Science.gov

Sample records for fractal structure filaments

  1. Fractal structures and processes

    SciTech Connect

    Bassingthwaighte, J.B.; Beard, D.A.; Percival, D.B.; Raymond, G.M.

    1996-06-01

    Fractals and chaos are closely related. Many chaotic systems have fractal features. Fractals are self-similar or self-affine structures, which means that they look much of the same when magnified or reduced in scale over a reasonably large range of scales, at least two orders of magnitude and preferably more (Mandelbrot, 1983). The methods for estimating their fractal dimensions or their Hurst coefficients, which summarize the scaling relationships and their correlation structures, are going through a rapid evolutionary phase. Fractal measures can be regarded as providing a useful statistical measure of correlated random processes. They also provide a basis for analyzing recursive processes in biology such as the growth of arborizing networks in the circulatory system, airways, or glandular ducts. {copyright} {ital 1996 American Institute of Physics.}

  2. Modeling of fractal intermediates in the self-assembly of silicatein filaments

    NASA Astrophysics Data System (ADS)

    Murr, Meredith; Thakur, Gunjan; Mezic, Igor; Morse, Daniel

    2006-03-01

    Silicateins are proteins with catalytic, structure-directing activity that are responsible for silica biosynthesis in certain sponges, Self-assembly of the silicatein monomers and oligomers was previously shown experimentally (Murr and Morse 2005) to form fibrous structures through the formation of diffusion limited, fractally patterned aggregates on the path to filament formation. We present a diffusion-limited aggregation (DLA) based model that is capable of capturing the basic properties of this self-assembly process. The Silicatein oligomer is modeled with three sites of attachment. Rules of attachment are specified that allow for specific interaction between these sites when oligomers are in proximity. The process differs from a DLA process in the following: 1) The process of aggregation is continued dynamically, i.e. the growing structures are spatially distributed and keep diffusing as they are growing 2) The molecules are oriented. Thus rotational diffusion is important. 3) The attachment can happen at more than 1 site and the strength of the active sites can be varied. We show that the self-assembled structures have a good level of similarity with the in-vitro experimental results. We quantify this by comparing the fractal dimension of the experimental data and the model output.

  3. Filament wound structure and method

    DOEpatents

    Dritt, William S.; Gerth, Howard L.; Knight, Jr., Charles E.; Pardue, Robert M.

    1977-01-01

    The present invention relates to a filament wound spherical structure comprising a plurality of filament band sets disposed about the surface of a mandrel with each band of each set formed of a continuous filament circumferentially wound about the mandrel a selected number of circuits and with each circuit of filament being wound parallel to and contiguous with an immediate previously wound circuit. Each filament band in each band set is wound at the same helix angle from the axis of revolution of the mandrel and all of the bands of each set are uniformly distributed about the mandrel circumference. The pole-to-equator wall thickness taper associated with each band set, as several contiguous band sets are wound about the mandrel starting at the poles, is accumulative as the band sets are nested to provide a complete filament wound sphere of essentially uniform thickness.

  4. Fractal Dimensions of Macromolecular Structures

    PubMed Central

    Todoroff, Nickolay; Kunze, Jens; Schreuder, Herman; Hessler, Gerhard; Baringhaus, Karl-Heinz; Schneider, Gisbert

    2014-01-01

    Quantifying the properties of macromolecules is a prerequisite for understanding their roles in biochemical processes. One of the less-explored geometric features of macromolecules is molecular surface irregularity, or ‘roughness’, which can be measured in terms of fractal dimension (D). In this study, we demonstrate that surface roughness correlates with ligand binding potential. We quantified the surface roughnesses of biological macromolecules in a large-scale survey that revealed D values between 2.0 and 2.4. The results of our study imply that surface patches involved in molecular interactions, such as ligand-binding pockets and protein-protein interfaces, exhibit greater local fluctuations in their fractal dimensions than ‘inert’ surface areas. We expect approximately 22 % of a protein’s surface outside of the crystallographically known ligand binding sites to be ligandable. These findings provide a fresh perspective on macromolecular structure and have considerable implications for drug design as well as chemical and systems biology. PMID:26213587

  5. Recurrence Quantification of Fractal Structures

    PubMed Central

    Webber, Charles L.

    2012-01-01

    By definition, fractal structures possess recurrent patterns. At different levels repeating patterns can be visualized at higher magnifications. The purpose of this chapter is threefold. First, general characteristics of dynamical systems are addressed from a theoretical mathematical perspective. Second, qualitative and quantitative recurrence analyses are reviewed in brief, but the reader is directed to other sources for explicit details. Third, example mathematical systems that generate strange attractors are explicitly defined, giving the reader the ability to reproduce the rich dynamics of continuous chaotic flows or discrete chaotic iterations. The challenge is then posited for the reader to study for themselves the recurrent structuring of these different dynamics. With a firm appreciation of the power of recurrence analysis, the reader will be prepared to turn their sights on real-world systems (physiological, psychological, mechanical, etc.). PMID:23060808

  6. Fractals and cosmological large-scale structure

    NASA Technical Reports Server (NTRS)

    Luo, Xiaochun; Schramm, David N.

    1992-01-01

    Observations of galaxy-galaxy and cluster-cluster correlations as well as other large-scale structure can be fit with a 'limited' fractal with dimension D of about 1.2. This is not a 'pure' fractal out to the horizon: the distribution shifts from power law to random behavior at some large scale. If the observed patterns and structures are formed through an aggregation growth process, the fractal dimension D can serve as an interesting constraint on the properties of the stochastic motion responsible for limiting the fractal structure. In particular, it is found that the observed fractal should have grown from two-dimensional sheetlike objects such as pancakes, domain walls, or string wakes. This result is generic and does not depend on the details of the growth process.

  7. Fractal-like structures in colloid science.

    PubMed

    Lazzari, S; Nicoud, L; Jaquet, B; Lattuada, M; Morbidelli, M

    2016-09-01

    The present work aims at reviewing our current understanding of fractal structures in the frame of colloid aggregation as well as the possibility they offer to produce novel structured materials. In particular, the existing techniques to measure and compute the fractal dimension df are critically discussed based on the cases of organic/inorganic particles and proteins. Then the aggregation conditions affecting df are thoroughly analyzed, pointing out the most recent literature findings and the limitations of our current understanding. Finally, the importance of the fractal dimension in applications is discussed along with possible directions for the production of new structured materials. PMID:27233526

  8. A simultaneous one pot synthesis of two fractal structures via swapping two fractal reaction kinetic states.

    PubMed

    Ghosh, Subrata; Dutta, Mrinal; Ray, Kanad; Fujita, Daisuke; Bandyopadhyay, Anirban

    2016-06-01

    We introduce a new class of fractal reaction kinetics wherein two or more distinct fractal structures are synthesized as parts of a singular cascade reaction in a single chemical beaker. Two examples: sphere ↔ spiral & triangle ↔ square fractals, grow 10(6) orders from a single dendrimer (8 nm) to the visible scale. PMID:27166589

  9. Structural investigations of fat fractals using small-angle scattering

    NASA Astrophysics Data System (ADS)

    Anitas, Eugen M.

    2015-01-01

    Experimental small-angle scattering (SAS) data characterized, on a double logarithmic scale, by a succession of power-law decays with decreasing values of scattering exponents, can be described in terms of fractal structures with positive Lebesgue measure (fat fractals). Here we present a theoretical model for fat fractals and show how one can extract structural information about the underlying fractal using SAS method, for the well known fractals existing in the literature: Vicsek and Menger sponge. We calculate analytically the fractal structure factor and study its properties in momentum space. The models allow us to obtain the fractal dimension at each structural level inside the fractal, the number of particles inside the fractal and about the most common distances between the center of mass of the particles.

  10. Fractal structures in casting films from chlorophyll

    NASA Astrophysics Data System (ADS)

    Pedro, G. C.; Gorza, F. D. S.; de Souza, N. C.; Silva, J. R.

    2014-04-01

    Chlorophyll (Chl) molecules are important because they can act as natural light-harvesting devices during the photosynthesis. In addition, they have potential for application as component of solar cell. In this work, we have prepared casting films from chlorophyll (Chl) and demonstrated the occurrence of fractal structures when the films were submitted to different concentrations. By using optical microscopy and the box-count method, we have found that the fractal dimension is Df = 1.55. This value is close to predicted by the diffusion-limited aggregation (DLA) model. This suggests that the major mechanism - which determines the growth of the fractal structures from Chl molecules - is the molecular diffusion. Since the efficiencies of solar cells depend on the morphology of their interfaces, these finds can be useful to improve this kind of device.

  11. Dynamic structure factor of vibrating fractals.

    PubMed

    Reuveni, Shlomi; Klafter, Joseph; Granek, Rony

    2012-02-10

    Motivated by novel experimental work and the lack of an adequate theory, we study the dynamic structure factor S(k,t) of large vibrating fractal networks at large wave numbers k. We show that the decay of S(k,t) is dominated by the spatially averaged mean square displacement of a network node, which evolves subdiffusively in time, ((u[over →](i)(t)-u[over →](i)(0))(2))∼t(ν), where ν depends on the spectral dimension d(s) and fractal dimension d(f). As a result, S(k,t) decays as a stretched exponential S(k,t)≈S(k)e(-(Γ(k)t)(ν)) with Γ(k)∼k(2/ν). Applications to a variety of fractal-like systems are elucidated.

  12. The fractal structure of the mitochondrial genomes

    NASA Astrophysics Data System (ADS)

    Oiwa, Nestor N.; Glazier, James A.

    2002-08-01

    The mitochondrial DNA genome has a definite multifractal structure. We show that loops, hairpins and inverted palindromes are responsible for this self-similarity. We can thus establish a definite relation between the function of subsequences and their fractal dimension. Intriguingly, protein coding DNAs also exhibit palindromic structures, although they do not appear in the sequence of amino acids. These structures may reflect the stabilization and transcriptional control of DNA or the control of posttranscriptional editing of mRNA.

  13. Dimension of a fractal streamer structure

    NASA Astrophysics Data System (ADS)

    Lehtinen, Nikolai G.; Østgaard, Nikolai

    2015-04-01

    Streamer corona plays an important role in formation of leader steps in lightning. In order to understand its dynamics, the streamer front velocity is calculated in a 1D model with curvature. We concentrate on the role of photoionization mechanism in the propagation of the streamer ionization front, the other important mechanisms being electron drift and electron diffusion. The results indicate, in particular, that the effect of photoionization on the streamer velocity for both positive and negative streamers is mostly determined by the photoionization length, with a weaker dependence on the amount of photoionization, and that the velocity is decreased for positive curvature, i.e., convex fronts. These results are used in a fractal model in which the front propagation velocity is simulated as the cluster growth probability [Niemeyer et al, 1984, doi:10.1103/PhysRevLett.52.1033]. Monte Carlo simulations of the cluster growth for various ratios of background electric field E to the breakdown field Eb show that the emerging transverse size of the streamers is of the order of the photoionization length, and at the larger scale the streamer structure is a fractal similar to the one obtained in a diffusion-limited aggregation (DLA) system. In the absence of electron attachment (Eb = 0), the fractal dimension is the same (D ˜ 1.67) as in the DLA model, and is reduced, i.e., the fractal has less branching, for Eb > 0.

  14. Reengineering through natural structures: the fractal factory

    NASA Astrophysics Data System (ADS)

    Sihn, Wilfried

    1995-08-01

    Many branches of European industry have had to recognize that their lead in the world market has been caught up with, particularly through Asian competition. In many cases a deficit of up to 30% in costs and productivity already exists. The reasons are rigid, Tayloristic company structures. The companies are not in a position to react flexibly to constantly changing environmental conditions. This article illustrates the methods of the `fractal company' which are necessary to solve the structure crisis. The fractal company distinguishes itself through its dynamics and its vitality, as well as its independent reaction to the changing circumstances. The developed methods, procedures, and framework conditions such as company structuring, human networking, hierarchy formation, and models for renumeration and working time are explained. They are based on practical examples from IPA's work with the automobile industry, their suppliers, and the engineering industry.

  15. Probing the Physical Structures of Dense Filaments

    NASA Astrophysics Data System (ADS)

    Li, Di

    2015-08-01

    Filament is a common feature in cosmological structures of various scales, ranging from dark matter cosmic web, galaxy clusters, inter-galactic gas flows, to Galactic ISM clouds. Even within cold dense molecular cores, filaments have been detected. Theories and simulations with (or without) different combination of physical principles, including gravity, thermal balance, turbulence, and magnetic field, can reproduce intriguing images of filaments. The ubiquity of filaments and the similarity in simulated ones make physical parameters, beyond dust column density, a necessity for understanding filament evolution. I report three projects attempting to measure physical parameters of filaments. We derive the volume density of a dense Taurus filament based on several cyanoacetylene transitions observed by GBT and ART. We measure the gas temperature of the OMC 2-3 filament based on combined GBT+VLA ammonia images. We also measured the sub-millimeter polarization vectors along OMC3. These filaments were found to be likely a cylinder-type structure, without dynamic heating, and likely accreting mass along the magnetic field lines.

  16. Fractal structure of eigenmodes of unstable-cavity lasers.

    PubMed

    Karman, G P; Woerdman, J P

    1998-12-15

    We show that the eigenmodes of unstable-cavity lasers have fractal structure, in contrast with the well-known stable-cavity eigenmodes. As with all fractals, the dynamic range over which self-similarity holds is limited; in this case the range is set by diffraction, i.e., by the Fresnel number of the resonator. We determine the fractal dimension of the mode profiles and show that it is related to the aperture shape. PMID:18091952

  17. Band structures in Sierpinski triangle fractal porous phononic crystals

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Liu, Ying; Liang, Tianshu

    2016-10-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  18. Fractal structure of the time distribution of microfracturing in rocks

    NASA Astrophysics Data System (ADS)

    Feng, Xia-Ting; Seto, Masahiro

    1999-01-01

    Using acoustic emission data obtained from laboratory double torsion tests, we have analysed the fractal nature of a series of 29 granite microfracturing processes in time. The data represent a wide variety of timescales, stress environments (increasing load with a constant displacement rate, relaxation, creep), soaking conditions [air, water, dodecyl trimethyl ammonium bromide (DTAB), polyethelene oxide (PEO)], and material anisotropy. We find that the time distribution of rock microfracturing displays fractal and multifractal properties. In some cases, it has a single fractal or a multifractal structure. In other cases, it changes from a single fractal structure into a multifractal structure as the system evolves dynamically. We suggest that the heterogeneity of the rock, the distribution of joints or weak planes, the stress level, and the nature of the microfracturing mechanism lead to these multifractal properties. Whatever the fractal structure of the system, a lower fractal dimension is generally produced at near-failure of the rock due to an increased clustering. This result concerning the fractal-dimension decrease is consistent with the conclusion drawn from the spatial distribution of rock microfracturing. Therefore, from the vantage point of observation of the time distribution of rock microfracturing, the decrease of the fractal dimension has a potential use as a rock failure predictor.

  19. Structure of Flexible Filamentous Plant Viruses

    SciTech Connect

    Kendall, Amy; McDonald, Michele; Bian, Wen; Bowles, Timothy; Baumgarten, Sarah C.; Shi, Jian; Stewart, Phoebe L.; Bullitt, Esther; Gore, David; Irving, Thomas C.; Havens, Wendy M.; Ghabrial, Said A.; Wall, Joseph S.; Stubbs, Gerald

    2008-10-23

    Flexible filamentous viruses make up a large fraction of the known plant viruses, but in comparison with those of other viruses, very little is known about their structures. We have used fiber diffraction, cryo-electron microscopy, and scanning transmission electron microscopy to determine the symmetry of a potyvirus, soybean mosaic virus; to confirm the symmetry of a potexvirus, potato virus X; and to determine the low-resolution structures of both viruses. We conclude that these viruses and, by implication, most or all flexible filamentous plant viruses share a common coat protein fold and helical symmetry, with slightly less than 9 subunits per helical turn.

  20. Vortex-ring-fractal Structure of Atom and Molecule

    SciTech Connect

    Osmera, Pavel

    2010-06-17

    This chapter is an attempt to attain a new and profound model of the nature's structure using a vortex-ring-fractal theory (VRFT). Scientists have been trying to explain some phenomena in Nature that have not been explained so far. The aim of this paper is the vortex-ring-fractal modeling of elements in the Mendeleev's periodic table, which is not in contradiction to the known laws of nature. We would like to find some acceptable structure model of the hydrogen as a vortex-fractal-coil structure of the proton and a vortex-fractal-ring structure of the electron. It is known that planetary model of the hydrogen atom is not right, the classical quantum model is too abstract. Our imagination is that the hydrogen is a levitation system of the proton and the electron. Structures of helium, oxygen, and carbon atoms and a hydrogen molecule are presented too.

  1. Moisture diffusivity in structure of random fractal fiber bed

    NASA Astrophysics Data System (ADS)

    Zhu, Fanglong; Zhou, Yu; Feng, Qianqian; Xia, Dehong

    2013-11-01

    A theoretical expression related to effective moisture diffusivity to random fiber bed is derived by using fractal theory and considering both parallel and perpendicular channels to diffusion flow direction. In this Letter, macroporous structure of hydrophobic nonwoven material is investigated, and Knudsen diffusion and surface diffusion are neglected. The effective moisture diffusivity predicted by the present fractal model are compared with water vapor transfer rate (WVTR) experiment data and calculated values obtained from other theoretical models. This verifies the validity of the present fractal diffusivity of fibrous structural beds.

  2. Process for applying control variables having fractal structures

    DOEpatents

    Bullock, J.S. IV; Lawson, R.L.

    1996-01-23

    A process and apparatus are disclosed for the application of a control variable having a fractal structure to a body or process. The process of the present invention comprises the steps of generating a control variable having a fractal structure and applying the control variable to a body or process reacting in accordance with the control variable. The process is applicable to electroforming where first, second and successive pulsed-currents are applied to cause the deposition of material onto a substrate, such that the first pulsed-current, the second pulsed-current, and successive pulsed currents form a fractal pulsed-current waveform. 3 figs.

  3. Process for applying control variables having fractal structures

    DOEpatents

    Bullock, IV, Jonathan S.; Lawson, Roger L.

    1996-01-01

    A process and apparatus for the application of a control variable having a fractal structure to a body or process. The process of the present invention comprises the steps of generating a control variable having a fractal structure and applying the control variable to a body or process reacting in accordance with the control variable. The process is applicable to electroforming where first, second and successive pulsed-currents are applied to cause the deposition of material onto a substrate, such that the first pulsed-current, the second pulsed-current, and successive pulsed currents form a fractal pulsed-current waveform.

  4. Fractal Bread.

    ERIC Educational Resources Information Center

    Esbenshade, Donald H., Jr.

    1991-01-01

    Develops the idea of fractals through a laboratory activity that calculates the fractal dimension of ordinary white bread. Extends use of the fractal dimension to compare other complex structures as other breads and sponges. (MDH)

  5. Growth of lipid vesicle structures: from surface fractals to mass fractals.

    PubMed

    Roldán-Vargas, Sándalo; Barnadas-Rodríguez, Ramon; Martín-Molina, Alberto; Quesada-Pérez, Manuel; Estelrich, Joan; Callejas-Fernández, José

    2008-07-01

    We study fractal vesicle aggregates whose morphology is conditioned by the interaction between the lipid vesicle membranes and calcium and magnesium ions. These morphologies are probed by means of static light scattering using a cross-correlation scheme that avoids the multiple intracluster scattering. In contrast to the branched structures induced by calcium, we report a singular surface- to mass-fractal transition controlled by the magnesium concentration. From infrared spectroscopy data we conclude that the specific dehydration of the lipid membranes due to these cations plays an essential role in short-range intervesicle interactions. PMID:18763912

  6. Growth of lipid vesicle structures: From surface fractals to mass fractals

    NASA Astrophysics Data System (ADS)

    Roldán-Vargas, Sándalo; Barnadas-Rodríguez, Ramon; Martín-Molina, Alberto; Quesada-Pérez, Manuel; Estelrich, Joan; Callejas-Fernández, José

    2008-07-01

    We study fractal vesicle aggregates whose morphology is conditioned by the interaction between the lipid vesicle membranes and calcium and magnesium ions. These morphologies are probed by means of static light scattering using a cross-correlation scheme that avoids the multiple intracluster scattering. In contrast to the branched structures induced by calcium, we report a singular surface- to mass-fractal transition controlled by the magnesium concentration. From infrared spectroscopy data we conclude that the specific dehydration of the lipid membranes due to these cations plays an essential role in short-range intervesicle interactions.

  7. Structural Interpretations of Static Light Scattering Patterns of Fractal Aggregates.

    PubMed

    Lambert; Thill; Ginestet; Audic; Bottero

    2000-08-15

    A method based on static light scattering by fractal aggregates is introduced to extract structural information. In this study, we determine the scattered intensity by a fractal aggregate calculating the Structure and the Form factors noted, respectively, S(q) and F(q). We use the approximation of the mean field Mie scattering by fractal aggregates (R. Botet, P. Rannou, and M. Cabane, appl. opt. 36, 8791, 1997). This approximation is validated by a comparison of the scattering and extinction cross sections values calculated using, on the one hand, Mie theory with a mean optical index n) and, on the other hand, the mean field approximation. Scattering and extinction cross sections values differ by about 5%. We show that the mean environment of primary scatterers characterized by the optical index n(s) must be taken into account to interpret accurately the scattering pattern from fractal aggregates. Numerical simulations were done to evaluate the influence of the fractal dimension values (D(f)>2) and of the radius of gyration or the number of primary particles within the aggregates (N=50 to 250) on the scatterers' mean optical contrast (n(s)/n). This last parameter plays a major role in determining the Form factor F(q) which corresponds to the primary particles' scattering. In associating the mean optical index (n) to structural characteristics, this work provides a theoretical framework to be used to provide additional structural information from the scattering pattern of a fractal aggregate (cf. Part II). Copyright 2000 Academic Press.

  8. Fractal structure of the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Klein, L. W.

    1985-01-01

    Under some conditions, time series of the interplanetary magnetic field strength and components have the properties of fractal curves. Magnetic field measurements made near 8.5 AU by Voyager 2 from June 5 to August 24, 1981 were self-similar over time scales from approximately 20 sec to approximately 3 x 100,000 sec, and the fractal dimension of the time series of the strength and components of the magnetic field was D = 5/3, corresponding to a power spectrum P(f) approximately f sup -5/3. Since the Kolmogorov spectrum for homogeneous, isotropic, stationary turbulence is also f sup -5/3, the Voyager 2 measurements are consistent with the observation of an inertial range of turbulence extending over approximately four decades in frequency. Interaction regions probably contributed most of the power in this interval. As an example, one interaction region is discussed in which the magnetic field had a fractal dimension D = 5/3.

  9. Fractal Particles: Titan's Thermal Structure and IR Opacity

    NASA Technical Reports Server (NTRS)

    McKay, C. P.; Rannou, P.; Guez, L.; Young, E. F.; DeVincenzi, Donald (Technical Monitor)

    1998-01-01

    Titan's haze particles are the principle opacity at solar wavelengths. Most past work in modeling these particles has assumed spherical particles. However, observational evidence strongly favors fractal shapes for the haze particles. We consider the implications of fractal particles for the thermal structure and near infrared opacity of Titan's atmosphere. We find that assuming fractal particles with the optical properties based on laboratory tholin material and with a production rate that allows for a match to the geometric albedo results in warmer troposphere and surface temperatures compared to spherical particles. In the near infrared (1-3 microns) the predicted opacity of the fractal particles is up to a factor of two less than for spherical particles. This has implications for the ability of Cassini to image Titan's surface at 1 micron.

  10. The analysis of the influence of fractal structure of stimuli on fractal dynamics in fixational eye movements and EEG signal.

    PubMed

    Namazi, Hamidreza; Kulish, Vladimir V; Akrami, Amin

    2016-01-01

    One of the major challenges in vision research is to analyze the effect of visual stimuli on human vision. However, no relationship has been yet discovered between the structure of the visual stimulus, and the structure of fixational eye movements. This study reveals the plasticity of human fixational eye movements in relation to the 'complex' visual stimulus. We demonstrated that the fractal temporal structure of visual dynamics shifts towards the fractal dynamics of the visual stimulus (image). The results showed that images with higher complexity (higher fractality) cause fixational eye movements with lower fractality. Considering the brain, as the main part of nervous system that is engaged in eye movements, we analyzed the governed Electroencephalogram (EEG) signal during fixation. We have found out that there is a coupling between fractality of image, EEG and fixational eye movements. The capability observed in this research can be further investigated and applied for treatment of different vision disorders. PMID:27217194

  11. The analysis of the influence of fractal structure of stimuli on fractal dynamics in fixational eye movements and EEG signal

    NASA Astrophysics Data System (ADS)

    Namazi, Hamidreza; Kulish, Vladimir V.; Akrami, Amin

    2016-05-01

    One of the major challenges in vision research is to analyze the effect of visual stimuli on human vision. However, no relationship has been yet discovered between the structure of the visual stimulus, and the structure of fixational eye movements. This study reveals the plasticity of human fixational eye movements in relation to the ‘complex’ visual stimulus. We demonstrated that the fractal temporal structure of visual dynamics shifts towards the fractal dynamics of the visual stimulus (image). The results showed that images with higher complexity (higher fractality) cause fixational eye movements with lower fractality. Considering the brain, as the main part of nervous system that is engaged in eye movements, we analyzed the governed Electroencephalogram (EEG) signal during fixation. We have found out that there is a coupling between fractality of image, EEG and fixational eye movements. The capability observed in this research can be further investigated and applied for treatment of different vision disorders.

  12. The analysis of the influence of fractal structure of stimuli on fractal dynamics in fixational eye movements and EEG signal

    PubMed Central

    Namazi, Hamidreza; Kulish, Vladimir V.; Akrami, Amin

    2016-01-01

    One of the major challenges in vision research is to analyze the effect of visual stimuli on human vision. However, no relationship has been yet discovered between the structure of the visual stimulus, and the structure of fixational eye movements. This study reveals the plasticity of human fixational eye movements in relation to the ‘complex’ visual stimulus. We demonstrated that the fractal temporal structure of visual dynamics shifts towards the fractal dynamics of the visual stimulus (image). The results showed that images with higher complexity (higher fractality) cause fixational eye movements with lower fractality. Considering the brain, as the main part of nervous system that is engaged in eye movements, we analyzed the governed Electroencephalogram (EEG) signal during fixation. We have found out that there is a coupling between fractality of image, EEG and fixational eye movements. The capability observed in this research can be further investigated and applied for treatment of different vision disorders. PMID:27217194

  13. Scaling analysis of 2D fractal cellular structures

    NASA Astrophysics Data System (ADS)

    Schliecker, Gudrun

    2001-01-01

    The correlations between topological and metric properties of fractal tessellations are analysed. To this end, Sierpinski cellular structures are constructed for different geometries related to Sierpinski gaskets and to the Apollonian packing of discs. For these geometries, the properties of the distribution of the cells' areas and topologies can be derived analytically. In all cases, an algebraic increase of the cell's average area with its number of neighbours is obtained. This property, unknown from natural cellular structures, confirms previous observations in numerical studies of Voronoi tessellations generated by fractal point sets. In addition, a simple rigorous scaling resp. multiscaling properties relating the shapes and the sizes of the cells are found.

  14. Filamentous structures in skeletal muscle: anchors for the subsarcolemmal space.

    PubMed

    Khairani, Astrid Feinisa; Tajika, Yuki; Takahashi, Maiko; Ueno, Hitoshi; Murakami, Tohru; Soenggono, Arifin; Yorifuji, Hiroshi

    2015-03-01

    In skeletal muscle fibers, intermediate filaments and actin filaments provide structural support to the myofibrils and the sarcolemma. For many years, it was poorly understood from ultrastructural observations that how these filamentous structures were kept anchored. The present study was conducted to determine the architecture of filamentous anchoring structures in the subsarcolemmal space and the intermyofibrils. The diaphragms (Dp) of adult wild type and mdx mice (mdx is a model for Duchenne muscular dystrophy) were subjected to tension applied perpendicular to the long axis of the muscle fibers, with or without treatment with 1% Triton X-100 or 0.03% saponin. These experiments were conducted to confirm the presence and integrity of the filamentous anchoring structures. Transmission electron microscopy revealed that these structures provide firm transverse connections between the sarcolemma and peripheral myofibrils. Most of the filamentous structures appeared to be inserted into subsarcolemmal densities, forming anchoring connections between the sarcolemma and peripheral myofibrils. In some cases, actin filaments were found to run longitudinally in the subsarcolemmal space to connect to the sarcolemma or in some cases to connect to the intermyofibrils as elongated thin filaments. These filamentous anchoring structures were less common in the mdx Dp. Our data suggest that the transverse and longitudinal filamentous structures form an anchoring system in the subsarcolemmal space and the intermyofibrils.

  15. Intermediate filaments: not just for structure anymore.

    PubMed

    Liem, Ronald K H

    2013-04-22

    A recent paper has identified the tumor suppressor APC as a linker protein between intermediate filaments and microtubules. In the absence of APC, intermediate filaments collapse and the cells are no longer polarized and fail to migrate.

  16. Bilayer fractal structure with multiband left-handed characteristics.

    PubMed

    Du, Qiujiao; Liu, Jinsong; Yang, Hongwu; Yi, Xunong

    2011-08-20

    We present a bilayer fractal structure for the realization of multiband left-handed metamaterial at terahertz frequencies. The structure is composed of metallic H-fractal pairs separated by a dielectric layer. The electromagnetic properties of periodic H-fractal pairs have been investigated by numerical simulation. The period in the propagation direction is extremely small as compared to the wavelength at the operational frequency. Under the electromagnetic wave normal incidence, the material exhibits negative refraction simultaneously around the frequencies of 0.10 and 0.15 THz for parallel polarization, and around the frequencies of 0.19 and 0.38 THz for perpendicular polarization. The design provides a left-handed metamaterial suitable for multiband and compact devices at terahertz frequencies.

  17. Structure and kinematics of the Bootes filament

    NASA Astrophysics Data System (ADS)

    Nasonova, O.; Karachentsev, I.; Karachentseva, V.

    2016-10-01

    Bootes filament of galaxies is a dispersed chain of groups residing on sky between the Local Void and the Virgo cluster. We consider a sample of 361 galaxies inside the sky area of RA = 13h0...18h.5 and Dec = .5°... + 10° with radial velocities VLG < 2000 km/s to clarify its structure and kinematics. In this region, 161 galaxies have individual distance estimates. We use these data to draw the Hubble relation for galaxy groups, pairs as well as the field galaxies, and to examine the galaxy distribution on peculiar velocities. Our analysis exposes the known Virgo-centric infall at RA < 14h and some signs of outflow from the Local Void at RA > 17h. According to the galaxy grouping criterion, this complex contains the members of 13 groups, 11 pairs and 140 field galaxies. The most prominent group is dominated by NGC 5846. The Bootes filament contains the total stellar mass of 2.7 ×1012 M⊙ and the total virial mass of 9.07×1013 M⊙, having the average density of dark matter to be Ωm = 0.09, i.e. a factor three lower than the global cosmic value.

  18. Synthesis of Cobalt Oxides Thin Films Fractal Structures by Laser Chemical Vapor Deposition

    PubMed Central

    Haniam, P.; Kunsombat, C.; Chiangga, S.; Songsasen, A.

    2014-01-01

    Thin films of cobalt oxides (CoO and Co3O4) fractal structures have been synthesized by using laser chemical vapor deposition at room temperature and atmospheric pressure. Various factors which affect the density and crystallization of cobalt oxides fractal shapes have been examined. We show that the fractal structures can be described by diffusion-limited aggregation model and discuss a new possibility to control the fractal structures. PMID:24672354

  19. Synthesis of cobalt oxides thin films fractal structures by laser chemical vapor deposition.

    PubMed

    Haniam, P; Kunsombat, C; Chiangga, S; Songsasen, A

    2014-01-01

    Thin films of cobalt oxides (CoO and Co3O4) fractal structures have been synthesized by using laser chemical vapor deposition at room temperature and atmospheric pressure. Various factors which affect the density and crystallization of cobalt oxides fractal shapes have been examined. We show that the fractal structures can be described by diffusion-limited aggregation model and discuss a new possibility to control the fractal structures. PMID:24672354

  20. Fractal free energy landscapes in structural glasses.

    PubMed

    Charbonneau, Patrick; Kurchan, Jorge; Parisi, Giorgio; Urbani, Pierfrancesco; Zamponi, Francesco

    2014-01-01

    Glasses are amorphous solids whose constituent particles are caged by their neighbours and thus cannot flow. This sluggishness is often ascribed to the free energy landscape containing multiple minima (basins) separated by high barriers. Here we show, using theory and numerical simulation, that the landscape is much rougher than is classically assumed. Deep in the glass, it undergoes a 'roughness transition' to fractal basins, which brings about isostaticity and marginal stability on approaching jamming. Critical exponents for the basin width, the weak force distribution and the spatial spread of quasi-contacts near jamming can be analytically determined. Their value is found to be compatible with numerical observations. This advance incorporates the jamming transition of granular materials into the framework of glass theory. Because temperature and pressure control what features of the landscape are experienced, glass mechanics and transport are expected to reflect the features of the topology we discuss here. PMID:24759041

  1. The structures, mass motions and footpoints of solar filaments

    NASA Astrophysics Data System (ADS)

    Venkataramanasastry, Aparna

    This thesis focuses on identifying the mechanism by which solar filaments acquire mass. Some of the speculations for how a filament gets its mass are 1) injection of mass from the chromosphere into the filament structure, and 2) condensation of mass from the corona into the region of the filament channel. Mass motion at the footpoints of the filaments is studied to detect mass entering and leaving the filament body. The magnetic properties of the footpoints of the filaments are also studied. Recommendations are drawn by comparing observational properties obtained in this study with the features used in some of the previously developed models. The datasets used for this study are high-resolution image sets of centerline and Doppler wings of Halpha, obtained using the Dutch Open Telescope (DOT). The data were obtained on Oct 30, 2010. The data set contains three filaments in an active region in the northern hemisphere of the Sun. The images in each wavelength are aligned and made into movies to find the footpoints of the filaments through which the mass goes into and comes out of the filaments from and to the chromosphere, respectively. The magnetic properties of the footpoints are studied by overlaying the magnetogram images with the DOT images by using full-disk Halpha images for matching the features in the two. Of the three filaments, one of the filaments is observed to be stable throughout the duration of the observations; another filament erupts after about two hours of the beginning of observations; and the third filament is in its early stages of formation. The ends of the stable filament are clearly observed whereas the ends of the erupting filament and the forming filament are observed clearly intermittently during the duration of the observations. The animations of the region near the ends of filament 1 reveal definite injection and draining of mass via the footpoints into and out of the filament. The mass motion into and out of the filaments are observed

  2. The myosin filament XIV backbone structure.

    PubMed Central

    Ashton, F T; Weisel, J; Pepe, F A

    1992-01-01

    The substructure of the thick filaments of chemically skinned chicken pectoralis muscle was investigated by electron microscopy. Images of transverse sections of the myosin filaments were determined to have threefold symmetry by cross-correlation analysis, which gives an unbiased determination of the rotational symmetry of the images. Resolution, using the phase residual test (Frank et al. 1981. Science [Wash. DC]. 214:1353-1355), was found to be between 3.2 and 3.6 nm. Three arrangements of nine subfilaments in the backbone were found in all regions of the filament at ionic strengths of 20 and 200 mM. In the average images of two of these, there were three dense central subfilaments and three pairs of subfilaments on the surface of the thick filament. In the average image of the third arrangement, all of the protein mass of the nine subfilaments was on the surface of the filament with three of them showing less variation in position than the others. A fourth arrangement appearing to be transitional between two of these was seen often at 200 mM ionic strength and only rarely at 20 mM. On average, the myosin subfilaments were parallel to the long axis of the filament. The different arrangements of subfilaments appear to be randomly distributed among the filaments in a transverse section of the A-band. Relative rotational orientations with respect to the hexagonal filament lattice, using the three densest subfilaments as reference showed a major clustering (32%) of filaments within one 10 degrees spread, a lesser clustering (15%) at 90 degrees to the first, and the remainder scattered thinly over the rest of the 120 degrees range. There was no obvious pattern of distribution of the two predominant orientations that could define a superlattice in the filament lattice. Images FIGURE 2 FIGURE 6 FIGURE 8 PMID:1617136

  3. Ubiquitination and filamentous structure of cytidine triphosphate synthase

    PubMed Central

    Pai, Li-Mei; Wang, Pei-Yu; Lin, Wei-Cheng; Chakraborty, Archan; Yeh, Chau-Ting; Lin, Yu-Hung

    2016-01-01

    ABSTRACT Living organisms respond to nutrient availability by regulating the activity of metabolic enzymes. Therefore, the reversible post-translational modification of an enzyme is a common regulatory mechanism for energy conservation. Recently, cytidine-5′-triphosphate (CTP) synthase was discovered to form a filamentous structure that is evolutionarily conserved from flies to humans. Interestingly, induction of the formation of CTP synthase filament is responsive to starvation or glutamine depletion. However, the biological roles of this structure remain elusive. We have recently shown that ubiquitination regulates CTP synthase activity by promoting filament formation in Drosophila ovaries during endocycles. Intriguingly, although the ubiquitination process was required for filament formation induced by glutamine depletion, CTP synthase ubiquitination was found to be inversely correlated with filament formation in Drosophila and human cell lines. In this article, we discuss the putative dual roles of ubiquitination, as well as its physiological implications, in the regulation of CTP synthase structure. PMID:27116391

  4. Fractal structure formation from Ag nanoparticle films on insulating substrates.

    PubMed

    Tang, Jing; Li, Zhiyong; Xia, Qiangfei; Williams, R Stanley

    2009-07-01

    Two dimensional (2D) fractal structures were observed to form from fairly uniform Ag island films (equivalent mass thicknesses of 1.5 and 5 nm) on insulating silicon dioxide surfaces (thermally grown silicon oxide on Si or quartz) upon immersion in deionized water. This result is distinctly different from the previously observed three-dimensional (3D) growth of faceted Ag nanocrystals on conductive surfaces (ITO and graphite) as the result of an electrochemical Ostwald ripening process, which also occurs on native oxide covered silicon surfaces as reported here. The fractal structures formed by diffusion-limited aggregation (DLA) of Ag species on the insulating surfaces. We present the experimental observation of this phenomenon and discuss some possible mechanisms for the DLA formation. PMID:19496573

  5. Fractal analysis of the hierarchic structure of fossil coal surface

    SciTech Connect

    Alekseev, A.D.; Vasilenko, T.A.; Kirillov, A.K.

    2008-05-15

    The fractal analysis is described as method of studying images of surface of fossil coal, one of the natural sorbent, with the aim of determining its structural surface heterogeneity. The deformation effect as a reduction in the dimensions of heterogeneity boundaries is considered. It is shown that the theory of nonequilibrium dynamic systems permits to assess a formation level of heterogeneities involved into a sorbent composition by means of the Hurst factor.

  6. Stochastic Erosion of Fractal Structure in Nonlinear Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Agarwal, S.; Wettlaufer, J. S.

    2014-12-01

    We analyze the effects of stochastic noise on the Lorenz-63 model in the chaotic regime to demonstrate a set of general issues arising in the interpretation of data from nonlinear dynamical systems typical in geophysics. The model is forced using both additive and multiplicative, white and colored noise and it is shown that, through a suitable choice of the noise intensity, both additive and multiplicative noise can produce similar dynamics. We use a recently developed measure, histogram distance, to show the similarity between the dynamics produced by additive and multiplicative forcing. This phenomenon, in a nonlinear fractal structure with chaotic dynamics can be explained by understanding how noise affects the Unstable Periodic Orbits (UPOs) of the system. For delta-correlated noise, the UPOs erode the fractal structure. In the presence of memory in the noise forcing, the time scale of the noise starts to interact with the period of some UPO and, depending on the noise intensity, stochastic resonance may be observed. This also explains the mixing in dissipative dynamical systems in presence of white noise; as the fractal structure is smoothed, the decay of correlations is enhanced, and hence the rate of mixing increases with noise intensity.

  7. Photonic crystal channel drop filters based on fractal structures

    NASA Astrophysics Data System (ADS)

    Dideban, Ali; Habibiyan, Hamidreza; Ghafoorifard, Hassan

    2014-09-01

    In this paper we introduce new configurations of channel drop filters based on two-dimensional photonic crystals. Structures consist of two photonic crystal waveguides and a fractal-shaped resonator between them. The effect of structural parameters on resonance frequency and drop efficiency is investigated. Calculations of band structure and propagation of electromagnetic field through devices are done by plane wave expansion (PWE) and finite difference time domain (FDTD) methods, respectively. In our designs more than 95% drop efficiency with quality factor of ~1150 is achievable at wavelength near 1540 nm, which in comparison with other photonic crystal resonator structures is a very satisfactory and acceptable result.

  8. Myosin filament 3D structure in mammalian cardiac muscle☆

    PubMed Central

    AL-Khayat, Hind A.; Morris, Edward P.; Kensler, Robert W.; Squire, John M.

    2008-01-01

    A number of cardiac myopathies (e.g. familial hypertrophic cardiomyopathy and dilated cardiomyopathy) are linked to mutations in cardiac muscle myosin filament proteins, including myosin and myosin binding protein C (MyBP-C). To understand the myopathies it is necessary to know the normal 3D structure of these filaments. We have carried out 3D single particle analysis of electron micrograph images of negatively stained isolated myosin filaments from rabbit cardiac muscle. Single filament images were aligned and divided into segments about 2 × 430 Å long, each of which was treated as an independent ‘particle’. The resulting 40 Å resolution 3D reconstruction showed both axial and azimuthal (no radial) myosin head perturbations within the 430 Å repeat, with successive crown rotations of approximately 60°, 60° and 0°, rather than the regular 40° for an unperturbed helix. However, it is shown that the projecting density peaks appear to start at low radius from origins closer to those expected for an unperturbed helical filament, and that the azimuthal perturbation especially increases with radius. The head arrangements in rabbit cardiac myosin filaments are very similar to those in fish skeletal muscle myosin filaments, suggesting a possible general structural theme for myosin filaments in all vertebrate striated muscles (skeletal and cardiac). PMID:18472277

  9. Observation of two different fractal structures in nanoparticle, protein and surfactant complexes

    NASA Astrophysics Data System (ADS)

    Mehan, Sumit; Kumar, Sugam; Aswal, V. K.

    2014-04-01

    Small angle neutron scattering has been carried out from a complex of nanoparticle, protein and surfactant. Although all the components are similarly (anionic) charged, we have observed strong interactions in their complex formation. It is characterized by the coexistence of two different mass fractal structures. The first fractal structure is originated from the protein and surfactant interaction and second from the depletion effect of first fractal structure leading the nanoparticle aggregation. The fractal structure of protein-surfactant complex represents to bead necklace structure of micelle-like clusters of surfactant formed along the unfolded protein chain. Its fractal dimension depends on the surfactant to protein ratio (r) and decreases with the increase in r. However, fractal dimension of nanoparticle aggregates in nanoparticle-protein complex is found to be independent of protein concentration and governed by the diffusion limited aggregation like morphology.

  10. Observation of two different fractal structures in nanoparticle, protein and surfactant complexes

    SciTech Connect

    Mehan, Sumit Kumar, Sugam Aswal, V. K.

    2014-04-24

    Small angle neutron scattering has been carried out from a complex of nanoparticle, protein and surfactant. Although all the components are similarly (anionic) charged, we have observed strong interactions in their complex formation. It is characterized by the coexistence of two different mass fractal structures. The first fractal structure is originated from the protein and surfactant interaction and second from the depletion effect of first fractal structure leading the nanoparticle aggregation. The fractal structure of protein-surfactant complex represents to bead necklace structure of micelle-like clusters of surfactant formed along the unfolded protein chain. Its fractal dimension depends on the surfactant to protein ratio (r) and decreases with the increase in r. However, fractal dimension of nanoparticle aggregates in nanoparticle-protein complex is found to be independent of protein concentration and governed by the diffusion limited aggregation like morphology.

  11. Dynamics of solar filaments. IV - Structure and mass flow of an active region filament

    NASA Technical Reports Server (NTRS)

    Schmieder, B.; Malherbe, J. M.; Simon, G.; Poland, A. I.

    1985-01-01

    An active region filament near the center of the solar disk was observed on September 29-30, 1980, with the Multichannel Subtractive Double Pass Spectrograph of the Meudon solar tower and the UV Spectrograph and Polarimeter aboard the SMM satellite. H-alpha and C IV measurements are presently used to study brightness and material velocity in the 10,000 and 100,000 K temperature ranges, and photospheric magnetograms are used to investigate the underlying magnetic field. Attention is given to the constraints imposed on possible filament structures by observations, as well as the expected MHD relationships.

  12. Structural design criteria for filament-wound composite shells

    NASA Technical Reports Server (NTRS)

    Hahn, H. T.; Jensen, D. W.; Claus, S. J.; Pai, S. P.; Hipp, P. A.

    1994-01-01

    Advanced composite cylinders, manufactured by filament winding, provide a cost effective solution to many present structural applications; however, the compressive performance of filament-wound cylinders is lower than comparable shells fabricated from unidirectional tape. The objective of this study was to determine the cause of this reduction in thin filament-wound cylinders by relating the manufacturing procedures to the quality of the cylinder and to its compressive performance. The experiments on cylinder buckling were complemented by eigenvalue buckling analysis using a detailed geometric model in a finite element analysis. The applicability of classical buckling analyses was also investigated as a design tool.

  13. Fractal structure of films deposited in a tokamak

    NASA Astrophysics Data System (ADS)

    Budaev, V. P.; Khimchenko, L. N.

    2007-04-01

    The surface of amorphous films deposited in the T-10 tokamak was studied in a scanning tunnel microscope. The surface relief on a scale from 10 nm to 100 μm showed a stochastic surface topography and revealed a hierarchy of grains. The observed variety of irregular structures of the films was studied within the framework of the concept of scale invariance using the methods of fractal geometry and statistical physics. The experimental probability density distribution functions of the surface height variations are close in shape to the Cauchy distribution. The stochastic surface topography of the films is characterized by a Hurst parameter of H = 0.68-0.85, which is evidence of a nontrivial self-similarity of the film structure. The fractal character and porous structure of deposited irregular films must be considered as an important issue related to the accumulation of tritium in the ITER project. The process of film growth on the surface of tokamak components exposed to plasma has been treated within the framework of the general concept of inhomogeneous surface growth. A strong turbulence of the edge plasma in tokamaks can give rise to fluctuations in the incident flux of particles, which leads to the growth of fractal films with grain dimensions ranging from nano-to micrometer scale. The shape of the surface of some films found in the T-10 tokamak has been interpreted using a model of diffusion-limited aggregation (DLA). The growth of films according to the discrete DLA model was simulated using statistics of fluctuations observed in a turbulent edge plasma of the T-10 tokamak. The modified DLA model reproduces well the main features of the surface of some films deposited in tokamaks.

  14. Structural changes accompanying phosphorylation of tarantula muscle myosin filaments

    PubMed Central

    1987-01-01

    Electron microscopy has been used to study the structural changes that occur in the myosin filaments of tarantula striated muscle when they are phosphorylated. Myosin filaments in muscle homogenates maintained in relaxing conditions (ATP, EGTA) are found to have nonphosphorylated regulatory light chains as shown by urea/glycerol gel electrophoresis and [32P]phosphate autoradiography. Negative staining reveals an ordered, helical arrangement of crossbridges in these filaments, in which the heads from axially neighboring myosin molecules appear to interact with each other. When the free Ca2+ concentration in a homogenate is raised to 10(-4) M, or when a Ca2+-insensitive myosin light chain kinase is added at low Ca2+ (10(-8) M), the regulatory light chains of myosin become rapidly phosphorylated. Phosphorylation is accompanied by potentiation of the actin activation of the myosin Mg- ATPase activity and by loss of order of the helical crossbridge arrangement characteristic of the relaxed filament. We suggest that in the relaxed state, when the regulatory light chains are not phosphorylated, the myosin heads are held down on the filament backbone by head-head interactions or by interactions of the heads with the filament backbone. Phosphorylation of the light chains may alter these interactions so that the crossbridges become more loosely associated with the filament backbone giving rise to the observed changes and facilitating crossbridge interaction with actin. PMID:2958483

  15. Method for preparing metallated filament-wound structures

    DOEpatents

    Peterson, George R.

    1979-01-01

    Metallated graphite filament-wound structures are prepared by coating a continuous multi-filament carbon yarn with a metal carbide, impregnating the carbide coated yarn with a polymerizable carbon precursor, winding the resulting filament about a mandrel, partially curing the impregnation in air, subjecting the wound composite to heat and pressure to cure the carbon precursor, and thereafter heating the composite in a sizing die at a pressure loading of at least 1000 psi for graphitizing the carbonaceous material in the composite. The carbide in the composite coalesces into rod-like shapes which are disposed in an end-to-end relationship parallel with the filaments to provide resistance to erosion in abrasive laden atmospheres.

  16. Chlordecone retention in the fractal structure of volcanic clay.

    PubMed

    Woignier, Thierry; Clostre, Florence; Macarie, Hervé; Jannoyer, Magalie

    2012-11-30

    Chlordecone (CHLD), a soil and foodstuff pollutant, as well as an environmentally persistent organochlorine insecticide, was used intensively in banana fields. The chlordecone uptake of three crops was measured for two types of polluted soils: allophanic and non-allophanic. The uptake is lower for allophanic soils even if their chlordecone content is higher than with non-allophanic soils. The fractal structure of the allophane aggregates was characterized at the nanoscale by small angle X-rays scattering, pore size distribution and transmission electron microscopy. We showed that clay microstructures should be an important physico-chemical factor governing the fate of chlordecone in the environment. Allophanic clays result in two counterintuitive findings: higher contaminant trappings yet lower contaminant availability. We propose that this specific, tortuous structure, along with its associated low accessibility, partly explains the low availability of chlordecone confined in allophanic soils. Capsule The fractal and tortuous microstructure of allophane clay favours the chlordecone retention in soils and disfavours the crop uptake. PMID:23062511

  17. Fractal analysis of bone structure with applications to osteoporosis and microgravity effects

    SciTech Connect

    Acharya, R.S.; Swarnarkar, V.; Krishnamurthy, R.; Hausman, E.; LeBlanc, A.; Lin, C.; Shackelford, L.

    1995-12-31

    The authors characterize the trabecular structure with the aid of fractal dimension. The authors use Alternating Sequential filters to generate a nonlinear pyramid for fractal dimension computations. The authors do not make any assumptions of the statistical distributions of the underlying fractal bone structure. The only assumption of the scheme is the rudimentary definition of self similarity. This allows them the freedom of not being constrained by statistical estimation schemes. With mathematical simulations, the authors have shown that the ASF methods outperform other existing methods for fractal dimension estimation. They have shown that the fractal dimension remains the same when computed with both the X-Ray images and the MRI images of the patella. They have shown that the fractal dimension of osteoporotic subjects is lower than that of the normal subjects. In animal models, the authors have shown that the fractal dimension of osteoporotic rats was lower than that of the normal rats. In a 17 week bedrest study, they have shown that the subject`s prebedrest fractal dimension is higher than that of the postbedrest fractal dimension.

  18. TRANSIENT CHAOS AND FRACTAL STRUCTURES IN PLANETARY FEEDING ZONES

    SciTech Connect

    Kovács, T.; Regály, Zs.

    2015-01-01

    The circular restricted three-body problem is investigated in the context of accretion and scattering processes. In our model, a large number of identical non-interacting mass-less planetesimals are considered in the planar case orbiting a star-planet system. This description allows us to investigate the gravitational scattering and possible capture of the particles by the forming planetary embryo in a dynamical systems approach. Although the problem serves a large variety of complex motions, the results can be easily interpreted because of the low dimensionality of the phase space. We show that initial conditions define isolated regions of the disk, where planetesimals accrete or escape, which have, in fact, a fractal structure. The fractal geometry of these ''basins'' implies that the dynamics is very complex. Based on the calculated escape rates and escape times, it is also demonstrated that the planetary accretion rate is exponential for short times and follows a power law for longer integration. A new numerical calculation of the maximum mass that a planet can reach (described by the expression of the isolation mass) is also derived.

  19. Transient Chaos and Fractal Structures in Planetary Feeding Zones

    NASA Astrophysics Data System (ADS)

    Kovács, T.; Regály, Zs.

    2015-01-01

    The circular restricted three-body problem is investigated in the context of accretion and scattering processes. In our model, a large number of identical non-interacting mass-less planetesimals are considered in the planar case orbiting a star-planet system. This description allows us to investigate the gravitational scattering and possible capture of the particles by the forming planetary embryo in a dynamical systems approach. Although the problem serves a large variety of complex motions, the results can be easily interpreted because of the low dimensionality of the phase space. We show that initial conditions define isolated regions of the disk, where planetesimals accrete or escape, which have, in fact, a fractal structure. The fractal geometry of these "basins" implies that the dynamics is very complex. Based on the calculated escape rates and escape times, it is also demonstrated that the planetary accretion rate is exponential for short times and follows a power law for longer integration. A new numerical calculation of the maximum mass that a planet can reach (described by the expression of the isolation mass) is also derived.

  20. Structural Dynamics of Filament-Wound Booster Rockets

    NASA Technical Reports Server (NTRS)

    Bugg, F. M.

    1987-01-01

    Report summarizes program of measurements and calculations of vibrations in filament-wound composite models of Space Shuttle solid-rocket boosters. Vibrational behavior predicted by finite-element computer model of structural dynamics correlates well with data from tests on full- and quarter-scale models. Computer model developed with NASTRAN general-purpose structural-analysis computer code.

  1. Self-Structured Conductive Filament Nanoheater for Chalcogenide Phase Transition.

    PubMed

    You, Byoung Kuk; Byun, Myunghwan; Kim, Seungjun; Lee, Keon Jae

    2015-06-23

    Ge2Sb2Te5-based phase-change memories (PCMs), which undergo fast and reversible switching between amorphous and crystalline structural transformation, are being utilized for nonvolatile data storage. However, a critical obstacle is the high programming current of the PCM cell, resulting from the limited pattern size of the optical lithography-based heater. Here, we suggest a facile and scalable strategy of utilizing self-structured conductive filament (CF) nanoheaters for Joule heating of chalcogenide materials. This CF nanoheater can replace the lithographical-patterned conventional resistor-type heater. The sub-10 nm contact area between the CF and the phase-change material achieves significant reduction of the reset current. In particular, the PCM cell with a single Ni filament nanoheater can be operated at an ultralow writing current of 20 μA. Finally, phase-transition behaviors through filament-type nanoheaters were directly observed by using transmission electron microscopy. PMID:26039415

  2. Surface structures of equilibrium restricted curvature model on two fractal substrates

    NASA Astrophysics Data System (ADS)

    Song, Li-Jian; Tang, Gang; Zhang, Yong-Wei; Han, Kui; Xun, Zhi-Peng; Xia, Hui; Hao, Da-Peng; Li, Yan

    2014-01-01

    With the aim to probe the effects of the microscopic details of fractal substrates on the scaling of discrete growth models, the surface structures of the equilibrium restricted curvature (ERC) model on Sierpinski arrowhead and crab substrates are analyzed by means of Monte Carlo simulations. These two fractal substrates have the same fractal dimension df, but possess different dynamic exponents of random walk zrw. The results show that the surface structure of the ERC model on fractal substrates are related to not only the fractal dimension df, but also to the microscopic structures of the substrates expressed by the dynamic exponent of random walk zrw. The ERC model growing on the two substrates follows the well-known Family—Vicsek scaling law and satisfies the scaling relations 2α + df asymp z asymp 2zrw. In addition, the values of the scaling exponents are in good agreement with the analytical prediction of the fractional Mullins—Herring equation.

  3. Aliasing removing of hyperspectral image based on fractal structure matching

    NASA Astrophysics Data System (ADS)

    Wei, Ran; Zhang, Ye; Zhang, Junping

    2015-05-01

    Due to the richness on high frequency components, hyperspectral image (HSI) is more sensitive to distortion like aliasing. Many methods aiming at removing such distortion have been proposed. However, seldom of them are suitable to HSI, due to low spatial resolution characteristic of HSI. Fortunately, HSI contains plentiful spectral information, which can be exploited to overcome such difficulties. Motivated by this, we proposed an aliasing removing method for HSI. The major differences between proposed and current methods is that proposed algorithm is able to utilize fractal structure information, thus the dilemma originated from low-resolution of HSI is solved. Experiments on real HSI data demonstrated subjectively and objectively that proposed method can not only remove annoying visual effect brought by aliasing, but also recover more high frequency component.

  4. Application of fractal dimensions to study the structure of flocs formed in lime softening process.

    PubMed

    Vahedi, Arman; Gorczyca, Beata

    2011-01-01

    The use of fractal dimensions to study the internal structure and settling of flocs formed in lime softening process was investigated. Fractal dimensions of flocs were measured directly on floc images and indirectly from their settling velocity. An optical microscope with a motorized stage was used to measure the fractal dimensions of lime softening flocs directly on their images in 2 and 3D space. The directly determined fractal dimensions of the lime softening flocs were 1.11-1.25 for floc boundary, 1.82-1.99 for cross-sectional area and 2.6-2.99 for floc volume. The fractal dimension determined indirectly from the flocs settling rates was 1.87 that was different from the 3D fractal dimension determined directly on floc images. This discrepancy is due to the following incorrect assumptions used for fractal dimensions determined from floc settling rates: linear relationship between square settling velocity and floc size (Stokes' Law), Euclidean relationship between floc size and volume, constant fractal dimensions and one primary particle size describing entire population of flocs. Floc settling model incorporating variable floc fractal dimensions as well as variable primary particle size was found to describe the settling velocity of large (>50 μm) lime softening flocs better than Stokes' Law. Settling velocities of smaller flocs (<50 μm) could still be quite well predicted by Stokes' Law. The variation of fractal dimensions with lime floc size in this study indicated that two mechanisms are involved in the formation of these flocs: cluster-cluster aggregation for small flocs (<50 μm) and diffusion-limited aggregation for large flocs (>50 μm). Therefore, the relationship between the floc fractal dimension and floc size appears to be determined by floc formation mechanisms. PMID:20937512

  5. On filament structure and propagation within a commercial plasma globe

    SciTech Connect

    Burin, M. J.; Simmons, G. G.; Ceja, H. G.; Zweben, S. J.; Nagy, A.; Brunkhorst, C.

    2015-05-15

    The filamentary discharge seen within commercial plasma globes is commonly enjoyed yet not well understood. Here, we investigate the discharge properties of a plasma globe using a variable high voltage amplifier. We find that increasing voltage magnitude increases the number of filaments while leaving their individual structure basically unchanged, a result typical of dielectric barrier discharges. The frequency of the voltage also affects filament population but more significantly changes filament structure, with more diffuse filaments seen at lower frequencies. Voltage polarity is observed to be important, especially at lower frequencies, where for negative-gradient voltages the discharge is more diffuse, not filamentary. At late stages of the discharge circular structures appear and expand on the glass boundaries. We find no trend of discharge speed with respect to voltage variables, though this may be due to manufacturer sample-to-sample variation. Each voltage cycle the discharge expands outward at ∼10–15 km/s, a speed significantly higher than the estimated electron drift yet considerably lower than that observed for most streamers. We discuss the physics of these observations and their relation to similar discharges that can be found within nature and industry.

  6. Multidimensional Simulations of Filament Channel Structure and Evolution

    NASA Astrophysics Data System (ADS)

    Karpen, J. T.

    2007-10-01

    Over the past decade, the NRL Solar Theory group has made steady progress toward formulating a comprehensive model of filament-channel structure and evolution, combining the results of our sheared 3D arcade model for the magnetic field with our thermal nonequilibrium model for the cool, dense material suspended in the corona. We have also discovered that, when a sheared arcade is embedded within the global dipolar field, the resulting stressed filament channel can erupt through the mechanism of magnetic breakout. Our progress has been largely enabled by the development and implementation of state-of-the-art 1D hydrodynamic and 3D magnetohydrodynamic (MHD) codes to simulate the field-aligned plasma thermodynamics and large-scale magnetic-field evolution, respectively. Significant questions remain, however, which could be answered with the advanced observations anticipated from Solar-B. In this review, we summarize what we have learned from our simulations about the magnetic and plasma structure, evolution, and eruption of filament channels, and suggest key observational objectives for Solar-B that will test our filament-channel and CME-initiation models and augment our understanding of the underlying physical processes.

  7. Actin filament nucleation and elongation factors--structure-function relationships.

    PubMed

    Dominguez, Roberto

    2009-01-01

    The spontaneous and unregulated polymerization of actin filaments is inhibited in cells by actin monomer-binding proteins such as profilin and Tbeta4. Eukaryotic cells and certain pathogens use filament nucleators to stabilize actin polymerization nuclei, whose formation is rate-limiting. Known filament nucleators include the Arp2/3 complex and its large family of nucleation promoting factors (NPFs), formins, Spire, Cobl, VopL/VopF, TARP and Lmod. These molecules control the time and location for polymerization, and additionally influence the structures of the actin networks that they generate. Filament nucleators are generally unrelated, but with the exception of formins they all use the WASP-Homology 2 domain (WH2 or W), a small and versatile actin-binding motif, for interaction with actin. A common architecture, found in Spire, Cobl and VopL/VopF, consists of tandem W domains that bind three to four actin subunits to form a nucleus. Structural considerations suggest that NPFs-Arp2/3 complex can also be viewed as a specialized form of tandem W-based nucleator. Formins are unique in that they use the formin-homology 2 (FH2) domain for interaction with actin and promote not only nucleation, but also processive barbed end elongation. In contrast, the elongation function among W-based nucleators has been "outsourced" to a dedicated family of proteins, Eva/VASP, which are related to WASP-family NPFs.

  8. Fractal Dimension Analysis of Subcortical Gray Matter Structures in Schizophrenia

    PubMed Central

    Sehatpour, Pejman; Long, Jun; Gui, Weihua; Qiao, Jianping; Javitt, Daniel C.; Wang, Zhishun

    2016-01-01

    A failure of adaptive inference—misinterpreting available sensory information for appropriate perception and action—is at the heart of clinical manifestations of schizophrenia, implicating key subcortical structures in the brain including the hippocampus. We used high-resolution, three-dimensional (3D) fractal geometry analysis to study subtle and potentially biologically relevant structural alterations (in the geometry of protrusions, gyri and indentations, sulci) in subcortical gray matter (GM) in patients with schizophrenia relative to healthy individuals. In particular, we focus on utilizing Fractal Dimension (FD), a compact shape descriptor that can be computed using inputs with irregular (i.e., not necessarily smooth) surfaces in order to quantify complexity (of geometrical properties and configurations of structures across spatial scales) of subcortical GM in this disorder. Probabilistic (entropy-based) information FD was computed based on the box-counting approach for each of the seven subcortical structures, bilaterally, as well as the brainstem from high-resolution magnetic resonance (MR) images in chronic patients with schizophrenia (n = 19) and age-matched healthy controls (n = 19) (age ranges: patients, 22.7–54.3 and healthy controls, 24.9–51.6 years old). We found a significant reduction of FD in the left hippocampus (median: 2.1460, range: 2.07–2.18 vs. median: 2.1730, range: 2.15–2.23, p<0.001; Cohen’s effect size, U3 = 0.8158 (95% Confidence Intervals, CIs: 0.6316, 1.0)), the right hippocampus (median: 2.1430, range: 2.05–2.19 vs. median: 2.1760, range: 2.12–2.21, p = 0.004; U3 = 0.8421 (CIs: 0.5263, 1)), as well as left thalamus (median: 2.4230, range: 2.40–2.44, p = 0.005; U3 = 0.7895 (CIs: 0.5789, 0.9473)) in schizophrenia patients, relative to healthy individuals. Our findings provide in-vivo quantitative evidence for reduced surface complexity of hippocampus, with reduced FD indicating a less complex, less regular GM

  9. Fractal Dimension Analysis of Subcortical Gray Matter Structures in Schizophrenia.

    PubMed

    Zhao, Guihu; Denisova, Kristina; Sehatpour, Pejman; Long, Jun; Gui, Weihua; Qiao, Jianping; Javitt, Daniel C; Wang, Zhishun

    2016-01-01

    A failure of adaptive inference-misinterpreting available sensory information for appropriate perception and action-is at the heart of clinical manifestations of schizophrenia, implicating key subcortical structures in the brain including the hippocampus. We used high-resolution, three-dimensional (3D) fractal geometry analysis to study subtle and potentially biologically relevant structural alterations (in the geometry of protrusions, gyri and indentations, sulci) in subcortical gray matter (GM) in patients with schizophrenia relative to healthy individuals. In particular, we focus on utilizing Fractal Dimension (FD), a compact shape descriptor that can be computed using inputs with irregular (i.e., not necessarily smooth) surfaces in order to quantify complexity (of geometrical properties and configurations of structures across spatial scales) of subcortical GM in this disorder. Probabilistic (entropy-based) information FD was computed based on the box-counting approach for each of the seven subcortical structures, bilaterally, as well as the brainstem from high-resolution magnetic resonance (MR) images in chronic patients with schizophrenia (n = 19) and age-matched healthy controls (n = 19) (age ranges: patients, 22.7-54.3 and healthy controls, 24.9-51.6 years old). We found a significant reduction of FD in the left hippocampus (median: 2.1460, range: 2.07-2.18 vs. median: 2.1730, range: 2.15-2.23, p<0.001; Cohen's effect size, U3 = 0.8158 (95% Confidence Intervals, CIs: 0.6316, 1.0)), the right hippocampus (median: 2.1430, range: 2.05-2.19 vs. median: 2.1760, range: 2.12-2.21, p = 0.004; U3 = 0.8421 (CIs: 0.5263, 1)), as well as left thalamus (median: 2.4230, range: 2.40-2.44, p = 0.005; U3 = 0.7895 (CIs: 0.5789, 0.9473)) in schizophrenia patients, relative to healthy individuals. Our findings provide in-vivo quantitative evidence for reduced surface complexity of hippocampus, with reduced FD indicating a less complex, less regular GM surface detected in

  10. The intermediate-sized filaments in rat kangaroo PtK2 cells. II. Structure and composition of isolated filaments.

    PubMed

    Franke, W W; Schmid, E; Osborn, M; Weber, K

    1978-08-01

    When cultured cells of the rat kangaroo cell line PtK2 grown on plastic or glass surfaces are lysed and extracted with combinations of low and high salt buffers and the non-ionic detergent Triton X-100 cytoskeletal preparations are obtained that show an enrichment of 6 to 11 nm thick filaments. The arrays of these filaments have been examined by various light and electron microscopic techniques, including ultrathin sectioning, whole mount transmission electron microscopy, negative staining, and indirect immunofluorescence microscopy. In addition, 6 to 11 nm filaments isolated from these cells with similar extraction procedures and with centrifugation techniques have been examined by electron microscopy. The arrays of these isolated intermediate-sized filaments, their ultrastructure and their specific decoration by certain antibodies present in normal rabbit sera as well as by guinea pig antibodies against purified bovine prekeratin is demonstrated. When preparations enriched in these intermediate-sized filaments are examined by SDS-polyacrylamide gel electrophoresis a corresponding enrichment of three polypeptide bands with apparent molecular weights of about 45 000, 52 000 and 58 000 (the latter component sometimes appears split into two bands) is observed, besides some residual actin and a few high molecular weight bands. The morphology of the isolated filaments, their immunological reaction with antibodies decorating prekeratin-containing structures, and the sizes of their constitutive polypeptides suggest that these filaments are closely related to prekeratin-containing filaments observed in a variety of epithelial cells.

  11. Flexible filamentous virus structure from fiber diffraction

    SciTech Connect

    Stubbs, Gerald; Kendall, Amy; McDonald, Michele; Bian, Wen; Bowles, Timothy; Baumgarten, Sarah; McCullough, Ian; Shi, Jian; Stewart, Phoebe; Bullitt, Esther; Gore, David; Ghabrial, Said

    2008-10-24

    Fiber diffraction data have been obtained from Narcissus mosaic virus, a potexvirus from the family Flexiviridae, and soybean mosaic virus (SMV), a potyvirus from the family Potyviridae. Analysis of the data in conjunction with cryo-electron microscopy data allowed us to determine the symmetry of the viruses and to make reconstructions of SMV at 19 {angstrom} resolution and of another potexvirus, papaya mosaic virus, at 18 {angstrom} resolution. These data include the first well-ordered data ever obtained for the potyviruses and the best-ordered data from the potexviruses, and offer the promise of eventual high resolution structure determinations.

  12. Structure and mechanical properties of liquid crystalline filaments

    SciTech Connect

    Eremin, Alexey; Nemes, Alexandru; Stannarius, Ralf; Schulz, Mario; Nadasi, Hajnalka; Weissflog, Wolfgang

    2005-03-01

    The formation of stable freely suspended filaments is an interesting peculiarity of some liquid crystal phases. So far, little is known about their structure and stability. Similarly to free-standing smectic films, an internal molecular structure of the mesophase stabilizes these macroscopically well-ordered objects with length to diameter ratios of 10{sup 3} and above. In this paper, we report observations of smectic liquid crystal fibers formed by bent-shaped molecules in different mesophases. Our study, employing several experimental techniques, focuses on mechanical and structural aspects of fiber formation such as internal structure, stability, and mechanical and optical properties.

