, porosity, water saturation, capillary pressure, etc, from the analysis of well logs or other available core data has always been of critical importance in the oil industry. Permeability in particular, which is considered to be a complex parameter, has been inferred using both empirical and theoretical techniques. The main goal of this work is to predict permeability values on different wells using Fractal Theory, based on a method proposed by Pape et al. (1999). This approach uses the relationship between permeability and the geometric form of the pore space of the rock. This method is based on the modified equation of Kozeny-Carman and a fractal pattern, which allows determining permeability as a function of the cementation exponent, porosity and the fractal dimension. Data from wells located in Venezuela and the United States of America are analyzed. Employing data of porosity and permeability obtained from core samples, and applying the Fractal Theory method, we calculated the prediction equations for each well. At the beginning, this was achieved by training with 50% of the data available for each well. Afterwards, these equations were tested inferring over 100% of the data to analyze possible trends in their distribution. This procedure gave excellent results in all the wells in spite of their geographic distance, generating permeability models with the potential to accurately predict permeability logs in the remaining parts of the well for which there are no core samples, using even porority logs. Additionally, empirical models were used to determine permeability and the results were compared with those obtained by applying the fractal method. The results indicated that, although there are empirical equations that give a proper adjustment, the prediction results obtained using fractal theory give a better fit to the core reference data.
Aesthetic Responses to Exact Fractals Driven by Physical Complexity
Bies, Alexander J.; Blanc-Goldhammer, Daryn R.; Boydston, Cooper R.; Taylor, Richard P.; Sereno, Margaret E.
2016-01-01
Fractals are physically complex due to their repetition of patterns at multiple size scales. Whereas the statistical characteristics of the patterns repeat for fractals found in natural objects, computers can generate patterns that repeat exactly. Are these exact fractals processed differently, visually and aesthetically, than their statistical counterparts? We investigated the human aesthetic response to the complexity of exact fractals by manipulating fractal dimensionality, symmetry, recursion, and the number of segments in the generator. Across two studies, a variety of fractal patterns were visually presented to human participants to determine the typical response to exact fractals. In the first study, we found that preference ratings for exact midpoint displacement fractals can be described by a linear trend with preference increasing as fractal dimension increases. For the majority of individuals, preference increased with dimension. We replicated these results for other exact fractal patterns in a second study. In the second study, we also tested the effects of symmetry and recursion by presenting asymmetric dragon fractals, symmetric dragon fractals, and Sierpinski carpets and Koch snowflakes, which have radial and mirror symmetry. We found a strong interaction among recursion, symmetry and fractal dimension. Specifically, at low levels of recursion, the presence of symmetry was enough to drive high preference ratings for patterns with moderate to high levels of fractal dimension. Most individuals required a much higher level of recursion to recover this level of preference in a pattern that lacked mirror or radial symmetry, while others were less discriminating. This suggests that exact fractals are processed differently than their statistical counterparts. We propose a set of four factors that influence complexity and preference judgments in fractals that may extend to other patterns: fractal dimension, recursion, symmetry and the number of segments in a pattern. Conceptualizations such as Berlyne’s and Redies’ theories of aesthetics also provide a suitable framework for interpretation of our data with respect to the individual differences that we detect. Future studies that incorporate physiological methods to measure the human aesthetic response to exact fractal patterns would further elucidate our responses to such timeless patterns. PMID:27242475
Application of Refined Kolmogorov's Hypothesis For Numerical Modelling of Filtration In Porous Media
NASA Astrophysics Data System (ADS)
Kuz'min, G.; Soboleva, O.
We consider a flow of incompressible fluid through the fractal porous media. The scaling theory that uses the ideas of the Kolmogorovs (1962) paper is presented for the permeability field (x). The velocity is given by the Darcy's law v = (x) p, where p is the pressure. The incompressibility condition div v = 0 results in the equation for p (x) p(x) = 0. (1) xj xj In order to compute the steady realizations for the velocity, we use (256)3 grid, the iter- ation algorithm in combination with the fast Fourier transform and the sweep method. In order to replace the original problem by a simpler one, we seek for a subgrid model. The large scales l > l0 are retained in the equation. The scales l < l0 are simu- lated along the lines of the renormalization group theory. Using the scaling hypoth- esis for the latter, we derive the following expression for the effective permeability l -D 0 0l = 0 (), where 0 is a constant which is chosen according to the L experimental data for a natural sedimentary rock, D (which is equal to 3) is the spa- tial dimension. Thus, if one wishes to use a coarser grid, when computing the flow through a fractal matter, he should multiply the effective permeability by a constant factor according to() . For such a model we made some computational experiments. The reasonable agreement with numerical simulations has been obtained. For the nu- merically obtained realizations of velocity field, we calculate the trajectories of the labeled particles from the equations: dx m(x, l) = v(x), x = x0 , i = 1, ..., N, i (2) dt where i stands for the number of a particle, m(x, l) is the porosity. The correlated fractal fields of permeability and porosity are numerically generated using the scaling theory. For a cloud of the labeled particles, we study the dispersion within the exact and the subgrid models.
A fractal growth model: Exploring the connection pattern of hubs in complex networks
NASA Astrophysics Data System (ADS)
Li, Dongyan; Wang, Xingyuan; Huang, Penghe
2017-04-01
Fractal is ubiquitous in many real-world networks. Previous researches showed that the strong disassortativity between the hub-nodes on all length scales was the key principle that gave rise to the fractal architecture of networks. Although fractal property emerged in some models, there were few researches about the fractal growth model and quantitative analyses about the strength of the disassortativity for fractal model. In this paper, we proposed a novel inverse renormalization method, named Box-based Preferential Attachment (BPA), to build the fractal growth models in which the Preferential Attachment was performed at box level. The proposed models provided a new framework that demonstrated small-world-fractal transition. Also, we firstly demonstrated the statistical characteristic of connection patterns of the hubs in fractal networks. The experimental results showed that, given proper growing scale and added edges, the proposed models could clearly show pure small-world or pure fractal or both of them. It also showed that the hub connection ratio showed normal distribution in many real-world networks. At last, the comparisons of connection pattern between the proposed models and the biological and technical networks were performed. The results gave useful reference for exploring the growth principle and for modeling the connection patterns for real-world networks.
NASA Astrophysics Data System (ADS)
Yang, Wenxiu; Liu, Yanbo; Zhang, Ligai; Cao, Hong; Wang, Yang; Yao, Jinbo
2016-06-01
Needleless electrospinning technology is considered as a better avenue to produce nanofibrous materials at large scale, and electric field intensity and its distribution play an important role in controlling nanofiber diameter and quality of the nanofibrous web during electrospinning. In the current study, a novel needleless electrospinning method was proposed based on Von Koch curves of Fractal configuration, simulation and analysis on electric field intensity and distribution in the new electrospinning process were performed with Finite element analysis software, Comsol Multiphysics 4.4, based on linear and nonlinear Von Koch fractal curves (hereafter called fractal models). The result of simulation and analysis indicated that Second level fractal structure is the optimal linear electrospinning spinneret in terms of field intensity and uniformity. Further simulation and analysis showed that the circular type of Fractal spinneret has better field intensity and distribution compared to spiral type of Fractal spinneret in the nonlinear Fractal electrospinning technology. The electrospinning apparatus with the optimal Von Koch fractal spinneret was set up to verify the theoretical analysis results from Comsol simulation, achieving more uniform electric field distribution and lower energy cost, compared to the current needle and needleless electrospinning technologies.
Schaefer, Alexander; Brach, Jennifer S; Perera, Subashan; Sejdić, Ervin
2014-01-30
The time evolution and complex interactions of many nonlinear systems, such as in the human body, result in fractal types of parameter outcomes that exhibit self similarity over long time scales by a power law in the frequency spectrum S(f)=1/f(β). The scaling exponent β is thus often interpreted as a "biomarker" of relative health and decline. This paper presents a thorough comparative numerical analysis of fractal characterization techniques with specific consideration given to experimentally measured gait stride interval time series. The ideal fractal signals generated in the numerical analysis are constrained under varying lengths and biases indicative of a range of physiologically conceivable fractal signals. This analysis is to complement previous investigations of fractal characteristics in healthy and pathological gait stride interval time series, with which this study is compared. The results of our analysis showed that the averaged wavelet coefficient method consistently yielded the most accurate results. Class dependent methods proved to be unsuitable for physiological time series. Detrended fluctuation analysis as most prevailing method in the literature exhibited large estimation variances. The comparative numerical analysis and experimental applications provide a thorough basis for determining an appropriate and robust method for measuring and comparing a physiologically meaningful biomarker, the spectral index β. In consideration of the constraints of application, we note the significant drawbacks of detrended fluctuation analysis and conclude that the averaged wavelet coefficient method can provide reasonable consistency and accuracy for characterizing these fractal time series. Copyright © 2013 Elsevier B.V. All rights reserved.
Anisotropic fractal media by vector calculus in non-integer dimensional space
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2014-08-01
A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.
Wang, Xujing; Becker, Frederick F.; Gascoyne, Peter R. C.
2010-01-01
The scale-invariant property of the cytoplasmic membrane of biological cells is examined by applying the Minkowski–Bouligand method to digitized scanning electron microscopy images of the cell surface. The membrane is found to exhibit fractal behavior, and the derived fractal dimension gives a good description of its morphological complexity. Furthermore, we found that this fractal dimension correlates well with the specific membrane dielectric capacitance derived from the electrorotation measurements. Based on these findings, we propose a new fractal single-shell model to describe the dielectrics of mammalian cells, and compare it with the conventional single-shell model (SSM). We found that while both models fit with experimental data well, the new model is able to eliminate the discrepancy between the measured dielectric property of cells and that predicted by the SSM. PMID:21198103
Laaksonen, Ari; Malila, Jussi; Nenes, Athanasios; Hung, Hui-Ming; Chen, Jen-Ping
2016-05-03
Surface porosity affects the ability of a substance to adsorb gases. The surface fractal dimension D is a measure that indicates the amount that a surface fills a space, and can thereby be used to characterize the surface porosity. Here we propose a new method for determining D, based on measuring both the water vapour adsorption isotherm of a given substance, and its ability to act as a cloud condensation nucleus when introduced to humidified air in aerosol form. We show that our method agrees well with previous methods based on measurement of nitrogen adsorption. Besides proving the usefulness of the new method for general surface characterization of materials, our results show that the surface fractal dimension is an important determinant in cloud drop formation on water insoluble particles. We suggest that a closure can be obtained between experimental critical supersaturation for cloud drop activation and that calculated based on water adsorption data, if the latter is corrected using the surface fractal dimension of the insoluble cloud nucleus.
NASA Astrophysics Data System (ADS)
Laaksonen, Ari; Malila, Jussi; Nenes, Athanasios; Hung, Hui-Ming; Chen, Jen-Ping
2016-05-01
Surface porosity affects the ability of a substance to adsorb gases. The surface fractal dimension D is a measure that indicates the amount that a surface fills a space, and can thereby be used to characterize the surface porosity. Here we propose a new method for determining D, based on measuring both the water vapour adsorption isotherm of a given substance, and its ability to act as a cloud condensation nucleus when introduced to humidified air in aerosol form. We show that our method agrees well with previous methods based on measurement of nitrogen adsorption. Besides proving the usefulness of the new method for general surface characterization of materials, our results show that the surface fractal dimension is an important determinant in cloud drop formation on water insoluble particles. We suggest that a closure can be obtained between experimental critical supersaturation for cloud drop activation and that calculated based on water adsorption data, if the latter is corrected using the surface fractal dimension of the insoluble cloud nucleus.
Temporal fractals in seabird foraging behaviour: diving through the scales of time
MacIntosh, Andrew J. J.; Pelletier, Laure; Chiaradia, Andre; Kato, Akiko; Ropert-Coudert, Yan
2013-01-01
Animal behaviour exhibits fractal structure in space and time. Fractal properties in animal space-use have been explored extensively under the Lévy flight foraging hypothesis, but studies of behaviour change itself through time are rarer, have typically used shorter sequences generated in the laboratory, and generally lack critical assessment of their results. We thus performed an in-depth analysis of fractal time in binary dive sequences collected via bio-logging from free-ranging little penguins (Eudyptula minor) across full-day foraging trips (216 data points; 4 orders of temporal magnitude). Results from 4 fractal methods show that dive sequences are long-range dependent and persistent across ca. 2 orders of magnitude. This fractal structure correlated with trip length and time spent underwater, but individual traits had little effect. Fractal time is a fundamental characteristic of penguin foraging behaviour, and its investigation is thus a promising avenue for research on interactions between animals and their environments. PMID:23703258
NASA Astrophysics Data System (ADS)
Feng, Guixiang; Ming, Dongping; Wang, Min; Yang, Jianyu
2017-06-01
Scale problems are a major source of concern in the field of remote sensing. Since the remote sensing is a complex technology system, there is a lack of enough cognition on the connotation of scale and scale effect in remote sensing. Thus, this paper first introduces the connotations of pixel-based scale and summarizes the general understanding of pixel-based scale effect. Pixel-based scale effect analysis is essentially important for choosing the appropriate remote sensing data and the proper processing parameters. Fractal dimension is a useful measurement to analysis pixel-based scale. However in traditional fractal dimension calculation, the impact of spatial resolution is not considered, which leads that the scale effect change with spatial resolution can't be clearly reflected. Therefore, this paper proposes to use spatial resolution as the modified scale parameter of two fractal methods to further analyze the pixel-based scale effect. To verify the results of two modified methods (MFBM (Modified Windowed Fractal Brownian Motion Based on the Surface Area) and MDBM (Modified Windowed Double Blanket Method)); the existing scale effect analysis method (information entropy method) is used to evaluate. And six sub-regions of building areas and farmland areas were cut out from QuickBird images to be used as the experimental data. The results of the experiment show that both the fractal dimension and information entropy present the same trend with the decrease of spatial resolution, and some inflection points appear at the same feature scales. Further analysis shows that these feature scales (corresponding to the inflection points) are related to the actual sizes of the geo-object, which results in fewer mixed pixels in the image, and these inflection points are significantly indicative of the observed features. Therefore, the experiment results indicate that the modified fractal methods are effective to reflect the pixel-based scale effect existing in remote sensing data and it is helpful to analyze the observation scale from different aspects. This research will ultimately benefit for remote sensing data selection and application.
Shirazinodeh, Alireza; Noubari, Hossein Ahmadi; Rabbani, Hossein; Dehnavi, Alireza Mehri
2015-01-01
Recent studies on wavelet transform and fractal modeling applied on mammograms for the detection of cancerous tissues indicate that microcalcifications and masses can be utilized for the study of the morphology and diagnosis of cancerous cases. It is shown that the use of fractal modeling, as applied to a given image, can clearly discern cancerous zones from noncancerous areas. In this paper, for fractal modeling, the original image is first segmented into appropriate fractal boxes followed by identifying the fractal dimension of each windowed section using a computationally efficient two-dimensional box-counting algorithm. Furthermore, using appropriate wavelet sub-bands and image Reconstruction based on modified wavelet coefficients, it is shown that it is possible to arrive at enhanced features for detection of cancerous zones. In this paper, we have attempted to benefit from the advantages of both fractals and wavelets by introducing a new algorithm. By using a new algorithm named F1W2, the original image is first segmented into appropriate fractal boxes, and the fractal dimension of each windowed section is extracted. Following from that, by applying a maximum level threshold on fractal dimensions matrix, the best-segmented boxes are selected. In the next step, the segmented Cancerous zones which are candidates are then decomposed by utilizing standard orthogonal wavelet transform and db2 wavelet in three different resolution levels, and after nullifying wavelet coefficients of the image at the first scale and low frequency band of the third scale, the modified reconstructed image is successfully utilized for detection of breast cancer regions by applying an appropriate threshold. For detection of cancerous zones, our simulations indicate the accuracy of 90.9% for masses and 88.99% for microcalcifications detection results using the F1W2 method. For classification of detected mictocalcification into benign and malignant cases, eight features are identified and utilized in radial basis function neural network. Our simulation results indicate the accuracy of 92% classification using F1W2 method.
NASA Astrophysics Data System (ADS)
Celardo, G. L.; Archetti, D.; Ferrini, G.; Gavioli, L.; Pingue, P.; Cavaliere, E.
2017-01-01
The specific mechanisms which lead to the formation of fractal nanostructures by pulsed laser deposition remain elusive despite intense research efforts, motivated mainly by the technological interest in obtaining tailored nanostructures with simple and scalable production methods. Here we focus on fractal nanostructures of titanium dioxide, TiO2, a strategic material for many applications, obtained by femtosecond laser ablation at ambient conditions. We compare a theoretical model of fractal formation with experimental data. The comparison of theory and experiment confirms that fractal aggregates are formed after landing of the ablated material on the substrate surface by a simple diffusive mechanism. We model the fractal formation through extensive Monte Carlo simulations based on a set of minimal assumptions: TiO2 nanoparticles arrive already formed on the substrate, then they diffuse in a size/mass independent way and stick irreversibly upon touching, thus forming fractal clusters. Despite its simplicity, our model explains the main features of the fractal structures arising from the complex interaction of large TiO2 nanoparticles with different substrates. Indeed our model is able to reproduce both the fractal dimensions and the area distributions of the nanostructures for different densities of the ablated material. Finally we discuss the role of the thermal conductivity of the substrate and the laser fluence on the properties of the fractal nanostructures. Our results represent an advancement towards controlling the production of fractal nanostructures by pulsed laser deposition.
NASA Astrophysics Data System (ADS)
Kulikov, D. A.; Potapov, A. A.; Rassadin, A. E.; Stepanov, A. V.
2017-10-01
In the paper, methods of verification of models for growth of solid state surface by means of atomic force microscopy are suggested. Simulation of growth of fractals with cylindrical generatrix on the solid state surface is presented. Our mathematical model of this process is based on generalization of the Kardar-Parisi-Zhang equation. Corner stones of this generalization are both conjecture of anisotropy of growth of the surface and approximation of small angles. The method of characteristics has been applied to solve the Kardar-Parisi-Zhang equation. Its solution should be considered up to the gradient catastrophe. The difficulty of nondifferentiability of fractal initial generatrix has been overcome by transition from a mathematical fractal to a physical one.
ERIC Educational Resources Information Center
Willson, Stephen J.
1991-01-01
Described is a course designed to teach students about fractals using various teaching methods including the computer. Discussed are why the course drew students, prerequisites, clientele, textbook, grading, computer usage, and the syllabus. (KR)
The fractal heart — embracing mathematics in the cardiology clinic
Captur, Gabriella; Karperien, Audrey L.; Hughes, Alun D.; Francis, Darrel P.; Moon, James C.
2017-01-01
For clinicians grappling with quantifying the complex spatial and temporal patterns of cardiac structure and function (such as myocardial trabeculae, coronary microvascular anatomy, tissue perfusion, myocyte histology, electrical conduction, heart rate, and blood-pressure variability), fractal analysis is a powerful, but still underused, mathematical tool. In this Perspectives article, we explain some fundamental principles of fractal geometry and place it in a familiar medical setting. We summarize studies in the cardiovascular sciences in which fractal methods have successfully been used to investigate disease mechanisms, and suggest potential future clinical roles in cardiac imaging and time series measurements. We believe that clinical researchers can deploy innovative fractal solutions to common cardiac problems that might ultimately translate into advancements for patient care. PMID:27708281
NASA Astrophysics Data System (ADS)
Nasehnejad, Maryam; Nabiyouni, G.; Gholipour Shahraki, Mehran
2018-03-01
In this study a 3D multi-particle diffusion limited aggregation method is employed to simulate growth of rough surfaces with fractal behavior in electrodeposition process. A deposition model is used in which the radial motion of the particles with probability P, competes with random motions with probability 1 - P. Thin films growth is simulated for different values of probability P (related to the electric field) and thickness of the layer(related to the number of deposited particles). The influence of these parameters on morphology, kinetic of roughening and the fractal dimension of the simulated surfaces has been investigated. The results show that the surface roughness increases with increasing the deposition time and scaling exponents exhibit a complex behavior which is called as anomalous scaling. It seems that in electrodeposition process, radial motion of the particles toward the growing seeds may be an important mechanism leading to anomalous scaling. The results also indicate that the larger values of probability P, results in smoother topography with more densely packed structure. We have suggested a dynamic scaling ansatz for interface width has a function of deposition time, scan length and probability. Two different methods are employed to evaluate the fractal dimension of the simulated surfaces which are "cube counting" and "roughness" methods. The results of both methods show that by increasing the probability P or decreasing the deposition time, the fractal dimension of the simulated surfaces is increased. All gained values for fractal dimensions are close to 2.5 in the diffusion limited aggregation model.
Anisotropic fractal media by vector calculus in non-integer dimensional space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru
2014-08-15
A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensionalmore » space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.« less
Fractal attractors in economic growth models with random pollution externalities
NASA Astrophysics Data System (ADS)
La Torre, Davide; Marsiglio, Simone; Privileggi, Fabio
2018-05-01
We analyze a discrete time two-sector economic growth model where the production technologies in the final and human capital sectors are affected by random shocks both directly (via productivity and factor shares) and indirectly (via a pollution externality). We determine the optimal dynamics in the decentralized economy and show how these dynamics can be described in terms of a two-dimensional affine iterated function system with probability. This allows us to identify a suitable parameter configuration capable of generating exactly the classical Barnsley's fern as the attractor of the log-linearized optimal dynamical system.
An improved method of continuous LOD based on fractal theory in terrain rendering
NASA Astrophysics Data System (ADS)
Lin, Lan; Li, Lijun
2007-11-01
With the improvement of computer graphic hardware capability, the algorithm of 3D terrain rendering is going into the hot topic of real-time visualization. In order to solve conflict between the rendering speed and reality of rendering, this paper gives an improved method of terrain rendering which improves the traditional continuous level of detail technique based on fractal theory. This method proposes that the program needn't to operate the memory repeatedly to obtain different resolution terrain model, instead, obtains the fractal characteristic parameters of different region according to the movement of the viewpoint. Experimental results show that the method guarantees the authenticity of landscape, and increases the real-time 3D terrain rendering speed.
Martins, Mauricio Dias; Gingras, Bruno; Puig-Waldmueller, Estela; Fitch, W Tecumseh
2017-04-01
The human ability to process hierarchical structures has been a longstanding research topic. However, the nature of the cognitive machinery underlying this faculty remains controversial. Recursion, the ability to embed structures within structures of the same kind, has been proposed as a key component of our ability to parse and generate complex hierarchies. Here, we investigated the cognitive representation of both recursive and iterative processes in the auditory domain. The experiment used a two-alternative forced-choice paradigm: participants were exposed to three-step processes in which pure-tone sequences were built either through recursive or iterative processes, and had to choose the correct completion. Foils were constructed according to generative processes that did not match the previous steps. Both musicians and non-musicians were able to represent recursion in the auditory domain, although musicians performed better. We also observed that general 'musical' aptitudes played a role in both recursion and iteration, although the influence of musical training was somehow independent from melodic memory. Moreover, unlike iteration, recursion in audition was well correlated with its non-auditory (recursive) analogues in the visual and action sequencing domains. These results suggest that the cognitive machinery involved in establishing recursive representations is domain-general, even though this machinery requires access to information resulting from domain-specific processes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
A new universality class in corpus of texts; A statistical physics study
NASA Astrophysics Data System (ADS)
Najafi, Elham; Darooneh, Amir H.
2018-05-01
Text can be regarded as a complex system. There are some methods in statistical physics which can be used to study this system. In this work, by means of statistical physics methods, we reveal new universal behaviors of texts associating with the fractality values of words in a text. The fractality measure indicates the importance of words in a text by considering distribution pattern of words throughout the text. We observed a power law relation between fractality of text and vocabulary size for texts and corpora. We also observed this behavior in studying biological data.
NASA Astrophysics Data System (ADS)
Zhang, Chen; Ni, Zhiwei; Ni, Liping; Tang, Na
2016-10-01
Feature selection is an important method of data preprocessing in data mining. In this paper, a novel feature selection method based on multi-fractal dimension and harmony search algorithm is proposed. Multi-fractal dimension is adopted as the evaluation criterion of feature subset, which can determine the number of selected features. An improved harmony search algorithm is used as the search strategy to improve the efficiency of feature selection. The performance of the proposed method is compared with that of other feature selection algorithms on UCI data-sets. Besides, the proposed method is also used to predict the daily average concentration of PM2.5 in China. Experimental results show that the proposed method can obtain competitive results in terms of both prediction accuracy and the number of selected features.
Quantitative assessment of early diabetic retinopathy using fractal analysis.
Cheung, Ning; Donaghue, Kim C; Liew, Gerald; Rogers, Sophie L; Wang, Jie Jin; Lim, Shueh-Wen; Jenkins, Alicia J; Hsu, Wynne; Li Lee, Mong; Wong, Tien Y
2009-01-01
Fractal analysis can quantify the geometric complexity of the retinal vascular branching pattern and may therefore offer a new method to quantify early diabetic microvascular damage. In this study, we examined the relationship between retinal fractal dimension and retinopathy in young individuals with type 1 diabetes. We conducted a cross-sectional study of 729 patients with type 1 diabetes (aged 12-20 years) who had seven-field stereoscopic retinal photographs taken of both eyes. From these photographs, retinopathy was graded according to the modified Airlie House classification, and fractal dimension was quantified using a computer-based program following a standardized protocol. In this study, 137 patients (18.8%) had diabetic retinopathy signs; of these, 105 had mild retinopathy. Median (interquartile range) retinal fractal dimension was 1.46214 (1.45023-1.47217). After adjustment for age, sex, diabetes duration, A1C, blood pressure, and total cholesterol, increasing retinal vascular fractal dimension was significantly associated with increasing odds of retinopathy (odds ratio 3.92 [95% CI 2.02-7.61] for fourth versus first quartile of fractal dimension). In multivariate analysis, each 0.01 increase in retinal vascular fractal dimension was associated with a nearly 40% increased odds of retinopathy (1.37 [1.21-1.56]). This association remained after additional adjustment for retinal vascular caliber. Greater retinal fractal dimension, representing increased geometric complexity of the retinal vasculature, is independently associated with early diabetic retinopathy signs in type 1 diabetes. Fractal analysis of fundus photographs may allow quantitative measurement of early diabetic microvascular damage.
Experiences on Cryogenic Injection under Supercritical Condition
2000-05-22
and Roshko [2] for incompressible but variable-density gaseous turbulent mixing layers. Fractal analysis of the jet boundary also shows a similarity to...spreading angle versus the chamber-to-injectant density ratio.(* refers to data taken at AFRL. - FRACTAL ANALYSIS OF THE JET RaLhtINRECDPSUE *This appeared to...be a suitable analysis method to investigate the morphology of the interfacial phenomena and in recent years a number of applications of fractal
a New Method for Calculating the Fractal Dimension of Surface Topography
NASA Astrophysics Data System (ADS)
Zuo, Xue; Zhu, Hua; Zhou, Yuankai; Li, Yan
2015-06-01
A new method termed as three-dimensional root-mean-square (3D-RMS) method, is proposed to calculate the fractal dimension (FD) of machined surfaces. The measure of this method is the root-mean-square value of surface data, and the scale is the side length of square in the projection plane. In order to evaluate the calculation accuracy of the proposed method, the isotropic surfaces with deterministic FD are generated based on the fractional Brownian function and Weierstrass-Mandelbrot (WM) fractal function, and two kinds of anisotropic surfaces are generated by stretching or rotating a WM fractal curve. Their FDs are estimated by the proposed method, as well as differential boxing-counting (DBC) method, triangular prism surface area (TPSA) method and variation method (VM). The results show that the 3D-RMS method performs better than the other methods with a lower relative error for both isotropic and anisotropic surfaces, especially for the surfaces with dimensions higher than 2.5, since the relative error between the estimated value and its theoretical value decreases with theoretical FD. Finally, the electrodeposited surface, end-turning surface and grinding surface are chosen as examples to illustrate the application of 3D-RMS method on the real machined surfaces. This method gives a new way to accurately calculate the FD from the surface topographic data.
Effect of Fractal Dimension on the Strain Behavior of Particulate Media
NASA Astrophysics Data System (ADS)
Altun, Selim; Sezer, Alper; Goktepe, A. Burak
2016-12-01
In this study, the influence of several fractal identifiers of granular materials on dynamic behavior of a flexible pavement structure as a particulate stratum is considered. Using experimental results and numerical methods as well, 15 different grain-shaped sands obtained from 5 different sources were analyzed as pavement base course materials. Image analyses were carried out by use of a stereomicroscope on 15 different samples to obtain quantitative particle shape information. Furthermore, triaxial compression tests were conducted to determine stress-strain and shear strength parameters of sands. Additionally, the dynamic response of the particulate media to standard traffic loads was computed using finite element modeling (FEM) technique. Using area-perimeter, line divider and box counting methods, over a hundred grains for each sand type were subjected to fractal analysis. Relationships among fractal dimension descriptors and dynamic strain levels were established for assessment of importance of shape descriptors of sands at various scales on the dynamic behavior. In this context, the advantage of fractal geometry concept to describe irregular and fractured shapes was used to characterize the sands used as base course materials. Results indicated that fractal identifiers can be preferred to analyze the effect of shape properties of sands on dynamic behavior of pavement base layers.
Fractal properties and denoising of lidar signals from cirrus clouds
NASA Astrophysics Data System (ADS)
van den Heuvel, J. C.; Driesenaar, M. L.; Lerou, R. J. L.
2000-02-01
Airborne lidar signals of cirrus clouds are analyzed to determine the cloud structure. Climate modeling and numerical weather prediction benefit from accurate modeling of cirrus clouds. Airborne lidar measurements of the European Lidar in Space Technology Experiment (ELITE) campaign were analyzed by combining shots to obtain the backscatter at constant altitude. The signal at high altitude was analyzed for horizontal structure of cirrus clouds. The power spectrum and the structure function show straight lines on a double logarithmic plot. This behavior is characteristic for a Brownian fractal. Wavelet analysis using the Haar wavelet confirms the fractal aspects. It is shown that the horizontal structure of cirrus can be described by a fractal with a dimension of 1.8 over length scales that vary 4 orders of magnitude. We use the fractal properties in a new denoising method. Denoising is required for future lidar measurements from space that have a low signal to noise ratio. Our wavelet denoising is based on the Haar wavelet and uses the statistical fractal properties of cirrus clouds in a method based on the maximum a posteriori (MAP) probability. This denoising based on wavelets is tested on airborne lidar signals from ELITE using added Gaussian noise. Superior results with respect to averaging are obtained.
Exsanguinated blood volume estimation using fractal analysis of digital images.
Sant, Sonia P; Fairgrieve, Scott I
2012-05-01
The estimation of bloodstain volume using fractal analysis of digital images of passive blood stains is presented. Binary digital photos of bloodstains of known volumes (ranging from 1 to 7 mL), dispersed in a defined area, were subjected to image analysis using FracLac V. 2.0 for ImageJ. The box-counting method was used to generate a fractal dimension for each trial. A positive correlation between the generated fractal number and the volume of blood was found (R(2) = 0.99). Regression equations were produced to estimate the volume of blood in blind trials. An error rate ranging from 78% for 1 mL to 7% for 6 mL demonstrated that as the volume increases so does the accuracy of the volume estimation. This method used in the preliminary study proved that bloodstain patterns may be deconstructed into mathematical parameters, thus removing the subjective element inherent in other methods of volume estimation. © 2012 American Academy of Forensic Sciences.
Goñi, Joaquín; Sporns, Olaf; Cheng, Hu; Aznárez-Sanado, Maite; Wang, Yang; Josa, Santiago; Arrondo, Gonzalo; Mathews, Vincent P; Hummer, Tom A; Kronenberger, William G; Avena-Koenigsberger, Andrea; Saykin, Andrew J.; Pastor, María A.
2013-01-01
High-resolution isotropic three-dimensional reconstructions of human brain gray and white matter structures can be characterized to quantify aspects of their shape, volume and topological complexity. In particular, methods based on fractal analysis have been applied in neuroimaging studies to quantify the structural complexity of the brain in both healthy and impaired conditions. The usefulness of such measures for characterizing individual differences in brain structure critically depends on their within-subject reproducibility in order to allow the robust detection of between-subject differences. This study analyzes key analytic parameters of three fractal-based methods that rely on the box-counting algorithm with the aim to maximize within-subject reproducibility of the fractal characterizations of different brain objects, including the pial surface, the cortical ribbon volume, the white matter volume and the grey matter/white matter boundary. Two separate datasets originating from different imaging centers were analyzed, comprising, 50 subjects with three and 24 subjects with four successive scanning sessions per subject, respectively. The reproducibility of fractal measures was statistically assessed by computing their intra-class correlations. Results reveal differences between different fractal estimators and allow the identification of several parameters that are critical for high reproducibility. Highest reproducibility with intra-class correlations in the range of 0.9–0.95 is achieved with the correlation dimension. Further analyses of the fractal dimensions of parcellated cortical and subcortical gray matter regions suggest robustly estimated and region-specific patterns of individual variability. These results are valuable for defining appropriate parameter configurations when studying changes in fractal descriptors of human brain structure, for instance in studies of neurological diseases that do not allow repeated measurements or for disease-course longitudinal studies. PMID:23831414
[Modeling continuous scaling of NDVI based on fractal theory].
Luan, Hai-Jun; Tian, Qing-Jiu; Yu, Tao; Hu, Xin-Li; Huang, Yan; Du, Ling-Tong; Zhao, Li-Min; Wei, Xi; Han, Jie; Zhang, Zhou-Wei; Li, Shao-Peng
2013-07-01
Scale effect was one of the very important scientific problems of remote sensing. The scale effect of quantitative remote sensing can be used to study retrievals' relationship between different-resolution images, and its research became an effective way to confront the challenges, such as validation of quantitative remote sensing products et al. Traditional up-scaling methods cannot describe scale changing features of retrievals on entire series of scales; meanwhile, they are faced with serious parameters correction issues because of imaging parameters' variation of different sensors, such as geometrical correction, spectral correction, etc. Utilizing single sensor image, fractal methodology was utilized to solve these problems. Taking NDVI (computed by land surface radiance) as example and based on Enhanced Thematic Mapper Plus (ETM+) image, a scheme was proposed to model continuous scaling of retrievals. Then the experimental results indicated that: (a) For NDVI, scale effect existed, and it could be described by fractal model of continuous scaling; (2) The fractal method was suitable for validation of NDVI. All of these proved that fractal was an effective methodology of studying scaling of quantitative remote sensing.
Analysis of fractal dimensions of rat bones from film and digital images
NASA Technical Reports Server (NTRS)
Pornprasertsuk, S.; Ludlow, J. B.; Webber, R. L.; Tyndall, D. A.; Yamauchi, M.
2001-01-01
OBJECTIVES: (1) To compare the effect of two different intra-oral image receptors on estimates of fractal dimension; and (2) to determine the variations in fractal dimensions between the femur, tibia and humerus of the rat and between their proximal, middle and distal regions. METHODS: The left femur, tibia and humerus from 24 4-6-month-old Sprague-Dawley rats were radiographed using intra-oral film and a charge-coupled device (CCD). Films were digitized at a pixel density comparable to the CCD using a flat-bed scanner. Square regions of interest were selected from proximal, middle, and distal regions of each bone. Fractal dimensions were estimated from the slope of regression lines fitted to plots of log power against log spatial frequency. RESULTS: The fractal dimensions estimates from digitized films were significantly greater than those produced from the CCD (P=0.0008). Estimated fractal dimensions of three types of bone were not significantly different (P=0.0544); however, the three regions of bones were significantly different (P=0.0239). The fractal dimensions estimated from radiographs of the proximal and distal regions of the bones were lower than comparable estimates obtained from the middle region. CONCLUSIONS: Different types of image receptors significantly affect estimates of fractal dimension. There was no difference in the fractal dimensions of the different bones but the three regions differed significantly.
Fractal analysis of seafloor textures for target detection in synthetic aperture sonar imagery
NASA Astrophysics Data System (ADS)
Nabelek, T.; Keller, J.; Galusha, A.; Zare, A.
2018-04-01
Fractal analysis of an image is a mathematical approach to generate surface related features from an image or image tile that can be applied to image segmentation and to object recognition. In undersea target countermeasures, the targets of interest can appear as anomalies in a variety of contexts, visually different textures on the seafloor. In this paper, we evaluate the use of fractal dimension as a primary feature and related characteristics as secondary features to be extracted from synthetic aperture sonar (SAS) imagery for the purpose of target detection. We develop three separate methods for computing fractal dimension. Tiles with targets are compared to others from the same background textures without targets. The different fractal dimension feature methods are tested with respect to how well they can be used to detect targets vs. false alarms within the same contexts. These features are evaluated for utility using a set of image tiles extracted from a SAS data set generated by the U.S. Navy in conjunction with the Office of Naval Research. We find that all three methods perform well in the classification task, with a fractional Brownian motion model performing the best among the individual methods. We also find that the secondary features are just as useful, if not more so, in classifying false alarms vs. targets. The best classification accuracy overall, in our experimentation, is found when the features from all three methods are combined into a single feature vector.
Fractal dimension based damage identification incorporating multi-task sparse Bayesian learning
NASA Astrophysics Data System (ADS)
Huang, Yong; Li, Hui; Wu, Stephen; Yang, Yongchao
2018-07-01
Sensitivity to damage and robustness to noise are critical requirements for the effectiveness of structural damage detection. In this study, a two-stage damage identification method based on the fractal dimension analysis and multi-task Bayesian learning is presented. The Higuchi’s fractal dimension (HFD) based damage index is first proposed, directly examining the time-frequency characteristic of local free vibration data of structures based on the irregularity sensitivity and noise robustness analysis of HFD. Katz’s fractal dimension is then presented to analyze the abrupt irregularity change of the spatial curve of the displacement mode shape along the structure. At the second stage, the multi-task sparse Bayesian learning technique is employed to infer the final damage localization vector, which borrow the dependent strength of the two fractal dimension based damage indication information and also incorporate the prior knowledge that structural damage occurs at a limited number of locations in a structure in the absence of its collapse. To validate the capability of the proposed method, a steel beam and a bridge, named Yonghe Bridge, are analyzed as illustrative examples. The damage identification results demonstrate that the proposed method is capable of localizing single and multiple damages regardless of its severity, and show superior robustness under heavy noise as well.
Consideration of the method of image diagnosis with respect to frontal lobe atrophy
NASA Astrophysics Data System (ADS)
Sato, K.; Sugawara, K.; Narita, Y.; Namura, I.
1996-12-01
Proposes a segmentation method for a quantitative image diagnosis as a means of realizing an objective diagnosis of the frontal lobe atrophy. From the data obtained on the grade of membership, the fractal dimensions of the cerebral tissue [cerebral spinal fluid (CSF), gray matter, and white matter] and the contours are estimated. The mutual relationship between the degree of atrophy and the fractal dimension has been analyzed based on the estimated fractal dimensions. Using a sample of 42 male and female cases, ranging In age from 50's to 70's, it has been concluded that the frontal lobe atrophy can be quantified by regarding it as an expansion of CSF region on the magnetic resonance imaging (MRI) of the brain. Furthermore, when the process of frontal lobe atrophy is separated into early and advanced stages, the volumetric change of CSF and white matter in frontal lobe displays meaningful differences between the two stages, demonstrating that the fractal dimension of CSF rises with the progress of atrophy. Moreover, an interpolation method for three-dimensional (3-D) shape reconstruction of the region of diagnostic interest is proposed and 3-D shape visualization, with respect to the degree and form of atrophy, is performed on the basis of the estimated fractal dimension of the segmented cerebral tissue.
Tenorio, Bruno Mendes; da Silva Filho, Eurípedes Alves; Neiva, Gentileza Santos Martins; da Silva, Valdemiro Amaro; Tenorio, Fernanda das Chagas Angelo Mendes; da Silva, Themis de Jesus; Silva, Emerson Carlos Soares E; Nogueira, Romildo de Albuquerque
2017-08-01
Shrimps can accumulate environmental toxicants and suffer behavioral changes. However, methods to quantitatively detect changes in the behavior of these shrimps are still needed. The present study aims to verify whether mathematical and fractal methods applied to video tracking can adequately describe changes in the locomotion behavior of shrimps exposed to low concentrations of toxic chemicals, such as 0.15µgL -1 deltamethrin pesticide or 10µgL -1 mercuric chloride. Results showed no change after 1min, 4, 24, and 48h of treatment. However, after 72 and 96h of treatment, both the linear methods describing the track length, mean speed, mean distance from the current to the previous track point, as well as the non-linear methods of fractal dimension (box counting or information entropy) and multifractal analysis were able to detect changes in the locomotion behavior of shrimps exposed to deltamethrin. Analysis of angular parameters of the track points vectors and lacunarity were not sensitive to those changes. None of the methods showed adverse effects to mercury exposure. These mathematical and fractal methods applicable to software represent low cost useful tools in the toxicological analyses of shrimps for quality of food, water and biomonitoring of ecosystems. Copyright © 2017 Elsevier Inc. All rights reserved.
Edge detection of optical subaperture image based on improved differential box-counting method
NASA Astrophysics Data System (ADS)
Li, Yi; Hui, Mei; Liu, Ming; Dong, Liquan; Kong, Lingqin; Zhao, Yuejin
2018-01-01
Optical synthetic aperture imaging technology is an effective approach to improve imaging resolution. Compared with monolithic mirror system, the image of optical synthetic aperture system is often more complex at the edge, and as a result of the existence of gap between segments, which makes stitching becomes a difficult problem. So it is necessary to extract the edge of subaperture image for achieving effective stitching. Fractal dimension as a measure feature can describe image surface texture characteristics, which provides a new approach for edge detection. In our research, an improved differential box-counting method is used to calculate fractal dimension of image, then the obtained fractal dimension is mapped to grayscale image to detect edges. Compared with original differential box-counting method, this method has two improvements as follows: by modifying the box-counting mechanism, a box with a fixed height is replaced by a box with adaptive height, which solves the problem of over-counting the number of boxes covering image intensity surface; an image reconstruction method based on super-resolution convolutional neural network is used to enlarge small size image, which can solve the problem that fractal dimension can't be calculated accurately under the small size image, and this method may well maintain scale invariability of fractal dimension. The experimental results show that the proposed algorithm can effectively eliminate noise and has a lower false detection rate compared with the traditional edge detection algorithms. In addition, this algorithm can maintain the integrity and continuity of image edge in the case of retaining important edge information.
Power Scaling of the Mainland Shoreline of the Atlantic Coast of the United States
NASA Astrophysics Data System (ADS)
Vasko, E.; Barton, C. C.; Geise, G. R.; Rizki, M. M.
2017-12-01
The fractal dimension of the mainland shoreline of the Atlantic coast of the United Stated from Maine to Homestead, FL has been measured in 1000 km increments using the box-counting method. The shoreline analyzed is the NOAA Medium Resolution Shoreline (https://shoreline.noaa.gov/data/datasheets/medres.html). The shoreline was reconstituted into sequentially numbered X-Y coordinate points in UTM Zone 18N which are spaced 50 meters apart, as measured continuously along the shoreline. We created a MATLAB computer code to measure the fractal dimension by box counting while "walking" along the shoreline. The range of box sizes is 0.7 to 450 km. The fractal dimension ranges from 1.0 to1.5 along the mainland shoreline of the Atlantic coast. The fractal dimension is compared with beach particle sizes (bedrock outcrop, cobbles, pebbles, sand, clay), tidal range, rate of sea level rise, rate and direction of vertical crustal movement, and wave energy, looking for correlation with the measured fractal dimensions. The results show a correlation between high fractal dimensions (1.3 - 1.4) and tectonically emergent coasts, and low fractal dimensions (1.0 - 1.2) along submergent and stable coastal regions. Fractal dimension averages 1.3 along shorelines with shoreline protection structures such as seawalls, jetties, and groins.
Fractal-Based Analysis of the Influence of Music on Human Respiration
NASA Astrophysics Data System (ADS)
Reza Namazi, H.
An important challenge in respiration related studies is to investigate the influence of external stimuli on human respiration. Auditory stimulus is an important type of stimuli that influences human respiration. However, no one discovered any trend, which relates the characteristics of the auditory stimuli to the characteristics of the respiratory signal. In this paper, we investigate the correlation between auditory stimuli and respiratory signal from fractal point of view. We found out that the fractal structure of respiratory signal is correlated with the fractal structure of the applied music. Based on the obtained results, the music with greater fractal dimension will result in respiratory signal with smaller fractal dimension. In order to verify this result, we benefit from approximate entropy. The results show the respiratory signal will have smaller approximate entropy by choosing the music with smaller approximate entropy. The method of analysis could be further investigated to analyze the variations of different physiological time series due to the various types of stimuli when the complexity is the main concern.
Super Water-Repellent Fractal Surfaces of a Photochromic Diarylethene Induced by UV Light
NASA Astrophysics Data System (ADS)
Izumi, Norikazu; Minami, Takayuki; Mayama, Hiroyuki; Takata, Atsushi; Nakamura, Shinichiro; Yokojima, Satoshi; Tsujii, Kaoru; Uchida, Kingo
2008-09-01
Photochromic diarylethene forms super water-repellent surfaces upon irradiation with UV light. Microfibril-like crystals grow on the solid diarylethene surface after UV irradiation, and the contact angle of water on the surface becomes larger with increasing surface roughness with time. The fractal analysis was made by the box-counting method for the rough surfaces. There are three regions in the roughness size having the fractal dimension of ca. 2.4 (size of roughness smaller than 5 µm), of ca. 2.2 (size of roughness between 5-40 µm), and of ca. 2.0 (size of roughness larger than 40 µm). The fractal dimension of ca. 2.4 was due to the fibril-like structures generated gradually by UV irradiation on diarylethene surfaces accompanied with an increase in the contact angle. The surface structure with larger fractal dimension mainly contributes to realizing the super water-repellency of the diarylethene surfaces. This mechanism of spontaneous formation of fractal surfaces is similar to that for triglyceride and alkylketene dimer waxes.
Fractal dimension study of polaron effects in cylindrical GaAs/Al x Ga1- x As core-shell nanowires
NASA Astrophysics Data System (ADS)
Sun, Hui; Li, Hua; Tian, Qiang
2018-04-01
Polaron effects in cylindrical GaAs/Al x Ga1- x As core-shell nanowires are studied by applying the fractal dimension method. In this paper, the polaron properties of GaAs/Al x Ga1- x As core-shell nanowires with different core radii and aluminum concentrations are discussed. The polaron binding energy, polaron mass shift, and fractal dimension parameter are numerically determined as functions of shell width. The calculation results reveal that the binding energy and mass shift of the polaron first increase and then decrease as the shell width increases. A maximum value appears at a certain shell width for different aluminum concentrations and a given core radius. By using the fractal dimension method, polaron problems in cylindrical GaAs/Al x Ga1- x As core-shell nanowires are solved in a simple manner that avoids complex and lengthy calculations.
Suer, Berkay Tolga; Yaman, Zekai; Buyuksarac, Bora
2016-01-01
Fractal analysis is a mathematical method used to describe the internal architecture of complex structures such as trabecular bone. Fractal analysis of panoramic radiographs of implant recipient sites could help to predict the quality of the bone prior to implant placement. This study investigated the correlations between the fractal dimension values obtained from panoramic radiographs and the insertion torque and resonance frequency values of mandibular implants. Thirty patients who received a total of 55 implants of the same brand, diameter, and length in the mandibular premolar and molar regions were included in the study. The same surgical procedures were applied to each patient, and the insertion torque and resonance frequency values were recorded for each implant at the time of placement. The radiographic fractal dimensions of the alveolar bone in the implant recipient area were calculated from preoperative panoramic radiographs using a box-counting algorithm. The insertion torque and resonance frequency values were compared with the fractal dimension values using the Spearman test. All implants were successful, and none were lost during the follow-up period. Linear correlations were observed between the fractal dimension and resonance frequency, between the fractal dimension and insertion torque, and between resonance frequency and insertion torque. These results suggest that the noninvasive measurement of the fractal dimension from panoramic radiographs might help to predict the bone quality, and thus the primary stability of dental implants, before implant surgery.
Zhang, Zhenwei; VanSwearingen, Jessie; Brach, Jennifer S.; Perera, Subashan
2016-01-01
Human gait is a complex interaction of many nonlinear systems and stride intervals exhibit self-similarity over long time scales that can be modeled as a fractal process. The scaling exponent represents the fractal degree and can be interpreted as a biomarker of relative diseases. The previous study showed that the average wavelet method provides the most accurate results to estimate this scaling exponent when applied to stride interval time series. The purpose of this paper is to determine the most suitable mother wavelet for the average wavelet method. This paper presents a comparative numerical analysis of sixteen mother wavelets using simulated and real fractal signals. Simulated fractal signals were generated under varying signal lengths and scaling exponents that indicate a range of physiologically conceivable fractal signals. The five candidates were chosen due to their good performance on the mean square error test for both short and long signals. Next, we comparatively analyzed these five mother wavelets for physiologically relevant stride time series lengths. Our analysis showed that the symlet 2 mother wavelet provides a low mean square error and low variance for long time intervals and relatively low errors for short signal lengths. It can be considered as the most suitable mother function without the burden of considering the signal length. PMID:27960102
Mathematical models used in segmentation and fractal methods of 2-D ultrasound images
NASA Astrophysics Data System (ADS)
Moldovanu, Simona; Moraru, Luminita; Bibicu, Dorin
2012-11-01
Mathematical models are widely used in biomedical computing. The extracted data from images using the mathematical techniques are the "pillar" achieving scientific progress in experimental, clinical, biomedical, and behavioural researches. This article deals with the representation of 2-D images and highlights the mathematical support for the segmentation operation and fractal analysis in ultrasound images. A large number of mathematical techniques are suitable to be applied during the image processing stage. The addressed topics cover the edge-based segmentation, more precisely the gradient-based edge detection and active contour model, and the region-based segmentation namely Otsu method. Another interesting mathematical approach consists of analyzing the images using the Box Counting Method (BCM) to compute the fractal dimension. The results of the paper provide explicit samples performed by various combination of methods.
Retinal vasculature classification using novel multifractal features
NASA Astrophysics Data System (ADS)
Ding, Y.; Ward, W. O. C.; Duan, Jinming; Auer, D. P.; Gowland, Penny; Bai, L.
2015-11-01
Retinal blood vessels have been implicated in a large number of diseases including diabetic retinopathy and cardiovascular diseases, which cause damages to retinal blood vessels. The availability of retinal vessel imaging provides an excellent opportunity for monitoring and diagnosis of retinal diseases, and automatic analysis of retinal vessels will help with the processes. However, state of the art vascular analysis methods such as counting the number of branches or measuring the curvature and diameter of individual vessels are unsuitable for the microvasculature. There has been published research using fractal analysis to calculate fractal dimensions of retinal blood vessels, but so far there has been no systematic research extracting discriminant features from retinal vessels for classifications. This paper introduces new methods for feature extraction from multifractal spectra of retinal vessels for classification. Two publicly available retinal vascular image databases are used for the experiments, and the proposed methods have produced accuracies of 85.5% and 77% for classification of healthy and diabetic retinal vasculatures. Experiments show that classification with multiple fractal features produces better rates compared with methods using a single fractal dimension value. In addition to this, experiments also show that classification accuracy can be affected by the accuracy of vessel segmentation algorithms.
Plant Identification Based on Leaf Midrib Cross-Section Images Using Fractal Descriptors.
da Silva, Núbia Rosa; Florindo, João Batista; Gómez, María Cecilia; Rossatto, Davi Rodrigo; Kolb, Rosana Marta; Bruno, Odemir Martinez
2015-01-01
The correct identification of plants is a common necessity not only to researchers but also to the lay public. Recently, computational methods have been employed to facilitate this task, however, there are few studies front of the wide diversity of plants occurring in the world. This study proposes to analyse images obtained from cross-sections of leaf midrib using fractal descriptors. These descriptors are obtained from the fractal dimension of the object computed at a range of scales. In this way, they provide rich information regarding the spatial distribution of the analysed structure and, as a consequence, they measure the multiscale morphology of the object of interest. In Biology, such morphology is of great importance because it is related to evolutionary aspects and is successfully employed to characterize and discriminate among different biological structures. Here, the fractal descriptors are used to identify the species of plants based on the image of their leaves. A large number of samples are examined, being 606 leaf samples of 50 species from Brazilian flora. The results are compared to other imaging methods in the literature and demonstrate that fractal descriptors are precise and reliable in the taxonomic process of plant species identification.
