Fractional parentage analysis and a scale-free reproductive network of brown trout.
Koyano, Hitoshi; Serbezov, Dimitar; Kishino, Hirohisa; Schweder, Tore
2013-11-07
In this study, we developed a method of fractional parentage analysis using microsatellite markers. We propose a method for calculating parentage probability, which considers missing data and genotyping errors due to null alleles and other causes, by regarding observed alleles as realizations of random variables which take values in the set of alleles at the locus and developing a method for simultaneously estimating the true and null allele frequencies of all alleles at each locus. We then applied our proposed method to a large sample collected from a wild population of brown trout (Salmo trutta). On analyzing the data using our method, we found that the reproductive success of brown trout obeyed a power law, indicating that when the parent-offspring relationship is regarded as a link, the reproductive system of brown trout is a scale-free network. Characteristics of the reproductive network of brown trout include individuals with large bodies as hubs in the network and different power exponents of degree distributions between males and females. © 2013 Elsevier Ltd. All rights reserved.
Automatic isotropic fractionation for large-scale quantitative cell analysis of nervous tissue.
Azevedo, Frederico A C; Andrade-Moraes, Carlos H; Curado, Marco R; Oliveira-Pinto, Ana V; Guimarães, Daniel M; Szczupak, Diego; Gomes, Bruna V; Alho, Ana T L; Polichiso, Livia; Tampellini, Edilaine; Lima, Luzia; de Lima, Daniel Oliveira; da Silva, Hudson Alves; Lent, Roberto
2013-01-15
Isotropic fractionation is a quantitative technique that allows reliable estimates of absolute numbers of neuronal and non-neuronal brain cells. However, being fast for single small brains, it requires a long time for processing large brains or many small ones, if done manually. To solve this problem, we developed a machine to automate the method, and tested its efficiency, consistency, and reliability as compared with manual processing. The machine consists of a set of electronically controlled rotation and translation motors coupled to tissue grinders, which automatically transform fixed tissue into homogeneous nuclei suspensions. Speed and torque of the motors can be independently regulated by electronic circuits, according to the volume of tissue being processed and its mechanical resistance to fractionation. To test the machine, twelve paraformaldehyde-fixed rat brains and eight human cerebella were separated into two groups, respectively: one processed automatically and the other, manually. Both pairs of groups (rat and human tissue) followed the same, published protocol of the method. We compared the groups according to nuclei morphology, degree of clustering and number of cells. The machine proved superior for yielding faster results due to simultaneous processing in multiple grinders. Quantitative analysis of machine-processed tissue resulted in similar average numbers of total brain cells, neurons, and non-neuronal cells, statistically similar to the manually processed tissue and equivalent to previously published data. We concluded that the machine is more efficient because it utilizes many homogenizers simultaneously, equally consistent in producing high quality material for counting, and quantitatively reliable as compared to manual processing. Copyright © 2012 Elsevier B.V. All rights reserved.
Conformable fractional Dirac system on time scales.
Gulsen, Tuba; Yilmaz, Emrah; Goktas, Sertac
2017-01-01
We study the conformable fractional (CF) Dirac system with separated boundary conditions on an arbitrary time scale [Formula: see text]. Then we extend some basic spectral properties of the classical Dirac system to the CF case. Eventually, some asymptotic estimates for the eigenfunction of the CF Dirac eigenvalue problem are obtained on [Formula: see text]. So, we provide a constructive procedure for the solution of this problem. These results are important steps to consolidate the link between fractional calculus and time scale calculus in spectral theory.
NASA Astrophysics Data System (ADS)
Deng, Chengbin; Wu, Changshan
2013-12-01
Urban impervious surface information is essential for urban and environmental applications at the regional/national scales. As a popular image processing technique, spectral mixture analysis (SMA) has rarely been applied to coarse-resolution imagery due to the difficulty of deriving endmember spectra using traditional endmember selection methods, particularly within heterogeneous urban environments. To address this problem, we derived endmember signatures through a least squares solution (LSS) technique with known abundances of sample pixels, and integrated these endmember signatures into SMA for mapping large-scale impervious surface fraction. In addition, with the same sample set, we carried out objective comparative analyses among SMA (i.e. fully constrained and unconstrained SMA) and machine learning (i.e. Cubist regression tree and Random Forests) techniques. Analysis of results suggests three major conclusions. First, with the extrapolated endmember spectra from stratified random training samples, the SMA approaches performed relatively well, as indicated by small MAE values. Second, Random Forests yields more reliable results than Cubist regression tree, and its accuracy is improved with increased sample sizes. Finally, comparative analyses suggest a tentative guide for selecting an optimal approach for large-scale fractional imperviousness estimation: unconstrained SMA might be a favorable option with a small number of samples, while Random Forests might be preferred if a large number of samples are available.
Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation
NASA Astrophysics Data System (ADS)
Peng, Wei; Mahfouz, Remi; Pan, Jun; Hou, Yuanfang; Beaujuge, Pierre M.; Bakr, Osman M.
2013-05-01
distributions remains one of the main challenges to their utilization. At this time, the number of practical approaches to optimize the size distribution of nanoparticles in many interesting materials systems, including diamond nanocrystals, remains limited. Diamond nanocrystals synthesized by detonation protocols - so-called detonation nanodiamonds (DNDs) - are promising systems for drug delivery, photonics, and composites. DNDs are composed of primary particles with diameters mainly <10 nm and their aggregates (ca. 10-500 nm). Here, we introduce a large-scale approach to rate-zonal density gradient ultracentrifugation to obtain monodispersed fractions of nanoparticles in high yields. We use this method to fractionate a highly concentrated and stable aqueous solution of DNDs and to investigate the size distribution of various fractions by dynamic light scattering, analytical ultracentrifugation, transmission electron microscopy and powder X-ray diffraction. This fractionation method enabled us to separate gram-scale amounts of DNDs into several size ranges within a relatively short period of time. In addition, the high product yields obtained for each fraction allowed us to apply the fractionation method iteratively to a particular size range of particles and to collect various fractions of highly monodispersed primary particles. Our method paves the way for in-depth studies of the physical and optical properties, growth, and aggregation mechanism of DNDs. Applications requiring DNDs with specific particle or aggregate sizes are now within reach. Electronic supplementary information (ESI) available: Discussion of the influence of sample solution concentrations on DLS measurements, comparisons of the size distributions of our raw milled particles and NanoAmando particles, a detailed description of the RZDGU procedure, discussion of the influences of the gradients and centrifugation times on fractionation, TEM images, zeta potentials, AUC analysis and determination of mp
NASA Astrophysics Data System (ADS)
Barlow, J. M.; Palmer, P. I.; Bruhwiler, L. M.; Tans, P.
2015-03-01
Atmospheric variations of carbon dioxide (CO2) mole fraction reflect changes in atmospheric transport and regional patterns of surface emission and uptake. We report new estimates for changes in the phase and amplitude of observed high northern latitude CO2 seasonal variations, indicative of biospheric changes, by spectrally decomposing multi-decadal records of surface CO2 mole fraction using a wavelet transform to isolate the changes in the observed seasonal cycle. We also perform similar analysis of the first time derivative of CO2 mole fraction, ΔtCO2, that is a crude proxy for changes in CO2 flux. Using numerical experiments, we quantify the aliasing error associated with independently identifying trends in phase and peak uptake and release to be 10-25%, with the smallest biases in phase associated with the analysis of ΔtCO2. We report our analysis from Barrow, Alaska (BRW) during 1973-2013, which is representative of the broader Arctic region. We determine an amplitude trend of 0.09 ± 0.02 ppm yr-1, which is consistent with previous work. Using ΔtCO2 we determine estimates for the timing of the onset of net uptake and release of CO2 of -0.14 ± 0.14 and -0.25 ± 0.08 days yr-1, respectively, and a corresponding uptake period of -0.11 ± 0.16 days yr-1, which are significantly different to previously reported estimates. We find that the wavelet transform method has significant skill in characterizing changes in the peak uptake and release. We find a trend of 0.65 ± 0.34% (p< 0.01) and 0.42 ± 0.34% (p<0.05) for rates of peak uptake and release, respectively. Our analysis does not provide direct evidence about the balance between uptake and release of carbon, but changes in the peak uptake and release together with an invariant growing period length provides indirect evidence that high northern latitude ecosystems are progressively taking up more carbon.
NASA Astrophysics Data System (ADS)
Barlow, J. M.; Palmer, P. I.; Bruhwiler, L. M.; Tans, P.
2015-12-01
Atmospheric variations of carbon dioxide (CO2) mole fraction reflect changes in atmospheric transport and regional patterns of surface emission and uptake. Here we present a study of changes in the observed high northern latitude CO2 seasonal cycle. We report new estimates for changes in the phase and amplitude of the seasonal variations, indicative of biospheric changes, by spectrally decomposing multi-decadal records of surface CO2 mole fraction using a wavelet transform to isolate the changes in the observed seasonal cycle. We also perform similar analysis of the first derivative of CO2 mole fraction, ΔtCO2, that is a crude proxy for changes in CO2 flux. Using numerical experiments, we quantify the aliasing error associated with independently identifying trends in phase and peak uptake and release to be 10-25 %, with the smallest biases in phase associated with the analysis of ΔtCO2. We report our analysis from Barrow, Alaska (BRW), during 1973-2013, which is representative of the broader Arctic region. We determine an amplitude trend of 0.09 ± 0.02 ppm yr-1, which is consistent with previous work. Using ΔtCO2 we determine estimates for the timing of the onset of net uptake and release of CO2 of -0.14 ± 0.14 and -0.25 ± 0.08 days yr-1 respectively and a corresponding net uptake period of -0.11 ± 0.16 days yr-1, which are significantly different to previously reported estimates. We find that the wavelet transform method has significant skill in characterizing changes in the peak uptake and release. We find a trend of 0.65 ± 0.34 % yr-1 (p < 0.01) and 0.42 ± 0.34 % yr-1 (p < 0.05) for rates of peak uptake and release respectively. Our analysis does not provide direct evidence about the balance between uptake and release of carbon when integrated throughout the year, but the increase in the seasonal amplitude of CO2 together with an invariant net carbon uptake period provides evidence that high northern latitude ecosystems are progressively taking up more
Homotopy analysis method for fractional IVPs
NASA Astrophysics Data System (ADS)
Hashim, I.; Abdulaziz, O.; Momani, S.
2009-03-01
In this paper, the homotopy analysis method is applied to solve linear and nonlinear fractional initial-value problems (fIVPs). The fractional derivatives are described by Caputo's sense. Exact and/or approximate analytical solutions of the fIVPs are obtained. The results of applying this procedure to the studied cases show the high accuracy and efficiency of the approach.
Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation.
Peng, Wei; Mahfouz, Remi; Pan, Jun; Hou, Yuanfang; Beaujuge, Pierre M; Bakr, Osman M
2013-06-07
Size is a defining characteristic of nanoparticles; it influences their optical and electronic properties as well as their interactions with molecules and macromolecules. Producing nanoparticles with narrow size distributions remains one of the main challenges to their utilization. At this time, the number of practical approaches to optimize the size distribution of nanoparticles in many interesting materials systems, including diamond nanocrystals, remains limited. Diamond nanocrystals synthesized by detonation protocols - so-called detonation nanodiamonds (DNDs) - are promising systems for drug delivery, photonics, and composites. DNDs are composed of primary particles with diameters mainly <10 nm and their aggregates (ca. 10-500 nm). Here, we introduce a large-scale approach to rate-zonal density gradient ultracentrifugation to obtain monodispersed fractions of nanoparticles in high yields. We use this method to fractionate a highly concentrated and stable aqueous solution of DNDs and to investigate the size distribution of various fractions by dynamic light scattering, analytical ultracentrifugation, transmission electron microscopy and powder X-ray diffraction. This fractionation method enabled us to separate gram-scale amounts of DNDs into several size ranges within a relatively short period of time. In addition, the high product yields obtained for each fraction allowed us to apply the fractionation method iteratively to a particular size range of particles and to collect various fractions of highly monodispersed primary particles. Our method paves the way for in-depth studies of the physical and optical properties, growth, and aggregation mechanism of DNDs. Applications requiring DNDs with specific particle or aggregate sizes are now within reach.
Scaling relations for gaps in fractional quantum Hall states
NASA Astrophysics Data System (ADS)
Murthy, Ganpathy; Park, K.; Shankar, R.; Jain, J. K.
1998-12-01
The microscopic Hamiltonian approach of Murthy and Shankar, which has recently been used to calculate the transport gaps of quantum Hall states with fractions ν=p/(2ps+1), also implies scaling relations between gaps within a single sequence (fixed s) as well as between gaps of corresponding states in different sequences. This work tests these relations for a system of electrons in the lowest Landau level interacting with a model potential cutoff at high momenta due to sample thickness.
Proteome analysis of human nuclear insoluble fractions.
Takata, Hideaki; Nishijima, Hitoshi; Ogura, Shun-Ichiro; Sakaguchi, Takehisa; Bubulya, Paula A; Mochizuki, Tohru; Shibahara, Kei-Ichi
2009-08-01
The interphase nucleus is a highly ordered and compartmentalized organelle. Little is known regarding what elaborate mechanisms might exist to explain these properties of the nucleus. Also unresolved is whether some architectural components might facilitate the formation of functional intranuclear compartments or higher order chromatin structure. As the first step to address these questions, we performed an in-depth proteome analysis of nuclear insoluble fractions of human HeLa-S3 cells prepared by two different approaches: a high-salt/detergent/nuclease-resistant fraction and a lithium 3,5-diiodosalicylate/nuclease-resistant fraction. Proteins of the fractions were analyzed by liquid chromatography electrospray ionization tandem mass spectrometry, identifying 333 and 330 proteins from each fraction respectively. Among the insoluble nuclear proteins, we identified 37 hitherto unknown or functionally uncharacterized proteins. The RNA recognition motif, WD40 repeats, HEAT repeats and the SAP domain were often found in these identified proteins. The subcellular distribution of selected proteins, including DEK protein and SON protein, demonstrated their novel associations with nuclear insoluble materials, corroborating our MS-based analysis. This study establishes a comprehensive catalog of the nuclear insoluble proteins in human cells. Further functional analysis of the proteins identified in our study will significantly improve our understanding of the dynamic organization of the interphase nucleus.
Modes of planetary-scale Fe isotope fractionation
NASA Astrophysics Data System (ADS)
Schoenberg, Ronny; Blanckenburg, Friedhelm von
2006-12-01
A comprehensive set of high-precision Fe isotope data for the principle meteorite types and silicate reservoirs of the Earth is used to investigate iron isotope fractionation at inter- and intra-planetary scales. 14 chondrite analyses yield a homogeneous Fe isotope composition with an average δ56Fe/ 54Fe value of - 0.015 ± 0.020‰ (2 SE) relative to the international iron standard IRMM-014. Eight non-cumulate and polymict eucrite meteorites that sample the silicate portion of the HED (howardite-eucrite-diogenite) parent body yield an average δ56Fe/ 54Fe value of - 0.001 ± 0.017‰, indistinguishable to the chondritic Fe isotope composition. Fe isotope ratios that are indistinguishable to the chondritic value have also been published for SNC meteorites. This inner-solar system homogeneity in Fe isotopes suggests that planetary accretion itself did not significantly fractionate iron. Nine mantle xenoliths yield a 2 σ envelope of - 0.13‰ to + 0.09‰ in δ56Fe/ 54Fe. Using this range as proxy for the bulk silicate Earth in a mass balance model places the Fe isotope composition of the outer liquid core that contains ca. 83% of Earth's total iron to within ± 0.020‰ of the chondritic δ56Fe/ 54Fe value. These calculations allow to interprete magmatic iron meteorites ( δ56Fe/ 54Fe = + 0.047 ± 0.016‰; N = 8) to be representative for the Earth's inner metallic core. Eight terrestrial basalt samples yield a homogeneous Fe isotope composition with an average δ56Fe/ 54Fe value of + 0.072 ± 0.016‰. The observation that terrestrial basalts appear to be slightly heavier than mantle xenoliths and that thus partial mantle melting preferentially transfers heavy iron into the melt [S. Weyer, A.D. Anbar, G.P. Brey, C. Munker, K. Mezger and A.B. Woodland, Iron isotope fractionation during planetary differentiation, Earth and Planetary Science Letters 240(2), 251-264, 2005.] is intriguing, but also raises some important questions: first it is questionable whether the
Development of Fraction Comparison Strategies: A Latent Transition Analysis
ERIC Educational Resources Information Center
Rinne, Luke F.; Ye, Ai; Jordan, Nancy C.
2017-01-01
The present study investigated the development of fraction comparison strategies through a longitudinal analysis of children's responses to a fraction comparison task in 4th through 6th grades (N = 394). Participants were asked to choose the larger value for 24 fraction pairs blocked by fraction type. Latent class analysis of performance over item…
Regional Scale Characterization of Soil Carbon Fractions with Pedometrics
NASA Astrophysics Data System (ADS)
Keskin, H.; Grunwald, S.; Myers, D. B.; Harris, W. G.
2015-12-01
Regional scale characterization of the spatial distribution of soil carbon (C) fractions can facilitate a better understanding of the lability and recalcitrance of C across diverse land uses, soils, and climatic gradients. While C lability is associated with decomposition and transport processes in soils in, the stable portion of soil C persists in soil for decades to millennia. To better understand storage, flux and processes of soil C from across the soil-landscape continuum, we upscaled different fractions of soil C. Recalcitrant carbon (RC), hydrolysable carbon (HC) and total carbon (TC) were derived from the topsoil (0-20 cm) at 1,014 georeferenced sites in Florida (~150 000 km2). These were identified using a random-stratified sampling design with landuse-soil suborders strata. The Boruta method was employed for identifying all-relevant variables from the available 327 soil-environmental variables in order to develop the most parsimonious model for TC, RC and HC. We compared eight methods: Classification and Regression Tree (CaRT), Bagged Regression Tree (BaRT), Boosted Regression Tree (BoRT), Random Forest (RF), Support Vector Machine (SVM), Partial Least Square Regression (PLSR), Regression Kriging (RK), and Ordinary Kriging (OK). The accuracy of each method was assessed from 304 randomly chosen samples that were used for validation. Overall, 36, 20 and 25 variables stood out as all-relevant to TC, RC and HC, respectively. We predicted TC with a mean of 4.89 kg m-2 and standard error of 3.71 kg m-2. The prediction performance based on the ratio of prediction error to inter-quartile range in order of accuracy for TC was as follows: RF>BoRT>BaRT>SVM>PLSR>RK>CART>OK; however, BoRT outperformed RF for RC and HC, and the remaining order was identical for RC and HC. The best models, explained 71.6, 73.2, and 32.9 % of the total variation for TC, RC and HC, respectively. No residual spatial autocorrelation was left among the evaluated models. This indicates that
Fractional scaling of quantum walks on percolation lattices
NASA Astrophysics Data System (ADS)
Kendon, Viv; Leung, Godfrey; Bailey, Joe; Knott, Paul
2011-03-01
Quantum walks can be used to model processes such as transport in spin chains and bio-molecules. The enhanced spreading and mixing properties of quantum walks compared with their classical counterparts have been well-studied on regular structures and also shown to be sensitive to defects and imperfections. Using numerical simulation, we study the spreading properties of quantum walks on percolation lattices for both bond and site percolation. The randomly missing edges or sites provide a controlled amount of disorder in the regular Cartesian lattice. In one dimension (the line) we introduce a simple model of quantum tunneling to allow the walk to proceed past the missing edges or sites. This allows the quantum walk to spread faster than a classical random walk for short times, but at longer times the disorder localises the quantum walk. In two dimensions, we observe fractional scaling of the spreading with the number of steps of the walk. For percolation above the 85% level, we obtain faster spreading than classical random walks on the full lattice.
Scaling in sensitivity analysis
Link, W.A.; Doherty, P.F.
2002-01-01
Population matrix models allow sets of demographic parameters to be summarized by a single value 8, the finite rate of population increase. The consequences of change in individual demographic parameters are naturally measured by the corresponding changes in 8; sensitivity analyses compare demographic parameters on the basis of these changes. These comparisons are complicated by issues of scale. Elasticity analysis attempts to deal with issues of scale by comparing the effects of proportional changes in demographic parameters, but leads to inconsistencies in evaluating demographic rates. We discuss this and other problems of scaling in sensitivity analysis, and suggest a simple criterion for choosing appropriate scales. We apply our suggestions to data for the killer whale, Orcinus orca.
NASA Astrophysics Data System (ADS)
Huber, C.; Druhan, J. L.; Parmigiani, A.; Shafei, B.; Maher, K.
2013-12-01
The stable isotope compositions of reactant and product species are commonly utilized in the analysis of biogeochemical cycling, contaminant remediation and paleo-proxy records. While novel analytical models for isotopic exchange during steady state mineral growth are poised to offer new insights into these fields, commonly encountered transient conditions such as variable saturation state, flow rate and porosity/permeability present a formidable challenge. The problem arises from the precipitation of new mineral that is isotopically variant normal to the plane of growth, reflecting the temporal evolution of the adjacent, supersaturated fluid (e.g. Pearce et al., 2012; Druhan et al., 2013). Reactive transport models intended to describe isotopic exchange between the fluid and mineral surface then incur error through the use of a bulk mineral isotopic ratio rather than tracking a spatially variable isotopic composition within the solid. Here we present a novel multi-species, pore-scale reactive transport code based on the lattice Boltzmann method (LBM) capable of simulating the individual isotopes of calcium during fractionating, kinetically controlled precipitation of calcite from a supersaturated, flowing fluid. The isotopic composition of the mineral surface in contact with the advecting fluid is tracked through time by computing the averaged isotopic composition of the solid fraction over small solid volume fraction bins. This method allows us to model isotopic composition zoning at a scale smaller than that of the computational grid, thus effectively distinguishing the isotopic ratio of the mineral surface in contact with the fluid from the remainder of the solid phase. Druhan, J.L.; Steefel, C.I.; Williams, K.H.; DePaolo, D.J. (2013) Calcium isotope fractionation in groundwater: Molecular scale processes influencing field scale behavior. Geochim. Cosmochim. Acta., in press. Pearce, C.R.; Saldi, G.D.; Schott, J.; Oelkers, E.H. (2012) Isotopic fractionation
Fractional Hamiltonian analysis of higher order derivatives systems
Baleanu, Dumitru; Muslih, Sami I.; Tas, Kenan
2006-10-15
The fractional Hamiltonian analysis of 1+1 dimensional field theory is investigated and the fractional Ostrogradski's formulation is obtained. The fractional path integral of both simple harmonic oscillator with an acceleration-squares part and a damped oscillator are analyzed. The classical results are obtained when fractional derivatives are replaced with the integer order derivatives.
Online Nanoflow Multidimensional Fractionation for High Efficiency Phosphopeptide Analysis*
Ficarro, Scott B.; Zhang, Yi; Carrasco-Alfonso, Marlene J.; Garg, Brijesh; Adelmant, Guillaume; Webber, James T.; Luckey, C. John; Marto, Jarrod A.
2011-01-01
Despite intense, continued interest in global analyses of signaling cascades through mass spectrometry-based studies, the large-scale, systematic production of phosphoproteomics data has been hampered in-part by inefficient fractionation strategies subsequent to phosphopeptide enrichment. Here we explore two novel multidimensional fractionation strategies for analysis of phosphopeptides. In the first technique we utilize aliphatic ion pairing agents to improve retention of phosphopeptides at high pH in the first dimension of a two-dimensional RP-RP. The second approach is based on the addition of strong anion exchange as the second dimension in a three-dimensional reversed phase (RP)-strong anion exchange (SAX)-RP configuration. Both techniques provide for automated, online data acquisition, with the 3-D platform providing the highest performance both in terms of separation peak capacity and the number of unique phosphopeptide sequences identified per μg of cell lysate consumed. Our integrated RP-SAX-RP platform provides several analytical figures of merit, including: (1) orthogonal separation mechanisms in each dimension; (2) high separation peak capacity (3) efficient retention of singly- and multiply-phosphorylated peptides; (4) compatibility with automated, online LC-MS analysis. We demonstrate the reproducibility of RP-SAX-RP and apply it to the analysis of phosphopeptides derived from multiple biological contexts, including an in vitro model of acute myeloid leukemia in addition to primary polyclonal CD8+ T-cells activated in vivo through bacterial infection and then purified from a single mouse. PMID:21788404
Development of Fraction Comparison Strategies: A Latent Transition Analysis.
Rinne, Luke F; Ye, Ai; Jordan, Nancy C
2017-02-20
The present study investigated the development of fraction comparison strategies through a longitudinal analysis of children's responses to a fraction comparison task in 4th through 6th grades (N = 394). Participants were asked to choose the larger value for 24 fraction pairs blocked by fraction type. Latent class analysis of performance over item blocks showed that most children initially exhibited a "whole number bias," indicating that larger numbers in numerators and denominators produce larger fraction values. However, some children instead chose fractions with smaller numerators and denominators, demonstrating a partial understanding that smaller numbers can yield larger fractions. Latent transition analysis showed that most children eventually adopted normative comparison strategies. Children who exhibited a partial understanding by choosing fractions with smaller numbers were more likely to adopt normative comparison strategies earlier than those with larger number biases. Controlling for general math achievement and other cognitive abilities, whole number line estimation accuracy predicted the probability of transitioning to normative comparison strategies. Exploratory factor analyses showed that over time, children appeared to increasingly represent fractions as discrete magnitudes when simpler strategies were unavailable. These results support the integrated theory of numerical development, which posits that an understanding of numbers as magnitudes unifies the process of learning whole numbers and fractions. The findings contrast with conceptual change theories, which propose that children must move from a view of numbers as counting units to a new view that accommodates fractions to overcome whole number bias. (PsycINFO Database Record
Pilot-scale fractionation of whey proteins with supercritical CO2
USDA-ARS?s Scientific Manuscript database
A new pilot-scale process is being developed and optimized for the separation of whey proteins into two enriched, highly functional fractions that are free of contaminants. The fractionation of whey protein isolate (WPI), which contains approximately 32% alpha-lactalbumin (alpha-LA) and 61% beta-lac...
Smith, R.D.; Wright, B.W.; Udseth, H.R.
1984-11-01
The development of new supercritical fluid extraction and fractionation processes requires exploration of wide ranges of fluid temperature and pressure. As the fluid phase becomes more complex, conventional methods become inadequate unless augmented by increasingly sophisticated analytical instrumentation. In addition to chemical complexity, analysis is often hindered by characteristics of the analyte which makes supercritical fluid extraction desirable (e.g., thermal lability). Micro-scale methods are described which address these problems while providing the additional benefits of speed, reduced cost, greatly reduced sample and solvent consumption, and safety. Techniques are described in which the fluid phase from micro-scale (0.005 to 5 ml) high pressure cells is sampled and analyzed in either continuous or periodic modes. The methods developed in our laboratory utilize capillary supercritical fluid chromatography and direct fluid injection-mass spectrometry (or their combination), in addition to conventional analytical techniques, for the characterization of complex supercritical fluid mixtures. The application of these methods to various extraction and fractionation processes involving CO/sub 2/ and NH/sub 3/, solubility studies of simple and complex mixtures, and the study of rapid chemical processes in supercritical water is described. New methods for the automated examination of extraction processes using capillary chromatography are also described and their initial application illustrated.
NASA Astrophysics Data System (ADS)
Huang, Yongxiang; Wang, Lipo; Schmitt, F. G.; Zheng, Xiaobo; Jiang, Nan; Liu, Yulu
2017-07-01
In recent years several local extrema-based methodologies have been proposed to investigate either the nonlinear or the nonstationary time series for scaling analysis. In the present work, we study systematically the distribution of the local extrema for both synthesized scaling processes and turbulent velocity data from experiments. The results show that for the fractional Brownian motion (fBm) without intermittency correction the measured extremal-point-density (EPD) agrees well with a theoretical prediction. For a multifractal random walk (MRW) with the lognormal statistics, the measured EPD is independent of the intermittency parameter μ , suggesting that the intermittency correction does not change the distribution of extremal points but changes the amplitude. By introducing a coarse-grained operator, the power-law behavior of these scaling processes is then revealed via the measured EPD for different scales. For fBm the scaling exponent ξ (H ) is found to be ξ (H )=H , where H is Hurst number, while for MRW ξ (μ ) shows a linear relation with the intermittency parameter μ . Such EPD approach is further applied to the turbulent velocity data obtained from a wind tunnel flow experiment with the Taylor scale λ -based Reynolds number Reλ=720 , and a turbulent boundary layer with the momentum thickness θ based Reynolds number Reθ=810 . A scaling exponent ξ ≃0.37 is retrieved for the former case. For the latter one, the measured EPD shows clearly four regimes, which agrees well with the corresponding sublayer structures inside the turbulent boundary layer.
NASA Astrophysics Data System (ADS)
Nezhadhaghighi, Mohsen Ghasemi
2017-08-01
Here, we present results of numerical simulations and the scaling characteristics of one-dimensional random fluctuations with heavy-tailed probability distribution functions. Assuming that the distribution function of the random fluctuations obeys Lévy statistics with a power-law scaling exponent, we investigate the fractional diffusion equation in the presence of μ -stable Lévy noise. We study the scaling properties of the global width and two-point correlation functions and then compare the analytical and numerical results for the growth exponent β and the roughness exponent α . We also investigate the fractional Fokker-Planck equation for heavy-tailed random fluctuations. We show that the fractional diffusion processes in the presence of μ -stable Lévy noise display special scaling properties in the probability distribution function (PDF). Finally, we numerically study the scaling properties of the heavy-tailed random fluctuations by using the diffusion entropy analysis. This method is based on the evaluation of the Shannon entropy of the PDF generated by the random fluctuations, rather than on the measurement of the global width of the process. We apply the diffusion entropy analysis to extract the growth exponent β and to confirm the validity of our numerical analysis.
Nezhadhaghighi, Mohsen Ghasemi
2017-08-01
Here, we present results of numerical simulations and the scaling characteristics of one-dimensional random fluctuations with heavy-tailed probability distribution functions. Assuming that the distribution function of the random fluctuations obeys Lévy statistics with a power-law scaling exponent, we investigate the fractional diffusion equation in the presence of μ-stable Lévy noise. We study the scaling properties of the global width and two-point correlation functions and then compare the analytical and numerical results for the growth exponent β and the roughness exponent α. We also investigate the fractional Fokker-Planck equation for heavy-tailed random fluctuations. We show that the fractional diffusion processes in the presence of μ-stable Lévy noise display special scaling properties in the probability distribution function (PDF). Finally, we numerically study the scaling properties of the heavy-tailed random fluctuations by using the diffusion entropy analysis. This method is based on the evaluation of the Shannon entropy of the PDF generated by the random fluctuations, rather than on the measurement of the global width of the process. We apply the diffusion entropy analysis to extract the growth exponent β and to confirm the validity of our numerical analysis.
Representing Fractions with Standard Notation: A Developmental Analysis
ERIC Educational Resources Information Center
Saxe, Geoffrey B.; Taylor, Edd V.; McIntosh, Clifton; Gearhart, Maryl
2005-01-01
This study had two purposes: (a) to investigate the developmental relationship between students' uses of fractions notation and their understandings of part-whole relations; and (b) to produce an analysis of the role of fractions instruction in students' use of notation to represent parts of an area. Elementary students (n = 384) in 19 classes…
Profile Analysis: Multidimensional Scaling Approach.
ERIC Educational Resources Information Center
Ding, Cody S.
2001-01-01
Outlines an exploratory multidimensional scaling-based approach to profile analysis called Profile Analysis via Multidimensional Scaling (PAMS) (M. Davison, 1994). The PAMS model has the advantages of being applied to samples of any size easily, classifying persons on a continuum, and using person profile index for further hypothesis studies, but…
Can a Time Fractional-Derivative Model Capture Scale-Dependent Dispersion in Saturated Soils?
Garrard, Rhiannon M; Zhang, Yong; Wei, Song; Sun, HongGuang; Qian, Jiazhong
2017-07-10
Time nonlocal transport models such as the time fractional advection-dispersion equation (t-fADE) were proposed to capture well-documented non-Fickian dynamics for conservative solutes transport in heterogeneous media, with the underlying assumption that the time nonlocality (which means that the current concentration change is affected by previous concentration load) embedded in the physical models can release the effective dispersion coefficient from scale dependency. This assumption, however, has never been systematically examined using real data. This study fills this historical knowledge gap by capturing non-Fickian transport (likely due to solute retention) documented in the literature (Huang et al. 1995) and observed in our laboratory from small to intermediate spatial scale using the promising, tempered t-fADE model. Fitting exercises show that the effective dispersion coefficient in the t-fADE, although differing subtly from the dispersion coefficient in the standard advection-dispersion equation, increases nonlinearly with the travel distance (varying from 0.5 to 12 m) for both heterogeneous and macroscopically homogeneous sand columns. Further analysis reveals that, while solute retention in relatively immobile zones can be efficiently captured by the time nonlocal parameters in the t-fADE, the motion-independent solute movement in the mobile zone is affected by the spatial evolution of local velocities in the host medium, resulting in a scale-dependent dispersion coefficient. The same result may be found for the other standard time nonlocal transport models that separate solute retention and jumps (i.e., displacement). Therefore, the t-fADE with a constant dispersion coefficient cannot capture scale-dependent dispersion in saturated porous media, challenging the application for stochastic hydrogeology methods in quantifying real-world, preasymptotic transport. Hence improvements on time nonlocal models using, for example, the novel subordination
NASA Astrophysics Data System (ADS)
Gonsamo, Alemu
2010-08-01
This study is aimed at demonstrating the feasibility of the large scale LAI inversion algorithms using red and near infrared reflectance obtained from high resolution satellite imagery. Radiances in digital counts were obtained in 10 m resolution acquired on cloud free day of August 23, 2007, by the SPOT 5 high resolution geometric (HRG) instrument on mostly temperate hardwood forest located in the Great Lakes - St. Lawrence forest in Southern Quebec. Normalized difference vegetation index (NDVI), scaled difference vegetation index (SDVI) and modified soil-adjusted vegetation index (MSAVI) were applied to calculate gap fractions. LAI was inverted from the gap fraction using the common Beer-Lambert's law of light extinction under forest canopy. The robustness of the algorithm was evaluated using the ground-based LAI measurements and by applying the methods for the independently simulated reflectance data using PROSPECT + SAIL coupled radiative transfer models. Furthermore, the high resolution LAI was compared with MODIS LAI product. The effects of atmospheric corrections and scales were investigated for all of the LAI retrieval methods. NDVI was found to be not suitable index for large scale LAI inversion due to the sensitivity to scale and atmospheric effects. SDVI was virtually scale and atmospheric correction invariant. MSAVI was also scale invariant. Considering all sensitivity analysis, MSAVI performed best followed by SDVI for robust LAI inversion from high resolution imagery.
Determination of fractional flow reserve (FFR) based on scaling laws: a simulation study
NASA Astrophysics Data System (ADS)
Wong, Jerry T.; Molloi, Sabee
2008-07-01
Fractional flow reserve (FFR) provides an objective physiological evaluation of stenosis severity. A technique that can measure FFR using only angiographic images would be a valuable tool in the cardiac catheterization laboratory. To perform this, the diseased blood flow can be measured with a first pass distribution analysis and the theoretical normal blood flow can be estimated from the total coronary arterial volume based on scaling laws. A computer simulation of the coronary arterial network was used to gain a better understanding of how hemodynamic conditions and coronary artery disease can affect blood flow, arterial volume and FFR estimation. Changes in coronary arterial flow and volume due to coronary stenosis, aortic pressure and venous pressure were examined to evaluate the potential use of flow and volume for FFR determination. This study showed that FFR can be estimated using arterial volume and a scaling coefficient corrected for aortic pressure. However, variations in venous pressure were found to introduce some error in FFR estimation. A relative form of FFR was introduced and was found to cancel out the influence of pressure on coronary flow, arterial volume and FFR estimation. The use of coronary flow and arterial volume for FFR determination appears promising.
Multifractal analysis for grading complex fractionated electrograms in atrial fibrillation.
Orozco-Duque, A; Novak, D; Kremen, V; Bustamante, J
2015-11-01
Complex fractionated atrial electrograms provide an important tool for identifying arrhythmogenic substrates that can be used to guide catheter ablation for atrial fibrillation (AF). However, fractionation is a phenomenon that remains unclear. This paper aims to evaluate the multifractal properties of electrograms in AF in order to propose a method based on multifractal analysis able to discriminate between different levels of fractionation. We introduce a new method, the h-fluctuation index (hFI), where h is the generalised Hurst exponent, to extract information from the shape of the multifractal spectrum. Two multifractal frameworks are evaluated: multifractal detrended fluctuation analysis and wavelet transform modulus maxima. hFI is exemplified through its application in synthetic signals, and it is evaluated in a database of electrograms labeled on the basis of four degrees of fractionation. We compare the performance of hFI with other indexes, and find that hFI outperforms them. The results of the study provide evidence that multifractal analysis is useful for studying fractionation phenomena in AF electrograms, and indicate that hFI can be proposed as a tool for grade fractionation associated with the detection of target sites for ablation in AF.
Fractional scaling of quantum walks on two-dimensional percolation lattices
NASA Astrophysics Data System (ADS)
Kendon, Viv; Leung, Godfrey; Knott, Paul; Bailey, Joe
2011-10-01
We study the spreading behaviour of coined quantum walks on percolation lattices for both bond and site percolation on two-dimensional Cartesian lattices. Using numerical simulation, we observe fractional scaling of the spreading with the number of steps of the walk. The exponent varies from zero at the critical percolation probability through to unity for the full lattice. For the lattices we simulate, up to 140×140, we observe faster than classical scaling for percolation probabilities above about 0.85.
Spiritual Competency Scale: Further Analysis
ERIC Educational Resources Information Center
Dailey, Stephanie F.; Robertson, Linda A.; Gill, Carman S.
2015-01-01
This article describes a follow-up analysis of the Spiritual Competency Scale, which initially validated ASERVIC's (Association for Spiritual, Ethical and Religious Values in Counseling) spiritual competencies. The study examined whether the factor structure of the Spiritual Competency Scale would be supported by participants (i.e., ASERVIC…
Spiritual Competency Scale: Further Analysis
ERIC Educational Resources Information Center
Dailey, Stephanie F.; Robertson, Linda A.; Gill, Carman S.
2015-01-01
This article describes a follow-up analysis of the Spiritual Competency Scale, which initially validated ASERVIC's (Association for Spiritual, Ethical and Religious Values in Counseling) spiritual competencies. The study examined whether the factor structure of the Spiritual Competency Scale would be supported by participants (i.e., ASERVIC…
NASA Astrophysics Data System (ADS)
Han, Junwon
The remarkable development of polymer synthesis techniques to make complex polymers with controlled chain architectures has inevitably demanded the advancement of polymer characterization tools to analyze the molecular dispersity in polymeric materials beyond size exclusion chromatography (SEC). In particular, man-made synthetic copolymers that consist of more than one monomer type are disperse mixtures of polymer chains that have distributions in terms of both chemical heterogeneity and chain length (molar mass). While the molecular weight distribution has been quite reliably estimated by the SEC, it is still challenging to properly characterize the chemical composition distribution in the copolymers. Here, I have developed and applied adsorption-based interaction chromatography (IC) techniques as a promising tool to characterize and fractionate polystyrene-based block, random and branched copolymers in terms of their chemical heterogeneity. The first part of this thesis is focused on the adsorption-desorption based purification of PS-b-PMMA diblock copolymers using nanoporous silica. The liquid chromatography analysis and large scale purification are discussed for the PS-b-PMMA block copolymers that have been synthesized by sequential anionic polymerization. SEC and IC are compared to critically analyze the contents of PS homopolymers in the as-synthesized block copolymers. In addition, I have developed an IC technique to provide faster and more reliable information on the chemical heterogeneity in the as-synthesized block copolymers. Finally, a large scale (multi-gram) separation technique is developed to obtain "homopolymer-free" block copolymers via a simple chromatographic filtration technique. By taking advantage of the large specific surface area of nanoporous silica (≈300m 2/g), large scale purification of neat PS-b-PMMA has successfully been achieved by controlling adsorption and desorption of the block copolymers on the silica gel surface using a
A global analysis of parenchyma tissue fractions in secondary xylem of seed plants.
Morris, Hugh; Plavcová, Lenka; Cvecko, Patrick; Fichtler, Esther; Gillingham, Mark A F; Martínez-Cabrera, Hugo I; McGlinn, Daniel J; Wheeler, Elisabeth; Zheng, Jingming; Ziemińska, Kasia; Jansen, Steven
2016-03-01
Parenchyma is an important tissue in secondary xylem of seed plants, with functions ranging from storage to defence and with effects on the physical and mechanical properties of wood. Currently, we lack a large-scale quantitative analysis of ray parenchyma (RP) and axial parenchyma (AP) tissue fractions. Here, we use data from the literature on AP and RP fractions to investigate the potential relationships of climate and growth form with total ray and axial parenchyma fractions (RAP). We found a 29-fold variation in RAP fraction, which was more strongly related to temperature than with precipitation. Stem succulents had the highest RAP values (mean ± SD: 70.2 ± 22.0%), followed by lianas (50.1 ± 16.3%), angiosperm trees and shrubs (26.3 ± 12.4%), and conifers (7.6 ± 2.6%). Differences in RAP fraction between temperate and tropical angiosperm trees (21.1 ± 7.9% vs 36.2 ± 13.4%, respectively) are due to differences in the AP fraction, which is typically three times higher in tropical than in temperate trees, but not in RP fraction. Our results illustrate that both temperature and growth form are important drivers of RAP fractions. These findings should help pave the way to better understand the various functions of RAP in plants.
Biogeochemical Fractionations from SHRIMP SI 4-isotope Sulfur Analysis
NASA Astrophysics Data System (ADS)
Ireland, T. R.; Avila, J.; Macfarlane, C.; Holden, P.; Philippot, P.
2016-12-01
We have developed in-situ analysis protocols on the SHRIMP-SI for accurate and precise measurements of the four isotopes of sulfur. Charge-mode detection of the low abundance 36S isotope has proven to be a major advantage on the determination of Δ36S. Typical internal precision for Δ36S measurement is 0.2‰ (σ) with reproducibility typically better than 0.5‰ (95% confidence limits). This has allowed us to fully resolve the biogeochemical fractionation (BGF; Δ36S/Δ33S of approx. - 7) from the Archean atmospheric fractionation (AAF; Δ36S/Δ33S of approx. -1). Coupled with δ34S, the high precision analysis of Δ33S and Δ36S have been used to trace the atmospheric sulfur chemistry in the Archean and Paleo-Proterozoic as well as biological and abiological sulfur fractionation in the Phanerozoic. Archean sulfides samples show large fractionations in Δ33S and Δ36S as have previously been observed. Proterozoic sulfides samples show large fractionations in δ34S, but thus far we have seen no anomalies in Δ33S and Δ36S. The isotopic record in Phanerozoic sedimentary sulfides and in sulfide-bearing ore deposits show sulfur isotope variations that reflect distinct sources of sulfur and mechanisms of sulfide deposition and ore genesis.
Fractional solubility of aerosol iron: Synthesis of a global-scale data set
NASA Astrophysics Data System (ADS)
Sholkovitz, Edward R.; Sedwick, Peter N.; Church, Thomas M.; Baker, Alexander R.; Powell, Claire F.
2012-07-01
Aerosol deposition provides a major input of the essential micronutrient iron to the open ocean. A critical parameter with respect to biological availability is the proportion of aerosol iron that enters the oceanic dissolved iron pool - the so-called fractional solubility of aerosol iron (%FeS). Here we present a global-scale compilation of total aerosol iron loading (FeT) and estimated %FeS values for ∼1100 samples collected over the open ocean, the coastal ocean, and some continental sites, including a new data set from the Atlantic Ocean. Despite the wide variety of methods that have been used to define 'soluble' aerosol iron, our global-scale compilation reveals a remarkably consistent trend in the fractional solubility of aerosol iron as a function of total aerosol iron loading, with the great bulk of the data defining an hyperbolic trend. The hyperbolic trends that we observe for both global- and regional-scale data are adequately described by a simple two-component mixing model, whereby the fractional solubility of iron in the bulk aerosol reflects the conservative mixing of 'lithogenic' mineral dust (high FeT and low %FeS) and non-lithogenic 'combustion' aerosols (low FeT and high %FeS). An increasing body of empirical and model-based evidence points to anthropogenic fuel combustion as the major source of these non-lithogenic 'combustion' aerosols, implying that human emissions are a major determinant of the fractional solubility of iron in marine aerosols. The robust global-scale relationship between %FeS and FeT provides a simple heuristic method for estimating aerosol iron solubility at the regional to global scale.
Analysis of fractionation in corn-to-ethanol plants
NASA Astrophysics Data System (ADS)
Nelson, Camille
As the dry grind ethanol industry has grown, the research and technology surrounding ethanol production and co-product value has increased. Including use of back-end oil extraction and front-end fractionation. Front-end fractionation is pre-fermentation separation of the corn kernel into 3 fractions: endosperm, bran, and germ. The endosperm fraction enters the existing ethanol plant, and a high protein DDGS product remains after fermentation. High value oil is extracted out of the germ fraction. This leaves corn germ meal and bran as co-products from the other two streams. These 3 co-products have a very different composition than traditional corn DDGS. Installing this technology allows ethanol plants to increase profitability by tapping into more diverse markets, and ultimately could allow for an increase in profitability. An ethanol plant model was developed to evaluate both back-end oil extraction and front-end fractionation technology and predict the change in co-products based on technology installed. The model runs in Microsoft Excel and requires inputs of whole corn composition (proximate analysis), amino acid content, and weight to predict the co-product quantity and quality. User inputs include saccharification and fermentation efficiencies, plant capacity, and plant process specifications including front-end fractionation and backend oil extraction, if applicable. This model provides plants a way to assess and monitor variability in co-product composition due to the variation in whole corn composition. Additionally the co-products predicted in this model are entered into the US Pork Center of Excellence, National Swine Nutrition Guide feed formulation software. This allows the plant user and animal nutritionists to evaluate the value of new co-products in existing animal diets.
Entropy, gas fraction, and temperature scaling relations of galaxy clusters and groups at R200
NASA Astrophysics Data System (ADS)
Wong, Ka-Wah; Irwin, Jimmy; Wik, Daniel R.; Sun, Ming; Sarazin, Craig L.; Fujita, Yutaka; Reiprich, Thomas
2017-06-01
With the growing number of galaxy clusters and groups measured in X-ray out to R200, it is possible to study the scaling relations between the enclosed gas fraction (fgas,200), entropy (K200), and temperature (T500), where the gas fraction and entropy are of great interest to constrain cosmological parameters and to understand the thermodynamic history of clusters or group formations, respectively. We will present scaling relations using 22 groups and clusters with published X-ray data in the literature. The power law slope of the K200-T200 relation is 0.638+/-0.205, which is shallower than the gravity heating-only baseline model of 1 and the K200-T200 relation. For massive clusters (T200 > 2 to 3 keV), K200 is lower than the baseline model, while no such entropy deficit was found for low-mass groups. The entropy deficit at R200 for massive clusters cannot be fully accounted for by the bias or deviation in the gas fraction. The enclosed baryon fraction at R200 is broadly consistent with the cosmic value. Physical properties of the outskirts of individual clusters, e.g., the nearest non-cool core cluster, Antlia, and a massive cluster, Abell 1689, will also be highlighted.
Microbial Enhanced Oil Recovery in Fractional-Wet Systems: A Pore-Scale Investigation
Armstrong, Ryan T.; Wildenschild, Dorthe
2012-10-24
Microbial enhanced oil recovery (MEOR) is a technology that could potentially increase the tertiary recovery of oil from mature oil formations. However, the efficacy of this technology in fractional-wet systems is unknown, and the mechanisms involved in oil mobilization therefore need further investigation. Our MEOR strategy consists of the injection of ex situ produced metabolic byproducts produced by Bacillus mojavensis JF-2 (which lower interfacial tension (IFT) via biosurfactant production) into fractional-wet cores containing residual oil. Two different MEOR flooding solutions were tested; one solution contained both microbes and metabolic byproducts while the other contained only the metabolic byproducts. The columns were imaged with X-ray computed microtomography (CMT) after water flooding, and after MEOR, which allowed for the evaluation of the pore-scale processes taking place during MEOR. Results indicate that the larger residual oil blobs and residual oil held under relatively low capillary pressures were the main fractions recovered during MEOR. Residual oil saturation, interfacial curvatures, and oil blob sizes were measured from the CMT images and used to develop a conceptual model for MEOR in fractional-wet systems. Overall, results indicate that MEOR was effective at recovering oil from fractional-wet systems with reported additional oil recovered (AOR) values between 44 and 80%; the highest AOR values were observed in the most oil-wet system.
1987-02-01
laboratory-scale process. Key chemical properties were to be measured via standard laboratory testing, supplemented by bench testing and, possibly... standard ASTM methodology. All distillate samples were stored in a cold box, as were the naphtha fractions, in order to minimize deterioration of...the crude oil samples analyzed at NIPER are from the same streams as those used at BFLRF, but the two sets of samples apparently were not collected at
Botaro, Vagner Roberto; Curvelo, Antonio Aprígio da Silva
2009-05-01
The difficulty of preparing monodisperse lignin fractions on a large scale is a limiting factor in many applications. The present paper addresses this problem by examining the properties and size-exclusion behavior of lignin isolated by the acetosolv pulping process from post-extraction crushed sugarcane bagasse. The isolated lignin was subjected to a solvent pretreatment, followed by preparative gel permeation chromatography fractionation. The fractions were analyzed by high-performance size-exclusion chromatography (HPSEC) and these samples showed a great decrease in polydispersity, compared to the original acetosolv lignin. Several fractions of very low polydispersity, close to unity, were employed as calibration curve standards in HPSEC analysis. This original analytical approach allowed calibration with these lignin fractions to be compared with the polystyrene standards that are universally employed for lignin molecular mass determination. This led to a noteworthy result, namely that the lignin fractions and polystyrene standards showed very similar behavior over a large range of molecular masses in a typical HPSEC analysis of acetosolv lignin.
Multiple satellite estimates of urban fractions and climate effects at regional scale
NASA Astrophysics Data System (ADS)
Jia, G.; Xu, R.; He, Y.
2014-12-01
Regional climate is controlled by large scale forcing at lateral boundary and physical processes within the region. Landuse in East Asia has been changed substantially in the last three decades, featured with expansion of urban built-up at unprecedented scale and speed. The fast expansion of urban areas could contribute to local even regional climate change. However, current spatial datasets of urban fractions do not well represent extend and expansion of urban areas in the regions, and the best available satellite data and remote sensing techniques have not been well applied to serve regional modeling of urbanization impacts on near surface temperature and other climate variables. Better estimates of localized urban fractions and urban climate effects are badly needed. Here we use high and mid resolution satellite data to estimate urban fractions and to assess effects of urban heat islands at local and regional scales. With our fractional cover, data fusion, and differentiated threshold approaches, estimated urban extent was greater than previously reported in many global datasets. Many city clusters were merging into each other, with gradual blurring boundaries and disappearing of gaps among member cities. Cities and towns were more connected with roads and commercial corridors, while wildland and urban greens became more isolated as patches among built-up areas. Those new estimates are expected to effectively improve climate simulation at local and regional scales in East Asia. There were significant positive relations between urban fraction and urban heat island effects as demonstrated by VNIR and TIR data from multiple satellites. Stronger warming was detected at the meteorological stations that experienced greater urbanization, i.e., those with a higher urbanization rate. While the total urban area affects the absolute temperature values, the change of the urban area (urbanization rate) likely affects the temperature trend. Increases of approximately 10% in
Modeling and analysis of fractional order DC-DC converter.
Radwan, Ahmed G; Emira, Ahmed A; AbdelAty, Amr M; Azar, Ahmed Taher
2017-07-11
Due to the non-idealities of commercial inductors, the demand for a better model that accurately describe their dynamic response is elevated. So, the fractional order models of Buck, Boost and Buck-Boost DC-DC converters are presented in this paper. The detailed analysis is made for the two most common modes of converter operation: Continuous Conduction Mode (CCM) and Discontinuous Conduction Mode (DCM). Closed form time domain expressions are derived for inductor currents, voltage gain, average current, conduction time and power efficiency where the effect of the fractional order inductor is found to be strongly present. For example, the peak inductor current at steady state increases with decreasing the inductor order. Advanced Design Systems (ADS) circuit simulations are used to verify the derived formulas, where the fractional order inductor is simulated using Valsa Constant Phase Element (CPE) approximation and Generalized Impedance Converter (GIC). Different simulation results are introduced with good matching to the theoretical formulas for the three DC-DC converter topologies under different fractional orders. A comprehensive comparison with the recently published literature is presented to show the advantages and disadvantages of each approach. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Aspect Ratio Scaling of Ideal No-wall Stability Limits in High Bootstrap Fraction Tokamak Plasmas
J.E. Menard; M.G. Bell; R.E. Bell; D.A. Gates; S.M. Kaye; B.P. LeBlanc; R. Maingi; S.A. Sabbagh; V. Soukhanovskii; D. Stutman; the NSTX National Research Team
2003-11-25
Recent experiments in the low aspect ratio National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40 (2000) 557] have achieved normalized beta values twice the conventional tokamak limit at low internal inductance and with significant bootstrap current. These experimental results have motivated a computational re-examination of the plasma aspect ratio dependence of ideal no-wall magnetohydrodynamic stability limits. These calculations find that the profile-optimized no-wall stability limit in high bootstrap fraction regimes is well described by a nearly aspect ratio invariant normalized beta parameter utilizing the total magnetic field energy density inside the plasma. However, the scaling of normalized beta with internal inductance is found to be strongly aspect ratio dependent at sufficiently low aspect ratio. These calculations and detailed stability analyses of experimental equilibria indicate that the nonrotating plasma no-wall stability limit has been exceeded by as much as 30% in NSTX in a high bootstrap fraction regime.
Analysis of fractional Gaussian noises using level crossing method
NASA Astrophysics Data System (ADS)
Vahabi, M.; Jafari, G. R.; Sadegh Movahed, M.
2011-11-01
The so-called level crossing analysis has been used to investigate the empirical data set, but there is a lack of interpretation for what is reflected by the level crossing results. The fractional Gaussian noise as a well-defined stochastic series could be a suitable benchmark to make more sense of the level crossing findings. In this paper, we calculated the average frequency of upcrossing for a wide range of fractional Gaussian noises from logarithmic (zero Hurst exponent, H = 0), to Gaussian, H = 1 (0 < H < 1). By introducing the relative change of the total number of upcrossings for original data with respect to the so-called shuffled data, {R} , an empirical function for the Hurst exponent versus {R} has been established. Finally to make the concept more obvious, we applied this approach to some financial series.
Modeling subgrid scale mixture fraction variance in LES of evaporating spray
Pera, Cecile; Reveillon, Julien; Vervisch, Luc; Domingo, Pascale
2006-09-15
Simulations of a dilute spray evaporating in spatially decaying homogeneous turbulence are performed. An Eulerian description of the flow is adopted, while the behavior of the discrete liquid phase is captured using Lagrangian modeling. Time and length scales of the continuous carrier phase are fully simulated; and by varying the properties of the modeled spray, a database of spray carrier phase direct numerical simulation (CP-DNS) is obtained. The CP-DNS is then filtered on a coarse grid to conduct a priori tests of subgrid scale (SGS) closures. The objective is to provide methods for approximating the level of SGS mixture fraction variance in large eddy simulation (LES) of fuel spray turbulent combustion. Direct estimation of the variance from the scales resolved in LES is first discussed. Then, the solving of a balance equation to get the variance is addressed, with closures for the scalar dissipation rate and the correlation between vapor source and mixture fraction. From the results, a procedure to couple spray evaporation with SGS turbulent combustion modeling emerges. (author)
Different techniques of multispectral data analysis for vegetation fraction retrieval
NASA Astrophysics Data System (ADS)
Kancheva, Rumiana; Georgiev, Georgi
2012-07-01
Vegetation monitoring is one of the most important applications of remote sensing technologies. In respect to farmlands, the assessment of crop condition constitutes the basis of growth, development, and yield processes monitoring. Plant condition is defined by a set of biometric variables, such as density, height, biomass amount, leaf area index, and etc. The canopy cover fraction is closely related to these variables, and is state-indicative of the growth process. At the same time it is a defining factor of the soil-vegetation system spectral signatures. That is why spectral mixtures decomposition is a primary objective in remotely sensed data processing and interpretation, specifically in agricultural applications. The actual usefulness of the applied methods depends on their prediction reliability. The goal of this paper is to present and compare different techniques for quantitative endmember extraction from soil-crop patterns reflectance. These techniques include: linear spectral unmixing, two-dimensional spectra analysis, spectral ratio analysis (vegetation indices), spectral derivative analysis (red edge position), colorimetric analysis (tristimulus values sum, chromaticity coordinates and dominant wavelength). The objective is to reveal their potential, accuracy and robustness for plant fraction estimation from multispectral data. Regression relationships have been established between crop canopy cover and various spectral estimators.
Fractional-order elastic models of cartilage: A multi-scale approach
NASA Astrophysics Data System (ADS)
Magin, Richard L.; Royston, Thomas J.
2010-03-01
The objective of this research is to develop new quantitative methods to describe the elastic properties (e.g., shear modulus, viscosity) of biological tissues such as cartilage. Cartilage is a connective tissue that provides the lining for most of the joints in the body. Tissue histology of cartilage reveals a multi-scale architecture that spans a wide range from individual collagen and proteoglycan molecules to families of twisted macromolecular fibers and fibrils, and finally to a network of cells and extracellular matrix that form layers in the connective tissue. The principal cells in cartilage are chondrocytes that function at the microscopic scale by creating nano-scale networks of proteins whose biomechanical properties are ultimately expressed at the macroscopic scale in the tissue's viscoelasticity. The challenge for the bioengineer is to develop multi-scale modeling tools that predict the three-dimensional macro-scale mechanical performance of cartilage from micro-scale models. Magnetic resonance imaging (MRI) and MR elastography (MRE) provide a basis for developing such models based on the nondestructive biomechanical assessment of cartilage in vitro and in vivo. This approach, for example, uses MRI to visualize developing proto-cartilage structure, MRE to characterize the shear modulus of such structures, and fractional calculus to describe the dynamic behavior. Such models can be extended using hysteresis modeling to account for the non-linear nature of the tissue. These techniques extend the existing computational methods to predict stiffness and strength, to assess short versus long term load response, and to measure static versus dynamic response to mechanical loads over a wide range of frequencies (50-1500 Hz). In the future, such methods can perhaps be used to help identify early changes in regenerative connective tissue at the microscopic scale and to enable more effective diagnostic monitoring of the onset of disease.
Pilot-scale resin adsorption as a means to recover and fractionate apple polyphenols.
Kammerer, Dietmar R; Carle, Reinhold; Stanley, Roger A; Saleh, Zaid S
2010-06-09
The purification and fractionation of phenolic compounds from crude plant extracts using a food-grade acrylic adsorbent were studied at pilot-plant scale. A diluted apple juice concentrate served as a model phenolic solution for column adsorption and desorption trials. Phenolic concentrations were evaluated photometrically using the Folin-Ciocalteu assay and by HPLC-DAD. Recovery rates were significantly affected by increasing phenolic concentrations of the feed solutions applied to the column. In contrast, the flow rate during column loading hardly influenced adsorption efficiency, whereas the temperature and pH value were shown to be crucial parameters determining both total phenolic recovery rates and the adsorption behavior of individual polyphenols. As expected, the eluent composition had the greatest impact on the desorption characteristics of both total and individual phenolic compounds. HPLC analyses revealed significantly different elution profiles of individual polyphenols depending on lipophilicity. This technique allows fractionation of crude plant phenolic extracts, thus providing the opportunity to design the functional properties of the resulting phenolic fractions selectively, and the present study delivers valuable information with regard to the adjustment of individual process parameters.
NASA Astrophysics Data System (ADS)
He, Shaobo; Sun, Kehui; Mei, Xiaoyong; Yan, Bo; Xu, Siwei
2017-01-01
In this paper, the numerical solutions of conformable fractional-order linear and nonlinear equations are obtained by employing the constructed conformable Adomian decomposition method (CADM). We found that CADM is an effective method for numerical solution of conformable fractional-order differential equations. Taking the conformable fractional-order simplified Lorenz system as an example, the numerical solution and chaotic behaviors of the conformable fractional-order simplified Lorenz system are investigated. It is found that rich dynamics exist in the conformable fractional-order simplified Lorenz system, and the minimum order for chaos is even less than 2. The results are validated by means of bifurcation diagram, Lyapunov characteristic exponents and phase portraits.
Scaling analysis of stock markets.
Bu, Luping; Shang, Pengjian
2014-06-01
In this paper, we apply the detrended fluctuation analysis (DFA), local scaling detrended fluctuation analysis (LSDFA), and detrended cross-correlation analysis (DCCA) to investigate correlations of several stock markets. DFA method is for the detection of long-range correlations used in time series. LSDFA method is to show more local properties by using local scale exponents. DCCA method is a developed method to quantify the cross-correlation of two non-stationary time series. We report the results of auto-correlation and cross-correlation behaviors in three western countries and three Chinese stock markets in periods 2004-2006 (before the global financial crisis), 2007-2009 (during the global financial crisis), and 2010-2012 (after the global financial crisis) by using DFA, LSDFA, and DCCA method. The findings are that correlations of stocks are influenced by the economic systems of different countries and the financial crisis. The results indicate that there are stronger auto-correlations in Chinese stocks than western stocks in any period and stronger auto-correlations after the global financial crisis for every stock except Shen Cheng; The LSDFA shows more comprehensive and detailed features than traditional DFA method and the integration of China and the world in economy after the global financial crisis; When it turns to cross-correlations, it shows different properties for six stock markets, while for three Chinese stocks, it reaches the weakest cross-correlations during the global financial crisis.
Scaling analysis of stock markets
NASA Astrophysics Data System (ADS)
Bu, Luping; Shang, Pengjian
2014-06-01
In this paper, we apply the detrended fluctuation analysis (DFA), local scaling detrended fluctuation analysis (LSDFA), and detrended cross-correlation analysis (DCCA) to investigate correlations of several stock markets. DFA method is for the detection of long-range correlations used in time series. LSDFA method is to show more local properties by using local scale exponents. DCCA method is a developed method to quantify the cross-correlation of two non-stationary time series. We report the results of auto-correlation and cross-correlation behaviors in three western countries and three Chinese stock markets in periods 2004-2006 (before the global financial crisis), 2007-2009 (during the global financial crisis), and 2010-2012 (after the global financial crisis) by using DFA, LSDFA, and DCCA method. The findings are that correlations of stocks are influenced by the economic systems of different countries and the financial crisis. The results indicate that there are stronger auto-correlations in Chinese stocks than western stocks in any period and stronger auto-correlations after the global financial crisis for every stock except Shen Cheng; The LSDFA shows more comprehensive and detailed features than traditional DFA method and the integration of China and the world in economy after the global financial crisis; When it turns to cross-correlations, it shows different properties for six stock markets, while for three Chinese stocks, it reaches the weakest cross-correlations during the global financial crisis.
Gottlieb, A; Schleibinger, H; Ketseridis, G; Wullenweber, M; Rüden, H
1983-01-01
Suspended particulate matter (PM) with a Dae less than 0.4 micron was collected from July 1981 till January 1982. The ether/benzene soluble extract (EEOM) and the acidic, basic and neutral fractions were determined and investigated for their mutagenic activities in the Ames bioassay. In addition particles (Dae) less than 10.2 micron derived in January were investigated. Five compounds of the basic fraction were determined by gaschromatography. The following results were obtained: Suspended particulate matter (Dae less than 0.4 micron) and the ether/benzene extract increase from July to January. The lowest rates occur in July (PM: 16.9 micron/m3) and August (EEOM: 3.0 micrograms/m3), the highest in January (PM: 48.9 micrograms/m3, EEOM: 10.5 micrograms/m3). The ether/benzene soluble portion of the suspended particulate matter increases from the average rate of 16.3% (July-September) to 22.7% (November-January). The neutral fraction amounts to 44.9%, the acidic fraction to 27.3% and the basic fraction to 3.5% of the organic matter (on an average). In experiments with metabolic activation 99% of the total mutagenicity during the period of July till September can be demonstrated by summing up the mutagenicity of the three fractions on the other hand only 59.7% from November till January. The EEOMs derived from winter exhibit without metabolic activation (250 micrograms/plate) distinctively higher numbers of revertants than the single fractions. Dose-response curves of extracts derived from back-up filters (Dae less than 0.4 micron) in January show that the acidic fraction has a slightly higher mutagenic activity than the neutral fraction (mean values of tests with and without S9-mix). The basic fraction shows no mutagenicity without S9-mix, with activation the mutagenic activity is lower than that of the other fractions. Mutagenicity expressed as rev./m3 air shows, that the neutral fraction is most efficient. The number of revertants per plate reveals-in relation to
Hepatic extraction fraction of hepatobiliary radiopharmaceuticals measured using spectral analysis.
Murase, K; Tsuda, T; Mochizuki, T; Ikezoe, J
1999-11-01
Measuring the hepatic extraction fraction (HEF) of a hepatobiliary radiopharmaceutical helps to differentiate hepatocyte from biliary tract diseases, and it is generally performed using deconvolution analysis. In this study, we measured HEF using spectral analysis. With spectral analysis, HEF was calculated from (the sum of the spectral data obtained by spectral analysis--the highest frequency component of the spectrum) divided by (the sum of the spectral data) x 100 (%). We applied this method to dynamic liver scintigraphic data obtained from six healthy volunteers and from 46 patients with various liver diseases, using 99Tcm-N-pyridoxyl-5-methyltryptophan (PMT). We also measured HEF using deconvolution analysis, in which the modified Fourier transform technique was employed. The HEF values obtained by spectral analysis correlated closely with those obtained by deconvolution analysis (r = 0.925), suggesting our method is valid. The HEF values obtained by spectral analysis decreased as the severity of liver disease progressed. The values were 100.0 +/- 0.0%, 94.7 +/- 13.6%, 76.2 +/- 27.4%, 45.7 +/- 15.6%, 82.7 +/- 24.2% and 95.2 +/- 11.8% (mean +/- S.D.) for the normal controls (n = 6), mild liver cirrhosis (n = 16), moderate liver cirrhosis (n = 11), severe liver cirrhosis (n = 5), acute hepatitis (n = 8) and chronic hepatitis groups (n = 6), respectively. The HEF was obtained more simply and rapidly by spectral analysis than by deconvolution analysis. The results suggest that our method using spectral analysis can be used as an alternative to the conventional procedure using deconvolution analysis for measuring HEF.