  13. An Early Cretaceous heterodontosaurid dinosaur with filamentous integumentary structures.

    PubMed

    Zheng, Xiao-Ting; You, Hai-Lu; Xu, Xing; Dong, Zhi-Ming

    2009-03-19

    Ornithischia is one of the two major groups of dinosaurs, with heterodontosauridae as one of its major clades. Heterodontosauridae is characterized by small, gracile bodies and a problematic phylogenetic position. Recent phylogenetic work indicates that it represents the most basal group of all well-known ornithischians. Previous heterodontosaurid records are mainly from the Early Jurassic period (205-190 million years ago) of Africa. Here we report a new heterodontosaurid, Tianyulong confuciusi gen. et sp. nov., from the Early Cretaceous period (144-99 million years ago) of western Liaoning Province, China. Tianyulong extends the geographical distribution of heterodontosaurids to Asia and confirms the clade's previously questionable temporal range extension into the Early Cretaceous period. More surprisingly, Tianyulong bears long, singular and unbranched filamentous integumentary (outer skin) structures. This represents the first confirmed report, to our knowledge, of filamentous integumentary structures in an ornithischian dinosaur. PMID:19295609

  14. An Early Cretaceous heterodontosaurid dinosaur with filamentous integumentary structures.

    PubMed

    Zheng, Xiao-Ting; You, Hai-Lu; Xu, Xing; Dong, Zhi-Ming

    2009-03-19

    Ornithischia is one of the two major groups of dinosaurs, with heterodontosauridae as one of its major clades. Heterodontosauridae is characterized by small, gracile bodies and a problematic phylogenetic position. Recent phylogenetic work indicates that it represents the most basal group of all well-known ornithischians. Previous heterodontosaurid records are mainly from the Early Jurassic period (205-190 million years ago) of Africa. Here we report a new heterodontosaurid, Tianyulong confuciusi gen. et sp. nov., from the Early Cretaceous period (144-99 million years ago) of western Liaoning Province, China. Tianyulong extends the geographical distribution of heterodontosaurids to Asia and confirms the clade's previously questionable temporal range extension into the Early Cretaceous period. More surprisingly, Tianyulong bears long, singular and unbranched filamentous integumentary (outer skin) structures. This represents the first confirmed report, to our knowledge, of filamentous integumentary structures in an ornithischian dinosaur.

  15. An investigation into the feasibility of implementing fractal paradigms to simulate cancellous bone structure.

    PubMed

    Haire, T J; Ganney, P S; Langton, C M

    2001-01-01

    Cancellous bone consists of a framework of solid trabeculae interspersed with bone marrow. The structure of the bone tissue framework is highly convoluted and complex, being fractal and statistically self-similar over a limited range of magnifications. To date, the structure of natural cancellous bone tissue has been defined using 2D and 3D imaging, with no facility to modify and control the structure. The potential of four computer-generated paradigms has been reviewed based upon knowledge of other fractal structures and chaotic systems, namely Diffusion Limited Aggregation (DLA), Percolation and Epidemics, Cellular Automata, and a regular Grid with randomly relocated nodes. The resulting structures were compared for their ability to create realistic structures of cancellous bone rather than reflecting growth and form processes. Although the creation of realistic computer-generated cancellous bone structures is difficult, it should not be impossible. Future work considering the combination of fractal and chaotic paradigms is underway. PMID:11328644

  16. Robustness of the fractal regime for the multiple-scattering structure factor

    NASA Astrophysics Data System (ADS)

    Katyal, Nisha; Botet, Robert; Puri, Sanjay

    2016-08-01

    In the single-scattering theory of electromagnetic radiation, the fractal regime is a definite range in the photon momentum-transfer q, which is characterized by the scaling-law behavior of the structure factor: S(q) ∝ 1 /q df. This allows a straightforward estimation of the fractal dimension df of aggregates in Small-Angle X-ray Scattering (SAXS) experiments. However, this behavior is not commonly studied in optical scattering experiments because of the lack of information on its domain of validity. In the present work, we propose a definition of the multiple-scattering structure factor, which naturally generalizes the single-scattering function S(q). We show that the mean-field theory of electromagnetic scattering provides an explicit condition to interpret the significance of multiple scattering. In this paper, we investigate and discuss electromagnetic scattering by three classes of fractal aggregates. The results obtained from the TMatrix method show that the fractal scaling range is divided into two domains: (1) a genuine fractal regime, which is robust; (2) a possible anomalous scaling regime, S(q) ∝ 1 /qδ, with exponent δ independent of df, and related to the way the scattering mechanism uses the local morphology of the scatterer. The recognition, and an analysis, of the latter domain is of importance because it may result in significant reduction of the fractal regime, and brings into question the proper mechanism in the build-up of multiple-scattering.

  17. Magnetohydrodynamics of fractal media

    SciTech Connect

    Tarasov, Vasily E.

    2006-05-15

    The fractal distribution of charged particles is considered. An example of this distribution is the charged particles that are distributed over the fractal. The fractional integrals are used to describe fractal distribution. These integrals are considered as approximations of integrals on fractals. Typical turbulent media could be of a fractal structure and the corresponding equations should be changed to include the fractal features of the media. The magnetohydrodynamics equations for fractal media are derived from the fractional generalization of integral Maxwell equations and integral hydrodynamics (balance) equations. Possible equilibrium states for these equations are considered.

  18. Inroads into the Structure and Function of Intermediate Filament Networks

    PubMed Central

    Goldman, Robert D.; Cleland, Megan M.; Murthy, Prasanna; Mahammad, Saleemulla; Kuczmarski, Edward R.

    2011-01-01

    Although intermediate filaments are one of three major cytoskeletal systems of vertebrate cells, they remain the least understood with respect to their structure and function. This is due in part to the fact that they are encoded by a large gene family which is developmentally regulated in a cell and tissue type specific fashion. This article is in honor of Ueli Aebi. It highlights the studies on IF that have been carried out by our laboratory for more than 40 years. Many of our advances in understanding IF are based on conversations with Ueli which have taken place during adventurous and sometimes dangerous hiking and biking trips throughout the world. PMID:22120848

  19. Structural Modeling and Molecular Dynamics Simulation of the Actin Filament

    SciTech Connect

    Splettstoesser, Thomas; Holmes, Kenneth; Noe, Frank; Smith, Jeremy C

    2011-01-01

    Actin is a major structural protein of the eukaryotic cytoskeleton and enables cell motility. Here, we present a model of the actin filament (F-actin) that not only incorporates the global structure of the recently published model by Oda et al. but also conserves internal stereochemistry. A comparison is made using molecular dynamics simulation of the model with other recent F-actin models. A number of structural determents such as the protomer propeller angle, the number of hydrogen bonds, and the structural variation among the protomers are analyzed. The MD comparison is found to reflect the evolution in quality of actin models over the last 6 years. In addition, simulations of the model are carried out in states with both ADP or ATP bound and local hydrogen-bonding differences characterized.

  20. Towards a molecular description of intermediate filament structure and assembly

    SciTech Connect

    Parry, David A.D.; Strelkov, Sergei V.; Burkhard, Peter; Aebi, Ueli; Herrmann, Harald . E-mail: h.herrmann@dkfz.de

    2007-06-10

    Intermediate filaments (IFs) represent one of the prominent cytoskeletal elements of metazoan cells. Their constituent proteins are coded by a multigene family, whose members are expressed in complex patterns that are controlled by developmental programs of differentiation. Hence, IF proteins found in epidermis differ significantly from those in muscle or neuronal tissues. Due to their fibrous nature, which stems from a fairly conserved central {alpha}-helical coiled-coil rod domain, IF proteins have long resisted crystallization and thus determination of their atomic structure. Since they represent the primary structural elements that determine the shape of the nucleus and the cell more generally, a major challenge is to arrive at a more rational understanding of how their nanomechanical properties effect the stability and plasticity of cells and tissues. Here, we review recent structural results of the coiled-coil dimer, assembly intermediates and growing filaments that have been obtained by a hybrid methods approach involving a rigorous combination of X-ray crystallography, small angle X-ray scattering, cryo-electron tomography, computational analysis and molecular modeling.

  1. Intermediate filament structure: the bottom-up approach.

    PubMed

    Chernyatina, Anastasia A; Guzenko, Dmytro; Strelkov, Sergei V

    2015-02-01

    Intermediate filaments (IFs) result from a key cytoskeletal protein class in metazoan cells, but currently there is no consensus as to their three-dimensional architecture. IF proteins form elongated dimers based on the coiled-coil structure within their central 'rod' domain. Here we focus on the atomic structure of this elementary dimer, elucidated using X-ray crystallography on multiple fragments and electron paramagnetic resonance experiments on spin-labelled vimentin samples. In line with conserved sequence features, the rod of all IF proteins is composed of three coiled-coil segments containing heptad and hendecad repeats and interconnected by linkers. In addition, the next assembly intermediate beyond the dimer, the tetramer, could be modelled. The impact of these structural results towards understanding the assembly mechanism is discussed.

  2. Negative Stains Containing Trehalose: Application to Tubular and Filamentous Structures

    NASA Astrophysics Data System (ADS)

    Harris, J. Robin; Gerber, Max; Gebauer, Wolfgang; Wernicke, Wolfgang; Markl, Jürgen

    1996-02-01

    Several examples are presented that show the successful application of uranyl acetate and ammonium molybdate negative staining in the presence of trehalose for TEM studies of filamentous and tubular structures. The principal benefit to be gained from the inclusion of trehalose stems from the considerably reduced flattening of the large tubular structures and the greater orientational freedom of single molecules due to an increased depth of the negative stain in the presence of trehalose. Trehalose is likely to provide considerable protection to protein molecules and their assemblies during the drying of negatively stained specimens. Some reduction in the excessive density imparted by uranyl acetate around large assemblies is also achieved. Nevertheless, in the presence of 1% (w/v) trehalose, it is desirable to increase the concentration of negative stain to 5% (w/v) for ammonium molybdate and to 4% for uranyl acetate to produce satisfactory image contrast. In general, the ammonium molybdate-trehalose negative stain is more satisfactory than the uranyl acetate-trehalose combination, because of the greater electron beam sensitivity of the uranyl negative stain. Reassembled taxol-stabilized pig brain microtubules, together with collagen fibrils, sperm tails, helical filaments, and reassociated hemocyanin (KLH2), all from the giant keyhole limpet Megathura crenulata, have been studied by negative staining in the presence of trehalose. In all cases satisfactory TEM imaging conditions were readily obtained on the specimens, as long as regions of excessively deep stain were avoided.

  3. Filamentary structures in dense plasma focus: Current filaments or vortex filaments?

    SciTech Connect

    Soto, Leopoldo Pavez, Cristian; Moreno, José; Castillo, Fermin; Veloso, Felipe; Auluck, S. K. H.

    2014-07-15

    Recent observations of an azimuthally distributed array of sub-millimeter size sources of fusion protons and correlation between extreme ultraviolet (XUV) images of filaments with neutron yield in PF-1000 plasma focus have re-kindled interest in their significance. These filaments have been described variously in literature as current filaments and vortex filaments, with very little experimental evidence in support of either nomenclature. This paper provides, for the first time, experimental observations of filaments on a table-top plasma focus device using three techniques: framing photography of visible self-luminosity from the plasma, schlieren photography, and interferometry. Quantitative evaluation of density profile of filaments from interferometry reveals that their radius closely agrees with the collision-less ion skin depth. This is a signature of relaxed state of a Hall fluid, which has significant mass flow with equipartition between kinetic and magnetic energy, supporting the “vortex filament” description. This interpretation is consistent with empirical evidence of an efficient energy concentration mechanism inferred from nuclear reaction yields.

  4. Research on the fractal structure in the Chinese stock market

    NASA Astrophysics Data System (ADS)

    Zhuang, Xin-tian; Huang, Xiao-yuan; Sha, Yan-li

    2004-02-01

    Applying fractal theory, this paper probes and discusses self-similarity and scale invariance of the Chinese stock market. It analyses three kinds of scale indexes, i.e., autocorrelation index, Hurst index and the scale index on the basis of detrended fluctuation analysis (DFA) algorithm and promotes DFA into a recursive algorithm. Using the three kinds of scale indexes, we conduct empirical research on the Chinese Shanghai and Shenzhen stock markets. The results indicate that the rate of returns of the two stock markets does not obey the normal distribution. A correlation exists between the stock price indexes over time scales. The stock price indexes exhibit fractal time series. It indicates that the policy guide hidden at the back influences the characteristic of the Chinese stock market.

  5. Fractal flame structure due to the hydrodynamic Darrieus-Landau instability.

    PubMed

    Yu, Rixin; Bai, Xue-Song; Bychkov, Vitaly

    2015-12-01

    By using large scale numerical simulations, we obtain fractal structure, which develops at originally planar flame fronts due to the hydrodynamic Darrieus-Landau (DL) instability bending the fronts. We clarify some important issues regarding the DL fractal flames, which have been debated for a long time. We demonstrate an increase of the flame propagation speed with the hypothetic channel width, which controls the length scale of the instability development. We show that this increase may be fitted by a power law indicating the mean fractal properties of the flame front structure. The power exponent in this law is found to be not a universal constant, rather it depends on the flame properties-on the density drop at the front. Using box counting on the simulated flame front shapes we show the fractal flame dimension at the intermediate scale is smaller than the one given by the power law, but it has a similar dependency on the density drop. We also obtain a formation of pockets at the DL fractal flame fronts, which previously has been associated only with turbulent burning.

  6. Fractal flame structure due to the hydrodynamic Darrieus-Landau instability

    NASA Astrophysics Data System (ADS)

    Yu, Rixin; Bai, Xue-Song; Bychkov, Vitaly

    2015-12-01

    By using large scale numerical simulations, we obtain fractal structure, which develops at originally planar flame fronts due to the hydrodynamic Darrieus-Landau (DL) instability bending the fronts. We clarify some important issues regarding the DL fractal flames, which have been debated for a long time. We demonstrate an increase of the flame propagation speed with the hypothetic channel width, which controls the length scale of the instability development. We show that this increase may be fitted by a power law indicating the mean fractal properties of the flame front structure. The power exponent in this law is found to be not a universal constant, rather it depends on the flame properties—on the density drop at the front. Using box counting on the simulated flame front shapes we show the fractal flame dimension at the intermediate scale is smaller than the one given by the power law, but it has a similar dependency on the density drop. We also obtain a formation of pockets at the DL fractal flame fronts, which previously has been associated only with turbulent burning.

  7. Fractal flame structure due to the hydrodynamic Darrieus-Landau instability.

    PubMed

    Yu, Rixin; Bai, Xue-Song; Bychkov, Vitaly

    2015-12-01

    By using large scale numerical simulations, we obtain fractal structure, which develops at originally planar flame fronts due to the hydrodynamic Darrieus-Landau (DL) instability bending the fronts. We clarify some important issues regarding the DL fractal flames, which have been debated for a long time. We demonstrate an increase of the flame propagation speed with the hypothetic channel width, which controls the length scale of the instability development. We show that this increase may be fitted by a power law indicating the mean fractal properties of the flame front structure. The power exponent in this law is found to be not a universal constant, rather it depends on the flame properties-on the density drop at the front. Using box counting on the simulated flame front shapes we show the fractal flame dimension at the intermediate scale is smaller than the one given by the power law, but it has a similar dependency on the density drop. We also obtain a formation of pockets at the DL fractal flame fronts, which previously has been associated only with turbulent burning. PMID:26764824

  8. Structure and flow of dense suspensions of protein fractal aggregates in comparison with microgels.

    PubMed

    Inthavong, Walailuk; Kharlamova, Anna; Chassenieux, Christophe; Nicolai, Taco

    2016-03-14

    Solutions of the globular whey protein β-lactoglobulin (β-lg) were heated at different protein concentrations leading to the formation of polydisperse fractal aggregates with different average sizes. The structure of the solutions was analyzed with light scattering as a function of the protein concentration. The osmotic compressibility and the dynamic correlation length decreased with increasing concentration and became independent of the aggregate size in dense suspensions. The results obtained for different aggregate sizes could be superimposed after normalizing the concentration with the overlap concentration. Dense suspensions of fractal protein aggregates are strongly interpenetrated and can be visualized as an ensemble of fractal 'blobs'. The viscosity of the heated β-lg solutions increased extremely sharply above 80 g L(-1) and diverged at 98 g L(-1), mainly due to the sharply increasing aggregate size. At a fixed aggregate size, the viscosity increased initially exponentially with increasing concentration and then diverged. The increase was stronger when the aggregates were larger, but the dependence of the viscosity on the aggregate size was weaker than that of the osmotic compressibility and the dynamic correlation length. The concentration dependence of the viscosity of solutions of fractal β-lg aggregates is much stronger than that of homogeneous β-lg microgels. The behavior of fractal aggregates formed by whey protein isolates was similar. PMID:26864954

  9. Intermediate filament: structure, function, and applications in cytology.

    PubMed

    Dey, Pranab; Togra, Jyoti; Mitra, Suvradeep

    2014-07-01

    Intermediate filament (IF) constitutes an important cytoskeletal component in nearly all the vertebrate cells. IFs are present both in the cytoplasm and in the nucleus. They play an important role in providing mechanical strength of the cell and tissue, growth and regeneration, cell survival and apoptosis, and finally cell migration. IFs are also expressed differentially in different body tissues. Therefore, judicious use of IF may provide the diagnosis and confirmation of different malignancies. This is particularly helpful in the diagnosis of metastatic malignant tumor from an unknown primary. Expression of IFs particularly cytokeratin and vimentin is also related to prognosis of tumors. In this review, we have discussed the basic structure, dynamics, distribution of IF in cells, and its role in diagnosis of cytology. Possible prognostic roles of IF are also discussed.

  10. Investigation of changes in fractal dimension from layered retinal structures of healthy and diabetic eyes with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Zakharov, Valery P.; Myakinin, Oleg O.; Bratchenko, Ivan A.; Artemyev, Dmitry N.; Kornilin, Dmitry V.

    2015-07-01

    Optical coherence tomography (OCT) is usually employed for the measurement of retinal thickness characterizing the structural changes of tissue. However, fractal dimension (FD) could also character the structural changes of tissue. Therefore, fractal dimension changes may provide further information regarding cellular layers and early damage in ocular diseases. We investigated the possibility of OCT in detecting changes in fractal dimension from layered retinal structures. OCT images were obtained from diabetic patients without retinopathy (DM, n = 38 eyes) or mild diabetic retinopathy (MDR, n = 43 eyes) and normal healthy subjects (Controls, n = 74 eyes). Fractal dimension was calculated using the differentiate box counting methodology. We evaluated the usefulness of quantifying fractal dimension of layered structures in the detection of retinal damage. Generalized estimating equations considering within-subject intereye relations were used to test for differences between the groups. A modified p value of <0.001 was considered statistically significant. Receiver operating characteristic (ROC) curves were constructed to describe the ability of fractal dimension to discriminate between the eyes of DM, MDR and healthy eyes. Significant decreases of fractal dimension were observed in all layers in the MDR eyes compared with controls except in the inner nuclear layer (INL). Significant decreases of fractal dimension were also observed in all layers in the MDR eyes compared with DM eyes. The highest area under receiver operating characteristic curve (AUROC) values estimated for fractal dimension were observed for the outer plexiform layer (OPL) and outer segment photoreceptors (OS) when comparing MDR eyes with controls. The highest AUROC value estimated for fractal dimension were also observed for the retinal nerve fiber layer (RNFL) and OS when comparing MDR eyes with DM eyes. Our results suggest that fractal dimension of the intraretinal layers may provide useful

  11. Fractal structures for the Jacobi Hamiltonian of restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Rollin, G.; Lages, J.; Shepelyansky, D. L.

    2016-08-01

    We study the dynamical chaos and integrable motion in the planar circular restricted three-body problem and determine the fractal dimension of the spiral strange repeller set of non-escaping orbits at different values of mass ratio of binary bodies and of Jacobi integral of motion. We find that the spiral fractal structure of the Poincaré section leads to a spiral density distribution of particles remaining in the system. We also show that the initial exponential drop of survival probability with time is followed by the algebraic decay related to the universal algebraic statistics of Poincaré recurrences in generic symplectic maps.

  12. Investigation of transmission enhancement of THz radiation through subwavelength fractal structures of copper foils by FDTD simulation

    NASA Astrophysics Data System (ADS)

    Meng, Wei; Zhao, Guozhong; Meng, Tianhua; Zhang, Cunlin

    2008-12-01

    We present the enhanced transmission spectrum of a copper foil with the sub-wavelength fractal structures by means of the terahertz time domain spectroscopy (THz-TDS) and FDTD simulation. In the view of experimental measurement and finite-difference-time-domain (FDTD) simulations, respectively, we studied the influence of the electric field and magnetic field on the enhanced transmission of THz wave through each level of fractal pattern generated by the repeated affine transformations of an H-shaped mother element on the copper foil. We simulate the incidence and transmission of the THz wave and show the propagation and distribution of the interior electromagnetic field by the software for electromagnetic design named CONCERTO. To compare with the experimental results, we simulate the cases that the certain levels of the pattern are deleted. The results of simulation agree with the experimental one. It is found that the transmission enhancement in the low frequency regime is caused by the radiation of electron resonance in the low fractal levels, and the transmission enhancement in the high frequency regime is caused by the radiation of electron resonance in the high fractal level, that is, the localization resonance of the fractal structures. These results indicate that the flat surface fractal structure like an ideal wave-guide. The vertically incident THz wave is confined on the surface and transmitted along the fractal slits. The controlling ability of fractal structures will offer a powerful tool for the design of THz photonic devices.

  13. Revelation of intertwining organic and inorganic fractal structures in polymer coatings.

    PubMed

    Hughes, A E; Trinchi, A; Chen, F F; Yang, Y S; Cole, I S; Sellaiyan, S; Carr, J; Lee, P D; Thompson, G E; Xiao, T Q

    2014-07-01

    X-ray microtomography and serial block face scanning electron microscopy are used to reveal independent clusters of inorganic particles embedded within a polymer. These clusters are interpenetrating, of varying size, and have fractal dimensions that strongly influence transport and structure-property relations. This interpretation forms a baseline for designing hybrid materials for applications in self-healing, drug delivery, and membranes.

  14. Structural and Fractal Dimensions are Reliable Determinants of Grain Yield in Soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reliable models are needed to describe plants with complex geometric structures, quantify the impact of management strategies on the plant’s geometric distribution in space and time, and predict yield as a function of fractal dimension. We measured growth and development variables on single soybean ...

  15. Subdiffusion in Peptides Originates from the Fractal-Like Structure of Configuration Space

    SciTech Connect

    Neusius, Thomas; Daidone, Isabella; Sokolov, Igor; Smith, Jeremy C

    2008-05-01

    Molecular dynamics simulation of oligopeptide chains reveals configurational subdiffusion at equilibrium extending from 10{sup -12} to 10{sup -8} s. Trap models, involving a random walk with a distribution of waiting times, cannot account for the subdiffusion, which is found rather to arise from the fractal-like structure of the accessible configuration space.

  16. Subdiffusion in peptides originates from the fractal-like structure of configuration space

    SciTech Connect

    Neusius, Thomas; Daidone, Isabella; Sokolov, Igor; Smith, Jeremy C

    2008-05-01

    Molecular dynamics simulation of oligopeptide chains reveals configurational subdiffusion at equilibrium extending from 10{sup -12} to 10{sup -8} s. Trap models, involving a random walk with a distribution of waiting times, cannot account for the subdiffusion, which is found rather to arise from the fractal-like structure of the accessible configuration space.

  17. Flow around new wind fence with multi-scale fractal structure in an atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    McClure, Sarah; Lee, Sang-Joon; Zhang, Wei

    2015-11-01

    Understanding and controlling atmospheric boundary-layer flows with engineered structures, such as porous wind fences or windbreaks, has been of great interest to the fluid mechanics and wind engineering community. Previous studies found that the regular mono-scale grid fence of 50% porosity and a bottom gap of 10% of the fence height are considered to be optimal over a flat surface. Significant differences in turbulent flow structure have recently been noted behind multi-scale fractal wind fences, even with the same porosity. In this study, wind-tunnel tests on the turbulent flow and the turbulence kinetic energy transport of 1D and 2D multi-scale fractal fences under atmospheric boundary-layer were conducted. Velocity fields around the fractal fences were systematically measured using Particle Image Velocimetry to uncover effects of key parameters on turbulent flows around the fences at a Reynolds number of approximately 3.6x104 based on the free-stream speed and fence height. The turbulent flow structures induced by specific 1D/2D multi-scale fractal wind fences were compared to those of a conventional grid fence. The present results would contribute to the design of new-generation wind fences to reduce snow/sand deposition on critical infrastructure such as roads and bridges.

  18. Exhaled Aerosol Pattern Discloses Lung Structural Abnormality: A Sensitivity Study Using Computational Modeling and Fractal Analysis

    PubMed Central

    Xi, Jinxiang; Si, Xiuhua A.; Kim, JongWon; Mckee, Edward; Lin, En-Bing

    2014-01-01

    Background Exhaled aerosol patterns, also called aerosol fingerprints, provide clues to the health of the lung and can be used to detect disease-modified airway structures. The key is how to decode the exhaled aerosol fingerprints and retrieve the lung structural information for a non-invasive identification of respiratory diseases. Objective and Methods In this study, a CFD-fractal analysis method was developed to quantify exhaled aerosol fingerprints and applied it to one benign and three malign conditions: a tracheal carina tumor, a bronchial tumor, and asthma. Respirations of tracer aerosols of 1 µm at a flow rate of 30 L/min were simulated, with exhaled distributions recorded at the mouth. Large eddy simulations and a Lagrangian tracking approach were used to simulate respiratory airflows and aerosol dynamics. Aerosol morphometric measures such as concentration disparity, spatial distributions, and fractal analysis were applied to distinguish various exhaled aerosol patterns. Findings Utilizing physiology-based modeling, we demonstrated substantial differences in exhaled aerosol distributions among normal and pathological airways, which were suggestive of the disease location and extent. With fractal analysis, we also demonstrated that exhaled aerosol patterns exhibited fractal behavior in both the entire image and selected regions of interest. Each exhaled aerosol fingerprint exhibited distinct pattern parameters such as spatial probability, fractal dimension, lacunarity, and multifractal spectrum. Furthermore, a correlation of the diseased location and exhaled aerosol spatial distribution was established for asthma. Conclusion Aerosol-fingerprint-based breath tests disclose clues about the site and severity of lung diseases and appear to be sensitive enough to be a practical tool for diagnosis and prognosis of respiratory diseases with structural abnormalities. PMID:25105680

  19. Ultrasonic analysis of Kevlar-epoxy filament wound structures

    SciTech Connect

    Brosey, W.D.

    1985-07-16

    Composite structures are often desirable for their strength and weight characteristics. Since composites are not as well characterized mechanically as metallic or ceramic structures, much work has been performed at the Oak Ridge Y-12 Plant to obtain that characterization and to develop methods of determining the mechanical properties of a composite nondestructively. Most of the work to date has been performed on nonenclosed structures. One notable exception has been the holographic evaluation of spherical Kevlar-epoxy composite pressure vessels. Several promising nondestructive evaluation techniques have been used to locate flaws and predict the integrity of the composite. Several of these include thermography, Moire interferometry, ultrasonic stress wave factor, ultrasonic C-scan image enhancement, radiography, and nuclear magnetic resonance. As a first step in this transfer and development of NDE techniques, known defects were placed within spherical Kevlar-epoxy, filament-wound test specimens to determine the extent to which they could be detected. These defects included Teflon shim-simulated delaminations, macrosphere-simulated voids, dry-band sets, variable tension, Kevlar 29 fiber instead of the higher strength Kevlar 40 fiber, and an alternate high-void-content winding pattern. Ultrasonic waveform analysis was performed in both the time and frequency domains to determine the detectability and locatability of structural flaws within the composite. Preparation has been made at Virginia Polytechnic Institute and State University and at the University of Delaware, to examine the specimens using various NDE techniques. This work is a compilation of interim project reports in partial fulfillment of the contracts between Virginia Polytechnic Institute and State University, the University of Delaware, and Y-12 Plant.

  20. Ultrasonic analysis of Kevlar-epoxy filament wound structures

    NASA Astrophysics Data System (ADS)

    Brosey, W. D.

    1985-07-01

    Composite structures are often desirable for their strength and weight characteristics. Since composites are not as well characterized mechanically as metallic or ceramic structures, much work has been performed at the Oak Ridge Y-12 Plant to obtain that characterization and to develop methods of determining the mechanical properties of a composite nondestructively. Most of the work to date has been performed on nonenclosed structures. One notable exception has been the holographic evaluation of spherical Kevlar-epoxy composite pressure vessels. Several promising nondestructive evaluation techniques have been used to locate flaws and predict the integrity of the composite. Several of these include thermography, Moire interferometry, ultrasonic stress wave factor, ultrasonic C-scan image enhancement, radiography, and nuclear magnetic resonance. As a first step in this transfer and development of NDE techniques, known defects were placed within spherical Kevlar-epoxy, filament-wound test specimens to determine the extent to which they could be detected. These defects included Teflon shim-simulated delaminations, macrosphere-simulated voids, dry-band sets, variable tension, Kevlar 29 fiber instead of the higher strength Kevlar 40 fiber, and an alternate high-void-content winding pattern. Ultrasonic waveform analysis was performed in both the time and frequency domains to determine the detectability and locatability of structural flaws within the composite. Preparation has been made at Virginia Polytechnic Institute and State University and at the University of Delaware, to examine the specimens using various NDE techniques. This work is a compilation of interim project reports in partial fulfillment of the contracts between Virginia Polytechnic Institute and State University, the University of Delaware, and Y-12 Plant.

  1. Zebrafish cardiac muscle thick filaments: isolation technique and three-dimensional structure.

    PubMed

    González-Solá, Maryví; Al-Khayat, Hind A; Behra, Martine; Kensler, Robert W

    2014-04-15

    To understand how mutations in thick filament proteins such as cardiac myosin binding protein-C or titin, cause familial hypertrophic cardiomyopathies, it is important to determine the structure of the cardiac thick filament. Techniques for the genetic manipulation of the zebrafish are well established and it has become a major model for the study of the cardiovascular system. Our goal is to develop zebrafish as an alternative system to the mammalian heart model for the study of the structure of the cardiac thick filaments and the proteins that form it. We have successfully isolated thick filaments from zebrafish cardiac muscle, using a procedure similar to those for mammalian heart, and analyzed their structure by negative-staining and electron microscopy. The isolated filaments appear well ordered with the characteristic 42.9 nm quasi-helical repeat of the myosin heads expected from x-ray diffraction. We have performed single particle image analysis on the collected electron microscopy images for the C-zone region of these filaments and obtained a three-dimensional reconstruction at 3.5 nm resolution. This reconstruction reveals structure similar to the mammalian thick filament, and demonstrates that zebrafish may provide a useful model for the study of the changes in the cardiac thick filament associated with disease processes.

  2. Structural analysis of vimentin and keratin intermediate filaments by cryo-electron tomography

    SciTech Connect

    Norlen, Lars . E-mail: lars.norlen@ki.se; Masich, Sergej; Goldie, Kenneth N.; Hoenger, Andreas

    2007-06-10

    Intermediate filaments are a large and structurally diverse group of cellular filaments that are classified into five different groups. They are referred to as intermediate filaments (IFs) because they are intermediate in diameter between the two other cytoskeletal filament systems that is filamentous actin and microtubules. The basic building block of IFs is a predominantly {alpha}-helical rod with variable length globular N- and C-terminal domains. On the ultra-structural level there are two major differences between IFs and microtubules or actin filaments: IFs are non-polar, and they do not exhibit large globular domains. IF molecules associate via a coiled-coil interaction into dimers and higher oligomers. Structural investigations into the molecular building plan of IFs have been performed with a variety of biophysical and imaging methods such as negative staining and metal-shadowing electron microscopy (EM), mass determination by scanning transmission EM, X-ray crystallography on fragments of the IF stalk and low-angle X-ray scattering. The actual packing of IF dimers into a long filament varies between the different families. Typically the dimers form so called protofibrils that further assemble into a filament. Here we introduce new cryo-imaging methods for structural investigations of IFs in vitro and in vivo, i.e., cryo-electron microscopy and cryo-electron tomography, as well as associated techniques such as the preparation and handling of vitrified sections of cellular specimens.

  3. Zebrafish Cardiac Muscle Thick Filaments: Isolation Technique and Three-Dimensional Structure

    PubMed Central

    González-Solá, Maryví; AL-Khayat, Hind A.; Behra, Martine; Kensler, Robert W.

    2014-01-01

    To understand how mutations in thick filament proteins such as cardiac myosin binding protein-C or titin, cause familial hypertrophic cardiomyopathies, it is important to determine the structure of the cardiac thick filament. Techniques for the genetic manipulation of the zebrafish are well established and it has become a major model for the study of the cardiovascular system. Our goal is to develop zebrafish as an alternative system to the mammalian heart model for the study of the structure of the cardiac thick filaments and the proteins that form it. We have successfully isolated thick filaments from zebrafish cardiac muscle, using a procedure similar to those for mammalian heart, and analyzed their structure by negative-staining and electron microscopy. The isolated filaments appear well ordered with the characteristic 42.9 nm quasi-helical repeat of the myosin heads expected from x-ray diffraction. We have performed single particle image analysis on the collected electron microscopy images for the C-zone region of these filaments and obtained a three-dimensional reconstruction at 3.5 nm resolution. This reconstruction reveals structure similar to the mammalian thick filament, and demonstrates that zebrafish may provide a useful model for the study of the changes in the cardiac thick filament associated with disease processes. PMID:24739166

  4. Fractal images induce fractal pupil dilations and constrictions.

    PubMed

    Moon, P; Muday, J; Raynor, S; Schirillo, J; Boydston, C; Fairbanks, M S; Taylor, R P

    2014-09-01

    Fractals are self-similar structures or patterns that repeat at increasingly fine magnifications. Research has revealed fractal patterns in many natural and physiological processes. This article investigates pupillary size over time to determine if their oscillations demonstrate a fractal pattern. We predict that pupil size over time will fluctuate in a fractal manner and this may be due to either the fractal neuronal structure or fractal properties of the image viewed. We present evidence that low complexity fractal patterns underlie pupillary oscillations as subjects view spatial fractal patterns. We also present evidence implicating the autonomic nervous system's importance in these patterns. Using the variational method of the box-counting procedure we demonstrate that low complexity fractal patterns are found in changes within pupil size over time in millimeters (mm) and our data suggest that these pupillary oscillation patterns do not depend on the fractal properties of the image viewed.

  5. Fractal images induce fractal pupil dilations and constrictions.

    PubMed

    Moon, P; Muday, J; Raynor, S; Schirillo, J; Boydston, C; Fairbanks, M S; Taylor, R P

    2014-09-01

    Fractals are self-similar structures or patterns that repeat at increasingly fine magnifications. Research has revealed fractal patterns in many natural and physiological processes. This article investigates pupillary size over time to determine if their oscillations demonstrate a fractal pattern. We predict that pupil size over time will fluctuate in a fractal manner and this may be due to either the fractal neuronal structure or fractal properties of the image viewed. We present evidence that low complexity fractal patterns underlie pupillary oscillations as subjects view spatial fractal patterns. We also present evidence implicating the autonomic nervous system's importance in these patterns. Using the variational method of the box-counting procedure we demonstrate that low complexity fractal patterns are found in changes within pupil size over time in millimeters (mm) and our data suggest that these pupillary oscillation patterns do not depend on the fractal properties of the image viewed. PMID:24978815

  6. Growing gold fractal nano-structures and studying changes in their morphology as a function of film growth rate

    NASA Astrophysics Data System (ADS)

    Banerjee, Amit; Banerjee, S. S.

    2016-10-01

    We investigate the formation of fractal like nano-structures on free standing gold films grown via surfactant mediated thin film growth process. We determine these structures to be confined within the first few monolayers of the thin film. Their chemical composition is identical to that of the Au film, although their density is different from the surrounding film. We observe changes in the morphology of these fractal structures by controlling the film growth rate, which spans across three orders of magnitude. From our study, we quantify the morphological changes in the fractal structure via a roundness parameter and we suggest an empirical relation between the roundness parameter and the growth rate. The study shows an inverse relationship between the roundness parameter and the growth rate and also that the fractal to compact morphological transition is continuous.

  7. Frealix: Model-based refinement of helical filament structures from electron micrographs

    PubMed Central

    Rohou, Alexis; Grigorieff, Nikolaus

    2014-01-01

    The structures of many helical protein filaments can be derived from electron micrographs of their suspensions in thin films of vitrified aqueous solutions. The most successful and generally-applicable approach treats short segments of these filaments as independent “single particles”, yielding near-atomic resolution for rigid and well-ordered filaments. The single-particle approach can also accommodate filament deformations, yielding sub-nanometer resolution for more flexible filaments. However, in the case of thin and flexible filaments, such as some amyloid-β (Aβ) fibrils, the single-particle approach may fail because helical segments can be curved or otherwise distorted and their alignment can be inaccurate due to low contrast in the micrographs. We developed new software called Frealix that allows the use of arbitrarily short filament segments during alignment to approximate even high curvatures. All segments in a filament are aligned simultaneously with constraints that ensure that they connect to each other in space to form a continuous helical structure. In this paper, we describe the algorithm and benchmark it against datasets of Aβ(1–40) fibrils and tobacco mosaic virus (TMV), both analyzed in earlier work. In the case of TMV, our algorithm achieves similar results to single-particle analysis. In the case of Aβ(1–40) fibrils, we match the previously-obtained resolution but we are also able to obtain reliable alignments and ~8-Å reconstructions from curved filaments. Our algorithm also offers a detailed characterization of filament deformations in three dimensions and enables a critical evaluation of the worm-like chain model for biological filaments. PMID:24657230

  8. Fractal structures of dendrites in GaSe crystals

    NASA Astrophysics Data System (ADS)

    Kolesnikov, N. N.; Borisenko, E. B.; Borisenko, D. N.; Bozhko, S. I.

    2008-07-01

    Solidification of melts at substantial supercooling is associated with instability on the growth front. This causes growth of dendrites, which form as a branched tree in a crystal. In the layered melt-grown GaSe crystals dendrites are observed, if growth rates are rather high [N.N. Kolesnikov, E.B. Borisenko, D.N. Borisenko, V.K. Gartman, Influence of growth conditions on microstructure and properties of GaSe crystals, J. Crystal Growth 300 (2) (2007) 294-298]. Models based on solution of the thermal diffusion problem are traditionally used to describe dendrite growth. Solution of this problem requires information about several physical parameters, such as diffusion coefficient, heat conductivity coefficient and supercooling at the solid/liquid interface. The study of scale invariance of dendrites formed in a crystal provides a new approach to solution of the dynamic growth problem. The calculated fractal dimensionality of the experimentally observed dendrites in GaSe crystals is D=1.7. It coincides with dimensionality of the clusters obtained through computer simulation in terms of the model of diffusion-limited aggregation (DLA). This result provides a new approach to description of the dynamics of dendrite growth. We have shown that the dendrite growth mechanism in the layered semiconductor crystals can be described by a two-dimensional DLA model. It is shown that probabilistic simulation can be used to show the development of a dendrite in any material. In contrast to the classical theories of dendrite growth, this approach does not require information on physical parameters.

  9. Correcting for finite spatial scales of self-similarity when calculating fractal dimensions of real-world structures

    PubMed Central

    Berntson, G. M.; Stoll, P.

    1997-01-01

    Fractal geometry is a potentially valuable tool for quantitatively characterizing complex structures. The fractal dimension (D) can be used as a simple, single index for summarizing properties of real and abstract structures in space and time. Applications in the fields of biology and ecology range from neurobiology to plant architecture, landscape structure, taxonomy and species diversity. However, methods to estimate the D have often been applied in an uncritical manner, violating assumptions about the nature of fractal structures. The most common error involves ignoring the fact that ideal, i.e. infinitely nested, fractal structures exhibit self-similarity over any range of scales. Unlike ideal fractals, real-world structures exhibit self-similarity only over a finite range of scales. Here we present a new technique for quantitatively determining the scales over which real-world structures show statistical self-similarity. The new technique uses a combination of curve-fitting and tests of curvilinearity of residuals to identify the largest range of contiguous scales that exhibit statistical self-similarity. Consequently, we estimate D only over the statistically identified region of self-similarity and introduce the finite scale- corrected dimension (FSCD). We demonstrate the use of this method in two steps. First, using mathematical fractal curves with known but variable spatial scales of self-similarity (achieved by varying the iteration level used for creating the curves), we demonstrate that our method can reliably quantify the spatial scales of self-similarity. This technique therefore allows accurate empirical quantification of theoretical Ds. Secondly, we apply the technique to digital images of the rhizome systems of goldenrod (Solidago altissima). The technique significantly reduced variations in estimated fractal dimensions arising from variations in the method of preparing digital images. Overall, the revised method has the potential to significantly

  10. Characterization and structural investigation of fractal porous-silica over an extremely wide scale range of pore size.

    PubMed

    Ono, Yusuke; Mayama, Hiroyuki; Furó, István; Sagidullin, Alexander I; Matsushima, Keiichiro; Ura, Haruo; Uchiyama, Tomoyuki; Tsujii, Kaoru

    2009-08-01

    We have succeeded in creating Menger sponge-like fractal body, i.e., porous-silica samples with Menger sponge-like fractal geometries, by a novel template method utilizing template particles of alkylketene dimer (AKD) and a sol-gel synthesis of tetramethyl orthosilicate (TMOS). We report here the first experimental results on characterization and structural investigations of the fractal porous-silica samples prepared with various conditions such as calcination temperature and packing condition of the template particles. In order to characterize the fractal porous-silica samples, pore volume distribution, porosity and specific surface area were measured over an extremely wide scale from 1 nm to 100 microm by means of mercury porosimetry, (1)H NMR cryoporometry, nitrogen gas adsorption experiments together with direct evaluations of cross-sectional fractal dimension D(cs), and size limits of D(cs). We have found that the pore volume distribution and specific surface area of the fractal porous-silica samples can be discussed in terms of different fractal porous structures at different scale regions. PMID:19406424

  11. Estimation of the adequacy of the fractal model of the atomic structure of amorphous silicon

    SciTech Connect

    Golodenko, A. B.

    2010-01-15

    A method of constructing a fractal model of noncrystalline solid substance is considered using the example of amorphous silicon. In systems of iteration functions, the physical meaning of dihedral and valence angles of the elementary crystallographic cell is assigned to arguments. The model adequacy is estimated by the radial distribution function, the atomic structure density, the distribution of valence and dihedral angles, and the density of dangling interatomic bonds.

  12. THz transmission through Sierpinski fractal structures on copper foils by FDTD simulation

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyan; Zhao, Guozhong; Wang, He; Zhang, Cunlin

    2009-11-01

    The enhanced transmission spectra and reflection spectra of sub-wavelength fractal structure named Sierpinski fractal structure are presented by means of finite-difference-time-domain (FDTD) simulation. It is found that there are several transmission peaks in the transmission spectra and several reflection peaks in the reflection spectra. The transmission peaks appears red shift and increases with increasing of side length of center square holes when keeping the period of array as a constant. To investigate the physical mechanism of the enhanced transmissions, we simulated the incidence and transmission of THz radiation field at certain transmission peak and show the propagation and distribution of the interior electromagnetic field by the electromagnetic design software named CONCERTO. It is found that different transmission peaks are caused by the different level of square holes. Further analysis reveals that the transmission enhancement is from the interaction of the complicated waveguide coupling effect and the local resonance of electric field. Our simulation is helpful for the understanding of THz wave propagation and THz transmission through the fractal structures of the metal foil.

  13. Fractal analysis of the structural complexity of the connective tissue in human carotid bodies

    PubMed Central

    Guidolin, Diego; Porzionato, Andrea; Tortorella, Cinzia; Macchi, Veronica; De Caro, Raffaele

    2014-01-01

    The carotid body (CB) may undergo different structural changes during perinatal development, aging, or in response to environmental stimuli. In the previous literature, morphometric approaches to evaluate these changes have considered quantitative first order parameters, such as volumes or densities, while changes in spatial disposition and/or complexity of structural components have not yet been considered. In the present study, different strategies for addressing morphological complexity of CB, apart from the overall amount of each tissue component, were evaluated and compared. In particular, we considered the spatial distribution of connective tissue in the carotid bodies of young control subjects, young opiate-related deaths and aged subjects, through analysis of dispersion (Morisita's index), gray level co-occurrence matrix (entropy, angular second moment, variance, correlation), and fractal analysis (fractal dimension, lacunarity). Opiate-related deaths and aged subjects showed a comparable increase in connective tissue with respect to young controls. However, the Morisita's index (p < 0.05), angular second moment (p < 0.05), fractal dimension (p < 0.01), and lacunarity (p < 0.01) permitted to identify significant differences in the disposition of the connective tissue between these two series. A receiver operating characteristic (ROC) curve was also calculated to evaluate the efficiency of each parameter. The fractal dimension and lacunarity, with areas under the ROC curve of 0.9651 (excellent accuracy) and 0.8835 (good accuracy), respectively, showed the highest discriminatory power. They evidenced higher level of structural complexity in the carotid bodies of opiate-related deaths than old controls, due to more complex branching of intralobular connective tissue. Further analyses will have to consider the suitability of these approaches to address other morphological features of the CB, such as different cell populations, vascularization, and innervation

  14. Purified thick filaments from the nematode Caenorhabditis elegans: evidence for multiple proteins associated with core structures

    PubMed Central

    1988-01-01

    The thick filaments of the nematode, Caenorhabditis elegans, arising predominantly from the body-wall muscles, contain two myosin isoforms and paramyosin as their major proteins. The two myosins are located in distinct regions of the surfaces, while paramyosin is located within the backbones of the filaments. Tubular structures constitute the cores of the polar regions, and electron-dense material is present in the cores of the central regions (Epstein, H.F., D.M. Miller, I. Ortiz, and G.C. Berliner. 1985. J. Cell Biol. 100:904-915). Biochemical, genetic, and immunological experiments indicate that the two myosins and paramyosin are not necessary core components (Epstein, H.F., I. Ortiz, and L.A. Traeger Mackinnon. 1986. J. Cell Biol. 103:985-993). The existence of the core structures suggests, therefore, that additional proteins may be associated with thick filaments in C. elegans. To biochemically detect minor associated proteins, a new procedure for the isolation of thick filaments of high purity and structural preservation has been developed. The final step, glycerol gradient centrifugation, yielded fractions that are contaminated by, at most, 1-2% with actin, tropomyosin, or ribosome-associated proteins on the basis of Coomassie Blue staining and electron microscopy. Silver staining and radioautography of gel electrophoretograms of unlabeled and 35S-labeled proteins, respectively, revealed at least 10 additional bands that cosedimented with thick filaments in glycerol gradients. Core structures prepared from wild-type thick filaments contained at least six of these thick filament-associated protein bands. The six proteins also cosedimented with thick filaments purified by gradient centrifugation from CB190 mutants lacking myosin heavy chain B and from CB1214 mutants lacking paramyosin. For these reasons, we propose that the six associated proteins are potential candidates for putative components of core structures in the thick filaments of body-wall muscles of

  15. [Quantitative structure characteristics and fractal dimension of Chinese medicine granules measured by synchrotron radiation X-ray computed micro tomography].

    PubMed

    Lu, Xiao-long; Zheng, Qin; Yin, Xian-zhen; Xiao, Guang-qing; Liao, Zu-hua; Yang, Ming; Zhang, Ji-wen

    2015-06-01

    The shape and structure of granules are controlled by the granulation process, which is one of the main factors to determine the nature of the solid dosage forms. In this article, three kinds of granules of a traditional Chinese medicine for improving appetite and promoting digestion, namely, Jianwei Granules, were prepared using granulation technologies as pendular granulation, high speed stirring granulation, and fluidized bed granulation and the powder properties of them were investigated. Meanwhile, synchrotron radiation X-ray computed micro tomography (SR-µCT) was applied to quantitatively determine the irregular internal structures of the granules. The three-dimensional (3D) structure models were obtained by 3D reconstruction, which were more accurately to characterize the three-dimensional structures of the particles through the quantitative data. The models were also used to quantitatively compare the structural differences of granules prepared by different granulation processes with the same formula, so as to characterize how the production process plays a role in the pharmaceutical behaviors of the granules. To focus on the irregularity of the particle structure, the box counting method was used to calculate the fractal dimensions of the granules. The results showed that the fractal dimension is more sensitive to reflect the minor differences in the structure features than the conventional parameters, and capable to specifically distinct granules in structure. It is proved that the fractal dimension could quantitatively characterize the structural information of irregular granules. It is the first time suggested by our research that the fractal dimension difference (Df,c) between two fractal dimension parameters, namely, the volume matrix fractal dimension and the surface matrix fractal dimension, is a new index to characterize granules with irregular structures and evaluate the effects of production processes on the structures of granules as a new

  16. [Quantitative structure characteristics and fractal dimension of Chinese medicine granules measured by synchrotron radiation X-ray computed micro tomography].

    PubMed

    Lu, Xiao-long; Zheng, Qin; Yin, Xian-zhen; Xiao, Guang-qing; Liao, Zu-hua; Yang, Ming; Zhang, Ji-wen

    2015-06-01

    The shape and structure of granules are controlled by the granulation process, which is one of the main factors to determine the nature of the solid dosage forms. In this article, three kinds of granules of a traditional Chinese medicine for improving appetite and promoting digestion, namely, Jianwei Granules, were prepared using granulation technologies as pendular granulation, high speed stirring granulation, and fluidized bed granulation and the powder properties of them were investigated. Meanwhile, synchrotron radiation X-ray computed micro tomography (SR-µCT) was applied to quantitatively determine the irregular internal structures of the granules. The three-dimensional (3D) structure models were obtained by 3D reconstruction, which were more accurately to characterize the three-dimensional structures of the particles through the quantitative data. The models were also used to quantitatively compare the structural differences of granules prepared by different granulation processes with the same formula, so as to characterize how the production process plays a role in the pharmaceutical behaviors of the granules. To focus on the irregularity of the particle structure, the box counting method was used to calculate the fractal dimensions of the granules. The results showed that the fractal dimension is more sensitive to reflect the minor differences in the structure features than the conventional parameters, and capable to specifically distinct granules in structure. It is proved that the fractal dimension could quantitatively characterize the structural information of irregular granules. It is the first time suggested by our research that the fractal dimension difference (Df,c) between two fractal dimension parameters, namely, the volume matrix fractal dimension and the surface matrix fractal dimension, is a new index to characterize granules with irregular structures and evaluate the effects of production processes on the structures of granules as a new

  17. Structure determination of helical filaments by solid-state NMR spectroscopy

    PubMed Central

    Ahmed, Mumdooh; Spehr, Johannes; König, Renate; Lünsdorf, Heinrich; Rand, Ulfert; Lührs, Thorsten; Ritter, Christiane

    2016-01-01

    The controlled formation of filamentous protein complexes plays a crucial role in many biological systems and represents an emerging paradigm in signal transduction. The mitochondrial antiviral signaling protein (MAVS) is a central signal transduction hub in innate immunity that is activated by a receptor-induced conversion into helical superstructures (filaments) assembled from its globular caspase activation and recruitment domain. Solid-state NMR (ssNMR) spectroscopy has become one of the most powerful techniques for atomic resolution structures of protein fibrils. However, for helical filaments, the determination of the correct symmetry parameters has remained a significant hurdle for any structural technique and could thus far not be precisely derived from ssNMR data. Here, we solved the atomic resolution structure of helical MAVSCARD filaments exclusively from ssNMR data. We present a generally applicable approach that systematically explores the helical symmetry space by efficient modeling of the helical structure restrained by interprotomer ssNMR distance restraints. Together with classical automated NMR structure calculation, this allowed us to faithfully determine the symmetry that defines the entire assembly. To validate our structure, we probed the protomer arrangement by solvent paramagnetic resonance enhancement, analysis of chemical shift differences relative to the solution NMR structure of the monomer, and mutagenesis. We provide detailed information on the atomic contacts that determine filament stability and describe mechanistic details on the formation of signaling-competent MAVS filaments from inactive monomers. PMID:26733681

  18. Structure determination of helical filaments by solid-state NMR spectroscopy.

    PubMed

    He, Lichun; Bardiaux, Benjamin; Ahmed, Mumdooh; Spehr, Johannes; König, Renate; Lünsdorf, Heinrich; Rand, Ulfert; Lührs, Thorsten; Ritter, Christiane

    2016-01-19

    The controlled formation of filamentous protein complexes plays a crucial role in many biological systems and represents an emerging paradigm in signal transduction. The mitochondrial antiviral signaling protein (MAVS) is a central signal transduction hub in innate immunity that is activated by a receptor-induced conversion into helical superstructures (filaments) assembled from its globular caspase activation and recruitment domain. Solid-state NMR (ssNMR) spectroscopy has become one of the most powerful techniques for atomic resolution structures of protein fibrils. However, for helical filaments, the determination of the correct symmetry parameters has remained a significant hurdle for any structural technique and could thus far not be precisely derived from ssNMR data. Here, we solved the atomic resolution structure of helical MAVS(CARD) filaments exclusively from ssNMR data. We present a generally applicable approach that systematically explores the helical symmetry space by efficient modeling of the helical structure restrained by interprotomer ssNMR distance restraints. Together with classical automated NMR structure calculation, this allowed us to faithfully determine the symmetry that defines the entire assembly. To validate our structure, we probed the protomer arrangement by solvent paramagnetic resonance enhancement, analysis of chemical shift differences relative to the solution NMR structure of the monomer, and mutagenesis. We provide detailed information on the atomic contacts that determine filament stability and describe mechanistic details on the formation of signaling-competent MAVS filaments from inactive monomers.

  19. Short-time dynamics of an Ising system on fractal structures

    SciTech Connect

    Zheng, Guang-Ping; Li, Mo

    2000-11-01

    The short-time critical relaxation of an Ising model on a Sierpinski carpet is investigated using Monte Carlo simulation. We find that when the system is quenched from high temperature to the critical temperature, the evolution of the order parameter and its persistence probability, the susceptibility, and the autocorrelation function all show power-law scaling behavior at the short-time regime. The results suggest that the spatial heterogeneity and the fractal nature of the underlying structure do not influence the scaling behavior of the short-time critical dynamics. The critical temperature, dynamic exponent z, and other equilibrium critical exponents {beta} and {nu} of the fractal spin system are determined accurately using conventional Monte Carlo simulation algorithms. The mechanism for short-time dynamic scaling is discussed.

  20. The fractal universe, preon structure of particles, and the familon model of dark matter

    NASA Astrophysics Data System (ADS)

    Burdyuzha, V. V.

    2014-06-01

    The consequences of the preon structure of matter are discussed. The table of elementary particles is presented in its preon version, in which quarks, leptons and gauge bosons are considered to be composite particles. The preon model provides a natural explanation for dark matter, which consists of pseudo-Goldstone familon bosons with a mass m ˜ 10-3-10-5 eV. It has been shown that phase transitions could occur at various temperatures in a medium of familons formed of up and down quarks of different generations, leading to fractal fragmentation of the medium and the formation of "distinguished scales" in the Universe. The role of particle families is elucidatied. Fractality is also briefly discussed.

  1. Characterization of microgravity effects on bone structure and strength using fractal analysis

    NASA Technical Reports Server (NTRS)

    Acharya, Raj S.; Shackelford, Linda

    1995-01-01

    The effect of micro-gravity on the musculoskeletal system has been well studied. Significant changes in bone and muscle have been shown after long term space flight. Similar changes have been demonstrated due to bed rest. Bone demineralization is particularly profound in weight bearing bones. Much of the current techniques to monitor bone condition use bone mass measurements. However, bone mass measurements are not reliable to distinguish Osteoporotic and Normal subjects. It has been shown that the overlap between normals and osteoporosis is found for all of the bone mass measurement technologies: single and dual photon absorptiometry, quantitative computed tomography and direct measurement of bone area/volume on biopsy as well as radiogrammetry. A similar discordance is noted in the fact that it has not been regularly possible to find the expected correlation between severity of osteoporosis and degree of bone loss. Structural parameters such as trabecular connectivity have been proposed as features for assessing bone conditions. In this report, we use fractal analysis to characterize bone structure. We show that the fractal dimension computed with MRI images and X-Ray images of the patella are the same. Preliminary experimental results show that the fractal dimension computed from MRI images of vertebrae of human subjects before bedrest is higher than during bedrest.

  2. Fractal Structures on Fe3O4 Ferrofluid: A Small-Angle Neutron Scattering Study

    NASA Astrophysics Data System (ADS)

    Giri Rachman Putra, Edy; Seong, Baek Seok; Shin, Eunjoo; Ikram, Abarrul; Ani, Sistin Ari; Darminto

    2010-10-01

    A small-angle neutron scattering (SANS) which is a powerful technique to reveal the large scale structures was applied to investigate the fractal structures of water-based Fe3O4ferrofluid, magnetic fluid. The natural magnetite Fe3O4 from iron sand of several rivers in East Java Province of Indonesia was extracted and purified using magnetic separator. Four different ferrofluid concentrations, i.e. 0.5, 1.0, 2.0 and 3.0 Molar (M) were synthesized through a co-precipitation method and then dispersed in tetramethyl ammonium hydroxide (TMAH) as surfactant. The fractal aggregates in ferrofluid samples were observed from their SANS scattering distributions confirming the correlations to their concentrations. The mass fractal dimension changed from about 3 to 2 as ferrofluid concentration increased showing a deviation slope at intermediate scattering vector q range. The size of primary magnetic particle as a building block was determined by fitting the scattering profiles with a log-normal sphere model calculation. The mean average size of those magnetic particles is about 60 - 100 Å in diameter with a particle size distribution σ = 0.5.

  3. Agglomeration due to Brownian motion of fractal-structured combustion aerosols

    SciTech Connect

    Kaplan, C.H.

    1987-01-01

    A dynamic Monte-Carlo type lattice model has been developed to simulate the agglomeration of non-spherical chain-line aggregate combustion aerosols due to Brownian motion. Simulations are carried out in the free molecular and continuum regimes, for both initial monodisperse and initial log-normally distributed aerosols, with and without source mechanisms. Preservation of the chain-like structure of the aggregate is accomplished throughout the simulation by describing the agglomerate as fractal, that is, scale-invariant, self-similar with a noninteger dimensionality. Simulation results indicate that cluster growth is more rapid in the free molecular regime than in the continuum. Aerosols and log-normal distributions retain their log-normal characteristics even after long coagulation times. The effect of the clusters' fractal dimension on the cluster growth rate is determined; the rate of agglomeration increases when the structure of the agglomerate is more fragmented (lower fractal dimension). An analytical solution to the coagulation equation is obtained for log-normal aerosols by calculating moments of the distribution and solving sets of moment equations to determine the size distribution parameters. Condition numbers are employed to determine which moments should be calculated to most accurately determine these parameters. Excellent agreement is obtained between the simulations and the solution to the moment equations. Experimental measurements of soot particle velocity in a premixed methane/air flame are made using laser Doppler velocimetry.

  4. Correlated Percolation, Fractal Structures, and Scale-Invariant Distribution of Clusters in Natural Images

    PubMed Central

    Saremi, Saeed; Sejnowski, Terrence J.

    2016-01-01

    Natural images are scale invariant with structures at all length scales. We formulated a geometric view of scale invariance in natural images using percolation theory, which describes the behavior of connected clusters on graphs. We map images to the percolation model by defining clusters on a binary representation for images. We show that critical percolating structures emerge in natural images and study their scaling properties by identifying fractal dimensions and exponents for the scale-invariant distributions of clusters. This formulation leads to a method for identifying clusters in images from underlying structures as a starting point for image segmentation. PMID:26415153

  5. THE FORMATION AND MAGNETIC STRUCTURES OF ACTIVE-REGION FILAMENTS OBSERVED BY NVST, SDO, AND HINODE

    SciTech Connect

    Yan, X. L.; Xue, Z. K.; Wang, J. C.; Xiang, Y. Y.; Kong, D. F.; Yang, L. H.; Pan, G. M.

    2015-08-15

    To better understand the properties of solar active-region filaments, we present a detailed study on the formation and magnetic structures of two active-region filaments in active region NOAA 11884 during a period of four days. It is found that the shearing motion of the opposite magnetic polarities and the rotation of the small sunspots with negative polarity play an important role in the formation of two active-region filaments. During the formation of these two active-region filaments, one foot of the filaments was rooted in a small sunspot with negative polarity. The small sunspot rotated not only around another small sunspot with negative polarity, but also around the center of its umbra. By analyzing the nonlinear force-free field extrapolation using the vector magnetic fields in the photosphere, twisted structures were found in the two active-region filaments prior to their eruptions. These results imply that the magnetic fields were dragged by the shearing motion between opposite magnetic polarities and became more horizontal. The sunspot rotation twisted the horizontal magnetic fields and finally formed the twisted active-region filaments.

  6. Fractal structures in two-metal electrodeposition systems I: Pb and Zn

    SciTech Connect

    Nakouzi, Elias; Sultan, Rabih

    2011-12-15

    Pattern formation in two-metal electrochemical deposition has been scarcely explored in the chemical literature. In this paper, we report new experiments on zinc-lead fractal co-deposition. Electrodeposits are grown in special cells at a fixed large value of the zinc ion concentration, while that of the lead ion is increased gradually. A very wide diversity of morphologies are obtained and classified. Most of the deposited domains are almost exclusively Pb or Zn. But certain regions originating at the base cathode, ranging from a short grass alley to dense, grown-up bushes or shrubs, manifest a combined Pb-Zn composition. Composition is determined using scanning electron microscopy/energy dispersive x ray measurements as well atomic absorption spectroscopy. Pb domains are characterized by shiny leaf-like and dense deposits as well as flowers with round, balloon-like corollas. The Zn zones display a greater variety of morphologies such as thick trunks and thin and fine branching, in addition to minute ''cigar flower'' structures. The various morphologies are analyzed and classified from the viewpoint of fractal nature, characterized by the box-count fractal dimension. Finally, macroscopic spatial alternation between two different characteristic morphologies is observed under certain conditions.

  7. Bridging Three Orders of Magnitude: Multiple Scattered Waves Sense Fractal Microscopic Structures via Dispersion

    NASA Astrophysics Data System (ADS)

    Lambert, Simon A.; Näsholm, Sven Peter; Nordsletten, David; Michler, Christian; Juge, Lauriane; Serfaty, Jean-Michel; Bilston, Lynne; Guzina, Bojan; Holm, Sverre; Sinkus, Ralph

    2015-08-01

    Wave scattering provides profound insight into the structure of matter. Typically, the ability to sense microstructure is determined by the ratio of scatterer size to probing wavelength. Here, we address the question of whether macroscopic waves can report back the presence and distribution of microscopic scatterers despite several orders of magnitude difference in scale between wavelength and scatterer size. In our analysis, monosized hard scatterers 5 μ m in radius are immersed in lossless gelatin phantoms to investigate the effect of multiple reflections on the propagation of shear waves with millimeter wavelength. Steady-state monochromatic waves are imaged in situ via magnetic resonance imaging, enabling quantification of the phase velocity at a voxel size big enough to contain thousands of individual scatterers, but small enough to resolve the wavelength. We show in theory, experiments, and simulations that the resulting coherent superposition of multiple reflections gives rise to power-law dispersion at the macroscopic scale if the scatterer distribution exhibits apparent fractality over an effective length scale that is comparable to the probing wavelength. Since apparent fractality is naturally present in any random medium, microstructure can thereby leave its fingerprint on the macroscopically quantifiable power-law exponent. Our results are generic to wave phenomena and carry great potential for sensing microstructure that exhibits intrinsic fractality, such as, for instance, vasculature.

  8. Bridging Three Orders of Magnitude: Multiple Scattered Waves Sense Fractal Microscopic Structures via Dispersion.

    PubMed

    Lambert, Simon A; Näsholm, Sven Peter; Nordsletten, David; Michler, Christian; Juge, Lauriane; Serfaty, Jean-Michel; Bilston, Lynne; Guzina, Bojan; Holm, Sverre; Sinkus, Ralph

    2015-08-28

    Wave scattering provides profound insight into the structure of matter. Typically, the ability to sense microstructure is determined by the ratio of scatterer size to probing wavelength. Here, we address the question of whether macroscopic waves can report back the presence and distribution of microscopic scatterers despite several orders of magnitude difference in scale between wavelength and scatterer size. In our analysis, monosized hard scatterers 5  μm in radius are immersed in lossless gelatin phantoms to investigate the effect of multiple reflections on the propagation of shear waves with millimeter wavelength. Steady-state monochromatic waves are imaged in situ via magnetic resonance imaging, enabling quantification of the phase velocity at a voxel size big enough to contain thousands of individual scatterers, but small enough to resolve the wavelength. We show in theory, experiments, and simulations that the resulting coherent superposition of multiple reflections gives rise to power-law dispersion at the macroscopic scale if the scatterer distribution exhibits apparent fractality over an effective length scale that is comparable to the probing wavelength. Since apparent fractality is naturally present in any random medium, microstructure can thereby leave its fingerprint on the macroscopically quantifiable power-law exponent. Our results are generic to wave phenomena and carry great potential for sensing microstructure that exhibits intrinsic fractality, such as, for instance, vasculature.

  9. Slender Vortex Filament with Slowly Varying Core Structure

    NASA Technical Reports Server (NTRS)

    Ting, Lu; Tung, Chee

    2000-01-01

    We give a brief review of the asymptotic theory of slender vortex filaments with emphases on the choices of scalings characterizing the physical problems and the corresponding assumptions and/or restrictions introduced in the formation of the asymptotic theory of Callegari and Ting (1978) and its extension by Klein and Ting (1992). In particular, the slender filaments considered are assumed to be forming loops or tori. Because of this restriction, the theory is not applicable to the trailing vortex system of a rotorcraft. We describe the multiple length scales characterizing the vortex system, formulate the expansion scheme, derive the governing equations and then identify the assumptions or restrictions inherent in the multi-scale analysis and needed for the validity of the asymptotic theory of the trailing vortex system.

  10. Thin Filament Structure and the Steric Blocking Model.

    PubMed

    Lehman, William

    2016-04-01

    By interacting with the troponin-tropomyosin complex on myofibrillar thin filaments, Ca2+ and myosin govern the regulatory switching processes influencing contractile activity of mammalian cardiac and skeletal muscles. A possible explanation of the roles played by Ca2+ and myosin emerged in the early 1970s when a compelling "steric model" began to gain traction as a likely mechanism accounting for muscle regulation. In its most simple form, the model holds that, under the control of Ca2+ binding to troponin and myosin binding to actin, tropomyosin strands running along thin filaments either block myosin-binding sites on actin when muscles are relaxed or move away from them when muscles are activated. Evidence for the steric model was initially based on interpretation of subtle changes observed in X-ray fiber diffraction patterns of intact skeletal muscle preparations. Over the past 25 years, electron microscopy coupled with three-dimensional reconstruction directly resolved thin filament organization under many experimental conditions and at increasingly higher resolution. At low-Ca2+, tropomyosin was shown to occupy a "blocked-state" position on the filament, and switched-on in a two-step process, involving first a movement of tropomyosin away from the majority of the myosin-binding site as Ca2+ binds to troponin and then a further movement to fully expose the site when small numbers of myosin heads bind to actin. In this contribution, basic information on Ca2+-regulation of muscle contraction is provided. A description is then given relating the voyage of discovery taken to arrive at the present understanding of the steric regulatory model. PMID:27065174

  11. Computational and theoretical modeling of intermediate filament networks: Structure, mechanics and disease

    NASA Astrophysics Data System (ADS)

    Qin, Zhao; Buehler, Markus J.

    2012-08-01

    Intermediate filaments, in addition to microtubules and actin microfilaments, are one of the three major components of the cytoskeleton in eukaryotic cells. It was discovered during the recent decades that in most cells, intermediate filament proteins play key roles to reinforce cells subjected to large-deformation, and that they participate in signal transduction, and it was proposed that their nanomechanical properties are critical to perform those functions. However, it is still poorly understood how the nanoscopic structure, as well as the combination of chemical composition, molecular structure and interfacial properties of these protein molecules contribute to the biomechanical properties of filaments and filament networks. Here we review recent progress in computational and theoretical studies of the intermediate filaments network at various levels in the protein's structure. A multiple scale method is discussed, used to couple molecular modeling with atomistic detail to larger-scale material properties of the networked material. It is shown that a finer-trains-coarser methodology as discussed here provides a useful tool in understanding the biomechanical property and disease mechanism of intermediate filaments, coupling experiment and simulation. It further allows us to improve the understanding of associated disease mechanisms and lays the foundation for engineering the mechanical properties of biomaterials.

  12. Robust estimation of fractal measures for characterizing the structural complexity of the human brain: optimization and reproducibility.

    PubMed

    Goñi, Joaquín; Sporns, Olaf; Cheng, Hu; Aznárez-Sanado, Maite; Wang, Yang; Josa, Santiago; Arrondo, Gonzalo; Mathews, Vincent P; Hummer, Tom A; Kronenberger, William G; Avena-Koenigsberger, Andrea; Saykin, Andrew J; Pastor, María A

    2013-12-01

    High-resolution isotropic three-dimensional reconstructions of human brain gray and white matter structures can be characterized to quantify aspects of their shape, volume and topological complexity. In particular, methods based on fractal analysis have been applied in neuroimaging studies to quantify the structural complexity of the brain in both healthy and impaired conditions. The usefulness of such measures for characterizing individual differences in brain structure critically depends on their within-subject reproducibility in order to allow the robust detection of between-subject differences. This study analyzes key analytic parameters of three fractal-based methods that rely on the box-counting algorithm with the aim to maximize within-subject reproducibility of the fractal characterizations of different brain objects, including the pial surface, the cortical ribbon volume, the white matter volume and the gray matter/white matter boundary. Two separate datasets originating from different imaging centers were analyzed, comprising 50 subjects with three and 24 subjects with four successive scanning sessions per subject, respectively. The reproducibility of fractal measures was statistically assessed by computing their intra-class correlations. Results reveal differences between different fractal estimators and allow the identification of several parameters that are critical for high reproducibility. Highest reproducibility with intra-class correlations in the range of 0.9-0.95 is achieved with the correlation dimension. Further analyses of the fractal dimensions of parcellated cortical and subcortical gray matter regions suggest robustly estimated and region-specific patterns of individual variability. These results are valuable for defining appropriate parameter configurations when studying changes in fractal descriptors of human brain structure, for instance in studies of neurological diseases that do not allow repeated measurements or for disease

  13. Structural and torsional properties of the RAD51-dsDNA nucleoprotein filament

    PubMed Central

    Lee, Mina; Lipfert, Jan; Sanchez, Humberto; Wyman, Claire; Dekker, Nynke H.