A system framework of inter-enterprise machining quality control based on fractal theory
NASA Astrophysics Data System (ADS)
Zhao, Liping; Qin, Yongtao; Yao, Yiyong; Yan, Peng
2014-03-01
In order to meet the quality control requirement of dynamic and complicated product machining processes among enterprises, a system framework of inter-enterprise machining quality control based on fractal was proposed. In this system framework, the fractal-specific characteristic of inter-enterprise machining quality control function was analysed, and the model of inter-enterprise machining quality control was constructed by the nature of fractal structures. Furthermore, the goal-driven strategy of inter-enterprise quality control and the dynamic organisation strategy of inter-enterprise quality improvement were constructed by the characteristic analysis on this model. In addition, the architecture of inter-enterprise machining quality control based on fractal was established by means of Web service. Finally, a case study for application was presented. The result showed that the proposed method was available, and could provide guidance for quality control and support for product reliability in inter-enterprise machining processes.
Metabolic networks are almost nonfractal: a comprehensive evaluation.
Takemoto, Kazuhiro
2014-08-01
Network self-similarity or fractality are widely accepted as an important topological property of metabolic networks; however, recent studies cast doubt on the reality of self-similarity in the networks. Therefore, we perform a comprehensive evaluation of metabolic network fractality using a box-covering method with an earlier version and the latest version of metabolic networks and demonstrate that the latest metabolic networks are almost self-dissimilar, while the earlier ones are fractal, as reported in a number of previous studies. This result may be because the networks were randomized because of an increase in network density due to database updates, suggesting that the previously observed network fractality was due to a lack of available data on metabolic reactions. This finding may not entirely discount the importance of self-similarity of metabolic networks. Rather, it highlights the need for a more suitable definition of network fractality and a more careful examination of self-similarity of metabolic networks.
NASA Astrophysics Data System (ADS)
Xie, Tao; Zou, Guang-Hui; William, Perrie; Kuang, Hai-Lan; Chen, Wei
2010-05-01
Using the theory of nonlinear interactions between long and short waves, a nonlinear fractal sea surface model is presented for a one dimensional deep sea. Numerical simulation results show that spectra intensity changes at different locations (in both the wave number domain and temporal-frequency domain), and the system obeys the energy conservation principle. Finally, a method to limit the fractal parameters is also presented to ensure that the model system does not become ill-posed.
The correlation of fractal structures in the photospheric and the coronal magnetic field
NASA Astrophysics Data System (ADS)
Dimitropoulou, M.; Georgoulis, M.; Isliker, H.; Vlahos, L.; Anastasiadis, A.; Strintzi, D.; Moussas, X.
2009-10-01
Context: This work examines the relation between the fractal properties of the photospheric magnetic patterns and those of the coronal magnetic fields in solar active regions. Aims: We investigate whether there is any correlation between the fractal dimensions of the photospheric structures and the magnetic discontinuities formed in the corona. Methods: To investigate the connection between the photospheric and coronal complexity, we used a nonlinear force-free extrapolation method that reconstructs the 3d magnetic fields using 2d observed vector magnetograms as boundary conditions. We then located the magnetic discontinuities, which are considered as spatial proxies of reconnection-related instabilities. These discontinuities form well-defined volumes, called here unstable volumes. We calculated the fractal dimensions of these unstable volumes and compared them to the fractal dimensions of the boundary vector magnetograms. Results: Our results show no correlation between the fractal dimensions of the observed 2d photospheric structures and the extrapolated unstable volumes in the corona, when nonlinear force-free extrapolation is used. This result is independent of efforts to (1) bring the photospheric magnetic fields closer to a nonlinear force-free equilibrium and (2) omit the lower part of the modeled magnetic field volume that is almost completely filled by unstable volumes. A significant correlation between the fractal dimensions of the photospheric and coronal magnetic features is only observed at the zero level (lower limit) of approximation of a current-free (potential) magnetic field extrapolation. Conclusions: We conclude that the complicated transition from photospheric non-force-free fields to coronal force-free ones hampers any direct correlation between the fractal dimensions of the 2d photospheric patterns and their 3d counterparts in the corona at the nonlinear force-free limit, which can be considered as a second level of approximation in this study. Correspondingly, in the zero and first levels of approximation, namely, the potential and linear force-free extrapolation, respectively, we reveal a significant correlation between the fractal dimensions of the photospheric and coronal structures, which can be attributed to the lack of electric currents or to their purely field-aligned orientation.
Detection of crossover time scales in multifractal detrended fluctuation analysis
NASA Astrophysics Data System (ADS)
Ge, Erjia; Leung, Yee
2013-04-01
Fractal is employed in this paper as a scale-based method for the identification of the scaling behavior of time series. Many spatial and temporal processes exhibiting complex multi(mono)-scaling behaviors are fractals. One of the important concepts in fractals is crossover time scale(s) that separates distinct regimes having different fractal scaling behaviors. A common method is multifractal detrended fluctuation analysis (MF-DFA). The detection of crossover time scale(s) is, however, relatively subjective since it has been made without rigorous statistical procedures and has generally been determined by eye balling or subjective observation. Crossover time scales such determined may be spurious and problematic. It may not reflect the genuine underlying scaling behavior of a time series. The purpose of this paper is to propose a statistical procedure to model complex fractal scaling behaviors and reliably identify the crossover time scales under MF-DFA. The scaling-identification regression model, grounded on a solid statistical foundation, is first proposed to describe multi-scaling behaviors of fractals. Through the regression analysis and statistical inference, we can (1) identify the crossover time scales that cannot be detected by eye-balling observation, (2) determine the number and locations of the genuine crossover time scales, (3) give confidence intervals for the crossover time scales, and (4) establish the statistically significant regression model depicting the underlying scaling behavior of a time series. To substantive our argument, the regression model is applied to analyze the multi-scaling behaviors of avian-influenza outbreaks, water consumption, daily mean temperature, and rainfall of Hong Kong. Through the proposed model, we can have a deeper understanding of fractals in general and a statistical approach to identify multi-scaling behavior under MF-DFA in particular.
Batchelder, Kendra A; Tanenbaum, Aaron B; Albert, Seth; Guimond, Lyne; Kestener, Pierre; Arneodo, Alain; Khalil, Andre
2014-01-01
The 2D Wavelet-Transform Modulus Maxima (WTMM) method was used to detect microcalcifications (MC) in human breast tissue seen in mammograms and to characterize the fractal geometry of benign and malignant MC clusters. This was done in the context of a preliminary analysis of a small dataset, via a novel way to partition the wavelet-transform space-scale skeleton. For the first time, the estimated 3D fractal structure of a breast lesion was inferred by pairing the information from two separate 2D projected mammographic views of the same breast, i.e. the cranial-caudal (CC) and mediolateral-oblique (MLO) views. As a novelty, we define the "CC-MLO fractal dimension plot", where a "fractal zone" and "Euclidean zones" (non-fractal) are defined. 118 images (59 cases, 25 malignant and 34 benign) obtained from a digital databank of mammograms with known radiologist diagnostics were analyzed to determine which cases would be plotted in the fractal zone and which cases would fall in the Euclidean zones. 92% of malignant breast lesions studied (23 out of 25 cases) were in the fractal zone while 88% of the benign lesions were in the Euclidean zones (30 out of 34 cases). Furthermore, a Bayesian statistical analysis shows that, with 95% credibility, the probability that fractal breast lesions are malignant is between 74% and 98%. Alternatively, with 95% credibility, the probability that Euclidean breast lesions are benign is between 76% and 96%. These results support the notion that the fractal structure of malignant tumors is more likely to be associated with an invasive behavior into the surrounding tissue compared to the less invasive, Euclidean structure of benign tumors. Finally, based on indirect 3D reconstructions from the 2D views, we conjecture that all breast tumors considered in this study, benign and malignant, fractal or Euclidean, restrict their growth to 2-dimensional manifolds within the breast tissue.
NASA Technical Reports Server (NTRS)
Bruning, Eric C.; Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Carey, Larry D.; Koshak, William; Peterson, Harold; MacGorman, Donald R.
2013-01-01
We will use VHF Lightning Mapping Array data to estimate NOx per flash and per unit channel length, including the vertical distribution of channel length. What s the best way to find channel length from VHF sources? This paper presents the rationale for the fractal method, which is closely related to the box-covering method.
Moscoso del Prado Martín, Fermín
2013-12-01
I introduce the Bayesian assessment of scaling (BAS), a simple but powerful Bayesian hypothesis contrast methodology that can be used to test hypotheses on the scaling regime exhibited by a sequence of behavioral data. Rather than comparing parametric models, as typically done in previous approaches, the BAS offers a direct, nonparametric way to test whether a time series exhibits fractal scaling. The BAS provides a simpler and faster test than do previous methods, and the code for making the required computations is provided. The method also enables testing of finely specified hypotheses on the scaling indices, something that was not possible with the previously available methods. I then present 4 simulation studies showing that the BAS methodology outperforms the other methods used in the psychological literature. I conclude with a discussion of methodological issues on fractal analyses in experimental psychology. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Domain-wall excitations in the two-dimensional Ising spin glass
NASA Astrophysics Data System (ADS)
Khoshbakht, Hamid; Weigel, Martin
2018-02-01
The Ising spin glass in two dimensions exhibits rich behavior with subtle differences in the scaling for different coupling distributions. We use recently developed mappings to graph-theoretic problems together with highly efficient implementations of combinatorial optimization algorithms to determine exact ground states for systems on square lattices with up to 10 000 ×10 000 spins. While these mappings only work for planar graphs, for example for systems with periodic boundary conditions in at most one direction, we suggest here an iterative windowing technique that allows one to determine ground states for fully periodic samples up to sizes similar to those for the open-periodic case. Based on these techniques, a large number of disorder samples are used together with a careful finite-size scaling analysis to determine the stiffness exponents and domain-wall fractal dimensions with unprecedented accuracy, our best estimates being θ =-0.2793 (3 ) and df=1.273 19 (9 ) for Gaussian couplings. For bimodal disorder, a new uniform sampling algorithm allows us to study the domain-wall fractal dimension, finding df=1.279 (2 ) . Additionally, we also investigate the distributions of ground-state energies, of domain-wall energies, and domain-wall lengths.
Fractal Clustering and Knowledge-driven Validation Assessment for Gene Expression Profiling.
Wang, Lu-Yong; Balasubramanian, Ammaiappan; Chakraborty, Amit; Comaniciu, Dorin
2005-01-01
DNA microarray experiments generate a substantial amount of information about the global gene expression. Gene expression profiles can be represented as points in multi-dimensional space. It is essential to identify relevant groups of genes in biomedical research. Clustering is helpful in pattern recognition in gene expression profiles. A number of clustering techniques have been introduced. However, these traditional methods mainly utilize shape-based assumption or some distance metric to cluster the points in multi-dimension linear Euclidean space. Their results shows poor consistence with the functional annotation of genes in previous validation study. From a novel different perspective, we propose fractal clustering method to cluster genes using intrinsic (fractal) dimension from modern geometry. This method clusters points in such a way that points in the same clusters are more self-affine among themselves than to the points in other clusters. We assess this method using annotation-based validation assessment for gene clusters. It shows that this method is superior in identifying functional related gene groups than other traditional methods.
NASA Astrophysics Data System (ADS)
Kikuchi, Tsuneo; Nakazawa, Toshihiro; Furukawa, Tetsuo; Higuchi, Toshiyuki; Maruyama, Yukio; Sato, Sojun
1995-05-01
This paper describes the quantitative measurement of the amount of fibrosis in the rat liver using the fractal dimension of the shape of power spectrum. The shape of the power spectrum of the scattered echo from biotissues is strongly affected by its internal structure. The fractal dimension, which is one of the important parameters of the fractal theory, is useful to express the complexity of shape of figures such as the power spectrum. From in vitro experiments using rat liver, it was found that this method can be used to quantitatively measure the amount of fibrosis in the liver, and has the possibility for use in the diagnosis of human liver cirrhosis.
A Lossless hybrid wavelet-fractal compression for welding radiographic images.
Mekhalfa, Faiza; Avanaki, Mohammad R N; Berkani, Daoud
2016-01-01
In this work a lossless wavelet-fractal image coder is proposed. The process starts by compressing and decompressing the original image using wavelet transformation and fractal coding algorithm. The decompressed image is removed from the original one to obtain a residual image which is coded by using Huffman algorithm. Simulation results show that with the proposed scheme, we achieve an infinite peak signal to noise ratio (PSNR) with higher compression ratio compared to typical lossless method. Moreover, the use of wavelet transform speeds up the fractal compression algorithm by reducing the size of the domain pool. The compression results of several welding radiographic images using the proposed scheme are evaluated quantitatively and compared with the results of Huffman coding algorithm.
Multifractal analysis of mobile social networks
NASA Astrophysics Data System (ADS)
Zheng, Wei; Zhang, Zifeng; Deng, Yufan
2017-09-01
As Wireless Fidelity (Wi-Fi)-enabled handheld devices have been widely used, the mobile social networks (MSNs) has been attracting extensive attention. Fractal approaches have also been widely applied to characterierize natural networks as useful tools to depict their spatial distribution and scaling properties. Moreover, when the complexity of the spatial distribution of MSNs cannot be properly charaterized by single fractal dimension, multifractal analysis is required. For further research, we introduced a multifractal analysis method based on box-covering algorithm to describe the structure of MSNs. Using this method, we find that the networks are multifractal at different time interval. The simulation results demonstrate that the proposed method is efficient for analyzing the multifractal characteristic of MSNs, which provides a distribution of singularities adequately describing both the heterogeneity of fractal patterns and the statistics of measurements across spatial scales in MSNs.
Fractal Analysis of Visual Search Activity for Mass Detection During Mammographic Screening
Alamudun, Folami T.; Yoon, Hong-Jun; Hudson, Kathy; ...
2017-02-21
Purpose: The objective of this study was to assess the complexity of human visual search activity during mammographic screening using fractal analysis and to investigate its relationship with case and reader characteristics. Methods: The study was performed for the task of mammographic screening with simultaneous viewing of four coordinated breast views as typically done in clinical practice. Eye-tracking data and diagnostic decisions collected for 100 mammographic cases (25 normal, 25 benign, 50 malignant) and 10 readers (three board certified radiologists and seven radiology residents), formed the corpus data for this study. The fractal dimension of the readers’ visual scanning patternsmore » was computed with the Minkowski–Bouligand box-counting method and used as a measure of gaze complexity. Individual factor and group-based interaction ANOVA analysis was performed to study the association between fractal dimension, case pathology, breast density, and reader experience level. The consistency of the observed trends depending on gaze data representation was also examined. Results: Case pathology, breast density, reader experience level, and individual reader differences are all independent predictors of the visual scanning pattern complexity when screening for breast cancer. No higher order effects were found to be significant. Conclusions: Fractal characterization of visual search behavior during mammographic screening is dependent on case properties and image reader characteristics.« less
NASA Astrophysics Data System (ADS)
Juniati, D.; Khotimah, C.; Wardani, D. E. K.; Budayasa, K.
2018-01-01
The heart abnormalities can be detected from heart sound. A heart sound can be heard directly with a stethoscope or indirectly by a phonocardiograph, a machine of the heart sound recording. This paper presents the implementation of fractal dimension theory to make a classification of phonocardiograms into a normal heart sound, a murmur, or an extrasystole. The main algorithm used to calculate the fractal dimension was Higuchi’s Algorithm. There were two steps to make a classification of phonocardiograms, feature extraction, and classification. For feature extraction, we used Discrete Wavelet Transform to decompose the signal of heart sound into several sub-bands depending on the selected level. After the decomposition process, the signal was processed using Fast Fourier Transform (FFT) to determine the spectral frequency. The fractal dimension of the FFT output was calculated using Higuchi Algorithm. The classification of fractal dimension of all phonocardiograms was done with KNN and Fuzzy c-mean clustering methods. Based on the research results, the best accuracy obtained was 86.17%, the feature extraction by DWT decomposition level 3 with the value of kmax 50, using 5-fold cross validation and the number of neighbors was 5 at K-NN algorithm. Meanwhile, for fuzzy c-mean clustering, the accuracy was 78.56%.
Modeling Complex Phenomena Using Multiscale Time Sequences
2009-08-24
measures based on Hurst and Holder exponents , auto-regressive methods and Fourier and wavelet decomposition methods. The applications for this technology...relate to each other. This can be done by combining a set statistical fractal measures based on Hurst and Holder exponents , auto-regressive...different scales and how these scales relate to each other. This can be done by combining a set statistical fractal measures based on Hurst and
Monte Carlo Sampling in Fractal Landscapes
NASA Astrophysics Data System (ADS)
Leitão, Jorge C.; Lopes, J. M. Viana Parente; Altmann, Eduardo G.
2013-05-01
We design a random walk to explore fractal landscapes such as those describing chaotic transients in dynamical systems. We show that the random walk moves efficiently only when its step length depends on the height of the landscape via the largest Lyapunov exponent of the chaotic system. We propose a generalization of the Wang-Landau algorithm which constructs not only the density of states (transient time distribution) but also the correct step length. As a result, we obtain a flat-histogram Monte Carlo method which samples fractal landscapes in polynomial time, a dramatic improvement over the exponential scaling of traditional uniform-sampling methods. Our results are not limited by the dimensionality of the landscape and are confirmed numerically in chaotic systems with up to 30 dimensions.
Szigeti, Krisztián; Szabó, Tibor; Korom, Csaba; Czibak, Ilona; Horváth, Ildikó; Veres, Dániel S; Gyöngyi, Zoltán; Karlinger, Kinga; Bergmann, Ralf; Pócsik, Márta; Budán, Ferenc; Máthé, Domokos
2016-02-11
Lung diseases (resulting from air pollution) require a widely accessible method for risk estimation and early diagnosis to ensure proper and responsive treatment. Radiomics-based fractal dimension analysis of X-ray computed tomography attenuation patterns in chest voxels of mice exposed to different air polluting agents was performed to model early stages of disease and establish differential diagnosis. To model different types of air pollution, BALBc/ByJ mouse groups were exposed to cigarette smoke combined with ozone, sulphur dioxide gas and a control group was established. Two weeks after exposure, the frequency distributions of image voxel attenuation data were evaluated. Specific cut-off ranges were defined to group voxels by attenuation. Cut-off ranges were binarized and their spatial pattern was associated with calculated fractal dimension, then abstracted by the fractal dimension -- cut-off range mathematical function. Nonparametric Kruskal-Wallis (KW) and Mann-Whitney post hoc (MWph) tests were used. Each cut-off range versus fractal dimension function plot was found to contain two distinctive Gaussian curves. The ratios of the Gaussian curve parameters are considerably significant and are statistically distinguishable within the three exposure groups. A new radiomics evaluation method was established based on analysis of the fractal dimension of chest X-ray computed tomography data segments. The specific attenuation patterns calculated utilizing our method may diagnose and monitor certain lung diseases, such as chronic obstructive pulmonary disease (COPD), asthma, tuberculosis or lung carcinomas.
Sequence analysis by iterated maps, a review.
Almeida, Jonas S
2014-05-01
Among alignment-free methods, Iterated Maps (IMs) are on a particular extreme: they are also scale free (order free). The use of IMs for sequence analysis is also distinct from other alignment-free methodologies in being rooted in statistical mechanics instead of computational linguistics. Both of these roots go back over two decades to the use of fractal geometry in the characterization of phase-space representations. The time series analysis origin of the field is betrayed by the title of the manuscript that started this alignment-free subdomain in 1990, 'Chaos Game Representation'. The clash between the analysis of sequences as continuous series and the better established use of Markovian approaches to discrete series was almost immediate, with a defining critique published in same journal 2 years later. The rest of that decade would go by before the scale-free nature of the IM space was uncovered. The ensuing decade saw this scalability generalized for non-genomic alphabets as well as an interest in its use for graphic representation of biological sequences. Finally, in the past couple of years, in step with the emergence of BigData and MapReduce as a new computational paradigm, there is a surprising third act in the IM story. Multiple reports have described gains in computational efficiency of multiple orders of magnitude over more conventional sequence analysis methodologies. The stage appears to be now set for a recasting of IMs with a central role in processing nextgen sequencing results.
Toward a fractal spectrum approach for neutron and gamma pulse shape discrimination
NASA Astrophysics Data System (ADS)
Liu, Ming-Zhe; Liu, Bing-Qi; Zuo, Zhuo; Wang, Lei; Zan, Gui-Bin; Tuo, Xian-Guo
2016-06-01
Accurately selecting neutron signals and discriminating γ signals from a mixed radiation field is a key research issue in neutron detection. This paper proposes a fractal spectrum discrimination approach by means of different spectral characteristics of neutrons and γ rays. Figure of merit and average discriminant error ratio are used together to evaluate the discrimination effects. Different neutron and γ signals with various noise and pulse pile-up are simulated according to real data in the literature. The proposed approach is compared with the digital charge integration and pulse gradient methods. It is found that the fractal approach exhibits the best discrimination performance, followed by the digital charge integration method and the pulse gradient method, respectively. The fractal spectrum approach is not sensitive to high frequency noise and pulse pile-up. This means that the proposed approach has superior performance for effective and efficient anti-noise and high discrimination in neutron detection. Supported by the National Natural Science Foundation of China (41274109), Sichuan Youth Science and Technology Innovation Research Team (2015TD0020), Scientific and Technological Support Program of Sichuan Province (2013FZ0022), and the Creative Team Program of Chengdu University of Technology.
NASA Astrophysics Data System (ADS)
Gálvez-Coyt, Gonzalo; Muñoz-Diosdado, Alejandro; Peralta, José; Balderas-López, José; Angulo-Brown, Fernando
2012-06-01
Higuchi's method is a procedure that, if applied appropriately, can determine in a reliable way the fractal dimension D of time series; this fractal dimension permits to characterize the degree of correlation of the series. However, when analyzing some time series with Higuchi's method, there are oscillations at the right-hand side of the graph, which can cause a mistaken determination of the fractal dimension. In this work, an appropriate explanation is given to this type of behaviour. Using the seismogram as a time series and the properties of the P and S waves, it is possible to use the properties of Higuchi's method to previously detect the arrival of the earthquake shacking stage, some seconds in advance, approximately 30-35 s in the case of Mexico City. Thus, we propose the Higuchi's method to characterize and detect the P waves in order to estimate the strength of the forthcoming S waves.
A Brief Historical Introduction to Fractals and Fractal Geometry
ERIC Educational Resources Information Center
Debnath, Lokenath
2006-01-01
This paper deals with a brief historical introduction to fractals, fractal dimension and fractal geometry. Many fractals including the Cantor fractal, the Koch fractal, the Minkowski fractal, the Mandelbrot and Given fractal are described to illustrate self-similar geometrical figures. This is followed by the discovery of dynamical systems and…
NASA Astrophysics Data System (ADS)
Živić, I.; Elezović-Hadžić, S.; Milošević, S.
2018-01-01
We have studied the adsorption problem of self-attracting linear polymers, modeled by self-avoiding walks (SAWs), situated on three-dimensional fractal structures, exemplified by 3d Sierpinski gasket (SG) family of fractals as containers of a poor solvent. Members of SG family are enumerated by an integer b (b ≥ 2), and it is assumed that one side of each SG fractal is an impenetrable adsorbing surface. We calculate the critical exponents γ1 ,γ11, and γs, which are related to the numbers of all possible SAWs with one, both, and no ends anchored to the adsorbing boundary, respectively. By applying the exact renormalization group (RG) method (for the first three members of the SG fractal family, b = 2 , 3, and 4), we have obtained specific values of these exponents, for θ-chain and globular polymer phase. We discuss their mutual relations and relations with corresponding values pertinent to extended polymer chain phase.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Wang, Jun
2018-05-01
A novel nonlinear stochastic interacting price dynamics is proposed and investigated by the bond percolation on Sierpinski gasket fractal-like lattice, aim to make a new approach to reproduce and study the complexity dynamics of real security markets. Fractal-like lattices correspond to finite graphs with vertices and edges, which are similar to fractals, and Sierpinski gasket is a well-known example of fractals. Fractional ordinal array entropy and fractional ordinal array complexity are introduced to analyze the complexity behaviors of financial signals. To deeper comprehend the fluctuation characteristics of the stochastic price evolution, the complexity analysis of random logarithmic returns and volatility are preformed, including power-law distribution, fractional sample entropy and fractional ordinal array complexity. For further verifying the rationality and validity of the developed stochastic price evolution, the actual security market dataset are also studied with the same statistical methods for comparison. The empirical results show that this stochastic price dynamics can reconstruct complexity behaviors of the actual security markets to some extent.
Spatial analysis of cities using Renyi entropy and fractal parameters
NASA Astrophysics Data System (ADS)
Chen, Yanguang; Feng, Jian
2017-12-01
The spatial distributions of cities fall into two groups: one is the simple distribution with characteristic scale (e.g. exponential distribution), and the other is the complex distribution without characteristic scale (e.g. power-law distribution). The latter belongs to scale-free distributions, which can be modeled with fractal geometry. However, fractal dimension is not suitable for the former distribution. In contrast, spatial entropy can be used to measure any types of urban distributions. This paper is devoted to generalizing multifractal parameters by means of dual relation between Euclidean and fractal geometries. The main method is mathematical derivation and empirical analysis, and the theoretical foundation is the discovery that the normalized fractal dimension is equal to the normalized entropy. Based on this finding, a set of useful spatial indexes termed dummy multifractal parameters are defined for geographical analysis. These indexes can be employed to describe both the simple distributions and complex distributions. The dummy multifractal indexes are applied to the population density distribution of Hangzhou city, China. The calculation results reveal the feature of spatio-temporal evolution of Hangzhou's urban morphology. This study indicates that fractal dimension and spatial entropy can be combined to produce a new methodology for spatial analysis of city development.
The Calculation of Fractal Dimension in the Presence of Non-Fractal Clutter
NASA Technical Reports Server (NTRS)
Herren, Kenneth A.; Gregory, Don A.
1999-01-01
The area of information processing has grown dramatically over the last 50 years. In the areas of image processing and information storage the technology requirements have far outpaced the ability of the community to meet demands. The need for faster recognition algorithms and more efficient storage of large quantities of data has forced the user to accept less than lossless retrieval of that data for analysis. In addition to clutter that is not the object of interest in the data set, often the throughput requirements forces the user to accept "noisy" data and to tolerate the clutter inherent in that data. It has been shown that some of this clutter, both the intentional clutter (clouds, trees, etc) as well as the noise introduced on the data by processing requirements can be modeled as fractal or fractal-like. Traditional methods using Fourier deconvolution on these sources of noise in frequency space leads to loss of signal and can, in many cases, completely eliminate the target of interest. The parameters that characterize fractal-like noise (predominately the fractal dimension) have been investigated and a technique to reduce or eliminate noise from real scenes has been developed. Examples of clutter reduced images are presented.
Pereira, Luis M
2010-06-01
Pharmacokinetics (PK) has been traditionally dealt with under the homogeneity assumption. However, biological systems are nowadays comprehensively understood as being inherently fractal. Specifically, the microenvironments where drug molecules interact with membrane interfaces, metabolic enzymes or pharmacological receptors, are unanimously recognized as unstirred, space-restricted, heterogeneous and geometrically fractal. Therefore, classical Fickean diffusion and the notion of the compartment as a homogeneous kinetic space must be revisited. Diffusion in fractal spaces has been studied for a long time making use of fractional calculus and expanding on the notion of dimension. Combining this new paradigm with the need to describe and explain experimental data results in defining time-dependent rate constants with a characteristic fractal exponent. Under the one-compartment simplification this strategy is straightforward. However, precisely due to the heterogeneity of the underlying biology, often at least a two-compartment model is required to address macroscopic data such as drug concentrations. This simple modelling step-up implies significant analytical and numerical complications. However, a few methods are available that make possible the original desideratum. In fact, exploring the full range of parametric possibilities and looking at different drugs and respective biological concentrations, it may be concluded that all PK modelling approaches are indeed particular cases of the fractal PK theory.
Micromorphological characterization of zinc/silver particle composite coatings.
Méndez, Alia; Reyes, Yolanda; Trejo, Gabriel; StĘpień, Krzysztof; Ţălu, Ştefan
2015-12-01
The aim of this study was to evaluate the three-dimensional (3D) surface micromorphology of zinc/silver particles (Zn/AgPs) composite coatings with antibacterial activity prepared using an electrodeposition technique. These 3D nanostructures were investigated over square areas of 5 μm × 5 μm by atomic force microscopy (AFM), fractal, and wavelet analysis. The fractal analysis of 3D surface roughness revealed that (Zn/AgPs) composite coatings have fractal geometry. Triangulation method, based on the linear interpolation type, applied for AFM data was employed in order to characterise the surfaces topographically (in amplitude, spatial distribution and pattern of surface characteristics). The surface fractal dimension Df , as well as height values distribution have been determined for the 3D nanostructure surfaces. © 2015 The Authors published by Wiley Periodicals, Inc.
Arjunan, Sridhar Poosapadi; Kumar, Dinesh Kant; Jayadeva J
2016-02-01
Identifying functional handgrip patterns using surface electromygram (sEMG) signal recorded from amputee residual muscle is required for controlling the myoelectric prosthetic hand. In this study, we have computed the signal fractal dimension (FD) and maximum fractal length (MFL) during different grip patterns performed by healthy and transradial amputee subjects. The FD and MFL of the sEMG, referred to as the fractal features, were classified using twin support vector machines (TSVM) to recognize the handgrips. TSVM requires fewer support vectors, is suitable for data sets with unbalanced distributions, and can simultaneously be trained for improving both sensitivity and specificity. When compared with other methods, this technique resulted in improved grip recognition accuracy, sensitivity, and specificity, and this improvement was significant (κ=0.91).
Song, Zilin; Zhang, Chao; Liu, Guobin; Qu, Dong; Xue, Sha
2015-01-01
The application of fractal geometry to describe soil structure is an increasingly useful tool for better understanding the performance of soil systems. Only a few studies, however, have focused on the structure of rhizospheric zones, where energy flow and nutrient recycling most frequently occur. We used fractal dimensions to investigate the characteristics of particle-size distribution (PSD) in the rhizospheres and bulk soils of six croplands abandoned for 1, 5, 10, 15, 20, and 30 years on the Loess Plateau of China and evaluated the changes over successional time. The PSDs of the rhizospheres and the fractal dimensions between rhizosphere soil and bulk soils during the natural succession differed significantly due to the influence of plant roots. The rhizospheres had higher sand (0.05–1.00 mm) contents, lower silt (<0.002 mm) contents, and lower fractal dimensions than the bulk soils during the early and intermediate successional stages (1–15 years). The fractal dimensions of the rhizosphere soil and bulk soil ranged from 2.102 to 2.441 and from 2.214 to 2.459, respectively, during the 30-year restoration. Rhizospheric clay and silt contents and fractal dimension tended to be higher and sand content tended to be lower as abandonment age increased, but the bulk soils had the opposite trend. Linear regression analysis indicated that the fractal dimensions of both the rhizospheres and bulk soils were significantly linearly correlated with clay, sand, organic-carbon, and total-nitrogen contents, with R 2 ranging from 0.526 to 0.752 (P<0.001). In conclusion, PSD differed significantly between the rhizosphere soil and bulk soil. The fractal dimension was a sensitive and useful index for quantifying changes in the properties of the different soil zones. This study will greatly aid the application of the fractal method for describing soil structure and nutrient status and the understanding of the performance of rhizospheric zones during ecological restoration. PMID:26368339
Shin, Suyong; Gu, Ming-Long; Yu, Chin-Yang; Jeon, Jongseol; Lee, Eunji; Choi, Tae-Lim
2018-01-10
A fractal nanostructure having a high surface area is potentially useful in sensors, catalysts, functional coatings, and biomedical and electronic applications. Preparation of fractal nanostructures on solid substrates has been reported using various inorganic or organic compounds. However, achieving such a process using polymers in solution has been extremely challenging. Here, we report a simple one-shot preparation of polymer fractal nanostructures in solution via an unprecedented assembly mechanism controlled by polymerization and self-assembly kinetics. This was possible only because one monomer was significantly more reactive than the other, thereby easily forming a diblock copolymer microstructure. Then, the second insoluble block containing poly(p-phenylenevinylene) (PPV) without any side chains spontaneously underwent self-assembly during polymerization by an in situ nanoparticlization of conjugated polymers (INCP) method. The formation of fractal structures in solution was confirmed by various imaging techniques such as atomic force microscopy, transmission electron microscopy (TEM), and cryogenic TEM. The diffusion-limited aggregation theory was adopted to explain the branching patterns of the fractal nanostructures according to the changes in polymerization conditions such as the monomer concentration and the presence of additives. Finally, after detailed kinetic analyses, we proposed a plausible mechanism for the formation of unique fractal nanostructures, where the gradual formation and continuous growth of micelles in a chain-growth-like manner were accounted for.
Moroni, Francesco; Magnoni, Marco; Vergani, Vittoria; Ammirati, Enrico; Camici, Paolo G
2018-01-01
Plaque border irregularity is a known imaging characteristic of vulnerable plaques, but its evaluation heavily relies on subjective evaluation and operator expertise. Aim of the present work is to propose a novel fractal-analysis based method for the quantification of atherosclerotic plaque border irregularity and assess its relation with cardiovascular risk factors. Forty-two asymptomatic subjects with carotid stenosis underwent ultrasound evaluation and assessment of cardiovascular risk factors. Total, low-density lipoprotein (LDL), high-density lipoprotein (HDL) plasma cholesterol and triglycerides concentrations were measured for each subject. Fractal analysis was performed in all the carotid segments affected by atherosclerosis, i.e. 147 segments. The resulting fractal dimension (FD) is a measure of irregularity of plaque profile on long axis view of the plaque. FD in the severest stenosis (main plaque FD,mFD) was 1.136±0.039. Average FD per patient (global FD,gFD) was 1.145±0.039. FD was independent of other plaque characteristics. mFD significantly correlated with plasma HDL (r = -0.367,p = 0.02) and triglycerides-to-HDL ratio (r = 0.480,p = 0.002). Fractal analysis is a novel, readily available, reproducible and inexpensive technique for the quantitative measurement of plaque irregularity. The correlation between low HDL levels and plaque FD suggests a role for HDL in the acquisition of morphologic features of plaque instability. Further studies are needed to validate the prognostic value of fractal analysis in carotid plaques evaluation.
Krstacic, Goran; Krstacic, Antonija; Smalcelj, Anton; Milicic, Davor; Jembrek-Gostovic, Mirjana
2007-04-01
Dynamic analysis techniques may quantify abnormalities in heart rate variability (HRV) based on nonlinear and fractal analysis (chaos theory). The article emphasizes clinical and prognostic significance of dynamic changes in short-time series applied on patients with coronary heart disease (CHD) during the exercise electrocardiograph (ECG) test. The subjects were included in the series after complete cardiovascular diagnostic data. Series of R-R and ST-T intervals were obtained from exercise ECG data after sampling digitally. The range rescaled analysis method determined the fractal dimension of the intervals. To quantify fractal long-range correlation's properties of heart rate variability, the detrended fluctuation analysis technique was used. Approximate entropy (ApEn) was applied to quantify the regularity and complexity of time series, as well as unpredictability of fluctuations in time series. It was found that the short-term fractal scaling exponent (alpha(1)) is significantly lower in patients with CHD (0.93 +/- 0.07 vs 1.09 +/- 0.04; P < 0.001). The patients with CHD had higher fractal dimension in each exercise test program separately, as well as in exercise program at all. ApEn was significant lower in CHD group in both RR and ST-T ECG intervals (P < 0.001). The nonlinear dynamic methods could have clinical and prognostic applicability also in short-time ECG series. Dynamic analysis based on chaos theory during the exercise ECG test point out the multifractal time series in CHD patients who loss normal fractal characteristics and regularity in HRV. Nonlinear analysis technique may complement traditional ECG analysis.
NASA Astrophysics Data System (ADS)
Ghezelbash, Reza; Maghsoudi, Abbas
2018-05-01
The delineation of populations of stream sediment geochemical data is a crucial task in regional exploration surveys. In this contribution, uni-element stream sediment geochemical data of Cu, Au, Mo, and Bi have been subjected to two reliable anomaly-background separation methods, namely, the concentration-area (C-A) fractal and the U-spatial statistics methods to separate geochemical anomalies related to porphyry-type Cu mineralization in northwest Iran. The quantitative comparison of the delineated geochemical populations using the modified success-rate curves revealed the superiority of the U-spatial statistics method over the fractal model. Moreover, geochemical maps of investigated elements revealed strongly positive correlations between strong anomalies and Oligocene-Miocene intrusions in the study area. Therefore, follow-up exploration programs should focus on these areas.
Classification of diabetic retinopathy using fractal dimension analysis of eye fundus image
NASA Astrophysics Data System (ADS)
Safitri, Diah Wahyu; Juniati, Dwi
2017-08-01
Diabetes Mellitus (DM) is a metabolic disorder when pancreas produce inadequate insulin or a condition when body resist insulin action, so the blood glucose level is high. One of the most common complications of diabetes mellitus is diabetic retinopathy which can lead to a vision problem. Diabetic retinopathy can be recognized by an abnormality in eye fundus. Those abnormalities are characterized by microaneurysms, hemorrhage, hard exudate, cotton wool spots, and venous's changes. The diabetic retinopathy is classified depends on the conditions of abnormality in eye fundus, that is grade 1 if there is a microaneurysm only in the eye fundus; grade 2, if there are a microaneurysm and a hemorrhage in eye fundus; and grade 3: if there are microaneurysm, hemorrhage, and neovascularization in the eye fundus. This study proposed a method and a process of eye fundus image to classify of diabetic retinopathy using fractal analysis and K-Nearest Neighbor (KNN). The first phase was image segmentation process using green channel, CLAHE, morphological opening, matched filter, masking, and morphological opening binary image. After segmentation process, its fractal dimension was calculated using box-counting method and the values of fractal dimension were analyzed to make a classification of diabetic retinopathy. Tests carried out by used k-fold cross validation method with k=5. In each test used 10 different grade K of KNN. The accuracy of the result of this method is 89,17% with K=3 or K=4, it was the best results than others K value. Based on this results, it can be concluded that the classification of diabetic retinopathy using fractal analysis and KNN had a good performance.
NASA Technical Reports Server (NTRS)
Pikkujamsa, S. M.; Makikallio, T. H.; Sourander, L. B.; Raiha, I. J.; Puukka, P.; Skytta, J.; Peng, C. K.; Goldberger, A. L.; Huikuri, H. V.
1999-01-01
BACKGROUND: New methods of R-R interval variability based on fractal scaling and nonlinear dynamics ("chaos theory") may give new insights into heart rate dynamics. The aims of this study were to (1) systematically characterize and quantify the effects of aging from early childhood to advanced age on 24-hour heart rate dynamics in healthy subjects; (2) compare age-related changes in conventional time- and frequency-domain measures with changes in newly derived measures based on fractal scaling and complexity (chaos) theory; and (3) further test the hypothesis that there is loss of complexity and altered fractal scaling of heart rate dynamics with advanced age. METHODS AND RESULTS: The relationship between age and cardiac interbeat (R-R) interval dynamics from childhood to senescence was studied in 114 healthy subjects (age range, 1 to 82 years) by measurement of the slope, beta, of the power-law regression line (log power-log frequency) of R-R interval variability (10(-4) to 10(-2) Hz), approximate entropy (ApEn), short-term (alpha(1)) and intermediate-term (alpha(2)) fractal scaling exponents obtained by detrended fluctuation analysis, and traditional time- and frequency-domain measures from 24-hour ECG recordings. Compared with young adults (<40 years old, n=29), children (<15 years old, n=27) showed similar complexity (ApEn) and fractal correlation properties (alpha(1), alpha(2), beta) of R-R interval dynamics despite lower spectral and time-domain measures. Progressive loss of complexity (decreased ApEn, r=-0.69, P<0.001) and alterations of long-term fractal-like heart rate behavior (increased alpha(2), r=0.63, decreased beta, r=-0.60, P<0.001 for both) were observed thereafter from middle age (40 to 60 years, n=29) to old age (>60 years, n=29). CONCLUSIONS: Cardiac interbeat interval dynamics change markedly from childhood to old age in healthy subjects. Children show complexity and fractal correlation properties of R-R interval time series comparable to those of young adults, despite lower overall heart rate variability. Healthy aging is associated with R-R interval dynamics showing higher regularity and altered fractal scaling consistent with a loss of complex variability.
Feature extraction algorithm for space targets based on fractal theory
NASA Astrophysics Data System (ADS)
Tian, Balin; Yuan, Jianping; Yue, Xiaokui; Ning, Xin
2007-11-01
In order to offer a potential for extending the life of satellites and reducing the launch and operating costs, satellite servicing including conducting repairs, upgrading and refueling spacecraft on-orbit become much more frequently. Future space operations can be more economically and reliably executed using machine vision systems, which can meet real time and tracking reliability requirements for image tracking of space surveillance system. Machine vision was applied to the research of relative pose for spacecrafts, the feature extraction algorithm was the basis of relative pose. In this paper fractal geometry based edge extraction algorithm which can be used in determining and tracking the relative pose of an observed satellite during proximity operations in machine vision system was presented. The method gets the gray-level image distributed by fractal dimension used the Differential Box-Counting (DBC) approach of the fractal theory to restrain the noise. After this, we detect the consecutive edge using Mathematical Morphology. The validity of the proposed method is examined by processing and analyzing images of space targets. The edge extraction method not only extracts the outline of the target, but also keeps the inner details. Meanwhile, edge extraction is only processed in moving area to reduce computation greatly. Simulation results compared edge detection using the method which presented by us with other detection methods. The results indicate that the presented algorithm is a valid method to solve the problems of relative pose for spacecrafts.
Bouligand, C.; Glen, J.M.G.; Blakely, R.J.
2009-01-01
We have revisited the problem of mapping depth to the Curie temperature isotherm from magnetic anomalies in an attempt to provide a measure of crustal temperatures in the western United States. Such methods are based on the estimation of the depth to the bottom of magnetic sources, which is assumed to correspond to the temperature at which rocks lose their spontaneous magnetization. In this study, we test and apply a method based on the spectral analysis of magnetic anomalies. Early spectral analysis methods assumed that crustal magnetization is a completely uncorrelated function of position. Our method incorporates a more realistic representation where magnetization has a fractal distribution defined by three independent parameters: the depths to the top and bottom of magnetic sources and a fractal parameter related to the geology. The predictions of this model are compatible with radial power spectra obtained from aeromagnetic data in the western United States. Model parameters are mapped by estimating their value within a sliding window swept over the study area. The method works well on synthetic data sets when one of the three parameters is specified in advance. The application of this method to western United States magnetic compilations, assuming a constant fractal parameter, allowed us to detect robust long-wavelength variations in the depth to the bottom of magnetic sources. Depending on the geologic and geophysical context, these features may result from variations in depth to the Curie temperature isotherm, depth to the mantle, depth to the base of volcanic rocks, or geologic settings that affect the value of the fractal parameter. Depth to the bottom of magnetic sources shows several features correlated with prominent heat flow anomalies. It also shows some features absent in the map of heat flow. Independent geophysical and geologic data sets are examined to determine their origin, thereby providing new insights on the thermal and geologic crustal structure of the western United States.
The Power of L-Systems in Fractal Construction and Theory
ERIC Educational Resources Information Center
Perham, Arnold E.; Perham, Faustine L.
2005-01-01
The article discusses the use of L-systems, which provide students with a unique method to construct line fractals, including the Koch snowflake, the Sierpinski triangle, and the Harter-Heighway dragon. Applets that use L-system theory offer a graphics tool that promotes geometric reasoning, sparks enthusiasm, and connects to historical themes in…
Diagnosis of Lung Cancer by Fractal Analysis of Damaged DNA
Namazi, Hamidreza; Kiminezhadmalaie, Mona
2015-01-01
Cancer starts when cells in a part of the body start to grow out of control. In fact cells become cancer cells because of DNA damage. A DNA walk of a genome represents how the frequency of each nucleotide of a pairing nucleotide couple changes locally. In this research in order to study the cancer genes, DNA walk plots of genomes of patients with lung cancer were generated using a program written in MATLAB language. The data so obtained was checked for fractal property by computing the fractal dimension using a program written in MATLAB. Also, the correlation of damaged DNA was studied using the Hurst exponent measure. We have found that the damaged DNA sequences are exhibiting higher degree of fractality and less correlation compared with normal DNA sequences. So we confirmed this method can be used for early detection of lung cancer. The method introduced in this research not only is useful for diagnosis of lung cancer but also can be applied for detection and growth analysis of different types of cancers. PMID:26539245
Fractal propagation method enables realistic optical microscopy simulations in biological tissues
Glaser, Adam K.; Chen, Ye; Liu, Jonathan T.C.
2017-01-01
Current simulation methods for light transport in biological media have limited efficiency and realism when applied to three-dimensional microscopic light transport in biological tissues with refractive heterogeneities. We describe here a technique which combines a beam propagation method valid for modeling light transport in media with weak variations in refractive index, with a fractal model of refractive index turbulence. In contrast to standard simulation methods, this fractal propagation method (FPM) is able to accurately and efficiently simulate the diffraction effects of focused beams, as well as the microscopic heterogeneities present in tissue that result in scattering, refractive beam steering, and the aberration of beam foci. We validate the technique and the relationship between the FPM model parameters and conventional optical parameters used to describe tissues, and also demonstrate the method’s flexibility and robustness by examining the steering and distortion of Gaussian and Bessel beams in tissue with comparison to experimental data. We show that the FPM has utility for the accurate investigation and optimization of optical microscopy methods such as light-sheet, confocal, and nonlinear microscopy. PMID:28983499
NASA Astrophysics Data System (ADS)
Zhang, Dai; Hao, Shiqi; Zhao, Qingsong; Zhao, Qi; Wang, Lei; Wan, Xiongfeng
2018-03-01
Existing wavefront reconstruction methods are usually low in resolution, restricted by structure characteristics of the Shack Hartmann wavefront sensor (SH WFS) and the deformable mirror (DM) in the adaptive optics (AO) system, thus, resulting in weak homodyne detection efficiency for free space optical (FSO) communication. In order to solve this problem, we firstly validate the feasibility of liquid crystal spatial light modulator (LC SLM) using in an AO system. Then, wavefront reconstruction method based on wavelet fractal interpolation is proposed after self-similarity analysis of wavefront distortion caused by atmospheric turbulence. Fast wavelet decomposition is operated to multiresolution analyze the wavefront phase spectrum, during which soft threshold denoising is carried out. The resolution of estimated wavefront phase is then improved by fractal interpolation. Finally, fast wavelet reconstruction is taken to recover wavefront phase. Simulation results reflect the superiority of our method in homodyne detection. Compared with minimum variance estimation (MVE) method based on interpolation techniques, the proposed method could obtain superior homodyne detection efficiency with lower operation complexity. Our research findings have theoretical significance in the design of coherent FSO communication system.
Synthetic Minority Oversampling Technique and Fractal Dimension for Identifying Multiple Sclerosis
NASA Astrophysics Data System (ADS)
Zhang, Yu-Dong; Zhang, Yin; Phillips, Preetha; Dong, Zhengchao; Wang, Shuihua
Multiple sclerosis (MS) is a severe brain disease. Early detection can provide timely treatment. Fractal dimension can provide statistical index of pattern changes with scale at a given brain image. In this study, our team used susceptibility weighted imaging technique to obtain 676 MS slices and 880 healthy slices. We used synthetic minority oversampling technique to process the unbalanced dataset. Then, we used Canny edge detector to extract distinguishing edges. The Minkowski-Bouligand dimension was a fractal dimension estimation method and used to extract features from edges. Single hidden layer neural network was used as the classifier. Finally, we proposed a three-segment representation biogeography-based optimization to train the classifier. Our method achieved a sensitivity of 97.78±1.29%, a specificity of 97.82±1.60% and an accuracy of 97.80±1.40%. The proposed method is superior to seven state-of-the-art methods in terms of sensitivity and accuracy.
Counting spanning trees on fractal graphs and their asymptotic complexity
NASA Astrophysics Data System (ADS)
Anema, Jason A.; Tsougkas, Konstantinos
2016-09-01
Using the method of spectral decimation and a modified version of Kirchhoff's matrix-tree theorem, a closed form solution to the number of spanning trees on approximating graphs to a fully symmetric self-similar structure on a finitely ramified fractal is given in theorem 3.4. We show how spectral decimation implies the existence of the asymptotic complexity constant and obtain some bounds for it. Examples calculated include the Sierpiński gasket, a non-post critically finite analog of the Sierpiński gasket, the Diamond fractal, and the hexagasket. For each example, the asymptotic complexity constant is found.
Beyond maximum entropy: Fractal Pixon-based image reconstruction
NASA Technical Reports Server (NTRS)
Puetter, Richard C.; Pina, R. K.
1994-01-01
We have developed a new Bayesian image reconstruction method that has been shown to be superior to the best implementations of other competing methods, including Goodness-of-Fit methods such as Least-Squares fitting and Lucy-Richardson reconstruction, as well as Maximum Entropy (ME) methods such as those embodied in the MEMSYS algorithms. Our new method is based on the concept of the pixon, the fundamental, indivisible unit of picture information. Use of the pixon concept provides an improved image model, resulting in an image prior which is superior to that of standard ME. Our past work has shown how uniform information content pixons can be used to develop a 'Super-ME' method in which entropy is maximized exactly. Recently, however, we have developed a superior pixon basis for the image, the Fractal Pixon Basis (FPB). Unlike the Uniform Pixon Basis (UPB) of our 'Super-ME' method, the FPB basis is selected by employing fractal dimensional concepts to assess the inherent structure in the image. The Fractal Pixon Basis results in the best image reconstructions to date, superior to both UPB and the best ME reconstructions. In this paper, we review the theory of the UPB and FPB pixon and apply our methodology to the reconstruction of far-infrared imaging of the galaxy M51. The results of our reconstruction are compared to published reconstructions of the same data using the Lucy-Richardson algorithm, the Maximum Correlation Method developed at IPAC, and the MEMSYS ME algorithms. The results show that our reconstructed image has a spatial resolution a factor of two better than best previous methods (and a factor of 20 finer than the width of the point response function), and detects sources two orders of magnitude fainter than other methods.
Frequency-Specific Fractal Analysis of Postural Control Accounts for Control Strategies
Gilfriche, Pierre; Deschodt-Arsac, Véronique; Blons, Estelle; Arsac, Laurent M.
2018-01-01
Diverse indicators of postural control in Humans have been explored for decades, mostly based on the trajectory of the center-of-pressure. Classical approaches focus on variability, based on the notion that if a posture is too variable, the subject is not stable. Going deeper, an improved understanding of underlying physiology has been gained from studying variability in different frequency ranges, pointing to specific short-loops (proprioception), and long-loops (visuo-vestibular) in neural control. More recently, fractal analyses have proliferated and become useful additional metrics of postural control. They allowed identifying two scaling phenomena, respectively in short and long timescales. Here, we show that one of the most widely used methods for fractal analysis, Detrended Fluctuation Analysis, could be enhanced to account for scalings on specific frequency ranges. By computing and filtering a bank of synthetic fractal signals, we established how scaling analysis can be focused on specific frequency components. We called the obtained method Frequency-specific Fractal Analysis (FsFA) and used it to associate the two scaling phenomena of postural control to proprioceptive-based control loop and visuo-vestibular based control loop. After that, convincing arguments of method validity came from an application on the study of unaltered vs. altered postural control in athletes. Overall, the analysis suggests that at least two timescales contribute to postural control: a velocity-based control in short timescales relying on proprioceptive sensors, and a position-based control in longer timescales with visuo-vestibular sensors, which is a brand-new vision of postural control. Frequency-specific scaling exponents are promising markers of control strategies in Humans. PMID:29643816
Estimation of Fractal Dimension in Differential Diagnosis of Pigmented Skin Lesions
NASA Astrophysics Data System (ADS)
Aralica, Gorana; Milošević, Danko; Konjevoda, Paško; Seiwerth, Sven; Štambuk, Nikola
Medical differential diagnosis is a method of identifying the presence of a particular entity (disease) within a set of multiple possible alternatives. The significant problem in dermatology and pathology is the differential diagnosis of malignant melanoma and other pigmented skin lesions, especially of dysplastic nevi. Malignant melanoma is the most malignant skin neoplasma, with increasing incidence in various parts of the world. It is hoped that the methods of quantitative pathology, i.e. morphometry, can help objectification of the diagnostic process, since early discovery of melanoma results in 10-year survival rate of 90%. The aim of the study was to use fractal dimension calculated from the perimeter-area relation of the cell nuclei as a tool for the differential diagnosis of pigmented skin lesions. We analyzed hemalaun-eosin stained pathohistological slides of pigmented skin lesions: intradermal naevi (n = 45), dysplastic naevi (n = 47), and malignant melanoma (n = 50). It was found that fractal dimension of malignant melanoma cell nuclei differs significantly from the intradermal and dysplastic naevi (p ≤ 0. 001, Steel-Dwass Multiple Comparison Test). Additionaly, ROC analysis confirmed the value of fractal dimension based evaluation. It is suggested that the estimation of fractal dimension from the perimeter-area relation of the cell nuclei may be a potentially useful morphometric parameter in the medical differential diagnosis of pigmented skin lesions.