Stability Analysis of Distributed Order Fractional Chen System
Aminikhah, H.; Refahi Sheikhani, A.; Rezazadeh, H.
2013-01-01
We first investigate sufficient and necessary conditions of stability of nonlinear distributed order fractional system and then we generalize the integer-order Chen system into the distributed order fractional domain. Based on the asymptotic stability theory of nonlinear distributed order fractional systems, the stability of distributed order fractional Chen system is discussed. In addition, we have found that chaos exists in the double fractional order Chen system. Numerical solutions are used to verify the analytical results. PMID:24489508
Nanoencapsulation of an active peptidic fraction from sea bream scales collagen.
Mosquera, Mauricio; Giménez, Begoña; da Silva, Indjara Mallmann; Boelter, Juliana Ferreira; Montero, Pilar; Gómez-Guillén, M Carmen; Brandelli, Adriano
2014-08-01
Sea bream scales were subjected to enzymatic hydrolysis with Esperase, and a peptide fraction with a molecular mass <3kDa (F3) was isolated by ultrafiltration. F3 was encapsulated in nanoliposomes made of partially purified phosphatidylcholine (PC). Concentrations of 3.1% and 1mg/ml for PC and F3, respectively, were established as the best entrapment protocol by response surface methodology. The liposomes entrapment efficiency and zeta potential were 74.6±0.9% and -40.8±0.67mV, respectively. The liposome size ranged from 66.2 to 214nm, with a mean diameter of 90.3nm and a polydispersity index of 0.25. The antioxidant activity and ACE inhibitory activity of the encapsulated peptide fraction (L-F3) remained constant after 8days at 4°C. Encapsulation preserved the biological activities of F3, and could therefore be an alternative to improve the stability of these compounds when applied to a food product. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dick Wingerson
2004-12-15
PureVision Technology, Inc. (PureVision) was the recipient of a $200,000 Invention and Innovations (I&I) grant from the U. S. Department of Energy (DOE) to complete prepilot tasks in order to scale up its patented biomass fractionation pretreatment apparatus from batch to continuous processing. The initial goal of the I&I program, as detailed in PureVision's original application to the DOE, was to develop the design criteria to build a small continuous biomass fractionation pilot apparatus utilizing a retrofitted extruder with a novel screw configuration to create multiple reaction zones, separated by dynamic plugs within the reaction chamber that support the continuous counter-flow of liquids and solids at elevated temperature and pressure. Although the ultimate results of this 27-month I&I program exceeded the initial expectations, some of the originally planned tasks were not completed due to a modification of direction in the program. PureVision achieved its primary milestone by establishing the design criteria for a continuous process development unit (PDU). In addition, PureVision was able to complete the procurement, assembly, and initiate shake down of the PDU at Western Research Institute (WRI) in Laramie, WY during August 2003 to February 2004. During the month of March 2004, PureVision and WRI performed initial testing of the continuous PDU at WRI.
Stability analysis of Caputo-like discrete fractional systems
NASA Astrophysics Data System (ADS)
Baleanu, Dumitru; Wu, Guo-Cheng; Bai, Yun-Ru; Chen, Fu-Lai
2017-07-01
This study investigates stability of Caputo delta fractional difference equations. Solutions' monotonicity and asymptotic stability of a linear fractional difference equation are discussed. A stability theorem for a discrete fractional Lyapunov direct method is proved. Furthermore, an inequality is extended from the continuous case and a sufficient condition is given. Some linear, nonlinear and time varying examples are illustrated and the results show wide prospects of the stability theorems in fractional control systems of discrete time.
An Extensive Analysis of Preservice Elementary Teachers' Knowledge of Fractions
ERIC Educational Resources Information Center
Newton, Kristie Jones
2008-01-01
The study of preservice elementary teachers' knowledge of fractions is important because fractions are notoriously difficult to learn and teach. Unfortunately, studies of preservice teachers' fraction knowledge are limited and have focused primarily on division. The present study included all four operations to provide a more comprehensive…
Group analysis of the time fractional generalized diffusion equation
NASA Astrophysics Data System (ADS)
Lashkarian, Elham; Reza Hejazi, S.
2017-08-01
This paper is concerned with the time fractional derivatives (Riemann-Liouville) of non-linear anomalous diffusion equation. Using Lie symmetry method, we show this equation can be reduced to Erdelyi-Kober fractional derivatives type. Then all of the symmetry vector fields and some exact solutions of our time fractional non-linear equation are obtained.
An Extensive Analysis of Preservice Elementary Teachers' Knowledge of Fractions
ERIC Educational Resources Information Center
Newton, Kristie Jones
2008-01-01
The study of preservice elementary teachers' knowledge of fractions is important because fractions are notoriously difficult to learn and teach. Unfortunately, studies of preservice teachers' fraction knowledge are limited and have focused primarily on division. The present study included all four operations to provide a more comprehensive…
Yang, Pengyi; Humphrey, Sean J; Fazakerley, Daniel J; Prior, Matthew J; Yang, Guang; James, David E; Yang, Jean Yee-Hwa
2012-05-04
A key step in the analysis of mass spectrometry (MS)-based proteomics data is the inference of proteins from identified peptide sequences. Here we describe Re-Fraction, a novel machine learning algorithm that enhances deterministic protein identification. Re-Fraction utilizes several protein physical properties to assign proteins to expected protein fractions that comprise large-scale MS-based proteomics data. This information is then used to appropriately assign peptides to specific proteins. This approach is sensitive, highly specific, and computationally efficient. We provide algorithms and source code for the current version of Re-Fraction, which accepts output tables from the MaxQuant environment. Nevertheless, the principles behind Re-Fraction can be applied to other protein identification pipelines where data are generated from samples fractionated at the protein level. We demonstrate the utility of this approach through reanalysis of data from a previously published study and generate lists of proteins deterministically identified by Re-Fraction that were previously only identified as members of a protein group. We find that this approach is particularly useful in resolving protein groups composed of splice variants and homologues, which are frequently expressed in a cell- or tissue-specific manner and may have important biological consequences.
Rapid analysis of acylglycerols in low molecular weight milk fat fractions.
Craven, R J; Lencki, R W
2007-05-01
A suitable analytical method was required to facilitate development of an industrial-scale short-path distillation (SPD) process. Short-path distillation produces milk fat distillates (MFD) enriched in low molecular weight milk fat components-viz. free fatty acids, monoacylglycerols, diacylglycerols, cholesterol and low molecular weight triacylglycerols. In this case, solid-phase extraction (SPE) was considered a better alternative than thin-layer chromatography for separating polar and apolar lipid components in MFD samples due to its speed and near-complete recoveries. Solid-phase extraction of MFDs yielded two fractions, both of which are sufficiently pure for subsequent analysis by gas chromatography. This procedure provided rapid and complete chemical characterization (including mass balances) of low-molecular weight milk-fat fractions.
Mokken Scale Analysis Using Hierarchical Clustering Procedures
ERIC Educational Resources Information Center
van Abswoude, Alexandra A. H.; Vermunt, Jeroen K.; Hemker, Bas T.; van der Ark, L. Andries
2004-01-01
Mokken scale analysis (MSA) can be used to assess and build unidimensional scales from an item pool that is sensitive to multiple dimensions. These scales satisfy a set of scaling conditions, one of which follows from the model of monotone homogeneity. An important drawback of the MSA program is that the sequential item selection and scale…
Mokken Scale Analysis Using Hierarchical Clustering Procedures
ERIC Educational Resources Information Center
van Abswoude, Alexandra A. H.; Vermunt, Jeroen K.; Hemker, Bas T.; van der Ark, L. Andries
2004-01-01
Mokken scale analysis (MSA) can be used to assess and build unidimensional scales from an item pool that is sensitive to multiple dimensions. These scales satisfy a set of scaling conditions, one of which follows from the model of monotone homogeneity. An important drawback of the MSA program is that the sequential item selection and scale…
Mapping canopy gap fraction and leaf area index at continent-scale from satellite lidar
NASA Astrophysics Data System (ADS)
Mahoney, C.; Hopkinson, C.; Held, A. A.
2015-12-01
Information on canopy cover is essential for understanding spatial and temporal variability in vegetation biomass, local meteorological processes and hydrological transfers within vegetated environments. Gap fraction (GF), an index of canopy cover, is often derived over large areas (100's km2) via airborne laser scanning (ALS), estimates of which are reasonably well understood. However, obtaining country-wide estimates is challenging due to the lack of spatially distributed point cloud data. The Geoscience Laser Altimeter System (GLAS) removes spatial limitations, however, its large footprint nature and continuous waveform data measurements make derivations of GF challenging. ALS data from 3 Australian sites are used as a basis to scale-up GF estimates to GLAS footprint data by the use of a physically-based Weibull function. Spaceborne estimates of GF are employed in conjunction with supplementary predictor variables in the predictive Random Forest algorithm to yield country-wide estimates at a 250 m spatial resolution; country-wide estimates are accompanied with uncertainties at the pixel level. Preliminary estimates of effective Leaf Area Index (eLAI) are also presented by converting GF via the Beer-Lambert law, where an extinction coefficient of 0.5 is employed; deemed acceptable at such spatial scales. The need for such wide-scale quantification of GF and eLAI are key in the assessment and modification of current forest management strategies across Australia. Such work also assists Australia's Terrestrial Ecosystem Research Network (TERN), a key asset to policy makers with regards to the management of the national ecosystem, in fulfilling their government issued mandates.
HERTING DL
2008-09-16
The Fractional Crystallization Pilot Plant was designed and constructed to demonstrate that fractional crystallization is a viable way to separate the high-level and low-activity radioactive waste streams from retrieved Hanford single-shell tank saltcake. The focus of this report is to review the design, construction, and testing details of the fractional crystallization pilot plant not previously disseminated.
Practical stability analysis of fractional-order impulsive control systems.
Stamova, Ivanka; Henderson, Johnny
2016-09-01
In this paper we obtain sufficient conditions for practical stability of a nonlinear system of differential equations of fractional order subject to impulse effects. Our results provide a design method of impulsive control law which practically stabilizes the impulse free fractional-order system.
A Quantitative Analysis of Children's Splitting Operations and Fraction Schemes
ERIC Educational Resources Information Center
Norton, Anderson; Wilkins, Jesse L. M.
2009-01-01
Teaching experiments with pairs of children have generated several hypotheses about students' construction of fractions. For example, Steffe (2004) hypothesized that robust conceptions of improper fractions depends on the development of a splitting operation. Results from teaching experiments that rely on scheme theory and Steffe's hierarchy of…
Mutlu, Esra; Warren, Sarah H; Matthews, Peggy P; King, Charly; Linak, William P; Kooter, Ingeborg M; Schmid, Judith E; Ross, Jeffrey A; Gilmour, M Ian; Demarini, David M
2013-12-01
Several types of diesel exhaust particles (DEPs) have been used for toxicology studies, including a high-organic automobile DEP (A-DEP) from Japan, and a low-organic forklift DEP developed by the National Institute of Standards and Technology (N-DEP). However, these DEPs were not characterized extensively for chemical composition or sub-fractionated and tested extensively for mutagenicity. We collected a compressor-generated DEP (C-DEP) and characterized it by conducting bioassay-directed fractionation of the extractable organics in Salmonella and correlating the results by hierarchical clustering with the concentrations of 32 polycyclic aromatic hydrocarbons (PAHs). Relative to A- and N-DEP, the mutagenic potency of C-DEP was intermediate in TA100 +S9 (PAH mutagenicity) but was lowest in TA98 -S9 (nitroarene mutagenicity). More than 50% of the mass of the extractable organics of C-DEP eluted in the nonpolar Fraction 1, and only ∼20% eluted in the moderately polar Fractions 2 and 3. However, most of the mutagenicity eluted in Fractions 2 and 3, similar to A-DEP but different from N-DEP. HPLC-derived mutagrams of 62 sub-fractions per fraction confirmed that most of the mutagenicity was due to moderately polar compounds. The diagnostic strains identified a strong role for PAHs, nitroarenes, aromatic amines, and oxy-PAHs in the mutagenicity of C-DEP. Hierarchical clustering confirmed the importance of oxy-PAHs but not that of nitroarenes. To our knowledge this is the first use of hierarchical clustering to correlate chemical composition with the mutagenicity of a complex mixture. The chemical analysis and mutagenicity of C-DEP described here makes C-DEP suitable for additional toxicological studies.
NASA Astrophysics Data System (ADS)
Crow, S. E.
2011-12-01
stock in the top 0-15 cm of mineral soil by 26%; however, sequential density separation into 7 fractions revealed 50-69% increases in C within low density fractions with MRT of less than 5 yr but over 300% losses of soil C within dense fraction with MRT of over 1275 yr. In these Andisols, the sequential density fractionation method was highly sensitive to land use change and the range of densities are hypothesized to be associated with different mechanisms for soil C stabilization acting over different time scales, which was confirmed by the radiocarbon-based MRT estimates. Although soil fractionation methods are powerful, other results from similar Andisols suggest that over geologic time scales MRT estimates for bulk soil profiles can be more informative than soil fractions. Careful consideration of the scientific question, study system, and scale is important when choosing a method for fractionating soil. Radiocarbon measurements can provide confirmation that the actual nature of the recovered fractions matches the theoretical one.
NASA Astrophysics Data System (ADS)
Fang, Yiqi; Lu, Qinghong; Wang, Xiaolei; Zhang, Wuhong; Chen, Lixiang
2017-02-01
The study of vortex dynamics is of fundamental importance in understanding the structured light's propagation behavior in the realm of singular optics. Here, combining with the large-angle holographic lithography in photoresist, a simple experiment to trace and visualize the vortex birth and splitting of light fields induced by various fractional topological charges is reported. For a topological charge M =1.76 , the recorded microstructures reveal that although it finally leads to the formation of a pair of fork gratings, these two vortices evolve asynchronously. More interestingly, it is observed on the submicron scale that high-order topological charges M =3.48 and 3.52, respectively, give rise to three and four characteristic forks embedded in the samples with one-wavelength resolution of about 450 nm. Numerical simulations based on orbital angular momentum eigenmode decomposition support well the experimental observations. Our method could be applied effectively to study other structured matter waves, such as the electron and neutron beams.
Gong, Xiao Ying; Schäufele, Rudi; Lehmeier, Christoph Andreas; Tcherkez, Guillaume; Schnyder, Hans
2017-03-01
Plant carbon-use-efficiency (CUE), a key parameter in carbon cycle and plant growth models, quantifies the fraction of fixed carbon that is converted into net primary production rather than respired. CUE has not been directly measured, partly because of the difficulty of measuring respiration in light. Here, we explore if CUE is affected by atmospheric CO2 . Sunflower stands were grown at low (200 μmol mol(-1) ) or high CO2 (1000 μmol mol(-1) ) in controlled environment mesocosms. CUE of stands was measured by dynamic stand-scale (13) C labelling and partitioning of photosynthesis and respiration. At the same plant age, growth at high CO2 (compared with low CO2 ) led to 91% higher rates of apparent photosynthesis, 97% higher respiration in the dark, yet 143% higher respiration in light. Thus, CUE was significantly lower at high (0.65) than at low CO2 (0.71). Compartmental analysis of isotopic tracer kinetics demonstrated a greater commitment of carbon reserves in stand-scale respiratory metabolism at high CO2 . Two main processes contributed to the reduction of CUE at high CO2 : a reduced inhibition of leaf respiration by light and a diminished leaf mass ratio. This work highlights the relevance of measuring respiration in light and assessment of the CUE response to environment conditions. © 2016 John Wiley & Sons Ltd.
Dynamics analysis of fractional order Yu-Wang system
NASA Astrophysics Data System (ADS)
Bhalekar, Sachin
2013-10-01
Fractional order version of a dynamical system introduced by Yu and Wang (Engineering, Technology & Applied Science Research, 2, (2012) 209-215) is discussed in this article. The basic dynamical properties of the system are studied. Minimum effective dimension 0.942329 for the existence of chaos in the proposed system is obtained using the analytical result. For chaos detection, we have calculated maximum Lyapunov exponents for various values of fractional order. Feedback control method is then used to control chaos in the system. Further, the system is synchronized with itself and with fractional order financial system using active control technique. Modified Adams-Bashforth-Moulton algorithm is used for numerical simulations.
Numerical analysis of discrete fractional integrodifferential structural dampers
NASA Technical Reports Server (NTRS)
Padovan, Joseph
1987-01-01
This paper develops solution algorithms enabling the handling of the dynamic response of nonlinear structures contained discretely attached dampers modeled by fractional integrodifferential operators of the Grunwald-Liouville-Riemann type. The development consists of two levels of formulation, namely: (1) numerical approximations of fractional operators and, (2) the establishment of global level implicit schemes enabling the solution to nonlinear structural formulations. To generalize the overall results, error estimates are derived for the fractional operator approximation algorithm. These enable an ongoing optimization of solution efficiency for a given error tolerance. To benchmark the scheme, the results of several numerical experiments are presented. These illustrate the numerical characteristics of the overall formulation.
Rasch rating scale analysis of the Attitudes Toward Research Scale.
Papanastasiou, Elena C; Schumacker, Randall
2014-01-01
College students may view research methods courses with negative attitudes, however, few studies have investigated this issue due to the lack of instruments that measure the students' attitudes towards research. Therefore, the purpose of this study was to examine the psychometric properties of a Attitudes Toward Research Scale using Rasch rating scale analysis. Assessment of attitudes toward research is essential to determine if students have negative attitudes towards research and assist instructors in better facilitation of learning research methods in their courses. The results of this study have shown that a thirty item Attitudes Toward Research Scale yielded scores with high person and item reliability.
Source Code Analysis Laboratory (SCALe)
2012-04-01
members undergo ethics training to ensure that SCALe conforms to the requirements of the CERT Program, the SEI, and ISO /IEC 17000. 2.7.1.2 Roles...SCALe undertakes. Testing and calibration laboratories that comply with ISO /IEC 17025 also operate in accordance with ISO 9001 . • NIST National...17025:2005 accredited and ISO 9001 :2008 registered. 4.3 SAIC Accreditation and Certification Services SAIC (Science Applications International
Lie group analysis and similarity solution for fractional Blasius flow
NASA Astrophysics Data System (ADS)
Pan, Mingyang; Zheng, Liancun; Liu, Fawang; Zhang, Xinxin
2016-08-01
This paper presents an investigation for boundary layer flow of viscoelastic fluids past a flat plate. Fractional-order Blasius equation with spatial fractional Riemann-Liouville derivative is derived firstly by using Lie group transformation. The solution is obtained numerically by the generalized shooting method, employing the shifted Grünwald formula and classical fourth order Runge-Kutta method as the iterative scheme. The effects of the order of fractional derivative and the generalized Reynolds number on the velocity profiles are analyzed and discussed. Numerical results show that the smaller the value of the fractional order derivative leads to the faster velocity of viscoelastic fluids near the plate but not to hold near the outer flow. As the Reynolds number increases, the fluid is moving faster in the whole boundary layer consistently.
Popovic, Olga; Hjorth, Maibritt; Jensen, Lars Stoumann
2012-09-01
Pig slurry separation is a slurry treatment technique that can reduce excess loads of P, Cu and Zn to the arable land. This study investigated the effects of different commercial and laboratory separation treatments for pig slurry on P, Cu and Zn distribution into solid and liquid fractions. Solid and liquid separation fractions were collected from two commercial separators installed on the farm. Five different separation treatments were performed (polymer flocculation and drainage; coagulation with iron sulphate addition and polymer flocculation and drainage; ozonation and centrifugation; centrifugation only; and natural sedimentation) on sow and suckling piglet raw slurry. Particle size fractionation was performed on raw slurry and all separation fractions by sequential wet sieving and P, Cu and Zn concentrations were then measured in the particle size classes. Dry matter and total P, Cu and Zn were separated with higher efficiency when chemical pretreatments with flocculants and coagulants were introduced before mechanical separation at both commercial and laboratory scale. When solid fractions are utilized as crop fertilizer (primarily as P fertilizer), the loads of Cu and Zn to the soils are not markedly different than the loads applied with raw slurry. When liquid fractions are used as crop fertilizer (primarily as N fertilizer), the loads of Cu and Zn are markedly lower than those supplied with raw slurry. The loads of Cu and Zn introduced to the soil were lowest on application of the liquid fraction produced by optimized separation treatments that included flocculation and coagulation.
Confirmatory Factor Analysis and Profile Analysis via Multidimensional Scaling
ERIC Educational Resources Information Center
Kim, Se-Kang; Davison, Mark L.; Frisby, Craig L.
2007-01-01
This paper describes the Confirmatory Factor Analysis (CFA) parameterization of the Profile Analysis via Multidimensional Scaling (PAMS) model to demonstrate validation of profile pattern hypotheses derived from multidimensional scaling (MDS). Profile Analysis via Multidimensional Scaling (PAMS) is an exploratory method for identifying major…
Confirmatory Factor Analysis and Profile Analysis via Multidimensional Scaling
ERIC Educational Resources Information Center
Kim, Se-Kang; Davison, Mark L.; Frisby, Craig L.
2007-01-01
This paper describes the Confirmatory Factor Analysis (CFA) parameterization of the Profile Analysis via Multidimensional Scaling (PAMS) model to demonstrate validation of profile pattern hypotheses derived from multidimensional scaling (MDS). Profile Analysis via Multidimensional Scaling (PAMS) is an exploratory method for identifying major…
ERIC Educational Resources Information Center
Lewis, Catherine; Perry, Rebecca
2017-01-01
An understanding of fractions eludes many U.S. students, and research-based knowledge about fraction, such as the utility of linear representations, has not broadly influenced instruction. This randomized trial of lesson study supported by mathematical resources assigned 39 educator teams across the United States to locally managed lesson study…
Subchannel void fraction prediction via drift-flux analysis
Khan, H.J.; Kosaly, G.
1986-10-01
Void fraction calculations have been performed using the subchannel drift-flux code CANAL. Using void and flow distributions in rod bundle geometry, a value of C/sub 0/ has been estimated for bundle-averaged void fraction calculation in one-dimensional approximations. Successful prediction of the average void fraction is observed for the annular rod bundle geometry of the FRIGG experiment. In order to perform subchannel void fraction calculation, a C/sub 0/ model has been developed for one-dimensional subchannel geometry. The implicit form of the C/sub 0/ model developed accounts for void and flow conditions in the adjacent subchannels existing at the common interfaces, i.e., at the gap spacing between the subchannels. It appears that the magnitude of C/sub 0/ varies between subchannels (annular rings of FRIGG geometry) but remains almost constant within each subchannel. Good agreement is observed between prediction and data for subchannel void fractions in axially uniform and nonuniform heated rod bundles.
Albedo climatology analysis and the determination of fractional cloud cover
NASA Technical Reports Server (NTRS)
Curran, R. J.; Wexler, R.; Nack, M. L.
1978-01-01
Monthly and zonally averaged surface cover climatology data are presented which are used to construct monthly and zonally averaged surface albedos. The albedo transformations are then applied to the surface albedos, using solar zenith angles characteristic of the Nimbus 6 satellite local sampling times, to obtain albedos at the top of clear and totally cloud covered atmospheres. These albedos are then combined with measured albedo data to solve for the monthly and zonally averaged fractional cloud cover. The measured albedo data were obtained from the wide field of view channels of the Nimbus 6 Earth Radiation Budget experiment, and consequently the fractional cloud cover results are representative of the local sampling times. These fractional cloud cover results are compared with recent studies. The cloud cover results not only show peaks near the intertropical convergence zone, but the monthly migration of the position of these peaks follows general predictions of atmospheric circulation studies.
Uncertainty analysis of fission fraction for reactor antineutrino experiments
NASA Astrophysics Data System (ADS)
Ma, X. B.; Lu, F.; Wang, L. Z.; Chen, Y. X.; Zhong, W. L.; An, F. P.
2016-06-01
Reactor simulation is an important source of uncertainties for a reactor neutrino experiment. Therefore, how to evaluate the antineutrino flux uncertainty results from reactor simulation is an important question. In this study, a method of the antineutrino flux uncertainty result from reactor simulation was proposed by considering the correlation coefficient. In order to use this method in the Daya Bay antineutrino experiment, the open source code DRAGON was improved and used for obtaining the fission fraction and correlation coefficient. The average fission fraction between DRAGON and SCIENCE code was compared and the difference was less than 5% for all the four isotopes. The uncertainty of fission fraction was evaluated by comparing simulation atomic density of four main isotopes with Takahama-3 experiment measurement. After that, the uncertainty of the antineutrino flux results from reactor simulation was evaluated as 0.6% per core for Daya Bay antineutrino experiment.
Scale-PC shielding analysis sequences
Bowman, S.M.
1996-05-01
The SCALE computational system is a modular code system for analyses of nuclear fuel facility and package designs. With the release of SCALE-PC Version 4.3, the radiation shielding analysis community now has the capability to execute the SCALE shielding analysis sequences contained in the control modules SAS1, SAS2, SAS3, and SAS4 on a MS- DOS personal computer (PC). In addition, SCALE-PC includes two new sequences, QADS and ORIGEN-ARP. The capabilities of each sequence are presented, along with example applications.
Stability analysis of impulsive functional systems of fractional order
NASA Astrophysics Data System (ADS)
Stamova, Ivanka; Stamov, Gani
2014-03-01
In this paper, a class of impulsive fractional functional differential systems is investigated. Sufficient conditions for stability of the zero solution are proved, extending the corresponding theory of impulsive functional differential equations. The investigations are carried out by using the comparison principle, coupled with the Lyapunov function method. We apply our results to an impulsive single species model of Lotka-Volterra type.
Analysis of Student Errors on Division of Fractions
NASA Astrophysics Data System (ADS)
Maelasari, E.; Jupri, A.
2017-02-01
This study aims to describe the type of student errors that typically occurs at the completion of the division arithmetic operations on fractions, and to describe the causes of students’ mistakes. This research used a descriptive qualitative method, and involved 22 fifth grade students at one particular elementary school in Kuningan, Indonesia. The results of this study showed that students’ error answers caused by students changing their way of thinking to solve multiplication and division operations on the same procedures, the changing of mix fractions to common fraction have made students confused, and students are careless in doing calculation. From student written work, in solving the fraction problems, we found that there is influence between the uses of learning methods and student response, and some of student responses beyond researchers’ prediction. We conclude that the teaching method is not only the important thing that must be prepared, but the teacher should also prepare about predictions of students’ answers to the problems that will be given in the learning process. This could be a reflection for teachers to be better and to achieve the expected learning goals.
Histologic and ultrastructural analysis of melasma after fractional resurfacing.
Goldberg, David J; Berlin, Alexander L; Phelps, Robert
2008-02-01
Fractional photothermolysis is a popular treatment option for photodamaged skin and other cutaneous conditions. Recently, successful improvement in melasma has been achieved with this laser system. We undertook this study to evaluate the ultrastructural changes associated with fractional laser treatment of melasma. Ten subjects with skin types III and IV and a clinical diagnosis of epidermal melasma were treated with a 1,550-nm erbium:glass laser delivering light in a fractional manner (Fraxel SR 750, Reliant Technologies, Inc., Mountain View, CA) every 2 weeks for a total of four sessions. Biopsies were obtained from all subjects both before treatment and at 3 months following the final treatment. All biopsies were analyzed by light and electron microscopy for treatment-induced changes. In addition, a secondary endpoint of the study was to assess for clinical improvement in melasma following fractional resurfacing. This assessment was performed by the investigator using pre- and post-treatment photographs. Light microscopy on post-treatment specimens showed a relative decrease in melanocytes compared to the pre-treatment ones. Post-treatment electron microscopy revealed fewer melanocytes and a relative absence of melanin in the surrounding keratinocytes compared to pre-treatment specimens. In addition, six subjects with skin type III were determined to have good improvement, whereas four subjects with skin type IV had fair improvement, as assessed by the investigator. Post-treatment ultrastructural changes are consistent with an elimination process and may help to explain clinical improvement following laser treatment.
Scaling in ANOVA-simultaneous component analysis.
Timmerman, Marieke E; Hoefsloot, Huub C J; Smilde, Age K; Ceulemans, Eva
In omics research often high-dimensional data is collected according to an experimental design. Typically, the manipulations involved yield differential effects on subsets of variables. An effective approach to identify those effects is ANOVA-simultaneous component analysis (ASCA), which combines analysis of variance with principal component analysis. So far, pre-treatment in ASCA received hardly any attention, whereas its effects can be huge. In this paper, we describe various strategies for scaling, and identify a rational approach. We present the approaches in matrix algebra terms and illustrate them with an insightful simulated example. We show that scaling directly influences which data aspects are stressed in the analysis, and hence become apparent in the solution. Therefore, the cornerstone for proper scaling is to use a scaling factor that is free from the effect of interest. This implies that proper scaling depends on the effect(s) of interest, and that different types of scaling may be proper for the different effect matrices. We illustrate that different scaling approaches can greatly affect the ASCA interpretation with a real-life example from nutritional research. The principle that scaling factors should be free from the effect of interest generalizes to other statistical methods that involve scaling, as classification methods.
Scaling analysis of affinity propagation.
Furtlehner, Cyril; Sebag, Michèle; Zhang, Xiangliang
2010-06-01
We analyze and exploit some scaling properties of the affinity propagation (AP) clustering algorithm proposed by Frey and Dueck [Science 315, 972 (2007)]. Following a divide and conquer strategy we setup an exact renormalization-based approach to address the question of clustering consistency, in particular, how many cluster are present in a given data set. We first observe that the divide and conquer strategy, used on a large data set hierarchically reduces the complexity O(N2) to O(N((h+2)/(h+1))) , for a data set of size N and a depth h of the hierarchical strategy. For a data set embedded in a d -dimensional space, we show that this is obtained without notably damaging the precision except in dimension d=2 . In fact, for d larger than 2 the relative loss in precision scales such as N((2-d)/(h+1)d). Finally, under some conditions we observe that there is a value s* of the penalty coefficient, a free parameter used to fix the number of clusters, which separates a fragmentation phase (for ss*) of the underlying hidden cluster structure. At this precise point holds a self-similarity property which can be exploited by the hierarchical strategy to actually locate its position, as a result of an exact decimation procedure. From this observation, a strategy based on AP can be defined to find out how many clusters are present in a given data set.
NASA Astrophysics Data System (ADS)
Soucemarianadin, Laure; Cécillon, Lauric; Chenu, Claire; Baudin, François; Nicolas, Manuel; Savignac, Florence; Barré, Pierre
2017-04-01
Soil organic matter (SOM) is the biggest terrestrial carbon reservoir, storing 3 to 4 times more carbon than the atmosphere. However, despite its major importance for climate regulation SOM dynamics remains insufficiently understood. For instance, there is still no widely accepted method to assess SOM lability. Soil respiration tests and particulate organic matter (POM) obtained by different fractionation schemes have been used for decades and are now considered as classical estimates of very labile and labile soil organic carbon (SOC), respectively. But the pertinence of these methods to characterize SOM turnover can be questioned. Moreover, they are very time-consuming and their reproducibility might be an issue. Alternate ways of determining the labile SOC component are thus well-needed. Thermal analyses have been used to characterize SOM among which Rock-Eval 6 (RE6) analysis of soil has shown promising results in the determination of SOM biogeochemical stability (Gregorich et al., 2015; Barré et al., 2016). Using a large set of samples of French forest soils representing contrasted pedoclimatic conditions, including deep samples (up to 1 m depth), we compared different techniques used for SOM lability assessment. We explored whether results from soil respiration test (10-week laboratory incubations), SOM size-density fractionation and RE6 thermal analysis were comparable and how they were correlated. A set of 222 (respiration test and RE6), 103 (SOM fractionation and RE6) and 93 (respiration test, SOM fractionation and RE6) forest soils samples were respectively analyzed and compared. The comparison of the three methods (n = 93) using a principal component analysis separated samples from the surface (0-10 cm) and deep (40-80 cm) layers, highlighting a clear effect of depth on the short-term persistence of SOC. A correlation analysis demonstrated that, for these samples, the two classical methods of labile SOC determination (respiration and SOM fractionation
NASA Astrophysics Data System (ADS)
Alvarez-Zaldívar, Pablo; Imfeld, Gwenaël; Maier, Uli; Centler, Florian; Thullner, Martin
2013-04-01
In recent years, the use of (constructed) wetlands has gained significant attention for the in situ remediation of groundwater contaminated with (chlorinated) organic hydrocarbons. Although many sophisticated experimental methods exist for the assessment of contaminant removal in such wetlands the understanding how changes in wetland hydrochemistry affect the removal processes is still limited. This knowledge gap might be reduced by the use of biogeochemical reactive transport models. This study presents the reactive transport simulation of a small-scale constructed wetland treated with groundwater containing cis-1,2-dichloroethene (cDCE). Simulated processes consider different cDCE biodegradation pathways and the associated carbon isotope fractionation, a set of further (bio)geochemical processes as well as the activity of the plant roots. Spatio-temporal hydrochemical and isotope data from a long-term constructed wetland experiment [1] are used to constrain the model. Simulation results for the initial oxic phase of the wetland experiment indicate carbon isotope enrichment factors typical for cometabolic DCE oxidation, which suggests that aerobic treatment of cDCE is not an optimal remediation strategy. For the later anoxic phase of the experiment model derived enrichment factors indicate reductive dechlorination pathways. This degradation is promoted at all wetland depths by a sufficient availability of electron donor and carbon sources from root exudates, which makes the anoxic treatment of groundwater in such wetlands an effective remediation strategy. In combination with the previous experimental data results from this study suggest that constructed wetlands are viable remediation means for the treatment of cDCE contaminated groundwater. Reactive transport models can improve the understanding of the factors controlling chlorinated ethenes removal, and the used model approach would also allow for an optimization of the wetland operation needed for a complete
Mönkäre, Tiina J; Palmroth, Marja R T; Rintala, Jukka A
2017-02-01
Increasing interest for the landfill mining and the amount of fine fraction (FF) in landfills (40-70% (w/w) of landfill content) mean that sustainable treatment and utilization methods for FF are needed. For this study FF (<20mm) was mined from a municipal solid waste (MSW) landfill operated from 1967 to 1989. FF, which resembles soil, was stabilized in laboratory scale reactors in two phases: first, anaerobically for 101days and second, for 72days using four different methods: anaerobic with the addition of moisture (water) or inoculum (sewage sludge) and aerobic with continuous water washing, with, or without, bulking material. The aim was to evaluate the effect on the stability of mined FF, which has been rarely reported, and to study the quality and quantity of gas and leachate produced during the stabilization experiment. The study showed that aerobic treatment reduced respiration activity (final values 0.9-1.1mgO2/gTS) and residual methane potential (1.1LCH4/kgTS) better than anaerobic methods (1.8-2.3mg O2/g TS and 1.3-2.4L CH4/kg TS, respectively). Bulking material mixed in FF in one aerobic reactor had no effect on the stability of FF. The benefit of anaerobic treatment was the production of methane, which could be utilized as energy. Even though the inoculum addition increased methane production from FF about 30%, but the methane production was still relatively low (in total 1.5-1.7L CH4/kg TS). Continuous water washing was essential to remove leachable organic matter and soluble nutrients from FF, while increasing the volume of leachate collected. In the aerobic treatment, nitrogen was oxidized into nitrite and nitrate and then washed out in the leachate. Both anaerobic and aerobic methods could be used for FF stabilization. The use of FF, in landscaping for example, is possible because its nutrient content (4gN/kg TS and 1g P/kg TS) can increase the nutrient content of soil, but this may have limitations due to the possible presence of heavy metal and
Isolation and Analysis of Detergent-Resistant Membrane Fractions.
Aureli, Massimo; Grassi, Sara; Sonnino, Sandro; Prinetti, Alessandro
2016-01-01
The hypothesis that the Golgi apparatus is capable of sorting proteins and sending them to the plasma membrane through "lipid rafts," membrane lipid domains highly enriched in glycosphingolipids, sphingomyelin, ceramide, and cholesterol, was formulated by van Meer and Simons in 1988 and came to a turning point when it was suggested that lipid rafts could be isolated thanks to their resistance to solubilization by some detergents, namely Triton X-100. An incredible number of papers have described the composition and properties of detergent-resistant membrane fractions. However, the use of this method has also raised the fiercest criticisms. In this chapter, we would like to discuss the most relevant methodological aspects related to the preparation of detergent-resistant membrane fractions, and to discuss the importance of discriminating between what is present on a cell membrane and what we can prepare from cell membranes in a laboratory tube.
Analysis of the ultrafine fraction of the Apollo 14 regolith
NASA Technical Reports Server (NTRS)
Finkelman, R. B.
1973-01-01
Analyses were obtained on more than 2400 randomly selected particles from the sub-37 micron (ultrafine) fraction of ten Apollo 14 regolith samples. The analyses were conducted with an energy dispersive electron microprobe system. The semiquantitative data were used to group the particles into ten categories. The pyroxene/plagioclase and olivine/plagioclase ratios are inconsistent with those ratios in the Apollo 14 breccias and rocks. The data suggest that fragmented basalts similar to Apollo 12 olivine basalts may have made significant contributions to the ultrafine fraction of the Fra Mauro regolith. Among a number of unusual particles encountered are brown, birefringent lath-shaped grains with 60 wt % SiO2 and 34 wt % FeO(FeSi2O5) and a glass with 20 to 25 wt % CaO, 0 to 8 wt % MgO, 40 to 45 wt % Al2O3 and approximately 30 wt % SiO2.
Stability analysis of linear fractional differential system with distributed delays
NASA Astrophysics Data System (ADS)
Veselinova, Magdalena; Kiskinov, Hristo; Zahariev, Andrey
2015-11-01
In the present work we study the Cauchy problem for linear incommensurate fractional differential system with distributed delays. For the autonomous case with distributed delays with derivatives in Riemann-Liouville or Caputo sense, we establish sufficient conditions under which the zero solution is globally asymptotic stable. The established conditions coincide with the conditions which guaranty the same result in the particular case of system with constant delays and for the case of system without delays in the commensurate case too.
Using Multidimensional Scaling for Curricular Goal Analysis.
ERIC Educational Resources Information Center
Leitzman, David F.; And Others
1980-01-01
Reports research that utilized multidimensional scaling and related analytic procedures to validate the curricular goals of a graduate therapeutic recreation program. Data analysis includes the use of the two-dimensional KYST and PREFMAP spaces. (Author/JD)
High-resolution fractionation after gas chromatography for effect-directed analysis.
Pieke, Eelco; Heus, Ferry; Kamstra, Jorke H; Mladic, Marija; van Velzen, Martin; Kamminga, Dik; Lamoree, Marja H; Hamers, Timo; Leonards, Pim; Niessen, Wilfried M A; Kool, Jeroen
2013-09-03
This research presents an analytical technology for highly efficient, high-resolution, and high-yield fractionation of compounds after gas chromatography (GC) separations. The technology is straightforward, does not require sophisticated cold traps or adsorbent traps, and allows collecting large numbers of fractions during a GC run. The technology is based on direct infusion of a carrier solvent at the end of the GC column, where infusion takes place in the GC oven. Pentane and hexane used as carrier solvent showed good results. Acetonitrile also showed good results as a more polar carrier solvent. Development and optimization of the technology is described, followed by demonstration in a high-throughput effect directed analysis setting toward dioxin receptor bioactivity. The GC fractionation setup was capable of collecting fractions in the second range. As a result, fractionated compounds could be collected into one or two fractions when 6.5 s resolution fractionation was performed. Subsequently, mixtures containing polycyclic aromatic hydrocarbons, of which some are bioactive toward the dioxin receptor, were profiled with a mammalian gene reporter assay. After fractionation into 96-well plates, we used our new approach for direct cell seeding onto the fractions prior to assaying which allowed dioxin receptor bioactivity to be measured directly after fractionation. The current technology represents a great advance in effect directed analysis for environmental screening worldwide as it allows combining the preferred analytical separation technology for often non-polar environmental pollutants with environmentally relevant bioassays, in high resolution.
Scaling analysis for the investigation of slip mechanisms in nanofluids.
Savithiri, S; Pattamatta, Arvind; Das, Sarit K
2011-07-26
The primary objective of this study is to investigate the effect of slip mechanisms in nanofluids through scaling analysis. The role of nanoparticle slip mechanisms in both water- and ethylene glycol-based nanofluids is analyzed by considering shape, size, concentration, and temperature of the nanoparticles. From the scaling analysis, it is found that all of the slip mechanisms are dominant in particles of cylindrical shape as compared to that of spherical and sheet particles. The magnitudes of slip mechanisms are found to be higher for particles of size between 10 and 80 nm. The Brownian force is found to dominate in smaller particles below 10 nm and also at smaller volume fraction. However, the drag force is found to dominate in smaller particles below 10 nm and at higher volume fraction. The effect of thermophoresis and Magnus forces is found to increase with the particle size and concentration. In terms of time scales, the Brownian and gravity forces act considerably over a longer duration than the other forces. For copper-water-based nanofluid, the effective contribution of slip mechanisms leads to a heat transfer augmentation which is approximately 36% over that of the base fluid. The drag and gravity forces tend to reduce the Nusselt number of the nanofluid while the other forces tend to enhance it.
Scaling analysis for the investigation of slip mechanisms in nanofluids
2011-01-01
The primary objective of this study is to investigate the effect of slip mechanisms in nanofluids through scaling analysis. The role of nanoparticle slip mechanisms in both water- and ethylene glycol-based nanofluids is analyzed by considering shape, size, concentration, and temperature of the nanoparticles. From the scaling analysis, it is found that all of the slip mechanisms are dominant in particles of cylindrical shape as compared to that of spherical and sheet particles. The magnitudes of slip mechanisms are found to be higher for particles of size between 10 and 80 nm. The Brownian force is found to dominate in smaller particles below 10 nm and also at smaller volume fraction. However, the drag force is found to dominate in smaller particles below 10 nm and at higher volume fraction. The effect of thermophoresis and Magnus forces is found to increase with the particle size and concentration. In terms of time scales, the Brownian and gravity forces act considerably over a longer duration than the other forces. For copper-water-based nanofluid, the effective contribution of slip mechanisms leads to a heat transfer augmentation which is approximately 36% over that of the base fluid. The drag and gravity forces tend to reduce the Nusselt number of the nanofluid while the other forces tend to enhance it. PMID:21791036
Scaling analysis for the investigation of slip mechanisms in nanofluids
NASA Astrophysics Data System (ADS)
Savithiri, S.; Pattamatta, Arvind; Das, Sarit K.
2011-07-01
The primary objective of this study is to investigate the effect of slip mechanisms in nanofluids through scaling analysis. The role of nanoparticle slip mechanisms in both water- and ethylene glycol-based nanofluids is analyzed by considering shape, size, concentration, and temperature of the nanoparticles. From the scaling analysis, it is found that all of the slip mechanisms are dominant in particles of cylindrical shape as compared to that of spherical and sheet particles. The magnitudes of slip mechanisms are found to be higher for particles of size between 10 and 80 nm. The Brownian force is found to dominate in smaller particles below 10 nm and also at smaller volume fraction. However, the drag force is found to dominate in smaller particles below 10 nm and at higher volume fraction. The effect of thermophoresis and Magnus forces is found to increase with the particle size and concentration. In terms of time scales, the Brownian and gravity forces act considerably over a longer duration than the other forces. For copper-water-based nanofluid, the effective contribution of slip mechanisms leads to a heat transfer augmentation which is approximately 36% over that of the base fluid. The drag and gravity forces tend to reduce the Nusselt number of the nanofluid while the other forces tend to enhance it.
NASA Astrophysics Data System (ADS)
Fleury, Guillaume; Del Nero, Mirella; Barillon, Rémi
2017-01-01
We addressed the effects of mineral surface properties (kaolinite versus Al-oxide) on the sorption-driven fractionation of a soil fulvic acid (FA) at acidic pH, mainly by means of ESI(-)-FTMS analysis of initial and supernatant solutions of FA sorption batch experiments. The MS data provided clear molecular-scale evidence of distinct mechanisms and molecular parameters controlling the FA fractionation upon its sorption on clay and oxide surfaces, respectively. Identification of sorbing and not-sorbing FA compounds in kaolinite-solution systems revealed a weak fractionation among members of sbnd CO2 series of aliphatics or not-condensed aromatics (NCAs) at pH 3.8, and almost no sorption of poorly-oxygenated polycyclic aromatic compounds (PACs) and NCAs. This first molecular-scale description of a FA fractionation in a clay-solution system suggests that H-bonding with low affinity sites (aluminol/silanol) on the basal planes of the clay particles is the main mechanism of sorption. Due to the predominance of such weak and poorly-selective mechanism, the sorption of aliphatic and NCA molecules bearing oxygenated functionalities was prevented at pH 5, due to dissolved Al competing successfully for their coordination. In contrast, a strong FA fractionation was observed onto alumina, with a preferential retention of PACs and highly-oxygenated aliphatics and NCAs. The major part of the poorly oxygenated aliphatics was left in solution. The sorption degree of NCAs and aliphatics was strongly correlated with molecular acidity. For PACs and poorly-oxygenated NCAs, the sorption was driven by reactions of surface ligand exchange (for the most oxygenated compounds) or by hydrophobic interactions (for the least oxygenated compounds).
Analysis of football player's motion in view of fractional calculus
NASA Astrophysics Data System (ADS)
Couceiro, Micael S.; Clemente, Filipe M.; Martins, Fernando M. L.
2013-06-01
Accurately retrieving the position of football players over time may lay the foundations for a whole series of possible new performance metrics for coaches and assistants. Despite the recent developments of automatic tracking systems, the misclassification problem ( i.e., misleading a given player by another) still exists and requires human operators as final evaluators. This paper proposes an adaptive fractional calculus (FC) approach to improve the accuracy of tracking methods by estimating the position of players based on their trajectory so far. One half-time of an official football match was used to evaluate the accuracy of the proposed approach under different sampling periods of 250, 500 and 1000 ms. Moreover, the performance of the FC approach was compared with position-based and velocity-based methods. The experimental evaluation shows that the FC method presents a high classification accuracy for small sampling periods. Such results suggest that fractional dynamics may fit the trajectory of football players, thus being useful to increase the autonomy of tracking systems.
Analysis of football player's motion in view of fractional calculus
NASA Astrophysics Data System (ADS)
Couceiro, Micael; Clemente, Filipe; Martins, Fernando
2013-06-01
Accurately retrieving the position of football players over time may lay the foundations for a whole series of possible new performance metrics for coaches and assistants. Despite the recent developments of automatic tracking systems, the misclassification problem (i.e., misleading a given player by another) still exists and requires human operators as final evaluators. This paper proposes an adaptive fractional calculus (FC) approach to improve the accuracy of tracking methods by estimating the position of players based on their trajectory so far. One half-time of an official football match was used to evaluate the accuracy of the proposed approach under different sampling periods of 250, 500 and 1000 ms. Moreover, the performance of the FC approach was compared with position-based and velocity-based methods. The experimental evaluation shows that the FC method presents a high classification accuracy for small sampling periods. Such results suggest that fractional dynamics may fit the trajectory of football players, thus being useful to increase the autonomy of tracking systems.
Design and Analysis of Electrical Circuits that Produce Fractional-Order Differentiation
1992-03-01
INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio THESIS AFIT/GE/ENG/92M-05 DESIGN AND ANALYSIS OF ELECTRICAL CIRCUITS THAT PRODUCE FRACTIONAL...blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED March 1992 Master’s Thesis 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS DESIGN AND ANALYSIS OF...ENG/92M-05 DESIGN AND ANALYSIS OF ELECTRICAL CIRCUITS THAT PRODUCE FRACTIONAL-ORDER DIFFERENTIATION THESIS Presented to the Faculty of the School of
NASA Astrophysics Data System (ADS)
Asjad, Muhammad Imran; Shah, Nehad Ali; Aleem, Maryam; Khan, Ilyas
2017-08-01
The present study is a comparative analysis of unsteady flows of a second-grade fluid with Newtonian heating and time-fractional derivatives, namely, the Caputo fractional derivative (singular kernel) and the Caputo-Fabrizio fractional derivative (non-singular kernel). A physical model for second-grade fluids is developed with fractional derivatives. The expressions for temperature and velocity fields in dimensionless form as well as rates of heat transfer are determined by means of the Laplace transform technique. Solutions for ordinary cases corresponding to integer order derivatives are also obtained. Numerical computations for a comparison between the solutions of the problem with the Caputo time-fractional derivative, problem with Caputo-Fabrizio time-fractional derivative and of the ordinary fluid problem were made. The influence of some flow parameters and fractional parameter α on temperature field as well as velocity field was presented graphically and in tabular forms.
Instantaneous signal attenuation method for analysis of PFG fractional diffusions
NASA Astrophysics Data System (ADS)
Lin, Guoxing
2016-08-01
An instantaneous signal attenuation (ISA) method for analyzing pulsed field gradient (PFG) fractional diffusion (FD) has been developed, which is modified from the propagator approach developed in 2001 by Lin et al. for analyzing PFG normal diffusion. Both, the current ISA method and the propagator method have the same fundamental basis that the total signal attenuation (SA) is the accumulation of all the ISA, and the ISA is the average SA of the whole diffusion system at each moment. However, the manner of calculating ISA is different. Unlike the use of the instantaneous propagator in the propagator method, the current method directly calculates ISA as A(K(t‧), t‧ + dt‧)/A(K(t‧), t‧), where A(K(t‧), t‧ + dt‧) and A(K(t‧), t‧) are the SA. This modification makes the current method applicable to PFG FD as the instantaneous propagator may not be obtainable in FD. The ISA method was applied to study PFG SA including the effect of finite gradient pulse widths (FGPW) for free FD, restricted FD and the FD affected by a non-homogeneous gradient field. The SA expressions were successfully obtained for all three types of free FDs while other current methods still have difficulty in obtaining all of them. The results from this method agree with reported results such as that obtained by the effective phase shift diffusion equation (EPSDE) method. The M-Wright phase distribution approximation was also used to derive an SA expression for time FD as a comparison, which agrees with ISA method. Additionally, the continuous-time random walk (CTRW) simulation was performed to simulate the SA of PFG FD, and the simulation results agree with the analytical results. Particularly, the CTRW simulation results give good support to the analytical results including FGPW effect for free FD and restricted time FD based on a fractional derivative model where there have been no corresponding theoretical reports to date. The theoretical SA expressions including FGPW obtained
Instantaneous signal attenuation method for analysis of PFG fractional diffusions.
Lin, Guoxing
2016-08-01
An instantaneous signal attenuation (ISA) method for analyzing pulsed field gradient (PFG) fractional diffusion (FD) has been developed, which is modified from the propagator approach developed in 2001 by Lin et al. for analyzing PFG normal diffusion. Both, the current ISA method and the propagator method have the same fundamental basis that the total signal attenuation (SA) is the accumulation of all the ISA, and the ISA is the average SA of the whole diffusion system at each moment. However, the manner of calculating ISA is different. Unlike the use of the instantaneous propagator in the propagator method, the current method directly calculates ISA as A(K(t'),t'+dt')/A(K(t'),t'), where A(K(t'),t'+dt') and A(K(t'),t') are the SA. This modification makes the current method applicable to PFG FD as the instantaneous propagator may not be obtainable in FD. The ISA method was applied to study PFG SA including the effect of finite gradient pulse widths (FGPW) for free FD, restricted FD and the FD affected by a non-homogeneous gradient field. The SA expressions were successfully obtained for all three types of free FDs while other current methods still have difficulty in obtaining all of them. The results from this method agree with reported results such as that obtained by the effective phase shift diffusion equation (EPSDE) method. The M-Wright phase distribution approximation was also used to derive an SA expression for time FD as a comparison, which agrees with ISA method. Additionally, the continuous-time random walk (CTRW) simulation was performed to simulate the SA of PFG FD, and the simulation results agree with the analytical results. Particularly, the CTRW simulation results give good support to the analytical results including FGPW effect for free FD and restricted time FD based on a fractional derivative model where there have been no corresponding theoretical reports to date. The theoretical SA expressions including FGPW obtained here such as [Formula: see
Ward, David P; Hewitson, Peter; Cárdenas-Fernández, Max; Hamley-Bennett, Charlotte; Díaz-Rodríguez, Alba; Douillet, Nathalie; Adams, Joseph P; Leak, David J; Ignatova, Svetlana; Lye, Gary J
2017-05-12
The isolation of component sugars from biomass represents an important step in the bioprocessing of sustainable feedstocks such as sugar beet pulp. Centrifugal partition chromatography (CPC) is used here, as an alternative to multiple resin chromatography steps, to fractionate component monosaccharides from crude hydrolysed sugar beet pulp pectin. CPC separation of samples, prepared in the stationary phase, was carried out using an ethanol: ammonium sulphate (300gL(-1)) phase system (0.8:1.8v:v) in ascending mode. This enabled removal of crude feedstream impurities and separation of monosaccharides into three fractions (l-rhamnose, l-arabinose and d-galactose, and d-galacturonic acid) in a single step. Throughput was improved three-fold by increasing sample injection volume, from 4 to 16% of column volume, with similar separation performance maintained in all cases. Extrusion of the final galacturonic acid fraction increased the eluted solute concentration, reduced the total separation time by 24% and removed the need for further column regeneration. Reproducibility of the separation after extrusion was validated by using multiple stacked injections. Scale-up was performed linearly from a semi-preparative 250mL column to a preparative 950mL column with a scale-up ratio of 3.8 applied to mobile phase flow rate and sample injection volume. Throughputs of 9.4gL(-1)h(-1) of total dissolved solids were achieved at the preparative scale with a throughput of 1.9gL(-1)h(-1) of component monosaccharides. These results demonstrate the potential of CPC for both impurity removal and target fractionation within biorefinery separations. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Chromatin fractionation analysis of licensing factors in mammalian cells.
Nishitani, Hideo; Morino, Masayuki; Murakami, Yusuke; Maeda, Takeshi; Shiomi, Yasushi
2014-01-01
ORC, Cdc6, Cdt1, and MCM2-7 are replication-licensing factors, which play a central role in the once-per-cell cycle control of DNA replication. ORC, Cdc6, and Cdt1 collaborate to load MCM2-7 onto replication origins in order to license them for replication. MCM2-7 is a DNA helicase directly involved in DNA replication and dissociates from DNA as S phase progresses and each replicon is replicated. In the cell cycle, the loading of MCM2-7 is restricted during the end of mitosis and the G1 phase. Thus, the levels of chromatin-bound MCM2-7 and its loaders oscillate during the cell cycle. Chromatin association of these factors can be analyzed by separating a cell lysate into soluble and chromatin-enriched insoluble fractions in mammalian cells.
Validation of Normalizations, Scaling, and Photofading Corrections for FRAP Data Analysis.
Kang, Minchul; Andreani, Manuel; Kenworthy, Anne K
2015-01-01
Fluorescence Recovery After Photobleaching (FRAP) has been a versatile tool to study transport and reaction kinetics in live cells. Since the fluorescence data generated by fluorescence microscopy are in a relative scale, a wide variety of scalings and normalizations are used in quantitative FRAP analysis. Scaling and normalization are often required to account for inherent properties of diffusing biomolecules of interest or photochemical properties of the fluorescent tag such as mobile fraction or photofading during image acquisition. In some cases, scaling and normalization are also used for computational simplicity. However, to our best knowledge, the validity of those various forms of scaling and normalization has not been studied in a rigorous manner. In this study, we investigate the validity of various scalings and normalizations that have appeared in the literature to calculate mobile fractions and correct for photofading and assess their consistency with FRAP equations. As a test case, we consider linear or affine scaling of normal or anomalous diffusion FRAP equations in combination with scaling for immobile fractions. We also consider exponential scaling of either FRAP equations or FRAP data to correct for photofading. Using a combination of theoretical and experimental approaches, we show that compatible scaling schemes should be applied in the correct sequential order; otherwise, erroneous results may be obtained. We propose a hierarchical workflow to carry out FRAP data analysis and discuss the broader implications of our findings for FRAP data analysis using a variety of kinetic models.
Mass-based fraction collection of crude synthetic peptides in analytical and preparative scale.
Moritz, Ralf; O'Reilly, Nicola
2003-06-01
Synthetic peptides become more and more important as drug candidates in the treatment of a variety of diseases. A particular therapeutic focus for synthetic peptides is cancer treatment.1,2 In order to keep pace with the growing number of newly synthesized peptides, peptide purification should not represent the bottleneck in the drug discovery process. Since the target masses of synthetic peptides are well known, mass-based fraction collection represents an efficient technique for their purification. In contrast to fraction triggering with less specific detectors, employing a mass selective detector leads in each run only to the purification of the target mass. Consequently, it is not necessary to pick the compound of interest out of a series of redundant fractions. In this article we demonstrate mass-based purification of a variety of crude synthetic peptides by reversed phase high-performance liquid chromatography. The peptides were in the mass range from less than 1 kDa to more than 10 kDa and covered a pI range from 4 to 13. We particularly focused on some technical aspects of the system that were prerequisite for reliable compound purification with high recoveries.
Cao, Zheng; Bowie, James U
2014-01-01
Equilibrium H/D fractionation factors have been extensively employed to qualitatively assess hydrogen bond strengths in protein structure, enzyme active sites, and DNA. It remains unclear how fractionation factors correlate with hydrogen bond free energies, however. Here we develop an empirical relationship between fractionation factors and free energy, allowing for the simple and quantitative measurement of hydrogen bond free energies. Applying our empirical relationship to prior fractionation factor studies in proteins, we find: [1] Within the folded state, backbone hydrogen bonds are only marginally stronger on average in α-helices compared to β-sheets by ∼0.2 kcal/mol. [2] Charge-stabilized hydrogen bonds are stronger than neutral hydrogen bonds by ∼2 kcal/mol on average, and can be as strong as –7 kcal/mol. [3] Changes in a few hydrogen bonds during an enzyme catalytic cycle can stabilize an intermediate state by –4.2 kcal/mol. [4] Backbone hydrogen bonds can make a large overall contribution to the energetics of conformational changes, possibly playing an important role in directing conformational changes. [5] Backbone hydrogen bonding becomes more uniform overall upon ligand binding, which may facilitate participation of the entire protein structure in events at the active site. Our energetic scale provides a simple method for further exploration of hydrogen bond free energies. PMID:24501090
Alagoz, Baris Baykant
2017-09-01
With power mapping (conformal mapping), stability analyses of fractional order linear time invariant (LTI) systems are carried out by consideration of the root locus of expanded degree integer order polynomials in the principal Riemann sheet. However, it is essential to show the left half plane (LHP) stability analysis of fractional order characteristic polynomials in the s plane in order to close the gap emerging in stability analyses of fractional order and integer order systems. In this study, after briefly discussing the relation between the characteristic root orientations and the system stability, the author presents a methodology to establish principal characteristic polynomials to perform the LHP stability analysis of fractional order systems. The principal characteristic polynomials are formed by factorizing principal characteristic roots. Then, the LHP stability analysis of fractional order systems can be carried out by using the root equivalency of fractional order principal characteristic polynomials. Illustrative examples are presented to explain how to find equivalent roots of fractional order principal characteristic polynomials in order to carry out the LHP stability analyses of fractional order nominal and interval systems. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Analysis of a fractional-order couple model with acceleration in feelings.
Koca, Ilknur; Ozalp, Nuri
2013-01-01
A fractional-order nonlinear dynamical model of couple has been introduced. Upper bounds are obtained for a fractional-order nonlinear dynamical model. Also different from other models, a model with the order 2 α is discussed. We are expecting an acceleration in feelings; that is why we increase the order of the derivative between 1 < 2α ≤ 2. Stability analysis of the fractional-order nonlinear dynamical model of involving two persons is studied using the fractional Routh-Hurwitz criteria. By using stability analysis on fractional-order system, we obtain sufficient condition on the parameters for the locally asymptotic stability of equilibrium points. Finally, numerical simulations are presented to verify the obtained results.
Incorporating scale into digital terrain analysis
NASA Astrophysics Data System (ADS)
Dragut, L. D.; Eisank, C.; Strasser, T.
2009-04-01
Digital Elevation Models (DEMs) and their derived terrain attributes are commonly used in soil-landscape modeling. Process-based terrain attributes meaningful to the soil properties of interest are sought to be produced through digital terrain analysis. Typically, the standard 3 X 3 window-based algorithms are used for this purpose, thus tying the scale of resulting layers to the spatial resolution of the available DEM. But this is likely to induce mismatches between scale domains of terrain information and soil properties of interest, which further propagate biases in soil-landscape modeling. We have started developing a procedure to incorporate scale into digital terrain analysis for terrain-based environmental modeling (Drăguţ et al., in press). The workflow was exemplified on crop yield data. Terrain information was generalized into successive scale levels with focal statistics on increasing neighborhood size. The degree of association between each terrain derivative and crop yield values was established iteratively for all scale levels through correlation analysis. The first peak of correlation indicated the scale level to be further retained. While in a standard 3 X 3 window-based analysis mean curvature was one of the poorest correlated terrain attribute, after generalization it turned into the best correlated variable. To illustrate the importance of scale, we compared the regression results of unfiltered and filtered mean curvature vs. crop yield. The comparison shows an improvement of R squared from a value of 0.01 when the curvature was not filtered, to 0.16 when the curvature was filtered within 55 X 55 m neighborhood size. This indicates the optimum size of curvature information (scale) that influences soil fertility. We further used these results in an object-based image analysis environment to create terrain objects containing aggregated values of both terrain derivatives and crop yield. Hence, we introduce terrain segmentation as an alternative
ANALYSIS OF RESPIRATORY DESPOSITION DOSE OF INHALED AMBIENT AEROSOLS FOR DIFFERENT SIZE FRACTIONS
ANALYSIS OF RESPIRATORY DEPOSITION DOSE OF INHALED AMBIENT AEROSOLS FOR DIFFERENT SIZE FRACTIONS. Chong S. Kim, SC. Hu**, PA Jaques*, US EPA, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC 27711; **IIT Research Institute, Chicago, IL; *S...
ANALYSIS OF RESPIRATORY DESPOSITION DOSE OF INHALED AMBIENT AEROSOLS FOR DIFFERENT SIZE FRACTIONS
ANALYSIS OF RESPIRATORY DEPOSITION DOSE OF INHALED AMBIENT AEROSOLS FOR DIFFERENT SIZE FRACTIONS. Chong S. Kim, SC. Hu**, PA Jaques*, US EPA, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC 27711; **IIT Research Institute, Chicago, IL; *S...
Preparation of Mitochondrial Enriched Fractions for Metabolic Analysis in Drosophila
Villa-Cuesta, Eugenia; Rand, David M.
2015-01-01
Since mitochondria play roles in amino acid metabolism, carbohydrate metabolism and fatty acid oxidation, defects in mitochondrial function often compromise the lives of those who suffer from these complex diseases. Detecting mitochondrial metabolic changes is vital to the understanding of mitochondrial disorders and mitochondrial responses to pharmacological agents. Although mitochondrial metabolism is at the core of metabolic regulation, the detection of subtle changes in mitochondrial metabolism may be hindered by the overrepresentation of other cytosolic metabolites obtained using whole organism or whole tissue extractions. Here we describe an isolation method that detected pronounced mitochondrial metabolic changes in Drosophila that were distinct between whole-fly and mitochondrial enriched preparations. To illustrate the sensitivity of this method, we used a set of Drosophila harboring genetically diverse mitochondrial DNAs (mtDNA) and exposed them to the drug rapamycin. Using this method we showed that rapamycin modifies mitochondrial metabolism in a mitochondrial-genotype-dependent manner. However, these changes are much more distinct in metabolomics studies when metabolites were extracted from mitochondrial enriched fractions. In contrast, whole tissue extracts only detected metabolic changes mediated by the drug rapamycin independently of mtDNAs. PMID:26485391
Proteomic analysis of the cell envelope fraction of Escherichia coli.
Fountoulakis, M; Gasser, R
2003-01-01
We applied proteomics technologies to analyze a membrane preparation of Escherichia coli, wild type strain and of transformants expressing human cytochrome P450s. The proteins were analyzed by two-dimensional electrophoresis and identified by matrix-assisted laser desorption ionization mass spectrometry. The membrane proteins were solubilized with both mild detergents such as CHAPS and strong detergents, such as sodium and lithium dodecyl sulfate, sodium cholate and sodium deoxycholate. In the E. colimembrane fraction, 394 different gene products were identified. Approximately 28% of them were predicted to be integral membrane proteins, of which 100 proteins have been predicted to carry one transmembrane region, ten proteins to carry two, and two proteins to include three transmembrane domains. The remaining are probably membrane-associated and cytosolic proteins. Cytochrome P450s did not enter the immobilized pH gradient strips but were efficiently analyzed in a two-dimensional, two-detergent system. Use of strong solubilizing agents resulted in the detection of about 20 membrane proteins, which were not detected following extraction with mild detergents and chaotropes. The present database is one of the largest for membrane proteins.
Spectral analysis and structure preserving preconditioners for fractional diffusion equations
NASA Astrophysics Data System (ADS)
Donatelli, Marco; Mazza, Mariarosa; Serra-Capizzano, Stefano
2016-02-01
Fractional partial order diffusion equations are a generalization of classical partial differential equations, used to model anomalous diffusion phenomena. When using the implicit Euler formula and the shifted Grünwald formula, it has been shown that the related discretizations lead to a linear system whose coefficient matrix has a Toeplitz-like structure. In this paper we focus our attention on the case of variable diffusion coefficients. Under appropriate conditions, we show that the sequence of the coefficient matrices belongs to the Generalized Locally Toeplitz class and we compute the symbol describing its asymptotic eigenvalue/singular value distribution, as the matrix size diverges. We employ the spectral information for analyzing known methods of preconditioned Krylov and multigrid type, with both positive and negative results and with a look forward to the multidimensional setting. We also propose two new tridiagonal structure preserving preconditioners to solve the resulting linear system, with Krylov methods such as CGNR and GMRES. A number of numerical examples show that our proposal is more effective than recently used circulant preconditioners.
Milovanov, A V
2001-04-01
The formulation of the fractional Fokker-Planck-Kolmogorov (FPK) equation [Physica D 76, 110 (1994)] has led to important advances in the description of the stochastic dynamics of Hamiltonian systems. Here, the long-time behavior of the basic transport processes obeying the fractional FPK equation is analyzed. A derivation of the large-scale turbulent transport coefficient for a Hamiltonian system with 11 / 2 degrees of freedom is proposed in connection with the fractal structure of the particle chaotic trajectories. The principal transport regimes (i.e., a diffusion-type process, ballistic motion, subdiffusion in the limit of the frozen Hamiltonian, and behavior associated with self-organized criticality) are obtained as partial cases of the generalized transport law. A comparison with recent numerical and experimental studies is given.
Changes in estuarine sediment phosphorus fractions during a large-scale Mississippi River diversion.