    2013-01-01

    Human RAD51 is a key protein in the repair of DNA by homologous recombination. Its assembly onto DNA, which induces changes in DNA structure, results in the formation of a nucleoprotein filament that forms the basis of strand exchange. Here, we determine the structural and mechanical properties of RAD51-dsDNA filaments. Our measurements use two recently developed magnetic tweezers assays, freely orbiting magnetic tweezers and magnetic torque tweezers, designed to measure the twist and torque of individual molecules. By directly monitoring changes in DNA twist on RAD51 binding, we determine the unwinding angle per RAD51 monomer to be 45°, in quantitative agreement with that of its bacterial homolog, RecA. Measurements of the torque that is built up when RAD51-dsDNA filaments are twisted show that under conditions that suppress ATP hydrolysis the torsional persistence length of the RAD51-dsDNA filament exceeds that of its RecA counterpart by a factor of three. Examination of the filament’s torsional stiffness for different combinations of divalent ions and nucleotide cofactors reveals that the Ca2+ ion, apart from suppressing ATPase activity, plays a key role in increasing the torsional stiffness of the filament. These quantitative measurements of RAD51-imposed DNA distortions and accumulated mechanical stress suggest a finely tuned interplay between chemical and mechanical interactions within the RAD51 nucleoprotein filament. PMID:23703213

  14. Swirling around filaments: are large-scale structure vortices spinning up dark haloes?

    NASA Astrophysics Data System (ADS)

    Laigle, C.; Pichon, C.; Codis, S.; Dubois, Y.; Le Borgne, D.; Pogosyan, D.; Devriendt, J.; Peirani, S.; Prunet, S.; Rouberol, S.; Slyz, A.; Sousbie, T.

    2015-01-01

    The kinematic analysis of dark matter and hydrodynamical simulations suggests that the vorticity in large-scale structure is mostly confined to, and predominantly aligned with, their filaments, with an excess of probability of 20 per cent to have the angle between vorticity and filaments direction lower than 60° relative to random orientations. The cross-sections of these filaments are typically partitioned into four quadrants with opposite vorticity sign, arising from multiple flows, originating from neighbouring walls. The spins of haloes embedded within these filaments are consistently aligned with this vorticity for any halo mass, with a stronger alignment for the most massive structures up to an excess of probability of 165 per cent. The global geometry of the flow within the cosmic web is therefore qualitatively consistent with a spin acquisition for smaller haloes induced by this large-scale coherence, as argued in Codis et al. In effect, secondary anisotropic infall (originating from the vortex-rich filament within which these lower-mass haloes form) dominates the angular momentum budget of these haloes. The transition mass from alignment to orthogonality is related to the size of a given multi-flow region with a given polarity. This transition may be reconciled with the standard tidal torque theory if the latter is augmented so as to account for the larger scale anisotropic environment of walls and filaments.

  15. Monitoring the integrity of filament-wound structures using built-in sensor networks

    NASA Astrophysics Data System (ADS)

    Lin, Mark; Kumar, Amrita; Qing, Xinlin; Beard, Shawn J.; Russell, Samuel S.; Walker, James L.; Delay, Thomas K.

    2003-08-01

    Monitoring the integrity of filament wound composite structures such as solid rocket motors and liquid fuel bottles is important in order to prevent catastrophic failures and to prolong the service life of these structures. To ensure the safety and reliability of rocket components, they require frequent inspection for structural damages that might have occurred during manufacturing, transportation, and storage. The timely and accurate detection, characterization and monitoring of structural cracking, delamination, debonding and other types of damage is a major concern in the operational environment. Utilization of a sensor network system integrated with the structure itself can greatly reduce this inspection burden through fast in-situ data collection and processing. Acellent Technologies, Inc. is currently developing integrated structural monitoring tools for continuous monitoring of composite and metal structures on aircraft and spacecraft. Acellent's integrated structural monitoring system consists of a flexible sensor/actuator network layer called the SMART Layer, supporting diagnostic hardware, and data processing/analysis software. Recently, Acellent has been working with NASA Marshall Space Flight Center to develop ways of embedding the SMART Layer inside filament wound composite bottles. SMART Layers were designed and manufactured for the filament wound bottles and embedded in them during the filament winding process. Acellent has been working on developing a complete structural health monitoring system for the filament wound bottles including data processing tools to interpret the changes in sensor signal caused by changes in the structural condition or material property. A prototype of a filament wound composite bottle with an embedded sensor network has been fabricated and preliminary data analysis tools have been developed.

  16. Thermal properties of composite materials with a complex fractal structure

    NASA Astrophysics Data System (ADS)

    Cervantes-Álvarez, F.; Reyes-Salgado, J. J.; Dossetti, V.; Carrillo, J. L.

    2014-06-01

    In this work, we report the thermal characterization of platelike composite samples made of polyester resin and magnetite inclusions. By means of photoacoustic spectroscopy and thermal relaxation, the thermal diffusivity, conductivity and volumetric heat capacity of the samples were experimentally measured. The volume fraction of the inclusions was systematically varied in order to study the changes in the effective thermal conductivity of the composites. For some samples, a static magnetic field was applied during the polymerization process, resulting in anisotropic inclusion distributions. Our results show a decrease in the thermal conductivity of some of the anisotropic samples, compared to the isotropic randomly distributed ones. Our analysis indicates that the development of elongated inclusion structures leads to the formation of magnetite and resin domains, causing this effect. We correlate the complexity of the inclusion structure with the observed thermal response through a multifractal and lacunarity analysis. All the experimental data are contrasted with the well known Maxwell-Garnett effective media approximation for composite materials.

  17. Engineering the shape and structure of materials by fractal cut

    PubMed Central

    Cho, Yigil; Shin, Joong-Ho; Costa, Avelino; Kim, Tae Ann; Kunin, Valentin; Li, Ju; Lee, Su Yeon; Yang, Shu; Han, Heung Nam; Choi, In-Suk; Srolovitz, David J.

    2014-01-01

    In this paper we discuss the transformation of a sheet of material into a wide range of desired shapes and patterns by introducing a set of simple cuts in a multilevel hierarchy with different motifs. Each choice of hierarchical cut motif and cut level allows the material to expand into a unique structure with a unique set of properties. We can reverse-engineer the desired expanded geometries to find the requisite cut pattern to produce it without changing the physical properties of the initial material. The concept was experimentally realized and applied to create an electrode that expands to >800% the original area with only very minor stretching of the underlying material. The generality of our approach greatly expands the design space for materials so that they can be tuned for diverse applications. PMID:25422433

  18. Engineering the shape and structure of materials by fractal cut.

    PubMed

    Cho, Yigil; Shin, Joong-Ho; Costa, Avelino; Kim, Tae Ann; Kunin, Valentin; Li, Ju; Lee, Su Yeon; Yang, Shu; Han, Heung Nam; Choi, In-Suk; Srolovitz, David J

    2014-12-01

    In this paper we discuss the transformation of a sheet of material into a wide range of desired shapes and patterns by introducing a set of simple cuts in a multilevel hierarchy with different motifs. Each choice of hierarchical cut motif and cut level allows the material to expand into a unique structure with a unique set of properties. We can reverse-engineer the desired expanded geometries to find the requisite cut pattern to produce it without changing the physical properties of the initial material. The concept was experimentally realized and applied to create an electrode that expands to >800% the original area with only very minor stretching of the underlying material. The generality of our approach greatly expands the design space for materials so that they can be tuned for diverse applications. PMID:25422433

  19. Fractal image compression

    NASA Technical Reports Server (NTRS)

    Barnsley, Michael F.; Sloan, Alan D.

    1989-01-01

    Fractals are geometric or data structures which do not simplify under magnification. Fractal Image Compression is a technique which associates a fractal to an image. On the one hand, the fractal can be described in terms of a few succinct rules, while on the other, the fractal contains much or all of the image information. Since the rules are described with less bits of data than the image, compression results. Data compression with fractals is an approach to reach high compression ratios for large data streams related to images. The high compression ratios are attained at a cost of large amounts of computation. Both lossless and lossy modes are supported by the technique. The technique is stable in that small errors in codes lead to small errors in image data. Applications to the NASA mission are discussed.

  20. The dynamics of filamentous structures in the apical band, oral crescent, fission line and the postoral meridional filament in Tetrahymena thermophila revealed by monoclonal antibody 12G9.

    PubMed

    Jerka-Dziadosz, M; Strzyewska-Jówko, I; Wojsa-Lugowska, U; Krawczyńska, W; Krzywicka, A

    2001-05-01

    The ciliate Tetrahymena thermophila possesses a multitude of cytoskeletal structures whose differentiation is related to the basal bodies - the main mediators of the cortical pattern. This investigation deals with immunolocalization using light and electron microscopy of filaments labeled by the monoclonal antibody 12G9, which in other ciliates identifies filaments involved in transmission of cellular polarities and marks cell meridians with the highest morphogenetic potential. In Tetrahymena interphase cells, mAb 12G9 localizes to the sites of basal bodies and to the striated ciliary rootlets, to the apical band of filaments and to the fine fibrillar oral crescent. We followed the sequence of development of these structures during divisional morphogenesis. The labeling of the maternal oral crescent disappears in pre-metaphase cells and reappears during anaphase, concomitantly with differentiation of the new structure in the posterior daughter cell. In the posterior daughter cell, the new apical band originates as small clusters of filaments located at the base of the anterior basal bodies of the apical basal body couplets during early anaphase. The differentiation of the band is completed in the final stages of cytokinesis and in the young post-dividing cell. The maternal band is reorganized earlier, simultaneously with the oral structure. The mAb 12G9 identifies two transient structures present only in dividing cells. One is a medial structure demarcating the two daughter cells during metaphase and anaphase, and defining the new anterior border of the posterior daughter cell. The other is a post-oral meridional filament marking the stomatogenic meridian in postmetaphase cells. Comparative analysis of immunolocalization of transient filaments labeled with mAb12G9 in Tetrahymena and other ciliates indicates that this antibody identifies a protein bound to filamentous structures, which might play a role in relying polarities of cortical domains and could be a part

  1. Exact Length Distribution of Filamentous Structures Assembled from a Finite Pool of Subunits.

    PubMed

    Harbage, David; Kondev, Jané

    2016-07-01

    Self-assembling filamentous structures made of protein subunits are ubiquitous in cell biology. These structures are often highly dynamic, with subunits in a continuous state of flux, binding to and falling off of filaments. In spite of this constant turnover of their molecular parts, many cellular structures seem to maintain a well-defined size over time, which is often required for their proper functioning. One widely discussed mechanism of size regulation involves the cell maintaining a finite pool of protein subunits available for assembly. This finite pool mechanism can control the length of a single filament by having assembly proceed until the pool of free subunits is depleted to the point when assembly and disassembly are balanced. Still, this leaves open the question of whether the same mechanism can provide size control for multiple filamentous structures that are assembled from a common pool of protein subunits, as is often the case in cells. We address this question by solving the steady-state master equation governing the stochastic assembly and disassembly of multifilament structures made from a shared finite pool of subunits. We find that, while the total number of subunits within a multifilament structure is well-defined, individual filaments within the structure have a wide, power-law distribution of lengths. We also compute the phase diagram for two multifilament structures competing for the same pool of subunits and identify conditions for coexistence when both have a well-defined size. These predictions can be tested in cell experiments in which the size of the subunit pool or the number of filament nucleators is tuned.

  2. Facile fabrication of superhydrophobic films with fractal structures using epoxy resin microspheres

    NASA Astrophysics Data System (ADS)

    Quan, Yun-Yun; Zhang, Li-Zhi

    2014-02-01

    A simple method has been developed to fabricate superhydrophobic surfaces with fractal structures with epoxy resin microspheres (ERMs). The ERMs is produced by phase separation in an epoxy-amine curing system with a silica sol (SS) dispersant. The transparent epoxy solution becomes cloudy and turns into epoxy suspension (ES) in this process. The fractal structure (two tier structure) generated by synthetic epoxy resin microspheres (ERMs) and deposited nanoincrutations on the surfaces of these ERMs, which have been observed by scanning electron microscope (SEM). The curing time of ES is an important condition to obtain films with good comprehensive performances. Superhydrophobic films can be prepared by adding extra SS into ES with a curing time longer than 5 h. The optimal curing time is 10 h to fabricate a film with good mechanical stability and high superhydrophobicity. In addition, a surface with anti-wetting property of impacting microdroplets can be fabricated by prolonging the curing time of ES to 24 h. The gradually decreased hydrophilic groups resulted from a longer curing time enable the surface to have smaller surface adhesions to water droplets, which is the main reason to keep its superhydrophobicity under impacting conditions. The coated surface is highly hydrophobic and the impacting water droplets are bounced off from the surface.

  3. The structural basis of actin filament branching by the Arp2/3 complex

    PubMed Central

    Rouiller, Isabelle; Xu, Xiao-Ping; Amann, Kurt J.; Egile, Coumaran; Nickell, Stephan; Nicastro, Daniela; Li, Rong; Pollard, Thomas D.; Volkmann, Niels; Hanein, Dorit

    2008-01-01

    The actin-related protein 2/3 (Arp2/3) complex mediates the formation of branched actin filaments at the leading edge of motile cells and in the comet tails moving certain intracellular pathogens. Crystal structures of the Arp2/3 complex are available, but the architecture of the junction formed by the Arp2/3 complex at the base of the branch was not known. In this study, we use electron tomography to reconstruct the branch junction with sufficient resolution to show how the Arp2/3 complex interacts with the mother filament. Our analysis reveals conformational changes in both the mother filament and Arp2/3 complex upon branch formation. The Arp2 and Arp3 subunits reorganize into a dimer, providing a short-pitch template for elongation of the daughter filament. Two subunits of the mother filament undergo conformational changes that increase stability of the branch. These data provide a rationale for why branch formation requires cooperative interactions among the Arp2/3 complex, nucleation-promoting factors, an actin monomer, and the mother filament. PMID:18316411

  4. The structural basis of actin filament branching by the Arp2/3 complex.

    PubMed

    Rouiller, Isabelle; Xu, Xiao-Ping; Amann, Kurt J; Egile, Coumaran; Nickell, Stephan; Nicastro, Daniela; Li, Rong; Pollard, Thomas D; Volkmann, Niels; Hanein, Dorit

    2008-03-10

    The actin-related protein 2/3 (Arp2/3) complex mediates the formation of branched actin filaments at the leading edge of motile cells and in the comet tails moving certain intracellular pathogens. Crystal structures of the Arp2/3 complex are available, but the architecture of the junction formed by the Arp2/3 complex at the base of the branch was not known. In this study, we use electron tomography to reconstruct the branch junction with sufficient resolution to show how the Arp2/3 complex interacts with the mother filament. Our analysis reveals conformational changes in both the mother filament and Arp2/3 complex upon branch formation. The Arp2 and Arp3 subunits reorganize into a dimer, providing a short-pitch template for elongation of the daughter filament. Two subunits of the mother filament undergo conformational changes that increase stability of the branch. These data provide a rationale for why branch formation requires cooperative interactions among the Arp2/3 complex, nucleation-promoting factors, an actin monomer, and the mother filament.

  5. Self-propelled worm-like filaments: spontaneous spiral formation, structure, and dynamics.

    PubMed

    Isele-Holder, Rolf E; Elgeti, Jens; Gompper, Gerhard

    2015-09-28

    Worm-like filaments that are propelled homogeneously along their tangent vector are studied by Brownian dynamics simulations. Systems in two dimensions are investigated, corresponding to filaments adsorbed to interfaces or surfaces. A large parameter space covering weak and strong propulsion, as well as flexible and stiff filaments is explored. For strongly propelled and flexible filaments, the free-swimming filaments spontaneously form stable spirals. The propulsion force has a strong impact on dynamic properties, such as the rotational and translational mean square displacement and the rate of conformational sampling. In particular, when the active self-propulsion dominates thermal diffusion, but is too weak for spiral formation, the rotational diffusion coefficient has an activity-induced contribution given by v(c)/ξ(P), where v(c) is the contour velocity and ξ(P) the persistence length. In contrast, structural properties are hardly affected by the activity of the system, as long as no spirals form. The model mimics common features of biological systems, such as microtubules and actin filaments on motility assays or slender bacteria, and artificially designed microswimmers. PMID:26256415

  6. Nanoscopic structural rearrangements of the Cu-filament in conductive-bridge memories.

    PubMed

    Celano, U; Giammaria, G; Goux, L; Belmonte, A; Jurczak, M; Vandervorst, W

    2016-07-21

    The electrochemical reactions triggering resistive switching in conductive-bridge resistive random access memory (CBRAM) are spatially confined in few tens of nm(3). The formation and dissolution of nanoscopic Cu-filaments rely on the displacement of ions in such confined volume, and it is driven by the electric field induced ion migration and nanoscaled redox reactions. The stochastic nature of these fundamental processes leads to a large variability of the device performance. In this work, a combination of two- and three-dimensional scanning probe microscopy (SPM) techniques are used to study the conductive filament (CF) formation, rupture and its nanoscopic structural rearrangements. The high spatial confinement of our approach enables to locally induce RS in a confined area and image it in 3D. A conical shape of the CF is consistently observed, indicating that the ion migration is the rate limiting step in the filament formation when using high quality dielectrics as switching layers. The sub-10 nm electrical contact size of the AFM tip is used to study the filament's dissolution and detect the hopping conduction of Cu during the CF rupture. We consistently observe a tunnel gap formation associated with the tip-induced filament reset. Finally, aiming to match the fundamental understanding with the integrated device operations, we apply scalpel SPM to failed memory cells and directly observe the appearance of filament multiplicity as a major source of failures and variability in CBRAM. PMID:27441315

  7. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: A Model for Fractal Dimension of Rough Surfaces

    NASA Astrophysics Data System (ADS)

    Li, Jian-Hua; Yu, Bo-Ming; Zou, Ming-Qing

    2009-11-01

    We report a model for the fractal dimension Ds of rough surfaces based on the fractal distribution of roughness elements on surfaces and the fractal character of surface profiles. The proposed model for the fractal dimension Ds is expressed as a function of the fractal dimensions D for conic roughness diameter/height and Dp for surface profile, maximum roughness base diameter λmax, the ratio β of conic roughness height to its base radius as well as the ratio λminλmax of the minimum to the maximal base diameter.

  8. Dark Ribbons Propagating and Sweeping Across Extreme Ultraviolet Structures After Filament Eruptions

    NASA Astrophysics Data System (ADS)

    Xiao, Junmin; Zhang, Jun; Li, Ting; Yang, Shuhong

    2015-05-01

    With observations from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we first report that dark ribbons (DRs) moved apart from the filament channel and swept across EUV structures after filament eruptions on 2013 June 23 and 2012 February 10 and 24, respectively. In the first event, the DR with a length of 168 Mm appeared at 100 Mm to the northwest of the filament channel, where the filament erupted 15 hr previously. The DR moved toward the northwest with the different sections having different velocities, ranging from 0.3 to 1.6 km s‑1. When the DR’s middle part swept across a strong EUV structure, the motion of this part was blocked, appearing to deflect the DR. With the DR propagation, the connection of the surrounding EUV structures gradually changed. After one day passed, the DR eventually disappeared. In the other two events, the dynamic evolution of the DRs was similar to that in the first event. Based on the observations, we speculate that the reconnection during the filament eruption changes the configuration of the surrounding magnetic fields systematically. During the reconnection process, magnetic fields are deflecting and the former arbitrarily distributed magnetic fields are rearranged along specific directions. The deflection of magnetic fields results in an instantaneous void region where the magnetic strength is smaller and the plasma density is lower. Consequently, the void region is observed as a DR and propagates outward with the reconnection developing.

  9. Dark Ribbons Propagating and Sweeping Across Extreme Ultraviolet Structures After Filament Eruptions

    NASA Astrophysics Data System (ADS)

    Xiao, Junmin; Zhang, Jun; Li, Ting; Yang, Shuhong

    2015-05-01

    With observations from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we first report that dark ribbons (DRs) moved apart from the filament channel and swept across EUV structures after filament eruptions on 2013 June 23 and 2012 February 10 and 24, respectively. In the first event, the DR with a length of 168 Mm appeared at 100 Mm to the northwest of the filament channel, where the filament erupted 15 hr previously. The DR moved toward the northwest with the different sections having different velocities, ranging from 0.3 to 1.6 km s-1. When the DR’s middle part swept across a strong EUV structure, the motion of this part was blocked, appearing to deflect the DR. With the DR propagation, the connection of the surrounding EUV structures gradually changed. After one day passed, the DR eventually disappeared. In the other two events, the dynamic evolution of the DRs was similar to that in the first event. Based on the observations, we speculate that the reconnection during the filament eruption changes the configuration of the surrounding magnetic fields systematically. During the reconnection process, magnetic fields are deflecting and the former arbitrarily distributed magnetic fields are rearranged along specific directions. The deflection of magnetic fields results in an instantaneous void region where the magnetic strength is smaller and the plasma density is lower. Consequently, the void region is observed as a DR and propagates outward with the reconnection developing.

  10. Myosin filament sliding through the Z-disc relates striated muscle fibre structure to function.

    PubMed

    Rode, Christian; Siebert, Tobias; Tomalka, Andre; Blickhan, Reinhard

    2016-03-16

    Striated muscle contraction requires intricate interactions of microstructures. The classic textbook assumption that myosin filaments are compressed at the meshed Z-disc during striated muscle fibre contraction conflicts with experimental evidence. For example, myosin filaments are too stiff to be compressed sufficiently by the muscular force, and, unlike compressed springs, the muscle fibres do not restore their resting length after contractions to short lengths. Further, the dependence of a fibre's maximum contraction velocity on sarcomere length is unexplained to date. In this paper, we present a structurally consistent model of sarcomere contraction that reconciles these findings with the well-accepted sliding filament and crossbridge theories. The few required model parameters are taken from the literature or obtained from reasoning based on structural arguments. In our model, the transition from hexagonal to tetragonal actin filament arrangement near the Z-disc together with a thoughtful titin arrangement enables myosin filament sliding through the Z-disc. This sliding leads to swivelled crossbridges in the adjacent half-sarcomere that dampen contraction. With no fitting of parameters required, the model predicts straightforwardly the fibre's entire force-length behaviour and the dependence of the maximum contraction velocity on sarcomere length. Our model enables a structurally and functionally consistent view of the contractile machinery of the striated fibre with possible implications for muscle diseases and evolution.

  11. Auditory-motor synchronization with temporally fluctuating sequences is dependent on fractal structure but not musical expertise

    PubMed Central

    Rankin, Summer K.; Limb, Charles J.

    2014-01-01

    Fractal structure is a ubiquitous property found in nature and biology, and has been observed in processes at different levels of organization, including rhythmic behavior and musical structure. A temporal process is characterized as fractal when serial long-term correlations and statistical self-similarity (scaling) are present. Previous studies of sensorimotor synchronization using isochronous (non-fractal) stimuli show that participants' errors exhibit persistent structure (positive long-term correlations), while their inter-tap intervals (ITIs) exhibit anti-persistent structure (negative long-term correlations). Auditory-motor synchronization has not been investigated with anti-persistent stimuli. In the current study, we systematically investigated whether the fractal structure of auditory rhythms was reflected in the responses of participants who were asked to coordinate their taps with each event. We asked musicians and non-musicians to tap with 12 different rhythms that ranged from anti-persistent to persistent. The scaling exponents of the ITIs were strongly correlated with the scaling exponents of the stimuli, showing that the long-term structure of the participants' taps scaled with the long-term structure of the stimuli. Surprisingly, the performance of the musicians was not significantly better than that of the non-musicians. Our results imply that humans are able to readily adapt (rather than simply react) to the overall statistical structure of temporally fluctuating stimuli, regardless of musical skill. PMID:25232347

  12. The structure of the archeabacterial flagellar filament of the extreme halophile Halobacterium salinarum R1M1 and its relation to eubacterial flagellar filaments and type IV pili.

    PubMed

    Cohen-Krausz, Sara; Trachtenberg, Shlomo

    2002-08-16

    Although the phenomenology and mechanics of swimming are very similar in eubacteria and archaeabacteria (e.g. reversible rotation, helical polymorphism of the filament and formation of bundles), the dynamic flagellar filaments seem completely unrelated in terms of morphogenesis, structure and amino acid composition. Archeabacterial flagellar filaments share important features with type IV pili, which are components of retractable linear motors involved in twitching motility and cell adhesion. The archeabacterial filament is unique in: (1) having a relatively smooth surface and a small diameter of approximately 100A as compared to approximately 240A of eubacterial filaments and approximately 50A of type IV pili; (2) being glycosylated and sulfated in a pattern similar to the S-layer; (3) being synthesized as pre-flagellin with a signal-peptide cleavable by membrane peptidases upon transport; and (4) having an N terminus highly hydrophobic and homologous with that of the olygomerization domain of pilin. The synthesis of archeabacterial flagellin monomers as pre-flagellin and their post-translational, extracellular glycosylation suggest a different mode of monomer transport and polymerization at the cell-proximal end of the filament, similar to pili rather than to eubacterial flagellar filaments. The polymerization mode and small diameter may indicate the absence of a central channel in the filament. Using low-electron-dose images of cryo-negative-stained filaments, we determined the unique symmetry of the flagellar filament of the extreme halophile Halobacterium salinarum strain R1M1 and calculated a three-dimensional density map to a resolution of 19A. The map is based on layer-lines of order n=0, +10, -7, +3, -4, +6, and -1. The cross-section of the density map has a triskelion shape and is dominated by seven outer densities clustered into three groups, which are connected by lower-density arms to a dense central core surrounded by a lower-density shell. There is

  13. Anomalies in the vibrational dynamics of proteins are a consequence of fractal-like structure.

    PubMed

    Reuveni, Shlomi; Granek, Rony; Klafter, Joseph

    2010-08-01

    Proteins have been shown to exhibit strange/anomalous dynamics displaying non-Debye density of vibrational states, anomalous spread of vibrational energy, large conformational changes, nonexponential decay of correlations, and nonexponential unfolding times. The anomalous behavior may, in principle, stem from various factors affecting the energy landscape under which a protein vibrates. Investigating the origins of such unconventional dynamics, we focus on the structure-dynamics interplay and introduce a stochastic approach to the vibrational dynamics of proteins. We use diffusion, a method sensitive to the structural features of the protein fold and them alone, in order to probe protein structure. Conducting a large-scale study of diffusion on over 500 Protein Data Bank structures we find it to be anomalous, an indication of a fractal-like structure. Taking advantage of known and newly derived relations between vibrational dynamics and diffusion, we demonstrate the equivalence of our findings to the existence of structurally originated anomalies in the vibrational dynamics of proteins. We conclude that these anomalies are a direct result of the fractal-like structure of proteins. The duality between diffusion and vibrational dynamics allows us to make, on a single-molecule level, experimentally testable predictions. The time dependent vibrational mean square displacement of an amino acid is predicted to be subdiffusive. The thermal variance in the instantaneous distance between amino acids is shown to grow as a power law of the equilibrium distance. Mean first passage time analysis is offered as a practical tool that may aid in the identification of amino acid pairs involved in large conformational changes.

  14. Structural characterization of a capping protein interaction motif defines a family of actin filament regulators

    PubMed Central

    Hernandez-Valladares, Maria; Kim, Taekyung; Kannan, Balakrishnan; Tung, Alvin; Aguda, Adeleke H; Larsson, Mårten; Cooper, John A; Robinson, Robert C

    2011-01-01

    Capping protein (CP) regulates actin dynamics by binding the barbed ends of actin filaments. Removal of CP may be one means to harness actin polymerization for processes such as cell movement and endocytosis. Here we structurally and biochemically investigated a CP interaction (CPI) motif present in the otherwise unrelated proteins CARMIL and CD2AP. The CPI motif wraps around the stalk of the mushroom-shaped CP at a site distant from the actin-binding interface, which lies on the top of the mushroom cap. We propose that the CPI motif may act as an allosteric modulator, restricting CP to a low-affinity, filament-binding conformation. Structure-based sequence alignments extend the CPI motif–containing family to include CIN85, CKIP-1, CapZIP and a relatively uncharacterized protein, WASHCAP (FAM21). Peptides comprising these CPI motifs are able to inhibit CP and to uncap CP-bound actin filaments. PMID:20357771

  15. Complete Structure of an Epithelial Keratin Dimer: Implications for Intermediate Filament Assembly.

    PubMed

    Bray, David J; Walsh, Tiffany R; Noro, Massimo G; Notman, Rebecca

    2015-01-01

    Keratins are cytoskeletal proteins that hierarchically arrange into filaments, starting with the dimer sub-unit. They are integral to the structural support of cells, in skin, hair and nails. In skin, keratin is thought to play a critical role in conferring the barrier properties and elasticity of skin. In general, the keratin dimer is broadly described by a tri-domain structure: a head, a central rod and a tail. As yet, no atomistic-scale picture of the entire dimer structure exists; this information is pivotal for establishing molecular-level connections between structure and function in intermediate filament proteins. The roles of the head and tail domains in facilitating keratin filament assembly and function remain as open questions. To address these, we report results of molecular dynamics simulations of the entire epithelial human K1/K10 keratin dimer. Our findings comprise: (1) the first three-dimensional structural models of the complete dimer unit, comprising of the head, rod and tail domains; (2) new insights into the chirality of the rod-domain twist gained from analysis of the full domain structure; (3) evidence for tri-subdomain partitioning in the head and tail domains; and, (4) identification of the residue characteristics that mediate non-covalent contact between the chains in the dimer. Our findings are immediately applicable to other epithelial keratins, such as K8/K18 and K5/K14, and to intermediate filament proteins in general. PMID:26181054

  16. Complete Structure of an Epithelial Keratin Dimer: Implications for Intermediate Filament Assembly

    PubMed Central

    Bray, David J.; Walsh, Tiffany R.; Noro, Massimo G.; Notman, Rebecca

    2015-01-01

    Keratins are cytoskeletal proteins that hierarchically arrange into filaments, starting with the dimer sub-unit. They are integral to the structural support of cells, in skin, hair and nails. In skin, keratin is thought to play a critical role in conferring the barrier properties and elasticity of skin. In general, the keratin dimer is broadly described by a tri-domain structure: a head, a central rod and a tail. As yet, no atomistic-scale picture of the entire dimer structure exists; this information is pivotal for establishing molecular-level connections between structure and function in intermediate filament proteins. The roles of the head and tail domains in facilitating keratin filament assembly and function remain as open questions. To address these, we report results of molecular dynamics simulations of the entire epithelial human K1/K10 keratin dimer. Our findings comprise: (1) the first three-dimensional structural models of the complete dimer unit, comprising of the head, rod and tail domains; (2) new insights into the chirality of the rod-domain twist gained from analysis of the full domain structure; (3) evidence for tri-subdomain partitioning in the head and tail domains; and, (4) identification of the residue characteristics that mediate non-covalent contact between the chains in the dimer. Our findings are immediately applicable to other epithelial keratins, such as K8/K18 and K5/K14, and to intermediate filament proteins in general. PMID:26181054

  17. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle

    PubMed Central

    Hooper, Scott L.; Hobbs, Kevin H.; Thuma, Jeffrey B.

    2008-01-01

    This is the second in a series of canonical reviews on invertebrate muscle. We cover here thin and thick filament structure, the molecular basis of force generation and its regulation, and two special properties of some invertebrate muscle, catch and asynchronous muscle. Invertebrate thin filaments resemble vertebrate thin filaments, although helix structure and tropomyosin arrangement show small differences. Invertebrate thick filaments, alternatively, are very different from vertebrate striated thick filaments and show great variation within invertebrates. Part of this diversity stems from variation in paramyosin content, which is greatly increased in very large diameter invertebrate thick filaments. Other of it arises from relatively small changes in filament backbone structure, which results in filaments with grossly similar myosin head placements (rotating crowns of heads every 14.5 nm) but large changes in detail (distances between heads in azimuthal registration varying from three to thousands of crowns). The lever arm basis of force generation is common to both vetebrates and invertebrates, and in some invertebrates this process is understood on the near atomic level. Invertebrate actomyosin is both thin (tropomyosin:troponin) and thick (primarily via direct Ca++ binding to myosin) filament regulated, and most invertebrate muscles are dually regulated. These mechanisms are well understood on the molecular level, but the behavioral utility of dual regulation is less so. The phosphorylation state of the thick filament associated giant protein, twitchin, has been recently shown to be the molecular basis of catch. The molecular basis of the stretch activation underlying asynchronous muscle activity, however, remains unresolved. PMID:18616971

  18. Multiparticle sintering dynamics: from fractal-like aggregates to compact structures.

    PubMed

    Eggersdorfer, Max L; Kadau, Dirk; Herrmann, Hans J; Pratsinis, Sotiris E

    2011-05-17

    Multiparticle sintering is encountered in almost all high temperature processes for material synthesis (titania, silica, and nickel) and energy generation (e.g., fly ash formation) resulting in aggregates of primary particles (hard- or sinter-bonded agglomerates). This mechanism of particle growth is investigated quantitatively by mass and energy balances during viscous sintering of amorphous aerosol materials (e.g., SiO(2) and polymers) that typically have a distribution of sizes and complex morphology. This model is validated at limited cases of sintering between two (equally or unequally sized) particles, and chains of particles. The evolution of morphology, surface area and radii of gyration of multiparticle aggregates are elucidated for various sizes and initial fractal dimension. For each of these structures that had been generated by diffusion limited (DLA), cluster-cluster (DLCA), and ballistic particle-cluster agglomeration (BPCA) the surface area evolution is monitored and found to scale differently than that of the radius of gyration (moment of inertia). Expressions are proposed for the evolution of fractal dimension and the surface area of aggregates undergoing viscous sintering. These expressions are important in design of aerosol processes with population balance equations (PBE) and/or fluid dynamic simulations for material synthesis or minimization and even suppression of particle formation. PMID:21488641

  19. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments.

    PubMed

    Kampourakis, Thomas; Sun, Yin-Biao; Irving, Malcolm

    2016-05-24

    Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease.

  20. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments

    PubMed Central

    Kampourakis, Thomas; Sun, Yin-Biao; Irving, Malcolm

    2016-01-01

    Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease. PMID:27162358

  1. Fractal structure and the dynamics of aggregation of synthetic melanin in low pH aqueous solutions

    SciTech Connect

    Huang, J.S.; Sung, J.; Eisner, M.; Moss, S.C.; Gallas, J.

    1989-01-01

    We have used static and dynamic light scattering to study the dynamics of aggregation of synthetic melanin, an amorphous biopolymeric substance, in low pH aqueous solution. We have found that, depending on the final pH value of the solutions, there existed two regimes of the aggregation kinetics, one corresponding to diffusion limited aggregation (DLA), and the other corresponding to reaction limited aggregation (RLA). The precipitates formed in these two regimes can be characterized by fractal structures. We have found fractal dimensions of d/sub f/ = 1.8 for the DLA clusters and d/sub f/ = 2.2 for the RLA clusters. These results agree well with the proposed limits of the fractal dimensions of the gold aggregates formed in aqueous solutions by Weitz et al.

  2. Characterization of Microgravity Effects on Bone Structure and Strength Using Fractal Analysis

    NASA Technical Reports Server (NTRS)

    Acharya, Raj S.; Shackelford, Linda

    1996-01-01

    Protecting humans against extreme environmental conditions requires a thorough understanding of the pathophysiological changes resulting from the exposure to those extreme conditions. Knowledge of the degree of medical risk associated with the exposure is of paramount importance in the design of effective prophylactic and therapeutic measures for space exploration. Major health hazards due o musculoskeletal systems include the signs and symptoms of hypercalciuria, lengthy recovery of lost bone tissue after flight, the possibility of irreversible trabecular bone loss, the possible effect of calcification in the soft tissues, and the possible increase in fracture potential. In this research, we characterize the trabecular structure with the aid of fractal analysis. Our research to relate local trabecular structural information to microgravity conditions is an important initial step in understanding the effect of microgravity and countermeasures on bone condition and strength. The proposed research is also closely linked with Osteoporosis and will benefit the general population.

  3. Structural and functional evaluation of branched myofibers lacking intermediate filaments.

    PubMed

    Goodall, Mariah H; Ward, Christopher W; Pratt, Stephen J P; Bloch, Robert J; Lovering, Richard M

    2012-07-15

    Intermediate filaments (IFs), composed of desmin and keratins, link myofibrils to each other and to the sarcolemma in skeletal muscle. Fast-twitch muscle of mice lacking the IF proteins, desmin and keratin 19 (K19), showed reduced specific force and increased susceptibility to injury in earlier studies. Here we tested the hypothesis that the number of malformed myofibers in mice lacking desmin (Des(-/-)), keratin 19 (K19(-/-)), or both IF proteins (double knockout, DKO) is increased and is coincident with altered excitation-contraction (EC) coupling Ca(2+) kinetics, as reported for mdx mice. We quantified the number of branched myofibers, characterized their organization with confocal and electron microscopy (EM), and compared the Ca(2+) kinetics of EC coupling in flexor digitorum brevis myofibers from adult Des(-/-), K19(-/-), or DKO mice and compared them to age-matched wild type (WT) and mdx myofibers. Consistent with our previous findings, 9.9% of mdx myofibers had visible malformations. Des(-/-) myofibers had more malformations (4.7%) than K19(-/-) (0.9%) or DKO (1.3%) myofibers. Confocal and EM imaging revealed no obvious changes in sarcomere misalignment at the branch points, and the neuromuscular junctions in the mutant mice, while more variably located, were limited to one per myofiber. Global, electrically evoked Ca(2+) signals showed a decrease in the rate of Ca(2+) uptake (decay rate) into the sarcoplasmic reticulum after Ca(2+) release, with the most profound effect in branched DKO myofibers (44% increase in uptake relative to WT). Although branched DKO myofibers showed significantly faster rates of Ca(2+) clearance, the milder branching phenotype observed in DKO muscle suggests that the absence of K19 corrects the defect created by the absence of desmin alone. Thus, there are complex roles for desmin-based and K19-based IFs in skeletal muscle, with the null and DKO mutations having different effects on Ca(2+) reuptake and myofiber branching.

  4. The Filament Sensor for Near Real-Time Detection of Cytoskeletal Fiber Structures

    PubMed Central

    Eltzner, Benjamin; Wollnik, Carina; Gottschlich, Carsten; Huckemann, Stephan; Rehfeldt, Florian

    2015-01-01

    A reliable extraction of filament data from microscopic images is of high interest in the analysis of acto-myosin structures as early morphological markers in mechanically guided differentiation of human mesenchymal stem cells and the understanding of the underlying fiber arrangement processes. In this paper, we propose the filament sensor (FS), a fast and robust processing sequence which detects and records location, orientation, length, and width for each single filament of an image, and thus allows for the above described analysis. The extraction of these features has previously not been possible with existing methods. We evaluate the performance of the proposed FS in terms of accuracy and speed in comparison to three existing methods with respect to their limited output. Further, we provide a benchmark dataset of real cell images along with filaments manually marked by a human expert as well as simulated benchmark images. The FS clearly outperforms existing methods in terms of computational runtime and filament extraction accuracy. The implementation of the FS and the benchmark database are available as open source. PMID:25996921

  5. The filament sensor for near real-time detection of cytoskeletal fiber structures.

    PubMed

    Eltzner, Benjamin; Wollnik, Carina; Gottschlich, Carsten; Huckemann, Stephan; Rehfeldt, Florian

    2015-01-01

    A reliable extraction of filament data from microscopic images is of high interest in the analysis of acto-myosin structures as early morphological markers in mechanically guided differentiation of human mesenchymal stem cells and the understanding of the underlying fiber arrangement processes. In this paper, we propose the filament sensor (FS), a fast and robust processing sequence which detects and records location, orientation, length, and width for each single filament of an image, and thus allows for the above described analysis. The extraction of these features has previously not been possible with existing methods. We evaluate the performance of the proposed FS in terms of accuracy and speed in comparison to three existing methods with respect to their limited output. Further, we provide a benchmark dataset of real cell images along with filaments manually marked by a human expert as well as simulated benchmark images. The FS clearly outperforms existing methods in terms of computational runtime and filament extraction accuracy. The implementation of the FS and the benchmark database are available as open source. PMID:25996921

  6. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure

    NASA Technical Reports Server (NTRS)

    Maniotis, A. J.; Chen, C. S.; Ingber, D. E.

    1997-01-01

    We report here that living cells and nuclei are hard-wired such that a mechanical tug on cell surface receptors can immediately change the organization of molecular assemblies in the cytoplasm and nucleus. When integrins were pulled by micromanipulating bound microbeads or micropipettes, cytoskeletal filaments reoriented, nuclei distorted, and nucleoli redistributed along the axis of the applied tension field. These effects were specific for integrins, independent of cortical membrane distortion, and were mediated by direct linkages between the cytoskeleton and nucleus. Actin microfilaments mediated force transfer to the nucleus at low strain; however, tearing of the actin gel resulted with greater distortion. In contrast, intermediate filaments effectively mediated force transfer to the nucleus under both conditions. These filament systems also acted as molecular guy wires to mechanically stiffen the nucleus and anchor it in place, whereas microtubules acted to hold open the intermediate filament lattice and to stabilize the nucleus against lateral compression. Molecular connections between integrins, cytoskeletal filaments, and nuclear scaffolds may therefore provide a discrete path for mechanical signal transfer through cells as well as a mechanism for producing integrated changes in cell and nuclear structure in response to changes in extracellular matrix adhesivity or mechanics.

  7. Structural basis for the prion-like MAVS filaments in antiviral innate immunity

    PubMed Central

    Xu, Hui; He, Xiaojing; Zheng, Hui; Huang, Lily J; Hou, Fajian; Yu, Zhiheng; de la Cruz, Michael Jason; Borkowski, Brian; Zhang, Xuewu; Chen, Zhijian J; Jiang, Qiu-Xing

    2014-01-01

    Mitochondrial antiviral signaling (MAVS) protein is required for innate immune responses against RNA viruses. In virus-infected cells MAVS forms prion-like aggregates to activate antiviral signaling cascades, but the underlying structural mechanism is unknown. Here we report cryo-electron microscopic structures of the helical filaments formed by both the N-terminal caspase activation and recruitment domain (CARD) of MAVS and a truncated MAVS lacking part of the proline-rich region and the C-terminal transmembrane domain. Both structures are left-handed three-stranded helical filaments, revealing specific interfaces between individual CARD subunits that are dictated by electrostatic interactions between neighboring strands and hydrophobic interactions within each strand. Point mutations at multiple locations of these two interfaces impaired filament formation and antiviral signaling. Super-resolution imaging of virus-infected cells revealed rod-shaped MAVS clusters on mitochondria. These results elucidate the structural mechanism of MAVS polymerization, and explain how an α-helical domain uses distinct chemical interactions to form self-perpetuating filaments. DOI: http://dx.doi.org/10.7554/eLife.01489.001 PMID:24569476

  8. Physiological Heterogeneity: Fractals Link Determinism and Randomness in Structures and Functions

    PubMed Central

    Bassingthwaighte, James B.

    2010-01-01

    Spatial variation in concentrations or flows within an organ and temporal variation in reaction rates or flows appear to broaden as one refines the scale of observation. How can we characterize heterogeneity independently of scale? Fractals come to our rescue! A system is fractal if its features adhere to the same rules through a succession of different scales. Fractals efficiently describe many types of observations, geometric and kinetic, and help to integrate physiological knowledge. PMID:20871797

  9. Structural and Mechanical Properties of Intermediate Filaments under Extreme Conditions and Disease

    NASA Astrophysics Data System (ADS)

    Qin, Zhao

    Intermediate filaments are one of the three major components of the cytoskeleton in eukaryotic cells. It was discovered during the recent decades that intermediate filament proteins play key roles to reinforce cells subjected to large-deformation as well as participate in signal transduction. However, it is still poorly understood how the nanoscopic structure, as well as the biochemical properties of these protein molecules contribute to their biomechanical functions. In this research we investigate the material function of intermediate filaments under various extreme mechanical conditions as well as disease states. We use a full atomistic model and study its response to mechanical stresses. Learning from the mechanical response obtained from atomistic simulations, we build mesoscopic models following the finer-trains-coarser principles. By using this multiple-scale model, we present a detailed analysis of the mechanical properties and associated deformation mechanisms of intermediate filament network. We reveal the mechanism of a transition from alpha-helices to beta-sheets with subsequent intermolecular sliding under mechanical force, which has been inferred previously from experimental results. This nanoscale mechanism results in a characteristic nonlinear force-extension curve, which leads to a delocalization of mechanical energy and prevents catastrophic fracture. This explains how intermediate filament can withstand extreme mechanical deformation of > 1 00% strain despite the presence of structural defects. We combine computational and experimental techniques to investigate the molecular mechanism of Hutchinson-Gilford progeria syndrome, a premature aging disease. We find that the mutated lamin tail .domain is more compact and stable than the normal one. This altered structure and stability may enhance the association of intermediate filaments with the nuclear membrane, providing a molecular mechanism of the disease. We study the nuclear membrane association

  10. Nanoscopic structural rearrangements of the Cu-filament in conductive-bridge memories

    NASA Astrophysics Data System (ADS)

    Celano, U.; Giammaria, G.; Goux, L.; Belmonte, A.; Jurczak, M.; Vandervorst, W.

    2016-07-01

    The electrochemical reactions triggering resistive switching in conductive-bridge resistive random access memory (CBRAM) are spatially confined in few tens of nm3. The formation and dissolution of nanoscopic Cu-filaments rely on the displacement of ions in such confined volume, and it is driven by the electric field induced ion migration and nanoscaled redox reactions. The stochastic nature of these fundamental processes leads to a large variability of the device performance. In this work, a combination of two- and three-dimensional scanning probe microscopy (SPM) techniques are used to study the conductive filament (CF) formation, rupture and its nanoscopic structural rearrangements. The high spatial confinement of our approach enables to locally induce RS in a confined area and image it in 3D. A conical shape of the CF is consistently observed, indicating that the ion migration is the rate limiting step in the filament formation when using high quality dielectrics as switching layers. The sub-10 nm electrical contact size of the AFM tip is used to study the filament's dissolution and detect the hopping conduction of Cu during the CF rupture. We consistently observe a tunnel gap formation associated with the tip-induced filament reset. Finally, aiming to match the fundamental understanding with the integrated device operations, we apply scalpel SPM to failed memory cells and directly observe the appearance of filament multiplicity as a major source of failures and variability in CBRAM.The electrochemical reactions triggering resistive switching in conductive-bridge resistive random access memory (CBRAM) are spatially confined in few tens of nm3. The formation and dissolution of nanoscopic Cu-filaments rely on the displacement of ions in such confined volume, and it is driven by the electric field induced ion migration and nanoscaled redox reactions. The stochastic nature of these fundamental processes leads to a large variability of the device performance. In this

  11. Monitor-outside-a-monitor effect and self-similar fractal structure in the eigenmodes of unstable optical resonators.

    PubMed

    Courtial, J; Padgett, M J

    2000-12-18

    A novel mechanism is proposed for the generation of self-similar structure over a limited range of length scales. Our mechanism, which we call the monitor-outside-a-monitor effect, comprises repeated magnification and addition of small-scale structure. We invoke this mechanism to explain recent observations of fractal structure in the eigenmodes of unstable optical resonators [G. P. Karman et al., Nature (London) 402, 138 (1999)]. PMID:11135986

  12. Fine-scale structures and material flows of quiescent filaments observed by the New Vacuum Solar Telescope

    NASA Astrophysics Data System (ADS)

    Yan, Xiao-Li; Xue, Zhi-Ke; Xiang, Yong-Yuan; Yang, Li-Heng

    2015-10-01

    Study of the small-scale structures and material flows associated with solar quiescent filaments is very important for understanding the formation and equilibrium of solar filaments. Using high resolution Hα data observed by the New Vacuum Solar Telescope, we present the structures of barbs and material flows along the threads across the spine in two quiescent filaments on 2013 September 29 and on 2012 November 2, respectively. During the evolution of the filament barb, several parallel tube-shaped structures formed and the width of the structures ranged from about 2.3 Mm to 3.3 Mm. The parallel tube-shaped structures merged together accompanied by material flows from the spine to the barb. Moreover, the boundary between the barb and surrounding atmosphere was very neat. The counter-streaming flows were not found to appear alternately in the adjacent threads of the filament. However, the large-scale patchy counter-streaming flows were detected in the filament. The flows in one patch of the filament have the same direction but flows in the adjacent patch have opposite direction. The patches of two opposite flows with a size of about 10″ were alternately exhibited along the spine of the filament. The velocity of these material flows ranged from 5.6 km s-1 to 15.0 km s-1. The material flows along the threads of the filament did not change their direction for about two hours and fourteen minutes during the evolution of the filament. Our results confirm that the large-scale counter-streaming flows with a certain width along the threads of solar filaments exist and are coaligned well with the threads.

  13. Hybrid stent device of flow-diverting effect and stent-assisted coil embolization formed by fractal structure.

    PubMed

    Kojima, Masahiro; Irie, Keiko; Masunaga, Kouhei; Sakai, Yasuhiko; Nakajima, Masahiro; Takeuchi, Masaru; Fukuda, Toshio; Arai, Fumihito; Negoro, Makoto

    2016-05-01

    This paper presents a novel hybrid medical stent device. This hybrid stent device formed by fractal mesh structures provides a flow-diverting effect and stent-assisted coil embolization. Flow-diverter stents decrease blood flow into an aneurysm to prevent its rupture. In general, the mesh size of a flow-diverter stent needs to be small enough to prevent blood flow into the aneurysm. Conventional flow-diverter stents are not available for stent-assisted coil embolization, which is an effective method for aneurysm occlusion, because the mesh size is too small to insert a micro-catheter for coil embolization. The proposed hybrid stent device is capable of stent-assisted coil embolization while simultaneously providing a flow-diverting effect. The fractal stent device is composed of mesh structures with fine and rough mesh areas. The rough mesh area can be used to insert a micro-catheter for stent-assisted coil embolization. Flow-diverting effects of two fractal stent designs were composed to three commercially available stent designs. Flow-diverting effects were analyzed using computational fluid dynamics (CFD) analysis and particle image velocimetry (PIV) experiment. Based on the CFD and PIV results, the fractal stent devices reduce the flow velocity inside an aneurism just as much as the commercially available flow-diverting stents while allowing stent-assisted coil embolization. PMID:26438390

  14. Hybrid stent device of flow-diverting effect and stent-assisted coil embolization formed by fractal structure.

    PubMed

    Kojima, Masahiro; Irie, Keiko; Masunaga, Kouhei; Sakai, Yasuhiko; Nakajima, Masahiro; Takeuchi, Masaru; Fukuda, Toshio; Arai, Fumihito; Negoro, Makoto

    2016-05-01

    This paper presents a novel hybrid medical stent device. This hybrid stent device formed by fractal mesh structures provides a flow-diverting effect and stent-assisted coil embolization. Flow-diverter stents decrease blood flow into an aneurysm to prevent its rupture. In general, the mesh size of a flow-diverter stent needs to be small enough to prevent blood flow into the aneurysm. Conventional flow-diverter stents are not available for stent-assisted coil embolization, which is an effective method for aneurysm occlusion, because the mesh size is too small to insert a micro-catheter for coil embolization. The proposed hybrid stent device is capable of stent-assisted coil embolization while simultaneously providing a flow-diverting effect. The fractal stent device is composed of mesh structures with fine and rough mesh areas. The rough mesh area can be used to insert a micro-catheter for stent-assisted coil embolization. Flow-diverting effects of two fractal stent designs were composed to three commercially available stent designs. Flow-diverting effects were analyzed using computational fluid dynamics (CFD) analysis and particle image velocimetry (PIV) experiment. Based on the CFD and PIV results, the fractal stent devices reduce the flow velocity inside an aneurism just as much as the commercially available flow-diverting stents while allowing stent-assisted coil embolization.

  15. [Localization of minor proteins and structural changes in the myosin filaments of vertebrate striated muscle].

    PubMed

    Lednev, V V; Srebnitskaia, L K; Kornev, A N; Khromov, A S; Malinchik, S B

    1981-01-01

    The origin of meridional reflections in the X-ray diffraction patterns of vertebrate skeletal muscles in resting and rigor states was studied. The main results may be summarized as follows. 1. Most of the meridional reflections localized in groups at the positions of successive orders of the repeat period of about 430 A are contributed mainly by the C-protein component of thick filaments. 2. The meridional reflections at about 143 and 72 A in the X-ray diffraction pattern of the resting muscle are contributed mainly by the cross-bridge axial repeat period, while in the X-ray diffraction patterns of the rigorized muscle the reflections at approximately the same positions are contributed mainly by C-protein. The change in the positions of these particular reflections accompanying the transition of the muscle from rest to rigor and from rest to contraction cannot be considered as an indication of a change in the axial repeat period of the cross-bridges, as it was earlier suggested by some authors. 3. The transition of the muscle from resting to rigor state is accompanied by substantial changes in the positions of the meridional reflections contributed my minor proteins, which is indicative of the structural transition in the thick filaments. The observed changes may be interpreted as the result of the thick filaments elongation by about 1.5% or, alternatively, as a consequence of the redistribution of electron density of the meridional reflections 215 and 143 A during a single twitch of the muscle (Huxley et al., Nature, 1980 284, 140) may be interpreted as a natural consequence of the structural change in the thick filaments. It is concluded therefore that on stimulation of the vertebrate skeletal muscle the thickness filaments undergo a reversible structural change which may reflect the existence of myosin-linked regulation in that type of muscle.

  16. Flocculation of hematite with polyacrylic acid: Fractal structures in the reaction- and diffusion-limited aggregation regimes

    SciTech Connect

    Ferretti, R.; Zhang, J.; Buffle, J.

    1998-12-15

    The structure of hematite aggregates in the presence of fairly monodisperse polyacrylic acid (PAA) with two different molecular weights (M{sub w} = 1.36 {times} 10{sup 6}, M{sub w}/M{sub n} = 1.53; M{sub w} = 3.69 {times} 10{sup 4}, M{sub w}/M{sub n} = 1.60) was studied using static light scattering (SLS). The fractal dimensions were calculated from the scattering exponents, after taking into account the finite size of aggregates, using exponential and Gaussian cutoff functions. Three flocculation regimes, namely, pre-DLA, DLA (diffusion-limited aggregation), and post-DLA, were defined based on the polymer concentration. In the DLA regime, fractal dimension values, D{sub f} = 1.84 {+-} 0.02 and 1.73 {+-} 0.02, were obtained using exponential and Gaussian cutoff functions, respectively. A fractal dimension of approximately 2.0 was found, as expected, in the pre-DLA regime (at PAA concentrations lower than the optimal dosage for a DLA regime) where the flocculation rate was reaction limited. In contrast, in the post-DLA regime, the flocculation was slow but the structure of aggregates was as tenuous as in the DLA regime with a fractal dimension D{sub f} {approx} 1.8. Moreover, for all three regimes, the D{sub f} values were independent of the molecular weights of PAA. The lower fractal dimension in post-DLA was probably due to the increased concentration of polymer chains between adjacent particles in aggregates. The steric hindrance favored tip-to-tip aggregation, leading to a more tenuous structure.

  17. Sizes, graphitic structures and fractal geometry of light-duty diesel engine particulates.

    SciTech Connect

    Lee, K. O.; Zhu, J.; Ciatti, S.; Choi, M. Y.; Energy Systems; Drexel Univ.

    2003-01-01

    The particulate matter of a light-duty diesel engine was characterized in its morphology, sizes, internal microstructures, and fractal geometry. A thermophoretic sampling system was employed to collect particulates directly from the exhaust manifold of a 1.7-liter turbocharged common-rail direct-injection diesel engine. The particulate samples collected at various engine-operating conditions were then analyzed by using a high-resolution transmission electron microscope (TEM) and an image processing/data acquisition system. Results showed that mean primary particle diameters (dp), and radii of gyration (Rg), ranged from 19.4 nm to 32.5 nm and 77.4 nm to 134.1 nm, respectively, through the entire engine-operating conditions of 675 rpm (idling) to 4000 rpm and 0% to 100% loads. It was also revealed that the other important parameters sensitive to the particulate formation, such as exhaust-gas recirculation (EGR) rate, equivalence ratio, and temperature, affected particle sizes significantly. Bigger primary particles were measured at higher EGR rates, higher equivalence ratios (fuel-rich), and lower exhaust temperatures. Fractal dimensions (D{sup f}) were measured at a range of 1.5 - 1.7, which are smaller than those measured for heavy-duty direct-injection diesel engine particulates in our previous study. This finding implies that the light-duty diesel engine used in this study produces more stretched chain-like shape particles, while the heavy-duty diesel engine emits more spherical particles. The microstructures of diesel particulates were observed at high TEM magnifications and further analyzed by a Raman spectroscope. Raman spectra revealed an atomic structure of the particulates produced at high engine loads, which is similar to that of typical graphite.

  18. Parameterizing liquid crystal variable retarder structural organization with a fractal-Born approximation model

    NASA Astrophysics Data System (ADS)

    Gladish, James C.; Duncan, Donald D.

    2016-05-01

    Liquid crystal variable retarders (LCVRs) are computer-controlled birefringent devices that contain nanometer-sized birefringent liquid crystals (LCs). These devices impart retardance effects through a global, uniform orientation change of the LCs, which is based on a user-defined drive voltage input. In other words, the LC structural organization dictates the device functionality. The LC structural organization also produces a spectral scatter component which exhibits an inverse power law dependence. We investigate LC structural organization by measuring the voltage-dependent LC spectral scattering signature with an integrating sphere and then relate this observable to a fractal-Born model based on the Born approximation and a Von Kármán spectrum. We obtain LCVR light scattering spectra at various drive voltages (i.e., different LC orientations) and then parameterize LCVR structural organization with voltage-dependent correlation lengths. The results can aid in determining performance characteristics of systems using LCVRs and can provide insight into interpreting structural organization measurements.

  19. Structural basis of thymosin-β4/profilin exchange leading to actin filament polymerization

    PubMed Central

    Xue, Bo; Leyrat, Cedric; Grimes, Jonathan M.; Robinson, Robert C.

    2014-01-01

    Thymosin-β4 (Tβ4) and profilin are the two major sequestering proteins that maintain the pool of monomeric actin (G-actin) within cells of higher eukaryotes. Tβ4 prevents G-actin from joining a filament, whereas profilin:actin only supports barbed-end elongation. Here, we report two Tβ4:actin structures. The first structure shows that Tβ4 has two helices that bind at the barbed and pointed faces of G-actin, preventing the incorporation of the bound G-actin into a filament. The second structure displays a more open nucleotide binding cleft on G-actin, which is typical of profilin:actin structures, with a concomitant disruption of the Tβ4 C-terminal helix interaction. These structures, combined with biochemical assays and molecular dynamics simulations, show that the exchange of bound actin between Tβ4 and profilin involves both steric and allosteric components. The sensitivity of profilin to the conformational state of actin indicates a similar allosteric mechanism for the dissociation of profilin during filament elongation. PMID:25313062

  20. [Congenital myopathies - skeletal muscle diseases related to disorder of actin filament structure and functions].

    PubMed

    Robaszkiewicz, Katarzyna; Moraczewska, Joanna

    2011-01-01

    Congenital myopathies are clinically and genetically heterogeneous disorders characterized by muscle structural abnormalities, muscle weakness and deformities. The clinical spectrum of the disease ranges from severe cases with early death to adult-onset cases with slow progression. In the skeletal muscle fibers, the specific structural changes are rod-shaped structures present in the sarcoplasm (nemaline myopathy – NM) or nuclei (intranuclear rod myopathy – IRM), cap-like structures peripherally located within muscle fibers (cap disease – CD), accumulations of actin filaments (actin myopathy – AM), changes in the fiber type proportion and size (congenital fiber type disproportion – CFTD), irregularity of Z-lines and abnormal localization of myofiber nuclei. Mutations in several genes encoding muscle proteins have been linked to congenital myopathy. These genes include a-skeletal actin (ACTA1), tropomyosin (TPM2 and TPM3), troponin (TNNT1) and nebulin (NEB). In vitro and in vivo studies show that mutations identified within these genes have varying impacts on thin filament protein structure, which affect polymerization and stabilization of actin filament, actin cellular localization and regulation of actin-myosin activity. Many lines of evidence suggest that mutated proteins have "toxic" effects. Unfortunately, there is no existing simple correlation between the degree of protein disruption, muscle pathologies and disease severity. PMID:21677359

  1. Fullerenol Nanoparticles with Structural Activity Induce Variable Intracellular Actin Filament Morphologies.

    PubMed

    Jin, Junjiang; Dong, Ying; Wang, Ying; Xia, Lin; Gu, Weihong; Bai, Xue; Chang, Yanan; Zhang, Mingyi; Chen, Kui; Li, Juan; Zhao, Lina; Xing, Gengmei

    2016-06-01

    Fullerenol nanoparticles are promising for various biological applications; many studies have shown that they induce variable and diverse biological effects including side effects. Separation and purification of two fractions of fullerenols has demonstrated that they have varied chemical structures on the surfaces of their carbon cages. Actin is an important structural protein that is able to transform functional structures under varied physiological conditions. We assessed the abilities of the two fractions of fullerenols to attach to actin and induce variable morphological features in actin filament structures. Specifically the fullerenol fraction with a surface electric charge of -1.913 ± 0.008q (x10(-6) C) has percentages of C-OH and C=O on the carbon cage of 16.14 ± 0.60 and 17.55 ± 0.69. These features allow it to form intermolecular hydrogen bonds with actin at a stoichiometric ratio of four fullerenols per actin subunit. Molecular simulations revealed these specific binding sites and binding modes in atomic details in the interaction between the active fullerenol and actin filament. Conversely, these interactions were not possible for the other fraction of fullerenol with that percentages of C-OH and C=O on the carbon cage were 15.59 ± 0.01 and 1.94 ± 0.11. Neither sample induced appreciable cytotoxicity or acute cell death. After entering cells, active fullerenol binding to actin induces variable morphological features and may transform ATP-actin to ADP-actin. These changes facilitate the binding of ADF/cofilin, allowing cofilin to sever actin filaments to form cofilin/actin/fullerenol rods. Our findings suggest that fullerenol with structural activity binding disturbs actin filament structure, which may inhibit locomotion of cell or induce chronic side effects in to cells. PMID:27319217

  2. Förster resonance energy transfer structural kinetic studies of cardiac thin filament deactivation.

    PubMed

    Xing, Jun; Jayasundar, Jayant J; Ouyang, Yexin; Dong, Wen-Ji

    2009-06-12

    Cardiac thin filament deactivation is initiated by Ca2+ dissociation from troponin C (cTnC), followed by multiple structural changes of thin filament proteins. These structural transitions are the molecular basis underlying the thin filament regulation of cardiac relaxation, but the detailed mechanism remains elusive. In this study Förster resonance energy transfer (FRET) was used to investigate the dynamics and kinetics of the Ca2+-induced conformational changes of the cardiac thin filaments, specifically the closing of the cTnC N-domain, the cTnC-cTnI (troponin I) interaction, and the cTnI-actin interaction. The cTnC N-domain conformational change was examined by monitoring FRET between a donor (AEDANS) attached to one cysteine residue and an acceptor (DDPM) attached the other cysteine of the mutant cTnC(L13C/N51C). The cTnC-cTnI interaction was investigated by monitoring the distance changes from residue 89 of cTnC to residues 151 and 167 of cTnI, respectively. The cTnI-actin interaction was investigated by monitoring the distance changes from residues 151 and 167 of cTnI to residue 374 of actin. FRET Ca2+ titrations and stopped-flow kinetic measurements show that different thin filament structural transitions have different Ca2+ sensitivities and Ca2+ dissociation-induced kinetics. The observed structural transitions involving the regulatory region and the mobile domain of cTnI occurred at fast kinetic rates, whereas the kinetics of the structural transitions involving the cTnI inhibitory region was slow. Our results suggest that the thin filament deactivation upon Ca2+ dissociation is a two-step process. One step involves rapid binding of the mobile domain of cTnI to actin, which is kinetically coupled with the conformational change of the N-domain of cTnC and the dissociation of the regulatory region of cTnI from cTnC. The other step involves switching the inhibitory region of cTnI from interacting with cTnC to interacting with actin. The latter processes

  3. Förster Resonance Energy Transfer Structural Kinetic Studies of Cardiac Thin Filament Deactivation*

    PubMed Central

    Xing, Jun; Jayasundar, Jayant J.; Ouyang, Yexin; Dong, Wen-Ji

    2009-01-01

    Cardiac thin filament deactivation is initiated by Ca2+ dissociation from troponin C (cTnC), followed by multiple structural changes of thin filament proteins. These structural transitions are the molecular basis underlying the thin filament regulation of cardiac relaxation, but the detailed mechanism remains elusive. In this study Förster resonance energy transfer (FRET) was used to investigate the dynamics and kinetics of the Ca2+-induced conformational changes of the cardiac thin filaments, specifically the closing of the cTnC N-domain, the cTnC-cTnI (troponin I) interaction, and the cTnI-actin interaction. The cTnC N-domain conformational change was examined by monitoring FRET between a donor (AEDANS) attached to one cysteine residue and an acceptor (DDPM) attached the other cysteine of the mutant cTnC(L13C/N51C). The cTnC-cTnI interaction was investigated by monitoring the distance changes from residue 89 of cTnC to residues 151 and 167 of cTnI, respectively. The cTnI-actin interaction was investigated by monitoring the distance changes from residues 151 and 167 of cTnI to residue 374 of actin. FRET Ca2+ titrations and stopped-flow kinetic measurements show that different thin filament structural transitions have different Ca2+ sensitivities and Ca2+ dissociation-induced kinetics. The observed structural transitions involving the regulatory region and the mobile domain of cTnI occurred at fast kinetic rates, whereas the kinetics of the structural transitions involving the cTnI inhibitory region was slow. Our results suggest that the thin filament deactivation upon Ca2+ dissociation is a two-step process. One step involves rapid binding of the mobile domain of cTnI to actin, which is kinetically coupled with the conformational change of the N-domain of cTnC and the dissociation of the regulatory region of cTnI from cTnC. The other step involves switching the inhibitory region of cTnI from interacting with cTnC to interacting with actin. The latter processes

  4. Protein Thermal Conductivity Measured in the Solid State Reveals Anharmonic Interactions of Vibrations in a Fractal Structure.

    PubMed

    Foley, Brian M; Gorham, Caroline S; Duda, John C; Cheaito, Ramez; Szwejkowski, Chester J; Constantin, Costel; Kaehr, Bryan; Hopkins, Patrick E

    2014-04-01

    Energy processes and vibrations in biological macromolecules such as proteins ultimately dictate biological, chemical, and physical functions in living materials. These energetic vibrations in the ribbon-like motifs of proteins interact on self-similar structures and fractal-like objects over a range of length scales of the protein (a few angstroms to the size of the protein itself, a few nanometers). In fact, the fractal geometries of protein molecules create a complex network of vibrations; therefore, proteins represent an ideal material system to study the underlying mechanisms driving vibrational thermal transport in a dense, fractal network. However, experimental studies of thermal energy transport in proteins have been limited to dispersive protein suspensions, which limits the knowledge that can be extracted about how vibrational energy is transferred in a pure protein solid. We overcome this by synthesizing solid, water-insoluble protein films for thermal conductivity measurements via time-domain thermoreflectance. We measure the thermal conductivity of bovine serum albumin and myoglobin solid films over a range of temperatures from 77 to 296 K. These temperature trends indicate that anharmonic coupling of vibrations in the protein is contributing to thermal conductivity. This first-ever observation of anharmonic-like trends in the thermal conductivity of a fully dense protein forms the basis of validation of seminal theories of vibrational energy-transfer processes in fractal objects.

  5. Fractals in microscopy.

    PubMed

    Landini, G

    2011-01-01

    Fractal geometry, developed by B. Mandelbrot, has provided new key concepts necessary to the understanding and quantification of some aspects of pattern and shape randomness, irregularity, complexity and self-similarity. In the field of microscopy, fractals have profound implications in relation to the effects of magnification and scaling on morphology and to the methodological approaches necessary to measure self-similar structures. In this article are reviewed the fundamental concepts on which fractal geometry is based, their relevance to the microscopy field as well as a number of technical details that can help improving the robustness of morphological analyses when applied to microscopy problems.

  6. Distribution of human single-nucleotide polymorphisms is approximated by the power law and represents a fractal structure.