NASA Astrophysics Data System (ADS)
Peng, L.; Pan, H.; Ma, H.; Zhao, P.; Qin, R.; Deng, C.
2017-12-01
The irreducible water saturation (Swir) is a vital parameter for permeability prediction and original oil and gas estimation. However, the complex pore structure of the rocks makes the parameter difficult to be calculated from both laboratory and conventional well logging methods. In this study, an effective statistical method to predict Swir is derived directly from nuclear magnetic resonance (NMR) data based on fractal theory. The spectrum of transversal relaxation time (T2) is normally considered as an indicator of pore size distribution, and the micro- and meso-pore's fractal dimension in two specific range of T2 spectrum distribution are calculated. Based on the analysis of the fractal characteristics of 22 core samples, which were drilled from four boreholes of tight lithologic oil reservoirs of Ordos Basin in China, the positive correlation between Swir and porosity is derived. Afterwards a predicting model for Swir based on linear regressions of fractal dimensions is proposed. It reveals that the Swir is controlled by the pore size and the roughness of the pore. The reliability of this model is tested and an ideal consistency between predicted results and experimental data is found. This model is a reliable supplementary to predict the irreducible water saturation in the case that T2 cutoff value cannot be accurately determined.
NASA Astrophysics Data System (ADS)
Navascues, M. A.; Sebastian, M. V.
Fractal interpolants of Barnsley are defined for any continuous function defined on a real compact interval. The uniform distance between the function and its approximant is bounded in terms of the vertical scale factors. As a general result, the density of the affine fractal interpolation functions of Barnsley in the space of continuous functions in a compact interval is proved. A method of data fitting by means of fractal interpolation functions is proposed. The procedure is applied to the quantification of cognitive brain processes. In particular, the increase in the complexity of the electroencephalographic signal produced by the execution of a test of visual attention is studied. The experiment was performed on two types of children: a healthy control group and a set of children diagnosed with an attention deficit disorder.
NASA Technical Reports Server (NTRS)
Pandey, Apoorva; Chakrabarty, Rajan K.; Liu, Li; Mishchenko, Michael I.
2015-01-01
Soot aggregates (SAs)-fractal clusters of small, spherical carbonaceous monomers-modulate the incoming visible solar radiation and contribute significantly to climate forcing. Experimentalists and climate modelers typically assume a spherical morphology for SAs when computing their optical properties, causing significant errors. Here, we calculate the optical properties of freshly-generated (fractal dimension Df = 1.8) and aged (Df = 2.6) SAs at 550 nm wavelength using the numericallyexact superposition T-Matrix method. These properties were expressed as functions of equivalent aerosol diameters as measured by contemporary aerosol instruments. This work improves upon previous efforts wherein SA optical properties were computed as a function of monomer number, rendering them unusable in practical applications. Future research will address the sensitivity of variation in refractive index, fractal prefactor, and monomer overlap of SAs on the reported empirical relationships.
Varnes, D.J.; Bufe, C.G.
1996-01-01
Seismic activity in the 10 months preceding the 1980 February 14, mb 4.8 earthquake in the Virgin Islands, reported on by Frankel in 1982, consisted of four principal cycles. Each cycle began with a relatively large event or series of closely spaced events, and the duration of the cycles progressively shortened by a factor of about 3/4. Had this regular shortening of the cycles been recognized prior to the earthquake, the time of the next episode of setsmicity (the main shock) might have been closely estimated 41 days in advance. That this event could be much larger than the previous events is indicated from time-to-failure analysis of the accelerating rise in released seismic energy, using a non-linear time- and slip-predictable foreshock model. Examination of the timing of all events in the sequence shows an even higher degree of order. Rates of seismicity, measured by consecutive interevent times, when plotted on an iteration diagram of a rate versus the succeeding rate, form a triangular circulating trajectory. The trajectory becomes an ascending helix if extended in a third dimension, time. This construction reveals additional and precise relations among the time intervals between times of relatively high or relatively low rates of seismic activity, including period halving and doubling. The set of 666 time intervals between all possible pairs of the 37 recorded events appears to be a fractal; the set of time points that define the intervals has a finite, non-integer correlation dimension of 0.70. In contrast, the average correlation dimension of 50 random sequences of 37 events is significantly higher, dose to 1.0. In a similar analysis, the set of distances between pairs of epicentres has a fractal correlation dimension of 1.52. Well-defined cycles, numerous precise ratios among time intervals, and a non-random temporal fractal dimension suggest that the seismic series is not a random process, but rather the product of a deterministic dynamic system.
NASA Astrophysics Data System (ADS)
Rao, Deepa
This study documents the development of an educational art-science kit about natural fractals, whose aim is to unite artistic and scientific inquiry in the informal learning of science and math. Throughout this research, I argue that having an arts-integrated approach can enhance the learner of science and math concepts. A guiding metaphor in this thesis is the Enlightenment-era cabinet of curiosities that represents a time when art and science were unified in the process of inquiry about the natural world. Over time, increased specialization in the practice of arts and science led to a growing divergence between the disciplines in the educational system. Recently, initiatives like STEAM are underway at the national level to integrate "Arts and Design" into the Science, Technology, Engineering, and Math (STEM) formal education agenda. Learning artifacts like science kits present an opportunity to unite artistic and scientific inquiry in informal settings. Although science kits have been introduced to promote informal learning, presently, many science kits have a gap in their design, whereby the activities consist of recipe-like instructions that do not encourage further inquiry-based learning. In the spirit of the cabinet of curiosities, this study seeks to unify visual arts and science in the process of inquiry. Drawing from educational theories of Dewey, Piaget, and Papert, I developed a novel, prototype "art-science kit" that promotes experiential, hands-on, and active learning, and encourages inquiry, exploration, creativity, and reflection through a series of art-based activities to help users learn science and math concepts. In this study, I provide an overview of the design and development process of the arts-based educational activities. Furthermore, I present the results of a pilot usability study (n=10) conducted to receive user feedback on the designed materials for use in improving future iterations of the art-science fractal kit. The fractal kit booklet that I designed can be found in the supplemental materials to this thesis.
Jurczyszyn, Kamil; Osiecka, Beata J; Ziółkowski, Piotr
2012-01-01
Fractal dimension analysis (FDA) is modern mathematical method widely used to describing of complex and chaotic shapes when classic methods fail. The main aim of this study was evaluating the influence of photodynamic therapy (PDT) with cystein proteases inhibitors (CPI) on the number and morphology of blood vessels inside tumor and on increase of effectiveness of combined therapy in contrast to PDT and CPI used separately. Animals were divided into four groups: control, treated using only PDT, treated using only CPI and treated using combined therapy, PDT and CPI. Results showed that time of animal survival and depth of necrosis inside tumor were significantly higher in CPI+PDT group in contrast to other groups. The higher value of fractal dimension (FD) was observed in control group, while the lowest value was found in the group which was treated by cystein protease inhibitors. The differences between FD were observed in CPI group and PDT+CPI group in comparison to control group. Our results revealed that fractal dimension analysis is a very useful tool in estimating differences between irregular shapes like blood vessels in PDT treated tumors. Thus, the implementation of FDA algorithms could be useful method in evaluating the efficacy of PDT.
Jurczyszyn, Kamil; Osiecka, Beata J.; Ziółkowski, Piotr
2012-01-01
Fractal dimension analysis (FDA) is modern mathematical method widely used to describing of complex and chaotic shapes when classic methods fail. The main aim of this study was evaluating the influence of photodynamic therapy (PDT) with cystein proteases inhibitors (CPI) on the number and morphology of blood vessels inside tumor and on increase of effectiveness of combined therapy in contrast to PDT and CPI used separately. Animals were divided into four groups: control, treated using only PDT, treated using only CPI and treated using combined therapy, PDT and CPI. Results showed that time of animal survival and depth of necrosis inside tumor were significantly higher in CPI+PDT group in contrast to other groups. The higher value of fractal dimension (FD) was observed in control group, while the lowest value was found in the group which was treated by cystein protease inhibitors. The differences between FD were observed in CPI group and PDT+CPI group in comparison to control group. Our results revealed that fractal dimension analysis is a very useful tool in estimating differences between irregular shapes like blood vessels in PDT treated tumors. Thus, the implementation of FDA algorithms could be useful method in evaluating the efficacy of PDT. PMID:22991578
NASA Astrophysics Data System (ADS)
Tahavvor, Ali Reza
2017-03-01
In the present study artificial neural network and fractal geometry are used to predict frost thickness and density on a cold flat plate having constant surface temperature under forced convection for different ambient conditions. These methods are very applicable in this area because phase changes such as melting and solidification are simulated by conventional methods but frost formation is a most complicated phase change phenomenon consists of coupled heat and mass transfer. Therefore conventional mathematical techniques cannot capture the effects of all parameters on its growth and development because this process influenced by many factors and it is a time dependent process. Therefore, in this work soft computing method such as artificial neural network and fractal geometry are used to do this manner. The databases for modeling are generated from the experimental measurements. First, multilayer perceptron network is used and it is found that the back-propagation algorithm with Levenberg-Marquardt learning rule is the best choice to estimate frost growth properties due to accurate and faster training procedure. Second, fractal geometry based on the Von-Koch curve is used to model frost growth procedure especially in frost thickness and density. Comparison is performed between experimental measurements and soft computing methods. Results show that soft computing methods can be used more efficiently to determine frost properties over a flat plate. Based on the developed models, wide range of frost formation over flat plates can be determined for various conditions.
Stankovic, Marija; Pantic, Igor; De Luka, Silvio R; Puskas, Nela; Zaletel, Ivan; Milutinovic-Smiljanic, Sanja; Pantic, Senka; Trbovich, Alexander M
2016-03-01
The aim of the study was to examine alteration and possible application of fractal dimension, angular second moment, and correlation for quantification of structural changes in acutely inflamed tissue. Acute inflammation was induced by injection of turpentine oil into the right and left hind limb muscles of mice, whereas control animals received intramuscular saline injection. After 12 h, animals were anesthetised and treated muscles collected. The tissue was stained by hematoxylin and eosin, digital micrographs produced, enabling determination of fractal dimension of the cells, angular second moment and correlation of studied tissue. Histopathological analysis showed presence of inflammatory infiltrate and tissue damage in inflammatory group, whereas tissue structure in control group was preserved, devoid of inflammatory infiltrate. Fractal dimension of the cells, angular second moment and correlation of treated tissue in inflammatory group decreased in comparison to the control group. In this study, we were first to observe and report that fractal dimension of the cells, angular second moment, and correlation were reduced in acutely inflamed tissue, indicating loss of overall complexity of the cells in the tissue, the tissue uniformity and structure regularity. Fractal dimension, angular second moment and correlation could be useful methods for quantification of structural changes in acute inflammation. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Investigating the effect of suspensions nanostructure on the thermophysical properties of nanofluids
NASA Astrophysics Data System (ADS)
Tesfai, Waka; Singh, Pawan K.; Masharqa, Salim J. S.; Souier, Tewfik; Chiesa, Matteo; Shatilla, Youssef
2012-12-01
The effect of fractal dimensions and Feret diameter of aggregated nanoparticle on predicting the thermophysical properties of nanofluids is demonstrated. The fractal dimensions and Feret diameter distributions of particle agglomerates are quantified from scanning electron and probe microscope imaging of yttria nanofluids. The results are compared with the fractal dimensions calculated by fitting the rheological properties of yttria nanofluids against the modified Krieger-Dougherty model. Nanofluids of less than 1 vol. % particle loading are found to have fractal dimensions of below 1.8, which is typical for diffusion controlled cluster formation. By contrast, an increase in the particle loading increases the fractal dimension to 2.0-2.2. The fractal dimensions obtained from both methods are employed to predict the thermal conductivity of the nanofluids using the modified Maxwell-Garnet (M-G) model. The prediction from rheology is found inadequate and might lead up to 8% error in thermal conductivity for an improper choice of aspect ratio. Nevertheless, the prediction of the modified M-G model from the imaging is found to agree well with the experimentally observed effective thermal conductivity of the nanofluids. In addition, this study opens a new window on the study of aggregate kinetics, which is critical in tuning the properties of multiphase systems.
Fractal Physiology and the Fractional Calculus: A Perspective
West, Bruce J.
2010-01-01
This paper presents a restricted overview of Fractal Physiology focusing on the complexity of the human body and the characterization of that complexity through fractal measures and their dynamics, with fractal dynamics being described by the fractional calculus. Not only are anatomical structures (Grizzi and Chiriva-Internati, 2005), such as the convoluted surface of the brain, the lining of the bowel, neural networks and placenta, fractal, but the output of dynamical physiologic networks are fractal as well (Bassingthwaighte et al., 1994). The time series for the inter-beat intervals of the heart, inter-breath intervals and inter-stride intervals have all been shown to be fractal and/or multifractal statistical phenomena. Consequently, the fractal dimension turns out to be a significantly better indicator of organismic functions in health and disease than the traditional average measures, such as heart rate, breathing rate, and stride rate. The observation that human physiology is primarily fractal was first made in the 1980s, based on the analysis of a limited number of datasets. We review some of these phenomena herein by applying an allometric aggregation approach to the processing of physiologic time series. This straight forward method establishes the scaling behavior of complex physiologic networks and some dynamic models capable of generating such scaling are reviewed. These models include simple and fractional random walks, which describe how the scaling of correlation functions and probability densities are related to time series data. Subsequently, it is suggested that a proper methodology for describing the dynamics of fractal time series may well be the fractional calculus, either through the fractional Langevin equation or the fractional diffusion equation. A fractional operator (derivative or integral) acting on a fractal function, yields another fractal function, allowing us to construct a fractional Langevin equation to describe the evolution of a fractal statistical process. Control of physiologic complexity is one of the goals of medicine, in particular, understanding and controlling physiological networks in order to ensure their proper operation. We emphasize the difference between homeostatic and allometric control mechanisms. Homeostatic control has a negative feedback character, which is both local and rapid. Allometric control, on the other hand, is a relatively new concept that takes into account long-time memory, correlations that are inverse power law in time, as well as long-range interactions in complex phenomena as manifest by inverse power-law distributions in the network variable. We hypothesize that allometric control maintains the fractal character of erratic physiologic time series to enhance the robustness of physiological networks. Moreover, allometric control can often be described using the fractional calculus to capture the dynamics of complex physiologic networks. PMID:21423355
Pulse regime in formation of fractal fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smirnov, B. M., E-mail: bmsmirnov@gmail.com
The pulse regime of vaporization of a bulk metal located in a buffer gas is analyzed as a method of generation of metal atoms under the action of a plasma torch or a laser beam. Subsequently these atoms are transformed into solid nanoclusters, fractal aggregates and then into fractal fibers if the growth process proceeds in an external electric field. We are guided by metals in which transitions between s and d-electrons of their atoms are possible, since these metals are used as catalysts and filters in interaction with gas flows. The resistance of metal fractal structures to a gasmore » flow is evaluated that allows one to find optimal parameters of a fractal structure for gas flow propagation through it. The thermal regime of interaction between a plasma pulse or a laser beam and a metal surface is analyzed. It is shown that the basic energy from an external source is consumed on a bulk metal heating, and the efficiency of atom evaporation from the metal surface, that is the ratio of energy fluxes for vaporization and heating, is 10{sup –3}–10{sup –4} for transient metals under consideration. A typical energy flux (~10{sup 6} W/cm{sup 2}), a typical surface temperature (~3000 K), and a typical pulse duration (~1 μs) provide a sufficient amount of evaporated atoms to generate fractal fibers such that each molecule of a gas flow collides with the skeleton of fractal fibers many times.« less
Xi, Jinxiang; Si, Xiuhua A.; Kim, JongWon; Mckee, Edward; Lin, En-Bing
2014-01-01
Background Exhaled aerosol patterns, also called aerosol fingerprints, provide clues to the health of the lung and can be used to detect disease-modified airway structures. The key is how to decode the exhaled aerosol fingerprints and retrieve the lung structural information for a non-invasive identification of respiratory diseases. Objective and Methods In this study, a CFD-fractal analysis method was developed to quantify exhaled aerosol fingerprints and applied it to one benign and three malign conditions: a tracheal carina tumor, a bronchial tumor, and asthma. Respirations of tracer aerosols of 1 µm at a flow rate of 30 L/min were simulated, with exhaled distributions recorded at the mouth. Large eddy simulations and a Lagrangian tracking approach were used to simulate respiratory airflows and aerosol dynamics. Aerosol morphometric measures such as concentration disparity, spatial distributions, and fractal analysis were applied to distinguish various exhaled aerosol patterns. Findings Utilizing physiology-based modeling, we demonstrated substantial differences in exhaled aerosol distributions among normal and pathological airways, which were suggestive of the disease location and extent. With fractal analysis, we also demonstrated that exhaled aerosol patterns exhibited fractal behavior in both the entire image and selected regions of interest. Each exhaled aerosol fingerprint exhibited distinct pattern parameters such as spatial probability, fractal dimension, lacunarity, and multifractal spectrum. Furthermore, a correlation of the diseased location and exhaled aerosol spatial distribution was established for asthma. Conclusion Aerosol-fingerprint-based breath tests disclose clues about the site and severity of lung diseases and appear to be sensitive enough to be a practical tool for diagnosis and prognosis of respiratory diseases with structural abnormalities. PMID:25105680
Efficiency analysis of diffusion on T-fractals in the sense of random walks.
Peng, Junhao; Xu, Guoai
2014-04-07
Efficiently controlling the diffusion process is crucial in the study of diffusion problem in complex systems. In the sense of random walks with a single trap, mean trapping time (MTT) and mean diffusing time (MDT) are good measures of trapping efficiency and diffusion efficiency, respectively. They both vary with the location of the node. In this paper, we analyze the effects of node's location on trapping efficiency and diffusion efficiency of T-fractals measured by MTT and MDT. First, we provide methods to calculate the MTT for any target node and the MDT for any source node of T-fractals. The methods can also be used to calculate the mean first-passage time between any pair of nodes. Then, using the MTT and the MDT as the measure of trapping efficiency and diffusion efficiency, respectively, we compare the trapping efficiency and diffusion efficiency among all nodes of T-fractal and find the best (or worst) trapping sites and the best (or worst) diffusing sites. Our results show that the hub node of T-fractal is the best trapping site, but it is also the worst diffusing site; and that the three boundary nodes are the worst trapping sites, but they are also the best diffusing sites. Comparing the maximum of MTT and MDT with their minimums, we find that the maximum of MTT is almost 6 times of the minimum of MTT and the maximum of MDT is almost equal to the minimum for MDT. Thus, the location of target node has large effect on the trapping efficiency, but the location of source node almost has no effect on diffusion efficiency. We also simulate random walks on T-fractals, whose results are consistent with the derived results.
On the fractal morphology of combustion-generated soot aggregates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koylu, U.O.
1995-12-31
The fractal properties of soot aggregates were investigated using ex-situ and in-situ experimental methods as well as computer simulations. Ex-situ experiments involved thermophoretic sampling and analysis by transmission electron microscopy (TEM), while in-situ measurements employed angular static light scattering and data inversion based on Rayleigh-Debye-Gans (RDG) approximation. Computer simulations used a sequential algorithm which mimics mass fractal-like structures. So from a variety of hydrocarbon-fueled laminar and turbulent nonpremixed flame environments were considered in the present study. The TEM analysis of projected soot images sampled from fuel-rich conditions of buoyant and weakly-buoyant laminar flames indicated that the fractal dimension of sootmore » was relatively independent of position in flames, fuel type and flame condition. These measurements yielded an average fractal dimension of 1.8, although other structure parameters such as the primary particle diameters and number of primary particles in aggregates had wide range of values. Fractal prefactor (lacunarity) was also measured for soot sampled from the fuel-lean conditions of turbulent flames, considering the actual morphology by tilting the samples during TEM analysis. These measurements yielded a fractal dimension of 1.65 and a lacunarity of 8.5, with experimental uncertainties (95% confidence) of 0.08 and 0.5, respectively. Relationships between the actual and projected structure properties of soot were also developed by combining TEM observations with numerical simulations. Practical approximate formulae were suggested to find radius of gyration of an aggregate from its maximum dimension, and number of primary particles in an aggregate from projected area. Finally, the fractal dimension and lacunarity of soot were obtained using light scattering for the same conditions of the above TEM measurements.« less
NASA Astrophysics Data System (ADS)
Fu, Yanshu; Qiu, Yaohui; Li, Yulong
2018-03-01
The mechanical anisotropy of an explosive welding composite plate made of 304 stainless steel/245 steel was studied through shear experiments performed on explosively welded wavy interfaces along several orientation angles. The results indicated that the strength and the fracture energy of samples significantly varied with the orientation angles. The fracture surfaces of all samples were observed using a scanning electron microscope and through three-dimensional structure microscopy. The periodic features of all the fracture surfaces were clearly shown in different fracture modes. The fractal dimension of the fracture surfaces was calculated based on the fractal geometry by the box-counting method in MATLAB. The cohesive element model was used to analyze the fracture energy according to the physical dependence of the fractal dimension on thermodynamic entropy and interface separation energy. The fracture energy was an exponential function of the fractal dimension value, which was in good agreement with the experimental results. All results were validated for effective use in the application of anisotropy analysis to the welded interface and structural optimization of explosively welded composite plates.
Space-coiling fractal metamaterial with multi-bandgaps on subwavelength scale
NASA Astrophysics Data System (ADS)
Man, Xianfeng; Liu, Tingting; Xia, Baizhan; Luo, Zhen; Xie, Longxiang; Liu, Jian
2018-06-01
Acoustic metamaterials are remarkably different from conventional materials, as they can flexibly manipulate and control the propagation of sound waves. Unlike the locally resonant metamaterials introduced in earlier studies, we designed an ultraslow artificial structure with a sound speed much lower than that in air. In this paper, the space-coiling approach is proposed for achieving artificial metamaterial for extremely low-frequency airborne sound. In addition, the self-similar fractal technique is utilized for designing space-coiling Mie-resonance-based metamaterials (MRMMs) to obtain a band-dispersive spectrum. The band structures of two-dimensional (2D) acoustic metamaterials with different fractal levels are illustrated using the finite element method. The low-frequency bandgap can easily be formed, and multi-bandgap properties are observed in high-level fractals. Furthermore, the designed MRMMs with higher order fractal space coiling shows a good robustness against irregular arrangement. Besides, the proposed artificial structure was found to modify and control the radiation field arbitrarily. Thus, this work provides useful guidelines for the design of acoustic filtering devices and acoustic wavefront shaping applications on the subwavelength scale.
NASA Astrophysics Data System (ADS)
Fu, Yanshu; Qiu, Yaohui; Li, Yulong
2018-05-01
The mechanical anisotropy of an explosive welding composite plate made of 304 stainless steel/245 steel was studied through shear experiments performed on explosively welded wavy interfaces along several orientation angles. The results indicated that the strength and the fracture energy of samples significantly varied with the orientation angles. The fracture surfaces of all samples were observed using a scanning electron microscope and through three-dimensional structure microscopy. The periodic features of all the fracture surfaces were clearly shown in different fracture modes. The fractal dimension of the fracture surfaces was calculated based on the fractal geometry by the box-counting method in MATLAB. The cohesive element model was used to analyze the fracture energy according to the physical dependence of the fractal dimension on thermodynamic entropy and interface separation energy. The fracture energy was an exponential function of the fractal dimension value, which was in good agreement with the experimental results. All results were validated for effective use in the application of anisotropy analysis to the welded interface and structural optimization of explosively welded composite plates.
Pitfalls in Fractal Time Series Analysis: fMRI BOLD as an Exemplary Case
Eke, Andras; Herman, Peter; Sanganahalli, Basavaraju G.; Hyder, Fahmeed; Mukli, Peter; Nagy, Zoltan
2012-01-01
This article will be positioned on our previous work demonstrating the importance of adhering to a carefully selected set of criteria when choosing the suitable method from those available ensuring its adequate performance when applied to real temporal signals, such as fMRI BOLD, to evaluate one important facet of their behavior, fractality. Earlier, we have reviewed on a range of monofractal tools and evaluated their performance. Given the advance in the fractal field, in this article we will discuss the most widely used implementations of multifractal analyses, too. Our recommended flowchart for the fractal characterization of spontaneous, low frequency fluctuations in fMRI BOLD will be used as the framework for this article to make certain that it will provide a hands-on experience for the reader in handling the perplexed issues of fractal analysis. The reason why this particular signal modality and its fractal analysis has been chosen was due to its high impact on today’s neuroscience given it had powerfully emerged as a new way of interpreting the complex functioning of the brain (see “intrinsic activity”). The reader will first be presented with the basic concepts of mono and multifractal time series analyses, followed by some of the most relevant implementations, characterization by numerical approaches. The notion of the dichotomy of fractional Gaussian noise and fractional Brownian motion signal classes and their impact on fractal time series analyses will be thoroughly discussed as the central theme of our application strategy. Sources of pitfalls and way how to avoid them will be identified followed by a demonstration on fractal studies of fMRI BOLD taken from the literature and that of our own in an attempt to consolidate the best practice in fractal analysis of empirical fMRI BOLD signals mapped throughout the brain as an exemplary case of potentially wide interest. PMID:23227008
Fractal Dimension Analysis of Transient Visual Evoked Potentials: Optimisation and Applications.
Boon, Mei Ying; Henry, Bruce Ian; Chu, Byoung Sun; Basahi, Nour; Suttle, Catherine May; Luu, Chi; Leung, Harry; Hing, Stephen
2016-01-01
The visual evoked potential (VEP) provides a time series signal response to an external visual stimulus at the location of the visual cortex. The major VEP signal components, peak latency and amplitude, may be affected by disease processes. Additionally, the VEP contains fine detailed and non-periodic structure, of presently unclear relevance to normal function, which may be quantified using the fractal dimension. The purpose of this study is to provide a systematic investigation of the key parameters in the measurement of the fractal dimension of VEPs, to develop an optimal analysis protocol for application. VEP time series were mathematically transformed using delay time, τ, and embedding dimension, m, parameters. The fractal dimension of the transformed data was obtained from a scaling analysis based on straight line fits to the numbers of pairs of points with separation less than r versus log(r) in the transformed space. Optimal τ, m, and scaling analysis were obtained by comparing the consistency of results using different sampling frequencies. The optimised method was then piloted on samples of normal and abnormal VEPs. Consistent fractal dimension estimates were obtained using τ = 4 ms, designating the fractal dimension = D2 of the time series based on embedding dimension m = 7 (for 3606 Hz and 5000 Hz), m = 6 (for 1803 Hz) and m = 5 (for 1000Hz), and estimating D2 for each embedding dimension as the steepest slope of the linear scaling region in the plot of log(C(r)) vs log(r) provided the scaling region occurred within the middle third of the plot. Piloting revealed that fractal dimensions were higher from the sampled abnormal than normal achromatic VEPs in adults (p = 0.02). Variances of fractal dimension were higher from the abnormal than normal chromatic VEPs in children (p = 0.01). A useful analysis protocol to assess the fractal dimension of transformed VEPs has been developed.
Experimental criteria for the determination of fractal parameters of premixed turbulent flames
NASA Astrophysics Data System (ADS)
Shepherd, I. G.; Cheng, Robert K.; Talbot, L.
1992-10-01
The influence of spatial resolution, digitization noise, the number of records used for averaging, and the method of analysis on the determination of the fractal parameters of a high Damköhler number, methane/air, premixed, turbulent stagnation-point flame are investigated in this paper. The flow exit velocity was 5 m/s and the turbulent Reynolds number was 70 based on a integral scale of 3 mm and a turbulent intensity of 7%. The light source was a copper vapor laser which delivered 20 nsecs, 5 mJ pulses at 4 kHz and the tomographic cross-sections of the flame were recorded by a high speed movie camera. The spatial resolution of the images is 155 × 121 μm/pixel with a field of view of 50 × 65 mm. The stepping caliper technique for obtaining the fractal parameters is found to give the clearest indication of the cutoffs and the effects of noise. It is necessary to ensemble average the results from more than 25 statistically independent images to reduce sufficiently the scatter in the fractal parameters. The effects of reduced spatial resolution on fractal plots are estimated by artificial degradation of the resolution of the digitized flame boundaries. The effect of pixel resolution, an apparent increase in flame length below the inner scale rolloff, appears in the fractal plots when the measurent scale is less than approximately twice the pixel resolution. Although a clearer determination of fractal parameters is obtained by local averaging of the flame boundaries which removes digitization noise, at low spatial resolution this technique can reduce the fractal dimension. The degree of fractal isotropy of the flame surface can have a significant effect on the estimation of the flame surface area and hence burning rate from two-dimensional images. To estimate this isotropy a determination of the outer cutoff is required and three-dimensional measurements are probably also necessary.
NASA Astrophysics Data System (ADS)
Karamanos, K.; Mistakidis, S. I.; Massart, T. J.; Mistakidis, I. S.
2015-06-01
The entropy production and the variational functional of a Laplacian diffusional field around the first four fractal iterations of a linear self-similar tree (von Koch curve) is studied analytically and detailed predictions are stated. In a next stage, these predictions are confronted with results from numerical resolution of the Laplace equation by means of Finite Elements computations. After a brief review of the existing results, the range of distances near the geometric irregularity, the so-called "Near Field", a situation never studied in the past, is treated exhaustively. We notice here that in the Near Field, the usual notion of the active zone approximation introduced by Sapoval et al. [M. Filoche and B. Sapoval, Transfer across random versus deterministic fractal interfaces, Phys. Rev. Lett. 84(25) (2000) 5776;1 B. Sapoval, M. Filoche, K. Karamanos and R. Brizzi, Can one hear the shape of an electrode? I. Numerical study of the active zone in Laplacian transfer, Eur. Phys. J. B. Condens. Matter Complex Syst. 9(4) (1999) 739-753.]2 is strictly inapplicable. The basic new result is that the validity of the active-zone approximation based on irreversible thermodynamics is confirmed in this limit, and this implies a new interpretation of this notion for Laplacian diffusional fields.
International trade network: fractal properties and globalization puzzle.
Karpiarz, Mariusz; Fronczak, Piotr; Fronczak, Agata
2014-12-12
Globalization is one of the central concepts of our age. The common perception of the process is that, due to declining communication and transport costs, distance becomes less and less important. However, the distance coefficient in the gravity model of trade, which grows in time, indicates that the role of distance increases rather than decreases. This, in essence, captures the notion of the globalization puzzle. Here, we show that the fractality of the international trade system (ITS) provides a simple solution for the puzzle. We argue that the distance coefficient corresponds to the fractal dimension of ITS. We provide two independent methods, the box counting method and spatial choice model, which confirm this statement. Our results allow us to conclude that the previous approaches to solving the puzzle misinterpreted the meaning of the distance coefficient in the gravity model of trade.
A new approach of sensorial evaluation of cooked cereal foods: fractal analysis of rheological data
NASA Astrophysics Data System (ADS)
Scher, J.; Hardy, J.
2002-11-01
An analytical method based on a fractal geometry concept was developed through the relationship between structure-texture of solid-like crackers, flat bread and Bretzels. An universal testing machine was used to determine indentation tests. The graphs were irregularly shaped so that usual interpretation was made not possible. Nevertheless, the irregular shape, or “roughness" displays auto-similarity properties which can be interpreted in terms of apparent fractal dimension texture (D_T). A trained panel able to quantify the “hardness", “porous structure" and “crispness" descriptors carried out sensorial characterisation of products. High correlation between sensorial hardness and resistance to indentation, on one hand, and between crispness and D_T on the other hand was found. Modelling mathematics methods for complex systems allow useful contribution to Food Science.
International Trade Network: Fractal Properties and Globalization Puzzle
NASA Astrophysics Data System (ADS)
Karpiarz, Mariusz; Fronczak, Piotr; Fronczak, Agata
2014-12-01
Globalization is one of the central concepts of our age. The common perception of the process is that, due to declining communication and transport costs, distance becomes less and less important. However, the distance coefficient in the gravity model of trade, which grows in time, indicates that the role of distance increases rather than decreases. This, in essence, captures the notion of the globalization puzzle. Here, we show that the fractality of the international trade system (ITS) provides a simple solution for the puzzle. We argue that the distance coefficient corresponds to the fractal dimension of ITS. We provide two independent methods, the box counting method and spatial choice model, which confirm this statement. Our results allow us to conclude that the previous approaches to solving the puzzle misinterpreted the meaning of the distance coefficient in the gravity model of trade.
Reengineering through natural structures: the fractal factory
NASA Astrophysics Data System (ADS)
Sihn, Wilfried
1995-08-01
Many branches of European industry have had to recognize that their lead in the world market has been caught up with, particularly through Asian competition. In many cases a deficit of up to 30% in costs and productivity already exists. The reasons are rigid, Tayloristic company structures. The companies are not in a position to react flexibly to constantly changing environmental conditions. This article illustrates the methods of the `fractal company' which are necessary to solve the structure crisis. The fractal company distinguishes itself through its dynamics and its vitality, as well as its independent reaction to the changing circumstances. The developed methods, procedures, and framework conditions such as company structuring, human networking, hierarchy formation, and models for renumeration and working time are explained. They are based on practical examples from IPA's work with the automobile industry, their suppliers, and the engineering industry.
Fusion of multiscale wavelet-based fractal analysis on retina image for stroke prediction.
Che Azemin, M Z; Kumar, Dinesh K; Wong, T Y; Wang, J J; Kawasaki, R; Mitchell, P; Arjunan, Sridhar P
2010-01-01
In this paper, we present a novel method of analyzing retinal vasculature using Fourier Fractal Dimension to extract the complexity of the retinal vasculature enhanced at different wavelet scales. Logistic regression was used as a fusion method to model the classifier for 5-year stroke prediction. The efficacy of this technique has been tested using standard pattern recognition performance evaluation, Receivers Operating Characteristics (ROC) analysis and medical prediction statistics, odds ratio. Stroke prediction model was developed using the proposed system.
Zaia, Annamaria
2015-01-01
Osteoporosis represents one major health condition for our growing elderly population. It accounts for severe morbidity and increased mortality in postmenopausal women and it is becoming an emerging health concern even in aging men. Screening of the population at risk for bone degeneration and treatment assessment of osteoporotic patients to prevent bone fragility fractures represent useful tools to improve quality of life in the elderly and to lighten the related socio-economic impact. Bone mineral density (BMD) estimate by means of dual-energy X-ray absorptiometry is normally used in clinical practice for osteoporosis diagnosis. Nevertheless, BMD alone does not represent a good predictor of fracture risk. From a clinical point of view, bone microarchitecture seems to be an intriguing aspect to characterize bone alteration patterns in aging and pathology. The widening into clinical practice of medical imaging techniques and the impressive advances in information technologies together with enhanced capacity of power calculation have promoted proliferation of new methods to assess changes of trabecular bone architecture (TBA) during aging and osteoporosis. Magnetic resonance imaging (MRI) has recently arisen as a useful tool to measure bone structure in vivo. In particular, high-resolution MRI techniques have introduced new perspectives for TBA characterization by non-invasive non-ionizing methods. However, texture analysis methods have not found favor with clinicians as they produce quite a few parameters whose interpretation is difficult. The introduction in biomedical field of paradigms, such as theory of complexity, chaos, and fractals, suggests new approaches and provides innovative tools to develop computerized methods that, by producing a limited number of parameters sensitive to pathology onset and progression, would speed up their application into clinical practice. Complexity of living beings and fractality of several physio-anatomic structures suggest fractal analysis as a promising approach to quantify morpho-functional changes in both aging and pathology. In this particular context, fractal lacunarity seems to be the proper tool to characterize TBA texture as it is able to describe both discontinuity of bone network and sizes of bone marrow spaces, whose changes are an index of bone fracture risk. In this paper, an original method of MRI texture analysis, based on TBA fractal lacunarity is described and discussed in the light of new perspectives for early diagnosis of osteoporotic fractures. PMID:25793162
Definition of fractal topography to essential understanding of scale-invariance
NASA Astrophysics Data System (ADS)
Jin, Yi; Wu, Ying; Li, Hui; Zhao, Mengyu; Pan, Jienan
2017-04-01
Fractal behavior is scale-invariant and widely characterized by fractal dimension. However, the cor-respondence between them is that fractal behavior uniquely determines a fractal dimension while a fractal dimension can be related to many possible fractal behaviors. Therefore, fractal behavior is independent of the fractal generator and its geometries, spatial pattern, and statistical properties in addition to scale. To mathematically describe fractal behavior, we propose a novel concept of fractal topography defined by two scale-invariant parameters, scaling lacunarity (P) and scaling coverage (F). The scaling lacunarity is defined as the scale ratio between two successive fractal generators, whereas the scaling coverage is defined as the number ratio between them. Consequently, a strictly scale-invariant definition for self-similar fractals can be derived as D = log F /log P. To reflect the direction-dependence of fractal behaviors, we introduce another parameter Hxy, a general Hurst exponent, which is analytically expressed by Hxy = log Px/log Py where Px and Py are the scaling lacunarities in the x and y directions, respectively. Thus, a unified definition of fractal dimension is proposed for arbitrary self-similar and self-affine fractals by averaging the fractal dimensions of all directions in a d-dimensional space, which . Our definitions provide a theoretical, mechanistic basis for understanding the essentials of the scale-invariant property that reduces the complexity of modeling fractals.
Deng, Yusong; Cai, Chongfa; Xia, Dong; Ding, Shuwen; Chen, Jiazhou
2017-01-01
Collapsing gullies are among the most severe soil erosion problems in the tropical and subtropical areas of southern China. However, few studies have examined the relationship of soil particle size distribution (PSD) changes with land-use patterns in the alluvial fans of collapsing gullies. Recently, the fractal method has been applied to estimate soil structure and has proven to be an effective tool in analyzing soil properties and their relationships with other eco-environmental factors. In this study, the soil fractal dimension (D), physico-chemical properties and their relationship with different land-use patterns in alluvial fans were investigated in an experiment that involved seven collapsing gully areas in seven counties of southern China. Our results demonstrated that different land-use patterns of alluvial fans had a significant effect on soil physico-chemical properties. Compared to grasslands and woodlands, farmlands and orchards generally contained more fine soil particles (silt and clay) and fewer coarse particles, whereas significant differences were found in the fractal dimension of soil PSD in different land-use patterns. Specifically, the soil fractal dimension was lower in grasslands and higher in orchards relative to that of other land-use patterns. The average soil fractal dimension of grasslands had a value that was 0.08 lower than that of orchards. Bulk density was lower but porosity was higher in farmlands and orchards. Saturated moisture content was lower in woodlands and grasslands, but saturated hydraulic conductivity was higher in all four land-use patterns. Additionally, the fractal dimension had significant linear relationships with the silt, clay and sand contents and soil properties and exhibited a positive correlation with the clay (R2 = 0.976, P<0.001), silt (R2 = 0.578, P<0.01), organic carbon (R2 = 0.777, P<0.001) and saturated water (R2 = 0.639, P<0.01) contents but a negative correlation with gravel content (R2 = 0.494, P<0.01), coarse sand content (R2 = 0.623, P<0.01) and saturated hydraulic conductivity (R2 = 0.788, P<0.001). However, the fractal dimension exhibited no significant correlation with pH, bulk density or total porosity. Furthermore, the second-degree polynomial equation was found to be more adequate for describing the correlations between soil fractal dimension and particle size distribution. The results of this study demonstrate that a fractal dimension analysis of soil particle size distribution is a useful method for the quantitative description of different land-use patterns in the alluvial fans of collapsing gullies in southern China. PMID:28301524
Micromorphological characterization of zinc/silver particle composite coatings
Méndez, Alia; Reyes, Yolanda; Trejo, Gabriel; StĘpień, Krzysztof
2015-01-01
ABSTRACT The aim of this study was to evaluate the three‐dimensional (3D) surface micromorphology of zinc/silver particles (Zn/AgPs) composite coatings with antibacterial activity prepared using an electrodeposition technique. These 3D nanostructures were investigated over square areas of 5 μm × 5 μm by atomic force microscopy (AFM), fractal, and wavelet analysis. The fractal analysis of 3D surface roughness revealed that (Zn/AgPs) composite coatings have fractal geometry. Triangulation method, based on the linear interpolation type, applied for AFM data was employed in order to characterise the surfaces topographically (in amplitude, spatial distribution and pattern of surface characteristics). The surface fractal dimension D f, as well as height values distribution have been determined for the 3D nanostructure surfaces. Microsc. Res. Tech. 78:1082–1089, 2015. © 2015 The Authors published by Wiley Periodicals, Inc. PMID:26500164
The Conundrum of Functional Brain Networks: Small-World Efficiency or Fractal Modularity
Gallos, Lazaros K.; Sigman, Mariano; Makse, Hernán A.
2012-01-01
The human brain has been studied at multiple scales, from neurons, circuits, areas with well-defined anatomical and functional boundaries, to large-scale functional networks which mediate coherent cognition. In a recent work, we addressed the problem of the hierarchical organization in the brain through network analysis. Our analysis identified functional brain modules of fractal structure that were inter-connected in a small-world topology. Here, we provide more details on the use of network science tools to elaborate on this behavior. We indicate the importance of using percolation theory to highlight the modular character of the functional brain network. These modules present a fractal, self-similar topology, identified through fractal network methods. When we lower the threshold of correlations to include weaker ties, the network as a whole assumes a small-world character. These weak ties are organized precisely as predicted by theory maximizing information transfer with minimal wiring costs. PMID:22586406
NASA Astrophysics Data System (ADS)
Zierenberg, Johannes; Fricke, Niklas; Marenz, Martin; Spitzner, F. P.; Blavatska, Viktoria; Janke, Wolfhard
2017-12-01
We study long-range power-law correlated disorder on square and cubic lattices. In particular, we present high-precision results for the percolation thresholds and the fractal dimension of the largest clusters as a function of the correlation strength. The correlations are generated using a discrete version of the Fourier filtering method. We consider two different metrics to set the length scales over which the correlations decay, showing that the percolation thresholds are highly sensitive to such system details. By contrast, we verify that the fractal dimension df is a universal quantity and unaffected by the choice of metric. We also show that for weak correlations, its value coincides with that for the uncorrelated system. In two dimensions we observe a clear increase of the fractal dimension with increasing correlation strength, approaching df→2 . The onset of this change does not seem to be determined by the extended Harris criterion.
The fractal based analysis of human face and DNA variations during aging.
Namazi, Hamidreza; Akrami, Amin; Hussaini, Jamal; Silva, Osmar N; Wong, Albert; Kulish, Vladimir V
2017-01-16
Human DNA is the main unit that shapes human characteristics and features such as behavior. Thus, it is expected that changes in DNA (DNA mutation) influence human characteristics and features. Face is one of the human features which is unique and also dependent on his gen. In this paper, for the first time we analyze the variations of human DNA and face simultaneously. We do this job by analyzing the fractal dimension of DNA walk and face during human aging. The results of this study show the human DNA and face get more complex by aging. These complexities are mapped on fractal exponents of DNA walk and human face. The method discussed in this paper can be further developed in order to investigate the direct influence of DNA mutation on the face variations during aging, and accordingly making a model between human face fractality and the complexity of DNA walk.
NASA Astrophysics Data System (ADS)
Florindo, João. Batista
2018-04-01
This work proposes the use of Singular Spectrum Analysis (SSA) for the classification of texture images, more specifically, to enhance the performance of the Bouligand-Minkowski fractal descriptors in this task. Fractal descriptors are known to be a powerful approach to model and particularly identify complex patterns in natural images. Nevertheless, the multiscale analysis involved in those descriptors makes them highly correlated. Although other attempts to address this point was proposed in the literature, none of them investigated the relation between the fractal correlation and the well-established analysis employed in time series. And SSA is one of the most powerful techniques for this purpose. The proposed method was employed for the classification of benchmark texture images and the results were compared with other state-of-the-art classifiers, confirming the potential of this analysis in image classification.
NASA Astrophysics Data System (ADS)
Laizet, Sylvain; Sakai, Yasuhiko; Christos Vassilicos, J.
2013-12-01
This special issue of Fluid Dynamics Research includes nine papers which are based on nine of the presentations at the Second UK-Japan bilateral Workshop and First ERCOFTAC Workshop on 'Turbulent flows generated/designed in multiscale/fractal ways: fundamentals and applications' held from 26 to 27 March 2012 at Imperial College London, UK. The research area of fractal-generated turbulent flows started with a chapter published in 2001 in one of the conference proceedings which came out of the 1999 Isaac Newton Institute 6 month Programme on Turbulence in Cambridge (UK). However, the first results which formed the basis of much of the work reported in this special issue started appearing from 2007 onwards and progress since then could perhaps be described as not insignificant. Research in this area has resulted in the following six notable advances: (a) the definition of two new length-scales characterizing grid-generated turbulence; (b) enhanced and energy-efficient stirring and scalar transfer by fractal grid and fractal openings/flanges with applications, in particular, to improved turbulence generation for combustion; (c) the non-equilibrium turbulent dissipation law; (d) non-equilibrium axisymmetric wake laws; (e) insights into the dependence of drag forces and vortex shedding on the fractal geometry of fractal objects and simulation methods for the calculation of drag of fractal trees; and (f) the invention and successful proof of concept of fractal spoilers and fractal fences. The present special issue contains papers directly related to these advances and can be seen as a reflection of the current research in the field of fractal-generated turbulent flows and their differences and commonalities with other turbulent flows. The financial support from the Japan Society for the Promotion of Science has been decisive for the organization and success of this workshop. We are also grateful to ERCOFTAC who put in place the EU-wide Special Interest Group on multiscale-generated turbulence and for supporting the workshop both financially and by way of advertisement. Last but by no means least, we express our deep gratitude to the editors of FDR who handled this issue: M Funakoshi, A D Gilbert, L B Mydlarski and K Suga.
Fractal mechanisms in the electrophysiology of the heart
NASA Technical Reports Server (NTRS)
Goldberger, A. L.
1992-01-01
The mathematical concept of fractals provides insights into complex anatomic branching structures that lack a characteristic (single) length scale, and certain complex physiologic processes, such as heart rate regulation, that lack a single time scale. Heart rate control is perturbed by alterations in neuro-autonomic function in a number of important clinical syndromes, including sudden cardiac death, congestive failure, cocaine intoxication, fetal distress, space sickness and physiologic aging. These conditions are associated with a loss of the normal fractal complexity of interbeat interval dynamics. Such changes, which may not be detectable using conventional statistics, can be quantified using new methods derived from "chaos theory.".
Effect of Na+ on surface fractal dimension of compacted bentonite
NASA Astrophysics Data System (ADS)
Xiang, G. S.; Xu, Y. F.; Jiang, H.
2015-05-01
Compacted Tsukinuno bentonite was immersed into NaCl solutions of different concentrations in oedometers, and the surface fractal dimension of bentonite-saline association was measured by nitrogen adsorption isotherms. The application of the Frenkel-Halsey-Hill equation and the Neimark thermodynamic method to nitrogen adsorption isotherms indicated that the surface roughness was greater for the bentonite-saline association. The surface fractal dimension of bentonite increased in the NaCl solution with low Na+ concentration, but decreased at high Na+ concentration. This process was accompanied by the same tendency in specific surface area and microporosity with the presence of Na+ coating in the clay particles.
Hein, L R O; Campos, K A; Caltabiano, P C R O; Kostov, K G
2013-01-01
The methodology for fracture analysis of polymeric composites with scanning electron microscopes (SEM) is still under discussion. Many authors prefer to use sputter coating with a conductive material instead of applying low-voltage (LV) or variable-pressure (VP) methods, which preserves the original surfaces. The present work examines the effects of sputter coating with 25 nm of gold on the topography of carbon-epoxy composites fracture surfaces, using an atomic force microscope. Also, the influence of SEM imaging parameters on fractal measurements is evaluated for the VP-SEM and LV-SEM methods. It was observed that topographic measurements were not significantly affected by the gold coating at tested scale. Moreover, changes on SEM setup leads to nonlinear outcome on texture parameters, such as fractal dimension and entropy values. For VP-SEM or LV-SEM, fractal dimension and entropy values did not present any evident relation with image quality parameters, but the resolution must be optimized with imaging setup, accompanied by charge neutralization. © Wiley Periodicals, Inc.
Xu, Fangzhou; Zhou, Weidong; Zhen, Yilin; Yuan, Qi; Wu, Qi
2016-09-01
The feature extraction and classification of brain signal is very significant in brain-computer interface (BCI). In this study, we describe an algorithm for motor imagery (MI) classification of electrocorticogram (ECoG)-based BCI. The proposed approach employs multi-resolution fractal measures and local binary pattern (LBP) operators to form a combined feature for characterizing an ECoG epoch recording from the right hemisphere of the brain. A classifier is trained by using the gradient boosting in conjunction with ordinary least squares (OLS) method. The fractal intercept, lacunarity and LBP features are extracted to classify imagined movements of either the left small finger or the tongue. Experimental results on dataset I of BCI competition III demonstrate the superior performance of our method. The cross-validation accuracy and accuracy is 90.6% and 95%, respectively. Furthermore, the low computational burden of this method makes it a promising candidate for real-time BCI systems.
Single-Image Super-Resolution Based on Rational Fractal Interpolation.
Zhang, Yunfeng; Fan, Qinglan; Bao, Fangxun; Liu, Yifang; Zhang, Caiming
2018-08-01
This paper presents a novel single-image super-resolution (SR) procedure, which upscales a given low-resolution (LR) input image to a high-resolution image while preserving the textural and structural information. First, we construct a new type of bivariate rational fractal interpolation model and investigate its analytical properties. This model has different forms of expression with various values of the scaling factors and shape parameters; thus, it can be employed to better describe image features than current interpolation schemes. Furthermore, this model combines the advantages of rational interpolation and fractal interpolation, and its effectiveness is validated through theoretical analysis. Second, we develop a single-image SR algorithm based on the proposed model. The LR input image is divided into texture and non-texture regions, and then, the image is interpolated according to the characteristics of the local structure. Specifically, in the texture region, the scaling factor calculation is the critical step. We present a method to accurately calculate scaling factors based on local fractal analysis. Extensive experiments and comparisons with the other state-of-the-art methods show that our algorithm achieves competitive performance, with finer details and sharper edges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinogradov, A.; Laboratory of Hybrid Nanostructured Materials, NITU MISiS, Moscow 119490; Yasnikov, I. S.
2014-06-21
We demonstrate that the fractal dimension (FD) of the dislocation population in a deforming material is an important quantitative characteristic of the evolution of the dislocation structure. Thus, we show that peaking of FD signifies a nearing loss of uniformity of plastic flow and the onset of strain localization. Two techniques were employed to determine FD: (i) inspection of surface morphology of the deforming crystal by white light interferometry and (ii) monitoring of acoustic emission (AE) during uniaxial tensile deformation. A connection between the AE characteristics and the fractal dimension determined from surface topography measurements was established. As a commonmore » platform for the two methods, the dislocation density evolution in the bulk was used. The relations found made it possible to identify the occurrence of a peak in the median frequency of AE as a harbinger of plastic instability leading to necking. It is suggested that access to the fractal dimension provided by AE measurements and by surface topography analysis makes these techniques important tools for monitoring the evolution of the dislocation structure during plastic deformation—both as stand-alone methods and especially when used in tandem.« less
Quantitative analysis of fracture surface by roughness and fractal method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X.W.; Tian, J.F.; Kang, Y.