Roy, Eric D; Nguyen, Nhan T; White, John R
2017-12-31
Ongoing deterioration and loss of wetlands in the Mississippi River delta threatens the survival of Louisiana's coastal ecosystems and human settlements. In response, the State of Louisiana has proposed a $50 billion, 50-year restoration program. A central piece of this program is the reintroduction of Mississippi River water into the deltaic plain using managed diversions that mimic natural flood pulses. These diversions would transport critically needed sediment, but also deliver large nutrient loads. Coastal eutrophication is therefore a concern, particularly blooms of toxin-producing cyanobacteria. The Bonnet Carré Spillway (BCS) is an existing large flood diversion that protects New Orleans and provides an opportunity to investigate diversion nutrient transport. Here, we quantify sediment phosphorus (P) deposited by the BCS for the first time, and use a sequential P fractionation scheme to evaluate the likelihood of future sediment P release to the water column of the Lake Pontchartrain Estuary. In 2011, we collected sediment cores in the estuary for determination of P fractions before and after the discharge of 21.9km(3) of river water through the BCS in just under 6weeks. We observed the greatest net increases in sediment total P, inorganic P forms, and more labile organic P in the region near the inflow. We estimate that the diversion deposited ≥5000 metric tons of P in the sediments of the Lake Pontchartrain Estuary. The sum of readily available inorganic P, Fe/Al-bound inorganic P, and more labile organic P equaled approximately 20-30% of post-diversion sediment total P. These fractions are more likely to be released to the water column than the other sediment P forms we quantified. Diversion designs that encourage sedimentation in coastal marshes versus open bays can likely reduce the chances that deposited particulate P creates eutrophication risk. Copyright © 2017 Elsevier B.V. All rights reserved.
Hedman, Björn; Burvall, Jan; Nilsson, Calle; Marklund, Stellan
2005-01-01
In sparsely populated rural areas, recycling of household waste might not always be the most environmentally advantageous solution due to the total amount of transport involved. In this study, an alternative approach to recycling has been tested using efficient small-scale biofuel boilers for co-combustion of biofuel and high-energy waste. The dry combustible fraction of source-sorted household waste was mixed with the energy crop reed canary-grass (Phalaris Arundinacea L.), and combusted in both a 5-kW pilot scale reactor and a biofuel boiler with 140-180 kW output capacity, in the form of pellets and briquettes, respectively. The chlorine content of the waste fraction was 0.2%, most of which originated from plastics. The HCl emissions exceeded levels stipulated in new EU-directives, but levels of equal magnitude were also generated from combustion of the pure biofuel. Addition of waste to the biofuel did not give any apparent increase in emissions of organic compounds. Dioxin levels were close to stipulated limits. With further refinement of combustion equipment, small-scale co-combustion systems have the potential to comply with emission regulations.
Hedman, Bjoern . E-mail: bjorn.hedman@chem.umu.se; Burvall, Jan; Nilsson, Calle; Marklund, Stellan
2005-07-01
In sparsely populated rural areas, recycling of household waste might not always be the most environmentally advantageous solution due to the total amount of transport involved. In this study, an alternative approach to recycling has been tested using efficient small-scale biofuel boilers for co-combustion of biofuel and high-energy waste. The dry combustible fraction of source-sorted household waste was mixed with the energy crop reed canary-grass (Phalaris Arundinacea L.), and combusted in both a 5-kW pilot scale reactor and a biofuel boiler with 140-180 kW output capacity, in the form of pellets and briquettes, respectively. The chlorine content of the waste fraction was 0.2%, most of which originated from plastics. The HCl emissions exceeded levels stipulated in new EU-directives, but levels of equal magnitude were also generated from combustion of the pure biofuel. Addition of waste to the biofuel did not give any apparent increase in emissions of organic compounds. Dioxin levels were close to stipulated limits. With further refinement of combustion equipment, small-scale co-combustion systems have the potential to comply with emission regulations.
Scale-Specific Multifractal Medical Image Analysis
Braverman, Boris
2013-01-01
Fractal geometry has been applied widely in the analysis of medical images to characterize the irregular complex tissue structures that do not lend themselves to straightforward analysis with traditional Euclidean geometry. In this study, we treat the nonfractal behaviour of medical images over large-scale ranges by considering their box-counting fractal dimension as a scale-dependent parameter rather than a single number. We describe this approach in the context of the more generalized Rényi entropy, in which we can also compute the information and correlation dimensions of images. In addition, we describe and validate a computational improvement to box-counting fractal analysis. This improvement is based on integral images, which allows the speedup of any box-counting or similar fractal analysis algorithm, including estimation of scale-dependent dimensions. Finally, we applied our technique to images of invasive breast cancer tissue from 157 patients to show a relationship between the fractal analysis of these images over certain scale ranges and pathologic tumour grade (a standard prognosticator for breast cancer). Our approach is general and can be applied to any medical imaging application in which the complexity of pathological image structures may have clinical value. PMID:24023588
Quantitative analysis of errors in fractionated stereotactic radiotherapy.
Choi, D R; Kim, D Y; Ahn, Y C; Huh, S J; Yeo, I J; Nam, D H; Lee, J I; Park, K; Kim, J H
2001-01-01
Fractionated stereotactic radiotherapy (FSRT) offers a technique to minimize the absorbed dose to normal tissues; therefore, quality assurance is essential for these procedures. In this study, quality assurance for FSRT of 58 cases, between August 1995 and August 1997 are described, and the errors for each step and overall accuracy were estimated. Some of the important items for FSRT procedures are: accuracy in CT localization, transferred image distortion, laser alignment, isocentric accuracy of linear accelerator, head frame movement, portal verification, and various human errors. A geometric phantom, that has known coordinates was used to estimate the accuracy of CT localization. A treatment planning computer was used for checking the transferred image distortion. The mechanical isocenter standard (MIS), rectilinear phantom pointer: (RLPP), and laser target localizer frame (LTLF) were used for laser alignment and target coordinates setting. Head-frame stability check was performed by a depth confirmation helmet (DCH). A film test was done to check isocentric accuracy and portal verification. All measured data for the 58 patients were recorded and analyzed for each item. 4-MV x-rays from a linear accelerator, were used for FSRT, along with homemade circular cones with diameters from 20 to 70 mm (interval: 5 mm). The accuracy in CT localization was 1.2+/-0.5 mm. The isocentric accuracy of the linear accelerator, including laser alignment, was 0.5+/-0.2 mm. The reproducibility of the head frame was 1.1+/-0.6 mm. The overall accuracy was 1.7+/-0.7 mm, excluding human errors.
EFFECTS OF OXYGEN AND AIR MIXING ON VOID FRACTIONS IN A LARGE SCALE SYSTEM
Leishear, R; Hector Guerrero, H; Michael Restivo, M
2008-09-11
Oxygen and air mixing with spargers was performed in a 30 foot tall by 30 inch diameter column, to investigate mass transfer as air sparged up through the column and removed saturated oxygen from solution. The mixing techniques required to support this research are the focus of this paper. The fluids tested included water, water with an antifoam agent (AFA), and a high, solids content, Bingham plastic, nuclear waste simulant with AFA, referred to as AZ01 simulant, which is non-radioactive. Mixing of fluids in the column was performed using a recirculation system and an air sparger. The re-circulation system consisted of the column, a re-circulating pump, and associated piping. The air sparger was fabricated from a two inch diameter pipe concentrically installed in the column and open near the bottom of the column. The column contents were slowly re-circulated while fluids were mixed with the air sparger. Samples were rheologically tested to ensure effective mixing, as required. Once the fluids were adequately mixed, oxygen was homogeneously added through the re-circulation loop using a sintered metal oxygen sparger followed by a static mixer. Then the air sparger was re-actuated to remove oxygen from solution as air bubbled up through solution. To monitor mixing effectiveness several variables were monitored, which included flow rates, oxygen concentration, differential pressures along the column height, fluid levels, and void fractions, which are defined as the percent of dissolved gas divided by the total volume of gas and liquid. Research showed that mixing was uniform for water and water with AFA, but mixing for the AZ101 fluid was far more complex. Although mixing of AZ101 was uniform throughout most of the column, gas entrapment and settling of solids significantly affected test results. The detailed test results presented here provide some insight into the complexities of mixing and void fractions for different fluids and how the mixing process itself
Fractional Cylindrical Functions Implementation for Electromagnetic Waves Scattering Analysis
2002-09-01
IMPLEMENTATION FOR ELECTROMAGNETIC WAVES SCATTERING ANALYSIS D.V. Golovin , D.O. Batrakov. Kharkov National University, Ukraine Dmitry.O.Batrakov...N2 8. P. 1483. [2] Vorontsov A.A., Mirovitskaya S.D/I Radiotechnika i Electronika (in Russian) 1986. V.31. No 12. P. 2330. [3] Golovin D.V., Batrakov
An Instructional Module on Mokken Scale Analysis
ERIC Educational Resources Information Center
Wind, Stefanie A.
2017-01-01
Mokken scale analysis (MSA) is a probabilistic-nonparametric approach to item response theory (IRT) that can be used to evaluate fundamental measurement properties with less strict assumptions than parametric IRT models. This instructional module provides an introduction to MSA as a probabilistic-nonparametric framework in which to explore…
Scale Free Reduced Rank Image Analysis.
ERIC Educational Resources Information Center
Horst, Paul
In the traditional Guttman-Harris type image analysis, a transformation is applied to the data matrix such that each column of the transformed data matrix is the best least squares estimate of the corresponding column of the data matrix from the remaining columns. The model is scale free. However, it assumes (1) that the correlation matrix is…
NASA Astrophysics Data System (ADS)
Kashiwabara, Teruhiko; Takahashi, Yoshio; Tanimizu, Masaharu; Usui, Akira
2011-10-01
The distribution of Mo between seawater and marine ferromanganese oxides has great impacts on concentration and isotopic composition of Mo in modern oxic seawater. To reveal the adsorption chemistry of Mo to ferromanganese oxides, we performed (i) detailed structural analyses of Mo surface complexes on δ-MnO 2, ferrihydrite, and hydrogenetic ferromanganese oxides by L 3- and K-edge XAFS, and (ii) adsorption experiments of Mo to δ-MnO 2 and ferrihydrite over a wide range of pHs, ionic strengths, and Mo concentrations. XAFS analyses revealed that Mo forms distorted octahedral ( Oh) inner-sphere complexes on δ-MnO 2 whereas it forms a tetrahedral ( Td) outer-sphere complex on ferrihydrite. In the hydrogenetic ferromanganese oxides, the dominant host phase of Mo was revealed to be δ-MnO 2. These structural information are consistent with the macroscopic behaviors of Mo in adsorption experiments, and Mo concentration in modern oxic seawater can be explained by the equilibrium adsorption reaction on δ-MnO 2. In addition, the large isotopic fractionation of Mo between seawater and ferromanganese oxides detected in previous studies can be explained by the structural difference between MoO42- and adsorbed species on the δ-MnO 2 phase in ferromanganese oxides. In contrast, smaller fractionation of Mo isotopes on ferrihydrite is due to little change in the Mo local structures during its adsorption to ferrihydrite. The structures of Mo species adsorbed on crystalline Fe (oxyhydr)oxides, goethite, and hematite were also investigated at pH 8 and I = 0.70 M (NaNO 3). Our XAFS analyses revealed that Mo forms inner-sphere complexes on both minerals: Td edge-sharing (46%) and Oh double corner-sharing (54%) for goethite, and Td double corner-sharing (14%) and Oh edge-sharing (86%) for hematite. These structural information, combined with those for amorphous ferrihydrite and δ-MnO 2, show the excellent correlation with the magnitude of adsorptive isotopic fractionation of Mo
Cost-Benefit Analysis of a Notational Fractionated SATCOM Architecture
2006-05-01
attributes. This technique, known as Multi- Attribute Utility Theory ( MAUT ),vii provides a means for constructing a function composed of many single...for outcomes under conditions of uncertainty known at utility theory . Keeney and Raiffavi expanded this work to enable the treatment of multiple... Multiattribute Utility Analysis in Design Management,” IEEE Transactions on Engineering Management, Vol. 37, No. 4, pp. 296-301, 1990 (a general discussion
Scaling analysis on filtered near wall turbulence
NASA Astrophysics Data System (ADS)
Mohan, Prakash; Moser, Robert
2016-11-01
Large Eddy Simulations (LES) directly represent larger scale turbulent motions and model the effects of small scale motions. However in the near wall region the large dynamically important eddies scale in viscous wall units, which makes resolving them in a high Reynolds number LES very expensive. This motivates the use of wall-modeled LES, in which these near-wall eddies are modeled. To aid in the development of new wall models, we pursue an asymptotic analysis of the filtered Navier-Stokes equations, in the limit in which the horizontal filter scale is large compared to the thickness of the wall layer. It will be shown that in this limit the filtered velocities u and subgrid stresses τ in the near-wall layer are determined to zeroth order by filtered velocities at the boundary of the wall layer. Further the asymptotics suggest that there is a scaled universal velocity profile f and subgrid stress profile g in the near-wall region. The validity of this result will be tested and the profiles f and g will be evaluated through analysis of DNS data from channel flow at Reτ = 5200 .
Voxel-Based Analysis of Fractional Anisotropy in Post-Stroke Apathy
Yang, Song-ran; Shang, Xin-yuan; Tao, Jun; Liu, Jian-yang; Hua, Ping
2015-01-01
Objective To explore the structural basis of post-stroke apathy by using voxel-based analysis (VBA) of fractional anisotropy (FA) maps. Methods We enrolled 54 consecutive patients with ischemic stroke during convalescence, and divided them into apathy (n = 31) and non-apathy (n = 23) groups. We obtained magnetic resonance images of their brains, including T1, T2 and DTI sequences. Age, sex, education level, Hamilton Depression Scale (HAMD) scores, Mini-Mental State Examination (MMSE) scores, National Institutes of Health Stroke Scale (NIHSS) scores, and infarct locations for the two groups were compared. Finally, to investigate the structural basis of post-stroke apathy, VBA of FA maps was performed in which we included the variables that a univariate analysis determined had P-values less than 0.20 as covariates. Results HAMD (P = 0.01) and MMSE (P<0.01) scores differed significantly between the apathy and non-apathy groups. After controlling for age, education level, HAMD scores, and MMSE scores, significant FA reduction was detected in four clusters with peak voxels at the genu of the corpus callosum (X = −16, Y = 30, Z = 8), left anterior corona radiata (−22, 30, 10), splenium of the corpus callosum (−24, −56, 18), and right inferior frontal gyrus white matter (52, 24, 18), after family-wise error correction for multiple comparisons. Conclusions Post-stroke apathy is related to depression and cognitive decline. Damage to the genu of the corpus callosum, left anterior corona radiata, splenium of the corpus callosum, and white matter in the right inferior frontal gyrus may lead to apathy after ischemic stroke. PMID:25555189
Voxel-based analysis of fractional anisotropy in post-stroke apathy.
Yang, Song-ran; Shang, Xin-yuan; Tao, Jun; Liu, Jian-yang; Hua, Ping
2015-01-01
To explore the structural basis of post-stroke apathy by using voxel-based analysis (VBA) of fractional anisotropy (FA) maps. We enrolled 54 consecutive patients with ischemic stroke during convalescence, and divided them into apathy (n = 31) and non-apathy (n = 23) groups. We obtained magnetic resonance images of their brains, including T1, T2 and DTI sequences. Age, sex, education level, Hamilton Depression Scale (HAMD) scores, Mini-Mental State Examination (MMSE) scores, National Institutes of Health Stroke Scale (NIHSS) scores, and infarct locations for the two groups were compared. Finally, to investigate the structural basis of post-stroke apathy, VBA of FA maps was performed in which we included the variables that a univariate analysis determined had P-values less than 0.20 as covariates. HAMD (P = 0.01) and MMSE (P<0.01) scores differed significantly between the apathy and non-apathy groups. After controlling for age, education level, HAMD scores, and MMSE scores, significant FA reduction was detected in four clusters with peak voxels at the genu of the corpus callosum (X = -16, Y = 30, Z = 8), left anterior corona radiata (-22, 30, 10), splenium of the corpus callosum (-24, -56, 18), and right inferior frontal gyrus white matter (52, 24, 18), after family-wise error correction for multiple comparisons. Post-stroke apathy is related to depression and cognitive decline. Damage to the genu of the corpus callosum, left anterior corona radiata, splenium of the corpus callosum, and white matter in the right inferior frontal gyrus may lead to apathy after ischemic stroke.
Dynamical analysis of fractional-order Rössler and modified Lorenz systems
NASA Astrophysics Data System (ADS)
Letellier, Christophe; Aguirre, Luis A.
2013-10-01
This Letter is devoted to the dynamical analysis of fractional-order systems, namely the Rössler and a modified Lorenz system. The work here described compares the dynamical regimes of such fractional-order systems to that of the corresponding standard systems. It turns out that most of the chaotic attractors are topologically equivalent to those found in the original integer-order systems, although in some particular (and apparently rare) cases unusual bifurcation patterns and attractors are found.
Cold trap fractionation as an organic analysis technique.
NASA Technical Reports Server (NTRS)
Crosmer, W. E.; Thomas, N. C.; Tsang, P. H. S.; Duckett, R. J.
1973-01-01
A highly simplified, alternate approach to the gas chromatograph-mass spectrometer has been developed. In this approach, a low temperature trap replaces the entire GC portion of the combined GC-MS instrument and no carrier gas is necessary. Using the cold trap technique, the sample is first passed into a chilled trap. Depending on the trap temperature, many compounds are condensed or trapped out (most at -196 C). Those which are not, such as helium, neon, and nitrogen, pass through the trap directly into the spectrometer for analysis. Then the trap is programmed to increase in temperature at an appropriate rate. This allows evaporation (or sublimation) of the trapped materials according to the specific vapor pressure characteristics of the compound, providing some temporal separation between constituents. These partially resolved components are directed to the MS as they evolve from the trap.
COD fractions of leachate from aerobic and anaerobic pilot scale landfill reactors.
Bilgili, M Sinan; Demir, Ahmet; Akkaya, Ebru; Ozkaya, Bestamin
2008-10-01
One of the most important problems with designing and maintaining a landfill is managing leachate that generated when water passes through the waste. In this study, leachate samples taken from aerobic and anaerobic landfill reactors operated with and without leachate recirculation are investigated in terms of biodegradable and non-biodegradable fractions of COD. The operation time is 600 days for anaerobic reactors and 250 days for aerobic reactors. Results of this study show that while the values of soluble inert COD to total COD in the leachate of aerobic landfill with leachate recirculation and aerobic dry reactors are determined around 40%, this rate was found around 30% in the leachate of anaerobic landfill with leachate recirculation and traditional landfill reactors. The reason for this difference is that the aerobic reactors generated much more microbial products. Because of this condition, it can be concluded that total inert COD/total COD ratios of the aerobic reactors were 60%, whereas those of anaerobic reactors were 50%. This study is important for modeling, design, and operation of landfill leachate treatment systems and determination of discharge limits.
Chanakya, H.N. Sharma, Isha; Ramachandra, T.V.
2009-04-15
The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their composition was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2-5%). Teak and bamboo leaves and newsprint decomposed only to 25-50% in 30 d. These results confirm the potential for volatile fatty acids accumulation in a PFBR's inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks.
Ul-Haq, Ihsan; Ullah, Nazif; Bibi, Gulnaz; Kanwal, Simab; Sheeraz Ahmad, Muhammad; Mirza, Bushra
2012-01-01
Euphorbia wallichii a perennial herb growing mainly in Himalayas has been widely used in folk medicines for its medicinal properties. In the present study, the crude methanolic root extract (CME) and its fractions; n-Hexane Fraction (NHF), n-Butanol Fraction (NBF), Chloroform Fraction (CHF), Ethyl acetate Fraction (EAF) and Aqueous Fraction (AQF) of this plant specie were investigated for antioxidant and cytotoxic activities and phytochemical analysis. Antioxidant activity was determined by using 2,2-diphenyl-1-picryl-hydrazyl free radical (DPPH) and DNA protection assay performed on pBR322 plasmid DNA. In both these assays, promising results were obtained for CME as well as other fractions. The IC50 values for DPPH assay were in a range of 7.89 to 63.35 μg/ml in which EAF showed the best anti-oxidant potential and almost all the tested samples showed certain level of DNA protection. The cytotoxic activity was assessed by using Sulforhodamine B (SRB) assay on human cell lines; H157 (Lung Carcinoma) and HT144 (Malignant Melanoma). The IC50 values of the tested samples ranged from 0.18 to 1.4 mg/mL against H157 cell line whereas against HT144 cell line the IC50 values ranged from 0.46 to 17.88 mg/mL with NBF fraction showing maximum potential for both. Furthermore, the phytochemical analysis of CME and its fractions showed the presences of flavonoids, saponins, tannins, terpenoides and cardiac glycosides with varying concentrations.
Ul-Haq, Ihsan; Ullah, Nazif; Bibi, Gulnaz; Kanwal, Simab; Sheeraz Ahmad, Muhammad; Mirza, Bushra
2012-01-01
Euphorbia wallichii a perennial herb growing mainly in Himalayas has been widely used in folk medicines for its medicinal properties. In the present study, the crude methanolic root extract (CME) and its fractions; n-Hexane Fraction (NHF), n-Butanol Fraction (NBF), Chloroform Fraction (CHF), Ethyl acetate Fraction (EAF) and Aqueous Fraction (AQF) of this plant specie were investigated for antioxidant and cytotoxic activities and phytochemical analysis. Antioxidant activity was determined by using 2,2-diphenyl-1-picryl-hydrazyl free radical (DPPH) and DNA protection assay performed on pBR322 plasmid DNA. In both these assays, promising results were obtained for CME as well as other fractions. The IC50 values for DPPH assay were in a range of 7.89 to 63.35 μg/ml in which EAF showed the best anti-oxidant potential and almost all the tested samples showed certain level of DNA protection. The cytotoxic activity was assessed by using Sulforhodamine B (SRB) assay on human cell lines; H157 (Lung Carcinoma) and HT144 (Malignant Melanoma). The IC50 values of the tested samples ranged from 0.18 to 1.4 mg/mL against H157 cell line whereas against HT144 cell line the IC50 values ranged from 0.46 to 17.88 mg/mL with NBF fraction showing maximum potential for both. Furthermore, the phytochemical analysis of CME and its fractions showed the presences of flavonoids, saponins, tannins, terpenoides and cardiac glycosides with varying concentrations. PMID:24250446
A scaling analysis of ozone photochemistry
NASA Astrophysics Data System (ADS)
Ainslie, B.; Steyn, D. G.
2006-09-01
A scaling analysis has been used to capture the integrated behaviour of several photochemical mechanisms for a wide range of precursor concentrations and a variety of environmental conditions. The Buckingham Pi method of dimensional analysis was used to express the relevant variables in terms of dimensionless groups. These grouping show maximum ozone, initial NOx and initial VOC concentrations are made non-dimensional by the average NO2 photolysis rate (jav) and the rate constant for the NO-O3 titration reaction (kNO); temperature by the NO-O3 activation energy (ENO) and Boltzmann constant (k) and total irradiation time by the cumulative javΔt photolysis rate. The analysis shows dimensionless maximum ozone concentration can be described by a product of powers of dimensionless initial NOx concentration, dimensionless temperature, and a similarity curve directly dependent on the ratio of initial VOC to NOx concentration and implicitly dependent on the cumulative NO2 photolysis rate. When Weibull transformed, the similarity relationship shows a scaling break with dimensionless model output clustering onto two straight line segments, parameterized using four variables: two describing the slopes of the line segments and two giving the location of their intersection. A fifth parameter is used to normalize the model output. The scaling analysis, similarity curve and parameterization appear to be independent of the details of the chemical mechanism, hold for a variety of VOC species and mixtures and a wide range of temperatures and actinic fluxes.
Structural scale q-derivative and the LLG equation in a scenario with fractionality
NASA Astrophysics Data System (ADS)
Weberszpil, J.; Helayël-Neto, J. A.
2017-03-01
In the present contribution, we study the Landau-Lifshitz-Gilbert equation with two versions of structural derivatives which were recently proposed: the scale q-derivative in the non-extensive statistical mechanics and the axiomatic metric derivative. The latter presents the Mittag-Leffler functions as eigenfunctions. The use of structural derivatives aims to take into account long-range forces, possible non-manifest or hidden interactions and the dimensionality of space. Having this purpose in mind, we build up an evolution operator and a deformed version of the LLG equation. Damping in the oscillations naturally shows up without an explicit Gilbert damping term.
Gagnon, Keith T.; Li, Liande; Janowski, Bethany A.; Corey, David R.
2014-01-01
RNA interference (RNAi) is well known for its ability to regulate gene expression in the cytoplasm of mammalian cells. In mammalian cell nuclei, however, the impact of RNAi has remained more controversial. A key technical hurdle has been a lack of optimized protocols for the isolation and analysis of cell nuclei. Here we describe a simplified protocol for nuclei isolation from cultured cells that incorporates a method for obtaining nucleoplasmic and chromatin fractions and removing cytoplasmic contamination. Cell fractions can then be used to detect the presence and activity of RNAi factors in the nucleus. We present a protocol for investigating an early step in RNAi, Argonaute protein loading with small RNAs, which is enabled by our improved extract preparations. These protocols facilitate characterization of nuclear RNAi and can be applied to the analysis of other nuclear proteins and pathways. From cellular fractionation to analysis of Argonaute loading results, this protocol takes 4–6 d to complete. PMID:25079428
Liu, Jinzhao; Liu, Weiguo; An, Zhisheng; Yang, Hong
2016-01-01
Leaf wax δDn-alkane values have shown to differ significantly among plant life forms (e.g., among grasses, shrubs, and trees) in higher plants. However, the underlying causes for the differences in leaf wax δDn-alkane values among different plant life forms remain poorly understood. In this study, we observed that leaf wax δDn-alkane values between major high plant lineages (eudicots versus monocots) differed significantly under the same environmental conditions. Such a difference primarily inherited from different hydrogen biosynthetic fractionations (εwax-lw). Based upon a reanalysis of the available leaf wax δDn-alkane dataset from modern plants in the Northern Hemisphere, we discovered that the apparent hydrogen fractionation factor (εwax-p) between leaf wax δDn-alkane values of major angiosperm lineages and precipitation δD values exhibited distinguishable distribution patterns at a global scale, with an average of −140‰ for monocotyledonous species, −107‰ for dicotyledonous species. Additionally, variations of leaf wax δDn-alkane values and the εwax-p values in gymnosperms are similar to those of dicotyledonous species. Therefore, the data let us believe that biological factors inherited from plant taxonomies have a significant effect on controlling leaf wax δDn-alkane values in higher plants. PMID:26806719
Liu, Jinzhao; Liu, Weiguo; An, Zhisheng; Yang, Hong
2016-01-25
Leaf wax δDn-alkane values have shown to differ significantly among plant life forms (e.g., among grasses, shrubs, and trees) in higher plants. However, the underlying causes for the differences in leaf wax δDn-alkane values among different plant life forms remain poorly understood. In this study, we observed that leaf wax δDn-alkane values between major high plant lineages (eudicots versus monocots) differed significantly under the same environmental conditions. Such a difference primarily inherited from different hydrogen biosynthetic fractionations (εwax-lw). Based upon a reanalysis of the available leaf wax δDn-alkane dataset from modern plants in the Northern Hemisphere, we discovered that the apparent hydrogen fractionation factor (εwax-p) between leaf wax δDn-alkane values of major angiosperm lineages and precipitation δD values exhibited distinguishable distribution patterns at a global scale, with an average of -140‰ for monocotyledonous species, -107‰ for dicotyledonous species. Additionally, variations of leaf wax δDn-alkane values and the εwax-p values in gymnosperms are similar to those of dicotyledonous species. Therefore, the data let us believe that biological factors inherited from plant taxonomies have a significant effect on controlling leaf wax δDn-alkane values in higher plants.
Shi, Yijing; Wells, George; Morgenroth, Eberhard
2016-10-01
The purpose of this study was to determine the abundance, distribution and activity of aerobic ammonia-oxidizing bacteria (AOB) and anammox in size fractionated aggregates from full-scale suspended growth combined nitritation-anammox sidestream reactors. Plants with or without a cyclone device were also studied to assess a purported enrichment of anammox granules. Specific aerobic ammonium oxidation rates (p=0.01) and specific oxygen uptake rates (p=0.02) were significantly greater in flocs than in granules. AOB abundance measured using quantitative FISH was significantly higher in flocs than in granules (p=0.01). Conversely, anammox abundance was significantly greater in granules (p=0.03). The average ratio of anammox/AOB in systems employing hydrocyclone separation devices was 2.4, significantly higher (p=0.02) than the average ratio (0.5) in a system without a hydrocyclone. Our results demonstrate substantial functional and population-level segregation between floccular and granular fractions, and provide a key corroboration that cyclone separation devices can increase anammox levels in such systems.
NASA Astrophysics Data System (ADS)
Liu, Jinzhao; Liu, Weiguo; An, Zhisheng; Yang, Hong
2016-01-01
Leaf wax δDn-alkane values have shown to differ significantly among plant life forms (e.g., among grasses, shrubs, and trees) in higher plants. However, the underlying causes for the differences in leaf wax δDn-alkane values among different plant life forms remain poorly understood. In this study, we observed that leaf wax δDn-alkane values between major high plant lineages (eudicots versus monocots) differed significantly under the same environmental conditions. Such a difference primarily inherited from different hydrogen biosynthetic fractionations (εwax-lw). Based upon a reanalysis of the available leaf wax δDn-alkane dataset from modern plants in the Northern Hemisphere, we discovered that the apparent hydrogen fractionation factor (εwax-p) between leaf wax δDn-alkane values of major angiosperm lineages and precipitation δD values exhibited distinguishable distribution patterns at a global scale, with an average of ‑140‰ for monocotyledonous species, ‑107‰ for dicotyledonous species. Additionally, variations of leaf wax δDn-alkane values and the εwax-p values in gymnosperms are similar to those of dicotyledonous species. Therefore, the data let us believe that biological factors inherited from plant taxonomies have a significant effect on controlling leaf wax δDn-alkane values in higher plants.
Yang, Ganglong; Huang, Luyu; Zhang, Jiaxu; Yu, Hanjie; Li, Zheng; Guan, Feng
2016-01-01
Compartmentalization of cellular components and their associated biological processes is crucial for cellular function. Protein glycosylation provides a basis for diversity of protein functions. Diversity of glycan composition in animal cells remains poorly understood. We used differential centrifugation techniques to isolate four subcellular protein fractions from homogenate of metastatic bladder YTS1 cells, low grade nonmuscle invasive bladder cancer KK47 cells and normal bladder epithelia HCV29 cells: microsomal (Mic), mitochondrial (Mito), nuclear (Nuc), and cytosolic (Cyto). An integrated strategy combining lectin microarray and mass spectrometry (MS) analysis was then applied to evaluate protein glycosylation of the four fractions. Lectin microarray analysis revealed significant differences among the four fractions in terms of glycan binding to the lectins LCA, AAL, MPL, WGA and PWM in YTS1 cell, STL, Jacalin, VVA, LCA and WGA in KK47, and ConA, GNA, VVA and ACA in HCV29 cell. Among a total of 40, 32 and 15 N-glycans in four fractions of three cells detected by MS analysis, high-mannose and fucosylated structures were predominant, 10 N-glycans in YTS1, 5 N-glycans in KK47 and 7 N-glycans in HCV29 were present in all four fractions; and 10 N-glycans in YTS1, 16 N-glycans in KK47, and 3 N-glycans in HCV29 were present in only one fraction. Glycans in the latter category are considered potential markers for the corresponding organelles. The integrated strategy described here allows detailed examination of glycomes subcellular fraction with high resolution and sensitivity, and will be useful for elucidation of the functional roles of glycans and corresponding glycosylated proteins in distinct organelles. PMID:27313494
Large-Scale Visual Data Analysis
NASA Astrophysics Data System (ADS)
Johnson, Chris
2014-04-01
Modern high performance computers have speeds measured in petaflops and handle data set sizes measured in terabytes and petabytes. Although these machines offer enormous potential for solving very large-scale realistic computational problems, their effectiveness will hinge upon the ability of human experts to interact with their simulation results and extract useful information. One of the greatest scientific challenges of the 21st century is to effectively understand and make use of the vast amount of information being produced. Visual data analysis will be among our most most important tools in helping to understand such large-scale information. Our research at the Scientific Computing and Imaging (SCI) Institute at the University of Utah has focused on innovative, scalable techniques for large-scale 3D visual data analysis. In this talk, I will present state- of-the-art visualization techniques, including scalable visualization algorithms and software, cluster-based visualization methods and innovate visualization techniques applied to problems in computational science, engineering, and medicine. I will conclude with an outline for a future high performance visualization research challenges and opportunities.
On SCALE Validation for PBR Analysis
Ilas, Germina
2010-01-01
Studies were performed to assess the capabilities of the SCALE code system to provide accurate cross sections for analyses of pebble bed reactor configurations. The analyzed configurations are representative of fuel in the HTR-10 reactor in the first critical core and at full power operation conditions. Relevant parameters-multiplication constant, spectral indices, few-group cross sections-are calculated with SCALE for the considered configurations. The results are compared to results obtained with corresponding consistent MCNP models. The code-to-code comparison shows good agreement at both room and operating temperatures, indicating a good performance of SCALE for analysis of doubly heterogeneous fuel configurations. The development of advanced methods and computational tools for the analysis of pebble bed reactor (PBR) configurations has been a research area of renewed interest for the international community during recent decades. The PBR, which is a High Temperature Gas Cooled Reactor (HTGR) system, represents one of the potential candidates for future deployment throughout the world of reactor systems that would meet the increased requirements of efficiency, safety, and proliferation resistance and would support other applications such as hydrogen production or nuclear waste recycling. In the U.S, the pebble bed design is one of the two designs under consideration by the Next Generation Nuclear Plant (NGNP) Program.
NASA Astrophysics Data System (ADS)
Schindewolf, Marcus; Seher, Wiebke; Pfeffer, Eduard; Schultze, Nico; Amorim, Ricardo S. S.; Schmidt, Jürgen
2016-04-01
The erosional transport of organic carbon has an effect on the global carbon budget, however, it is uncertain, whether erosion is a sink or a source for carbon in the atmosphere. Continuous erosion leads to a massive loss of top soils including the loss of organic carbon historically accumulated in the soil humus fraction. The colluvial organic carbon could be protected from further degradation depending on the depth of the colluvial cover and local decomposing conditions. Another part of eroded soils and organic carbon will enter surface water bodies and might be transported over long distances. The selective nature of soil erosion results in a preferential transport of fine particles while less carbonic larger particles remain on site. Consequently organic carbon is enriched in the eroded sediment compared to the origin soil. As a precondition of process based lateral carbon flux modeling, carbon distribution on soil particle size fractions has to be known. In this regard the present study refers to the determination of organic carbon contents on soil particle size separates by a combined sieve-sedimentation method for different tropical and temperate soils Our results suggest high influences of parent material and climatic conditions on carbon distribution on soil particle separates. By applying these results in erosion modeling a test slope was simulated with the EROSION 2D simulation software covering certain land use and soil management scenarios referring to different rainfall events. These simulations allow first insights on carbon loss and depletion on sediment delivery areas as well as carbon gains and enrichments on deposition areas on the landscape scale and could be used as a step forward in landscape scaled carbon redistribution modeling.
NASA Astrophysics Data System (ADS)
El-Sayed, A. M. A.; Elsonbaty, A.; Elsadany, A. A.; Matouk, A. E.
2016-12-01
This paper presents an analytical framework to investigate the dynamical behavior of a new fractional-order hyperchaotic circuit system. A sufficient condition for existence, uniqueness and continuous dependence on initial conditions of the solution of the proposed system is derived. The local stability of all the system’s equilibrium points are discussed using fractional Routh-Hurwitz test. Then the analytical conditions for the existence of a pitchfork bifurcation in this system with fractional-order parameter less than 1/3 are provided. Conditions for the existence of Hopf bifurcation in this system are also investigated. The dynamics of discretized form of our fractional-order hyperchaotic system are explored. Chaos control is also achieved in discretized system using delay feedback control technique. The numerical simulation are presented to confirm our theoretical analysis via phase portraits, bifurcation diagrams and Lyapunov exponents. A text encryption algorithm is presented based on the proposed fractional-order system. The results show that the new system exhibits a rich variety of dynamical behaviors such as limit cycles, chaos and transient phenomena where fractional-order derivative represents a key parameter in determining system qualitative behavior.
Rakkiyappan, R; Velmurugan, G; Cao, Jinde
2015-04-01
In this paper, the problem of the existence, uniqueness and uniform stability of memristor-based fractional-order neural networks (MFNNs) with two different types of memductance functions is extensively investigated. Moreover, we formulate the complex-valued memristor-based fractional-order neural networks (CVMFNNs) with two different types of memductance functions and analyze the existence, uniqueness and uniform stability of such networks. By using Banach contraction principle and analysis technique, some sufficient conditions are obtained to ensure the existence, uniqueness and uniform stability of the considered MFNNs and CVMFNNs with two different types of memductance functions. The analysis results establish from the theory of fractional-order differential equations with discontinuous right-hand sides. Finally, four numerical examples are presented to show the effectiveness of our theoretical results.
NASA Astrophysics Data System (ADS)
Jiang, L.
2016-12-01
Snow cover is one of important elements in the water supply of large populations, especially in those downstream from mountainous watershed. The cryosphere process in the Tibetan Plateau is paid much attention due to rapid change of snow amount and cover extent. Snow mapping from MODIS has been increased attention in the study of climate change and hydrology. But the lack of intensive validation of different snow mapping methods especially at Tibetan Plateau hinders its application. In this work, we examined three MODIS snow products, including standard MODIS fractional snow product (MOD10A1) (Kaufman et al., 2002; Salomonson & Appel, 2004, 2006), two other fractional snow product, MODSCAG (Painter et al., 2009) and MOD_MESMA (Shi, 2012). Both these two methods are based on spectral mixture analysis. The difference between MODISCAG and MOD_MESMA was the endmember selection. For MODSCAG product, snow spectral endmembers of varying grain size was obtained both from a radiative transfer model and spectra of vegetation, rock and soil collected in the field and laboratory. MOD_MESMA was obtained from automated endmember extraction method using linear spectral mixture analysis. Its endmembers are selected in each image to enhance the computational efficiency of MESMA (Multiple Endmember Spectral Analysis). Landsat-8 Operatinal Land Imager (OLI) data from 2013-2015 was used to evaluate the performance of these three snow fraction products in Tibetan Plateau. The effect of land cover types including forest, grass and bare soil was analyzed to evaluate three products. In addition, the effects of relatively flat surface in internal plateau and high mountain areas of Himalaya were also evaluated on the impact of these snow fraction products. From our comparison, MODSCAG and MOD10A1 overestimated snow cover, while MOD_MESMA underestimated snow cover. And RMSE of MOD_MESMA at each land cover type including forest, grass and mountain area decreased with the spatial resolution
NASA Astrophysics Data System (ADS)
Clemente, J. S.; Gregorich, E. G.; Simpson, A. J.; Simpson, M. J.
2009-04-01
The formation and turnover of soil organic matter (SOM) depends on the inherent chemical characteristics of biomolecular inputs (lignin, proteins, carbohydrates, macromolecular lipids, etc.) as well as the interactions between biomolecules and soil mineral fractions. The objective of this study is to characterize organic matter associated with the light, sand, silt and clay fractions of a Canadian agricultural soil. And, because lignin is believed to be a major contributor in SOM formation and preservation, the oxidation state of lignin in the different mineral fractions was measured using mild alkaline copper oxidation and gas chromatography - mass spectrometery which releases lignin phenols that are indicative of lignin sources and stage of degradation. For example, an increase in the acid/aldehyde (Ad/Al) ratio of lignin phenols has been observed with increased lignin degradation (and oxidation). In this study, lignin phenols from organic matter associated with the clay fraction had higher Ad/Al ratios for both syringyl and vanillyl lignin monomers when compared to that associated with silt, sand and the whole soil. These results suggest that either lignin degradation is enhanced by SOM association with clay surfaces or that oxidized lignin is preserved on clay mineral surfaces via sorption after partial degradation has occurred. The structural characteristics of organic matter from the soil fractions will also be examined by solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Organic matter associated with each mineral fraction will be extracted with NaOH for high resolution solution-state NMR spectroscopy. Results from NMR analysis will determine the relative abundance of functional groups (alkane, aromatic, carbonyl, alkoxy) in each of the soil fractions. Relative intensities of the functional groups are indicative of relative contributions of biomolecular classes such as lipids, lignin, fatty acids, and sugars to the organic matter associated with
NASA Astrophysics Data System (ADS)
Clemente, J. S.; Gregorich, E. G.; Simpson, A. J.; Simpson, M. J.
2009-05-01
The formation and turnover of soil organic matter (SOM) depends on the inherent chemical characteristics of biomolecular inputs (lignin, proteins, carbohydrates, macromolecular lipids, etc.) as well as the interactions between biomolecules and soil mineral fractions. The objective of this study is to characterize organic matter associated with the light, sand, silt and clay fractions of a Canadian agricultural soil. And, because lignin is believed to be a major contributor in SOM formation and preservation, the oxidation state of lignin in the different mineral fractions was measured using mild alkaline copper oxidation and gas chromatography - mass spectrometery which releases lignin phenols that are indicative of lignin sources and stage of degradation. For example, an increase in the acid/aldehyde (Ad/Al) ratio of lignin phenols has been observed with increased lignin degradation (and oxidation). In this study, lignin phenols from organic matter associated with the clay fraction had higher Ad/Al ratios for both syringyl and vanillyl lignin monomers when compared to that associated with silt, sand and the whole soil. These results suggest that either lignin degradation is enhanced by SOM association with clay surfaces or that oxidized lignin is preserved on clay mineral surfaces via sorption after partial degradation has occurred. The structural characteristics of organic matter from the soil fractions will also be examined by solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Organic matter associated with each mineral fraction will be extracted with NaOH for high resolution solution-state NMR spectroscopy. Results from NMR analysis will determine the relative abundance of functional groups (alkane, aromatic, carbonyl, alkoxy) in each of the soil fractions. Relative intensities of the functional groups are indicative of relative contributions of biomolecular classes such as lipids, lignin, fatty acids, and sugars to the organic matter associated with
NASA Astrophysics Data System (ADS)
Li, Hui-Chuan
2014-10-01
This study examines students' procedural and conceptual achievement in fraction addition in England and Taiwan. A total of 1209 participants (561 British students and 648 Taiwanese students) at ages 12 and 13 were recruited from England and Taiwan to take part in the study. A quantitative design by means of a self-designed written test is adopted as central to the methodological considerations. The test has two major parts: the concept part and the skill part. The former is concerned with students' conceptual knowledge of fraction addition and the latter is interested in students' procedural competence when adding fractions. There were statistically significant differences both in concept and skill parts between the British and Taiwanese groups with the latter having a higher score. The analysis of the students' responses to the skill section indicates that the superiority of Taiwanese students' procedural achievements over those of their British peers is because most of the former are able to apply algorithms to adding fractions far more successfully than the latter. Earlier, Hart [1] reported that around 30% of the British students in their study used an erroneous strategy (adding tops and bottoms, for example, 2/3 + 1/7 = 3/10) while adding fractions. This study also finds that nearly the same percentage of the British group remained using this erroneous strategy to add fractions as Hart found in 1981. The study also provides evidence to show that students' understanding of fractions is confused and incomplete, even those who are successfully able to perform operations. More research is needed to be done to help students make sense of the operations and eventually attain computational competence with meaningful grounding in the domain of fractions.
Philip Ye, X; Liu, Lu; Hayes, Douglas; Womac, Alvin; Hong, Kunlun; Sokhansanj, Shahab
2008-10-01
The objectives of this research were to determine the variation of chemical composition across botanical fractions of cornstover, and to probe the potential of Fourier transform near-infrared (FT-NIR) techniques in qualitatively classifying separated cornstover fractions and in quantitatively analyzing chemical compositions of cornstover by developing calibration models to predict chemical compositions of cornstover based on FT-NIR spectra. Large variations of cornstover chemical composition for wide calibration ranges, which is required by a reliable calibration model, were achieved by manually separating the cornstover samples into six botanical fractions, and their chemical compositions were determined by conventional wet chemical analyses, which proved that chemical composition varies significantly among different botanical fractions of cornstover. Different botanic fractions, having total saccharide content in descending order, are husk, sheath, pith, rind, leaf, and node. Based on FT-NIR spectra acquired on the biomass, classification by Soft Independent Modeling of Class Analogy (SIMCA) was employed to conduct qualitative classification of cornstover fractions, and partial least square (PLS) regression was used for quantitative chemical composition analysis. SIMCA was successfully demonstrated in classifying botanical fractions of cornstover. The developed PLS model yielded root mean square error of prediction (RMSEP %w/w) of 0.92, 1.03, 0.17, 0.27, 0.21, 1.12, and 0.57 for glucan, xylan, galactan, arabinan, mannan, lignin, and ash, respectively. The results showed the potential of FT-NIR techniques in combination with multivariate analysis to be utilized by biomass feedstock suppliers, bioethanol manufacturers, and bio-power producers in order to better manage bioenergy feedstocks and enhance bioconversion.
Role of radiotherapy fractionation in head and neck cancers (MARCH): an updated meta-analysis.
Lacas, Benjamin; Bourhis, Jean; Overgaard, Jens; Zhang, Qiang; Grégoire, Vincent; Nankivell, Matthew; Zackrisson, Björn; Szutkowski, Zbigniew; Suwiński, Rafał; Poulsen, Michael; O'Sullivan, Brian; Corvò, Renzo; Laskar, Sarbani Ghosh; Fallai, Carlo; Yamazaki, Hideya; Dobrowsky, Werner; Cho, Kwan Ho; Garden, Adam S; Langendijk, Johannes A; Viegas, Celia Maria Pais; Hay, John; Lotayef, Mohamed; Parmar, Mahesh K B; Aupérin, Anne; van Herpen, Carla; Maingon, Philippe; Trotti, Andy M; Grau, Cai; Pignon, Jean-Pierre; Blanchard, Pierre
2017-09-01
The Meta-Analysis of Radiotherapy in squamous cell Carcinomas of Head and neck (MARCH) showed that altered fractionation radiotherapy is associated with improved overall and progression-free survival compared with conventional radiotherapy, with hyperfractionated radiotherapy showing the greatest benefit. This update aims to confirm and explain the superiority of hyperfractionated radiotherapy over other altered fractionation radiotherapy regimens and to assess the benefit of altered fractionation within the context of concomitant chemotherapy with the inclusion of new trials. For this updated meta-analysis, we searched bibliography databases, trials registries, and meeting proceedings for published or unpublished randomised trials done between Jan 1, 2009, and July 15, 2015, comparing primary or postoperative conventional fractionation radiotherapy versus altered fractionation radiotherapy (comparison 1) or conventional fractionation radiotherapy plus concomitant chemotherapy versus altered fractionation radiotherapy alone (comparison 2). Eligible trials had to start randomisation on or after Jan 1, 1970, and completed accrual before Dec 31, 2010; had to have been randomised in a way that precluded prior knowledge of treatment assignment; and had to include patients with non-metastatic squamous cell carcinoma of the oral cavity, oropharynx, hypopharynx, or larynx undergoing first-line curative treatment. Trials including a non-conventional radiotherapy control group, investigating hypofractionated radiotherapy, or including mostly nasopharyngeal carcinomas were excluded. Trials were grouped in three types of altered fractionation: hyperfractionated, moderately accelerated, and very accelerated. Individual patient data were collected and combined with a fixed-effects model based on the intention-to-treat principle. The primary endpoint was overall survival. Comparison 1 (conventional fractionation radiotherapy vs altered fractionation radiotherapy) included 33
ERIC Educational Resources Information Center
Isik, Cemalettin; Kar, Tugrul
2012-01-01
The present study aimed to make an error analysis in the problems posed by pre-service elementary mathematics teachers about fractional division operation. It was carried out with 64 pre-service teachers studying in their final year in the Department of Mathematics Teaching in an eastern university during the spring semester of academic year…
Mukerjea, Rupendra; Falconer, Daniel J; Yoon, Seung-Heon; Robyt, John F
2010-07-19
Soluble starch-synthesizing enzymes, starch synthase (SSS) and starch-branching enzyme (SBE), were isolated, fractionated, and purified from white potato tubers (Solanum tuberosum) on a large scale. Five steps were used: potato tuber extract from 2 kg of peeled potatoes, two acetone precipitations, and two fractionations on a large ultrafiltration polysulfone hollow fiber 100 kDa cartridge. Three kinds of fractions were obtained: (1) mixtures of SSS and SBE; (2) SSS, free of SBE; and (3) SBE, free of SSS. Contaminating enzymes (amylase, phosphorylase, and disproportionating enzyme) and carbohydrates were absent from the 2nd acetone precipitate and from the column fractions, as judged by the Molisch test and starch triiodide test. Activity yields of 122% (300,000-400,000 units) of SSS fractions and 187% (40,000-50,000 units) of SBE fractions were routinely obtained from the cartridge. Addition of 0.04% (w/v) polyvinyl alcohol 50K and 1 mM dithiothreitol to the glycine buffer (pH 8.4) gave long-term stability and higher yields of SSS and SBE, due to activation of inactive enzymes. Several SSS and SBE fractions from the two fractionations had very high specific activities, indicating high degrees of purification. Polyacrylamide gel electrophoresis of selected SSS and SBE fractions gave two to five SSS and/or SBE activity bands, corresponding to the one to five protein bands present in the 2nd acetone precipitate. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Large-scale parametric survival analysis.
Mittal, Sushil; Madigan, David; Cheng, Jerry Q; Burd, Randall S
2013-10-15
Survival analysis has been a topic of active statistical research in the past few decades with applications spread across several areas. Traditional applications usually consider data with only a small numbers of predictors with a few hundreds or thousands of observations. Recent advances in data acquisition techniques and computation power have led to considerable interest in analyzing very-high-dimensional data where the number of predictor variables and the number of observations range between 10(4) and 10(6). In this paper, we present a tool for performing large-scale regularized parametric survival analysis using a variant of the cyclic coordinate descent method. Through our experiments on two real data sets, we show that application of regularized models to high-dimensional data avoids overfitting and can provide improved predictive performance and calibration over corresponding low-dimensional models.
Large Scale EOF Analysis of Climate Data
NASA Astrophysics Data System (ADS)
Prabhat, M.; Gittens, A.; Kashinath, K.; Cavanaugh, N. R.; Mahoney, M.
2016-12-01
We present a distributed approach towards extracting EOFs from 3D climate data. We implement the method in Apache Spark, and process multi-TB sized datasets on O(1000-10,000) cores. We apply this method to latitude-weighted ocean temperature data from CSFR, a 2.2 terabyte-sized data set comprising ocean and subsurface reanalysis measurements collected at 41 levels in the ocean, at 6 hour intervals over 31 years. We extract the first 100 EOFs of this full data set and compare to the EOFs computed simply on the surface temperature field. Our analyses provide evidence of Kelvin and Rossy waves and components of large-scale modes of oscillation including the ENSO and PDO that are not visible in the usual SST EOFs. Further, they provide information on the the most influential parts of the ocean, such as the thermocline, that exist below the surface. Work is ongoing to understand the factors determining the depth-varying spatial patterns observed in the EOFs. We will experiment with weighting schemes to appropriately account for the differing depths of the observations. We also plan to apply the same distributed approach to analysis of analysis of 3D atmospheric climatic data sets, including multiple variables. Because the atmosphere changes on a quicker time-scale than the ocean, we expect that the results will demonstrate an even greater advantage to computing 3D EOFs in lieu of 2D EOFs.
Automatic analysis of left ventricular ejection fraction using stroke volume images.
Nelson, T R; Verba, J W; Bhargava, V; Shabetai, R; Slutsky, R
1983-01-01
The purpose of this study was to analyze, validate, and report on an automatic computer algorithm for analyzing left ventricular ejection fraction and to indicate future applications of the technique to other chambers and more advanced measurements. Thirty-eight patients were studied in the cardiac catheterization laboratory by equilibrium radionuclide ventriculography and concurrent contrast ventriculography. The temporal and spatial behavior of each picture element in a filtered stroke volume image series was monitored throughout the cardiac cycle. Pixels that met specific phase, amplitude, and derivative criteria were assigned to the appropriate chamber. Volume curves were generated from regions of interest for each chamber to enable calculation of the left ventricular ejection fraction. Left ventricular ejection fractions showed a good correlation (r = 0.89) between the two techniques. Ejection fractions ranged between 0.12 and 0.88, showing a wide range of application. It is concluded that automatic analysis of left ventricular ejection fraction is possible using the present algorithm and will be useful in improving the reproducibility and providing more accurate information during exercise protocols, pharmaceutical interventions, and routine clinical studies.
Adam, Rosalyn M; Yang, Wei; Di Vizio, Dolores; Mukhopadhyay, Nishit K; Steen, Hanno
2008-01-01
Background Cholesterol-rich membrane microdomains known as lipid rafts have been implicated in diverse physiologic processes including lipid transport and signal transduction. Lipid rafts were originally defined as detergent-resistant membranes (DRMs) due to their relative insolubility in cold non-ionic detergents. Recent findings suggest that, although DRMs are not equivalent to lipid rafts, the presence of a given protein within DRMs strongly suggests its potential for raft association in vivo. Therefore, isolation of DRMs represents a useful starting point for biochemical analysis of lipid rafts. The physicochemical properties of DRMs present unique challenges to analysis of their protein composition. Existing methods of isolating DRM-enriched fractions involve flotation of cell extracts in a sucrose density gradient, which, although successful, can be labor intensive, time consuming and results in dilute sucrose-containing fractions with limited utility for direct proteomic analysis. In addition, several studies describing the proteomic characterization of DRMs using this and other approaches have reported the presence of nuclear proteins in such fractions. It is unclear whether these results reflect trafficking of nuclear proteins to DRMs or whether they arise from nuclear contamination during isolation. To address these issues, we have modified a published differential detergent extraction method to enable rapid DRM isolation that minimizes nuclear contamination and yields fractions compatible with mass spectrometry. Results DRM-enriched fractions isolated using the conventional or modified extraction methods displayed comparable profiles of known DRM-associated proteins, including flotillins, GPI-anchored proteins and heterotrimeric G-protein subunits. Thus, the modified procedure yielded fractions consistent with those isolated by existing methods. However, we observed a marked reduction in the percentage of nuclear proteins identified in DRM fractions
Adam, Rosalyn M; Yang, Wei; Di Vizio, Dolores; Mukhopadhyay, Nishit K; Steen, Hanno
2008-06-05
Cholesterol-rich membrane microdomains known as lipid rafts have been implicated in diverse physiologic processes including lipid transport and signal transduction. Lipid rafts were originally defined as detergent-resistant membranes (DRMs) due to their relative insolubility in cold non-ionic detergents. Recent findings suggest that, although DRMs are not equivalent to lipid rafts, the presence of a given protein within DRMs strongly suggests its potential for raft association in vivo. Therefore, isolation of DRMs represents a useful starting point for biochemical analysis of lipid rafts. The physicochemical properties of DRMs present unique challenges to analysis of their protein composition. Existing methods of isolating DRM-enriched fractions involve flotation of cell extracts in a sucrose density gradient, which, although successful, can be labor intensive, time consuming and results in dilute sucrose-containing fractions with limited utility for direct proteomic analysis. In addition, several studies describing the proteomic characterization of DRMs using this and other approaches have reported the presence of nuclear proteins in such fractions. It is unclear whether these results reflect trafficking of nuclear proteins to DRMs or whether they arise from nuclear contamination during isolation. To address these issues, we have modified a published differential detergent extraction method to enable rapid DRM isolation that minimizes nuclear contamination and yields fractions compatible with mass spectrometry. DRM-enriched fractions isolated using the conventional or modified extraction methods displayed comparable profiles of known DRM-associated proteins, including flotillins, GPI-anchored proteins and heterotrimeric G-protein subunits. Thus, the modified procedure yielded fractions consistent with those isolated by existing methods. However, we observed a marked reduction in the percentage of nuclear proteins identified in DRM fractions isolated with the
Nakatsukasa, Kunio; Kamura, Takumi
2016-01-01
During ER-associated degradation (ERAD), misfolded polytopic membrane proteins are ubiquitinated and retrotranslocated to the cytosol for proteasomal degradation. However, our understanding as to how polytopic membrane proteins are extracted from the ER to the cytosol remains largely unclear. To better define the localization and physical properties of ubiquitinated polytopic membrane substrates in vivo, we performed subcellular fractionation analysis of Ste6*, a twelve transmembrane protein that is ubiquitinated primarily by Doa10 E3 ligase in yeast. Consistent with previous in vitro studies, ubiquitinated Ste6* was extracted from P20 (20,000 g pellet) fraction to S20 (20,000 g supernatant) fraction in a Cdc48/p97-dependent manner. Similarly, Ubx2p, which recruits Cdc48/p97 to the ER, facilitated the extraction of Ste6*. By contrast, lipid droplet formation, which was suggested to be dispensable for the degradation of Hrd1-substrates in yeast, was not required for the degradation of Ste6*. Intriguingly, we found that ubiquitinated Ste6* in the S20 fraction could be enriched by further centrifugation at 100,000 g. Although it is currently uncertain whether ubiquitinated Ste6* in P100 fraction is completely free from any lipids, membrane flotation analysis suggested the existence of two distinct populations of ubiquitinated Ste6* with different states of membrane association. Together, these results imply that ubiquitinated Ste6* may be sequestered into a putative quality control sub-structure by Cdc48/p97. Fractionation assays developed in the present study provide a means to further dissect the ill-defined post-ubiquitination step during ERAD of polytopic membrane substrates.
Wanek, W; Heintel, S; Richter, A
2001-01-01
The measurement of the carbon isotope composition of starch and cellulose still relies on chemical isolation of these water-insoluble plant constituents and subsequent elemental analysis by isotope ratio mass spectrometry (EA/IRMS) of the purified fractions, while delta(13)C values of low-molecular-weight organic compounds are now routinely measured by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Here we report a simple and reliable method for processing milligram quantities of dried plant material for the analysis of the carbon isotope composition of lipids, soluble sugars, starch and cellulose from the same sample. We evaluated three different starch preparation methods, namely (1) enzymatic hydrolysis by alpha-amylase, (2) solubilization by dimethyl sulfoxide (DMSO) followed by precipitation with ethanol, and (3) partial hydrolysis by HCl followed by precipitation of the resulting dextrins by ethanol. Starch recovery for three commercially available native starches (from potato, rice and wheat) varied from 48 to 81% for the techniques based on precipitation, whereas the enzymatic technique exhibited yields between 99 and 105%. In addition, the DMSO and HCl techniques introduced a significant (13)C fractionation of up to 1.9 per thousand, while the carbon isotope composition of native starches analyzed after enzymatic digestion did not show any significant difference from that of untreated samples. The enzymatic starch preparation method was then incorporated into a protocol for determination of delta(13)C signatures of lipids, soluble carbohydrates, starch and crude cellulose. The procedure is based on methanol/chloroform/water extraction of dried and ground leaf material. After recovery of the chloroform phase (lipid fraction), the methanol/water phase was deionized by ion exchange (soluble carbohydrate fraction) and the pellet treated with heat-stable alpha-amylase (starch fraction). The remaining insoluble material was subjected
Cu isotope fractionation during bornite dissolution: An in situ X-ray diffraction analysis
Wall, Andrew J.; Mathur, Ryan; Post, Jeffrey E.; Heaney, Peter J.
2012-10-24
Low-temperature ore deposits exhibit a large variation in {delta}{sup 65}Cu ({approx}12{per_thousand}), and this range has been attributed, in part, to isotope fractionation during weathering reactions of primary minerals such as chalcocite and chalcopyrite. Here, we examine the fractionation of Cu isotopes during dissolution of another important Cu ore mineral, bornite, using a novel approach that combines time-resolved X-ray diffraction (XRD) and isotope analysis of reaction products. During the initial stages of bornite oxidative dissolution by ferric sulfate (< 5 mol% of total Cu leached), dissolved Cu was enriched in isotopically heavy Cu ({sup 65}Cu) relative to the solid, with an average apparent isotope fractionation ({Delta}{sub aq - min} = {delta}{sup 65}Cu{sub aq} - {delta}{sup 65}Cu{sub min}{sup 0}) of 2.20 {+-} 0.25{per_thousand}. When > 20 mol% Cu was leached from the solid, the difference between the Cu isotope composition of the aqueous and mineral phases approached zero, with {Delta}{sub aq - min}{sup 0} values ranging from - 0.21 {+-} 0.61{per_thousand} to 0.92 {+-} 0.25{per_thousand}. XRD analysis allowed us to correlate changes in the atomic structure of bornite with the apparent isotope fractionation as the dissolution reaction progressed. These data revealed that the greatest degree of apparent fractionation is accompanied by a steep contraction in the unit-cell volume, which we identified as a transition from stoichiometric to non-stoichiometric bornite. We propose that the initially high {Delta}{sub aq - min} values result from isotopically heavy Cu ({sup 65}Cu) concentrating within Cu{sup 2+} during dissolution. The decrease in the apparent isotope fractionation as the reaction progresses occurs from the distillation of isotopically heavy Cu ({sup 65}Cu) during dissolution or kinetic isotope effects associated with the depletion of Cu from the surfaces of bornite particles.
Confirmatory Factor Analysis and Profile Analysis via Multidimensional Scaling.
Kim, Se-Kang; Davison, Mark L; Frisby, Craig L
2007-01-01
This paper describes the Confirmatory Factor Analysis (CFA) parameterization of the Profile Analysis via Multidimensional Scaling (PAMS) model to demonstrate validation of profile pattern hypotheses derived from multidimensional scaling (MDS). Profile Analysis via Multidimensional Scaling (PAMS) is an exploratory method for identifying major profiles in a multi-subtest test battery. Major profile patterns are represented as dimensions extracted from a MDS analysis. PAMS represents an individual observed score as a linear combination of dimensions where the dimensions are the most typical profile patterns present in a population. While the PAMS approach was initially developed for exploratory purposes, its results can later be confirmed in a different sample by CFA. Since CFA is often used to verify results from an exploratory factor analysis, the present paper makes the connection between a factor model and the PAMS model, and then illustrates CFA with a simulated example (that was generated by the PAMS model) and at the same time with a real example. The real example demonstrates confirmation of PAMS exploratory results by using a different sample. Fit indexes can be used to indicate whether the CFA reparameterization as a confirmatory approach works for the PAMS exploratory results.
Quantitative analysis of virus-like particle size and distribution by field-flow fractionation.
Chuan, Yap P; Fan, Yuan Y; Lua, Linda; Middelberg, Anton P J
2008-04-15
Asymmetric flow field-flow fractionation (AFFFF) coupled with multiple-angle light scattering (MALS) is a powerful technique showing potential for the analysis of pharmaceutically-relevant virus-like particles (VLPs). A lack of published methods, and concerns that membrane adsorption during sample fractionation may cause sample aggregation, have limited widespread acceptance. Here we report a reliable optimized method for VLP analysis using AFFFF-MALS, and benchmark it against dynamic light scattering (DLS) and transmission electron microscopy (TEM). By comparing chemically identical VLPs having very different quaternary structure, sourced from both bacteria and insect cells, we show that optimized AFFFF analysis does not cause significant aggregation, and that accurate size and distribution information can be obtained for heterogeneous samples in a way not possible with TEM and DLS. Optimized AFFFF thus provides a quantitative way to monitor batch consistency for new vaccine products, and rapidly provides unique information on the whole population of particles within a sample.
Kim, Won-Suk; Park, Mira; Lee, Dai Woon; Moon, Myeong Hee; Lim, Heungbin; Lee, Seungho
2004-02-01
Fly ash has been regarded as hazardous because of its high adsorption of toxic organic and/or inorganic pollutants. Fly ash is also known to have broad distributions of different chemical and physical properties, such as size and density. In this study, fly ash emitted from a solid waste incinerator was pre-fractionated into six sub-populations by use of gravitational SPLITT fractionation (GSF). The GSF fractions were then analyzed by sedimentation field-flow fractionation (SdFFF) and ICP-AES. SdFFF analysis showed the fly ash has a broad size distribution ranging from a few nanometers up to about 50 microm. SdFFF results were confirmed by electron microscopy. Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of the GSF fractions showed the fly-ash particles contain a variety of inorganic elements including Ca, Si, Mg, Fe, and Pb. The most abundant in fly ash was Ca, followed by Si then Mg. No correlations were found between trace element concentration and particle size.
Analysis of Oxygenated Compounds in Hydrotreated Biomass Fast Pyrolysis Oil Distillate Fractions
Christensen, Earl D.; Chupka, Gina; Luecke, Jon; Smurthwaite, Tricia D.; Alleman, Teresa L.; Iisa, Kristiina; Franz, James A.; Elliott, Douglas C.; McCormick, Robert L.
2011-10-06
potential for blending into finished fuels. Fractions from the lowest oxygen content oil exhibited some phenolic acidity, but generally contained very low levels of oxygen functional groups. These materials would likely be suitable as refinery feedstocks and potentially as fuel blend components. PIONA analysis of the Light and Naphtha fractions shows benzene content of 0.5 and 0.4 vol%, and predicted (RON + MON)/2 of 63 and 70, respectively.
Optimal q-homotopy analysis method for time-space fractional gas dynamics equation
NASA Astrophysics Data System (ADS)
Saad, K. M.; AL-Shareef, E. H.; Mohamed, Mohamed S.; Yang, Xiao-Jun
2017-01-01
It is well known that the homotopy analysis method is one of the most efficient methods for obtaining analytical or approximate semi-analytical solutions of both linear and non-linear partial differential equations. A more general form of HAM is introduced in this paper, which is called Optimal q-Homotopy Analysis Method (Oq-HAM). It has better convergence properties as compared with the usual HAM, due to the presence of fraction factor associated with the solution. The convergence of q-HAM is studied in details elsewhere (M.A. El-Tawil, Int. J. Contemp. Math. Sci. 8, 481 (2013)). Oq-HAM is applied to the non-linear homogeneous and non-homogeneous time and space fractional gas dynamics equations with initial condition. An optimal convergence region is determined through the residual error. By minimizing the square residual error, the optimal convergence control parameters can be obtained. The accuracy and efficiency of the proposed method are verified by comparison with the exact solution of the fractional gas dynamics equation. Also, it is shown that the Oq-HAM for the fractional gas dynamics equation is equivalent to the exact solution. We obtain graphical representations of the solutions using MATHEMATICA.