    PubMed

    Gouda, Norio; Shiwa, Yuh; Akashi, Motohiro; Yoshikawa, Hirofumi; Kasahara, Ken; Furusawa, Mitsuru

    2016-05-01

    Single-nucleotide polymorphisms (SNPs) are one of the main causes of evolution. The distribution of human SNPs, which were examined in detail genomewide, was analyzed. Three discrete databases of human SNPs were used for this analysis, and similar results were obtained from these databases. It was found that the distribution of the distance between SNPs was approximated by the power law, and the shape of the regions including SNPs had the so-called fractal structure. Although the reason why the distribution of SNPs obeys such a certain law of physics is unclear, a speculation was attempted in connection with the three-dimensional structure of human chromatin which has a fractal structure. PMID:27030000

  7. Dynamic structure factor of vibrating fractals: proteins as a case study.

    PubMed

    Reuveni, Shlomi; Klafter, Joseph; Granek, Rony

    2012-01-01

    We study the dynamic structure factor S(k,t) of proteins at large wave numbers k, kR(g)≫1, where R(g) is the gyration radius. At this regime measurements are sensitive to internal dynamics, and we focus on vibrational dynamics of folded proteins. Exploiting the analogy between proteins and fractals, we perform a general analytic calculation of the displacement two-point correlation functions, <[u(−>)(i)(t)-u(−>)(j)(0)](2)>. We confront the derived expressions with numerical evaluations that are based on protein data bank (PDB) structures and the Gaussian network model (GNM) for a few proteins and for the Sierpinski gasket as a controlled check. We use these calculations to evaluate S(k,t) with arrested rotational and translational degrees of freedom, and show that the decay of S(k,t) is dominated by the spatially averaged mean-square displacement of an amino acid. The latter has been previously shown to evolve subdiffusively in time, <[u(−>)(i)(t)-u(−>)(i)(0)](2)> ~t(ν), where ν is the anomalous diffusion exponent that depends on the spectral dimension d(s) and fractal dimension d(f). As a result, for wave numbers obeying k(2))(2)>≳1, S(k,t) effectively decays as a stretched exponential S(k,t)≃S(k)e(-(Γ(k)t)(β)) with β≃ν, where the relaxation rate is Γ(k)~(k(B)T/mω(o)(2))(1/β)k(2/β), T is the temperature, and mω(o)(2) the GNM effective spring constant describing the interaction between neighboring amino acids. The static structure factor is dominated by the fractal character of the native fold, S(k)~k(-d(f)), with negligible to marginal influence of vibrations. The analytical expressions are first confronted with numerically based calculations on the Sierpinski gasket, and very good agreement is found between simulations and theory. We then perform PDB-GNM-based numerical calculations for a few proteins, and an effective stretched exponential decay of the dynamic structure factor is found, albeit their relatively small size

  8. Structure of the Acidianus Filamentous Virus 3 and Comparative Genomics of Related Archaeal Lipothrixviruses▿

    PubMed Central

    Vestergaard, Gisle; Aramayo, Ricardo; Basta, Tamara; Häring, Monika; Peng, Xu; Brügger, Kim; Chen, Lanming; Rachel, Reinhard; Boisset, Nicolas; Garrett, Roger A.; Prangishvili, David

    2008-01-01

    Four novel filamentous viruses with double-stranded DNA genomes, namely, Acidianus filamentous virus 3 (AFV3), AFV6, AFV7, and AFV8, have been characterized from the hyperthermophilic archaeal genus Acidianus, and they are assigned to the Betalipothrixvirus genus of the family Lipothrixviridae. The structures of the approximately 2-μm-long virions are similar, and one of them, AFV3, was studied in detail. It consists of a cylindrical envelope containing globular subunits arranged in a helical formation that is unique for any known double-stranded DNA virus. The envelope is 3.1 nm thick and encases an inner core with two parallel rows of protein subunits arranged like a zipper. Each end of the virion is tapered and carries three short filaments. Two major structural proteins were identified as being common to all betalipothrixviruses. The viral genomes were sequenced and analyzed, and they reveal a high level of conservation in both gene content and gene order over large regions, with this similarity extending partly to the earlier described betalipothrixvirus Sulfolobus islandicus filamentous virus. A few predicted gene products of each virus, in addition to the structural proteins, could be assigned specific functions, including a putative helicase involved in Holliday junction branch migration, a nuclease, a protein phosphatase, transcriptional regulators, and glycosyltransferases. The AFV7 genome appears to have undergone intergenomic recombination with a large section of an AFV2-like viral genome, apparently resulting in phenotypic changes, as revealed by the presence of AFV2-like termini in the AFV7 virions. Shared features of the genomes include (i) large inverted terminal repeats exhibiting conserved, regularly spaced direct repeats; (ii) a highly conserved operon encoding the two major structural proteins; (iii) multiple overlapping open reading frames, which may be indicative of gene recoding; (iv) putative 12-bp genetic elements; and (v) partial gene

  9. In vivo formation steps of the hard alpha-keratin intermediate filament along a hair follicle: evidence for structural polymorphism.

    PubMed

    Rafik, Mériem Er; Briki, Fatma; Burghammer, Manfred; Doucet, Jean

    2006-04-01

    Several aspects of the intermediate filaments' molecular architecture remain mysterious despite decades of study. The growth process and the final architecture may depend on the physical, chemical, and biochemical environment. Aiming at clarifying this issue, we have revisited the structure of the human hair follicle by means of X-ray microdiffraction. We conclude that the histology-based growth zones along the follicle are correlated to the fine architecture of the filaments deduced from X-ray microdiffraction. Our analysis reveals the existence of two major polymorph intermediate filament architectures. Just above the bulb, the filaments are characterized by a diameter of 100 Angstroms and a low-density core. The following zone upwards is characterized by the lateral aggregation of the filaments into a compact network of filaments, by a contraction of their diameter (to 75 Angstroms) and by the setting up of a long-range longitudinal ordering. In the upper zone, the small structural change associated with the tissue hardening likely concerns the terminal domains. The architecture of the intermediate filament in the upper zones could be specific to hard alpha-keratin whilst the other architecture found in the lower zone could be representative for intermediate filaments in a different environment.

  10. Discriminatory ability of fractal and grey level co-occurrence matrix methods in structural analysis of hippocampus layers.

    PubMed

    Pantic, Igor; Dacic, Sanja; Brkic, Predrag; Lavrnja, Irena; Jovanovic, Tomislav; Pantic, Senka; Pekovic, Sanja

    2015-04-01

    Fractal and grey level co-occurrence matrix (GLCM) analysis represent two mathematical computer-assisted algorithms that are today thought to be able to accurately detect and quantify changes in tissue architecture during various physiological and pathological processes. However, despite their numerous applications in histology and pathology, their sensitivity, specificity and validity regarding evaluation of brain tissue remain unclear. In this article we present the results indicating that certain parameters of fractal and GLCM analysis have high discriminatory ability in distinguishing two morphologically similar regions of rat hippocampus: stratum lacunosum-moleculare and stratum radiatum. Fractal and GLCM algorithms were performed on a total of 240 thionine-stained hippocampus micrographs of 12 male Wistar albino rats. 120 digital micrographs represented stratum lacunosum-moleculare, and another 120 stratum radiatum. For each image, 7 parameters were calculated: fractal dimension, lacunarity, GLCM angular second moment, GLCM contrast, inverse difference moment, GLCM correlation, and GLCM variance. GLCM variance (VAR) resulted in the largest area under the Receiver operating characteristic (ROC) curve of 0.96, demonstrating an outstanding discriminatory power in analysis of stratum lacunosum-moleculare (average VAR equaled 478.1 ± 179.8) and stratum radiatum (average VAR of 145.9 ± 59.2, p < 0.0001). For the criterion VAR ≤ 227.5, sensitivity and specificity were 90% and 86.7%, respectively. GLCM correlation as a parameter also produced large area under the ROC curve of 0.95. Our results are in accordance with the findings of our previous study regarding brain white mass fractal and textural analysis. GLCM algorithm as an image analysis method has potentially high applicability in structural analysis of brain tissue cytoarcitecture.

  11. A study of the fractal structure of the precipitate and the mechanism of its formation from the gallbladder bile of a patient

    NASA Astrophysics Data System (ADS)

    Liu, S.; Kong, X.; Xie, A.; Shen, Y.; Zhu, J.; Li, C.; Zhang, Q.

    2007-12-01

    The precipitation of three kinds of structures from gallbladder bile of a patient, fractal structure, regular crystal structure, and small disperse granules, was observed in the same sample using Field Emission Gun-Scanning Electron Microscopy (FEG-SEM). The results indicated that there was a transition from a linear equilibrium system to a nonlinear and nonequilibrium system, which was discussed using the theory of entropy. The chemical compositions of these three different kinds of precipitates were determined by energy dispersive X-ray spectroscopy (EDS). This experimental result revealed that Na and Cl played important roles in the formation of the fractal and crystal structures. Besides, the Aggregation-Diffusion-Fractal (ADF) model was used to explain the growth mechanism of the fractal.

  12. Structural transition of the inhibitory region of troponin I within the regulated cardiac thin filament.

    PubMed

    Dong, Wen-Ji; An, Jianli; Xing, Jun; Cheung, Herbert C

    2006-12-15

    Contraction and relaxation of cardiac muscle are regulated by the inhibitory and regulatory regions of troponin I (cTnI). Our previous FRET studies showed that the inhibitory region of cTnI in isolated troponin experiences a structural transition from a beta-turn/coil motif to an extended conformation upon Ca(2+) activation. During the relaxation process, the kinetics of the reversal of this conformation is coupled to the closing of the Ca(2+)-induced open conformation of the N-domain of troponin C (cTnC) and an interaction between cTnC and cTnI in their interface. We have since extended the structural kinetic study of the inhibitory region to fully regulated thin filament. Single-tryptophan and single-cysteine mutant cTnI(L129W/S151C) was labeled with 1,5-IAEDANS at Cys151, and the tryptophan-AEDANS pair served as a donor-acceptor pair. Labeled cTnI mutant was used to prepare regulated thin filaments. Ca(2+)-induced conformational changes in the segment of Trp129-Cys151 of cTnI were monitored by FRET sensitized acceptor (AEDANS) emission in Ca(2+) titration and stopped-flow measurements. Control experiments suggested energy transfer from endogenous tryptophan residues of actin and myosin S1 to AEDANS attached to Cys151 of cTnI was very small and Ca(2+) independent. The present results show that the rate of Ca(2+)-induced structural transition and Ca(2+) sensitivity of the inhibitory region of cTnI were modified by (1) thin filament formation, (2) the presence of strongly bound S1, and (3) PKA phosphorylation of the N-terminus of cTnI. Ca(2+) sensitivity was not significantly changed by the presence of cTm and actin. However, the cTn-cTm interaction decreased the cooperativity and kinetics of the structural transition within cTnI, while actin filaments elicited opposite effects. The strongly bound S1 significantly increased the Ca(2+) sensitivity and slowed down the kinetics of structural transition. In contrast, PKA phosphorylation of cTnI decreased the Ca(2

  13. Structural transition of the inhibitory region of troponin I within the regulated cardiac thin filament

    PubMed Central

    Dong, Wen-Ji; An, Jianli; Xing, Jun; Cheung, Herbert C.

    2007-01-01

    Contraction and relaxation of cardiac muscle are regulated by the inhibitory and regulatory regions of troponin I (cTnI). Our previous FRET studies showed that the inhibitory region of cTnI in isolated troponin experiences a structural transition from a β-turn/coil motif to an extended conformation upon Ca2+ activation. During the relaxation process, the kinetics of the reversal of this conformation is coupled to the closing of the Ca2+-induced open conformation of the N-domain of troponin C (cTnC) and an interaction between cTnC and cTnI in their interface. We have since extended the structural kinetic study of the inhibitory region to fully regulated thin filament. Single-tryptophan and single-cysteine mutant cTnI(L129W/S151C) was labeled with 1,5-IAEDANS at Cys151, and the tryptophan-AEDANS pair served as a donor–acceptor pair. Labeled cTnI mutant was used to prepare regulated thin filaments. Ca2+-induced conformational changes in the segment of Trp129-Cys151 of cTnI were monitored by FRET sensitized acceptor (AEDANS) emission in Ca2+ titration and stopped-flow measurements. Control experiments suggested energy transfer from endogenous tryptophan residues of actin and myosin S1 to AEDANS attached to Cys151 of cTnI was very small and Ca2+ independent. The present results show that the rate of Ca2+-induced structural transition and Ca2+ sensitivity of the inhibitory region of cTnI were modified by (1) thin filament formation, (2) the presence of strongly bound S1, and (3) PKA phosphorylation of the N-terminus of cTnI. Ca2+ sensitivity was not significantly changed by the presence of cTm and actin. However, the cTn–cTm interaction decreased the cooperativity and kinetics of the structural transition within cTnI, while actin filaments elicited opposite effects. The strongly bound S1 significantly increased the Ca2+ sensitivity and slowed down the kinetics of structural transition. In contrast, PKA phosphorylation of cTnI decreased the Ca2+ sensitivity and

  14. Density filament and helical field line structures in three dimensional Weibel-mediated collisionless shocks

    NASA Astrophysics Data System (ADS)

    Moritaka, Toseo; Sakawa, Youichi; Kuramitsu, Yasuhiro; Morita, Taichi; Yamaura, Yuta; Ishikawa, Taishi; Takabe, Hideaki

    2016-03-01

    Collisionless shocks mediated by Weibel instability are attracting attention for their relevance to experimental demonstrations of astrophysical shocks in high-intensity laser facilities. The three dimensional structure of Weibel-mediated shocks is investigated through a fully kinetic particle-in-cell simulation. The structures obtained are characterized by the following features: (i) helical magnetic field lines elongated in the direction upstream of the shock region, (ii) high and low density filaments inside the helical field lines. These structures originate from the interaction between counter-streaming plasma flow and magnetic vortexes caused by Weibel instability, and potentially affect the shock formation mechanism.

  15. Effect of calcium magnesium acetate on the forming property and fractal dimension of sludge pore structure during combustion.

    PubMed

    Zhang, Lihui; Duan, Feng; Huang, Yaji; Chyang, Chiensong

    2015-12-01

    The changes in pore structure characteristics of sewage sludge particles under effect of calcium magnesium acetate (CMA) during combustion were investigated, the samples were characterized by N2 isothermal absorption method, and the data were used to analyze the fractal properties of the obtained samples. Results show that reaction time and the mole ratio of calcium to sulfur (Ca/S ratio) have notable impact on the pore structure and morphology of solid sample. The Brunauer-Emmett-Teller (BET) specific surface area (SBET) of sample increases with Ca/S ratio, while significant decreases with reaction time. The fractal dimension D has the similar trend with that of SBET, indicating that the surface roughness of sludge increases under the effect of CMA adding, resulting in improved the sludge combustion and the desulfurization process.

  16. Thermal properties of composite two-layer systems with a fractal inclusion structure

    NASA Astrophysics Data System (ADS)

    Reyes-Salgado, J. J.; Dossetti, V.; Bonilla-Capilla, B.; Carrillo, J. L.

    2015-01-01

    In this work, we study the thermal transport properties of platelike composite two-layer samples made of polyester resin and magnetite inclusions. By means of photoacoustic spectroscopy and thermal relaxation, their effective thermal diffusivity and conductivity were experimentally measured. The composite layers were prepared under the action of a static magnetic field, resulting in anisotropic (fractal) inclusion structures with the formation of chain-like magnetite aggregates parallel to the faces of the layers. In one kind of the bilayers, a composite layer was formed on top of a resin layer while their relative thickness was varied. These samples can be described by known models. In contrast, bilayers with the same concentration of inclusions and the same thickness on both sides, where only the angle between their inclusion structures was systematically varied, show a nontrivial behaviour of their thermal conductivity as a function of this angle. Through a multifractal and lacunarity analysis, we explain the observed thermal response in terms of the complexity of the interface between the layers.

  17. The Structure of HIV-1 Rev Filaments Suggests a Bilateral Model for Rev-RRE Assembly.

    PubMed

    DiMattia, Michael A; Watts, Norman R; Cheng, Naiqian; Huang, Rick; Heymann, J Bernard; Grimes, Jonathan M; Wingfield, Paul T; Stuart, David I; Steven, Alasdair C

    2016-07-01

    HIV-1 Rev protein mediates the nuclear export of viral RNA genomes. To do so, Rev oligomerizes cooperatively onto an RNA motif, the Rev response element (RRE), forming a complex that engages with the host nuclear export machinery. To better understand Rev oligomerization, we determined four crystal structures of Rev N-terminal domain dimers, which show that they can pivot about their dyad axis, giving crossing angles of 90° to 140°. In parallel, we performed cryoelectron microscopy of helical Rev filaments. Filaments vary from 11 to 15 nm in width, reflecting variations in dimer crossing angle. These structures contain additional density, indicating that C-terminal domains become partially ordered in the context of filaments. This conformational variability may be exploited in the assembly of RRE/Rev complexes. Our data also revealed a third interface between Revs, which offers an explanation for how the arrangement of Rev subunits adapts to the "A"-shaped architecture of the RRE in export-active complexes. PMID:27265851

  18. Functional complexity of intermediate filament cytoskeletons: from structure to assembly to gene ablation.

    PubMed

    Herrmann, Harald; Hesse, Michael; Reichenzeller, Michaela; Aebi, Ueli; Magin, Thomas M

    2003-01-01

    The cell biology of intermediate filament (IF) proteins and their filaments is complicated by the fact that the members of the gene family, which in humans amount to at least 65, are differentially expressed in very complex patterns during embryonic development. Thus, different tissues and cells express entirely different sets and amounts of IF proteins, the only exception being the nuclear B-type lamins, which are found in every cell. Moreover, in the course of evolution the individual members of this family have, within one species, diverged so much from each other with regard to sequence and thus molecular properties that it is hard to envision a unifying kind of function for them. The known epidermolytic diseases, caused by single point mutations in keratins, have been used as an argument for a role of IFs in mechanical "stress resistance," something one would not have easily ascribed to the beaded chain filaments, a special type of IF in the eye lens, or to nuclear lamins. Therefore, the power of plastic dish cell biology may be limited in revealing functional clues for these structural elements, and it may therefore be of interest to go to the extreme ends of the life sciences, i.e., from the molecular properties of individual molecules including their structure at the atomic level to targeted inactivation of their genes in living animals, mouse, and worm to define their role more precisely in metazoan cell physiology. PMID:12641211

  19. Freely Suspended Smectic Filaments and the Structure of the B7 Phase of MHOBOW

    NASA Technical Reports Server (NTRS)

    Clark, N.; Link, D. R.; Maclennan, J. E.

    2000-01-01

    Our recent discovery of the spontaneous formation of chiral domains in fluid smectic phases of achiral bow-shaped molecules opens up a wide variety of possibilities for new liquid crystal phases and phenomena. The basic, spontaneously chiral layer structure of the highest temperature fluid smectic phases, the B2 and B7, are shown. One of the most intriguing aspects of this structure is the plethora of possible phases coming from different stacking sequences of the polar ordering and tilt directions. The four possibilities of next-nearest neighbor alternation are shown. In the original material studied, NOBOW, the ground states found are antiferroelectric, either the racemic SmC(sub S)P(sub A) or the chiral SmC(sub A)P(sub A). We are currently studying MHOBOW, synthesized by D. Walba which, by virtue of its methyl hexyloxy tail has a tendency to form anticlinic layer interfaces, in the hope of finding a phase with a ferroelectric ground state, either SmC(sub A)P(sub S) or SmC(sub S)P(sub A), which can be obtained in NOBOW only by applying a field. Preliminary observations of MHO-BOW have made its study, from the point of view of understanding novel LC structures, extremely high priority. The following truly remarkable characteristics have been revealed: (i) The smectic phase grows out of the isotropic in the form of helical ribbons. The resulting planar aligned textures of focal conics with layers normal to glass plates exhibit bizarre modulations, including stripes and checker-boards. These have also been seen in other materials suggesting that this is a new phase (tentatively called B7), which is a fluid smectic with some kind of in-layer structure. (ii) It is virtually impossible to make freely suspended films of MHOBOW. Rather it makes the freely suspended filaments which preliminary x-ray scattering experiments reveal to have the nested cylinder layer structure indicated; (iii) The powder x-ray diffraction exhibits four resolution-limited smectic layering peaks

  20. Fractal dust grains in plasma

    SciTech Connect

    Huang, F.; Peng, R. D.; Liu, Y. H.; Chen, Z. Y.; Ye, M. F.; Wang, L.

    2012-09-15

    Fractal dust grains of different shapes are observed in a radially confined magnetized radio frequency plasma. The fractal dimensions of the dust structures in two-dimensional (2D) horizontal dust layers are calculated, and their evolution in the dust growth process is investigated. It is found that as the dust grains grow the fractal dimension of the dust structure decreases. In addition, the fractal dimension of the center region is larger than that of the entire region in the 2D dust layer. In the initial growth stage, the small dust particulates at a high number density in a 2D layer tend to fill space as a normal surface with fractal dimension D = 2. The mechanism of the formation of fractal dust grains is discussed.

  1. Small-angle scattering from fat fractals

    NASA Astrophysics Data System (ADS)

    Anitas, Eugen M.

    2014-06-01

    A number of experimental small-angle scattering (SAS) data are characterized by a succession of power-law decays with arbitrarily decreasing values of scattering exponents. To describe such data, here we develop a new theoretical model based on 3D fat fractals (sets with fractal structure, but nonzero volume) and show how one can extract structural information about the underlying fractal structure. We calculate analytically the monodisperse and polydisperse SAS intensity (fractal form factor and structure factor) of a newly introduced model of fat fractals and study its properties in momentum space. The system is a 3D deterministic mass fractal built on an extension of the well-known Cantor fractal. The model allows us to explain a succession of power-law decays and respectively, of generalized power-law decays (GPLD; superposition of maxima and minima on a power-law decay) with arbitrarily decreasing scattering exponents in the range from zero to three. We show that within the model, the present analysis allows us to obtain the edges of all the fractal regions in the momentum space, the number of fractal iteration and the fractal dimensions and scaling factors at each structural level in the fractal. We applied our model to calculate an analytical expression for the radius of gyration of the fractal. The obtained quantities characterizing the fat fractal are correlated to variation of scaling factor with the iteration number.

  2. Predicting Structural Behavior of Filament Wound Composite Pressure Vessel Using Three Dimensional Shell Analysis

    NASA Astrophysics Data System (ADS)

    Madhavi, M.; Venkat, R.

    2014-01-01

    Fiber reinforced polymer composite materials with their higher specific strength, moduli and tailorability characteristics will result in reduction of weight of the structure. The composite pressure vessels with integrated end domes develop hoop stresses that are twice longitudinal stresses and when isotropic materials like metals are used for development of the hardware and the material is not fully utilized in the longitudinal/meridional direction resulting in over weight components. The determination of a proper winding angles and thickness is very important to decrease manufacturing difficulties and to increase structural efficiency. In the present study a methodology is developed to understand structural characteristics of filament wound pressure vessels with integrated end domes. Progressive ply wise failure analysis of composite pressure vessel with geodesic end domes is carried out to determine matrix crack failure, burst pressure values at various positions of the shell. A three dimensional finite element analysis is computed to predict the deformations and stresses in the composite pressure vessel. The proposed method could save the time to design filament wound structures, to check whether the ply design is safe for the given input conditions and also can be adapted to non-geodesic structures. The results can be utilized to understand structural characteristics of filament wound pressure vessels with integrated end domes. This approach can be adopted for various applications like solid rocket motor casings, automobile fuel storage tanks and chemical storage tanks. Based on the predictions a composite pressure vessel is designed and developed. Hydraulic test is performed on the composite pressure vessel till the burst pressure.

  3. Fabrication of low cost composite tooling for filament winding large structures

    NASA Astrophysics Data System (ADS)

    Miller, Timothy S.; Fortin, Christopher J.

    A TQM/concurrent engineering approach has been used to create a low cost filament-winding mandrel for large launch-vehicle structure fabrication. The process involves the fabrication of a low cost/low temperature master model, followed by the building of the mandrel and its backup structure within the master. Mandrels fabricated by these means are able to maintain full vacuum integrity and dimensional stability throughout high-temperature cure cycles; the reduced thermal mass of the mandrel results in part-cure cycles that are shorter than those associated with conventional mandrel materials.

  4. Fractal electronic devices: simulation and implementation.

    PubMed

    Fairbanks, M S; McCarthy, D N; Scott, S A; Brown, S A; Taylor, R P

    2011-09-01

    Many natural structures have fractal geometries that exhibit useful functional properties. These properties, which exploit the recurrence of patterns at increasingly small scales, are often desirable in applications and, consequently, fractal geometry is increasingly employed in diverse technologies ranging from radio antennae to storm barriers. In this paper, we explore the application of fractal geometry to electrical devices. First, we lay the foundations for the implementation of fractal devices by considering diffusion-limited aggregation (DLA) of atomic clusters. Under appropriate growth conditions, atomic clusters of various elements form fractal patterns driven by DLA. We perform a fractal analysis of both simulated and physical devices to determine their spatial scaling properties and demonstrate their potential as fractal circuit elements. Finally, we simulate conduction through idealized and DLA fractal devices and show that their fractal scaling properties generate novel, nonlinear conduction properties in response to depletion by electrostatic gates. PMID:21841218

  5. Fractal electronic devices: simulation and implementation

    NASA Astrophysics Data System (ADS)

    Fairbanks, M. S.; McCarthy, D. N.; Scott, S. A.; Brown, S. A.; Taylor, R. P.

    2011-09-01

    Many natural structures have fractal geometries that exhibit useful functional properties. These properties, which exploit the recurrence of patterns at increasingly small scales, are often desirable in applications and, consequently, fractal geometry is increasingly employed in diverse technologies ranging from radio antennae to storm barriers. In this paper, we explore the application of fractal geometry to electrical devices. First, we lay the foundations for the implementation of fractal devices by considering diffusion-limited aggregation (DLA) of atomic clusters. Under appropriate growth conditions, atomic clusters of various elements form fractal patterns driven by DLA. We perform a fractal analysis of both simulated and physical devices to determine their spatial scaling properties and demonstrate their potential as fractal circuit elements. Finally, we simulate conduction through idealized and DLA fractal devices and show that their fractal scaling properties generate novel, nonlinear conduction properties in response to depletion by electrostatic gates.

  6. Stochastic dislocation kinetics and fractal structures in deforming metals probed by acoustic emission and surface topography measurements

    SciTech Connect

    Vinogradov, A.; Yasnikov, I. S.; Estrin, Y.

    2014-06-21

    We demonstrate that the fractal dimension (FD) of the dislocation population in a deforming material is an important quantitative characteristic of the evolution of the dislocation structure. Thus, we show that peaking of FD signifies a nearing loss of uniformity of plastic flow and the onset of strain localization. Two techniques were employed to determine FD: (i) inspection of surface morphology of the deforming crystal by white light interferometry and (ii) monitoring of acoustic emission (AE) during uniaxial tensile deformation. A connection between the AE characteristics and the fractal dimension determined from surface topography measurements was established. As a common platform for the two methods, the dislocation density evolution in the bulk was used. The relations found made it possible to identify the occurrence of a peak in the median frequency of AE as a harbinger of plastic instability leading to necking. It is suggested that access to the fractal dimension provided by AE measurements and by surface topography analysis makes these techniques important tools for monitoring the evolution of the dislocation structure during plastic deformation—both as stand-alone methods and especially when used in tandem.

  7. Exploring Fractals.

    ERIC Educational Resources Information Center

    Dewdney, A. K.

    1991-01-01

    Explores the subject of fractal geometry focusing on the occurrence of fractal-like shapes in the natural world. Topics include iterated functions, chaos theory, the Lorenz attractor, logistic maps, the Mandelbrot set, and mini-Mandelbrot sets. Provides appropriate computer algorithms, as well as further sources of information. (JJK)

  8. Fractal Movies.

    ERIC Educational Resources Information Center

    Osler, Thomas J.

    1999-01-01

    Because fractal images are by nature very complex, it can be inspiring and instructive to create the code in the classroom and watch the fractal image evolve as the user slowly changes some important parameter or zooms in and out of the image. Uses programming language that permits the user to store and retrieve a graphics image as a disk file.…

  9. Effect of high-power laser divergence on the plasma structural parameters during multiple filamentation in air

    NASA Astrophysics Data System (ADS)

    Geints, Yu. E.; Zemlyanov, A. A.

    2016-06-01

    Multiple filamentation of an infrared high-power laser pulse in air is considered. Based on the numerical solution to the unidirectional pulse propagation equation, the effect of radiation external focusing on the spatial structure of the plasma area produced in the filamentation region is studied. We show that the number of generated plasma channels in the beam wake and the density of their spatial distribution over the filamentation region depend on the initial divergence of laser radiation. We found that in a specific range of beam focusing the number of produced plasma channels could be minimized due to the formation of a consolidated thick plasma bunch at the beam axis.

  10. Fractals in physiology and medicine

    NASA Technical Reports Server (NTRS)

    Goldberger, Ary L.; West, Bruce J.

    1987-01-01

    The paper demonstrates how the nonlinear concepts of fractals, as applied in physiology and medicine, can provide an insight into the organization of such complex structures as the tracheobronchial tree and heart, as well as into the dynamics of healthy physiological variability. Particular attention is given to the characteristics of computer-generated fractal lungs and heart and to fractal pathologies in these organs. It is shown that alterations in fractal scaling may underlie a number of pathophysiological disturbances, including sudden cardiac death syndromes.

  11. Intermediate Filaments as Organizers of Cellular Space: How They Affect Mitochondrial Structure and Function

    PubMed Central

    Schwarz, Nicole; Leube, Rudolf E.

    2016-01-01

    Intermediate filaments together with actin filaments and microtubules form the cytoskeleton, which is a complex and highly dynamic 3D network. Intermediate filaments are the major mechanical stress protectors but also affect cell growth, differentiation, signal transduction, and migration. Using intermediate filament-mitochondrial crosstalk as a prominent example, this review emphasizes the importance of intermediate filaments as crucial organizers of cytoplasmic space to support these functions. We summarize observations in different mammalian cell types which demonstrate how intermediate filaments influence mitochondrial morphology, subcellular localization, and function through direct and indirect interactions and how perturbations of these interactions may lead to human diseases. PMID:27399781

  12. Fabrication of transparent antifouling thin films with fractal structure by atmospheric pressure cold plasma deposition.

    PubMed

    Miyagawa, Hayato; Yamauchi, Koji; Kim, Yoon-Kee; Ogawa, Kazufumi; Yamaguchi, Kenzo; Suzaki, Yoshifumi

    2012-12-21

    Antifouling surface with both superhydrophobicity and oil-repellency has been fabricated on glass substrate by forming fractal microstructure(s). The fractal microstructure was constituted by transparent silica particles of 100 nm diameter and transparent zinc-oxide columns grown on silica particles by atmospheric pressure cold plasma deposition. The sample surface was coated with a chemically adsorbed monomolecular layer. We found that one sample has the superhydrophobic ability with a water droplet contact angle of more than 150°, while another sample has a high transmittance of more than 85% in a wavelength range from 400 to 800 nm. PMID:23186100

  13. Fabrication of transparent antifouling thin films with fractal structure by atmospheric pressure cold plasma deposition.

    PubMed

    Miyagawa, Hayato; Yamauchi, Koji; Kim, Yoon-Kee; Ogawa, Kazufumi; Yamaguchi, Kenzo; Suzaki, Yoshifumi

    2012-12-21

    Antifouling surface with both superhydrophobicity and oil-repellency has been fabricated on glass substrate by forming fractal microstructure(s). The fractal microstructure was constituted by transparent silica particles of 100 nm diameter and transparent zinc-oxide columns grown on silica particles by atmospheric pressure cold plasma deposition. The sample surface was coated with a chemically adsorbed monomolecular layer. We found that one sample has the superhydrophobic ability with a water droplet contact angle of more than 150°, while another sample has a high transmittance of more than 85% in a wavelength range from 400 to 800 nm.

  14. The Structure and Assembly Mechanism of a Novel Three-Stranded Tubulin Filament that Centers Phage DNA

    PubMed Central

    Zehr, Elena A.; Kraemer, James A.; Erb, Marcella L.; Coker, Joanna K.C.; Montabana, Elizabeth A.; Pogliano, Joe; Agard, David A.

    2014-01-01

    SUMMARY Tubulins are a universally conserved protein superfamily that carry out diverse biological roles by assembling filaments with very different architectures. The underlying basis of this structural diversity is poorly understood. Here, we determine a 7.1 Å cryo-EM reconstruction of the bacteriophage-encoded PhuZ filament and provide molecular-level insight into its cooperative assembly mechanism. The PhuZ family of tubulins is required to actively center the phage within infected host cells, facilitating efficient phage replication. Our reconstruction and derived model reveal the first example of a three-stranded tubulin filament. We show that the elongated C-terminal tail simultaneously stabilizes both longitudinal and lateral interactions, which in turn define filament architecture. Identified interaction surfaces are conserved within the PhuZ family, and their mutagenesis compromises polymerization in vitro and in vivo. Combining kinetic modeling of PhuZ filament assembly and structural data we suggest a common filament structure and assembly mechanism for the PhuZ family of tubulins. PMID:24631461

  15. Fractal processes in soil water retention

    SciTech Connect

    Tyler, S.W.; Wheatcraft, S.W. )

    1990-05-01

    The authors propose a physical conceptual model for soil texture and pore structure that is based on the concept of fractal geometry. The motivation for a fractal model of soil texture is that some particle size distributions in granular soils have already been shown to display self-similar scaling that is typical of fractal objects. Hence it is reasonable to expect that pore size distributions may also display fractal scaling properties. The paradigm that they used for the soil pore size distribution is the Sierpinski carpet, which is a fractal that contains self similar holes (or pores) over a wide range of scales. The authors evaluate the water retention properties of regular and random Sierpinski carpets and relate these properties directly to the Brooks and Corey (or Campbell) empirical water retention model. They relate the water retention curves directly to the fractal dimension of the Sierpinski carpet and show that the fractal dimension strongly controls the water retention properties of the Sierpinski carpet soil. Higher fractal dimensions are shown to mimic clay-type soils, with very slow dewatering characteristics and relatively low fractal dimensions are shown to mimic a sandy soil with relatively rapid dewatering characteristics. Their fractal model of soil water retention removes the empirical fitting parameters from the soil water retention models and provides paramters which are intrinsic to the nature of the fractal porous structure. The relative permeability functions of Burdine and Mualem are also shown to be fractal directly from fractal water retention results.

  16. Searching for filaments and large-scale structure around DAFT/FADA clusters

    NASA Astrophysics Data System (ADS)

    Durret, F.; Márquez, I.; Acebrón, A.; Adami, C.; Cabrera-Lavers, A.; Capelato, H.; Martinet, N.; Sarron, F.; Ulmer, M. P.

    2016-04-01

    Context. Clusters of galaxies are located at the intersection of cosmic filaments and are still accreting galaxies and groups along these preferential directions. However, because of their relatively low contrast on the sky, filaments are difficult to detect (unless a large amount of spectroscopic data are available), and unambiguous detections have been limited until now to relatively low redshifts (z< ~ 0.3). Aims: This project is aimed at searching for extensions and filaments around clusters, traced by galaxies selected to be at the cluster redshift based on the red sequence. In the 0.4 filaments. Methods: We have searched for extensions and filaments around the thirty clusters of the DAFT/FADA survey for which we had deep wide field photometric data. For each cluster, based on a colour-magnitude diagram, we selected galaxies that were likely to belong to the red sequence, and hence to be at the cluster redshift, and built density maps. By computing the background for each of these maps and drawing 3σ contours, we estimated the elongations of the structures detected in this way. Whenever possible, we identified the other structures detected on the density maps with clusters listed in NED. Results: We find clear elongations in twelve clusters out of thirty, with sizes that can reach up to 7.6 Mpc. Eleven other clusters have neighbouring structures, but the zones linking them are not detected in the density maps at a 3σ level. Three clusters show no extended structure and no neighbours, and four clusters are of too low contrast to be clearly visible on our density maps. Conclusions: The simple method we have applied appears to work well to show the existence of filaments and/or extensions around a number of clusters in the redshift range 0.4

  17. Study of the reconstruction of fractal structure of closed-cell aluminum foam and its thermal conductivity

    NASA Astrophysics Data System (ADS)

    Xia, Dehong; Guo, Shanshan; Ren, Ling

    2012-02-01

    Based on the characteristics of the internal structure of closed-cell aluminum foam, this paper attempts to illustrate the process of reconstructing the internal structures of closed-cell aluminum foam in Monte-Carlo method and the fractal characteristics of the reconstructed model. Furthermore, Binary Array Method is proposed by analyzing the reconstructed model and the thermal conductivity model of closed-cell aluminum foam is established. At the same time, the thermal conductivity of the foam materials with different porosity is calculated by Binary Array Method, and the calculated value coincides with the experimental results in the reference, which proves the correctness of these methods.

  18. Direct observation of anodic dissolution and filament growth behavior in polyethylene-oxide-based atomic switch structures

    NASA Astrophysics Data System (ADS)

    Krishnan, Karthik; Tsuruoka, Tohru; Aono, Masakazu

    2016-06-01

    We directly observed anodic dissolution and subsequent filament growth behavior in a planar atomic switch structure with Ag salt incorporated polyethylene oxide (Ag-PEO) film using in situ optical microscopy and ex situ scanning electron microscopy. The high ionic conductivities of Ag-PEO films enable the investigation of filament formation under voltage bias, even in micrometer-scaled devices. It was found that the filament formation changes from unidirectional growth to dendritic growth, depending on its distance from the grounded electrode. Based on this understanding of filament growth dynamics in planar devices, highly stable resistive switching was achieved in an Ag/Ag-PEO/Pt stacked device with an Ag-PEO film thickness of 100 nm. The device showed repeated switching operations for more than 102 sweep cycles, with a high ON/OFF resistance ratio of 105.

  19. Book review of "Biophysical Chemistry of Fractal Structures and Processes in Environmental Systems"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The editors are N. Senesi and K.J. Wilkinson, and the book is published in 2008 by John Wiley and Sons, with 323 pages. This book is part of the IUPAC series on “Analytical and physical chemistry of environmental systems.” Nineteen generally well-known fractal scientists have contributed to this vol...

  20. Hub-Filament Systems and Spiral Structures from Cloud to Core Scales

    NASA Astrophysics Data System (ADS)

    Galvan-Madrid, Roberto; Liu, Hauyu Baobab; Immer, Katharina; Juarez, Carmen; Palau, Aina

    2015-08-01

    We present evidence, from several separate observational studies, that molecular clouds and the clumps and cores within are (sometimes) arranged in a hub-filament morphology with spiral-like features. This arrangementoccurs at multiple scales: from the < 0.05 pc scales of low-mass star-forming cores, to the ~0.5 pc scales of clumps in massive star formation regions, to Giant Molecular Clouds. These structures have appeared in data of well known sources because of the increased sensitivy of new instruments like ALMA or the CSO SHARC-II, or after a detailed combination of single-dish and interferometer data. Reports of such structures may become more common in the near future. Presumably, these structures appear in systems that are dense enough to be prone to gravitational instabilities, and that have a non-negligible angularmomentum.

  1. Structure, Dynamics, and Assembly of Filamentous Bacteriophages by Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Opella, Stanley J.; Zeri, Ana Carolina; Park, Sang Ho

    2008-05-01

    Filamentous bacteriophages serve as model systems for the development and implementation of spectroscopic methods suitable for biological supramolecular assemblies. Not only are their coat proteins small and readily prepared in the laboratory, but they also have two primary roles as membrane proteins and as the principal structural element of the virus particles. As a bacterial system, they are readily labeled with stable isotopes, and this has opened possibilities for the many nuclear magnetic resonance (NMR) studies described in this review. In particular, solid-state NMR of aligned samples has been used to determine the three-dimensional structures of both the membrane-bound forms of coat proteins in phospholipid bilayers and structural forms in virus particles, which has led to an analysis of the assembly mechanism for virus particles as they are extruded through the cell membrane.

  2. Structural and functional changes in myocardial thin filaments in experimental hypothyrosis.

    PubMed

    Sukoyan, G V; Berberashvili, T M; Asatiani, K Dzh

    2007-05-01

    Fluorescence resonance energy transfer study revealed decreased intermonomer mobility of Ca-actin and Mg-actin filaments of myocardial myofibrils in myocardial dystrophy caused by diffuse endocrine disorders, e. g. hypothyrosis. Cis374 axial distance in Ca-actin filament protomer increased in hypothyrosis. Intracellular pH has no effect on inter-monomer mobility of Ca-actin filament.

  3. Structural changes in intermediate filament networks alter the activity of insulin-degrading enzyme

    PubMed Central

    Chou, Ying-Hao; Kuo, Wen-Liang; Rosner, Marsha Rich; Tang, Wei-Jen; Goldman, Robert D.

    2009-01-01

    The intermediate filament (IF) protein nestin coassembles with vimentin and promotes the disassembly of these copolymers when vimentin is hyperphosphorylated during mitosis. The aim of this study is to determine the function of these nonfilamentous particles by identifying their interacting partners. In this study, we report that these disassembled vimentin/nestin complexes interact with insulin degrading enzyme (IDE). Both vimentin and nestin interact with IDE in vitro, but vimentin binds IDE with a higher affinity than nestin. Although the interaction between vimentin and IDE is enhanced by vimentin phosphorylation at Ser-55, the interaction between nestin and IDE is phosphorylation independent. Further analyses show that phosphorylated vimentin plays the dominant role in targeting IDE to the vimentin/nestin particles in vivo, while the requirement for nestin is related to its ability to promote vimentin IF disassembly. The binding of IDE to either nestin or phosphorylated vimentin regulates IDE activity differently, depending on the substrate. The insulin degradation activity of IDE is suppressed ∼50% by either nestin or phosphorylated vimentin, while the cleavage of bradykinin-mimetic peptide by IDE is increased 2- to 3-fold. Taken together, our data demonstrate that the nestin-mediated disassembly of vimentin IFs generates a structure capable of sequestering and modulating the activity of IDE.—Chou, Y.-H., Kuo, W.-L., Rich Rosner, M., Tang, W.-J., Goldman, R. D. Structural changes in intermediate filament networks alter the activity of insulin-degrading enzyme. PMID:19584300

  4. The primary structure of component 8c-1, a subunit protein of intermediate filaments in wool keratin. Relationships with proteins from other intermediate filaments.

    PubMed Central

    Dowling, L M; Crewther, W G; Inglis, A S

    1986-01-01

    Component 8c-1, one of four highly homologous component-8 subunit proteins present in the microfibrils of wool, was isolated as its S-carboxymethyl derivative and its amino acid sequence was determined. Large peptides were isolated after cleaving the protein chemically or enzymically and the sequence of each was determined with an automatic Sequenator. The peptides were ordered by sequence overlaps and, in some instances, by homology with known sequences from other component-8 subunits. The C-terminal residues were identified by three procedures. Full details of the various procedures used have been deposited as Supplementary Publication SUP 50133 (4 pp.) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1986) 233, 5. The result showed that the protein comprises 412 residues and has an Mr, including the N-terminal acetyl group, of 48,300. The sequence of residues 98-200 of component 8c-1 was found to correspond to the partial or complete sequences of four homologous type I helical segments previously isolated from helical fragments recovered from chymotryptic digests of microfibrillar proteins of wool [Crewther & Dowling (1971) Appl. Polym. Symp. 18, 1-20; Crewther, Gough, Inglis & McKern (1978) Text. Res. J. 48, 160-162; Gough, Inglis & Crewther (1978) Biochem. J. 173, 385]. Considered in relation to amino acid sequences of other intermediate-filament proteins, the sequence is in accord with the view that keratin filament proteins are of two types [Hanukoglu & Fuchs (1983) Cell (Cambridge, Mass.) 33, 915-924]. Filament proteins from non-keratinous tissues, such as desmin, vimentin, neurofilament proteins and the glial fibrillary acidic protein, which form monocomponent filaments, constitute a third type. It is suggested that as a whole the proteins from intermediate filaments be classed as filamentins, the three types at present identified forming

  5. The Language of Fractals.

    ERIC Educational Resources Information Center

    Jurgens, Hartmut; And Others

    1990-01-01

    The production and application of images based on fractal geometry are described. Discussed are fractal language groups, fractal image coding, and fractal dialects. Implications for these applications of geometry to mathematics education are suggested. (CW)

  6. The topological insulator in a fractal space

    SciTech Connect

    Song, Zhi-Gang; Zhang, Yan-Yang; Li, Shu-Shen

    2014-06-09

    We investigate the band structures and transport properties of a two-dimensional model of topological insulator, with a fractal edge or a fractal bulk. A fractal edge does not affect the robust transport even when the fractal pattern has reached the resolution of the atomic-scale, because the bulk is still well insulating against backscattering. On the other hand, a fractal bulk can support the robust transport only when the fractal resolution is much larger than a critical size. Smaller resolution of bulk fractal pattern will lead to remarkable backscattering and localization, due to strong couplings of opposite edge states on narrow sub-edges which appear almost everywhere in the fractal bulk.

  7. Analysis of fractals with combined partition

    NASA Astrophysics Data System (ADS)

    Dedovich, T. G.; Tokarev, M. V.

    2016-03-01

    The space—time properties in the general theory of relativity, as well as the discreteness and non-Archimedean property of space in the quantum theory of gravitation, are discussed. It is emphasized that the properties of bodies in non-Archimedean spaces coincide with the properties of the field of P-adic numbers and fractals. It is suggested that parton showers, used for describing interactions between particles and nuclei at high energies, have a fractal structure. A mechanism of fractal formation with combined partition is considered. The modified SePaC method is offered for the analysis of such fractals. The BC, PaC, and SePaC methods for determining a fractal dimension and other fractal characteristics (numbers of levels and values of a base of forming a fractal) are considered. It is found that the SePaC method has advantages for the analysis of fractals with combined partition.

  8. Viscous fingers on fractals

    NASA Astrophysics Data System (ADS)

    Meir, Yigal; Aharony, Amnon

    1989-05-01

    We investigate the problem of flow in porous media near the percolation threshold by studying the generelized model of Viscous Fingering (VF) on fractal structures. We obtain analytic expressions for the fractal dimensions of the resulting structures, which are in excellent agreement with existing experimental results, and exact relations for the exponent Dt, which describes the scaling of the time it takes the fluid to cross the sample, with the sample size, in terms of geometrical exponents for various experimental situations. Lastly, we discuss the relation between the continuous viscous fingers model and stochastic processes such as dielectric breakdown model (DBM) and diffusion limited aggregation (DLA).

  9. Fractal dynamics of earthquakes

    SciTech Connect

    Bak, P.; Chen, K.

    1995-05-01

    Many objects in nature, from mountain landscapes to electrical breakdown and turbulence, have a self-similar fractal spatial structure. It seems obvious that to understand the origin of self-similar structures, one must understand the nature of the dynamical processes that created them: temporal and spatial properties must necessarily be completely interwoven. This is particularly true for earthquakes, which have a variety of fractal aspects. The distribution of energy released during earthquakes is given by the Gutenberg-Richter power law. The distribution of epicenters appears to be fractal with dimension D {approx} 1--1.3. The number of after shocks decay as a function of time according to the Omori power law. There have been several attempts to explain the Gutenberg-Richter law by starting from a fractal distribution of faults or stresses. But this is a hen-and-egg approach: to explain the Gutenberg-Richter law, one assumes the existence of another power-law--the fractal distribution. The authors present results of a simple stick slip model of earthquakes, which evolves to a self-organized critical state. Emphasis is on demonstrating that empirical power laws for earthquakes indicate that the Earth`s crust is at the critical state, with no typical time, space, or energy scale. Of course the model is tremendously oversimplified; however in analogy with equilibrium phenomena they do not expect criticality to depend on details of the model (universality).

  10. Synchrosqueezed wavelet transform-fractality model for locating, detecting, and quantifying damage in smart highrise building structures

    NASA Astrophysics Data System (ADS)

    Amezquita-Sanchez, Juan P.; Adeli, Hojjat

    2015-06-01

    A new methodology is presented for (a) detecting, (b) locating, and (c) quantifying the damage severity in a smart highrise building structure. The methodology consists of three steps: In step 1, the synchrosqueezed wavelet transform is used to eliminate the noise in the signals. In step 2, a nonlinear dynamics measure based on the chaos theory, fractality dimension (FD), is employed to detect features to be used for damage detection. In step 3, a new structural damage index, based on the estimated FD values, is proposed as a measure of the condition of the structure. Further, the damage location is obtained using the changes of the estimated FD values. Three different FD algorithms for computing the fractality of time series signals are investigated. They are Katz’s FD, Higuchi’s FD, and box dimension. The usefulness and effectiveness of the proposed methodology are validated using the sensed data obtained experimentally for the 1:20 scaled model of a 38-storey concrete building structure.

  11. The structure of FtsZ filaments in vivo suggests a force-generating role in cell division

    PubMed Central

    Li, Zhuo; Trimble, Michael J; Brun, Yves V; Jensen, Grant J

    2007-01-01

    In prokaryotes, FtsZ (the filamentous temperature sensitive protein Z) is a nearly ubiquitous GTPase that localizes in a ring at the leading edge of constricting plasma membranes during cell division. Here we report electron cryotomographic reconstructions of dividing Caulobacter crescentus cells wherein individual arc-like filaments were resolved just underneath the inner membrane at constriction sites. The filaments' position, orientation, time of appearance, and resistance to A22 all suggested that they were FtsZ. Predictable changes in the number, length, and distribution of filaments in cells where the expression levels and stability of FtsZ were altered supported that conclusion. In contrast to the thick, closed-ring-like structure suggested by fluorescence light microscopy, throughout the constriction process the Z-ring was seen here to consist of just a few short (∼100 nm) filaments spaced erratically near the division site. Additional densities connecting filaments to the cell wall, occasional straight segments, and abrupt kinks were also seen. An ‘iterative pinching' model is proposed wherein FtsZ itself generates the force that constricts the membrane in a GTP-hydrolysis-driven cycle of polymerization, membrane attachment, conformational change, depolymerization, and nucleotide exchange. PMID:17948052

  12. Plasticity in PYD assembly revealed by cryo-EM structure of the PYD filament of AIM2

    PubMed Central

    Lu, Alvin; Li, Yang; Yin, Qian; Ruan, Jianbin; Yu, Xiong; Egelman, Edward; Wu, Hao

    2015-01-01

    Absent in melanoma 2 (AIM2) is an essential cytosolic double-stranded DNA receptor that assembles with the adaptor, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and caspase-1 to form the AIM2 inflammasome, which leads to proteolytic maturation of cytokines and pyroptotic cell death. AIM2 contains an N-terminal Pyrin domain (PYD) that interacts with ASC through PYD/PYD interactions and nucleates ASCPYD filament formation. To elucidate the molecular basis of AIM2-induced ASCPYD polymerization, we generated AIM2PYD filaments fused to green fluorescent protein (GFP) and determined its cryo-electron microscopic (cryo-EM) structure. The map showed distinct definition of helices, allowing fitting of the crystal structure. Surprisingly, the GFP-AIM2PYD filament is a 1-start helix with helical parameters distinct from those of the 3-start ASCPYD filament. However, despite the apparent symmetry difference, helical net and detailed interface analyses reveal minimal changes in subunit packing. GFP-AIM2PYD nucleated ASCPYD filament formation in comparable efficiency as untagged AIM2PYD, suggesting assembly plasticity in both AIM2PYD and ASCPYD. The DNA-binding domain of AIM2 is able to form AIM2/DNA filaments, within which the AIM2PYD is brought into proximity to template ASCPYD filament assembly. Because ASC is able to interact with many PYD-containing receptors for the formation of inflammasomes, the observed structural plasticity may be critically important for this versatility in the PYD/PYD interactions. PMID:26583071

  13. Identification of a Gene Essential for Sheathed Structure Formation in Sphaerotilus natans, a Filamentous Sheathed Bacterium

    PubMed Central

    Suzuki, Toshihiko; Kanagawa, Takahiro; Kamagata, Yoichi

    2002-01-01

    Sphaerotilus natans, a filamentous bacterium that causes bulking in activated sludge processes, can assume two distinct morphologies, depending on the substrate concentration for growth; in substrate-rich media it grows as single rod-shaped cells, whereas in substrate-limited media it grows as filaments. To identify genes responsible for sheath formation, we carried out transposon Tn5 mutagenesis. Of the approximately 20,000 mutants obtained, 7 did not form sheathed structures. Sequencing of the Tn5-flanking regions showed that five of the seven Tn5 insertions converged at the same open reading frame, designated sthA. The deduced amino acids encoded by sthA were found to be homologous to glycosyltransferase, which is known to be involved in linking sugars to lipid carriers during bacterial exopolysaccharide biosynthesis. Disruption of the gene of the wild-type strain by inserting a kanamycin resistance gene cassette also resulted in sheathless growth under either type of nutrient condition. These findings indicate that sthA is a crucial component responsible for sheath formation. PMID:11772646

  14. Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments

    PubMed Central

    Tang, Shaogeng; Henne, W Mike; Borbat, Peter P; Buchkovich, Nicholas J; Freed, Jack H; Mao, Yuxin; Fromme, J Christopher; Emr, Scott D

    2015-01-01

    The endosomal sorting complexes required for transport (ESCRTs) constitute hetero-oligomeric machines that catalyze multiple topologically similar membrane-remodeling processes. Although ESCRT-III subunits polymerize into spirals, how individual ESCRT-III subunits are activated and assembled together into a membrane-deforming filament remains unknown. Here, we determine X-ray crystal structures of the most abundant ESCRT-III subunit Snf7 in its active conformation. Using pulsed dipolar electron spin resonance spectroscopy (PDS), we show that Snf7 activation requires a prominent conformational rearrangement to expose protein-membrane and protein-protein interfaces. This promotes the assembly of Snf7 arrays with ~30 Å periodicity into a membrane-sculpting filament. Using a combination of biochemical and genetic approaches, both in vitro and in vivo, we demonstrate that mutations on these protein interfaces halt Snf7 assembly and block ESCRT function. The architecture of the activated and membrane-bound Snf7 polymer provides crucial insights into the spatially unique ESCRT-III-mediated membrane remodeling. DOI: http://dx.doi.org/10.7554/eLife.12548.001 PMID:26670543

  15. Quantitative multi-scale analysis of mineral distributions and fractal pore structures for a heterogeneous Junger Basin shale

    NASA Astrophysics Data System (ADS)

    Wang, Y. D.; Liu, K. Y.; Yang, Y. S.; Ren, Y. Q.; Hu, T.; Deng, B.; Xiao, T. Q.

    2016-04-01

    Three dimensional (3D) characterization of shales has recently attracted wide attentions in relation to the growing importance of shale oil and gas. Obtaining a complete 3D compositional distribution of shale has proven to be challenging due to its multi-scale characteristics. A combined multi-energy X-ray micro-CT technique and data-constrained modelling (DCM) approach has been used to quantitatively investigate the multi-scale mineral and porosity distributions of a heterogeneous shale from the Junger Basin, northwestern China by sub-sampling. The 3D sub-resolution structures of minerals and pores in the samples are quantitatively obtained as the partial volume fraction distributions, with colours representing compositions. The shale sub-samples from two areas have different physical structures for minerals and pores, with the dominant minerals being feldspar and dolomite, respectively. Significant heterogeneities have been observed in the analysis. The sub-voxel sized pores form large interconnected clusters with fractal structures. The fractal dimensions of the largest clusters for both sub-samples were quantitatively calculated and found to be 2.34 and 2.86, respectively. The results are relevant in quantitative modelling of gas transport in shale reservoirs.

  16. Hypothesis testing on the fractal structure of behavioral sequences: the Bayesian assessment of scaling methodology.

    PubMed

    Moscoso del Prado Martín, Fermín

    2013-12-01

    I introduce the Bayesian assessment of scaling (BAS), a simple but powerful Bayesian hypothesis contrast methodology that can be used to test hypotheses on the scaling regime exhibited by a sequence of behavioral data. Rather than comparing parametric models, as typically done in previous approaches, the BAS offers a direct, nonparametric way to test whether a time series exhibits fractal scaling. The BAS provides a simpler and faster test than do previous methods, and the code for making the required computations is provided. The method also enables testing of finely specified hypotheses on the scaling indices, something that was not possible with the previously available methods. I then present 4 simulation studies showing that the BAS methodology outperforms the other methods used in the psychological literature. I conclude with a discussion of methodological issues on fractal analyses in experimental psychology.

  17. Hypothesis testing on the fractal structure of behavioral sequences: the Bayesian assessment of scaling methodology.

    PubMed

    Moscoso del Prado Martín, Fermín

    2013-12-01

    I introduce the Bayesian assessment of scaling (BAS), a simple but powerful Bayesian hypothesis contrast methodology that can be used to test hypotheses on the scaling regime exhibited by a sequence of behavioral data. Rather than comparing parametric models, as typically done in previous approaches, the BAS offers a direct, nonparametric way to test whether a time series exhibits fractal scaling. The BAS provides a simpler and faster test than do previous methods, and the code for making the required computations is provided. The method also enables testing of finely specified hypotheses on the scaling indices, something that was not possible with the previously available methods. I then present 4 simulation studies showing that the BAS methodology outperforms the other methods used in the psychological literature. I conclude with a discussion of methodological issues on fractal analyses in experimental psychology. PMID:24417750

  18. Filament winding

    NASA Astrophysics Data System (ADS)

    Shibley, A. M.

    The major aspects of filament winding are discussed, emphasizing basic reinforcement and matrix materials, winding procedures, process controls, and cured composite properties. Fiberglass (E-glass and S-glass strengths are 500,000 and 665,000 psi respectively) and polyester resins are the principal reinforcement constituent materials. Graphite and aramid reinforcements are being used more frequently, primarily for the more critical pressure vessels. Matrix systems are most commonly based on epoxy as it has superior mechanical properties, fatigue behavior, and heat resistance as compard with polyesters. A fiberglass overwrap of PVC pipe is an anticipated development in on-site winding and combination winding, and the compression molding of filament wound lay-ups will be investigated. The fabrication of weight-sensitive structural components may be achieved by using such moldings.

  19. Terahertz spectroscopy of plasmonic fractals.

    PubMed

    Agrawal, A; Matsui, T; Zhu, W; Nahata, A; Vardeny, Z V

    2009-03-20

    We use terahertz time-domain spectroscopy to study the transmission properties of metallic films perforated with aperture arrays having deterministic or stochastic fractal morphologies ("plasmonic fractals"), and compare them with random aperture arrays. All of the measured plasmonic fractals show transmission resonances and antiresonances at frequencies that correspond to prominent features in their structure factors in k space. However, in sharp contrast to periodic aperture arrays, the resonant transmission enhancement decreases with increasing array size. This property is explained using a density-density correlation function, and is utilized for determining the underlying fractal dimensionality, D(<2). Furthermore, a sum rule for the transmission resonances and antiresonances in plasmonic fractals relative to the transmission of the corresponding random aperture arrays is obtained, and is shown to be universal.

  20. Fractal Electronic Circuits Assembled From Nanoclusters

    NASA Astrophysics Data System (ADS)

    Fairbanks, M. S.; McCarthy, D.; Taylor, R. P.; Brown, S. A.

    2009-07-01

    Many patterns in nature can be described using fractal geometry. The effect of this fractal character is an array of properties that can include high internal connectivity, high dispersivity, and enhanced surface area to volume ratios. These properties are often desirable in applications and, consequently, fractal geometry is increasingly employed in technologies ranging from antenna to storm barriers. In this paper, we explore the application of fractal geometry to electrical circuits, inspired by the pervasive fractal structure of neurons in the brain. We show that, under appropriate growth conditions, nanoclusters of Sb form into islands on atomically flat substrates via a process close to diffusion-limited aggregation (DLA), establishing fractal islands that will form the basis of our fractal circuits. We perform fractal analysis of the islands to determine the spatial scaling properties (characterized by the fractal dimension, D) of the proposed circuits and demonstrate how varying growth conditions can affect D. We discuss fabrication approaches for establishing electrical contact to the fractal islands. Finally, we present fractal circuit simulations, which show that the fractal character of the circuit translates into novel, non-linear conduction properties determined by the circuit's D value.

  1. Designing fractal nanostructured biointerfaces for biomedical applications.

    PubMed

    Zhang, Pengchao; Wang, Shutao

    2014-06-01

    Fractal structures in nature offer a unique "fractal contact mode" that guarantees the efficient working of an organism with an optimized style. Fractal nanostructured biointerfaces have shown great potential for the ultrasensitive detection of disease-relevant biomarkers from small biomolecules on the nanoscale to cancer cells on the microscale. This review will present the advantages of fractal nanostructures, the basic concept of designing fractal nanostructured biointerfaces, and their biomedical applications for the ultrasensitive detection of various disease-relevant biomarkers, such microRNA, cancer antigen 125, and breast cancer cells, from unpurified cell lysates and the blood of patients.

  2. Visualizing the Nonhomogeneous Structure of RAD51 Filaments Using Nanofluidic Channels.

    PubMed

    Fornander, Louise H; Frykholm, Karolin; Fritzsche, Joachim; Araya, Joshua; Nevin, Philip; Werner, Erik; Çakır, Ali; Persson, Fredrik; Garcin, Edwige B; Beuning, Penny J; Mehlig, Bernhard; Modesti, Mauro; Westerlund, Fredrik

    2016-08-23

    RAD51 is the key component of the homologous recombination pathway in eukaryotic cells and performs its task by forming filaments on DNA. In this study we investigate the physical properties of RAD51 filaments formed on DNA using nanofluidic channels and fluorescence microscopy. Contrary to the bacterial ortholog RecA, RAD51 forms inhomogeneous filaments on long DNA in vitro, consisting of several protein patches. We demonstrate that a permanent "kink" in the filament is formed where two patches meet if the stretch of naked DNA between the patches is short. The kinks are readily seen in the present microscopy approach but would be hard to identify using conventional single DNA molecule techniques where the DNA is more stretched. We also demonstrate that protein patches separated by longer stretches of bare DNA roll up on each other and this is visualized as transiently overlapping filaments. RAD51 filaments can be formed at several different conditions, varying the cation (Mg(2+) or Ca(2+)), the DNA substrate (single-stranded or double-stranded), and the RAD51 concentration during filament nucleation, and we compare the properties of the different filaments formed. The results provide important information regarding the physical properties of RAD51 filaments but also demonstrate that nanofluidic channels are perfectly suited to study protein-DNA complexes. PMID:27479732

  3. Temperature-induced structural changes in the myosin thick filament of skinned rabbit psoas muscle.

    PubMed

    Malinchik, S; Xu, S; Yu, L C

    1997-11-01

    By using synchrotron radiation and an imaging plate for recording diffraction patterns, we have obtained high-resolution x-ray patterns from relaxed rabbit psoas muscle at temperatures ranging from 1 degree C to 30 degrees C. This allowed us to obtain intensity profiles of the first six myosin layer lines and apply a model-building approach for structural analysis. At temperatures 20 degrees C and higher, the layer lines are sharp with clearly defined maxima. Modeling based on the data obtained at 20 degrees C reveals that the average center of the cross-bridges is at 135 A from the center of the thick filament and both of the myosin heads appear to wrap around the backbone. At 10 degrees C and lower, the layer lines become very weak and diffuse scattering increases considerably. At 4 degrees C, the peak of the first layer line shifts toward the meridian from 0.0047 to 0.0038 A(-1) and decreases in intensity approximately by a factor of four compared to that at 20 degrees C, although the intensities of higher-order layer lines remain approximately 10-15% of the first layer line. Our modeling suggests that as the temperature is lowered from 20 degrees C to 4 degrees C the center of cross-bridges extends radially away from the center of the filament (135 A to 175 A). Furthermore, the fraction of helically ordered cross-bridges decreases at least by a factor of two, while the isotropic disorder (the temperature factor) remains approximately unchanged. Our results on the order/disordering effects of temperature are in general agreement with earlier results of Wray [Wray, J. 1987. Structure of relaxed myosin filaments in relation to nucleotide state in vertebrate skeletal muscle. J. Muscle Res. Cell Motil. 8:62a (Abstr.)] and Lowy et al. (Lowy, J., D. Popp, and A. A. Stewart. 1991. X-ray studies of order-disorder transitions in the myosin heads of skinned rabbit psoas muscles. Biophys. J. 60:812-824). and support Poulsen and Lowy's hypothesis of coexistence of ordered

  4. The structure and poloidal dynamics of blob filaments in TJ-K

    NASA Astrophysics Data System (ADS)

    Garland, S.; Fuchert, G.; Ramisch, M.; Hirth, T.

    2016-04-01

    Relatively dense, field-aligned, filament-like structures (blobs) have been observed to propagate radially and poloidally through the scrape-off layer (SOL) in magnetically confined fusion plasmas, and contribute significantly to SOL transport. A detailed understanding of blob structure and dynamics, and their dependence on magnetic field geometry, is important in magnetic confinement physics for the prediction of heat loads on reactor wall facing components, as well as for understanding plasma confinement and neutral particle recycling. Experimentally deduced centre of mass poloidal blob velocity components, obtained using the conditional averaging technique, have been compared to an analytical blob model which has been simplified to express blob velocity in terms of the magnetic field curvature vector. Background flows are not incorporated into the analytical model, and must be added in to obtain good agreement with the experimental data. In addition, the 3D structure of blobs in TJ-K has been investigated using the conditional average of density fluctuations in two toroidally separated poloidal planes. Blobs are observed to be aligned to a flux tube near to the last closed flux surface, in the blob birth region. However at positions further along the blob trajectory, the structures do not deform according to the magnetic shear, rather they remain rigid, and retain their original form.

  5. Cell adhesion in zebrafish myogenesis: distribution of intermediate filaments, microfilaments, intracellular adhesion structures and extracellular matrix.

    PubMed

    Costa, Manoel L; Escaleira, Roberta C; Jazenko, Fernanda; Mermelstein, Claudia S

    2008-10-01

    To overcome the limitations of in vitro studies, we have been studying myogenesis in situ in zebrafish embryos, at a sub-cellular level. While in previous works we focused on myofibrillogenesis and some aspects of adhesion structures, here we describe in more detail cell adhesion structures and interactions among cytoskeletal components, membrane and extracellular matrix during zebrafish muscle development. We studied the intermediate filaments, and we describe the full range of desmin distribution in zebrafish development, from perinuclear to striated, until its deposition around the intersomite septa of older somites. This adhesion structure, positive for desmin and actin, has not been previously observed in myogenesis in vitro. We also show that actin is initially located in the intersomite septum region whereas it is confined to the myofibrils later on. While actin localization changes during development, the adhesion complex proteins vinculin, paxillin, talin, dystrophin, laminin and fibronectin always appear exclusively at the intersomite septa, and appear to be co-distributed, even though the extracellular proteins accumulates before the intracellular ones. Contrary to the adhesion proteins, that are continuously distributed, desmin and sarcomeric actin form triangular aggregates among the septa and the cytoskeleton. We studied the cytoskeletal linker plectin as well, and we show that it has a distribution similar to desmin and not to actin. We conclude that the in situ adhesion structures differ from their in vitro counterparts, and that the actual zebrafish embryo myogenesis is quite different than that which occurs in in vitro systems.

  6. THE FRACTAL DENSITY STRUCTURE IN SUPERSONIC ISOTHERMAL TURBULENCE: SOLENOIDAL VERSUS COMPRESSIVE ENERGY INJECTION

    SciTech Connect

    Federrath, Christoph; Klessen, Ralf S.; Schmidt, Wolfram E-mail: rklessen@ita.uni-heidelberg.de

    2009-02-10

    In a systematic study, we compare the density statistics in high-resolution numerical experiments of supersonic isothermal turbulence, driven by the usually adopted solenoidal (divergence-free) forcing and by compressive (curl-free) forcing. We find that for the same rms Mach number, compressive forcing produces much stronger density enhancements and larger voids compared to solenoidal forcing. Consequently, the Fourier spectra of density fluctuations are significantly steeper. This result is confirmed using the {delta}-variance analysis, which yields power-law exponents {beta} {approx} 3.4 for compressive forcing and {beta} {approx} 2.8 for solenoidal forcing. We obtain fractal dimension estimates from the density spectra and {delta}-variance scaling, and by using the box counting, mass size, and perimeter area methods applied to the volumetric data, projections, and slices of our turbulent density fields. Our results suggest that compressive forcing yields fractal dimensions significantly smaller compared to solenoidal forcing. However, the actual values depend sensitively on the adopted method, with the most reliable estimates based on the {delta}-variance, or equivalently, on Fourier spectra. Using these methods, we obtain D {approx} 2.3 for compressive and D {approx} 2.6 for solenoidal forcing, which is within the range of fractal dimension estimates inferred from observations (D {approx} 2.0-2.7). The velocity dispersion to size relations for both solenoidal and compressive forcings obtained from velocity spectra follow a power law with exponents in the range 0.4-0.5, in good agreement with previous studies.

  7. An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria.

    PubMed

    Scheffel, André; Gruska, Manuela; Faivre, Damien; Linaroudis, Alexandros; Plitzko, Jürgen M; Schüler, Dirk

    2006-03-01

    Magnetotactic bacteria are widespread aquatic microorganisms that use unique intracellular organelles to navigate along the Earth's magnetic field. These organelles, called magnetosomes, consist of membrane-enclosed magnetite crystals that are thought to help to direct bacterial swimming towards growth-favouring microoxic zones at the bottom of natural waters. Questions in the study of magnetosome formation include understanding the factors governing the size and redox-controlled synthesis of the nano-sized magnetosomes and their assembly into a regular chain in order to achieve the maximum possible magnetic moment, against the physical tendency of magnetosome agglomeration. A deeper understanding of these mechanisms is expected from studying the genes present in the identified chromosomal 'magnetosome island', for which the connection with magnetosome synthesis has become evident. Here we use gene deletion in Magnetospirillum gryphiswaldense to show that magnetosome alignment is coupled to the presence of the mamJ gene product. MamJ is an acidic protein associated with a novel filamentous structure, as revealed by fluorescence microscopy and cryo-electron tomography. We suggest a mechanism in which MamJ interacts with the magnetosome surface as well as with a cytoskeleton-like structure. According to our hypothesis, magnetosome architecture represents one of the highest structural levels achieved in prokaryotic cells.

  8. Using Data Mining and Computational Approaches to Study Intermediate Filament Structure and Function.

    PubMed

    Parry, David A D

    2016-01-01

    Experimental and theoretical research aimed at determining the structure and function of the family of intermediate filament proteins has made significant advances over the past 20 years. Much of this has either contributed to or relied on the amino acid sequence databases that are now available online, and the data mining approaches that have been developed to analyze these sequences. As the quality of sequence data is generally high, it follows that it is the design of the computational and graphical methodologies that are of especial importance to researchers who aspire to gain a greater understanding of those sequence features that specify both function and structural hierarchy. However, these techniques are necessarily subject to limitations and it is important that these be recognized. In addition, no single method is likely to be successful in solving a particular problem, and a coordinated approach using a suite of methods is generally required. A final step in the process involves the interpretation of the results obtained and the construction of a working model or hypothesis that suggests further experimentation. While such methods allow meaningful progress to be made it is still important that the data are interpreted correctly and conservatively. New data mining methods are continually being developed, and it can be expected that even greater understanding of the relationship between structure and function will be gleaned from sequence data in the coming years.