1995-09-01
In recent years there has been extensive research and great development in Quantitative Fractography, which acts as an integral part of fractographic analysis. A prominent technique for studying the fracture surface is based on fracture profile generation and the major means for characterizing the profile quantitatively are roughness and fractal methods. By this way, some quantitative indexes such as the roughness parameters R{sub L} for profile and R{sub S} for surface, fractal dimensions D{sub L} for profile and D{sub S} for surface can be measured. Given the relationships between the indexes and the mechanical properties of materials, it is possiblemore » to achieve the goal of protecting materials from fracture. But, as the case stands, the theory and experimental technology of quantitative fractography are still imperfect and remain to be studied further. Recently, Gokhale and Underwood et al have proposed an assumption-free method for estimating the surface roughness by vertically sectioning the fracture surface with sections at an angle of 120 deg with each other, which could be expressed as follows: R{sub S} = {ovr R{sub L}{center_dot}{Psi}} where {Psi} is the profile structure factor. This method is based on the classical sterological principles and verified with the aid of computer simulations for some ruled surfaces. The results are considered to be applicable to fracture surfaces with any arbitrary complexity and anisotropy. In order to extend the detail applications to this method in quantitative fractography, the authors made a study on roughness and fractal methods dependent on this method by performing quantitative measurements on some typical low-temperature impact fractures.« less
Relaxation dynamics of a multihierarchical polymer network
NASA Astrophysics Data System (ADS)
Jurjiu, Aurel; Biter, Teodor Lucian; Turcu, Flaviu
2017-01-01
In this work, we study the relaxation dynamics of a multihierarchical polymer network built by replicating the Vicsek fractal in dendrimer shape. The relaxation dynamics is investigated in the framework of the generalized Gaussian structure model by employing both Rouse and Zimm approaches. In the Rouse-type approach, we show the iterative procedure whereby the whole eigenvalue spectrum of the connectivity matrix of the multihierarchical structure can be obtained. Remarkably, the general picture that emerges from both approaches, even though we have a mixed growth algorithm, is that the obtained multihierarchical structure preserves the individual relaxation behaviors of its components. The theoretical findings with respect to the splitting of the intermediate domain of the relaxation quantities are well supported by experimental results.
Fractals, malware, and data models
NASA Astrophysics Data System (ADS)
Jaenisch, Holger M.; Potter, Andrew N.; Williams, Deborah; Handley, James W.
2012-06-01
We examine the hypothesis that the decision boundary between malware and non-malware is fractal. We introduce a novel encoding method derived from text mining for converting disassembled programs first into opstrings and then filter these into a reduced opcode alphabet. These opcodes are enumerated and encoded into real floating point number format and used for characterizing frequency of occurrence and distribution properties of malware functions to compare with non-malware functions. We use the concept of invariant moments to characterize the highly non-Gaussian structure of the opcode distributions. We then derive Data Model based classifiers from identified features and interpolate and extrapolate the parameter sample space for the derived Data Models. This is done to examine the nature of the parameter space classification boundary between families of malware and the general non-malware category. Preliminary results strongly support the fractal boundary hypothesis, and a summary of our methods and results are presented here.
Fractal Electronic Circuits Assembled From Nanoclusters
NASA Astrophysics Data System (ADS)
Fairbanks, M. S.; McCarthy, D.; Taylor, R. P.; Brown, S. A.
2009-07-01
Many patterns in nature can be described using fractal geometry. The effect of this fractal character is an array of properties that can include high internal connectivity, high dispersivity, and enhanced surface area to volume ratios. These properties are often desirable in applications and, consequently, fractal geometry is increasingly employed in technologies ranging from antenna to storm barriers. In this paper, we explore the application of fractal geometry to electrical circuits, inspired by the pervasive fractal structure of neurons in the brain. We show that, under appropriate growth conditions, nanoclusters of Sb form into islands on atomically flat substrates via a process close to diffusion-limited aggregation (DLA), establishing fractal islands that will form the basis of our fractal circuits. We perform fractal analysis of the islands to determine the spatial scaling properties (characterized by the fractal dimension, D) of the proposed circuits and demonstrate how varying growth conditions can affect D. We discuss fabrication approaches for establishing electrical contact to the fractal islands. Finally, we present fractal circuit simulations, which show that the fractal character of the circuit translates into novel, non-linear conduction properties determined by the circuit's D value.
Efficient RF energy harvesting by using a fractal structured rectenna system
NASA Astrophysics Data System (ADS)
Oh, Sechang; Ramasamy, Mouli; Varadan, Vijay K.
2014-04-01
A rectenna system delivers, collects, and converts RF energy into direct current to power the electronic devices or recharge batteries. It consists of an antenna for receiving RF power, an input filter for processing energy and impedance matching, a rectifier, an output filter, and a load resistor. However, the conventional rectenna systems have drawback in terms of power generation, as the single resonant frequency of an antenna can generate only low power compared to multiple resonant frequencies. A multi band rectenna system is an optimal solution to generate more power. This paper proposes the design of a novel rectenna system, which involves developing a multi band rectenna with a fractal structured antenna to facilitate an increase in energy harvesting from various sources like Wi-Fi, TV signals, mobile networks and other ambient sources, eliminating the limitation of a single band technique. The usage of fractal antennas effects certain prominent advantages in terms of size and multiple resonances. Even though, a fractal antenna incorporates multiple resonances, controlling the resonant frequencies is an important aspect to generate power from the various desired RF sources. Hence, this paper also describes the design parameters of the fractal antenna and the methods to control the multi band frequency.
Fracture Surface Morphology and Impact Strength of Cellulose/PLA Composites.
Gao, Honghong; Qiang, Tao
2017-06-07
Polylactide (PLA)-based composite materials reinforced with ball-milled celluloses were manufactured by extrusion blending followed by injection molding. Their surface morphology from impact fracture were imaged with scanning electron microscopy (SEM) and investigated by calculating their fractal dimensions. Then, linear regression was used to explore the relationship between fractal dimension and impact strength of the resultant cellulose/PLA composite materials. The results show that filling the ball-milled celluloses into PLA can improve the impact toughness of PLA by a minimum of 38%. It was demonstrated that the fracture pattern of the cellulose/PLA composite materials is different from that of pristine PLA. For the resultant composite materials, the fractal dimension of the impact fractured surfaces increased with increasing filling content and decreasing particle size of the ball-milled cellulose particles. There were highly positive correlations between fractal dimension of the fractured surfaces and impact strength of the cellulose/PLA composites. However, the linearity between fractal dimension and impact strength were different for the different methods, due to their different R-squared values. The approach presented in this work will help to understand the structure-property relationships of composite materials from a new perspective.
Fracture Surface Morphology and Impact Strength of Cellulose/PLA Composites
Gao, Honghong; Qiang, Tao
2017-01-01
Polylactide (PLA)-based composite materials reinforced with ball-milled celluloses were manufactured by extrusion blending followed by injection molding. Their surface morphology from impact fracture were imaged with scanning electron microscopy (SEM) and investigated by calculating their fractal dimensions. Then, linear regression was used to explore the relationship between fractal dimension and impact strength of the resultant cellulose/PLA composite materials. The results show that filling the ball-milled celluloses into PLA can improve the impact toughness of PLA by a minimum of 38%. It was demonstrated that the fracture pattern of the cellulose/PLA composite materials is different from that of pristine PLA. For the resultant composite materials, the fractal dimension of the impact fractured surfaces increased with increasing filling content and decreasing particle size of the ball-milled cellulose particles. There were highly positive correlations between fractal dimension of the fractured surfaces and impact strength of the cellulose/PLA composites. However, the linearity between fractal dimension and impact strength were different for the different methods, due to their different R-squared values. The approach presented in this work will help to understand the structure–property relationships of composite materials from a new perspective. PMID:28772983
NASA Astrophysics Data System (ADS)
Grech, Dariusz
We define and confront global and local methods to analyze the financial crash-like events on the financial markets from the critical phenomena point of view. These methods are based respectively on the analysis of log-periodicity and on the local fractal properties of financial time series in the vicinity of phase transitions (crashes). The log-periodicity analysis is made in a daily time horizon, for the whole history (1991-2008) of Warsaw Stock Exchange Index (WIG) connected with the largest developing financial market in Europe. We find that crash-like events on the Polish financial market are described better by the log-divergent price model decorated with log-periodic behavior than by the power-law-divergent price model usually discussed in log-periodic scenarios for developed markets. Predictions coming from log-periodicity scenario are verified for all main crashes that took place in WIG history. It is argued that crash predictions within log-periodicity model strongly depend on the amount of data taken to make a fit and therefore are likely to contain huge inaccuracies. Next, this global analysis is confronted with the local fractal description. To do so, we provide calculation of the so-called local (time dependent) Hurst exponent H loc for the WIG time series and for main US stock market indices like DJIA and S&P 500. We point out dependence between the behavior of the local fractal properties of financial time series and the crashes appearance on the financial markets. We conclude that local fractal method seems to work better than the global approach - both for developing and developed markets. The very recent situation on the market, particularly related to the Fed intervention in September 2007 and the situation immediately afterwards is also analyzed within fractal approach. It is shown in this context how the financial market evolves through different phases of fractional Brownian motion. Finally, the current situation on American market is analyzed in fractal language. This is to show how far we still are from the end of recession and from the beginning of a new boom on US financial market or on other world leading stocks.
NASA Astrophysics Data System (ADS)
Wuorinen, Charles
2015-03-01
Any of the arts may produce exemplars that have fractal characteristics. There may be fractal painting, fractal poetry, and the like. But these will always be specific instances, not necessarily displaying intrinsic properties of the art-medium itself. Only music, I believe, of all the arts possesses an intrinsically fractal character, so that its very nature is fractally determined. Thus, it is reasonable to assert that any instance of music is fractal...
Effective degrees of freedom of a random walk on a fractal
NASA Astrophysics Data System (ADS)
Balankin, Alexander S.
2015-12-01
We argue that a non-Markovian random walk on a fractal can be treated as a Markovian process in a fractional dimensional space with a suitable metric. This allows us to define the fractional dimensional space allied to the fractal as the ν -dimensional space Fν equipped with the metric induced by the fractal topology. The relation between the number of effective spatial degrees of freedom of walkers on the fractal (ν ) and fractal dimensionalities is deduced. The intrinsic time of random walk in Fν is inferred. The Laplacian operator in Fν is constructed. This allows us to map physical problems on fractals into the corresponding problems in Fν. In this way, essential features of physics on fractals are revealed. Particularly, subdiffusion on path-connected fractals is elucidated. The Coulomb potential of a point charge on a fractal embedded in the Euclidean space is derived. Intriguing attributes of some types of fractals are highlighted.
An Approach to Study Elastic Vibrations of Fractal Cylinders
NASA Astrophysics Data System (ADS)
Steinberg, Lev; Zepeda, Mario
2016-11-01
This paper presents our study of dynamics of fractal solids. Concepts of fractal continuum and time had been used in definitions of a fractal body deformation and motion, formulation of conservation of mass, balance of momentum, and constitutive relationships. A linearized model, which was written in terms of fractal time and spatial derivatives, has been employed to study the elastic vibrations of fractal circular cylinders. Fractal differential equations of torsional, longitudinal and transverse fractal wave equations have been obtained and solution properties such as size and time dependence have been revealed.
Elasticity of fractal materials using the continuum model with non-integer dimensional space
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2015-01-01
Using a generalization of vector calculus for space with non-integer dimension, we consider elastic properties of fractal materials. Fractal materials are described by continuum models with non-integer dimensional space. A generalization of elasticity equations for non-integer dimensional space, and its solutions for the equilibrium case of fractal materials are suggested. Elasticity problems for fractal hollow ball and cylindrical fractal elastic pipe with inside and outside pressures, for rotating cylindrical fractal pipe, for gradient elasticity and thermoelasticity of fractal materials are solved.
Fractal vector optical fields.
Pan, Yue; Gao, Xu-Zhen; Cai, Meng-Qiang; Zhang, Guan-Lin; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian
2016-07-15
We introduce the concept of a fractal, which provides an alternative approach for flexibly engineering the optical fields and their focal fields. We propose, design, and create a new family of optical fields-fractal vector optical fields, which build a bridge between the fractal and vector optical fields. The fractal vector optical fields have polarization states exhibiting fractal geometry, and may also involve the phase and/or amplitude simultaneously. The results reveal that the focal fields exhibit self-similarity, and the hierarchy of the fractal has the "weeding" role. The fractal can be used to engineer the focal field.
Singularity analysis: theory and further developments
NASA Astrophysics Data System (ADS)
Cheng, Qiuming
2015-04-01
Since the concept of singularity and local singularity analysis method (LSA) were originally proposed by the author for characterizing the nonlinear property of hydrothermal mineralization processes, the local singularity analysis technique has been successfully applied for identification of geochemical and geophysical anomalies related to various types of mineral deposits. It has also been shown that the singularity is the generic property of singular geo-processes which result in anomalous amounts of energy release or material accumulation within a narrow spatial-temporal interval. In the current paper we introduce several new developments about singularity analysis. First is a new concept of 'fractal density' which describes the singularity of complex phenomena of fractal nature. While the ordinary density possesses a unit of ratio of mass and volume (e.g. g/cm3, kg/m3) or ratio of energy over volume or time (e.g. J/cm3, w/L3, w/s), the fractal density has a unit of ratio of mass over fractal set or energy over fractal set (e.g. g/cmα, kg/mα, J/ mα, w/Lα, where α can be a non-integer). For the matter with fractal density (a non-integer α), the ordinary density of the phenomena (mass or energy) no longer exists and depicts singularity. We demonstrate that most of extreme geo-processes occurred in the earth crust originated from cascade earth dynamics (mental convection, plate tectonics, orogeny and weathering etc) may cause fractal density of mass accumulation or energy release. The examples to be used to demonstrate the concepts of fractal density and singularity are earthquakes, floods, volcanos, hurricanes, heat flow over oceanic ridge, hydrothermal mineralization in orogenic belt, and anomalies in regolith over mine caused by ore and toxic elements vertical migration. Other developments of singularity theory and methodologies including singular Kriging and singularity weights of evidence model for information integration will also be introduced.
Hagerhall, C M; Laike, T; Küller, M; Marcheschi, E; Boydston, C; Taylor, R P
2015-01-01
Psychological and physiological benefits of viewing nature have been extensively studied for some time. More recently it has been suggested that some of these positive effects can be explained by nature's fractal properties. Virtually all studies on human responses to fractals have used stimuli that represent the specific form of fractal geometry found in nature, i.e. statistical fractals, as opposed to fractal patterns which repeat exactly at different scales. This raises the question of whether human responses like preference and relaxation are being driven by fractal geometry in general or by the specific form of fractal geometry found in nature. In this study we consider both types of fractals (statistical and exact) and morph one type into the other. Based on the Koch curve, nine visual stimuli were produced in which curves of three different fractal dimensions evolve gradually from an exact to a statistical fractal. The patterns were shown for one minute each to thirty-five subjects while qEEG was continuously recorded. The results showed that the responses to statistical and exact fractals differ, and that the natural form of the fractal is important for inducing alpha responses, an indicator of a wakefully relaxed state and internalized attention.
Crystal, Howard A.; Holman, Susan; Lui, Yvonne W.; Baird, Alison E.; Yu, Hua; Klein, Ronald; Rojas-Soto, Diana Marcella; Gustafson, Deborah R.; Stebbins, Glenn T.
2016-01-01
Objective The fractal dimension of retinal arteries and veins is a measure of the complexity of the vascular tree. We hypothesized that retinal fractal dimension would be associated with brain volume and white matter integrity in HIV-infected women. Design Nested case-control within longitudinal cohort study. Methods Women were recruited from the Brooklyn site of the Women’s Interagency HIV study (WIHS); 34 HIV-infected and 21 HIV-uninfected women with analyzable MRIs and retinal photographs were included. Fractal dimension was determined using the SIVA software program on skeletonized retinal images. The relationship between predictors (retinal vascular measures) and outcomes (quantitative MRI measures) were analyzed with linear regression models. All models included age, intracranial volume, and both arterial and venous fractal dimension. Some models were adjusted for blood pressure, race/ethnicity, and HIV-infection. Results The women were 45.6 ± 7.3 years of age. Higher arterial dimension was associated with larger cortical volumes, but higher venous dimension was associated with smaller cortical volumes. In fully adjusted models, venous dimension was significantly associated with fractional anisotropy (standardized β = -0.41, p = 0.009) and total gray matter volume (β = -0.24, p = 0.03), and arterial dimension with mean diffusivity (β = -0.33,.p = 0.04) and fractional anisotropy (β = 0.34, p = 0.03). HIV-infection was not associated with any retinal or MRI measure. Conclusions Higher venous fractal dimension was associated with smaller cortical volumes and lower fractional anisotropy, whereas higher arterial fractal dimension was associated with the opposite patterns. Longitudinal studies are needed to validate this finding. PMID:27158911
Application to recognition of ferrography image with fractal neural network
NASA Astrophysics Data System (ADS)
Tian, Xianzhong; Hu, Tongsen; Zhang, Jian
2005-10-01
Because wear particles have fractal characteristics, it is necessary that adding fractal parameters to studying wear particles and diagnosing machine troubles. This paper discusses fractal parameters of wear particles, presents arithmetic calculating fractal dimension, and constructs a fractal neural network which can recognize wear particles image. It is proved by experiments that this fractal neural network can recognize some characteristics of wear particles image, and can also classify wear types.
NASA Technical Reports Server (NTRS)
Huikuri, H. V.; Makikallio, T. H.; Peng, C. K.; Goldberger, A. L.; Hintze, U.; Moller, M.
2000-01-01
BACKGROUND: Preliminary data suggest that the analysis of R-R interval variability by fractal analysis methods may provide clinically useful information on patients with heart failure. The purpose of this study was to compare the prognostic power of new fractal and traditional measures of R-R interval variability as predictors of death after acute myocardial infarction. METHODS AND RESULTS: Time and frequency domain heart rate (HR) variability measures, along with short- and long-term correlation (fractal) properties of R-R intervals (exponents alpha(1) and alpha(2)) and power-law scaling of the power spectra (exponent beta), were assessed from 24-hour Holter recordings in 446 survivors of acute myocardial infarction with a depressed left ventricular function (ejection fraction =35%). During a mean+/-SD follow-up period of 685+/-360 days, 114 patients died (25.6%), with 75 deaths classified as arrhythmic (17.0%) and 28 as nonarrhythmic (6.3%) cardiac deaths. Several traditional and fractal measures of R-R interval variability were significant univariate predictors of all-cause mortality. Reduced short-term scaling exponent alpha(1) was the most powerful R-R interval variability measure as a predictor of all-cause mortality (alpha(1) <0.75, relative risk 3.0, 95% confidence interval 2.5 to 4.2, P<0.001). It remained an independent predictor of death (P<0.001) after adjustment for other postinfarction risk markers, such as age, ejection fraction, NYHA class, and medication. Reduced alpha(1) predicted both arrhythmic death (P<0.001) and nonarrhythmic cardiac death (P<0.001). CONCLUSIONS: Analysis of the fractal characteristics of short-term R-R interval dynamics yields more powerful prognostic information than the traditional measures of HR variability among patients with depressed left ventricular function after an acute myocardial infarction.
Bruner, Emiliano; Mantini, Simone; Perna, Agostino; Maffei, Carlotta; Manzi, Giorgio
2005-01-01
The middle meningeal vascular network leaves its traces on the endocranial surface because of the tight relationship between neurocranial development and brain growth. Analysing the endocast of fossil specimens, it is therefore possible to describe the morphology of these structures, leading inferences on the cerebral physiology and metabolism in extinct human groups. In this paper, general features of the meningeal vascular traces are described for specimens included in the Homo erectus, Homo neanderthalensis, and Homo sapiens hypodigms. The complexity of the arterial network is quantified by its fractal dimension, calculated through the box-counting method. Modern humans show significant differences from the other two taxa because of the anterior vascular dominance and the larger fractal dimension. Neither the fractal dimension nor the anterior development are merely associated with cranial size increase. Considering the differences between Neanderthals and modern humans, these results may be interpreted in terms of phylogeny, cerebral functions, or cranial structural network.
NASA Astrophysics Data System (ADS)
Guo, Long; Cai, XU
2009-08-01
It is shown that many real complex networks share distinctive features, such as the small-world effect and the heterogeneous property of connectivity of vertices, which are different from random networks and regular lattices. Although these features capture the important characteristics of complex networks, their applicability depends on the style of networks. To unravel the universal characteristics many complex networks have in common, we study the fractal dimensions of complex networks using the method introduced by Shanker. We find that the average 'density' (ρ(r)) of complex networks follows a better power-law function as a function of distance r with the exponent df, which is defined as the fractal dimension, in some real complex networks. Furthermore, we study the relation between df and the shortcuts Nadd in small-world networks and the size N in regular lattices. Our present work provides a new perspective to understand the dependence of the fractal dimension df on the complex network structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alamudun, Folami T.; Yoon, Hong-Jun; Hudson, Kathy
Purpose: The objective of this study was to assess the complexity of human visual search activity during mammographic screening using fractal analysis and to investigate its relationship with case and reader characteristics. Methods: The study was performed for the task of mammographic screening with simultaneous viewing of four coordinated breast views as typically done in clinical practice. Eye-tracking data and diagnostic decisions collected for 100 mammographic cases (25 normal, 25 benign, 50 malignant) and 10 readers (three board certified radiologists and seven radiology residents), formed the corpus data for this study. The fractal dimension of the readers’ visual scanning patternsmore » was computed with the Minkowski–Bouligand box-counting method and used as a measure of gaze complexity. Individual factor and group-based interaction ANOVA analysis was performed to study the association between fractal dimension, case pathology, breast density, and reader experience level. The consistency of the observed trends depending on gaze data representation was also examined. Results: Case pathology, breast density, reader experience level, and individual reader differences are all independent predictors of the visual scanning pattern complexity when screening for breast cancer. No higher order effects were found to be significant. Conclusions: Fractal characterization of visual search behavior during mammographic screening is dependent on case properties and image reader characteristics.« less
Pantic, Igor; Dacic, Sanja; Brkic, Predrag; Lavrnja, Irena; Pantic, Senka; Jovanovic, Tomislav; Pekovic, Sanja
2014-10-01
This aim of this study was to assess the discriminatory value of fractal and grey level co-occurrence matrix (GLCM) analysis methods in standard microscopy analysis of two histologically similar brain white mass regions that have different nerve fiber orientation. A total of 160 digital micrographs of thionine-stained rat brain white mass were acquired using a Pro-MicroScan DEM-200 instrument. Eighty micrographs from the anterior corpus callosum and eighty from the anterior cingulum areas of the brain were analyzed. The micrographs were evaluated using the National Institutes of Health ImageJ software and its plugins. For each micrograph, seven parameters were calculated: angular second moment, inverse difference moment, GLCM contrast, GLCM correlation, GLCM variance, fractal dimension, and lacunarity. Using the Receiver operating characteristic analysis, the highest discriminatory value was determined for inverse difference moment (IDM) (area under the receiver operating characteristic (ROC) curve equaled 0.925, and for the criterion IDM≤0.610 the sensitivity and specificity were 82.5 and 87.5%, respectively). Most of the other parameters also showed good sensitivity and specificity. The results indicate that GLCM and fractal analysis methods, when applied together in brain histology analysis, are highly capable of discriminating white mass structures that have different axonal orientation.
Micro and MACRO Fractals Generated by Multi-Valued Dynamical Systems
NASA Astrophysics Data System (ADS)
Banakh, T.; Novosad, N.
2014-08-01
Given a multi-valued function Φ : X \\mumap X on a topological space X we study the properties of its fixed fractal \\malteseΦ, which is defined as the closure of the orbit Φω(*Φ) = ⋃n∈ωΦn(*Φ) of the set *Φ = {x ∈ X : x ∈ Φ(x)} of fixed points of Φ. A special attention is paid to the duality between micro-fractals and macro-fractals, which are fixed fractals \\maltese Φ and \\maltese {Φ -1} for a contracting compact-valued function Φ : X \\mumap X on a complete metric space X. With help of algorithms (described in this paper) we generate various images of macro-fractals which are dual to some well-known micro-fractals like the fractal cross, the Sierpiński triangle, Sierpiński carpet, the Koch curve, or the fractal snowflakes. The obtained images show that macro-fractals have a large-scale fractal structure, which becomes clearly visible after a suitable zooming.
Effective degrees of freedom of a random walk on a fractal.
Balankin, Alexander S
2015-12-01
We argue that a non-Markovian random walk on a fractal can be treated as a Markovian process in a fractional dimensional space with a suitable metric. This allows us to define the fractional dimensional space allied to the fractal as the ν-dimensional space F(ν) equipped with the metric induced by the fractal topology. The relation between the number of effective spatial degrees of freedom of walkers on the fractal (ν) and fractal dimensionalities is deduced. The intrinsic time of random walk in F(ν) is inferred. The Laplacian operator in F(ν) is constructed. This allows us to map physical problems on fractals into the corresponding problems in F(ν). In this way, essential features of physics on fractals are revealed. Particularly, subdiffusion on path-connected fractals is elucidated. The Coulomb potential of a point charge on a fractal embedded in the Euclidean space is derived. Intriguing attributes of some types of fractals are highlighted.
NASA Astrophysics Data System (ADS)
Islam, Atiq; Iftekharuddin, Khan M.; Ogg, Robert J.; Laningham, Fred H.; Sivakumar, Bhuvaneswari
2008-03-01
In this paper, we characterize the tumor texture in pediatric brain magnetic resonance images (MRIs) and exploit these features for automatic segmentation of posterior fossa (PF) tumors. We focus on PF tumor because of the prevalence of such tumor in pediatric patients. Due to varying appearance in MRI, we propose to model the tumor texture with a multi-fractal process, such as a multi-fractional Brownian motion (mBm). In mBm, the time-varying Holder exponent provides flexibility in modeling irregular tumor texture. We develop a detailed mathematical framework for mBm in two-dimension and propose a novel algorithm to estimate the multi-fractal structure of tissue texture in brain MRI based on wavelet coefficients. This wavelet based multi-fractal feature along with MR image intensity and a regular fractal feature obtained using our existing piecewise-triangular-prism-surface-area (PTPSA) method, are fused in segmenting PF tumor and non-tumor regions in brain T1, T2, and FLAIR MR images respectively. We also demonstrate a non-patient-specific automated tumor prediction scheme based on these image features. We experimentally show the tumor discriminating power of our novel multi-fractal texture along with intensity and fractal features in automated tumor segmentation and statistical prediction. To evaluate the performance of our tumor prediction scheme, we obtain ROCs and demonstrate how sharply the curves reach the specificity of 1.0 sacrificing minimal sensitivity. Experimental results show the effectiveness of our proposed techniques in automatic detection of PF tumors in pediatric MRIs.
An "ASYMPTOTIC FRACTAL" Approach to the Morphology of Malignant Cell Nuclei
NASA Astrophysics Data System (ADS)
Landini, Gabriel; Rippin, John W.
To investigate quantitatively nuclear membrane irregularity, 672 nuclei from 10 cases of oral cancer (squamous cell carcinoma) and normal cells from oral mucosa were studied in transmission electron micrographs. The nuclei were photographed at ×1400 magnification and transferred to computer memory (1 pixel = 35 nm). The perimeter of the profiles was analysed using the "yardstick method" of fractal dimension estimation, and the log-log plot of ruler size vs. boundary length demonstrated that there exists a significant effect of resolution on length measurement. However, this effect seems to disappear at higher resolutions. As this observation is compatible with the concept of asymptotic fractal, we estimated the parameters c, L and Bm from the asymptotic fractal formula Br = Bm {1 + (r / L)c}-1 , where Br is the boundary length measured with a ruler of size r, Bm is the maximum boundary for r → 0, L is a constant, and c = asymptotic fractal dimension minus topological dimension (D - Dt) for r → ∞. Analyses of variance showed c to be significantly higher in the normal than malignant cases (P < 0.001), but log(L) and Bm to be significantly higher in the malignant cases (P < 0.001). A multivariate linear discrimination analysis on c, log(L) and Bm re-classified 76.6% of the cells correctly (84.8% of the normal and 67.5% of the tumor). Furthermore, this shows that asymptotic fractal analysis applied to nuclear profiles has great potential for shape quantification in diagnosis of oral cancer.
Fractal analysis: A new tool in transient volcanic ash plume characterization.
NASA Astrophysics Data System (ADS)
Tournigand, Pierre-Yves; Peña Fernandez, Juan Jose; Taddeucci, Jacopo; Perugini, Diego; Sesterhenn, Jörn
2017-04-01
Transient volcanic plumes are time-dependent features generated by unstable eruptive sources. They represent a threat to human health and infrastructures, and a challenge to characterize due to their intrinsic instability. Plumes have been investigated through physical (e.g. visible, thermal, UV, radar imagery), experimental and numerical studies in order to provide new insights about their dynamics and better anticipate their behavior. It has been shown experimentally that plume dynamics is strongly dependent to source conditions and that plume shape evolution holds key to retrieve these conditions. In this study, a shape evolution analysis is performed on thermal high-speed videos of volcanic plumes from three different volcanoes Sakurajima (Japan), Stromboli (Italy) and Fuego (Guatemala), recorded with a FLIR SC655 thermal camera during several field campaigns between 2012 and 2016. To complete this dataset, three numerical gas-jet simulations at different Reynolds number (2000, 5000 and 10000) have been used in order to set reference values to the natural cases. Turbulent flow shapes are well known to feature scale-invariant structures and a high degree of complexity. For this reason we characterized the bi-dimensional shape of natural and synthetic plumes by using a fractal descriptor. Such method has been applied in other studies on experimental turbulent jets as well as on atmospheric clouds and have shown promising results. At each time-step plume contour has been manually outlined and measured using the box-counting method. This method consists in covering the image with squares of variable sizes and counting the number of squares containing the plume outline. The negative slope of the number of squares in function of their size in a log-log plot gives the fractal dimension of the plume at a given time. Preliminary results show an increase over time of the fractal dimension for natural volcanic plume as well as for the numerically simulated ones, but at varying rates. Increasing fractal dimension correspond to an increase in the overall complexity of plume shape and thus to an increase in flow turbulence over time. Accordingly, numerical simulations show that, fractal dimension increases faster with increasing Reynolds number. However, other parameters seem to play a role in volcanic plumes evolution. The features of the eruption source (e.g. vent number, size and shape, ejection duration, number and time interval between the different ejection pulses that characterize unsteady eruptions) seem also to have an effect on this time evolution with for example a single vent source generating a faster increase of the fractal dimension than in the case of a plume fed by several vents over time. This first attempt to use fractal analysis on volcanic plume could be the starting point towards a new kind of tools for volcanic plume characterization potentially giving an access to parameters so far unreachable by only using more traditional techniques. Fractal dimension analysis applied on volcanic plumes could directly link a shape evolution to source conditions and thus help to constrain uncertainties existing on such parameters.
NASA Astrophysics Data System (ADS)
Li, Jin; Zhang, Xian; Gong, Jinzhe; Tang, Jingtian; Ren, Zhengyong; Li, Guang; Deng, Yanli; Cai, Jin
A new technique is proposed for signal-noise identification and targeted de-noising of Magnetotelluric (MT) signals. This method is based on fractal-entropy and clustering algorithm, which automatically identifies signal sections corrupted by common interference (square, triangle and pulse waves), enabling targeted de-noising and preventing the loss of useful information in filtering. To implement the technique, four characteristic parameters — fractal box dimension (FBD), higuchi fractal dimension (HFD), fuzzy entropy (FuEn) and approximate entropy (ApEn) — are extracted from MT time-series. The fuzzy c-means (FCM) clustering technique is used to analyze the characteristic parameters and automatically distinguish signals with strong interference from the rest. The wavelet threshold (WT) de-noising method is used only to suppress the identified strong interference in selected signal sections. The technique is validated through signal samples with known interference, before being applied to a set of field measured MT/Audio Magnetotelluric (AMT) data. Compared with the conventional de-noising strategy that blindly applies the filter to the overall dataset, the proposed method can automatically identify and purposefully suppress the intermittent interference in the MT/AMT signal. The resulted apparent resistivity-phase curve is more continuous and smooth, and the slow-change trend in the low-frequency range is more precisely reserved. Moreover, the characteristic of the target-filtered MT/AMT signal is close to the essential characteristic of the natural field, and the result more accurately reflects the inherent electrical structure information of the measured site.
NASA Astrophysics Data System (ADS)
Nurfiani, D.; Bouvet de Maisonneuve, C.
2018-04-01
Volcanic ash morphology has been quantitatively investigated for various aims such as studying the settling velocity of ash for modelling purposes and understanding the fragmentation processes at the origin of explosive eruptions. In an attempt to investigate the usefulness of ash morphometry for monitoring purposes, we analyzed the shape of volcanic ash particles through a combination of (1) traditional shape descriptors such as solidity, convexity, axial ratio and form factor and (2) fractal analysis using the Euclidean Distance transform (EDT) method. We compare ash samples from the hydrothermal eruptions of Iwodake (Japan) in 2013, Tangkuban Perahu (Indonesia) in 2013 and Marapi (Sumatra, Indonesia) in 2015, the dome explosions of Merapi (Java, Indonesia) in 2013, the Vulcanian eruptions of Merapi in 2010 and Tavurvur (Rabaul, Papaua New Guinea) in 2014, and the Plinian eruption of Kelud (Indonesia) in 2014. Particle size and shape measurements were acquired from a Particle Size Analyzer with a microscope camera attached to the instrument. Clear differences between dense/blocky particles from hydrothermal or dome explosions and vesicular particles produced by the fragmentation of gas-bearing molten magma are well highlighted by conventional shape descriptors and the fractal method. In addition, subtle differences between dense/blocky particles produced by hydrothermal explosions, dome explosions, or quench granulation during phreatomagmatic eruptions can be evidenced with the fractal method. The combination of shape descriptors and fractal analysis is therefore potentially able to distinguish between juvenile and non-juvenile magma, which is of importance for eruption monitoring.
Texture Classification by Texton: Statistical versus Binary
Guo, Zhenhua; Zhang, Zhongcheng; Li, Xiu; Li, Qin; You, Jane
2014-01-01
Using statistical textons for texture classification has shown great success recently. The maximal response 8 (Statistical_MR8), image patch (Statistical_Joint) and locally invariant fractal (Statistical_Fractal) are typical statistical texton algorithms and state-of-the-art texture classification methods. However, there are two limitations when using these methods. First, it needs a training stage to build a texton library, thus the recognition accuracy will be highly depended on the training samples; second, during feature extraction, local feature is assigned to a texton by searching for the nearest texton in the whole library, which is time consuming when the library size is big and the dimension of feature is high. To address the above two issues, in this paper, three binary texton counterpart methods were proposed, Binary_MR8, Binary_Joint, and Binary_Fractal. These methods do not require any training step but encode local feature into binary representation directly. The experimental results on the CUReT, UIUC and KTH-TIPS databases show that binary texton could get sound results with fast feature extraction, especially when the image size is not big and the quality of image is not poor. PMID:24520346
NASA Astrophysics Data System (ADS)
Chen, Guoxiong; Cheng, Qiuming
2016-02-01
Multi-resolution and scale-invariance have been increasingly recognized as two closely related intrinsic properties endowed in geofields such as geochemical and geophysical anomalies, and they are commonly investigated by using multiscale- and scaling-analysis methods. In this paper, the wavelet-based multiscale decomposition (WMD) method was proposed to investigate the multiscale natures of geochemical pattern from large scale to small scale. In the light of the wavelet transformation of fractal measures, we demonstrated that the wavelet approximation operator provides a generalization of box-counting method for scaling analysis of geochemical patterns. Specifically, the approximation coefficient acts as the generalized density-value in density-area fractal modeling of singular geochemical distributions. Accordingly, we presented a novel local singularity analysis (LSA) using the WMD algorithm which extends the conventional moving averaging to a kernel-based operator for implementing LSA. Finally, the novel LSA was validated using a case study dealing with geochemical data (Fe2O3) in stream sediments for mineral exploration in Inner Mongolia, China. In comparison with the LSA implemented using the moving averaging method the novel LSA using WMD identified improved weak geochemical anomalies associated with mineralization in covered area.
Fractional Gaussian model in global optimization
NASA Astrophysics Data System (ADS)
Dimri, V. P.; Srivastava, R. P.
2009-12-01
Earth system is inherently non-linear and it can be characterized well if we incorporate no-linearity in the formulation and solution of the problem. General tool often used for characterization of the earth system is inversion. Traditionally inverse problems are solved using least-square based inversion by linearizing the formulation. The initial model in such inversion schemes is often assumed to follow posterior Gaussian probability distribution. It is now well established that most of the physical properties of the earth follow power law (fractal distribution). Thus, the selection of initial model based on power law probability distribution will provide more realistic solution. We present a new method which can draw samples of posterior probability density function very efficiently using fractal based statistics. The application of the method has been demonstrated to invert band limited seismic data with well control. We used fractal based probability density function which uses mean, variance and Hurst coefficient of the model space to draw initial model. Further this initial model is used in global optimization inversion scheme. Inversion results using initial models generated by our method gives high resolution estimates of the model parameters than the hitherto used gradient based liner inversion method.
Verifying the Dependence of Fractal Coefficients on Different Spatial Distributions
NASA Astrophysics Data System (ADS)
Gospodinov, Dragomir; Marekova, Elisaveta; Marinov, Alexander
2010-01-01
A fractal distribution requires that the number of objects larger than a specific size r has a power-law dependence on the size N(r) = C/rD∝r-D where D is the fractal dimension. Usually the correlation integral is calculated to estimate the correlation fractal dimension of epicentres. A `box-counting' procedure could also be applied giving the `capacity' fractal dimension. The fractal dimension can be an integer and then it is equivalent to a Euclidean dimension (it is zero of a point, one of a segment, of a square is two and of a cube is three). In general the fractal dimension is not an integer but a fractional dimension and there comes the origin of the term `fractal'. The use of a power-law to statistically describe a set of events or phenomena reveals the lack of a characteristic length scale, that is fractal objects are scale invariant. Scaling invariance and chaotic behavior constitute the base of a lot of natural hazards phenomena. Many studies of earthquakes reveal that their occurrence exhibits scale-invariant properties, so the fractal dimension can characterize them. It has first been confirmed that both aftershock rate decay in time and earthquake size distribution follow a power law. Recently many other earthquake distributions have been found to be scale-invariant. The spatial distribution of both regional seismicity and aftershocks show some fractal features. Earthquake spatial distributions are considered fractal, but indirectly. There are two possible models, which result in fractal earthquake distributions. The first model considers that a fractal distribution of faults leads to a fractal distribution of earthquakes, because each earthquake is characteristic of the fault on which it occurs. The second assumes that each fault has a fractal distribution of earthquakes. Observations strongly favour the first hypothesis. The fractal coefficients analysis provides some important advantages in examining earthquake spatial distribution, which are:—Simple way to quantify scale-invariant distributions of complex objects or phenomena by a small number of parameters.—It is becoming evident that the applicability of fractal distributions to geological problems could have a more fundamental basis. Chaotic behaviour could underlay the geotectonic processes and the applicable statistics could often be fractal. The application of fractal distribution analysis has, however, some specific aspects. It is usually difficult to present an adequate interpretation of the obtained values of fractal coefficients for earthquake epicenter or hypocenter distributions. That is why in this paper we aimed at other goals—to verify how a fractal coefficient depends on different spatial distributions. We simulated earthquake spatial data by generating randomly points first in a 3D space - cube, then in a parallelepiped, diminishing one of its sides. We then continued this procedure in 2D and 1D space. For each simulated data set we calculated the points' fractal coefficient (correlation fractal dimension of epicentres) and then checked for correlation between the coefficients values and the type of spatial distribution. In that way one can obtain a set of standard fractal coefficients' values for varying spatial distributions. These then can be used when real earthquake data is analyzed by comparing the real data coefficients values to the standard fractal coefficients. Such an approach can help in interpreting the fractal analysis results through different types of spatial distributions.
Ocean manganese nodules as stromatolite with a fractal like-signature
NASA Astrophysics Data System (ADS)
Akai, Junji; Akiyama, Shigeki; Tsuchiyama, Akira; Akai, Kurumi
Deep-sea manganese (Mn) nodules are problematic in terms of factors such as their characteristic form and genesis. There are many reports of bacterial species from manganese nodules. However, the genesis of these nodules has not been fully confirmed. Samples, mainly from the Clarion Clipperton Fracture zone in the Pacific Ocean, were examined by mineralogical methods and X-ray CT. Thin sections of these samples showed columnar stromatolite structures with rhythmic bands. Mineralized bacteria were observed by SEM and TEM. Surface morphology could be described as having a fractal-like nature. The fractal characteristics of spherical to dome-like forms were fundamentally composed of at least four ranks. The 4th order form corresponds to the stromatolite dome top shapes. Similar granular domain units and porous characteristics in manganese nodules were clearly observed by X-ray CT sections. Mathematical simulation based on fractal models reproduced similar morphological characteristics to the natural samples. So, we arrived at the concluding hypothesis that manganese nodules are aggregated stromatolite with fractal-like characteristics. Furthermore, we discussed the possibility that the nature of the layer manganese oxide minerals as the major component of the nodule and associated Fe-oxyhydroxide minerals may become an absorber/scavenger of strategic heavy metals and also toxic metals in the environments.
NASA Astrophysics Data System (ADS)
Coskun, Aycan; Sonmez, Harun; Ercin Kasapoglu, K.; Ozge Dinc, S.; Celal Tunusluoglu, M.
2010-05-01
The uniaxial compressive strength (UCS) of rock material is a crucial parameter to be used for design stages of slopes, tunnels and foundations to be constructed in/on geological medium. However, preparation of high quality cores from geological mixtures or fragmented rocks such as melanges, fault rocks, coarse pyroclastic rocks, breccias and sheared serpentinites is often extremely difficult. According to the studies performed in literature, this type of geological materials may be grouped as welded and unwelded birmocks. Success of preparation of core samples from welded bimrocks is slightly better than unwelded ones. Therefore, some studies performed on the welded bimrocks to understand the mechanical behavior of geological mixture materials composed of stronger and weaker components (Gokceoglu, 2002; Sonmez et al., 2004; Sonmez et al., 2006; Kahraman, et al., 2008). The overall strength of bimrocks are generally depends on strength contrast between blocks and matrix; types and strength of matrix; type, size, strength, shape and orientation of blocks and volumetric block proportion. In previously proposed prediction models, while UCS of unwelded bimrocks may be determined by decreasing the UCS of matrix considering the volumetric block proportion, the welded ones can be predicted by considering both UCS of matrix and blocks together (Lindquist, 1994; Lindquist and Goodman, 1994; Sonmez et al., 2006 and Sonmez et al., 2009). However, there is a few attempts were performed about the effect of blocks shape and orientation on the strength of bimrock (Linqduist, 1994 and Kahraman, et al., 2008). In this study, Ankara agglomerate, which is composed of andesite blocks and surrounded weak tuff matrix, was selected as study material. Image analyses were performed on bottom, top and side faces of cores to identify volumetric block portions. In addition to the image analyses, andesite blocks on bottom, top and side faces were digitized for determination of fractal dimensions. To determine fractal dimensions of more than hundred andesite blocks in cores, a computer program namely FRACRUN were developed. Fractal geometry has been used as practical and popular tool to define particularly irregular shaped bodies in literature since the theory of fractal was developed by Mandelbrot (1967) (Hyslip and Vallejo, 1997; Kruhl and Nega, 1996; Bagde etal., 2002; Gulbin and Evangulova, 2003; Pardini, 2003; Kolay and Kayabali, 2006; Hamdi, 2008; Zorlu, 2009 and Sezer, 2009). Although there are some methods to determine fractal dimensions, square grid-cell count method for 2D and segment count method for 1D were followed in the algorithm of FRACRUN. FRACRUN has capable of determine fractal dimensions of many closed polygons on a single surface. In the study, a database composed of uniaxial compressive strength, volumetric block proportion, fractal dimensions and number of blocks for each core was established. Finally, prediction models were developed by regression analyses and compared with the empirical equations proposed by Sonmez et al. (2006). Acknowledgement This study is a product of ongoing project supported by TUBITAK (The Scientific and Technological Research Council of Turkey - Project No: 108Y002). References Bagde, M.N., Raina, A.K., Chakraborty, A.K., Jethwa, J.L., 2002. Rock mass characterization by fractal dimension. Engineering Geology 63, 141-155. Gokceoglu, C., 2002. A fuzzy triangular chart to predict the uniaxial compressive strength of the Ankara agglomerates from their petrographic composition. Engineering Geology, 66 (1-2), 39-51. Gulbin, Y.L., Evangulova, E.B., 2003. Morphometry of quartz aggregates in granites: fractal images referring to nucleation and growth processes. Mathematical Geology 35 (7), 819-833 Hamdi, E., 2008. A fractal description of simulated 3D discontinuity networks. Rock Mechanics and Rock Engineering 41, 587-599. Hyslip, J.P., Vallejo, L.E., 1997. Fractals analysis of the roughness and size distribution of granular materials. Engineering Geology 48, 231-244. Kahraman, S., Alber, M., Fener, M. and Gunaydin, O. 2008. Evaluating the geomechanical properties of Misis fault breccia (Turkey). Int. J. Rock Mech. Min. Sci, 45, (8), 1469-1479. Kolay, E., Kayabali, K., 2006. Investigation of the effect of aggregate shape and surface roughness on the slake durability index using the fractal dimension approach. Engineering Geology 86, 271-294. Kruhl, J.H., Nega, M., 1996. The fractal shape of sutured quartz grain boundaries: application as a geothermometer. Geologische Rundschau 85, 38-43. Lindquist E.S. 1994. The strength, deformation properties of melange. PhD thesis, University of California, Berkeley, 1994. 264p. Lindquist E.S. and Goodman R.E. 1994. The strength and deformation properties of the physical model m!elange. In: Nelson PP, Laubach SE, editors. Proceedings of the First North American Rock Mechanics Conference (NARMS), Austin, Texas. Rotterdam: AA Balkema; 1994. Pardini, G., 2003. Fractal scaling of surface roughness in artificially weathered smectite rich soil regoliths. Geoderma 117, 157-167. Sezer E., 2009. A computer program for fractal dimension (FRACEK) with application on type of mass movement characterization. Computers and Geosciences (doi:10.1016/j.cageo.2009.04.006). Sonmez H, Tuncay E, and Gokceoglu C., 2004. Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara Agglomerate. Int. J. Rock Mech. Min. Sci., 41 (5), 717-729. Sonmez, H., Gokceoglu, C., Medley, E.W., Tuncay, E., and Nefeslioglu, H.A., 2006. Estimating the uniaxial compressive strength of a volcanic bimrock. Int. J. Rock Mech. Min. Sci., 43 (4), 554-561. Zorlu K., 2008. Description of the weathering states of building stones by fractal geometry and fuzzy inference system in the Olba ancient city (Southern Turkey). Engineering Geology 101 (2008) 124-133.
Discrete mathematical model of wave diffraction on pre-fractal impedance strips. TM mode case
NASA Astrophysics Data System (ADS)
Nesvit, K. V.
2013-10-01
In this paper a transverse magnetic (TM) wave diffraction problem on pre-fractal impedance strips is considered. The overall aim of this work is to develop a discrete mathematical model of the boundary integral equations (IEs) with the help of special quadrature formulas with the nodes in the zeros of Chebyshev polynomials and to perform a numerical experiments with the help of an efficient discrete singularities method (DSM).
Fractal electrodynamics via non-integer dimensional space approach
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2015-09-01
Using the recently suggested vector calculus for non-integer dimensional space, we consider electrodynamics problems in isotropic case. This calculus allows us to describe fractal media in the framework of continuum models with non-integer dimensional space. We consider electric and magnetic fields of fractal media with charges and currents in the framework of continuum models with non-integer dimensional spaces. An application of the fractal Gauss's law, the fractal Ampere's circuital law, the fractal Poisson equation for electric potential, and equation for fractal stream of charges are suggested. Lorentz invariance and speed of light in fractal electrodynamics are discussed. An expression for effective refractive index of non-integer dimensional space is suggested.
Systems of Selves: the Construction of Meaning in Multiple Personality Disorder
NASA Astrophysics Data System (ADS)
Hughes, Dureen Jean
Current models for understanding both Multiple Personality Disorder and human mentation in general are both linear in nature and self-perpetuating insofar as most research in this area has been informed and shaped by extant psychological concepts, paradigms and methods. The research for this dissertation made use of anthropological concepts and methods in an attempt to gain a richer understanding of both multiple personality and fundamental universal processes of the mind. Intensive fieldwork using in-depth, open-ended interviewing techniques was conducted with people diagnosed with Multiple Personality Disorder with the purpose of mapping their personality systems in order to discover the nature of the relationships between the various alternate personalities and subsystems comprising the overall personality systems. These data were then analyzed in terms of dynamical systems theory ("Chaos Theory") as a way of understanding various phenomena of multiple personality disorder as well as the overall structure of each system. It was found that the application of the formal characteristics of nonlinear models and equations to multiple personality systems provided a number of new perspectives on mental phenomena. The underlying organizational structure of multiple personality systems can be understood as a phenomenon of spontaneous self-organization in far-from -equilibrium states which characterizes dissipative structures. Chaos Theory allows the perspective that the nature of the process of the self and the nature of relationship are one and the same, and that both can be conceived as ideas in struggle at a fractal boundary. Further, such application makes it possible to postulate an iterative process which would have as one of its consequences the formation of a processural self who is conscious of self as separate self. Finally, given that the iterative application of a few simple rules (or instructions) can result in complex systems, an attempt was made to discern what the rules pertaining to human mentation might be.
NASA Astrophysics Data System (ADS)
Banerjee, Paromita; Soni, Jalpa; Purwar, Harsh; Ghosh, Nirmalya; Sengupta, Tapas K.
2013-03-01
Development of methods for quantification of cellular association and patterns in growing bacterial colony is of considerable current interest, not only to help understand multicellular behavior of a bacterial species but also to facilitate detection and identification of a bacterial species in a given space and under a given set of condition(s). We have explored quantitative spectral light scattering polarimetry for probing the morphological and structural changes taking place during colony formations of growing Bacillus thuringiensis bacteria under different conditions (in normal nutrient agar representing favorable growth environment, in the presence of 1% glucose as an additional nutrient, and 3 mM sodium arsenate as toxic material). The method is based on the measurement of spectral 3×3 Mueller matrices (which involves linear polarization measurements alone) and its subsequent analysis via polar decomposition to extract the intrinsic polarization parameters. Moreover, the fractal micro-optical parameter, namely, the Hurst exponent H, is determined via fractal-Born approximation-based inverse analysis of the polarization-preserving component of the light scattering spectra. Interesting differences are noted in the derived values for the H parameter and the intrinsic polarization parameters (linear diattenuation d, linear retardance δ, and linear depolarization Δ coefficients) of the growing bacterial colonies under different conditions. The bacterial colony growing in presence of 1% glucose exhibit the strongest fractality (lowest value of H), whereas that growing in presence of 3 mM sodium arsenate showed the weakest fractality. Moreover, the values for δ and d parameters are found to be considerably higher for the colony growing in presence of glucose, indicating more structured growth pattern. These findings are corroborated further with optical microscopic studies conducted on the same samples.
Pre-Service Teachers' Concept Images on Fractal Dimension
ERIC Educational Resources Information Center
Karakus, Fatih
2016-01-01
The analysis of pre-service teachers' concept images can provide information about their mental schema of fractal dimension. There is limited research on students' understanding of fractal and fractal dimension. Therefore, this study aimed to investigate the pre-service teachers' understandings of fractal dimension based on concept image. The…
Hierarchical socioeconomic fractality: The rich, the poor, and the middle-class
NASA Astrophysics Data System (ADS)
Eliazar, Iddo; Cohen, Morrel H.
2014-05-01
Since the seminal work of the Italian economist Vilfredo Pareto, the study of wealth and income has been a topic of active scientific exploration engaging researches ranging from economics and political science to econophysics and complex systems. This paper investigates the intrinsic fractality of wealth and income. To that end we introduce and characterize three forms of socioeconomic scale-invariance-poor fractality, rich fractality, and middle-class fractality-and construct hierarchical fractal approximations of general wealth and income distributions, based on the stitching of these three forms of fractality. Intertwining the theoretical results with real-world empirical data we then establish that the three forms of socioeconomic fractality-amalgamated into a composite hierarchical structure-underlie the distributions of wealth and income in human societies. We further establish that the hierarchical socioeconomic fractality of wealth and income is also displayed by empirical rank distributions observed across the sciences.