Seo, Kyu Young; Yoon, Moon Soo; Kim, Dong Hyun; Lee, Hee Jung
2012-10-01
For skin rejuvenation, microneedle fractional radiofrequency (RF) is a recently developed minimally invasive method for delivering RF energy directly into the skin using microneedle. We evaluated efficacy and safety of microneedle fractional RF for skin rejuvenation in Asian skin and also conducted immunohistochemical analysis before and after treatment. Twenty-five females (mean age 54.2, Fitzpatrick skin phototypes III-IV) received three consecutive fractional RF treatment at 4-week intervals. Outcome assessments included standardized photography, physician's global assessment, patient's satisfaction scores, objective biophysical measurements, and histologic analysis including immunohistochemical staining. All patients showed clinical improvement on physician's global assessment and patient's satisfaction scores. Among objective biophysical measurements, improvement in hydration and skin roughness was noticed. Histologic examination revealed marked increase in dermal thickness, dermal collagen content and dermal fibrillin content. Side effects were minimal. The limitations are the small number of patients and lack of long-term follow-up. Microneedle fractional RF is a safe and effective skin rejuvenation method in Asians. Copyright © 2012 Wiley Periodicals, Inc.
Comprehensive proteomic analysis of the human milk proteome: contribution of protein fractionation.
Mangé, A; Bellet, V; Tuaillon, E; Van de Perre, P; Solassol, J
2008-12-15
In-depth analysis of the milk proteome by mass spectrometry is challenged by the presence of few high-abundance proteins that interfere with the detection of lower-abundance proteins. Here, we evaluated the proteomic analysis of milk samples following a strong anion exchange fractionation procedure using denaturating conditions ensuring the disruption of protein-protein interactions. Crude whey or skim milk and their different resulting fractions were analyzed by protein chip array mass spectrometry. Using protein chip array mass spectrometry, several high-abundance proteins were localized in distinct fractions increasing the total number of unique peptides and proteins detected. This total number increased by about 20-30% by combining different chromatographic surface arrays used for capture. Reproducible results were obtained in human skim milk and whey; however this approach was not successful with milk fat globule membrane and required refinement. Hence, milk profiling by anion exchange fractionation combined to protein chip array mass spectrometry represents a promising tool to detect unknown low-abundance milk proteins that may ultimately prove useful as biomarkers of diseases transmitted by breastfeeding.
Kohl, E; Meierhöfer, J; Koller, M; Zeman, F; Klein, A; Hohenleutner, U; Landthaler, M; Hohenleutner, S
2014-04-01
Results of profilometric skin analyses after fractional ablative skin resurfacing are not only important for evaluating the efficacy of this therapy but are also relevant for physicians practising laser and aesthetic skin therapy. Currently, objective measurements of wrinkle reduction after fractional CO2 laser resurfacing are scarce, and it remains unclear whether the various facial areas respond differently to this therapy. To measure wrinkle parameters, the homogeneity of melanin distribution and skin roughness in four facial areas (periorbital, perioral, forehead, cheeks) before and after three fractional CO2 laser treatments. Twenty-five women were analysed with regard to wrinkle parameters and mottled pigmentation on the face. We measured wrinkle size, depth and width and the homogeneity of melanin distribution and skin roughness in four facial areas before and after three fractional CO2 laser treatments. Additionally, the investigators rated clinical improvement using five-point grading scales. Wrinkles were significantly reduced in all facial areas, and the best results for wrinkle size and depth were found for the cheeks (-58·3%, P = 0·018 and -51·3%, P = 0·018) and the periorbital area (-35·1%, P < 0·001 and -31·1%, P = 0·001, respectively). The percentage improvements of rhytides evaluated by the investigators were mostly similar to those found from in vivo measurements. The homogeneity of melanin distribution in the skin was improved by 21·4% on the cheeks (P = 0·012) and by 24·0% in the periorbital area (P < 0·001). Clinical investigators rated the improvement of mottled pigmentation considerably higher (51-75%). After a serial treatment with the fractional CO2 laser, we measured considerably varying wrinkle reduction depending on the area of the face, and the best results were found for the cheeks. © 2013 British Association of Dermatologists.
A two scale analysis of tight sandstones
NASA Astrophysics Data System (ADS)
Adler, P. M.; Davy, C. A.; Song, Y.; Troadec, D.; Hauss, G.; Skoczylas, F.
2015-12-01
Tight sandstones have a low porosity and a very small permeability K. Available models for K do not compare well with measurements. These sandstones are made of SiO_2 grains, with a typical size of several hundreds of micron. These grains are separated by a network of micro-cracks, with sizes ranging between microns down to tens of nm. Therefore, the structure can be schematized by Voronoi polyhedra separated by plane and permeable polygonal micro-cracks. Our goal is to estimate K based on a two scale analysis and to compare the results to measurements. For a particular sample [2], local measurements on several scales include FIB/SEM [3], CMT and 2D SEM. FIB/SEM is selected because the peak pore size given by Mercury Intrusion Porosimetry is of 350nm. FIB/SEM imaging (with 50 nm voxel size) identifies an individual crack of 180nm average opening, whereas CMT provides a connected porosity (individual crack) for 60 nm voxel size, of 4 micron average opening. Numerical modelling is performed by combining the micro-crack network scale (given by 2D SEM) and the 3D micro-crack scale (given by either FIB/SEM or CMT). Estimates of the micro-crack density are derived from 2D SEM trace maps by counting the intersections with scanlines, the surface density of traces, and the number of fracture intersections. K is deduced by using a semi empirical formula valid for identical, isotropic and uniformly distributed fractures [1]. This value is proportional to the micro-crack transmissivity sigma. Sigma is determined by solving the Stokes equation in the micro-cracks measured by FIB/SEM or CMT. K is obtained by combining the two previous results. Good correlation with measured values on centimetric plugs is found when using sigma from CMT data. The results are discussed and further research is proposed. [1] Adler et al, Fractured porous media, Oxford Univ. Press, 2012. [2] Duan et al, Int. J. Rock Mech. Mining Sci., 65, p75, 2014. [3] Song et al, Marine and Petroleum Eng., 65, p63
Cheng, Jie-Min; Liu, Yu-Zhen; Wang, Han-Wei
2014-01-01
Cu contamination soil (547 mg kg(-1)) was mixed separately with the surface-modified nano-scale carbon black (MCB) and placed in the ratios (w/w) of 0, 1%, 3%, and 5% in pots, together with 0.33 g KH2PO4 and 0.35 g urea/pot. Each pot contained 20 ryegrass seedlings (Lolium multiflorum). Greenhouse cultivation experiments were conducted to examine the effect of the MCB on Cu and Zn fractionations in soil, accumulation in shoot and growth of ryegrass. The results showed that the biomass of ryegrass shoot and root increased with the increasing of MCB adding amount (p < 0.05). The Cu and Zn accumulation in ryegrass shoot and the concentrations of DTPA extractable Cu and Zn in soil were significantly decreased with the increasing of MCB adding amount (p < 0.05). The metal contents of exchangeable and bound to carbonates (EC-Cu or EC-Zn) in the treatments with MCB were generally lower than those without MCB, and decreased with the increasing of MCB adding amount (p < 0.05). There was a positive linear correlation between the Cu and Zn accumulation in ryegrass shoot and the EC-Cu and EC-Zn in soil. The present results indicated the MCB could be applied for the remediation the soils polluted by Cu and Zn.
NASA Astrophysics Data System (ADS)
Scharien, R. K.; Hochheim, K.; Landy, J.; Barber, D. G.
2014-01-01
Observed changes in the Arctic have motivated efforts to understand and model its components as an integrated and adaptive system at increasingly finer scales. Sea ice melt pond fraction, an important summer sea ice component affecting surface albedo and light transmittance across the ocean-sea ice-atmosphere interface, is inadequately parameterized in models due to a lack of large scale observations. In this paper, results from a multi-scale remote sensing program dedicated to the retrieval of pond fraction from satellite C-band synthetic aperture radar (SAR) are detailed. The study was conducted on first-year sea (FY) ice in the Canadian Arctic Archipelago during the summer melt period in June 2012. Approaches to retrieve the subscale FY ice pond fraction from mixed pixels in RADARSAT-2 imagery, using in situ, surface scattering theory, and image data are assessed. Each algorithm exploits the dominant effect of high dielectric free-water ponds on the VV/HH polarisation ratio (PR) at moderate to high incidence angles (about 40° and above). Algorithms are applied to four images corresponding to discrete stages of the seasonal pond evolutionary cycle, and model performance is assessed using coincident pond fraction measurements from partitioned aerial photos. A RMSE of 0.07, across a pond fraction range of 0.10 to 0.70, is achieved during intermediate and late seasonal stages. Weak model performance is attributed to wet snow (pond formation) and synoptically driven pond freezing events (all stages), though PR has utility for identification of these events when considered in time series context. Results demonstrate the potential of wide-swath, dual-polarisation, SAR for large-scale observations of pond fraction with temporal frequency suitable for process-scale studies and improvements to model parameterizations.
Intrinsic time scaling in survival analysis: application to biological populations.
Eakin, T
1994-11-01
A method of dimensionless time-scaling based on extrinsic expectation of life at birth but intrinsic to a system generating a survival distribution is introduced. Such scaling allows the survival fraction function and its associated mortality function to serve as Green's functions for their generalized equivalents, i.e., a "population" function and a "death" function. The analytical mechanics of utilizing these concepts are formulated, applied to the classical Gompertz and Weibull survival models, and discussed with respect to biological relevance.
Fractional order Buck-Boost converter in CCM: modelling, analysis and simulations
NASA Astrophysics Data System (ADS)
Wang, Faqiang; Ma, Xikui
2014-12-01
In this paper, the modelling, analysis and the power electronics simulator (PSIM) simulations of the fractional order Buck-Boost converter operating in continuous conduction mode (CCM) operation are investigated. Based on the three-terminal switch device method, the average circuit model of the fractional order Buck-Boost converter is established, and the corresponding DC equivalent circuit model and AC small signal equivalent circuit model are presented. And then, the equilibrium point and the transfer functions are derived. It is found that the equilibrium point is not influenced by the inductor's or the capacitor's order, but both these orders are included in the derived transfer functions. Finally, the comparisons between the theoretical analysis and the PSIM simulations are given for confirmation.
Structural analysis of gluten-free doughs by fractional rheological model
NASA Astrophysics Data System (ADS)
Orczykowska, Magdalena; Dziubiński, Marek; Owczarz, Piotr
2015-02-01
This study examines the effects of various components of tested gluten-free doughs, such as corn starch, amaranth flour, pea protein isolate, and cellulose in the form of plantain fibers on rheological properties of such doughs. The rheological properties of gluten-free doughs were assessed by using the rheological fractional standard linear solid model (FSLSM). Parameter analysis of the Maxwell-Wiechert fractional derivative rheological model allows to state that gluten-free doughs present a typical behavior of viscoelastic quasi-solid bodies. We obtained the contribution dependence of each component used in preparations of gluten-free doughs (either hard-gel or soft-gel structure). The complicate analysis of the mechanical structure of gluten-free dough was done by applying the FSLSM to explain quite precisely the effects of individual ingredients of the dough on its rheological properties.
Scaling analysis of Anderson localizing optical fibers
NASA Astrophysics Data System (ADS)
Abaie, Behnam; Mafi, Arash
2017-02-01
Anderson localizing optical fibers (ALOF) enable a novel optical waveguiding mechanism; if a narrow beam is scanned across the input facet of the disordered fiber, the output beam follows the transverse position of the incoming wave. Strong transverse disorder induces several localized modes uniformly spread across the transverse structure of the fiber. Each localized mode acts like a transmission channel which carries a narrow input beam along the fiber without transverse expansion. Here, we investigate scaling of transverse size of the localized modes of ALOF with respect to transverse dimensions of the fiber. Probability density function (PDF) of the mode-area is applied and it is shown that PDF converges to a terminal shape at transverse dimensions considerably smaller than the previous experimental implementations. Our analysis turns the formidable numerical task of ALOF simulations into a much simpler problem, because the convergence of mode-area PDF to a terminal shape indicates that a much smaller disordered fiber, compared to previous numerical and experimental implementations, provides all the statistical information required for the precise analysis of the fiber.
Sanz, Ramsés; Puignou, Lluís; Galceran, Maria Teresa; Reschiglian, Pierluigi; Zattoni, Andrea; Melucci, Dora
2004-08-01
This work continues the project on field-flow fractionation characterisation of whole wine-making yeast cells reported in previous papers. When yeast cells are fractionated by gravitational field-flow fractionation and cell sizing of the collected fractions is achieved by the electrosensing zone technique (Coulter counter), it is shown that yeast cell retention depends on differences between physical indexes of yeast cells other than size. Scanning electron microscopy on collected fractions actually shows co-elution of yeast cells of different size and shape. Otherwise, the observed agreement between the particle size distribution analysis obtained by means of the Coulter counter and by flow field-flow fractionation, which employs a second mobile phase flow as applied field instead of Earth's gravity, indicates that yeast cell density can play a major role in the gravitational field-flow fractionation retention mechanism of yeast cells, in which flow field-flow fractionation retention is independent of particle density. Flow field-flow fractionation is then coupled off-line to gravitational field-flow fractionation for more accurate characterisation of the doubly-fractionated cells. Coupling gravitational and flow field-flow fractionation eventually furnishes more information on the multipolydispersity indexes of yeast cells, in particular on their shape and density polydispersity.
NASA Astrophysics Data System (ADS)
Valeriy, Shkinev; Michail, Ermolin; Peter, Fedotov; Aleksander, Rudnev; Nikolay, Bulychev; Vitaliy, Linnik; Gerardo, Moreno
2013-04-01
resulted in the formation of sulfuric acid under atmospheric conditions. A combination of methods were used for the fractionation (dry sieving, membrane filtration, sedimentation field-flow fractionation in a rotating coiled column), investigation (capillary electrophoresis, scanning electron microscopy), and analysis (ICP MS, ICP-AES) of volcanic ash samples. The combination of fractionation techniques were chosen taking into account that (1) the efficiency of separation of particles for the subsequent technique should be higher than for the preceding one; (2) the separation principles of methods should be different (separation according size, density, charge etc.); (3) the initial separation should be carried out according to size, that makes possible to create an even scale for various samples. It has been shown experimentally that the combination of fractionation methods give a possibility to separate and analyze the fractions from 10 nm to 100 μm and to obtain an information about the distribution of elements. In particular, it is founded that nearly 20% of Be, K, Bi, Th, Fe, As, Tl, Ti, W, Hf, and Zr are removed from the ash into the s
Cross-scale analysis of fire regimes
Donald A. Falk; Carol Miller; Donald McKenzie; Anne E. Black
2007-01-01
Cross-scale spatial and temporal perspectives are important for studying contagious landscape disturbances such as fire, which are controlled by myriad processes operating at different scales. We examine fire regimes in forests of western North America, focusing on how observed patterns of fire frequency change across spatial scales. To quantify changes in fire...
Lipidomic analysis of plasma lipoprotein fractions in myocardial infarction-prone rabbits.
Takeda, Hiroaki; Koike, Tomonari; Izumi, Yoshihiro; Yamada, Takayuki; Yoshida, Masaru; Shiomi, Masashi; Fukusaki, Eiichiro; Bamba, Takeshi
2015-10-01
Lipids play important roles in the body and are transported to various tissues via lipoproteins. It is commonly assumed that alteration of lipid levels in lipoproteins leads to dyslipidemia and serious diseases such as coronary artery disease (CAD). However, lipid compositions in each lipoprotein fraction induced by lipoprotein metabolism are poorly understood. Lipidomics, which involves the comprehensive and quantitative analysis of lipids, is expected to provide valuable information regarding the pathogenic mechanism of CAD. Here, we performed a lipidomic analysis of plasma and its lipoprotein fractions in myocardial infarction-prone Watanabe heritable hyperlipidemic (WHHLMI) rabbits. In total, 172 lipids in plasma obtained from normal and WHHLMI rabbits were quantified with high throughput and accuracy using supercritical fluid chromatography hybrid quadrupole-Orbitrap mass spectrometry (SFC/Q-Orbitrap-MS). Plasma levels of each lipid class (i.e., phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, lysophosphatidylcholine, lysophosphatidylethanolamine, sphingomyelin, ceramide, triacylglycerol, diacylglycerol, and cholesterol ester, except for free fatty acids) in 21-month-old WHHLMI rabbits were significantly higher than those in normal rabbits. High levels of functional lipids, such as alkyl-phosphatidylcholines, phospholipids including ω-6 fatty acids, and plasmalogens, were also observed in WHHLMI rabbit plasma. In addition, high-resolution lipidomic analysis using very low density lipoprotein (VLDL) and low density lipoprotein (LDL) provided information on the specific molecular species of lipids in each lipoprotein fraction. In particular, higher levels of phosphatidylethanolamine plasmalogens were detected in LDL than in VLDL. Our lipidomics approach for plasma lipoprotein fractions will be useful for in-depth studies on the pathogenesis of CAD. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights
NASA Astrophysics Data System (ADS)
Henkel, S.; Kasten, S.; Poulton, S.; Hartmann, J.; Staubwasser, M.
2014-12-01
Reactive Fe (oxyhydr)oxides preferentially undergo early diagenetic cycling and may cause a diffusive flux of dissolved Fe2+ from sediments towards the sediment-water interface. The partitioning of Fe in sediments has traditionally been studied by applying sequential extractions based on reductive dissolution of Fe minerals. We complemented the sequential leaching method by Poulton and Canfield [1] in order to be able to gain δ56Fe data for specific Fe fractions, as such data are potentially useful to study Fe cycling in marine environments. The specific mineral fractions are Fe-carbonates, ferrihydrite + lepidocrocite, goethite + hematite, and magnetite. Leaching was performed with acetic acid, hydroxylamine-HCl, Na-dithionite and oxalic acid. The processing of leachates for δ56Fe analysis involved boiling the samples in HCl/HNO3/H2O2, Fe precipitation and anion exchange column chromatography. The new method was applied to short sediment cores from the North Sea and a bay of King George Island (South Shetland Islands, Antarctica). Downcore mineral-specific variations in δ56Fe revealed differing contributions of Fe (oxyhydr)oxides to redox cycling. A slight decrease in easily reducible Fe oxides correlating with a slight increase in δ56Fe for this fraction with depth, which is in line with progessive dissimilatory iron reduction [2,3], is visible in the top 10 cm of the North Sea core, but not in the antarctic sediments. Less reactive (dithionite and oxalate leachable) fractions did not reveal isotopic trends. The acetic acid-soluble fraction displayed pronounced δ56Fe trends at both sites that cannot be explained by acid volatile sulfides that are also extracted by acetic acid [1]. We suggest that low δ56Fe values in this fraction relative to the pool of easily reducible Fe oxides result from adsorbed Fe(II) that was open to isotopic exchange with oxide surfaces, affirming the experimental results of Crosby el al. [2]. Hence, δ56Fe analyses on marine
Anzano, Manuela; Collina, Elena; Piccinelli, Elsa; Lasagni, Marina
2017-03-16
The general aim of this study is the recovery of Automotive Shredder Residue (ASR). The ASR light fraction, or car fluff, that was collected at an Italian shredding plant was pyrolysed at various temperatures (500-800°C) in a lab-scale reactor. The condensable gases (tar) and solid residue yields increased with decreasing temperature, and these products were characterized to suggest a potential use to reclaim them. The higher heating value (HHV) of tar was 34-37MJ/kg, which is comparable with those of fossil fuels. Furthermore, the ash content was low (0.06-4.98%). Thus, tar can be used as an alternative fuel. With this prospect, the concentrations of polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in tar were determined. The toxicity of tar changes with temperature (1-5ng I-TEQ/g), and the PCDFs significantly contribute to tar toxicity, which was 75-100% with a maximum of 99.6% at 700°C. Regarding the characterization of the solid residue, the low HHV (2.4-3.3MJ/kg) does not make it suitable for energy recovery. Regarding material recovery, we considered its use as a filler in construction materials or a secondary source for metals. It shows a high metal concentration (280,000-395,000mg/kg), which is similar at different pyrolysis temperatures. At 500°C, polycyclic aromatic hydrocarbons (PAHs) were not detected in the solid residue, whereas the maximum total PAH concentration (19.41ng/g, 700°C) was lower than that in fly ash from MSWI. In conclusion, 500°C is a suitable pyrolysis temperature to obtain valuable tar and solid residue.
ERIC Educational Resources Information Center
Osana, Helena P.; Royea, Diana A.
2011-01-01
In this study, we implemented one-on-one fractions instruction to eight preservice teachers. The intervention, which was based on the principle of Progressive Formalization (Freudenthal, 1983), was centered on problem solving and on progressively formalizing the participants' intuitive knowledge of fractions. The objectives of the study were to…
NASA Astrophysics Data System (ADS)
de Lima, Isabel; Lovejoy, Shaun
2016-04-01
The characterization of precipitation scaling regimes represents a key contribution to the improved understanding of space-time precipitation variability, which is the focus here. We conduct space-time scaling analyses of spectra and Haar fluctuations in precipitation, using three global scale precipitation products (one instrument based, one reanalysis based, one satellite and gauge based), from monthly to centennial scales and planetary down to several hundred kilometers in spatial scale. Results show the presence - similarly to other atmospheric fields - of an intermediate "macroweather" regime between the familiar weather and climate regimes: we characterize systematically the macroweather precipitation temporal and spatial, and joint space-time statistics and variability, and the outer scale limit of temporal scaling. These regimes qualitatively and quantitatively alternate in the way fluctuations vary with scale. In the macroweather regime, the fluctuations diminish with time scale (this is important for seasonal, annual, and decadal forecasts) while anthropogenic effects increase with time scale. Our approach determines the time scale at which the anthropogenic signal can be detected above the natural variability noise: the critical scale is about 20 - 40 yrs (depending on the product, on the spatial scale). This explains for example why studies that use data covering only a few decades do not easily give evidence of anthropogenic changes in precipitation, as a consequence of warming: the period is too short. Overall, while showing that precipitation can be modeled with space-time scaling processes, our results clarify the different precipitation scaling regimes and further allow us to quantify the agreement (and lack of agreement) of the precipitation products as a function of space and time scales. Moreover, this work contributes to clarify a basic problem in hydro-climatology, which is to measure precipitation trends at decadal and longer scales and to
The Isotropic Fractionator as a Tool for Quantitative Analysis in Central Nervous System Diseases
Repetto, Ivan E.; Monti, Riccardo; Tropiano, Marta; Tomasi, Simone; Arbini, Alessia; Andrade-Moraes, Carlos-Humberto; Lent, Roberto; Vercelli, Alessandro
2016-01-01
One major aim in quantitative and translational neuroscience is to achieve a precise and fast neuronal counting method to work on high throughput scale to obtain reliable results. Here, we tested the isotropic fractionator (IF) method for evaluating neuronal and non-neuronal cell loss in different models of central nervous system (CNS) pathologies. Sprague-Dawley rats underwent: (i) ischemic brain damage; (ii) intraperitoneal injection with kainic acid (KA) to induce epileptic seizures; and (iii) monolateral striatal injection with quinolinic acid (QA) mimicking human Huntington’s disease. All specimens were processed for IF method and cell loss assessed. Hippocampus from KA-treated rats and striatum from QA-treated rats were carefully dissected using a dissection microscope and a rat brain matrix. Ischemic rat brains slices were first processed for TTC staining and then for IF. In the ischemic group the cell loss corresponded to the neuronal loss suggesting that hypoxia primarily affects neurons. Combining IF with TTC staining we could correlate the volume of lesion to the neuronal loss; by IF, we could assess that neuronal loss also occurs contralaterally to the ischemic side. In the epileptic group we observed a reduction of neuronal cells in treated rats, but also evaluated the changes in the number of non-neuronal cells in response to the hippocampal damage. In the QA model, there was a robust reduction of neuronal cells on ipsilateral striatum. This neuronal cell loss was not related to a drastic change in the total number of cells, being overcome by the increase in non-neuronal cells, thus suggesting that excitotoxic damage in the striatum strongly activates inflammation and glial proliferation. We concluded that the IF method could represent a simple and reliable quantitative technique to evaluate the effects of experimental lesions mimicking human diseases, and to consider the neuroprotective/anti-inflammatory effects of different treatments in the whole
The Isotropic Fractionator as a Tool for Quantitative Analysis in Central Nervous System Diseases.
Repetto, Ivan E; Monti, Riccardo; Tropiano, Marta; Tomasi, Simone; Arbini, Alessia; Andrade-Moraes, Carlos-Humberto; Lent, Roberto; Vercelli, Alessandro
2016-01-01
One major aim in quantitative and translational neuroscience is to achieve a precise and fast neuronal counting method to work on high throughput scale to obtain reliable results. Here, we tested the isotropic fractionator (IF) method for evaluating neuronal and non-neuronal cell loss in different models of central nervous system (CNS) pathologies. Sprague-Dawley rats underwent: (i) ischemic brain damage; (ii) intraperitoneal injection with kainic acid (KA) to induce epileptic seizures; and (iii) monolateral striatal injection with quinolinic acid (QA) mimicking human Huntington's disease. All specimens were processed for IF method and cell loss assessed. Hippocampus from KA-treated rats and striatum from QA-treated rats were carefully dissected using a dissection microscope and a rat brain matrix. Ischemic rat brains slices were first processed for TTC staining and then for IF. In the ischemic group the cell loss corresponded to the neuronal loss suggesting that hypoxia primarily affects neurons. Combining IF with TTC staining we could correlate the volume of lesion to the neuronal loss; by IF, we could assess that neuronal loss also occurs contralaterally to the ischemic side. In the epileptic group we observed a reduction of neuronal cells in treated rats, but also evaluated the changes in the number of non-neuronal cells in response to the hippocampal damage. In the QA model, there was a robust reduction of neuronal cells on ipsilateral striatum. This neuronal cell loss was not related to a drastic change in the total number of cells, being overcome by the increase in non-neuronal cells, thus suggesting that excitotoxic damage in the striatum strongly activates inflammation and glial proliferation. We concluded that the IF method could represent a simple and reliable quantitative technique to evaluate the effects of experimental lesions mimicking human diseases, and to consider the neuroprotective/anti-inflammatory effects of different treatments in the whole
Galyean, Anne A; Filliben, James J; Holbrook, R David; Vreeland, Wyatt N; Weinberg, Howard S
2016-11-18
Asymmetric flow field flow fractionation (AF(4)) has several instrumental factors that may have a direct effect on separation performance. A sensitivity analysis was applied to ascertain the relative importance of AF(4) primary instrument factor settings for the separation of a complex environmental sample. The analysis evaluated the impact of instrumental factors namely, cross flow, ramp time, focus flow, injection volume, and run buffer concentration on the multi-angle light scattering measurement of natural organic matter (NOM) molar mass (MM). A 2((5-1)) orthogonal fractional factorial design was used to minimize analysis time while preserving the accuracy and robustness in the determination of the main effects and interactions between any two instrumental factors. By assuming that separations resulting in smaller MM measurements would be more accurate, the analysis produced a ranked list of effects estimates for factors and interactions of factors based on their relative importance in minimizing the MM. The most important and statistically significant AF(4) instrumental factors were buffer concentration and cross flow. The least important was ramp time. A parallel 2((5-2)) orthogonal fractional factorial design was also employed on five environmental factors for synthetic natural water samples containing silver nanoparticles (NPs), namely: NP concentration, NP size, NOM concentration, specific conductance, and pH. None of the water quality characteristic effects or interactions were found to be significant in minimizing the measured MM; however, the interaction between NP concentration and NP size was an important effect when considering NOM recovery. This work presents a structured approach for the rigorous assessment of AF(4) instrument factors and optimal settings for the separation of complex samples utilizing efficient orthogonal factional factorial design and appropriate graphical analysis.
NASA Astrophysics Data System (ADS)
Dinç, Erdal; Büker, Eda; Baleanu, Dumitru
2011-12-01
A combined application of the fractional wavelet transform-continuous wavelet transform to the quantitative resolution of the overlapping signals of olmesartan modoxomil and hydrochlorothiazide in a binary mixture was presented. In this work the recorded absorption signals of two compounds in the range 4-12 μg/mL olmesartan and 2-10 μg/mL hydrochlorothiazide were processed by the fractional transform approach and with the continuous wavelet transform, respectively. The proposed combined complex signal analysis method was validated by analyzing the synthetic binary mixtures of the related compound. By analyzing the statistical parameters we conclude that the new approach is suitable to be used for the quality control of the commercial samples of compounds.
Morphology and ion-conductivity of gelatin-LiClO4 films: fractional diffusion analysis.
Basu, Tania; Goswami, Minakshi Maitra; Middya, T R; Tarafdar, Sujata
2012-09-13
Biopolymers are expected to replace synthetic polymers in the quest for cost-effective, environment friendly, and pollution free technology. We report here a study on gelatin films with different concentrations of lithium perchlorate, which may be a candidate for electrolyte material in solid polymer batteries. Morphology studies and impedance spectroscopy both are done on the same set of samples. We study the microstructure of the film by SEM and try to see if a correlation between impedance spectroscopy results and features of gel morphology can be identified. A network structure is revealed in the SEM images where details of the network parameters appear to depend on the salt fraction. Analysis of the impedance measurements is done using a physically meaningful model based on material properties instead of the usual equivalent circuit formalism, where circuit elements are difficult to interpret. We find that anomalous diffusion of charge carriers plays an important role; this is incorporated through a fractional calculus approach.
Monrabal, Benjamín; del Hierro, Pilar
2011-02-01
The introduction of single-site catalysts in the polyolefins industry opens new routes to design resins with improved performance through multicatalyst-multireactor processes. Physical combination of various polyolefin types in a secondary extrusion process is also a common practice to achieve new products with improved properties. The new resins have complex structures, especially in terms of composition distribution, and their characterization is not always an easy task. Techniques like temperature rising elution fractionation (TREF) or crystallization analysis fractionation (CRYSTAF) are currently used to characterize the composition distribution of these resins. It has been shown that certain combinations of polyolefins may result in equivocal results if only TREF or CRYSTAF is used separately for their characterization.
Velmurugan, G; Rakkiyappan, R; Vembarasan, V; Cao, Jinde; Alsaedi, Ahmed
2017-02-01
As we know, the notion of dissipativity is an important dynamical property of neural networks. Thus, the analysis of dissipativity of neural networks with time delay is becoming more and more important in the research field. In this paper, the authors establish a class of fractional-order complex-valued neural networks (FCVNNs) with time delay, and intensively study the problem of dissipativity, as well as global asymptotic stability of the considered FCVNNs with time delay. Based on the fractional Halanay inequality and suitable Lyapunov functions, some new sufficient conditions are obtained that guarantee the dissipativity of FCVNNs with time delay. Moreover, some sufficient conditions are derived in order to ensure the global asymptotic stability of the addressed FCVNNs with time delay. Finally, two numerical simulations are posed to ensure that the attention of our main results are valuable. Copyright © 2016 Elsevier Ltd. All rights reserved.
Green, J.B.; Zagula, E.J.; Reynolds, J.W.; Wandke, H.H.; Young, L.L.; Chew, H.
1993-09-01
The catalytic cracking behavior of compound types in the >650{degree}F resid from a Wilmington, CA, 14.2{degree} API crude was investigated. Liquid Chromatography (LC) was used to separate the resid into eight fractions. These fractions were used as feedstocks for a bench scale fluidized catalytic cracking (FCC) unit. Gasoline was produced almost exclusively from neutral (65 % of whole resid) components. Acidic and basic types were partially converted to coke plus small amounts of C{sub l} and C{sub 2} gases, with the balance primarily carrying over as heavy liquid products. Gasoline composition depended on the type and quantity of polar compounds present in the feed because both acidic and basic compounds inhibited cracking reactions ({beta}-scission, hydrogen transfer, etc.) to varying degrees. In accordance with prior work, basic nitrogen compounds exhibited the largest inhibitory effect on cracking. Their effect is dependent on concentrations up to a limiting value which may correspond to saturation of susceptible catalyst sites. On an equal weight basis, the effect of high boiling (high molecular weight) bases was less than those occurring in the 650--1000{degree}F distillate range. Partitioning of nitrogen present in acidic (e.g. carbazole) forms in the feed into liquid products was greater than for basic nitrogen. Thiophenic forms of sulfur partitioned more into liquid and less into gaseous (H{sub 2}S) products than sulfide-type sulfur. Coke yield was approximately proportional to microcarbon residue test results for all feeds. Ongoing work with additional feedstocks has indicated behavior similar to that of Wilmington. Selected Wilmington liquid products are undergoing detailed analysis in order to determine relationships between feed versus product composition, particularly with respect to acidic and basic types.
Reum, Jonathan C P; Jennings, Simon; Hunsicker, Mary E
2015-11-01
Nitrogen stable isotope ratios (δ(15) N) may be used to estimate community-level relationships between trophic level (TL) and body size in size-structured food webs and hence the mean predator to prey body mass ratio (PPMR). In turn, PPMR is used to estimate mean food chain length, trophic transfer efficiency and rates of change in abundance with body mass (usually reported as slopes of size spectra) and to calibrate and validate food web models. When estimating TL, researchers had assumed that fractionation of δ(15) N (Δδ(15) N) did not change with TL. However, a recent meta-analysis indicated that this assumption was not as well supported by data as the assumption that Δδ(15) N scales negatively with the δ(15) N of prey. We collated existing fish community δ(15) N-body size data for the Northeast Atlantic and tropical Western Arabian Sea with new data from the Northeast Pacific. These data were used to estimate TL-body mass relationships and PPMR under constant and scaled Δδ(15) N assumptions, and to assess how the scaled Δδ(15) N assumption affects our understanding of the structure of these food webs. Adoption of the scaled Δδ(15) N approach markedly reduces the previously reported differences in TL at body mass among fish communities from different regions. With scaled Δδ(15) N, TL-body mass relationships became more positive and PPMR fell. Results implied that realized prey size in these size-structured fish communities are less variable than previously assumed and food chains potentially longer. The adoption of generic PPMR estimates for calibration and validation of size-based fish community models is better supported than hitherto assumed, but predicted slopes of community size spectra are more sensitive to a given change or error in realized PPMR when PPMR is small. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Developmental Work Personality Scale: An Initial Analysis.
ERIC Educational Resources Information Center
Strauser, David R.; Keim, Jeanmarie
2002-01-01
The research reported in this article involved using the Developmental Model of Work Personality to create a scale to measure work personality, the Developmental Work Personality Scale (DWPS). Overall, results indicated that the DWPS may have potential applications for assessing work personality prior to client involvement in comprehensive…
Developmental Work Personality Scale: An Initial Analysis.
ERIC Educational Resources Information Center
Strauser, David R.; Keim, Jeanmarie
2002-01-01
The research reported in this article involved using the Developmental Model of Work Personality to create a scale to measure work personality, the Developmental Work Personality Scale (DWPS). Overall, results indicated that the DWPS may have potential applications for assessing work personality prior to client involvement in comprehensive…
Factor Analysis of the Interpersonal Trust Scale
ERIC Educational Resources Information Center
Wright, Thomas L.; Tedeschi, Richard G.
1975-01-01
Separate factor analyses of four large samples of respondents to Rotter's Interpersonal Trust Scale produced three orthogonal factors that cross-validated over all samples. Results indicate there may be relatively independent dimensions of trust and factor scores may yield greater prediction than the general scale in many research applications.…
Gibert, Oriol; Lefèvre, Benoît; Fernández, Marc; Bernat, Xavier; Paraira, Miquel; Pons, Marc
2013-05-15
The removal of natural organic matter (NOM) and, more particularly, its individual fractions by two different GACs was investigated in full-scale filters in a drinking water treatment plant (DWTP). Fractionation of NOM was performed by high performance size exclusion chromatography (HPSEC) into biopolymers, humic substances, building blocks and low molecular weight organics. The sorption capacity of GAC in terms of iodine number (IN) and apparent surface area (SBET), as well as the filling of narrow- and super-microporosity were monitored over the 1-year operation of the filters. Both GACs demonstrated to be effective at removing NOM over a wide range of fractions, especially the low and intermediate molecular weight fractions. TOC removal initially occurred via adsorption, and smaller (lighter) fractions were more removed as they could enter and diffuse more easily through the pores of the adsorbent. As time progressed, biodegradation also played a role in the TOC removal, and lighter fractions continued to be preferentially removed due to their higher biodegradability. The gained knowledge would assist drinking water utilities in selecting a proper GAC for the removal of NOM from water and, therefore, complying more successfully the latest water regulations. Copyright © 2013 Elsevier Ltd. All rights reserved.
Financial analysis of technology acquisition using fractionated lasers as a model.
Jutkowitz, Eric; Carniol, Paul J; Carniol, Alan R
2010-08-01
Ablative fractional lasers are among the most advanced and costly devices on the market. Yet, there is a dearth of published literature on the cost and potential return on investment (ROI) of such devices. The objective of this study was to provide a methodological framework for physicians to evaluate ROI. To facilitate this analysis, we conducted a case study on the potential ROI of eight ablative fractional lasers. In the base case analysis, a 5-year lease and a 3-year lease were assumed as the purchase option with a $0 down payment and 3-month payment deferral. In addition to lease payments, service contracts, labor cost, and disposables were included in the total cost estimate. Revenue was estimated as price per procedure multiplied by total number of procedures in a year. Sensitivity analyses were performed to account for variability in model assumptions. Based on the assumptions of the model, all lasers had higher ROI under the 5-year lease agreement compared with that for the 3-year lease agreement. When comparing results between lasers, those with lower operating and purchase cost delivered a higher ROI. Sensitivity analysis indicates the model is most sensitive to purchase method. If physicians opt to purchase the device rather than lease, they can significantly enhance ROI. ROI analysis is an important tool for physicians who are considering making an expensive device acquisition. However, physicians should not rely solely on ROI and must also consider the clinical benefits of a laser. (c) Thieme Medical Publishers.
Emons, Wilco H M; Sijtsma, Klaas; Pedersen, Susanne S
2012-09-01
The hospital anxiety and depression scale (HADS) measures anxiety and depressive symptoms and is widely used in clinical and nonclinical populations. However, there is some debate about the number of dimensions represented by the HADS. In a sample of 534 Dutch cardiac patients, this study examined (a) the dimensionality of the HADS using Mokken scale analysis and factor analysis and (b) the scale properties of the HADS. Mokken scale analysis and factor analysis suggested that three dimensions adequately capture the structure of the HADS. Of the three corresponding scales, two scales of five items each were found to be structurally sound and reliable. These scales covered the two key attributes of anxiety and (anhedonic) depression. The findings suggest that the HADS may be reduced to a 10-item questionnaire comprising two 5-item scales measuring anxiety and depressive symptoms.
Lie Symmetry Analysis and Explicit Solutions of the Time Fractional Fifth-Order KdV Equation
Wang, Gang wei; Xu, Tian zhou; Feng, Tao
2014-01-01
In this paper, using the Lie group analysis method, we study the invariance properties of the time fractional fifth-order KdV equation. A systematic research to derive Lie point symmetries to time fractional fifth-order KdV equation is performed. In the sense of point symmetry, all of the vector fields and the symmetry reductions of the fractional fifth-order KdV equation are obtained. At last, by virtue of the sub-equation method, some exact solutions to the fractional fifth-order KdV equation are provided. PMID:24523885
Lie symmetry analysis and explicit solutions of the time fractional fifth-order KdV equation.
Wang, Gang Wei; Xu, Tian Zhou; Feng, Tao
2014-01-01
In this paper, using the Lie group analysis method, we study the invariance properties of the time fractional fifth-order KdV equation. A systematic research to derive Lie point symmetries to time fractional fifth-order KdV equation is performed. In the sense of point symmetry, all of the vector fields and the symmetry reductions of the fractional fifth-order KdV equation are obtained. At last, by virtue of the sub-equation method, some exact solutions to the fractional fifth-order KdV equation are provided.
Jonker, Willem; Stöckl, Jan B; de Koning, Sjaak; Schaap, Jaap; Somsen, Govert W; Kool, Jeroen
2017-06-01
We describe the development and evaluation of a GC-MS fractionation platform that combines high-resolution fraction collection of full chromatograms with parallel MS detection. A y-split at the column divides the effluent towards the MS detector and towards an inverted y-piece where vaporized trap solvent is infused. The latter flow is directed outside the GC oven allowing subsequent condensation and stepwise collection of liquid fractions with trapped analytes on a 384-well plate. For study and optimization of the effluent split ratio, restriction capillaries of different lengths and diameters were evaluated. For a wide range of settings, local pressures were monitored during fractionation to assess the influence of MS vacuum and trap solvent infusion on the GC system stability. The platform performance was evaluated by GC-MS analysis and continuous fractionation of an n-alkane mixture followed by GC analysis of each fraction. Comparison of the on-line recorded and fraction-reconstructed chromatogram showed the GC separation is maintained during fractionation. Multiple fractionation cycles of the n-alkane sample on the same 384-well plate yielded a reconstructed chromatogram which was highly similar to that of a single analysis, demonstrating the high repeatability. The applicability of the GC-MS-fractionation platform for bioactivity screening was investigated by applying the AR-Ecoscreen reporter gene bioassay on fractions obtained after analysis of standard solutions and dust samples containing the anti-androgenic compounds vinclozolin and p,p'-DDE. Copyright © 2017 Elsevier B.V. All rights reserved.
Magin, Richard L; Akpa, Belinda S; Neuberger, Thomas; Webb, Andrew G
2011-12-01
We report the appearance of anomalous water diffusion in hydrophilic Sephadex gels observed using pulse field gradient (PFG) nuclear magnetic resonance (NMR). The NMR diffusion data was collected using a Varian 14.1 Tesla imaging system with a home-built RF saddle coil. A fractional order analysis of the data was used to characterize heterogeneity in the gels for the dynamics of water diffusion in this restricted environment. Several recent studies of anomalous diffusion have used the stretched exponential function to model the decay of the NMR signal, i.e., exp[-(bD)(α)], where D is the apparent diffusion constant, b is determined the experimental conditions (gradient pulse separation, durations and strength), and α is a measure of structural complexity. In this work, we consider a different case where the spatial Laplacian in the Bloch-Torrey equation is generalized to a fractional order model of diffusivity via a complexity parameter, β, a space constant, μ, and a diffusion coefficient, D. This treatment reverts to the classical result for the integer order case. The fractional order decay model was fit to the diffusion-weighted signal attenuation for a range of b-values (0 < b < 4,000 s-mm(-2)). Throughout this range of b values, the parameters β, μ and D, were found to correlate with the porosity and tortuosity of the gel structure.
Design Analysis for a Scaled Erosion Test
Lee, S.Y.
2002-04-10
In support of a slurry wear evaluation in the pretreatment filtration and evaporation systems of RPP-WTP, Engineering Modeling and Simulation Group (EMSG) has developed the computational models to help guide component design and scaling decisions and to assist in the full-scale analyses. This report deals with the filtration system. In this project, computational fluid dynamics (CFD) methods were applied to ensure that the test facility design would capture the erosion phenomena expected in the full-scale cross-flow ultrafiltration facility. The literature survey was initially performed to identify the principal mechanisms of erosion for a solids laden fluid.
Dynamical scaling analysis of plant callus growth
NASA Astrophysics Data System (ADS)
Galeano, J.; Buceta, J.; Juarez, K.; Pumariño, B.; de la Torre, J.; Iriondo, J. M.
2003-07-01
We present experimental results for the dynamical scaling properties of the development of plant calli. We have assayed two different species of plant calli, Brassica oleracea and Brassica rapa, under different growth conditions, and show that their dynamical scalings share a universality class. From a theoretical point of view, we introduce a scaling hypothesis for systems whose size evolves in time. We expect our work to be relevant for the understanding and characterization of other systems that undergo growth due to cell division and differentiation, such as, for example, tumor development.
Scaling analysis of Langevin-type equations
NASA Astrophysics Data System (ADS)
Hanfei; Ma, Benkun
1993-05-01
The approach of scaling behavior of open dissipative systems, which was proposed by Hentschel and Family [Phys. Rev. Lett. 66, 1982 (1991)], is developed to analyze several models. The results show there are two scaling regions, a strong-coupling region and a weak-coupling region, in each model. The dynamic renormalization-group results are exactly the same as the results in the weak-coupling region. The scaling exponents in the strong-coupling region and the crossover behavior are also discussed.
A Benchtop Fractionation Procedure for Subcellular Analysis of the Plant Metabolome
Fürtauer, Lisa; Weckwerth, Wolfram; Nägele, Thomas
2016-01-01
Although compartmentation is a key feature of eukaryotic cells, biological research is frequently limited by methods allowing for the comprehensive subcellular resolution of the metabolome. It has been widely accepted that such a resolution would be necessary in order to approximate cellular biochemistry and metabolic regulation, yet technical challenges still limit both the reproducible subcellular fractionation and the sample throughput being necessary for a statistically robust analysis. Here, we present a method and a detailed protocol which is based on the non-aqueous fractionation technique enabling the assignment of metabolites to their subcellular localization. The presented benchtop method aims at unraveling subcellular metabolome dynamics in a precise and statistically robust manner using a relatively small amount of tissue material. The method is based on the separation of cellular fractions via density gradients consisting of organic, non-aqueous solvents. By determining the relative distribution of compartment-specific marker enzymes together with metabolite profiles over the density gradient it is possible to estimate compartment-specific metabolite concentrations by correlation. To support this correlation analysis, a spreadsheet is provided executing a calculation algorithm to determine the distribution of metabolites over subcellular compartments. The calculation algorithm performs correlation of marker enzyme activity and metabolite abundance accounting for technical errors, reproducibility and the resulting error propagation. The method was developed, tested and validated in three natural accessions of Arabidopsis thaliana showing different ability to acclimate to low temperature. Particularly, amino acids were strongly shuffled between subcellular compartments in a cold-sensitive accession while a cold-tolerant accession was characterized by a stable subcellular metabolic homeostasis. Finally, we conclude that subcellular metabolome analysis is
Failure Analysis of a Pilot Scale Melter
Imrich, K J
2001-09-14
Failure of the pilot-scale test melter resulted from severe overheating of the Inconel 690 jacketed molybdenum electrode. Extreme temperatures were required to melt the glass during this campaign because the feed material contained a very high waste loading.
NASA Technical Reports Server (NTRS)
Nordon, R.; Behar, E.; Drake, S. A.
2013-01-01
Elemental abundance effects in active coronae have eluded our understanding for almost three decades, since the discovery of the first ionization potential (FIP) effect on the sun. The goal of this paper is to monitor the same coronal structures over a time interval of six days and resolve active regions on a stellar corona through rotational modulation. We report on four iso-phase X-ray spectroscopic observations of the RS CVn binary EI Eri with XMM-Newton, carried out approximately every two days, to match the rotation period of EI Eri. We present an analysis of the thermal and chemical structure of the EI Eri corona as it evolves over the six days. Although the corona is rather steady in its temperature distribution, the emission measure and FIP bias both vary and seem to be correlated. An active region, predating the beginning of the campaign, repeatedly enters into our view at the same phase as it rotates from beyond the stellar limb. As a result, the abundances tend slightly, but consistently, to increase for high FIP elements (an inverse FIP effect) with phase. We estimate the abundance increase of high FIP elements in the active region to be of about 75% over the coronal mean. This observed fractionation of elements in an active region on time scales of days provides circumstantial clues regarding the element enrichment mechanism of non-flaring stellar coronae.
Study of the free volume fraction in polylactic acid (PLA) by thermal analysis
NASA Astrophysics Data System (ADS)
Abdallah, A.; Benrekaa, N.
2015-10-01
The poly (lactic acid) or polylactide (PLA) is a biodegradable polymer with high modulus, strength and thermoplastic properties. In this work, the evolution of various properties of PLA is studied, such as glass transition temperature, mechanical modules and elongation percentage with the aim of investigating the free volume fraction. To do so, two thermal techniques have been used: the dynamic mechanical analysis (DMA) and dilatometry. The results obtained by these techniques are combined to go back to the structural properties of the studied material.
Convective scale weather analysis and forecasting
NASA Technical Reports Server (NTRS)
Purdom, J. F. W.
1984-01-01
How satellite data can be used to improve insight into the mesoscale behavior of the atmosphere is demonstrated with emphasis on the GOES-VAS sounding and image data. This geostationary satellite has the unique ability to observe frequently the atmosphere (sounders) and its cloud cover (visible and infrared) from the synoptic scale down to the cloud scale. These uniformly calibrated data sets can be combined with conventional data to reveal many of the features important in mesoscale weather development and evolution.
Sensitivity analysis of an accident prediction model by the fractional factorial method.
Akgüngör, Ali P; Yildiz, Osman
2007-01-01
Sensitivity analysis of a model can help us determine relative effects of model parameters on model results. In this study, the sensitivity of the accident prediction model proposed by Zegeer et al. [Zegeer, C.V., Reinfurt, D., Hummer, J., Herf, L., Hunter, W., 1987. Safety Effect of Cross-section Design for Two-lane Roads, vols. 1-2. Report FHWA-RD-87/008 and 009 Federal Highway Administration, Department of Transportation, USA] to its parameters was investigated by the fractional factorial analysis method. The reason for selecting this particular model is that it incorporates both traffic and road geometry parameters besides terrain characteristics. The evaluation of sensitivity analysis indicated that average daily traffic (ADT), lane width (W), width of paved shoulder (PA), median (H) and their interactions (i.e., ADT-W, ADT-PA and ADT-H) have significant effects on number of accidents. Based on the absolute value of parameter effects at the three- and two-standard deviation thresholds ADT was found to be of primary importance, while the remaining identified parameters seemed to be of secondary importance. This agrees with the fact that ADT is among the most effective parameters to determine road geometry and therefore, it is directly related to number of accidents. Overall, the fractional factorial method was found to be an efficient tool to examine the relative importance of the selected accident prediction model parameters.
A wavelet based time-frequency analysis of wave packet fractional revivals
NASA Astrophysics Data System (ADS)
Ghosh, Suranjana; Banerji, Jagannath
2007-06-01
We show that the time-frequency analysis of the autocorrelation function based on its wavelet transform [1], is a better tool to resolve fractional revivals [2] of a wave packet than the usual time domain analysis. We study the above for two different systems like a Rydberg atom [3] and a diatomic molecular system [4] and show that the present method can resolve fractional revivals of higher order than what can be achieved by the time domain analysis. This advantage is crucial in reconstructing the initial state of the wave packet when its coherent structure is short-lived and decays before it is fully revived. References: [1] R. M. Rao and A. S. Bopardikar, Wavelet Transforms: Introduction to Theory and Applications (ADDISON-WESLEY, 2000). [2] I. Sh. Averbukh and N. F. Perelman, Phys. Lett. A 139, 449 (1989); R. W. Robinett, Phys. Rep. 392, 1 (2004) and references therein; J. Banerji and S. Ghosh, J. Phys. B 39, 1113 (2006). [3] Z. D. Gaeta and C. R. Stroud, Jr., Phys. Rev. A 42, 6308 (1990). [4] S. Ghosh, A. Chiruvelli, J. Banerji and P. K. Panigrahi, Phys. Rev. A 70, 053813 (2006).
Keller, Harald; Hope, Andrew; Meier, Gabriel; Davison, Matt
2013-08-01
, with the numbers for the 3 Gy/fraction group in between. The bifurcation numbers are strongly consistent with prescribed clinical fractionation protocols for NSCLC treatments. Due to their scale-free property the B-numbers may assist in the selection of an appropriate fractionation once the dose distribution has been optimized.
Detection of crossover time scales in multifractal detrended fluctuation analysis
NASA Astrophysics Data System (ADS)
Ge, Erjia; Leung, Yee
2013-04-01
Fractal is employed in this paper as a scale-based method for the identification of the scaling behavior of time series. Many spatial and temporal processes exhibiting complex multi(mono)-scaling behaviors are fractals. One of the important concepts in fractals is crossover time scale(s) that separates distinct regimes having different fractal scaling behaviors. A common method is multifractal detrended fluctuation analysis (MF-DFA). The detection of crossover time scale(s) is, however, relatively subjective since it has been made without rigorous statistical procedures and has generally been determined by eye balling or subjective observation. Crossover time scales such determined may be spurious and problematic. It may not reflect the genuine underlying scaling behavior of a time series. The purpose of this paper is to propose a statistical procedure to model complex fractal scaling behaviors and reliably identify the crossover time scales under MF-DFA. The scaling-identification regression model, grounded on a solid statistical foundation, is first proposed to describe multi-scaling behaviors of fractals. Through the regression analysis and statistical inference, we can (1) identify the crossover time scales that cannot be detected by eye-balling observation, (2) determine the number and locations of the genuine crossover time scales, (3) give confidence intervals for the crossover time scales, and (4) establish the statistically significant regression model depicting the underlying scaling behavior of a time series. To substantive our argument, the regression model is applied to analyze the multi-scaling behaviors of avian-influenza outbreaks, water consumption, daily mean temperature, and rainfall of Hong Kong. Through the proposed model, we can have a deeper understanding of fractals in general and a statistical approach to identify multi-scaling behavior under MF-DFA in particular.
Rasch Analysis for Psychometric Improvement of Science Attitude Rating Scales
ERIC Educational Resources Information Center
Oon, Pey-Tee; Fan, Xitao
2017-01-01
Students' attitude towards science (SAS) is often a subject of investigation in science education research. Survey of rating scale is commonly used in the study of SAS. The present study illustrates how Rasch analysis can be used to provide psychometric information of SAS rating scales. The analyses were conducted on a 20-item SAS scale used in an…
Confirmatory Factor Analysis of the Cancer Locus of Control Scale.
ERIC Educational Resources Information Center
Henderson, Jessica W.; Donatelle, Rebecca J.; Acock, Alan C.
2002-01-01
Conducted a confirmatory factor analysis of the Cancer Locus of Control scale (M. Watson and others, 1990), administered to 543 women with a history of breast cancer. Results support a three-factor model of the scale and support use of the scale to assess control dimensions. (SLD)
Minimum Sample Size Requirements for Mokken Scale Analysis
ERIC Educational Resources Information Center
Straat, J. Hendrik; van der Ark, L. Andries; Sijtsma, Klaas
2014-01-01
An automated item selection procedure in Mokken scale analysis partitions a set of items into one or more Mokken scales, if the data allow. Two algorithms are available that pursue the same goal of selecting Mokken scales of maximum length: Mokken's original automated item selection procedure (AISP) and a genetic algorithm (GA). Minimum…
Minimum Sample Size Requirements for Mokken Scale Analysis
ERIC Educational Resources Information Center
Straat, J. Hendrik; van der Ark, L. Andries; Sijtsma, Klaas
2014-01-01
An automated item selection procedure in Mokken scale analysis partitions a set of items into one or more Mokken scales, if the data allow. Two algorithms are available that pursue the same goal of selecting Mokken scales of maximum length: Mokken's original automated item selection procedure (AISP) and a genetic algorithm (GA). Minimum…
Buldo, Patrizia; Larsen, Mette K; Wiking, Lars
2013-05-01
The melting behaviour and fatty acid composition of cream from a total of 33 cows from four farms were analysed. Multivariate data analysis was used to identify the fatty acids that contributed most to the melting points and to differentiate between creams from different practical feeding regimes. It was demonstrated that the melting point of the medium melting fraction of milk fat was positively correlated with palmitic acid (C16:0), whereas it was negatively correlated with oleic acid (C18:1 cis9), conjugated linoleic acid (CLA cis9 trans11), vaccenic acid (C18:1 trans11), elaic acid (C18:1 trans9) and myristoleic acid (C14:1). The melting points of the high melting fractions could not be related to the fatty acid composition. Addition of palmitic acid-based fat supplement to the feeding ration in combination with a lower forage intake increased the amount of C16:0 and palmitoleic acid (C16:1) in milk fat, whereas it decreased the amount of stearic acid (C18:0) and C18:1 trans fatty acid. Average data on the melting behaviour of cream separated the farms into two groups where the main differences in feeding were the amounts of maize silage and rapeseed cake used. Multivariate analysis of data from individual cows identified the most relevant fatty acids contributing to the melting point of the medium melting fraction of cream. The fatty acid composition of milk fat could differentiate cream from different feeding strategies; however, owing to individual cow variation, it was not possible to extract clear correlations between feeding regime and melting behaviour of cream. © 2012 Society of Chemical Industry.
SCALING ANALYSIS OF REPOSITORY HEAT LOAD FOR REDUCED DIMENSIONALITY MODELS
MICHAEL T. ITAMUA AND CLIFFORD K. HO
1998-06-04
The thermal energy released from the waste packages emplaced in the potential Yucca Mountain repository is expected to result in changes in the repository temperature, relative humidity, air mass fraction, gas flow rates, and other parameters that are important input into the models used to calculate the performance of the engineered system components. In particular, the waste package degradation models require input from thermal-hydrologic models that have higher resolution than those currently used to simulate the T/H responses at the mountain-scale. Therefore, a combination of mountain- and drift-scale T/H models is being used to generate the drift thermal-hydrologic environment.
Reginal Frequency Analysis Based on Scaling Properties and Bayesian Models
NASA Astrophysics Data System (ADS)
Kwon, Hyun-Han; Lee, Jeong-Ju; Moon, Young-Il
2010-05-01
A regional frequency analysis based on Hierarchical Bayesian Network (HBN) and scaling theory was developmed. Many recording rain gauges over South Korea were used for the analysis. First, a scaling approach combined with extreme distribution was employed to derive regional formula for frequency analysis. Second, HBN model was used to represent additional information about the regional structure of the scaling parameters, especially the location parameter and shape parameter. The location and shape parameters of the extreme distribution were estimated by utilizing scaling properties in a regression framework, and the scaling parameters linking the parameters (location and shape) to various duration times were simultaneously estimated. It was found that the regional frequency analysis combined with HBN and scaling properties show promising results in terms of establishing regional IDF curves.
Klie, Sebastian; Krueger, Stephan; Krall, Leonard; Giavalisco, Patrick; Flügge, Ulf-Ingo; Willmitzer, Lothar; Steinhauser, Dirk
2011-01-01
With the development of high-throughput metabolic technologies, a plethora of primary and secondary compounds have been detected in the plant cell. However, there are still major gaps in our understanding of the plant metabolome. This is especially true with regards to the compartmental localization of these identified metabolites. Non-aqueous fractionation (NAF) is a powerful technique for the determination of subcellular metabolite distributions in eukaryotic cells, and it has become the method of choice to analyze the distribution of a large number of metabolites concurrently. However, the NAF technique produces a continuous gradient of metabolite distributions, not discrete assignments. Resolution of these distributions requires computational analyses based on marker molecules to resolve compartmental localizations. In this article we focus on expanding the computational analysis of data derived from NAF. Along with an experimental workflow, we describe the critical steps in NAF experiments and how computational approaches can aid in assessing the quality and robustness of the derived data. For this, we have developed and provide a new version (v1.2) of the BestFit command line tool for calculation and evaluation of subcellular metabolite distributions. Furthermore, using both simulated and experimental data we show the influence on estimated subcellular distributions by modulating important parameters, such as the number of fractions taken or which marker molecule is selected. Finally, we discuss caveats and benefits of NAF analysis in the context of the compartmentalized metabolome. PMID:22645541
Albertsson, T.; Semenov, D. A.; Henning, Th.; Vasyunin, A. I.; Herbst, E.
2013-08-15
Observations of deuterated species are useful in probing the temperature, ionization level, evolutionary stage, chemistry, and thermal history of astrophysical environments. The analysis of data from the Atacama Large Millimeter Array and other new telescopes requires an elaborate model of deuterium fractionation. This paper presents a publicly available chemical network with multi-deuterated species and an extended, up-to-date set of gas-phase and surface reactions. To test this network, we simulate deuterium fractionation in diverse interstellar sources. Two cases of initial abundances are considered: (1) atomic except for H{sub 2} and HD, and (2) molecular from a prestellar core. We reproduce the observed D/H ratios of many deuterated molecules, and sort the species according to their sensitivity to temperature gradients and initial abundances. We find that many multiply deuterated species produced at 10 K retain enhanced D/H ratios at temperatures {approx}< 100 K. We study how recent updates to reaction rates affect calculated D/H ratios, and perform a detailed sensitivity analysis of the uncertainties of the gas-phase reaction rates in the network. We find that uncertainties are generally lower in dark cloud environments than in warm infrared dark clouds and that uncertainties increase with the size of the molecule and number of D-atoms. A set of the most problematic reactions is presented. We list potentially observable deuterated species predicted to be abundant in low- and high-mass star-formation regions.
Eitzinger, Nicole; Wagner, Volker; Weisheit, Wolfram; Geimer, Stefan; Boness, David; Kreimer, Georg; Mittag, Maria
2015-01-01
Flagellate green algae possess a visual system, the eyespot. In Chlamydomonas reinhardtii it is situated at the edge of the chloroplast and consists of two carotenoid rich lipid globule layers subtended by thylakoid membranes (TM) that are attached to both chloroplast envelope membranes and a specialized area of the plasma membrane (PM). A former analysis of an eyespot fraction identified 203 proteins. To increase the understanding of eyespot related processes, knowledge of the protein composition of the membranes in its close vicinity is desirable. Here, we present a purification procedure that allows isolation of intact eyespots. This gain in intactness goes, however, hand in hand with an increase of contaminants from other organelles. Proteomic analysis identified 742 proteins. Novel candidates include proteins for eyespot development, retina-related proteins, ion pumps, and membrane-associated proteins, calcium sensing proteins as well as kinases, phosphatases and 14-3-3 proteins. Methylation of proteins at Arg or Lys is known as an important posttranslational modification involved in, e.g., signal transduction. Here, we identify several proteins from eyespot fractions that are methylated at Arg and/or Lys. Among them is the eyespot specific SOUL3 protein that influences the size and position of the eyespot and EYE2, a protein important for its development.
Eitzinger, Nicole; Wagner, Volker; Weisheit, Wolfram; Geimer, Stefan; Boness, David; Kreimer, Georg; Mittag, Maria
2015-01-01
Flagellate green algae possess a visual system, the eyespot. In Chlamydomonas reinhardtii it is situated at the edge of the chloroplast and consists of two carotenoid rich lipid globule layers subtended by thylakoid membranes (TM) that are attached to both chloroplast envelope membranes and a specialized area of the plasma membrane (PM). A former analysis of an eyespot fraction identified 203 proteins. To increase the understanding of eyespot related processes, knowledge of the protein composition of the membranes in its close vicinity is desirable. Here, we present a purification procedure that allows isolation of intact eyespots. This gain in intactness goes, however, hand in hand with an increase of contaminants from other organelles. Proteomic analysis identified 742 proteins. Novel candidates include proteins for eyespot development, retina-related proteins, ion pumps, and membrane-associated proteins, calcium sensing proteins as well as kinases, phosphatases and 14-3-3 proteins. Methylation of proteins at Arg or Lys is known as an important posttranslational modification involved in, e.g., signal transduction. Here, we identify several proteins from eyespot fractions that are methylated at Arg and/or Lys. Among them is the eyespot specific SOUL3 protein that influences the size and position of the eyespot and EYE2, a protein important for its development. PMID:26697039
Wang, Jinfeng; Zhao, Meng; Zhang, Min; Liu, Yang; Li, Hong
2014-01-01
We discuss and analyze an H(1)-Galerkin mixed finite element (H(1)-GMFE) method to look for the numerical solution of time fractional telegraph equation. We introduce an auxiliary variable to reduce the original equation into lower-order coupled equations and then formulate an H(1)-GMFE scheme with two important variables. We discretize the Caputo time fractional derivatives using the finite difference methods and approximate the spatial direction by applying the H(1)-GMFE method. Based on the discussion on the theoretical error analysis in L(2)-norm for the scalar unknown and its gradient in one dimensional case, we obtain the optimal order of convergence in space-time direction. Further, we also derive the optimal error results for the scalar unknown in H(1)-norm. Moreover, we derive and analyze the stability of H(1)-GMFE scheme and give the results of a priori error estimates in two- or three-dimensional cases. In order to verify our theoretical analysis, we give some results of numerical calculation by using the Matlab procedure.
Fetal fraction estimate in twin pregnancies using directed cell-free DNA analysis.
Struble, Craig A; Syngelaki, Argyro; Oliphant, Arnold; Song, Ken; Nicolaides, Kypros H
2014-01-01
To estimate fetal fraction (FF) in monozygotic and dizygotic twin pregnancies. Maternal plasma samples were obtained from 35 monochorionic twin pregnancies with male fetuses (monozygotic) and 35 dichorionic pregnancies discordant for fetal sex (dizygotic) at 11-13 weeks' gestation. Cell-free DNA was extracted and chromosome-selective sequencing with digital analysis of selected regions (DANSR™) was carried out. The fetal-fraction optimized risk of trisomy evaluation (FORTE™) algorithm was used to estimate FF using polymorphic alleles. In dizygotic twins the FORTE algorithm was modified to estimate the smallest FF contribution of the 2 fetuses. In both types of twins, FF was also determined by analysis of Y-chromosome sequences. In monozygotic twins, the median total FF was 14.0% (range 8.2-27.0%) and in dizygotic twins the median smallest FF was 7.9% (4.9-14.0%). There were significant associations in FF between the methods using polymorphic alleles and Y-chromosome sequences for both monozygotic (r=0.951, p<0.0001) and dizygotic (r=0.743, p<0.0001) twins. The study demonstrates the feasibility of an approach for cfDNA testing in twin pregnancies. This involves estimation of total FF in monozygotic twins and estimation of the lower FF of the 2 fetuses in dizygotic twins. © 2013 S. Karger AG, Basel.
Analysis of plant ribosomes with asymmetric flow field-flow fractionation.
Pitkänen, Leena; Tuomainen, Päivi; Eskelin, Katri
2014-02-01
Ribosome profiling is a technique used to separate ribosomal subunits, 80S ribosomes (monosomes), and polyribosomes (polysomes) from other RNA-protein complexes. It is traditionally performed in sucrose gradients. In this study, we used asymmetric flow field-flow fractionation (AsFlFFF) to characterize ribosome profiles of Nicotiana benthamiana plants. With the optimized running conditions, we were able to separate free molecules from ribosomal subunits and intact ribosomes. We used various chemical and enzymatic treatments to validate the positions of subunits, monosomes, and polysomes in the AsFlFFF fractograms. We also characterized the protein and RNA content of AsFlFFF fractions by gel electrophoresis and western blotting. The reverse transcription polymerase chain reaction (RT-PCR) analysis showed that ribosomes remained bound to messenger RNAs (mRNAs) during the analysis. Therefore, we conclude that AsFlFFF can be used for ribosome profiling to study the mRNAs that are being translated. It can also be used to study the protein composition of ribosomes that are active in translation at that particular moment.