  9. A comparative study of current and magnetic structures of Weibel and filamentation instabilities

    NASA Astrophysics Data System (ADS)

    Huynh, Cong Tuan; Ryu, Chang-Mo

    2014-09-01

    A comparative study of the Weibel instability (WI) driven by anisotropic temperature and the Filamentation instability (FI) by counterstreaming plasmas are made by using a 2D Particle-in-cell code. Under the comparable initial conditions, the linear growth rates of the WI and the FI are almost the same as the theory predicts, but in the nonlinear phase, the maximum and nonlinearly saturated magnetic fields generated by the WI are always smaller than those generated by the FI. It is noted that in the initial linear growth phase, the WI and the FI both have center-filled currents, but in the nonlinear phase, the WI and the FI develop different types of current structures such that the WI maintains a center-filled current structure, whereas the FI develops a hollow current structure. Significant particle acceleration around the drift velocity is observed for the FI, whereas it is almost absent in the WI, which indicates that the enhanced velocity of the electron by particle acceleration is related to the hollow current production in the FI.

  10. On the Structure and Evolution of a Polar Crown Prominence/Filament System

    NASA Astrophysics Data System (ADS)

    Panesar, N. K.; Innes, D. E.; Schmit, D. J.; Tiwari, S. K.

    2014-08-01

    Polar crown prominences, that partially circle the Sun's poles between 60° and 70° latitude, are made of chromospheric plasma. We aim to diagnose the 3D dynamics of a polar crown prominence using high-cadence EUV images from the Solar Dynamics Observatory (SDO)/AIA at 304, 171, and 193 Å and the Ahead spacecraft of the Solar Terrestrial Relations Observatory (STEREO-A)/EUVI at 195 Å. Using time series across specific structures, we compare flows across the disk in 195 Å with the prominence dynamics seen on the limb. The densest prominence material forms vertical columns that are separated by many tens of Mm and connected by dynamic bridges of plasma that are clearly visible in 304/171 Å two-colour images. We also observe intermittent but repetitious flows with velocity 15 km s-1 in the prominence that appear to be associated with EUV bright points on the solar disk. The boundary between the prominence and the overlying cavity appears as a sharp edge. We discuss the structure of the coronal cavity seen both above and around the prominence. SDO/HMI and GONG magnetograms are used to infer the underlying magnetic topology. The evolution and structure of the prominence with respect to the magnetic field seems to agree with the filament-linkage model.

  11. A Brief Historical Introduction to Fractals and Fractal Geometry

    ERIC Educational Resources Information Center

    Debnath, Lokenath

    2006-01-01

    This paper deals with a brief historical introduction to fractals, fractal dimension and fractal geometry. Many fractals including the Cantor fractal, the Koch fractal, the Minkowski fractal, the Mandelbrot and Given fractal are described to illustrate self-similar geometrical figures. This is followed by the discovery of dynamical systems and…

  12. Fractals, Coherence and Brain Dynamics

    NASA Astrophysics Data System (ADS)

    Vitiello, Giuseppe

    2010-11-01

    I show that the self-similarity property of deterministic fractals provides a direct connection with the space of the entire analytical functions. Fractals are thus described in terms of coherent states in the Fock-Bargmann representation. Conversely, my discussion also provides insights on the geometrical properties of coherent states: it allows to recognize, in some specific sense, fractal properties of coherent states. In particular, the relation is exhibited between fractals and q-deformed coherent states. The connection with the squeezed coherent states is also displayed. In this connection, the non-commutative geometry arising from the fractal relation with squeezed coherent states is discussed and the fractal spectral properties are identified. I also briefly discuss the description of neuro-phenomenological data in terms of squeezed coherent states provided by the dissipative model of brain and consider the fact that laboratory observations have shown evidence that self-similarity characterizes the brain background activity. This suggests that a connection can be established between brain dynamics and the fractal self-similarity properties on the basis of the relation discussed in this report between fractals and squeezed coherent states. Finally, I do not consider in this paper the so-called random fractals, namely those fractals obtained by randomization processes introduced in their iterative generation. Since self-similarity is still a characterizing property in many of such random fractals, my conjecture is that also in such cases there must exist a connection with the coherent state algebraic structure. In condensed matter physics, in many cases the generation by the microscopic dynamics of some kind of coherent states is involved in the process of the emergence of mesoscopic/macroscopic patterns. The discussion presented in this paper suggests that also fractal generation may provide an example of emergence of global features, namely long range

  13. Filament-Level Modeling of Aramid-Based High-Performance Structural Materials

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Bell, W. C.; Glomski, P. S.; Pandurangan, B.; Yen, C.-F.; Cheeseman, B. A.

    2011-11-01

    Molecular statics and molecular dynamics are employed to study the effects of various microstructural and topological defects (e.g., chain ends, axial chain misalignment, inorganic solvent impurities, and sheet stacking faults) on the strength, ductility, and stiffness of p-phenylene terephthalamide (PPTA) fibers/filaments. These fibers can be considered as prototypes for advanced high strength/high-stiffness fibers like Kevlar®, Twaron®, New Star®, etc. While modeling these fibers, it was taken into account that they are essentially crystalline materials consisting of stacks of sheets, with each sheet containing an array of nearly parallel hydrogen-bonded molecules/chains. The inter-sheet bonding, on the other hand, was considered as mainly being of van der Waals or p-electron character. The effects of various deviations of the PPTA fiber structure from that of the perfectly crystalline structure (i.e., microstructural/topological defects) on the material's mechanical properties are then considered. The results obtained show that while the presence of these defects decreases all the mechanical properties of PPTA fibers, specific properties display an increased level of sensitivity to the presence of certain defects. For example, longitudinal tensile properties are found to be most sensitive to the presence of chain ends, in-sheet transverse properties to the presence of chain misalignments, while cross-sheet transverse properties are found to be most affected by the presence of sheet stacking faults.

  14. An electrostatic spatial resonance model for coaxial helical structures with applications to the filamentous bacteriophages.

    PubMed Central

    Marzec, C J; Day, L A

    1994-01-01

    A model is presented that treats the symmetry matching problem in structures made of two interacting coaxial helices of point charges. The charges are sources of a potential field that mediates a non-specific attractive interaction between the helices. The problem is represented in Fourier space, which affords the most generality. It is found that coaxial helices with optimally mated symmetries can lock into spatial resonance configurations that maximize their interaction. The resonances are represented as vectors in a discrete three-dimensional space. Two algebraic relations are given for the four symmetry parameters of two helices in resonance. One-start inner helices interacting with coaxial one-start or NR-start outer helices are considered. Applications are made to the filamentous bacteriophages Ff, Pf1, Xf, and Pf3. The interaction given by the linearized Poisson-Boltzmann equation is calculated in this formalism to allow comparison of the electrostatic free energy of interaction of different resonance structures. Experimental nucleotide/subunit ratios are accounted for, and models for the DNA-protein interfaces are presented, with particular emphasis on Pf1. PMID:7696463

  15. Three new structures of left-handed RADA helical filaments: structural flexibility of N-terminal domain is critical for recombinase activity.

    PubMed

    Chang, Yu-Wei; Ko, Tzu-Ping; Lee, Chien-Der; Chang, Yuan-Chih; Lin, Kuei-Ann; Chang, Chia-Seng; Wang, Andrew H-J; Wang, Ting-Fang

    2009-01-01

    RecA family proteins, including bacterial RecA, archaeal RadA, and eukaryotic Dmc1 and Rad51, mediate homologous recombination, a reaction essential for maintaining genome integrity. In the presence of ATP, these proteins bind a single-strand DNA to form a right-handed nucleoprotein filament, which catalyzes pairing and strand exchange with a homologous double-stranded DNA (dsDNA), by as-yet unknown mechanisms. We recently reported a structure of RadA left-handed helical filament, and here present three new structures of RadA left-handed helical filaments. Comparative structural analysis between different RadA/Rad51 helical filaments reveals that the N-terminal domain (NTD) of RadA/Rad51, implicated in dsDNA binding, is highly flexible. We identify a hinge region between NTD and polymerization motif as responsible for rigid body movement of NTD. Mutant analysis further confirms that structural flexibility of NTD is essential for RadA's recombinase activity. These results support our previous hypothesis that ATP-dependent axial rotation of RadA nucleoprotein helical filament promotes homologous recombination.

  16. Paired helical filaments (PHFs) are a family of single filament structures with a common helical turn period: negatively stained PHF imaged by TEM and measured before and after sonication, deglycosylation, and dephosphorylation.

    PubMed

    Ruben, George C; Wang, Jian-Zhi; Iqbal, Khalid; Grundke-Iqbal, Inge

    2005-07-01

    Isolated paired helical filaments (PHFs) were visualized on glutaraldehyde vapor-treated thin approximately 10-nm thick indirect carbon films using high-resolution transmission electron microscopy (TEM) and the negative stain, phosphotungstate acid (PTA) at near neutral pH of 6.8. PHF preparations were prepared with and without 1 minute of sonication. These same PHF were also deglycosylated with endoglycosidase F/N-glycosidase F for 1 hour or the PHF were dephosphorylated with PP-2A for 1 hour. The negatively stained PHF filaments were quantitatively studied by measuring their wide regions (W) their thin regions (T) and their helical turn period (L) and these separate parameters were averaged for each filament. In the unsonicated PHF preparation there were PHF, cylindrical filaments with periodic thin regions (CF-PT), cylindrical filaments (CF), as well as 2.0-nm tau polymer-like filaments. The CF-PT were characterized by W, T, and L measurements and the CF were characterized by diameter measurements. The paired helical filament model proposed by Kidd (1963, Nature 197:192-193) of two approximately 10 nm filaments twisting around each other every approximately 80 nm with a thin region of 10 nm and a wide region of 25 nm does not correspond to the PHF structures found. None of the PHF we observed were composed of a pair of filaments and all of the PHF appear to be a single filament. The wide regions ranged from 12.5-27 nm and the thin regions ranged from 4.5-12.3 nm. The helical turn periods ranged from 76-85 nm and were generally about 80 nm. Only the helical turn period of approximately 80 nm was a common property of the whole family of PHF structures. The CF-PT appear to be a PHF precursor filament. Deglycosylation of the PHF and CF-PT reduced their sizes by 0.5-0.6 nm and 0.7-1.0 nm, respectively, and the right-hand helicity of the PHF was lost after deglycosylation. Dephosphorylation with PP-2A reduced the PHF wide regions by 6.0 nm and the thin regions by 2

  17. Solid-state NMR studies of the dynamics and structure of mouse keratin intermediate filaments

    SciTech Connect

    Mack, J.W.; Torchia, D.A.; Steinert, P.M.

    1988-07-26

    The molecular dynamics and structural organization of mouse epidermal keratin intermediate filaments (IF) have been studied via solid-state nuclear magnetic resonance (NMR) experiments performed on IF labeled both in vivo and in vitro with isotopically enriched amino acids. As a probe of the organization of the peripheral glycine-rich end domains of the IF, carbon-13 NMR experiments have been performed on subfilamentous forms (prekeratin) and on IF reassembled in vitro that had been labeled with either (1-/sup 13/C)glycine or (2-/sup 13/C)glycine, as more than 90% of the glycines of the keratins are located in the end domains. Measurements of carbon relaxation times, nuclear Overhauser enhancements, and signal intensities show that the motions of the peptide backbone in the end domains are effectively isotropic. These results indicate that the end domains of IF are remarkably flexible and have little or no structural order. To probe the structural organization of the coiled-coil rod domains of the IF, separate samples of native keratin IF, raised in primary tissue culture, were labeled with L-(1-/sup 13/C)leucine, L-(/sup 2/H/sub 10/)leucine, or L-(2,3,3-/sup 2/H/sub 3/)leucine, as greater than 90% of the leucyl residues of the keratin IF types studied are located in the coiled coils which form the central core of IF. Deuterium NMR experiments performed on IF labeled with deuteriated leucines indeed reveal a marked degree of peptide backbone rigidity within the coiled coils, confirming the initial conclusions of the carbon-13 data. These data, demonstrating relative peptide backbone rigidity yet side-chain flexibility, are interpreted to mean that the coiled coils of these keratin IF are not tightly packed together but rather form a somewhat looser structure which permits a significant degree of side-chain mobility.

  18. Role of lattice structure and low temperature resistivity in fast-electron-beam filamentation in carbon

    NASA Astrophysics Data System (ADS)

    Dance, R. J.; Butler, N. M. H.; Gray, R. J.; MacLellan, D. A.; Rusby, D. R.; Scott, G. G.; Zielbauer, B.; Bagnoud, V.; Xu, H.; Robinson, A. P. L.; Desjarlais, M. P.; Neely, D.; McKenna, P.

    2016-01-01

    The influence of low temperature (eV to tens-of-eV) electrical resistivity on the onset of the filamentation instability in fast-electron transport is investigated in targets comprising of layers of ordered (diamond) and disordered (vitreous) carbon. It is shown experimentally and numerically that the thickness of the disordered carbon layer influences the degree of filamentation of the fast-electron beam. Strong filamentation is produced if the thickness is of the order of 60 μm or greater, for an electron distribution driven by a sub-picosecond, mid-1020 Wcm-2 laser pulse. It is shown that the position of the vitreous carbon layer relative to the fast-electron source (where the beam current density and background temperature are highest) does not have a strong effect because the resistive filamentation growth rate is high in disordered carbon over a wide range of temperatures up to the Spitzer regime.

  19. An electron microscopic and optical diffraction analysis of the structure of Limulus telson muscle thick filaments

    PubMed Central

    1982-01-01

    Long, thick filaments (greater than 4.0 micrometer) rapidly and gently isolated from fresh, unstimulated Limulus muscle by an improved procedure have been examined by electron microscopy and optical diffraction. Images of negatively stained filaments appear highly periodic with a well-preserved myosin cross-bridge array. Optical diffraction patterns of the electron micrographs show a wealth of detail and are consistent with a myosin helical repeat of 43.8 nm, similar to that observed by x-ray diffraction. Analysis of the optical diffraction patterns, in conjunction with the appearance in electron micrographs of the filaments, supports a model for the filament in which the myosin cross-bridges are arranged on a four-stranded helix, with 12 cross-bridges per turn or each helix, thus giving an axial repeat every third level of cross-bridges (43.8 nm). PMID:7199531

  20. SnoRNAs from the filamentous fungus Neurospora crassa: structural, functional and evolutionary insights

    PubMed Central

    2009-01-01

    Background SnoRNAs represent an excellent model for studying the structural and functional evolution of small non-coding RNAs involved in the post-transcriptional modification machinery for rRNAs and snRNAs in eukaryotic cells. Identification of snoRNAs from Neurospora crassa, an important model organism playing key roles in the development of modern genetics, biochemistry and molecular biology will provide insights into the evolution of snoRNA genes in the fungus kingdom. Results Fifty five box C/D snoRNAs were identified and predicted to guide 71 2'-O-methylated sites including four sites on snRNAs and three sites on tRNAs. Additionally, twenty box H/ACA snoRNAs, which potentially guide 17 pseudouridylations on rRNAs, were also identified. Although not exhaustive, the study provides the first comprehensive list of two major families of snoRNAs from the filamentous fungus N. crassa. The independently transcribed strategy dominates in the expression of box H/ACA snoRNA genes, whereas most of the box C/D snoRNA genes are intron-encoded. This shows that different genomic organizations and expression modes have been adopted by the two major classes of snoRNA genes in N. crassa . Remarkably, five gene clusters represent an outstanding organization of box C/D snoRNA genes, which are well conserved among yeasts and multicellular fungi, implying their functional importance for the fungus cells. Interestingly, alternative splicing events were found in the expression of two polycistronic snoRNA gene hosts that resemble the UHG-like genes in mammals. Phylogenetic analysis further revealed that the extensive separation and recombination of two functional elements of snoRNA genes has occurred during fungus evolution. Conclusion This is the first genome-wide analysis of the filamentous fungus N. crassa snoRNAs that aids in understanding the differences between unicellular fungi and multicellular fungi. As compared with two yeasts, a more complex pattern of methylation guided by

  1. Construction of fractal nanostructures based on Kepler-Shubnikov nets

    SciTech Connect

    Ivanov, V. V. Talanov, V. M.

    2013-05-15

    A system of information codes for deterministic fractal lattices and sets of multifractal curves is proposed. An iterative modular design was used to obtain a series of deterministic fractal lattices with generators in the form of fragments of 2D structures and a series of multifractal curves (based on some Kepler-Shubnikov nets) having Cantor set properties. The main characteristics of fractal structures and their lacunar spectra are determined. A hierarchical principle is formulated for modules of regular fractal structures.

  2. Structural and energetic basis of infection by the filamentous bacteriophage IKe.

    PubMed

    Jakob, Roman P; Geitner, Anne-Juliane; Weininger, Ulrich; Balbach, Jochen; Dobbek, Holger; Schmid, Franz X

    2012-06-01

    Filamentous phage use the two N-terminal domains of their gene-3-proteins to initiate infection of Escherichia coli. One domain interacts with a pilus, and then the other domain binds to TolA at the cell surface. In phage fd, these two domains are tightly associated with each other, which renders the phage robust but non-infectious, because the TolA binding site is inaccessible. Activation for infection requires partial unfolding, domain disassembly and prolyl isomerization. Phage IKe infects E. coli less efficiently than phage fd. Unlike in phage fd, the pilus- and TolA-binding domains of phage IKe are independent of each other in stability and folding. The site for TolA binding is thus always accessible, but the affinity is very low. The structures of the two domains, analysed by X-ray crystallography and by NMR spectroscopy, revealed a unique fold for the N-pilus-binding domain and a conserved fold for the TolA-binding domain. The absence of an activation mechanism as in phage fd and the low affinity for TolA probably explain the low infectivity of phage IKe. They also explain why, in a previous co-evolution experiment with a mixture of phage fd and phage IKe, all hybrid phage adopted the superior infection mechanism of phage fd.

  3. The Rapid Formation of a Filament Caused by Magnetic Reconnection between Two Sets of Dark Threadlike Structures

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Jiang, Yunchun; Yang, Jiayan; Yu, Shunping; Xu, Zhe

    2016-01-01

    Taking advantage of the high spatiotemporal resolution observations from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, we present rare observations of the rapid formation of a filament caused by magnetic reconnection between two sets of dark threadlike structures. The two sets of dark threadlike structures belong to distinct flux systems with their adjacent ends anchored in an opposite-polarity magnetic field region, where the calculated photospheric velocity field shows that converging flows dominate there. Due to the converging flows, opposite-polarity magnetic flux converged and then canceled, leading to the formation of extreme ultraviolet (EUV) brightening that spread in opposite directions along the spine of the dark threadlike structures. Meanwhile, very weak remote brightening in the other terminals of the dark threadlike structures, as well as EUV loops, which rooted in the opposite-polarity magnetic field region, appeared. In addition, all of the AIA Fe line observations reveal that a flux rope was formed and underwent a rolling motion during the fadeaway of the EUV brightening. Soon after, as the EUV brightening disappeared, a filament that is very likely composed of two sets of intertwined dark threadlike structures was formed. Via differential emission measure (EM) analysis, it is found that both the EM and temperature of the plasma around the flux-canceling site increased during the brightening, implying that there, magnetic reconnection may occur to heat the plasma. These observations provide evidence that the filament is formed by magnetic reconnection associated with flux convergence and cancellation, and the magnetic structure of the filament is most likely a flux rope.

  4. THE RAPID FORMATION OF A FILAMENT CAUSED BY MAGNETIC RECONNECTION BETWEEN TWO SETS OF DARK THREADLIKE STRUCTURES

    SciTech Connect

    Yang, Bo; Jiang, Yunchun; Yang, Jiayan; Yu, Shunping; Xu, Zhe E-mail: yjy@ynao.ac.cn

    2016-01-01

    Taking advantage of the high spatiotemporal resolution observations from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, we present rare observations of the rapid formation of a filament caused by magnetic reconnection between two sets of dark threadlike structures. The two sets of dark threadlike structures belong to distinct flux systems with their adjacent ends anchored in an opposite-polarity magnetic field region, where the calculated photospheric velocity field shows that converging flows dominate there. Due to the converging flows, opposite-polarity magnetic flux converged and then canceled, leading to the formation of extreme ultraviolet (EUV) brightening that spread in opposite directions along the spine of the dark threadlike structures. Meanwhile, very weak remote brightening in the other terminals of the dark threadlike structures, as well as EUV loops, which rooted in the opposite-polarity magnetic field region, appeared. In addition, all of the AIA Fe line observations reveal that a flux rope was formed and underwent a rolling motion during the fadeaway of the EUV brightening. Soon after, as the EUV brightening disappeared, a filament that is very likely composed of two sets of intertwined dark threadlike structures was formed. Via differential emission measure (EM) analysis, it is found that both the EM and temperature of the plasma around the flux-canceling site increased during the brightening, implying that there, magnetic reconnection may occur to heat the plasma. These observations provide evidence that the filament is formed by magnetic reconnection associated with flux convergence and cancellation, and the magnetic structure of the filament is most likely a flux rope.

  5. Surface layer protein characterization by small angle x-ray scattering and a fractal mean force concept: From protein structure to nanodisk assemblies

    SciTech Connect

    Horejs, Christine; Pum, Dietmar; Sleytr, Uwe B.; Peterlik, Herwig; Jungbauer, Alois; Tscheliessnig, Rupert

    2010-11-07

    Surface layers (S-layers) are the most commonly observed cell surface structure of prokaryotic organisms. They are made up of proteins that spontaneously self-assemble into functional crystalline lattices in solution, on various solid surfaces, and interfaces. While classical experimental techniques failed to recover a complete structural model of an unmodified S-layer protein, small angle x-ray scattering (SAXS) provides an opportunity to study the structure of S-layer monomers in solution and of self-assembled two-dimensional sheets. For the protein under investigation we recently suggested an atomistic structural model by the use of molecular dynamics simulations. This structural model is now refined on the basis of SAXS data together with a fractal assembly approach. Here we show that a nondiluted critical system of proteins, which crystallize into monomolecular structures, might be analyzed by SAXS if protein-protein interactions are taken into account by relating a fractal local density distribution to a fractal local mean potential, which has to fulfill the Poisson equation. The present work demonstrates an important step into the elucidation of the structure of S-layers and offers a tool to analyze the structure of self-assembling systems in solution by means of SAXS and computer simulations.

  6. Changes in fractal dimension during aggregation.

    PubMed

    Chakraborti, Rajat K; Gardner, Kevin H; Atkinson, Joseph F; Van Benschoten, John E

    2003-02-01

    Experiments were performed to evaluate temporal changes in the fractal dimension of aggregates formed during flocculation of an initially monodisperse suspension of latex microspheres. Particle size distributions and aggregate geometrical information at different mixing times were obtained using a non-intrusive optical sampling and digital image analysis technique, under variable conditions of mixing speed, coagulant (alum) dose and particle concentration. Pixel resolution required to determine aggregate size and geometric measures including the fractal dimension is discussed and a quantitative measure of accuracy is developed. The two-dimensional fractal dimension was found to range from 1.94 to 1.48, corresponding to aggregates that are either relatively compact or loosely structured, respectively. Changes in fractal dimension are explained using a conceptual model, which describes changes in fractal dimension associated with aggregate growth and changes in aggregate structure. For aggregation of an initially monodisperse suspension, the fractal dimension was found to decrease over time in the initial stages of floc formation.

  7. Fractal analysis of Mesoamerican pyramids.

    PubMed

    Burkle-Elizondo, Gerardo; Valdez-Cepeda, Ricardo David

    2006-01-01

    A myth of ancient cultural roots was integrated into Mesoamerican cult, and the reference to architecture denoted a depth religious symbolism. The pyramids form a functional part of this cosmovision that is centered on sacralization. The space architecture works was an expression of the ideological necessities into their conception of harmony. The symbolism of the temple structures seems to reflect the mathematical order of the Universe. We contemplate two models of fractal analysis. The first one includes 16 pyramids. We studied a data set that was treated as a fractal profile to estimate the Df through variography (Dv). The estimated Fractal Dimension Dv = 1.383 +/- 0.211. In the second one we studied a data set to estimate the Dv of 19 pyramids and the estimated Fractal Dimension Dv = 1.229 +/- 0.165.

  8. Structural basis for stabilization of the hypervariable D3 domain of Salmonella flagellin upon filament formation.

    PubMed

    Muskotál, Adél; Seregélyes, Csaba; Sebestyén, Anett; Vonderviszt, Ferenc

    2010-11-01

    The hypervariable D3 domain of Salmonella flagellin, composed of residues 190-283, is situated at the outer surface of flagellar filaments. A flagellin mutant deprived of the complete D3 domain (ΔD3_FliC) exhibited a significantly decreased thermal stability (T(m) 41.9 °C) as compared to intact flagellin (T(m) 47.3 °C). However, the stability of filaments formed from ΔD3_FliC subunits was virtually identical with that of native flagellar filaments. While D3 comprises the most stable part of monomeric flagellin playing an important role in the stabilization of the other two (D1 and D2) domains, the situation is reversed in the polymeric state. Upon filament formation, ordering of the disordered terminal regions of flagellin in the core part of the filament results in the stabilization of the radially arranged D1 and D2 domains, and there is a substantial increase of stability even in the distant outermost D3 domain, which is connected to D2 via a pair of short antiparallel β-strands. Our experiments revealed that crosslinking the ends of the isolated D3 domain through a disulfide bridge gives rise to a stabilization effect reminiscent of that observed upon polymerization. It appears that the short interdomain linker between domains D2 and D3 serves as a stabilization center that facilitates propagation of the conformational signal from the filament core to the outer part of filament. Because D3 is a largely independent part of flagellin, its replacement by heterologous proteins or domains might offer a promising approach for creation of various fusion proteins possessing polymerization ability.

  9. The Small Heat Shock Protein Hsp27 Affects Assembly Dynamics and Structure of Keratin Intermediate Filament Networks

    PubMed Central

    Kayser, Jona; Haslbeck, Martin; Dempfle, Lisa; Krause, Maike; Grashoff, Carsten; Buchner, Johannes; Herrmann, Harald; Bausch, Andreas R.

    2013-01-01

    The mechanical properties of living cells are essential for many processes. They are defined by the cytoskeleton, a composite network of protein fibers. Thus, the precise control of its architecture is of paramount importance. Our knowledge about the molecular and physical mechanisms defining the network structure remains scarce, especially for the intermediate filament cytoskeleton. Here, we investigate the effect of small heat shock proteins on the keratin 8/18 intermediate filament cytoskeleton using a well-controlled model system of reconstituted keratin networks. We demonstrate that Hsp27 severely alters the structure of such networks by changing their assembly dynamics. Furthermore, the C-terminal tail domain of keratin 8 is shown to be essential for this effect. Combining results from fluorescence and electron microscopy with data from analytical ultracentrifugation reveals the crucial role of kinetic trapping in keratin network formation. PMID:24138853

  10. Emission of terahertz radiations from fractal antennas

    NASA Astrophysics Data System (ADS)

    Miyamaru, F.; Saito, Y.; Takeda, M. W.; Liu, L.; Hou, B.; Wen, W.; Sheng, Ping

    2009-11-01

    We investigate the emission of terahertz radiation from a photoconductive fractal antenna fabricated on a semi-insulating gallium arsenide substrate. Owing to the self-similarity of fractal structures, our fractal antenna shows a multiband emission of terahertz radiation. The emission intensity at peak frequency is about twice that from a bow-tie antenna. We also investigate the mechanism of the multiband emission by using the finite-difference time-domain calculation.

  11. FRET Study of the Structural and Kinetic Effects of PKC Phosphomimetic Cardiac Troponin T Mutants on Thin Filament Regulation

    PubMed Central

    Schlecht, William; Zhou, Zhiqun; Li, King-Lun; Rieck, Daniel; Ouyang, Yexin; Dong, Wen-Ji

    2014-01-01

    FRET was used to investigate the structural and kinetic effects that PKC phosphorylations exert on Ca2+ and myosin subfragment-1 dependent conformational transitions of the cardiac thin filament. PKC phosphorylations of cTnT were mimicked by glutamate substitution. Ca2+ and S1-induced distance changes between the central linker of cTnC and the switch region of cTnI (cTnI-Sr) were monitored in reconstituted thin filaments using steady state and time resolved FRET, while kinetics of structural transitions were determined using stopped flow. Thin filament Ca2+ sensitivity was found to be significantly blunted by the presence of the cTnT(T204E) mutant, whereas pseudo-phosphorylation at additional sites increased the Ca2+-sensitivty. The rate of Ca2+-dissociation induced structural changes was decreased in the C-terminal end of cTnI-Sr in the presence of pseudo-phosphorylations while remaining unchanged at the N-terminal end of this region. Additionally, the distance between cTnI-Sr and cTnC was decreased significantly for the triple and quadruple phosphomimetic mutants cTnT(T195E/S199E/T204E) and cTnT(T195E/S199E/T204E/T285E), which correlated with the Ca2+-sensitivity increase seen in these same mutants. We conclude that significant changes in thin filament Ca2+-sensitivity, structure and kinetics are brought about through PKC phosphorylation of cTnT. These changes can either decrease or increase Ca2+-sensitivity and likely play an important role in cardiac regulation. PMID:24708997

  12. Structural analysis and modeling reveals new mechanisms governing ESCRT-III spiral filament assembly.

    PubMed

    Shen, Qing-Tao; Schuh, Amber L; Zheng, Yuqing; Quinney, Kyle; Wang, Lei; Hanna, Michael; Mitchell, Julie C; Otegui, Marisa S; Ahlquist, Paul; Cui, Qiang; Audhya, Anjon

    2014-09-15

    The scission of biological membranes is facilitated by a variety of protein complexes that bind and manipulate lipid bilayers. ESCRT-III (endosomal sorting complex required for transport III) filaments mediate membrane scission during the ostensibly disparate processes of multivesicular endosome biogenesis, cytokinesis, and retroviral budding. However, mechanisms by which ESCRT-III subunits assemble into a polymer remain unknown. Using cryogenic electron microscopy (cryo-EM), we found that the full-length ESCRT-III subunit Vps32/CHMP4B spontaneously forms single-stranded spiral filaments. The resolution afforded by two-dimensional cryo-EM combined with molecular dynamics simulations revealed that individual Vps32/CHMP4B monomers within a filament are flexible and able to accommodate a range of bending angles. In contrast, the interface between monomers is stable and refractory to changes in conformation. We additionally found that the carboxyl terminus of Vps32/CHMP4B plays a key role in restricting the lateral association of filaments. Our findings highlight new mechanisms by which ESCRT-III filaments assemble to generate a unique polymer capable of membrane remodeling in multiple cellular contexts. PMID:25202029

  13. Structural hierarchy of chromatin in chicken erythrocyte nuclei based on small-angle neutron scattering: Fractal nature of the large-scale chromatin organization

    SciTech Connect

    Lebedev, D. V. Filatov, M. V.; Kuklin, A. I.; Islamov, A. Kh.; Stellbrink, J.; Pantina, R. A.; Denisov, Yu. Yu.; Toperverg, B. P.; Isaev-Ivanov, V. V.

    2008-01-15

    The chromatin organization in chicken erythrocyte nuclei was studied by small-angle neutron scattering in the scattering-vector range from 1.5 x 10{sup -1} to 10{sup -4} A{sup -1} with the use of the contrast-variation technique. This scattering-vector range corresponds to linear dimensions from 4 nm to 6 {mu}m and covers the whole hierarchy of chromatin structures, from the nucleosomal structure to the entire nucleus. The results of the present study allowed the following conclusions to be drawn: (1) both the chromatin-protein structure and the structure of the nucleic acid component in chicken erythrocyte nuclei have mass-fractal properties, (2) the structure of the protein component of chromatin exhibits a fractal behavior on scales extending over two orders of magnitude, from the nucleosomal size to the size of an entire nucleus, and (3) the structure of the nucleic acid component of chromatin in chicken erythrocyte nuclei is likewise of a fractal nature and has two levels of organization or two phases with the crossover point at about 300-400 nm.

  14. Structural hierarchy of chromatin in chicken erythrocyte nuclei based on small-angle neutron scattering: Fractal nature of the large-scale chromatin organization

    NASA Astrophysics Data System (ADS)

    Lebedev, D. V.; Filatov, M. V.; Kuklin, A. I.; Islamov, A. Kh.; Stellbrink, J.; Pantina, R. A.; Denisov, Yu. Yu.; Toperverg, B. P.; Isaev-Ivanov, V. V.

    2008-01-01

    The chromatin organization in chicken erythrocyte nuclei was studied by small-angle neutron scattering in the scattering-vector range from 1.5 × 10-1 to 10-4 Å-1 with the use of the contrast-variation technique. This scattering-vector range corresponds to linear dimensions from 4 nm to 6 μm and covers the whole hierarchy of chromatin structures, from the nucleosomal structure to the entire nucleus. The results of the present study allowed the following conclusions to be drawn: (1) both the chromatin-protein structure and the structure of the nucleic acid component in chicken erythrocyte nuclei have mass-fractal properties, (2) the structure of the protein component of chromatin exhibits a fractal behavior on scales extending over two orders of magnitude, from the nucleosomal size to the size of an entire nucleus, and (3) the structure of the nucleic acid component of chromatin in chicken erythrocyte nuclei is likewise of a fractal nature and has two levels of organization or two phases with the crossover point at about 300-400 nm.

  15. Chaos recognition and fractal analysis in the term structure of Shanghai Interbank Offered Rate

    NASA Astrophysics Data System (ADS)

    Gu, Rongbao; Chen, Xi; Li, Xinjie

    2014-10-01

    In this paper, we investigate the Shanghai Interbank Offered Rate (SHIBOR) employing the chaos recognition and fractal analysis. We find that all interest rates of SHIBOR are chaotic systems with multifractal nature. The volatilities of the short-term interest rates are larger than the medium- and long-term interest rates and the magnitudes of these fluctuations decrease with the term increases. The smaller fluctuations of all interest rates have long-term memory property. The larger fluctuations of medium- or long-term interest rates have also long-term memory property but not for those of short-term rates. Moreover, there is long-term memory property between the two interest rates of SHIBOR with one medium- or long-term, but not for both short-term interest rates. Especially, there is also long-term memory between SHIBOR and USD LIBOR. These findings are beneficial not only to understand well the SHIBOR's running but also to price accurately financial products.

  16. Thermal conductivity, viscosity, and electrical conductivity of iron oxide with a cloud fractal structure

    NASA Astrophysics Data System (ADS)

    Jamilpanah, Pouya; Pahlavanzadeh, Hassan; Kheradmand, Amanj

    2016-09-01

    In the present study, nanoscale iron oxide was synthesized using a hydrothermal method; XRD analysis revealed that all the produced crystals are iron oxide. FESEM microscopic imaging showed that particles are on the scale of nano and their morphology is cloud fractal. To study the laboratory properties of thermal conductivity, viscosity, and electrical conductivity of the nanoparticles, they were dispersed in ethylene glycol-based fluid and the nanofluid was in a two-step synthesis during this process. The experiments were carried out with a weight fraction between 0 and 2 % at temperatures between 25 and 45 °C. According to the results of the experiments, increasing the density of nanoparticles in the fluid increases thermal conductivity, as it was predicted in all theoretical models. On the other hand, nano viscosity increases as the weight fraction increases while it decreases as temperature goes up. Electrical conductivity also increases with raising the temperature and weight fraction. Theoretical models were studied to predict Thermal conductivity, viscosity, and electrical conductivity of the nanofluid.

  17. Cryo-electron microscopy structure of human peroxiredoxin-3 filament reveals the assembly of a putative chaperone.

    PubMed

    Radjainia, Mazdak; Venugopal, Hariprasad; Desfosses, Ambroise; Phillips, Amy J; Yewdall, N Amy; Hampton, Mark B; Gerrard, Juliet A; Mitra, Alok K

    2015-05-01

    Peroxiredoxins (Prxs) are a ubiquitous class of thiol-dependent peroxidases that play an important role in the protection and response of cells to oxidative stress. The catalytic unit of typical 2-Cys Prxs are homodimers, which can self-associate to form complex assemblies that are hypothesized to have signaling and chaperone activity. Mitochondrial Prx3 forms dodecameric toroids, which can further stack to form filaments, the so-called high-molecular-weight (HMW) form that has putative holdase activity. We used single-particle analysis and helical processing of electron cryomicroscopy images of human Prx3 filaments induced by low pH to generate a ∼7-Å resolution 3D structure of the HMW form, the first such structure for a 2-Cys Prx. The pseudo-atomic model reveals interactions that promote the stacking of the toroids and shows that unlike previously reported data, the structure can accommodate a partially folded C terminus. The HMW filament lumen displays hydrophobic patches, which we hypothesize bestow holdase activity.

  18. USING CORONAL CELLS TO INFER THE MAGNETIC FIELD STRUCTURE AND CHIRALITY OF FILAMENT CHANNELS

    SciTech Connect

    Sheeley, N. R. Jr.; Warren, H. P.; Martin, S. F.; Panasenco, O.

    2013-08-01

    Coronal cells are visible at temperatures of {approx}1.2 MK in Fe XII coronal images obtained from the Solar Dynamics Observatory and Solar Terrestrial Relations Observatory spacecraft. We show that near a filament channel, the plumelike tails of these cells bend horizontally in opposite directions on the two sides of the channel like fibrils in the chromosphere. Because the cells are rooted in magnetic flux concentrations of majority polarity, these observations can be used with photospheric magnetograms to infer the direction of the horizontal field in filament channels and the chirality of the associated magnetic field. This method is similar to the procedure for inferring the direction of the magnetic field and the chirality of the fibril pattern in filament channels from H{alpha} observations. However, the coronal cell observations are easier to use and provide clear inferences of the horizontal field direction for heights up to {approx}50 Mm into the corona.

  19. Fractal vector optical fields.

    PubMed

    Pan, Yue; Gao, Xu-Zhen; Cai, Meng-Qiang; Zhang, Guan-Lin; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2016-07-15

    We introduce the concept of a fractal, which provides an alternative approach for flexibly engineering the optical fields and their focal fields. We propose, design, and create a new family of optical fields-fractal vector optical fields, which build a bridge between the fractal and vector optical fields. The fractal vector optical fields have polarization states exhibiting fractal geometry, and may also involve the phase and/or amplitude simultaneously. The results reveal that the focal fields exhibit self-similarity, and the hierarchy of the fractal has the "weeding" role. The fractal can be used to engineer the focal field. PMID:27420485

  20. Fractal probability laws.

    PubMed

    Eliazar, Iddo; Klafter, Joseph

    2008-06-01

    We explore six classes of fractal probability laws defined on the positive half-line: Weibull, Frechét, Lévy, hyper Pareto, hyper beta, and hyper shot noise. Each of these classes admits a unique statistical power-law structure, and is uniquely associated with a certain operation of renormalization. All six classes turn out to be one-dimensional projections of underlying Poisson processes which, in turn, are the unique fixed points of Poissonian renormalizations. The first three classes correspond to linear Poissonian renormalizations and are intimately related to extreme value theory (Weibull, Frechét) and to the central limit theorem (Lévy). The other three classes correspond to nonlinear Poissonian renormalizations. Pareto's law--commonly perceived as the "universal fractal probability distribution"--is merely a special case of the hyper Pareto class.

  1. Modeling Fractal Structure of City-Size Distributions Using Correlation Functions

    PubMed Central

    Chen, Yanguang

    2011-01-01

    Zipf's law is one the most conspicuous empirical facts for cities, however, there is no convincing explanation for the scaling relation between rank and size and its scaling exponent. Using the idea from general fractals and scaling, I propose a dual competition hypothesis of city development to explain the value intervals and the special value, 1, of the power exponent. Zipf's law and Pareto's law can be mathematically transformed into one another, but represent different processes of urban evolution, respectively. Based on the Pareto distribution, a frequency correlation function can be constructed. By scaling analysis and multifractals spectrum, the parameter interval of Pareto exponent is derived as (0.5, 1]; Based on the Zipf distribution, a size correlation function can be built, and it is opposite to the first one. By the second correlation function and multifractals notion, the Pareto exponent interval is derived as [1, 2). Thus the process of urban evolution falls into two effects: one is the Pareto effect indicating city number increase (external complexity), and the other the Zipf effect indicating city size growth (internal complexity). Because of struggle of the two effects, the scaling exponent varies from 0.5 to 2; but if the two effects reach equilibrium with each other, the scaling exponent approaches 1. A series of mathematical experiments on hierarchical correlation are employed to verify the models and a conclusion can be drawn that if cities in a given region follow Zipf's law, the frequency and size correlations will follow the scaling law. This theory can be generalized to interpret the inverse power-law distributions in various fields of physical and social sciences. PMID:21949753

  2. Fractal dimension (df) as a new structural biomarker of clot microstructure in different stages of lung cancer.

    PubMed

    Davies, Nia Anne; Harrison, Nicholas Kim; Morris, Roger H Keith; Noble, Simon; Lawrence, Matthew James; D'Silva, Lindsay Antonio; Broome, Laura; Brown, Martin Rowan; Hawkins, Karl M; Williams, Phylip Rhodri; Davidson, Simon; Evans, Phillip Adrian

    2015-11-25

    Venous thromboembolism (VTE) is common in cancer patients, and is the second commonest cause of death associated with the disease. Patients with chronic inflammation, such as cancer, have been shown to have pathological clot structures with modulated mechanical properties. Fractal dimension (df) is a new technique which has been shown to act as a marker of the microstructure and mechanical properties of blood clots, and can be performed more readily than current methods such as scanning electron microscopy (SEM). We measured df in 87 consecutive patients with newly diagnosed lung cancer prior to treatment and 47 matched-controls. Mean group values were compared for all patients with lung cancer vs controls and for limited disease vs extensive disease. Results were compared with conventional markers of coagulation, fibrinolysis and SEM images. Significantly higher values of df were observed in lung cancer patients compared with controls and patients with extensive disease had higher values than those with limited disease (p< 0.05), whilst conventional markers failed to distinguish between these groups. The relationship between df of the incipient clot and mature clot microstructure was confirmed by SEM and computational modelling: higher df was associated with highly dense clots formed of smaller fibrin fibres in lung cancer patients compared to controls. This study demonstrates that df is a sensitive technique which quantifies the structure and mechanical properties of blood clots in patients with lung cancer. Our data suggests that df has the potential to identify patients with an abnormal clot microstructure and greatest VTE risk.

  3. RUI: Structure and Behavior of RF-Driven Plasma Filaments in High-Pressure Gases

    SciTech Connect

    Burin, Michael J.

    2014-11-18

    The filamentary discharge seen within commercial plasma globes is commonly enjoyed, yet not well understood. We investigate filament properties in a plasma globe using a variable high voltage amplifier. Results from the 3-year grant period and their physics are discussed.

  4. Safety evaluation design of filament wound structures - Cases of pressure vessels and pipes

    NASA Astrophysics Data System (ADS)

    Kawahara, Masanori; Mori, Takao; Hirase, Yosihiro; Katoh, Akihiko; Ishihara, Toshio

    Procedures are presented for the safety-related evaluation of filament-wound composite products, such as pressure vessels and pipes. In order to increase the fatigue strength of pressure vessel metallic liners subject to cyclic internal pressures, by controlling residual stresses, the 'autofrettage' overpressuring treatment has been devised.

  5. Atomic structure of the vimentin central α-helical domain and its implications for intermediate filament assembly.

    PubMed

    Chernyatina, Anastasia A; Nicolet, Stefan; Aebi, Ueli; Herrmann, Harald; Strelkov, Sergei V

    2012-08-21

    Together with actin filaments and microtubules, intermediate filaments (IFs) are the basic cytoskeletal components of metazoan cells. Over 80 human diseases have been linked to mutations in various IF proteins to date. However, the filament structure is far from being resolved at the atomic level, which hampers rational understanding of IF pathologies. The elementary building block of all IF proteins is a dimer consisting of an α-helical coiled-coil (CC) "rod" domain flanked by the flexible head and tail domains. Here we present three crystal structures of overlapping human vimentin fragments that comprise the first half of its rod domain. Given the previously solved fragments, a nearly complete atomic structure of the vimentin rod has become available. It consists of three α-helical segments (coils 1A, 1B, and 2) interconnected by linkers (L1 and L12). Most of the CC structure has a left-handed twist with heptad repeats, but both coil 1B and coil 2 also exhibit untwisted, parallel stretches with hendecad repeats. In the crystal structure, linker L1 was found to be α-helical without being involved in the CC formation. The available data allow us to construct an atomic model of the antiparallel tetramer representing the second level of vimentin assembly. Although the presence of the nonhelical head domains is essential for proper tetramer stabilization, the precise alignment of the dimers forming the tetramer appears to depend on the complementarity of their surface charge distribution patterns, while the structural plasticity of linker L1 and coil 1A plays a role in the subsequent IF assembly process.

  6. Is the applicability of fractal statistics to sedimentary structures the result of scale-invariant stochastic processes or deterministic chaos

    SciTech Connect

    Turcotte, D.L. )

    1991-03-01

    Fractal statistics are the only statistics that are scale invariant. Examples in tectonics include distributions of faults, displacements on faults, distributions and permeabilities of fractures, and distributions of folds. Many aspects of sedimentology are also fractal including distributions of sedimentary sequences, variations in permeability, and shapes of boundaries. Since the underlying processes are likely to be scale invariant, it is reasonable to conclude that the number-size statistics of oil fields will be fractal. Log-normal statistics are often applied; they are not scale invariant. Two explanations for fractal statistics can be given. They may be the result of scale-invariant stochastic processes. Random walk (Brownian noise) is one example. Topography generally resembles Brownian noise, a power-law spectrum with fractal dimension D = 1.5. Alternatively fractal statistics can be the result of deterministic chaos. Turbulent flows are examples of deterministic chaos, the governing equations are deterministic but the resulting flows are statistical. Tectonic displacements can be shown to be the result of deterministic chaos; it is likely that erosion is another example.

  7. Human development VII: a spiral fractal model of fine structure of physical energy could explain central aspects of biological information, biological organization and biological creativity.

    PubMed

    Ventegodt, Søren; Hermansen, Tyge Dahl; Flensborg-Madsen, Trine; Rald, Erik; Nielsen, Maj Lyck; Merrick, Joav

    2006-01-01

    In this paper we have made a draft of a physical fractal essence of the universe, a sketch of a new cosmology, which we believe to lay at the root of our new holistic biological paradigm. We present the fractal roomy spiraled structures and the energy-rich dancing "infinite strings" or lines of the universe that our hypothesis is based upon. The geometric language of this cosmology is symbolic and both pre-mathematical and pre-philosophical. The symbols are both text and figures, and using these we step by step explain the new model that at least to some extent is able to explain the complex informational system behind morphogenesis, ontogenesis, regeneration and healing. We suggest that it is from this highly dynamic spiraled structure that organization of cells, organs, and the wholeness of the human being including consciousness emerge. The model of "dancing fractal spirals" carries many similarities to premodern cultures descriptions of the energy of the life and universe. Examples are the Native American shamanistic descriptions of their perception of energy and the old Indian Yogis descriptions of the life-energy within the body and outside. Similar ideas of energy and matter are found in the modern superstring theories. The model of the informational system of the organism gives new meaning to Bateson's definition of information: "A difference that makes a difference", and indicates how information-directed self-organization can exist on high structural levels in living organisms, giving birth to their subjectivity and consciousness. PMID:17115083

  8. Human development VII: a spiral fractal model of fine structure of physical energy could explain central aspects of biological information, biological organization and biological creativity.

    PubMed

    Ventegodt, Søren; Hermansen, Tyge Dahl; Flensborg-Madsen, Trine; Rald, Erik; Nielsen, Maj Lyck; Merrick, Joav

    2006-11-14

    In this paper we have made a draft of a physical fractal essence of the universe, a sketch of a new cosmology, which we believe to lay at the root of our new holistic biological paradigm. We present the fractal roomy spiraled structures and the energy-rich dancing "infinite strings" or lines of the universe that our hypothesis is based upon. The geometric language of this cosmology is symbolic and both pre-mathematical and pre-philosophical. The symbols are both text and figures, and using these we step by step explain the new model that at least to some extent is able to explain the complex informational system behind morphogenesis, ontogenesis, regeneration and healing. We suggest that it is from this highly dynamic spiraled structure that organization of cells, organs, and the wholeness of the human being including consciousness emerge. The model of "dancing fractal spirals" carries many similarities to premodern cultures descriptions of the energy of the life and universe. Examples are the Native American shamanistic descriptions of their perception of energy and the old Indian Yogis descriptions of the life-energy within the body and outside. Similar ideas of energy and matter are found in the modern superstring theories. The model of the informational system of the organism gives new meaning to Bateson's definition of information: "A difference that makes a difference", and indicates how information-directed self-organization can exist on high structural levels in living organisms, giving birth to their subjectivity and consciousness.

  9. a Type of Fractal Interpolation Functions and Their Fractional Calculus

    NASA Astrophysics Data System (ADS)

    Liang, Yong-Shun; Zhang, Qi

    2016-05-01

    Combine Chebyshev systems with fractal interpolation, certain continuous functions have been approximated by fractal interpolation functions unanimously. Local structure of these fractal interpolation functions (FIF) has been discussed. The relationship between order of Riemann-Liouville fractional calculus and Box dimension of FIF has been investigated.

  10. Structure of myosin filaments from relaxed Lethocerus flight muscle by cryo-EM at 6 Å resolution

    PubMed Central

    Hu, Zhongjun; Taylor, Dianne W.; Reedy, Michael K.; Edwards, Robert J.; Taylor, Kenneth A.

    2016-01-01

    We describe a cryo–electron microscopy three-dimensional image reconstruction of relaxed myosin II–containing thick filaments from the flight muscle of the giant water bug Lethocerus indicus. The relaxed thick filament structure is a key element of muscle physiology because it facilitates the reextension process following contraction. Conversely, the myosin heads must disrupt their relaxed arrangement to drive contraction. Previous models predicted that Lethocerus myosin was unique in having an intermolecular head-head interaction, as opposed to the intramolecular head-head interaction observed in all other species. In contrast to the predicted model, we find an intramolecular head-head interaction, which is similar to that of other thick filaments but oriented in a distinctly different way. The arrangement of myosin’s long α-helical coiled-coil rod domain has been hypothesized as either curved layers or helical subfilaments. Our reconstruction is the first report having sufficient resolution to track the rod α helices in their native environment at resolutions ~5.5 Å, and it shows that the layer arrangement is correct for Lethocerus. Threading separate paths through the forest of myosin coiled coils are four nonmyosin peptides. We suggest that the unusual position of the heads and the rod arrangement separated by nonmyosin peptides are adaptations for mechanical signal transduction whereby applied tension disrupts the myosin heads as a component of stretch activation. PMID:27704041

  11. Order-fractal transitions in abstract paintings

    NASA Astrophysics Data System (ADS)

    de la Calleja, E. M.; Cervantes, F.; de la Calleja, J.

    2016-08-01

    In this study, we determined the degree of order for 22 Jackson Pollock paintings using the Hausdorff-Besicovitch fractal dimension. Based on the maximum value of each multi-fractal spectrum, the artworks were classified according to the year in which they were painted. It has been reported that Pollock's paintings are fractal and that this feature was more evident in his later works. However, our results show that the fractal dimension of these paintings ranges among values close to two. We characterize this behavior as a fractal-order transition. Based on the study of disorder-order transition in physical systems, we interpreted the fractal-order transition via the dark paint strokes in Pollock's paintings as structured lines that follow a power law measured by the fractal dimension. We determined self-similarity in specific paintings, thereby demonstrating an important dependence on the scale of observations. We also characterized the fractal spectrum for the painting entitled Teri's Find. We obtained similar spectra for Teri's Find and Number 5, thereby suggesting that the fractal dimension cannot be rejected completely as a quantitative parameter for authenticating these artworks.

  12. Physiological Properties and Genome Structure of the Hyperthermophilic Filamentous Phage φOH3 Which Infects Thermus thermophilus HB8

    PubMed Central

    Nagayoshi, Yuko; Kumagae, Kenta; Mori, Kazuki; Tashiro, Kosuke; Nakamura, Ayano; Fujino, Yasuhiro; Hiromasa, Yasuaki; Iwamoto, Takeo; Kuhara, Satoru; Ohshima, Toshihisa; Doi, Katsumi

    2016-01-01

    A filamentous bacteriophage, φOH3, was isolated from hot spring sediment in Obama hot spring in Japan with the hyperthermophilic bacterium Thermus thermophilus HB8 as its host. Phage φOH3, which was classified into the Inoviridae family, consists of a flexible filamentous particle 830 nm long and 8 nm wide. φOH3 was stable at temperatures ranging from 70 to 90°C and at pHs ranging from 6 to 9. A one-step growth curve of the phage showed a 60-min latent period beginning immediately postinfection, followed by intracellular virus particle production during the subsequent 40 min. The released virion number of φOH3 was 109. During the latent period, both single stranded DNA (ssDNA) and the replicative form (RF) of phage DNA were multiplied from min 40 onward. During the release period, the copy numbers of both ssDNA and RF DNA increased sharply. The size of the φOH3 genome is 5688 bp, and eight putative open reading frames (ORFs) were annotated. These ORFs were encoded on the plus strand of RF DNA and showed no significant homology with any known phage genes, except ORF 5, which showed 60% identity with the gene VIII product of the Thermus filamentous phage PH75. All the ORFs were similar to predicted genes annotated in the Thermus aquaticus Y51MC23 and Meiothermus timidus DSM 17022 genomes at the amino acid sequence level. This is the first report of the whole genome structure and DNA multiplication of a filamentous T. thermophilus phage within its host cell. PMID:26941711

  13. Physiological Properties and Genome Structure of the Hyperthermophilic Filamentous Phage φOH3 Which Infects Thermus thermophilus HB8.

    PubMed

    Nagayoshi, Yuko; Kumagae, Kenta; Mori, Kazuki; Tashiro, Kosuke; Nakamura, Ayano; Fujino, Yasuhiro; Hiromasa, Yasuaki; Iwamoto, Takeo; Kuhara, Satoru; Ohshima, Toshihisa; Doi, Katsumi

    2016-01-01

    A filamentous bacteriophage, φOH3, was isolated from hot spring sediment in Obama hot spring in Japan with the hyperthermophilic bacterium Thermus thermophilus HB8 as its host. Phage φOH3, which was classified into the Inoviridae family, consists of a flexible filamentous particle 830 nm long and 8 nm wide. φOH3 was stable at temperatures ranging from 70 to 90°C and at pHs ranging from 6 to 9. A one-step growth curve of the phage showed a 60-min latent period beginning immediately postinfection, followed by intracellular virus particle production during the subsequent 40 min. The released virion number of φOH3 was 109. During the latent period, both single stranded DNA (ssDNA) and the replicative form (RF) of phage DNA were multiplied from min 40 onward. During the release period, the copy numbers of both ssDNA and RF DNA increased sharply. The size of the φOH3 genome is 5688 bp, and eight putative open reading frames (ORFs) were annotated. These ORFs were encoded on the plus strand of RF DNA and showed no significant homology with any known phage genes, except ORF 5, which showed 60% identity with the gene VIII product of the Thermus filamentous phage PH75. All the ORFs were similar to predicted genes annotated in the Thermus aquaticus Y51MC23 and Meiothermus timidus DSM 17022 genomes at the amino acid sequence level. This is the first report of the whole genome structure and DNA multiplication of a filamentous T. thermophilus phage within its host cell. PMID:26941711

  14. Spectro-polarimetric observation of the fine structure of a quiescent filament

    NASA Astrophysics Data System (ADS)

    Zong, W. G.; Tang, Y. H.; Fang, C.; Mein, P.; Mein, N.; Xu, A. A.

    2003-12-01

    This paper presents the spectro-polarimetric measurements of a big quiescent filament observed by the MSDP mode of the THEMIS on August 24, 2000. The Hα , CaII 8542 and NaI D2 line profiles of a segment of the filament were obtained. By use of the Hα images with high spatial resolution, the two barb endpoints were identified. The parameters at the barbs' endpoints, including intensity, velocity and longitudinal magnetic field were measured. Using the data with high spatial resolution (0.16'' per pixel), we have found the following results. 1) There was mass motion at the barb endpoints in the chromosphere, the values and the directions of the mass motion at the barb endpoints change in several minutes. 2) The two barb endpoints are located between the majority polarities and the minority polarities.

  15. Fractal Structure with a Resonance Pattern during El Hierro 2011-2012 Volcano-Seismic Crisis: A Possible New Prediction Approach

    NASA Astrophysics Data System (ADS)

    Quevedo, Roberto; Hernandez, Pedro; Perez, Nemesio

    2013-04-01

    A resonance pattern in the number of earthquakes profile has been observed during the recent 2011-2012 period of volcanic unrest at El Hierro Island, Canary Islands. This pattern has allowed us to predicting the ratio number of earthquakes and also offered a fractal profile. Some general mathematical functions have been deduced from the observed resonance phenomenon of the El Hierro submarine eruption related to the number of earthquakes. It is known that the resonance phenomenon occurring in nature usually denote a structure, symmetry or a subjacent law (Fermi et al., 1952; and later- about enhanced cross-sections symmetry in protons collisions), which, in this case, may be indicative of magmatic interactions showing a sequence not completely chaotic but cyclic provided with symmetries. Turbulent phenomena of the magma flow, at a very deep level (maybe convective), with a well-defined structure, may be becoming apparent with the resonances and fractal nature observed, since the number of the seismic movements of the crust may be a measurable conformational effect of the magma movements themselves. The resonance and fractal models allowed making predictions in cycles from a few weeks to months.

  16. The identification of filaments on far-infrared and submillimiter images: Morphology, physical conditions and relation with star formation of filamentary structure

    SciTech Connect

    Schisano, E.; Carey, S.; Paladini, R.; Rygl, K. L. J.; Molinari, S.; Elia, D.; Pestalozzi, M.; Busquet, G.; Billot, N.; Noriega-Crespo, A.; Moore, T. J. T.; Plume, R.; Glover, S. C. O.; Vázquez-Semadeni, E.

    2014-08-10

    Observations of molecular clouds reveal a complex structure, with gas and dust often arranged in filamentary, rather than spherical geometries. The association of pre- and proto-stellar cores with the filaments suggests a direct link with the process of star formation. Any study of the properties of such filaments requires representative samples from different environments for an unbiased detection method. We developed such an approach using the Hessian matrix of a surface-brightness distribution to identify filaments and determine their physical and morphological properties. After testing the method on simulated, but realistic, filaments, we apply the algorithms to column-density maps computed from Herschel observations of the Galactic plane obtained by the Hi-GAL project. We identified ∼500 filaments, in the longitude range of l = 216.°5 to l = 225.°5, with lengths from ∼1 pc up to ∼30 pc and widths between 0.1 pc and 2.5 pc. Average column densities are between 10{sup 20} cm{sup –2} and 10{sup 22} cm{sup –2}. Filaments include the majority of dense material with N{sub H{sub 2}} > 6 × 10{sup 21} cm{sup –2}. We find that the pre- and proto-stellar compact sources already identified in the same region are mostly associated with filaments. However, surface densities in excess of the expected critical values for high-mass star formation are only found on the filaments, indicating that these structures are necessary to channel material into the clumps. Furthermore, we analyze the gravitational stability of filaments and discuss their relationship with star formation.

  17. Structural CNT Composites. Part I; Developing a Carbon Nanotube Filament Winder

    NASA Technical Reports Server (NTRS)

    Sauti, Godfrey; Kim, Jae-Woo; Wincheski, Russell A.; Antczak, Andrew; Campero, Jamie C.; Luong, Hoa H.; Shanahan, Michelle H.; Stelter, Christopher J.; Siochi, Emilie J.

    2015-01-01

    Carbon nanotube (CNT) based materials promise advances in the production of high strength and multifunctional components for aerospace and other applications. Specifically, in tension dominated applications, the latest CNT based filaments are yielding composite properties comparable to or exceeding composites from more established fibers such as Kevlar and carbon fiber. However, for the properties of these materials to be fully realized at the component level, suitable manufacturing processes have to be developed. These materials handle differently from conventional fibers, with different wetting characteristics and behavior under load. The limited availability of bulk forms also requires that the equipment be scaled down accordingly to tailor the process development approach to material availability. Here, the development of hardware and software for filament winding of carbon nanotube based tapes and yarns is described. This hardware features precision guidance of the CNT material and control of the winding tension over a wide range in an open architecture that allows for effective process control and troubleshooting during winding. Use of the filament winder to develop CNT based Composite Overwrapped Pressure Vessels (COPVs) shall also be discussed.

  18. Insights into the mechanism of Rad51 recombinase from the structure and properties of a filament interface mutant

    SciTech Connect

    Chen, Jianhong; Villanueva, Nicolas; Rould, Mark A.; Morrical, Scott W.

    2010-09-03

    Rad51 protein promotes homologous recombination in eukaryotes. Recombination activities are activated by Rad51 filament assembly on ssDNA. Previous studies of yeast Rad51 showed that His352 occupies an important position at the filament interface, where it could relay signals between subunits and active sites. To investigate, we characterized yeast Rad51 H352A and H352Y mutants, and solved the structure of H352Y. H352A forms catalytically competent but salt-labile complexes on ssDNA. In contrast, H352Y forms salt-resistant complexes on ssDNA, but is defective in nucleotide exchange, RPA displacement and strand exchange with full-length DNA substrates. The 2.5 {angstrom} crystal structure of H352Y reveals a right-handed helical filament in a high-pitch (130 {angstrom}) conformation with P61 symmetry. The catalytic core and dimer interface regions of H352Y closely resemble those of DNA-bound Escherichia coli RecA protein. The H352Y mutation stabilizes Phe187 from the adjacent subunit in a position that interferes with the {gamma}-phosphate-binding site of the Walker A motif/P-loop, potentially explaining the limited catalysis observed. Comparison of Rad51 H352Y, RecA-DNA and related structures reveals that the presence of bound DNA correlates with the isomerization of a conserved cis peptide near Walker B to the trans configuration, which appears to prime the catalytic glutamate residue for ATP hydrolysis.

  19. Structural changes in the trichocyte intermediate filaments accompanying the transition from the reduced to the oxidized form.

    PubMed

    Fraser, R D Bruce; Parry, David A D

    2007-07-01

    Earlier studies established that substantial changes take place in the three-dimensional structure of the newly assembled trichocyte keratin intermediate filament (IF) during the oxidation process (Wang, H., Parry, D.A.D., Jones, L.N., Idler, W.W., Marekov, L.N., Steinert, P.M. 2000. In vitro assembly and structure of trichocyte keratin intermediate filaments: A novel role for stabilization by disulfide bonding. J. Cell Biol. 151, 1459-1468). The present contribution describes a re-examination of previous data in which more accurate values for the axial dispositions of the molecules have been obtained to yield the most detailed picture yet available of the structural changes that occur in vivo. In particular, it is shown that in the newly assembled (reduced) IF the crosslinking data are consistent with the detailed (8+0) model suggested earlier (Fraser, R.D.B., Parry, D.A.D. 2005. The three-dimensional structure of trichocyte (hard alpha-) keratin intermediate filaments: Features of the molecular packing deduced from the sites of induced crosslinks. J. Struct. Biol. 151, 171-181), in which eight four-chain protofilaments are arranged on an annular ring. For oxidized IF, however, the existing X-ray data require a periodic imperfection in the surface lattice which is substantial in the case of an (8+0) model and hence difficult to explain. In contrast, an alternative (7+1) model (Fraser, R.D.B., MacRae, T.P., Parry, D.A.D., Suzuki, E. 1986. Intermediate filaments in alpha-keratin. Proc. Natl. Acad. Sci. USA 83, 1179-1183) requires only a minor imperfection, and it is suggested that this is associated with the central protofilament. This suggestion is shown to be compatible with both the crosslinking data and a model for the axial distribution of electron density derived from the meridional X-ray pattern. In addition, evidence from an X-ray diffraction study of the follicle (Er Rafik, M., Briki, F., Burghammer, M., Doucet, J. 2006. In vivo formation of the hard alpha

  20. Solid friction between soft filaments.

    PubMed

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A W C; Vitelli, Vincenzo; Mahadevan, L; Dogic, Zvonimir

    2015-06-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments' overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes's drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament's elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.

  1. Fractal nanoparticle plasmonics: the Cayley tree.

    PubMed

    Gottheim, Samuel; Zhang, Hui; Govorov, Alexander O; Halas, Naomi J

    2015-03-24

    There has been strong, ongoing interest over the past decade in developing strategies to design and engineer materials with tailored optical properties. Fractal-like nanoparticles and films have long been known to possess a remarkably broad-band optical response and are potential nanoscale components for realizing spectrum-spanning optical effects. Here we examine the role of self-similarity in a fractal geometry for the design of plasmon line shapes. By computing and fabricating simple Cayley tree nanostructures of increasing fractal order N, we are able to identify the principle behind how the multimodal plasmon spectrum of this system develops as the fractal order is increased. With increasing N, the fractal structure acquires an increasing number of modes with certain degeneracies: these modes correspond to plasmon oscillations on the different length scales inside a fractal. As a result, fractals with large N exhibit broad, multipeaked spectra from plasmons with large degeneracy numbers. The Cayley tree serves as an example of a more general, fractal-based route for the design of structures and media with highly complex optical line shapes.

  2. Fractals for physicians.

    PubMed

    Thamrin, Cindy; Stern, Georgette; Frey, Urs

    2010-06-01

    There is increasing interest in the study of fractals in medicine. In this review, we provide an overview of fractals, of techniques available to describe fractals in physiological data, and we propose some reasons why a physician might benefit from an understanding of fractals and fractal analysis, with an emphasis on paediatric respiratory medicine where possible. Among these reasons are the ubiquity of fractal organisation in nature and in the body, and how changes in this organisation over the lifespan provide insight into development and senescence. Fractal properties have also been shown to be altered in disease and even to predict the risk of worsening of disease. Finally, implications of a fractal organisation include robustness to errors during development, ability to adapt to surroundings, and the restoration of such organisation as targets for intervention and treatment.

  3. Chaos, Fractals, and Polynomials.

    ERIC Educational Resources Information Center

    Tylee, J. Louis; Tylee, Thomas B.

    1996-01-01

    Discusses chaos theory; linear algebraic equations and the numerical solution of polynomials, including the use of the Newton-Raphson technique to find polynomial roots; fractals; search region and coordinate systems; convergence; and generating color fractals on a computer. (LRW)

  4. Chaos and Fractals.

    ERIC Educational Resources Information Center

    Barton, Ray

    1990-01-01

    Presented is an educational game called "The Chaos Game" which produces complicated fractal images. Two basic computer programs are included. The production of fractal images by the Sierpinski gasket and the Chaos Game programs is discussed. (CW)

  5. Spatial structure of scrape-off-layer filaments near the midplane and X-point regions of Alcator C-Mod

    SciTech Connect

    Terry, J L; Zweben, S J; Umansky, M V; Cziegler, I; Grulke, O; LaBombard, B; Stotler, D P

    2008-05-22

    Movies of edge turbulence at both the outboard midplane and the region outboard of the typical lower X-point location in C-Mod have been obtained using Gas-Puff-Imaging together with fast-framing cameras. Intermittent turbulent structures, typically referred to as blobs or filaments, are observed in both locations. Near the midplane the filaments are roughly circular in cross-section, while in the X-point region they are highly elongated. Filament velocities in this region are {approx}3x faster than the radial velocities at the midplane, in a direction roughly normal to the local flux surfaces. The observations are consistent with the picture that the filaments arise in outboard region and, as a consequence of the rapid parallel diffusion of the potential perturbations, map along field lines. A simulation using the 3D BOUT turbulence code has been made, with the result that reproduces many of the spatial features observed in the experiment.

  6. Filament theory based WORM memory devices using aluminum/poly(9-vinylcarbazole)/aluminum structures.

    PubMed

    Suresh, Aswin; Krishnakumar, Govind; Namboothiry, Manoj A G

    2014-07-14

    Spin coated poly(N-vinylcarbazole) (PVK) sandwiched between thermally evaporated aluminum (Al) electrodes on a glass substrate showed unipolar Write Once Read Many times (WORM) characteristics. The pristine devices were in the low resistance ON state exhibiting ohmic behavior and at a voltage near -2 V, they switched abruptly to the high resistance OFF state showing space charge limited current (SCLC). We suggest that the rupturing of metallic filaments due to Joule heating may explain the effect. The WORM devices exhibited an ON/OFF ratio of 10(8), a retention of 1000 s and an endurance of ∼10(6) cycles in both ON and OFF states. PMID:24888392

  7. Fractal Surfaces of Molecular Crystals Mimicking Lotus Leaf with Phototunable Double Roughness Structures.

    PubMed

    Nishimura, Ryo; Hyodo, Kengo; Sawaguchi, Haruna; Yamamoto, Yoshiaki; Nonomura, Yoshimune; Mayama, Hiroyuki; Yokojima, Satoshi; Nakamura, Shinichiro; Uchida, Kingo

    2016-08-17

    Double roughness structure, the origin of the lotus effect of natural lotus leaf, was successfully reproduced on a diarylethene microcrystalline surface. Static superwater-repellency and dynamic water-drop-bouncing were observed on the surface, in the manner of natural lotus leaves. Double roughness structure was essential for water-drop-bouncing. This ability was not observed on a single roughness microcrystalline surface showing the lotus effect of the same diarylethene derivative. The double roughness structure was reversibly controlled by alternating irradiation with UV and visible light. PMID:27455376

  8. Fractal aggregates in Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Cabane, M.; Rannou, P.; Chassefiere, E.; Israel, G.

    1993-04-01

    The cluster structure of Titan's atmosphere was modeled by using an Eulerian microphysical model with the specific formulation of microphysical laws applying to fractal particles. The growth of aggregates in the settling phase was treated by introducing the fractal dimension as a parameter of the model. The model was used to obtain a vertical distribution of size and number density of the aggregates for different production altitudes. Results confirm previous estimates of the formation altitude of photochemical aerosols. The vertical profile of the effective radius of aggregates was calculated as a function of the visible optical depth.