Våge, Selina; Thingstad, T Frede
2015-01-01
Trophic interactions are highly complex and modern sequencing techniques reveal enormous biodiversity across multiple scales in marine microbial communities. Within the chemically and physically relatively homogeneous pelagic environment, this calls for an explanation beyond spatial and temporal heterogeneity. Based on observations of simple parasite-host and predator-prey interactions occurring at different trophic levels and levels of phylogenetic resolution, we present a theoretical perspective on this enormous biodiversity, discussing in particular self-similar aspects of pelagic microbial food web organization. Fractal methods have been used to describe a variety of natural phenomena, with studies of habitat structures being an application in ecology. In contrast to mathematical fractals where pattern generating rules are readily known, however, identifying mechanisms that lead to natural fractals is not straight-forward. Here we put forward the hypothesis that trophic interactions between pelagic microbes may be organized in a fractal-like manner, with the emergent network resembling the structure of the Sierpinski triangle. We discuss a mechanism that could be underlying the formation of repeated patterns at different trophic levels and discuss how this may help understand characteristic biomass size-spectra that hint at scale-invariant properties of the pelagic environment. If the idea of simple underlying principles leading to a fractal-like organization of the pelagic food web could be formalized, this would extend an ecologists mindset on how biological complexity could be accounted for. It may furthermore benefit ecosystem modeling by facilitating adequate model resolution across multiple scales.
Våge, Selina; Thingstad, T. Frede
2015-01-01
Trophic interactions are highly complex and modern sequencing techniques reveal enormous biodiversity across multiple scales in marine microbial communities. Within the chemically and physically relatively homogeneous pelagic environment, this calls for an explanation beyond spatial and temporal heterogeneity. Based on observations of simple parasite-host and predator-prey interactions occurring at different trophic levels and levels of phylogenetic resolution, we present a theoretical perspective on this enormous biodiversity, discussing in particular self-similar aspects of pelagic microbial food web organization. Fractal methods have been used to describe a variety of natural phenomena, with studies of habitat structures being an application in ecology. In contrast to mathematical fractals where pattern generating rules are readily known, however, identifying mechanisms that lead to natural fractals is not straight-forward. Here we put forward the hypothesis that trophic interactions between pelagic microbes may be organized in a fractal-like manner, with the emergent network resembling the structure of the Sierpinski triangle. We discuss a mechanism that could be underlying the formation of repeated patterns at different trophic levels and discuss how this may help understand characteristic biomass size-spectra that hint at scale-invariant properties of the pelagic environment. If the idea of simple underlying principles leading to a fractal-like organization of the pelagic food web could be formalized, this would extend an ecologists mindset on how biological complexity could be accounted for. It may furthermore benefit ecosystem modeling by facilitating adequate model resolution across multiple scales. PMID:26648929
Upscaling: Effective Medium Theory, Numerical Methods and the Fractal Dream
NASA Astrophysics Data System (ADS)
Guéguen, Y.; Ravalec, M. Le; Ricard, L.
2006-06-01
Upscaling is a major issue regarding mechanical and transport properties of rocks. This paper examines three issues relative to upscaling. The first one is a brief overview of Effective Medium Theory (EMT), which is a key tool to predict average rock properties at a macroscopic scale in the case of a statistically homogeneous medium. EMT is of particular interest in the calculation of elastic properties. As discussed in this paper, EMT can thus provide a possible way to perform upscaling, although it is by no means the only one, and in particular it is irrelevant if the medium does not adhere to statistical homogeneity. This last circumstance is examined in part two of the paper. We focus on the example of constructing a hydrocarbon reservoir model. Such a construction is a required step in the process of making reasonable predictions for oil production. Taking into account rock permeability, lithological units and various structural discontinuities at different scales is part of this construction. The result is that stochastic reservoir models are built that rely on various numerical upscaling methods. These methods are reviewed. They provide techniques which make it possible to deal with upscaling on a general basis. Finally, a last case in which upscaling is trivial is considered in the third part of the paper. This is the fractal case. Fractal models have become popular precisely because they are free of the assumption of statistical homogeneity and yet do not involve numerical methods. It is suggested that using a physical criterion as a means to discriminate whether fractality is a dream or reality would be more satisfactory than relying on a limited data set alone.
Hyper-Fractal Analysis: A visual tool for estimating the fractal dimension of 4D objects
NASA Astrophysics Data System (ADS)
Grossu, I. V.; Grossu, I.; Felea, D.; Besliu, C.; Jipa, Al.; Esanu, T.; Bordeianu, C. C.; Stan, E.
2013-04-01
This work presents a new version of a Visual Basic 6.0 application for estimating the fractal dimension of images and 3D objects (Grossu et al. (2010) [1]). The program was extended for working with four-dimensional objects stored in comma separated values files. This might be of interest in biomedicine, for analyzing the evolution in time of three-dimensional images. New version program summaryProgram title: Hyper-Fractal Analysis (Fractal Analysis v03) Catalogue identifier: AEEG_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEG_v3_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 745761 No. of bytes in distributed program, including test data, etc.: 12544491 Distribution format: tar.gz Programming language: MS Visual Basic 6.0 Computer: PC Operating system: MS Windows 98 or later RAM: 100M Classification: 14 Catalogue identifier of previous version: AEEG_v2_0 Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 831-832 Does the new version supersede the previous version? Yes Nature of problem: Estimating the fractal dimension of 4D images. Solution method: Optimized implementation of the 4D box-counting algorithm. Reasons for new version: Inspired by existing applications of 3D fractals in biomedicine [3], we extended the optimized version of the box-counting algorithm [1, 2] to the four-dimensional case. This might be of interest in analyzing the evolution in time of 3D images. The box-counting algorithm was extended in order to support 4D objects, stored in comma separated values files. A new form was added for generating 2D, 3D, and 4D test data. The application was tested on 4D objects with known dimension, e.g. the Sierpinski hypertetrahedron gasket, Df=ln(5)/ln(2) (Fig. 1). The algorithm could be extended, with minimum effort, to higher number of dimensions. Easy integration with other applications by using the very simple comma separated values file format for storing multi-dimensional images. Implementation of χ2 test as a criterion for deciding whether an object is fractal or not. User friendly graphical interface. Hyper-Fractal Analysis-Test on the Sierpinski hypertetrahedron 4D gasket (Df=ln(5)/ln(2)≅2.32). Running time: In a first approximation, the algorithm is linear [2]. References: [1] V. Grossu, D. Felea, C. Besliu, Al. Jipa, C.C. Bordeianu, E. Stan, T. Esanu, Computer Physics Communications, 181 (2010) 831-832. [2] I.V. Grossu, C. Besliu, M.V. Rusu, Al. Jipa, C. C. Bordeianu, D. Felea, Computer Physics Communications, 180 (2009) 1999-2001. [3] J. Ruiz de Miras, J. Navas, P. Villoslada, F.J. Esteban, Computer Methods and Programs in Biomedicine, 104 Issue 3 (2011) 452-460.
Integrated Central-Autonomic Multifractal Complexity in the Heart Rate Variability of Healthy Humans
Lin, D. C.; Sharif, A.
2012-01-01
Purpose of Study: The aim of this study was to characterize the central-autonomic interaction underlying the multifractality in heart rate variability (HRV) of healthy humans. Materials and Methods: Eleven young healthy subjects participated in two separate ~40 min experimental sessions, one in supine (SUP) and one in, head-up-tilt (HUT), upright (UPR) body positions. Surface scalp electroencephalography (EEG) and electrocardiogram (ECG) were collected and fractal correlation of brain and heart rate data was analyzed based on the idea of relative multifractality. The fractal correlation was further examined with the EEG, HRV spectral measures using linear regression of two variables and principal component analysis (PCA) to find clues for the physiological processing underlying the central influence in fractal HRV. Results: We report evidence of a central-autonomic fractal correlation (CAFC) where the HRV multifractal complexity varies significantly with the fractal correlation between the heart rate and brain data (P = 0.003). The linear regression shows significant correlation between CAFC measure and EEG Beta band spectral component (P = 0.01 for SUP and P = 0.002 for UPR positions). There is significant correlation between CAFC measure and HRV LF component in the SUP position (P = 0.04), whereas the correlation with the HRV HF component approaches significance (P = 0.07). The correlation between CAFC measure and HRV spectral measures in the UPR position is weak. The PCA results confirm these findings and further imply multiple physiological processes underlying CAFC, highlighting the importance of the EEG Alpha, Beta band, and the HRV LF, HF spectral measures in the supine position. Discussion and Conclusion: The findings of this work can be summarized into three points: (i) Similar fractal characteristics exist in the brain and heart rate fluctuation and the change toward stronger fractal correlation implies the change toward more complex HRV multifractality. (ii) CAFC is likely contributed by multiple physiological mechanisms, with its central elements mainly derived from the EEG Alpha, Beta band dynamics. (iii) The CAFC in SUP and UPR positions is qualitatively different, with a more predominant central influence in the fractal HRV of the UPR position. PMID:22403548
NASA Astrophysics Data System (ADS)
Tijera, Manuel; Maqueda, Gregorio; Cano, José L.; López, Pilar; Yagüe, Carlos
2010-05-01
The wind velocity series of the atmospheric turbulent flow in the planetary boundary layer (PBL), in spite of being highly erratic, present a self-similarity structure (Frisch, 1995; Peitgen et., 2004; Falkovich et., 2006). So, the wind velocity can be seen as a fractal magnitude. We calculate the fractal dimension (Komolgorov capacity or box-counting dimension) of the wind perturbation series (u' = u- ) in the physical spaces (namely velocity-time). It has been studied the time evolution of the fractal dimension along different days and at three levels above the ground (5.8 m, 13.5 m, 32 m). The data analysed was recorded in the experimental campaign SABLES-98 (Cuxart et al., 2000) at the Research Centre for the Lower Atmosphere (CIBA) located in Valladolid (Spain). In this work the u, v and w components of wind velocity series have been measured by sonic anemometers (20 Hz sampling rate). The fractal dimension versus the integral length scales of the mean wind series have been studied, as well as the influence of different turbulent parameters. A method for estimating these integral scales is developed using the normalized autocorrelation function and a Gaussian fit. Finally, it will be analysed the variation of the fractal dimension versus stability parameters (as Richardson number) in order to explain some of the dominant features which are likely immersed in the fractal nature of these turbulent flows. References - Cuxart J, Yagüe C, Morales G, Terradellas E, Orbe J, Calvo J, Fernández A, Soler MR, Infante C, Buenestado P, Espinalt A, Joergensen HE, Rees JM, Vilá J, Redondo JM, Cantalapiedra IR and Conangla L (2000) Stable atmospheric boundary-layer experiment in Spain (SABLES98): a report. Boundary- Layer Meteorol 96:337-370 - Falkovich G and Kattepalli R. Sreenivasan (2006) Lessons from Hidrodynamic Turbulence. Physics Today 59: 43-49 - Frisch U (1995) Turbulence the legacy of A.N. Kolmogorov Cambridge University Press 269pp - Peitgen H, Jürgens H and Saupe D (2004) Chaos and Fractals Springer-Verlag 971pp
The Plasma Membrane is Compartmentalized by a Self-Similar Cortical Actin Fractal
NASA Astrophysics Data System (ADS)
Sadegh, Sanaz; Higgin, Jenny; Mannion, Patrick; Tamkun, Michael; Krapf, Diego
A broad range of membrane proteins display anomalous diffusion on the cell surface. Different methods provide evidence for obstructed subdiffusion and diffusion on a fractal space, but the underlying structure inducing anomalous diffusion has never been visualized due to experimental challenges. We addressed this problem by imaging the cortical actin at high resolution while simultaneously tracking individual membrane proteins in live mammalian cells. Our data show that actin introduces barriers leading to compartmentalization of the plasma membrane and that membrane proteins are transiently confined within actin fences. Furthermore, superresolution imaging shows that the cortical actin is organized into a self-similar fractal. These results present a hierarchical nanoscale picture of the plasma membrane and demonstrate direct interactions between the actin cortex and the cell surface.
The art and science of hyperbolic tessellations.
Van Dusen, B; Taylor, R P
2013-04-01
The visual impact of hyperbolic tessellations has captured artists' imaginations ever since M.C. Escher generated his Circle Limit series in the 1950s. The scaling properties generated by hyperbolic geometry are different to the fractal scaling properties found in nature's scenery. Consequently, prevalent interpretations of Escher's art emphasize the lack of connection with nature's patterns. However, a recent collaboration between the two authors proposed that Escher's motivation for using hyperbolic geometry was as a method to deliberately distort nature's rules. Inspired by this hypothesis, this year's cover artist, Ben Van Dusen, embeds natural fractals such as trees, clouds and lightning into a hyperbolic scaling grid. The resulting interplay of visual structure at multiple size scales suggests that hybridizations of fractal and hyperbolic geometries provide a rich compositional tool for artists.
On the design and optimisation of new fractal antenna using PSO
NASA Astrophysics Data System (ADS)
Rani, Shweta; Singh, A. P.
2013-10-01
An optimisation technique for newly shaped fractal structure using particle swarm optimisation with curve fitting is presented in this article. The aim of particle swarm optimisation is to find the geometry of the antenna for the required user-defined frequency. To assess the effectiveness of the presented method, a set of representative numerical simulations have been done and the results are compared with the measurements from experimental prototypes built according to the design specifications coming from the optimisation procedure. The proposed fractal antenna resonates at the 5.8 GHz industrial, scientific and medical band which is suitable for wireless telemedicine applications. The antenna characteristics have been studied using extensive numerical simulations and are experimentally verified. The antenna exhibits well-defined radiation patterns over the band.
Applicability of Complexity Theory to Martian Fluvial Systems: A Preliminary Analysis
NASA Technical Reports Server (NTRS)
Rosenshein, E. B.
2003-01-01
In the last 15 years, terrestrial geomorphology has been revolutionized by the theories of chaotic systems, fractals, self-organization, and selforganized criticality. Except for the application of fractal theory to the analysis of lava flows and rampart craters on Mars, these theories have not yet been applied to problems of Martian landscape evolution. These complexity theories are elucidated below, along with the methods used to relate these theories to the realities of Martian fluvial systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aushev, A A; Barinov, S P; Vasin, M G
2015-06-30
We present the results of employing the alpha-spectrometry method to determine the characteristics of porous materials used in targets for laser plasma experiments. It is shown that the energy spectrum of alpha-particles, after their passage through porous samples, allows one to determine the distribution of their path length in the foam skeleton. We describe the procedure of deriving such a distribution, excluding both the distribution broadening due to statistical nature of the alpha-particle interaction with an atomic structure (straggling) and hardware effects. The fractal analysis of micro-images is applied to the same porous surface samples that have been studied bymore » alpha-spectrometry. The fractal dimension and size distribution of the number of the foam skeleton grains are obtained. Using the data obtained, a distribution of the total foam skeleton thickness along a chosen direction is constructed. It roughly coincides with the path length distribution of alpha-particles within a range of larger path lengths. It is concluded that the combined use of the alpha-spectrometry method and fractal analysis of images will make it possible to determine the size distribution of foam skeleton grains (or pores). The results can be used as initial data in theoretical studies on propagation of the laser and X-ray radiation in specific porous samples. (laser plasma)« less
Daugherty, Ana M; Yuan, Peng; Dahle, Cheryl L; Bender, Andrew R; Yang, Yiqin; Raz, Naftali
2015-09-01
Studies of human navigation in virtual maze environments have consistently linked advanced age with greater distance traveled between the start and the goal and longer duration of the search. Observations of search path geometry suggest that routes taken by older adults may be unnecessarily complex and that excessive path complexity may be an indicator of cognitive difficulties experienced by older navigators. In a sample of healthy adults, we quantify search path complexity in a virtual Morris water maze with a novel method based on fractal dimensionality. In a two-level hierarchical linear model, we estimated improvement in navigation performance across trials by a decline in route length, shortening of search time, and reduction in fractal dimensionality of the path. While replicating commonly reported age and sex differences in time and distance indices, a reduction in fractal dimension of the path accounted for improvement across trials, independent of age or sex. The volumes of brain regions associated with the establishment of cognitive maps (parahippocampal gyrus and hippocampus) were related to path dimensionality, but not to the total distance and time. Thus, fractal dimensionality of a navigational path may present a useful complementary method of quantifying performance in navigation. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
The fractal forest: fractal geometry and applications in forest science.
Nancy D. Lorimer; Robert G. Haight; Rolfe A. Leary
1994-01-01
Fractal geometry is a tool for describing and analyzing irregularity. Because most of what we measure in the forest is discontinuous, jagged, and fragmented, fractal geometry has potential for improving the precision of measurement and description. This study reviews the literature on fractal geometry and its applications to forest measurements.
Balankin, Alexander S; Elizarraraz, Benjamin Espinoza
2013-11-01
The aim of this Reply is to elucidate the difference between the fractal continuum models used in the preceding Comment and the models of fractal continuum flow which were put forward in our previous articles [Phys. Rev. E 85, 025302(R) (2012); 85, 056314 (2012)]. In this way, some drawbacks of the former models are highlighted. Specifically, inconsistencies in the definitions of the fractal derivative, the Jacobian of transformation, the displacement vector, and angular momentum are revealed. The proper forms of the Reynolds' transport theorem and angular momentum principle for the fractal continuum are reaffirmed in a more illustrative manner. Consequently, we emphasize that in the absence of any internal angular momentum, body couples, and couple stresses, the Cauchy stress tensor in the fractal continuum should be symmetric. Furthermore, we stress that the approach based on the Cartesian product measured and used in the preceding Comment cannot be employed to study the path-connected fractals, such as a flow in a fractally permeable medium. Thus, all statements of our previous works remain unchallenged.
Liebherr, Magnus; Haas, Christian T.
2014-01-01
Variability indicates motor control disturbances and is suitable to identify gait pathologies. It can be quantified by linear parameters (amplitude estimators) and more sophisticated nonlinear methods (structural information). Detrended Fluctuation Analysis (DFA) is one method to measure structural information, e.g., from stride time series. Recently, an improved method, Adaptive Fractal Analysis (AFA), has been proposed. This method has not been applied to gait data before. Fractal scaling methods (FS) require long stride-to-stride data to obtain valid results. However, in clinical studies, it is not usual to measure a large number of strides (e.g., strides). Amongst others, clinical gait analysis is limited due to short walkways, thus, FS seem to be inapplicable. The purpose of the present study was to evaluate FS under clinical conditions. Stride time data of five self-paced walking trials ( strides each) of subjects with PD and a healthy control group (CG) was measured. To generate longer time series, stride time sequences were stitched together. The coefficient of variation (CV), fractal scaling exponents (DFA) and (AFA) were calculated. Two surrogate tests were performed: A) the whole time series was randomly shuffled; B) the single trials were randomly shuffled separately and afterwards stitched together. CV did not discriminate between PD and CG. However, significant differences between PD and CG were found concerning and . Surrogate version B yielded a higher mean squared error and empirical quantiles than version A. Hence, we conclude that the stitching procedure creates an artificial structure resulting in an overestimation of true . The method of stitching together sections of gait seems to be appropriate in order to distinguish between PD and CG with FS. It provides an approach to integrate FS as standard in clinical gait analysis and to overcome limitations such as short walkways. PMID:24465708
Higuchi Dimension of Digital Images
Ahammer, Helmut
2011-01-01
There exist several methods for calculating the fractal dimension of objects represented as 2D digital images. For example, Box counting, Minkowski dilation or Fourier analysis can be employed. However, there appear to be some limitations. It is not possible to calculate only the fractal dimension of an irregular region of interest in an image or to perform the calculations in a particular direction along a line on an arbitrary angle through the image. The calculations must be made for the whole image. In this paper, a new method to overcome these limitations is proposed. 2D images are appropriately prepared in order to apply 1D signal analyses, originally developed to investigate nonlinear time series. The Higuchi dimension of these 1D signals is calculated using Higuchi's algorithm, and it is shown that both regions of interests and directional dependencies can be evaluated independently of the whole picture. A thorough validation of the proposed technique and a comparison of the new method to the Fourier dimension, a common two dimensional method for digital images, are given. The main result is that Higuchi's algorithm allows a direction dependent as well as direction independent analysis. Actual values for the fractal dimensions are reliable and an effective treatment of regions of interests is possible. Moreover, the proposed method is not restricted to Higuchi's algorithm, as any 1D method of analysis, can be applied. PMID:21931854
Fractal Structures on Fe3O4 Ferrofluid: A Small-Angle Neutron Scattering Study
NASA Astrophysics Data System (ADS)
Giri Rachman Putra, Edy; Seong, Baek Seok; Shin, Eunjoo; Ikram, Abarrul; Ani, Sistin Ari; Darminto
2010-10-01
A small-angle neutron scattering (SANS) which is a powerful technique to reveal the large scale structures was applied to investigate the fractal structures of water-based Fe3O4ferrofluid, magnetic fluid. The natural magnetite Fe3O4 from iron sand of several rivers in East Java Province of Indonesia was extracted and purified using magnetic separator. Four different ferrofluid concentrations, i.e. 0.5, 1.0, 2.0 and 3.0 Molar (M) were synthesized through a co-precipitation method and then dispersed in tetramethyl ammonium hydroxide (TMAH) as surfactant. The fractal aggregates in ferrofluid samples were observed from their SANS scattering distributions confirming the correlations to their concentrations. The mass fractal dimension changed from about 3 to 2 as ferrofluid concentration increased showing a deviation slope at intermediate scattering vector q range. The size of primary magnetic particle as a building block was determined by fitting the scattering profiles with a log-normal sphere model calculation. The mean average size of those magnetic particles is about 60 - 100 Å in diameter with a particle size distribution σ = 0.5.
Liu, Yuedan; Xia, Chunlei; Fan, Zhongya; Wu, Renren; Chen, Xianglin; Liu, Zuoyi
2018-01-01
Movement behaviors of an indicator species, Daphnia magna , in response to contaminants have been implemented to monitor environmental disturbances. Complexity in movement tracks of Daphnia magna was characterized by use of fractal dimension and self-organizing map. The individual movement tracks of D. magna were continuously recorded for 24 hours before and after treatments with toluene at the concentration of 10 mg/L, respectively. The general complexity in movement tracks (10 minutes) was characterized by fractal dimension. Results showed that average fractal dimension of movement tracks was decreased from 1.62 to 1.22 after treatments. The instantaneous movement parameters of movement segments in 5 s were input into the self-organizing map to investigate the swimming pattern changes under stresses of toluene. Abnormal behaviors of D. magna are more frequently observed after treatments than before treatments. Computational methods in ecological informatics could be utilized to obtain the useful information in behavioral data of D. magna and would be further applied as an in situ monitoring tool in water environment.
Siyah Mansoory, Meysam; Oghabian, Mohammad Ali; Jafari, Amir Homayoun; Shahbabaie, Alireza
2017-01-01
Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obligatory for graph construction and analysis is consistently underestimated by LC, because not all the bivariate distributions, but only the marginals are Gaussian. In a number of studies, Mutual Information (MI) has been employed, as a similarity measure between each two time series of the brain regions, a pure nonlinear measure. Owing to the complex fractal organization of the brain indicating self-similarity, more information on the brain can be revealed by fMRI Fractal Dimension (FD) analysis. In the present paper, Box-Counting Fractal Dimension (BCFD) is introduced for graph theoretical analysis of fMRI data in 17 methamphetamine drug users and 18 normal controls. Then, BCFD performance was evaluated compared to those of LC and MI methods. Moreover, the global topological graph properties of the brain networks inclusive of global efficiency, clustering coefficient and characteristic path length in addict subjects were investigated too. Compared to normal subjects by using statistical tests (P<0.05), topological graph properties were postulated to be disrupted significantly during the resting-state fMRI. Based on the results, analyzing the graph topological properties (representing the brain networks) based on BCFD is a more reliable method than LC and MI.
ERIC Educational Resources Information Center
Esbenshade, Donald H., Jr.
1991-01-01
Develops the idea of fractals through a laboratory activity that calculates the fractal dimension of ordinary white bread. Extends use of the fractal dimension to compare other complex structures as other breads and sponges. (MDH)
Improved Fractal Space Filling Curves Hybrid Optimization Algorithm for Vehicle Routing Problem.
Yue, Yi-xiang; Zhang, Tong; Yue, Qun-xing
2015-01-01
Vehicle Routing Problem (VRP) is one of the key issues in optimization of modern logistics system. In this paper, a modified VRP model with hard time window is established and a Hybrid Optimization Algorithm (HOA) based on Fractal Space Filling Curves (SFC) method and Genetic Algorithm (GA) is introduced. By incorporating the proposed algorithm, SFC method can find an initial and feasible solution very fast; GA is used to improve the initial solution. Thereafter, experimental software was developed and a large number of experimental computations from Solomon's benchmark have been studied. The experimental results demonstrate the feasibility and effectiveness of the HOA.
[Local fractal analysis of noise-like time series by all permutations method for 1-115 min periods].
Panchelyuga, V A; Panchelyuga, M S
2015-01-01
Results of local fractal analysis of 329-per-day time series of 239Pu alpha-decay rate fluctuations by means of all permutations method (APM) are presented. The APM-analysis reveals in the time series some steady frequency set. The coincidence of the frequency set with the Earth natural oscillations was demonstrated. A short review of works by different authors who analyzed the time series of fluctuations in processes of different nature is given. We have shown that the periods observed in those works correspond to the periods revealed in our study. It points to a common mechanism of the phenomenon observed.
Improved Fractal Space Filling Curves Hybrid Optimization Algorithm for Vehicle Routing Problem
Yue, Yi-xiang; Zhang, Tong; Yue, Qun-xing
2015-01-01
Vehicle Routing Problem (VRP) is one of the key issues in optimization of modern logistics system. In this paper, a modified VRP model with hard time window is established and a Hybrid Optimization Algorithm (HOA) based on Fractal Space Filling Curves (SFC) method and Genetic Algorithm (GA) is introduced. By incorporating the proposed algorithm, SFC method can find an initial and feasible solution very fast; GA is used to improve the initial solution. Thereafter, experimental software was developed and a large number of experimental computations from Solomon's benchmark have been studied. The experimental results demonstrate the feasibility and effectiveness of the HOA. PMID:26167171
Computer simulation of viscous fingering in Sierpinski carpet
NASA Astrophysics Data System (ADS)
Ju-ping, Tian; Kai-lun, Yao
1998-09-01
A new method-mapping dilation method is proposed in this paper to construct Sierpinski carpet. Viscous fingering (VF) in Sierpinski carpet, based on the assumption that bond radii are beta distribution, is investigated by means of successive over-relaxation techniques. The topology and the geometry of the porous media have a strong effect on displacement processes. In the Sierpinski network, the VF pattern of porous media in the limit M → ∞ is found to be similar to the diffusion-limited-aggregation pattern. The fractal dimension for VF in fractal space is calculated and the fractal dimension D can be reasonably regarded as a useful parameter to evaluate the sweep efficiencies and oil recoveries. We have also found that the geometry of the porous medium also has strong effects on the displacement processes and the structure of the VF. Moreover, we find that the sweep efficiency of the displacement processes mainly depends upon the length of the network system and also on the viscosity ratio M. This shows that the current method can be used to solve VF problems in complex structures if the structures are self-similar, or they can be reduced to a self-similar structure.
From kinetic-structure analysis to engineering crystalline fiber networks in soft materials.
Wang, Rong-Yao; Wang, Peng; Li, Jing-Liang; Yuan, Bing; Liu, Yu; Li, Li; Liu, Xiang-Yang
2013-03-07
Understanding the role of kinetics in fiber network microstructure formation is of considerable importance in engineering gel materials to achieve their optimized performances/functionalities. In this work, we present a new approach for kinetic-structure analysis for fibrous gel materials. In this method, kinetic data is acquired using a rheology technique and is analyzed in terms of an extended Dickinson model in which the scaling behaviors of dynamic rheological properties in the gelation process are taken into account. It enables us to extract the structural parameter, i.e. the fractal dimension, of a fibrous gel from the dynamic rheological measurement of the gelation process, and to establish the kinetic-structure relationship suitable for both dilute and concentrated gelling systems. In comparison to the fractal analysis method reported in a previous study, our method is advantageous due to its general validity for a wide range of fractal structures of fibrous gels, from a highly compact network of the spherulitic domains to an open fibrous network structure. With such a kinetic-structure analysis, we can gain a quantitative understanding of the role of kinetic control in engineering the microstructure of the fiber network in gel materials.
NASA Astrophysics Data System (ADS)
Matthews, L.; Gurrola, H.
2015-12-01
Typical petrophysical well log correlation is accomplished by manual pattern recognition leading to subjective correlations. The change in character in a well log is dependent upon the change in the response of the tool to lithology. The petrophysical interpreter looks for a change in one log type that would correspond to the way a different tool responds to the same lithology. To develop an objective way to pick changes in well log characteristics, we adapt a method of first arrival picking used in seismic data to analyze changes in the character of well logs. We chose to use the fractal method developed by Boschetti et al[1] (1996). This method worked better than we expected and we found similar changes in the fractal dimension across very different tool types (sonic vs density vs gamma ray). We reason the fractal response of the log is not dependent on the physics of the tool response but rather the change in the complexity of the log data. When a formation changes physical character in time or space the recorded magnitude in tool data changes complexity at the same time even if the original tool response is very different. The relative complexity of the data regardless of the tool used is dependent upon the complexity of the medium relative to tool measurement. The relative complexity of the recorded magnitude data changes as a tool transitions from one character type to another. The character we are measuring is the roughness or complexity of the petrophysical curve. Our method provides a way to directly compare different log types based on a quantitative change in signal complexity. For example, using changes in data complexity allow us to correlate gamma ray suites with sonic logs within a well and then across to an adjacent well with similar signatures. Our method creates reliable and automatic correlations to be made in data sets beyond the reasonable cognitive limits of geoscientists in both speed and consistent pattern recognition. [1] Fabio Boschetti, Mike D. Dentith, and Ron D. List, (1996). A fractal-based algorithm for detecting first arrivals on seismic traces. Geophysics, Vol.61, No.4, P. 1095-1102.
Influence of Turbulent Flow and Fractal Scaling on Effective Permeability of Fracture Network
NASA Astrophysics Data System (ADS)
Zhu, J.
2017-12-01
A new approach is developed to calculate hydraulic gradient dependent effective permeability of a fractal fracture network where both laminar and turbulent flows may occur in individual fractures. A critical fracture length is used to distinguish flow characteristics in individual fractures. The developed new solutions can be used for the case of a general scaling relationship, an extension to the linear scaling. We examine the impact on the effective permeability of the network of fractal fracture network characteristics, which include the fractal scaling coefficient and exponent, fractal dimension, ratio of minimum over maximum fracture lengths. Results demonstrate that the developed solution can explain more variations of the effective permeability in relation to the fractal dimensions estimated from the field observations. At high hydraulic gradient the effective permeability decreases with the fractal scaling exponent, but increases with the fractal scaling exponent at low gradient. The effective permeability increases with the scaling coefficient, fractal dimension, fracture length ratio and maximum fracture length.
Optical devices and methods employing nanoparticles, microcavities, and semicontinuous metal films
NASA Technical Reports Server (NTRS)
Shalaev, Vladimir M. (Inventor); Sarychev, Andrey K. (Inventor); Armstrong, Robert L. (Inventor); Smith, Harold V. (Inventor); Ying, Z. Charles (Inventor)
2006-01-01
An optical sensing enhancing material (and corresponding method of making) comprising: a medium, the medium comprising a plurality of aggregated nanoparticles comprising fractals; and a microcavity, wherein the medium is located in a vicinity of the microcavity. Also an optical sensor and sensing method comprising: providing a doped medium, the medium comprising a plurality of aggregated nanoparticles comprising fractals, with the material; locating the doped medium in the vicinity of a microcavity; exciting the doped medium with a light source; and detecting light reflected from the doped medium. Also an optical sensing enhancing material comprising a medium, the medium comprising a semicontinuous metal film of randomly distributed metal particles and their clusters at approximately their percolation threshold. The medium preferably additionally comprises a microcavity/microresonator. Also devices and methods employing such material.
A NEW LOG EVALUATION METHOD TO APPRAISE MESAVERDE RE-COMPLETION OPPORTUNITIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert Greer
2003-09-11
Artificial intelligence tools, fuzzy logic and neural networks were used to evaluate the potential of the behind pipe Mesaverde formation in BMG's Mancos formation wells. A fractal geostatistical mapping algorithm was also used to predict Mesaverde production. Additionally, a conventional geological study was conducted. To date one Mesaverde completion has been performed. The Janet No.3 Mesaverde completion was non-economic. Both the AI method and the geostatistical methods predicted the failure of the Janet No.3. The Gavilan No.1 in the Mesaverde was completed during the course of the study and was an extremely good well. This well was not included inmore » the statistical dataset. The AI method predicted very good production while the fractal map predicted a poor producer.« less
Detecting Blind Fault with Fractal and Roughness Factors from High Resolution LiDAR DEM at Taiwan
NASA Astrophysics Data System (ADS)
Cheng, Y. S.; Yu, T. T.
2014-12-01
There is no obvious fault scarp associated with blind fault. The traditional method of mapping this unrevealed geological structure is the cluster of seismicity. Neither the seismic event nor the completeness of cluster could be captured by network to chart the location of the entire possible active blind fault within short period of time. High resolution DEM gathered by LiDAR could denote actual terrain information despite the existence of plantation. 1-meter interval DEM of mountain region at Taiwan is utilized by fractal, entropy and roughness calculating with MATLAB code. By jointing these handing, the regions of non-sediment deposit are charted automatically. Possible blind fault associated with Chia-Sen earthquake at southern Taiwan is served as testing ground. GIS layer help in removing the difference from various geological formation, then multi-resolution fractal index is computed around the target region. The type of fault movement controls distribution of fractal index number. The scale of blind fault governs degree of change in fractal index. Landslide induced by rainfall and/or earthquake possesses larger degree of geomorphology alteration than blind fault; special treatment in removing these phenomena is required. Highly weathered condition at Taiwan should erase the possible trace remained upon DEM from the ruptured of blind fault while reoccurrence interval is higher than hundreds of years. This is one of the obstacle in finding possible blind fault at Taiwan.
Emergence of fractal scaling in complex networks
NASA Astrophysics Data System (ADS)
Wei, Zong-Wen; Wang, Bing-Hong
2016-09-01
Some real-world networks are shown to be fractal or self-similar. It is widespread that such a phenomenon originates from the repulsion between hubs or disassortativity. Here we show that this common belief fails to capture the causality. Our key insight to address it is to pinpoint links critical to fractality. Those links with small edge betweenness centrality (BC) constitute a special architecture called fractal reference system, which gives birth to the fractal structure of those reported networks. In contrast, a small amount of links with high BC enable small-world effects, hiding the intrinsic fractality. With enough of such links removed, fractal scaling spontaneously arises from nonfractal networks. Our results provide a multiple-scale view on the structure and dynamics and place fractality as a generic organizing principle of complex networks on a firmer ground.
Band structures in fractal grading porous phononic crystals
NASA Astrophysics Data System (ADS)
Wang, Kai; Liu, Ying; Liang, Tianshu; Wang, Bin
2018-05-01
In this paper, a new grading porous structure is introduced based on a Sierpinski triangle routine, and wave propagation in this fractal grading porous phononic crystal is investigated. The influences of fractal hierarchy and porosity on the band structures in fractal graidng porous phononic crystals are clarified. Vibration modes of unit cell at absolute band gap edges are given to manifest formation mechanism of absolute band gaps. The results show that absolute band gaps are easy to form in fractal structures comparatively to the normal ones with the same porosity. Structures with higher fractal hierarchies benefit multiple wider absolute band gaps. This work provides useful guidance in design of fractal porous phononic crystals.
Fractals in geology and geophysics
NASA Technical Reports Server (NTRS)
Turcotte, Donald L.
1989-01-01
The definition of a fractal distribution is that the number of objects N with a characteristic size greater than r scales with the relation N of about r exp -D. The frequency-size distributions for islands, earthquakes, fragments, ore deposits, and oil fields often satisfy this relation. This application illustrates a fundamental aspect of fractal distributions, scale invariance. The requirement of an object to define a scale in photograhs of many geological features is one indication of the wide applicability of scale invariance to geological problems; scale invariance can lead to fractal clustering. Geophysical spectra can also be related to fractals; these are self-affine fractals rather than self-similar fractals. Examples include the earth's topography and geoid.
Topological Vulnerability Evaluation Model Based on Fractal Dimension of Complex Networks.
Gou, Li; Wei, Bo; Sadiq, Rehan; Sadiq, Yong; Deng, Yong
2016-01-01
With an increasing emphasis on network security, much more attentions have been attracted to the vulnerability of complex networks. In this paper, the fractal dimension, which can reflect space-filling capacity of networks, is redefined as the origin moment of the edge betweenness to obtain a more reasonable evaluation of vulnerability. The proposed model combining multiple evaluation indexes not only overcomes the shortage of average edge betweenness's failing to evaluate vulnerability of some special networks, but also characterizes the topological structure and highlights the space-filling capacity of networks. The applications to six US airline networks illustrate the practicality and effectiveness of our proposed method, and the comparisons with three other commonly used methods further validate the superiority of our proposed method.
Research on cloud background infrared radiation simulation based on fractal and statistical data
NASA Astrophysics Data System (ADS)
Liu, Xingrun; Xu, Qingshan; Li, Xia; Wu, Kaifeng; Dong, Yanbing
2018-02-01
Cloud is an important natural phenomenon, and its radiation causes serious interference to infrared detector. Based on fractal and statistical data, a method is proposed to realize cloud background simulation, and cloud infrared radiation data field is assigned using satellite radiation data of cloud. A cloud infrared radiation simulation model is established using matlab, and it can generate cloud background infrared images for different cloud types (low cloud, middle cloud, and high cloud) in different months, bands and sensor zenith angles.
NASA Astrophysics Data System (ADS)
Suraj, Md Sanam; Asique, Md Chand; Prasad, Umakant; Hassan, M. R.; Shalini, Kumari
2017-11-01
The planar equilateral restricted four-body problem, formulated on the basis of Lagrange's triangular solutions is used to determine the existence and locations of libration points and the Newton-Raphson basins of convergence associated with these libration points. We have supposed that all the three primaries situated on the vertices of an equilateral triangle are triaxial rigid bodies. This paper also deals with the effect of these triaxiality parameters on the regions of motion where the test particle is free to move. Further, the regions on the configuration plane filled by the basins of attraction are determined by using the multivariate version of the Newton-Raphson iterative system. The numerical study reveals that the triaxiality of the primaries is one of the most influential parameters in the four-body problem.
Order-fractal transitions in abstract paintings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calleja, E.M. de la, E-mail: elsama79@gmail.com; Cervantes, F.; Calleja, J. de la
2016-08-15
In this study, we determined the degree of order for 22 Jackson Pollock paintings using the Hausdorff–Besicovitch fractal dimension. Based on the maximum value of each multi-fractal spectrum, the artworks were classified according to the year in which they were painted. It has been reported that Pollock’s paintings are fractal and that this feature was more evident in his later works. However, our results show that the fractal dimension of these paintings ranges among values close to two. We characterize this behavior as a fractal-order transition. Based on the study of disorder-order transition in physical systems, we interpreted the fractal-ordermore » transition via the dark paint strokes in Pollock’s paintings as structured lines that follow a power law measured by the fractal dimension. We determined self-similarity in specific paintings, thereby demonstrating an important dependence on the scale of observations. We also characterized the fractal spectrum for the painting entitled Teri’s Find. We obtained similar spectra for Teri’s Find and Number 5, thereby suggesting that the fractal dimension cannot be rejected completely as a quantitative parameter for authenticating these artworks. -- Highlights: •We determined the degree of order in Jackson Pollock paintings using the Hausdorff–Besicovitch dimension. •We detected a fractal-order transition from Pollock’s paintings between 1947 and 1951. •We suggest that Jackson Pollock could have painted Teri’s Find.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsakiroglou, C.D.; Payatakes, A.C.
The mercury intrusion/retraction curves of many types of porous materials (e.g., sandstones) have sections of finite slope in the region of high and very high pressure. This feature is attributed to the existence of microroughness on the pore walls. In the present work pore-wall roughness features are added to a three-dimensional primary network of chambers-and-throats using ideas of fractal geometry. The roughness of the throats is modeled with a finite number of self-similar triangular prisms of progressively smaller sizes. The roughness of the chambers is modeled in a similar way using right circular cones instead of prisms. Three parameters sufficemore » for the complete characterization of the model of fractal roughness, namely, the number of features per unit length, the common angle of sharpness, and the number of layers (which is taken to be the same for throats and chambers). Analytical relations that give the surface area, pore volume, and mercury saturation of the pore network as functions of the fractal roughness parameters are developed for monolayer and multilayer arrangements. The chamber-and-throat network with fractal pore-wall roughness is used to develop an extended version of the computer-aided simulator of mercury porosimetry that has been reported in previous publications. This new simulator is used to investigate the effects of the roughness features on the form of mercury intrusion/retraction curves. It turns out that the fractal model of the porewall roughness gives an adequate representation of real porous media, and capillary pressure curves which are similar to the experimental ones for many typical porous materials such as sandstones. The method is demonstrated with the analysis of a Greek sandstone.« less
NASA Astrophysics Data System (ADS)
Wang, X.; Liu, H.; Yao, K.; Wei, Y.
2018-04-01
It is a complicated process to analyze the cause of geological hazard. Through the analysis function of GIS software, 250 landslides were randomly selected from 395 landslide hazards in the study area, superimposed with the types of landforms, annual rainfall and vegetation coverage respectively. It used box dimension method of fractal dimension theory to study the fractal characteristics of spatial distribution of landslide disasters in Dachuan district, and analyse the statistical results. Research findings showed that the The fractal dimension of the landslides in the Dachuan area is 0.9114, the correlation coefficient is 0.9627, and it has high autocorrelation. Zoning statistics according to various natural factors, the fractal dimension between landslide hazard points and deep hill, middle hill area is strong as well as the area whose average annual rainfall is 1050 mm-1250 mm and vegetation coverage is 30 %-60 %. Superposition of the potential hazard distribution map of single influence factors to get the potential hazard zoning of landslides in the area. Verifying the potential hazard zoning map of the potential landslides with 145 remaining disaster points, among them, there are 74 landslide hazard points in high risk area, accounting for 51.03 % of the total. There are 59 landslides in the middle risk area, accounting for 40.69 % of the total, and 12 in the low risk area, accounting for 8.28 % of the total. The matching degree of the verifying result and the potential hazard zoning is high. Therefore, the fractal dimension value divided the degree of geological disaster susceptibility can be described the influence degree of each influence factor to geological disaster point more intuitively, it also can divide potential disaster risk areas and provide visual data support for effective management of geological disasters.
A model study of aggregates composed of spherical soot monomers with an acentric carbon shell
NASA Astrophysics Data System (ADS)
Luo, Jie; Zhang, Yongming; Zhang, Qixing
2018-01-01
Influences of morphology on the optical properties of soot particles have gained increasing attentions. However, studies on the effect of the way primary particles are coated on the optical properties is few. Aimed to understand how the primary particles are coated affect the optical properties of soot particles, the coated soot particle was simulated using the acentric core-shell monomers model (ACM), which was generated by randomly moving the cores of concentric core-shell monomers (CCM) model. Single scattering properties of the CCM model with identical fractal parameters were calculated 50 times at first to evaluate the optical diversities of different realizations of fractal aggregates with identical parameters. The results show that optical diversities of different realizations for fractal aggregates with identical parameters cannot be eliminated by averaging over ten random realizations. To preserve the fractal characteristics, 10 realizations of each model were generated based on the identical 10 parent fractal aggregates, and then the results were averaged over each 10 realizations, respectively. The single scattering properties of all models were calculated using the numerically exact multiple-sphere T-matrix (MSTM) method. It is found that the single scattering properties of randomly coated soot particles calculated using the ACM model are extremely close to those using CCM model and homogeneous aggregate (HA) model using Maxwell-Garnett effective medium theory. Our results are different from previous studies. The reason may be that the differences in previous studies were caused by fractal characteristics but not models. Our findings indicate that how the individual primary particles are coated has little effect on the single scattering properties of soot particles with acentric core-shell monomers. This work provides a suggestion for scattering model simplification and model selection.
Kraus, Virginia Byers; Feng, Sheng; Wang, ShengChu; White, Scott; Ainslie, Maureen; Brett, Alan; Holmes, Anthony; Charles, H Cecil
2009-12-01
To evaluate the effectiveness of using subchondral bone texture observed on a radiograph taken at baseline to predict progression of knee osteoarthritis (OA) over a 3-year period. A total of 138 participants in the Prediction of Osteoarthritis Progression study were evaluated at baseline and after 3 years. Fractal signature analysis (FSA) of the medial subchondral tibial plateau was performed on fixed flexion radiographs of 248 nonreplaced knees, using a commercially available software tool. OA progression was defined as a change in joint space narrowing (JSN) or osteophyte formation of 1 grade according to a standardized knee atlas. Statistical analysis of fractal signatures was performed using a new model based on correlating the overall shape of a fractal dimension curve with radius. Fractal signature of the medial tibial plateau at baseline was predictive of medial knee JSN progression (area under the curve [AUC] 0.75, of a receiver operating characteristic curve) but was not predictive of osteophyte formation or progression of JSN in the lateral compartment. Traditional covariates (age, sex, body mass index, knee pain), general bone mineral content, and joint space width at baseline were no more effective than random variables for predicting OA progression (AUC 0.52-0.58). The predictive model with maximum effectiveness combined fractal signature at baseline, knee alignment, traditional covariates, and bone mineral content (AUC 0.79). We identified a prognostic marker of OA that is readily extracted from a plain radiograph using FSA. Although the method needs to be validated in a second cohort, our results indicate that the global shape approach to analyzing these data is a potentially efficient means of identifying individuals at risk of knee OA progression.
[Recent progress of research and applications of fractal and its theories in medicine].
Cai, Congbo; Wang, Ping
2014-10-01
Fractal, a mathematics concept, is used to describe an image of self-similarity and scale invariance. Some organisms have been discovered with the fractal characteristics, such as cerebral cortex surface, retinal vessel structure, cardiovascular network, and trabecular bone, etc. It has been preliminarily confirmed that the three-dimensional structure of cells cultured in vitro could be significantly enhanced by bionic fractal surface. Moreover, fractal theory in clinical research will help early diagnosis and treatment of diseases, reducing the patient's pain and suffering. The development process of diseases in the human body can be expressed by the fractal theories parameter. It is of considerable significance to retrospectively review the preparation and application of fractal surface and its diagnostic value in medicine. This paper gives an application of fractal and its theories in the medical science, based on the research achievements in our laboratory.
Fractality à la carte: a general particle aggregation model.
Nicolás-Carlock, J R; Carrillo-Estrada, J L; Dossetti, V
2016-01-19
In nature, fractal structures emerge in a wide variety of systems as a local optimization of entropic and energetic distributions. The fractality of these systems determines many of their physical, chemical and/or biological properties. Thus, to comprehend the mechanisms that originate and control the fractality is highly relevant in many areas of science and technology. In studying clusters grown by aggregation phenomena, simple models have contributed to unveil some of the basic elements that give origin to fractality, however, the specific contribution from each of these elements to fractality has remained hidden in the complex dynamics. Here, we propose a simple and versatile model of particle aggregation that is, on the one hand, able to reveal the specific entropic and energetic contributions to the clusters' fractality and morphology, and, on the other, capable to generate an ample assortment of rich natural-looking aggregates with any prescribed fractal dimension.
Poiseuille equation for steady flow of fractal fluid
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2016-07-01
Fractal fluid is considered in the framework of continuous models with noninteger dimensional spaces (NIDS). A recently proposed vector calculus in NIDS is used to get a description of fractal fluid flow in pipes with circular cross-sections. The Navier-Stokes equations of fractal incompressible viscous fluids are used to derive a generalization of the Poiseuille equation of steady flow of fractal media in pipe.
Toward a Time-Domain Fractal Lightning Simulation
NASA Astrophysics Data System (ADS)
Liang, C.; Carlson, B. E.; Lehtinen, N. G.; Cohen, M.; Lauben, D.; Inan, U. S.
2010-12-01
Electromagnetic simulations of lightning are useful for prediction of lightning properties and exploration of the underlying physical behavior. Fractal lightning models predict the spatial structure of the discharge, but thus far do not provide much information about discharge behavior in time and therefore cannot predict electromagnetic wave emissions or current characteristics. Here we develop a time-domain fractal lightning simulation from Maxwell's equations, the method of moments with the thin wire approximation, an adaptive time-stepping scheme, and a simplified electrical model of the lightning channel. The model predicts current pulse structure and electromagnetic wave emissions and can be used to simulate the entire duration of a lightning discharge. The model can be used to explore the electrical characteristics of the lightning channel, the temporal development of the discharge, and the effects of these characteristics on observable electromagnetic wave emissions.
Minimal spanning trees at the percolation threshold: A numerical calculation
NASA Astrophysics Data System (ADS)
Sweeney, Sean M.; Middleton, A. Alan
2013-09-01
The fractal dimension of minimal spanning trees on percolation clusters is estimated for dimensions d up to d=5. A robust analysis technique is developed for correlated data, as seen in such trees. This should be a robust method suitable for analyzing a wide array of randomly generated fractal structures. The trees analyzed using these techniques are built using a combination of Prim's and Kruskal's algorithms for finding minimal spanning trees. This combination reduces memory usage and allows for simulation of larger systems than would otherwise be possible. The path length fractal dimension ds of MSTs on critical percolation clusters is found to be compatible with the predictions of the perturbation expansion developed by T. S. Jackson and N. Read [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.81.021131 81, 021131 (2010)].
Fractal and chaotic laws on seismic dissipated energy in an energy system of engineering structures
NASA Astrophysics Data System (ADS)
Cui, Yu-Hong; Nie, Yong-An; Yan, Zong-Da; Wu, Guo-You
1998-09-01
Fractal and chaotic laws of engineering structures are discussed in this paper, it means that the intrinsic essences and laws on dynamic systems which are made from seismic dissipated energy intensity E d and intensity of seismic dissipated energy moment I e are analyzed. Based on the intrinsic characters of chaotic and fractal dynamic system of E d and I e, three kinds of approximate dynamic models are rebuilt one by one: index autoregressive model, threshold autoregressive model and local-approximate autoregressive model. The innate laws, essences and systematic error of evolutional behavior I e are explained over all, the short-term behavior predictability and long-term behavior probability of which are analyzed in the end. That may be valuable for earthquake-resistant theory and analysis method in practical engineering structures.
Chaos, Fractals and Their Applications
NASA Astrophysics Data System (ADS)
Thompson, J. Michael T.
2016-12-01
This paper gives an up-to-date account of chaos and fractals, in a popular pictorial style for the general scientific reader. A brief historical account covers the development of the subject from Newton’s laws of motion to the astronomy of Poincaré and the weather forecasting of Lorenz. Emphasis is given to the important underlying concepts, embracing the fractal properties of coastlines and the logistics of population dynamics. A wide variety of applications include: NASA’s discovery and use of zero-fuel chaotic “superhighways” between the planets; erratic chaotic solutions generated by Euler’s method in mathematics; atomic force microscopy; spontaneous pattern formation in chemical and biological systems; impact mechanics in offshore engineering and the chatter of cutting tools; controlling chaotic heartbeats. Reference is made to a number of interactive simulations and movies accessible on the web.
NASA Astrophysics Data System (ADS)
Chen, Xiang; Li, Jingchao; Han, Hui; Ying, Yulong
2018-05-01
Because of the limitations of the traditional fractal box-counting dimension algorithm in subtle feature extraction of radiation source signals, a dual improved generalized fractal box-counting dimension eigenvector algorithm is proposed. First, the radiation source signal was preprocessed, and a Hilbert transform was performed to obtain the instantaneous amplitude of the signal. Then, the improved fractal box-counting dimension of the signal instantaneous amplitude was extracted as the first eigenvector. At the same time, the improved fractal box-counting dimension of the signal without the Hilbert transform was extracted as the second eigenvector. Finally, the dual improved fractal box-counting dimension eigenvectors formed the multi-dimensional eigenvectors as signal subtle features, which were used for radiation source signal recognition by the grey relation algorithm. The experimental results show that, compared with the traditional fractal box-counting dimension algorithm and the single improved fractal box-counting dimension algorithm, the proposed dual improved fractal box-counting dimension algorithm can better extract the signal subtle distribution characteristics under different reconstruction phase space, and has a better recognition effect with good real-time performance.