Wang, Jinfeng; Zhao, Meng; Zhang, Min; Liu, Yang; Li, Hong
2014-01-01
We discuss and analyze an H 1-Galerkin mixed finite element (H 1-GMFE) method to look for the numerical solution of time fractional telegraph equation. We introduce an auxiliary variable to reduce the original equation into lower-order coupled equations and then formulate an H 1-GMFE scheme with two important variables. We discretize the Caputo time fractional derivatives using the finite difference methods and approximate the spatial direction by applying the H 1-GMFE method. Based on the discussion on the theoretical error analysis in L 2-norm for the scalar unknown and its gradient in one dimensional case, we obtain the optimal order of convergence in space-time direction. Further, we also derive the optimal error results for the scalar unknown in H 1-norm. Moreover, we derive and analyze the stability of H 1-GMFE scheme and give the results of a priori error estimates in two- or three-dimensional cases. In order to verify our theoretical analysis, we give some results of numerical calculation by using the Matlab procedure. PMID:25184148
1981-12-15
13 3. Solvent Fractionation Experiments .................................... 15 4. Fourier Transform Infrared Spectra for A240 Petrolem Pitch AG 12...34 and Mesophase Pitch AG 164B ............................... 21 5. Fourier Transform Infrared Spectra ................................... 23 6...compared by Fourier transform infrared (FTIR) analysis using a Digilab Model FTS 14 spectrophotometer (Rockwell International, Anaheim, California
Assessing pretreatment reactor scaling through empirical analysis
Lischeske, James J.; Crawford, Nathan C.; Kuhn, Erik; ...
2016-10-10
Pretreatment is a critical step in the biochemical conversion of lignocellulosic biomass to fuels and chemicals. Due to the complexity of the physicochemical transformations involved, predictively scaling up technology from bench- to pilot-scale is difficult. This study examines how pretreatment effectiveness under nominally similar reaction conditions is influenced by pretreatment reactor design and scale using four different pretreatment reaction systems ranging from a 3 g batch reactor to a 10 dry-ton/d continuous reactor. The reactor systems examined were an Automated Solvent Extractor (ASE), Steam Explosion Reactor (SER), ZipperClave(R) reactor (ZCR), and Large Continuous Horizontal-Screw Reactor (LHR). To our knowledge, thismore » is the first such study performed on pretreatment reactors across a range of reaction conditions (time and temperature) and at different reactor scales. The comparative pretreatment performance results obtained for each reactor system were used to develop response surface models for total xylose yield after pretreatment and total sugar yield after pretreatment followed by enzymatic hydrolysis. Near- and very-near-optimal regions were defined as the set of conditions that the model identified as producing yields within one and two standard deviations of the optimum yield. Optimal conditions identified in the smallest-scale system (the ASE) were within the near-optimal region of the largest scale reactor system evaluated. A reaction severity factor modeling approach was shown to inadequately describe the optimal conditions in the ASE, incorrectly identifying a large set of sub-optimal conditions (as defined by the RSM) as optimal. The maximum total sugar yields for the ASE and LHR were 95%, while 89% was the optimum observed in the ZipperClave. The optimum condition identified using the automated and less costly to operate ASE system was within the very-near-optimal space for the total xylose yield of both the ZCR and the LHR, and
Assessing pretreatment reactor scaling through empirical analysis
Lischeske, James J.; Crawford, Nathan C.; Kuhn, Erik; Nagle, Nicholas J.; Schell, Daniel J.; Tucker, Melvin P.; McMillan, James D.; Wolfrum, Edward J.
2016-10-10
Pretreatment is a critical step in the biochemical conversion of lignocellulosic biomass to fuels and chemicals. Due to the complexity of the physicochemical transformations involved, predictively scaling up technology from bench- to pilot-scale is difficult. This study examines how pretreatment effectiveness under nominally similar reaction conditions is influenced by pretreatment reactor design and scale using four different pretreatment reaction systems ranging from a 3 g batch reactor to a 10 dry-ton/d continuous reactor. The reactor systems examined were an Automated Solvent Extractor (ASE), Steam Explosion Reactor (SER), ZipperClave(R) reactor (ZCR), and Large Continuous Horizontal-Screw Reactor (LHR). To our knowledge, this is the first such study performed on pretreatment reactors across a range of reaction conditions (time and temperature) and at different reactor scales. The comparative pretreatment performance results obtained for each reactor system were used to develop response surface models for total xylose yield after pretreatment and total sugar yield after pretreatment followed by enzymatic hydrolysis. Near- and very-near-optimal regions were defined as the set of conditions that the model identified as producing yields within one and two standard deviations of the optimum yield. Optimal conditions identified in the smallest-scale system (the ASE) were within the near-optimal region of the largest scale reactor system evaluated. A reaction severity factor modeling approach was shown to inadequately describe the optimal conditions in the ASE, incorrectly identifying a large set of sub-optimal conditions (as defined by the RSM) as optimal. The maximum total sugar yields for the ASE and LHR were 95%, while 89% was the optimum observed in the ZipperClave. The optimum condition identified using the automated and less costly to operate ASE system was within the very-near-optimal space for the total xylose yield of both the ZCR and the LHR, and was
Chemical Analysis of Fractionated Halogens in Atmospheric Aerosols Collected in Okinawa, Japan
NASA Astrophysics Data System (ADS)
Tsuhako, A.; Miyagi, Y.; Somada, Y.; Azechi, S.; Handa, D.; Oshiro, Y.; Murayama, H.; Arakaki, T.
2013-12-01
Halogens (Cl, Br and I) play important roles in the atmosphere, e.g. ozone depletion by Br during spring in Polar Regions. Sources of halogens in atmospheric aerosols are mainly from ocean. But, for example, when we analyzed Br- with ion chromatography, its concentrations were almost always below the detection limit, which is also much lower than the estimated concentrations from sodium ion concentrations. We hypothesized that portions of halogens are escaped to the atmosphere, similar to chlorine loss, changed their chemical forms to such as BrO3- and IO3-, and/or even formed precipitates. There was few reported data so far about fractionated halogen concentrations in atmospheric aerosols. Thus, purpose of this study was to determine halogen concentrations in different fractions; free ion, water-soluble chemically transformed ions and precipitates using the authentic aerosols. Moreover, we analyzed seasonal variation for each fraction. Atmospheric aerosol samples were collected at Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) of Okinawa, Japan during January 2010 and August 2013. A high volume air sampler was used for collecting total particulate matters on quartz filters on a weekly basis. Ultrapure water was used to extract water-soluble factions of halogens. The extracted solutions were filtered with the membrane filter and used for chemical analysis with ion chromatography and ICP-MS. Moreover, the total halogens in aerosols were obtained after digesting aerosols with tetramethylammonium hydroxide (TMAH) using the microwave and analysis with ICP-MS. For Cl, water-soluble Cl- accounted for about 70% of the estimates with Na content. No other forms of water-soluble Cl were found. About 30% of Cl was assumed volatilized to the gas-phase. For Br, water-soluble Br accounted for about 43% of the estimates with Na content, and within the 43%, about 10% of Br was not in the form of Br-. About 46% of Br was assumed volatilized to the gas-phase. For I
Meyers, Sandra M; Laule, Cornelia; Vavasour, Irene M; Kolind, Shannon H; Mädler, Burkhard; Tam, Roger; Traboulsee, Anthony L; Lee, Jimmy; Li, David K B; MacKay, Alex L
2009-10-01
This study compared region of interest (ROI) and voxel-based analysis (VBA) methods to determine the optimal method of myelin water fraction (MWF) analysis. Twenty healthy controls were scanned twice using a multi-echo T(2) relaxation sequence and ROIs were drawn in white and grey matter. MWF was defined as the fractional signal from 15 to 40 ms in the T(2) distribution. For ROI analysis, the mean intensity of voxels within an ROI was fit using non-negative least squares. For VBA, MWF was obtained for each voxel and the mean and median values within an ROI were calculated. There was a slightly higher correlation between Scan 1 and 2 for the VBA method (R(2)=0.98) relative to the ROI method (R(2)=0.95), and the VBA mean square difference between scans was 300% lower, indicating VBA was the most consistent between scans. For the VBA method, mean MWF was found to be more reproducible than median MWF. As the VBA method is more reproducible and gives more options for visualization and analysis of MWF, it is recommended over the ROI method of MWF analysis.
NASA Astrophysics Data System (ADS)
Pimbblet, Kevin A.; Jensen, Peter C.
2012-10-01
We present an analysis of the galaxy population of the intermediate X-ray luminosity galaxy cluster, Abell 1691, from Sloan Digital Sky Survey (SDSS) and Galaxy Zoo data to elucidate the relationships between environment and galaxy stellar mass for a variety of observationally important cluster populations that include the Butcher-Oemler blue fraction, the active galactic nucleus (AGN) fraction and other spectroscopic classifications of galaxies. From 342 cluster members, we determine a cluster recession velocity of 21257 ± 54 km s-1 and velocity dispersion of 1009-36+40 km s-1 and show that although the cluster is fed by multiple filaments of galaxies it does not possess significant sub-structure in its core. We identify the AGN population of the cluster from a Baldwin, Phillips & Terlevich diagram and show that there is a mild increase in the AGN fraction with radius from the cluster centre that appears mainly driven by high-mass galaxies [log(stellar mass) > 10.8]. Although the cluster blue fraction follows the same radial trend, it is caused primarily by lower mass galaxies [log(stellar mass) < 10.8]. Significantly, the galaxies that have undergone recent starbursts or are presently starbursting but dust-shrouded [spectroscopic e(a) class galaxies] are also nearly exclusively driven by low-mass galaxies. We therefore suggest that the Butcher-Oemler effect may be a mass-dependent effect. We also examine red and passive spiral galaxies and show that the majority are massive galaxies, much like the rest of the red and spectroscopically passive cluster population. We further demonstrate that the velocity dispersion profiles of low- and high-mass cluster galaxies are different. Taken together, we infer that the duty cycle of high- and low-mass cluster galaxies is markedly different, with a significant departure in star formation and specific star formation rates observed beyond r200 and we discuss these findings.
NASA Astrophysics Data System (ADS)
Goodwin, Nicholas; Coops, Nicholas C.; Stone, Christine
2005-05-01
Pine plantations in Australia are subject to a range of abiotic and biotic damaging agents that affect tree health and productivity. In order to optimise management decisions, plantation managers require regular intelligence relating to the status and trends in the health and condition of trees within individual compartments. Remote sensing technology offers an alternative to traditional ground-based assessment of these plantations. Automated estimation of foliar crown health, especially in degraded crowns, can be difficult due to mixed pixels when there is low or fragmented vegetation cover. In this study we apply a linear spectral unmixing approach to high spatial resolution (50 cm) multispectral imagery to quantify the fractional abundances of the key image endmembers: sunlit canopy, shadow, and soil. A number of Pinus radiata tree crown attributes were modelled using multiple linear regression and endmember fraction images. We found high levels of significance ( r2 = 0.80) for the overall crown colour and colour of the crown leader ( r2 = 0.79) in tree crowns affected by the fungal pathogen Sphaeropsis sapinea, which produces both needle necrosis and chlorosis. Results for stands associated with defoliation and chlorosis through infestation by the aphid Essigella californica were lower with an r2 = 0.33 for crown transparency and r2 = 0.31 for proportion of crown affected. Similar analysis of data from a nitrogen deficient site produced an outcome somewhat in between the other two damaging agents. Overall the sunlit canopy image fraction has been the most important variable used in the modelling of forest condition for all damaging agents.
Szymanski, Witold G; Kierszniowska, Sylwia; Schulze, Waltraud X
2013-09-28
Plasma membrane microdomains are features based on the physical properties of the lipid and sterol environment and have particular roles in signaling processes. Extracting sterol-enriched membrane microdomains from plant cells for proteomic analysis is a difficult task mainly due to multiple preparation steps and sources for contaminations from other cellular compartments. The plasma membrane constitutes only about 5-20% of all the membranes in a plant cell, and therefore isolation of highly purified plasma membrane fraction is challenging. A frequently used method involves aqueous two-phase partitioning in polyethylene glycol and dextran, which yields plasma membrane vesicles with a purity of 95% (1). Sterol-rich membrane microdomains within the plasma membrane are insoluble upon treatment with cold nonionic detergents at alkaline pH. This detergent-resistant membrane fraction can be separated from the bulk plasma membrane by ultracentrifugation in a sucrose gradient (2). Subsequently, proteins can be extracted from the low density band of the sucrose gradient by methanol/chloroform precipitation. Extracted protein will then be trypsin digested, desalted and finally analyzed by LC-MS/MS. Our extraction protocol for sterol-rich microdomains is optimized for the preparation of clean detergent-resistant membrane fractions from Arabidopsis thaliana cell cultures. We use full metabolic labeling of Arabidopsis thaliana suspension cell cultures with K(15)NO3 as the only nitrogen source for quantitative comparative proteomic studies following biological treatment of interest (3). By mixing equal ratios of labeled and unlabeled cell cultures for joint protein extraction the influence of preparation steps on final quantitative result is kept at a minimum. Also loss of material during extraction will affect both control and treatment samples in the same way, and therefore the ratio of light and heave peptide will remain constant. In the proposed method either labeled or
FACTOR ANALYSIS OF THE ELKINS HYPNOTIZABILITY SCALE
Elkins, Gary; Johnson, Aimee K.; Johnson, Alisa J.; Sliwinski, Jim
2015-01-01
Assessment of hypnotizability can provide important information for hypnosis research and practice. The Elkins Hypnotizability Scale (EHS) consists of 12 items and was developed to provide a time-efficient measure for use in both clinical and laboratory settings. The EHS has been shown to be a reliable measure with support for convergent validity with the Stanford Hypnotic Susceptibility Scale, Form C (r = .821, p < .001). The current study examined the factor structure of the EHS, which was administered to 252 adults (51.3% male; 48.7% female). Average time of administration was 25.8 minutes. Four factors selected on the basis of the best theoretical fit accounted for 63.37% of the variance. The results of this study provide an initial factor structure for the EHS. PMID:25978085
Large-Scale Aerosol Modeling and Analysis
2008-09-30
aerosol species up to six days in advance anywhere on the globe. NAAPS and COAMPS are particularly useful for forecasts of dust storms in areas...impact cloud processes globally. With increasing dust storms due to climate change and land use changes in desert regions, the impact of the...bacteria in large-scale dust storms is expected to significantly impact warm ice cloud formation, human health, and ecosystems globally. In Niemi et al
Byeon, Seul Kee; Kim, Jin Yong; Lee, Ju Yong; Chung, Bong Chul; Seo, Hong Seog; Moon, Myeong Hee
2015-07-31
This study demonstrated the performances of top-down and bottom-up approaches in lipidomic analysis of lipoproteins from rabbits raised under different metabolic conditions: healthy controls, carrageenan-induced inflammation, dehydration, high cholesterol (HC) diet, and highest cholesterol diet with inflammation (HCI). In the bottom-up approach, the high density lipoproteins (HDL) and the low density lipoproteins (LDL) were size-sorted and collected on a semi-preparative scale using a multiplexed hollow fiber flow field-flow fractionation (MxHF5), followed by nanoflow liquid chromatography-ESI-MS/MS (nLC-ESI-MS/MS) analysis of the lipids extracted from each lipoprotein fraction. In the top-down method, size-fractionated lipoproteins were directly infused to MS for quantitative analysis of targeted lipids using chip-type asymmetrical flow field-flow fractionation-electrospray ionization-tandem mass spectrometry (cAF4-ESI-MS/MS) in selected reaction monitoring (SRM) mode. The comprehensive bottom-up analysis yielded 122 and 104 lipids from HDL and LDL, respectively. Rabbits within the HC and HCI groups had lipid patterns that contrasted most substantially from those of controls, suggesting that HC diet significantly alters the lipid composition of lipoproteins. Among the identified lipids, 20 lipid species that exhibited large differences (>10-fold) were selected as targets for the top-down quantitative analysis in order to compare the results with those from the bottom-up method. Statistical comparison of the results from the two methods revealed that the results were not significantly different for most of the selected species, except for those species with only small differences in concentration between groups. The current study demonstrated that top-down lipid analysis using cAF4-ESI-MS/MS is a powerful high-speed analytical platform for targeted lipidomic analysis that does not require the extraction of lipids from blood samples. Copyright © 2015 Elsevier B
Yang, Yongge; Xu, Wei Yang, Guidong; Jia, Wantao
2016-08-15
The Poisson white noise, as a typical non-Gaussian excitation, has attracted much attention recently. However, little work was referred to the study of stochastic systems with fractional derivative under Poisson white noise excitation. This paper investigates the stationary response of a class of quasi-linear systems with fractional derivative excited by Poisson white noise. The equivalent stochastic system of the original stochastic system is obtained. Then, approximate stationary solutions are obtained with the help of the perturbation method. Finally, two typical examples are discussed in detail to demonstrate the effectiveness of the proposed method. The analysis also shows that the fractional order and the fractional coefficient significantly affect the responses of the stochastic systems with fractional derivative.
Yang, Yongge; Xu, Wei; Yang, Guidong; Jia, Wantao
2016-08-01
The Poisson white noise, as a typical non-Gaussian excitation, has attracted much attention recently. However, little work was referred to the study of stochastic systems with fractional derivative under Poisson white noise excitation. This paper investigates the stationary response of a class of quasi-linear systems with fractional derivative excited by Poisson white noise. The equivalent stochastic system of the original stochastic system is obtained. Then, approximate stationary solutions are obtained with the help of the perturbation method. Finally, two typical examples are discussed in detail to demonstrate the effectiveness of the proposed method. The analysis also shows that the fractional order and the fractional coefficient significantly affect the responses of the stochastic systems with fractional derivative.
Fractional Vorticity Equations
NASA Astrophysics Data System (ADS)
Schertzer, D.; Tchguirinskaia, I.; Lovejoy, S.; Tuck, A.
2012-04-01
As a result of a thorough discussion (Schertzer et al., Atmos. Chem. Phys., 12, 327-336, 2012 ) of the limitations of the quasi-geostrophic approximation and turbulence, fractional vorticity equations were obtained. This was done with the help of an anisotropic scaling analysis, instead of the classical scale analysis, as done to derive the quasi-geostrophic approximation. This breaks the rotational symmetry of the classical 3D vorticity equations and a priori yields a (2 + Hz)-dimensional turbulence (0 ≤ Hz ≤ 1). This corresponds to a first step in the derivation of a dynamical alternative to the quasi-geostrophic approximation and turbulence. The corresponding precise definition of fractional dimensional turbulence already demonstrates that the classical 2-D and 3-D turbulence are not the main options to understand atmospheric and oceanic dynamics. Although (2 + Hz)-dimensional turbulence (with 0 < Hz < 1) has more common features with 3-D turbulence than with 2-D turbulence, it has nevertheless very distinctive features: its scaling anisotropy is in agreement with the layered pancake structure, which is typical of rotating and stratified turbulence, but not of the classical 3-D turbulence. In this presentation, we further discuss the properties of this set of deterministic-like equations, especially how they can generate a statistical scaling anisotropy, as well as the relevance of the theoretical value Hz = 5/9.
Differential branching fraction and angular analysis of Λ {/b 0} → Λμ + μ - decays
NASA Astrophysics Data System (ADS)
Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casanova Mohr, R.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A. C.; Torres, M. Cruz; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gastaldi, U.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianì, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lowdon, P.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A.-B.; Mountain, R.; Muheim, F.; Müller, K.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Sterpka, F.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wiedner, D.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.
2015-06-01
The differential branching fraction of the rare decay Λ {/b 0} → Λμ + μ - is measured as a function of q 2, the square of the dimuon invariant mass. The analysis is performed using proton-proton collision data, corresponding to an integrated luminosity of 3 .0 fb-1, collected by the LHCb experiment. Evidence of signal is observed in the q 2 region below the square of the J/ψ mass. Integrating over 15 < q 2 < 20 GeV2 /c 4 the differential branching fraction is measured as where the uncertainties are statistical, systematic and due to the normalisation mode, Λ {/b 0} → J/ ψΛ, respectively. In the q 2 intervals where the signal is observed, angular distributions are studied and the forward-backward asymmetries in the dimuon ( A {FB/ ℓ }) and hadron ( A {FB/ h }) systems are measured for the first time. In the range 15 < q 2 < 20 GeV2 /c 4 they are found to be [Figure not available: see fulltext.
Lábár, János L
2009-02-01
This series of articles describes a method that performs (semi)quantitative phase analysis for nanocrystalline transmission electron microscope samples from selected area electron diffraction (SAED) patterns. Volume fractions of phases and their textures are obtained separately in the method. First, the two-dimensional SAED pattern is converted into an X-ray diffraction-like one-dimensional distribution. Volume fractions of the nanocrystalline components are determined by fitting the spectral components, calculated for the previously identified phases with a priori known structures. Blackman correction is also applied to take into account dynamic effects for medium grain sizes. Peak shapes and experimental parameters (camera length, etc.) are refined during the fitting iterations. Parameter space is explored with the help of the Downhill-SIMPLEX algorithm. Part I presented the principles, while Part II now elaborates current implementation, and Part III will demonstrate its usage by examples. The method is implemented in a computer program that runs under the Windows operating system on IBM PC compatible machines.
Richard, Vinitha; Raju, Rajesh; Paul, Aswathy Mary; Girijadevi, Reshmi; Santhoshkumar, Thankayyan Retnabai; Pillai, Madhavan Radhakrishna
2017-03-09
This study is an integrated analysis of the transcriptome profile, MicroRNA (miRNA) and their experimentally validatedmRNA targets differentially expressed in the tumorigenic stem-like fraction of oral squamous cell carcinoma (OSCC). We had previously reported the co-existence of multiple drug resistant, tumorigenic fractions termed as side population (SP1, SP2 and MP2) and a non-tumorigenic fraction, main population (MP1) in oral cancer. These fractions displayed self-renewal, regeneration potential and expressed known stemness related cell surface markers despite functional differences. Flow cytometrically sorted pure fractions of SP1 and MP1 cells were subjected to differential expression analysis of both mRNAs and microRNAs. A significant upregulation of genes associated with inflammation, cell survival, cell proliferation, drug transporters and antiapoptotic pathways in addition to enhanced transcriptome reprogramming mediated by DNA- histone binding proteins and pattern recognition receptor-mediated signaling was found to play a crucial role in the transformation of non-tumorigenic MP1 fraction to tumorigenic SP1 fraction. We also identified several differentially expressed microRNAs that specifically target genes distinctive of tumorigenic SP1 fraction. MicroRNA mediated downregulation of stemness associated markers CD44, CD147 and upregulation of CD151 may also account for the emergence and persistence of multiple tumorigenic stem cell fractions with varying degrees of malignancy. The phenotypic switch of cancer cells to stem-like OSCC cells mediated by transcriptomal regulation is effectual in addressing biological tumor heterogeneity and subsequent therapeutic resistance leading to minimal residual disease (MRD) condition in oral cancer. Detailed study of the interplay of microRNAs, mRNA and the cellular phases involved in the gradual transition of non-tumorigenic cancer cells to tumorigenic stem-like cells in solid tumors would enable detection and
Khurana, Rohini; Mishra, Himanshu; Rastogi, Madhup; Hadi, Rahat
2016-01-01
Introduction The conventional dose fractionation of adjuvant radiotherapy (RT) to whole breast is 45–50 Gy in 25 fractions as 1.8–2.0-Gy per fraction. Lumpectomy cavity with a 1.5–2-cm margin receieves additional 10- 16 Gy doseas boost. Alternative dose fraction schedules used in various randomised trials have established the role of hypofractionated radiotherapy (HRT) in early breast cancer. HRT allows time and cost saving thus better patient compliance. However the efficacy and toxicity of HRT in locally advanced breast cancer is still under evaluation. Aim To study the toxicity and efficacy of Hypofractionated Radiotherapy (HRT) as compared to Conventional Radiotherapy (CRT) in breast cancer at our centre. Materials and Methods A retrospective analysis of breast cancer patients treated between October 2012- September 2014 with adjuvant radiation therapy as CRT or HRT. The data of these patients was retrieved and analysed regarding demographic profile, stage at presentation, pathological type, extent of surgery, chemotherapy, efficacy and toxicity of HRT. The toxicity assessment was done as per RTOG toxicity criteria. The data were analysed using SPSS software version 20.0. Results A total of 100 patients with carcinoma breast who received radiotherapy over two years were analysed. Age ranged from 18-90 years, mean 49.15 ± 12.7 years. Fifty-five patients were post-menopausal, predominant clinical feature was painless lump in the breast (98%). Early stage (Stage I and II) constituted 41%, locally advanced disease in 59%. Modified radical mastectomy was done in 75%, breast conserving surgery in 25%. A 56 patients received HRT and 44 were treated with CRT. The most common acute toxicity was skin grade I. An 18% patients in HRT arm and 30% patients in conventional arm developed grade II skin toxicity (p=0.23). Dysphagia grade I was seen in 10% cases in CRT arm and 12% in HRT arm. The median follow-up period was 11.3 months with 2 loco-regional failures in each
Estimating and modeling the cure fraction in population-based cancer survival analysis.
Lambert, Paul C; Thompson, John R; Weston, Claire L; Dickman, Paul W
2007-07-01
In population-based cancer studies, cure is said to occur when the mortality (hazard) rate in the diseased group of individuals returns to the same level as that expected in the general population. The cure fraction (the proportion of patients cured of disease) is of interest to patients and is a useful measure to monitor trends in survival of curable disease. There are 2 main types of cure fraction model, the mixture cure fraction model and the non-mixture cure fraction model, with most previous work concentrating on the mixture cure fraction model. In this paper, we extend the parametric non-mixture cure fraction model to incorporate background mortality, thus providing estimates of the cure fraction in population-based cancer studies. We compare the estimates of relative survival and the cure fraction between the 2 types of model and also investigate the importance of modeling the ancillary parameters in the selected parametric distribution for both types of model.
Nanometer to Centimeter Scale Analysis and Modeling of Pore Structures
NASA Astrophysics Data System (ADS)
Wesolowski, D. J.; Anovitz, L.; Vlcek, L.; Rother, G.; Cole, D. R.
2011-12-01
The microstructure and evolution of pore space in rocks is a critically important factor controlling fluid flow. The size, distribution and connectivity of these confined geometries dictate how fluids including H2O and CO2, migrate into and through these micro- and nano-environments, wet and react with the solid. (Ultra)small-angle neutron scattering and autocorrelations derived from BSE imaging provide a method of quantifying pore structures in a statistically significant manner from the nanometer to the centimeter scale. Multifractal analysis provides additional constraints. These methods were used to characterize the pore features of a variety of potential CO2 geological storage formations and geothermal systems such as the shallow buried quartz arenites from the St. Peter Sandstone and the deeper Mt. Simon quartz arenite in Ohio as well as the Eau Claire shale and mudrocks from the Cranfield MS CO2 injection test and the normal temperature and high-temperature vapor-dominated parts of the Geysers geothermal system in California. For example, analyses of samples of St. Peter sandstone show total porosity correlates with changes in pores structure including pore size ratios, surface fractal dimensions, and lacunarity. These samples contain significant large-scale porosity, modified by quartz overgrowths, and neutron scattering results show significant sub-micron porosity, which may make up fifty percent or more of the total pore volume. While previous scattering data from sandstones suggest scattering is dominated by surface fractal behavior, our data are both fractal and pseudo-fractal. The scattering curves are composed of steps, modeled as polydispersed assemblages of pores with log-normal distributions. In some samples a surface-fractal overprint is present. There are also significant changes in the mono and multifractal dimensions of the pore structure as the pore fraction decreases. There are strong positive correlations between D(0) and image and total
Quang, Viet Ly; Choi, Ilhwan; Hur, Jin
2015-11-01
In this study, five different dissolved organic matter (DOM) fractions, defined based on a size exclusion chromatography with simultaneous detection of organic carbon (OCD) and ultraviolet (UVD), were quantitatively tracked with a treatment train of coagulation/flocculation-sand filtration-ozonation-granular activated carbon (GAC) filtration in a full-scale advanced drinking water treatment plant (DWTP). Five DOM samples including raw water were taken after each treatment process in the DWTP every month over the period of three years. A higher abundance of biopolymer (BP) fraction was found in the raw water during spring and winter than in the other seasons, suggesting an influence of algal bloom and/or meltwater on DOM composition. The greater extent of removal was observed upon the coagulation/flocculation for high-molecular-weight fractions including BP and humic substances (HS) and aromatic moieties, while lower sized fractions were preferentially removed by the GAC filtration. Ozone treatment produced the fraction of low-molecular-weight neutrals probably resulting from the breakdown of double-bonded carbon structures by ozone oxidation. Coagulation/flocculation was the only process that revealed significant effects of influent DOM composition on the treatment efficiency, as revealed by a high correlation between the DOM removal rate and the relative abundance of HS for the raw water. Our study demonstrated that SEC-OCD-UVD was successful in monitoring size-based DOM composition for the advanced DWTP, providing an insight into optimizing the treatment options and the operational conditions for the removal of particular fractions within the bulk DOM.
Large-scale Heterogeneous Network Data Analysis
2012-07-31
Data for Multi-Player Influence Maximization on Social Networks.” KDD 2012 (Demo). Po-Tzu Chang , Yen-Chieh Huang, Cheng-Lun Yang, Shou-De Lin, Pu...Jen Cheng. “Learning-Based Time-Sensitive Re-Ranking for Web Search.” SIGIR 2012 (poster) Hung -Che Lai, Cheng-Te Li, Yi-Chen Lo, and Shou-De Lin...Exploiting and Evaluating MapReduce for Large-Scale Graph Mining.” ASONAM 2012 (Full, 16% acceptance ratio). Hsun-Ping Hsieh , Cheng-Te Li, and Shou
Construct validity of the Depression and Somatic Symptoms Scale: evaluation by Mokken scale analysis
Chou, Ya-Hsin; Lee, Chin-Pang; Liu, Chia-Yih; Hung, Ching-I
2017-01-01
Objective Previous studies of the Depression and Somatic Symptoms Scale (DSSS), a free scale, have been based on the classical test theory, and the construct validity and dimensionality of the DSSS are as yet uncertain. The aim of this study was to use Mokken scale analysis (MSA) to assess the dimensionality of the DSSS. Methods A sample of 214 psychiatric outpatients with mood and anxiety disorders were enrolled at a medical center in Taiwan (age: mean [SD] =38.3 [10.5] years; 63.1% female) and asked to complete the DSSS. MSA was used to assess the dimensionality of the DSSS. Results All 22 items of the DSSS formed a moderate unidimensional scale (Hs=0.403), supporting its construct validity. The DSSS was divided into 4 subscales (Hs ranged from 0.35 to 0.67), including a general somatic scale (GSS), melancholic scale (MS), muscular pain scale (MPS), and chest symptom scale (CSS). The GSS is a weak reliable Mokken scale; the other 3 scales are strong reliable Mokken scales. Conclusion The DSSS is a psychometrically sound measure of depression and somatic symptoms in adult psychiatric outpatients with depression or anxiety. The summed score of the DSSS and its 4 subscales are valid statistics. Further research is required for replication of the 4 subscales of the DSSS. PMID:28182138
NASA Astrophysics Data System (ADS)
Singla, Komal; Gupta, R. K.
2017-05-01
In Paper I [Singla, K. and Gupta, R. K., J. Math. Phys. 57, 101504 (2016)], Lie symmetry method is developed for time fractional systems of partial differential equations. In this article, the Lie symmetry approach is proposed for space-time fractional systems of partial differential equations and applied to study some well-known physically significant space-time fractional nonlinear systems successfully.
Local variance for multi-scale analysis in geomorphometry
Drăguţ, Lucian; Eisank, Clemens; Strasser, Thomas
2011-01-01
Increasing availability of high resolution Digital Elevation Models (DEMs) is leading to a paradigm shift regarding scale issues in geomorphometry, prompting new solutions to cope with multi-scale analysis and detection of characteristic scales. We tested the suitability of the local variance (LV) method, originally developed for image analysis, for multi-scale analysis in geomorphometry. The method consists of: 1) up-scaling land-surface parameters derived from a DEM; 2) calculating LV as the average standard deviation (SD) within a 3 × 3 moving window for each scale level; 3) calculating the rate of change of LV (ROC-LV) from one level to another, and 4) plotting values so obtained against scale levels. We interpreted peaks in the ROC-LV graphs as markers of scale levels where cells or segments match types of pattern elements characterized by (relatively) equal degrees of homogeneity. The proposed method has been applied to LiDAR DEMs in two test areas different in terms of roughness: low relief and mountainous, respectively. For each test area, scale levels for slope gradient, plan, and profile curvatures were produced at constant increments with either resampling (cell-based) or image segmentation (object-based). Visual assessment revealed homogeneous areas that convincingly associate into patterns of land-surface parameters well differentiated across scales. We found that the LV method performed better on scale levels generated through segmentation as compared to up-scaling through resampling. The results indicate that coupling multi-scale pattern analysis with delineation of morphometric primitives is possible. This approach could be further used for developing hierarchical classifications of landform elements. PMID:21779138
Local variance for multi-scale analysis in geomorphometry
NASA Astrophysics Data System (ADS)
Drăguţ, Lucian; Eisank, Clemens; Strasser, Thomas
2011-07-01
Increasing availability of high resolution Digital Elevation Models (DEMs) is leading to a paradigm shift regarding scale issues in geomorphometry, prompting new solutions to cope with multi-scale analysis and detection of characteristic scales. We tested the suitability of the local variance (LV) method, originally developed for image analysis, for multi-scale analysis in geomorphometry. The method consists of: 1) up-scaling land-surface parameters derived from a DEM; 2) calculating LV as the average standard deviation (SD) within a 3 × 3 moving window for each scale level; 3) calculating the rate of change of LV (ROC-LV) from one level to another, and 4) plotting values so obtained against scale levels. We interpreted peaks in the ROC-LV graphs as markers of scale levels where cells or segments match types of pattern elements characterized by (relatively) equal degrees of homogeneity. The proposed method has been applied to LiDAR DEMs in two test areas different in terms of roughness: low relief and mountainous, respectively. For each test area, scale levels for slope gradient, plan, and profile curvatures were produced at constant increments with either resampling (cell-based) or image segmentation (object-based). Visual assessment revealed homogeneous areas that convincingly associate into patterns of land-surface parameters well differentiated across scales. We found that the LV method performed better on scale levels generated through segmentation as compared to up-scaling through resampling. The results indicate that coupling multi-scale pattern analysis with delineation of morphometric primitives is possible. This approach could be further used for developing hierarchical classifications of landform elements.
Radionuclide fourier amplitude analysis to predict post-aneurysmectomy ejection fraction
McCarthy, D.M.; Kleaveland, J.P.; Makler, P.T. Jr.; Alavi, A.
1984-01-01
Post-operative LV ejection fraction (EF) is an important determinant of outcome following aneurysmectomy but is difficult to predict noninvasively. First harmonic Fourier analysis of radionuclide angiography (RNA) in patients with aneurysms gives characteristic phase and amplitude images which delineate contractile and dyskinetic regions. Since pixel amplitude is proportional to stroke counts, the summed amplitude values from the contractile region (CR) and the aneurysm should reflect regional stroke volumes. A predicted post-operative LVEF may be determined from the pre-operative global LVEF and the proportion of the total amplitude located in the CR. The authors studied 19 patients undergoing LV aneurysmectomy with pre- and post-operative RNA. Three patients were excluded for technical reasons, leaving 16 patients for analysis. There were 13 males, and the mean age was 56.8 yrs (range 45-78). All patients had a history of anterior myocardial infarction and were undergoing surgery for recurrent sustained ventricular tachycardia. The global LVEF increased from 0.25 +- .13 (sd) pre-operatively to 0.38+-.11 following surgery (p<.001). The predicted post-operative LVEF (from amplitude analysis of the pre-operative RNA) averaged 0.35 +- .13 and correlated significantly with the actual post-operative LVEf (r=0.87, SEE=.06, p<.01). The results suggest that the LVEF following aneurysmectomy can be predicted from Fourier amplitude analysis of the pre-operative RNA.
NASA Astrophysics Data System (ADS)
Wang, Xiao-Tian; Yan, Hai-Gang; Tang, Ming-Ming; Zhu, En-Hui
2010-02-01
A model for option pricing of fractional version of the Merton model with ‘Hurst exponent’ H being in [1/2,1) is established with transaction costs. In particular, for H∈(1/2,1) the minimal price Cmin(t,St) of an option under transaction costs is obtained, which displays that the timestep δt and the ‘Hurst exponent’ H play an important role in option pricing with transaction costs.
Lie Symmetry Analysis and Conservation Laws of a Generalized Time Fractional Foam Drainage Equation
NASA Astrophysics Data System (ADS)
Wang, Li; Tian, Shou-Fu; Zhao, Zhen-Tao; Song, Xiao-Qiu
2016-07-01
In this paper, a generalized time fractional nonlinear foam drainage equation is investigated by means of the Lie group analysis method. Based on the Riemann—Liouville derivative, the Lie point symmetries and symmetry reductions of the equation are derived, respectively. Furthermore, conservation laws with two kinds of independent variables of the equation are performed by making use of the nonlinear self-adjointness method. Supported by the National Training Programs of Innovation and Entrepreneurship for Undergraduates under Grant No. 201410290039, the Fundamental Research Funds for the Central Universities under Grant Nos. 2015QNA53 and 2015XKQY14, the Fundamental Research Funds for Postdoctoral at the Key Laboratory of Gas and Fire Control for Coal Mines, the General Financial Grant from the China Postdoctoral Science Foundation under Grant No. 2015M570498, and Natural Sciences Foundation of China under Grant No. 11301527
Lin, Yu-Wai Peter; Petrino, Teresa R; Wallace, Robin A
2004-01-01
Fractionation and characterization of gonadotropins (GtH) from Fundulus heteroclitus pituitary extracts were carried out using a biocompatible liquid chromatographic procedure (Pharmacia FPLC system). Chromatographic fractions were monitored for gonadotropic activities (induction of oocyte maturation and steroid production) using homologous follicle bioassays in vitro. Size-exclusion chromatography eluted gonadotropic activity in one major protein peak (Mr ~ 30,000). Anion-exchange and hydrophobic-interaction chromatography (HIC) yielded two distinct peaks of 17beta-estradiol (E2)- and 17alpha-hydroxy,20beta-dihydroprogesterone (DHP)-promoting activity with associated oocyte maturation. Two-dimensional chromatography (chromatofocusing followed by HIC) resolved pituitary extracts into two active fractions; both induced E2 synthesis, but one was relatively poor in eliciting DHP and testosterone production. Thus, using homologous bioassays, at least two quantitatively different gonadotropic (steroidogenic) activities: an E2-promoting gonadotropin (GtH I-like) and a DHP-promoting gonadotropin (GtH II-like), which has a lower isoelectric point but greater hydrophobicity than the former, can be distinguished from F. heteroclitus pituitaries by a variety of chromatographic procedures. This study complements previous biochemical and molecular data in F. heteroclitus and substantiates the duality of GtH function in a multiple-spawning teleost. PMID:15040801
NASA Astrophysics Data System (ADS)
Tan, Cheng; Liang, Zhi-Shan
2016-03-01
In this paper, based on the fact that the inductors and capacitors are of fractional order in nature, the four-order mathematical model of the fractional order quadratic Boost converter in type I and type II discontinuous conduction mode (DCM) — DCM is established by using fractional calculus theory. Direct current (DC) analysis is conducted by using the DC equivalent model and the transfer functions are derived from the corresponding alternating current (AC) equivalent model. The DCM-DCM regions of type I and type II are obtained and the relations between the regions and the orders are found. The influence of the orders on the performance of the quadratic Boost converter in DCM-DCM is verified by numerical and circuit simulations. Simulation results demonstrate the correctness of the fractional order model and the efficiency of the proposed theoretical analysis.
Scaling Universality Classes and Analysis of Solar Data
NASA Astrophysics Data System (ADS)
Lawrence, J. K.; Cadavid, A. C.; Ruzmaikin, A. A.
1999-05-01
Many solar phenomena display a scaling symmetry associated with random multiplicative cascades. Here a physical measure, initially uniform on a spatial, temporal, or space-time set, is divided among subsets according to randomly determined fractions. This division is repeated on smaller and smaller sub-subsets, so that the resulting measure at the smallest scale is given at any point by the product of a string of random fractions comprising its fragmentation history. Such measures are highly intermittent. They characterize such solar phenomena as the spatial distribution of magnetic flux in an active region and the time distribution of global X-ray emission. The probability distribution functions (PDFs) governing the random fractions fall into universality classes with robust properties (Hentschel 1994). For example, all PDFs which allow for zero fractions lead to measures with local peaks of unlimited strengths which are progressively less and less space filling. The GOES-2 X-ray data belong to this class, which indicates the presence of critical behavior associated with flares (Lu & Hamilton 1991). We investigate a number of time series for the presence or absence of this property. Multifractals in nature may fall into a narrow universality class described by just 3 parameters (Schertzer, et al. 1997). We find that at least some examples of active region magnetic fields do indeed have the conjectured form. Further, we apply a causal space-time version of this class of multiplicative cascade processes to forecasting the evolution of solar velocity fields. This work was supported in part by NSF grant ATM-9628882. Hentschel, H.G.E. 1994, Phys. Rev. E, 50, 243. Lu, E.T. & Hamilton, R.J. 1991, ApJ, 380, L89. Schertzer, D., Lovejoy, S., Schmitt, F., Chigirinskaya, Y. & Marsan, D. 1997, Fractals, 5, 427.
The Attitudes to Ageing Questionnaire: Mokken Scaling Analysis
Shenkin, Susan D.; Watson, Roger; Laidlaw, Ken; Starr, John M.; Deary, Ian J.
2014-01-01
Background Hierarchical scales are useful in understanding the structure of underlying latent traits in many questionnaires. The Attitudes to Ageing Questionnaire (AAQ) explored the attitudes to ageing of older people themselves, and originally described three distinct subscales: (1) Psychosocial Loss (2) Physical Change and (3) Psychological Growth. This study aimed to use Mokken analysis, a method of Item Response Theory, to test for hierarchies within the AAQ and to explore how these relate to underlying latent traits. Methods Participants in a longitudinal cohort study, the Lothian Birth Cohort 1936, completed a cross-sectional postal survey. Data from 802 participants were analysed using Mokken Scaling analysis. These results were compared with factor analysis using exploratory structural equation modelling. Results Participants were 51.6% male, mean age 74.0 years (SD 0.28). Three scales were identified from 18 of the 24 items: two weak Mokken scales and one moderate Mokken scale. (1) ‘Vitality’ contained a combination of items from all three previously determined factors of the AAQ, with a hierarchy from physical to psychosocial; (2) ‘Legacy’ contained items exclusively from the Psychological Growth scale, with a hierarchy from individual contributions to passing things on; (3) ‘Exclusion’ contained items from the Psychosocial Loss scale, with a hierarchy from general to specific instances. All of the scales were reliable and statistically significant with ‘Legacy’ showing invariant item ordering. The scales correlate as expected with personality, anxiety and depression. Exploratory SEM mostly confirmed the original factor structure. Conclusions The concurrent use of factor analysis and Mokken scaling provides additional information about the AAQ. The previously-described factor structure is mostly confirmed. Mokken scaling identifies a new factor relating to vitality, and a hierarchy of responses within three separate scales, referring to
Component Cost Analysis of Large Scale Systems
NASA Technical Reports Server (NTRS)
Skelton, R. E.; Yousuff, A.
1982-01-01
The ideas of cost decomposition is summarized to aid in the determination of the relative cost (or 'price') of each component of a linear dynamic system using quadratic performance criteria. In addition to the insights into system behavior that are afforded by such a component cost analysis CCA, these CCA ideas naturally lead to a theory for cost-equivalent realizations.
Comparison of on-line detectors for field flow fractionation analysis of nanomaterials.
Bednar, A J; Poda, A R; Mitrano, D M; Kennedy, A J; Gray, E P; Ranville, J F; Hayes, C A; Crocker, F H; Steevens, J A
2013-01-30
Characterization of nanomaterials must include analysis of both size and chemical composition. Many analytical techniques, such as dynamic light scattering (DLS), are capable of measuring the size of suspended nanometer-sized particles, yet provide no information on the composition of the particle. While field flow fractionation (FFF) is a powerful nanoparticle sizing technique, common detectors used in conjunction with the size separation, including UV, light-scattering, and fluorescence spectroscopy, do not provide the needed particle compositional information. Further, these detectors do not respond directly to the mass concentration of nanoparticles. The present work describes the advantages achieved when interfacing sensitive and elemental specific detectors, such as inductively coupled plasma atomic emission spectroscopy and mass spectrometry, to FFF separation analysis to provide high resolution nanoparticle sizing and compositional analysis at the μg/L concentration level, a detection at least 10-100-fold lower than DLS or FFF-UV techniques. The full benefits are only achieved by utilization of all detector capabilities, such as dynamic reaction cell (DRC) ICP-MS. Such low-level detection and characterization capability is critical to nanomaterial investigations at biologically and environmentally relevant concentrations. The techniques have been modified and applied to characterization of all four elemental constituents of cadmium selenide-zinc sulfide core-shell quantum dots, and silver nanoparticles with gold seed cores. Additionally, sulfide coatings on silver nanoparticles can be detected as a potential means to determine environmental aging of nanoparticles.
Mokken Scale Analysis for Dichotomous Items Using Marginal Models
ERIC Educational Resources Information Center
van der Ark, L. Andries; Croon, Marcel A.; Sijtsma, Klaas
2008-01-01
Scalability coefficients play an important role in Mokken scale analysis. For a set of items, scalability coefficients have been defined for each pair of items, for each individual item, and for the entire scale. Hypothesis testing with respect to these scalability coefficients has not been fully developed. This study introduces marginal modelling…
Rasch Analysis of the Geriatric Depression Scale--Short Form
ERIC Educational Resources Information Center
Chiang, Karl S.; Green, Kathy E.; Cox, Enid O.
2009-01-01
Purpose: The purpose of this study was to examine scale dimensionality, reliability, invariance, targeting, continuity, cutoff scores, and diagnostic use of the Geriatric Depression Scale-Short Form (GDS-SF) over time with a sample of 177 English-speaking U.S. elders. Design and Methods: An item response theory, Rasch analysis, was conducted with…
Scaling properties of sea ice deformation from buoy dispersion analysis
NASA Astrophysics Data System (ADS)
Rampal, P.; Weiss, J.; Marsan, D.; Lindsay, R.; Stern, H.
2008-03-01
A temporal and spatial scaling analysis of Arctic sea ice deformation is performed over timescales from 3 h to 3 months and over spatial scales from 300 m to 300 km. The deformation is derived from the dispersion of pairs of drifting buoys, using the IABP (International Arctic Buoy Program) buoy data sets. This study characterizes the deformation of a very large solid plate (the Arctic sea ice cover) stressed by heterogeneous forcing terms like winds and ocean currents. It shows that the sea ice deformation rate depends on the scales of observation following specific space and time scaling laws. These scaling properties share similarities with those observed for turbulent fluids, especially for the ocean and the atmosphere. However, in our case, the time scaling exponent depends on the spatial scale, and the spatial exponent on the temporal scale, which implies a time/space coupling. An analysis of the exponent values shows that Arctic sea ice deformation is very heterogeneous and intermittent whatever the scales, i.e., it cannot be considered as viscous-like, even at very large time and/or spatial scales. Instead, it suggests a deformation accommodated by a multiscale fracturing/faulting processes.
Large-Scale Aerosol Modeling and Analysis
2007-09-30
to six days in advance anywhere on the globe. NAAPS and COAMPS are particularly useful for forecasts of dust storms in areas downwind of the large...in FY08. NAAPS forecasts of CONUS dust storms and long-range dust transport to CONUS were further evaluated in collaboration with CSU. These...visibility. The regional model ( COAMPS /Aerosol) became operational during OIF. The global model Navy Aerosol Analysis and Prediction System (NAAPS
Metal analysis of scales taken from Arctic grayling.
Farrell, A P; Hodaly, A H; Wang, S
2000-11-01
This study examined concentrations of metals in fish scales taken from Arctic grayling using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). The purpose was to assess whether scale metal concentrations reflected whole muscle metal concentrations and whether the spatial distribution of metals within an individual scale varied among the growth annuli of the scales. Ten elements (Mg, Ca, Ni, Zn, As, Se, Cd, Sb, Hg, and Pb) were measured in 10 to 16 ablation sites (5 microm radius) on each scale sample from Arctic grayling (Thymallus arcticus) (n = 10 fish). Ca, Mg, and Zn were at physiological levels in all scale samples. Se, Hg, and As were also detected in all scale samples. Only Cd was below detection limits of the LA-ICPMS for all samples, but some of the samples were below detection limits for Sb, Pb, and Ni. The mean scale concentrations for Se, Hg, and Pb were not significantly different from the muscle concentrations and individual fish values were within fourfold of each other. Cd was not detected in either muscle or scale tissue, whereas Sb was detected at low levels in some scale samples but not in any of the muscle samples. Similarly, As was detected in all scale samples but not in muscle, and Ni was detected almost all scale samples but only in one of the muscle samples. Therefore, there were good qualitative and quantitative agreements between the metal concentrations in scale and muscle tissues, with LA-ICPMS analysis of scales appearing to be a more sensitive method of detecting the body burden of Ni and As when compared with muscle tissue. Correlation analyses, performed for Pb, Hg, and Se concentrations, revealed that the scale concentrations for these three metals generally exceeded those of the muscle at low muscle concentrations. The LA-ICPMS analysis of scales had the capability to resolve significant spatial differences in metal concentrations within a fish scale. We conclude that metal analysis of fish scales using LA
NASA Astrophysics Data System (ADS)
Lin, Guoxing
2015-10-01
Pulsed field gradient (PFG) diffusion measurement has a lot of applications in NMR and MRI. Its analysis relies on the ability to obtain the signal attenuation expressions, which can be obtained by averaging over the accumulating phase shift distribution (APSD). However, current theoretical models are not robust or require approximations to get the APSD. Here, a new formalism, an effective phase shift diffusion (EPSD) equation method is presented to calculate the APSD directly. This is based on the idea that the gradient pulse effect on the change of the APSD can be viewed as a diffusion process in the virtual phase space (VPS). The EPSD has a diffusion coefficient, Kβ(t)D radβ/sα, where α is time derivative order and β is a space derivative order, respectively. The EPSD equations of VPS are built based on the diffusion equations of real space by replacing the diffusion coefficients and the coordinate system (from real space coordinate to virtual phase coordinate). Two different models, the fractal derivative model and the fractional derivative model from the literature were used to build the EPSD fractional diffusion equations. The APSD obtained from solving these EPSD equations were used to calculate the PFG signal attenuation. From the fractal derivative model the attenuation is exp(-γβgβδβDf1 tα), a stretched exponential function (SEF) attenuation, while from the fractional derivative model the attenuation is Eα,1(-γβgβδβDf2 tα), a Mittag-Leffler function (MLF) attenuation. The MLF attenuation can be reduced to SEF attenuation when α = 1 , and can be approximated as a SEF attenuation when the attenuation is small. Additionally, the effect of finite gradient pulse widths (FGPW) is calculated. From the fractal derivative model, the signal attenuation including FGPW effect is exp[ -Df1 ∫0τ Kβ (t)dtα ] . The results obtained in this study are in good agreement with the results in literature. Several expressions that describe signal
Lin, Guoxing
2015-10-01
Pulsed field gradient (PFG) diffusion measurement has a lot of applications in NMR and MRI. Its analysis relies on the ability to obtain the signal attenuation expressions, which can be obtained by averaging over the accumulating phase shift distribution (APSD). However, current theoretical models are not robust or require approximations to get the APSD. Here, a new formalism, an effective phase shift diffusion (EPSD) equation method is presented to calculate the APSD directly. This is based on the idea that the gradient pulse effect on the change of the APSD can be viewed as a diffusion process in the virtual phase space (VPS). The EPSD has a diffusion coefficient, K(β)(t)D rad(β)/s(α), where α is time derivative order and β is a space derivative order, respectively. The EPSD equations of VPS are built based on the diffusion equations of real space by replacing the diffusion coefficients and the coordinate system (from real space coordinate to virtual phase coordinate). Two different models, the fractal derivative model and the fractional derivative model from the literature were used to build the EPSD fractional diffusion equations. The APSD obtained from solving these EPSD equations were used to calculate the PFG signal attenuation. From the fractal derivative model the attenuation is exp(-γ(β)g(β)δ(β)Df1t(α)), a stretched exponential function (SEF) attenuation, while from the fractional derivative model the attenuation is Eα,1(-γ(β)g(β)δ(β)Df2t(α)), a Mittag-Leffler function (MLF) attenuation. The MLF attenuation can be reduced to SEF attenuation when α=1, and can be approximated as a SEF attenuation when the attenuation is small. Additionally, the effect of finite gradient pulse widths (FGPW) is calculated. From the fractal derivative model, the signal attenuation including FGPW effect is exp[ -Df1∫0(τ) K(β)(t)dt(α)]. The results obtained in this study are in good agreement with the results in literature. Several expressions that
A Bayesian Analysis of Scale-Invariant Processes
2012-01-01
Analysis of Scale-Invariant Processes Jingfeng Wang, Rafael L. Bras, Veronica Nieves Georgia Tech Research Corporation Office of Sponsored Programs...processes Veronica Nieves , Jingfeng Wang, and Rafael L. Bras Citation: AIP Conf. Proc. 1443, 56 (2012); doi: 10.1063/1.3703620 View online: http...http://proceedings.aip.org/about/rights_permissions A Bayesian Analysis of Scale-Invariant Processes Veronica Nieves ∗, Jingfeng Wang† and Rafael L. Bras
SCALE ANALYSIS OF CONVECTIVE MELTING WITH INTERNAL HEAT GENERATION
John Crepeau
2011-03-01
Using a scale analysis approach, we model phase change (melting) for pure materials which generate internal heat for small Stefan numbers (approximately one). The analysis considers conduction in the solid phase and natural convection, driven by internal heat generation, in the liquid regime. The model is applied for a constant surface temperature boundary condition where the melting temperature is greater than the surface temperature in a cylindrical geometry. We show the time scales in which conduction and convection heat transfer dominate.
Upscaling river biomass using dimensional analysis and hydrogeomorphic scaling
NASA Astrophysics Data System (ADS)
Barnes, Elizabeth A.; Power, Mary E.; Foufoula-Georgiou, Efi; Hondzo, Miki; Dietrich, William E.
2007-12-01
We propose a methodology for upscaling biomass in a river using a combination of dimensional analysis and hydro-geomorphologic scaling laws. We first demonstrate the use of dimensional analysis for determining local scaling relationships between Nostoc biomass and hydrologic and geomorphic variables. We then combine these relationships with hydraulic geometry and streamflow scaling in order to upscale biomass from point to reach-averaged quantities. The methodology is demonstrated through an illustrative example using an 18 year dataset of seasonal monitoring of biomass of a stream cyanobacterium (Nostoc parmeloides) in a northern California river.
Lie symmetry analysis and soliton solutions of time-fractional K ( m, n) equation
NASA Astrophysics Data System (ADS)
Wang, G. W.; Hashemi, M. S.
2017-01-01
In this note, method of Lie symmetries is applied to investigate symmetry properties of time-fractional K( m, n) equation with the Riemann-Liouville derivatives. Reduction of time-fractional K( m, n) equation is done by virtue of the Erdélyi-Kober fractional derivative which depends on a parameter α. Then soliton solutions are extracted by means of a transformation.
Stability analysis for impulsive fractional hybrid systems via variational Lyapunov method
NASA Astrophysics Data System (ADS)
Yang, Ying; He, Yong; Wang, Yong; Wu, Min
2017-04-01
This paper investigates the stability properties for a class of impulsive Caputo fractional-order hybrid systems with impulse effects at fixed moments. By utilizing the variational Lyapunov method, a fractional variational comparison principle is established. Some stability and instability criteria in terms of two measures are obtained. These results generalize the known ones, extending the corresponding theory of impulsive fractional differential systems. An example is given to demonstrate their effectiveness.
On invariant analysis of some time fractional nonlinear systems of partial differential equations. I
NASA Astrophysics Data System (ADS)
Singla, Komal; Gupta, R. K.
2016-10-01
An investigation of Lie point symmetries for systems of time fractional partial differential equations including Ito system, coupled Burgers equations, coupled Korteweg de Vries equations, Hirota-Satsuma coupled KdV equations, and coupled nonlinear Hirota equations has been done. Using the obtained symmetries, each one of the systems is reduced to the nonlinear system of fractional ordinary differential equations involving Erdélyi-Kober fractional differential operator depending on a parameter α.
Ranamukhaarachchi, Sahan A; Peiris, Ramila H; Moresoli, Christine
2017-02-15
The potential of intrinsic fluorescence and principal component analysis (PCA) to characterize the antioxidant capacity of soy protein hydrolysates (SPH) during sequential ultrafiltration (UF) and nanofiltration (NF) was evaluated. SPH was obtained by enzymatic hydrolysis of soy protein isolate. Antioxidant capacity was measured by Oxygen Radical Absorbance Capacity (ORAC) and Folin Ciocalteau Reagent (FCR) assays together with fluorescence excitation-emission matrices (EEM). PCA of the fluorescence EEMs revealed two principal components (PC1-tryptophan, PC2-tyrosine) that captured significant variance in the fluorescence spectra. Regression models between antioxidant capacity and PC1 and PC2 displayed strong linear correlations for NF fractions and a weak linear correlation for UF fractions. Clustering of UF and NF fractions according to ORACFPCA and FCRFPCA was observed. The ability of this method to extract information on contributions by tryptophan and tyrosine amino acid residues to the antioxidant capacity of SPH fractions was demonstrated. Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Frąckowiak, Anna; Koźlecki, Tomasz; Skibiński, PrzemysŁaw; GaweŁ, WiesŁaw; Zaczyńska, Ewa; Czarny, Anna; Piekarska, Katarzyna; Gancarz, Roman
2010-11-01
Procedures for obtaining noncytotoxic and nonmutagenic extracts from Humulus lupulus L. of high potency for inhibition and dissolving of model (calcium oxalate crystals) and real kidney stones, obtained from patients after surgery, are presented. Multistep extraction procedures were performed in order to obtain the preparations with the highest calcium complexing properties. The composition of obtained active fractions was analyzed by GC/MS and NMR methods. The influence of preparations on inhibition of formation and dissolution of model and real kidney stones were evaluated based on conductrometric titration, flame photometry and microscopic analysis. The "fraction soluble in methanol" obtained from water-alkaline extracts contains sugar alcohols and organic acids, and is effective in dissolving the kidney stones. The "fraction insoluble in methanol" contains only sugar derivatives and it changes the morphology of the crystals, making them "jelly-like". Both fractions are potentially effective in kidney stone therapy.
Proteomic analysis and cross species comparison of casein fractions from the milk of dairy animals
Wang, Xiaxia; Zhao, Xiaowei; Huang, Dongwei; Pan, Xiaocheng; Qi, Yunxia; Yang, Yongxin; Zhao, Huiling; Cheng, Guanglong
2017-01-01
Casein micelles contribute to the physicochemical properties of milk and may also influence its functionality. At present, however, there is an incomplete understanding of the casein micelle associated proteins and its diversity among the milk obtained from different species. Therefore, milk samples were collected from seven dairy animals groups, casein fractions were prepared by ultracentrifugation and their constituent proteins were identified by liquid chromatography tandem mass spectrometry. A total of 193 distinct proteins were identified among all the casein micelle preparations. Protein interaction analysis indicated that caseins could interact with major whey proteins, including β-lactoglobulin, α-lactalbumin, lactoferrin, and serum albumin, and then whey proteins interacted with other proteins. Pathway analysis found that the peroxisome proliferator-activated receptor signaling pathway is shared among the studied animals. Additionally, galactose metabolism pathway is also found to be commonly involved for proteins derived from camel and horse milk. According to the similarity of casein micelle proteomes, two major sample clusters were classified into ruminant animals (Holstein and Jersey cows, buffaloes, yaks, and goats) and non-ruminants (camels and horses). Our results provide new insights into the protein profile associated with casein micelles and the functionality of the casein micelle from the studied animals. PMID:28240229
Luo, Ying; Chen, Yangquan; Pi, Youguo
2011-01-01
In a reference of the previous work, a new systematic design method for fractional order proportional and derivative (FOPD) controller is proposed for a class of typical second-order plants. Simulation and experimental results in the reference show that, the dynamic performance and robustness with the designed FOPD controller outperforms that with the optimized traditional integer order proportional integral (IOPI) controller at normal speed. Furthermore, it is found that, for the ultra low-speed position tracking with a significant friction effect, the tracking performance using the designed FOPD controller is much better than that using the optimized IOPI controller. However, the reason of this advantage is unclear. In this paper, using the describing function method and Bode plots analysis, the observed advantage of the designed FOPD controller over the optimized IOPI controller, for the nonlinear low-speed position tracking system with friction effect, is explained with the theoretical analysis. This explanation for the priority of the designed FOPD controller is consistently demonstrated by the extended experimental results in this paper.
Multiple time scale complexity analysis of resting state FMRI.
Smith, Robert X; Yan, Lirong; Wang, Danny J J
2014-06-01
The present study explored multi-scale entropy (MSE) analysis to investigate the entropy of resting state fMRI signals across multiple time scales. MSE analysis was developed to distinguish random noise from complex signals since the entropy of the former decreases with longer time scales while the latter signal maintains its entropy due to a "self-resemblance" across time scales. A long resting state BOLD fMRI (rs-fMRI) scan with 1000 data points was performed on five healthy young volunteers to investigate the spatial and temporal characteristics of entropy across multiple time scales. A shorter rs-fMRI scan with 240 data points was performed on a cohort of subjects consisting of healthy young (age 23 ± 2 years, n = 8) and aged volunteers (age 66 ± 3 years, n = 8) to investigate the effect of healthy aging on the entropy of rs-fMRI. The results showed that MSE of gray matter, rather than white matter, resembles closely that of f (-1) noise over multiple time scales. By filtering out high frequency random fluctuations, MSE analysis is able to reveal enhanced contrast in entropy between gray and white matter, as well as between age groups at longer time scales. Our data support the use of MSE analysis as a validation metric for quantifying the complexity of rs-fMRI signals.
NASA Astrophysics Data System (ADS)
Naveen, T.; Supe, Sanjay S.; Ganesh, K. M.; Samuel, Jacob
2009-01-01
Bone metastases develop in up to 70% of newly diagnosed cancer patients and result in immobility, anxiety, and depression, severely diminishing the patients quality of life. Radiotherapy is a frequently used modality for bone metastasis and has been shown to be effective in reducing metastatic bone pain and in some instances, causing tumor shrinkage or growth inhibition. There is controversy surrounding the optimal fractionation schedule and total dose of external beam radiotherapy, despite many randomized trials and overviews addressing the issue. This study was undertaken to apply BED to clinical fractionation data of radiotherapeutic management of bone metastases in order to arrive at optimum BED values for acceptable level of response rate. A computerised literature search was conducted to identify all prospective clinical studies that addressed the issue of fractionation for the treatment of bone metastasis. The results of these studies were pooled together to form the database for the analysis. A total of 4111 number of patients received radiation dose ranging from 4 to 40.5 Gy in 1 to 15 fractions with dose per fraction ranging from 2 to 10 Gy. Single fraction treatments were delivered in 2013 patients and the dose varied from 4 to 10 Gy. Multifraction treatments were delivered in 2098 patients and the dose varied from 15 to 40.5 Gy. The biological effective dose (BED) was evaluated for each fractionation schedule using the linear quadratic model and an α/β value of 10 Gy. Response rate increased significantly beyond a BED value of 14.4 Gy (p < 0.01). Based on our analysis and indications from the literature about higher retreatment and fracture rate of single fraction treatments, minimum BED value of 14.4 Gy is recommended.
[Factors enhancing teachers' occupational wellbeing scale: psychometric analysis].
Woynarowska-Sołdan, Magdalena; Wyziak-Białowolska, Dorota
2012-01-01
The aim of this work was to elaborate the Factors Enhancing Teachers' Occupational Wellbeing Scale for use with teachers from health promoting schools and to provide its psychometric analysis. The sample consisted of 270 teachers from the health promoting schools. The instrument consisted of 45 statements divided into five subscales (working conditions, teachers' community, students and parents' community, organization and workload, professional competences), which are measured from two points of view: assessment of a current situation (a 5-point rating scale from 5 (strongly yes) to 1 (strongly no)) and assessment of needs for the improvement (a 5-point rating scale from 1 (no need) do 5 (very strong need)). Psychometric analysis included the assessment of: reliability (using Cronbach-alpha coefficient), theoretical validity (factor analysis with principal axis extraction) and construct validity (using data concerning self-assessment of general occupational being and assessment of general occupational being of other teachers at school, two hypothesis were tested) and unidimensionality (principal component analysis). Cronbach's a for subscales, assessment of a current situation: 0.75-0.86, and for subscales assessment of needs for the improvement: 0.80-0.93. Factor structure of the scale was convergent with the expected one. Construct validity of the subscales was satisfactory--all hypotheses were confirmed. All subscales were also unidimensional. Psychometric analysis of the scale gave satisfactory results concerning its quality. The scale can be used as a tool in staffs health promotion, especially in the health promoting schools.
'Fractional recovery' analysis of a presynaptic synaptotagmin 1-anchored endocytic protein complex.