  9. Hyperpurification of paired helical filaments reveals elevations in hydroxyproline content and a core structure related peptide fragment.

    PubMed

    Vogelsang, G D; Zemlan, F P; Dean, G E

    1989-01-01

    We have subjected conventionally-purified Alzheimer's paired helical filaments (PHF) to electrophoresis in a Tris/borate/SDS buffer and obtained the separation of PHF core protein(s) (PHFi) from solubilized PHF-associated proteins (PHFs). Electron microscopy revealed intact PHF structures before and after this separation, but no evidence of any other structures in the PHFi fraction. The percent mass of hydroxyproline and glycine increased in the PHFi fraction after 4.5 hr of electrophoresis to account for 5.8% and 13.6% of the total mass, respectively. ELISA data confirmed that our PHFi and PHFs fractions were reactive with several putative PHF-specific antibodies. These data suggest that inappropriate hydroxylation of proline residues occurs in precursor PHF protein(s), resulting in the polymerization and subsequent insolubility of PHF in brain regions affected with Alzheimer's disease. Neurofibrillary tangles (NFT), one of the primary neuropathological features of Alzheimer's disease, are comprised of cytosolic bundles of uniform proteins which microscopically appear to be paired helical filaments (PHF). PHF are thought to be responsible for the cellular necrosis associated with the clinical symptoms of Alzheimer's disease (Dayan, 1970; Hirano and Zimmerman, 1962). Optical reconstruction of PHF has recently indicated that the true structure is more accurately described as a twisted ribbon of 30 A in the axial direction (Wischik et al., 1988). Immunological studies have suggested that tubulin (Grundke-Iqbal et al., 1979), microtubule associated proteins (Grundke-Iqbal et al., 1986; Kosik et al., 1986; Wood et al., 1986; Ksiezak-Reding et al., 1987), intermediate filaments (Yen et al., 1983), neurofilaments (Anderton et al., 1982), and ubiquitin (Mori et al., 1987; Perry et al., 1987), form part of the PHF core protein. To date, however, no study has been able to definitively show that any one of these purported PHF components is contained in the PHF core structure

  10. Analysis on the Filament Structure Evolution in Reset Transition of Cu/HfO2/Pt RRAM Device.

    PubMed

    Zhang, Meiyun; Long, Shibing; Li, Yang; Liu, Qi; Lv, Hangbing; Miranda, Enrique; Suñé, Jordi; Liu, Ming

    2016-12-01

    The resistive switching (RS) process of resistive random access memory (RRAM) is dynamically correlated with the evolution process of conductive path or conductive filament (CF) during its breakdown (rupture) and recovery (reformation). In this study, a statistical evaluation method is developed to analyze the filament structure evolution process in the reset operation of Cu/HfO2/Pt RRAM device. This method is based on a specific functional relationship between the Weibull slopes of reset parameters' distributions and the CF resistance (R on). The CF of the Cu/HfO2/Pt device is demonstrated to be ruptured abruptly, and the CF structure of the device has completely degraded in the reset point. Since no intermediate states are generated in the abrupt reset process, it is quite favorable for the reliable and stable one-bit operation in RRAM device. Finally, on the basis of the cell-based analytical thermal dissolution model, a Monte Carlo (MC) simulation is implemented to further verify the experimental results. This work provides inspiration for RRAM reliability and performance design to put RRAM into practical application.

  11. Analysis on the Filament Structure Evolution in Reset Transition of Cu/HfO2/Pt RRAM Device

    NASA Astrophysics Data System (ADS)

    Zhang, Meiyun; Long, Shibing; Li, Yang; Liu, Qi; Lv, Hangbing; Miranda, Enrique; Suñé, Jordi; Liu, Ming

    2016-05-01

    The resistive switching (RS) process of resistive random access memory (RRAM) is dynamically correlated with the evolution process of conductive path or conductive filament (CF) during its breakdown (rupture) and recovery (reformation). In this study, a statistical evaluation method is developed to analyze the filament structure evolution process in the reset operation of Cu/HfO2/Pt RRAM device. This method is based on a specific functional relationship between the Weibull slopes of reset parameters' distributions and the CF resistance ( R on). The CF of the Cu/HfO2/Pt device is demonstrated to be ruptured abruptly, and the CF structure of the device has completely degraded in the reset point. Since no intermediate states are generated in the abrupt reset process, it is quite favorable for the reliable and stable one-bit operation in RRAM device. Finally, on the basis of the cell-based analytical thermal dissolution model, a Monte Carlo (MC) simulation is implemented to further verify the experimental results. This work provides inspiration for RRAM reliability and performance design to put RRAM into practical application.

  12. Analysis on the Filament Structure Evolution in Reset Transition of Cu/HfO2/Pt RRAM Device.

    PubMed

    Zhang, Meiyun; Long, Shibing; Li, Yang; Liu, Qi; Lv, Hangbing; Miranda, Enrique; Suñé, Jordi; Liu, Ming

    2016-12-01

    The resistive switching (RS) process of resistive random access memory (RRAM) is dynamically correlated with the evolution process of conductive path or conductive filament (CF) during its breakdown (rupture) and recovery (reformation). In this study, a statistical evaluation method is developed to analyze the filament structure evolution process in the reset operation of Cu/HfO2/Pt RRAM device. This method is based on a specific functional relationship between the Weibull slopes of reset parameters' distributions and the CF resistance (R on). The CF of the Cu/HfO2/Pt device is demonstrated to be ruptured abruptly, and the CF structure of the device has completely degraded in the reset point. Since no intermediate states are generated in the abrupt reset process, it is quite favorable for the reliable and stable one-bit operation in RRAM device. Finally, on the basis of the cell-based analytical thermal dissolution model, a Monte Carlo (MC) simulation is implemented to further verify the experimental results. This work provides inspiration for RRAM reliability and performance design to put RRAM into practical application. PMID:27389343

  13. Fractal Model of a Compact Intracloud Discharge. I. Features of the Structure and Evolution

    NASA Astrophysics Data System (ADS)

    Iudin, D. I.; Davydenko, S. S.

    2015-12-01

    We propose a new model of a compact intracloud discharge considered as the result of interaction between two (or more) bipolar streamer structures formed in a strong large-scale electric field of a thundercloud. The model assumes two stages of the compact discharge development. At the preliminary stage, two or more bipolar streamer structures appear successively in the thundercloud in the region of a strong electric field (at the boundaries between the regions of the main positive and the main negative electric charges or between the main positive charge region and the top negative screening layer). The time of development of such structures is determined by the characteristics of the conducting channels that form them and can reach tens of milliseconds. Spatiotemporal synchronization of the bipolar streamer structures is provided by the altitude modulation of the electric field, which, in particular, can originate from a large-scale turbulence of the cloud medium or the stream instability. It is shown that a single bipolar streamer structure accumulates significant electric charges of different signs at its ends as it develops. The start of the main stage of a compact intracloud discharge corresponds to the occurrence of the conducting channel (breakdown of the gap) between the mature streamer structures. The electric charge accumulated at the adjacent ends of the structures at this stage is neutralized over a time much shorter than the duration of the preliminary stage. The parameters of the current pulse are in good agreement with the estimates of the current of a compact intracloud discharge which were obtained in the transmission-line approximation.

  14. Fractals in the Classroom

    ERIC Educational Resources Information Center

    Fraboni, Michael; Moller, Trisha

    2008-01-01

    Fractal geometry offers teachers great flexibility: It can be adapted to the level of the audience or to time constraints. Although easily explained, fractal geometry leads to rich and interesting mathematical complexities. In this article, the authors describe fractal geometry, explain the process of iteration, and provide a sample exercise.…

  15. Formation of dense structures induced by filament collisions. Correlation of density, kinematics, and magnetic field in the Pipe nebula

    NASA Astrophysics Data System (ADS)

    Frau, P.; Girart, J. M.; Alves, F. O.; Franco, G. A. P.; Onishi, T.; Román-Zúñiga, C. G.

    2015-02-01

    Context. The Pipe nebula is a molecular cloud that lacks star formation feedback and has a relatively simple morphology and velocity structure. This makes it an ideal target for testing cloud evolution through collisions. Aims: We aim at drawing a comprehensive picture of this relatively simple cloud to better understand the formation and evolution of molecular clouds on large scales. Methods: We use archival data to compare the optical polarization properties, the visual extinction, and the 13CO velocities and linewidths of the entire cloud in order to identify trends among the observables. Results: The Pipe nebula can be roughly divided into two filaments with different orientations and gas velocity ranges: E-W at 2-4 km s-1 and N-S at 6-7 km s-1. The two filaments overlap at the bowl, where the gas shows a velocity gradient spanning from 2 to 7 km s-1. Compared to the rest of the Pipe nebula, the bowl gas appears to be denser and exhibits larger linewidths. In addition, the polarization data at the bowl shows lower angular dispersion and higher polarization degree. Cores in the bowl tend to cluster in space and to follow the 13CO velocity gradient. In the stem, cores tend to cluster in regions with properties similar to those of the bowl. Conclusions: The velocity pattern points to a collision between the filaments in the bowl region. The magnetic field seems to be compressed and strengthened in the shocked region. The proportional increase in density and magnetic field strength by a factor similar to the Alfvénic Mach number suggests a continuous shock at low Alfvénic Mach number under the flux-freezing condition. Shocked regions seem to enhance the formation and clustering of dense cores. A movie associated to Fig. 2 is available at http://www.aanda.org

  16. [Chaos and fractals and their applications in electrocardial signal research].

    PubMed

    Jiao, Qing; Guo, Yongxin; Zhang, Zhengguo

    2009-06-01

    Chaos and fractals are ubiquitous phenomena of nature. A system with fractal structure usually behaves chaos. As a complicated nonlinear dynamics system, heart has fractals structure and behaves as chaos. The deeper inherent mechanism of heart can be opened out when the chaos and fractals theory is utilized in the research of the electrical activity of heart. Generally a time series of a system was used for describing the status of the strange attractor of the system. The indices include Poincare plot, fractals dimension, Lyapunov exponent, entropy, scaling exponent, Hurst index and so on. In this article, the basic concepts and the methods of chaos and fractals were introduced firstly. Then the applications of chaos and fractals theories in the study of electrocardial signal were expounded with example of how they are used for ventricular fibrillation.

  17. Experimental evidence of how the fractal structure controls the hydrodynamic resistance on granular aggregates moving through water

    NASA Astrophysics Data System (ADS)

    Maggi, Federico

    2015-09-01

    A comprehensive set of experiments was carried out to investigate the effect of the fractal architecture of granular aggregates on the free-fall acceleration through a still water column. Test aggregates were first generated numerically with a method that allowed to control the fractal dimension d and, next, three stochastic replicates were lithographically fabricated for each of six values of d ranging between 1.9 and 2.7. The recorded position, velocity and acceleration served to analyze their dynamics in the Reynolds and Galilei number space, and to calculate the momentum rate of change and the intensity of drag (viscous and impact) and inertial forces (added mass and Basset-Bousinnesq). Analysis of these forces highlighted a strong dependence on d; additionally, integration of these forces in the particle momentum equation allowed to identify an additional resistance Rx that showed a strong correlation with d. A correlation analysis of Rx with various scaling laws combining velocity and acceleration suggested that Rx could be described by a nonlinear drag force and a force intermediate between drag and inertia. It was therefore concluded that irregular granular fractal aggregates accelerating in water are subject to highly complex and nonlinear hydrodynamic effects caused by surface roughness and volume porosity, and that these effects have tight connection with the internal and external fractal characteristics of the aggregates.

  18. Interactions between a fractal tree-like object and hydrodynamic turbulence: flow structure and characteristic mixing length

    NASA Astrophysics Data System (ADS)

    Meneveau, C. V.; Bai, K.; Katz, J.

    2011-12-01

    The vegetation canopy has a significant impact on various physical and biological processes such as forest microclimate, rainfall evaporation distribution and climate change. Most scaled laboratory experimental studies have used canopy element models that consist of rigid vertical strips or cylindrical rods that can be typically represented through only one or a few characteristic length scales, for example the diameter and height for cylindrical rods. However, most natural canopies and vegetation are highly multi-scale with branches and sub-branches, covering a wide range of length scales. Fractals provide a convenient idealization of multi-scale objects, since their multi-scale properties can be described in simple ways (Mandelbrot 1982). While fractal aspects of turbulence have been studied in several works in the past decades, research on turbulence generated by fractal objects started more recently. We present an experimental study of boundary layer flow over fractal tree-like objects. Detailed Particle-Image-Velocimetry (PIV) measurements are carried out in the near-wake of a fractal-like tree. The tree is a pre-fractal with five generations, with three branches and a scale reduction factor 1/2 at each generation. Its similarity fractal dimension (Mandelbrot 1982) is D ~ 1.58. Detailed mean velocity and turbulence stress profiles are documented, as well as their downstream development. We then turn attention to the turbulence mixing properties of the flow, specifically to the question whether a mixing length-scale can be identified in this flow, and if so, how it relates to the geometric length-scales in the pre-fractal object. Scatter plots of mean velocity gradient (shear) and Reynolds shear stress exhibit good linear relation at all locations in the flow. Therefore, in the transverse direction of the wake evolution, the Boussinesq eddy viscosity concept is appropriate to describe the mixing. We find that the measured mixing length increases with increasing

  19. Structure of Importin-α from a Filamentous Fungus in Complex with a Classical Nuclear Localization Signal.

    PubMed

    Bernardes, Natalia E; Takeda, Agnes A S; Dreyer, Thiago R; Freitas, Fernanda Z; Bertolini, Maria Célia; Fontes, Marcos R M

    2015-01-01

    Neurospora crassa is a filamentous fungus that has been extensively studied as a model organism for eukaryotic biology, providing fundamental insights into cellular processes such as cell signaling, growth and differentiation. To advance in the study of this multicellular organism, an understanding of the specific mechanisms for protein transport into the cell nucleus is essential. Importin-α (Imp-α) is the receptor for cargo proteins that contain specific nuclear localization signals (NLSs) that play a key role in the classical nuclear import pathway. Structures of Imp-α from different organisms (yeast, rice, mouse, and human) have been determined, revealing that this receptor possesses a conserved structural scaffold. However, recent studies have demonstrated that the Impα mechanism of action may vary significantly for different organisms or for different isoforms from the same organism. Therefore, structural, functional, and biophysical characterization of different Impα proteins is necessary to understand the selectivity of nuclear transport. Here, we determined the first crystal structure of an Impα from a filamentous fungus which is also the highest resolution Impα structure already solved to date (1.75 Å). In addition, we performed calorimetric analysis to determine the affinity and thermodynamic parameters of the interaction between Imp-α and the classical SV40 NLS peptide. The comparison of these data with previous studies on Impα proteins led us to demonstrate that N. crassa Imp-α possess specific features that are distinct from mammalian Imp-α but exhibit important similarities to rice Imp-α, particularly at the minor NLS binding site.

  20. Structure of Importin-α from a Filamentous Fungus in Complex with a Classical Nuclear Localization Signal

    PubMed Central

    Dreyer, Thiago R.; Freitas, Fernanda Z.; Bertolini, Maria Célia; Fontes, Marcos R. M.

    2015-01-01

    Neurospora crassa is a filamentous fungus that has been extensively studied as a model organism for eukaryotic biology, providing fundamental insights into cellular processes such as cell signaling, growth and differentiation. To advance in the study of this multicellular organism, an understanding of the specific mechanisms for protein transport into the cell nucleus is essential. Importin-α (Imp-α) is the receptor for cargo proteins that contain specific nuclear localization signals (NLSs) that play a key role in the classical nuclear import pathway. Structures of Imp-α from different organisms (yeast, rice, mouse, and human) have been determined, revealing that this receptor possesses a conserved structural scaffold. However, recent studies have demonstrated that the Impα mechanism of action may vary significantly for different organisms or for different isoforms from the same organism. Therefore, structural, functional, and biophysical characterization of different Impα proteins is necessary to understand the selectivity of nuclear transport. Here, we determined the first crystal structure of an Impα from a filamentous fungus which is also the highest resolution Impα structure already solved to date (1.75 Å). In addition, we performed calorimetric analysis to determine the affinity and thermodynamic parameters of the interaction between Imp-α and the classical SV40 NLS peptide. The comparison of these data with previous studies on Impα proteins led us to demonstrate that N. crassa Imp-α possess specific features that are distinct from mammalian Imp-α but exhibit important similarities to rice Imp-α, particularly at the minor NLS binding site. PMID:26091498

  1. Structural Analysis of Helios Filament-Wound Tanks Subjected to Internal Pressure and Cooling

    NASA Technical Reports Server (NTRS)

    Ko, William L

    2005-01-01

    A finite-element stress analysis is performed on Helios filament-wound hydrogen tanks to examine the stress field and effect of end dome geometry on the stress field. Each tank is composed of a central circular cylindrical section with either geodesic or hemispherical end domes, which have metallic polar bosses. The tanks are subjected to combined and separate internal pressure and temperature loading conditions, and the stress contributions of each loading component are examined. The tank-wall-polar-boss interfacial meridional tensile stress in the hemispherical dome is found to be approximately 27 percent lower than that in the geodesic dome. The effects of both material anisotropy and the aluminum lining on the intensities of tensile meridional stress at the tank-wall-polar-boss bonding interface are examined.

  2. [Fractal features of soil aggregate structure in slope farmland with different de-farming patterns in South Sichuan Province of China].

    PubMed

    Wang, Jing-Yan; Hu, Ting-Xing; Gong, Wei; Gong, Yuan-Bo; Luo, Cheng-De

    2010-06-01

    By using fractal model, this paper studied the fractal dimension of soil aggregate structure (D) in the slope farmland (CK), its 5-year de-farmed Neosinocalamus affinis plantation (NAP), Bambusa pervariabilis x Dendrocalamopsis oldhami plantation (BDP), Alnus crenastogyne + Neosinocalamus affinis plantation (ANP), and abandoned farmland (AFL) in south Sichuan Province of China, and analyzed the relationships between the D and soil physical and chemical properties. In the de-farmed plantations and abandoned farmland, the contents of > 0.25 mm soil aggregates and water-stable aggregates were increased significantly, compared with those in the slope farmland. The D was 1.377-2.826, being in the order of NAP < BDP < ANP < AFL < CK, and decreased with the increasing contents of > 0.25 mm soil aggregates and water-stable aggregates. Comparing with CK, de-farming increased the soil natural water content, capillary porosity, and contents of soil organic matter, total N, alkali-hydrolysable N, total P, and total K, and decreased soil bulk density, non-capillary porosity, and aeration porosity. There were close relationships between the fractal dimension of soil aggregate structure and the soil physical and chemical properties. All the results suggested that the de-farming of slope farmland was beneficial to the increase of the contents of > 0.25 mm soil aggregates and water-stable aggregates, and the enhancement of soil structure stability. The D could be used as an ideal index to evaluate soil fertility, and planting Neosinocalamus affinis on the de-farming slope farmland was a good measure for the improvement of soil fertility in the research area.

  3. Three-dimensional structure of the Z-ring as a random network of FtsZ filaments.

    PubMed

    Piro, Oreste; Carmon, Gideon; Feingold, Mario; Fishov, Itzhak

    2013-12-01

    The spatial organization of the Z-ring, the central element of the bacterial division machinery, is not yet fully understood. Using optical tweezers and subpixel image analysis, we have recently shown that the radial width of the Z-ring in unconstricted Escherichia coli is about 100 nm. The relatively large width is consistent with the observations of others. Moreover, simulation of the experimental FtsZ distribution using the theoretical three-dimensional (3D) point spread function was strongly in favour of a toroidal rather than a thin cylindrical model of the Z-ring. Here, we show that the low density of FtsZ filaments in the ring coincides within experimental uncertainty with the critical density of a 3D random network of cylindrical sticks. This suggests that the Z-ring may consist of a percolating network of FtsZ filaments. Several factors that are expected to affect the polymerization state and the extent of self-interaction of FtsZ within the Z-ring, as well as the functional implications of its sparse toroidal structure, are discussed in terms of percolation theory.

  4. Structural changes of the regulatory proteins bound to the thin filaments in skeletal muscle contraction by X-ray fiber diffraction

    SciTech Connect

    Sugimoto, Yasunobu Takezawa, Yasunori; Matsuo, Tatsuhito; Ueno, Yutaka; Minakata, Shiho; Tanaka, Hidehiro; Wakabayashi, Katsuzo

    2008-04-25

    In order to clarify the structural changes related to the regulation mechanism in skeletal muscle contraction, the intensity changes of thin filament-based reflections were investigated by X-ray fiber diffraction. The time course and extent of intensity changes of the first to third order troponin (TN)-associated meridional reflections with a basic repeat of 38.4 nm were different for each of these reflections. The intensity of the first and second thin filament layer lines changed in a reciprocal manner both during initial activation and during the force generation process. The axial spacings of the TN-meridional reflections decreased by {approx}0.1% upon activation relative to the relaxing state and increased by {approx}0.24% in the force generation state, in line with that of the 2.7-nm reflection. Ca{sup 2+}-binding to TN triggered the shortening and a change in the helical symmetry of the thin filaments. Modeling of the structural changes using the intensities of the thin filament-based reflections suggested that the conformation of the globular core domain of TN altered upon activation, undergoing additional conformational changes at the tension plateau. The tail domain of TN moved together with tropomyosin during contraction. The results indicate that the structural changes of regulatory proteins bound to the actin filaments occur in two steps, the first in response to the Ca{sup 2+}-binding and the second induced by actomyosin interaction.

  5. Fractality à la carte: a general particle aggregation model

    PubMed Central

    Nicolás-Carlock, J. R.; Carrillo-Estrada, J. L.; Dossetti, V.

    2016-01-01

    In nature, fractal structures emerge in a wide variety of systems as a local optimization of entropic and energetic distributions. The fractality of these systems determines many of their physical, chemical and/or biological properties. Thus, to comprehend the mechanisms that originate and control the fractality is highly relevant in many areas of science and technology. In studying clusters grown by aggregation phenomena, simple models have contributed to unveil some of the basic elements that give origin to fractality, however, the specific contribution from each of these elements to fractality has remained hidden in the complex dynamics. Here, we propose a simple and versatile model of particle aggregation that is, on the one hand, able to reveal the specific entropic and energetic contributions to the clusters’ fractality and morphology, and, on the other, capable to generate an ample assortment of rich natural-looking aggregates with any prescribed fractal dimension. PMID:26781204

  6. Fractality à la carte: a general particle aggregation model.

    PubMed

    Nicolás-Carlock, J R; Carrillo-Estrada, J L; Dossetti, V

    2016-01-19

    In nature, fractal structures emerge in a wide variety of systems as a local optimization of entropic and energetic distributions. The fractality of these systems determines many of their physical, chemical and/or biological properties. Thus, to comprehend the mechanisms that originate and control the fractality is highly relevant in many areas of science and technology. In studying clusters grown by aggregation phenomena, simple models have contributed to unveil some of the basic elements that give origin to fractality, however, the specific contribution from each of these elements to fractality has remained hidden in the complex dynamics. Here, we propose a simple and versatile model of particle aggregation that is, on the one hand, able to reveal the specific entropic and energetic contributions to the clusters' fractality and morphology, and, on the other, capable to generate an ample assortment of rich natural-looking aggregates with any prescribed fractal dimension.

  7. Fractality à la carte: a general particle aggregation model

    NASA Astrophysics Data System (ADS)

    Nicolás-Carlock, J. R.; Carrillo-Estrada, J. L.; Dossetti, V.

    2016-01-01

    In nature, fractal structures emerge in a wide variety of systems as a local optimization of entropic and energetic distributions. The fractality of these systems determines many of their physical, chemical and/or biological properties. Thus, to comprehend the mechanisms that originate and control the fractality is highly relevant in many areas of science and technology. In studying clusters grown by aggregation phenomena, simple models have contributed to unveil some of the basic elements that give origin to fractality, however, the specific contribution from each of these elements to fractality has remained hidden in the complex dynamics. Here, we propose a simple and versatile model of particle aggregation that is, on the one hand, able to reveal the specific entropic and energetic contributions to the clusters’ fractality and morphology, and, on the other, capable to generate an ample assortment of rich natural-looking aggregates with any prescribed fractal dimension.

  8. Fractality à la carte: a general particle aggregation model.

    PubMed

    Nicolás-Carlock, J R; Carrillo-Estrada, J L; Dossetti, V

    2016-01-01

    In nature, fractal structures emerge in a wide variety of systems as a local optimization of entropic and energetic distributions. The fractality of these systems determines many of their physical, chemical and/or biological properties. Thus, to comprehend the mechanisms that originate and control the fractality is highly relevant in many areas of science and technology. In studying clusters grown by aggregation phenomena, simple models have contributed to unveil some of the basic elements that give origin to fractality, however, the specific contribution from each of these elements to fractality has remained hidden in the complex dynamics. Here, we propose a simple and versatile model of particle aggregation that is, on the one hand, able to reveal the specific entropic and energetic contributions to the clusters' fractality and morphology, and, on the other, capable to generate an ample assortment of rich natural-looking aggregates with any prescribed fractal dimension. PMID:26781204

  9. Fractal Poisson processes

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo; Klafter, Joseph

    2008-09-01

    The Central Limit Theorem (CLT) and Extreme Value Theory (EVT) study, respectively, the stochastic limit-laws of sums and maxima of sequences of independent and identically distributed (i.i.d.) random variables via an affine scaling scheme. In this research we study the stochastic limit-laws of populations of i.i.d. random variables via nonlinear scaling schemes. The stochastic population-limits obtained are fractal Poisson processes which are statistically self-similar with respect to the scaling scheme applied, and which are characterized by two elemental structures: (i) a universal power-law structure common to all limits, and independent of the scaling scheme applied; (ii) a specific structure contingent on the scaling scheme applied. The sum-projection and the maximum-projection of the population-limits obtained are generalizations of the classic CLT and EVT results - extending them from affine to general nonlinear scaling schemes.

  10. Kiloparsec-Scale Simulations of Star Formation in Disk Galaxies III. Structure and Dynamics of Filaments and Clumps in Giant Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Butler, Michael J.; Tan, Jonathan C.; Van Loo, Sven

    2015-05-01

    We present hydrodynamic simulations of self-gravitating dense gas in a galactic disk, exploring scales ranging from 1 kpc down to ˜0.1 pc. Our primary goal is to understand how dense filaments form in giant molecular clouds (GMCs). These structures, often observed as infrared dark clouds (IRDCs) in the Galactic plane, are thought to be the precursors to massive stars and star clusters, so their formation may be the rate-limiting step controlling global star formation rates in galactic systems as described by the Kennicutt-Schmidt relation. Our study follows on from Van Loo et al., which carried out simulations to 0.5 pc resolution and examined global aspects of the formation of dense gas clumps and the resulting star formation rate. Here, using our higher resolution, we examine the detailed structural, kinematic, and dynamical properties of dense filaments and clumps, including mass surface density (Σ) probability distribution functions, filament mass per unit length and its dispersion, lateral Σ profiles, filament fragmentation, filament velocity gradients and infall, and degree of filament and clump virialization. Where possible, these properties are compared to observations of IRDCs. By many metrics, especially too large mass fractions of high {Σ }\\gt 1 g c{{m}-2} material, too high mass per unit length dispersion due to dense clump formation, too high velocity gradients, and too high velocity dispersion for a given mass per unit length, the simulated filaments differ from observed IRDCs. We thus conclude that IRDCs do not form from global fast collapse of GMCs. Rather, we expect that IRDC formation and collapse are slowed significantly by the influence of dynamically important magnetic fields, which may thus play a crucial role in regulating galactic star formation rates.

  11. Extracellular matrix of adipogenically differentiated mesenchymal stem cells reveals a network of collagen filaments, mostly interwoven by hexagonal structural units.

    PubMed

    Ullah, Mujib; Sittinger, Michael; Ringe, Jochen

    2013-01-01

    Extracellular matrix (ECM) is the non-cellular component of tissues, which not only provides biological shelter but also takes part in the cellular decisions for diverse functions. Every tissue has an ECM with unique composition and topology that governs the process of determination, differentiation, proliferation, migration and regeneration of cells. Little is known about the structural organization of matrix especially of MSC-derived adipogenic ECM. Here, we particularly focus on the composition and architecture of the fat ECM to understand the cellular behavior on functional bases. Thus, mesenchymal stem cells (MSC) were adipogenically differentiated, then, were transferred to adipogenic propagation medium, whereas they started the release of lipid droplets leaving bare network of ECM. Microarray analysis was performed, to indentify the molecular machinery of matrix. Adipogenesis was verified by Oil Red O staining of lipid droplets and by qPCR of adipogenic marker genes PPARG and FABP4. Antibody staining demonstrated the presence of collagen type I, II and IV filaments, while alkaline phosphatase activity verified the ossified nature of these filaments. In the adipogenic matrix, the hexagonal structures were abundant followed by octagonal structures, whereas they interwoven in a crisscross manner. Regarding molecular machinery of adipogenic ECM, the bioinformatics analysis revealed the upregulated expression of COL4A1, ITGA7, ITGA7, SDC2, ICAM3, ADAMTS9, TIMP4, GPC1, GPC4 and downregulated expression of COL14A1, ADAMTS5, TIMP2, TIMP3, BGN, LAMA3, ITGA2, ITGA4, ITGB1, ITGB8, CLDN11. Moreover, genes associated with integrins, glycoproteins, laminins, fibronectins, cadherins, selectins and linked signaling pathways were found. Knowledge of the interactive-language between cells and matrix could be beneficial for the artificial designing of biomaterials and bioscaffolds. PMID:23851162

  12. Streptococcus salivarius Fimbriae Are Composed of a Glycoprotein Containing a Repeated Motif Assembled into a Filamentous Nondissociable Structure

    PubMed Central

    Lévesque, Céline; Vadeboncoeur, Christian; Chandad, Fatiha; Frenette, Michel

    2001-01-01

    Streptococcus salivarius, a gram-positive bacterium found in the human oral cavity, expresses flexible peritrichous fimbriae. In this paper, we report purification and partial characterization of S. salivarius fimbriae. Fimbriae were extracted by shearing the cell surface of hyperfimbriated mutant A37 (a spontaneous mutant of S. salivarius ATCC 25975) with glass beads. Preliminary experiments showed that S. salivarius fimbriae did not dissociate when they were incubated at 100°C in the presence of sodium dodecyl sulfate. This characteristic was used to separate them from other cell surface components by successive gel filtration chromatography procedures. Fimbriae with molecular masses ranging from 20 × 106 to 40 × 106 Da were purified. Examination of purified fimbriae by electron microscopy revealed the presence of filamentous structures up to 1 μm long and 3 to 4 nm in diameter. Biochemical studies of purified fimbriae and an amino acid sequence analysis of a fimbrial internal peptide revealed that S. salivarius fimbriae were composed of a glycoprotein assembled into a filamentous structure resistant to dissociation. The internal amino acid sequence was composed of a repeated motif of two amino acids alternating with two modified residues: A/X/T-E-Q-M/φ, where X represents a modified amino acid residue and φ represents a blank cycle. Immunolocalization experiments also revealed that the fimbriae were associated with a wheat germ agglutinin-reactive carbohydrate. Immunolabeling experiments with antifimbria polyclonal antibodies showed that antigenically related fimbria-like structures were expressed in two other human oral streptococcal species, Streptococcus mitis and Streptococcus constellatus. PMID:11292790

  13. Fractal statistics of cloud fields

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; Joseph, Joachim H.

    1989-01-01

    Landsat Multispectral Scanner (MSS) and Thematic Mapper (TM) data, with 80 and 30 m spatial resolution, respectively, have been employed to study the spatial structure of boundary-layer and intertropical convergence zone (ITCZ) clouds. The probability distributions of cloud areas and cloud perimeters are found to approximately follow a power-law, with a different power (i.e., fractal dimension) for each cloud type. They are better approximated by a double power-law behavior, indicating a change in the fractal dimension at a characteristic size which depends upon cloud type. The fractal dimension also changes with threshold. The more intense cloud areas are found to have a higher perimeter fractal dimension, perhaps indicative of the increased turbulence at cloud top. A detailed picture of the inhomogeneous spatial structure of various cloud types will contribute to a better understanding of basic cloud processes, and also has implications for the remote sensing of clouds, for their effects on remote sensing of other parameters, and for the parameterization of clouds in general circulation models, all of which rely upon plane-parallel radiative transfer algorithms.

  14. FUNDAMENTAL AREAS OF PHENOMENOLOGY (INCLUDING APPLICATIONS): Sprout Branching of Tumour Capillary Network Growth: Fractal Dimension and Multifractal Structure

    NASA Astrophysics Data System (ADS)

    Kou, Jian-Long; Lu, Hang-Jun; Wu, Feng-Min; Xu, You-Sheng

    2008-05-01

    A tumour vascular network, characterized as an irregularly stochastic growth, is different from the normal vascular network. We systematically analyse the dependence of the branching. It is found that anastomosis of tumour on time is according to a number of tumour images, and both the fractal dimensions and multifractal spectra of the tumours are obtained. In the cases studied, the fractal dimensions of the tumour vascular network increase with time and the multifractal spectrum not only rises entirely but also shifts right. In addition, the best drug delivery stage is discussed according to the difference of the singularity exponent δα(δα = αmax — αmin), which shows some change in the growth process of the tumour vascular network. A common underlying principle is obtained from our analysis along with previous results.

  15. A ROBUST MEASURE OF COSMIC STRUCTURE BEYOND THE POWER SPECTRUM: COSMIC FILAMENTS AND THE TEMPERATURE OF DARK MATTER

    SciTech Connect

    Obreschkow, D.; Power, C.; Bruderer, M.; Bonvin, C.

    2013-01-10

    We discover that the mass of dark matter particles m {sub DM} is imprinted in phase correlations of the cosmic density field more significantly than in the two-point correlation. In particular, phase correlations trace m {sub DM} out to scales about five times larger than the two-point correlation. This result relies on a new estimator l(r) of pure phase information in Fourier space, which can be interpreted as a parameter-free and scale-invariant tracer of filament-like structure. Based on simulated density fields, we show how m {sub DM} can, in principle, be measured using l(r), given a suitably reconstructed density field.

  16. Collagen-like glycoprotein BclS is involved in the formation of filamentous structures of the Lysinibacillus sphaericus exosporium.

    PubMed

    Zhao, Ni; Ge, Yong; Shi, Tingyu; Hu, Xiaomin; Yuan, Zhiming

    2014-11-01

    Lysinibacillus sphaericus produces mosquitocidal binary toxins (Bin toxins) deposited within a balloon-like exosporium during sporulation. Unlike Bacillus cereus group strains, the exosporium of L. sphaericus is usually devoid of the hair-like nap, an external filamentous structure formed by a collagen-like protein, BclA. In this study, a new collagen-like exosporium protein encoded by Bsph_0411 (BclS) from L. sphaericus C3-41 was characterized. Thin-section electron microscopy revealed that deletion of bclS resulted in the loss of the filamentous structures that attach to the exosporium basal layer and spread through the interspace of spores. In vivo visualization of BclS-green fluorescent protein (GFP)/mCherry fusion proteins revealed a dynamic pattern of fluorescence that encased the spore from the mother cell-distal (MCD) pole of the forespore, and the BclS-GFP fusions were found to be located in the interspace of the spore, as confirmed by three-dimensional (3D) superresolution fluorescence microscopy. Further studies demonstrated that the bclS mutant spores were more sensitive to wet-heat treatment and germinated at a lower rate than wild-type spores and that these phenotypes were significantly restored in the bclS-complemented strain. These results suggested novel roles of collagen-like protein in exosporium assembly and spore germination, providing a hint for a further understanding of the genetic basis of the high level of persistence of Bin toxins in nature. PMID:25149519

  17. Subhalo Accretion through Filaments

    NASA Astrophysics Data System (ADS)

    González, Roberto E.; Padilla, Nelson D.

    2016-09-01

    We track subhalo orbits of galaxy- and group-sized halos in cosmological simulations. We identify filamentary structures around halos and use these to define a sample of subhalos accreted from filaments, as well as a control sample of subhalos accreted from other directions. We use these samples to study differences in satellite orbits produced by filamentary accretion. Our results depend on host halo mass. We find that for low masses, subhalos accreted from filaments show ∼10% shorter lifetimes compared to the control sample, show a tendency toward more radial orbits, reach halo central regions earlier, and are more likely to merge with the host. For higher-mass halos this lifetime difference dissipates and even reverses for cluster-sized halos. This behavior appears to be connected to the fact that more massive hosts are connected to stronger filaments with higher velocity coherence and density, with slightly more radial subhalo orbits. Because subhalos tend to follow the coherent flow of the filament, it is possible that such thick filaments are enough to shield the subhalo from the effect of dynamical friction at least during their first infall. We also identify subhalo pairs/clumps that merge with one another after accretion. They survive as a clump for only a very short time, which is even shorter for higher subhalo masses, suggesting that the Magellanic Clouds and other Local group satellite associations may have entered the Milky Way virial radius very recently and probably are in their first infall.

  18. ZnS:Cr Nanostructures Building Fractals and Their Properties

    SciTech Connect

    Gogoi, D. P.; Das, U.; Mohanta, D.; Ahmed, G. A.; Choudhury, A.

    2010-10-04

    Cr doped ZnS nanostructures have been fabricated through colloidal solution route by using Polyvinyl alcohol (-C{sub 2}H{sub 4}O){sub n} and Polyvinyl pyrrolidone k30 (C{sub 6}H{sub 9}NO){sub x} as dielectric hosts. Growth of fractal structures have been observed through Transmission Electron Microscopy. Higher magnification TEM study reveals that these fractals actually a organize structure of ZnS:Cr nanostructures. The structural study of these nanostructures in the fractals is done by X-Ray Diffraction, UV-Visible spectroscopy, Photoluminescence spectroscopy AFM and MFM. These investigations allow us to form a comprehensive explanation of fractal as well as nanostructure growth. We have done dimensional study of these fractals and the reason behind the formation of these fractals.

  19. Multifractal parametrization for the volume of space forms on surfaces of Zn x Cd1- x Te-Si(111) heterocompositions and estimating the energy of a surface with fractal structure

    NASA Astrophysics Data System (ADS)

    Moskvin, P. P.; Krizhanovskii, V. B.; Rashkovetskii, L. V.; Vuichik, N. V.

    2016-05-01

    Multifractal (MF) analysis is used to describe the volume of space forms on the surfaces of structures in the solid solution of a Zn x Cd1- x Te-Si(111) substrate. AFM images of film surfaces have been are used for MF analysis. The parameters of MF spectra are determined for the distribution of volume of surface nanoforms. Based on the formal approach and data on the parameters of the fractal state for the volume and surfaces of nanoforms, an equation is proposed that considers the contribution from the fractal structure of the surface to its surface energy. The behavior of the system's surface energy, depending on fractal parameters that describe states of the volume and surfaces of nanoforms is discussed.

  20. Exploring Fractals in the Classroom.

    ERIC Educational Resources Information Center

    Naylor, Michael

    1999-01-01

    Describes an activity involving six investigations. Introduces students to fractals, allows them to study the properties of some famous fractals, and encourages them to create their own fractal artwork. Contains 14 references. (ASK)

  1. Fractals: To Know, to Do, to Simulate.

    ERIC Educational Resources Information Center

    Talanquer, Vicente; Irazoque, Glinda

    1993-01-01

    Discusses the development of fractal theory and suggests fractal aggregates as an attractive alternative for introducing fractal concepts. Describes methods for producing metallic fractals and a computer simulation for drawing fractals. (MVL)

  2. Mutations of tau protein in frontotemporal dementia promote aggregation of paired helical filaments by enhancing local beta-structure.

    PubMed

    von Bergen, M; Barghorn, S; Li, L; Marx, A; Biernat, J; Mandelkow, E M; Mandelkow, E

    2001-12-21

    The microtubule-associated protein tau is a natively unfolded protein in solution, yet it is able to polymerize into the ordered paired helical filaments (PHF) of Alzheimer's disease. In the splice isoforms lacking exon 10, this process is facilitated by the formation of beta-structure around the hexapeptide motif PHF6 ((306)VQIVYK(311)) encoded by exon 11. We have investigated the structural requirements for PHF polymerization in the context of adult tau isoforms containing four repeats (including exon 10). In addition to the PHF6 motif there exists a related PHF6* motif ((275)VQIINK(280)) in the repeat encoded by the alternatively spliced exon 10. We show that this PHF6* motif also promotes aggregation by the formation of beta-structure and that there is a cross-talk between the two hexapeptide motifs during PHF aggregation. We also show that two of the tau mutations found in hereditary frontotemporal dementias, DeltaK280 and P301L, have a much stronger tendency for PHF aggregation which correlates with their high propensity for beta-structure around the hexapeptide motifs.

  3. Fractals and fragmentation

    NASA Technical Reports Server (NTRS)

    Turcotte, D. L.

    1986-01-01

    The use of renormalization group techniques on fragmentation problems is examined. The equations which represent fractals and the size-frequency distributions of fragments are presented. Method for calculating the size distributions of asteriods and meteorites are described; the frequency-mass distribution for these interplanetary objects are due to fragmentation. The application of two renormalization group models to fragmentation is analyzed. It is observed that the models yield a fractal behavior for fragmentation; however, different values for the fractal dimension are produced . It is concluded that fragmentation is a scale invariant process and that the fractal dimension is a measure of the fragility of the fragmented material.

  4. Analyzing the photonic band gaps in two-dimensional plasma photonic crystals with fractal Sierpinski gasket structure based on the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Feng; Liu, Shao-Bin

    2016-08-01

    In this paper, the properties of photonic band gaps (PBGs) in two types of two-dimensional plasma-dielectric photonic crystals (2D PPCs) under a transverse-magnetic (TM) wave are theoretically investigated by a modified plane wave expansion (PWE) method where Monte Carlo method is introduced. The proposed PWE method can be used to calculate the band structures of 2D PPCs which possess arbitrary-shaped filler and any lattice. The efficiency and convergence of the present method are discussed by a numerical example. The configuration of 2D PPCs is the square lattices with fractal Sierpinski gasket structure whose constituents are homogeneous and isotropic. The type-1 PPCs is filled with the dielectric cylinders in the plasma background, while its complementary structure is called type-2 PPCs, in which plasma cylinders behave as the fillers in the dielectric background. The calculated results reveal that the enough accuracy and good convergence can be obtained, if the number of random sampling points of Monte Carlo method is large enough. The band structures of two types of PPCs with different fractal orders of Sierpinski gasket structure also are theoretically computed for a comparison. It is demonstrate that the PBGs in higher frequency region are more easily produced in the type-1 PPCs rather than in the type-2 PPCs. Sierpinski gasket structure introduced in the 2D PPCs leads to a larger cutoff frequency, enhances and induces more PBGs in high frequency region. The effects of configurational parameters of two types of PPCs on the PBGs are also investigated in detail. The results show that the PBGs of the PPCs can be easily manipulated by tuning those parameters. The present type-1 PPCs are more suitable to design the tunable compacted devices.

  5. Fractal structure and predictive strategy of the daily extreme temperature residuals at Fabra Observatory (NE Spain, years 1917-2005)

    NASA Astrophysics Data System (ADS)

    Lana, X.; Burgueño, A.; Serra, C.; Martínez, M. D.

    2015-07-01

    A compilation of daily extreme temperatures recorded at the Fabra Observatory (Catalonia, NE Spain) since 1917 up to 2005 has permitted an exhaustive analysis of the fractal behaviour of the daily extreme temperature residuals, DTR, defined as the difference between the observed daily extreme temperature and the daily average value. The lacunarity characterises the lag distribution on the residual series for several thresholds. Hurst, H, and Hausdorff, Ha, exponents, together with the exponent β of the decaying power law, describing the evolution of power spectral density with frequency, permit to characterise the persistence, antipersistence or randomness of the residual series. The self-affine character of DTR series is verified, and additionally, they are simulated by means of fractional Gaussian noise, fGn. The reconstruction theorem leads to the quantification of the complexity (correlation dimension, μ*, and Kolmogorov entropy, κ) and predictive instability (Lyapunov exponents, λ, and Kaplan-Yorke dimension, D KY) of the residual series. All fractal parameters are computed for consecutive and independent segments of 5-year lengths. This strategy permits to obtain a high enough number of fractal parameter samples to estimate time trends, including their statistical significance. Comparisons are made between results of predictive algorithms based on fGn models and an autoregressive autoregressive integrated moving average (ARIMA) process, with the latter leading to slightly better results than the former. Several dynamic atmospheric mechanisms and local effects, such as local topography and vicinity to the Mediterranean coast, are proposed to explain the complex and instable predictability of DTR series. The memory of the physical system (Kolmogorov entropy) would be attributed to the interaction with the Mediterranean Sea.

  6. Periodic colour-centre structure formed under filamentation of mid-IR femtosecond laser radiation in a LiF crystal

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. V.; Kompanets, V. O.; Dormidonov, A. E.; Chekalin, S. V.; Shlenov, S. A.; Kandidov, V. P.

    2016-04-01

    A colour-centre structure formed in a LiF crystal under filamentation of a femtosecond mid-IR laser pulse with a power slightly exceeding the critical power for self-focusing has been experimentally and theoretically investigated. Strictly periodic oscillations have been detected for the first time for the density of the colour centres induced in an isotropic LiF crystal under filamentation of a laser beam with a wavelength tuned in the range from 2600 to 3350 nm. The structure period is found to be about 30 μm. With an increase in the laser radiation wavelength, the period of the oscillations decreases and their amplitude increases. The maximum colour centre density, observed under filamentation of a 3100-nm beam, is related to the increased contribution of the direct generation of colour centres as a result of the absorption of an integer number of photons by the exciton band. It is numerically shown that the formation of a periodic colour-centre structure in LiF is due to the periodic change in the light field amplitude in the light bullet (1.5 optical periods long) formed under filamentation.

  7. Link between truncated fractals and coupled oscillators in biological systems.

    PubMed

    Paar, V; Pavin, N; Rosandić, M

    2001-09-01

    This article aims at providing a new theoretical insight into the fundamental question of the origin of truncated fractals in biological systems. It is well known that fractal geometry is one of the characteristics of living organisms. However, contrary to mathematical fractals which are self-similar at all scales, the biological fractals are truncated, i.e. their self-similarity extends at most over a few orders of magnitude of separation. We show that nonlinear coupled oscillators, modeling one of the basic features of biological systems, may generate truncated fractals: a truncated fractal pattern for basin boundaries appears in a simple mathematical model of two coupled nonlinear oscillators with weak dissipation. This fractal pattern can be considered as a particular hidden fractal property. At the level of sufficiently fine precision technique the truncated fractality acts as a simple structure, leading to predictability, but at a lower level of precision it is effectively fractal, limiting the predictability of the long-term behavior of biological systems. We point out to the generic nature of our result.

  8. Fractal-based image processing for mine detection

    NASA Astrophysics Data System (ADS)

    Nelson, Susan R.; Tuovila, Susan M.

    1995-06-01

    A fractal-based analysis algorithm has been developed to perform the task of automated recognition of minelike targets in side scan sonar images. Because naturally occurring surfaces, such as the sea bottom, are characterized by irregular textures they are well suited to modeling as fractal surfaces. Manmade structures, including mines, are composed of Euclidean shapes, which makes fractal-based analysis highly appropriate for discrimination of mines from a natural background. To that end, a set of fractal features, including fractal dimension, was developed to classify image areas as minelike targets, nonmine areas, or clutter. Four different methods of fractal dimension calculation were compared and the Weierstrass function was used to study the effect of various signal processing procedures on the fractal qualities of an image. The difference in fractal dimension between different images depends not only on the physical features extant in the images but in the underlying statistical characteristics of the processing procedures applied to the images and the underlying mathematical assumptions of the fractal dimension calculation methods. For the image set studied, fractal-based analysis achieved a classification rate similar to human operators, and was very successful in identifying areas of clutter. The analysis technique presented here is applicable to any type of signal that may be configured as an image, making this technique suitable for multisensor systems.

  9. Fractal energy carpets in non-Hermitian Hofstadter quantum mechanics

    NASA Astrophysics Data System (ADS)

    Chernodub, Maxim N.; Ouvry, Stéphane

    2015-10-01

    We study the non-Hermitian Hofstadter dynamics of a quantum particle with biased motion on a square lattice in the background of a magnetic field. We show that in quasimomentum space, the energy spectrum is an overlap of infinitely many inequivalent fractals. The energy levels in each fractal are space-filling curves with Hausdorff dimension 2. The band structure of the spectrum is similar to a fractal spider web in contrast to the Hofstadter butterfly for unbiased motion.

  10. Fractal energy carpets in non-Hermitian Hofstadter quantum mechanics.

    PubMed

    Chernodub, Maxim N; Ouvry, Stéphane

    2015-10-01

    We study the non-Hermitian Hofstadter dynamics of a quantum particle with biased motion on a square lattice in the background of a magnetic field. We show that in quasimomentum space, the energy spectrum is an overlap of infinitely many inequivalent fractals. The energy levels in each fractal are space-filling curves with Hausdorff dimension 2. The band structure of the spectrum is similar to a fractal spider web in contrast to the Hofstadter butterfly for unbiased motion.

  11. Assignment of the sup 1 H NMR spectrum and secondary structure elucidation of the single-stranded DNA binding protein encoded by the filamentous bacteriophage IKe

    SciTech Connect

    van Duynhoven, J.P.M.; Folkers, P.J.M.; Prinse, C.W.J.M.; Harmsen, B.J.M.; Konings, R.N.H.; Hilbers, C.W. )

    1992-02-04

    By means of 2D NMR techniques, all backbone resonances in the {sup 1}H NMR spectrum of the single-stranded DNA binding protein encoded by gene V of the filamentous phage IKe have been assigned sequence specifically. In addition, a major part of the side chain resonances could be assigned as well. Analysis of NOESY data permitted the elucidation of the secondary structure of IKe gene V protein. The major part of the secondary structure is present as an antiparallel {beta}-sheet, i.e., as two {beta}-loops which partly combine into a triple-stranded {beta}-sheet structure, one {beta}-loop and one triple-stranded {beta}-sheet structure. It is shown that a high degree of homology exists with the single-stranded DNA binding protein encoded by gene V of the distantly related filamentous phase M13.

  12. Role of Intermediate Filaments in Vesicular Traffic.

    PubMed

    Margiotta, Azzurra; Bucci, Cecilia

    2016-01-01

    Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway. PMID:27120621

  13. Role of Intermediate Filaments in Vesicular Traffic

    PubMed Central

    Margiotta, Azzurra; Bucci, Cecilia

    2016-01-01

    Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway. PMID:27120621

  14. Fractal Metrology for biogeosystems analysis

    NASA Astrophysics Data System (ADS)

    Torres-Argüelles, V.; Oleschko, K.; Tarquis, A. M.; Korvin, G.; Gaona, C.; Parrot, J.-F.; Ventura-Ramos, E.

    2010-11-01

    The solid-pore distribution pattern plays an important role in soil functioning being related with the main physical, chemical and biological multiscale and multitemporal processes of this complex system. In the present research, we studied the aggregation process as self-organizing and operating near a critical point. The structural pattern is extracted from the digital images of three soils (Chernozem, Solonetz and "Chocolate" Clay) and compared in terms of roughness of the gray-intensity distribution quantified by several measurement techniques. Special attention was paid to the uncertainty of each of them measured in terms of standard deviation. Some of the applied methods are known as classical in the fractal context (box-counting, rescaling-range and wavelets analyses, etc.) while the others have been recently developed by our Group. The combination of these techniques, coming from Fractal Geometry, Metrology, Informatics, Probability Theory and Statistics is termed in this paper Fractal Metrology (FM). We show the usefulness of FM for complex systems analysis through a case study of the soil's physical and chemical degradation applying the selected toolbox to describe and compare the structural attributes of three porous media with contrasting structure but similar clay mineralogy dominated by montmorillonites.

  15. Fractal dimension analysis of complexity in Ligeti piano pieces

    NASA Astrophysics Data System (ADS)

    Bader, Rolf

    2005-04-01

    Fractal correlation dimensional analysis has been performed with whole solo piano pieces by Gyrgy Ligeti at every 50ms interval of the pieces. The resulting curves of development of complexity represented by the fractal dimension showed up a very reasonable correlation with the perceptional density of events during these pieces. The seventh piece of Ligeti's ``Musica ricercata'' was used as a test case. Here, each new part of the piece was followed by an increase of the fractal dimension because of the increase of information at the part changes. The second piece ``Galamb borong,'' number seven of the piano Etudes was used, because Ligeti wrote these Etudes after studying fractal geometry. Although the piece is not fractal in the strict mathematical sense, the overall structure of the psychoacoustic event-density as well as the detailed event development is represented by the fractal dimension plot.

  16. Surface fractals in liposome aggregation.

    PubMed

    Roldán-Vargas, Sándalo; Barnadas-Rodríguez, Ramon; Quesada-Pérez, Manuel; Estelrich, Joan; Callejas-Fernández, José

    2009-01-01

    In this work, the aggregation of charged liposomes induced by magnesium is investigated. Static and dynamic light scattering, Fourier-transform infrared spectroscopy, and cryotransmission electron microscopy are used as experimental techniques. In particular, multiple intracluster scattering is reduced to a negligible amount using a cross-correlation light scattering scheme. The analysis of the cluster structure, probed by means of static light scattering, reveals an evolution from surface fractals to mass fractals with increasing magnesium concentration. Cryotransmission electron microscopy micrographs of the aggregates are consistent with this interpretation. In addition, a comparative analysis of these results with those previously reported in the presence of calcium suggests that the different hydration energy between lipid vesicles when these divalent cations are present plays a fundamental role in the cluster morphology. This suggestion is also supported by infrared spectroscopy data. The kinetics of the aggregation processes is also analyzed through the time evolution of the mean diffusion coefficient of the aggregates. PMID:19257067

  17. Surface fractals in liposome aggregation.

    PubMed

    Roldán-Vargas, Sándalo; Barnadas-Rodríguez, Ramon; Quesada-Pérez, Manuel; Estelrich, Joan; Callejas-Fernández, José

    2009-01-01

    In this work, the aggregation of charged liposomes induced by magnesium is investigated. Static and dynamic light scattering, Fourier-transform infrared spectroscopy, and cryotransmission electron microscopy are used as experimental techniques. In particular, multiple intracluster scattering is reduced to a negligible amount using a cross-correlation light scattering scheme. The analysis of the cluster structure, probed by means of static light scattering, reveals an evolution from surface fractals to mass fractals with increasing magnesium concentration. Cryotransmission electron microscopy micrographs of the aggregates are consistent with this interpretation. In addition, a comparative analysis of these results with those previously reported in the presence of calcium suggests that the different hydration energy between lipid vesicles when these divalent cations are present plays a fundamental role in the cluster morphology. This suggestion is also supported by infrared spectroscopy data. The kinetics of the aggregation processes is also analyzed through the time evolution of the mean diffusion coefficient of the aggregates.

  18. Fractals, malware, and data models

    NASA Astrophysics Data System (ADS)

    Jaenisch, Holger M.; Potter, Andrew N.; Williams, Deborah; Handley, James W.

    2012-06-01

    We examine the hypothesis that the decision boundary between malware and non-malware is fractal. We introduce a novel encoding method derived from text mining for converting disassembled programs first into opstrings and then filter these into a reduced opcode alphabet. These opcodes are enumerated and encoded into real floating point number format and used for characterizing frequency of occurrence and distribution properties of malware functions to compare with non-malware functions. We use the concept of invariant moments to characterize the highly non-Gaussian structure of the opcode distributions. We then derive Data Model based classifiers from identified features and interpolate and extrapolate the parameter sample space for the derived Data Models. This is done to examine the nature of the parameter space classification boundary between families of malware and the general non-malware category. Preliminary results strongly support the fractal boundary hypothesis, and a summary of our methods and results are presented here.

  19. Fractal analysis of scatter imaging signatures to distinguish breast pathologies

    NASA Astrophysics Data System (ADS)

    Eguizabal, Alma; Laughney, Ashley M.; Krishnaswamy, Venkataramanan; Wells, Wendy A.; Paulsen, Keith D.; Pogue, Brian W.; López-Higuera, José M.; Conde, Olga M.

    2013-02-01

    Fractal analysis combined with a label-free scattering technique is proposed for describing the pathological architecture of tumors. Clinicians and pathologists are conventionally trained to classify abnormal features such as structural irregularities or high indices of mitosis. The potential of fractal analysis lies in the fact of being a morphometric measure of the irregular structures providing a measure of the object's complexity and self-similarity. As cancer is characterized by disorder and irregularity in tissues, this measure could be related to tumor growth. Fractal analysis has been probed in the understanding of the tumor vasculature network. This work addresses the feasibility of applying fractal analysis to the scattering power map (as a physical modeling) and principal components (as a statistical modeling) provided by a localized reflectance spectroscopic system. Disorder, irregularity and cell size variation in tissue samples is translated into the scattering power and principal components magnitude and its fractal dimension is correlated with the pathologist assessment of the samples. The fractal dimension is computed applying the box-counting technique. Results show that fractal analysis of ex-vivo fresh tissue samples exhibits separated ranges of fractal dimension that could help classifier combining the fractal results with other morphological features. This contrast trend would help in the discrimination of tissues in the intraoperative context and may serve as a useful adjunct to surgeons.

  20. Bridged filaments of histone-like nucleoid structuring protein pause RNA polymerase and aid termination in bacteria

    PubMed Central

    Kotlajich, Matthew V; Hron, Daniel R; Boudreau, Beth A; Sun, Zhiqiang; Lyubchenko, Yuri L; Landick, Robert

    2015-01-01

    Bacterial H-NS forms nucleoprotein filaments that spread on DNA and bridge distant DNA sites. H-NS filaments co-localize with sites of Rho-dependent termination in Escherichia coli, but their direct effects on transcriptional pausing and termination are untested. In this study, we report that bridged H-NS filaments strongly increase pausing by E. coli RNA polymerase at a subset of pause sites with high potential for backtracking. Bridged but not linear H-NS filaments promoted Rho-dependent termination by increasing pause dwell times and the kinetic window for Rho action. By observing single H-NS filaments and elongating RNA polymerase molecules using atomic force microscopy, we established that bridged filaments surround paused complexes. Our results favor a model in which H-NS-constrained changes in DNA supercoiling driven by transcription promote pausing at backtracking-susceptible sites. Our findings provide a mechanistic rationale for H-NS stimulation of Rho-dependent termination in horizontally transferred genes and during pervasive antisense and noncoding transcription in bacteria. DOI: http://dx.doi.org/10.7554/eLife.04970.001 PMID:25594903

  1. Fractal metrology for biogeosystems analysis

    NASA Astrophysics Data System (ADS)

    Torres-Argüelles, V.; Oleschko, K.; Tarquis, A. M.; Korvin, G.; Gaona, C.; Parrot, J.-F.; Ventura-Ramos, E.

    2010-06-01

    The solid-pore distribution pattern plays an important role in soil functioning being related with the main physical, chemical and biological multiscale and multitemporal processes. In the present research, this pattern is extracted from the digital images of three soils (Chernozem, Solonetz and "Chocolate'' Clay) and compared in terms of roughness of the gray-intensity distribution (the measurand) quantified by several measurement techniques. Special attention was paid to the uncertainty of each of them and to the measurement function which best fits to the experimental results. Some of the applied techniques are known as classical in the fractal context (box-counting, rescaling-range and wavelets analyses, etc.) while the others have been recently developed by our Group. The combination of all these techniques, coming from Fractal Geometry, Metrology, Informatics, Probability Theory and Statistics is termed in this paper Fractal Metrology (FM). We show the usefulness of FM through a case study of soil physical and chemical degradation applying the selected toolbox to describe and compare the main structural attributes of three porous media with contrasting structure but similar clay mineralogy dominated by montmorillonites.

  2. Structural and Functional Studies of H. seropedicae RecA Protein – Insights into the Polymerization of RecA Protein as Nucleoprotein Filament

    PubMed Central

    Galvão, Carolina W.; Saab, Sérgio C.; Iulek, Jorge; Etto, Rafael M.; Steffens, Maria B. R.; Chitteni-Pattu, Sindhu; Stanage, Tyler; Keck, James L.; Cox, Michael M.

    2016-01-01

    The bacterial RecA protein plays a role in the complex system of DNA damage repair. Here, we report the functional and structural characterization of the Herbaspirillum seropedicae RecA protein (HsRecA). HsRecA protein is more efficient at displacing SSB protein from ssDNA than Escherichia coli RecA protein. HsRecA also promotes DNA strand exchange more efficiently. The three dimensional structure of HsRecA-ADP/ATP complex has been solved to 1.7 Å resolution. HsRecA protein contains a small N-terminal domain, a central core ATPase domain and a large C-terminal domain, that are similar to homologous bacterial RecA proteins. Comparative structural analysis showed that the N-terminal polymerization motif of archaeal and eukaryotic RecA family proteins are also present in bacterial RecAs. Reconstruction of electrostatic potential from the hexameric structure of HsRecA-ADP/ATP revealed a high positive charge along the inner side, where ssDNA is bound inside the filament. The properties of this surface may explain the greater capacity of HsRecA protein to bind ssDNA, forming a contiguous nucleoprotein filament, displace SSB and promote DNA exchange relative to EcRecA. Our functional and structural analyses provide insight into the molecular mechanisms of polymerization of bacterial RecA as a helical nucleoprotein filament. PMID:27447485

  3. Structural and Functional Studies of H. seropedicae RecA Protein - Insights into the Polymerization of RecA Protein as Nucleoprotein Filament.

    PubMed

    Leite, Wellington C; Galvão, Carolina W; Saab, Sérgio C; Iulek, Jorge; Etto, Rafael M; Steffens, Maria B R; Chitteni-Pattu, Sindhu; Stanage, Tyler; Keck, James L; Cox, Michael M

    2016-01-01

    The bacterial RecA protein plays a role in the complex system of DNA damage repair. Here, we report the functional and structural characterization of the Herbaspirillum seropedicae RecA protein (HsRecA). HsRecA protein is more efficient at displacing SSB protein from ssDNA than Escherichia coli RecA protein. HsRecA also promotes DNA strand exchange more efficiently. The three dimensional structure of HsRecA-ADP/ATP complex has been solved to 1.7 Å resolution. HsRecA protein contains a small N-terminal domain, a central core ATPase domain and a large C-terminal domain, that are similar to homologous bacterial RecA proteins. Comparative structural analysis showed that the N-terminal polymerization motif of archaeal and eukaryotic RecA family proteins are also present in bacterial RecAs. Reconstruction of electrostatic potential from the hexameric structure of HsRecA-ADP/ATP revealed a high positive charge along the inner side, where ssDNA is bound inside the filament. The properties of this surface may explain the greater capacity of HsRecA protein to bind ssDNA, forming a contiguous nucleoprotein filament, displace SSB and promote DNA exchange relative to EcRecA. Our functional and structural analyses provide insight into the molecular mechanisms of polymerization of bacterial RecA as a helical nucleoprotein filament. PMID:27447485

  4. Intermediate Filaments: A Historical Perspective

    PubMed Central

    Oshima, Robert G.

    2007-01-01

    Intracellular protein filaments intermediate in size between actin microfilaments and microtubules are composed of a surprising variety of tissue specific proteins commonly interconnected with other filamentous systems for mechanical stability and decorated by a variety of proteins that provide specialized functions. The sequence conservation of the coiled-coil, alpha-helical structure responsible for polymerization into individual 10 nm filaments defines the classification of intermediate filament proteins into a large gene family. Individual filaments further assemble into bundles and branched cytoskeletons visible in the light microscope. However, it is the diversity of the variable terminal domains that likely contributes most to different functions. The search for the functions of intermediate filament proteins has led to discoveries of roles in diseases of the skin, heart, muscle, liver, brain, adipose tissues and even premature aging. The diversity of uses of intermediate filaments as structural elements and scaffolds for organizing the distribution of decorating molecules contrasts with other cytoskeletal elements. This review is an attempt to provide some recollection of how such a diverse field emerged and changed over about 30 years. PMID:17493611

  5. Simulation of extreme ground water flow in the fractal crack structure of Earth's crust - impact on catastrophic floods

    NASA Astrophysics Data System (ADS)

    Bukharov, Dmitriy; Aleksey, Kucherik; Tatyana, Trifonova

    2014-05-01

    Recently, the contribution of groundwater in catastrophic floods is the question under discussion [1,2]. The principal problem in such an approach - to analyze the transportation ways for groundwater in dynamics, and especially - the reasons of exit it on land surface. The crackness, being a characteristic property for all rocks, should be associated with the process in respect of unified dynamic system as a river water basin is, taking into account fundamental phenomena of the 3D-crack network development/modification (up to faults) as a transport groundwater system [3]. 2. In the system of fractal cracks (connected with the main channel for groundwater) the formation of extreme flow is possible, i.e. a devastating case occurs by instantaneous flash mechanism. The development of such a process is related to two factors. First, within the main channel of propagation of the groundwater when a motion is turbulent. In accordance with the theory of Kolmogorov [4], we assume that such a turbulence is isotropic. The fact means that both velocity and pressure fields in the water flow have pulsations related to the non-linear energy transfer between the vortices. This approach allows us to determine both that a maximum possible size of the vortices defined by characteristic dimensions of the underground channel and another - a minimum size of their due to process of dissipation. Energy transfer in the eddies formed near a border, is a complex nonlinear process, which we described by using a modernized Prandtl semi-empirical model [5]. Second, the mechanism of groundwater propagation in the system of cracks extending from the main underground channel is described in the frames of the fractal geometry methods [6]. The approach allows to determine the degree of similarity in the crack system, i.e. the ratio of mean diameters and lengths of cracks/faults for each step of decomposition. The fact results in integrated quantitative characteristics of 3D-network in all, by fractal

  6. Fractal structure of large-scale variability of wind-driven waves according to laser-scanning data.

    PubMed

    Zosimov, V. V.; Naugol'nykh, K. A.

    1994-03-01

    Results are presented for experimental laser-scanning investigations of the statistical characteristics of wind-driven ocean waves. The method involves counting the number of specular points during scanning of the sea surface by a narrow laser beam on a moving ship. The data analyzed are the set of specular points recorded along a track traced out by the laser beam as a result of the motion of the ship and the scanning beam. A prominent feature is the large-scale variability of the number of specular points and the self-similar nature of the process over a rather wide range of spatial scales. A fractal analysis of the process shows a clear power-law interval in the spatial spectrum of the distribution of specular points.

  7. Unwinding motion of a twisted active region filament

    SciTech Connect

    Yan, X. L.; Xue, Z. K.; Kong, D. F.; Liu, J. H.; Xu, C. L.

    2014-12-10

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.

  8. Metabolic regulation via enzyme filamentation

    PubMed Central

    Aughey, Gabriel N.; Liu, Ji-Long

    2016-01-01

    Abstract Determining the mechanisms of enzymatic regulation is central to the study of cellular metabolism. Regulation of enzyme activity via polymerization-mediated strategies has been shown to be widespread, and plays a vital role in mediating cellular homeostasis. In this review, we begin with an overview of the filamentation of CTP synthase, which forms filamentous structures termed cytoophidia. We then highlight other important examples of the phenomenon. Moreover, we discuss recent data relating to the regulation of enzyme activity by compartmentalization into cytoophidia. Finally, we hypothesize potential roles for enzyme filament formation in the regulation of metabolism, development and disease. PMID:27098510

  9. Formation and evolution of magnetised filaments in wind-swept turbulent clumps

    NASA Astrophysics Data System (ADS)

    Banda-Barragan, Wladimir Eduardo; Federrath, Christoph; Crocker, Roland M.; Bicknell, Geoffrey Vincent; Parkin, Elliot Ross

    2015-08-01

    Using high-resolution three-dimensional simulations, we examine the formation and evolution of filamentary structures arising from magnetohydrodynamic interactions between supersonic winds and turbulent clumps in the interstellar medium. Previous numerical studies assumed homogenous density profiles, null velocity fields, and uniformly distributed magnetic fields as the initial conditions for interstellar clumps. Here, we have, for the first time, incorporated fractal clumps with log-normal density distributions, random velocity fields and turbulent magnetic fields (superimposed on top of a uniform background field). Disruptive processes, instigated by dynamical instabilities and akin to those observed in simulations with uniform media, lead to stripping of clump material and the subsequent formation of filamentary tails. The evolution of filaments in uniform and turbulent models is, however, radically different as evidenced by comparisons of global quantities in both scenarios. We show, for example, that turbulent clumps produce tails with higher velocity dispersions, increased gas mixing, greater kinetic energy, and lower plasma beta than their uniform counterparts. We attribute the observed differences to: 1) the turbulence-driven enhanced growth of dynamical instabilities (e.g. Kelvin-Helmholtz and Rayleigh-Taylor instabilities) at fluid interfaces, and 2) the localised amplification of magnetic fields caused by the stretching of field lines trapped in the numerous surface deformations of fractal clumps. We briefly discuss the implications of this work to the physics of the optical filaments observed in the starburst galaxy M82.

  10. Unification of two fractal families

    NASA Astrophysics Data System (ADS)

    Liu, Ying

    1995-06-01

    Barnsley and Hurd classify the fractal images into two families: iterated function system fractals (IFS fractals) and fractal transform fractals, or local iterated function system fractals (LIFS fractals). We will call IFS fractals, class 2 fractals and LIFS fractals, class 3 fractals. In this paper, we will unify these two approaches plus another family of fractals, the class 5 fractals. The basic idea is given as follows: a dynamical system can be represented by a digraph, the nodes in a digraph can be divided into two parts: transient states and persistent states. For bilevel images, a persistent node is a black pixel. A transient node is a white pixel. For images with more than two gray levels, a stochastic digraph is used. A transient node is a pixel with the intensity of 0. The intensity of a persistent node is determined by a relative frequency. In this way, the two families of fractals can be generated in a similar way. In this paper, we will first present a classification of dynamical systems and introduce the transformation based on digraphs, then we will unify the two approaches for fractal binary images. We will compare the decoding algorithms of the two families. Finally, we will generalize the discussion to continuous-tone images.