Li, Heheng; Luo, Liangping; Huang, Li
2011-02-01
The present paper is aimed to study the fractal spectrum of the cerebral computerized tomography in 158 normal infants of different age groups, based on the calculation of chaotic theory. The distribution range of neonatal period was 1.88-1.90 (mean = 1.8913 +/- 0.0064); It reached a stable condition at the level of 1.89-1.90 during 1-12 months old (mean = 1.8927 +/- 0.0045); The normal range of 1-2 years old infants was 1.86-1.90 (mean = 1.8863 +/- 4 0.0085); It kept the invariance of the quantitative value among 1.88-1.91(mean = 1.8958 +/- 0.0083) during 2-3 years of age. ANOVA indicated there's no significant difference between boys and girls (F = 0.243, P > 0.05), but the difference of age groups was significant (F = 8.947, P < 0.001). The fractal dimension of cerebral computerized tomography in normal infants computed by box methods was maintained at an efficient stability from 1.86 to 1.91. It indicated that there exit some attractor modes in pediatric brain development.
NASA Astrophysics Data System (ADS)
de Bartolo, S.; Fallico, C.; Straface, S.; Troisi, S.; Veltri, M.
2009-04-01
The complexity characterization of the porous media structure, in terms of the "pore" phase and the "solid" phase, can be carried out by means of the fractal geometry which is able to put in relationship the soil structural properties and the water content. It is particularly complicated to describe analytically the hydraulic conductivity for the irregularity of the porous media structure. However these can be described by many fractal models considering the soil structure as the distribution of particles dimensions, the distribution of the solid aggregates, the surface of the pore-solid interface and the fractal mass of the "pore" and "solid" phases. In this paper the fractal model of Yu and Cheng (2002) and Yu and Liu (2004), for a saturated bidispersed porous media, was considered. This model, using the Sierpinsky-type gasket scheme, doesn't contain empiric constants and furnishes a well accord with the experimental data. For this study an unconfined aquifer was reproduced by means of a tank with a volume of 10 Ã- 7 Ã- 3 m3, filled with a homogeneous sand (95% of SiO2), with a high percentage (86.4%) of grains between 0.063mm and 0.125mm and a medium-high permeability. From the hydraulic point of view, 17 boreholes, a pumping well and a drainage ring around its edge were placed. The permeability was measured utilizing three different methods, consisting respectively in pumping test, slug test and laboratory analysis of an undisturbed soil cores, each of that involving in the measurement a different support volume. The temporal series of the drawdown obtained by the pumping test were analyzed by the Neuman-type Curve method (1972), because the saturated part above the bottom of the facility represents an unconfined aquifer. The data analysis of the slug test were performed by the Bouwer & Rice (1976) method and the laboratory analysis were performed on undisturbed saturated soil samples utilizing a falling head permeameter. The obtained values either of the fractal dimension of the area of the pores (Df) or of the fractal dimension of capillary tortuosity (DT), very similar to those reported in literature (Yu and Cheng, 2002; Yu and Liu, 2004; Yu, 2005) and falling in the range of definition (1 < Df < 2), resulted very close to those carried out in a previous study performed on the same apparatus but with a limited number of values (De Bartolo et al., in review). In fact in the present study the laboratory analysis were performed on other 10 undisturbed soil samples and moreover three new values of slug test and 12 new of pumping test were considered. Moreover the trend of DT growing with the scale length (L) was confirmed, as well as the invariability of, due to the homogeneity of the considered porous media. The linear scaling law of the permeability (k) close to scale length was investigated furnishing more reliable results. However for a better definition of a law of scale for Df, DT and k several number of scale length are need and a greater number of experimental data should be carried out. For this purpose the considered experimental apparatus is limited from its restricted dimensions and geometric bounds; therefore further investigations in experimental field are desirable. Bibliografy Bouwer, H. & Rice, R. C. 1976. A Slug Test for Hydraulic Conductivity of Unconfined Aquifers With Completely or Partially Penetrating Wells, Water Resources Research, 12(3). De Bartolo, S., Fallico, C., Straface, S., Troisi, S. & Veltri M. (in review). Scaling of the hydraulic conductivity measurements by a fractal analysis on an unconfined aquifer reproduced in a laboratory facility, Geoderma Special Issue 2008. Neuman, S.P. 1972. Theory of flow in unconfined aquifers considering delayed response of the water table, Water Resources Research, 8(4), 1031-1045. Yu, B.M. 2005. Fractal Character for Tortuous Streamtubes in Porous Media, Chin. Phis. Lett., 22(1), 158. Yu, B.M. & Cheng, P. 2002. A Fractal Permeability Model for Bi-Dispersed Porous Media, Int. J. Heat Mass Transfer 45(14), 2983. Yu, B.M. & Liu W. 2004. Fractal Analysis of Permeabilities for Porous Media, American Institute of Chemical Engineers 50(1), 46-57.
Roughness Perception of Haptically Displayed Fractal Surfaces
NASA Technical Reports Server (NTRS)
Costa, Michael A.; Cutkosky, Mark R.; Lau, Sonie (Technical Monitor)
2000-01-01
Surface profiles were generated by a fractal algorithm and haptically rendered on a force feedback joystick, Subjects were asked to use the joystick to explore pairs of surfaces and report to the experimenter which of the surfaces they felt was rougher. Surfaces were characterized by their root mean square (RMS) amplitude and their fractal dimension. The most important factor affecting the perceived roughness of the fractal surfaces was the RMS amplitude of the surface. When comparing surfaces of fractal dimension 1.2-1.35 it was found that the fractal dimension was negatively correlated with perceived roughness.
Goh, Vicky; Sanghera, Bal; Wellsted, David M; Sundin, Josefin; Halligan, Steve
2009-06-01
The aim was to evaluate the feasibility of fractal analysis for assessing the spatial pattern of colorectal tumour perfusion at dynamic contrast-enhanced CT (perfusion CT). Twenty patients with colorectal adenocarcinoma underwent a 65-s perfusion CT study from which a perfusion parametric map was generated using validated commercial software. The tumour was identified by an experienced radiologist, segmented via thresholding and fractal analysis applied using in-house software: fractal dimension, abundance and lacunarity were assessed for the entire outlined tumour and for selected representative areas within the tumour of low and high perfusion. Comparison was made with ten patients with normal colons, processed in a similar manner, using two-way mixed analysis of variance with statistical significance at the 5% level. Fractal values were higher in cancer than normal colon (p < or = 0.001): mean (SD) 1.71 (0.07) versus 1.61 (0.07) for fractal dimension and 7.82 (0.62) and 6.89 (0.47) for fractal abundance. Fractal values were lower in 'high' than 'low' perfusion areas. Lacunarity curves were shifted to the right for cancer compared with normal colon. In conclusion, colorectal cancer mapped by perfusion CT demonstrates fractal properties. Fractal analysis is feasible, potentially providing a quantitative measure of the spatial pattern of tumour perfusion.
The role of the circadian system in fractal neurophysiological control
Pittman-Polletta, Benjamin R.; Scheer, Frank A.J.L.; Butler, Matthew P.; Shea, Steven A.; Hu, Kun
2013-01-01
Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations - similar temporal fluctuation patterns at different time scales. These fractal patterns contain information about health, as many pathological conditions are accompanied by their alteration or absence. In physical systems, such fluctuations are characteristic of critical states on the border between randomness and order, frequently arising from nonlinear feedback interactions between mechanisms operating on multiple scales. Thus, the existence of fractal fluctuations in physiology challenges traditional conceptions of health and disease, suggesting that high levels of integrity and adaptability are marked by complex variability, not constancy, and are properties of a neurophysiological network, not individual components. Despite the subject's theoretical and clinical interest, the neurophysiological mechanisms underlying fractal regulation remain largely unknown. The recent discovery that the circadian pacemaker (suprachiasmatic nucleus) plays a crucial role in generating fractal patterns in motor activity and heart rate sheds an entirely new light on both fractal control networks and the function of this master circadian clock, and builds a bridge between the fields of circadian biology and fractal physiology. In this review, we sketch the emerging picture of the developing interdisciplinary field of fractal neurophysiology by examining the circadian system’s role in fractal regulation. PMID:23573942
A fractal analysis of quaternary, Cenozoic-Mesozoic, and Late Pennsylvanian sea level changes
NASA Technical Reports Server (NTRS)
Hsui, Albert T.; Rust, Kelly A.; Klein, George D.
1993-01-01
Sea level changes are related to both climatic variations and tectonic movements. The fractal dimensions of several sea level curves were compared to a modern climatic fractal dimension of 1.26 established for annual precipitation records. A similar fractal dimension (1.22) based on delta(O-18/O-16) in deep-sea sediments has been suggested to characterize climatic change during the past 2 m.y. Our analysis indicates that sea level changes over the past 150,000 to 250,000 years also exhibit comparable fractal dimensions. Sea level changes for periods longer than about 30 m.y. are found to produce fractal dimensions closer to unity and Missourian (Late Pennsylvanian) sea level changes yield a fractal dimension of 1.41. The fact that these sea level curves all possess fractal dimensions less than 1.5 indicates that sea level changes exhibit nonperiodic, long-run persistence. The different fractal dimensions calculated for the various time periods could be the result of a characteristic overprinting of the sediment recored by prevailing processes during deposition. For example, during the Quaternary, glacio-eustatic sea level changes correlate well with the present climatic signature. During the Missourian, however, mechanisms such as plate reorganization may have dominated, resulting in a significantly different fractal dimension.
Reduced heart rate variability during sleep in long-duration spaceflight.
Xu, D; Shoemaker, J K; Blaber, A P; Arbeille, P; Fraser, K; Hughson, R L
2013-07-15
Limited data are available to describe the regulation of heart rate (HR) during sleep in spaceflight. Sleep provides a stable supine baseline during preflight Earth recordings for comparison of heart rate variability (HRV) over a wide range of frequencies using both linear, complexity, and fractal indicators. The current study investigated the effect of long-duration spaceflight on HR and HRV during sleep in seven astronauts aboard the International Space Station up to 6 mo. Measurements included electrocardiographic waveforms from Holter monitors and simultaneous movement records from accelerometers before, during, and after the flights. HR was unchanged inflight and elevated postflight [59.6 ± 8.9 beats per minute (bpm) compared with preflight 53.3 ± 7.3 bpm; P < 0.01]. Compared with preflight data, HRV indicators from both time domain and power spectral analysis methods were diminished inflight from ultralow to high frequencies and partially recovered to preflight levels after landing. During inflight and at postflight, complexity and fractal properties of HR were not different from preflight properties. Slow fluctuations (<0.04 Hz) in HR presented moderate correlations with movements during sleep, partially accounting for the reduction in HRV. In summary, substantial reduction in HRV was observed with linear, but not with complexity and fractal, methods of analysis. These results suggest that periodic elements that influence regulation of HR through reflex mechanisms are altered during sleep in spaceflight but that underlying system complexity and fractal dynamics were not altered.
[Fractal dimension--a new EEG-based method of assessing the depth of anaesthesia].
Willand, Monika; Rudner, Robert; Olejarczyk, Elzbieta; Wartak, Magdalena; Marciniak, Radosław; Stasiowski, Michał; Byrczek, Tomasz; Jałowiecki, Przemysław
2008-01-01
It has been suggested that analysis of the EEG signal using the fractal dimension method may be useful for assessment of depth of anaesthesia. Thirty ASA I and II patients, scheduled for elective surgery under general anaesthesia were induced with midazolam, fentanyl and propofol and paralyzed with rocuronium or cis-atracurium. Clinical signs of the depth of anaesthesia were classified to one of five OAA/S levels. Standard vital parameters were observed and brain electrical activity was measured using the bispectral index (BIS) and burst suppression ratio (BSR). The EEG signal was recorded and processed postoperatively to calculate Higuchi's fractal dimension (FD). The latter was presented as a derivative: (D(F)-1) x 100. Mean correlation coefficients between OAA/S scale levels, and BIS and (D(F)-1) x 100 values, were respectively: 0.749+/-0.172 and 0.753+/-0.220. In 28 (93.3%) patients, BIS correlated well with FD (r=0.63+/-0.33). In twenty cases, burst suppression occurred and the correlation coefficient between BIS and DF was much lower (r=0.5860+/-3650), when compared to the group of 10 patients in which no burst suppression was detected (r=0.711+/-0.251). Appropriate correction was made using the following formula: D(FK)=D(F)-(D(F) x BSR). The mean correlation coefficient between BIS values and D(FK) in the BS group was r=0.629+/-0.331. In all cases, the mean correlation coefficient between (D(F)-1) x 100 and BIS was r=0.661+/-0.307 (p<0.001). The fractal dimension method can be regarded as equal to BIS for assessment of depth of anaesthesia.
A fractal process of hydrogen diffusion in a-Si:H with exponential energy distribution
NASA Astrophysics Data System (ADS)
Hikita, Harumi; Ishikawa, Hirohisa; Morigaki, Kazuo
2017-04-01
Hydrogen diffusion in a-Si:H with exponential distribution of the states in energy exhibits the fractal structure. It is shown that a probability P(t) of the pausing time t has a form of tα (α: fractal dimension). It is shown that the fractal dimension α = Tr/T0 (Tr: hydrogen temperature, T0: a temperature corresponding to the width of exponential distribution of the states in energy) is in agreement with the Hausdorff dimension. A fractal graph for the case of α ≤ 1 is like the Cantor set. A fractal graph for the case of α > 1 is like the Koch curves. At α = ∞, hydrogen migration exhibits Brownian motion. Hydrogen diffusion in a-Si:H should be the fractal process.
Analysis of Fractional Flow for Transient Two-Phase Flow in Fractal Porous Medium
NASA Astrophysics Data System (ADS)
Lu, Ting; Duan, Yonggang; Fang, Quantang; Dai, Xiaolu; Wu, Jinsui
2016-03-01
Prediction of fractional flow in fractal porous medium is important for reservoir engineering and chemical engineering as well as hydrology. A physical conceptual fractional flow model of transient two-phase flow is developed in fractal porous medium based on the fractal characteristics of pore-size distribution and on the approximation that porous medium consist of a bundle of tortuous capillaries. The analytical expression for fractional flow for wetting phase is presented, and the proposed expression is the function of structural parameters (such as tortuosity fractal dimension, pore fractal dimension, maximum and minimum diameters of capillaries) and fluid properties (such as contact angle, viscosity and interfacial tension) in fractal porous medium. The sensitive parameters that influence fractional flow and its derivative are formulated, and their impacts on fractional flow are discussed.
The Legacy of Benoit Mandelbrot in Geophysics
NASA Astrophysics Data System (ADS)
Turcotte, D. L.
2001-12-01
The concept of fractals (fractional dimension) was introduced by Benoit Mandelbrot in his famous 1967 Science paper. The initial application was to the length of the coastline of Britain. A milestone in the appreciation of the fractal concept by geophysicists was the Union session of the AGU on fractals led off by Benoit in 1986. Although fractals have found important applications in almost every branch of the physical, biological, and social sciences, fractals have been particularly useful in geophysics. Drainage networks are fractal. The frequency-magnitude distribution of earthquakes is fractal. The scale invariance of landscapes and many other geological processes is due to the applicability of power-law (fractal) distributions. Clouds are often fractal. Porosity distributions are fractal. In an almost independent line of research, Benoit in collaboration with James Wallace and others developed the concept of self-affine fractals. The original applications were primarily to time series in hydrology and built on the foundation laid by Henry Hurst. Fractional Gaussian noises and fractional Brownian motions are ubiquitous in geophysics. These are expressed in terms of the power-law relation between the power-spectral density S and frequency f, S ~ f{ β }, examples are β = 0 (white noise), β = 1 (1/f noise), β = 2 (Brownian motion). Of particular importance in geophysics are fractional noises with β = 0.5, these are stationary but have long-range persistent and have a Hurst exponent H = 0.7. Examples include river flows, tree rings, sunspots, varves, etc. Two of Benoit Mandelbrot's major contributions in geophysics as in other fields are: (1) an appreciation of the importance of fat-tail, power-law (fractal) distributions and (2) an appreciation of the importance of self-similar long-range persistence in both stationary time series (noises) and nonstationary time series (walks).
NASA Astrophysics Data System (ADS)
An, Hyunuk; Ichikawa, Yutaka; Tachikawa, Yasuto; Shiiba, Michiharu
2012-11-01
SummaryThree different iteration methods for a three-dimensional coordinate-transformed saturated-unsaturated flow model are compared in this study. The Picard and Newton iteration methods are the common approaches for solving Richards' equation. The Picard method is simple to implement and cost-efficient (on an individual iteration basis). However it converges slower than the Newton method. On the other hand, although the Newton method converges faster, it is more complex to implement and consumes more CPU resources per iteration than the Picard method. The comparison of the two methods in finite-element model (FEM) for saturated-unsaturated flow has been well evaluated in previous studies. However, two iteration methods might exhibit different behavior in the coordinate-transformed finite-difference model (FDM). In addition, the Newton-Krylov method could be a suitable alternative for the coordinate-transformed FDM because it requires the evaluation of a 19-point stencil matrix. The formation of a 19-point stencil is quite a complex and laborious procedure. Instead, the Newton-Krylov method calculates the matrix-vector product, which can be easily approximated by calculating the differences of the original nonlinear function. In this respect, the Newton-Krylov method might be the most appropriate iteration method for coordinate-transformed FDM. However, this method involves the additional cost of taking an approximation at each Krylov iteration in the Newton-Krylov method. In this paper, we evaluated the efficiency and robustness of three iteration methods—the Picard, Newton, and Newton-Krylov methods—for simulating saturated-unsaturated flow through porous media using a three-dimensional coordinate-transformed FDM.
NASA Astrophysics Data System (ADS)
Li, Ang; He, Renyue; Bian, Zhuo; Song, Huaihe; Chen, Xiaohong; Zhou, Jisheng
2018-06-01
Self-assembled hierarchical CuO nanostructures with fractal structures were prepared by a mild method and exhibited excellent lithium storage properties, certain of which even demonstrated a high reversible capacity of 827 mAh g-1 at a rate of 0.1 C. An interesting phenomenon was observed that the electrochemical performance varies along with the structure complexity, and the products with higher surface factal dimensions exhibited larger capability and better cyclability. Structural and electrochemical analysis methods were used to explore the lithiation kinetics of the samples and the reasons for the outstanding electrochemical performances related to the complexities of hierarchical nanostructures and the irregularities of surface and mass distribution.
NASA Astrophysics Data System (ADS)
Balankin, Alexander S.; Bory-Reyes, Juan; Shapiro, Michael
2016-02-01
One way to deal with physical problems on nowhere differentiable fractals is the mapping of these problems into the corresponding problems for continuum with a proper fractal metric. On this way different definitions of the fractal metric were suggested to account for the essential fractal features. In this work we develop the metric differential vector calculus in a three-dimensional continuum with a non-Euclidean metric. The metric differential forms and Laplacian are introduced, fundamental identities for metric differential operators are established and integral theorems are proved by employing the metric version of the quaternionic analysis for the Moisil-Teodoresco operator, which has been introduced and partially developed in this paper. The relations between the metric and conventional operators are revealed. It should be emphasized that the metric vector calculus developed in this work provides a comprehensive mathematical formalism for the continuum with any suitable definition of fractal metric. This offers a novel tool to study physics on fractals.
A tale of two fractals: The Hofstadter butterfly and the integral Apollonian gaskets
NASA Astrophysics Data System (ADS)
Satija, Indubala I.
2016-11-01
This paper unveils a mapping between a quantum fractal that describes a physical phenomena, and an abstract geometrical fractal. The quantum fractal is the Hofstadter butterfly discovered in 1976 in an iconic condensed matter problem of electrons moving in a two-dimensional lattice in a transverse magnetic field. The geometric fractal is the integer Apollonian gasket characterized in terms of a 300 BC problem of mutually tangent circles. Both of these fractals are made up of integers. In the Hofstadter butterfly, these integers encode the topological quantum numbers of quantum Hall conductivity. In the Apollonian gaskets an infinite number of mutually tangent circles are nested inside each other, where each circle has integer curvature. The mapping between these two fractals reveals a hidden D3 symmetry embedded in the kaleidoscopic images that describe the asymptotic scaling properties of the butterfly. This paper also serves as a mini review of these fractals, emphasizing their hierarchical aspects in terms of Farey fractions.
Minimal spanning trees at the percolation threshold: a numerical calculation
NASA Astrophysics Data System (ADS)
Sweeney, Sean; Middleton, A. Alan
2013-03-01
Through computer simulations on a hypercubic lattice, we grow minimal spanning trees (MSTs) in up to five dimensions and examine their fractal dimensions. Understanding MSTs is imporant for studying systems with quenched disorder such as spin glasses. We implement a combination of Prim's and Kruskal's algorithms for finding MSTs in order to reduce memory usage and allow for simulation of larger systems than would otherwise be possible. These fractal objects are analyzed in an attempt to numerically verify predictions of the perturbation expansion developed by T. S. Jackson and N. Read for the pathlength fractal dimension ds of MSTs on percolation clusters at criticality [T. S. Jackson and N. Read, Phys. Rev. E 81, 021131 (2010)]. Examining these trees also sparked the development of an analysis technique for dealing with correlated data that could be easily generalized to other systems and should be a robust method for analyzing a wide array of randomly generated fractal structures. This work was made possible in part by NSF Grant No. DMR-1006731 and by the Syracuse University Gravitation and Relativity computing cluster, which is supported in part by NSF Grant No. PHY-0600953.
Zone specific fractal dimension of retinal images as predictor of stroke incidence.
Aliahmad, Behzad; Kumar, Dinesh Kant; Hao, Hao; Unnikrishnan, Premith; Che Azemin, Mohd Zulfaezal; Kawasaki, Ryo; Mitchell, Paul
2014-01-01
Fractal dimensions (FDs) are frequently used for summarizing the complexity of retinal vascular. However, previous techniques on this topic were not zone specific. A new methodology to measure FD of a specific zone in retinal images has been developed and tested as a marker for stroke prediction. Higuchi's fractal dimension was measured in circumferential direction (FDC) with respect to optic disk (OD), in three concentric regions between OD boundary and 1.5 OD diameter from its margin. The significance of its association with future episode of stroke event was tested using the Blue Mountain Eye Study (BMES) database and compared against spectrum fractal dimension (SFD) and box-counting (BC) dimension. Kruskal-Wallis analysis revealed FDC as a better predictor of stroke (H = 5.80, P = 0.016, α = 0.05) compared with SFD (H = 0.51, P = 0.475, α = 0.05) and BC (H = 0.41, P = 0.520, α = 0.05) with overall lower median value for the cases compared to the control group. This work has shown that there is a significant association between zone specific FDC of eye fundus images with future episode of stroke while this difference is not significant when other FD methods are employed.
Interfacial contact stiffness of fractal rough surfaces.
Zhang, Dayi; Xia, Ying; Scarpa, Fabrizio; Hong, Jie; Ma, Yanhong
2017-10-09
In this work we describe a theoretical model that predicts the interfacial contact stiffness of fractal rough surfaces by considering the effects of elastic and plastic deformations of the fractal asperities. We also develop an original test rig that simulates dovetail joints for turbo machinery blades, which can fine tune the normal contact load existing between the contacting surfaces of the blade root. The interfacial contact stiffness is obtained through an inverse identification method in which finite element simulations are fitted to the experimental results. Excellent agreement is observed between the contact stiffness predicted by the theoretical model and by the analogous experimental results. We demonstrate that the contact stiffness is a power law function of the normal contact load with an exponent α within the whole range of fractal dimension D(1 < D < 2). We also show that for 1 < D < 1.5 the Pohrt-Popov behavior (α = 1/(3 - D)) is valid, however for 1.5 < D < 2, the exponent α is different and equal to 2(D - 1)/D. The diversity between the model developed in the work and the Pohrt-Popov one is explained in detail.
Predicting DNA binding proteins using support vector machine with hybrid fractal features.
Niu, Xiao-Hui; Hu, Xue-Hai; Shi, Feng; Xia, Jing-Bo
2014-02-21
DNA-binding proteins play a vitally important role in many biological processes. Prediction of DNA-binding proteins from amino acid sequence is a significant but not fairly resolved scientific problem. Chaos game representation (CGR) investigates the patterns hidden in protein sequences, and visually reveals previously unknown structure. Fractal dimensions (FD) are good tools to measure sizes of complex, highly irregular geometric objects. In order to extract the intrinsic correlation with DNA-binding property from protein sequences, CGR algorithm, fractal dimension and amino acid composition are applied to formulate the numerical features of protein samples in this paper. Seven groups of features are extracted, which can be computed directly from the primary sequence, and each group is evaluated by the 10-fold cross-validation test and Jackknife test. Comparing the results of numerical experiments, the group of amino acid composition and fractal dimension (21-dimension vector) gets the best result, the average accuracy is 81.82% and average Matthew's correlation coefficient (MCC) is 0.6017. This resulting predictor is also compared with existing method DNA-Prot and shows better performances. © 2013 The Authors. Published by Elsevier Ltd All rights reserved.
Comparison of Reconstruction and Control algorithms on the ESO end-to-end simulator OCTOPUS
NASA Astrophysics Data System (ADS)
Montilla, I.; Béchet, C.; Lelouarn, M.; Correia, C.; Tallon, M.; Reyes, M.; Thiébaut, É.
Extremely Large Telescopes are very challenging concerning their Adaptive Optics requirements. Their diameters, the specifications demanded by the science for which they are being designed for, and the planned use of Extreme Adaptive Optics systems, imply a huge increment in the number of degrees of freedom in the deformable mirrors. It is necessary to study new reconstruction algorithms to implement the real time control in Adaptive Optics at the required speed. We have studied the performance, applied to the case of the European ELT, of three different algorithms: the matrix-vector multiplication (MVM) algorithm, considered as a reference; the Fractal Iterative Method (FrIM); and the Fourier Transform Reconstructor (FTR). The algorithms have been tested on ESO's OCTOPUS software, which simulates the atmosphere, the deformable mirror, the sensor and the closed-loop control. The MVM is the default reconstruction and control method implemented in OCTOPUS, but it scales in O(N2) operations per loop so it is not considered as a fast algorithm for wave-front reconstruction and control on an Extremely Large Telescope. The two other methods are the fast algorithms studied in the E-ELT Design Study. The performance, as well as their response in the presence of noise and with various atmospheric conditions, has been compared using a Single Conjugate Adaptive Optics configuration for a 42 m diameter ELT, with a total amount of 5402 actuators. Those comparisons made on a common simulator allow to enhance the pros and cons of the various methods, and give us a better understanding of the type of reconstruction algorithm that an ELT demands.
Analysis of Fractal Parameters of the Lunar Surface
NASA Astrophysics Data System (ADS)
Nefedyev, Yuri; Petrova, Natalia; Andreev, Alexey; Demina, Natalya; Demin, Sergey
2016-07-01
Analysis of complex selenographic systems is a complicatedissue. This fully applies to the lunar topography. In this report a new method of the comparative reliable estimation of thelunar mapsdata is represented. The estimation was made by the comparison of high-altitude lines using the fractal analysis. The influence of the lunar macrofigure variances were determined by the method of fractal dimensions comparison. It should be noted the investigations of the lunar figure and rotation implystudy itsmarginal zone charts constructionwith various methods and this is traditionally carried out at the Engelhardt Astronomical Observatory (EAO). In particular this research is important for lunar occultations reductions and on the basis of that it is possible to solve a number of astrometric and astrophysical problems. By now the highly accurate theories of the lunar movement have been obtained and stars coordinates have been determined on the basis of space measurements with the several multiarcseconds accuracy but there are factors highly influencingon the accuracy of the results of these observations. They are: exactitude of the occultation moment recording, errors of the stars coordinates, accuracy of lunar ephemeris positions and unreliability of lunar marginal zone charts. Therefore difficulties arise during the reduction process of lunar occultations by the reason of irregularities of lunar limb. Existing charts of the lunar marginal zone have some defects. The researching of lunar marginal zone maps is very difficult. First of all, it concernsthe reliability of maps data. To resolve this task thecomparison method in which the structure of the high-altitude lines of data appropriated with identical lunar coordinates can used. However, such comparison requires a lot of calculations. In addition there is a large number of the marginal zone maps constructed by different methods and the accuracy of their data causes many questions. In other words, the lunar relief has a very complex structure and traditional research methods are unacceptable. After considering this, it was decided to use the method of fractal dimensionsd comparisons. For this purpose lunar marginal zone maps made in the celestial coordinate system (maps N1) and oneconstructed on the basis of data obtained from heliometric observations with taking into account thefirst model of the figure of the Moon given by Jakovkin (maps N2) were taken. The charts contain isohypses of the lunar marginal zone extending over 10" on both sides of the mean position of the limb line. In order to find thevariations of irregularities for thelimb points above the mean level of lunar surface werecomputed the position angles of this pointsP (reckoned from the centre of the Moon's disc) and D coordinates. This coordinates introduced by Hayn: P is the selenocentric longitude reckoned along the mean limb from the north pole of the Moon, like the position angles, and D is the latitude counted positively for that part of the disc that is nearer to the observer. Thus the data of our studies was obtained by identical types. Then the first, segments of a lunar marginal zone for every 45" on P were considered. For each segment profile of the surface for a constant D were constructed with a step of 2". Thus 80 profiles were obtained. Secondly the fractal dimensions d for each considered structure was defined. Third the obtained values d werecompared with the othersmaps considered in this work. The obtained results show some well agreement between the mean fractal dimensions for maps N1 and N2. Thus it can be concluded that the using of fractal method for lunar maps analysis to determine the accuracy of the presented to themdata give good results. The work was supported by grants RFBR 15-02-01638-a, 16-32-60071-mol-dk-a and 16-02-00496-a.
NASA Astrophysics Data System (ADS)
Vollet, D. R.; Torres, R. R.; Donatti, D. A.; Ibañez Ruiz, A.
2005-11-01
Silica gels were preparated from fixed proportion mixtures of tetraethoxysilane, water and hydrocloric acid, using either ultrasound stimulation (US) or conventional method (CO) in the hydrolysis step of the process. Wet gels were obtained with the same silica volume concentration and density. According to small-angle X-ray scattering, the structure of the wet gels can be described as mass fractal structures with mass fractal dimension D = 2.20 in a length scale = 7.9 nm, in the case of wet gels US, and D = 2.26 in a length scale = 6.9 nm, in the case of wet gels CO. The mass fractal characteristics of the wet gels US and CO account for the different structures evolved in the drying of the gels US and CO in the obtaining of xerogels and aerogels. The pore structure of the dried gels was studied by nitrogen adsorption as a function of the temperature. Aerogels (US and CO) present high porosity with pore size distribution (PSD) curves in the mesopore region while xerogels (US and CO) present minor porosity with PSD curves mainly in the micropore region. The dried gels US (aerogels and xerogels) generally present pore volume and specific surface area greater than the dried gels CO. The mass fractal structure of the aerogels has been studied from an approach based on the PSD curves exclusively.
a Predictive Model of Permeability for Fractal-Based Rough Rock Fractures during Shear
NASA Astrophysics Data System (ADS)
Huang, Na; Jiang, Yujing; Liu, Richeng; Li, Bo; Zhang, Zhenyu
This study investigates the roles of fracture roughness, normal stress and shear displacement on the fluid flow characteristics through three-dimensional (3D) self-affine fractal rock fractures, whose surfaces are generated using the modified successive random additions (SRA) algorithm. A series of numerical shear-flow tests under different normal stresses were conducted on rough rock fractures to calculate the evolutions of fracture aperture and permeability. The results show that the rough surfaces of fractal-based fractures can be described using the scaling parameter Hurst exponent (H), in which H = 3 - Df, where Df is the fractal dimension of 3D single fractures. The joint roughness coefficient (JRC) distribution of fracture profiles follows a Gauss function with a negative linear relationship between H and average JRC. The frequency curves of aperture distributions change from sharp to flat with increasing shear displacement, indicating a more anisotropic and heterogeneous flow pattern. Both the mean aperture and permeability of fracture increase with the increment of surface roughness and decrement of normal stress. At the beginning of shear, the permeability increases remarkably and then gradually becomes steady. A predictive model of permeability using the mean mechanical aperture is proposed and the validity is verified by comparisons with the experimental results reported in literature. The proposed model provides a simple method to approximate permeability of fractal-based rough rock fractures during shear using fracture aperture distribution that can be easily obtained from digitized fracture surface information.
Tochigi, Toru; Shuto, Kiyohiko; Kono, Tsuguaki; Ohira, Gaku; Tohma, Takayuki; Gunji, Hisashi; Hayano, Koichi; Narushima, Kazuo; Fujishiro, Takeshi; Hanaoka, Toshiharu; Akutsu, Yasunori; Okazumi, Shinichi; Matsubara, Hisahiro
2017-01-01
Intratumoral heterogeneity is a well-recognized characteristic feature of cancer. The purpose of this study is to assess the heterogeneity of the intratumoral glucose metabolism using fractal analysis, and evaluate its prognostic value in patients with esophageal squamous cell carcinoma (ESCC). 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) studies of 79 patients who received curative surgery were evaluated. FDG-PET images were analyzed using fractal analysis software, where differential box-counting method was employed to calculate the fractal dimension (FD) of the tumor lesion. Maximum standardized uptake value (SUVmax) and FD were compared with overall survival (OS). The median SUVmax and FD of ESCCs in this cohort were 13.8 and 1.95, respectively. In univariate analysis performed using Cox's proportional hazard model, T stage and FD showed significant associations with OS (p = 0.04, p < 0.0001, respectively), while SUVmax did not (p = 0.1). In Kaplan-Meier analysis, the low FD tumor (<1.95) showed a significant association with favorable OS (p < 0.0001). In wthe multivariate analysis among TNM staging, serum tumor markers, FD, and SUVmax, the FD was identified as the only independent prognostic factor for OS (p = 0.0006; hazards ratio 0.251, 95% CI 0.104-0.562). Metabolic heterogeneity measured by fractal analysis can be a novel imaging biomarker for survival in patients with ESCC. © 2016 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Glushak, P. A.; Markiv, B. B.; Tokarchuk, M. V.
2018-01-01
We present a generalization of Zubarev's nonequilibrium statistical operator method based on the principle of maximum Renyi entropy. In the framework of this approach, we obtain transport equations for the basic set of parameters of the reduced description of nonequilibrium processes in a classical system of interacting particles using Liouville equations with fractional derivatives. For a classical systems of particles in a medium with a fractal structure, we obtain a non-Markovian diffusion equation with fractional spatial derivatives. For a concrete model of the frequency dependence of a memory function, we obtain generalized Kettano-type diffusion equation with the spatial and temporal fractality taken into account. We present a generalization of nonequilibrium thermofield dynamics in Zubarev's nonequilibrium statistical operator method in the framework of Renyi statistics.
Variability of fractal dimension of solar radio flux
NASA Astrophysics Data System (ADS)
Bhatt, Hitaishi; Sharma, Som Kumar; Trivedi, Rupal; Vats, Hari Om
2018-04-01
In the present communication, the variation of the fractal dimension of solar radio flux is reported. Solar radio flux observations on a day to day basis at 410, 1415, 2695, 4995, and 8800 MHz are used in this study. The data were recorded at Learmonth Solar Observatory, Australia from 1988 to 2009 covering an epoch of two solar activity cycles (22 yr). The fractal dimension is calculated for the listed frequencies for this period. The fractal dimension, being a measure of randomness, represents variability of solar radio flux at shorter time-scales. The contour plot of fractal dimension on a grid of years versus radio frequency suggests high correlation with solar activity. Fractal dimension increases with increasing frequency suggests randomness increases towards the inner corona. This study also shows that the low frequency is more affected by solar activity (at low frequency fractal dimension difference between solar maximum and solar minimum is 0.42) whereas, the higher frequency is less affected by solar activity (here fractal dimension difference between solar maximum and solar minimum is 0.07). A good positive correlation is found between fractal dimension averaged over all frequencies and yearly averaged sunspot number (Pearson's coefficient is 0.87).
Electromagnetism on anisotropic fractal media
NASA Astrophysics Data System (ADS)
Ostoja-Starzewski, Martin
2013-04-01
Basic equations of electromagnetic fields in anisotropic fractal media are obtained using a dimensional regularization approach. First, a formulation based on product measures is shown to satisfy the four basic identities of the vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Ampère laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, so as to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions in three different directions and reduce to conventional forms for continuous media with Euclidean geometries upon setting these each of dimensions equal to unity.
Some problems in fractal differential equations
NASA Astrophysics Data System (ADS)
Su, Weiyi
2016-06-01
Based upon the fractal calculus on local fields, or p-type calculus, or Gibbs-Butzer calculus ([1],[2]), we suggest a constructive idea for "fractal differential equations", beginning from some special examples to a general theory. However, this is just an original idea, it needs lots of later work to support. In [3], we show example "two dimension wave equations with fractal boundaries", and in this note, other examples, as well as an idea to construct fractal differential equations are shown.
Fractal analysis of scatter imaging signatures to distinguish breast pathologies
NASA Astrophysics Data System (ADS)
Eguizabal, Alma; Laughney, Ashley M.; Krishnaswamy, Venkataramanan; Wells, Wendy A.; Paulsen, Keith D.; Pogue, Brian W.; López-Higuera, José M.; Conde, Olga M.
2013-02-01
Fractal analysis combined with a label-free scattering technique is proposed for describing the pathological architecture of tumors. Clinicians and pathologists are conventionally trained to classify abnormal features such as structural irregularities or high indices of mitosis. The potential of fractal analysis lies in the fact of being a morphometric measure of the irregular structures providing a measure of the object's complexity and self-similarity. As cancer is characterized by disorder and irregularity in tissues, this measure could be related to tumor growth. Fractal analysis has been probed in the understanding of the tumor vasculature network. This work addresses the feasibility of applying fractal analysis to the scattering power map (as a physical modeling) and principal components (as a statistical modeling) provided by a localized reflectance spectroscopic system. Disorder, irregularity and cell size variation in tissue samples is translated into the scattering power and principal components magnitude and its fractal dimension is correlated with the pathologist assessment of the samples. The fractal dimension is computed applying the box-counting technique. Results show that fractal analysis of ex-vivo fresh tissue samples exhibits separated ranges of fractal dimension that could help classifier combining the fractal results with other morphological features. This contrast trend would help in the discrimination of tissues in the intraoperative context and may serve as a useful adjunct to surgeons.
Vector calculus in non-integer dimensional space and its applications to fractal media
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2015-02-01
We suggest a generalization of vector calculus for the case of non-integer dimensional space. The first and second orders operations such as gradient, divergence, the scalar and vector Laplace operators for non-integer dimensional space are defined. For simplification we consider scalar and vector fields that are independent of angles. We formulate a generalization of vector calculus for rotationally covariant scalar and vector functions. This generalization allows us to describe fractal media and materials in the framework of continuum models with non-integer dimensional space. As examples of application of the suggested calculus, we consider elasticity of fractal materials (fractal hollow ball and fractal cylindrical pipe with pressure inside and outside), steady distribution of heat in fractal media, electric field of fractal charged cylinder. We solve the correspondent equations for non-integer dimensional space models.
NASA Technical Reports Server (NTRS)
Makikallio, T. H.; Hoiber, S.; Kober, L.; Torp-Pedersen, C.; Peng, C. K.; Goldberger, A. L.; Huikuri, H. V.
1999-01-01
A number of new methods have been recently developed to quantify complex heart rate (HR) dynamics based on nonlinear and fractal analysis, but their value in risk stratification has not been evaluated. This study was designed to determine whether selected new dynamic analysis methods of HR variability predict mortality in patients with depressed left ventricular (LV) function after acute myocardial infarction (AMI). Traditional time- and frequency-domain HR variability indexes along with short-term fractal-like correlation properties of RR intervals (exponent alpha) and power-law scaling (exponent beta) were studied in 159 patients with depressed LV function (ejection fraction <35%) after an AMI. By the end of 4-year follow-up, 72 patients (45%) had died and 87 (55%) were still alive. Short-term scaling exponent alpha (1.07 +/- 0.26 vs 0.90 +/- 0.26, p <0.001) and power-law slope beta (-1.35 +/- 0.23 vs -1.44 +/- 0.25, p <0.05) differed between survivors and those who died, but none of the traditional HR variability measures differed between these groups. Among all analyzed variables, reduced scaling exponent alpha (<0.85) was the best univariable predictor of mortality (relative risk 3.17, 95% confidence interval 1.96 to 5.15, p <0.0001), with positive and negative predictive accuracies of 65% and 86%, respectively. In the multivariable Cox proportional hazards analysis, mortality was independently predicted by the reduced exponent alpha (p <0.001) after adjustment for several clinical variables and LV function. A short-term fractal-like scaling exponent was the most powerful HR variability index in predicting mortality in patients with depressed LV function. Reduction in fractal correlation properties implies more random short-term HR dynamics in patients with increased risk of death after AMI.
Numerical Computation of Subsonic Conical Diffuser Flows with Nonuniform Turbulent Inlet Conditions
1977-09-01
Gauss - Seidel Point Iteration Method . . . . . . . . . . . . . . . 7.0 FACTORS AFFECTING THE RATE OF CONVERGENCE OF THE POINT...can be solved in several ways. For simplicity, a standard Gauss - Seidel iteration method is used to obtain the solution . The method updates the...FACTORS AFFECTING THE RATE OF CONVERGENCE OF THE POINT ITERATION ,ŘETHOD The advantage of using the Gauss - Seidel point iteration method to
NASA Astrophysics Data System (ADS)
Wang, Yi-Hong; Wu, Guo-Cheng; Baleanu, Dumitru
2013-10-01
The variational iteration method is newly used to construct various integral equations of fractional order. Some iterative schemes are proposed which fully use the method and the predictor-corrector approach. The fractional Bagley-Torvik equation is then illustrated as an example of multi-order and the results show the efficiency of the variational iteration method's new role.
A novel iterative scheme and its application to differential equations.
Khan, Yasir; Naeem, F; Šmarda, Zdeněk
2014-01-01
The purpose of this paper is to employ an alternative approach to reconstruct the standard variational iteration algorithm II proposed by He, including Lagrange multiplier, and to give a simpler formulation of Adomian decomposition and modified Adomian decomposition method in terms of newly proposed variational iteration method-II (VIM). Through careful investigation of the earlier variational iteration algorithm and Adomian decomposition method, we find unnecessary calculations for Lagrange multiplier and also repeated calculations involved in each iteration, respectively. Several examples are given to verify the reliability and efficiency of the method.
Decomposing Multifractal Crossovers
Nagy, Zoltan; Mukli, Peter; Herman, Peter; Eke, Andras
2017-01-01
Physiological processes—such as, the brain's resting-state electrical activity or hemodynamic fluctuations—exhibit scale-free temporal structuring. However, impacts common in biological systems such as, noise, multiple signal generators, or filtering by transport function, result in multimodal scaling that cannot be reliably assessed by standard analytical tools that assume unimodal scaling. Here, we present two methods to identify breakpoints or crossovers in multimodal multifractal scaling functions. These methods incorporate the robust iterative fitting approach of the focus-based multifractal formalism (FMF). The first approach (moment-wise scaling range adaptivity) allows for a breakpoint-based adaptive treatment that analyzes segregated scale-invariant ranges. The second method (scaling function decomposition method, SFD) is a crossover-based design aimed at decomposing signal constituents from multimodal scaling functions resulting from signal addition or co-sampling, such as, contamination by uncorrelated fractals. We demonstrated that these methods could handle multimodal, mono- or multifractal, and exact or empirical signals alike. Their precision was numerically characterized on ideal signals, and a robust performance was demonstrated on exemplary empirical signals capturing resting-state brain dynamics by near infrared spectroscopy (NIRS), electroencephalography (EEG), and blood oxygen level-dependent functional magnetic resonance imaging (fMRI-BOLD). The NIRS and fMRI-BOLD low-frequency fluctuations were dominated by a multifractal component over an underlying biologically relevant random noise, thus forming a bimodal signal. The crossover between the EEG signal components was found at the boundary between the δ and θ bands, suggesting an independent generator for the multifractal δ rhythm. The robust implementation of the SFD method should be regarded as essential in the seamless processing of large volumes of bimodal fMRI-BOLD imaging data for the topology of multifractal metrics free of the masking effect of the underlying random noise. PMID:28798694
Multi-level structure in the large scale distribution of optically luminous galaxies
NASA Astrophysics Data System (ADS)
Deng, Xin-fa; Deng, Zu-gan; Liu, Yong-zhen
1992-04-01
Fractal dimensions in the large scale distribution of galaxies have been calculated with the method given by Wen et al. [1] Samples are taken from CfA redshift survey in northern and southern galactic [2] hemisphere in our analysis respectively. Results from these two regions are compared with each other. There are significant differences between the distributions in these two regions. However, our analyses do show some common features of the distributions in these two regions. All subsamples show multi-level fractal character distinctly. Combining it with the results from analyses of samples given by IRAS galaxies and results from samples given by redshift survey in pencil-beam fields, [3,4] we suggest that multi-level fractal structure is most likely to be a general and important character in the large scale distribution of galaxies. The possible implications of this character are discussed.
Acoustic emission monitoring and critical failure identification of bridge cable damage
NASA Astrophysics Data System (ADS)
Li, Dongsheng; Ou, Jinping
2008-03-01
Acoustic emission (AE) characteristic parameters of bridge cable damage were obtained on tensile test. The testing results show that the AE parameter analysis method based on correlation figure of count, energy, duration time, amplitude and time can express the whole damage course, and can correctly judge the signal difference of broken wire and unbroken wire. It found the bridge cable AE characteristics aren't apparent before yield deformation, however they are increasing after yield deformation, at the time of breaking, and they reach to maximum. At last, the bridge cable damage evolution law is studied applying the AE characteristic parameter time series fractal theory. In the initial and middle stage of loading, the AE fractal value of bridge cable is unsteady. The fractal value reaches to the minimum at the critical point of failure. According to this changing law, it is approached how to make dynamic assessment and estimation of damage degrees.
Investigation into How 8th Grade Students Define Fractals
ERIC Educational Resources Information Center
Karakus, Fatih
2015-01-01
The analysis of 8th grade students' concept definitions and concept images can provide information about their mental schema of fractals. There is limited research on students' understanding and definitions of fractals. Therefore, this study aimed to investigate the elementary students' definitions of fractals based on concept image and concept…
Fractal 1/f Dynamics Suggest Entanglement of Measurement and Human Performance
ERIC Educational Resources Information Center
Holden, John G.; Choi, Inhyun; Amazeen, Polemnia G.; Van Orden, Guy
2011-01-01
Variability of repeated measurements in human performances exhibits fractal 1/f noise. Yet the relative strength of this fractal pattern varies widely across conditions, tasks, and individuals. Four experiments illustrate how subtle details of the conditions of measurement change the fractal patterns observed across task conditions. The results…
NASA Astrophysics Data System (ADS)
Frame, Michael; Cohen, Nathan
2015-03-01
The Yale University mathematics department hosted a memorial for Benoit on April 29 and 30, 2011. The first day of the meeting consisted of three technical talks on some aspects of fractals, Benoit's principal intellectual legacy. Bernard Sapoval spoke on fractals in physics, Peter Jones on fractals in mathematics, and Nassim Taleb on fractals in finance...
Fractals and the irreducibility of consciousness in plants and animals
Gardiner, John
2013-01-01
In both plants and animals consciousness is fractal. Since fractals can only pass information in one direction it is impossible to extrapolate backward to find the rule that governs the fractal. Thus, similarly, it will be impossible to completely determine the rule or rules that govern consciousness. PMID:23759545
Fractals and the irreducibility of consciousness in plants and animals.
Gardiner, John
2013-08-01
In both plants and animals consciousness is fractal. Since fractals can only pass information in one direction it is impossible to extrapolate backward to find the rule that governs the fractal. Thus, similarly, it will be impossible to completely determine the rule or rules that govern consciousness.
Fractal analysis of time varying data
Vo-Dinh, Tuan; Sadana, Ajit
2002-01-01
Characteristics of time varying data, such as an electrical signal, are analyzed by converting the data from a temporal domain into a spatial domain pattern. Fractal analysis is performed on the spatial domain pattern, thereby producing a fractal dimension D.sub.F. The fractal dimension indicates the regularity of the time varying data.
A deterministic width function model
NASA Astrophysics Data System (ADS)
Puente, C. E.; Sivakumar, B.
Use of a deterministic fractal-multifractal (FM) geometric method to model width functions of natural river networks, as derived distributions of simple multifractal measures via fractal interpolating functions, is reported. It is first demonstrated that the FM procedure may be used to simulate natural width functions, preserving their most relevant features like their overall shape and texture and their observed power-law scaling on their power spectra. It is then shown, via two natural river networks (Racoon and Brushy creeks in the United States), that the FM approach may also be used to closely approximate existing width functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolski, M., E-mail: marcin.wolski@curtin.edu.au; Podsiadlo, P.; Stachowiak, G. W.
Purpose: To develop directional fractal signature methods for the analysis of trabecular bone (TB) texture in hand radiographs. Problems associated with the small size of hand bones and the orientation of fingers were addressed. Methods: An augmented variance orientation transform (AVOT) and a quadrant rotating grid (QRG) methods were developed. The methods calculate fractal signatures (FSs) in different directions. Unlike other methods they have the search region adjusted according to the size of bone region of interest (ROI) to be analyzed and they produce FSs defined with respect to any chosen reference direction, i.e., they work for arbitrary orientation ofmore » fingers. Five parameters at scales ranging from 2 to 14 pixels (depending on image size and method) were derived from rose plots of Hurst coefficients, i.e., FS in dominating roughness (FS{sub Sta}), vertical (FS{sub V}) and horizontal (FS{sub H}) directions, aspect ratio (StrS), and direction signatures (StdS), respectively. The accuracy in measuring surface roughness and isotropy/anisotropy was evaluated using 3600 isotropic and 800 anisotropic fractal surface images of sizes between 20 × 20 and 64 × 64 pixels. The isotropic surfaces had FDs ranging from 2.1 to 2.9 in steps of 0.1, and the anisotropic surfaces had two dominating directions of 30° and 120°. The methods were used to find differences in hand TB textures between 20 matched pairs of subjects with (cases: approximate Kellgren-Lawrence (KL) grade ≥2) and without (controls: approximate KL grade <2) radiographic hand osteoarthritis (OA). The OA Initiative public database was used and 20 × 20 pixel bone ROIs were selected on 5th distal and middle phalanges. The performance of the AVOT and QRG methods was compared against a variance orientation transform (VOT) method developed earlier [M. Wolski, P. Podsiadlo, and G. W. Stachowiak, “Directional fractal signature analysis of trabecular bone: evaluation of different methods to detect early osteoarthritis in knee radiographs,” Proc. Inst. Mech. Eng., Part H 223, 211–236 (2009)]. Results: The AVOT method correctly quantified the isotropic and anisotropic surfaces for all image sizes and scales. Values of FS{sub Sta} were significantly different (P < 0.05) between the isotropic surfaces. Using the VOT and QRG methods no differences were found at large scales for the isotropic surfaces that are smaller than 64 × 64 and 48 × 48 pixels, respectively, and at some scales for the anisotropic surfaces with size 48 × 48 pixels. Compared to controls, using the AVOT and QRG methods the authors found that OA TB textures were less rough (P < 0.05) in the dominating and horizontal directions (i.e., lower FS{sub Sta} and FS{sub H}), rougher in the vertical direction (i.e., higher FS{sub V}) and less anisotropic (i.e., higher StrS) than controls. No differences were found using the VOT method. Conclusions: The AVOT method is well suited for the analysis of bone texture in hand radiographs and it could be potentially useful for early detection and prediction of hand OA.« less
NASA Astrophysics Data System (ADS)
Trujillo Bueno, Javier; Manso Sainz, Rafael
1999-05-01
This paper shows how to generalize to non-LTE polarization transfer some operator splitting methods that were originally developed for solving unpolarized transfer problems. These are the Jacobi-based accelerated Λ-iteration (ALI) method of Olson, Auer, & Buchler and the iterative schemes based on Gauss-Seidel and successive overrelaxation (SOR) iteration of Trujillo Bueno and Fabiani Bendicho. The theoretical framework chosen for the formulation of polarization transfer problems is the quantum electrodynamics (QED) theory of Landi Degl'Innocenti, which specifies the excitation state of the atoms in terms of the irreducible tensor components of the atomic density matrix. This first paper establishes the grounds of our numerical approach to non-LTE polarization transfer by concentrating on the standard case of scattering line polarization in a gas of two-level atoms, including the Hanle effect due to a weak microturbulent and isotropic magnetic field. We begin demonstrating that the well-known Λ-iteration method leads to the self-consistent solution of this type of problem if one initializes using the ``exact'' solution corresponding to the unpolarized case. We show then how the above-mentioned splitting methods can be easily derived from this simple Λ-iteration scheme. We show that our SOR method is 10 times faster than the Jacobi-based ALI method, while our implementation of the Gauss-Seidel method is 4 times faster. These iterative schemes lead to the self-consistent solution independently of the chosen initialization. The convergence rate of these iterative methods is very high; they do not require either the construction or the inversion of any matrix, and the computing time per iteration is similar to that of the Λ-iteration method.