Khanna, Rajesh; Li, Qi; Stanley, Elise F
2006-12-20
The integral synaptic vesicle protein and putative calcium sensor, synaptotagmin 1 (STG), has also been implicated in synaptic vesicle (SV) recovery. However, proteins with which STG interacts during SV endocytosis remain poorly understood. We have isolated an STG-associated endocytic complex (SAE) from presynaptic nerve terminals and have used a novel fractional recovery (FR) assay based on electrostatic dissociation to identify SAE components and map the complex structure. The location of SAE in the presynaptic terminal was determined by high-resolution quantitative immunocytochemistry at the chick ciliary ganglion giant calyx-type synapse. The first step in FR analysis was to immunoprecipitate (IP) the complex with an antibody against one protein component (the IP-protein). The immobilized complex was then exposed to a high salt (1150 mM) stress-test that caused shedding of co-immunoprecipitated proteins (co-IP-proteins). A Fractional Recovery ratio (FR: recovery after high salt/recovery with control salt as assayed by Western blot) was calculated for each co-IP-protein. These FR values reflect complex structure since an easily dissociated protein, with a low FR value, cannot be intermediary between the IP-protein and a salt-resistant protein. The structure of the complex was mapped and a blueprint generated with a pair of FR analyses generated using two different IP-proteins. The blueprint of SAE contains an AP180/X/STG/stonin 2/intersectin/epsin core (X is unknown and epsin is hypothesized), and an AP2 adaptor, H-/L-clathrin coat and dynamin scission protein perimeter. Quantitative immunocytochemistry (ICA/ICQ method) at an isolated calyx-type presynaptic terminal indicates that this complex is associated with STG at the presynaptic transmitter release face but not with STG on intracellular synaptic vesicles. We hypothesize that the SAE serves as a recognition site and also as a seed complex for clathrin-mediated synaptic vesicle recovery. The combination of
NASA Astrophysics Data System (ADS)
Makarova, Yuliya; Sokolov, Sergey; Glukhov, Anton
2014-05-01
The Shamanikha-Stolbovsky gold cluster is located in the North-East of Russia, in the basin of the Kolyma River. In 1933, gold placers were discovered there, but the search for significant gold targets for more than 50 years did not give positive results. In 2009-2011, geochemical and geophysical studies, mining and drilling were conducted within this cluster. Geochemical exploration was carried out in a modification based on superimposed secondary sorption-salt haloes (sampling density of 250x250 m, 250x50 m, 250x20 m) using the superfine fraction analysis method (SFAM) because of complicated landscape conditions (thick Quaternary sediments, widespread permafrost). The method consists in the extraction of superfine fraction (<10 microns) from unconsolidated sediment samples followed by transfer to a solution of sorption-salt forms of elements and analysis using quantitative methods. The method worked well in areal geochemical studies of various scales in the Karelian-Kola region and in the Far East. Main results of the work in the Shamanikha-Stolbovsky area: 1. Geochemical exploration using the hyperfine fractions analysis method with sampling density of 250x250 m allowed the identification of zonal anomalous geochemical fields (AGCF) classified as an ore deposit promising for the discovery of gold mineralization (Nadezhda, Timsha, and Temny prospects). These AGCF are characterized by following three-zonal structure (from the center to the periphery): nucleus zone - area of centripetal elements concentration (Au, Ag, Sb, As, Cu, Hg, Bi, Pb, Mo); exchange zone - area of centrifugal elements concentration (Mn, Zn, V, Ti, Co, Cr, Ni); flank concentration zone - area of elevated contents of centripetal elements with subbackground centrifugal elements. 2. Detailed AGCF studies with sampling density of 250x50 m (250x20 m) in the Nadezhda, Timsha, and Temny prospects made it possible to refine the composition and structure of anomalous geochemical fields, identify
Straub, Anthony P; Lin, Shihong; Elimelech, Menachem
2014-10-21
We investigate the performance of pressure retarded osmosis (PRO) at the module scale, accounting for the detrimental effects of reverse salt flux, internal concentration polarization, and external concentration polarization. Our analysis offers insights on optimization of three critical operation and design parameters--applied hydraulic pressure, initial feed flow rate fraction, and membrane area--to maximize the specific energy and power density extractable in the system. For co- and counter-current flow modules, we determine that appropriate selection of the membrane area is critical to obtain a high specific energy. Furthermore, we find that the optimal operating conditions in a realistic module can be reasonably approximated using established optima for an ideal system (i.e., an applied hydraulic pressure equal to approximately half the osmotic pressure difference and an initial feed flow rate fraction that provides equal amounts of feed and draw solutions). For a system in counter-current operation with a river water (0.015 M NaCl) and seawater (0.6 M NaCl) solution pairing, the maximum specific energy obtainable using performance properties of commercially available membranes was determined to be 0.147 kWh per m(3) of total mixed solution, which is 57% of the Gibbs free energy of mixing. Operating to obtain a high specific energy, however, results in very low power densities (less than 2 W/m(2)), indicating that the trade-off between power density and specific energy is an inherent challenge to full-scale PRO systems. Finally, we quantify additional losses and energetic costs in the PRO system, which further reduce the net specific energy and indicate serious challenges in extracting net energy in PRO with river water and seawater solution pairings.
An Analysis of Model Scale Data Transformation to Full Scale Flight Using Chevron Nozzles
NASA Technical Reports Server (NTRS)
Brown, Clifford; Bridges, James
2003-01-01
Ground-based model scale aeroacoustic data is frequently used to predict the results of flight tests while saving time and money. The value of a model scale test is therefore dependent on how well the data can be transformed to the full scale conditions. In the spring of 2000, a model scale test was conducted to prove the value of chevron nozzles as a noise reduction device for turbojet applications. The chevron nozzle reduced noise by 2 EPNdB at an engine pressure ratio of 2.3 compared to that of the standard conic nozzle. This result led to a full scale flyover test in the spring of 2001 to verify these results. The flyover test confirmed the 2 EPNdB reduction predicted by the model scale test one year earlier. However, further analysis of the data revealed that the spectra and directivity, both on an OASPL and PNL basis, do not agree in either shape or absolute level. This paper explores these differences in an effort to improve the data transformation from model scale to full scale.
Elemental and Mineralogical Analysis of Silt Fraction from Site U1420, IODP Expedition 341
NASA Astrophysics Data System (ADS)
Salinas, J. K.; Jaeger, J. M.; Penkrot, M. L.
2016-12-01
In southeastern Alaska, the Chugach-St. Elias Mountains - the world's highest coastal mountain range - exhibit extreme topography due to the collision and subduction of the Yakutat microplate beneath the North American plate. The St. Elias orogen is younger than 30 Ma, with mountain building having occurred during a period of enhanced glacial erosion when erosive ice streams delivered sediment into the Gulf of Alaska. Integrated Ocean Drilling Program Expedition 341 set out to investigate the relationship between mountain building and glacial dynamics in the Gulf of Alaska. Sediment cores from site U1420 were collected, within the Bering trough, just offshore of the Bering Glacier. Analysis of Bering Trough seismic profiles demonstrates an evolution from tectonically-controlled to depositionally-controlled continental margin strata formation (Worthington et al., 2010). The goal of this study is to investigate the provenance of the silt-sized fraction (15-63 μm) of U1420 sediments across this transition in seismic facies using mineralogy and elemental geochemical analyses. XRD mineralogical analysis shows consistent downhole mineralogy with minor variations in relative peak intensities. Elemental ICP-MS geochemical analysis reveal concentrations of both major and trace elements to be very well constrained, with all major (Al, Ca, Fe, Mg, and Ti) and trace elemental data (Ce, Cr, Ga, La, Rb, Sc, Sr, Th, and Y) only varying downhole by few percent/ppm. Both the consistent downhole mineralogy and elemental data suggest that the provenance of the silt-sized sediment deposited offshore has not changed since initial deposition (<0.7 Ma). Comparison with onshore bedrock geochemistry and surface samples from the modern Gulf of Alaska indicate that U1420 silt is similar in composition to modern regional sediment sources and is a mixture of the different bedrock lithologies within the modern Bering Glacier drainage.
Pengchai, P; Nakajima, F; Furumai, H
2005-01-01
This study aimed to estimate the origins of polycyclic aromatic hydrocarbons (PAHs) in size-fractionated road dust in Tokyo. First, seven categories of PAHs sources were defined: diesel vehicle exhaust, gasoline vehicle exhaust, tire, pavement, asphalt or bitumen, petroleum products excluding tire and asphalt, and combustion products except for those in vehicle engines. The 189 source data of 12-PAHs profiles were classified into 11 groups based on cluster analysis combined with principal component analysis. Next, 18 road dust samples were collected from eight streets in Tokyo and fractionated into four different particle-size-fractions: 0.1-45, 45-106, 106-250, and 250-2000 microm. In order to estimate the contributions of the classified source groups (S1-S11) to PAHs in the road dust, multiple regression analysis was performed with 12-PAH profile of the road dust as dependent variable and average 12-PAHs profiles of the 11 source groups as 11 explanatory variables. Diesel vehicle exhaust, tire and pavement were the major contributors of PAHs in the fractionated road dust. Although the estimated contributions of the 11 source groups varied among the particle-size-fractions, there was no clear and consistent relationship between particle size and the major PAH contributor.
ERIC Educational Resources Information Center
Tunç-Pekkan, Zelha
2015-01-01
It is now well known that fractions are difficult concepts to learn as well as to teach. Teachers usually use circular pies, rectangular shapes and number lines on the paper as teaching tools for fraction instruction. This article contributes to the field by investigating how the widely used three external graphical representations (i.e., circle,…
Analysis of the Two-Fraction Method for Generating Primitive Pythagoras Triples
ERIC Educational Resources Information Center
Babajee, Diyashvir Kreetee Rajiv
2012-01-01
Finding methods for generating Pythagorean triples have been of great interest to Mathematicians since the Babylonians (from 1900 to 1600 BC). One of these methods is the less known two-fraction method which works for any two fractions whose product is 2. In this work, we analyse the method and show that it can be obtained from the fact that the…
ERIC Educational Resources Information Center
de la Torre, Jimmy; Douglas, Jeffrey A.
2008-01-01
This paper studies three models for cognitive diagnosis, each illustrated with an application to fraction subtraction data. The objective of each of these models is to classify examinees according to their mastery of skills assumed to be required for fraction subtraction. We consider the DINA model, the NIDA model, and a new model that extends the…
McPhail, L C; DeChatelet, L R; Johnston, R B
1979-01-01
A particulate fraction isolated from human neutrophils by homogenization, then centrifugation at 27,000 g, was demonstrated to generate chemiluminescence. This luminescence required the addition of reduced pyridine nucleotide and was very low in fractions from resting normal cells. Stimulation of neutrophils with opsonized zymosan, phorbol myristate acetate, or ionophore A23187 resulted in marked enhancement of the chemiluminescence measured in subsequently isolated particulate fractions. Stimulation did not boost the luminescence produced by fractions from cells of patients with chronic granulomatous disease. The chemiluminescence of particulate fractions from stimulated neutrophils was linear with increasing protein concentration, had a pH optimum of 7.0, and was higher with NADPH as substrate than with NADH. These results confirm previous studies suggesting that the enzyme system responsible for the respiratory burst in neutrophils is present in this fraction. The particulate fraction was used to examine the nature and origin of neutrophil luminescence by investigating the effect on this phenomenon of certain chemical and enzymatic scavengers of oxygen metabolites. Results suggest that the energy responsible for the luminescence of particulate fractions and, presumably, the intact cell, is derived from more than one oxygen species and that luminescence is a product of the interaction of these species and excitable substrates within the cell. PMID:35551
ERIC Educational Resources Information Center
Tunç-Pekkan, Zelha
2015-01-01
It is now well known that fractions are difficult concepts to learn as well as to teach. Teachers usually use circular pies, rectangular shapes and number lines on the paper as teaching tools for fraction instruction. This article contributes to the field by investigating how the widely used three external graphical representations (i.e., circle,…
ERIC Educational Resources Information Center
de la Torre, Jimmy; Douglas, Jeffrey A.
2008-01-01
This paper studies three models for cognitive diagnosis, each illustrated with an application to fraction subtraction data. The objective of each of these models is to classify examinees according to their mastery of skills assumed to be required for fraction subtraction. We consider the DINA model, the NIDA model, and a new model that extends the…
Psychometric Analysis of Role Conflict and Ambiguity Scales in Academia
ERIC Educational Resources Information Center
Khan, Anwar; Yusoff, Rosman Bin Md.; Khan, Muhammad Muddassar; Yasir, Muhammad; Khan, Faisal
2014-01-01
A comprehensive Psychometric Analysis of Rizzo et al.'s (1970) Role Conflict & Ambiguity (RCA) scales were performed after its distribution among 600 academic staff working in six universities of Pakistan. The reliability analysis includes calculation of Cronbach Alpha Coefficients and Inter-Items statistics, whereas validity was determined by…
Analysis of Fractional Flow for Transient Two-Phase Flow in Fractal Porous Medium
NASA Astrophysics Data System (ADS)
Lu, Ting; Duan, Yonggang; Fang, Quantang; Dai, Xiaolu; Wu, Jinsui
2016-03-01
Prediction of fractional flow in fractal porous medium is important for reservoir engineering and chemical engineering as well as hydrology. A physical conceptual fractional flow model of transient two-phase flow is developed in fractal porous medium based on the fractal characteristics of pore-size distribution and on the approximation that porous medium consist of a bundle of tortuous capillaries. The analytical expression for fractional flow for wetting phase is presented, and the proposed expression is the function of structural parameters (such as tortuosity fractal dimension, pore fractal dimension, maximum and minimum diameters of capillaries) and fluid properties (such as contact angle, viscosity and interfacial tension) in fractal porous medium. The sensitive parameters that influence fractional flow and its derivative are formulated, and their impacts on fractional flow are discussed.
Honeycomb: Visual Analysis of Large Scale Social Networks
NASA Astrophysics Data System (ADS)
van Ham, Frank; Schulz, Hans-Jörg; Dimicco, Joan M.
The rise in the use of social network sites allows us to collect large amounts of user reported data on social structures and analysis of this data could provide useful insights for many of the social sciences. This analysis is typically the domain of Social Network Analysis, and visualization of these structures often proves invaluable in understanding them. However, currently available visual analysis tools are not very well suited to handle the massive scale of this network data, and often resolve to displaying small ego networks or heavily abstracted networks. In this paper, we present Honeycomb, a visualization tool that is able to deal with much larger scale data (with millions of connections), which we illustrate by using a large scale corporate social networking site as an example. Additionally, we introduce a new probability based network metric to guide users to potentially interesting or anomalous patterns and discuss lessons learned during design and implementation.
Scaling range of power laws that originate from fluctuation analysis.
Grech, Dariusz; Mazur, Zygmunt
2013-05-01
We extend our previous study of scaling range properties performed for detrended fluctuation analysis (DFA) [Physica A 392, 2384 (2013)] to other techniques of fluctuation analysis (FA). The new technique, called modified detrended moving average analysis (MDMA), is introduced, and its scaling range properties are examined and compared with those of detrended moving average analysis (DMA) and DFA. It is shown that contrary to DFA, DMA and MDMA techniques exhibit power law dependence of the scaling range with respect to the length of the searched signal and with respect to the accuracy R^{2} of the fit to the considered scaling law imposed by DMA or MDMA methods. This power law dependence is satisfied for both uncorrelated and autocorrelated data. We find also a simple generalization of this power law relation for series with a different level of autocorrelations measured in terms of the Hurst exponent. Basic relations between scaling ranges for different techniques are also discussed. Our findings should be particularly useful for local FA in, e.g., econophysics, finances, or physiology, where the huge number of short time series has to be examined at once and wherever the preliminary check of the scaling range regime for each of the series separately is neither effective nor possible.
Scaling range of power laws that originate from fluctuation analysis
NASA Astrophysics Data System (ADS)
Grech, Dariusz; Mazur, Zygmunt
2013-05-01
We extend our previous study of scaling range properties performed for detrended fluctuation analysis (DFA) [Physica A0378-437110.1016/j.physa.2013.01.049 392, 2384 (2013)] to other techniques of fluctuation analysis (FA). The new technique, called modified detrended moving average analysis (MDMA), is introduced, and its scaling range properties are examined and compared with those of detrended moving average analysis (DMA) and DFA. It is shown that contrary to DFA, DMA and MDMA techniques exhibit power law dependence of the scaling range with respect to the length of the searched signal and with respect to the accuracy R2 of the fit to the considered scaling law imposed by DMA or MDMA methods. This power law dependence is satisfied for both uncorrelated and autocorrelated data. We find also a simple generalization of this power law relation for series with a different level of autocorrelations measured in terms of the Hurst exponent. Basic relations between scaling ranges for different techniques are also discussed. Our findings should be particularly useful for local FA in, e.g., econophysics, finances, or physiology, where the huge number of short time series has to be examined at once and wherever the preliminary check of the scaling range regime for each of the series separately is neither effective nor possible.
NASA Astrophysics Data System (ADS)
Perugini, Diego; Poli, Giampiero; Petrelli, Maurizio; de Campos, Cristina P.; Dingwell, D. B.
2010-05-01
The variation of chemical element compositions in two pyroclastic sequences (Astroni 6 and Averno 2, Phlegrean Fields, Italy) is studied. Both sequences are compositionally zoned indicating a variability of melt compositions in the magma chamber prior to eruption. A clear dichotomy between the behaviour of major vs. trace elements is also observed in both sequences, with major elements displaying nearly linear inter-elemental trends and trace elements showing a variable scattered behaviour. Together with previous petrological investigations these observations are consistent with the hypothesis that magma mixing processes played a key role in the evolution of these two magmatic systems. Recently it has been suggested that mixing processes in igneous systems may strongly influence the mobility of trace elements inducing a ‘diffusive fractionation’ phenomenon, whose extent depends on the mixing time-scale. Here we merge information from 1) numerical simulations of magma mixing, and 2) magma mixing experiments (using as end-members natural compositions from Phlegrean Fields) to derive a relationship relating the degree of ‘diffusive fractionation’ to the mixing time-scales. Application of the ‘diffusive fractionation’ model to the two studied pyroclastic sequences allowed us to apply the relationship derived by numerical simulations and experiments to estimate the mixing time-scales for these two magmatic systems. Results indicate that mixing processes in Astroni 6 and Averno 2 systems lasted for approximately 2 and 9 days, respectively, prior to eruption.
NASA Astrophysics Data System (ADS)
Drake, Henrik; Tullborg, Eva-Lena; Whitehouse, Martin; Sandberg, Bertil; Blomfeldt, Thomas; Åström, Mats E.
2015-07-01
This study conducted at the Äspö Hard Rock Laboratory, SE Sweden, determines the extent and mechanisms of sulphur-isotope fractionation in permanently reducing groundwater in fractured crystalline rock. Two boreholes >400 m below the ground surface were investigated. In the 17-year-old boreholes, the Al instrumentation pipes had corroded locally (i.e., Al-[oxy]hydroxides had formed) and minerals (i.e., pyrite, iron monosulphide, and calcite) had precipitated on various parts on the equipment. By chemically and isotopically comparing the precipitates on the withdrawn instrumentation and the borehole waters, we gained new insight into the dynamics of sulphate reduction, sulphide precipitation, and sulphur-isotope fractionation in deep-seated crystalline-rock settings. An astonishing feature of the pyrite is its huge variability in δ34S, which can exceed 100‰ in total (i.e., -47.2 to +53.3‰) and 60‰ over 50 μm of growth in a single crystal. The values at the low end of the range are up to 71‰ lower than measured in the dissolved sulphate in the water (20-30‰), which is larger than the maximum difference reported between sulphate and sulphide in pure-culture experiments (66‰) but within the range reported from natural sedimentary settings. Although single-step reduction seems likely, further studies are needed to rule out the effects of possible S disproportionation. The values at the high end of the range (i.e., high δ34Spy) are much higher than could be produced from the measured sulphate under any biogeochemical conditions. This strongly suggests the development of closed-system conditions near the growing pyrite, i.e., the rate of sulphate reduction exceeds the rate of sulphate diffusion in the local fluid near the pyrite, causing the local aqueous phase (and thus the forming pyrite) to become successively enriched in heavy S (34S). Consequently, the δ34S values of the forming pyrite become exceptionally high and strongly decoupled from the δ34S
Lu, Zhibing; Scherlag, Benjamin J; Lin, Jiaxiong; Niu, Guodong; Ghias, Muhammad; Jackman, Warren M; Lazzara, Ralph; Jiang, Hong; Po, Sunny S
2008-08-01
The mechanism(s) underlying complex fractionated atrial electrograms (CFAE) is not well understood. We hypothesized that CFAE may be caused by enhanced activity of the intrinsic cardiac autonomic nervous system. In 35 anesthetized dogs, via a right or left thoracotomy, sustained atrial fibrillation was induced by local application of acetylcholine (ACh; 10, 100 mM) to the surface of the atrial appendage (AA) or by injection of ACh (10 mM) into the ganglionated plexi (GP). Fast Fourier transform analysis was performed from recordings at AA, atrial sites near the AA, mid portion of the atrium, atrial sites near the GP, and the pulmonary veins. After AF was induced with ACh either by topical application to the AA or by direct injection into the GP, CFAE exhibited a significant gradient of progressively decreasing dominant frequency and incidence of CFAE (CFAE%) from the GP toward distant sites, while regularity index progressively decreased in the opposite direction. Ablation of GP markedly attenuated CFAE and eliminated these gradients. These results suggest CFAE may result from activation of the intrinsic cardiac autonomic nervous system in these animal models of sustained AF. Ablation of GP attenuates CFAE and eliminates the DF gradient.
Pourfarzad, Amir; Habibi Najafi, Mohammad B; Haddad Khodaparast, Mohammad H; Hassanzadeh Khayyat, Mohammad; Malekpour, Akbar
2014-06-15
The fructans, inulin and oligofructose, are known to exert many food and pharmaceutical applications and are widely used in functional foods throughout the world for their nutritional and techno-functional properties. In the present study, the Box-Behnken design was used to determine the optimal conditions for fructan precipitation from Eremurus spectabilis root powder (Serish) by adding ethanol that gave the maximum yield. Ethanol-to-syrup (E/S) ratio (2:1-15:1), precipitation temperature (30-60°C) and syrup concentration (10-40°B) were considered variables of fructan precipitation. The most compatible model among mean, linear and quadratic expressions was fitted to each response and the regression coefficients were determined using least square method. There was a good agreement between the experimental data and their predicted counterparts. The optimum conditions for fractionating fructan composition of Serish by ethanol were estimated to be E/S ratio of 8.56, temperature of 23.51°C and initial syrup concentration of 40°B. Precipitation under these optimized conditions achieved the best yield (85.81%), average chain length (12.92) and purity (80.18%). In addition, principal component analysis (PCA) allowed discriminating among precipitated fructan specialties.
Carrera, Mónica; Cañas, Benito; Piñeiro, Carmen; Vázquez, Jesús; Gallardo, José Manuel
2006-10-01
Analysis of parvalbumin fractions through proteomic methodologies allowed the differential classification of ten commercial, closely related species of the family Merlucciidae. Muscle extracts from nine hake species of the genus Merluccius including two subspecies of Merluccius australis (australis and polylepsis) and one grenadier species Macruronus novaezelandiae with two populations (novaezelandiae and magellanicus) were evaluated by 2-DE and MALDI-TOF MS. 2-DE demonstrated that the species tested displayed a low intra-specific degree of polymorphism and the isoform patterns were noticeably species-specific. MALDI-TOF mass fingerprints showed clear differences in the pattern of peptides produced by tryptic digestion between the Merluccius and the Macruronus, making the genus differentiation possible. In addition, a selective peptide mass present in the spectra from certain hakes allowed its classification in two groups: Euro-African and American hakes. Besides, some specific masses allowed a clearly individual identification for M. bilinearis, M. australis polylepsis, M. australis australis, M. productus, M. paradoxus and M. polli, while the rest of the hake species can be grouped in two clusters, comprising M. hubbsi and M. gayi in one and M. merluccius and M. capensis in the other.
Ren, Lujing; Hu, Xuechao; Zhao, Xiaoyan; Chen, Shenglan; Wu, Yi; Li, Dan; Yu, Yadong; Geng, Lingjun; Ji, Xiaojun; Huang, He
2017-06-15
Schizochytrium sp. is the main source of docosahexaenoic acid-rich oil, which is widely used in food additive and pharmaceutical industry. In this study, using RNA-seq, comparative transcriptomic analyses were performed at four stages of DHA fermentation by Schizochytrium sp to get potential genes related to cell transition from cell growth to lipid accumulation and then to lipid turnover. 1406, 385, 1384 differently expressed genes were identified by comparisons in pairs of S2 vs S1, S3 vs S2 and S4 vs S3. Functional analysis revealed that binding and single-organism process might be involve in the cell transition from cell growth to lipid accumulation while oxidation-reduction process played an important role in the transition from lipid accumulation to lipid turnover. pfaC in the PKS pathway showed higher sensitivity to the environmental change, which might be the key regulator for enhancing PUFA biosynthesis in the future. Some other genes in signal transduction and cell transport were revealed to be related to lipid turnover, which would enrich the current knowledge regarding lipid metabolism and help to enhance the DHA production and enrich different lipid fractions by Schizochytrium in the future.
Fingerprint of selected Salvia species by HS-GC-MS analysis of their volatile fraction.
Rzepa, Józef; Wojtal, Lukasz; Staszek, Dorota; Grygierczyk, Gabriela; Labe, Karina; Hajnos, Michał; Kowalska, Teresa; Waksmundzka-Hajnos, Monika
2009-08-01
Twenty species of Salvia, naturally grown or cultivated in Poland, are investigated by headspace gas chromatography-mass spectrometry analysis. The main components of the volatile fraction of Salvia species are identified as alpha-pinene, camphene, beta-pinene, thujol, camphor, beta-chamigrene, and cadina-3,9-diene. There are also the compounds that can be considered as chemotaxonomic markers, namely beta-myrcene for Salvia lavadulifolia, beta-phelandrene for Salvia verticillata, tau-terpinene for Salvia stepposa, and isocaryophyllene and caryophyllene for Salvia officinalis. Certain compounds (such as o-cymene present in Salvia canariensis and Salvia stepposa; beta-trans-ocymene present in Salvia lavadulifolia, Salvia sclarea, and Salvia amplexicaulis; thujenone present in Salvia staminea, Salvia atropatana, Salvia jurisicii, and Salvia officinalis; and thujone present in Salvia azurea, Salvia lavandulifolia, Salvia hians, and Salvia triloba) can constitute chemotaxonomic advice for the aforementioned species. Also, the lack of certain compounds otherwise common in the individual sage species can be considered as chemotaxonomic advice (e.g., Salvia sclarea has no alpha-pinene and beta-pinene; Salvia lavadulifolia lacks camphene; Salvia triloba lacks beta-pinene and camphene; and Salvia officinalis lacks beta-chamigrene, thujol, and cadina-3,9-diene).
Martínez, Leandro
2015-01-01
The analysis of structural mobility in molecular dynamics plays a key role in data interpretation, particularly in the simulation of biomolecules. The most common mobility measures computed from simulations are the Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuations (RMSF) of the structures. These are computed after the alignment of atomic coordinates in each trajectory step to a reference structure. This rigid-body alignment is not robust, in the sense that if a small portion of the structure is highly mobile, the RMSD and RMSF increase for all atoms, resulting possibly in poor quantification of the structural fluctuations and, often, to overlooking important fluctuations associated to biological function. The motivation of this work is to provide a robust measure of structural mobility that is practical, and easy to interpret. We propose a Low-Order-Value-Optimization (LOVO) strategy for the robust alignment of the least mobile substructures in a simulation. These substructures are automatically identified by the method. The algorithm consists of the iterative superposition of the fraction of structure displaying the smallest displacements. Therefore, the least mobile substructures are identified, providing a clearer picture of the overall structural fluctuations. Examples are given to illustrate the interpretative advantages of this strategy. The software for performing the alignments was named MDLovoFit and it is available as free-software at: http://leandro.iqm.unicamp.br/mdlovofit.
Li, Zhen-Hao; Liu, Pei; Qian, Da-Wei; Li, Wei; Shang, Er-Xin; Duan, Jin-Ao
2013-06-01
The objective of the present study was to establish a method based on principal component analysis (PCA) for the study of transdermal delivery of multiple components in Chinese medicine, and to choose the best penetration enhancers for the active fraction of Xiangfusiwu decoction (BW) with this method. Improved Franz diffusion cells with isolated rat abdomen skins were carried out to experiment on the transdermal delivery of six active components, including ferulic acid, paeoniflorin, albiflorin, protopine, tetrahydropalmatine and tetrahydrocolumbamine. The concentrations of these components were determined by LC-MS/MS, then the total factor scores of the concentrations at different times were calculated using PCA and were employed instead of the concentrations to compute the cumulative amounts and steady fluxes, the latter of which were considered as the indexes for optimizing penetration enhancers. The results showed that compared to the control group, the steady fluxes of the other groups increased significantly and furthermore, 4% azone with 1% propylene glycol manifested the best effect. The six components could penetrate through skin well under the action of penetration enhancers. The method established in this study has been proved to be suitable for the study of transdermal delivery of multiple components, and it provided a scientific basis for preparation research of Xiangfusiwu decoction and moreover, it could be a reference for Chinese medicine research.
Auwal, Mohammed Shaibu; Saka, Sanni; Mairiga, Ismail Alhaji; Sanda, Kyari Abba; Shuaibu, Abdullahi; Ibrahim, Amina
2014-01-01
Acacia nilotica (Thorn mimosa) is used locally for various medicinal purposes by traditionalists and herbalists in northeastern Nigeria. Plants products have been used since ancient times in the management of various conditions. The bark of A. nilotica has been reported to be used traditionally to manage diabetes, dysentery, leprosy, ulcers, cancers, tumor of the eye, ear and testicles, induration of liver and spleen and also in treatment of various condylomas. The objective of this study is to determine the phytochemical and elemental constituents of the extracts of A. nilotica pods. Flame emission and atomic absorption spectrometry were also used to determine the presence or absence of micro- and macro-elements in the extracts. Phytochemical analysis of the aqueous, ethyl acetate and N-butanol fractionated portions of the pod extracts of A. nilotica revealed the presence of tannins, saponins, flavonoids, carbohydrate, whereas carbohydrates and tannins were the only constituent in the residue portion. Anthraquinones, alkaloids, terpene and steroids were not present in the extracts. The elemental screening revealed the presence of iron, potassium, manganese, zinc, calcium, phosphorous, magnesium, sodium, cadmium and copper. Lead, arsenic and molybdenum were not detected in the pod. PMID:25568701
Estimating Cognitive Profiles Using Profile Analysis via Multidimensional Scaling (PAMS).
Kim, Se-Kang; Frisby, Craig L; Davison, Mark L
2004-10-01
Two of the most popular methods of profile analysis, cluster analysis and modal profile analysis, have limitations. First, neither technique is adequate when the sample size is large. Second, neither method will necessarily provide profile information in terms of both level and pattern. A new method of profile analysis, called Profile Analysis via Multidimensional Scaling (PAMS; Davison, 1996), is introduced to meet the challenge. PAMS extends the use of simple multidimensional scaling methods to identify latent profiles in a multi-test battery. Application of PAMS to profile analysis is described. The PAMS model is then used to identify latent profiles from a subgroup (N = 357) within the sample of the Woodcock-Johnson Psychoeducational Battery-Revised (WJ-R; McGrew, Werder, & Woodcock, 1991; Woodcock & Johnson, 1989), followed by a discussion of procedures for interpreting participants' observed score profiles from the latent PAMS profiles. Finally, advantages and limitations of the PAMS technique are discussed.
Elsamadony, M; Tawfik, A
2015-11-01
A long-term evaluation of a mesophilic up-flow intermittently stirred tank reactor (UISTR) for hydrogen production from the organic fraction of municipal solid waste was investigated. UISTR was operated at five different hydraulic retention times (HRTs) of 10, 7.5, 5, 3 and 2days. This corresponds to organic loading rates (OLRs) of 18.1, 26.2, 41.3, 61.0, and 97.2gCOD/L/day, respectively. The highest volumetric H2 production of 2.20±0.19L/L/d and H2 yield of 2.05±0.33molH2/molCarbohydrate were achieved at HRT of 3days and OLR of 61.0gCOD/L/day. This revealed a higher sCOD/tCOD ratio of 0.46±0.08 and a lower particle size diameter of 307.6μm in the digestate, with a reduction of 72.0%. The maximum carbohydrates, proteins, and lipids conversions amounted to 68.2±13.0%, 37.5±6.7% and 48.6±4.7%, respectively recorded at HRT of 10days and OLR of 18.1gCOD/L/day.
Tiessen, Axel; Nerlich, Annika; Faix, Benjamin; Hümmer, Christine; Fox, Simon; Trafford, Kay; Weber, Hans; Weschke, Winfriede; Geigenberger, Peter
2012-01-01
Compartmentation of metabolism in developing seeds is poorly understood due to the lack of data on metabolite distributions at the subcellular level. In this report, a non-aqueous fractionation method is described that allows subcellular concentrations of metabolites in developing barley endosperm to be calculated. (i) Analysis of subcellular volumes in developing endosperm using micrographs shows that plastids and cytosol occupy 50.5% and 49.9% of the total cell volume, respectively, while vacuoles and mitochondria can be neglected. (ii) By using non-aqueous fractionation, subcellular distribution between the cytosol and plastid of the levels of metabolites involved in sucrose degradation, starch synthesis, and respiration were determined. With the exception of ADP and AMP which were mainly located in the plastid, most other metabolites of carbon and energy metabolism were mainly located outside the plastid in the cytosolic compartment. (iii) In developing barley endosperm, the ultimate precursor of starch, ADPglucose (ADPGlc), was mainly located in the cytosol (80–90%), which was opposite to the situation in growing potato tubers where ADPGlc was almost exclusively located in the plastid (98%). This reflects the different subcellular distribution of ADPGlc pyrophosphorylase (AGPase) in these tissues. (iv) Cytosolic concentrations of ADPGlc were found to be close to the published Km values of AGPase and the ADPGlc/ADP transporter at the plastid envelope. Also the concentrations of the reaction partners glucose-1-phosphate, ATP, and inorganic pyrophosphate were close to the respective Km values of AGPase. (v) Knock-out of cytosolic AGPase in Riso16 mutants led to a strong decrease in ADPGlc level, in both the cytosol and plastid, whereas knock-down of the ADPGlc/ADP transporter led to a large shift in the intracellular distribution of ADPGlc. (v) The thermodynamic structure of the pathway of sucrose to starch was determined by calculating the mass–action ratios
Multiple-length-scale deformation analysis in a thermoplastic polyurethane
Sui, Tan; Baimpas, Nikolaos; Dolbnya, Igor P.; Prisacariu, Cristina; Korsunsky, Alexander M.
2015-01-01
Thermoplastic polyurethane elastomers enjoy an exceptionally wide range of applications due to their remarkable versatility. These block co-polymers are used here as an example of a structurally inhomogeneous composite containing nano-scale gradients, whose internal strain differs depending on the length scale of consideration. Here we present a combined experimental and modelling approach to the hierarchical characterization of block co-polymer deformation. Synchrotron-based small- and wide-angle X-ray scattering and radiography are used for strain evaluation across the scales. Transmission electron microscopy image-based finite element modelling and fast Fourier transform analysis are used to develop a multi-phase numerical model that achieves agreement with the combined experimental data using a minimal number of adjustable structural parameters. The results highlight the importance of fuzzy interfaces, that is, regions of nanometre-scale structure and property gradients, in determining the mechanical properties of hierarchical composites across the scales. PMID:25758945
Static Aeroelastic Scaling and Analysis of a Sub-Scale Flexible Wing Wind Tunnel Model
NASA Technical Reports Server (NTRS)
Ting, Eric; Lebofsky, Sonia; Nguyen, Nhan; Trinh, Khanh
2014-01-01
This paper presents an approach to the development of a scaled wind tunnel model for static aeroelastic similarity with a full-scale wing model. The full-scale aircraft model is based on the NASA Generic Transport Model (GTM) with flexible wing structures referred to as the Elastically Shaped Aircraft Concept (ESAC). The baseline stiffness of the ESAC wing represents a conventionally stiff wing model. Static aeroelastic scaling is conducted on the stiff wing configuration to develop the wind tunnel model, but additional tailoring is also conducted such that the wind tunnel model achieves a 10% wing tip deflection at the wind tunnel test condition. An aeroelastic scaling procedure and analysis is conducted, and a sub-scale flexible wind tunnel model based on the full-scale's undeformed jig-shape is developed. Optimization of the flexible wind tunnel model's undeflected twist along the span, or pre-twist or wash-out, is then conducted for the design test condition. The resulting wind tunnel model is an aeroelastic model designed for the wind tunnel test condition.
Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone
Ganesh, Sangita; Parris, Darren J; DeLong, Edward F; Stewart, Frank J
2014-01-01
Marine oxygen minimum zones (OMZs) support diverse microbial communities with roles in major elemental cycles. It is unclear how the taxonomic composition and metabolism of OMZ microorganisms vary between particle-associated and free-living size fractions. We used amplicon (16S rRNA gene) and shotgun metagenome sequencing to compare microbial communities from large (>1.6 μm) and small (0.2–1.6 μm) filter size fractions along a depth gradient in the OMZ off Chile. Despite steep vertical redox gradients, size fraction was a significantly stronger predictor of community composition compared to depth. Phylogenetic diversity showed contrasting patterns, decreasing towards the anoxic OMZ core in the small size fraction, but exhibiting maximal values at these depths within the larger size fraction. Fraction-specific distributions were evident for key OMZ taxa, including anammox planctomycetes, whose coding sequences were enriched up to threefold in the 0.2–1.6 μm community. Functional gene composition also differed between fractions, with the >1.6 μm community significantly enriched in genes mediating social interactions, including motility, adhesion, cell-to-cell transfer, antibiotic resistance and mobile element activity. Prokaryotic transposase genes were three to six fold more abundant in this fraction, comprising up to 2% of protein-coding sequences, suggesting that particle surfaces may act as hotbeds for transposition-based genome changes in marine microbes. Genes for nitric and nitrous oxide reduction were also more abundant (three to seven fold) in the larger size fraction, suggesting microniche partitioning of key denitrification steps. These results highlight an important role for surface attachment in shaping community metabolic potential and genome content in OMZ microorganisms. PMID:24030599
Inoue, Akira; Futakuchi, Masanobu; Yagi, Makoto; Mitsutake, Toru; Morooka, Shinichi
1995-12-01
Void fraction measurement tests for boiling water reactor (BWR) simulated nuclear fuel assemblies have been conducted using an X-ray computed tomography scanner.there are two types of fuel assemblies concerning water rods. One fuel assembly has two water rods; the other has one large water rod. The effects of the water rods on radial void fraction distributions are measured within the fuel assemblies. The results show that the water rod effect does not make a large difference in void fraction distribution. The subchannel analysis codes COBRA/BWR and THERMIT-2 were compared with subchannel-averaged void fractions. The prediction accuracy of COBRA/BWR and THERMIT-2 for the subchannel-averaged void fraction was {Delta}{alpha} = {minus}3.6%, {sigma} = 4.8% and {Delta}{alpha} = {minus}4.1%, {sigma} = 4.5%, respectively, where {Delta}{alpha} is the average of the difference measured and calculated values. The subchannel analysis codes are highly applicable for the prediction of a two-phase flow distribution within BWR fuel assemblies.
Stability analysis of fractional-order Hopfield neural networks with time delays.
Wang, Hu; Yu, Yongguang; Wen, Guoguang
2014-07-01
This paper investigates the stability for fractional-order Hopfield neural networks with time delays. Firstly, the fractional-order Hopfield neural networks with hub structure and time delays are studied. Some sufficient conditions for stability of the systems are obtained. Next, two fractional-order Hopfield neural networks with different ring structures and time delays are developed. By studying the developed neural networks, the corresponding sufficient conditions for stability of the systems are also derived. It is shown that the stability conditions are independent of time delays. Finally, numerical simulations are given to illustrate the effectiveness of the theoretical results obtained in this paper. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schmidt, G.; Pernicka, E.
1993-07-01
The contents of Na, Sc, Cr, Mn, Fe, Co, Ni, Zn, Ga, As, Se, Br, Sb, W, Ir, and Au in metallic nodules, magnetic and nonmagnetic fractions, and chondrules of the Qingzhen EH3 chondrite have been determined by instrumental neutron activation analysis (INAA). Five of the largest separated chondrules (0.07- 5.77 mg) were selected for INAA. After extraction of the chondrules, the residual sample was gently ground to reduce the grain size and sieved into the following fractions: >500 micrometers, 200-500 micrometers, 100-200 micrometers, 50-100 micrometers, 15-50 micrometers, and <15 micrometers. All fractions were separated by a hand magnet into a nonmagnetic fraction, consisting mainly of silicates and sulfides (mainly troilite), and a magnetic fraction consisting of metal, sulfide, and minor silicates. The separated magnetic nodules from the >500-micrometer fraction weighed between 0.49 mg and 3.99 mg. From all the powders, aliquots of 10 mg were irradiated at the German Cancer Research Institute at Heidelberg (TRIGA-HD II) and counted by using a large-volume, high-resolution Ge(Li) detector. In every irradiation step two samples of the Allende chondrite acted as primary standards. Results: Element concentrations vary with the grain size of the metal due to kamacite in the coarse and schreibersite +- perryite in the intermediate and fine fractions. The element contents (normalized to Fe) of Na, Sc, Cr, Mn, Ni, Se, W, Ir, and Au increase in the metal with decreasing grain size. Cobalt and As display a trend opposite to that of Ni and Au, decreasing with decreasing grain size of the metal in Qingzhen. Whereas the abundance ratios (relative to CI chondrites) of As, Au, and Co are very similar, the refractory siderophile elements Ir and W are depleted in the metal. Under high reducing conditions Ir and W belong to the most refractory siderophiles. The depletion of the refractory elements in Qingzhen with respect to carbonaceous chondrites has been attributed to a partial
Platikanov, Stefan; Tauler, Roma; Rodrigues, Pedro M S M; Antunes, Maria Cristina G; Pereira, Dilson; Esteves da Silva, Joaquim C G
2010-09-01
This study focuses on the factors that affect trihalomethane (THMs) formation when dissolved organic matter (DOM) fractions (colloidal, hydrophobic, and transphilic fractions) in aqueous solutions were disinfected with chlorine. DOM fractions were isolated and fractionated from filtered lake water and were characterized by elemental analysis. The investigation involved a screening Placket-Burman factorial analysis design of five factors (DOM concentration, chlorine dose, temperature, pH, and bromide concentration) and a Box-Behnken design for a detailed assessment of the three most important factor effects (DOM concentration, chlorine dose, and temperature). The results showed that colloidal fraction has a relatively low contribution to THM formation; transphilic fraction was responsible for about 50% of the chloroform generation, and the hydrophobic fraction was the most important to the brominated THM formation. When colloidal and hydrophobic fraction solutions were disinfected, the most significant factors were the following: higher DOM fraction concentration led to higher THM concentration, an increase of pH corresponded to higher concentration levels of chloroform and reduced bromoform, higher levels of chlorine dose and temperature produced a rise in the total THM formation, especially of the chlorinated THMs; higher bromide concentration generates higher concentrations of brominated THMs. Moreover, linear models were implemented and response surface plots were obtained for the four THM concentrations and their total sum in the disinfection solution as a function of the DOM concentration, chlorine dose, and temperature. Overall, results indicated that THM formation models were very complex due to individual factor effects and significant interactions among the factors. In order to reduce the concentration of THMs in drinking water, DOM concentrations must be reduced in the water prior to the disinfection. Fractionation of DOM, together with an elemental
Scale analysis using X-ray microfluorescence and computed radiography
NASA Astrophysics Data System (ADS)
Candeias, J. P.; de Oliveira, D. F.; dos Anjos, M. J.; Lopes, R. T.
2014-02-01
Scale deposits are the most common and most troublesome damage problems in the oil field and can occur in both production and injection wells. They occur because the minerals in produced water exceed their saturation limit as temperatures and pressures change. Scale can vary in appearance from hard crystalline material to soft, friable material and the deposits can contain other minerals and impurities such as paraffin, salt and iron. In severe conditions, scale creates a significant restriction, or even a plug, in the production tubing. This study was conducted to qualify the elements present in scale samples and quantify the thickness of the scale layer using synchrotron radiation micro-X-ray fluorescence (SRμXRF) and computed radiography (CR) techniques. The SRμXRF results showed that the elements found in the scale samples were strontium, barium, calcium, chromium, sulfur and iron. The CR analysis showed that the thickness of the scale layer was identified and quantified with accuracy. These results can help in the decision making about removing the deposited scale.
Geographical Scale Effects on the Analysis of Leptospirosis Determinants
Gracie, Renata; Barcellos, Christovam; Magalhães, Mônica; Souza-Santos, Reinaldo; Barrocas, Paulo Rubens Guimarães
2014-01-01
Leptospirosis displays a great diversity of routes of exposure, reservoirs, etiologic agents, and clinical symptoms. It occurs almost worldwide but its pattern of transmission varies depending where it happens. Climate change may increase the number of cases, especially in developing countries, like Brazil. Spatial analysis studies of leptospirosis have highlighted the importance of socioeconomic and environmental context. Hence, the choice of the geographical scale and unit of analysis used in the studies is pivotal, because it restricts the indicators available for the analysis and may bias the results. In this study, we evaluated which environmental and socioeconomic factors, typically used to characterize the risks of leptospirosis transmission, are more relevant at different geographical scales (i.e., regional, municipal, and local). Geographic Information Systems were used for data analysis. Correlations between leptospirosis incidence and several socioeconomic and environmental indicators were calculated at different geographical scales. At the regional scale, the strongest correlations were observed between leptospirosis incidence and the amount of people living in slums, or the percent of the area densely urbanized. At the municipal scale, there were no significant correlations. At the local level, the percent of the area prone to flooding best correlated with leptospirosis incidence. PMID:25310536
Geographical scale effects on the analysis of leptospirosis determinants.
Gracie, Renata; Barcellos, Christovam; Magalhães, Mônica; Souza-Santos, Reinaldo; Barrocas, Paulo Rubens Guimarães
2014-10-10
Leptospirosis displays a great diversity of routes of exposure, reservoirs, etiologic agents, and clinical symptoms. It occurs almost worldwide but its pattern of transmission varies depending where it happens. Climate change may increase the number of cases, especially in developing countries, like Brazil. Spatial analysis studies of leptospirosis have highlighted the importance of socioeconomic and environmental context. Hence, the choice of the geographical scale and unit of analysis used in the studies is pivotal, because it restricts the indicators available for the analysis and may bias the results. In this study, we evaluated which environmental and socioeconomic factors, typically used to characterize the risks of leptospirosis transmission, are more relevant at different geographical scales (i.e., regional, municipal, and local). Geographic Information Systems were used for data analysis. Correlations between leptospirosis incidence and several socioeconomic and environmental indicators were calculated at different geographical scales. At the regional scale, the strongest correlations were observed between leptospirosis incidence and the amount of people living in slums, or the percent of the area densely urbanized. At the municipal scale, there were no significant correlations. At the local level, the percent of the area prone to flooding best correlated with leptospirosis incidence.
Käsermann, Fabian; Boerema, David J.; Rüegsegger, Monika; Hofmann, Andreas; Wymann, Sandra; Zuercher, Adrian W.; Miescher, Sylvia
2012-01-01
It has been proposed that the anti-inflammatory effects of intravenous immunoglobulin (IVIG) might be due to the small fraction of Fc-sialylated IgG. In this study we biochemically and functionally characterized sialic acid-enriched IgG obtained by Sambucus nigra agglutinin (SNA) lectin fractionation. Two main IgG fractions isolated by elution with lactose (E1) or acidified lactose (E2) were analyzed for total IgG, F(ab’)2 and Fc-specific sialic acid content, their pattern of specific antibodies and anti-inflammatory potential in a human in vitro inflammation system based on LPS- or PHA-stimulated whole blood. HPLC and LC-MS testing revealed an increase of sialylated IgG in E1 and more substantially in the E2 fraction. Significantly, the increased amount of sialic acid residues was primarily found in the Fab region whereas only a minor increase was observed in the Fc region. This indicates preferential binding of the Fab sialic acid to SNA. ELISA analyses of a representative range of pathogen and auto-antigens indicated a skewed antibody pattern of the sialylated IVIG fractions. Finally, the E2 fraction exerted a more profound anti-inflammatory effect compared to E1 or IVIG, evidenced by reduced CD54 expression on monocytes and reduced secretion of MCP-1 (CCL2); again these effects were Fab- but not Fc-dependent. Our results show that SNA fractionation of IVIG yields a minor fraction (approx. 10%) of highly sialylated IgG, wherein the sialic acid is mainly found in the Fab region. The tested anti-inflammatory activity was associated with Fab not Fc sialylation. PMID:22675478
Finite-mode analysis by means of intensity information in fractional optical systems
NASA Astrophysics Data System (ADS)
Alieva, Tatiana; Bastiaans, Martin J.
2002-03-01
It is shown how a coherent optical signal that contains only a finite number of Hermite-Gauss modes can be reconstructed from the knowledge of its Radon-Wigner transform-associated with the intensity distribution in a fractional-Fourier-transform optical system-at only two transversal points. The proposed method can be generalized to any fractional system whose generator transform has a complete orthogonal set of eigenfunctions.
Zhang, Xinxin; Niu, Peifeng; Ma, Yunpeng; Wei, Yanqiao; Li, Guoqiang
2017-07-06
This paper is concerned with the stability analysis issue of fractional-order impulsive neural networks. Under the one-side Lipschitz condition or the linear growth condition of activation function, the existence of solution is analyzed respectively. In addition, the existence, uniqueness and global Mittag-Leffler stability of equilibrium point of the fractional-order impulsive neural networks with one-side Lipschitz condition are investigated by the means of contraction mapping principle and Lyapunov direct method. Finally, an example with numerical simulation is given to illustrate the validity and feasibility of the proposed results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shielding analysis methods available in the scale computational system
Parks, C.V.; Tang, J.S.; Hermann, O.W.; Bucholz, J.A.; Emmett, M.B.
1986-01-01
Computational tools have been included in the SCALE system to allow shielding analysis to be performed using both discrete-ordinates and Monte Carlo techniques. One-dimensional discrete ordinates analyses are performed with the XSDRNPM-S module, and point dose rates outside the shield are calculated with the XSDOSE module. Multidimensional analyses are performed with the MORSE-SGC/S Monte Carlo module. This paper will review the above modules and the four Shielding Analysis Sequences (SAS) developed for the SCALE system. 7 refs., 8 figs.
Full-scale system impact analysis: Digital document storage project
NASA Technical Reports Server (NTRS)
1989-01-01
The Digital Document Storage Full Scale System can provide cost effective electronic document storage, retrieval, hard copy reproduction, and remote access for users of NASA Technical Reports. The desired functionality of the DDS system is highly dependent on the assumed requirements for remote access used in this Impact Analysis. It is highly recommended that NASA proceed with a phased, communications requirement analysis to ensure that adequate communications service can be supplied at a reasonable cost in order to validate recent working assumptions upon which the success of the DDS Full Scale System is dependent.
Rakkiyappan, R; Cao, Jinde; Velmurugan, G
2015-01-01
This paper deals with the problem of existence and uniform stability analysis of fractional-order complex-valued neural networks with constant time delays. Complex-valued recurrent neural networks is an extension of real-valued recurrent neural networks that includes complex-valued states, connection weights, or activation functions. This paper explains sufficient condition for the existence and uniform stability analysis of such networks. Three numerical simulations are delineated to substantiate the effectiveness of the theoretical results.
Olsen, Catherine M; Carroll, Heidi J; Whiteman, David C
2010-11-15
Epidemiologic research has demonstrated convincingly that certain pigmentary characteristics are associated with increased relative risks of melanoma; however there has been no comprehensive review to rank these characteristics in order of their importance on a population level. We conducted a systematic review of the literature and meta-analysis to quantify the contribution of pigmentary characteristics to melanoma, estimated by the population-attributable fraction (PAF). Eligible studies were those that permitted quantitative assessment of the association between histologically confirmed melanoma and hair colour, eye colour, skin phototype and presence of freckling; we identified 66 such studies using citation databases, followed by manual review of retrieved references. We calculated summary relative risks using weighted averages of the log RR, taking into account random effects, and used these to estimate the PAF. The pooled RRs for pigmentary characteristics were: 2.64 for red/red-blond, 2.0 for blond and 1.46 for light brown hair colour (vs. dark); 1.57 for blue/blue-grey and 1.51 for green/grey/hazel eye colour (vs. dark); 2.27, 1.99 and 1.35 for skin phototypes I, II and III respectively (vs. IV); and 1.99 for presence of freckling. The highest PAFs were observed for skin phototypes 1/II (0.27), presence of freckling (0.23), and blond hair colour (0.23). For eye colour, the PAF for blue/blue-grey eye colour was higher than for green/grey/hazel eye colour (0.18 vs. 0.13). The PAF of melanoma associated with red hair colour was 0.10. These estimates of melanoma burden attributable to pigmentary characteristics provide a basis for designing prevention strategies for melanoma.
Time-series analysis of mortality effects from airborne particulate matter size fractions in Beijing
NASA Astrophysics Data System (ADS)
Li, Pei; Xin, Jinyuan; Wang, Yuesi; Wang, Shigong; Shang, Kezheng; Liu, Zirui; Li, Guoxing; Pan, Xiaochuan; Wei, Linbo; Wang, Mingzhen
2013-12-01
Evidence concerning the health risk of fine and coarse particles is limited in developing Asian countries. The modifying effect between particles and temperature and season also remains unclear. Our study is one of the first to investigate the acute effect of particles size fractions, modifying effects and interannual variations of relative risk in a developing megacity where particulate levels are extraordinarily high compared to other Asian cities. After controlling for potential confounding, the results of a time-series analysis during the period 2005-2009 show that a 10 μg m-3 increase in PM2.5 levels is associated with a 0.65% (95% CI: 0.29-0.80%), 0.63% (95% CI: 0.25-0.83%), and 1.38% (95% CI: 0.51-1.71%) increase in non-accidental mortality, respiratory mortality, and circulatory mortality, respectively, while a 10 μg m-3 increase in PM10 is similarly associated with increases of 0.15% (95% CI: 0.04-0.22%), 0.08% (95% CI: 0.01-0.18%), and 0.44% (95% CI: 0.12-0.63%). We did not find a significant effect of PM2.5-10 on daily mortality outcomes. Our analyses conclude that temperature and particulates, exposures to both of which are expected to increase with climate change, might act together to worsen human health in Beijing, especially in the cool seasons. The level of the estimated percentage increase assume an escalating tendency during the study period, in addition to having a low value in 2008, and after the Olympic Games, the values increased significantly as the temporary atmospheric pollution control measures were terminated mostly.
Dai, Neng; Lv, Hui-Jie; Xiang, Ya-Fei; Fan, Bing
2016-01-01
Introduction Noninvasive fractional flow reserve (FFR) computed from CT (FFRCT) is a novel method for determining the physiologic significance of coronary artery disease (CAD). Several clinical trials have been conducted, but its diagnostic performance varied among different trials. Aim To determine the cut-off value of FFRCT and its correlation with the gold standard used to diagnose CAD in clinical practice. Material and methods Forty patients with single vessel disease were included in our study. Computed tomography scan and coronary angiography with FFR were conducted for these patients. Three-dimensional geometric reconstruction and numerical analysis based on the computed tomographic angiogram (CTA) of coronary arteries were applied to obtain the values of FFRCT. The correlation between FFRCT and the gold standard used in clinical practice was tested. Results For FFRCT, the best cut-off value was 0.76, with the sensitivity, specificity, positive predictive value and negative predictive values of 84.6%, 92.9%, 88% and 73.3%, respectively. The area under the receiver-operator characteristics curve was 0.945 (p < 0.0001). There was a good correlation of FFRCT values with FFR values (r = 0.94, p < 0.0001), with a slight overestimation of FFRCT as compared with measured FFR (mean difference 0.01 ±0.11, p < 0.05). For inter-observer agreement, the mean κ value was 0.69 (0.61 to 0.78) and for intra-observer agreement the mean κ value was 0.61 (0.50 to 0.72). Conclusions FFRCT derived from CT of the coronary artery is a reliable non-invasive way providing reliable functional information of coronary artery stenosis. PMID:26966446
Das, Sudipto; Bosley, Allen D.; Ye, Xiaoying; Chan, King C.; Chu, Isabel; Green, Jeffery E.; Issaq, Haleem J.; Veenstra, Timothy D.; Andresson, Thorkell
2013-01-01
Affinity purification of protein complexes followed by identification using liquid chromatography/mass spectrometry (LC-MS/MS) is a robust method to study the fundamental process of protein interaction. While affinity isolation reduces the complexity of the sample, fractionation prior to LC-MS/MS analysis is still necessary to maximize protein coverage. In this study, we compared the protein coverage obtained via LC-MS/MS analysis of protein complexes pre-fractionated using two commonly employed methods, SDS-PAGE and strong cation exchange chromatography (SCX). The two complexes analyzed focused on the nuclear proteins Bmi-1 and GATA3 that were expressed within the cells at low and high levels, respectively. Pre-fractionation of the complexes at the peptide level using SCX consistently resulted in the identification of approximately 3-fold more proteins compared to separation at the protein level using SDS-PAGE. The increase in the number of identified proteins was especially pronounced for the Bmi-1 complex, where the target protein was expressed at a low level. The data shows that pre-fractionation of affinity isolated protein complexes using SCX prior to LC-MS/MS analysis significantly increases the number of identified proteins and individual protein coverage, particularly for target proteins expressed at low levels. PMID:20968308
Venkatesh, Uday; Javarasetty, Chethan; Murari, Satish Kumar
2017-01-01
Wedelia trilobata (L.) Hitch (WT), commonly known as yellow dots or creeping daisy, is a shrub possessing potent biological activities, and is traditionally used a medicinal plant in Ayurveda, Siddha and Unani systems of medicines, and it has also been tried against leukemia cell line MEG- 01. In the present study, purification and screening of the plant was done for bioactive compounds in methanolic extract of WT for apoptotic and anti-leukemia activity. The methanolic extract of WT was initially purified through thin layer chromatography (TLC) and screened for the apoptotic and anti-leukemia activities. The positive band of TLC was subjected to silica gel column chromatography for further purification and the fractions obtained from it were screened again for anti-leukemia activity through thymidine uptake assay and apoptotic activity by DNA fragmentation, nuclear staining and flow cytometry assays. The fraction with positive result was subjected to HPLC for analysis of bioactive components. Out of many combinations of solvents, the methanol and dichloromethane combination in the ratio 6:4 has revealed two bands in TLC, among which the second band showed positive results for apoptotic and anti-leukemic activities. Further purification of second band through silica gel chromatography gave five fractions in which the 3(rd) fraction gave positive results and it shows single peak during compositional analysis through HPLC. The single peak revealed through HPLC indicates the presence of pure compound with apoptotic and anti-leukemia activities encouraging for further structural analysis.
Tools for Large-Scale Mobile Malware Analysis
Bierma, Michael
2014-01-01
Analyzing mobile applications for malicious behavior is an important area of re- search, and is made di cult, in part, by the increasingly large number of appli- cations available for the major operating systems. There are currently over 1.2 million apps available in both the Google Play and Apple App stores (the respec- tive o cial marketplaces for the Android and iOS operating systems)[1, 2]. Our research provides two large-scale analysis tools to aid in the detection and analysis of mobile malware. The rst tool we present, Andlantis, is a scalable dynamic analysis system capa- ble of processing over 3000 Android applications per hour. Traditionally, Android dynamic analysis techniques have been relatively limited in scale due to the compu- tational resources required to emulate the full Android system to achieve accurate execution. Andlantis is the most scalable Android dynamic analysis framework to date, and is able to collect valuable forensic data, which helps reverse-engineers and malware researchers identify and understand anomalous application behavior. We discuss the results of running 1261 malware samples through the system, and provide examples of malware analysis performed with the resulting data. While techniques exist to perform static analysis on a large number of appli- cations, large-scale analysis of iOS applications has been relatively small scale due to the closed nature of the iOS ecosystem, and the di culty of acquiring appli- cations for analysis. The second tool we present, iClone, addresses the challenges associated with iOS research in order to detect application clones within a dataset of over 20,000 iOS applications.
Multi-scale curvature tensor analysis of machined surfaces
NASA Astrophysics Data System (ADS)
Bartkowiak, Tomasz; Brown, Christopher
2016-12-01
This paper demonstrates the use of multi-scale curvature analysis, an areal new surface characterization technique for better understanding topographies, for analyzing surfaces created by conventional machining and grinding. Curvature, like slope and area, changes with scale of observation, or calculation, on irregular surfaces, therefore it can be used for multi-scale geometric analysis. Curvatures on a surface should be indicative of topographically dependent behavior of a surface and curvatures are, in turn, influenced by the processing and use of the surface. Curvatures have not been well characterized previously. Curvature has been used for calculations in contact mechanics and for the evaluation of cutting edges. In the current work two parts were machined and then one of them was ground. The surface topographies were measured with a scanning laser confocal microscope. Plots of curvatures as a function of position and scale are presented, and the means and standard deviations of principal curvatures are plotted as a function of scale. Statistical analyses show the relations between curvature and these two manufacturing processes at multiple scales.
Experimental studies and model analysis of noble gas fractionation in low-permeability porous media
NASA Astrophysics Data System (ADS)
Ding, Xin; Mack Kennedy, B.; Molins, Sergi; Kneafsey, Timothy; Evans, William C.
2017-05-01
Gas flow through the vadose zone from sources at depth involves fractionation effects that can obscure the nature of transport and even the identity of the source. Transport processes are particularly complex in low permeability media but as shown in this study, can be elucidated by measuring the atmospheric noble gases. A series of laboratory column experiments was conducted to evaluate the movement of noble gas from the atmosphere into soil in the presence of a net efflux of CO2, a process that leads to fractionation of the noble gases from their atmospheric abundance ratios. The column packings were designed to simulate natural sedimentary deposition by interlayering low permeability ceramic plates and high permeability beach sand. Gas samples were collected at different depths at CO2 fluxes high enough to cause extreme fractionation of the noble gases (4He/36Ar > 20 times the air ratio). The experimental noble gas fractionation-depth profiles were in good agreement with those predicted by the dusty gas (DG) model, demonstrating the applicability of the DG model across a broad spectrum of environmental conditions. A governing equation based on the dusty gas model was developed to specifically describe noble gas fractionation at each depth that is controlled by the binary diffusion coefficient, Knudsen diffusion coefficient and the ratio of total advection flux to total flux. Finally, the governing equation was used to derive the noble gas fractionation pattern and illustrate how it is influenced by soil CO2 flux, sedimentary sequence, thickness of each sedimentary layer and each layer's physical parameters. Three potential applications of noble gas fractionation are provided: evaluating soil attributes in the path of gas flow from a source at depth to the atmosphere, testing leakage through low permeability barriers used to isolate buried waste, and tracking biological methanogenesis and methane oxidation associated with hydrocarbon degradation.
Preparation of postsynaptic density fraction from hippocampal slices and proteomic analysis
Dosemeci, Ayse . E-mail: dosemeca@mail.nih.gov; Tao-Cheng, J.-H.; Vinade, Lucia; Jaffe, Howard
2006-01-13
Hippocampal slices offer an excellent experimental system for the study of activity-induced changes in the postsynaptic density (PSD). While studies have documented electrophysiological and structural changes at synapses in response to precise manipulations of hippocampal slices, parallel biochemical and proteomic analyses were hampered by the lack of subcellular fractionation techniques applicable to starting tissue about three orders of magnitude smaller than that used in conventional protocols. Here, we describe a simple and convenient method for the preparation of PSD fractions from hippocampal slices and the identification of its components by proteomic techniques. The 'micro PSD fraction' obtained following two consecutive extractions of a synaptosomal fraction with Triton X-100 shows a significant enrichment in the marker protein PSD-95. Thin section electron microscopy shows PSDs similar to those observed in situ. However, other particulate material, especially myelin, and membrane vesicles are also present. The composition of the PSD fraction from hippocampal slices was analyzed by 2D LC/MS/MS. The proteomic approach which utilizes as little as 10 {mu}g total protein allowed the identification of >100 proteins. Many of the proteins detected in the fraction are the same as those identified in conventional PSD preparations including specialized PSD-scaffolding proteins, signaling molecules, cytoskeletal elements as well as certain contaminants. The results show the feasibility of the preparation of a PSD fraction from hippocampal slices of reasonable purity and of sufficient yield for proteomic analyses. In addition, we show that further purification of PSDs is possible using magnetic beads coated with a PSD-95 antibody.
Michio Sadatomi; Akimaro Kawahara; Hiroyuki Kudo; Hiroshi Shirai
2006-07-01
In order to know the effects of reduced surface tension on void fraction, adiabatic experiments were conducted for both air-water and air-water with surfactant systems at room temperature and pressure. Void fraction data were obtained for bubbly, slug, churn and annular flows in a vertical channel with two subchannels simplifying a triangle tight lattice rod bundle. The void fraction was found to be lower in air-water system than air-water with surfactant one. In addition, the void fractions for both systems were found to be lower than those calculated by various correlations in literatures for circular pipe flow. In order to study the cause of the above data trend, for annular flows as a first step, the void fraction has been calculated by a subchannel analysis using wall and interfacial friction correlations in literatures as constitutive equations, and by assuming the liquid film to be uniform over the wall perimeter. The best agreement between the calculation and the experiment has been obtained when NASCA correlation for wall friction force and modified RELAP5/MOD2 correlation incorporating reduced surface tension effects for interfacial friction force were used. (authors)
Rasch Analysis of the Fullerton Advanced Balance (FAB) Scale.
Klein, Penelope J; Fiedler, Roger C; Rose, Debra J
2011-01-01
This cross-sectional study explores the psychometric properties and dimensionality of the Fullerton Advanced Balance (FAB) Scale, a multi-item balance test for higher-functioning older adults. Participants (n=480) were community-dwelling adults able to ambulate independently. Data gathering consisted of survey and balance performance assessment. Psychometric properties were assessed using Rasch analysis. Mean age of participants was 76.4 (SD=7.1) years. Mean FAB Scale scores were 24.7/40 (SD=7.5). Analyses for scale dimensionality showed that 9 of the 10 items fit a unidimensional measure of balance. Item 10 (Reactive Postural Control) did not fit the model. The reliability of the scale to separate persons was 0.81 out of 1.00; the reliability of the scale to separate items in terms of their difficulty was 0.99 out of 1.00. Cronbach's alpha for a 10-item model was 0.805. Items of differing difficulties formed a useful ordinal hierarchy for scaling patterns of expected balance ability scoring for a normative population. The FAB Scale appears to be a reliable and valid tool to assess balance function in higher-functioning older adults. The test was found to discriminate among participants of varying balance abilities. Further exploration of concurrent validity of Rasch-generated expected item scoring patterns should be undertaken to determine the test's diagnostic and prescriptive utility.
Multi-scale symbolic transfer entropy analysis of EEG
NASA Astrophysics Data System (ADS)
Yao, Wenpo; Wang, Jun
2017-10-01
From both global and local perspectives, we symbolize two kinds of EEG and analyze their dynamic and asymmetrical information using multi-scale transfer entropy. Multi-scale process with scale factor from 1 to 199 and step size of 2 is applied to EEG of healthy people and epileptic patients, and then the permutation with embedding dimension of 3 and global approach are used to symbolize the sequences. The forward and reverse symbol sequences are taken as the inputs of transfer entropy. Scale factor intervals of permutation and global way are (37, 57) and (65, 85) where the two kinds of EEG have satisfied entropy distinctions. When scale factor is 67, transfer entropy of the healthy and epileptic subjects of permutation, 0.1137 and 0.1028, have biggest difference. And the corresponding values of the global symbolization is 0.0641 and 0.0601 which lies in the scale factor of 165. Research results show that permutation which takes contribution of local information has better distinction and is more effectively applied to our multi-scale transfer entropy analysis of EEG.
Complexity of carbon market from multi-scale entropy analysis
NASA Astrophysics Data System (ADS)
Fan, Xinghua; Li, Shasha; Tian, Lixin
2016-06-01
Complexity of carbon market is the consequence of economic dynamics and extreme social political events in global carbon markets. The multi-scale entropy can measure the long-term structures in the daily price return time series. By using multi-scale entropy analysis, we explore the complexity of carbon market and mean reversion trend of daily price return. The logarithmic difference of data Dec16 from August 6, 2010 to May 22, 2015 is selected as the sample. The entropy is higher in small time scale, while lower in large. The dependence of the entropy on the time scale reveals the mean reversion of carbon prices return in the long run. A relatively great fluctuation over some short time period indicates that the complexity of carbon market evolves consistently with economic development track and the events of international climate conferences.