  11. Preparation and characterization of fractal elastomer surfaces.

    PubMed

    Nonomura, Yoshimune; Seino, Eri; Abe, Saya; Mayama, Hiroyuki

    2013-01-01

    The elastomer materials with hierarchical structure and suitable wettability are useful as biological surface model. In the present study, urethane resin and silicone resin elastomers with hierarchical rough surfaces were prepared and referred to as "fractal elastomers". We found a hierarchy of small projections that existed over larger ones on these surfaces. These elastomers were synthesized by transferring a fractal surface structure of alkylketene dimer. The rough structure enhanced the hydrophobicity and weakened friction resistance of the elastomer surfaces. These materials can be useful for artificial skin with biomimetic surface properties. PMID:23985488

  12. Triggering filamentation using turbulence

    NASA Astrophysics Data System (ADS)

    Eeltink, D.; Berti, N.; Marchiando, N.; Hermelin, S.; Gateau, J.; Brunetti, M.; Wolf, J. P.; Kasparian, J.

    2016-09-01

    We study the triggering of single filaments due to turbulence in the beam path for a laser of power below the filamenting threshold. Turbulence can act as a switch between the beam not filamenting and producing single filaments. This positive effect of turbulence on the filament probability, combined with our observation of off-axis filaments, suggests the underlying mechanism is modulation instability caused by transverse perturbations. We hereby experimentally explore the interaction of modulation instability and turbulence, commonly associated with multiple filaments, in the single-filament regime.

  13. Laser light scattering as a probe of fractal colloid aggregates

    NASA Technical Reports Server (NTRS)

    Weitz, David A.; Lin, M. Y.

    1989-01-01

    The extensive use of laser light scattering is reviewed, both static and dynamic, in the study of colloid aggregation. Static light scattering enables the study of the fractal structure of the aggregates, while dynamic light scattering enables the study of aggregation kinetics. In addition, both techniques can be combined to demonstrate the universality of the aggregation process. Colloidal aggregates are now well understood and therefore represent an excellent experimental system to use in the study of the physical properties of fractal objects. However, the ultimate size of fractal aggregates is fundamentally limited by gravitational acceleration which will destroy the fractal structure as the size of the aggregates increases. This represents a great opportunity for spaceborne experimentation, where the reduced g will enable the growth of fractal structures of sufficient size for many interesting studies of their physical properties.

  14. Electrodynamic properties of fractal clusters

    NASA Astrophysics Data System (ADS)

    Maksimenko, V. V.; Zagaynov, V. A.; Agranovski, I. E.

    2014-07-01

    An influence of interference on a character of light interaction both with individual fractal cluster (FC) consisting of nanoparticles and with agglomerates of such clusters is investigated. Using methods of the multiple scattering theory, effective dielectric permeability of a micron-size FC composed of non-absorbing nanoparticles is calculated. The cluster could be characterized by a set of effective dielectric permeabilities. Their number coincides with the number of particles, where space arrangement in the cluster is correlated. If the fractal dimension is less than some critical value and frequency corresponds to the frequency of the visible spectrum, then the absolute value of effective dielectric permeability becomes very large. This results in strong renormalization (decrease) of the incident radiation wavelength inside the cluster. The renormalized photons are cycled or trapped inside the system of multi-scaled cavities inside the cluster. A lifetime of a photon localized inside an agglomerate of FCs is a macroscopic value allowing to observe the stimulated emission of the localized light. The latter opens up a possibility for creation of lasers without inverse population of energy levels. Moreover, this allows to reconsider problems of optical cloaking of macroscopic objects. One more feature of fractal structures is a possibility of unimpeded propagation of light when any resistance associated with scattering disappears.

  15. Rheological and fractal hydrodynamics of aerobic granules.

    PubMed

    Tijani, H I; Abdullah, N; Yuzir, A; Ujang, Zaini

    2015-06-01

    The structural and hydrodynamic features for granules were characterized using settling experiments, predefined mathematical simulations and ImageJ-particle analyses. This study describes the rheological characterization of these biologically immobilized aggregates under non-Newtonian flows. The second order dimensional analysis defined as D2=1.795 for native clusters and D2=1.099 for dewatered clusters and a characteristic three-dimensional fractal dimension of 2.46 depicts that these relatively porous and differentially permeable fractals had a structural configuration in close proximity with that described for a compact sphere formed via cluster-cluster aggregation. The three-dimensional fractal dimension calculated via settling-fractal correlation, U∝l(D) to characterize immobilized granules validates the quantitative measurements used for describing its structural integrity and aggregate complexity. These results suggest that scaling relationships based on fractal geometry are vital for quantifying the effects of different laminar conditions on the aggregates' morphology and characteristics such as density, porosity, and projected surface area.

  16. Characterization of branch complexity by fractal analyses

    USGS Publications Warehouse

    Alados, C.L.; Escos, J.; Emlen, J.M.; Freeman, D.C.

    1999-01-01

    The comparison between complexity in the sense of space occupancy (box-counting fractal dimension D(c) and information dimension D1) and heterogeneity in the sense of space distribution (average evenness index f and evenness variation coefficient J(cv)) were investigated in mathematical fractal objects and natural branch structures. In general, increased fractal dimension was paired with low heterogeneity. Comparisons between branch architecture in Anthyllis cytisoides under different slope exposure and grazing impact revealed that branches were more complex and more homogeneously distributed for plants on northern exposures than southern, while grazing had no impact during a wet year. Developmental instability was also investigated by the statistical noise of the allometric relation between internode length and node order. In conclusion, our study demonstrated that fractal dimension of branch structure can be used to analyze the structural organization of plants, especially if we consider not only fractal dimension but also shoot distribution within the canopy (lacunarity). These indexes together with developmental instability analyses are good indicators of growth responses to the environment.

  17. Structural features of sugars that trigger or support conidial germination in the filamentous fungus Aspergillus niger.

    PubMed

    Hayer, Kimran; Stratford, Malcolm; Archer, David B

    2013-11-01

    The asexual spores (conidia) of Aspergillus niger germinate to produce hyphae under appropriate conditions. Germination is initiated by conidial swelling and mobilization of internal carbon and energy stores, followed by polarization and emergence of a hyphal germ tube. The effects of different pyranose sugars, all analogues of d-glucose, on the germination of A. niger conidia were explored, and we define germination as the transition from a dormant conidium into a germling. Within germination, we distinguish two distinct stages, the initial swelling of the conidium and subsequent polarized growth. The stage of conidial swelling requires a germination trigger, which we define as a compound that is sensed by the conidium and which leads to catabolism of d-trehalose and isotropic growth. Sugars that triggered germination and outgrowth included d-glucose, d-mannose, and d-xylose. Sugars that triggered germination but did not support subsequent outgrowth included d-tagatose, d-lyxose, and 2-deoxy-d-glucose. Nontriggering sugars included d-galactose, l-glucose, and d-arabinose. Certain nontriggering sugars, including d-galactose, supported outgrowth if added in the presence of a complementary triggering sugar. This division of functions indicates that sugars are involved in two separate events in germination, triggering and subsequent outgrowth, and the structural features of sugars that support each, both, or none of these events are discussed. We also present data on the uptake of sugars during the germination process and discuss possible mechanisms of triggering in the absence of apparent sugar uptake during the initial swelling of conidia.

  18. Bacillus subtilis Bactofilins Are Essential for Flagellar Hook- and Filament Assembly and Dynamically Localize into Structures of Less than 100 nm Diameter underneath the Cell Membrane.

    PubMed

    El Andari, Jihad; Altegoer, Florian; Bange, Gert; Graumann, Peter L

    2015-01-01

    Bactofilins are a widely conserved protein family implicated in cell shape maintenance and in bacterial motility. We show that the bactofilins BacE and BacF from Bacillus subtilis are essential for motility. The proteins are required for the establishment of flagellar hook- and filament structures, but apparently not for the formation of basal bodies. Functional YFP fusions to BacE and to BacF localize as discrete assemblies at the B. subtilis cell membrane, and have a diameter of 60 to 70 nm. BacF assemblies are relatively static, and partially colocalize with flagellar basal bodies, while BacE assemblies are fewer per cell than those of BacF and are highly mobile. Tracking of BacE foci showed that the assemblies arrest at a single point for a few hundred milliseconds, showing that a putative interaction with flagellar structures would be transient and fast. When overexpressed or expressed in a heterologous cell system, bactofilins can form filamentous structures, and also form multimers as purified proteins. Our data reveal a propensity for bactofilins to form filaments, however, in B. subtilis cells, bactofilins assemble into defined size assemblies that show a dynamic localization pattern and play a role in flagellar assembly. PMID:26517549

  19. Bacillus subtilis Bactofilins Are Essential for Flagellar Hook- and Filament Assembly and Dynamically Localize into Structures of Less than 100 nm Diameter underneath the Cell Membrane

    PubMed Central

    El Andari, Jihad; Altegoer, Florian; Bange, Gert; Graumann, Peter L.

    2015-01-01

    Bactofilins are a widely conserved protein family implicated in cell shape maintenance and in bacterial motility. We show that the bactofilins BacE and BacF from Bacillus subtilis are essential for motility. The proteins are required for the establishment of flagellar hook- and filament structures, but apparently not for the formation of basal bodies. Functional YFP fusions to BacE and to BacF localize as discrete assemblies at the B. subtilis cell membrane, and have a diameter of 60 to 70 nm. BacF assemblies are relatively static, and partially colocalize with flagellar basal bodies, while BacE assemblies are fewer per cell than those of BacF and are highly mobile. Tracking of BacE foci showed that the assemblies arrest at a single point for a few hundred milliseconds, showing that a putative interaction with flagellar structures would be transient and fast. When overexpressed or expressed in a heterologous cell system, bactofilins can form filamentous structures, and also form multimers as purified proteins. Our data reveal a propensity for bactofilins to form filaments, however, in B. subtilis cells, bactofilins assemble into defined size assemblies that show a dynamic localization pattern and play a role in flagellar assembly. PMID:26517549

  20. Foolin' with Fractals.

    ERIC Educational Resources Information Center

    Clark, Garry

    1999-01-01

    Reports on a mathematical investigation of fractals and highlights the thinking involved, problem solving strategies used, generalizing skills required, the role of technology, and the role of mathematics. (ASK)

  1. PARTIAL SLINGSHOT RECONNECTION BETWEEN TWO FILAMENTS

    SciTech Connect

    Jiang, Yunchun; Hong, Junchao; Yang, Jiayan; Bi, Yi; Zheng, Ruisheng; Yang, Bo; Li, Haidong; Yang, Dan

    2013-02-10

    We present a rare observation of an interaction between two filaments around AR 11358 and AR 11361 on 2011 December 3 that is strongly suggestive of the occurrence of slingshot reconnection. A small elbow-shaped active-region filament (F12) underwent a failed eruption that brought it into contact with a nearby larger, thicker filament (F34). Accompanied by the appearance of complicated internal structures below the erupting F12, its two legs separated away from each other and then connected into F34. This process led the filaments to change their connectivity to form two newly linked filaments, and one of them showed a clear inverse {gamma}-shape. However, the alteration in the filament connectivity was imperfect since F34 is discernible after the eruption. These observations can be interpreted as a partial slingshot reconnection between two filaments that had unequal axial magnetic flux.

  2. Role of (p)ppGpp in biofilm formation and expression of filamentous structures in Bordetella pertussis.

    PubMed

    Sugisaki, Kentaro; Hanawa, Tomoko; Yonezawa, Hideo; Osaki, Takako; Fukutomi, Toshiyuki; Kawakami, Hayato; Yamamoto, Tomoko; Kamiya, Shigeru

    2013-07-01

    Bordetella pertussis, the causative agent of whooping cough, is highly adapted to cause human infection. The production of virulence factors, such as adhesins and toxins, is just part of an array of mechanisms by which B. pertussis causes infection. The stringent response is a global bacterial response to nutritional limitation that is mediated by the accumulation of cellular ppGpp and pppGpp [termed together as (p)ppGpp]. Here, we demonstrate that production of (p)ppGpp was controlled by RelA and SpoT proteins in B. pertussis, and that mutation-induced loss of both proteins together caused deficiencies in (p)ppGpp production. The (p)ppGpp-deficient mutants also exhibited defects in growth regulation, decreases in viability under nutritionally limited conditions, increases in susceptibility to oxidative stress and defects in biofilm formation. Analysis of the secreted proteins and the respective transcripts showed that lack of (p)ppGpp led to decreased expression of fim3 and bsp22, which encode a fimbrial subunit and the self-polymerizing type III secretion system tip protein, respectively. Moreover, electron microscopic analysis also indicated that (p)ppGpp regulated the formation of filamentous structures. Most virulence genes - including fim3 and bsp22 - were expressed in the Bvg(+) phase during which the BvgAS two-component system was activated. Although fim3 and bsp22 were downregulated in a (p)ppGpp-deficient mutant, normal expression of fhaB, cyaA and ptxA persisted. Lack of coherence between virulence gene expression and (p)ppGpp production indicated that (p)ppGpp did not modulate the Bvg phase. Taken together, our data indicate that (p)ppGpp may govern an as-yet-unrecognized system that influences B. pertussis pathogenicity.

  3. Assembly of Superparamagnetic Filaments in External Field.

    PubMed

    Wei, Jiachen; Song, Fan; Dobnikar, Jure

    2016-09-13

    We present a theoretical and simulation study of anchored magneto-elastic filaments in external magnetic field. The filaments are composed of a mixture of superparamagnetic and nonmagnetic colloidal beads interlinked with elastic springs. We explore the steady-state structures of filaments with various composition and bending rigidity subject to external magnetic field parallel to the surface. The interplay of elastic and induced magnetic interactions results in a rich phase behavior with morphologies reminiscent of macromolecular folding: bent filaments, loops, sheets, helicoids, and other collapsed structures. Our results provide new insights into the design of hierarchically assembled supramolecular structures with controlled response to external stimuli. PMID:27536958

  4. Hierarchical socioeconomic fractality: The rich, the poor, and the middle-class

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo; Cohen, Morrel H.

    2014-05-01

    Since the seminal work of the Italian economist Vilfredo Pareto, the study of wealth and income has been a topic of active scientific exploration engaging researches ranging from economics and political science to econophysics and complex systems. This paper investigates the intrinsic fractality of wealth and income. To that end we introduce and characterize three forms of socioeconomic scale-invariance-poor fractality, rich fractality, and middle-class fractality-and construct hierarchical fractal approximations of general wealth and income distributions, based on the stitching of these three forms of fractality. Intertwining the theoretical results with real-world empirical data we then establish that the three forms of socioeconomic fractality-amalgamated into a composite hierarchical structure-underlie the distributions of wealth and income in human societies. We further establish that the hierarchical socioeconomic fractality of wealth and income is also displayed by empirical rank distributions observed across the sciences.

  5. On the Classification of Fractal Squares

    NASA Astrophysics Data System (ADS)

    Luo, Jun Jason; Liu, Jing-Cheng

    2016-01-01

    In the previous paper [K. S. Lau, J. J. Luo and H. Rao, Topological structure of fractal squares, Math. Proc. Camb. Phil. Soc. 155 (2013) 73-86], Lau, Luo and Rao completely classified the topological structure of so called fractal square F defined by F = (F + 𝒟)/n, where 𝒟 ⊊ {0, 1,…,n - 1}2,n ≥ 2. In this paper, we further provide simple criteria for the F to be totally disconnected, then we discuss the Lipschitz classification of F in the case n = 3, which is an attempt to consider non-totally disconnected sets.

  6. Wave interactions with continuous fractal layers

    NASA Technical Reports Server (NTRS)

    Kim, Y.; Jaggard, D. L.

    1991-01-01

    Many natural structures possess self-similar multiscales which can be characterized by power law spectra. Under appropriate conditions, knowledge of the strength of these scale sizes provides information on the physical processes which formed these objects. In this paper, we investigate wave interactions with continuous fractal layers which model geological and variegated structures. Since fractal characteristics of the layers are embedded in the scattered field, they can be retrieved under appropriate conditions. This inversion can be performed in either the frequency or the time domain as desired.

  7. Fractal analysis of yeast cell optical speckle

    NASA Astrophysics Data System (ADS)

    Flamholz, A.; Schneider, P. S.; Subramaniam, R.; Wong, P. K.; Lieberman, D. H.; Cheung, T. D.; Burgos, J.; Leon, K.; Romero, J.

    2006-02-01

    Steady state laser light propagation in diffuse media such as biological cells generally provide bulk parameter information, such as the mean free path and absorption, via the transmission profile. The accompanying optical speckle can be analyzed as a random spatial data series and its fractal dimension can be used to further classify biological media that show similar mean free path and absorption properties, such as those obtained from a single population. A population of yeast cells can be separated into different portions by centrifuge, and microscope analysis can be used to provide the population statistics. Fractal analysis of the speckle suggests that lower fractal dimension is associated with higher cell packing density. The spatial intensity correlation revealed that the higher cell packing gives rise to higher refractive index. A calibration sample system that behaves similar as the yeast samples in fractal dimension, spatial intensity correlation and diffusion was selected. Porous silicate slabs with different refractive index values controlled by water content were used for system calibration. The porous glass as well as the yeast random spatial data series fractal dimension was found to depend on the imaging resolution. The fractal method was also applied to fission yeast single cell fluorescent data as well as aging yeast optical data; and consistency was demonstrated. It is concluded that fractal analysis can be a high sensitivity tool for relative comparison of cell structure but that additional diffusion measurements are necessary for determining the optimal image resolution. Practical application to dental plaque bio-film and cam-pill endoscope images was also demonstrated.

  8. Colocalization properties of elementary Ca(2+) release signals with structures specific to the contractile filaments and the tubular system of intact mouse skeletal muscle fibers.

    PubMed

    Georgiev, Tihomir; Zapiec, Bolek; Förderer, Moritz; Fink, Rainer H A; Vogel, Martin

    2015-12-01

    Ca(2+) regulates several important intracellular processes. We combined second harmonic generation (SHG) and two photon excited fluorescence microscopy (2PFM) to simultaneously record the SHG signal of the myosin filaments and localized elementary Ca(2+) release signals (LCSs). We found LCSs associated with Y-shaped structures of the myosin filament pattern (YMs), so called verniers, in intact mouse skeletal muscle fibers under hypertonic treatment. Ion channels crucial for the Ca(2+) regulation are located in the tubular system, a system that is important for Ca(2+) regulation and excitation-contraction coupling. We investigated the tubular system of intact, living mouse skeletal muscle fibers using 2PFM and the fluorescent Ca(2+) indicator Fluo-4 dissolved in the external solution or the membrane dye di-8-ANEPPS. We simultaneously measured the SHG signal from the myosin filaments of the skeletal muscle fibers. We found that at least a subset of the YMs observed in SHG images are closely juxtaposed with Y-shaped structures of the transverse tubules (YTs). The distances of corresponding YMs and YTs yield values between 1.3 μm and 4.1 μm including pixel uncertainty with a mean distance of 2.52±0.10 μm (S.E.M., n=41). Additionally, we observed that some of the linear-shaped areas in the tubular system are colocalized with linear-shaped areas in the SHG images.

  9. Neurofilament architecture combines structural principles of intermediate filaments with carboxy-terminal extensions increasing in size between triplet proteins.

    PubMed Central

    Geisler, N; Kaufmann, E; Fischer, S; Plessmann, U; Weber, K

    1983-01-01

    Mammalian neurofilament triplet proteins (68 K, 160 K and 200 K) have been correlated by a biochemical, immunological and protein chemical study. The 160 K and 200 K triplet proteins are intermediate filament proteins in their own right, since they reveal the alpha-helical coiled-coil rod domain analyzed in detail for the 68 K protein. Triplet proteins display two distinct arrays. Their amino-terminal region built analogously to non-neuronal intermediate filament proteins should allow a co-polymerization process via the interaction of coiled-coil domains. The extra mass of all triplet proteins is allocated to carboxy-terminally located extensions of increasing size and unique amino acid sequences. These may provide highly charged scaffolds suitable for interactions with other neuronal components. Such a domain of 68 K reveals, in sequence analysis, 47 glutamic acids within 106 residues. The epitope recognized by a monoclonal antibody reacting probably with all intermediate filament proteins has been mapped. It is located within the last 20 residues of the rods, where six distinct intermediate filament proteins point to a consensus sequence. Images Fig. 1. PMID:10872323

  10. Observations of an active region filament

    NASA Astrophysics Data System (ADS)

    Zong, W. G.; Tang, Y. H.; Fang, C.; Xu, A. A.

    An active region filament was well observed on September 4, 2002 with THEMIS at the Teide observatory and SOHO/MDI. The full Stokes parameters of the filament were obtained in Hα and FeI 6302 Å lines. Using the data, we have studied the fine structure of the filament and obtained the parameters at the barb endpoints, including intensity, velocity and longitudinal magnetic field. Our results indicate: (a) the Doppler velocities are quiet different at barb endpoints; (b) the longitudinal magnetic fields at the barb endpoints are very weak; (c) there is a strong magnetic field structure under the filament spine.

  11. Fractal dimension and nonlinear dynamical processes

    NASA Astrophysics Data System (ADS)

    McCarty, Robert C.; Lindley, John P.

    1993-11-01

    Mandelbrot, Falconer and others have demonstrated the existence of dimensionally invariant geometrical properties of non-linear dynamical processes known as fractals. Barnsley defines fractal geometry as an extension of classical geometry. Such an extension, however, is not mathematically trivial Of specific interest to those engaged in signal processing is the potential use of fractal geometry to facilitate the analysis of non-linear signal processes often referred to as non-linear time series. Fractal geometry has been used in the modeling of non- linear time series represented by radar signals in the presence of ground clutter or interference generated by spatially distributed reflections around the target or a radar system. It was recognized by Mandelbrot that the fractal geometries represented by man-made objects had different dimensions than the geometries of the familiar objects that abound in nature such as leaves, clouds, ferns, trees, etc. The invariant dimensional property of non-linear processes suggests that in the case of acoustic signals (active or passive) generated within a dispersive medium such as the ocean environment, there exists much rich structure that will aid in the detection and classification of various objects, man-made or natural, within the medium.

  12. Fractal Patterns and Chaos Games

    ERIC Educational Resources Information Center

    Devaney, Robert L.

    2004-01-01

    Teachers incorporate the chaos game and the concept of a fractal into various areas of the algebra and geometry curriculum. The chaos game approach to fractals provides teachers with an opportunity to help students comprehend the geometry of affine transformations.

  13. Building Fractal Models with Manipulatives.

    ERIC Educational Resources Information Center

    Coes, Loring

    1993-01-01

    Uses manipulative materials to build and examine geometric models that simulate the self-similarity properties of fractals. Examples are discussed in two dimensions, three dimensions, and the fractal dimension. Discusses how models can be misleading. (Contains 10 references.) (MDH)

  14. [Morphogenesis in a community of filamentous cyanobacteria].

    PubMed

    Sumina, E L; Sumin, D L

    2013-01-01

    Reversible differentiation was experimentally discovered in a community of modern filamentous cyanobacteria Oscillatoria terebriformis. Splitting of the initially uniform community into differentiated parts (strands, multiradiate aggregates, networks, etc.) occurs only for the duration of a function facilitating the activity of this community as an integral unit. The structures are formed as a result of regrouping of the filaments, without their specialization. A morphologically regulatory system (polygonal network) was found to develop under the impact of extreme factors. The levels of structural organization of filamentous cyanobacteria and multicellular eukaryotes were compared (individual cells in a filament--cell organelles; filaments--individual cells; community--organism), and the similarities and differences in morphogenesis of these groups were analyzed using the data on the embryonic regulation in multicellular eukaryotes. Spatial information in morphogenesis was shown to result not from direct realization of an inherited program but is created by the elements of integral organisms (cells and filaments) in the course of development.

  15. Fractals for Geoengineering

    NASA Astrophysics Data System (ADS)

    Oleshko, Klaudia; de Jesús Correa López, María; Romero, Alejandro; Ramírez, Victor; Pérez, Olga

    2016-04-01

    The effectiveness of fractal toolbox to capture the scaling or fractal probability distribution, and simply fractal statistics of main hydrocarbon reservoir attributes, was highlighted by Mandelbrot (1995) and confirmed by several researchers (Zhao et al., 2015). Notwithstanding, after more than twenty years, it's still common the opinion that fractals are not useful for the petroleum engineers and especially for Geoengineering (Corbett, 2012). In spite of this negative background, we have successfully applied the fractal and multifractal techniques to our project entitled "Petroleum Reservoir as a Fractal Reactor" (2013 up to now). The distinguishable feature of Fractal Reservoir is the irregular shapes and rough pore/solid distributions (Siler, 2007), observed across a broad range of scales (from SEM to seismic). At the beginning, we have accomplished the detailed analysis of Nelson and Kibler (2003) Catalog of Porosity and Permeability, created for the core plugs of siliciclastic rocks (around ten thousand data were compared). We enriched this Catalog by more than two thousand data extracted from the last ten years publications on PoroPerm (Corbett, 2012) in carbonates deposits, as well as by our own data from one of the PEMEX, Mexico, oil fields. The strong power law scaling behavior was documented for the major part of these data from the geological deposits of contrasting genesis. Based on these results and taking into account the basic principles and models of the Physics of Fractals, introduced by Per Back and Kan Chen (1989), we have developed new software (Muukíl Kaab), useful to process the multiscale geological and geophysical information and to integrate the static geological and petrophysical reservoir models to dynamic ones. The new type of fractal numerical model with dynamical power law relations among the shapes and sizes of mesh' cells was designed and calibrated in the studied area. The statistically sound power law relations were established

  16. Chaperonin filaments: The archaeal cytoskeleton?

    PubMed Central

    Trent, Jonathan D.; Kagawa, Hiromi K.; Yaoi, Takuro; Olle, Eric; Zaluzec, Nestor J.

    1997-01-01

    Chaperonins are high molecular mass double-ring structures composed of 60-kDa protein subunits. In the hyperthermophilic archaeon Sulfolobus shibatae the two chaperonin proteins represent ≈4% of its total protein and have a combined intracellular concentration of >30 mg/ml. At concentrations ≥ 0.5 mg/ml purified chaperonins form filaments in the presence of Mg2+ and nucleotides. Filament formation requires nucleotide binding (not hydrolysis), and occurs at physiological temperatures in biologically relevant buffers, including a buffer made from cell extracts. These observations suggest that chaperonin filaments may exist in vivo and the estimated 4600 chaperonins per cell suggest that such filaments could form an extensive cytostructure. We observed filamentous structures in unfixed, uranyl-acetate-stained S. shibatae cells, which resemble the chaperonin filaments in size and appearance. ImmunoGold (Janssen) labeling using chaperonin antibodies indicated that many chaperonins are associated with insoluble cellular structures and these structures appear to be filamentous in some areas, although they could not be uranyl-acetate-stained. The existence of chaperonin filaments in vivo suggests a mechanism whereby their protein-folding activities can be regulated. More generally, the filaments themselves may play a cytoskeletal role in Archaea. PMID:9144246

  17. Fractal dimension of bioconvection patterns

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1990-01-01

    Shallow cultures of the motile algal strain, Euglena gracilis, were concentrated to 2 x 10 to the 6th organisms per ml and placed in constant temperature water baths at 24 and 38 C. Bioconvective patterns formed an open two-dimensional structure with random branches, similar to clusters encountered in the diffusion-limited aggregation (DLA) model. When averaged over several example cultures, the pattern was found to have no natural length scale, self-similar branching, and a fractal dimension (d about 1.7). These agree well with the two-dimensional DLA.

  18. Lava flows are fractals

    NASA Technical Reports Server (NTRS)

    Bruno, B. C.; Taylor, G. J.; Rowland, S. K.; Lucey, P. G.; Self, S.

    1992-01-01

    Results are presented of a preliminary investigation of the fractal nature of the plan-view shapes of lava flows in Hawaii (based on field measurements and aerial photographs), as well as in Idaho and the Galapagos Islands (using aerial photographs only). The shapes of the lava flow margins are found to be fractals: lava flow shape is scale-invariant. This observation suggests that nonlinear forces are operating in them because nonlinear systems frequently produce fractals. A'a and pahoehoe flows can be distinguished by their fractal dimensions (D). The majority of the a'a flows measured have D between 1.05 and 1.09, whereas the pahoehoe flows generally have higher D (1.14-1.23). The analysis is extended to other planetary bodies by measuring flows from orbital images of Venus, Mars, and the moon. All are fractal and have D consistent with the range of terrestrial a'a and have D consistent with the range of terrestrial a'a and pahoehoe values.

  19. Fractal design concepts for stretchable electronics.

    PubMed

    Fan, Jonathan A; Yeo, Woon-Hong; Su, Yewang; Hattori, Yoshiaki; Lee, Woosik; Jung, Sung-Young; Zhang, Yihui; Liu, Zhuangjian; Cheng, Huanyu; Falgout, Leo; Bajema, Mike; Coleman, Todd; Gregoire, Dan; Larsen, Ryan J; Huang, Yonggang; Rogers, John A

    2014-01-01

    Stretchable electronics provide a foundation for applications that exceed the scope of conventional wafer and circuit board technologies due to their unique capacity to integrate with soft materials and curvilinear surfaces. The range of possibilities is predicated on the development of device architectures that simultaneously offer advanced electronic function and compliant mechanics. Here we report that thin films of hard electronic materials patterned in deterministic fractal motifs and bonded to elastomers enable unusual mechanics with important implications in stretchable device design. In particular, we demonstrate the utility of Peano, Greek cross, Vicsek and other fractal constructs to yield space-filling structures of electronic materials, including monocrystalline silicon, for electrophysiological sensors, precision monitors and actuators, and radio frequency antennas. These devices support conformal mounting on the skin and have unique properties such as invisibility under magnetic resonance imaging. The results suggest that fractal-based layouts represent important strategies for hard-soft materials integration.

  20. Fractal design concepts for stretchable electronics

    NASA Astrophysics Data System (ADS)

    Fan, Jonathan A.; Yeo, Woon-Hong; Su, Yewang; Hattori, Yoshiaki; Lee, Woosik; Jung, Sung-Young; Zhang, Yihui; Liu, Zhuangjian; Cheng, Huanyu; Falgout, Leo; Bajema, Mike; Coleman, Todd; Gregoire, Dan; Larsen, Ryan J.; Huang, Yonggang; Rogers, John A.

    2014-02-01

    Stretchable electronics provide a foundation for applications that exceed the scope of conventional wafer and circuit board technologies due to their unique capacity to integrate with soft materials and curvilinear surfaces. The range of possibilities is predicated on the development of device architectures that simultaneously offer advanced electronic function and compliant mechanics. Here we report that thin films of hard electronic materials patterned in deterministic fractal motifs and bonded to elastomers enable unusual mechanics with important implications in stretchable device design. In particular, we demonstrate the utility of Peano, Greek cross, Vicsek and other fractal constructs to yield space-filling structures of electronic materials, including monocrystalline silicon, for electrophysiological sensors, precision monitors and actuators, and radio frequency antennas. These devices support conformal mounting on the skin and have unique properties such as invisibility under magnetic resonance imaging. The results suggest that fractal-based layouts represent important strategies for hard-soft materials integration.

  1. Deterministic fractals: extracting additional information from small-angle scattering data.

    PubMed

    Cherny, A Yu; Anitas, E M; Osipov, V A; Kuklin, A I

    2011-09-01

    The small-angle scattering curves of deterministic mass fractals are studied and analyzed in momentum space. In the fractal region, the curve I(q)q(D) is found to be log-periodic with good accuracy, and the period is equal to the scaling factor of the fractal. Here, D and I(q) are the fractal dimension and the scattering intensity, respectively. The number of periods of this curve coincides with the number of fractal iterations. We show that the log-periodicity of I(q)q(D) in the momentum space is related to the log-periodicity of the quantity g(r)r(3-D) in the real space, where g(r) is the pair distribution function. The minima and maxima positions of the scattering intensity are estimated explicitly by relating them to the pair distance distribution in real space. It is shown that the minima and maxima are damped with increasing polydispersity of the fractal sets; however, they remain quite pronounced even at sufficiently large values of polydispersity. A generalized self-similar Vicsek fractal with controllable fractal dimension is introduced, and its scattering properties are studied to illustrate the above findings. In contrast with the usual methods, the present analysis allows us to obtain not only the fractal dimension and the edges of the fractal region, but also the fractal iteration number, the scaling factor, and the number of structural units from which the fractal is composed.

  2. Preliminary Study of 2D Fracture Upscaling of Geothermal Rock Using IFS Fractal Model

    NASA Astrophysics Data System (ADS)

    Tobing, Prana F. L.; Feranie, Selly; Latief, Fourier D. E.

    2016-08-01

    Fractured rock plays important role in reservoir production. In larger scale, fractures are more likely to be heterogeneous and considered to be fractal in its nature. One of the characteristics of fractal structure is the scale independence. An investigation of fractal properties on natural fractured rock is therefore needed for modelling larger fracture. We have investigated the possibilities of fractal upscaling method to produce a larger geothermal fracture model based on smaller fracture data. We generate Iterated Function System (IFS) fractal model using parameters e.g. scale factor, angle between branch, initial line direction, and branch thickness. All the model parameters are obtained from smaller fracture data. We generate higher iteration model to be compared with larger geothermal fracture. The similarity between the IFS fractal model and natural fracture is measured by 2D box counting fractal dimension (D). The fractal dimension of first to fourth generation fractal model is (1.86 ± 0.02). The fractal dimension of the reference geothermal site is (1.86 ± 0.04). Besides of D, we found significant similarity of fracture parameters there are intensity and density between fracture model and natural fracture. Based on these result, we conclude that fractal upscaling using IFS fractal model is potential to model larger scale of 2D fracture.

  3. Self-Organization of Treadmilling Filaments

    NASA Astrophysics Data System (ADS)

    Doubrovinski, K.; Kruse, K.

    2007-11-01

    The cytoskeleton is an active network of polar filaments. The activity can lead to the polymerization of filaments at one end and depolymerization at the other. This phenomenon is called treadmilling and is essential for many cellular processes, in particular, the crawling of cells on a substrate. We develop a microscopic theoretical framework for describing systems of treadmilling filaments. We show that such systems can self-organize into structures observed in cell fragments, in particular, asters and moving spots.

  4. a Fractal Network Model for Fractured Porous Media

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Li, Cuihong; Qiu, Shuxia; Sasmito, Agus Pulung

    2016-04-01

    The transport properties and mechanisms of fractured porous media are very important for oil and gas reservoir engineering, hydraulics, environmental science, chemical engineering, etc. In this paper, a fractal dual-porosity model is developed to estimate the equivalent hydraulic properties of fractured porous media, where a fractal tree-like network model is used to characterize the fracture system according to its fractal scaling laws and topological structures. The analytical expressions for the effective permeability of fracture system and fractured porous media, tortuosity, fracture density and fraction are derived. The proposed fractal model has been validated by comparisons with available experimental data and numerical simulation. It has been shown that fractal dimensions for fracture length and aperture have significant effect on the equivalent hydraulic properties of fractured porous media. The effective permeability of fracture system can be increased with the increase of fractal dimensions for fracture length and aperture, while it can be remarkably lowered by introducing tortuosity at large branching angle. Also, a scaling law between the fracture density and fractal dimension for fracture length has been found, where the scaling exponent depends on the fracture number. The present fractal dual-porosity model may shed light on the transport physics of fractured porous media and provide theoretical basis for oil and gas exploitation, underground water, nuclear waste disposal and geothermal energy extraction as well as chemical engineering, etc.

  5. The fractal nature of vacuum arc cathode spots

    SciTech Connect

    Anders, Andre

    2005-05-27

    Cathode spot phenomena show many features of fractals, for example self-similar patterns in the emitted light and arc erosion traces. Although there have been hints on the fractal nature of cathode spots in the literature, the fractal approach to spot interpretation is underutilized. In this work, a brief review of spot properties is given, touching the differences between spot type 1 (on cathodes surfaces with dielectric layers) and spot type 2 (on metallic, clean surfaces) as well as the known spot fragment or cell structure. The basic properties of self-similarity, power laws, random colored noise, and fractals are introduced. Several points of evidence for the fractal nature of spots are provided. Specifically power laws are identified as signature of fractal properties, such as spectral power of noisy arc parameters (ion current, arc voltage, etc) obtained by fast Fourier transform. It is shown that fractal properties can be observed down to the cutoff by measurement resolution or occurrence of elementary steps in physical processes. Random walk models of cathode spot motion are well established: they go asymptotically to Brownian motion for infinitesimal step width. The power spectrum of the arc voltage noise falls as 1/f {sup 2}, where f is frequency, supporting a fractal spot model associated with Brownian motion.

  6. Comparison in fractal dimension between those obtained from structure factor and viscoelasticity of gel networks of 1,3:2,4-bis-O-(p-methylbenzylidene)-D-sorbitol in polystyrene melt at gel point

    NASA Astrophysics Data System (ADS)

    Takenaka, Mikihito; Kobayashi, Toshiaki; Saijo, Kenji; Tanaka, Hirokazu; Iwase, Naoki; Hashimoto, Takeji; Takahashi, Masaoki

    2004-08-01

    We investigated time evolution of shear moduli in the physical gelation process of 1,3:2,4-bis-O-(p-methylbenzylidene)-D-sorbitol in polystyrene melt. At the gel point, storage and loss shear moduli, G' and G″, were described by the power law of frequency ω, G'˜G″˜ωn, with the critical exponent n being nearly equal to 2/3, in agreement with the value predicted by the percolation theory. We also investigated the structure factor over two decades in length scale at gel point by using ultra-small-angle X-ray scattering, and small-angle X-ray scattering. We found the power-law behavior in low-q region, indicating that the gel network forms the self-similar structure with mass-fractal dimension. Comparison between the exponent of mass-fractal dimension from structure factor and that from viscoelasticity indicates that hydrodynamic interactions are completely screened out and the excluded volume effects are dominant in the gel. The gel strength was found to increase with the decrease in the lower limit length scale of fractality.

  7. Structural transitions in tau k18 on micelle binding suggest a hierarchy in the efficacy of individual microtubule-binding repeats in filament nucleation.

    PubMed

    Barré, Patrick; Eliezer, David

    2013-08-01

    The protein tau is found in an aggregated filamentous state in the intraneuronal paired helical filament deposits characteristic of Alzheimer's disease and other related dementias and mutations in tau protein and mRNA cause frontotemproal dementia. Tau isoforms include a microtubule-binding domain containing either three or four imperfect tandem microtubule binding repeats that also form the core of tau filaments and contain hexapaptide motifs that are critical for tau aggregation. The tau microtubule-binding domain can also engage in direct interactions with detergents, fatty acids, or membranes, which can greatly facilitate tau aggregation and may also mediate some tau functions. Here, we show that the alternatively spliced second microtubule-binding repeat exhibits significantly different structural characteristics compared with the other three repeats in the context of the intact repeat domain. Most notably, the PHF6* hexapeptide motif located at the N-terminus of repeat 2 has a lower propensity to form strand-like structure than the corresponding PHF6 motif in repeat 3, and unlike PHF6 converts to partially helical structure in the micelle-bound state. Interestingly, the behavior of the Module-B motif, located at the beginning of repeat 4, resembles that of PHF6* rather than PHF6. Our observations, combined with previous results showing that PHF6* and Module-B are both less effective than PHF6 in nucleating tau aggregation, suggest a hierarchy in the efficacy of these motifs in nucleating tau aggregation that originates in differences in their intrinsic propensities for extended strand-like structure and the resistance of these propensities to changes in tau's environment.

  8. [Recent progress of research and applications of fractal and its theories in medicine].

    PubMed

    Cai, Congbo; Wang, Ping

    2014-10-01

    Fractal, a mathematics concept, is used to describe an image of self-similarity and scale invariance. Some organisms have been discovered with the fractal characteristics, such as cerebral cortex surface, retinal vessel structure, cardiovascular network, and trabecular bone, etc. It has been preliminarily confirmed that the three-dimensional structure of cells cultured in vitro could be significantly enhanced by bionic fractal surface. Moreover, fractal theory in clinical research will help early diagnosis and treatment of diseases, reducing the patient's pain and suffering. The development process of diseases in the human body can be expressed by the fractal theories parameter. It is of considerable significance to retrospectively review the preparation and application of fractal surface and its diagnostic value in medicine. This paper gives an application of fractal and its theories in the medical science, based on the research achievements in our laboratory.

  9. Fractal reaction kinetics.

    PubMed

    Kopelman, R

    1988-09-23

    Classical reaction kinetics has been found to be unsatisfactory when the reactants are spatially constrained on the microscopic level by either walls, phase boundaries, or force fields. Recently discovered theories of heterogeneous reaction kinetics have dramatic consequences, such as fractal orders for elementary reactions, self-ordering and self-unmixing of reactants, and rate coefficients with temporal "memories." The new theories were needed to explain the results of experiments and supercomputer simulations of reactions that were confined to low dimensions or fractal dimensions or both. Among the practical examples of "fractal-like kinetics" are chemical reactions in pores of membranes, excitation trapping in molecular aggregates, exciton fusion in composite materials, and charge recombination in colloids and clouds.

  10. Isolation and structural elucidation of two secondary metabolites from the filamentous fungus Penicillium ochrochloron with antimicrobial activity.

    PubMed

    Rančić, Ana; Soković, Marina; Karioti, Anastasia; Vukojević, Jelena; Skaltsa, Helen

    2006-07-01

    In this investigation, the extracts of filamentous fungi exhibited inhibitory effect on the growth of Gram positive and Gram negative bacteria, as well as against the yeast Candida albicans. Penicillium ochrochloron has been proven as the most active fungus against all tested microorganisms. Further bio-guided chemical analysis of P. ochrochloron afforded two components with antimicrobial activity identified as (-) 2, 3, 4-trihydroxybutanamide and (-) erythritol.

  11. Relating a Prominence Observed from the Solar Optical Telescope on the Hinode Satellite to Known 3-D Structures of Filaments

    NASA Astrophysics Data System (ADS)

    Martin, S. F.; Panasenco, O.; Agah, Y.; Engvold, O.; Lin, Y.

    2009-12-01

    We address only a first step in relating limb and disk observations by illustrating and comparing the spines and barbs of three different quiescent prominences and filaments observed in Hα by three different telescopes. Although the appearance of the three quiescent prominences is quite different, we show that each consists of a spine, barbs extending from the spine, and arcs at the base of some of the curtains of barb threads.

  12. Structures, microfabrics, fractal analysis and temperature-pressure estimation of the Mesozoic Xingcheng-Taili ductile shear zone in the North China craton

    NASA Astrophysics Data System (ADS)

    Liang, Chenyue; Neubauer, Franz; Liu, Yongjiang; Jin, Wei; Zeng, Zuoxun; Bernroider, Manfred; Li, Weimin; Wen, Quanbo; Han, Guoqing; Zhao, Yingli

    2014-05-01

    orientation of quartz determined by electron back scatter diffraction (EBSD) suggest sinistral strike-slip displacement within a temperature at about 400 to 500° C. Quartz mainly shows low-temperature fabrics with dominant {0001}-slip system. As the deformed rocks show obvious deformation overprint, we have estimated flow stresses from dynamically recrystallized grain sizes of quartz separately. But coincident fractal analysis showed that the boundaries of recrystallized grains had statistically self similarities with the numbers of fractal dimension from 1.153 to 1.196 with the range of deformation temperatures from 500 to 600° C, which is corresponding to upper greenschist to lower amphibolite facies conditions. Together with published flow laws to estimated deformation rates between the region of 10-11 - 10-13 S-1depending on the temperature 500 ° C, and the paleo-stress was calculated with grain size of recrystallized quartz to be at 5.0 to 32.3 MPa. Even though the deformation history and kinematics are different, progressive microstructures and texture analysis indicate an overprint by the low-temperature deformation (D3). Typical regional-dynamic metamorphic conditions ere deduced by mineral pair hornblende-plagioclase and phengite barometry identified within the ductile shear zone. The hornblende-plagioclase pair of porphyritic granitic gneiss gives metamorphic conditions of T =450-500 ° C and p=0.39 GPa, which indicate a metamorphic grade of lower-amphibolite facies conditions and a depth of around 13 km estimated following a normal lithostatic pressure. All of the structural characteristics indicate that the Xingcheng-Taili ductile shear zone represents a mainly ENE-striking sinistral ductile strike-slip zone, which formed after intrusion of the Upper Jurassic biotite adamellite and transformed and superimposed previous deformation structures. This deformation event might have occurred in Early Cretaceous times and was related to the lithospheric thinning and

  13. Spatial variability structure of soil CO2 emission and soil physical and chemical properties characterized by fractal dimension in sugarcane areas

    NASA Astrophysics Data System (ADS)

    Bicalho, E. S.; Teixeira, D. B.; Panosso, A. R.; Perillo, L. I.; Iamaguti, J. L.; Pereira, G. T.; La Scala, N., Jr.

    2012-04-01

    Soil CO2 emission (FCO2) is influenced by chemical, physical and biological factors that affect the production of CO2 in the soil and its transport to the atmosphere, varying in time and space depending on environmental conditions, including the management of agricultural area. The aim of this study was to investigate the structure of spatial variability of FCO2 and soil properties by using fractal dimension (DF), derived from isotropic variograms at different scales, and construction of fractograms. The experimental area consisted of a regular grid of 60 × 60 m on sugarcane area under green management, containing 141 points spaced at minimum distances ranging from 0.5 to 10 m. Soil CO2 emission, soil temperature and soil moisture were evaluated over a period of 7 days, and soil chemical and physical properties were determined by sampling at a depth of 0.0 to 0.1 m. FCO2 showed an overall average of 1.51 µmol m-2 s-1, correlated significantly (p < 0.05) with soil physical factors such as soil bulk density, air-filled pore space, macroporosity and microporosity. Significant DF values were obtained in the characterization of FCO2 in medium and large scales (from 20 m). Variations in DF with the scale, which is the fractogram, indicate that the structure of FCO2 variability is similar to that observed for the soil temperature and total pore volume, and reverse for the other soil properties, except for macroporosity, sand content, soil organic matter, carbon stock, C/N ratio and CEC, which fractograms were not significantly correlated to the FCO2 fractogram. Thus, the structure of spatial variability for most soil properties, characterized by fractogram, presents a significant relationship with the structure of spatial variability of FCO2, generally with similar or dissimilar behavior, indicating the possibility of using the fractogram as tool to better observe the behavior of the spatial dependence of the variables along the scale.

  14. Fractal dimensions of sinkholes

    NASA Astrophysics Data System (ADS)

    Reams, Max W.

    1992-05-01

    Sinkhole perimeters are probably fractals ( D=1.209-1.558) for sinkholes with areas larger than 10,000 m 2, based on area-perimeter plots of digitized data from karst surfaces developed on six geologic units in the United States. The sites in Florida, Kentucky, Indiana and Missouri were studied using maps with a scale of 1:24, 000. Size-number distributions of sinkhole perimeters and areas may also be fractal, although data for small sinkholes is needed for verification. Studies based on small-scale maps are needed to evaluate the number and roughness of small sinkhole populations.

  15. Femtosecond Laser Filamentation for Atmospheric Sensing

    PubMed Central

    Xu, Huai Liang; Chin, See Leang

    2011-01-01

    Powerful femtosecond laser pulses propagating in transparent materials result in the formation of self-guided structures called filaments. Such filamentation in air can be controlled to occur at a distance as far as a few kilometers, making it ideally suited for remote sensing of pollutants in the atmosphere. On the one hand, the high intensity inside the filaments can induce the fragmentation of all matters in the path of filaments, resulting in the emission of characteristic fluorescence spectra (fingerprints) from the excited fragments, which can be used for the identification of various substances including chemical and biological species. On the other hand, along with the femtosecond laser filamentation, white-light supercontinuum emission in the infrared to UV range is generated, which can be used as an ideal light source for absorption Lidar. In this paper, we present an overview of recent progress concerning remote sensing of the atmosphere using femtosecond laser filamentation. PMID:22346566

  16. Femtosecond laser filamentation for atmospheric sensing.

    PubMed

    Xu, Huai Liang; Chin, See Leang

    2011-01-01

    Powerful femtosecond laser pulses propagating in transparent materials result in the formation of self-guided structures called filaments. Such filamentation in air can be controlled to occur at a distance as far as a few kilometers, making it ideally suited for remote sensing of pollutants in the atmosphere. On the one hand, the high intensity inside the filaments can induce the fragmentation of all matters in the path of filaments, resulting in the emission of characteristic fluorescence spectra (fingerprints) from the excited fragments, which can be used for the identification of various substances including chemical and biological species. On the other hand, along with the femtosecond laser filamentation, white-light supercontinuum emission in the infrared to UV range is generated, which can be used as an ideal light source for absorption Lidar. In this paper, we present an overview of recent progress concerning remote sensing of the atmosphere using femtosecond laser filamentation. PMID:22346566

  17. Scrape-off Layer Current Model for Filament Structure Observed during Edge Localized Modes (ELMs) in the DIII-D Tokamak

    SciTech Connect

    Takahashi, Hironori; Fredrickson, E. D.; Schaffer, M. J.

    2008-04-15

    The plasma in tokamaks often exhibits a relaxation oscillation called the edge localized mode (ELM), which is generally attributed to MHD instability driven by strong gradients at the plasma boundary. It is shown here that field-aligned currents flowing just outside the boundary may also play a role in the ELM process. The poloidal perturbation magnetic field during ELMs in the DIII–D tokamak calculated from measured currents can reproduce prominent observed features, including a narrow magnetic structure at the outboard midplane similar to filaments observed earlier in DIII–D and NSTX.

  18. Dependence of reactive metal layer on resistive switching in a bi-layer structure Ta/HfOx filament type resistive random access memory

    NASA Astrophysics Data System (ADS)

    Lee, Daeseok; Woo, Jiyong; Park, Sangsu; Cha, Euijun; Lee, Sangheon; Hwang, Hyunsang

    2014-02-01

    The dependence of reactive metal layer on resistive switching characteristics is investigated in a bi-layer structural Ta/HfOx filament type resistive random access memory (ReRAM). By increasing the oxygen absorption rate of the reactive metal layer, formation of an induced resistive switching region that led to significant changes in the resistive switching characteristics of the ReRAM was observed. Electrical and physical analyses showed that the induced TaOx-resistive switching region can result in self-compliance behavior, uniform resistive switching, and a gradual set process, which can be utilized for low power and analog operations.

  19. Classical Liquids in Fractal Dimension.

    PubMed

    Heinen, Marco; Schnyder, Simon K; Brady, John F; Löwen, Hartmut

    2015-08-28

    We introduce fractal liquids by generalizing classical liquids of integer dimensions d=1,2,3 to a noninteger dimension dl. The particles composing the liquid are fractal objects and their configuration space is also fractal, with the same dimension. Realizations of our generic model system include microphase separated binary liquids in porous media, and highly branched liquid droplets confined to a fractal polymer backbone in a gel. Here, we study the thermodynamics and pair correlations of fractal liquids by computer simulation and semianalytical statistical mechanics. Our results are based on a model where fractal hard spheres move on a near-critical percolating lattice cluster. The predictions of the fractal Percus-Yevick liquid integral equation compare well with our simulation results.

  20. Filamentation of plasma in the auroral region by an ion-ion instability - A process for the formation of bidimensional potential structures

    NASA Astrophysics Data System (ADS)

    Mottez, F.; Chanteur, G.; Roux, A.

    1992-07-01

    The nonlinear behavior of electrostatic ion waves generated by an ion beam flowing through a thermal ion and electron background in a strongly magnetized plasma is investigated by means of a 2D, explicit, electrostatic particle code. To follow the nonlinear evolution of these ion waves, a long-lasting simulation is run with a large simulation grid: 128 x 512 lambda(d). Beam ions are shown to generate oblique waves. The nonlinear beatings between these oblique waves produce purely transverse waves, which leads to a strong modulation of the density and of the electric potential in a direction transverse to the magnetic field. The transverse scale of these essentially field-aligned filaments is 10 rho(i), where rho(i) is the ion Larmor radius of beam ions. Within these filaments, relatively stable field-aligned density and potential structures develop. Unlike the potential structures that develop in a two-component plasma with downgoing electrons, these structures move upward.

  1. Structural characterization of filaments formed by human Xrcc4–Cernunnos/XLF complex involved in nonhomologous DNA end-joining

    PubMed Central

    Ropars, Virginie; Drevet, Pascal; Legrand, Pierre; Baconnais, Sonia; Amram, Jeremy; Faure, Guilhem; Márquez, José A.; Piétrement, Olivier; Guerois, Raphaël; Callebaut, Isabelle; Le Cam, Eric; Revy, Patrick; de Villartay, Jean-Pierre; Charbonnier, Jean-Baptiste

    2011-01-01

    Cernunnos/XLF is a core protein of the nonhomologous DNA end-joining (NHEJ) pathway that processes the majority of DNA double-strand breaks in mammals. Cernunnos stimulates the final ligation step catalyzed by the complex between DNA ligase IV and Xrcc4 (X4). Here we present the crystal structure of the X41–157-Cernunnos1–224 complex at 5.5-Å resolution and identify the relative positions of the two factors and their binding sites. The X-ray structure reveals a filament arrangement for X41–157 and Cernunnos1–224 homodimers mediated by repeated interactions through their N-terminal head domains. A filament arrangement of the X4–Cernunnos complex was confirmed by transmission electron microscopy analyses both with truncated and full-length proteins. We further modeled the interface and used structure-based site-directed mutagenesis and calorimetry to characterize the roles of various residues at the X4–Cernunnos interface. We identified four X4 residues (Glu55, Asp58, Met61, and Phe106) essential for the interaction with Cernunnos. These findings provide new insights into the molecular bases for stimulatory and bridging roles of Cernunnos in the final DNA ligation step. PMID:21768349

  2. Solution structure of the single-stranded DNA binding protein of the filamentous Pseudomonas phage Pf3: similarity to other proteins binding to single-stranded nucleic acids.

    PubMed Central

    Folmer, R H; Nilges, M; Konings, R N; Hilbers, C W

    1995-01-01

    The three-dimensional structure of the homodimeric single-stranded DNA binding protein encoded by the filamentous Pseudomonas bacteriophage Pf3 has been determined using heteronuclear multidimensional NMR techniques and restrained molecular dynamics. NMR experiments and structure calculations have been performed on a mutant protein (Phe36 --> His) that was successfully designed to reduce the tendency of the protein to aggregate. The protein monomer is composed of a five-stranded antiparallel beta-sheet from which two beta-hairpins and a large loop protrude. The structure is compared with the single-stranded DNA binding protein encoded by the filamentous Escherichia coli phage Ff, a protein with a similar biological function and DNA binding properties, yet quite different amino acid sequence, and with the major cold shock protein of Escherichia coli, a single-stranded DNA binding protein with an entirely different sequence, biological function and binding characteristics. The amino acid sequence of the latter is highly homologous to the nucleic acid binding domain (i.e. the cold shock domain) of proteins belonging to the Y-box family. Despite their differences in amino acid sequence and function, the folds of the three proteins are remarkably similar, suggesting that this is a preferred folding pattern shared by many single-stranded DNA binding proteins. Images PMID:7556054

  3. A Fractal Excursion.

    ERIC Educational Resources Information Center

    Camp, Dane R.

    1991-01-01

    After introducing the two-dimensional Koch curve, which is generated by simple recursions on an equilateral triangle, the process is extended to three dimensions with simple recursions on a regular tetrahedron. Included, for both fractal sequences, are iterative formulae, illustrations of the first several iterations, and a sample PASCAL program.…

  4. Focus on Fractals.

    ERIC Educational Resources Information Center

    Marks, Tim K.

    1992-01-01

    Presents a three-lesson unit that uses fractal geometry to measure the coastline of Massachusetts. Two lessons provide hands-on activities utilizing compass and grid methods to perform the measurements and the third lesson analyzes and explains the results of the activities. (MDH)

  5. Filament Eruption Onset

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2011-01-01

    We have been investigating filament eruptions in recent years. Use filament eruptions as markers of the coronal field evolution. Data from SoHO, Yohkoh, TRACE, Hinode, and other sources. We and others have observed: (1)Filaments often show slow rise, followed by fast rise, (2) Brightenings, preflares, microflares during slow rise (3) Magnetic evolution in hours prior to eruption onset. We investigated What do Hinode and SDO show for filament eruptions?

  6. Comprehensive fractal description of porosity of coal of different ranks.

    PubMed

    Ren, Jiangang; Zhang, Guocheng; Song, Zhimin; Liu, Gaofeng; Li, Bing

    2014-01-01

    We selected, as the objects of our research, lignite from the Beizao Mine, gas coal from the Caiyuan Mine, coking coal from the Xiqu Mine, and anthracite from the Guhanshan Mine. We used the mercury intrusion method and the low-temperature liquid nitrogen adsorption method to analyze the structure and shape of the coal pores and calculated the fractal dimensions of different aperture segments in the coal. The experimental results show that the fractal dimension of the aperture segment of lignite, gas coal, and coking coal with an aperture of greater than or equal to 10 nm, as well as the fractal dimension of the aperture segment of anthracite with an aperture of greater than or equal to 100 nm, can be calculated using the mercury intrusion method; the fractal dimension of the coal pore, with an aperture range between 2.03 nm and 361.14 nm, can be calculated using the liquid nitrogen adsorption method, of which the fractal dimensions bounded by apertures of 10 nm and 100 nm are different. Based on these findings, we defined and calculated the comprehensive fractal dimensions of the coal pores and achieved the unity of fractal dimensions for full apertures of coal pores, thereby facilitating, overall characterization for the heterogeneity of the coal pore structure.

  7. Comprehensive fractal description of porosity of coal of different ranks.

    PubMed

    Ren, Jiangang; Zhang, Guocheng; Song, Zhimin; Liu, Gaofeng; Li, Bing

    2014-01-01

    We selected, as the objects of our research, lignite from the Beizao Mine, gas coal from the Caiyuan Mine, coking coal from the Xiqu Mine, and anthracite from the Guhanshan Mine. We used the mercury intrusion method and the low-temperature liquid nitrogen adsorption method to analyze the structure and shape of the coal pores and calculated the fractal dimensions of different aperture segments in the coal. The experimental results show that the fractal dimension of the aperture segment of lignite, gas coal, and coking coal with an aperture of greater than or equal to 10 nm, as well as the fractal dimension of the aperture segment of anthracite with an aperture of greater than or equal to 100 nm, can be calculated using the mercury intrusion method; the fractal dimension of the coal pore, with an aperture range between 2.03 nm and 361.14 nm, can be calculated using the liquid nitrogen adsorption method, of which the fractal dimensions bounded by apertures of 10 nm and 100 nm are different. Based on these findings, we defined and calculated the comprehensive fractal dimensions of the coal pores and achieved the unity of fractal dimensions for full apertures of coal pores, thereby facilitating, overall characterization for the heterogeneity of the coal pore structure. PMID:24955407

  8. Comprehensive Fractal Description of Porosity of Coal of Different Ranks

    PubMed Central

    Ren, Jiangang; Zhang, Guocheng; Song, Zhimin; Liu, Gaofeng; Li, Bing

    2014-01-01

    We selected, as the objects of our research, lignite from the Beizao Mine, gas coal from the Caiyuan Mine, coking coal from the Xiqu Mine, and anthracite from the Guhanshan Mine. We used the mercury intrusion method and the low-temperature liquid nitrogen adsorption method to analyze the structure and shape of the coal pores and calculated the fractal dimensions of different aperture segments in the coal. The experimental results show that the fractal dimension of the aperture segment of lignite, gas coal, and coking coal with an aperture of greater than or equal to 10 nm, as well as the fractal dimension of the aperture segment of anthracite with an aperture of greater than or equal to 100 nm, can be calculated using the mercury intrusion method; the fractal dimension of the coal pore, with an aperture range between 2.03 nm and 361.14 nm, can be calculated using the liquid nitrogen adsorption method, of which the fractal dimensions bounded by apertures of 10 nm and 100 nm are different. Based on these findings, we defined and calculated the comprehensive fractal dimensions of the coal pores and achieved the unity of fractal dimensions for full apertures of coal pores, thereby facilitating, overall characterization for the heterogeneity of the coal pore structure. PMID:24955407

  9. Light Scattering From Fractal Titania Aggregates

    NASA Astrophysics Data System (ADS)

    Pande, Rajiv; Sorensen, Christopher M.

    1996-03-01

    We studied the fractal morphology of titania aggregates by light scattering. Titanium dioxide particles were generated by the thermal decomposition of titanium tetra-isopropoxide(TTIP) in a glass furnace at various temperatures in the range of 100 - 500^o C. We scattered vertically polarized He-Ne laser (λ = 6328Ålight from a laminar aerosol stream of particles and measured the optical structure factor. This structure factor shows Rayleigh, Guinier, fractal and Porod regimes. The radius of gyration Rg was determined from the Guinier analysis. The data were then fit to the Fisher-Burford form to determine the fractal dimension of about 2.0. This fit also delineated the crossover from the fractal to Porod regime, which can be used to determine the monomer particle size of about 0.1 μm. These optical measurements will be compared to electron microscope analysis of aggregates collected from the aerosol. This work was supported by NSF grant CTS-9908153.

  10. Study on Solidification of Phase Change Material in Fractal Porous Metal Foam

    NASA Astrophysics Data System (ADS)

    Zhang, Chengbin; Wu, Liangyu; Chen, Yongping

    2015-02-01

    The Sierpinski fractal is introduced to construct the porous metal foam. Based on this fractal description, an unsteady heat transfer model accompanied with solidification phase change in fractal porous metal foam embedded with phase change material (PCM) is developed and numerically analyzed. The heat transfer processes associated with solidification of PCM embedded in fractal structure is investigated and compared with that in single-pore structure. The results indicate that, for the solidification of phase change material in fractal porous metal foam, the PCM is dispersedly distributed in metal foam and the existence of porous metal matrix provides a fast heat flow channel both horizontally and vertically, which induces the enhancement of interstitial heat transfer between the solid matrix and PCM. The solidification performance of the PCM, which is represented by liquid fraction and solidification time, in fractal structure is superior to that in single-pore structure.

  11. Structural Studies of Interactions between Cardiac Troponin I and Actin in Regulated Thin Filament using Förster Resonance Energy Transfer

    PubMed Central

    Xing, Jun; Chinnaraj, Mathivanan; Zhang, Zhihong; Cheung, Herbert C.; Dong, Wen-Ji

    2008-01-01

    The Ca2+-induced interaction between cardiac troponin I (cTnI) and actin plays a key role in the regulation of cardiac muscle contraction and relaxation. In this report we investigated changes of this interaction in response to strong crossbridge formation between myosin S1 and actin and PKA phosphorylation of cTnI within reconstituted thin filament. The interaction was monitored by measuring Förster resonance energy transfer (FRET) between the fluorescent donor 5-(iodoacetamidoethyl)aminonaphthalene-1-sulfonic acid (AEDANS) attached to the residues 131, 151, 160 167, 188 and 210 of cTnI and the nonfluorescent acceptor 4-dimethylaminophenylazophenyl-4′-maleimide (DABM) attached to cysteine 374 of actin. The FRET distance measurements showed that bound Ca2+ induced large increases in the distances from actin to the cTnI sites, indicating a Ca2+-triggered separation of actin from cTnI. Strongly bound myosin S1 induced additional increases in these distances in the presence of bound Ca2+. These two-step changes in the observed FRET distances provide a direct link of structural changes at the interface between cTnI and actin to the three-state model of thin filament regulation of muscle contraction and relaxation. When cTnC was inactivated through mutations of key residues within the 12-residue Ca2+-binding loop, strongly bound S1 alone induced increases in the distances in spite of the fact that the filaments no longer bound regulatory Ca2+. These results suggest bound Ca2+ or strongly bound S1 alone can partially activate thin filament, but full activation requires both bound Ca2+ and strongly bound S1. The distributions of the FRET distances revealed different structural dynamics associated with different regions of cTnI in different biochemical states. The second actin-binding region appears more rigid than the inhibitory/regulatory region. In the Mg2+ state, the regulatory region appears more flexible than the inhibitory region, and in the Ca2+ state, the

  12. Intermediate Filaments in Caenorhabditis elegans.

    PubMed

    Zuela, Noam; Gruenbaum, Yosef

    2016-01-01

    More than 70 different genes in humans and 12 different genes in Caenorhabditis elegans encode the superfamily of intermediate filament (IF) proteins. In C. elegans, similar to humans, these proteins are expressed in a cell- and tissue-specific manner, can assemble into heteropolymers and into 5-10nm wide filaments that account for the principal structural elements at the nuclear periphery, nucleoplasm, and cytoplasm. At least 5 of the 11 cytoplasmic IFs, as well as the nuclear IF, lamin, are essential. In this chapter, we will include a short review of our current knowledge of both cytoplasmic and nuclear IFs in C. elegans and will describe techniques used for their analyses.

  13. Nonequilibrium transport in superconducting filaments

    NASA Technical Reports Server (NTRS)

    Arutyunov, K. YU.; Danilova, N. P.; Nikolaeva, A. A.

    1995-01-01

    The step-like current-voltage characteristics of highly homogeneous single-crystalline tin and indium thin filaments has been measured. The length of the samples L approximately 1 cm was much greater than the nonequilibrium quasiparticle relaxation length Lambda. It was found that the activation of a successive i-th voltage step occurs at current significantly greater than the one derived with the assumption that the phase slip centers are weakly interacting on a scale L much greater than Lambda. The observation of 'subharmonic' fine structure on the voltage-current characteristics of tin filaments confirms the hypothesis of the long-range phase slip centers interaction.

  14. Fractal Physiology and the Fractional Calculus: A Perspective

    PubMed Central

    West, Bruce J.

    2010-01-01

    This paper presents a restricted overview of Fractal Physiology focusing on the complexity of the human body and the characterization of that complexity through fractal measures and their dynamics, with fractal dynamics being described by the fractional calculus. Not only are anatomical structures (Grizzi and Chiriva-Internati, 2005), such as the convoluted surface of the brain, the lining of the bowel, neural networks and placenta, fractal, but the output of dynamical physiologic networks are fractal as well (Bassingthwaighte et al., 1994). The time series for the inter-beat intervals of the heart, inter-breath intervals and inter-stride intervals have all been shown to be fractal and/or multifractal statistical phenomena. Consequently, the fractal dimension turns out to be a significantly better indicator of organismic functions in health and disease than the traditional average measures, such as heart rate, breathing rate, and stride rate. The observation that human physiology is primarily fractal was first made in the 1980s, based on the analysis of a limited number of datasets. We review some of these phenomena herein by applying an allometric aggregation approach to the processing of physiologic time series. This straight forward method establishes the scaling behavior of complex physiologic networks and some dynamic models capable of generating such scaling are reviewed. These models include simple and fractional random walks, which describe how the scaling of correlation functions and probability densities are related to time series data. Subsequently, it is suggested that a proper methodology for describing the dynamics of fractal time series may well be the fractional calculus, either through the fractional Langevin equation or the fractional diffusion equation. A fractional operator (derivative or integral) acting on a fractal function, yields another fractal function, allowing us to construct a fractional Langevin equation to describe the evolution of a

  15. Fractal frontiers in cardiovascular magnetic resonance: towards clinical implementation.

    PubMed

    Captur, Gabriella; Karperien, Audrey L; Li, Chunming; Zemrak, Filip; Tobon-Gomez, Catalina; Gao, Xuexin; Bluemke, David A; Elliott, Perry M; Petersen, Steffen E; Moon, James C

    2015-09-07

    Many of the structures and parameters that are detected, measured and reported in cardiovascular magnetic resonance (CMR) have at least some properties that are fractal, meaning complex and self-similar at different scales. To date however, there has been little use of fractal geometry in CMR; by comparison, many more applications of fractal analysis have been published in MR imaging of the brain.This review explains the fundamental principles of fractal geometry, places the fractal dimension into a meaningful context within the realms of Euclidean and topological space, and defines its role in digital image processing. It summarises the basic mathematics, highlights strengths and potential limitations of its application to biomedical imaging, shows key current examples and suggests a simple route for its successful clinical implementation by the CMR community.By simplifying some of the more abstract concepts of deterministic fractals, this review invites CMR scientists (clinicians, technologists, physicists) to experiment with fractal analysis as a means of developing the next generation of intelligent quantitative cardiac imaging tools.

  16. How is kinematic structure connected to the core scale from filament scale?; Mopra mapping observations with multi-lines of dense cores in Lupus I

    NASA Astrophysics Data System (ADS)

    Kiyokane, Kazuhiro; Saito, Masao; Tachihara, Kengo; Saigo, Kazuya; van Kempen, Tim; Cortes, Paulo; Hill, Tracey; Knee, Lewis; Kurono, Yasutaka; Takahashi, Satoko; Aya, Higuchi; Nyman, Lars-Ake

    2014-06-01

    Recently, high sensitivity mappings of nearby molecular clouds in far-infrared and submillimeter wavelengths with Hershel and AzTEC/ASTE show ubiquitous existence of the filamentary structures with 0.1-pc uniform width. It is important to investigate dense core formation from large scale structure via fragmentation. We have conducted MOPRA multi-line mapping observations covered on 0.02 - 0.2 pc scales of 8 dense cores in a filamentary cloud of nearby Lupus I at 140 pc. A class 0/I protostellar core IRAS 15398-3359 is included as a sample, which has an adjacent prestellar core with the separation of 0.13pc in the west. The maps of N2H+, HNC, HC3N show well associated with each core. The velocity field of C18O shows 1.4 km/s/pc from north to south over the region containing two dense cores, which is consistent with past observation of NANTEN. In contrast to C18O results, the velocity field of HC3N shows different structures, which suggest counter rotation of two dense cores; 1.2 km/s/pc from north-west to south-east around a protostellar core and 0.8 km/s/pc from east to west around a presteller core. The filament will be fragmentized and collapsed to dense cores when the line density is over 2Cs/G (where Cs is sound speed and G is gravitational constant). If that velocity gradient was caused by such situation, it should be red-blue-red-blue across two dense cores but the observed kinematics is not consistent with this scenario, which requires that the filament structure would be extremely curved with a skew angle. Although we cannot reject the collapsing interruption, those results suggest the spin-up rotating picture separated from large-scale structure.