Fractals in physiology and medicine
NASA Technical Reports Server (NTRS)
Goldberger, Ary L.; West, Bruce J.
1987-01-01
The paper demonstrates how the nonlinear concepts of fractals, as applied in physiology and medicine, can provide an insight into the organization of such complex structures as the tracheobronchial tree and heart, as well as into the dynamics of healthy physiological variability. Particular attention is given to the characteristics of computer-generated fractal lungs and heart and to fractal pathologies in these organs. It is shown that alterations in fractal scaling may underlie a number of pathophysiological disturbances, including sudden cardiac death syndromes.
Optimised Iteration in Coupled Monte Carlo - Thermal-Hydraulics Calculations
NASA Astrophysics Data System (ADS)
Hoogenboom, J. Eduard; Dufek, Jan
2014-06-01
This paper describes an optimised iteration scheme for the number of neutron histories and the relaxation factor in successive iterations of coupled Monte Carlo and thermal-hydraulic reactor calculations based on the stochastic iteration method. The scheme results in an increasing number of neutron histories for the Monte Carlo calculation in successive iteration steps and a decreasing relaxation factor for the spatial power distribution to be used as input to the thermal-hydraulics calculation. The theoretical basis is discussed in detail and practical consequences of the scheme are shown, among which a nearly linear increase per iteration of the number of cycles in the Monte Carlo calculation. The scheme is demonstrated for a full PWR type fuel assembly. Results are shown for the axial power distribution during several iteration steps. A few alternative iteration method are also tested and it is concluded that the presented iteration method is near optimal.
NASA Astrophysics Data System (ADS)
Rausch, J.; Vonlanthen, P.; Grobety, B. H.
2014-12-01
The quantification of shape parameters in pyroclasts is fundamental to infer the dominant type of magma fragmentation (magmatic vs. phreatomagmatic), as well as the behavior of volcanic plumes and clouds in the atmosphere. In a case study aiming at reconstructing the fragmentation mechanisms triggering maar eruptions in two geologically and compositionally distinctive volcanic fields (West and East Eifel, Germany), the shapes of a large number of ash particle contours obtained from SEM images were analyzed by a dilation-based fractal method. Volcanic particle contours are pseudo-fractals showing mostly two distinct slopes in Richardson plots related to the fractal dimensions D1 (small-scale "textural" dimension) and D2 (large-scale "morphological" dimension). The validity of the data obtained from 2D sections was tested by analysing SEM micro-CT slices of one particle cut in different orientations and positions. Results for West Eifel maar particles yield large D1 values (> 1.023), resembling typical values of magmatic particles, which are characterized by a complex shape, especially at small scales. In contrast, the D1 values of ash particles from one East Eifel maar deposit are much smaller, coinciding with the fractal dimensions obtained from phreatomagmatic end-member particles. These quantitative morphological analyses suggest that the studied maar eruptions were triggered by two different fragmentation processes: phreatomagmatic in the East Eifel and magmatic in the West Eifel. The application of fractal analysis to quantitatively characterize the shape of pyroclasts and the linking of fractal dimensions to specific fragmentation processes has turned out to be a very promising tool for studying the fragmentation history of any volcanic eruption. The next step is to extend morphological analysis of volcanic particles to 3 dimensions. SEM micro-CT, already applied in this study, offers the required resolution, but is not suitable for the analysis of a large number of particles. Newly released nano CT-scanners, however, allows the simultaneous analysis of a statistically relevant number of particles (in the hundreds range). Preliminary results of a first trial will be presented.
Fractal analysis of polyferric chloride-humic acid (PFC-HA) flocs in different topological spaces.
Wang, Yili; Lu, Jia; Baiyu, Du; Shi, Baoyou; Wang, Dongsheng
2009-01-01
The fractal dimensions in different topological spaces of polyferric chloride-humic acid (PFC-HA) flocs, formed in flocculating different kinds of humic acids (HA) water at different initial pH (9.0, 7.0, 5.0) and PFC dosages, were calculated by effective density-maximum diameter, image analysis, and N2 absorption-desorption methods, respectively. The mass fractal dimensions (Df) of PFC-HA flocs were calculated by bi-logarithm relation of effective density with maximum diameter and Logan empirical equation. The Df value was more than 2.0 at initial pH of 7.0, which was 11% and 13% higher than those at pH 9.0 and 5.0, respectively, indicating the most compact flocs formed in flocculated HA water at initial pH of 7.0. The image analysis for those flocs indicates that after flocculating the HA water at initial pH greater than 7.0 with PFC flocculant, the fractal dimensions of D2 (logA vs. logdL) and D3 (logVsphere VS. logdL) of PFC-HA flocs decreased with the increase of PFC dosages, and PFC-HA flocs showed a gradually looser structure. At the optimum dosage of PFC, the D2 (logA vs. logdL) values of the flocs show 14%-43% difference with their corresponding Df, and they even had different tendency with the change of initial pH values. However, the D2 values of the flocs formed at three different initial pH in HA solution had a same tendency with the corresponding Dr. Based on fractal Frenkel-Halsey-Hill (FHH) adsorption and desorption equations, the pore surface fractal dimensions (Ds) for dried powders of PFC-HA flocs formed in HA water with initial pH 9.0 and 7.0 were all close to 2.9421, and the Ds values of flocs formed at initial pH 5.0 were less than 2.3746. It indicated that the pore surface fractal dimensions of PFC-HA flocs dried powder mainly show the irregularity from the mesopore-size distribution and marcopore-size distribution.
Is the co-seismic slip distribution fractal?
NASA Astrophysics Data System (ADS)
Milliner, Christopher; Sammis, Charles; Allam, Amir; Dolan, James
2015-04-01
Co-seismic along-strike slip heterogeneity is widely observed for many surface-rupturing earthquakes as revealed by field and high-resolution geodetic methods. However, this co-seismic slip variability is currently a poorly understood phenomenon. Key unanswered questions include: What are the characteristics and underlying causes of along-strike slip variability? Do the properties of slip variability change from fault-to-fault, along-strike or at different scales? We cross-correlate optical, pre- and post-event air photos using the program COSI-Corr to measure the near-field, surface deformation pattern of the 1992 Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine earthquakes in high-resolution. We produce the co-seismic slip profiles of both events from over 1,000 displacement measurements and observe consistent along-strike slip variability. Although the observed slip heterogeneity seems apparently complex and disordered, a spectral analysis reveals that the slip distributions are indeed self-affine fractal i.e., slip exhibits a consistent degree of irregularity at all observable length scales, with a 'short-memory' and is not random. We find a fractal dimension of 1.58 and 1.75 for the Landers and Hector Mine earthquakes, respectively, indicating that slip is more heterogeneous for the Hector Mine event. Fractal slip is consistent with both dynamic and quasi-static numerical simulations that use non-planar faults, which in turn causes heterogeneous along-strike stress, and we attribute the observed fractal slip to fault surfaces of fractal roughness. As fault surfaces are known to smooth over geologic time due to abrasional wear and fracturing, we also test whether the fractal properties of slip distributions alters between earthquakes from immature to mature fault systems. We will present results that test this hypothesis by using the optical image correlation technique to measure historic, co-seismic slip distributions of earthquakes from structurally mature, large cumulative displacement faults and compare these slip distributions to those from immature fault systems. Our results have fundamental implications for an understanding of slip heterogeneity and the behavior of the rupture process.
Comparison of methods used to estimate conventional undiscovered petroleum resources: World examples
Ahlbrandt, T.S.; Klett, T.R.
2005-01-01
Various methods for assessing undiscovered oil, natural gas, and natural gas liquid resources were compared in support of the USGS World Petroleum Assessment 2000. Discovery process, linear fractal, parabolic fractal, engineering estimates, PETRIMES, Delphi, and the USGS 2000 methods were compared. Three comparisons of these methods were made in: (1) the Neuquen Basin province, Argentina (different assessors, same input data); (2) provinces in North Africa, Oman, and Yemen (same assessors, different methods); and (3) the Arabian Peninsula, Arabian (Persian) Gulf, and North Sea (different assessors, different methods). A fourth comparison (same assessors, same assessment methods but different geologic models), between results from structural and stratigraphic assessment units in the North Sea used only the USGS 2000 method, and hence compared the type of assessment unit rather than the method. In comparing methods, differences arise from inherent differences in assumptions regarding: (1) the underlying distribution of the parent field population (all fields, discovered and undiscovered), (2) the population of fields being estimated; that is, the entire parent distribution or the undiscovered resource distribution, (3) inclusion or exclusion of large outlier fields; (4) inclusion or exclusion of field (reserve) growth, (5) deterministic or probabilistic models, (6) data requirements, and (7) scale and time frame of the assessment. Discovery process, Delphi subjective consensus, and the USGS 2000 method yield comparable results because similar procedures are employed. In mature areas such as the Neuquen Basin province in Argentina, the linear and parabolic fractal and engineering methods were conservative compared to the other five methods and relative to new reserve additions there since 1995. The PETRIMES method gave the most optimistic estimates in the Neuquen Basin. In less mature areas, the linear fractal method yielded larger estimates relative to other methods. A geologically based model, such as one using the total petroleum system approach, is preferred in that it combines the elements of petroleum source, reservoir, trap and seal with the tectono-stratigraphic history of basin evolution with petroleum resource potential. Care must be taken to demonstrate that homogeneous populations in terms of geology, geologic risk, exploration, and discovery processes are used in the assessment process. The USGS 2000 method (7th Approximation Model, EMC computational program) is robust; that is, it can be used in both mature and immature areas, and provides comparable results when using different geologic models (e.g. stratigraphic or structural) with differing amounts of subdivisions, assessment units, within the total petroleum system. ?? 2005 International Association for Mathematical Geology.
Fractal dimension analysis of complexity in Ligeti piano pieces
NASA Astrophysics Data System (ADS)
Bader, Rolf
2005-04-01
Fractal correlation dimensional analysis has been performed with whole solo piano pieces by Gyrgy Ligeti at every 50ms interval of the pieces. The resulting curves of development of complexity represented by the fractal dimension showed up a very reasonable correlation with the perceptional density of events during these pieces. The seventh piece of Ligeti's ``Musica ricercata'' was used as a test case. Here, each new part of the piece was followed by an increase of the fractal dimension because of the increase of information at the part changes. The second piece ``Galamb borong,'' number seven of the piano Etudes was used, because Ligeti wrote these Etudes after studying fractal geometry. Although the piece is not fractal in the strict mathematical sense, the overall structure of the psychoacoustic event-density as well as the detailed event development is represented by the fractal dimension plot.
a Fractal Permeability Model Coupling Boundary-Layer Effect for Tight Oil Reservoirs
NASA Astrophysics Data System (ADS)
Wang, Fuyong; Liu, Zhichao; Jiao, Liang; Wang, Congle; Guo, Hu
A fractal permeability model coupling non-flowing boundary-layer effect for tight oil reservoirs was proposed. Firstly, pore structures of tight formations were characterized with fractal theory. Then, with the empirical equation of boundary-layer thickness, Hagen-Poiseuille equation and fractal theory, a fractal torturous capillary tube model coupled with boundary-layer effect was developed, and verified with experimental data. Finally, the parameters influencing effective liquid permeability were quantitatively investigated. The research results show that effective liquid permeability of tight formations is not only decided by pore structures, but also affected by boundary-layer distributions, and effective liquid permeability is the function of fluid type, fluid viscosity, pressure gradient, fractal dimension, tortuosity fractal dimension, minimum pore radius and maximum pore radius. For the tight formations dominated with nanoscale pores, boundary-layer effect can significantly reduce effective liquid permeability, especially under low pressure gradient.
Fractal characterization of fracture surfaces in concrete
Saouma, V.E.; Barton, C.C.; Gamaleldin, N.A.
1990-01-01
Fractal geometry is used to characterize the roughness of cracked concrete surfaces through a specially built profilometer, and the fractal dimension is subsequently correlated to the fracture toughness and direction of crack propagation. Preliminary results indicate that the fracture surface is indeed fractal over two orders of magnitudes with a dimension of approximately 1.20. ?? 1990.
Tan, Wanyu; Li, Yongmei; Tan, Kaixuan; Duan, Xianzhe; Liu, Dong; Liu, Zehua
2016-12-01
Radon diffusion and transport through different media is a complex process affected by many factors. In this study, the fractal theories and field covering experiments were used to study the fractal characteristics of particle size distribution (PSD) of six kinds of geotechnical materials (e.g., waste rock, sand, laterite, kaolin, mixture of sand and laterite, and mixture of waste rock and laterite) and their effects on radon diffusion. In addition, the radon diffusion coefficient and diffusion length were calculated. Moreover, new formulas for estimating diffusion coefficient and diffusion length functional of fractal dimension d of PSD were proposed. These results demonstrate the following points: (1) the fractal dimension d of the PSD can be used to characterize the property of soils and rocks in the studies of radon diffusion behavior; (2) the diffusion coefficient and diffusion length decrease with increasing fractal dimension of PSD; and (3) the effectiveness of final covers in reducing radon exhalation of uranium tailings impoundments can be evaluated on the basis of the fractal dimension of PSD of materials.
An iterative method for near-field Fresnel region polychromatic phase contrast imaging
NASA Astrophysics Data System (ADS)
Carroll, Aidan J.; van Riessen, Grant A.; Balaur, Eugeniu; Dolbnya, Igor P.; Tran, Giang N.; Peele, Andrew G.
2017-07-01
We present an iterative method for polychromatic phase contrast imaging that is suitable for broadband illumination and which allows for the quantitative determination of the thickness of an object given the refractive index of the sample material. Experimental and simulation results suggest the iterative method provides comparable image quality and quantitative object thickness determination when compared to the analytical polychromatic transport of intensity and contrast transfer function methods. The ability of the iterative method to work over a wider range of experimental conditions means the iterative method is a suitable candidate for use with polychromatic illumination and may deliver more utility for laboratory-based x-ray sources, which typically have a broad spectrum.
New methods of testing nonlinear hypothesis using iterative NLLS estimator
NASA Astrophysics Data System (ADS)
Mahaboob, B.; Venkateswarlu, B.; Mokeshrayalu, G.; Balasiddamuni, P.
2017-11-01
This research paper discusses the method of testing nonlinear hypothesis using iterative Nonlinear Least Squares (NLLS) estimator. Takeshi Amemiya [1] explained this method. However in the present research paper, a modified Wald test statistic due to Engle, Robert [6] is proposed to test the nonlinear hypothesis using iterative NLLS estimator. An alternative method for testing nonlinear hypothesis using iterative NLLS estimator based on nonlinear hypothesis using iterative NLLS estimator based on nonlinear studentized residuals has been proposed. In this research article an innovative method of testing nonlinear hypothesis using iterative restricted NLLS estimator is derived. Pesaran and Deaton [10] explained the methods of testing nonlinear hypothesis. This paper uses asymptotic properties of nonlinear least squares estimator proposed by Jenrich [8]. The main purpose of this paper is to provide very innovative methods of testing nonlinear hypothesis using iterative NLLS estimator, iterative NLLS estimator based on nonlinear studentized residuals and iterative restricted NLLS estimator. Eakambaram et al. [12] discussed least absolute deviation estimations versus nonlinear regression model with heteroscedastic errors and also they studied the problem of heteroscedasticity with reference to nonlinear regression models with suitable illustration. William Grene [13] examined the interaction effect in nonlinear models disused by Ai and Norton [14] and suggested ways to examine the effects that do not involve statistical testing. Peter [15] provided guidelines for identifying composite hypothesis and addressing the probability of false rejection for multiple hypotheses.
Prediction of pork quality parameters by applying fractals and data mining on MRI.
Caballero, Daniel; Pérez-Palacios, Trinidad; Caro, Andrés; Amigo, José Manuel; Dahl, Anders B; ErsbØll, Bjarne K; Antequera, Teresa
2017-09-01
This work firstly investigates the use of MRI, fractal algorithms and data mining techniques to determine pork quality parameters non-destructively. The main objective was to evaluate the capability of fractal algorithms (Classical Fractal algorithm, CFA; Fractal Texture Algorithm, FTA and One Point Fractal Texture Algorithm, OPFTA) to analyse MRI in order to predict quality parameters of loin. In addition, the effect of the sequence acquisition of MRI (Gradient echo, GE; Spin echo, SE and Turbo 3D, T3D) and the predictive technique of data mining (Isotonic regression, IR and Multiple linear regression, MLR) were analysed. Both fractal algorithm, FTA and OPFTA are appropriate to analyse MRI of loins. The sequence acquisition, the fractal algorithm and the data mining technique seems to influence on the prediction results. For most physico-chemical parameters, prediction equations with moderate to excellent correlation coefficients were achieved by using the following combinations of acquisition sequences of MRI, fractal algorithms and data mining techniques: SE-FTA-MLR, SE-OPFTA-IR, GE-OPFTA-MLR, SE-OPFTA-MLR, with the last one offering the best prediction results. Thus, SE-OPFTA-MLR could be proposed as an alternative technique to determine physico-chemical traits of fresh and dry-cured loins in a non-destructive way with high accuracy. Copyright © 2017. Published by Elsevier Ltd.
The fractal nature of vacuum arc cathode spots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anders, Andre
2005-05-27
Cathode spot phenomena show many features of fractals, for example self-similar patterns in the emitted light and arc erosion traces. Although there have been hints on the fractal nature of cathode spots in the literature, the fractal approach to spot interpretation is underutilized. In this work, a brief review of spot properties is given, touching the differences between spot type 1 (on cathodes surfaces with dielectric layers) and spot type 2 (on metallic, clean surfaces) as well as the known spot fragment or cell structure. The basic properties of self-similarity, power laws, random colored noise, and fractals are introduced. Severalmore » points of evidence for the fractal nature of spots are provided. Specifically power laws are identified as signature of fractal properties, such as spectral power of noisy arc parameters (ion current, arc voltage, etc) obtained by fast Fourier transform. It is shown that fractal properties can be observed down to the cutoff by measurement resolution or occurrence of elementary steps in physical processes. Random walk models of cathode spot motion are well established: they go asymptotically to Brownian motion for infinitesimal step width. The power spectrum of the arc voltage noise falls as 1/f {sup 2}, where f is frequency, supporting a fractal spot model associated with Brownian motion.« less
NASA Astrophysics Data System (ADS)
Krantz, Richard; Douthett, Jack
2009-05-01
Although it is common practice to borrow tools from mathematics to apply to physics or music, it is unusual to use tools developed in music theory to mathematically describe physical phenomena. So called ``Maximally Even Set'' theory fits this unusual case. In this poster, we summarize, by example, the theory of Maximally Even (ME) sets and show how this formalism leads to the distribution of black and white keys on the piano keyboard. We then show how ME sets lead to a generalization of the well-known ``Cycle-of-Fifths'' in music theory. Subsequently, we describe ordering in one-dimensional spin-1/2 anti-ferromagnets using ME sets showing that this description leads to a fractal ``Devil's Staircase'' magnetic phase diagram. Finally, we examine an extension of ME sets, ``Iterated Maximally Even Sets'' that describes chord structure in music.
NASA Astrophysics Data System (ADS)
Krantz, Richard; Douthett, Jack
2009-10-01
Although it is common practice to borrow tools from mathematics to apply to physics or music, it is unusual to use tools developed in music theory to mathematically describe physical phenomena. So called ``Maximally Even Set'' theory fits this unusual case. In this poster, we summarize, by example, the theory of Maximally Even (ME) sets and show how this formalism leads to the distribution of black and white keys on the piano keyboard. We then show how ME sets lead to a generalization of the well-known ``Cycle-of-Fifths'' in music theory. Subsequently, we describe ordering in one-dimensional spin-1/2 anti-ferromagnets using ME sets showing that this description leads to a fractal ``Devil's Staircase'' magnetic phase diagram. Finally, we examine an extension of ME sets, ``Iterated Maximally Even'' sets that describes chord structure in music.
Solution of Cubic Equations by Iteration Methods on a Pocket Calculator
ERIC Educational Resources Information Center
Bamdad, Farzad
2004-01-01
A method to provide students a vision of how they can write iteration programs on an inexpensive programmable pocket calculator, without requiring a PC or a graphing calculator is developed. Two iteration methods are used, successive-approximations and bisection methods.
NASA Astrophysics Data System (ADS)
Gao, Wei; Zakharov, Valery P.; Myakinin, Oleg O.; Bratchenko, Ivan A.; Artemyev, Dmitry N.; Kornilin, Dmitry V.
2015-07-01
Optical coherence tomography (OCT) is usually employed for the measurement of retinal thickness characterizing the structural changes of tissue. However, fractal dimension (FD) could also character the structural changes of tissue. Therefore, fractal dimension changes may provide further information regarding cellular layers and early damage in ocular diseases. We investigated the possibility of OCT in detecting changes in fractal dimension from layered retinal structures. OCT images were obtained from diabetic patients without retinopathy (DM, n = 38 eyes) or mild diabetic retinopathy (MDR, n = 43 eyes) and normal healthy subjects (Controls, n = 74 eyes). Fractal dimension was calculated using the differentiate box counting methodology. We evaluated the usefulness of quantifying fractal dimension of layered structures in the detection of retinal damage. Generalized estimating equations considering within-subject intereye relations were used to test for differences between the groups. A modified p value of <0.001 was considered statistically significant. Receiver operating characteristic (ROC) curves were constructed to describe the ability of fractal dimension to discriminate between the eyes of DM, MDR and healthy eyes. Significant decreases of fractal dimension were observed in all layers in the MDR eyes compared with controls except in the inner nuclear layer (INL). Significant decreases of fractal dimension were also observed in all layers in the MDR eyes compared with DM eyes. The highest area under receiver operating characteristic curve (AUROC) values estimated for fractal dimension were observed for the outer plexiform layer (OPL) and outer segment photoreceptors (OS) when comparing MDR eyes with controls. The highest AUROC value estimated for fractal dimension were also observed for the retinal nerve fiber layer (RNFL) and OS when comparing MDR eyes with DM eyes. Our results suggest that fractal dimension of the intraretinal layers may provide useful information to differentiate pathological from healthy eyes. Further research is warranted to determine how this approach may be used to improve diagnosis of early retinal neurodegeneration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawaguchi, Tomoya; Liu, Yihua; Reiter, Anthony
Here, a one-dimensional non-iterative direct method was employed for normalized crystal truncation rod analysis. The non-iterative approach, utilizing the Kramers–Kronig relation, avoids the ambiguities due to an improper initial model or incomplete convergence in the conventional iterative methods. The validity and limitations of the present method are demonstrated through both numerical simulations and experiments with Pt(111) in a 0.1 M CsF aqueous solution. The present method is compared with conventional iterative phase-retrieval methods.
Kawaguchi, Tomoya; Liu, Yihua; Reiter, Anthony; ...
2018-04-20
Here, a one-dimensional non-iterative direct method was employed for normalized crystal truncation rod analysis. The non-iterative approach, utilizing the Kramers–Kronig relation, avoids the ambiguities due to an improper initial model or incomplete convergence in the conventional iterative methods. The validity and limitations of the present method are demonstrated through both numerical simulations and experiments with Pt(111) in a 0.1 M CsF aqueous solution. The present method is compared with conventional iterative phase-retrieval methods.
NASA Astrophysics Data System (ADS)
Muhiddin, F. A.; Sulaiman, J.
2017-09-01
The aim of this paper is to investigate the effectiveness of the Successive Over-Relaxation (SOR) iterative method by using the fourth-order Crank-Nicolson (CN) discretization scheme to derive a five-point Crank-Nicolson approximation equation in order to solve diffusion equation. From this approximation equation, clearly, it can be shown that corresponding system of five-point approximation equations can be generated and then solved iteratively. In order to access the performance results of the proposed iterative method with the fourth-order CN scheme, another point iterative method which is Gauss-Seidel (GS), also presented as a reference method. Finally the numerical results obtained from the use of the fourth-order CN discretization scheme, it can be pointed out that the SOR iterative method is superior in terms of number of iterations, execution time, and maximum absolute error.
FAST TRACK COMMUNICATION: Weyl law for fat fractals
NASA Astrophysics Data System (ADS)
Spina, María E.; García-Mata, Ignacio; Saraceno, Marcos
2010-10-01
It has been conjectured that for a class of piecewise linear maps the closure of the set of images of the discontinuity has the structure of a fat fractal, that is, a fractal with positive measure. An example of such maps is the sawtooth map in the elliptic regime. In this work we analyze this problem quantum mechanically in the semiclassical regime. We find that the fraction of states localized on the unstable set satisfies a modified fractal Weyl law, where the exponent is given by the exterior dimension of the fat fractal.
Holographic Characterization of Colloidal Fractal Aggregates
NASA Astrophysics Data System (ADS)
Wang, Chen; Cheong, Fook Chiong; Ruffner, David B.; Zhong, Xiao; Ward, Michael D.; Grier, David G.
In-line holographic microscopy images of micrometer-scale fractal aggregates can be interpreted with the Lorenz-Mie theory of light scattering and an effective-sphere model to obtain each aggregate's size and the population-averaged fractal dimension. We demonstrate this technique experimentally using model fractal clusters of polystyrene nanoparticles and fractal protein aggregates composed of bovine serum albumin and bovine pancreas insulin. This technique can characterize several thousand aggregates in ten minutes and naturally distinguishes aggregates from contaminants such as silicone oil droplets. Work supported by the SBIR program of the NSF.
Study on Conversion Between Momentum and Contrarian Based on Fractal Game
NASA Astrophysics Data System (ADS)
Wu, Xu; Song, Guanghui; Deng, Yan; Xu, Lin
2015-06-01
Based on the fractal game which is performed by the majority and the minority, the fractal market theory (FMT) is employed to describe the features of investors' decision-making. Accordingly, the process of fractal games is formed in order to analyze the statistical features of conversion between momentum and contrarian. The result shows that among three fractal game mechanisms, the statistical feature of simulated return rate series is much more similar to log returns on actual series. In addition, the conversion between momentum and contrarian is also extremely similar to real situation, which can reflect the effectiveness of using fractal game in analyzing the conversion between momentum and contrarian. Moreover, it also provides decision-making reference which helps investors develop effective investment strategy.
Numerical study of electromagnetic scattering from one-dimensional nonlinear fractal sea surface
NASA Astrophysics Data System (ADS)
Xie, Tao; He, Chao; William, Perrie; Kuang, Hai-Lan; Zou, Guang-Hui; Chen, Wei
2010-02-01
In recent years, linear fractal sea surface models have been developed for the sea surface in order to establish an electromagnetic backscattering model. Unfortunately, the sea surface is always nonlinear, particularly at high sea states. We present a nonlinear fractal sea surface model and derive an electromagnetic backscattering model. Using this model, we numerically calculate the normalized radar cross section (NRCS) of a nonlinear sea surface. Comparing the averaged NRCS between linear and nonlinear fractal models, we show that the NRCS of a linear fractal sea surface underestimates the NRCS of the real sea surface, especially for sea states with high fractal dimensions, and for dominant ocean surface gravity waves that are either very short or extremely long.
Nie, Guoping; Li, Yong; Wang, Feichi; Wang, Siwen; Hu, Xuehai
2015-01-01
G-protein-coupled receptors (GPCRs) are seven membrane-spanning proteins and regulate many important physiological processes, such as vision, neurotransmission, immune response and so on. GPCRs-related pathways are the targets of a large number of marketed drugs. Therefore, the design of a reliable computational model for predicting GPCRs from amino acid sequence has long been a significant biomedical problem. Chaos game representation (CGR) reveals the fractal patterns hidden in protein sequences, and then fractal dimension (FD) is an important feature of these highly irregular geometries with concise mathematical expression. Here, in order to extract important features from GPCR protein sequences, CGR algorithm, fractal dimension and amino acid composition (AAC) are employed to formulate the numerical features of protein samples. Four groups of features are considered, and each group is evaluated by support vector machine (SVM) and 10-fold cross-validation test. To test the performance of the present method, a new non-redundant dataset was built based on latest GPCRDB database. Comparing the results of numerical experiments, the group of combined features with AAC and FD gets the best result, the accuracy is 99.22% and Matthew's correlation coefficient (MCC) is 0.9845 for identifying GPCRs from non-GPCRs. Moreover, if it is classified as a GPCR, it will be further put into the second level, which will classify a GPCR into one of the five main subfamilies. At this level, the group of combined features with AAC and FD also gets best accuracy 85.73%. Finally, the proposed predictor is also compared with existing methods and shows better performances.
Iterative methods for mixed finite element equations
NASA Technical Reports Server (NTRS)
Nakazawa, S.; Nagtegaal, J. C.; Zienkiewicz, O. C.
1985-01-01
Iterative strategies for the solution of indefinite system of equations arising from the mixed finite element method are investigated in this paper with application to linear and nonlinear problems in solid and structural mechanics. The augmented Hu-Washizu form is derived, which is then utilized to construct a family of iterative algorithms using the displacement method as the preconditioner. Two types of iterative algorithms are implemented. Those are: constant metric iterations which does not involve the update of preconditioner; variable metric iterations, in which the inverse of the preconditioning matrix is updated. A series of numerical experiments is conducted to evaluate the numerical performance with application to linear and nonlinear model problems.
Leapfrog variants of iterative methods for linear algebra equations
NASA Technical Reports Server (NTRS)
Saylor, Paul E.
1988-01-01
Two iterative methods are considered, Richardson's method and a general second order method. For both methods, a variant of the method is derived for which only even numbered iterates are computed. The variant is called a leapfrog method. Comparisons between the conventional form of the methods and the leapfrog form are made under the assumption that the number of unknowns is large. In the case of Richardson's method, it is possible to express the final iterate in terms of only the initial approximation, a variant of the iteration called the grand-leap method. In the case of the grand-leap variant, a set of parameters is required. An algorithm is presented to compute these parameters that is related to algorithms to compute the weights and abscissas for Gaussian quadrature. General algorithms to implement the leapfrog and grand-leap methods are presented. Algorithms for the important special case of the Chebyshev method are also given.
Constancy of the relation between floc size and density in San Francisco Bay
Ganju, N.K.; Schoellhamer, D.H.; Murrell, M.C.; Gartner, J.W.; Wright, S.A.; ,
2007-01-01
The size and density of fine-sediment aggregates, or flocs, govern their transport and depositional properties. While the mass and volume concentrations of flocs can be measured directly or by optical methods, they must be determined simultaneously to gain an accurate density measurement. Results are presented from a tidal cycle study in San Francisco Bay, where mass concentration was determined directly, and volume concentration was measured in 32 logarithmically spaced size bins by laser-diffraction methods. The relation between floc size and density is investigated assuming a constant primary particle size and fractal floc dimension. This relation is validated with measurements from several sites throughout San Francisco Bay. The constancy of this relation implies a uniform primary particle size throughout the Bay, as well as uniform aggregation/disaggregation mechanisms (which modify fractal dimension). The exception to the relation is identified during near-bed measurements, when advected flocs mix with recently resuspended flocs from the bed, which typically have a higher fractal dimension than suspended flocs. The constant relation for suspended flocs simplifies monitoring and numerical modeling of suspended sediment in San Francisco Bay. ?? 2007 Elsevier B.V. All rights reserved.
Segmentation of time series with long-range fractal correlations.
Bernaola-Galván, P; Oliver, J L; Hackenberg, M; Coronado, A V; Ivanov, P Ch; Carpena, P
2012-06-01
Segmentation is a standard method of data analysis to identify change-points dividing a nonstationary time series into homogeneous segments. However, for long-range fractal correlated series, most of the segmentation techniques detect spurious change-points which are simply due to the heterogeneities induced by the correlations and not to real nonstationarities. To avoid this oversegmentation, we present a segmentation algorithm which takes as a reference for homogeneity, instead of a random i.i.d. series, a correlated series modeled by a fractional noise with the same degree of correlations as the series to be segmented. We apply our algorithm to artificial series with long-range correlations and show that it systematically detects only the change-points produced by real nonstationarities and not those created by the correlations of the signal. Further, we apply the method to the sequence of the long arm of human chromosome 21, which is known to have long-range fractal correlations. We obtain only three segments that clearly correspond to the three regions of different G + C composition revealed by means of a multi-scale wavelet plot. Similar results have been obtained when segmenting all human chromosome sequences, showing the existence of previously unknown huge compositional superstructures in the human genome.
Electron tomography and fractal aspects of MoS2 and MoS2/Co spheres.
Ramos, Manuel; Galindo-Hernández, Félix; Arslan, Ilke; Sanders, Toby; Domínguez, José Manuel
2017-09-26
A study was made by a combination of 3D electron tomography reconstruction methods and N 2 adsorption for determining the fractal dimension for nanometric MoS 2 and MoS 2 /Co catalyst particles. DFT methods including Neimarke-Kiselev's method allowed to determine the particle porosity and fractal arrays at the atomic scale for the S-Mo-S(Co) 2D- layers that conform the spherically shaped catalyst particles. A structural and textural correlation was sought by further characterization performed by x-ray Rietveld refinement and Radial Distribution Function (RDF) methods, electron density maps, computational density functional theory methods and nitrogen adsorption methods altogether, for studying the structural and textural features of spherical MoS 2 and MoS 2 /Co particles. Neimark-Kiselev's equations afforded the evaluation of a pore volume variation from 10 to 110 cm 3 /g by cobalt insertion in the MoS 2 crystallographic lattice, which induces the formation of cavities and throats in between of less than 29 nm, with a curvature radius r k < 14.4 nm; typical large needle-like arrays having 20 2D layers units correspond to a model consisting of smooth surfaces within these cavities. Decreasing D P , D B , D I and D M values occur when Co atoms are present in the MoS 2 laminates, which promote the formation of smoother edges and denser surfaces that have an influence on the catalytic properties of the S-Mo-S(Co) system.
Morphological characterization of diesel soot agglomerates based on the Beer-Lambert law
NASA Astrophysics Data System (ADS)
Lapuerta, Magín; Martos, Francisco J.; José Expósito, Juan
2013-03-01
A new method is proposed for the determination of the number of primary particles composing soot agglomerates emitted from diesel engines as well as their individual fractal dimension. The method is based on the Beer-Lambert law and it is applied to micro-photographs taken in high resolution transmission electron microscopy. Differences in the grey levels of the images lead to a more accurate estimation of the geometry of the agglomerate (in this case radius of gyration) than other methods based exclusively on the planar projections of the agglomerates. The method was validated by applying it to different images of the same agglomerate observed from different angles of incidence, and proving that the effect of the angle of incidence is minor, contrary to other methods. Finally, the comparisons with other methods showed that the size, number of primary particles and fractal dimension (the latter depending on the particle size) are usually underestimated when only planar projections of the agglomerates are considered.
High resolution x-ray CMT: Reconstruction methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, J.K.
This paper qualitatively discusses the primary characteristics of methods for reconstructing tomographic images from a set of projections. These reconstruction methods can be categorized as either {open_quotes}analytic{close_quotes} or {open_quotes}iterative{close_quotes} techniques. Analytic algorithms are derived from the formal inversion of equations describing the imaging process, while iterative algorithms incorporate a model of the imaging process and provide a mechanism to iteratively improve image estimates. Analytic reconstruction algorithms are typically computationally more efficient than iterative methods; however, analytic algorithms are available for a relatively limited set of imaging geometries and situations. Thus, the framework of iterative reconstruction methods is better suited formore » high accuracy, tomographic reconstruction codes.« less
NASA Astrophysics Data System (ADS)
Wang, Yang; Wu, Caifang; Zhu, Yanming; Chen, Shangbin; Liu, Shimin; Zhang, Rui
Lacustrine shale gas has received considerable attention and has been playing an important role in unconventional natural gas production in China. In this study, multiple techniques, including total organic carbon (TOC) analysis, X-ray diffraction (XRD) analysis, field emission scanning electron microscopy (FE-SEM), helium pycnometry and low-pressure N2 adsorption have been applied to characterize the pore structure of lacustrine shale of Upper Triassic Yanchang Formation from the Ordos Basin. The results show that organic matter (OM) pores are the most important type dominating the pore system, while interparticle (interP) pores, intraparticle (intraP) and microfractures are also usually observed between or within different minerals. The shapes of OM pores are less complex compared with the other two pore types based on the Image-Pro Plus software analysis. In addition, the specific surface area ranges from 2.76m2/g to 10.26m2/g and the pore volume varies between 0.52m3/100g and 1.31m3/100g. Two fractal dimensions D1 and D2 were calculated using Frenkel-Halsey-Hill (FHH) method, with D1 varying between 2.510 and 2.632, and D2 varying between 2.617 and 2.814. Further investigation indicates that the fractal dimensions exhibit positive correlations with TOC contents, whereas there is no definite relationship observed between fractal dimensions and clay minerals. Meanwhile, the fractal dimensions increase with the increase in specific surface area, and is negatively correlated with the pore size.
Visual tool for estimating the fractal dimension of images
NASA Astrophysics Data System (ADS)
Grossu, I. V.; Besliu, C.; Rusu, M. V.; Jipa, Al.; Bordeianu, C. C.; Felea, D.
2009-10-01
This work presents a new Visual Basic 6.0 application for estimating the fractal dimension of images, based on an optimized version of the box-counting algorithm. Following the attempt to separate the real information from "noise", we considered also the family of all band-pass filters with the same band-width (specified as parameter). The fractal dimension can be thus represented as a function of the pixel color code. The program was used for the study of paintings cracks, as an additional tool which can help the critic to decide if an artistic work is original or not. Program summaryProgram title: Fractal Analysis v01 Catalogue identifier: AEEG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 29 690 No. of bytes in distributed program, including test data, etc.: 4 967 319 Distribution format: tar.gz Programming language: MS Visual Basic 6.0 Computer: PC Operating system: MS Windows 98 or later RAM: 30M Classification: 14 Nature of problem: Estimating the fractal dimension of images. Solution method: Optimized implementation of the box-counting algorithm. Use of a band-pass filter for separating the real information from "noise". User friendly graphical interface. Restrictions: Although various file-types can be used, the application was mainly conceived for the 8-bit grayscale, windows bitmap file format. Running time: In a first approximation, the algorithm is linear.
SU-D-BRA-04: Fractal Dimension Analysis of Edge-Detected Rectal Cancer CTs for Outcome Prediction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, H; Wang, J; Hu, W
2015-06-15
Purpose: To extract the fractal dimension features from edge-detected rectal cancer CTs, and to examine the predictability of fractal dimensions to outcomes of primary rectal cancer patients. Methods: Ninety-seven rectal cancer patients treated with neo-adjuvant chemoradiation were enrolled in this study. CT images were obtained before chemoradiotherapy. The primary lesions of the rectal cancer were delineated by experienced radiation oncologists. These images were extracted and filtered by six different Laplacian of Gaussian (LoG) filters with different filter values (0.5–3.0: from fine to coarse) to achieve primary lesions in different anatomical scales. Edges of the original images were found at zero-crossingsmore » of the filtered images. Three different fractal dimensions (box-counting dimension, Minkowski dimension, mass dimension) were calculated upon the image slice with the largest cross-section of the primary lesion. The significance of these fractal dimensions in survival, recurrence and metastasis were examined by Student’s t-test. Results: For a follow-up time of two years, 18 of 97 patients had experienced recurrence, 24 had metastasis, and 18 were dead. Minkowski dimensions under large filter values (2.0, 2.5, 3.0) were significantly larger (p=0.014, 0.006, 0.015) in patients with recurrence than those without. For metastasis, only box-counting dimensions under a single filter value (2.5) showed differences (p=0.016) between patients with and without. For overall survival, box-counting dimensions (filter values = 0.5, 1.0, 1.5), Minkowski dimensions (filter values = 0.5, 1.5, 2.0, 2,5) and mass dimensions (filter values = 1.5, 2.0) were all significant (p<0.05). Conclusion: It is feasible to extract shape information by edge detection and fractal dimensions analysis in neo-adjuvant rectal cancer patients. This information can be used to prognosis prediction.« less
Fractal density modeling of crustal heterogeneity from the KTB deep hole
NASA Astrophysics Data System (ADS)
Chen, Guoxiong; Cheng, Qiuming
2017-03-01
Fractal or multifractal concepts have significantly enlightened our understanding of crustal heterogeneity. Much attention has focused on 1/f scaling natures of physicochemical heterogeneity of Earth crust from fractal increment perspective. In this study, fractal density model from fractal clustering point of view is used to characterize the scaling behaviors of heterogeneous sources recorded at German Continental Deep Drilling Program (KTB) main hole, and of special contribution is the local and global multifractal analysis revisited by using Haar wavelet transform (HWT). Fractal density modeling of mass accumulation generalizes the unit of rock density from integer (e.g., g/cm3) to real numbers (e.g., g/cmα), so that crustal heterogeneities with respect to source accumulation are quantified by singularity strength of fractal density in α-dimensional space. From that perspective, we found that the bulk densities of metamorphic rocks exhibit fractal properties but have a weak multifractality, decreasing with the depth. The multiscaling natures of chemical logs also have been evidenced, and the observed distinct fractal laws for mineral contents are related to their different geochemical behaviors within complex lithological context. Accordingly, scaling distributions of mineral contents have been recognized as a main contributor to the multifractal natures of heterogeneous density for low-porosity crystalline rocks. This finally allows us to use de Wijs cascade process to explain the mechanism of fractal density. In practice, the proposed local singularity analysis based on HWT is suggested as an attractive high-pass filtering to amplify weak signatures of well logs as well as to delineate microlithological changes.
NASA Astrophysics Data System (ADS)
Sedaghat, A.; Bayat, H.; Safari Sinegani, A. A.
2016-03-01
The saturated hydraulic conductivity ( K s ) of the soil is one of the main soil physical properties. Indirect estimation of this parameter using pedo-transfer functions (PTFs) has received considerable attention. The Purpose of this study was to improve the estimation of K s using fractal parameters of particle and micro-aggregate size distributions in smectitic soils. In this study 260 disturbed and undisturbed soil samples were collected from Guilan province, the north of Iran. The fractal model of Bird and Perrier was used to compute the fractal parameters of particle and micro-aggregate size distributions. The PTFs were developed by artificial neural networks (ANNs) ensemble to estimate K s by using available soil data and fractal parameters. There were found significant correlations between K s and fractal parameters of particles and microaggregates. Estimation of K s was improved significantly by using fractal parameters of soil micro-aggregates as predictors. But using geometric mean and geometric standard deviation of particles diameter did not improve K s estimations significantly. Using fractal parameters of particles and micro-aggregates simultaneously, had the most effect in the estimation of K s . Generally, fractal parameters can be successfully used as input parameters to improve the estimation of K s in the PTFs in smectitic soils. As a result, ANNs ensemble successfully correlated the fractal parameters of particles and micro-aggregates to K s .
NASA Astrophysics Data System (ADS)
Besselink, R.; Stawski, T. M.; Van Driessche, A. E. S.; Benning, L. G.
2016-12-01
Densely packed surface fractal aggregates form in systems with high local volume fractions of particles with very short diffusion lengths, which effectively means that particles have little space to move. However, there are no prior mathematical models, which would describe scattering from such surface fractal aggregates and which would allow the subdivision between inter- and intraparticle interferences of such aggregates. Here, we show that by including a form factor function of the primary particles building the aggregate, a finite size of the surface fractal interfacial sub-surfaces can be derived from a structure factor term. This formalism allows us to define both a finite specific surface area for fractal aggregates and the fraction of particle interfacial sub-surfaces at the perimeter of an aggregate. The derived surface fractal model is validated by comparing it with an ab initio approach that involves the generation of a "brick-in-a-wall" von Koch type contour fractals. Moreover, we show that this approach explains observed scattering intensities from in situ experiments that followed gypsum (CaSO4 ṡ 2H2O) precipitation from highly supersaturated solutions. Our model of densely packed "brick-in-a-wall" surface fractal aggregates may well be the key precursor step in the formation of several types of mosaic- and meso-crystals.
a Fractal Network Model for Fractured Porous Media
NASA Astrophysics Data System (ADS)
Xu, Peng; Li, Cuihong; Qiu, Shuxia; Sasmito, Agus Pulung
2016-04-01
The transport properties and mechanisms of fractured porous media are very important for oil and gas reservoir engineering, hydraulics, environmental science, chemical engineering, etc. In this paper, a fractal dual-porosity model is developed to estimate the equivalent hydraulic properties of fractured porous media, where a fractal tree-like network model is used to characterize the fracture system according to its fractal scaling laws and topological structures. The analytical expressions for the effective permeability of fracture system and fractured porous media, tortuosity, fracture density and fraction are derived. The proposed fractal model has been validated by comparisons with available experimental data and numerical simulation. It has been shown that fractal dimensions for fracture length and aperture have significant effect on the equivalent hydraulic properties of fractured porous media. The effective permeability of fracture system can be increased with the increase of fractal dimensions for fracture length and aperture, while it can be remarkably lowered by introducing tortuosity at large branching angle. Also, a scaling law between the fracture density and fractal dimension for fracture length has been found, where the scaling exponent depends on the fracture number. The present fractal dual-porosity model may shed light on the transport physics of fractured porous media and provide theoretical basis for oil and gas exploitation, underground water, nuclear waste disposal and geothermal energy extraction as well as chemical engineering, etc.
Langevin Equation on Fractal Curves
NASA Astrophysics Data System (ADS)
Satin, Seema; Gangal, A. D.
2016-07-01
We analyze random motion of a particle on a fractal curve, using Langevin approach. This involves defining a new velocity in terms of mass of the fractal curve, as defined in recent work. The geometry of the fractal curve, plays an important role in this analysis. A Langevin equation with a particular model of noise is proposed and solved using techniques of the Fα-Calculus.
ABC of multi-fractal spacetimes and fractional sea turtles
NASA Astrophysics Data System (ADS)
Calcagni, Gianluca
2016-04-01
We clarify what it means to have a spacetime fractal geometry in quantum gravity and show that its properties differ from those of usual fractals. A weak and a strong definition of multi-scale and multi-fractal spacetimes are given together with a sketch of the landscape of multi-scale theories of gravitation. Then, in the context of the fractional theory with q-derivatives, we explore the consequences of living in a multi-fractal spacetime. To illustrate the behavior of a non-relativistic body, we take the entertaining example of a sea turtle. We show that, when only the time direction is fractal, sea turtles swim at a faster speed than in an ordinary world, while they swim at a slower speed if only the spatial directions are fractal. The latter type of geometry is the one most commonly found in quantum gravity. For time-like fractals, relativistic objects can exceed the speed of light, but strongly so only if their size is smaller than the range of particle-physics interactions. We also find new results about log-oscillating measures, the measure presentation and their role in physical observations and in future extensions to nowhere-differentiable stochastic spacetimes.
Fractal dust constrains the collisional history of comets
NASA Astrophysics Data System (ADS)
Fulle, M.; Blum, J.
2017-07-01
The fractal dust particles observed by Rosetta cannot form in the physical conditions observed today in comet 67P/Churyumov-Gerasimenko (67P hereinafter), being instead consistent with models of the pristine dust aggregates coagulated in the solar nebula. Since bouncing collisions in the protoplanetary disc restructure fractals into compact aggregates (pebbles), the only way to preserve fractals in a comet is the gentle gravitational collapse of a mixture of pebbles and fractals, which must occur before their mutual collision speeds overcome ≈1 m s-1. This condition fixes the pebble radius to ≲1 cm, as confirmed by Comet Nucleus Infrared and Visible Analyser onboard Philae. Here, we show that the flux of fractal particles measured by Rosetta constrains the 67P nucleus in a random packing of cm-sized pebbles, with all the voids among them filled by fractal particles. This structure is inconsistent with any catastrophic collision, which would have compacted or dispersed most fractals, thus leaving empty most voids in the reassembled nucleus. Comets are less numerous than current estimates, as confirmed by lacking small craters on Pluto and Charon. Bilobate comets accreted at speeds <1 m s-1 from cometesimals born in the same disc stream.
Fractal Geometry in the Arts: AN Overview across the Different Cultures
NASA Astrophysics Data System (ADS)
Sala, Nicoletta
Fractal, in mathematics, is a geometric shape that is complex and detailed in structure at any level of magnification. The word "fractal" was coined less than thirty years ago by one of history's most creative and mathematicians, Benoit Mandelbrot, whose work, The Fractal Geometry of Nature, first introduced and explained concepts underlying this new vision of the geometry. Although other mathematical thinkers like Georg Cantor (1845-1918), Felix Hausdorff (1868-1942), Gaston Julia (1893-1978), Helge von Koch (1870-1924), Giuseppe Peano (1858-1932), Lewis Richardson (1891-1953), Waclaw Sierpinski (1882-1969) and others had attained isolated insights of fractal understanding, such ideas were largely ignored until Mandelbrot's genius forged them at a single blow into a gorgeously coherent and fascinating discipline. Fractal geometry is applied in different field now: engineering, physics, chemistry, biology, and architecture. The aim of this paper is to introduce an approach where the arts are analysed using a fractal point of view.
Fractal continuum model for tracer transport in a porous medium.
Herrera-Hernández, E C; Coronado, M; Hernández-Coronado, H
2013-12-01
A model based on the fractal continuum approach is proposed to describe tracer transport in fractal porous media. The original approach has been extended to treat tracer transport and to include systems with radial and uniform flow, which are cases of interest in geoscience. The models involve advection due to the fluid motion in the fractal continuum and dispersion whose mathematical expression is taken from percolation theory. The resulting advective-dispersive equations are numerically solved for continuous and for pulse tracer injection. The tracer profile and the tracer breakthrough curve are evaluated and analyzed in terms of the fractal parameters. It has been found in this work that anomalous transport frequently appears, and a condition on the fractal parameter values to predict when sub- or superdiffusion might be expected has been obtained. The fingerprints of fractality on the tracer breakthrough curve in the explored parameter window consist of an early tracer breakthrough and long tail curves for the spherical and uniform flow cases, and symmetric short tailed curves for the radial flow case.
NASA Astrophysics Data System (ADS)
Namazi, Hamidreza; Kulish, Vladimir V.; Akrami, Amin
2016-05-01
One of the major challenges in vision research is to analyze the effect of visual stimuli on human vision. However, no relationship has been yet discovered between the structure of the visual stimulus, and the structure of fixational eye movements. This study reveals the plasticity of human fixational eye movements in relation to the ‘complex’ visual stimulus. We demonstrated that the fractal temporal structure of visual dynamics shifts towards the fractal dynamics of the visual stimulus (image). The results showed that images with higher complexity (higher fractality) cause fixational eye movements with lower fractality. Considering the brain, as the main part of nervous system that is engaged in eye movements, we analyzed the governed Electroencephalogram (EEG) signal during fixation. We have found out that there is a coupling between fractality of image, EEG and fixational eye movements. The capability observed in this research can be further investigated and applied for treatment of different vision disorders.
Comparison results on preconditioned SOR-type iterative method for Z-matrices linear systems
NASA Astrophysics Data System (ADS)
Wang, Xue-Zhong; Huang, Ting-Zhu; Fu, Ying-Ding
2007-09-01
In this paper, we present some comparison theorems on preconditioned iterative method for solving Z-matrices linear systems, Comparison results show that the rate of convergence of the Gauss-Seidel-type method is faster than the rate of convergence of the SOR-type iterative method.
NASA Astrophysics Data System (ADS)
Quan, Yun-Yun; Jiang, Pei-Guo; Zhang, Li-Zhi
2014-09-01
Superhydrophobic films fabricated on copper and aluminum surfaces have potential applications to solve water condensation and frosting problems on chilled ceiling system. The rough surfaces of copper foils obtained by solution immersion method exhibit the existence of fractal structures. The hydrophobicity of copper surfaces is enhanced with fractal structures. The relationship between contact angles (CAs) and the fractal dimensions (FDs) for surface roughness of Cu samples with different etching time is investigated. Moisture condensation and frosting experiments on the two kinds of surfaces are conducted in natural environment under different chilling temperatures. During condensation, micro water condensate droplets drift down the surface like dust floating in the air. Several larger condensate droplets about 1-2 mm appear on the substrates after 3 h condensation. This continuous jumping motion of the condensate will be beneficial in delaying frosting. The results demonstrate that dense nanostructures on copper surfaces are superior to loose lattice-like microstructures on aluminum surfaces for preventing the formation of large droplets condensate and in delaying the icing. The large water droplets of 2-3 mm in diameter that would form on a common metal foil are sharply decreased to dozens of microns and small droplets are formed on a modified surface, which will then drift down like a fog.