The scaling of time series size towards detrended fluctuation analysis
NASA Astrophysics Data System (ADS)
Gao, Xiaolei; Ren, Liwei; Shang, Pengjian; Feng, Guochen
2016-06-01
In this paper, we introduce a modification of detrended fluctuation analysis (DFA), called multivariate DFA (MNDFA) method, based on the scaling of time series size N. In traditional DFA method, we obtained the influence of the sequence segmentation interval s, and it inspires us to propose a new model MNDFA to discuss the scaling of time series size towards DFA. The effectiveness of the procedure is verified by numerical experiments with both artificial and stock returns series. Results show that the proposed MNDFA method contains more significant information of series compared to traditional DFA method. The scaling of time series size has an influence on the auto-correlation (AC) in time series. For certain series, we obtain an exponential relationship, and also calculate the slope through the fitting function. Our analysis and finite-size effect test demonstrate that an appropriate choice of the time series size can avoid unnecessary influences, and also make the testing results more accurate.
Analysis of dose fractionation in the palliation of metastases from malignant melanoma
Konefal, J.B.; Emami, B.; Pilepich, M.V.
1988-01-15
Sixty-five visceral metastases from malignant melanoma were treated with radiation therapy. A variety of total doses and dose fractions were used. Significant palliation was achieved in 40 of 65 (62%) symptomatic lesions. There was no correlation between total dose or dose fraction size and significant palliation. Brain and bone metastases were separately analyzed. Nineteen of 28 (68%) bone metastases were palliated. Appendicular bony metastases were more likely to be palliated than axial bony metastases (88% versus 60%). The palliation of bone metastases did not depend on total dose given or fraction size. Nine of 23 (39%) symptomatic brain metastases were palliated. There was no difference in the rate of palliation between solitary and multiple brain metastases. Palliation of brain lesions was not dependent on fraction size, although there was a trend to better palliation with higher total doses. These findings suggest that unlike treating cutaneous or nodal melanoma lesions for local control, there is no advantage in large fraction size when treating with palliative intent visceral melanoma lesions.
Analysis of tristable energy harvesting system having fractional order viscoelastic material
Oumbé Tékam, G. T.; Woafo, P.; Kitio Kwuimy, C. A.
2015-01-15
A particular attention is devoted to analyze the dynamics of a strongly nonlinear energy harvester having fractional order viscoelastic flexible material. The strong nonlinearity is obtained from the magnetic interaction between the end free of the flexible material and three equally spaced magnets. Periodic responses are computed using the KrylovBogoliubov averaging method, and the effects of fractional order damping on the output electric energy are analyzed. It is obtained that the harvested energy is enhanced for small order of the fractional derivative. Considering the order and strength of the fractional viscoelastic property as control parameter, the complexity of the system response is investigated through the Melnikov criteria for horseshoes chaos, which allows us to derive the mathematical expression of the boundary between intra-well motion and bifurcations appearance domain. We observe that the order and strength of the fractional viscoelastic property can be effectively used to control chaos in the system. The results are confirmed by the smooth and fractal shape of the basin of attraction as the order of derivative decreases. The bifurcation diagrams and the corresponding Lyapunov exponents are plotted to get insight into the nonlinear response of the system.
Svedström, Ulla; Vuorela, Heikki; Kostiainen, Risto; Laakso, Into; Hiltunen, Raimo
2006-04-21
Polymeric procyanidins, phenolic carboxylic acids and flavonoids of hawthorn (Crataegus laevigata) were fractionated prior to HPLC analysis using column chromatography and solid-phase extraction (SPE). The flavonoid fraction also contained (-)-epicatechin. The three groups of phenolics, each with clearly different UV spectra, were examined by means of high-performance liquid chromatography-diode array detection (HPLC-DAD) analysis. The average repeatability of the method (RSD) was in the range of 8-13% for chlorogenic acid, (-)-epicatechin and hyperoside. The polymeric procyanidins of hawthorn flowers consisted mainly of (-)-epicatechin subunits, and their mean degree of polymerization (DP) was 22.2. The HPLC methods developed can be used for the qualitative and quantitative analysis of different phenolic compounds in hawthorn plant material and their extracts.
NASA Technical Reports Server (NTRS)
Roth, D. J.; Swickard, S. M.; Stang, D. B.; Deguire, M. R.
1990-01-01
A review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials is presented. Initially, a semi-empirical model is developed showing the origin of the linear relationship between ultrasonic velocity and porosity fraction. Then, from a compilation of data produced by many researchers, scatter plots of velocity versus percent porosity data are shown for Al2O3, MgO, porcelain-based ceramics, PZT, SiC, Si3N4, steel, tungsten, UO2,(U0.30Pu0.70)C, and YBa2Cu3O(7-x). Linear regression analysis produced predicted slope, intercept, correlation coefficient, level of significance, and confidence interval statistics for the data. Velocity values predicted from regression analysis for fully-dense materials are in good agreement with those calculated from elastic properties.
NASA Technical Reports Server (NTRS)
Roth, D. J.; Swickard, S. M.; Stang, D. B.; Deguire, M. R.
1991-01-01
A review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials is presented. Initially, a semiempirical model is developed showing the origin of the linear relationship between ultrasonic velocity and porosity fraction. Then, from a compilation of data produced by many researchers, scatter plots of velocity versus percent porosity data are shown for Al2O3, MgO, porcelain-based ceramics, PZT, SiC, Si3N4, steel, tungsten, UO2,(U0.30Pu0.70)C, and YBa2Cu3O(7-x). Linear regression analysis produces predicted slope, intercept, correlation coefficient, level of significance, and confidence interval statistics for the data. Velocity values predicted from regression analysis of fully-dense materials are in good agreement with those calculated from elastic properties.
NASA Astrophysics Data System (ADS)
Smirnov, A. S.; Belozerov, G. A.; Smirnova, E. O.; Konovalov, A. V.; Shveikin, V. P.; Muizemnek, O. Yu.
2016-07-01
The paper deals with a procedure of preparing a specimen surface for the EBSD analysis of a metal matrix composite (MMC) with a high volume fraction of reinforcing particles. Unlike standard procedures of preparing a specimen surface for the EBSD analysis, the proposed procedure is iterative with consecutive application of mechanical and electrochemical polishing. This procedure significantly improves the results of an indexed MMC matrix in comparison with the standard procedure of specimen preparation. The procedure was verified on a MMC with pure aluminum (99.8% Al) as the matrix, SiC particles being used as reinforcing elements. The average size of the SiC particles is 14 μm, and their volume fraction amounts to 50% of the total volume of the composite. It has been experimentally found that, for making the EBSD analysis of a material matrix near reinforcing particles, the difference in height between the particles and the matrix should not exceed 2 µm.
Raebiger, K.; Maksoud, T.M.A.; Ward, J.; Hausmann, G.
2008-09-15
In the investigation of the pumping behaviour of multiphase screw pumps, handling gas-liquid mixtures with very high gas volume fractions, theoretical and experimental analyses were performed. A new theoretical screw pump model was developed, which calculates the time-dependent conditions inside the several chambers of a screw pump as well as the exchange of mass and energy between these chambers. By means of the performed experimental analysis, the screw pump model was verified, especially at very high gas volume fractions from 90% to 99%. The experiments, which were conducted with the reference fluids water and air, can be divided mainly into the determination of the steady state pumping behaviour on the one hand and into the analysis of selected transient operating conditions on the other hand, whereas the visualisation of the leakage flows through the circumferential gaps was rounded off the experimental analysis. (author)
Educational Benefit-Cost Analysis and the Problem of Scale.
ERIC Educational Resources Information Center
Welty, Gordon A.
Benefit-cost analysis consists of establishing ratios of benefits to costs for a set of project variants. The decision rule is to select that project variant where the ratio is a maximum. This paper argues that specification and estimation errors can contribute to findings for large-scale systems of benefit-cost ratios approximating zero. The…
A Confirmatory Factor Analysis of the Professional Opinion Scale
ERIC Educational Resources Information Center
Greeno, Elizabeth J.; Hughes, Anne K.; Hayward, R. Anna; Parker, Karen L.
2007-01-01
The Professional Opinion Scale (POS) was developed to measure social work values orientation. Objective: A confirmatory factor analysis was performed on the POS. Method: This cross-sectional study used a mailed survey design with a national random (simple) sample of members of the National Association of Social Workers. Results: The study…
The Dyadic Adjustment Scale: A Reliability Generalization Meta-Analysis
ERIC Educational Resources Information Center
Graham, James M.; Liu, Yenling J.; Jeziorski, Jennifer L.
2006-01-01
We conducted a reliability generalization meta-analysis to examine the internal consistency of Dyadic Adjustment Scale (DAS; Spanier, 1976) scores across 91 published studies with 128 samples and 25,035 participants. The DAS was found to produce total and Dyadic cohesion, Consensus, and Satisfaction scores of acceptable internal consistency,…
Exploratory Factor Analysis of African Self-Consciousness Scale Scores
ERIC Educational Resources Information Center
Bhagwat, Ranjit; Kelly, Shalonda; Lambert, Michael C.
2012-01-01
This study replicates and extends prior studies of the dimensionality, convergent, and external validity of African Self-Consciousness Scale scores with appropriate exploratory factor analysis methods and a large gender balanced sample (N = 348). Viable one- and two-factor solutions were cross-validated. Both first factors overlapped significantly…
Sáenz-Navajas, María-Pilar; Ferreira, Vicente; Dizy, Marta; Fernández-Zurbano, Purificación
2010-07-19
Five Tempranillo wines exhibiting marked differences in taste and/or astringency were selected for the study. In each wine the non-volatile extract was obtained by freeze-drying and further liquid extraction in order to eliminate remaining volatile compounds. This extract was fractionated by semipreparative C18-reverse phase-high performance liquid chromatography (C18-RP-HPLC) into nine fractions which were freeze-dried, reconstituted with water and sensory assessed for taste attributes and astringency by a specifically trained sensory panel. Results have shown that wine bitterness and astringency cannot be easily related to the bitter and astringent character of the HPLC fractions, what can be due to the existence of perceptual and physicochemical interactions. While the bitter character of the bitterest fractions may be attributed to some flavonols (myricetin, quercetin and their glycosides) the development of a sensitive UPLC-MS method to quantify astringent compounds present in wines has made it possible to demonstrate that proanthocyanidins monomers, dimers, trimers and tetramers, both galloylated or non-galloylated are not relevant compounds for the perceived astringency of the fractions, while cis-aconitic acid, and secondarily vainillic, and syringic acids and ethyl syringate, are the most important molecules driving astringency in two of the fractions (F5 and F6). The identity of the chemicals responsible for the astringency of the third fraction could be assigned to some proanthocyanidins (higher than the tetramer) capable to precipitate with ovalbumin.
Dynamic analysis of a fractional order delayed predator-prey system with harvesting.
Song, Ping; Zhao, Hongyong; Zhang, Xuebing
2016-06-01
In the study, we consider a fractional order delayed predator-prey system with harvesting terms. Our discussion is divided into two cases. Without harvesting, we investigate the stability of the model, as well as deriving some criteria by analyzing the associated characteristic equation. With harvesting, we investigate the dynamics of the system from the aspect of local stability and analyze the influence of harvesting to prey and predator. Finally, numerical simulations are presented to verify our theoretical results. In addition, using numerical simulations, we investigate the effects of fractional order and harvesting terms on dynamic behavior. Our numerical results show that fractional order can affect not only the stability of the system without harvesting terms, but also the switching times from stability to instability and to stability. The harvesting can convert the equilibrium point, the stability and the stability switching times.
Rades, Dirk; Huttenlocher, Stefan; Šegedin, Barbara; Perpar, Ana; Conde, Antonio J.; Garcia, Raquel; Veninga, Theo; Stalpers, Lukas J.A.; Cacicedo, Jon; Rudat, Volker; Schild, Steven E.
2015-10-01
Purpose: This study compared single-fraction to multi-fraction short-course radiation therapy (RT) for symptomatic metastatic epidural spinal cord compression (MESCC) in patients with limited survival prognosis. Methods and Materials: A total of 121 patients who received 8 Gy × 1 fraction were matched (1:1) to 121 patients treated with 4 Gy × 5 fractions for 10 factors including age, sex, performance status, primary tumor type, number of involved vertebrae, other bone metastases, visceral metastases, interval between tumor diagnosis and MESCC, pre-RT ambulatory status, and time developing motor deficits prior to RT. Endpoints included in-field repeated RT (reRT) for MESCC, overall survival (OS), and impact of RT on motor function. Univariate analyses were performed with the Kaplan-Meier method and log-rank test for in-field reRT for MESCC and OS and with the ordered-logit model for effect of RT on motor function. Results: Doses of 8 Gy × 1 fraction and 4 Gy × 5 fractions were not significantly different with respect to the need for in-field reRT for MESCC (P=.11) at 6 months (18% vs 9%, respectively) and 12 months (30% vs 22%, respectively). The RT regimen also had no significant impact on OS (P=.65) and post-RT motor function (P=.21). OS rates at 6 and 12 months were 24% and 9%, respectively, after 8 Gy × 1 fraction versus 25% and 13%, respectively, after 4 Gy × 5 fractions. Improvement of motor function was observed in 17% of patients after 8 Gy × 1 fraction and 23% after 4 Gy × 5 fractions, respectively. Conclusions: There were no significant differences with respect to need for in-field reRT for MESCC, OS, and motor function by dose fractionation regimen. Thus, 8 Gy × 1 fraction may be a reasonable option for patients with survival prognosis of a few months.
NASA Astrophysics Data System (ADS)
Tilly, David; Ahnesjö, Anders
2015-07-01
A fast algorithm is constructed to facilitate dose calculation for a large number of randomly sampled treatment scenarios, each representing a possible realisation of a full treatment with geometric, fraction specific displacements for an arbitrary number of fractions. The algorithm is applied to construct a dose volume coverage probability map (DVCM) based on dose calculated for several hundred treatment scenarios to enable the probabilistic evaluation of a treatment plan. For each treatment scenario, the algorithm calculates the total dose by perturbing a pre-calculated dose, separately for the primary and scatter dose components, for the nominal conditions. The ratio of the scenario specific accumulated fluence, and the average fluence for an infinite number of fractions is used to perturb the pre-calculated dose. Irregularities in the accumulated fluence may cause numerical instabilities in the ratio, which is mitigated by regularisation through convolution with a dose pencil kernel. Compared to full dose calculations the algorithm demonstrates a speedup factor of ~1000. The comparisons to full calculations show a 99% gamma index (2%/2 mm) pass rate for a single highly modulated beam in a virtual water phantom subject to setup errors during five fractions. The gamma comparison shows a 100% pass rate in a moving tumour irradiated by a single beam in a lung-like virtual phantom. DVCM iso-probability lines computed with the fast algorithm, and with full dose calculation for each of the fractions, for a hypo-fractionated prostate case treated with rotational arc therapy treatment were almost indistinguishable.
Liberto, Erica; Cagliero, Cecilia; Cordero, Chiara; Rubiolo, Patrizia; Bicchi, Carlo; Sgorbini, Barbara
2017-03-17
Recent technological advances in dynamic headspace sampling (D-HS) and the possibility to automate this sampling method have lead to a marked improvement in its the performance, a strong renewal of interest in it, and have extended its fields of application. The introduction of in-parallel and in-series automatic multi-sampling and of new trapping materials, plus the possibility to design an effective sampling process by correctly applying the breakthrough volume theory, have make profiling more representative, and have enhanced selectivity, and flexibility, also offering the possibility of fractionated enrichment in particular for high-volatility compounds. This study deals with fractionated D-HS ability to produce a sample representative of the volatile fraction of solid or liquid matrices. Experiments were carried out on a model equimolar (0.5mM) EtOH/water solution, comprising 16 compounds with different polarities and volatilities, structures ranging from C5 to C15 and vapor pressures from 4.15kPa (2,3-pentandione) to 0.004kPa (t-β-caryophyllene), and on an Arabica roasted coffee powder. Three trapping materials were considered: Tenax TA™ (TX), Polydimethylsiloxane foam (PDMS), and a three-carbon cartridge Carbopack B/Carbopack C/Carbosieve S-III™ (CBS). The influence of several parameters on the design of successful fractionated D-HS sampling. Including the physical and chemical characteristics of analytes and matrix, trapping material, analyte breakthrough, purge gas volumes, and sampling temperature, were investigated. The results show that, by appropriately choosing sampling conditions, fractionated D-HS sampling, based on component volatility, can produce a fast and representative profile of the matrix volatile fraction, with total recoveries comparable to those obtained by full evaporation D-HS for liquid samples, and very high concentration factors for solid samples.
Tilly, David; Ahnesjö, Anders
2015-07-21
A fast algorithm is constructed to facilitate dose calculation for a large number of randomly sampled treatment scenarios, each representing a possible realisation of a full treatment with geometric, fraction specific displacements for an arbitrary number of fractions. The algorithm is applied to construct a dose volume coverage probability map (DVCM) based on dose calculated for several hundred treatment scenarios to enable the probabilistic evaluation of a treatment plan.For each treatment scenario, the algorithm calculates the total dose by perturbing a pre-calculated dose, separately for the primary and scatter dose components, for the nominal conditions. The ratio of the scenario specific accumulated fluence, and the average fluence for an infinite number of fractions is used to perturb the pre-calculated dose. Irregularities in the accumulated fluence may cause numerical instabilities in the ratio, which is mitigated by regularisation through convolution with a dose pencil kernel.Compared to full dose calculations the algorithm demonstrates a speedup factor of ~1000. The comparisons to full calculations show a 99% gamma index (2%/2 mm) pass rate for a single highly modulated beam in a virtual water phantom subject to setup errors during five fractions. The gamma comparison shows a 100% pass rate in a moving tumour irradiated by a single beam in a lung-like virtual phantom. DVCM iso-probability lines computed with the fast algorithm, and with full dose calculation for each of the fractions, for a hypo-fractionated prostate case treated with rotational arc therapy treatment were almost indistinguishable.
Li, Xueming; Zheng, Shawn; Agard, David A; Cheng, Yifan
2015-11-01
Newly developed direct electron detection cameras have a high image output frame rate that enables recording dose fractionated image stacks of frozen hydrated biological samples by electron cryomicroscopy (cryoEM). Such novel image acquisition schemes provide opportunities to analyze cryoEM data in ways that were previously impossible. The file size of a dose fractionated image stack is 20-60 times larger than that of a single image. Thus, efficient data acquisition and on-the-fly analysis of a large number of dose-fractionated image stacks become a serious challenge to any cryoEM data acquisition system. We have developed a computer-assisted system, named UCSFImage4, for semi-automated cryo-EM image acquisition that implements an asynchronous data acquisition scheme. This facilitates efficient acquisition, on-the-fly motion correction, and CTF analysis of dose fractionated image stacks with a total time of ∼60s/exposure. Here we report the technical details and configuration of this system.
Quantitative analysis of scale of aeromagnetic data raises questions about geologic-map scale
Nykanen, V.; Raines, G.L.
2006-01-01
A recently published study has shown that small-scale geologic map data can reproduce mineral assessments made with considerably larger scale data. This result contradicts conventional wisdom about the importance of scale in mineral exploration, at least for regional studies. In order to formally investigate aspects of scale, a weights-of-evidence analysis using known gold occurrences and deposits in the Central Lapland Greenstone Belt of Finland as training sites provided a test of the predictive power of the aeromagnetic data. These orogenic-mesothermal-type gold occurrences and deposits have strong lithologic and structural controls associated with long (up to several kilometers), narrow (up to hundreds of meters) hydrothermal alteration zones with associated magnetic lows. The aeromagnetic data were processed using conventional geophysical methods of successive upward continuation simulating terrane clearance or 'flight height' from the original 30 m to an artificial 2000 m. The analyses show, as expected, that the predictive power of aeromagnetic data, as measured by the weights-of-evidence contrast, decreases with increasing flight height. Interestingly, the Moran autocorrelation of aeromagnetic data representing differing flight height, that is spatial scales, decreases with decreasing resolution of source data. The Moran autocorrelation coefficient scems to be another measure of the quality of the aeromagnetic data for predicting exploration targets. ?? Springer Science+Business Media, LLC 2007.
Antonov, N V; Gulitskiy, N M; Kostenko, M M; Lučivjanský, T
2017-03-01
We study a model of fully developed turbulence of a compressible fluid, based on the stochastic Navier-Stokes equation, by means of the field-theoretic renormalization group. In this approach, scaling properties are related to the fixed points of the renormalization group equations. Previous analysis of this model near the real-world space dimension 3 identified a scaling regime [N. V. Antonov et al., Theor. Math. Phys. 110, 305 (1997)TMPHAH0040-577910.1007/BF02630456]. The aim of the present paper is to explore the existence of additional regimes, which could not be found using the direct perturbative approach of the previous work, and to analyze the crossover between different regimes. It seems possible to determine them near the special value of space dimension 4 in the framework of double y and ɛ expansion, where y is the exponent associated with the random force and ɛ=4-d is the deviation from the space dimension 4. Our calculations show that there exists an additional fixed point that governs scaling behavior. Turbulent advection of a passive scalar (density) field by this velocity ensemble is considered as well. We demonstrate that various correlation functions of the scalar field exhibit anomalous scaling behavior in the inertial-convective range. The corresponding anomalous exponents, identified as scaling dimensions of certain composite fields, can be systematically calculated as a series in y and ɛ. All calculations are performed in the leading one-loop approximation.
NASA Astrophysics Data System (ADS)
Antonov, N. V.; Gulitskiy, N. M.; Kostenko, M. M.; Lučivjanský, T.
2017-03-01
We study a model of fully developed turbulence of a compressible fluid, based on the stochastic Navier-Stokes equation, by means of the field-theoretic renormalization group. In this approach, scaling properties are related to the fixed points of the renormalization group equations. Previous analysis of this model near the real-world space dimension 3 identified a scaling regime [N. V. Antonov et al., Theor. Math. Phys. 110, 305 (1997), 10.1007/BF02630456]. The aim of the present paper is to explore the existence of additional regimes, which could not be found using the direct perturbative approach of the previous work, and to analyze the crossover between different regimes. It seems possible to determine them near the special value of space dimension 4 in the framework of double y and ɛ expansion, where y is the exponent associated with the random force and ɛ =4 -d is the deviation from the space dimension 4. Our calculations show that there exists an additional fixed point that governs scaling behavior. Turbulent advection of a passive scalar (density) field by this velocity ensemble is considered as well. We demonstrate that various correlation functions of the scalar field exhibit anomalous scaling behavior in the inertial-convective range. The corresponding anomalous exponents, identified as scaling dimensions of certain composite fields, can be systematically calculated as a series in y and ɛ . All calculations are performed in the leading one-loop approximation.
Dynamic stability analysis of fractional order leaky integrator echo state neural networks
NASA Astrophysics Data System (ADS)
Pahnehkolaei, Seyed Mehdi Abedi; Alfi, Alireza; Tenreiro Machado, J. A.
2017-06-01
The Leaky integrator echo state neural network (Leaky-ESN) is an improved model of the recurrent neural network (RNN) and adopts an interconnected recurrent grid of processing neurons. This paper presents a new proof for the convergence of a Lyapunov candidate function to zero when time tends to infinity by means of the Caputo fractional derivative with order lying in the range (0, 1). The stability of Fractional-Order Leaky-ESN (FO Leaky-ESN) is then analyzed, and the existence, uniqueness and stability of the equilibrium point are provided. A numerical example demonstrates the feasibility of the proposed method.
NASA Astrophysics Data System (ADS)
Peng, Peng; Wang, Xinping; Lai, Yong; Wang, Chong; Windley, Brian F.
2015-11-01
Immiscibility is a potential mechanism for the formation of high-Fe-Ti-P rocks; however, whether large-scale segregation and eruption of high-Si lavas can occur in nature has yet to be proven. In this study, we investigate the possibility of immiscibility between the cogenetic 1780 Ma high-Fe-Ti-P-bearing Taihang dykes and the 'bimodal' Xiong'er volcanics in North China. The compositions of silicate melt inclusions in plagioclase megacrysts of the dykes provide a new approach to obtain the primary liquid. Mineral and bulk-rock compositions reveal that large compositional variations in the dykes are the result of plagioclase- and clinopyroxene-dominated fractional crystallization and of density-driven mineral sorting, which together caused the liquids to be poor in Ca-Al but rich in Fe-Ti-P-K, and thus chemically immiscible. Conjugate interstitial granophyric and ilmenite-rich intergrowths and reactive microstructures especially olivine coronas in the dykes, and Si-/Fe-Ti-rich globules in the volcanics, provide petrographic evidence for the presence of two coeval, coexisting liquids in equilibrium separated by a miscibility gap, and thus for immiscibility and segregation/migration. The fractional crystallization and subsequent segregation were responsible for the compositional diversity of the Taihang dykes and also of the 'bimodal' Xiong'er volcanics. Accordingly, the dacite and rhyolite lavas are potentially the high-Si counterparts of the high-Ti dykes, and the basalt and andesite lavas are the erupted equivalents of the relatively low-Ti dykes. It is likely that the sustained plagioclase- and clinopyroxene-dominated fractional crystallization, and the enhanced fO2 were responsible for the immiscibility. The segregation probably took place during the ascent of the liquid in the pumping system (feeder dykes). This likely represents one natural example of crust-scale immiscibility from which many high-Ti dykes and silicic lavas (~ 1/3 volume of the Xiong
NASA Astrophysics Data System (ADS)
Dewi, D. A. K.; Suryadi, D.; Suratno, T.; Mulyana, E.; Kurniawan, H.
2017-02-01
Introducing fractions is identical to divide an object. Suppose we divide the apple into two parts. One divided into two parts, the question arises whether one part can be called a half or not. Based on this activity, how can students give meaning to fractions. This study aims at designing a different fractions lesson by applying Didactical Design Research. In doing so, we undertook several research phases: 1) thinking what is fractions and why students should learn this concept; 2) designing didactical situation based on identified learning obstacles; and 3) reflecting retrospectively on the lesson design and its implementation as to redesign the fractions lesson. Our analysis revealed that most students held epistemological obstacles in giving meaning of fractions because they only know fractions as numbers that have numerator and denominator. By positioning ourselves as students, we discuss the ideal design to help students in constructing the meaning of fractions.
SINEX: SCALE shielding analysis GUI for X-Windows
Browman, S.M.; Barnett, D.L.
1997-12-01
SINEX (SCALE Interface Environment for X-windows) is an X-Windows graphical user interface (GUI), that is being developed for performing SCALE radiation shielding analyses. SINEX enables the user to generate input for the SAS4/MORSE and QADS/QAD-CGGP shielding analysis sequences in SCALE. The code features will facilitate the use of both analytical sequences with a minimum of additional user input. Included in SINEX is the capability to check the geometry model by generating two-dimensional (2-D) color plots of the geometry model using a new version of the SCALE module, PICTURE. The most sophisticated feature, however, is the 2-D visualization display that provides a graphical representation on screen as the user builds a geometry model. This capability to interactively build a model will significantly increase user productivity and reduce user errors. SINEX will perform extensive error checking and will allow users to execute SCALE directly from the GUI. The interface will also provide direct on-line access to the SCALE manual.
NASA Astrophysics Data System (ADS)
Dewi Syarifah, Ratna; Su'ud, Zaki; Basar, Khairul; Irwanto, Dwi
2017-01-01
Nuclear Power Plant (NPP) is one of candidates which can support electricity demand in the world. The Generation IV NPP has fourth main objective, i.e. sustainability, economics competitiveness, safety and reliability, and proliferation and physical protection. One of Gen-IV reactor type is Gas Cooled Fast Reactor (GFR). In this study, the analysis of fuel fraction in small GFR with nitride fuel has been done. The calculation was performed by SRAC code, both Pij and CITATION calculation. SRAC2002 system is a code system applicable to analyze the neutronics of variety reactor type. And for the data library used JENDL-3.2. The step of SRAC calculation is fuel pin calculated by Pij calculation until the data homogenized, after it homogenized we calculate core reactor. The variation of fuel fraction is 40% up to 65%. The optimum design of 500MWth GFR without refueling with 10 years burn up time reach when radius F1:F2:F3 = 50cm:30cm:30cm and height F1:F2:F3 = 50cm:40cm:30cm, variation percentage Plutonium in F1:F2:F3 = 7%:10%:13%. The optimum fuel fraction is 41% with addition 2% Plutonium weapon grade mix in the fuel. The excess reactivity value in this case 1.848% and the k-eff value is 1.01883. The high burn up reached when the fuel fraction is low. In this study 41% fuel fraction produce faster fissile fuel, so it has highest burn-up level than the other fuel fraction.
Exploratory Data analysis ENvironment eXtreme scale (EDENx)
Steed, Chad Allen
2015-07-01
EDENx is a multivariate data visualization tool that allows interactive user driven analysis of large-scale data sets with high dimensionality. EDENx builds on our earlier system, called EDEN to enable analysis of more dimensions and larger scale data sets. EDENx provides an initial overview of summary statistics for each variable in the data set under investigation. EDENx allows the user to interact with graphical summary plots of the data to investigate subsets and their statistical associations. These plots include histograms, binned scatterplots, binned parallel coordinate plots, timeline plots, and graphical correlation indicators. From the EDENx interface, a user can select a subsample of interest and launch a more detailed data visualization via the EDEN system. EDENx is best suited for high-level, aggregate analysis tasks while EDEN is more appropriate for detail data investigations.
Di Maria, Francesco; Benavoli, Manuel; Zoppitelli, Mirco
2008-01-01
Waste management is of the utmost importance for many countries and especially for highly developed ones due to its implications on society. In particular, proper treatment before disposal of the solid urban waste organic fraction is one of the main issues that is addressed in waste management. In fact, the organic fraction is particularly reactive and if disposed in sanitary landfills without previous adequate treatment, a large amount of dangerous and polluting gaseous, liquid and solid substances can be produced. Some waste treatment processes can also present an opportunity to produce other by-products like energy, recycled materials and other products with both economic and environmental benefits. In this paper, the aerobic treatment of the organic fraction of solid urban waste, performed in a biocell plant with the possibility of recovering heat for civil or industrial needs, was examined from the thermodynamic point of view. A theoretical model was proposed both for the biological process of the organic fraction, as well as for the heat recovery system. The most significant results are represented and discussed.
ERIC Educational Resources Information Center
Li, Hui-Chuan
2014-01-01
This study examines students' procedural and conceptual achievement in fraction addition in England and Taiwan. A total of 1209 participants (561 British students and 648 Taiwanese students) at ages 12 and 13 were recruited from England and Taiwan to take part in the study. A quantitative design by means of a self-designed written test is adopted…
ERIC Educational Resources Information Center
Li, Hui-Chuan
2014-01-01
This study examines students' procedural and conceptual achievement in fraction addition in England and Taiwan. A total of 1209 participants (561 British students and 648 Taiwanese students) at ages 12 and 13 were recruited from England and Taiwan to take part in the study. A quantitative design by means of a self-designed written test is adopted…
Nonlinear analysis and analog simulation of a piezoelectric buckled beam with fractional derivative
NASA Astrophysics Data System (ADS)
Mokem Fokou, I. S.; Buckjohn, C. Nono Dueyou; Siewe Siewe, M.; Tchawoua, C.
2017-08-01
In this article, an analog circuit for implementing fractional-order derivative and a harmonic balance method for a vibration energy harvesting system under pure sinusoidal vibration source is proposed in order to predict the system response. The objective of this paper is to discuss the performance of the system with fractional derivative and nonlinear damping (μb). Bifurcation diagram, phase portrait and power spectral density (PSD) are provided to deeply characterize the dynamics of the system. These results are corroborated by the 0-1 test. The appearance of the chaotic vibrations reduces the instantaneous voltage. The pre-experimental investigation is carried out through appropriate software electronic circuit (Multisim). The corresponding electronic circuit is designed, exhibiting periodic and chaotic behavior, in accord with numerical simulations. The impact of fractional derivative and nonlinear damping is presented with detail on the output voltage and power of the system. The agreement between numerical and analytical results justifies the efficiency of the analytical technique used. In addition, by combining the harmonic excitation with the random force, the stochastic resonance phenomenon occurs and improves the harvested energy. It emerges from these results that the order of fractional derivative μ and nonlinear damping μb play an important role in the response of the system.
Time scale analysis of a digital flight control system
NASA Technical Reports Server (NTRS)
Naidu, D. S.; Price, D. B.
1986-01-01
In this paper, consideration is given to the fifth order discrete model of an aircraft (longitudinal) control system which possesses three slow (velocity, pitch angle and altitude) and two fast (angle of attack and pitch angular velocity) modes and exhibits a two-time scale property. Using the recent results of the time scale analysis of discrete control systems, the high-order discrete model is decoupled into low-order slow and fast subsystems. The results of the decoupled system are found to be in excellent agreement with those of the original system.
Large-Scale Graph Processing Analysis using Supercomputer Cluster
NASA Astrophysics Data System (ADS)
Vildario, Alfrido; Fitriyani; Nugraha Nurkahfi, Galih
2017-01-01
Graph implementation is widely use in various sector such as automotive, traffic, image processing and many more. They produce graph in large-scale dimension, cause the processing need long computational time and high specification resources. This research addressed the analysis of implementation large-scale graph using supercomputer cluster. We impelemented graph processing by using Breadth-First Search (BFS) algorithm with single destination shortest path problem. Parallel BFS implementation with Message Passing Interface (MPI) used supercomputer cluster at High Performance Computing Laboratory Computational Science Telkom University and Stanford Large Network Dataset Collection. The result showed that the implementation give the speed up averages more than 30 times and eficiency almost 90%.
SCALE system cross-section validation for criticality safety analysis
Hathout, A M; Westfall, R M; Dodds, Jr, H L
1980-01-01
The purpose of this study is to test selected data from three cross-section libraries for use in the criticality safety analysis of UO/sub 2/ fuel rod lattices. The libraries, which are distributed with the SCALE system, are used to analyze potential criticality problems which could arise in the industrial fuel cycle for PWR and BWR reactors. Fuel lattice criticality problems could occur in pool storage, dry storage with accidental moderation, shearing and dissolution of irradiated elements, and in fuel transport and storage due to inadequate packing and shipping cask design. The data were tested by using the SCALE system to analyze 25 recently performed critical experiments.
Multi-scale statistical analysis of coronal solar activity
Gamborino, Diana; del-Castillo-Negrete, Diego; Martinell, Julio J.
2016-07-08
Multi-filter images from the solar corona are used to obtain temperature maps that are analyzed using techniques based on proper orthogonal decomposition (POD) in order to extract dynamical and structural information at various scales. Exploring active regions before and after a solar flare and comparing them with quiet regions, we show that the multi-scale behavior presents distinct statistical properties for each case that can be used to characterize the level of activity in a region. Information about the nature of heat transport is also to be extracted from the analysis.
Scaled-particle theory analysis of cylindrical cavities in solution.
Ashbaugh, Henry S
2015-04-01
The solvation of hard spherocylindrical solutes is analyzed within the context of scaled-particle theory, which takes the view that the free energy of solvating an empty cavitylike solute is equal to the pressure-volume work required to inflate a solute from nothing to the desired size and shape within the solvent. Based on our analysis, an end cap approximation is proposed to predict the solvation free energy as a function of the spherocylinder length from knowledge regarding only the solvent density in contact with a spherical solute. The framework developed is applied to extend Reiss's classic implementation of scaled-particle theory and a previously developed revised scaled-particle theory to spherocylindrical solutes. To test the theoretical descriptions developed, molecular simulations of the solvation of infinitely long cylindrical solutes are performed. In hard-sphere solvents classic scaled-particle theory is shown to provide a reasonably accurate description of the solvent contact correlation and resulting solvation free energy per unit length of cylinders, while the revised scaled-particle theory fitted to measured values of the contact correlation provides a quantitative free energy. Applied to the Lennard-Jones solvent at a state-point along the liquid-vapor coexistence curve, however, classic scaled-particle theory fails to correctly capture the dependence of the contact correlation. Revised scaled-particle theory, on the other hand, provides a quantitative description of cylinder solvation in the Lennard-Jones solvent with a fitted interfacial free energy in good agreement with that determined for purely spherical solutes. The breakdown of classical scaled-particle theory does not result from the failure of the end cap approximation, however, but is indicative of neglected higher-order curvature dependences on the solvation free energy.
Sesame fractions and lipid profiles: a systematic review and meta-analysis of controlled trials.
Khalesi, Saman; Paukste, Ernesta; Nikbakht, Elham; Khosravi-Boroujeni, Hossein
2016-03-14
Increased plasma lipid profiles are among the most important risk factors of CHD and stroke. Sesame contains considerable amounts of vitamin E, MUFA, fibre and lignans, which are thought to be associated with its plasma lipid-lowering properties. This study aimed to systematically review the evidence and identify the effects of sesame consumption on blood lipid profiles using a meta-analysis of controlled trials. PubMed, CINAHL and Cochrane Library databases were searched (from 1960 to May 2015). A total of ten controlled trials were identified based on the eligibility criteria. Both the Cochrane Collaboration tool and the Rosendal scale were used to assess the risk of bias of the included studies. The meta-analysis results showed that consumption of sesame did not significantly change the concentrations of total blood cholesterol (-0·32 mmol/l; 95% CI -0·75, 0·11; P=0·14, I(2)=96%), LDL-cholesterol (-0·15 mmol/l; 95% CI -0·50, 0·19; P=0·39, I(2)=96%) or HDL-cholesterol (0·01 mmol/l; 95% CI -0·00, 0·02; P=0·16, I(2)=0%). However, a significant reduction was observed in serum TAG levels (-0·24 mmol/l; 95% CI -0·32, -0·15; P<0·001, I(2)=84%) after consumption of sesame. It was concluded that sesame consumption can significantly reduce blood TAG levels but there is insufficient evidence to support its hypocholesterolaemic effects. Further studies are required to determine the potential effect of sesame consumption on lipid profiles and cardiovascular risk factors.
Angular analysis and differential branching fraction of the decay B {/s 0} → ϕμ + μ -
NASA Astrophysics Data System (ADS)
Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fohl, K.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusardi, N.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Matthieu, K.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Ninci, D.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Sterpka, F.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Diaz, M. Vieites; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yu, J.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zucchelli, S.
2015-09-01
An angular analysis and a measurement of the differential branching fraction of the decay B s 0 → ϕμ + μ - are presented, using data corresponding to an integrated luminosity of 3 .0 fb-1 of pp collisions recorded by the LHCb experiment at √{s}=7 and 8 TeV. Measurements are reported as a function of q 2, the square of the dimuon invariant mass and results of the angular analysis are found to be consistent with the Standard Model. In the range 1 < q 2 < 6 GeV2 /c 4, where precise theoretical calculations are available, the differential branching fraction is found to be more than 3 σ below the Standard Model predictions. [Figure not available: see fulltext.
Pellera, Frantseska-Maria; Pasparakis, Emmanouil; Gidarakos, Evangelos
2016-10-01
The scope of this study is to evaluate the use of laboratory-scale landfill-bioreactors, operated consecutively under anaerobic and aerobic conditions, for the combined treatment of the organic fraction of municipal solid waste (OFMSW) with two different co-substrates of lignocellulosic nature, namely green waste (GW) and dried olive pomace (DOP). According to the results such a system would represent a promising option for eventual larger scale applications. Similar variation patterns among bioreactors indicate a relatively defined sequence of processes. Initially operating the systems under anaerobic conditions would allow energetic exploitation of the substrates, while the implementation of a leachate treatment system ultimately aiming at nutrient recovery, especially during the anaerobic phase, could be a profitable option for the whole system, due to the high organic load that characterizes this effluent. In order to improve the overall effectiveness of such a system, measures towards enhancing methane contents of produced biogas, such as substrate pretreatment, should be investigated. Moreover, the subsequent aerobic phase should have the goal of stabilizing the residual materials and finally obtain an end material eventually suitable for other purposes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chen, Fei; Peldszus, Sigrid; Peiris, Ramila H; Ruhl, Aki S; Mehrez, Renata; Jekel, Martin; Legge, Raymond L; Huck, Peter M
2014-01-01
A pilot-scale investigation of the performance of biofiltration as a pre-treatment to ultrafiltration for drinking water treatment was conducted between 2008 and 2010. The objective of this study was to further understand the fouling behaviour of ultrafiltration at pilot scale and assess the utility of different foulant monitoring tools. Various fractions of natural organic matter (NOM) and colloidal/particulate matter of raw water, biofilter effluents, and membrane permeate were characterized by employing two advanced NOM characterization techniques: liquid chromatography - organic carbon detection (LC-OCD) and fluorescence excitation-emission matrices (FEEM) combined with principal component analysis (PCA). A framework of fouling rate quantification and classification was also developed and utilized in this study. In cases such as the present one where raw water quality and therefore fouling potential vary substantially, such classification can be considered essential for proper data interpretation. The individual and combined contributions of various NOM fractions and colloidal/particulate matter to hydraulically reversible and irreversible fouling were investigated using various multivariate statistical analysis techniques. Protein-like substances and biopolymers were identified as major contributors to both reversible and irreversible fouling, whereas colloidal/particulate matter can alleviate the extent of irreversible fouling. Humic-like substances contributed little to either reversible or irreversible fouling at low level fouling rates. The complementary nature of FEEM-PCA and LC-OCD for assessing the fouling potential of complex water matrices was also illustrated by this pilot-scale study. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chang, C.; McKnight, C.; Kneafsey, T. J.
2014-12-01
Composition discernment, fraction calculation and morphological analysis of a shallow core retrieved from Barrow, AK as part of the Next Generation Ecosystem Experiments in the Arctic (NGEE-Arctic) were conducted to give a quantitative description of the core. Imaging of the core was performed using a medical X-ray computed tomography (CT) scanner, which gives a 3D image with a resolution of 0.195×0.195×0.625mm3. The core consists mainly of mineral, ice, organic matter and air and composition discernment and fraction calculation focus on the first three materials. Four scans with different energies were performed because materials with different density show different responses on scans with varying energies. A calibration curve showing the relationship between density and CT value was built by scanning standard materials having a wide range of density. CT value of the three compositions under four energies was determined by the calibration curve and the core scan. Composition fraction was calculated on the assumption that the core CT value is linearly proportional to the composition fraction and by solving linear least-squares problems with bounds. Comparison of the estimated and measured core CT value shows that the correlation coefficient is more than 0.99, indicating the accuracy of the calculation. Two regions with relatively high fraction of organic matter (10%) were distinguished, which are located at the top of the core and ice filled fractures at the bottom of the active layer. Morphological analysis was applied to the mineral and ice because of low fraction of organic matter. Three segmentations corresponding to ice-rich (with a density of 0.86 to 1.24 g/cm3), transition from ice to mineral (1.24 to 1.47 g/cm3) and mineral-rich (1.47 to 2.65 g/cm3) were applied to the core, and two area (area and area standard deviation) and three morphological (circulatory, roundness and rectangularity) parameters were analysed. By conducting Principle Component
A scaling analysis of ozone photochemistry: I Model development
NASA Astrophysics Data System (ADS)
Ainslie, B.; Steyn, D. G.
2005-12-01
A scaling analysis has been used to capture the integrated behaviour of several photochemical mechanisms for a wide range of precursor concentrations and a variety of environmental conditions. The Buckingham Pi method of dimensional analysis was used to express the relevant variables in terms of dimensionless groups. These grouping show maximum ozone, initial NOx and initial VOC concentrations are made non-dimensional by the average NO2 photolysis rate (jav) and the rate constant for the NO-O3 titration reaction (kNO); temperature by the NO-O3 activation energy (ENO) and Boltzmann constant (k) and total irradiation time by the cumulative javΔt photolysis rate (π3). The analysis shows dimensionless maximum ozone concentration can be described by a product of powers of dimensionless initial NOx concentration, dimensionless temperature, and a similarity curve directly dependent on the ratio of initial VOC to NOx concentration and implicitly dependent on the cumulative NO2 photolysis rate. When Weibull transformed, the similarity relationship shows a scaling break with dimensionless model output clustering onto two straight line segments, parameterized using four variables: two describing the slopes of the line segments and two giving the location of their intersection. A fifth parameter is used to normalize the model output. The scaling analysis, similarity curve and parameterization appear to be independent of the details of the chemical mechanism, hold for a variety of VOC species and mixtures and a wide range of temperatures and actinic fluxes.
NASA Astrophysics Data System (ADS)
Petrelli, M.; Perugini, D.; de Campos, C. P.; Poli, G.; Dingwell, D. B.
2010-12-01
Understanding the timing of volcanic eruptions is a central issue in volcanological research. To date, no one method appears capable of providing unequivocal information on the imminence of a volcanic explosion. One volcanic area in which the knowledge of eruption timescales is crucial is the Phlegrean Fields region (Italy) home to more than 1.5 million people. Recent magmatism (ca. 60ka BP to 1538 AD) has generated mostly explosive events; in the last 15 kyrs ca. 70 eruptions have been recognized. Understanding the mechanisms triggering such eruptions is crucial, since the Phlegrean Fields caldera is considered as an active volcanic system that is thus likely to erupt in the future. Towards this end, the variation of chemical element compositions in two pyroclastic sequences (Astroni 6 and Averno 2, Phlegrean Fields, Italy) is studied. Both sequences are compositionally zoned indicating a variability of melt compositions in the magma chamber prior to eruption. A clear dichotomy between the behavior of major vs. trace elements is also observed in both sequences, with major elements displaying nearly linear inter-elemental trends and trace elements showing a variable scattered behavior. Together with previous petrological investigations these observations are consistent with the hypothesis that magma mixing processes played a key role in the evolution of these two magmatic systems. Recently it has been suggested that mixing processes in igneous systems may strongly influence the mobility of trace elements inducing a diffusive fractionation phenomenon, whose extent depends on the mixing time-scale. Here we merge information from 1) detailed geochemical studies of natural samples from Phlegrean Fields, 2) numerical simulations of magma mixing, and 3) magma mixing experiments (using as end-members natural compositions from Phlegrean Fields) to derive a relationship relating the degree of diffusive fractionation to the mixing time-scales. Application of the
Bridgman crystal growth in low gravity - A scaling analysis
NASA Technical Reports Server (NTRS)
Alexander, J. I. D.; Rosenberger, Franz
1990-01-01
The results of an order-of-magnitude or scaling analysis are compared with those of numerical simulations of the effects of steady low gravity on compositional nonuniformity in crystals grown by the Bridgman-Stockbarger technique. In particular, the results are examined of numerical simulations of the effect of steady residual acceleration on the transport of solute in a gallium-doped germanium melt during directional solidification under low-gravity conditions. The results are interpreted in terms of the relevant dimensionless groups associated with the process, and scaling techniques are evaluated by comparing their predictions with the numerical results. It is demonstrated that, when convective transport is comparable with diffusive transport, some specific knowledge of the behavior of the system is required before scaling arguments can be used to make reasonable predictions.
Complexity and Hopf Bifurcation Analysis on a Kind of Fractional-Order IS-LM Macroeconomic System
NASA Astrophysics Data System (ADS)
Ma, Junhai; Ren, Wenbo
On the basis of our previous research, we deepen and complete a kind of macroeconomics IS-LM model with fractional-order calculus theory, which is a good reflection on the memory characteristics of economic variables, we also focus on the influence of the variables on the real system, and improve the analysis capabilities of the traditional economic models to suit the actual macroeconomic environment. The conditions of Hopf bifurcation in fractional-order system models are briefly demonstrated, and the fractional order when Hopf bifurcation occurs is calculated, showing the inherent complex dynamic characteristics of the system. With numerical simulation, bifurcation, strange attractor, limit cycle, waveform and other complex dynamic characteristics are given; and the order condition is obtained with respect to time. We find that the system order has an important influence on the running state of the system. The system has a periodic motion when the order meets the conditions of Hopf bifurcation; the fractional-order system gradually stabilizes with the change of the order and parameters while the corresponding integer-order system diverges. This study has certain significance to policy-making about macroeconomic regulation and control.
NASA Astrophysics Data System (ADS)
Wang, Wei; Yao, Xinfeng; Ji, Minhe; Zhang, Jiao
2015-06-01
Various spectral data preprocessing approaches have been used to improve endmember extraction for urban landscape decomposition, yet little is known of their comparative adequacy for impervious surface mapping. This study tested four commonly used spectral data treatment strategies for endmember derivation, including original spectra, image fusion via principal component analysis, spectral normalization, and the minimum noise fraction (MNF) transformation. Land cover endmembers derived using each strategy were used to build a linear spectral mixture analysis (LSMA) model in order to unmix treated image pixels into fraction maps, and an urban imperviousness map was generated by combining the fraction maps representing imperviousness endmembers. A cross-map comparative analysis was then performed to rank the four data treatment types based on such common evaluation indices as the coefficient of determination ( R 2) and root mean square error (RMSE). A Landsat 7 ETM+ multispectral image covering the metropolitan region of Shanghai, China was used as the primary dataset, and the model results were evaluated using high-resolution colorinfrared aerial photographs of roughly the same time period. The test results indicated that, with the highest R 2 (0.812) and the lowest RMSE (0.097) among all four preprocessing treatments, the endmembers in the form of MNF-transformed spectra produced the best model output for characterizing urban impervious surfaces. The outcome of this study may provide useful guidance for future impervious surface mapping using medium-resolution remote sensing data.
NASA Astrophysics Data System (ADS)
Tapiero, Charles S.; Vallois, Pierre
2016-11-01
The premise of this paper is that a fractional probability distribution is based on fractional operators and the fractional (Hurst) index used that alters the classical setting of random variables. For example, a random variable defined by its density function might not have a fractional density function defined in its conventional sense. Practically, it implies that a distribution's granularity defined by a fractional kernel may have properties that differ due to the fractional index used and the fractional calculus applied to define it. The purpose of this paper is to consider an application of fractional calculus to define the fractional density function of a random variable. In addition, we provide and prove a number of results, defining the functional forms of these distributions as well as their existence. In particular, we define fractional probability distributions for increasing and decreasing functions that are right continuous. Examples are used to motivate the usefulness of a statistical approach to fractional calculus and its application to economic and financial problems. In conclusion, this paper is a preliminary attempt to construct statistical fractional models. Due to the breadth and the extent of such problems, this paper may be considered as an initial attempt to do so.
Microbial community analysis of a full-scale DEMON bioreactor.
Gonzalez-Martinez, Alejandro; Rodriguez-Sanchez, Alejandro; Muñoz-Palazon, Barbara; Garcia-Ruiz, Maria-Jesus; Osorio, Francisco; van Loosdrecht, Mark C M; Gonzalez-Lopez, Jesus
2015-03-01
Full-scale applications of autotrophic nitrogen removal technologies for the treatment of digested sludge liquor have proliferated during the last decade. Among these technologies, the aerobic/anoxic deammonification process (DEMON) is one of the major applied processes. This technology achieves nitrogen removal from wastewater through anammox metabolism inside a single bioreactor due to alternating cycles of aeration. To date, microbial community composition of full-scale DEMON bioreactors have never been reported. In this study, bacterial community structure of a full-scale DEMON bioreactor located at the Apeldoorn wastewater treatment plant was analyzed using pyrosequencing. This technique provided a higher-resolution study of the bacterial assemblage of the system compared to other techniques used in lab-scale DEMON bioreactors. Results showed that the DEMON bioreactor was a complex ecosystem where ammonium oxidizing bacteria, anammox bacteria and many other bacterial phylotypes coexist. The potential ecological role of all phylotypes found was discussed. Thus, metagenomic analysis through pyrosequencing offered new perspectives over the functioning of the DEMON bioreactor by exhaustive identification of microorganisms, which play a key role in the performance of bioreactors. In this way, pyrosequencing has been proven as a helpful tool for the in-depth investigation of the functioning of bioreactors at microbiological scale.
NASA Astrophysics Data System (ADS)
Markiet, Vincent; Perheentupa, Viljami; Mõttus, Matti; Hernández-Clemente, Rocío
2016-04-01
Imaging spectroscopy is a remote sensing technology which records continuous spectral data at a very high (better than 10 nm) resolution. Such spectral images can be used to monitor, for example, the photosynthetic activity of vegetation. Photosynthetic activity is dependent on varying light conditions and varies within the canopy. To measure this variation we need very high spatial resolution data with resolution better than the dominating canopy element size (e.g., tree crown in a forest canopy). This is useful, e.g., for detecting photosynthetic downregulation and thus plant stress. Canopy illumination conditions are often quantified using the shadow fraction: the fraction of visible foliage which is not sunlit. Shadow fraction is known to depend on view angle (e.g., hot spot images have very low shadow fraction). Hence, multiple observation angles potentially increase the range of shadow fraction in the imagery in high spatial resolution imaging spectroscopy data. To investigate the potential of multi-angle imaging spectroscopy in investigating canopy processes which vary with shadow fraction, we obtained a unique multiangular airborne imaging spectroscopy data for the Hyytiälä forest research station located in Finland (61° 50'N, 24° 17'E) in July 2015. The main tree species are Norway spruce (Picea abies L. karst), Scots pine (Pinus sylvestris L.) and birch (Betula pubescens Ehrh., Betula pendula Roth). We used an airborne hyperspectral sensor AISA Eagle II (Specim - Spectral Imaging Ltd., Finland) mounted on a tilting platform. The tilting platform allowed us to measure at nadir and approximately 35 degrees off-nadir. The hyperspectral sensor has a 37.5 degrees field of view (FOV), 0.6m pixel size, 128 spectral bands with an average spectral bandwidth of 4.6nm and is sensitive in the 400-1000 nm spectral region. The airborne data was radiometrically, atmospherically and geometrically processed using the Parge and Atcor software (Re Se applications Schl
NMR analysis of fractionated irradiated κ-carrageenan oligomers as plant growth promoter
NASA Astrophysics Data System (ADS)
Abad, L. V.; Saiki, S.; Nagasawa, N.; Kudo, H.; Katsumura, Y.; De La Rosa, A. M.
2011-09-01
The optimum plant growth promoting effect in irradiated κ-carrageenan is known to be of Mw<10,000. This is obtained by irradiating κ-carrageenan at a dose of 100 kGy in solid and at 2 kGy in 1% aqueous solution. Kappa carrageenan irradiated at these doses was fractionated at different Mw ranges. The isolated fraction with a Mw of 3-10 kDa was analyzed by NMR. The chemical shifts of 13C and 1H spectra indicated that the basic functional structure of κ-carrageenan (alternating D-galactose-4-sulfate and 3,6-anhydro- D-galactose dimer) remains intact at a Mw of 3-10 kDa. No radiolytic products were detected at this range.
Verschuere, M; Sandra, P; David, F
1992-10-01
Supercritical fluid extraction (SFE) is evaluated and optimized for the enrichment and fractionation of the essential oil and the bitter principles of hops (Humulus lupulus), both of which contribute to the flavor of beer. Profiles of the essential oil of different hop varieties are compared. The bitter principles, the humulones and lupulones, are analyzed by miniaturized liquid chromatography (micro-LC) and by micellar electrokinetic chromatography (MEKC).
NASA Astrophysics Data System (ADS)
Antunes, Pedro R. S.; Ferreira, Rui A. C.
2017-07-01
In this work we study boundary value problems associated to a nonlinear fractional ordinary differential equation involving left and right Caputo derivatives. We discuss the regularity of the solutions of such problems and, in particular, give precise necessary conditions so that the solutions are C1([0, 1]). Taking into account our analytical results, we address the numerical solution of those problems by the augmented -RBF method. Several examples illustrate the good performance of the numerical method.
NASA Astrophysics Data System (ADS)
Zhou, H. W.; Yi, H. Y.; Mishnaevsky, L.; Wang, R.; Duan, Z. Q.; Chen, Q.
2017-05-01
A modeling approach to time-dependent property of Glass Fiber Reinforced Polymers (GFRP) composites is of special interest for quantitative description of long-term behavior. An electronic creep machine is employed to investigate the time-dependent deformation of four specimens of dog-bond-shaped GFRP composites at various stress level. A negative exponent function based on structural changes is introduced to describe the damage evolution of material properties in the process of creep test. Accordingly, a new creep constitutive equation, referred to fractional derivative Maxwell model, is suggested to characterize the time-dependent behavior of GFRP composites by replacing Newtonian dashpot with the Abel dashpot in the classical Maxwell model. The analytic solution for the fractional derivative Maxwell model is given and the relative parameters are determined. The results estimated by the fractional derivative Maxwell model proposed in the paper are in a good agreement with the experimental data. It is shown that the new creep constitutive model proposed in the paper needs few parameters to represent various time-dependent behaviors.
Analysis of two colliding fractionally damped spherical shells in modelling blunt human head impacts
NASA Astrophysics Data System (ADS)
Rossikhin, Yury; Shitikova, Marina
2013-06-01
The collision of two elastic or viscoelastic spherical shells is investigated as a model for the dynamic response of a human head impacted by another head or by some spherical object. Determination of the impact force that is actually being transmitted to bone will require the model for the shock interaction of the impactor and human head. This model is indended to be used in simulating crash scenarios in frontal impacts, and provide an effective tool to estimate the severity of effect on the human head and to estimate brain injury risks. The model developed here suggests that after the moment of impact quasi-longitudinal and quasi-transverse shock waves are generated, which then propagate along the spherical shells. The solution behind the wave fronts is constructed with the help of the theory of discontinuities. It is assumed that the viscoelastic features of the shells are exhibited only in the contact domain, while the remaining parts retain their elastic properties. In this case, the contact spot is assumed to be a plane disk with constant radius, and the viscoelastic features of the shells are described by the fractional derivative standard linear solid model. In the case under consideration, the governing differential equations are solved analytically by the Laplace transform technique. It is shown that the fractional parameter of the fractional derivative model plays very important role, since its variation allows one to take into account the age-related changes in the mechanical properties of bone.
NASA Astrophysics Data System (ADS)
Zhou, H. W.; Yi, H. Y.; Mishnaevsky, L.; Wang, R.; Duan, Z. Q.; Chen, Q.
2016-08-01
A modeling approach to time-dependent property of Glass Fiber Reinforced Polymers (GFRP) composites is of special interest for quantitative description of long-term behavior. An electronic creep machine is employed to investigate the time-dependent deformation of four specimens of dog-bond-shaped GFRP composites at various stress level. A negative exponent function based on structural changes is introduced to describe the damage evolution of material properties in the process of creep test. Accordingly, a new creep constitutive equation, referred to fractional derivative Maxwell model, is suggested to characterize the time-dependent behavior of GFRP composites by replacing Newtonian dashpot with the Abel dashpot in the classical Maxwell model. The analytic solution for the fractional derivative Maxwell model is given and the relative parameters are determined. The results estimated by the fractional derivative Maxwell model proposed in the paper are in a good agreement with the experimental data. It is shown that the new creep constitutive model proposed in the paper needs few parameters to represent various time-dependent behaviors.
Ramos, Yassel; Besada, Vladimir; Castellanos-Serra, Lila
2012-01-01
Here we present a procedure for peptide fractionation by SDS-free polyacrylamide gel electrophoresis, based on discontinuous buffer systems. In the absence of SDS, peptide migration depends both on their molecular mass and on their net charge at the electrophoresis pH. By selecting the separation pH, peptide mobility is modulated. In the original discontinuous buffer system (Tris/glycine), peptides that migrate to the anode have pI values below 6.8 and distribute along the lane in a pI decreasing order, while at acidic pH, as that afforded by histidine/MOPS buffer system, peptides with pI below 5.5 are fractionated. Separation at acid pH is particularly useful for recovering phosphopeptides as well as other highly negatively charged peptides, as those containing sialic or sulfate substituents. Both separation conditions in Tris/glycine and in histidine/MOPS are applicable to proteomic studies, by dual-fractionation polyacrylamide gel electrophoresis (DF-PAGE). First, complex protein samples are separated via SDS-PAGE, and after in-gel proteolysis, peptides are loaded on a second SDS-free gel, where they are separated as described here.
NASA Astrophysics Data System (ADS)
Pan, Mingzhu; Gan, Xihua; Mei, Changtong; Liang, Yongfeng
2017-01-01
This study focused on the interfacial combination of silica and lignin-polysaccharides during lignocellulose fractionation of rice straw using scanning electric microscopy (SEM), x-ray photoelectron spectroscopy (XPS), and x-ray diffraction (XRD) techniques. Silica was deposited on the exterior surface of rice straw in the form of Si(OR)x, Sisbnd Osbnd Si, SiOx, and Sisbnd C respectively, while not in the form of elemental Si. After delignification and alkalization, silica was deposited on the surface of polysaccharide with a more regular pattern. It is due to that silica reacted with polysaccharide to form SiOx and Si(OR)x during the decomposition of lignin and hemicellulose, leading to the remained framework structure of crystalline cellulose. After the decomposition of polysaccharide, silica was embedded into lignin fragments, and shown as an amorphous opal. For silica-lignin, Sisbnd Osbnd Si was gradually transferred to Si(OR)x instead of Sisbnd C. The capacities of the fractionated components to bind or store silica were in order of lignin > polysaccharides > lipids. Moreover, the fractionated components of rice straw were associated with the different ultrastructural forms of the silica.
Differential branching fraction and angular analysis of the decay B0 → K*0 μ+ μ-.
Aaij, R; Abellan Beteta, C; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Arrabito, L; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Bailey, D S; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chiapolini, N; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Collins, P; Comerma-Montells, A; Constantin, F; Contu, A; Cook, A; Coombes, M; Corti, G; Cowan, G A; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Capua, S; De Cian, M; De Lorenzi, F; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Estève, L; Falabella, A; Fanchini, E; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harji, R; Harnew, N; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Holubyev, K; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Koppenburg, P; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Messi, R; Miglioranzi, S; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Musy, M; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Nedos, M; Needham, M; Neufeld, N; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrella, A; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Silva Coutinho, R; Shires, A; Skwarnicki, T; Smith, A C; Smith, N A; Smith, E; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Topp-Joergensen, S; Torr, N; Tournefier, E; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urquijo, P; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Viaud, B; Videau, I; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Voss, H; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yushchenko, O; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zverev, E; Zvyagin, A
2012-05-04
The angular distributions and the partial branching fraction of the decay B0 → K*0 μ+ μ- are studied by using an integrated luminosity of 0.37 fb(-1) of data collected with the LHCb detector. The forward-backward asymmetry of the muons, A(FB), the fraction of longitudinal polarization, F(L), and the partial branching fraction dB/dq2 are determined as a function of the dimuon invariant mass. The measurements are in good agreement with the standard model predictions and are the most precise to date. In the dimuon invariant mass squared range 1.00-6.00 GeV2/c4, the results are A(FB)=-0.06(-0.14)(+0.13)±0.04, F(L)=0.55±0.10±0.03, and dB/dq2=(0.42±0.06±0.03)×10(-7) c4/GeV2. In each case, the first error is statistical and the second systematic.
Source Code Analysis Laboratory (SCALe) for Energy Delivery Systems
2010-12-01
also operate in accordance with ISO 9001 . • NIST National Voluntary Laboratory Accreditation Program (NVLAP). NVLAP provides third-party...accredited and ISO 9001 :2008 registered. 4.3 SAIC Accreditation and Certification Services SAIC (Science Applications International Corporation )19...and exec t [ ISO /IEC 2005]. f a software system indicates that the SCALe analysis di by a CERT secure coding standard. Successful conforma antees that
Weibull Analysis and Area Scaling for Infrared Window Materials (U)
2016-08-01
NAWCWD TP 8806 Weibull Analysis and Area Scaling for Infrared Window Materials by Daniel C. Harris Research Division...provides a tutorial on the Weibull distribution of strength of ceramic materials and the use of the maximum likelihood method of American Society for...Testing and Materials (ASTM) C1239 to obtain Weibull parameters from a set of test coupons. Parameters compiled from test data of infrared window
Venkatesh, Uday; Javarasetty, Chethan; Murari, Satish Kumar
2017-01-01
Background: Wedelia trilobata (L.) Hitch (WT), commonly known as yellow dots or creeping daisy, is a shrub possessing potent biological activities, and is traditionally used a medicinal plant in Ayurveda, Siddha and Unani systems of medicines, and it has also been tried against leukemia cell line MEG- 01. In the present study, purification and screening of the plant was done for bioactive compounds in methanolic extract of WT for apoptotic and anti-leukemia activity. Materials and methods: The methanolic extract of WT was initially purified through thin layer chromatography (TLC) and screened for the apoptotic and anti-leukemia activities. The positive band of TLC was subjected to silica gel column chromatography for further purification and the fractions obtained from it were screened again for anti-leukemia activity through thymidine uptake assay and apoptotic activity by DNA fragmentation, nuclear staining and flow cytometry assays. The fraction with positive result was subjected to HPLC for analysis of bioactive components. Results: Out of many combinations of solvents, the methanol and dichloromethane combination in the ratio 6:4 has revealed two bands in TLC, among which the second band showed positive results for apoptotic and anti-leukemic activities. Further purification of second band through silica gel chromatography gave five fractions in which the 3rd fraction gave positive results and it shows single peak during compositional analysis through HPLC. Conclusion: The single peak revealed through HPLC indicates the presence of pure compound with apoptotic and anti-leukemia activities encouraging for further structural analysis. PMID:28480428
NASA Technical Reports Server (NTRS)
Selkirk, Henry B.; Molod, Andrea M.
2014-01-01
Large-scale models such as GEOS-5 typically calculate grid-scale fractional cloudiness through a PDF parameterization of the sub-gridscale distribution of specific humidity. The GEOS-5 moisture routine uses a simple rectangular PDF varying in height that follows a tanh profile. While below 10 km this profile is informed by moisture information from the AIRS instrument, there is relatively little empirical basis for the profile above that level. ATTREX provides an opportunity to refine the profile using estimates of the horizontal variability of measurements of water vapor, total water and ice particles from the Global Hawk aircraft at or near the tropopause. These measurements will be compared with estimates of large-scale cloud fraction from CALIPSO and lidar retrievals from the CPL on the aircraft. We will use the variability measurements to perform studies of the sensitivity of the GEOS-5 cloud-fraction to various modifications to the PDF shape and to its vertical profile.