  17. Side-binding proteins modulate actin filament dynamics.

    PubMed

    Crevenna, Alvaro H; Arciniega, Marcelino; Dupont, Aurélie; Mizuno, Naoko; Kowalska, Kaja; Lange, Oliver F; Wedlich-Söldner, Roland; Lamb, Don C

    2015-01-01

    Actin filament dynamics govern many key physiological processes from cell motility to tissue morphogenesis. A central feature of actin dynamics is the capacity of filaments to polymerize and depolymerize at their ends in response to cellular conditions. It is currently thought that filament kinetics can be described by a single rate constant for each end. In this study, using direct visualization of single actin filament elongation, we show that actin polymerization kinetics at both filament ends are strongly influenced by the binding of proteins to the lateral filament surface. We also show that the pointed-end has a non-elongating state that dominates the observed filament kinetic asymmetry. Estimates of flexibility as well as effects on fragmentation and growth suggest that the observed kinetic diversity arises from structural alteration. Tuning elongation kinetics by exploiting the malleability of the filament structure may be a ubiquitous mechanism to generate a rich variety of cellular actin dynamics. PMID:25706231

  18. Inhibitory region of troponin I: Ca(2+)-dependent structural and environmental changes in the troponin-tropomyosin complex and in reconstituted thin filaments.

    PubMed

    Kobayashi, T; Kobayashi, M; Gryczynski, Z; Lakowicz, J R; Collins, J H

    2000-01-11

    In muscle thin filaments, the inhibitory region (residues 96-117) of troponin I (TnI) is thought to interact with troponin C (TnC) in the presence of Ca(2+) and with actin in the absence of Ca(2+). To better understand these interactions, we prepared mutant TnIs which contained a single Cys-96 or Cys-117 and labeled them with the thiol-specific fluorescent probe N-(iodoacetyl)-N'-(1-sulfo-5-naphthyl)ethylenediamine (IAEDANS). We characterized the microenvironments of the AEDANS labels on TnI in the presence and absence of Ca(2+) by measuring the extent of acrylamide quenching of fluorescence and lifetime-resolved anisotropy. In the troponin-tropomyosin (Tn-Tm) complex, the AEDANS labels on both Cys-96 and Cys-117 were less accessible to solvent and less flexible in the presence of Ca(2+), reflecting closer interactions with TnC under these conditions. In reconstituted thin filaments, the environment of the AEDANS on Cys-96 was not greatly affected by Ca(2+), while the AEDANS on Cys-117 was more accessible but significantly less flexible as it moved away from actin and interacted strongly with TnC in the presence of Ca(2+). We used fluorescence resonance energy transfer (FRET) to measure distances between AEDANS on TnI Cys-96 or Cys-117 and 4-¿[(dimethylamino)phenyl]azo¿phenyl-4'-maleimide (DABmal) on actin Cys-374 in reconstituted thin filaments. In the absence of Ca(2+), the mean distances were 40.2 A for Cys-96 and 35.2 A for Cys-117. In the presence of Ca(2+), Cys-96 moved away from actin Cys-374 by approximately 3.6 A, while Cys-117 moved away by approximately 8 A. This suggests the existence of a flexible "hinge" region near the middle of TnI, allowing amino acid residues in the N-terminal half of TnI to interact with TnC in a Ca(2+)-independent manner, while the C-terminal half of TnI binds to actin in the absence of Ca(2+) or to TnC in the presence of Ca(2+). This is the first report to demonstrate structural movement of the inhibitory region of TnI in the

  19. Pond fractals in a tidal flat.

    PubMed

    Cael, B B; Lambert, Bennett; Bisson, Kelsey

    2015-11-01

    Studies over the past decade have reported power-law distributions for the areas of terrestrial lakes and Arctic melt ponds, as well as fractal relationships between their areas and coastlines. Here we report similar fractal structure of ponds in a tidal flat, thereby extending the spatial and temporal scales on which such phenomena have been observed in geophysical systems. Images taken during low tide of a tidal flat in Damariscotta, Maine, reveal a well-resolved power-law distribution of pond sizes over three orders of magnitude with a consistent fractal area-perimeter relationship. The data are consistent with the predictions of percolation theory for unscreened perimeters and scale-free cluster size distributions and are robust to alterations of the image processing procedure. The small spatial and temporal scales of these data suggest this easily observable system may serve as a useful model for investigating the evolution of pond geometries, while emphasizing the generality of fractal behavior in geophysical surfaces. PMID:26651668

  20. Pond fractals in a tidal flat.

    PubMed

    Cael, B B; Lambert, Bennett; Bisson, Kelsey

    2015-11-01

    Studies over the past decade have reported power-law distributions for the areas of terrestrial lakes and Arctic melt ponds, as well as fractal relationships between their areas and coastlines. Here we report similar fractal structure of ponds in a tidal flat, thereby extending the spatial and temporal scales on which such phenomena have been observed in geophysical systems. Images taken during low tide of a tidal flat in Damariscotta, Maine, reveal a well-resolved power-law distribution of pond sizes over three orders of magnitude with a consistent fractal area-perimeter relationship. The data are consistent with the predictions of percolation theory for unscreened perimeters and scale-free cluster size distributions and are robust to alterations of the image processing procedure. The small spatial and temporal scales of these data suggest this easily observable system may serve as a useful model for investigating the evolution of pond geometries, while emphasizing the generality of fractal behavior in geophysical surfaces.

  1. Fractal analysis of narwhal space use patterns.

    PubMed

    Laidre, Kristin L; Heide-Jørgensen, Mads P; Logsdon, Miles L; Hobbs, Roderick C; Dietz, Rune; VanBlaricom, Glenn R

    2004-01-01

    Quantifying animal movement in response to a spatially and temporally heterogeneous environment is critical to understanding the structural and functional landscape influences on population viability. Generalities of landscape structure can easily be extended to the marine environment, as marine predators inhabit a patchy, dynamic system, which influences animal choice and behavior. An innovative use of the fractal measure of complexity, indexing the linearity of movement paths over replicate temporal scales, was applied to satellite tracking data collected from narwhals (Monodon monoceros) (n = 20) in West Greenland and the eastern Canadian high Arctic. Daily movements of individuals were obtained using polar orbiting satellites via the ARGOS data location and collection system. Geographic positions were filtered to obtain a daily good quality position for each whale. The length of total pathway was measured over seven different temporal length scales (step lengths), ranging from one day to one week, and a seasonal mean was calculated. Fractal dimension (D) was significantly different between seasons, highest during summer (D = 1.61, SE 0.04) and winter (D = 1.69, SE 0.06) when whales made convoluted movements in focal areas. Fractal dimension was lowest during fall (D = 1.34, SE 0.03) when whales were migrating south ahead of the forming sea ice. There were no significant effects of size category or sex on fractal dimension by season. The greater linearity of movement during the migration period suggests individuals do not intensively forage on patchy resources until they arrive at summer or winter sites. The highly convoluted movements observed during summer and winter suggest foraging or searching efforts in localized areas. Significant differences between the fractal dimensions on two separate wintering grounds in Baffin Bay suggest differential movement patterns in response to the dynamics of sea ice. PMID:16351924

  2. Fractal analysis of narwhal space use patterns.

    PubMed

    Laidre, Kristin L; Heide-Jørgensen, Mads P; Logsdon, Miles L; Hobbs, Roderick C; Dietz, Rune; VanBlaricom, Glenn R

    2004-01-01

    Quantifying animal movement in response to a spatially and temporally heterogeneous environment is critical to understanding the structural and functional landscape influences on population viability. Generalities of landscape structure can easily be extended to the marine environment, as marine predators inhabit a patchy, dynamic system, which influences animal choice and behavior. An innovative use of the fractal measure of complexity, indexing the linearity of movement paths over replicate temporal scales, was applied to satellite tracking data collected from narwhals (Monodon monoceros) (n = 20) in West Greenland and the eastern Canadian high Arctic. Daily movements of individuals were obtained using polar orbiting satellites via the ARGOS data location and collection system. Geographic positions were filtered to obtain a daily good quality position for each whale. The length of total pathway was measured over seven different temporal length scales (step lengths), ranging from one day to one week, and a seasonal mean was calculated. Fractal dimension (D) was significantly different between seasons, highest during summer (D = 1.61, SE 0.04) and winter (D = 1.69, SE 0.06) when whales made convoluted movements in focal areas. Fractal dimension was lowest during fall (D = 1.34, SE 0.03) when whales were migrating south ahead of the forming sea ice. There were no significant effects of size category or sex on fractal dimension by season. The greater linearity of movement during the migration period suggests individuals do not intensively forage on patchy resources until they arrive at summer or winter sites. The highly convoluted movements observed during summer and winter suggest foraging or searching efforts in localized areas. Significant differences between the fractal dimensions on two separate wintering grounds in Baffin Bay suggest differential movement patterns in response to the dynamics of sea ice.

  3. Fractals in geology and geophysics

    NASA Technical Reports Server (NTRS)

    Turcotte, Donald L.

    1989-01-01

    The definition of a fractal distribution is that the number of objects N with a characteristic size greater than r scales with the relation N of about r exp -D. The frequency-size distributions for islands, earthquakes, fragments, ore deposits, and oil fields often satisfy this relation. This application illustrates a fundamental aspect of fractal distributions, scale invariance. The requirement of an object to define a scale in photograhs of many geological features is one indication of the wide applicability of scale invariance to geological problems; scale invariance can lead to fractal clustering. Geophysical spectra can also be related to fractals; these are self-affine fractals rather than self-similar fractals. Examples include the earth's topography and geoid.

  4. Langevin Equation on Fractal Curves

    NASA Astrophysics Data System (ADS)

    Satin, Seema; Gangal, A. D.

    2016-07-01

    We analyze random motion of a particle on a fractal curve, using Langevin approach. This involves defining a new velocity in terms of mass of the fractal curve, as defined in recent work. The geometry of the fractal curve, plays an important role in this analysis. A Langevin equation with a particular model of noise is proposed and solved using techniques of the Fα-Calculus.

  5. Fractal rigidity in migraine

    NASA Astrophysics Data System (ADS)

    Latka, Miroslaw; Glaubic-Latka, Marta; Latka, Dariusz; West, Bruce J.

    2004-04-01

    We study the middle cerebral artery blood flow velocity (MCAfv) in humans using transcranial Doppler ultrasonography (TCD). Scaling properties of time series of the axial flow velocity averaged over a cardiac beat interval may be characterized by two exponents. The short time scaling exponent (STSE) determines the statistical properties of fluctuations of blood flow velocities in short-time intervals while the Hurst exponent describes the long-term fractal properties. In many migraineurs the value of the STSE is significantly reduced and may approach that of the Hurst exponent. This change in dynamical properties reflects the significant loss of short-term adaptability and the overall hyperexcitability of the underlying cerebral blood flow control system. We call this effect fractal rigidity.

  6. Fractal geometry of some Martian lava flow margins: Alba Patera

    NASA Technical Reports Server (NTRS)

    Kauhanen, K.

    1993-01-01

    Fractal dimension for a few lava flow margins on the gently sloping flanks of Alba Patera were measured using the structured walk method. Fractal behavior was observed at scales ranging from 20 to 100 pixels. The upper limit of the linear part of log(margin length) vs. log(scale) profile correlated well to the margin length. The lower limit depended on resolution and flow properties.

  7. Fractal multifiber microchannel plates

    NASA Technical Reports Server (NTRS)

    Cook, Lee M.; Feller, W. B.; Kenter, Almus T.; Chappell, Jon H.

    1992-01-01

    The construction and performance of microchannel plates (MCPs) made using fractal tiling mehtods are reviewed. MCPs with 40 mm active areas having near-perfect channel ordering were produced. These plates demonstrated electrical performance characteristics equivalent to conventionally constructed MCPs. These apparently are the first MCPs which have a sufficiently high degree of order to permit single channel addressability. Potential applications for these devices and the prospects for further development are discussed.

  8. Fractals in biology and medicine

    NASA Technical Reports Server (NTRS)

    Havlin, S.; Buldyrev, S. V.; Goldberger, A. L.; Mantegna, R. N.; Ossadnik, S. M.; Peng, C. K.; Simons, M.; Stanley, H. E.

    1995-01-01

    Our purpose is to describe some recent progress in applying fractal concepts to systems of relevance to biology and medicine. We review several biological systems characterized by fractal geometry, with a particular focus on the long-range power-law correlations found recently in DNA sequences containing noncoding material. Furthermore, we discuss the finding that the exponent alpha quantifying these long-range correlations ("fractal complexity") is smaller for coding than for noncoding sequences. We also discuss the application of fractal scaling analysis to the dynamics of heartbeat regulation, and report the recent finding that the normal heart is characterized by long-range "anticorrelations" which are absent in the diseased heart.

  9. Dimension of fractal basin boundaries

    SciTech Connect

    Park, B.S.

    1988-01-01

    In many dynamical systems, multiple attractors coexist for certain parameter ranges. The set of initial conditions that asymptotically approach each attractor is its basin of attraction. These basins can be intertwined on arbitrary small scales. Basin boundary can be either smooth or fractal. Dynamical systems that have fractal basin boundary show final state sensitivity of the initial conditions. A measure of this sensitivity (uncertainty exponent {alpha}) is related to the dimension of the basin boundary d = D - {alpha}, where D is the dimension of the phase space and d is the dimension of the basin boundary. At metamorphosis values of the parameter, there might happen a conversion from smooth to fractal basin boundary (smooth-fractal metamorphosis) or a conversion from fractal to another fractal basin boundary characteristically different from the previous fractal one (fractal-fractal metamorphosis). The dimension changes continuously with the parameter except at the metamorphosis values where the dimension of the basin boundary jumps discontinuously. We chose the Henon map and the forced damped pendulum to investigate this. Scaling of the basin volumes near the metamorphosis values of the parameter is also being studied for the Henon map. Observations are explained analytically by using low dimensional model map.

  10. Investigating Fractal Geometry Using LOGO.

    ERIC Educational Resources Information Center

    Thomas, David A.

    1989-01-01

    Discusses dimensionality in Euclidean geometry. Presents methods to produce fractals using LOGO. Uses the idea of self-similarity. Included are program listings and suggested extension activities. (MVL)

  11. Fractal trace of earthworms

    NASA Astrophysics Data System (ADS)

    Burdzy, Krzysztof; Hołyst, Robert; Pruski, Łukasz

    2013-05-01

    We investigate a process of random walks of a point particle on a two-dimensional square lattice of size n×n with periodic boundary conditions. A fraction p⩽20% of the lattice is occupied by holes (p represents macroporosity). A site not occupied by a hole is occupied by an obstacle. Upon a random step of the walker, a number of obstacles, M, can be pushed aside. The system approaches equilibrium in (nlnn)2 steps. We determine the distribution of M pushed in a single move at equilibrium. The distribution F(M) is given by Mγ where γ=-1.18 for p=0.1, decreasing to γ=-1.28 for p=0.01. Irrespective of the initial distribution of holes on the lattice, the final equilibrium distribution of holes forms a fractal with fractal dimension changing from a=1.56 for p=0.20 to a=1.42 for p=0.001 (for n=4,000). The trace of a random walker forms a distribution with expected fractal dimension 2.

  12. Darwinian Evolution and Fractals

    NASA Astrophysics Data System (ADS)

    Carr, Paul H.

    2009-05-01

    Did nature's beauty emerge by chance or was it intelligently designed? Richard Dawkins asserts that evolution is blind aimless chance. Michael Behe believes, on the contrary, that the first cell was intelligently designed. The scientific evidence is that nature's creativity arises from the interplay between chance AND design (laws). Darwin's ``Origin of the Species,'' published 150 years ago in 1859, characterized evolution as the interplay between variations (symbolized by dice) and the natural selection law (design). This is evident in recent discoveries in DNA, Madelbrot's Fractal Geometry of Nature, and the success of the genetic design algorithm. Algorithms for generating fractals have the same interplay between randomness and law as evolution. Fractal statistics, which are not completely random, characterize such phenomena such as fluctuations in the stock market, the Nile River, rainfall, and tree rings. As chaos theorist Joseph Ford put it: God plays dice, but the dice are loaded. Thus Darwin, in discovering the evolutionary interplay between variations and natural selection, was throwing God's dice!

  13. Cytoplasmic filaments of Amoeba proteus. I. The role of filaments in consistency changes and movement.

    PubMed

    Pollard, T D; Ito, S

    1970-08-01

    The role of filaments in consistency changes and movement in a motile cytoplasmic extract of Amoeba proteus was investigated by correlating light and electron microscopic observations with viscosity measurements. The extract is prepared by the method of Thompson and Wolpert (1963). At 0 degrees C, this extract is nonmotile and similar in structure to ameba cytoplasm, consisting of groundplasm, vesicles, mitochondria, and a few 160 A filaments. The extract undergoes striking ATP-stimulated streaming when warmed to 22 degrees C. Two phases of movement are distinguished. During the first phase, the apparent viscosity usually increases and numerous 50-70 A filaments appear in samples of the extract prepared for electron microscopy, suggesting that the increase in viscosity in caused, at least in part, by the formation of these thin filaments. During this initial phase of ATP-stimulated movement, these thin filaments are not detectable by phase-contrast or polarization microscopy, but later, in the second phase of movement, 70 A filaments aggregate to form birefringent microscopic fibrils. A preparation of pure groundplasm with no 160 A filaments or membranous organelles exhibits little or no ATP-stimulated movement, but 50-70 A filaments form and aggregate into birefringent fibrils. This observation and the structural relationship of the 70 A and the 160 A filaments in the motile extract suggest that both types of filaments may be required for movement. These two types of filaments, 50-70 A and 160 A, are also present in the cytoplasm of intact amebas. Fixed cells could not be used to study the distribution of these filaments during natural ameboid movement because of difficulties in preserving the normal structure of the ameba during preparation for electron microscopy.

  14. A Statistical Study of Solar Filament Eruptions

    NASA Astrophysics Data System (ADS)

    Schanche, Nicole; Aggarwal, Ashna; Reeves, Kathy; Kempton, Dustin James; Angryk, Rafal

    2016-05-01

    Solar filaments are cool, dark channels of partially-ionized plasma that lie above the chromosphere. Their structure follows the neutral line between local regions of opposite magnetic polarity. Previous research (e.g. Schmieder et al. 2013, McCauley et al. 2015) has shown a positive correlation (70-80%) between the occurrence of filament eruptions and coronal mass ejections (CME’s). In this study, we attempt to use properties of the filament in order to predict whether or not a given filament will erupt. This prediction would help to better predict the occurrence of an oncoming CME. To track the evolution of a filament over time, a spatio-temporal algorithm that groups separate filament instances from the Heliophysics Event Knowledgebase (HEK) into filament tracks was developed. Filament features from the HEK metadata, such as length, chirality, and tilt are then combined with other physical features, such as the overlying decay index for two sets of filaments tracks - those that erupt and those that remain bound. Using statistical methods such as the Kolmogrov-Smirnov test and a Random Forest Classifier, we determine the effectiveness of the combined features in prediction. We conclude that there is significant overlap between the properties of filaments that erupt and those that do not, leading to predictions only ~5-10% above chance. However, the changes in features, such as a change in the filament's length over time, were determined to have the highest predictive power. We discuss the possible physical connections with the change in these features."This project has been supported by funding from the Division of Advanced Cyberinfrastructure within the Directorate for Computer and Information Science and Engineering, the Division of Astronomical Sciences within the Directorate for Mathematical and Physical Sciences, and the Division of Atmospheric and Geospace Sciences within the Directorate for Geosciences, under NSF award #1443061.”

  15. Stability and Reformation of Partially Eruptive Filament

    NASA Astrophysics Data System (ADS)

    Joshi, Navin Chandra; Prasad Choudhary, Debi; Chandra, Ramesh; Srivastava, Abhishek K.; Dwivedi, B. N.; Kayshap, Pradeep; Filippov, Boris; Uddin, Wahab

    We present an observation of the confined partial filament eruption on 4 August 2012 which later exhibits a rapid reformation along the same magnetic channel within ≈2 hours. We used BBSO and GONG Halpha as well as SDO AIA 171 Å observations to study the filament properties and its kinematics. SDO/AIA observations over the disk are used to study at coronal temperature the plasma dynamics associated with the filament. STEREO/SECCHI provides the limb observations of the filament dynamics. On the basis of the filament internal fine structure as evident in the Halpha observations and its position relative to the photospheric magnetic fields, it is found that the filament chirality is sinistral. On the other hand, the activated enveloping flux rope shows right-handed twist in the SDO/AIA 171 Å observations. Therefore, this dynamic event exhibits one-to-one correspondence between the filament chirality (sinistral) and the enveloping flux rope helicity (positive). Filament plasma goes into dynamic motion at ≈11:20 UT from its middle part towards the north-west direction with an average speed of ≈100 km s(-1) . Brightening underneath the eruptive part of the filament shows the most likely signature of low atmospheric reconnection. After traveling a distance of around ≈215 Mm towards north-west, the cool filament plasma stops and returns back at ≈12:00 UT towards its eastern foot point with the speed of ≈60 km s(-1) . We calculated the coronal magnetic field decay index (n) near the flux rope. Using this estimation, we conjecture that the filament lies within the stability domain n <1, which is the cause of its stability and possibility of prompt reformation.

  16. Temporal fractals in seabird foraging behaviour: diving through the scales of time

    NASA Astrophysics Data System (ADS)

    Macintosh, Andrew J. J.; Pelletier, Laure; Chiaradia, Andre; Kato, Akiko; Ropert-Coudert, Yan

    2013-05-01

    Animal behaviour exhibits fractal structure in space and time. Fractal properties in animal space-use have been explored extensively under the Lévy flight foraging hypothesis, but studies of behaviour change itself through time are rarer, have typically used shorter sequences generated in the laboratory, and generally lack critical assessment of their results. We thus performed an in-depth analysis of fractal time in binary dive sequences collected via bio-logging from free-ranging little penguins (Eudyptula minor) across full-day foraging trips (216 data points; 4 orders of temporal magnitude). Results from 4 fractal methods show that dive sequences are long-range dependent and persistent across ca. 2 orders of magnitude. This fractal structure correlated with trip length and time spent underwater, but individual traits had little effect. Fractal time is a fundamental characteristic of penguin foraging behaviour, and its investigation is thus a promising avenue for research on interactions between animals and their environments.

  17. Enigmatic reticulated filaments in subsurface granite.

    PubMed

    Miller, A Z; Hernández-Mariné, M; Jurado, V; Dionísio, A; Barquinha, P; Fortunato, E; Afonso, M J; Chaminé, H I; Saiz-Jimenez, C

    2012-12-01

    In the last few years, geomicrobiologists have focused their researches on the nature and origin of enigmatic reticulated filaments reported in modern and fossil samples from limestone caves and basalt lava tubes. Researchers have posed questions on these filaments concerning their nature, origin, chemistry, morphology, mode of formation and growth. A tentative microbial origin has been elusive since these filaments are found as hollow tubular sheaths and could not be affiliated to any known microorganism. We describe the presence of similar structures in a 16th century granite tunnel in Porto, Northwest Portugal. The reticulated filaments we identify exhibit fine geometry surface ornamentation formed by cross-linked Mn-rich nanofibres, surrounded by a large amount of extracellular polymeric substances. Within these Mn-rich filaments we report for the first time the occurrence of microbial cells. PMID:23760930

  18. Enigmatic reticulated filaments in subsurface granite.

    PubMed

    Miller, A Z; Hernández-Mariné, M; Jurado, V; Dionísio, A; Barquinha, P; Fortunato, E; Afonso, M J; Chaminé, H I; Saiz-Jimenez, C

    2012-12-01

    In the last few years, geomicrobiologists have focused their researches on the nature and origin of enigmatic reticulated filaments reported in modern and fossil samples from limestone caves and basalt lava tubes. Researchers have posed questions on these filaments concerning their nature, origin, chemistry, morphology, mode of formation and growth. A tentative microbial origin has been elusive since these filaments are found as hollow tubular sheaths and could not be affiliated to any known microorganism. We describe the presence of similar structures in a 16th century granite tunnel in Porto, Northwest Portugal. The reticulated filaments we identify exhibit fine geometry surface ornamentation formed by cross-linked Mn-rich nanofibres, surrounded by a large amount of extracellular polymeric substances. Within these Mn-rich filaments we report for the first time the occurrence of microbial cells.

  19. Spatial log-periodic oscillations of first-passage observables in fractals.

    PubMed

    Akkermans, Eric; Benichou, Olivier; Dunne, Gerald V; Teplyaev, Alexander; Voituriez, Raphael

    2012-12-01

    For transport processes in geometrically restricted domains, the mean first-passage time (MFPT) admits a general scaling dependence on space parameters for diffusion, anomalous diffusion, and diffusion in disordered or fractal media. For transport in self-similar fractal structures, we obtain an expression for the source-target distance dependence of the MFPT that exhibits both the leading power-law behavior, depending on the Hausdorff and spectral dimension of the fractal, as well as small log-periodic oscillations that are a clear and definitive signal of the underlying fractal structure. We also present refined numerical results for the Sierpinski gasket that confirm this oscillatory behavior.

  20. Nanoflow over a fractal surface

    NASA Astrophysics Data System (ADS)

    Papanikolaou, Michail; Frank, Michael; Drikakis, Dimitris

    2016-08-01

    This paper investigates the effects of surface roughness on nanoflows using molecular dynamics simulations. A fractal model is employed to model wall roughness, and simulations are performed for liquid argon confined by two solid walls. It is shown that the surface roughness reduces the velocity in the proximity of the walls with the reduction being accentuated when increasing the roughness depth and wettability of the solid wall. It also makes the flow three-dimensional and anisotropic. In flows over idealized smooth surfaces, the liquid forms parallel, well-spaced layers, with a significant gap between the first layer and the solid wall. Rough walls distort the orderly distribution of fluid layers resulting in an incoherent formation of irregularly shaped fluid structures around and within the wall cavities.

  1. Externally refuelled optical filaments

    NASA Astrophysics Data System (ADS)

    Scheller, Maik; Mills, Matthew S.; Miri, Mohammad-Ali; Cheng, Weibo; Moloney, Jerome V.; Kolesik, Miroslav; Polynkin, Pavel; Christodoulides, Demetrios N.

    2014-04-01

    Plasma channels produced in air through femtosecond laser filamentation hold great promise for a number of applications, including remote sensing, attosecond physics and spectroscopy, channelling microwaves and lightning protection. In such settings, extended filaments are desirable, yet their longitudinal span is limited by dissipative processes. Although various techniques aiming to prolong this process have been explored, the substantial extension of optical filaments remains a challenge. Here, we experimentally demonstrate that the natural range of a plasma column can be enhanced by at least an order of magnitude when the filament is prudently accompanied by an auxiliary beam. In this arrangement, the secondary low-intensity `dressing' beam propagates linearly and acts as a distributed energy reservoir, continuously refuelling the optical filament. Our approach offers an efficient and viable route towards the generation of extended light strings in air without inducing premature wave collapse or an undesirable beam break-up into multiple filaments.

  2. Fern leaves and cauliflower curds are not fractals.

    PubMed

    Lev-Yadun, Simcha

    2012-05-01

    The popular demonstration of drawing a mature fern leaf as expressed by Barnsley's fractal method is mathematically and visually very attractive but anatomically and developmentally misleading, and thus has limited, if any, biological significance. The same is true for the fractal demonstration of the external features of cauliflower curds. Actual fern leaves and cauliflower curds have a very small number of anatomically variable and non-iterating bifurcations, which superficially look self-similar, but do not allow for scaling down of their structure as real fractals do. Moreover, fern leaves and cauliflower curds develop from the inside out through a process totally different from fractal drawing procedures. The above cases demonstrate a general problem of using mathematical tools to investigate or illustrate biological phenomena in an irrelevant manner. A realistic set of mathematical equations to describe fern leaf or cauliflower curd development is needed.

  3. Fractal analysis of flow of the river Warta

    NASA Astrophysics Data System (ADS)

    Radziejewski, Maciej; Kundzewicz, Zbigniew W.

    1997-12-01

    A long time series (170 years) of daily flows of the river Warta (Poland) are subject to fractal analysis. A binary variable (renewal stream) illustrating excursions of the process of flow is examined. The raw series is subject to de-seasonalization and normalization. Fractal dimensions of crossings of Warta flows are determined using a novel variant of the box-counting method. Temporal variability of the flow process is studied by determination of fractal dimensions for shifted horizons of 10 or 30 years length. Spectral properties are compared between the time series of flows, and the fractional Brownian motion which describes both the fractal structure of the process and the Hurst phenomenon. The approach may be useful in further studies of non-stationary of the process of flow, analysis of extreme hydrological events and synthetic flow generation.

  4. Electron microscopic imaging revealed the flexible filamentous structure of the cell attachment protein P2 of Rice dwarf virus located around the icosahedral 5-fold axes.

    PubMed

    Miyazaki, Naoyuki; Higashiura, Akifumi; Higashiura, Tomoko; Akita, Fusamichi; Hibino, Hiroyuki; Omura, Toshihiro; Nakagawa, Atsushi; Iwasaki, Kenji

    2016-02-01

    The minor outer capsid protein P2 of Rice dwarf virus (RDV), a member of the genus Phytoreovirus in the family Reoviridae, is essential for viral cell entry. Here, we clarified the structure of P2 and the interactions to host insect cells. Negative stain electron microscopy (EM) showed that P2 proteins are monomeric and flexible L-shaped filamentous structures of ∼20 nm in length. Cryo-EM structure revealed the spatial arrangement of P2 in the capsid, which was prescribed by the characteristic virion structure. The P2 proteins were visualized as partial rod-shaped structures of ∼10 nm in length in the cryo-EM map and accommodated in crevasses on the viral surface around icosahedral 5-fold axes with hydrophobic interactions. The remaining disordered region of P2 assumed to be extended to the radial direction towards exterior. Electron tomography clearly showed that RDV particles were away from the cellular membrane at a uniform distance and several spike-like densities, probably corresponding to P2, connecting a viral particle to the host cellular membrane during cell entry. By combining the in vitro and in vivo structural information, we could gain new insights into the detailed mechanism of the cell entry of RDV.

  5. The near-atomic cryoEM structure of a flexible filamentous plant virus shows homology of its coat protein with nucleoproteins of animal viruses

    PubMed Central

    Agirrezabala, Xabier; Méndez-López, Eduardo; Lasso, Gorka; Sánchez-Pina, M Amelia; Aranda, Miguel; Valle, Mikel

    2015-01-01

    Flexible filamentous viruses include economically important plant pathogens. Their viral particles contain several hundred copies of a helically arrayed coat protein (CP) protecting a (+)ssRNA. We describe here a structure at 3.9 Å resolution, from electron cryomicroscopy, of Pepino mosaic virus (PepMV), a representative of the genus Potexvirus (family Alphaflexiviridae). Our results allow modeling of the CP and its interactions with viral RNA. The overall fold of PepMV CP resembles that of nucleoproteins (NPs) from the genus Phlebovirus (family Bunyaviridae), a group of enveloped (-)ssRNA viruses. The main difference between potexvirus CP and phlebovirus NP is in their C-terminal extensions, which appear to determine the characteristics of the distinct multimeric assemblies – a flexuous, helical rod or a loose ribonucleoprotein. The homology suggests gene transfer between eukaryotic (+) and (-)ssRNA viruses. DOI: http://dx.doi.org/10.7554/eLife.11795.001 PMID:26673077

  6. The near-atomic cryoEM structure of a flexible filamentous plant virus shows homology of its coat protein with nucleoproteins of animal viruses.

    PubMed

    Agirrezabala, Xabier; Méndez-López, Eduardo; Lasso, Gorka; Sánchez-Pina, M Amelia; Aranda, Miguel; Valle, Mikel

    2015-12-16

    Flexible filamentous viruses include economically important plant pathogens. Their viral particles contain several hundred copies of a helically arrayed coat protein (CP) protecting a (+)ssRNA. We describe here a structure at 3.9 Å resolution, from electron cryomicroscopy, of Pepino mosaic virus (PepMV), a representative of the genus Potexvirus (family Alphaflexiviridae). Our results allow modeling of the CP and its interactions with viral RNA. The overall fold of PepMV CP resembles that of nucleoproteins (NPs) from the genus Phlebovirus (family Bunyaviridae), a group of enveloped (-)ssRNA viruses. The main difference between potexvirus CP and phlebovirus NP is in their C-terminal extensions, which appear to determine the characteristics of the distinct multimeric assemblies - a flexuous, helical rod or a loose ribonucleoprotein. The homology suggests gene transfer between eukaryotic (+) and (-)ssRNA viruses.

  7. Titin strain contributes to the Frank-Starling law of the heart by structural rearrangements of both thin- and thick-filament proteins.

    PubMed

    Ait-Mou, Younss; Hsu, Karen; Farman, Gerrie P; Kumar, Mohit; Greaser, Marion L; Irving, Thomas C; de Tombe, Pieter P

    2016-02-23

    The Frank-Starling mechanism of the heart is due, in part, to modulation of myofilament Ca(2+) sensitivity by sarcomere length (SL) [length-dependent activation (LDA)]. The molecular mechanism(s) that underlie LDA are unknown. Recent evidence has implicated the giant protein titin in this cellular process, possibly by positioning the myosin head closer to actin. To clarify the role of titin strain in LDA, we isolated myocardium from either WT or homozygous mutant (HM) rats that express a giant splice isoform of titin, and subjected the muscles to stretch from 2.0 to 2.4 μm of SL. Upon stretch, HM compared with WT muscles displayed reduced passive force, twitch force, and myofilament LDA. Time-resolved small-angle X-ray diffraction measurements of WT twitching muscles during diastole revealed stretch-induced increases in the intensity of myosin (M2 and M6) and troponin (Tn3) reflections, as well as a reduction in cross-bridge radial spacing. Independent fluorescent probe analyses in relaxed permeabilized myocytes corroborated these findings. X-ray electron density reconstruction revealed increased mass/ordering in both thick and thin filaments. The SL-dependent changes in structure observed in WT myocardium were absent in HM myocardium. Overall, our results reveal a correlation between titin strain and the Frank-Starling mechanism. The molecular basis underlying this phenomenon appears not to involve interfilament spacing or movement of myosin toward actin but, rather, sarcomere stretch-induced simultaneous structural rearrangements within both thin and thick filaments that correlate with titin strain and myofilament LDA.

  8. Titin strain contributes to the Frank–Starling law of the heart by structural rearrangements of both thin- and thick-filament proteins

    PubMed Central

    Ait-Mou, Younss; Hsu, Karen; Farman, Gerrie P.; Kumar, Mohit; Greaser, Marion L.; Irving, Thomas C.; de Tombe, Pieter P.

    2016-01-01

    The Frank–Starling mechanism of the heart is due, in part, to modulation of myofilament Ca2+ sensitivity by sarcomere length (SL) [length-dependent activation (LDA)]. The molecular mechanism(s) that underlie LDA are unknown. Recent evidence has implicated the giant protein titin in this cellular process, possibly by positioning the myosin head closer to actin. To clarify the role of titin strain in LDA, we isolated myocardium from either WT or homozygous mutant (HM) rats that express a giant splice isoform of titin, and subjected the muscles to stretch from 2.0 to 2.4 μm of SL. Upon stretch, HM compared with WT muscles displayed reduced passive force, twitch force, and myofilament LDA. Time-resolved small-angle X-ray diffraction measurements of WT twitching muscles during diastole revealed stretch-induced increases in the intensity of myosin (M2 and M6) and troponin (Tn3) reflections, as well as a reduction in cross-bridge radial spacing. Independent fluorescent probe analyses in relaxed permeabilized myocytes corroborated these findings. X-ray electron density reconstruction revealed increased mass/ordering in both thick and thin filaments. The SL-dependent changes in structure observed in WT myocardium were absent in HM myocardium. Overall, our results reveal a correlation between titin strain and the Frank–Starling mechanism. The molecular basis underlying this phenomenon appears not to involve interfilament spacing or movement of myosin toward actin but, rather, sarcomere stretch-induced simultaneous structural rearrangements within both thin and thick filaments that correlate with titin strain and myofilament LDA. PMID:26858417

  9. A Double-Minded Fractal

    ERIC Educational Resources Information Center

    Simoson, Andrew J.

    2009-01-01

    This article presents a fun activity of generating a double-minded fractal image for a linear algebra class once the idea of rotation and scaling matrices are introduced. In particular the fractal flip-flops between two words, depending on the level at which the image is viewed. (Contains 5 figures.)

  10. Physical properties of cytoplasmic intermediate filaments.

    PubMed

    Block, Johanna; Schroeder, Viktor; Pawelzyk, Paul; Willenbacher, Norbert; Köster, Sarah

    2015-11-01

    Intermediate filaments (IFs) constitute a sophisticated filament system in the cytoplasm of eukaryotes. They form bundles and networks with adapted viscoelastic properties and are strongly interconnected with the other filament types, microfilaments and microtubules. IFs are cell type specific and apart from biochemical functions, they act as mechanical entities to provide stability and resilience to cells and tissues. We review the physical properties of these abundant structural proteins including both in vitro studies and cell experiments. IFs are hierarchical structures and their physical properties seem to a large part be encoded in the very specific architecture of the biopolymers. Thus, we begin our review by presenting the assembly mechanism, followed by the mechanical properties of individual filaments, network and structure formation due to electrostatic interactions, and eventually the mechanics of in vitro and cellular networks. This article is part of a Special Issue entitled: Mechanobiology.

  11. Fractals analysis of cardiac arrhythmias.

    PubMed

    Saeed, Mohammed

    2005-09-01

    Heart rhythms are generated by complex self-regulating systems governed by the laws of chaos. Consequently, heart rhythms have fractal organization, characterized by self-similar dynamics with long-range order operating over multiple time scales. This allows for the self-organization and adaptability of heart rhythms under stress. Breakdown of this fractal organization into excessive order or uncorrelated randomness leads to a less-adaptable system, characteristic of aging and disease. With the tools of nonlinear dynamics, this fractal breakdown can be quantified with potential applications to diagnostic and prognostic clinical assessment. In this paper, I review the methodologies for fractal analysis of cardiac rhythms and the current literature on their applications in the clinical context. A brief overview of the basic mathematics of fractals is also included. Furthermore, I illustrate the usefulness of these powerful tools to clinical medicine by describing a novel noninvasive technique to monitor drug therapy in atrial fibrillation.

  12. A simple method for estimating the fractal dimension from digital images: The compression dimension

    NASA Astrophysics Data System (ADS)

    Chamorro-Posada, Pedro

    2016-10-01

    The fractal structure of real world objects is often analyzed using digital images. In this context, the compression fractal dimension is put forward. It provides a simple method for the direct estimation of the dimension of fractals stored as digital image files. The computational scheme can be implemented using readily available free software. Its simplicity also makes it very interesting for introductory elaborations of basic concepts of fractal geometry, complexity, and information theory. A test of the computational scheme using limited-quality images of well-defined fractal sets obtained from the Internet and free software has been performed. Also, a systematic evaluation of the proposed method using computer generated images of the Weierstrass cosine function shows an accuracy comparable to those of the methods most commonly used to estimate the dimension of fractal data sequences applied to the same test problem.

  13. Tungsten Filament Fire

    ERIC Educational Resources Information Center

    Ruiz, Michael J.; Perkins, James

    2016-01-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent…

  14. Tungsten filament fire

    NASA Astrophysics Data System (ADS)

    Ruiz, Michael J.; Perkins, James

    2016-05-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent light bulb is being replaced by compact fluorescent and LED lamps.

  15. COMPLEX FLARE DYNAMICS INITIATED BY A FILAMENT–FILAMENT INTERACTION

    SciTech Connect

    Zhu, Chunming; McAteer, R. T. James; Liu, Rui; Alexander, David; Sun, Xudong

    2015-11-01

    We report on an eruption involving a relatively rare filament–filament interaction on 2013 June 21, observed by SDO and STEREO-B. The two filaments were separated in height with a “double-decker” configuration. The eruption of the lower filament began simultaneously with a descent of the upper filament, resulting in a convergence and direct interaction of the two filaments. The interaction was accompanied by the heating of surrounding plasma and an apparent crossing of a loop-like structure through the upper filament. The subsequent coalescence of the filaments drove a bright front ahead of the erupting structures. The whole process was associated with a C3.0 flare followed immediately by an M2.9 flare. Shrinking loops and descending dark voids were observed during the M2.9 flare at different locations above a C-shaped flare arcade as part of the energy release, giving us unique insight into the flare dynamics.

  16. Fractal Risk Assessment of ISS Propulsion Module in Meteoroid and Orbital Debris Environments

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.

    2001-01-01

    A unique and innovative risk assessment of the International Space Station (ISS) Propulsion Module is conducted using fractal modeling of the Module's response to the meteoroid and orbital debris environments. Both the environment models and structural failure modes due to the resultant hypervelocity impact phenomenology, as well as Module geometry, are investigated for fractal applicability. The fractal risk assessment methodology could produce a greatly simplified alternative to current methodologies, such as BUMPER analyses, while maintaining or increasing the number of complex scenarios that can be assessed. As a minimum, this innovative fractal approach will provide an independent assessment of existing methodologies in a unique way.

  17. SMART Observation of Magnetic Helicity in Solar Filaments

    NASA Astrophysics Data System (ADS)

    Hagino, M.; Kitai, R.; Shibata, K.

    2006-08-01

    We examined the magnetic helicity of solar filaments from their structure in the chromosphere and corona. The H-alpha telescope of the Solar Magnetic Activity Research Telescope (SMART) observed 239 intermediate filaments from 2005 July 1 to 2006 May 15. The intermediate filament usually locates between two active regions. Using these images, we identified the filament spine and its barbs, and determined the chromospheric filament helicity from the mean angle between each barbs and a spine. We found that 71% (78 of 110) of intermediate filaments in the northern hemisphere are negative helicity and 67% (87 of 129) of filaments in the southern hemisphere are positive, which agreed with the well-known hemispheric tendency of the magnetic helicity. Additionally, we studied the coronal helicity of intermediate filaments. The coronal filament helicity is defined as the crossing angle of threads formed a filament. The helicity pattern of coronal filaments obtained with EIT/SOHO 171A also shows the helicity hemispheric tendency. Namely, 65% (71 of 110) of coronal filaments in the northern hemisphere exhibit negative helicity and the 65% (84 of 129) of filaments in the southern hemisphere show negative helicity. These data were observed in the same day with the SMART H-alpha data. Moreover, we found 12 filament eruptions in our data. The 7 of 12 filaments show the clear opposite sign of the hemispheric tendency of the magnetic helicity. The helicity seems to be change during temporal evolution. This results suggest that filament instability may be driven by the opposite sign helicity injection from the foot point of the barb.

  18. Role and structural mechanism of WASP-triggered conformational changes in branched actin filament nucleation by Arp2/3 complex.

    PubMed

    Rodnick-Smith, Max; Luan, Qing; Liu, Su-Ling; Nolen, Brad J

    2016-07-01

    The Arp2/3 (Actin-related proteins 2/3) complex is activated by WASP (Wiskott-Aldrich syndrome protein) family proteins to nucleate branched actin filaments that are important for cellular motility. WASP recruits actin monomers to the complex and stimulates movement of Arp2 and Arp3 into a "short-pitch" conformation that mimics the arrangement of actin subunits within filaments. The relative contribution of these functions in Arp2/3 complex activation and the mechanism by which WASP stimulates the conformational change have been unknown. We purified budding yeast Arp2/3 complex held in or near the short-pitch conformation by an engineered covalent cross-link to determine if the WASP-induced conformational change is sufficient for activity. Remarkably, cross-linked Arp2/3 complex bypasses the need for WASP in activation and is more active than WASP-activated Arp2/3 complex. These data indicate that stimulation of the short-pitch conformation is the critical activating function of WASP and that monomer delivery is not a fundamental requirement for nucleation but is a specific requirement for WASP-mediated activation. During activation, WASP limits nucleation rates by releasing slowly from nascent branches. The cross-linked complex is inhibited by WASP's CA region, even though CA potently stimulates cross-linking, suggesting that slow WASP detachment masks the activating potential of the short-pitch conformational switch. We use structure-based mutations and WASP-Arp fusion chimeras to determine how WASP stimulates movement toward the short-pitch conformation. Our data indicate that WASP displaces the autoinhibitory Arp3 C-terminal tail from a hydrophobic groove at Arp3's barbed end to destabilize the inactive state, providing a mechanism by which WASP stimulates the short-pitch conformation and activates Arp2/3 complex. PMID:27325766

  19. Intrinsic half-metallicity in fractal carbon nitride honeycomb lattices.

    PubMed

    Wang, Aizhu; Zhao, Mingwen

    2015-09-14

    Fractals are natural phenomena that exhibit a repeating pattern "exactly the same at every scale or nearly the same at different scales". Defect-free molecular fractals were assembled successfully in a recent work [Shang et al., Nature Chem., 2015, 7, 389-393]. Here, we adopted the feature of a repeating pattern in searching two-dimensional (2D) materials with intrinsic half-metallicity and high stability that are desirable for spintronics applications. Using first-principles calculations, we demonstrate that the electronic properties of fractal frameworks of carbon nitrides have stable ferromagnetism accompanied by half-metallicity, which are highly dependent on the fractal structure. The ferromagnetism increases gradually with the increase of fractal order. The Curie temperature of these metal-free systems estimated from Monte Carlo simulations is considerably higher than room temperature. The stable ferromagnetism, intrinsic half-metallicity, and fractal characteristics of spin distribution in the carbon nitride frameworks open an avenue for the design of metal-free magnetic materials with exotic properties.

  20. UNUSUAL FILAMENTS INSIDE THE UMBRA

    SciTech Connect

    Kleint, L.

    2013-06-10

    We analyze several unusual filamentary structures which appeared in the umbra of one of the sunspots in AR 11302. They do not resemble typical light bridges in morphology or in evolution. We analyze data from SDO/HMI to investigate their temporal evolution, Hinode/SP for photospheric inversions, IBIS for chromospheric imaging, and SDO/AIA for the overlying corona. Photospheric inversions reveal a horizontal, inverse Evershed flow along these structures, which we call umbral filaments. Chromospheric images show brightenings and energy dissipation, while coronal images indicate that bright coronal loops seem to end in these umbral filaments. These rapidly evolving features do not seem to be common, and are possibly related to the high flare-productivity of the active region. Their analysis could help to understand the complex evolution of active regions.

  1. Engineering images designed by fractal subdivision scheme.

    PubMed

    Mustafa, Ghulam; Bari, Mehwish; Jamil, Saba

    2016-01-01

    This paper is concerned with the modeling of engineering images by the fractal properties of 6-point binary interpolating scheme. Association between the fractal behavior of the limit curve/surface and the parameter is obtained. The relationship between the subdivision parameter and the fractal dimension of the limit fractal curve of subdivision fractal is also presented. Numerical examples and visual demonstrations show that 6-point scheme is good choice for the generation of fractals for the modeling of fractal antennas, bearings, garari's and rock etc. PMID:27652066

  2. Fractal Tempo Fluctuation and Pulse Prediction

    PubMed Central

    Rankin, Summer K.; Large, Edward W.; Fink, Philip W.

    2010-01-01

    WE INVESTIGATED PEOPLES’ ABILITY TO ADAPT TO THE fluctuating tempi of music performance. In Experiment 1, four pieces from different musical styles were chosen, and performances were recorded from a skilled pianist who was instructed to play with natural expression. Spectral and rescaled range analyses on interbeat interval time-series revealed long-range (1/f type) serial correlations and fractal scaling in each piece. Stimuli for Experiment 2 included two of the performances from Experiment 1, with mechanical versions serving as controls. Participants tapped the beat at ¼- and ⅛-note metrical levels, successfully adapting to large tempo fluctuations in both performances. Participants predicted the structured tempo fluctuations, with superior performance at the ¼-note level. Thus, listeners may exploit long-range correlations and fractal scaling to predict tempo changes in music. PMID:25190901

  3. Static friction between rigid fractal surfaces

    NASA Astrophysics Data System (ADS)

    Alonso-Marroquin, Fernando; Huang, Pengyu; Hanaor, Dorian A. H.; Flores-Johnson, E. A.; Proust, Gwénaëlle; Gan, Yixiang; Shen, Luming

    2015-09-01

    Using spheropolygon-based simulations and contact slope analysis, we investigate the effects of surface topography and atomic scale friction on the macroscopically observed friction between rigid blocks with fractal surface structures. From our mathematical derivation, the angle of macroscopic friction is the result of the sum of the angle of atomic friction and the slope angle between the contact surfaces. The latter is obtained from the determination of all possible contact slopes between the two surface profiles through an alternative signature function. Our theory is validated through numerical simulations of spheropolygons with fractal Koch surfaces and is applied to the description of frictional properties of Weierstrass-Mandelbrot surfaces. The agreement between simulations and theory suggests that for interpreting macroscopic frictional behavior, the descriptors of surface morphology should be defined from the signature function rather than from the slopes of the contacting surfaces.

  4. Mechanics of vimentin intermediate filaments

    NASA Technical Reports Server (NTRS)

    Wang, Ning; Stamenovic, Dimitrijie

    2002-01-01

    It is increasingly evident that the cytoskeleton of living cells plays important roles in mechanical and biological functions of the cells. Here we focus on the contribution of intermediate filaments (IFs) to the mechanical behaviors of living cells. Vimentin, a major structural component of IFs in many cell types, is shown to play an important role in vital mechanical and biological functions such as cell contractility, migration, stiffness, stiffening, and proliferation.

  5. Fractal dimension based corneal fungal infection diagnosis

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Madhusudhanan; Perkins, A. Louise; Beuerman, Roger W.; Iyengar, S. Sitharama

    2006-08-01

    We present a fractal measure based pattern classification algorithm for automatic feature extraction and identification of fungus associated with an infection of the cornea of the eye. A white-light confocal microscope image of suspected fungus exhibited locally linear and branching structures. The pixel intensity variation across the width of a fungal element was gaussian. Linear features were extracted using a set of 2D directional matched gaussian-filters. Portions of fungus profiles that were not in the same focal plane appeared relatively blurred. We use gaussian filters of standard deviation slightly larger than the width of a fungus to reduce discontinuities. Cell nuclei of cornea and nerves also exhibited locally linear structure. Cell nuclei were excluded by their relatively shorter lengths. Nerves in the cornea exhibited less branching compared with the fungus. Fractal dimensions of the locally linear features were computed using a box-counting method. A set of corneal images with fungal infection was used to generate class-conditional fractal measure distributions of fungus and nerves. The a priori class-conditional densities were built using an adaptive-mixtures method to reflect the true nature of the feature distributions and improve the classification accuracy. A maximum-likelihood classifier was used to classify the linear features extracted from test corneal images as 'normal' or 'with fungal infiltrates', using the a priori fractal measure distributions. We demonstrate the algorithm on the corneal images with culture-positive fungal infiltrates. The algorithm is fully automatic and will help diagnose fungal keratitis by generating a diagnostic mask of locations of the fungal infiltrates.

  6. Hierarchical composition of the axial filament from spicules of the siliceous sponge Suberites domuncula: from biosilica-synthesizing nanofibrils to structure- and morphology-guiding triangular stems.

    PubMed

    Müller, Werner E G; Mugnaioli, Enrico; Schröder, Heinz C; Schloßmacher, Ute; Giovine, Marco; Kolb, Ute; Wang, Xiaohong

    2013-01-01

    The major structural and enzymatically active protein in spicules from siliceous sponges, e.g., for Suberites domuncula studied here, is silicatein. Silicatein has been established to be the key enzyme that catalyzes the formation of biosilica, a polymer that represents the inorganic scaffold for the spicule. In the present study, it is shown, by application of high-resolution transmission and scanning transmission electron microscopy that, during the initial phase of spicule synthesis, nanofibrils with a diameter of around 10 nm are formed that comprise bundles of between 10 and 20 nanofibrils. In intracellular vacuoles, silicasomes, the nanofibrils form polar structures with a pointed tip and a blunt end. In a time-dependent manner, these nanofibrillar bundles become embedded into a Si-rich matrix, indicative for the formation of biosilica via silicatein molecules that form the nanofibrils. These biosilicified nanofibrillar bundles become extruded from the intracellular space, where they are located in the silicasomes, to the extracellular environment by an evagination process, during which a cellular protrusion forms the axial canal in the growing spicule. The nanofibrillar bundles condense and progressively form the axial filament that becomes localized in the extracellular space. It is concluded that the silicatein-composing nanofibrils act not only as enzymatic silica bio-condensing platforms but also as a structure-giving guidance for the growing spicule.

  7. Target Detection Using Fractal Geometry

    NASA Technical Reports Server (NTRS)

    Fuller, J. Joseph

    1991-01-01

    The concepts and theory of fractal geometry were applied to the problem of segmenting a 256 x 256 pixel image so that manmade objects could be extracted from natural backgrounds. The two most important measurements necessary to extract these manmade objects were fractal dimension and lacunarity. Provision was made to pass the manmade portion to a lookup table for subsequent identification. A computer program was written to construct cloud backgrounds of fractal dimensions which were allowed to vary between 2.2 and 2.8. Images of three model space targets were combined with these backgrounds to provide a data set for testing the validity of the approach. Once the data set was constructed, computer programs were written to extract estimates of the fractal dimension and lacunarity on 4 x 4 pixel subsets of the image. It was shown that for clouds of fractal dimension 2.7 or less, appropriate thresholding on fractal dimension and lacunarity yielded a 64 x 64 edge-detected image with all or most of the cloud background removed. These images were enhanced by an erosion and dilation to provide the final image passed to the lookup table. While the ultimate goal was to pass the final image to a neural network for identification, this work shows the applicability of fractal geometry to the problems of image segmentation, edge detection and separating a target of interest from a natural background.

  8. Reinforcement of rubber by fractal aggregates

    NASA Astrophysics Data System (ADS)

    Witten, T. A.; Rubinstein, M.; Colby, R. H.

    1993-03-01

    Rubber is commonly reinforced with colloidal aggregates of carbon or silica, whose structure has the scale invariance of a fractal object. Reinforced rubbers support large stresses, which often grow faster than linearly with the strain. We argue that under strong elongation the stress arises through lateral compression of the aggregates, driven by the large bulk modulus of the rubber. We derive a power-law relationship between stress and elongation λ when λgg 1. The predicted power p depends on the fractal dimension D and a second structural scaling exponent C. For diffusion-controlled aggregates this power p should lie beween 0.9 and 1.1 ; for reaction-controlled aggregates p should lie between 1.8 and 2.4. For uniaxial compression the analogous powers lie near 4. Practical rubbers filled with fractal aggregates should approach the conditions of validity for these scaling laws. On renforce souvent le caoutchouc avec des agrégats de carbone ou de silice dont la structure a l'invariance par dilatation d'un objet fractal. Les caoutchoucs ainsi renforcés supportent de grandes contraintes qui croissent souvent plus vite que l'élongation. Nous prétendons que, sous élongation forte, cette contrainte apparaît à cause d'une compression latérale des agrégats induite par le module volumique important du caoutchouc. Nous établissons une loi de puissance reliant la contrainte et l'élongation λ quand λgg 1. Cet exposant p dépend de la dimension fractale D et d'un deuxième exposant structural C. Pour des agrégats dont la cinétique de formation est limitée par diffusion, p vaut entre 0,9 et 1,1. Si la cinétique est limitée par le soudage local des particules, p vaut entre 1,8 et 2,4. Sous compression uniaxiale, les puissances homologues valent environ 4. Des caoutchoucs pratiques chargés de tels agrégats devraient approcher des conditions où ces lois d'échelle sont valables.

  9. The transience of virtual fractals.

    PubMed

    Taylor, R P

    2012-01-01

    Artists have a long and fruitful tradition of exploiting electronic media to convert static images into dynamic images that evolve with time. Fractal patterns serve as an example: computers allow the observer to zoom in on virtual images and so experience the endless repetition of patterns in a matter that cannot be matched using static images. This year's featured cover artist, Susan Lowedermilk, instead plans to employ persistence of human vision to bring virtual fractals to life. This will be done by incorporating her prints of fractal patterns into zoetropes and phenakistoscopes.

  10. Exterior dimension of fat fractals

    NASA Technical Reports Server (NTRS)

    Grebogi, C.; Mcdonald, S. W.; Ott, E.; Yorke, J. A.

    1985-01-01

    Geometric scaling properties of fat fractal sets (fractals with finite volume) are discussed and characterized via the introduction of a new dimension-like quantity which is called the exterior dimension. In addition, it is shown that the exterior dimension is related to the 'uncertainty exponent' previously used in studies of fractal basin boundaries, and it is shown how this connection can be exploited to determine the exterior dimension. Three illustrative applications are described, two in nonlinear dynamics and one dealing with blood flow in the body. Possible relevance to porous materials and ballistic driven aggregation is also noted.

  11. Sympathetic Solar Filament Eruptions

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Liu, Ying D.; Zimovets, Ivan; Hu, Huidong; Dai, Xinghua; Yang, Zhongwei

    2016-08-01

    The 2015 March 15 coronal mass ejection as one of the two that together drove the largest geomagnetic storm of solar cycle 24 so far was associated with sympathetic filament eruptions. We investigate the relations between the different filaments involved in the eruption. A surge-like small-scale filament motion is confirmed as the trigger that initiated the erupting filament with multi-wavelength observations and using a forced magnetic field extrapolation method. When the erupting filament moved to an open magnetic field region, it experienced an obvious acceleration process and was accompanied by a C-class flare and the rise of another larger filament that eventually failed to erupt. We measure the decay index of the background magnetic field, which presents a critical height of 118 Mm. Combining with a potential field source surface extrapolation method, we analyze the distributions of the large-scale magnetic field, which indicates that the open magnetic field region may provide a favorable condition for F2 rapid acceleration and have some relation with the largest solar storm. The comparison between the successful and failed filament eruptions suggests that the confining magnetic field plays an important role in the preconditions for an eruption.

  12. Joint unloading implant modifies subchondral bone trabecular structure in medial knee osteoarthritis: 2-year outcomes of a pilot study using fractal signature analysis

    PubMed Central

    Miller, Larry E; Sode, Miki; Fuerst, Thomas; Block, Jon E

    2015-01-01

    Background Knee osteoarthritis (OA) is largely attributable to chronic excessive and aberrant joint loading. The purpose of this pilot study was to quantify radiographic changes in subchondral bone after treatment with a minimally invasive joint unloading implant (KineSpring® Knee Implant System). Methods Nine patients with unilateral medial knee OA resistant to nonsurgical therapy were treated with the KineSpring System and followed for 2 years. Main outcomes included Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain, function, and stiffness subscores and independent core laboratory determinations of joint space width and fractal signature of the tibial cortex. Results WOMAC scores, on average, improved by 92% for pain, 91% for function, and 79% for stiffness over the 2-year follow-up period. Joint space width in the medial compartment of the treated knee significantly increased from 0.9 mm at baseline to 3.1 mm at 2 years; joint space width in the medial compartment of the untreated knee was unchanged. Fractal signatures of the vertically oriented trabeculae in the medial compartment decreased by 2.8% in the treated knee and increased by 2.1% in the untreated knee over 2 years. No statistically significant fractal signature changes were observed in the horizontally oriented trabeculae in the medial compartment or in the horizontal or vertical trabeculae of the lateral compartment in the treated knee. Conclusion Preliminary evidence suggests that the KineSpring System may modify knee OA disease progression by increasing joint space width and improving subchondral bone trabecular integrity, thereby reducing pain and improving joint function. PMID:25670891

  13. The Dark Matter filament between Abell 222/223

    NASA Astrophysics Data System (ADS)

    Dietrich, Jörg P.; Werner, Norbert; Clowe, Douglas; Finoguenov, Alexis; Kitching, Tom; Miller, Lance; Simionescu, Aurora

    2016-10-01

    Weak lensing detections and measurements of filaments have been elusive for a long time. The reason is that the low density contrast of filaments generally pushes the weak lensing signal to unobservably low scales. To nevertheless map the dark matter in filaments exquisite data and unusual systems are necessary. SuprimeCam observations of the supercluster system Abell 222/223 provided the required combination of excellent seeing images and a fortuitous alignment of the filament with the line-of-sight. This boosted the lensing signal to a detectable level and led to the first weak lensing mass measurement of a large-scale structure filament. The filament connecting Abell 222 and Abell 223 is now the only one traced by the galaxy distribution, dark matter, and X-ray emission from the hottest phase of the warm-hot intergalactic medium. The combination of these data allows us to put the first constraints on the hot gas fraction in filaments.

  14. Fractal interrelationship in field and seismic data. Fifth quarterly technical report, March 21--June 21, 1996

    SciTech Connect

    Wilson, T.H.; Dominic, J.; Halverson, J.

    1996-12-31

    The primary goal of this study is to evaluate the possibility that the fractal characteristics of reservoir fracture systems might be inferred from the fractal characteristics of the reservoir reflector. Results discussed in the summary below provide support for such a view. The matter will, however, remain unresolved until fracture data acquired from core or FMS logs can be compared to reflection seismic data from the core areas. A series of cross sections along the Middle Mountain syncline and Elkhorn Mountain anticline were evaluated. Near-surface deformation in the Middle Mountain and Elkhorn mountain area of the Valley and Ridge province is significant. In this area the fractal dimension of topography is linearly related to the fractal dimension of underlying structure. Comparison of the fractal variability of Valley and Ridge structures with those observed in seismic data from the Plateau indicate that the increased fractal dimension of reflection events implies greater relative abundance of higher order or smaller wavelength structures. Results from the seismic evaluation suggest that fractal analysis might provide a useful exploration tool in cases where one is interested in locating subtle detached structures or identifying fractured reservoirs. Results from the Valley and a Ridge area suggest that, in active tectonic areas, fractal analysis may provide a means to assess the relative frequency of earthquake activity over time periods that extend beyond the historical record.

  15. Fractal Analyses of Steady Infiltration and Terrain on an Undulating Agricultural Field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fractal scaling behaviors have been observed in systems where interacting factors cause nested spatial structures. Surface water infiltration affects spatial patterns of soil water, nutrients, and plant development and crop yield. Here, we explored simple fractal scaling of quasi-steady infiltrati...

  16. Map of fluid flow in fractal porous medium into fractal continuum flow.

    PubMed

    Balankin, Alexander S; Elizarraraz, Benjamin Espinoza

    2012-05-01

    This paper is devoted to fractal continuum hydrodynamics and its application to model fluid flows in fractally permeable reservoirs. Hydrodynamics of fractal continuum flow is developed on the basis of a self-consistent model of fractal continuum employing vector local fractional differential operators allied with the Hausdorff derivative. The generalized forms of Green-Gauss and Kelvin-Stokes theorems for fractional calculus are proved. The Hausdorff material derivative is defined and the form of Reynolds transport theorem for fractal continuum flow is obtained. The fundamental conservation laws for a fractal continuum flow are established. The Stokes law and the analog of Darcy's law for fractal continuum flow are suggested. The pressure-transient equation accounting the fractal metric of fractal continuum flow is derived. The generalization of the pressure-transient equation accounting the fractal topology of fractal continuum flow is proposed. The mapping of fluid flow in a fractally permeable medium into a fractal continuum flow is discussed. It is stated that the spectral dimension of the fractal continuum flow d(s) is equal to its mass fractal dimension D, even when the spectral dimension of the fractally porous or fissured medium is less than D. A comparison of the fractal continuum flow approach with other models of fluid flow in fractally permeable media and the experimental field data for reservoir tests are provided.

  17. Fractal analysis of Xylella fastidiosa biofilm formation

    NASA Astrophysics Data System (ADS)

    Moreau, A. L. D.; Lorite, G. S.; Rodrigues, C. M.; Souza, A. A.; Cotta, M. A.

    2009-07-01

    We have investigated the growth process of Xylella fastidiosa biofilms inoculated on a glass. The size and the distance between biofilms were analyzed by optical images; a fractal analysis was carried out using scaling concepts and atomic force microscopy images. We observed that different biofilms show similar fractal characteristics, although morphological variations can be identified for different biofilm stages. Two types of structural patterns are suggested from the observed fractal dimensions Df. In the initial and final stages of biofilm formation, Df is 2.73±0.06 and 2.68±0.06, respectively, while in the maturation stage, Df=2.57±0.08. These values suggest that the biofilm growth can be understood as an Eden model in the former case, while diffusion-limited aggregation (DLA) seems to dominate the maturation stage. Changes in the correlation length parallel to the surface were also observed; these results were correlated with the biofilm matrix formation, which can hinder nutrient diffusion and thus create conditions to drive DLA growth.

  18. A Robust Actin Filaments Image Analysis Framework

    PubMed Central

    Alioscha-Perez, Mitchel; Benadiba, Carine; Goossens, Katty; Kasas, Sandor; Dietler, Giovanni; Willaert, Ronnie; Sahli, Hichem

    2016-01-01

    The cytoskeleton is a highly dynamical protein network that plays a central role in numerous cellular physiological processes, and is traditionally divided into three components according to its chemical composition, i.e. actin, tubulin and intermediate filament cytoskeletons. Understanding the cytoskeleton dynamics is of prime importance to unveil mechanisms involved in cell adaptation to any stress type. Fluorescence imaging of cytoskeleton structures allows analyzing the impact of mechanical stimulation in the cytoskeleton, but it also imposes additional challenges in the image processing stage, such as the presence of imaging-related artifacts and heavy blurring introduced by (high-throughput) automated scans. However, although there exists a considerable number of image-based analytical tools to address the image processing and analysis, most of them are unfit to cope with the aforementioned challenges. Filamentous structures in images can be considered as a piecewise composition of quasi-straight segments (at least in some finer or coarser scale). Based on this observation, we propose a three-steps actin filaments extraction methodology: (i) first the input image is decomposed into a ‘cartoon’ part corresponding to the filament structures in the image, and a noise/texture part, (ii) on the ‘cartoon’ image, we apply a multi-scale line detector coupled with a (iii) quasi-straight filaments merging algorithm for fiber extraction. The proposed robust actin filaments image analysis framework allows extracting individual filaments in the presence of noise, artifacts and heavy blurring. Moreover, it provides numerous parameters such as filaments orientation, position and length, useful for further analysis. Cell image decomposition is relatively under-exploited in biological images processing, and our study shows the benefits it provides when addressing such tasks. Experimental validation was conducted using publicly available datasets, and in osteoblasts

  19. A Robust Actin Filaments Image Analysis Framework.

    PubMed

    Alioscha-Perez, Mitchel; Benadiba, Carine; Goossens, Katty; Kasas, Sandor; Dietler, Giovanni; Willaert, Ronnie; Sahli, Hichem

    2016-08-01

    The cytoskeleton is a highly dynamical protein network that plays a central role in numerous cellular physiological processes, and is traditionally divided into three components according to its chemical composition, i.e. actin, tubulin and intermediate filament cytoskeletons. Understanding the cytoskeleton dynamics is of prime importance to unveil mechanisms involved in cell adaptation to any stress type. Fluorescence imaging of cytoskeleton structures allows analyzing the impact of mechanical stimulation in the cytoskeleton, but it also imposes additional challenges in the image processing stage, such as the presence of imaging-related artifacts and heavy blurring introduced by (high-throughput) automated scans. However, although there exists a considerable number of image-based analytical tools to address the image processing and analysis, most of them are unfit to cope with the aforementioned challenges. Filamentous structures in images can be considered as a piecewise composition of quasi-straight segments (at least in some finer or coarser scale). Based on this observation, we propose a three-steps actin filaments extraction methodology: (i) first the input image is decomposed into a 'cartoon' part corresponding to the filament structures in the image, and a noise/texture part, (ii) on the 'cartoon' image, we apply a multi-scale line detector coupled with a (iii) quasi-straight filaments merging algorithm for fiber extraction. The proposed robust actin filaments image analysis framework allows extracting individual filaments in the presence of noise, artifacts and heavy blurring. Moreover, it provides numerous parameters such as filaments orientation, position and length, useful for further analysis. Cell image decomposition is relatively under-exploited in biological images processing, and our study shows the benefits it provides when addressing such tasks. Experimental validation was conducted using publicly available datasets, and in osteoblasts grown in

  20. Regulation of the filament structure and assembly of Acanthamoeba myosin II by phosphorylation of serines in the heavy-chain nonhelical tailpiece.

    PubMed

    Liu, Xiong; Hong, Myoung-Soon; Shu, Shi; Yu, Shuhua; Korn, Edward D

    2013-01-01

    Acanthamoeba myosin II (AMII) has two heavy chains ending in a 27-residue nonhelical tailpiece and two pairs of light chains. In a companion article, we show that five, and only five, serine residues can be phosphorylated both in vitro and in vivo: Ser639 in surface loop 2 of the motor domain and serines 1489, 1494, 1499, and 1504 in the nonhelical tailpiece of the heavy chains. In that paper, we show that phosphorylation of Ser639 down-regulates the actin-activated MgATPase activity of AMII and that phosphorylation of the serines in the nonhelical tailpiece has no effect on enzymatic activity. Here we show that bipolar tetrameric, hexameric, and octameric minifilaments of AMII with the nonhelical tailpiece serines either phosphorylated or mutated to glutamate have longer bare zones and more tightly clustered heads than minifilaments of unphosphorylated AMII, irrespective of the phosphorylation state of Ser639. Although antiparallel dimers of phosphorylated and unphosphorylated myosins are indistinguishable, phosphorylation inhibits dimerization and filament assembly. Therefore, the different structures of tetramers, hexamers, and octamers of phosphorylated and unphosphorylated AMII must be caused by differences in the longitudinal stagger of phosphorylated and unphosphorylated bipolar dimers and tetramers. Thus, although the actin-activated MgATPase activity of AMII is regulated by phosphorylation of Ser639 in loop 2 of the motor domain, the structure of AMII minifilaments is regulated by phosphorylation of one or more of four serines in the nonhelical tailpiece of the heavy chain. PMID:23248285