NASA Astrophysics Data System (ADS)
Zhang, Meggie
2013-03-01
Our research discovered logical inconsistence in physics and mathematics. Through reviewing the entire history of physics and mathematics we gained new understanding about our earlier assumptions, which led to a new interpretation of the wave function and quantum physics. We found the existing experimental data supported a 4-dimensional fractal structure of matter and the universe, we found the formation of wave, matter and the universe through the same process started from a single particle, and the process itself is a fractal that contributed to the diversity of matter. We also found physical evidence supporting a not-continuous fractal space structure. The new understanding also led to a reinterpretation of nuclear collision theories, based on this we succeeded a room-temperature low-energy photon-photon collision (RT-LE-PPC), this method allowed us to observe a topological disconnected fractal structure and succeeded a simulation of the formation of matter and the universe which provided evidences for the nature of light and matter and led to a quantum structure interpretation, and we found the formation of the universe started from two particles. However this work cannot be understood with current physics theories due to the logical problems in the current physics theories.
Fractal analysis of radiologists' visual scanning pattern in screening mammography
NASA Astrophysics Data System (ADS)
Alamudun, Folami T.; Yoon, Hong-Jun; Hudson, Kathy; Morin-Ducote, Garnetta; Tourassi, Georgia
2015-03-01
Several researchers have investigated radiologists' visual scanning patterns with respect to features such as total time examining a case, time to initially hit true lesions, number of hits, etc. The purpose of this study was to examine the complexity of the radiologists' visual scanning pattern when viewing 4-view mammographic cases, as they typically do in clinical practice. Gaze data were collected from 10 readers (3 breast imaging experts and 7 radiology residents) while reviewing 100 screening mammograms (24 normal, 26 benign, 50 malignant). The radiologists' scanpaths across the 4 mammographic views were mapped to a single 2-D image plane. Then, fractal analysis was applied on the composite 4- view scanpaths. For each case, the complexity of each radiologist's scanpath was measured using fractal dimension estimated with the box counting method. The association between the fractal dimension of the radiologists' visual scanpath, case pathology, case density, and radiologist experience was evaluated using fixed effects ANOVA. ANOVA showed that the complexity of the radiologists' visual search pattern in screening mammography is dependent on case specific attributes (breast parenchyma density and case pathology) as well as on reader attributes, namely experience level. Visual scanning patterns are significantly different for benign and malignant cases than for normal cases. There is also substantial inter-observer variability which cannot be explained only by experience level.
Thin-film fractal nanostructures formed by electrical breakdown
NASA Astrophysics Data System (ADS)
Tadtaev, P. O.; Bobkov, A. A.; Borodzyulya, V. F.; Lamkin, I. A.; Mihailov, I. I.; Moshnikov, V. A.; Permyakov, N. V.; Solomonov, A. V.; Sudar, N. T.; Tarasov, S. A.
2017-11-01
This is a study of the fractal micro- and nanostructures formation caused by the electrical breakdown of the indium-tin oxide (ITO) covered with various organic coatings. The samples were created by covering a glass substrate with a 1 to 10um-thick layer of indium-tin oxide. Some of the samples were then coated with organic layers of polycarbonate, poly(methyl methacrylate) and others. In order to create high local electrical field densities a special setup based on a eutectic GaIn liquid needle was created: it allowed for the contact area of 60um in diameter and application of the step voltage swept from 20 to 300 volts. The setup also contained a spectrometer for measuring the spectra of the breakdown optical effects. The results showed that the destruction of ITO led to the formation of the spiral fractal nanostructures, parameters of which depended on the thickness of the layer and the presence of the organic cover. In case of the latter, polymer coating was shown to visualize and zoom the topography of the nanostructures which might be used as a method of “polymer photography” for such fractal formations. The analysis of the spectra showed their dependence on the parameters of the structures which proves the possibility of conducting optical diagnostics of the created structures.
Perceptual and Physiological Responses to Jackson Pollock's Fractals
Taylor, Richard P.; Spehar, Branka; Van Donkelaar, Paul; Hagerhall, Caroline M.
2011-01-01
Fractals have been very successful in quantifying the visual complexity exhibited by many natural patterns, and have captured the imagination of scientists and artists alike. Our research has shown that the poured patterns of the American abstract painter Jackson Pollock are also fractal. This discovery raises an intriguing possibility – are the visual characteristics of fractals responsible for the long-term appeal of Pollock's work? To address this question, we have conducted 10 years of scientific investigation of human response to fractals and here we present, for the first time, a review of this research that examines the inter-relationship between the various results. The investigations include eye tracking, visual preference, skin conductance, and EEG measurement techniques. We discuss the artistic implications of the positive perceptual and physiological responses to fractal patterns. PMID:21734876
Fractal fluctuations in gaze speed visual search.
Stephen, Damian G; Anastas, Jason
2011-04-01
Visual search involves a subtle coordination of visual memory and lower-order perceptual mechanisms. Specifically, the fluctuations in gaze may provide support for visual search above and beyond what may be attributed to memory. Prior research indicates that gaze during search exhibits fractal fluctuations, which allow for a wide sampling of the field of view. Fractal fluctuations constitute a case of fast diffusion that may provide an advantage in exploration. We present reanalyses of eye-tracking data collected by Stephen and Mirman (Cognition, 115, 154-165, 2010) for single-feature and conjunction search tasks. Fluctuations in gaze during these search tasks were indeed fractal. Furthermore, the degree of fractality predicted decreases in reaction time on a trial-by-trial basis. We propose that fractality may play a key role in explaining the efficacy of perceptual exploration.
A conservation law, entropy principle and quantization of fractal dimensions in hadron interactions
NASA Astrophysics Data System (ADS)
Zborovský, I.
2018-04-01
Fractal self-similarity of hadron interactions demonstrated by the z-scaling of inclusive spectra is studied. The scaling regularity reflects fractal structure of the colliding hadrons (or nuclei) and takes into account general features of fragmentation processes expressed by fractal dimensions. The self-similarity variable z is a function of the momentum fractions x1 and x2 of the colliding objects carried by the interacting hadron constituents and depends on the momentum fractions ya and yb of the scattered and recoil constituents carried by the inclusive particle and its recoil counterpart, respectively. Based on entropy principle, new properties of the z-scaling concept are found. They are conservation of fractal cumulativity in hadron interactions and quantization of fractal dimensions characterizing hadron structure and fragmentation processes at a constituent level.
A Fractal Dimension Survey of Active Region Complexity
NASA Technical Reports Server (NTRS)
McAteer, R. T. James; Gallagher, Peter; Ireland, Jack
2005-01-01
A new approach to quantifying the magnetic complexity of active regions using a fractal dimension measure is presented. This fully-automated approach uses full disc MDI magnetograms of active regions from a large data set (2742 days of the SoHO mission; 9342 active regions) to compare the calculated fractal dimension to both Mount Wilson classification and flare rate. The main Mount Wilson classes exhibit no distinct fractal dimension distribution, suggesting a self-similar nature of all active regions. Solar flare productivity exhibits an increase in both the frequency and GOES X-ray magnitude of flares from regions with higher fractal dimensions. Specifically a lower threshold fractal dimension of 1.2 and 1.25 exists as a necessary, but not sufficient, requirement for an active region to produce M- and X-class flares respectively .
Li, Haichen; Yaron, David J
2016-11-08
A least-squares commutator in the iterative subspace (LCIIS) approach is explored for accelerating self-consistent field (SCF) calculations. LCIIS is similar to direct inversion of the iterative subspace (DIIS) methods in that the next iterate of the density matrix is obtained as a linear combination of past iterates. However, whereas DIIS methods find the linear combination by minimizing a sum of error vectors, LCIIS minimizes the Frobenius norm of the commutator between the density matrix and the Fock matrix. This minimization leads to a quartic problem that can be solved iteratively through a constrained Newton's method. The relationship between LCIIS and DIIS is discussed. Numerical experiments suggest that LCIIS leads to faster convergence than other SCF convergence accelerating methods in a statistically significant sense, and in a number of cases LCIIS leads to stable SCF solutions that are not found by other methods. The computational cost involved in solving the quartic minimization problem is small compared to the typical cost of SCF iterations and the approach is easily integrated into existing codes. LCIIS can therefore serve as a powerful addition to SCF convergence accelerating methods in computational quantum chemistry packages.
NASA Astrophysics Data System (ADS)
Liu, Shuai
Fractal represents a special feature of nature and functional objects. However, fractal based computing can be applied to many research domains because of its fixed property resisted deformation, variable parameters and many unpredictable changes. Theoretical research and practical application of fractal based computing have been hotspots for 30 years and will be continued. There are many pending issues awaiting solutions in this domain, thus this thematic issue containing 14 papers publishes the state-of-the-art developments in theorem and application of fractal based computing, including mathematical analysis and novel engineering applications. The topics contain fractal and multifractal features in application and solution of nonlinear odes and equation.
Cascade model for fluvial geomorphology
NASA Technical Reports Server (NTRS)
Newman, W. I.; Turcotte, D. L.
1990-01-01
Erosional landscapes are generally scale invariant and fractal. Spectral studies provide quantitative confirmation of this statement. Linear theories of erosion will not generate scale-invariant topography. In order to explain the fractal behavior of landscapes a modified Fourier series has been introduced that is the basis for a renormalization approach. A nonlinear dynamical model has been introduced for the decay of the modified Fourier series coefficients that yield a fractal spectra. It is argued that a physical basis for this approach is that a fractal (or nearly fractal) distribution of storms (floods) continually renews erosional features on all scales.
Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, Stephen F.
This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/.
NASA Technical Reports Server (NTRS)
Harper, David William (Inventor)
2017-01-01
A structural support having fractal-stiffening and method of fabricating the support is presented where an optimized location of at least three nodes is predetermined prior to fabricating the structural support where a first set of webs is formed on one side of the support and joined to the nodes to form a first pocket region. A second set of webs is formed within the first pocket region forming a second pocket region where the height of the first set of webs extending orthogonally from the side of the support is greater than the second set of webs extending orthogonally from the support.
Art of war hidden in Kolmogorov's equations.
Lauren, Michael K; McIntosh, Gregory C; Perry, Nigel; Moffat, James
2007-03-01
Here we discuss how Kolmogorov's work on turbulence can be used as the inspiration for a new description of battlefield dynamics. The method presented may also represent a new way of describing self-organizing dynamical systems, in place of conventional differential equation approaches. The key finding is that the rate of attrition in a battle appears to be a function of the fractal dimension of the opposing forces. It is suggested that, this being the case, the fractal dimension could be used as a surrogate to represent the organizational efficiency of one force relative to another, commonly called Command and Control.
Multi-Scale Fractal Analysis of Image Texture and Pattern
NASA Technical Reports Server (NTRS)
Emerson, Charles W.
1998-01-01
Fractals embody important ideas of self-similarity, in which the spatial behavior or appearance of a system is largely independent of scale. Self-similarity is defined as a property of curves or surfaces where each part is indistinguishable from the whole, or where the form of the curve or surface is invariant with respect to scale. An ideal fractal (or monofractal) curve or surface has a constant dimension over all scales, although it may not be an integer value. This is in contrast to Euclidean or topological dimensions, where discrete one, two, and three dimensions describe curves, planes, and volumes. Theoretically, if the digital numbers of a remotely sensed image resemble an ideal fractal surface, then due to the self-similarity property, the fractal dimension of the image will not vary with scale and resolution. However, most geographical phenomena are not strictly self-similar at all scales, but they can often be modeled by a stochastic fractal in which the scaling and self-similarity properties of the fractal have inexact patterns that can be described by statistics. Stochastic fractal sets relax the monofractal self-similarity assumption and measure many scales and resolutions in order to represent the varying form of a phenomenon as a function of local variables across space. In image interpretation, pattern is defined as the overall spatial form of related features, and the repetition of certain forms is a characteristic pattern found in many cultural objects and some natural features. Texture is the visual impression of coarseness or smoothness caused by the variability or uniformity of image tone or color. A potential use of fractals concerns the analysis of image texture. In these situations it is commonly observed that the degree of roughness or inexactness in an image or surface is a function of scale and not of experimental technique. The fractal dimension of remote sensing data could yield quantitative insight on the spatial complexity and information content contained within these data. A software package known as the Image Characterization and Modeling System (ICAMS) was used to explore how fractal dimension is related to surface texture and pattern. The ICAMS software was verified using simulated images of ideal fractal surfaces with specified dimensions. The fractal dimension for areas of homogeneous land cover in the vicinity of Huntsville, Alabama was measured to investigate the relationship between texture and resolution for different land covers.
Time Series Analysis OF SAR Image Fractal Maps: The Somma-Vesuvio Volcanic Complex Case Study
NASA Astrophysics Data System (ADS)
Pepe, Antonio; De Luca, Claudio; Di Martino, Gerardo; Iodice, Antonio; Manzo, Mariarosaria; Pepe, Susi; Riccio, Daniele; Ruello, Giuseppe; Sansosti, Eugenio; Zinno, Ivana
2016-04-01
The fractal dimension is a significant geophysical parameter describing natural surfaces representing the distribution of the roughness over different spatial scale; in case of volcanic structures, it has been related to the specific nature of materials and to the effects of active geodynamic processes. In this work, we present the analysis of the temporal behavior of the fractal dimension estimates generated from multi-pass SAR images relevant to the Somma-Vesuvio volcanic complex (South Italy). To this aim, we consider a Cosmo-SkyMed data-set of 42 stripmap images acquired from ascending orbits between October 2009 and December 2012. Starting from these images, we generate a three-dimensional stack composed by the corresponding fractal maps (ordered according to the acquisition dates), after a proper co-registration. The time-series of the pixel-by-pixel estimated fractal dimension values show that, over invariant natural areas, the fractal dimension values do not reveal significant changes; on the contrary, over urban areas, it correctly assumes values outside the natural surfaces fractality range and show strong fluctuations. As a final result of our analysis, we generate a fractal map that includes only the areas where the fractal dimension is considered reliable and stable (i.e., whose standard deviation computed over the time series is reasonably small). The so-obtained fractal dimension map is then used to identify areas that are homogeneous from a fractal viewpoint. Indeed, the analysis of this map reveals the presence of two distinctive landscape units corresponding to the Mt. Vesuvio and Gran Cono. The comparison with the (simplified) geological map clearly shows the presence in these two areas of volcanic products of different age. The presented fractal dimension map analysis demonstrates the ability to get a figure about the evolution degree of the monitored volcanic edifice and can be profitably extended in the future to other volcanic systems with very distinctive characteristics, with the aim to perform land classification, such as the identification of areas characterized by similar soil use, slopes and exposures.
Krylov subspace iterative methods for boundary element method based near-field acoustic holography.
Valdivia, Nicolas; Williams, Earl G
2005-02-01
The reconstruction of the acoustic field for general surfaces is obtained from the solution of a matrix system that results from a boundary integral equation discretized using boundary element methods. The solution to the resultant matrix system is obtained using iterative regularization methods that counteract the effect of noise on the measurements. These methods will not require the calculation of the singular value decomposition, which can be expensive when the matrix system is considerably large. Krylov subspace methods are iterative methods that have the phenomena known as "semi-convergence," i.e., the optimal regularization solution is obtained after a few iterations. If the iteration is not stopped, the method converges to a solution that generally is totally corrupted by errors on the measurements. For these methods the number of iterations play the role of the regularization parameter. We will focus our attention to the study of the regularizing properties from the Krylov subspace methods like conjugate gradients, least squares QR and the recently proposed Hybrid method. A discussion and comparison of the available stopping rules will be included. A vibrating plate is considered as an example to validate our results.
Fractal Interrelationships in Field and Seismic Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, T.H.; Dominic, Jovita; Halverson, Joel
1997-10-01
Size scaling interrelationships are evaluated in this study using a fractal model. Fractal models of several geologic variables are examined and include fracture patterns, reflection travel times, structural relief, drainage, topographic relief and active fault patterns. The fractal properties of structural relief inferred from seismic data and structural cross sections provide a quantitative means to characterize and compare complex structural patterns. Studies were conducted using seismic data from the Granny Creek oil field in the Appalachian Plateau. Previous studies of the field reveal that subtle detached structures present on the limb of a larger structure are associated with enhanced productionmore » from the field. Vertical increases of fractal dimension across the zone of detachment provide a measure of the extent to which detachment has occurred. The increases of fractal dimension are greatest in the more productive areas of the field. A result with equally important ramifications is that fracture systems do not appear to be intrinsically fractal as is often suggested in the literature. While examples of nearly identical patterns can be found at different scales supporting the idea of self-similarity, these examples are often taken from different areas and from different lithologies. Examination of fracture systems at different scales in the Valley and Ridge Province suggest that their distribution become increasingly sparse with scale reduction, and therefore are dissimilar or non-fractal. Box counting data in all cases failed to yield a fractal regime. The results obtained from this analysis bring into question the general applicability of reservoir simulations employing fractal models of fracture distribution. The same conclusions were obtained from the analysis of 1D fracture patterns such as those that might appear in a horizontal well.« less
Hu, Kun; Meijer, Johanna H.; Shea, Steven A.; vanderLeest, Henk Tjebbe; Pittman-Polletta, Benjamin; Houben, Thijs; van Oosterhout, Floor; Deboer, Tom; Scheer, Frank A. J. L.
2012-01-01
The mammalian central circadian pacemaker (the suprachiasmatic nucleus, SCN) contains thousands of neurons that are coupled through a complex network of interactions. In addition to the established role of the SCN in generating rhythms of ∼24 hours in many physiological functions, the SCN was recently shown to be necessary for normal self-similar/fractal organization of motor activity and heart rate over a wide range of time scales—from minutes to 24 hours. To test whether the neural network within the SCN is sufficient to generate such fractal patterns, we studied multi-unit neural activity of in vivo and in vitro SCNs in rodents. In vivo SCN-neural activity exhibited fractal patterns that are virtually identical in mice and rats and are similar to those in motor activity at time scales from minutes up to 10 hours. In addition, these patterns remained unchanged when the main afferent signal to the SCN, namely light, was removed. However, the fractal patterns of SCN-neural activity are not autonomous within the SCN as these patterns completely broke down in the isolated in vitro SCN despite persistence of circadian rhythmicity. Thus, SCN-neural activity is fractal in the intact organism and these fractal patterns require network interactions between the SCN and extra-SCN nodes. Such a fractal control network could underlie the fractal regulation observed in many physiological functions that involve the SCN, including motor control and heart rate regulation. PMID:23185285
Nested Conjugate Gradient Algorithm with Nested Preconditioning for Non-linear Image Restoration.
Skariah, Deepak G; Arigovindan, Muthuvel
2017-06-19
We develop a novel optimization algorithm, which we call Nested Non-Linear Conjugate Gradient algorithm (NNCG), for image restoration based on quadratic data fitting and smooth non-quadratic regularization. The algorithm is constructed as a nesting of two conjugate gradient (CG) iterations. The outer iteration is constructed as a preconditioned non-linear CG algorithm; the preconditioning is performed by the inner CG iteration that is linear. The inner CG iteration, which performs preconditioning for outer CG iteration, itself is accelerated by an another FFT based non-iterative preconditioner. We prove that the method converges to a stationary point for both convex and non-convex regularization functionals. We demonstrate experimentally that proposed method outperforms the well-known majorization-minimization method used for convex regularization, and a non-convex inertial-proximal method for non-convex regularization functional.
An implicit-iterative solution of the heat conduction equation with a radiation boundary condition
NASA Technical Reports Server (NTRS)
Williams, S. D.; Curry, D. M.
1977-01-01
For the problem of predicting one-dimensional heat transfer between conducting and radiating mediums by an implicit finite difference method, four different formulations were used to approximate the surface radiation boundary condition while retaining an implicit formulation for the interior temperature nodes. These formulations are an explicit boundary condition, a linearized boundary condition, an iterative boundary condition, and a semi-iterative boundary method. The results of these methods in predicting surface temperature on the space shuttle orbiter thermal protection system model under a variety of heating rates were compared. The iterative technique caused the surface temperature to be bounded at each step. While the linearized and explicit methods were generally more efficient, the iterative and semi-iterative techniques provided a realistic surface temperature response without requiring step size control techniques.
Comparing direct and iterative equation solvers in a large structural analysis software system
NASA Technical Reports Server (NTRS)
Poole, E. L.
1991-01-01
Two direct Choleski equation solvers and two iterative preconditioned conjugate gradient (PCG) equation solvers used in a large structural analysis software system are described. The two direct solvers are implementations of the Choleski method for variable-band matrix storage and sparse matrix storage. The two iterative PCG solvers include the Jacobi conjugate gradient method and an incomplete Choleski conjugate gradient method. The performance of the direct and iterative solvers is compared by solving several representative structural analysis problems. Some key factors affecting the performance of the iterative solvers relative to the direct solvers are identified.
Upwind relaxation methods for the Navier-Stokes equations using inner iterations
NASA Technical Reports Server (NTRS)
Taylor, Arthur C., III; Ng, Wing-Fai; Walters, Robert W.
1992-01-01
A subsonic and a supersonic problem are respectively treated by an upwind line-relaxation algorithm for the Navier-Stokes equations using inner iterations to accelerate steady-state solution convergence and thereby minimize CPU time. While the ability of the inner iterative procedure to mimic the quadratic convergence of the direct solver method is attested to in both test problems, some of the nonquadratic inner iterative results are noted to have been more efficient than the quadratic. In the more successful, supersonic test case, inner iteration required only about 65 percent of the line-relaxation method-entailed CPU time.
NASA Astrophysics Data System (ADS)
Lin, Wei; Li, Xizhe; Yang, Zhengming; Lin, Lijun; Xiong, Shengchun; Wang, Zhiyuan; Wang, Xiangyang; Xiao, Qianhua
Based on the basic principle of the porosity method in image segmentation, considering the relationship between the porosity of the rocks and the fractal characteristics of the pore structures, a new improved image segmentation method was proposed, which uses the calculated porosity of the core images as a constraint to obtain the best threshold. The results of comparative analysis show that the porosity method can best segment images theoretically, but the actual segmentation effect is deviated from the real situation. Due to the existence of heterogeneity and isolated pores of cores, the porosity method that takes the experimental porosity of the whole core as the criterion cannot achieve the desired segmentation effect. On the contrary, the new improved method overcomes the shortcomings of the porosity method, and makes a more reasonable binary segmentation for the core grayscale images, which segments images based on the actual porosity of each image by calculated. Moreover, the image segmentation method based on the calculated porosity rather than the measured porosity also greatly saves manpower and material resources, especially for tight rocks.
Niu, Xiang; Gao, Peng; Wang, Bing; Liu, Yu
2015-12-03
Based on fractal theory, the fractal characteristics of soil particle size distribution (PSD) and soil water retention curve (WRC) under the five vegetation types were studied in the mountainous land of Northern China. Results showed that: (1) the fractal parameters of soil PSD and soil WRC varied greatly under each different vegetation type, with Quercus acutissima Carr. and Robina pseudoacacia Linn. mixed plantation (QRM) > Pinus thunbergii Parl. and Pistacia chinensis Bunge mixed plantation (PPM) > Pinus thunbergii Parl. (PTP) > Juglans rigia Linn. (JRL) > abandoned grassland (ABG); (2) the soil fractal dimensions of woodlands (QRM, PPM, PTP and JRL) were significantly higher than that in ABG, and mixed forests (QRM and PPM) were higher than that in pure forests (PTP and JRL); (3) the fractal dimension of soil was positively correlated with the silt and clay content but negatively correlated with the sand content; and (4) the fractal dimension of soil PSD was positively correlated with the soil WRC. These indicated that the fractal parameters of soil PSD and soil WRC could act as quantitative indices to reflect the physical properties of the soil, and could be used to describe the influences of the Return Farmland to Forests Projects on soil structure.
NASA Astrophysics Data System (ADS)
Najafi, A.; Hossienkhani, H.
2017-10-01
Since the fractal cosmology has been created in early universe, therefore their models were mostly isotropic. The majority of previous studies had been based on FRW universe, while in the early universe, the best model for describing fractal cosmology is actually the anisotropic universe. Therefore in this work, by assuming the anisotropic universe, the cosmological implications of ghost and generalized ghost dark energy models with dark matter in fractal cosmology has been discussed. Moreover, the different kinds of dark energy models such as quintessence and tachyon field, with the generalized ghost dark energy in fractal universe has been investigated. In addition, we have reconstructed the Hubble parameter, H, the energy density, ρ, the deceleration parameter, q, the equations of state parameter, {ω }{{}D}, for both ghost and generalized ghost dark energy models. This correspondence allows us to reconstruct the potential and the dynamics of a fractal canonical scalar field according to the evolution of generalized ghost dark energy density. Eventually, thermodynamics of the cosmological apparent horizon in fractal cosmology was investigated and the validity of the Generalized second law of thermodynamics (GSLT) have been examined in an anisotropic universe. The results show the influence of the anisotropy on the GSLT of thermodynamics in a fractal cosmology.
Evolving random fractal Cantor superlattices for the infrared using a genetic algorithm
Bossard, Jeremy A.; Lin, Lan; Werner, Douglas H.
2016-01-01
Ordered and chaotic superlattices have been identified in Nature that give rise to a variety of colours reflected by the skin of various organisms. In particular, organisms such as silvery fish possess superlattices that reflect a broad range of light from the visible to the UV. Such superlattices have previously been identified as ‘chaotic’, but we propose that apparent ‘chaotic’ natural structures, which have been previously modelled as completely random structures, should have an underlying fractal geometry. Fractal geometry, often described as the geometry of Nature, can be used to mimic structures found in Nature, but deterministic fractals produce structures that are too ‘perfect’ to appear natural. Introducing variability into fractals produces structures that appear more natural. We suggest that the ‘chaotic’ (purely random) superlattices identified in Nature are more accurately modelled by multi-generator fractals. Furthermore, we introduce fractal random Cantor bars as a candidate for generating both ordered and ‘chaotic’ superlattices, such as the ones found in silvery fish. A genetic algorithm is used to evolve optimal fractal random Cantor bars with multiple generators targeting several desired optical functions in the mid-infrared and the near-infrared. We present optimized superlattices demonstrating broadband reflection as well as single and multiple pass bands in the near-infrared regime. PMID:26763335
Niu, Xiang; Gao, Peng; Wang, Bing; Liu, Yu
2015-01-01
Based on fractal theory, the fractal characteristics of soil particle size distribution (PSD) and soil water retention curve (WRC) under the five vegetation types were studied in the mountainous land of Northern China. Results showed that: (1) the fractal parameters of soil PSD and soil WRC varied greatly under each different vegetation type, with Quercus acutissima Carr. and Robina pseudoacacia Linn. mixed plantation (QRM) > Pinus thunbergii Parl. and Pistacia chinensis Bunge mixed plantation (PPM) > Pinus thunbergii Parl. (PTP) > Juglans rigia Linn. (JRL) > abandoned grassland (ABG); (2) the soil fractal dimensions of woodlands (QRM, PPM, PTP and JRL) were significantly higher than that in ABG, and mixed forests (QRM and PPM) were higher than that in pure forests (PTP and JRL); (3) the fractal dimension of soil was positively correlated with the silt and clay content but negatively correlated with the sand content; and (4) the fractal dimension of soil PSD was positively correlated with the soil WRC. These indicated that the fractal parameters of soil PSD and soil WRC could act as quantitative indices to reflect the physical properties of the soil, and could be used to describe the influences of the Return Farmland to Forests Projects on soil structure. PMID:26633458
Chamousis, Rachel L.; Chang, Lilian; Watterson, William J.; ...
2014-08-21
Living organisms use fractal structures to optimize material and energy transport across regions of differing size scales. Here we test the effect of fractal silver electrodes on light distribution and charge collection in organic semiconducting polymer films made of P3HT and PCBM. The semiconducting polymers were deposited onto electrochemically grown fractal silver structures (5000 nm × 500 nm; fractal dimension of 1.71) with PEDOT:PSS as hole-selective interlayer. The fractal silver electrodes appear black due to increased horizontal light scattering, which is shown to improve light absorption in the polymer. According to surface photovoltage spectroscopy, fractal silver electrodes outperform the flatmore » electrodes when the BHJ film thickness is large (>400 nm, 0.4 V photovoltage). Photocurrents of up to 200 microamperes cm -2 are generated from the bulk heterojunction (BHJ) photoelectrodes under 435 nm LED (10–20 mW cm -2) illumination in acetonitrile solution containing 0.005 M ferrocenium hexafluorophosphate as the electron acceptor. In conclusion, the low IPCE values (0.3–0.7%) are due to slow electron transfer to ferrocenium ion and due to shunting along the large metal–polymer interface. Overall, this work provides an initial assessment of the potential of fractal electrodes for organic photovoltaic cells.« less
NASA Astrophysics Data System (ADS)
Fan, Yue-Nong; Cheng, Yong-Zhi; Nie, Yan; Wang, Xian; Gong, Rong-Zhou
2013-06-01
We propose an ultrathin wide-band metamaterial absorber (MA) based on a Minkowski (MIK) fractal frequency selective surface and resistive film. This absorber consists of a periodic arrangement of dielectric substrates sandwiched with an MIK fractal loop structure electric resonator and a resistive film. The finite element method is used to simulate and analyze the absorption of the MA. Compared with the MA-backed copper film, the designed MA-backed resistive film exhibits an absorption of 90% at a frequency region of 2 GHz-20 GHz. The power loss density distribution of the MA is further illustrated to explain the mechanism of the proposed MA. Simulated absorptions at different incidence cases indicate that this absorber is polarization-insensitive and wide-angled. Finally, further simulated results indicate that the surface resistance of the resistive film and the dielectric constant of the substrate can affect the absorbing property of the MA. This absorber may be used in many military fields.
Objective Auscultation of TCM Based on Wavelet Packet Fractal Dimension and Support Vector Machine.
Yan, Jian-Jun; Guo, Rui; Wang, Yi-Qin; Liu, Guo-Ping; Yan, Hai-Xia; Xia, Chun-Ming; Shen, Xiaojing
2014-01-01
This study was conducted to illustrate that auscultation features based on the fractal dimension combined with wavelet packet transform (WPT) were conducive to the identification the pattern of syndromes of Traditional Chinese Medicine (TCM). The WPT and the fractal dimension were employed to extract features of auscultation signals of 137 patients with lung Qi-deficient pattern, 49 patients with lung Yin-deficient pattern, and 43 healthy subjects. With these features, the classification model was constructed based on multiclass support vector machine (SVM). When all auscultation signals were trained by SVM to decide the patterns of TCM syndromes, the overall recognition rate of model was 79.49%; when male and female auscultation signals were trained, respectively, to decide the patterns, the overall recognition rate of model reached 86.05%. The results showed that the methods proposed in this paper were effective to analyze auscultation signals, and the performance of model can be greatly improved when the distinction of gender was considered.
Objective Auscultation of TCM Based on Wavelet Packet Fractal Dimension and Support Vector Machine
Yan, Jian-Jun; Wang, Yi-Qin; Liu, Guo-Ping; Yan, Hai-Xia; Xia, Chun-Ming; Shen, Xiaojing
2014-01-01
This study was conducted to illustrate that auscultation features based on the fractal dimension combined with wavelet packet transform (WPT) were conducive to the identification the pattern of syndromes of Traditional Chinese Medicine (TCM). The WPT and the fractal dimension were employed to extract features of auscultation signals of 137 patients with lung Qi-deficient pattern, 49 patients with lung Yin-deficient pattern, and 43 healthy subjects. With these features, the classification model was constructed based on multiclass support vector machine (SVM). When all auscultation signals were trained by SVM to decide the patterns of TCM syndromes, the overall recognition rate of model was 79.49%; when male and female auscultation signals were trained, respectively, to decide the patterns, the overall recognition rate of model reached 86.05%. The results showed that the methods proposed in this paper were effective to analyze auscultation signals, and the performance of model can be greatly improved when the distinction of gender was considered. PMID:24883068
NASA Astrophysics Data System (ADS)
Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.
2013-07-01
We use state-of-the-art public-domain Fortran codes based on the T-matrix method to calculate orientation and ensemble averaged scattering matrix elements for a variety of morphologically complex black carbon (BC) and BC-containing aerosol particles, with a special emphasis on the linear depolarization ratio (LDR). We explain theoretically the quasi-Rayleigh LDR peak at side-scattering angles typical of low-density soot fractals and conclude that the measurement of this feature enables one to evaluate the compactness state of BC clusters and trace the evolution of low-density fluffy fractals into densely packed aggregates. We show that small backscattering LDRs measured with ground-based, airborne, and spaceborne lidars for fresh smoke generally agree with the values predicted theoretically for fluffy BC fractals and densely packed near-spheroidal BC aggregates. To reproduce higher lidar LDRs observed for aged smoke, one needs alternative particle models such as shape mixtures of BC spheroids or cylinders.
NASA Astrophysics Data System (ADS)
Wang, Ya-fei; Huang, Qun-xing; Wang, Fei; Chi, Yong; Yan, Jian-hua
2018-01-01
A novel method to evaluate the quantitative effects of soot morphology and incident wavelength on the measurement accuracy of soot volume fraction, by the laser extinction (LE) technique is proposed in this paper. The results indicate that the traditional LE technique would overestimate soot volume fraction if the effects of morphology and wavelength are not considered. Before the agglomeration of isolated soot primary particles, the overestimation of the LE technique is in the range of 2-20%, and rises with increasing primary particle diameter and with decreasing incident wavelength. When isolated primary particles are agglomerated into fractal soot aggregates, the overestimation would exceed 30%, and rise with increasing primary particle number per soot aggregate, fractal dimension and fractal prefactor and with decreasing incident wavelength to a maximum value of 55%. Finally, based on these results above, the existing formula of the LE technique gets modified, and the modification factor is 0.65-0.77.
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.
2013-01-01
We use state-of-the-art public-domain Fortran codes based on the T-matrix method to calculate orientation and ensemble averaged scattering matrix elements for a variety of morphologically complex black carbon (BC) and BC-containing aerosol particles, with a special emphasis on the linear depolarization ratio (LDR). We explain theoretically the quasi-Rayleigh LDR peak at side-scattering angles typical of low-density soot fractals and conclude that the measurement of this feature enables one to evaluate the compactness state of BC clusters and trace the evolution of low-density fluffy fractals into densely packed aggregates. We show that small backscattering LDRs measured with groundbased, airborne, and spaceborne lidars for fresh smoke generally agree with the values predicted theoretically for fluffy BC fractals and densely packed near-spheroidal BC aggregates. To reproduce higher lidar LDRs observed for aged smoke, one needs alternative particle models such as shape mixtures of BC spheroids or cylinders.
NASA Astrophysics Data System (ADS)
Li, Minghui; Hayward, Gordon
2018-04-01
Over the recent decades, there has been a growing demand on reliable and robust non-destructive evaluation (NDE) of structures and components made from coarse grained materials such as alloys, stainless steels, carbon-reinforced composites and concrete; however, when inspected using ultrasound, the flaw echoes are usually contaminated by high-level, time-invariant, and correlated grain noise originating from the microstructure and grain boundaries, leading to pretty low signal-to-noise ratio (SNR) and the flaw information being obscured or completely hidden by the grain noise. In this paper, the fractal dimension analysis of the A-scan echoes is investigated as a measure of complexity of the time series to distinguish the echoes originating from the real defects and the grain noise, and then the normalized fractal dimension coefficients are applied to the amplitudes as the weighting factor to enhance the SNR and defect detection. Experiments on industrial samples of the mild steel and the stainless steel are conducted and the results confirm the great benefits of the method.
Zhang, Jiong; Bekkers, Erik; Abbasi-Sureshjani, Samaneh
2016-01-01
The retinal fractal dimension (FD) is a measure of vasculature branching pattern complexity. FD has been considered as a potential biomarker for the detection of several diseases like diabetes and hypertension. However, conflicting findings were found in the reported literature regarding the association between this biomarker and diseases. In this paper, we examine the stability of the FD measurement with respect to (1) different vessel annotations obtained from human observers, (2) automatic segmentation methods, (3) various regions of interest, (4) accuracy of vessel segmentation methods, and (5) different imaging modalities. Our results demonstrate that the relative errors for the measurement of FD are significant and FD varies considerably according to the image quality, modality, and the technique used for measuring it. Automated and semiautomated methods for the measurement of FD are not stable enough, which makes FD a deceptive biomarker in quantitative clinical applications. PMID:27703803
Huang, Fan; Dashtbozorg, Behdad; Zhang, Jiong; Bekkers, Erik; Abbasi-Sureshjani, Samaneh; Berendschot, Tos T J M; Ter Haar Romeny, Bart M
2016-01-01
The retinal fractal dimension (FD) is a measure of vasculature branching pattern complexity. FD has been considered as a potential biomarker for the detection of several diseases like diabetes and hypertension. However, conflicting findings were found in the reported literature regarding the association between this biomarker and diseases. In this paper, we examine the stability of the FD measurement with respect to (1) different vessel annotations obtained from human observers, (2) automatic segmentation methods, (3) various regions of interest, (4) accuracy of vessel segmentation methods, and (5) different imaging modalities. Our results demonstrate that the relative errors for the measurement of FD are significant and FD varies considerably according to the image quality, modality, and the technique used for measuring it. Automated and semiautomated methods for the measurement of FD are not stable enough, which makes FD a deceptive biomarker in quantitative clinical applications.
Jingbo, Xia; Silan, Zhang; Feng, Shi; Huijuan, Xiong; Xuehai, Hu; Xiaohui, Niu; Zhi, Li
2011-09-07
To evaluate the possibility of an unknown protein to be a resistant gene against Xanthomonas oryzae pv. oryzae, a different mode of pseudo amino acid composition (PseAAC) is proposed to formulate the protein samples by integrating the amino acid composition, as well as the Chaos games representation (CGR) method. Some numerical comparisons of triangle, quadrangle and 12-vertex polygon CGR are carried to evaluate the efficiency of using these fractal figures in classifiers. The numerical results show that among the three polygon methods, triangle method owns a good fractal visualization and performs the best in the classifier construction. By using triangle + 12-vertex polygon CGR as the mathematical feature, the classifier achieves 98.13% in Jackknife test and MCC achieves 0.8462. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fractal Risk Assessment of ISS Propulsion Module in Meteoroid and Orbital Debris Environments
NASA Technical Reports Server (NTRS)
Mog, Robert A.
2001-01-01
A unique and innovative risk assessment of the International Space Station (ISS) Propulsion Module is conducted using fractal modeling of the Module's response to the meteoroid and orbital debris environments. Both the environment models and structural failure modes due to the resultant hypervelocity impact phenomenology, as well as Module geometry, are investigated for fractal applicability. The fractal risk assessment methodology could produce a greatly simplified alternative to current methodologies, such as BUMPER analyses, while maintaining or increasing the number of complex scenarios that can be assessed. As a minimum, this innovative fractal approach will provide an independent assessment of existing methodologies in a unique way.
Thermodynamics of photons on fractals.
Akkermans, Eric; Dunne, Gerald V; Teplyaev, Alexander
2010-12-03
A thermodynamical treatment of a massless scalar field (a photon) confined to a fractal spatial manifold leads to an equation of state relating pressure to internal energy, PV(s) = U/d(s), where d(s) is the spectral dimension and V(s) defines the "spectral volume." For regular manifolds, V(s) coincides with the usual geometric spatial volume, but on a fractal this is not necessarily the case. This is further evidence that on a fractal, momentum space can have a different dimension than position space. Our analysis also provides a natural definition of the vacuum (Casimir) energy of a fractal. We suggest ways that these unusual properties might be probed experimentally.
Fractals in biology and medicine
NASA Technical Reports Server (NTRS)
Havlin, S.; Buldyrev, S. V.; Goldberger, A. L.; Mantegna, R. N.; Ossadnik, S. M.; Peng, C. K.; Simons, M.; Stanley, H. E.
1995-01-01
Our purpose is to describe some recent progress in applying fractal concepts to systems of relevance to biology and medicine. We review several biological systems characterized by fractal geometry, with a particular focus on the long-range power-law correlations found recently in DNA sequences containing noncoding material. Furthermore, we discuss the finding that the exponent alpha quantifying these long-range correlations ("fractal complexity") is smaller for coding than for noncoding sequences. We also discuss the application of fractal scaling analysis to the dynamics of heartbeat regulation, and report the recent finding that the normal heart is characterized by long-range "anticorrelations" which are absent in the diseased heart.
AIR-MRF: Accelerated iterative reconstruction for magnetic resonance fingerprinting.
Cline, Christopher C; Chen, Xiao; Mailhe, Boris; Wang, Qiu; Pfeuffer, Josef; Nittka, Mathias; Griswold, Mark A; Speier, Peter; Nadar, Mariappan S
2017-09-01
Existing approaches for reconstruction of multiparametric maps with magnetic resonance fingerprinting (MRF) are currently limited by their estimation accuracy and reconstruction time. We aimed to address these issues with a novel combination of iterative reconstruction, fingerprint compression, additional regularization, and accelerated dictionary search methods. The pipeline described here, accelerated iterative reconstruction for magnetic resonance fingerprinting (AIR-MRF), was evaluated with simulations as well as phantom and in vivo scans. We found that the AIR-MRF pipeline provided reduced parameter estimation errors compared to non-iterative and other iterative methods, particularly at shorter sequence lengths. Accelerated dictionary search methods incorporated into the iterative pipeline reduced the reconstruction time at little cost of quality. Copyright © 2017 Elsevier Inc. All rights reserved.
Atomized scan strategy for high definition for VR application
NASA Astrophysics Data System (ADS)
Huang, Shuping; Ran, Feng; Ji, Yuan; Chen, Wendong
2017-10-01
Silicon-based OLED (Organic Light Emitting Display) microdisplay technology begins to attract people's attention in the emerging VR and AR devices. The high display frame refresh rate is an important solution to alleviate the dizziness in VR applications. Traditional display circuit drivers use the analog method or the digital PWM method that follow the serial scan order from the first pixel to the last pixel by using the shift registers. This paper proposes a novel atomized scan strategy based on the digital fractal scan strategy using the pseudo-random scan order. It can be used to realize the high frame refresh rate with the moderate pixel clock frequency in the high definition OLED microdisplay. The linearity of the gray level is also improved compared with the Z fractal scan strategy.
Olejarczyk, Elzbieta
2007-01-01
Functional magnetic resonance imaging (fMRI) allows to investigate the amplitude of activation in neural networks of brain. In this work we present the results of fMRI time-series analysis performed to identify the process of dysregulation of dynamic interaction between different limbic system regions in healthy adults in state of increased anxiety. The results obtain for 65 healthy adults using nonlinear dynamics methods like fractal dimension confirm the key roles of the bilateral amygdala, bilateral hippocampus, BA9 (dorsolateral prefrontal cortex), and BA45 (ventromedial prefrontal cortex) in modulating emotional response in healthy adults. For different regions of interest (ROIs) significant correlations were found not only for the neutral respective rest but also for fear and angry contrasts.
Lee, Wen-Li; Chang, Koyin; Hsieh, Kai-Sheng
2016-09-01
Segmenting lung fields in a chest radiograph is essential for automatically analyzing an image. We present an unsupervised method based on multiresolution fractal feature vector. The feature vector characterizes the lung field region effectively. A fuzzy c-means clustering algorithm is then applied to obtain a satisfactory initial contour. The final contour is obtained by deformable models. The results show the feasibility and high performance of the proposed method. Furthermore, based on the segmentation of lung fields, the cardiothoracic ratio (CTR) can be measured. The CTR is a simple index for evaluating cardiac hypertrophy. After identifying a suspicious symptom based on the estimated CTR, a physician can suggest that the patient undergoes additional extensive tests before a treatment plan is finalized.
NASA Astrophysics Data System (ADS)
Böbel, A.; Knapek, C. A.; Räth, C.
2018-05-01
Experiments of the recrystallization processes in two-dimensional complex plasmas are analyzed to rigorously test a recently developed scale-free phase transition theory. The "fractal-domain-structure" (FDS) theory is based on the kinetic theory of Frenkel. It assumes the formation of homogeneous domains, separated by defect lines, during crystallization and a fractal relationship between domain area and boundary length. For the defect number fraction and system energy a scale-free power-law relation is predicted. The long-range scaling behavior of the bond-order correlation function shows clearly that the complex plasma phase transitions are not of the Kosterlitz, Thouless, Halperin, Nelson, and Young type. Previous preliminary results obtained by counting the number of dislocations and applying a bond-order metric for structural analysis are reproduced. These findings are supplemented by extending the use of the bond-order metric to measure the defect number fraction and furthermore applying state-of-the-art analysis methods, allowing a systematic testing of the FDS theory with unprecedented scrutiny: A morphological analysis of lattice structure is performed via Minkowski tensor methods. Minkowski tensors form a complete family of additive, motion covariant and continuous morphological measures that are sensitive to nonlinear properties. The FDS theory is rigorously confirmed and predictions of the theory are reproduced extremely well. The predicted scale-free power-law relation between defect fraction number and system energy is verified for one more order of magnitude at high energies compared to the inherently discontinuous bond-order metric. It is found that the fractal relation between crystalline domain area and circumference is independent of the experiment, the particular Minkowski tensor method, and the particular choice of parameters. Thus, the fractal relationship seems to be inherent to two-dimensional phase transitions in complex plasmas. Minkowski tensor analysis turns out to be a powerful tool for investigations of crystallization processes. It is capable of revealing nonlinear local topological properties, however, still provides easily interpretable results founded on a solid mathematical framework.
Chaos, Fractals, and Polynomials.
ERIC Educational Resources Information Center
Tylee, J. Louis; Tylee, Thomas B.
1996-01-01
Discusses chaos theory; linear algebraic equations and the numerical solution of polynomials, including the use of the Newton-Raphson technique to find polynomial roots; fractals; search region and coordinate systems; convergence; and generating color fractals on a computer. (LRW)
A stress sensitivity model for the permeability of porous media based on bi-dispersed fractal theory
NASA Astrophysics Data System (ADS)
Tan, X.-H.; Liu, C.-Y.; Li, X.-P.; Wang, H.-Q.; Deng, H.
A stress sensitivity model for the permeability of porous media based on bidispersed fractal theory is established, considering the change of the flow path, the fractal geometry approach and the mechanics of porous media. It is noted that the two fractal parameters of the porous media construction perform differently when the stress changes. The tortuosity fractal dimension of solid cluster DcTσ become bigger with an increase of stress. However, the pore fractal dimension of solid cluster Dcfσ and capillary bundle Dpfσ remains the same with an increase of stress. The definition of normalized permeability is introduced for the analyzation of the impacts of stress sensitivity on permeability. The normalized permeability is related to solid cluster tortuosity dimension, pore fractal dimension, solid cluster maximum diameter, Young’s modulus and Poisson’s ratio. Every parameter has clear physical meaning without the use of empirical constants. Predictions of permeability of the model is accordant with the obtained experimental data. Thus, the proposed model can precisely depict the flow of fluid in porous media under stress.
Diagnostics of multi-fractality of magnetized plasma inside coronal holes and quiet sun areas
NASA Astrophysics Data System (ADS)
Abramenko, Valentyna
Turbulent and multi-fractal properties of magnetized plasma in solar Coronal Holes (CHs) and Quiet Sun (QS) photosphere were explored using high-resolution magnetograms measured with the New Solar Telescope (NST) at the Big Bear Solar Observatory (BBSO, USA), Hinode/SOT and SDO/HMI instruments. Distribution functions of size and magnetic flux measured for small-scale magnetic elements follow the log-normal law, which implies multi-fractal organization of the magnetic field and the absence of a unique power law for all scales. The magnetograms show multi-fractality in CHs on scales 400 - 10000 km, which becomes better pronounced as the spatial resolution of data improves. Photospheric granulation measured with NST exhibits multi-fractal properties on very small scales of 50 - 600 km. While multi-fractal nature of solar active regions is well known, newly established multi-fractality of weakest magnetic fields on the solar surface, i.e., in CHs and QS, leads us to a conclusion that the entire variety of solar magnetic fields is generated by a unique nonlinear dynamical process.
Microtopographic Inspection and Fractal Analysis of Skin Neoplasia
NASA Astrophysics Data System (ADS)
Costa, Manuel F. M.; Hipolito, Alberto Valencia; Gutierrez, Gustavo Fidel; Chanona, Jorge; Gallegos, Eva Ramón
2008-04-01
Early detection of skin cancer is fundamental to a successful treatment. Changes in the shape, including the relief, of skin lesions are an indicator of a possible malignity. Optical microtopographic inspection of skin lesions can be used to identify diagnostic patterns of benign and malign skin' lesions. Statistical parameters like the mean roughness (Ra) may allow the discrimination between different types of lesions and degree of malignity. Fractal analysis of bi-dimensional and 3D images of skin lesions can validate or complement that assessment by calculation of its fractal dimensions (FD). On the study herein reported the microtopographic inspection of the skin lesions were performed using the optical triangulation based microtopographer developed at the Physics Department of the University of Minho, MICROTOP.03.MFC. The patients that participated in this research work were men and women older than 15 years with the clinical and histopathology diagnoses of: melanoma, basocellular carcinoma, epidermoide carcinoma, actinic keratosis, keratoacantosis and benign nevus. Latex impressions of the lesions were taken and microtopographically analyzed. Characteristic information for each type of studied lesion was obtained. For melanoma it was observed that on the average these tumors present an increased roughness of around 67 percent compared to the roughness of the healthy skin. This feature allows the distinction from other tumors as basocellular carcinoma (were the roughness increase was in the average of 49 percent) and benign lesions as the epidermoide cyst (37 percent) or the seborrhea keratosis (4 percent). Tumor size and roughness are directly proportional to the grade of malignality. The characterization of the fractal geometry of 2D (histological slides) and 3D images of skin lesions was performed by obtaining its FD evaluated by means of the Box counting method. Results obtained showed that the average fractal dimension of histological slide images (FDh) corresponding to some neoplasia is higher (1.334+/-0.072) than those for healthy skin (1.091+/-0.082). A significant difference between the fractal dimensions of neoplasia and healhty skin (>0.001) was registered. The FD of microtopography maps (FDm) can also distinguish between healthy and malignant tissue in general (2.277+/-0.070 to 2.309+/-0.040), but not discriminate the different types of skin neoplasias. The combination of the rugometric evaluation and fractal geometry characterization provides valuable information about the malignity of skin lesions and type of lesion.
Kinematic variability, fractal dynamics and local dynamic stability of treadmill walking
2011-01-01
Background Motorized treadmills are widely used in research or in clinical therapy. Small kinematics, kinetics and energetics changes induced by Treadmill Walking (TW) as compared to Overground Walking (OW) have been reported in literature. The purpose of the present study was to characterize the differences between OW and TW in terms of stride-to-stride variability. Classical (Standard Deviation, SD) and non-linear (fractal dynamics, local dynamic stability) methods were used. In addition, the correlations between the different variability indexes were analyzed. Methods Twenty healthy subjects performed 10 min TW and OW in a random sequence. A triaxial accelerometer recorded trunk accelerations. Kinematic variability was computed as the average SD (MeanSD) of acceleration patterns among standardized strides. Fractal dynamics (scaling exponent α) was assessed by Detrended Fluctuation Analysis (DFA) of stride intervals. Short-term and long-term dynamic stability were estimated by computing the maximal Lyapunov exponents of acceleration signals. Results TW did not modify kinematic gait variability as compared to OW (multivariate T2, p = 0.87). Conversely, TW significantly modified fractal dynamics (t-test, p = 0.01), and both short and long term local dynamic stability (T2 p = 0.0002). No relationship was observed between variability indexes with the exception of significant negative correlation between MeanSD and dynamic stability in TW (3 × 6 canonical correlation, r = 0.94). Conclusions Treadmill induced a less correlated pattern in the stride intervals and increased gait stability, but did not modify kinematic variability in healthy subjects. This could be due to changes in perceptual information induced by treadmill walking that would affect locomotor control of the gait and hence specifically alter non-linear dependencies among consecutive strides. Consequently, the type of walking (i.e. treadmill or overground) is important to consider in each protocol design. PMID:21345241