Rajkovic, Miloš B.; Lacnjevac, Caslav M.; Ralevic, Nebojsa R.; Stojanović, Mirjana D.; Tosković, Dragan V.; Pantelic, Gordana K.; Ristic, Nikola M.; Jovanic, Sasa
2008-01-01
The analysis of water quality, regarding the content of metals, especially heavy and radioactive ones, has been carried out in an indirect way, by testing scale formed in a hot-water heater, using water from the water-supply network of the city of Belgrade – the district of New Belgrade. The determination of the composition and the structure of the scale has resulted in its complete identification, and its crystallochemical formula has been defined. It has unequivocally been established that the obtained results are within the tolerance boundary with the results acquired by a conventional analysis of water, when it is a matter of very low concentrations. The presence of radioactive elements of uranium and strontium in a scale sample has been found and the way of their penetrating its composition and structure has been explained. Applying the fractional extraction method, uranium has been established to be of an anthropogenic origin. PMID:27879817
Multi-scale model analysis and hindcast of the 2013 Colorado Flood
NASA Astrophysics Data System (ADS)
Gochis, David; Yu, Wei; Sampson, Kevin; Dugger, Aubrey; McCreight, James; Zhang, Yongxin; Ikeda, Kyoko
2015-04-01
While the generation of most flood and flash flood events is fundamentally linked to the occurrence of heavy rainfall, the physical mechanisms responsible for translating rainfall into floods are complex and manifold. These runoff generation processes evolve over many spatial and temporal scales during the course of flooding events. As such robust flood and flash flood prediction systems need to account for multitude of terrestrial processes occurring over a wide range of space and time scales. One such extreme multiscale flood event was the 2013 Colorado Flood in which over 400 mm of rainfall fell along the Rock Mountain mountain front region over the course of a few days. The flooding impacts from this heavy rainfall event included not only high, fast flows in steep mountain streams but also included large areas of inundation on the adjacent plains and numerous soil saturation excess impacts such as hillslope failures and groundwater intrusions into domestic structures. A multi-scale and multi-process evaluation of this flood event is performed using the community WRF-Hydro modeling system. We incorporate several operational quantitative precipitation estimate and quantitative precipitation forecast products in the analysis and document the skill of multiple configurations of WRF-Hydro physics options across a range of contributing area length scales. Emphasis is placed on assessing how well the different model configurations capture the multi-scale streamflow response from small headwater catchments out to the entire South Platte River basin whose total contributing area exceeds 25,000 sq km. In addition to streamflow we also present evaluations of event simulations and hindcasts of soil saturation fraction, groundwater levels and inundated areas as a means of assessing different runoff generation mechanisms. Finally, results from a U.S. national-scale, fully-coupled hydrometeorological hindcast of the 2013 Colorado flood event using the combined WRF atmospheric
Scale-space analysis of time series in circulatory research.
Mortensen, Kim Erlend; Godtliebsen, Fred; Revhaug, Arthur
2006-12-01
Statistical analysis of time series is still inadequate within circulation research. With the advent of increasing computational power and real-time recordings from hemodynamic studies, one is increasingly dealing with vast amounts of data in time series. This paper aims to illustrate how statistical analysis using the significant nonstationarities (SiNoS) method may complement traditional repeated-measures ANOVA and linear mixed models. We applied these methods on a dataset of local hepatic and systemic circulatory changes induced by aortoportal shunting and graded liver resection. We found SiNoS analysis more comprehensive when compared with traditional statistical analysis in the following four ways: 1) the method allows better signal-to-noise detection; 2) including all data points from real time recordings in a statistical analysis permits better detection of significant features in the data; 3) analysis with multiple scales of resolution facilitates a more differentiated observation of the material; and 4) the method affords excellent visual presentation by combining group differences, time trends, and multiscale statistical analysis allowing the observer to quickly view and evaluate the material. It is our opinion that SiNoS analysis of time series is a very powerful statistical tool that may be used to complement conventional statistical methods.
Benecke, Herman P; Allen, Sara K; Garbark, Daniel B
2017-02-01
A fractionation methodology of fat, oil and grease (FOG) deposits was developed based on the insolubility of fatty acid salts in dichloromethane (DCM) and the relatively high solubility of fatty acids and triglycerides in DCM. Using this method, coupled with spectral analysis, it was shown that fatty acids rather than fatty acid salts were the predominant species in FOG deposits obtained from three metropolitan locations in the United States and that fatty acid triglycerides were either not detected or were present in very small concentrations. This solubility-based fractionation approach also revealed the presence of nitrogen-containing compounds that had not been previously detected in FOG deposits including peptides and (or) proteins. The comparison of the ratios of stearic acid salts to stearic acid versus the ratio of palmitic acid salts to palmitic acid in FOG deposits may indicate that the initial step in FOG deposit formation is the preferential precipitation of stearic acid salts.
Melcher, Ulrich; Muthukumar, Vijay; Wiley, Graham B; Min, Byoung Eun; Palmer, Michael W; Verchot-Lubicz, Jeanmarie; Ali, Akhtar; Nelson, Richard S; Roe, Bruce A; Thapa, Vaskar; Pierce, Margaret L
2008-09-01
To test the hypothesis that many viruses remain to be discovered in plants, a procedure was developed to sequence nucleic acids cloned randomly from virus-like particle fractions of plant homogenates. As a test of the efficiency of the procedure we targeted Ambrosia psilostachya, western ragweed, plants growing at the Tallgrass Prairie Preserve of northeastern Oklahoma. Amplifiable nucleic acid was found in the fractions from six of twelve specimens and sequences were characterized from four of them. Evidence was obtained for the presence of viruses belonging to two families (Caulimoviridae, Flexiviridae). Multiple viral species were found in two of the four specimens and their level within the isolated nucleic acid population varied from less than 1-37%. None of the sequences were derived from reported sequences of known viruses. Thus, the analysis of nucleic acid from virus-like particles is a useful tool to expand our knowledge of the universe of viruses to non-cultivated species.
USDA-ARS?s Scientific Manuscript database
Fractions of soil organic matter (SOM) are usually extracted from soil by either physical (e.g., size, density) or chemical (e.g., base, acid) procedures. Integrated procedures that combine both of these types promise greater insights into SOM chemistry and function. For a corn-soybean soil in Iowa,...
Fractional Calculus Models for the Anomalous Diffusion Processes and Their Analysis
NASA Astrophysics Data System (ADS)
Luchko, Yu.
2010-11-01
In this paper, the anomalous diffusion processes are modeled with partial differential equations of the fractional order that are then discussed in details. The anomalous diffusion can be characterized by the property that it no longer follows the Gaussian statistics and in particular one observes a deviation from the linear time dependence of the mean squared displacement. This is the case for many different phenomena including, e.g., the translocation dynamics of a polymer chain through a nanopore, charge carrier transport in amorphous semiconductors, laser cooling in quantum optical systems to mention only few of them. In this paper, we consider the case of the anomalous diffusion that shows a power-low growth of the mean squared displacement in time. Our starting point is a stochastic formulation of the model in terms of the random walk processes. Following this line, a continuous time random walk model in form of a system of the integral equations of convolution type for the corresponding probability density functions is introduced. These so called master equations can be explicitly solved in the Fourier-Laplace domain. The time-fractional differential equation is then derived asymptotically from the master equations for the special classes of the probability density functions with the infinite first moment. For the obtained model equation and its generalizations the initial-boundary-value problems in the bounded domains are discussed. A special focus is on the initial-boundary-value problems for the generalized time-fractional diffusion equation. For this equation, the maximum principle well known for the elliptic and parabolic type PDEs is presented and applied both for the a priori estimates of the solution and for the proof of its uniqueness. Finally, first the existence of the generalized solution and then the existence of the solution under some restrictions are shown.
NASA Astrophysics Data System (ADS)
López-Sanjuan, C.; Cenarro, A. J.; Varela, J.; Viironen, K.; Molino, A.; Benítez, N.; Arnalte-Mur, P.; Ascaso, B.; Díaz-García, L. A.; Fernández-Soto, A.; Jiménez-Teja, Y.; Márquez, I.; Masegosa, J.; Moles, M.; Pović, M.; Aguerri, J. A. L.; Alfaro, E.; Aparicio-Villegas, T.; Broadhurst, T.; Cabrera-Caño, J.; Castander, F. J.; Cepa, J.; Cerviño, M.; Cristóbal-Hornillos, D.; Del Olmo, A.; González Delgado, R. M.; Husillos, C.; Infante, L.; Martínez, V. J.; Perea, J.; Prada, F.; Quintana, J. M.
2015-04-01
Aims: Our goal is to develop and test a novel methodology to compute accurate close-pair fractions with photometric redshifts. Methods: We improved the currently used methodologies to estimate the merger fraction fm from photometric redshifts by (i) using the full probability distribution functions (PDFs) of the sources in redshift space; (ii) including the variation in the luminosity of the sources with z in both the sample selection and the luminosity ratio constrain; and (iii) splitting individual PDFs into red and blue spectral templates to reliably work with colour selections. We tested the performance of our new methodology with the PDFs provided by the ALHAMBRA photometric survey. Results: The merger fractions and rates from the ALHAMBRA survey agree excellently well with those from spectroscopic work for both the general population and red and blue galaxies. With the merger rate of bright (MB ≤ -20-1.1z) galaxies evolving as (1 + z)n, the power-law index n is higher for blue galaxies (n = 2.7 ± 0.5) than for red galaxies (n = 1.3 ± 0.4), confirming previous results. Integrating the merger rate over cosmic time, we find that the average number of mergers per galaxy since z = 1 is Nmred = 0.57 ± 0.05 for red galaxies and Nmblue = 0.26 ± 0.02 for blue galaxies. Conclusions: Our new methodology statistically exploits all the available information provided by photometric redshift codes and yields accurate measurements of the merger fraction by close pairs from using photometric redshifts alone. Current and future photometric surveys will benefit from this new methodology. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie (MPIA) at Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC).The catalogues, probabilities, and figures of the ALHAMBRA close pairs detected in Sect. 5.1 are available at http://https://cloud.iaa.csic.es/alhambra/catalogues/ClosePairs
Analysis of panthers full-scale heat transfer tests with RELAP5
Parlatan, Y.; Boyer, B.D.; Jo, J.; Rohatgi, S.
1996-01-01
The RELAP5 code is being assessed on the full-scale Passive Containment Cooling System (PCCS) in the Performance ANalysis and Testing of HEat Removal Systems (PANTHERS) facility at Societa Informazioni Termoidrauliche (SIET) in Italy. PANTHERS is a test facility with fall-size prototype beat exchangers for the PCCS in support of the General Electric`s (GE) Simplified Boiling Water Reactor (SBWR) program. PANTHERS tests with a low noncondensable gas concentration and with a high noncondensable gas concentration were analyzed with RELAP5. The results showed that beat transfer rate decreases significantly along the PCCS tubes. In the test case with a higher inlet noncondensable gas fraction, the PCCS removed 35% less heat than in the test case with the lower noncondensable gas fraction. The dominant resistance to the overall heat transfer is the condensation beat transfer resistance inside the tubes. This resistance increased by about 5-fold between the inlet and exit of the tube due to the build up of noncondensable gases along the tube. The RELAP5 calculations also predicted that 4% to 5% of the heat removed to the PCCS pool occurs in the inlet steam piping and PCCS upper and lower headers. These piping needs to be modeled for other tests systems. The full-scale PANTHERS predictions are also compared against 1/400 scale GIRAFFE tests. GIRAFFE has 33% larger heat surface area, but its efficiency is only 15% and 23% higher than PANTHERS for the two cases analyzed This was explained by the high heat transfer resistance inside the tubes near the exit.
Perceptual security of encrypted images based on wavelet scaling analysis
NASA Astrophysics Data System (ADS)
Vargas-Olmos, C.; Murguía, J. S.; Ramírez-Torres, M. T.; Mejía Carlos, M.; Rosu, H. C.; González-Aguilar, H.
2016-08-01
The scaling behavior of the pixel fluctuations of encrypted images is evaluated by using the detrended fluctuation analysis based on wavelets, a modern technique that has been successfully used recently for a wide range of natural phenomena and technological processes. As encryption algorithms, we use the Advanced Encryption System (AES) in RBT mode and two versions of a cryptosystem based on cellular automata, with the encryption process applied both fully and partially by selecting different bitplanes. In all cases, the results show that the encrypted images in which no understandable information can be visually appreciated and whose pixels look totally random present a persistent scaling behavior with the scaling exponent α close to 0.5, implying no correlation between pixels when the DFA with wavelets is applied. This suggests that the scaling exponents of the encrypted images can be used as a perceptual security criterion in the sense that when their values are close to 0.5 (the white noise value) the encrypted images are more secure also from the perceptual point of view.
Confirmatory factor analysis of the supports intensity scale for children.
Verdugo, Miguel A; Guillén, Verónica M; Arias, Benito; Vicente, Eva; Badia, Marta
2016-01-01
Support needs assessment instruments and recent research related to this construct have been more focused on adults with intellectual disability than on children. However, the design and implementation of Individualized Support Plans (ISP) must start at an early age. Currently, a project for the translation, adaptation and validation of the supports intensity scale for children (SIS-C) is being conducted in Spain. In this study, the internal structure of the scale was analyzed to shed light on the nature of this construct when evaluated in childhood. A total of 814 children with intellectual disability between 5 and 16 years of age participated in the study. Their support need level was assessed by the SIS-C, and a confirmatory factor analysis (CFA), including different hypotheses, was carried out to identify the optimal factorial structure of this scale. The CFA results indicated that a unidimensional model is not sufficient to explain our data structure. On the other hand, goodness-of-fit indices showed that both correlated first-order factors and higher-order factor models of the construct could explain the data obtained from the scale. Specifically, a better fit of our data with the correlated first-order factors model was found. These findings are similar to those identified in previous analyses performed with adults. Implications and directions for further research are discussed.
Multi-scaling allometric analysis for urban and regional development
NASA Astrophysics Data System (ADS)
Chen, Yanguang
2017-01-01
The concept of allometric growth is based on scaling relations, and it has been applied to urban and regional analysis for a long time. However, most allometric analyses were devoted to the single proportional relation between two elements of a geographical system. Few researches focus on the allometric scaling of multielements. In this paper, a process of multiscaling allometric analysis is developed for the studies on spatio-temporal evolution of complex systems. By means of linear algebra, general system theory, and by analogy with the analytical hierarchy process, the concepts of allometric growth can be integrated with the ideas from fractal dimension. Thus a new methodology of geo-spatial analysis and the related theoretical models emerge. Based on the least squares regression and matrix operations, a simple algorithm is proposed to solve the multiscaling allometric equation. Applying the analytical method of multielement allometry to Chinese cities and regions yields satisfying results. A conclusion is reached that the multiscaling allometric analysis can be employed to make a comprehensive evaluation for the relative levels of urban and regional development, and explain spatial heterogeneity. The notion of multiscaling allometry may enrich the current theory and methodology of spatial analyses of urban and regional evolution.
Multi-Scale Fractal Analysis of Image Texture and Pattern
NASA Technical Reports Server (NTRS)
Emerson, Charles W.
1998-01-01
Fractals embody important ideas of self-similarity, in which the spatial behavior or appearance of a system is largely independent of scale. Self-similarity is defined as a property of curves or surfaces where each part is indistinguishable from the whole, or where the form of the curve or surface is invariant with respect to scale. An ideal fractal (or monofractal) curve or surface has a constant dimension over all scales, although it may not be an integer value. This is in contrast to Euclidean or topological dimensions, where discrete one, two, and three dimensions describe curves, planes, and volumes. Theoretically, if the digital numbers of a remotely sensed image resemble an ideal fractal surface, then due to the self-similarity property, the fractal dimension of the image will not vary with scale and resolution. However, most geographical phenomena are not strictly self-similar at all scales, but they can often be modeled by a stochastic fractal in which the scaling and self-similarity properties of the fractal have inexact patterns that can be described by statistics. Stochastic fractal sets relax the monofractal self-similarity assumption and measure many scales and resolutions in order to represent the varying form of a phenomenon as a function of local variables across space. In image interpretation, pattern is defined as the overall spatial form of related features, and the repetition of certain forms is a characteristic pattern found in many cultural objects and some natural features. Texture is the visual impression of coarseness or smoothness caused by the variability or uniformity of image tone or color. A potential use of fractals concerns the analysis of image texture. In these situations it is commonly observed that the degree of roughness or inexactness in an image or surface is a function of scale and not of experimental technique. The fractal dimension of remote sensing data could yield quantitative insight on the spatial complexity and
Analysis of the Spatial Scaling Characteristics of Snow Depth
NASA Astrophysics Data System (ADS)
Trujillo, E.; Ramírez, J. A.; Elder, K. J.
2005-12-01
Directional spectral analyses were conducted for LIDAR (LIght Detection And Ranging) snow depths measured in six of the nine 1-km2 Intensive Study Areas (ISA's) of NASA's Cold Land Processes Experiment (CLPX) in the spring of 2003 (8-9 of April, 2003). The six study areas analyzed are located in the Fraser and Rabbit Ears Mesoscale Study Areas of the project in the state of Colorado. The snow depth power spectra were compared to the spectra of bare ground elevations (topography) and elevations filtered to the top of vegetation (topography + elevation). The log power spectral density of snow depth versus log of frequency (f) presents two distinct slopes with scale breaks at wavelengths between 6 m and 45 m. The average fractal dimensions for the study areas range between 1.80 and 2.30 for the low frequencies intervals, and between 0.79 and 1.03 for the high frequencies intervals, indicating spatial self-similarity in the snow depth fields. The scale breaks observed in the power spectra of snow depth are not present in the power spectra of topography and/or topography + vegetation, and the slopes of the snow depth spectra differ from the slopes of the power spectra of topography and topography + vegetation. The observed breaks in the power spectra of snow depth are not explained by the power spectra of the underlying topography and vegetation. These scale breaks must be the product of a switch in the dominant process(es) driving the variability of the snow cover properties at these scales. Potential physical causes of the scale breaks will be presented based on further analysis of snow depth data and additional variables. The spatial variability of snow depth at scales smaller than the scale breaks observed is controlled, among other factors, by the interaction of wind, vegetation, and small topographic features. At larger scales, this variability is controlled by precipitation patterns, short and long wave radiation, aspect, slope, and wind, among others. These
Chromatographic methods of fractionation.
Friesen, A D
1987-01-01
Chromatography's functional versatility, separation efficiency, gentle non-denaturing separating process and ease of automation and scale-up make it attractive for industrial scale protein purification. The Winnipeg Rh Institute's new Plasma Fractionation facility is an example of the use of chromatography for the large scale purification of plasma protein fractions. The fractionation facility has a capacity to process 800 litres of plasma per batch into blood clotting factor VIII and IX, albumin and intravenous immune serum globulin (i.v. ISG). Albumin and i.v. ISG are purified using ion exchange columns of DEAE-Sepharose (230 litre size), DEAE-Biogel (150 litre size) and CM-Sepharose (150 litre size). The chromatographic process is automated using a Modicon 584 Programmable Logic Controller to regulate valves, pumps and sensors which control plasma flow during fractionation. The stainless steel tanks and piping are automatically cleaned-in-place. The high degree of automation and cleaning provides efficient operation and sanitary processing. Chromatographic methods (DEAE-Sepharose and metal chelation) are also being used at the pilot scale to purify the human blood products superoxide dismutase and hemoglobin from outdated red blood cells. Characterization of the protein fractions produced by chromatography has shown them to be of equal or higher quality than fractions produced by other techniques.
NASA Astrophysics Data System (ADS)
Corcel, Mathias; Devaux, Marie-Françoise; Guillon, Fabienne; Barron, Cécile
2017-06-01
Powders produced from plant materials are heterogeneous in relation to native plant heterogeneity, and during grinding, dissociation often occurred at the tissue scale. The tissue composition of powdery samples could be modified through dry fractionation diagrams and impact their end-uses properties. If tissue identification is often made on native plant structure, this characterization is not straightforward in destructured samples such powders. Taking advantage of the autofluorescence properties of cell wall components, multispectral image acquisition is envisioned to identify the tissular origin of particles. Images were acquired on maize stem sections and ground tissues isolated from the same stem by hand dissection. The variability in fluorescence intensity profiles was analysed using principal component analysis. The correspondence between fluorescence profiles and the different tissues observed in maize sections was assessed based on histology or known compositional heterogeneity. Similar variability was encountered in fluorescence profiles extracted from powder leading to the potential ability to predict tissular origin based on this autofluorescence multispectral signal.
NASA Astrophysics Data System (ADS)
Scharien, R. K.; Hochheim, K.; Landy, J.; Barber, D. G.
2014-11-01
Sea ice melt pond fraction (fp), linked with lower sea ice surface albedo and increased light transmittance to the ocean, is inadequately parameterised in sea ice models due to a lack of observations. In this paper, results from a multi-scale remote-sensing program dedicated to the retrieval of level first-year sea ice (FYI) fp from dual co- and cross-polarisation C-band synthetic aperture radar (SAR) backscatter are detailed. Models which utilise the dominant effect of free-water melt ponds on the VV / HH (vertical transmit and vertical receive / horizontal transmit and horizontal receive) polarisation ratio at high incidence angles are tested for their ability to provide estimates of the subscale fp. Retrieved fp from noise-corrected Radarsat-2 quad-polarisation scenes are in good agreement with observations from coincident aerial survey data, with root mean square errors (RMSEs) of 0.05-0.07 obtained during intermediate and late stages of ponding. Weak model performance is attributed to the presence of wet snow and slush during initial ponding, and a synoptically driven freezing event causing ice lids to form on ponds. The HV / HH (horizontal transmit and vertical receive / horizontal transmit and horizontal receive) ratio explains a greater portion of variability in fp, compared to VV / HH, when ice lids are present. Generally low HV channel intensity suggests limited applications using dual cross-polarisation data, except with systems that have exceptionally low noise floors. Results demonstrate the overall potential of dual-polarisation SAR for standalone or complementary observations of fp for process-scale studies and improvements to model parameterisations.
Antonets, K S; Volkov, K V; Maltseva, A L; Arshakian, L M; Galkin, A P; Nizhnikov, A A
2016-01-01
Amyloids are protein fibrils adopting structure of cross-beta spine exhibiting either pathogenic or functionally significant properties. In prokaryotes, there are several groups of functional amyloids; however, all of them were identified by specialized approaches that do not reveal all cellular amyloids. Here, using our previously developed PSIA (Proteomic Screening and Identification of Amyloids) approach, we have conducted a proteomic screening for candidates for novel amyloid-forming proteins in Escherichia coli as one of the most important model organisms and biotechnological objects. As a result, we identified 61 proteins in fractions resistant to treatment with ionic detergents. We found that a fraction of proteins bearing potentially amyloidogenic regions predicted by bioinformatics algorithms was 3-5-fold more abundant among the identified proteins compared to those observed in the entire E. coli proteome. Almost all identified proteins contained potentially amyloidogenic regions, and four of them (BcsC, MukB, YfbK, and YghJ) have asparagine- and glutamine-rich regions underlying a crucial feature of many known amyloids. In this study, we demonstrate for the first time that at the proteome level there is a correlation between experimentally demonstrated detergent-resistance of proteins and potentially amyloidogenic regions predicted by bioinformatics approaches. The data obtained enable further comprehensive characterization of entirety of amyloids (or amyloidome) in bacterial cells.
Skin flaking; Scaly skin; Papulosquamous disorders ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Examples of disorders that can cause scales include: Eczema Fungal infections such as ringworm , tinea versicolor ...
REGIONAL-SCALE WIND FIELD CLASSIFICATION EMPLOYING CLUSTER ANALYSIS
Glascoe, L G; Glaser, R E; Chin, H S; Loosmore, G A
2004-06-17
The classification of time-varying multivariate regional-scale wind fields at a specific location can assist event planning as well as consequence and risk analysis. Further, wind field classification involves data transformation and inference techniques that effectively characterize stochastic wind field variation. Such a classification scheme is potentially useful for addressing overall atmospheric transport uncertainty and meteorological parameter sensitivity issues. Different methods to classify wind fields over a location include the principal component analysis of wind data (e.g., Hardy and Walton, 1978) and the use of cluster analysis for wind data (e.g., Green et al., 1992; Kaufmann and Weber, 1996). The goal of this study is to use a clustering method to classify the winds of a gridded data set, i.e, from meteorological simulations generated by a forecast model.
Godzien, Joanna; Ciborowski, Michal; Armitage, Emily Grace; Jorge, Inmaculada; Camafeita, Emilio; Burillo, Elena; Martín-Ventura, Jose Luis; Rupérez, Francisco J; Vázquez, Jesús; Barbas, Coral
2016-06-03
A single in-vial dual extraction (IVDE) procedure for the subsequent analysis of lipids and proteins in the high-density lipoprotein (HDL) and low-density lipoprotein (LDL) fractions derived from the same biological sample is presented. On the basis of methyl-tert-butyl ether (MTBE) extraction, IVDE leads to the formation of three phases: a protein pellet at the bottom, an aqueous phase with polar compounds, and an ether phase with lipophilic compounds. After sample extraction, performed within a high-performance liquid chromatography vial insert, the ether phase was directly injected for lipid fingerprinting, while the protein pellet, after evaporation of the remaining sample, was used for proteomics analysis. Human HDL and LDL isolates were used to test the suitability of the IVDE methodology for lipid and protein analysis from a single sample in terms of data quality and matching composition to that of HDL and LDL. Subsequently, HDL and LDL fractions isolated from ApoE-KO and wild-type mice were used to validate the capacity of IVDE for revealing changes in lipid and protein abundance. Results indicate that IVDE can be successfully used for the subsequent analysis of lipids and proteins with the advantages of time saving, simplicity, and reduced sample amount.
Medium and small-scale analysis of financial data
NASA Astrophysics Data System (ADS)
Nawroth, Andreas P.; Peinke, Joachim
2007-08-01
A stochastic analysis of financial data is presented. In particular we investigate how the statistics of log returns change with different time delays τ. The scale-dependent behaviour of financial data can be divided into two regions. The first time range, the small-timescale region (in the range of seconds) seems to be characterised by universal features. The second time range, the medium-timescale range from several minutes upwards can be characterised by a cascade process, which is given by a stochastic Markov process in the scale τ. A corresponding Fokker-Planck equation can be extracted from given data and provides a non-equilibrium thermodynamical description of the complexity of financial data.
Exploratory factor analysis of African Self-Consciousness Scale scores.
Bhagwat, Ranjit; Kelly, Shalonda; Lambert, Michael C
2012-03-01
This study replicates and extends prior studies of the dimensionality, convergent, and external validity of African Self-Consciousness Scale scores with appropriate exploratory factor analysis methods and a large gender balanced sample (N = 348). Viable one- and two-factor solutions were cross-validated. Both first factors overlapped significantly and were labeled "Embracing African Heritage." The second subscale of the two-factor solution was labeled "Refusal to Deny African Heritage." Only the structural validity of the first factor of the two-factor solution was fully consistent with prior findings. Partial evidence of convergent validity was found for all factors, and only the second factor of the two-factor solution received external validity support. Implications for usage of the African Self-Consciousness Scale and recommendations for further investigation are discussed.
Reactor Physics Methods and Analysis Capabilities in SCALE
DeHart, Mark D; Bowman, Stephen M
2011-01-01
The TRITON sequence of the SCALE code system provides a powerful, robust, and rigorous approach for performing reactor physics analysis. This paper presents a detailed description of TRITON in terms of its key components used in reactor calculations. The ability to accurately predict the nuclide composition of depleted reactor fuel is important in a wide variety of applications. These applications include, but are not limited to, the design, licensing, and operation of commercial/research reactors and spent-fuel transport/storage systems. New complex design projects such as next-generation power reactors and space reactors require new high-fidelity physics methods, such as those available in SCALE/TRITON, that accurately represent the physics associated with both evolutionary and revolutionary reactor concepts as they depart from traditional and well-understood light water reactor designs.
Reactor Physics Methods and Analysis Capabilities in SCALE
Mark D. DeHart; Stephen M. Bowman
2011-05-01
The TRITON sequence of the SCALE code system provides a powerful, robust, and rigorous approach for performing reactor physics analysis. This paper presents a detailed description of TRITON in terms of its key components used in reactor calculations. The ability to accurately predict the nuclide composition of depleted reactor fuel is important in a wide variety of applications. These applications include, but are not limited to, the design, licensing, and operation of commercial/research reactors and spent-fuel transport/storage systems. New complex design projects such as next-generation power reactors and space reactors require new high-fidelity physics methods, such as those available in SCALE/TRITON, that accurately represent the physics associated with both evolutionary and revolutionary reactor concepts as they depart from traditional and well-understood light water reactor designs.
Scaling and dimensional analysis of acoustic streaming jets
Moudjed, B.; Botton, V.; Henry, D.; Ben Hadid, H.
2014-09-15
This paper focuses on acoustic streaming free jets. This is to say that progressive acoustic waves are used to generate a steady flow far from any wall. The derivation of the governing equations under the form of a nonlinear hydrodynamics problem coupled with an acoustic propagation problem is made on the basis of a time scale discrimination approach. This approach is preferred to the usually invoked amplitude perturbations expansion since it is consistent with experimental observations of acoustic streaming flows featuring hydrodynamic nonlinearities and turbulence. Experimental results obtained with a plane transducer in water are also presented together with a review of the former experimental investigations using similar configurations. A comparison of the shape of the acoustic field with the shape of the velocity field shows that diffraction is a key ingredient in the problem though it is rarely accounted for in the literature. A scaling analysis is made and leads to two scaling laws for the typical velocity level in acoustic streaming free jets; these are both observed in our setup and in former studies by other teams. We also perform a dimensional analysis of this problem: a set of seven dimensionless groups is required to describe a typical acoustic experiment. We find that a full similarity is usually not possible between two acoustic streaming experiments featuring different fluids. We then choose to relax the similarity with respect to sound attenuation and to focus on the case of a scaled water experiment representing an acoustic streaming application in liquid metals, in particular, in liquid silicon and in liquid sodium. We show that small acoustic powers can yield relatively high Reynolds numbers and velocity levels; this could be a virtue for heat and mass transfer applications, but a drawback for ultrasonic velocimetry.
Scaling and dimensional analysis of acoustic streaming jets
NASA Astrophysics Data System (ADS)
Moudjed, B.; Botton, V.; Henry, D.; Ben Hadid, H.; Garandet, J.-P.
2014-09-01
This paper focuses on acoustic streaming free jets. This is to say that progressive acoustic waves are used to generate a steady flow far from any wall. The derivation of the governing equations under the form of a nonlinear hydrodynamics problem coupled with an acoustic propagation problem is made on the basis of a time scale discrimination approach. This approach is preferred to the usually invoked amplitude perturbations expansion since it is consistent with experimental observations of acoustic streaming flows featuring hydrodynamic nonlinearities and turbulence. Experimental results obtained with a plane transducer in water are also presented together with a review of the former experimental investigations using similar configurations. A comparison of the shape of the acoustic field with the shape of the velocity field shows that diffraction is a key ingredient in the problem though it is rarely accounted for in the literature. A scaling analysis is made and leads to two scaling laws for the typical velocity level in acoustic streaming free jets; these are both observed in our setup and in former studies by other teams. We also perform a dimensional analysis of this problem: a set of seven dimensionless groups is required to describe a typical acoustic experiment. We find that a full similarity is usually not possible between two acoustic streaming experiments featuring different fluids. We then choose to relax the similarity with respect to sound attenuation and to focus on the case of a scaled water experiment representing an acoustic streaming application in liquid metals, in particular, in liquid silicon and in liquid sodium. We show that small acoustic powers can yield relatively high Reynolds numbers and velocity levels; this could be a virtue for heat and mass transfer applications, but a drawback for ultrasonic velocimetry.
Finite-size-scaling analysis of a simulation of the 4He superfluid transition
NASA Astrophysics Data System (ADS)
Pollock, E. L.; Runge, Karl J.
1992-08-01
Several finite-size scaling techniques are applied to path-integral simulations of the superfluid transition in three-dimensional (3D) 4He at low pressure. The twist free energy shows a linear increase with periodic cell length below the transition temperature, which it predicts as 2.19+/-0.02 K. (The experimental value is 2.172 K.) Fitting the superfluid fraction to the scaled form Lρs(t,L)/ρ=Q(L1/νt), t=(T-Tc)/Tc, gives Tc=2.17+/-0.05 K and the correlation-length exponent ν=0.72+/-0.1 (experimentally 0.67). The universal constant (ħ2ρ/mkTc)Q(0)=0.50+/-0.02 found here compares well with the value 0.49+/-0.01 from recent 3D XY model simulations. Additional analyses that include corrections to scaling are found to yield values for Tc in agreement with the above estimates. A phenomenological renormalization analysis suggests the superfluid density exponent υ=(1.0-1.3)ν, consistent with the Josephson relation.
NASA Astrophysics Data System (ADS)
Pokhrel, A.; El Hannach, M.; Orfino, F. P.; Dutta, M.; Kjeang, E.
2016-10-01
X-ray computed tomography (XCT), a non-destructive technique, is proposed for three-dimensional, multi-length scale characterization of complex failure modes in fuel cell electrodes. Comparative tomography data sets are acquired for a conditioned beginning of life (BOL) and a degraded end of life (EOL) membrane electrode assembly subjected to cathode degradation by voltage cycling. Micro length scale analysis shows a five-fold increase in crack size and 57% thickness reduction in the EOL cathode catalyst layer, indicating widespread action of carbon corrosion. Complementary nano length scale analysis shows a significant reduction in porosity, increased pore size, and dramatically reduced effective diffusivity within the remaining porous structure of the catalyst layer at EOL. Collapsing of the structure is evident from the combination of thinning and reduced porosity, as uniquely determined by the multi-length scale approach. Additionally, a novel image processing based technique developed for nano scale segregation of pore, ionomer, and Pt/C dominated voxels shows an increase in ionomer volume fraction, Pt/C agglomerates, and severe carbon corrosion at the catalyst layer/membrane interface at EOL. In summary, XCT based multi-length scale analysis enables detailed information needed for comprehensive understanding of the complex failure modes observed in fuel cell electrodes.
NASA Astrophysics Data System (ADS)
Khan, Ilyas; Ali Shah, Nehad; Mahsud, Yasir; Vieru, Dumitru
2017-04-01
This article is focused on heat transfer analysis in the unsteady flow of a generalized Maxwell fluid over an oscillating vertical flat plate with constant temperature. The well-known equation of the Maxwell fluid with classical derivatives, describing the unidirectional and one-dimensional flow, has been generalized to a non-integer-order derivative, known as fractional derivative, with free convection term of buoyancy. A new definition of the fractional derivative introduced by Caputo and Fabrizio has been used in the mathematical formulation of the problem. Exact solution of the dimensionless problem has been obtained by using the Laplace transform. These solutions are expressed with complementary error and modified Bessel functions. Similar solutions for classical Maxwell and Newtonian fluids and generalized Newtonian fluid performing the same motion are obtained as limiting cases of our general results. Graphical illustrations show that the velocity profiles corresponding to a generalized Maxwell fluid are similar to those for an ordinary Maxwell fluid when the fraction order approaches 1. A comparison amongst four different types of fluids is also shown graphically.
Chen, Wei-Ling; Kan, Chung-Dann; Wu, Ming-Jui; Mai, Yi-Chen
2015-01-01
Venous needle dislodgement (VND) is a life-threatening complication during haemodialysis (HD) treatment. When VND occurs, it only takes a few minutes for blood loss in an adult patient. According to the ANNA (American Nephrology Nurses’ Association) VND survey reports, VND is a concerning issue for the nephrology nurses/staff and patients. To ensure HD care and an effective treatment environment, this Letter proposes a combination of fractional order shape index ratio (SIR) and fuzzy colour relation analysis (CRA) to detect VND. If the venous needle drops out, clinical examinations show that both heart pulses and pressure wave variations have a low correlation at the venous anatomic site. Therefore, fractional order SIR is used to quantify the differences in transverse vibration pressures (TVPs) between the normal condition and meter reading. Linear regression shows that the fractional order SIR has a high correlation with the TVP variation. Fuzzy CRA is designed in a simple and visual message manner to identify the risk levels. A worst-case study demonstrated that the proposed model can be used for VND detection in clinical applications. PMID:26713159
Dehazing method through polarimetric imaging and multi-scale analysis
NASA Astrophysics Data System (ADS)
Cao, Lei; Shao, Xiaopeng; Liu, Fei; Wang, Lin
2015-05-01
An approach for haze removal utilizing polarimetric imaging and multi-scale analysis has been developed to solve one problem that haze weather weakens the interpretation of remote sensing because of the poor visibility and short detection distance of haze images. On the one hand, the polarization effects of the airlight and the object radiance in the imaging procedure has been considered. On the other hand, one fact that objects and haze possess different frequency distribution properties has been emphasized. So multi-scale analysis through wavelet transform has been employed to make it possible for low frequency components that haze presents and high frequency coefficients that image details or edges occupy are processed separately. According to the measure of the polarization feather by Stokes parameters, three linear polarized images (0°, 45°, and 90°) have been taken on haze weather, then the best polarized image min I and the worst one max I can be synthesized. Afterwards, those two polarized images contaminated by haze have been decomposed into different spatial layers with wavelet analysis, and the low frequency images have been processed via a polarization dehazing algorithm while high frequency components manipulated with a nonlinear transform. Then the ultimate haze-free image can be reconstructed by inverse wavelet reconstruction. Experimental results verify that the dehazing method proposed in this study can strongly promote image visibility and increase detection distance through haze for imaging warning and remote sensing systems.
Remote visualization and scale analysis of large turbulence datatsets
NASA Astrophysics Data System (ADS)
Livescu, D.; Pulido, J.; Burns, R.; Canada, C.; Ahrens, J.; Hamann, B.
2015-12-01
Accurate simulations of turbulent flows require solving all the dynamically relevant scales of motions. This technique, called Direct Numerical Simulation, has been successfully applied to a variety of simple flows; however, the large-scale flows encountered in Geophysical Fluid Dynamics (GFD) would require meshes outside the range of the most powerful supercomputers for the foreseeable future. Nevertheless, the current generation of petascale computers has enabled unprecedented simulations of many types of turbulent flows which focus on various GFD aspects, from the idealized configurations extensively studied in the past to more complex flows closer to the practical applications. The pace at which such simulations are performed only continues to increase; however, the simulations themselves are restricted to a small number of groups with access to large computational platforms. Yet the petabytes of turbulence data offer almost limitless information on many different aspects of the flow, from the hierarchy of turbulence moments, spectra and correlations, to structure-functions, geometrical properties, etc. The ability to share such datasets with other groups can significantly reduce the time to analyze the data, help the creative process and increase the pace of discovery. Using the largest DOE supercomputing platforms, we have performed some of the biggest turbulence simulations to date, in various configurations, addressing specific aspects of turbulence production and mixing mechanisms. Until recently, the visualization and analysis of such datasets was restricted by access to large supercomputers. The public Johns Hopkins Turbulence database simplifies the access to multi-Terabyte turbulence datasets and facilitates turbulence analysis through the use of commodity hardware. First, one of our datasets, which is part of the database, will be described and then a framework that adds high-speed visualization and wavelet support for multi-resolution analysis of
Kawatsu, Lisa; Ishikawa, Nobukatsu; Uchimura, Kazuhiro
2015-03-01
Despite the decreasing trend in tuberculosis (TB) cases reported within the general population, TB incidence remains high in certain high-risk groups in Japan. Many of the previous discussions and studies have concentrated mainly on the elderly and those with clinical risks; however, no comprehensive evaluation has been conducted to date. Our study thus sought to estimate the relative risk (RR) and the population attributable fraction (PAF) of selected risk groups in Japan and discuss their relevance to programming future research needs and policies. PAF and RR were calculated for patients with human immunodeficiency virus infection, diabetes, rheumatoid arthritis, those on dialysis, the elderly, health care workers, the homeless, people receiving public assistance, foreigners, prisoners, smokers, and those with alcohol problems, and were grouped into "high PAF" (PAF ≥ 5%), "middle PAF" (5% > PAF ≥ 1%), and "low PAF" (PAF < 1%) groups. The elderly and patients with diabetes showed the highest PAF and RR and should thus be prioritized for policies.
[Analysis of petroleum fraction of Aconitum taipeicum by GC-MS].
Xu, Ying; Guo, Zeng-Jun; Tan, Lin; Zhou, Ming-Zhe
2008-11-01
To analyze the chemical constituents of petroleum fraction of Aconitum taipeicum. The methanol extracts of Aconitum taipeicum were extracted by petroleum and then analyzed by GC-MS. The compounds were quantiatively determined by normalization method. Thirty-eight compounds were separated and thirty-three compounds that covered 97.28% of the total peaks were identified. Most of them were fat acids and their esters, steroids and alkenes. The n-Hexadecanoic acid covered 12.083% of the total peaks, while Stigmast-4-en-3-one 10.183%, Linolein, 1-mono-8.96%, 9, 12-Octadecadienoic acid (Z,Z)-8.054% and so on. This is the first report of constituents of Aconitum taipeicum except alkaloids. The results will provide foundation for further exploitation and use of Aconitum taipeicum.
Doi, Yumiko; Araki, Junichi; Fujinaka, Waso; Kiyooka, Takahiko; Oshima, Yu; Iribe, Gentaro; Shimizu, Juichiro; Morita, Kiyoshi; Kajiya, Fumihiko; Suga, Hiroyuki
2003-04-01
The recirculation fraction of intramyocardial Ca(2+) (RF) has conventionally been obtained from the monotonic decay of postextrasystolic potentiation (PESP). The used assumption is that the decay is exponential. However, we have found that PESP usually decays in alternans even at spontaneous heart rates (>100 beats/min) in excised, cross-circulated canine heart preparations under normal coronary perfusion and normothermia. We have already devised a means of extracting the exponential decay component for RF calculation by subtracting the oscillatory component from the alternans PESP decay by a curve-fitting method. Using mathematics, we assessed the possible error in estimated RF when an exponential curve was naively fit to the alternans PESP decay. We obtained results showing that the exponential assumption may considerably underestimate RF even when the alternans is trivial with the oscillatory component of only 10% of the exponential component.
Dynamical analysis of a fractional SIR model with birth and death on heterogeneous complex networks
NASA Astrophysics Data System (ADS)
Huo, Jingjing; Zhao, Hongyong
2016-04-01
In this paper, a fractional SIR model with birth and death rates on heterogeneous complex networks is proposed. Firstly, we obtain a threshold value R0 based on the existence of endemic equilibrium point E∗, which completely determines the dynamics of the model. Secondly, by using Lyapunov function and Kirchhoff's matrix tree theorem, the globally asymptotical stability of the disease-free equilibrium point E0 and the endemic equilibrium point E∗ of the model are investigated. That is, when R0 < 1, the disease-free equilibrium point E0 is globally asymptotically stable and the disease always dies out; when R0 > 1, the disease-free equilibrium point E0 becomes unstable and in the meantime there exists a unique endemic equilibrium point E∗, which is globally asymptotically stable and the disease is uniformly persistent. Finally, the effects of various immunization schemes are studied and compared. Numerical simulations are given to demonstrate the main results.
NASA Astrophysics Data System (ADS)
Nakib, Amir; Aiboud, Fazia; Hodel, Jerome; Siarry, Patrick; Decq, Philippe
2010-03-01
In this paper, we present an original method to evaluate the deformations in the third cerebral ventricle on a brain cine- MR imaging. First, a segmentation process, based on a fractional differentiation method, is directly applied on a 2D+t dataset to detect the contours of the region of interest (i.e. lamina terminalis). Then, the successive segmented contours are matched using a procedure of global alignment, followed by a morphing process, based on the Covariance Matrix Adaptation Evolution Strategy (CMAES). Finally, local measurements of deformations are derived from the previously determined matched contours. The validation step is realized by comparing our results with the measurements achieved on the same patients by an expert.
Chemical Analysis of Water-accommodated Fractions of Crude Oil Spills Using TIMS-FT-ICR MS.
Benigni, Paolo; Marin, Rebecca; Sandoval, Kathia; Gardinali, Piero; Fernandez-Lima, Francisco
2017-03-03
Multiple chemical processes control how crude oil is incorporated into seawater and also the chemical reactions that occur overtime. Studying this system requires the careful preparation of the sample in order to accurately replicate the natural formation of the water-accommodated fraction that occurs in nature. Low-energy water-accommodated fractions (LEWAF) are carefully prepared by mixing crude oil and water at a set ratio. Aspirator bottles are then irradiated, and at set time points, the water is sampled and extracted using standard techniques. A second challenge is the representative characterization of the sample, which must take into consideration the chemical changes that occur over time. A targeted analysis of the aromatic fraction of the LEWAF can be performed using an atmospheric-pressure laser ionization source coupled to a custom-built trapped ion mobility spectrometry-Fourier transform-ion cyclotron resonance mass spectrometer (TIMS-FT-ICR MS). The TIMS-FT-ICR MS analysis provides high-resolution ion mobility and ultrahigh-resolution MS analysis, which further allow the identification of isomeric components by their collision cross-sections (CCS) and chemical formula. Results show that as the oil-water mixture is exposed to light, there is significant photo-solubilization of the surface oil into the water. Over time, the chemical transformation of the solubilized molecules takes place, with a decrease in the number of identifications of nitrogen- and sulfur-bearing species in favor of those with a greater oxygen content than were typically observed in the base oil.
Xu, Gang; Zhang, You; Shao, Hongbo; Sun, Junna
2016-11-01
Phosphorus (P) recycling or reuse by pyrolyzing crop residue has recently elicited increased research interest. However, the effects of feedstock and pyrolysis conditions on P species have not been fully understood. Such knowledge is important in identifying the agronomic and environmental uses of biochar. Residues of three main Chinese agricultural crops and the biochars (produced at 300°C-600°C) derived from these crops were used to determine P transformations during pyrolysis. Hedley sequential fractionation and (31)P NMR analyses were used in the investigation. Our results showed that P transformation in biochar was significantly affected by pyrolysis temperature regardless of feedstock (Wheat straw, maize straw and peanut husk). Pyrolysis treatment transformed water soluble P into a labile (NaHCO3-Pi) or semi-labile pool (NaOH-Pi) and into a stable pool (Dil. HCl P and residual-P). At the same time, organic P was transformed into inorganic P fractions which was identified by the rapid decomposition of organic P detected with solution (31)P NMR. The P transformation during pyrolysis process suggested more stable P was formed at a higher pyrolysis temperature. This result was also evidenced by the presence of less soluble or stable P species, such as such as poly-P, crandallite (CaAl3(OH)5(PO4)2) and Wavellite (Al3(OH)3(PO4)2·5H2O), as detected by solid-state (31)P NMR in biochars formed at a higher pyrolysis temperature. Furthermore, a significant proportion of less soluble pyrophosphate was identified by solution (2%-35%) and solid-state (8%-53%) (31)P NMR, which was also responsible for the stable P forms at higher pyrolysis temperature although their solubility or stability requires further investigation. Results suggested that a relatively lower pyrolysis temperature retains P availability regardless of feedstock during pyrolysis process. Copyright © 2016. Published by Elsevier B.V.
Xian, George; Homer, Collin G.; Granneman, Brian; Meyer, Debra K.
2012-01-01
high-resolution remote sensing data (Homer and others, 2012). This method has proven its utility; however, to develop these products across even larger areas will require additional cost efficiencies to ensure that an adequate product can be developed for the lowest cost possible. Given the vast geographic extent of shrubland ecosystems in the western United States, identifying cost efficiencies with optimal training data development and subsequent application to medium resolution satellite imagery provide the most likely areas for methodological efficiency gains. The primary objective of this research was to conduct a series of sensitivity tests to evaluate the most optimal and practical way to develop Landsat scale information for estimating the extent and distribution of sagebrush ecosystem components over large areas in the conterminous United States. An existing dataset of sagebrush components developed from extensive field measurements, high-resolution satellite imagery, and medium resolution Landsat imagery in Wyoming was used as the reference database (Homer and others, 2012). Statistical analysis was performed to analyze the relation between the accuracy of sagebrush components and the amount and distribution of training data on Landsat scenes needed to obtain accurate predictions.
Nonlinearity analysis of model-scale jet noise
NASA Astrophysics Data System (ADS)
Gee, Kent L.; Atchley, Anthony A.; Falco, Lauren E.; Shepherd, Micah R.
2012-09-01
This paper describes the use of a spectrally-based "nonlinearity indicator" to complement ordinary spectral analysis of jet noise propagation data. The indicator, which involves the cross spectrum between the temporal acoustic pressure and the square of the acoustic pressure, stems directly from ensemble averaging the generalized Burgers equation. The indicator is applied to unheated model-scale jet noise from subsonic and supersonic nozzles. The results demonstrate how the indicator can be used to interpret the evolution of power spectra in the transition from the geometric near to far field. Geometric near-field and nonlinear effects can be distinguished from one another, thus lending additional physical insight into the propagation.
Abd El Aziz, Tarek Mohamed; Bourgoin-Voillard, Sandrine; Combemale, Stéphanie; Beroud, Rémy; Fadl, Mahmoud; Seve, Michel; De Waard, Michel
2015-10-01
Animal venoms are complex mixtures of more than 100 different compounds, including peptides, proteins, and nonprotein compounds such as lipids, carbohydrates, and metal ions. In addition, the existing compounds show a wide range of molecular weights and concentrations within these venoms, making separation and purification procedures quite tedious. Here, we analyzed for the first time by MS the advantages of using the OFFGEL technique in the separation of the venom components of the Egyptian Elapidae Walterinnesia aegyptia snake compared to two classical methods of separation, SEC and RP-HPLC. We demonstrate that OFFGEL separates venom components over a larger scale of fractions, preserve respectable resolution with regard to the presence of a given compound in adjacent fractions and allows the identification of a greater number of ions by MS (102 over 134 total ions). We also conclude that applying several separating techniques (SEC and RP-HPLC in addition to OFFGEL) provides complementary results in terms of ion detection (21 more for SEC and 22 more with RP-HPLC). As a result, we provide a complete list of 134 ions present in the venom of W. aegyptia by using all these techniques combined.
Lie symmetries and conservation laws for the time fractional Derrida-Lebowitz-Speer-Spohn equation
NASA Astrophysics Data System (ADS)
Rui, Wenjuan; Zhang, Xiangzhi
2016-05-01
This paper investigates the invariance properties of the time fractional Derrida-Lebowitz-Speer-Spohn (FDLSS) equation with Riemann-Liouville derivative. By using the Lie group analysis method of fractional differential equations, we derive Lie symmetries for the FDLSS equation. In a particular case of scaling transformations, we transform the FDLSS equation into a nonlinear ordinary fractional differential equation. Conservation laws for this equation are obtained with the aid of the new conservation theorem and the fractional generalization of the Noether operators.
Irregularities and scaling in signal and image processing: multifractal analysis
NASA Astrophysics Data System (ADS)
Abry, Patrice; Jaffard, Herwig; Wendt, Stéphane
2015-03-01
B. Mandelbrot gave a new birth to the notions of scale invariance, self-similarity and non-integer dimensions, gathering them as the founding corner-stones used to build up fractal geometry. The first purpose of the present contribution is to review and relate together these key notions, explore their interplay and show that they are different facets of a single intuition. Second, we will explain how these notions lead to the derivation of the mathematical tools underlying multifractal analysis. Third, we will reformulate these theoretical tools into a wavelet framework, hence enabling their better theoretical understanding as well as their efficient practical implementation. B. Mandelbrot used his concept of fractal geometry to analyze real-world applications of very different natures. As a tribute to his work, applications of various origins, and where multifractal analysis proved fruitful, are revisited to illustrate the theoretical developments proposed here.
NASA Technical Reports Server (NTRS)
Miller, W. S.
1974-01-01
A structural analysis performed on the 1/4-watt cryogenic refrigerator. The analysis covered the complete assembly except for the cooling jacket and mounting brackets. Maximum stresses, margin of safety, and natural frequencies were calculated for structurally loaded refrigerator components shown in assembly drawings. The stress analysis indicates that the design is satisfactory for the specified vibration environment, and the proof, burst, and normal operating loads.
Problems of allometric scaling analysis: examples from mammalian reproductive biology.
Martin, Robert D; Genoud, Michel; Hemelrijk, Charlotte K
2005-05-01
Biological scaling analyses employing the widely used bivariate allometric model are beset by at least four interacting problems: (1) choice of an appropriate best-fit line with due attention to the influence of outliers; (2) objective recognition of divergent subsets in the data (allometric grades); (3) potential restrictions on statistical independence resulting from phylogenetic inertia; and (4) the need for extreme caution in inferring causation from correlation. A new non-parametric line-fitting technique has been developed that eliminates requirements for normality of distribution, greatly reduces the influence of outliers and permits objective recognition of grade shifts in substantial datasets. This technique is applied in scaling analyses of mammalian gestation periods and of neonatal body mass in primates. These analyses feed into a re-examination, conducted with partial correlation analysis, of the maternal energy hypothesis relating to mammalian brain evolution, which suggests links between body size and brain size in neonates and adults, gestation period and basal metabolic rate. Much has been made of the potential problem of phylogenetic inertia as a confounding factor in scaling analyses. However, this problem may be less severe than suspected earlier because nested analyses of variance conducted on residual variation (rather than on raw values) reveals that there is considerable variance at low taxonomic levels. In fact, limited divergence in body size between closely related species is one of the prime examples of phylogenetic inertia. One common approach to eliminating perceived problems of phylogenetic inertia in allometric analyses has been calculation of 'independent contrast values'. It is demonstrated that the reasoning behind this approach is flawed in several ways. Calculation of contrast values for closely related species of similar body size is, in fact, highly questionable, particularly when there are major deviations from the best
Scaling analysis of biogeochemical parameters in coastal waters
NASA Astrophysics Data System (ADS)
Zongo, Sylvie; Schmitt, François
2010-05-01
Monitoring data are very useful for rapidly providing quality controlled measurements of many environmental aquatic, and thus understanding the spatio-temporal structure which governs the dynamics. We consider here the long time biogeochemical time series from automatic continuous monitoring. These biogeochemical time series from in Eastern English Channel: coastal waters, estuarine waters and river waters. In the first analysis, we consider data from the MAREL system (Automatic monitoring network): MAREL Carnot buoy that is situated in the coastal waters of Boulogne-sur-mer with data from the Honfleur MAREL buoy (an estuarine station in the bay of Seine). Marel system is based on the deployment of data buoys having marine water analysis capabilities on an automated mode. It is equipped with high performance technologies for water analysis and real time data transmission and record many parameters at fixed locations: temperature, dissolved Oxygen (DO), pH, chlorophyll a (Chla), salinity with high frequency resolution (10 or 20 minutes). We consider also the data from Wimereux river off Boulogne-sur mer. Two sets of data were recorded in the river Wimereux in downstream and upstream using a temperature, dissolved oxygen, turbidity and salinity sensors. This monitoring provided an approach of spatial temporal functional dynamism, with these two zones: the first is represented by downstream related to hydrodynamic marine; the second is related to the upstream flow waters. All these time series reveal large fluctuations at many time scales. The large number of data provided by the sensors enables the estimation of Fourier spectral analysis, in order to consider the dominant frequencies associated to the dynamics. This shows the impact of turbulence and of the tidal cycle on the high variability of these parameters. These spectra show quite nice scaling regimes which are compared to the one of temperature, as a reference turbulent passive scalar.
A Multi-scale Approach to Urban Thermal Analysis
NASA Technical Reports Server (NTRS)
Gluch, Renne; Quattrochi, Dale A.
2005-01-01
An environmental consequence of urbanization is the urban heat island effect, a situation where urban areas are warmer than surrounding rural areas. The urban heat island phenomenon results from the replacement of natural landscapes with impervious surfaces such as concrete and asphalt and is linked to adverse economic and environmental impacts. In order to better understand the urban microclimate, a greater understanding of the urban thermal pattern (UTP), including an analysis of the thermal properties of individual land covers, is needed. This study examines the UTP by means of thermal land cover response for the Salt Lake City, Utah, study area at two scales: 1) the community level, and 2) the regional or valleywide level. Airborne ATLAS (Advanced Thermal Land Applications Sensor) data, a high spatial resolution (10-meter) dataset appropriate for an environment containing a concentration of diverse land covers, are used for both land cover and thermal analysis at the community level. The ATLAS data consist of 15 channels covering the visible, near-IR, mid-IR and thermal-IR wavelengths. At the regional level Landsat TM data are used for land cover analysis while the ATLAS channel 13 data are used for the thermal analysis. Results show that a heat island is evident at both the community and the valleywide level where there is an abundance of impervious surfaces. ATLAS data perform well in community level studies in terms of land cover and thermal exchanges, but other, more coarse-resolution data sets are more appropriate for large-area thermal studies. Thermal response per land cover is consistent at both levels, which suggests potential for urban climate modeling at multiple scales.
A Multi-scale Approach to Urban Thermal Analysis
NASA Technical Reports Server (NTRS)
Gluch, Renne; Quattrochi, Dale A.
2005-01-01
An environmental consequence of urbanization is the urban heat island effect, a situation where urban areas are warmer than surrounding rural areas. The urban heat island phenomenon results from the replacement of natural landscapes with impervious surfaces such as concrete and asphalt and is linked to adverse economic and environmental impacts. In order to better understand the urban microclimate, a greater understanding of the urban thermal pattern (UTP), including an analysis of the thermal properties of individual land covers, is needed. This study examines the UTP by means of thermal land cover response for the Salt Lake City, Utah, study area at two scales: 1) the community level, and 2) the regional or valleywide level. Airborne ATLAS (Advanced Thermal Land Applications Sensor) data, a high spatial resolution (10-meter) dataset appropriate for an environment containing a concentration of diverse land covers, are used for both land cover and thermal analysis at the community level. The ATLAS data consist of 15 channels covering the visible, near-IR, mid-IR and thermal-IR wavelengths. At the regional level Landsat TM data are used for land cover analysis while the ATLAS channel 13 data are used for the thermal analysis. Results show that a heat island is evident at both the community and the valleywide level where there is an abundance of impervious surfaces. ATLAS data perform well in community level studies in terms of land cover and thermal exchanges, but other, more coarse-resolution data sets are more appropriate for large-area thermal studies. Thermal response per land cover is consistent at both levels, which suggests potential for urban climate modeling at multiple scales.
Bi-Component T2* Analysis of Bound and Pore Bone Water Fractions Fails at High Field Strengths
Seifert, Alan C.; Wehrli, Suzanne L.; Wehrli, Felix W.
2015-01-01
Osteoporosis involves degradation of bone’s trabecular architecture, cortical thinning, and enlargement of cortical pores. Increased cortical porosity is a major cause of the decreased strength of osteoporotic bone. The majority of cortical pores, however, are below the resolution limit of MRI. Recent work has shown that porosity can be evaluated by MRI-based quantification of bone water. Bi-exponential T2* fitting and adiabatic inversion preparation are the two most common methods purported to distinguish bound and pore water in order to quantify matrix density and porosity. To assess the viability of T2* bi-component analysis as a method for quantifying bound and pore water fractions, we have applied this method to human cortical bone at 1.5T, 3T, 7T, and 9.4T, and validated the resulting pool fractions against μCT-derived porosity and gravimetrically-determined bone densities. We also investigated alternative methods: 2D T1–T2* bi-component fitting by incorporating saturation-recovery, 1D and 2D fitting of CPMG echo amplitudes, and deuterium inversion recovery. Short-T2* pool fraction was moderately correlated with porosity (R2 = 0.70) and matrix density (R2 = 0.63) at 1.5T, but the strengths of these associations were found to diminish rapidly as field strength increases, falling below R2 = 0.5 at 3T. Addition of the T1 dimension to bi-component analysis only slightly improved the strengths of these correlations. T2*-based bi-component analysis should therefore be used with caution. Performance of deuterium inversion-recovery at 9.4T was also poor (R2 = 0.50 versus porosity and R2 = 0.46 versus matrix density). CPMG-derived short-T2 fraction at 9.4T, however, is highly correlated with porosity (R2 = 0.87) and matrix density (R2 = 0.88), confirming the utility of this method for independent validation of bone water pools. PMID:25981785
Psychometric analysis of the Ten-Item Perceived Stress Scale.
Taylor, John M
2015-03-01
Although the 10-item Perceived Stress Scale (PSS-10) is a popular measure, a review of the literature reveals 3 significant gaps: (a) There is some debate as to whether a 1- or a 2-factor model best describes the relationships among the PSS-10 items, (b) little information is available on the performance of the items on the scale, and (c) it is unclear whether PSS-10 scores are subject to gender bias. These gaps were addressed in this study using a sample of 1,236 adults from the National Survey of Midlife Development in the United States II. Based on self-identification, participants were 56.31% female, 77% White, 17.31% Black and/or African American, and the average age was 54.48 years (SD = 11.69). Findings from an ordinal confirmatory factor analysis suggested the relationships among the items are best described by an oblique 2-factor model. Item analysis using the graded response model provided no evidence of item misfit and indicated both subscales have a wide estimation range. Although t tests revealed a significant difference between the means of males and females on the Perceived Helplessness Subscale (t = 4.001, df = 1234, p < .001), measurement invariance tests suggest that PSS-10 scores may not be substantially affected by gender bias. Overall, the findings suggest that inferences made using PSS-10 scores are valid. However, this study calls into question inferences where the multidimensionality of the PSS-10 is ignored.
Analysis of a Two Wrap Meso Scale Scroll Pump
NASA Astrophysics Data System (ADS)
Moore, Eric J.; Muntz, E. Phillip; Erye, Francis; Myung, Nosang; Orient, Otto; Shcheglov, Kirill; Wiberg, Dean
2003-05-01
The scroll pump is an interesting positive displacement pump. One scroll in the form of an Archimedes spiral moves with respect to another, similarly shaped stationary scroll, forming a peristaltic pumping action. The moving scroll traces an orbital path but is maintained at a constant angular orientation. Pockets of gas are forced along the fixed scroll from its periphery, eventually reaching the center where the gas is discharged. A model of a multi-wrap scroll pump was created and applied to predict pumping performance. Meso-scale scroll pumps have been proposed for use as roughing pumps in mobile, sampling mass spectrometer systems. The main objective of the present analysis is to obtain estimates of a scroll pump's performance, taking into account the effect of manufacturing tolerances, in order to determine if the meso scale scroll pump will meet the necessarily small power and volume requirements associated with mobile, sampling mass spectrometer systems. The analysis involves developing the governing equations for the pump in terms of several operating parameters, taking into account the leaks to and from the trapped gasses as they are displaced to the discharge port. The power and volume required for pumping tasks is also obtained in terms of the operating parameters and pump size. Performance evaluations such as power and volume per unit of pumped gas upflow are obtained.
Large-scale analysis of microRNA evolution
2012-01-01
Background In animals, microRNAs (miRNA) are important genetic regulators. Animal miRNAs appear to have expanded in conjunction with an escalation in complexity during early bilaterian evolution. Their small size and high-degree of similarity makes them challenging for phylogenetic approaches. Furthermore, genomic locations encoding miRNAs are not clearly defined in many species. A number of studies have looked at the evolution of individual miRNA families. However, we currently lack resources for large-scale analysis of miRNA evolution. Results We addressed some of these issues in order to analyse the evolution of miRNAs. We perform syntenic and phylogenetic analysis for miRNAs from 80 animal species. We present synteny maps, phylogenies and functional data for miRNAs across these species. These data represent the basis of our analyses and also act as a resource for the community. Conclusions We use these data to explore the distribution of miRNAs across phylogenetic space, characterise their birth and death, and examine functional relationships between miRNAs and other genes. These data confirm a number of previously reported findings on a larger scale and also offer novel insights into the evolution of the miRNA repertoire in animals, and it’s genomic organization. PMID:22672736
Statistical analysis of large-scale neuronal recording data
Reed, Jamie L.; Kaas, Jon H.
2010-01-01
Relating stimulus properties to the response properties of individual neurons and neuronal networks is a major goal of sensory research. Many investigators implant electrode arrays in multiple brain areas and record from chronically implanted electrodes over time to answer a variety of questions. Technical challenges related to analyzing large-scale neuronal recording data are not trivial. Several analysis methods traditionally used by neurophysiologists do not account for dependencies in the data that are inherent in multi-electrode recordings. In addition, when neurophysiological data are not best modeled by the normal distribution and when the variables of interest may not be linearly related, extensions of the linear modeling techniques are recommended. A variety of methods exist to analyze correlated data, even when data are not normally distributed and the relationships are nonlinear. Here we review expansions of the Generalized Linear Model designed to address these data properties. Such methods are used in other research fields, and the application to large-scale neuronal recording data will enable investigators to determine the variable properties that convincingly contribute to the variances in the observed neuronal measures. Standard measures of neuron properties such as response magnitudes can be analyzed using these methods, and measures of neuronal network activity such as spike timing correlations can be analyzed as well. We have done just that in recordings from 100-electrode arrays implanted in the primary somatosensory cortex of owl monkeys. Here we illustrate how one example method, Generalized Estimating Equations analysis, is a useful method to apply to large-scale neuronal recordings. PMID:20472395
Diagnostic accuracy of the International HIV Dementia Scale and HIV Dementia Scale: A meta-analysis.
Hu, Xueying; Zhou, Yang; Long, Jianxiong; Feng, Qiming; Wang, Rensheng; Su, Li; Zhao, Tingting; Wei, Bo
2012-10-01
This aim of this study was to assess the diagnostic accuracy of the International HIV Dementia Scale (IHDS) or HIV Dementia Scale (HDS) for the diagnosis of HIV-associated neurocognitive disorders (HAND). A comprehensive and systematic search was carried out in PubMed and EMBASE databases. Sensitivity, specificity, Q(*)-values, summary receiver operating characteristic curves and other measures of accuracy of IHDS or HDS in the diagnosis of HAND were summarized. Summary receiver operator characteristic (SROC) curve analysis for HAND data demonstrates a pooled sensitivity of 0.90 [95% confidence interval (CI), 0.88-0.91] and overall specificity of 0.96 (95% CI, 0.95-0.97) for IHDS, the Q(*)-value for IHDS was 0.9195 and the diagnostic odds ratio (DOR) was 162.28 (95% CI, 91.82-286.81). HDS had an overall sensitivity of 0.39 (95% CI, 0.34-0.43) and specificity of 0.90 (95% CI, 0.89-0.91), the Q(*)-value for HDS was 0.6321 and DOR was 5.81 (95% CI, 3.64-9.82). There was significant heterogeneity for studies that reported IHDS and HDS. This meta-analysis has shown that IHDS and HDS may offer high diagnostic performance accuracy for the detection of HAND in primary health care and resource-limited settings. IHDS and HDS may require reformed neuropsychological characterization of impairments in accordance with regional culture and language in future international studies.
Scaling analysis of the anisotropic nonlocal Kardar-Parisi-Zhang equation
NASA Astrophysics Data System (ADS)
Tang, Gang; Ma, Benkun
2002-07-01
The scaling behaviors of the anisotropic nonlocal Kardar-Parisi-Zhang equation are studied by the scaling analysis method introduced by Hentschel and Family. The scaling exponents in both the weak- and strong-coupling regions are obtained, respectively. The scaling exponents in weak-coupling region can well match the results of the dynamic renormalization-group analysis.